
Chapter 20
Bending/Tension of Plate Reinforced by a System
of Parallel Fiber

Alexander G. Kolpakov, Sergei I. Rakin

Abstract We present a 3-D to 2-D dimension reduction procedure as applied to the
periodicity cell problem (PCP) of the homogenization theory for plates reinforced
with a unidirectional system of fibers. The original 3-D PCP is reduced to several
2-D problems. The reduction procedures are not trivial, in one case we encounter the
incompatibility condition, which makes impossible to transform the 3-D elasticity
problem to the 2-D elasticity problem (only the transformation to 2-D thermoe-
lasticity problem is possible). Numerical analysis of 2-D periodicity cell problems
demonstrates new phenomena: the boundary layers on the top and bottom surfaces
of the plate and, as a result, the wrinkling of the top and bottom surfaces of the plate.
Note that these phenomena never occur in uniform plates or plates made of uniform
layers.

Keywords: Fiber-reinforced plates · Homogenization · Dimensional reduction

20.1 Introduction

We consider a plate reinforced by a periodic system of parallel fibers, see Fig.20.1.
Assume the fibers are parallel to the Oy-axis and form a periodic structure in the
Oxz-plane. The periodicity cell (PC) P3 = [0, L]× [0, 1]× [−h, h] of such structure
and its 2-D cross-sections P = [0, L]× [−h, h] are displayed in Fig.20.1.

Since the plate under consideration is invariant with respect to translation along
the Oy-axis, there is a reason to look for a 2-D model of the plate. The procedure
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Fig. 20.1 a - fiber-reinforced plate, b - its 2-D periodicity cells

of dimension reduction is known for the solids with periodic systems of fibers
or channels (Sendeckyj, 1974; Grigolyuk and Fil’Shtinskii, 1966; Grigolyuk and
Fil’shtinskij, 1992; Lu, 1995; Mityushev and Rogosin, 2000; Gluzman et al, 2018;
Drygaś et al, 2019) and for plates of complex geometry made of homogeneous
materials (Annin et al, 2017; Kolpakov and Kolpakov, 2020; Grigolyuk et al, 1991).

The specific features of plates are:

• the free (top and bottom) surfaces;
• the bending/torsion modes of deformation.

These features distinguish the plates from the solids with the periodic structure
considered in Sendeckyj (1974); Grigolyuk and Fil’Shtinskii (1966); Grigolyuk
and Fil’shtinskij (1992); Lu (1995); Mityushev and Rogosin (2000); Gluzman et al
(2018); Drygaś et al (2019). The inhomogeneity also brings some new effects.

There exists a great variety of approaches to the analysis of thin plates. In order to
mention the recent papers, see Barchiesi and Khakalo (2019); Franciosi et al (2019);
Yang et al (2020); Placidi and El Dhaba (2017); Altenbach et al (2010); Wang et al
(2021) as well as references in them. As follows from the literature, the classical
(Kirchoff–Love, Timoshenko, etc.) approaches work well for homogeneous plates or
plates made of uniform layers. The classical theories do not work as applied to the
inhomogeneous plates of general structure (for example, fiber-reinforced plates or
plates with high-porous core). In some cases, even the basic notions of the classical
theories are not well defined as applied to the inhomogeneous plates of general
structure (for example, the inhomogeneous plate may have several "neutral" planes).
The problem of construction of platemodel was solved in the homogenization theory.
The rigor homogenization theories as applied to elastic thin plates were developed
first in Caillerie (1984); Kohn and Vogelius (1984). The papers (Caillerie, 1982,
1984) were devoted to the investigation of 3-D model of thin elastic periodic plate
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when the thickness of the plate and the size of the periods are small. In the paper
(Kohn and Vogelius, 1984), the elastic thin body with rapidly varying thickness was
considered.

Note that the homogenization theory is a mathematical theory and it does not
answer the questions of mechanical nature on its own.

The homogenization theory justifies that solution of the elasticity theory problem
in a thin inhomogeneous layer of complex geometry has the form (A,B = 1, 2)

uε = uA(x, z)eA + yw(x, z),AeA + εNAB0(x/ε)uA,B(x, z)+

εNAB1(x/ε)w,AB(x, z),
(20.1)

where ε is the characteristic thickness of the plate; uA(x, z) are the global in-plane
displacements, w(x, z) is the global normal deflection; eAB = uA,B are global in-
plane strains and ρAB = w,AB are global curvatures/torsion (A,B = 1, 2). These
functions have the same meaning as in the classical theory. We use the notations
f,i(x) = ∂f(x)/∂xi and f,i(y) = ∂f(y)/∂yi for the partial derivatives and assume
summation with respect the repeating indices.

The term εNAB0(x/ε)uA,B(x, z) + εNAB1(x/ε)w,AB(x, z) (known in the ho-
mogenization theory as “corrector” (Caillerie, 1984; Kohn and Vogelius, 1984) has
the order of the thickness ε of the plate. Note that the plate may have rapidly varying
thickness (top and/or bottom surfaces of the plate may be wavy). Therefore, the
corrector has little effect on the global shape of the deformed plate. On the contrary,
the derivatives of the functions εNAB0(x/ε) and εNAB1(x/ε) in x are not small
and may strongly influence the local stress-strain state of the plate.

It is known from the homogenization theory (Caillerie, 1984; Kohn and Vogelius,
1984) that the functions NABµ are solutions to the following so-called periodicity
cell problems:

(aijkl(x, z)NABµ
k,l + (−1)µaijAB(x, z)zµ),j = 0 in P3,

(aijkl(x, z)NABµ
k,l + (−1)µaijAB(x, z)zµ)nj = 0 on Γ3,

NABµ is periodic in x, y,
(20.2)

Γ3 = Γ−3 ∪Γ+
3 . Hereafter,y = (x, y, z) = x/ε. The variable-index correspondence:

x ↔ 1, y ↔ 2, z ↔ 3 . The Latin indices take values 1, 2, 3; the capital Greek
indices takes values 1, 2; the indices µ, ν take values 0, 1. Γ3 means the top and the
bottom surfaces of the PC P3.

The local stresses in the PC are (Caillerie, 1984; Kohn and Vogelius, 1984)

σij = aijkl(x, z)NABµ
k,l + (−1)µaijAB(x, z)zµ

correspond to the in-plane strains (µ = 0) of the unit magnitude or the bend-
ing/torsion (µ = 1) of the unit magnitude.

In the plates subjected to the macroscopic stress-strain state (SSS) eAB , ρAB , the
local stresses are computed as
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σij = (aijkl(x, z)NAB0
k,l + aijAB(x, z))eAB+

(aijkl(x, z)NAB1
k,l − aijAB(x, z)z)ρAB .

(20.3)

This formula may be used for analysis of the local strength of plates, local stability
of the constitutive elements of plate, etc. The effective rigidities of the plate are
computed in accordance with the formulas (Caillerie, 1984; Kohn and Vogelius,
1984)

Sν+µ
αβAB =

1

|PrP3|

∫
P3

(aαβkl(y)NABν
k,l + (−1)νzνaijAB(y)(−1)µzµdy =

1

L

∫
P

(aαβkδ(x, z)NABν
k,δ + (−1)νzνaijAB(x, z))(−1)µzµdxdz.

(20.4)
2-D PC P = [0, L] × [−h, h] is projection PrP3 of 3-D PC P3 on Oxz-plane;
|PrP3| = L× 1; L is the width of the 2-D periodicity cell P ; Γ+ and Γ− are the
top and the bottom of the PC P , correspondingly; Γ = Γ− ∪ Γ+.

One can conclude that the functions NABµ are the key to the analysis of the
macro and microscopic properties of the inhomogeneous plate.

The homogenization theory itself provides us with no information about the
solution to the PCP (20.2). One can see that the PCP (20.2) is a special type of 3-D
elasticity theory problem, which is the subject of the elasticity theory. It would be
reasonable to regard the PCP as the point of torch transfer from the homogenization
theory to the elasticity theory. In particular, it would be reasonable to apply the
methods developed in the elasticity theory to the analysis of PCP.

20.2 Reduction of 3-D PCP (20.2) to 2-D problems

Although the dimension reduction procedures have a longstanding history, the first
work (to the best knowledge of the authors) devoted to the dimension reduction in
the bending problem for the 3-D elastic body of the periodic structure is in Grigolyuk
et al (1991). Grigolyuk et al (1991) was devoted to the bending of an elastic layer
with the periodic systems of tunnel cuts. Grigolyuk et al (1991) used the double
periodic function technique, thus treated the body as a layer of “infinite” thickness.
It means that Grigolyuk et al (1991) is not the case of the plate, which thickness is
small in the original variables x or finite in the fast variables y = x/ε. The results
in Grigolyuk et al (1991) can be used to predict the SSS inside the plate, but not
near-surface phenomena. Do not confuse the dimension reductions in Grigolyuk et al
(1991) and one discussed in this paper with the traditional dimensional reduction
in the plane of the plate (Love, 2013). The dimensional reduction discussed in this
paper is based on the transition to the problems on the cross-section of the plate.

Our starting point is the PCP (20.2) of the homogenization theory as applied to
thin plates. The PC P is a cylinder parallel to the Oy-axis, see Fig.20.1, and the
elastic constants aijkl do not depend on the variable y . In this case, the solution to
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the problem (20.2) does not depend on y and has the form NABµ = NABµ(x, z).
Substituting into (20.2), we arrive at the following 2-D PCP:

(aiαkβ(x, z)NABµ
k,β + (−1)µaiαAB(x, z)zµ),α = 0 in P,

(aiαkβ(x, z)NABµ
k,β + (−1)µaiαAB(x, z)zµ)nα = 0 on Γ,

NABµ(x, z) is periodic in x.
(20.5)

Hereafter α, β=1,3; i,k=1,2,3; AB=11, 22, 12,21.
In the equations (20.5)

aiαkβ(x, z)NABµ
k,β + (−1)µaiαAB(x, z)zµ =

aiαθβ(x, z)NABµ
θ,β + aiα2β(x, z)NABµ

2,β + (−1)µaiαAB(x, z)zµ.
(20.6)

The boundary-value problem (20.5) decomposes into several 2-D problems. The
form of the 2-D problems depends on the index i in (20.5). For i = 2 , the original
problems are reduced to scalar 2-D problems. For i = ξ = 1, 3 the original problems
are reduced to 2-D elasticity or thermoelasticity problems.

For this reason, we consider problem (20.2) for i = 2 and i = ξ = 1, 3, separately.
In this paper, we pay the main attention to the case i = 2, which leads to the analogs
of the anti-plane elasticity problem. The case i = ξ = 1, 3, leads to the analogs of
the planar elasticity problem.

Problem (20.2) with index i = 2. We assume the fibers and matrix are made
of isotropic materials. It is convenient to save the notations aijkl for the elastic
constants in our analysis. In special cases below, we will use the technical constants,
see formulas (20.31) below.

In the case, under consideration a2αθβ = 0 , a2αAB = 0 (Love, 2013) and
expression in (20.6) takes the form ( α = 1, 3)

a2αθβ(x, z)NABµ
θ,β + a2α2β(x, z)NABµ

2,β + (−1)µaiαAB(x, z)zµ =

a2α2α(x, z)NABµ
2,α +

{
(−1)µa2121(x, z)zµ if AB = 12, 21,

0 else.
(20.7)

By virtue of (20.7), the solution to (20.2) NABµ
2 (x, z) = 0 if AB 6= 12, 21. Only

NABµ
2 (x, z) 6= 0 . This is the case of in-plane shift (if µ = 0 ) or torsion (if µ = 1).

The in-plane shift is also called anti-plane deformation (Love, 2013).
The problem for N21µ

2 (x, z) takes the form
(a2α2α(x, z)N21µ

2,α + (−1)µa2121(x, z)zµδα1),α = 0 in P,
(a2α2α(x, z)N21µ

2,α + (−1)µa2121(x, z)zµδα1)nα = 0 on Γ,
N21µ

2 (x, z) periodic in x.
(20.8)

It is convenient to eliminate the "mass" and "surface" forces in (20.8). It may be
done if there exists a function w , such that (ν = 0, 1)
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a2δ2δ(x, z)w,δ = (−1)µa2121(x, z)zµ. (20.9)

For δ = 2 and δ = 2 , we obtain from (20.9) a2δ2δ(x, z)w,1 = (−1)µa2121z
µ and

a2δ2δw,2 = (−1)µa2121(x, z)zµ , correspondingly. From these equalities, we obtain
the following system of differential equations

w,1 = (−1)µ, w,3 = 0. (20.10)

In-plane shift (µ = 0). For µ = 0, the system (20.9) takes the form w,1 =
1, w,3 = 0. The solution to this system is w(x, z) = x . Introduce function

M(x, z) = N120
2 (x, z) + x,

and write (20.8) in the form of a boundary-value problem without "mass" and
"surface" forces: 

(a2α2α(x, z)M,α),α = 0 in P,
a2α2α(x, z)M,αnα = 0 on Γ,
M(x, z)− x periodic in x.

(20.11)

The problem (20.11) is the anti-plane elasticity theory problem.
After some algebra, we obtain the following formulas for the local stresses:

σij = aij2α(x, z)N120
2,α + aij21(x, z) = aij2α(x, z)M,α, (20.12)

and the homogenized shift rigidity

S0
2121 =

1

L

∫
P

(a212α(x, z)N210
2,α + a2121(x, z))dxdz =

1

L

∫
P

(a212α(x, z)M,αdxdz,

S1
2121 =

1

L

∫
P

(a212α(x, z)N210
2,α + a2121(x, z))zdxdz =

1

L

∫
P

(a212α(x, z)M,αzdxdz.

(20.13)

The local stresses (20.12) and the homogenized shift rigidity (20.13) depend on the
elastic constants of the composite plate.

These formulas may be used for the analysis of the local strength of the plates,
local stability of the constitutive elements of the plate, etc. The effective rigidities of
the plate are computed in accordance with the formulas (Caillerie, 1984; Kohn and
Vogelius, 1984).

Torsion (µ = 1). In this case, we meet a problem, which has no analog in the
classical theory of elasticity or classical plate theory.

For µ = 1, the system (20.10) takes form w,1 = −z, w,3 = 0 . This system is not
integrable. Really, the necessary integrability condition (Love, 2013) is not satisfied
for this system because w,13 = −z,3 = −1 6= w,31 = 0 .
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For µ = 1 , (20.8) takes the form
(a2α2α(x, z)N211

2,α − a2121(x, z)zδα1),α = 0 in P,
(a2α2α(x, z)N211

2,α − a2121(x, z)zδα1)nα = 0 on Γ,
N211(x, z) is periodic in x.

(20.14)

To write (20.14) in compact form, we introduce function as

ϕ,3 = a2121(x, z)(N211
2,1 − z), ϕ,1 = −a2323(x, z)N211

2,3 . (20.15)

The function ϕ(x, z) introduced by (20.15) is similar to the conjugate function
(Sedov, 1971). The equality

ϕ,31 − ϕ,13 = (a2121(x, z)(N211
2,1 − z)),1 + (a2323(x, z)N211

2,3 ),3 = 0, (20.16)

follows from (20.14). This equality justifies the existence of the function ϕ(x, z) .
Express N211

2 (x, z) from (20.15)

N211
2,1 =

1

a2121(x, z)
ϕ,3 + z,N211

2,3 = − 1

a2323(x, z)
ϕ,1. (20.17)

Differentiation of (20.17) yields

0 = N211
2,13 −N211

2,31 = (
1

a2121(x, z)
ϕ,3 + z),3 + (

1

a2323(x, z)
ϕ,1),1. (20.18)

Taking into account that for the isotropic materials a2121 = a2323, we obtain

(
1

a2121(x, z)
ϕ,3),3 + (

1

a2121(x, z)
ϕ,1),1 = 1. (20.19)

With the use of the function ϕ(x, z), the boundary conditions on the top and bottom
boundaries Γ+ and Γ− (20.8) can be written as

(a2121(x, z)N21ν
2,1 − a2121(x, z)z)n1 + a2323(x, z)N21ν

2,3 n3 =

ϕ,3n1 − ϕ,1n3 =
∂ϕ

∂s
= 0 on Γ,

(20.20)

where ∂ϕ/∂s is the derivative along the boundary Γ+ or Γ− . Because of (20.20),
the function ϕ(x, z) takes constant values on the top and bottom boundaries Γ+ and
Γ− :

ϕ(x, z) = const± on Γ±. (20.21)

Without loss of generality, we can assume that ϕ(x, z) = 0 at the bottom boundary
Γ−.

Integrating the first equality in (20.15) over z from −h to h, we have
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ϕ(x, L) = ϕ(x,−L) +

∫ h

−h
a2121(x, z)(N211

2,1 − z)dz. (20.22)

Integrating the (20.23) over x from 0 to L, we have

ϕ(−h, L)L = ϕ(−h,−L)L+

∫
P

a2121(x, z)(N211
2,1 − z)dxdz. (20.23)

Writing (20.23), we take into account that ϕ(x, L) and ϕ(x,−L) are constants.
Multiplying (20.14) by x and integrating by parts, we have∫

P

a2121(x, z)(N211
2,1 − z)dxdz =

∫
P

ϕ,3dxdz.

As the result

S1
2121 =

1

L

∫
P

a2121(x, z)(N211
2,1 − z)dxdz =

1

L

∫
P

ϕ,3dxdz. (20.24)

Comparing (20.23) and (20.24), we find that the RHP (20.23) is equal to

ϕ(h,−L) = φ(−h,−L) + S1
2121.

We have assumed that ϕ(x, z) = 0 on the bottom boundary Γ+, in particular,
ϕ(−h,−L) = 0 and ϕ(x, z) = S1

2121 on the top boundary Γ+ . As a result, we
arrive at the following boundary value problem:

(
1

a2121(x, z)
ϕ,1),1 + (

1

a2121(x, z)
ϕ,3),3 = 1 in P,

ϕ = 0 on Γ−, ϕ = S1
2121 on Γ+,

ϕ(x, z) is periodic in x.

(20.25)

The problem (20.25) involves the asymmetric effective stiffness S1
2121 of the plate,

which has been expressed in (20.24) through the solution ϕ to the BVP (20.25).
The problem (20.25) with the condition (20.24) has a not usual form. This is lucky
for us that the asymmetric effective stiffness S1

2121 also may be computed by using
the second formula in (20.13). As a result, we have the problem (20.25) with S1

2121

known after the BVP (20.11) be solved.
The local stresses, corresponding to the case under consideration, are expressed

in the form

σij = aij2α(x, z) + aij21(x, z)z =
aij21(x, z)

a2121(x, z)
(ϕ,3 − ϕ,1),

and the homogenized torsion rigidity is expressed in the form

S2
2121 = −

∫
P

(ϕ,3 − ϕ,1)zdxdz. (20.26)
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Problem (20.2) with index i = ξ = 1, 3. Deformation perpendicular to
the fibers. In this case, aξα2β(y) = 0 and expression in (20.6) takes the form
(α, β, θ, ξ = 1, 1 ).

In the equations (20.5)

aiαkβ(y)NABµ
k,β + (−1)µaiαAB(x, z)zµ =

aξαθβ(x, z)NABµ
θ,β + aξα2β(x, z)NABµ

2,β + (−1)µaςαAB(x, z)zµ =

aξαθβ(x, z)NABµ
θ,β + (−1)µaξαAB(x, z)zµ.

(20.27)

Here AB = 11, 22, 12, 21 . Then the PCP (20.5) takes the form
(aξαθβ(x, z)NABµ

θ,β + (−1)µaξαAB(x, z)zµ),α = 0 in P,
aξαθβ(x, z)NABµ

θ,β + (−1)µaξαAB(x, z)zµ)nα = 0 on Γ,
(NABµ

1 , NABµ
3 )(x, z) periodic in x.

(20.28)

Note that aξα12 = 0 and aξα21 = 0 for i = ξ = 1, 3 , then (N21µ
1 , N21µ

3 )=0 and
(N12µ

1 , N12µ
3 )=0. The problem (20.28) is non-trivial for AB = 11, 22.

In some cases, (20.28) for AB = 11, 22 may be transformed into problems
without free terms. We shall check if it is possible to represent the free term
(−1)µaξαAB(x, z)zµ in (20.28) in the form (−1)µaξαθβ(x, z)eABµθβ with the strains
eABµθβ = vABµθ,β corresponding proper displacements vABµθ,β (µ =0, 1):

aξαθβ(x, z)vABµθ,β = aξαAB(x, z)zµ. (20.29)

Index AB = 22. Tension and bending along the fibers. Equation (20.29) takes
the form aξαθβ(x, z)eθ,β = aξα22(x, z)zµ. In the coordinate-wise form, it is

a1111e11 + a1133e33 = −a1122z
µ,

a3311e11 + a3333e33 = −a1122z
µ,

a1313e13 = 0, a1111e31 = 0.

(20.30)

Write the elastic constants in terms of Young’s E modulus and Poisson’s ratio ν
(Love, 2013)

a1111 = a1111 =
E(1− ν)

(1 + ν)(1− 2ν)
,

a1133 = a3311 = a1122 = a3322
E(1− ν)

(1 + ν)(1− 2ν)
.

(20.31)

In this case, the first two equations in (20.30) take the form

(1− ν)e11 + νe33 = −ν(x, z)zµ,

νe11 + (1− ν)e33 = −ν(x, z)zµ.
(20.32)



438 Kolpakov, Rakin

The solution to (20.32) is

e11 = e33 = −ν(x, z)zµ. (20.33)

Taking into account that e13 = e31 = 0, we arrive at the following system:

∂v1

∂x
= −ν(x, z)µ,

∂v3

∂z
= −ν(x, z)µ,

∂v1

∂z
+
∂v3

∂x
= 0. (20.34)

Generally, the compatibility condition (Love, 2013) is not satisfied for the system
(20.34) for arbitrary ν(x, z).

This incompatibility indicates that a simple transfer from 3-D to the 2-D problem
is impossible in the general case.

The case ν(x, z) = const. If ν(x, z) = ν = const, the system (20.34) is
compatible. In this case, the solution to (20.34) may be obtained in the explicit form.
For µ = 0 , v1 = −νx and v3 = −νz.

IntroduceM22µ
1 = N22µ

1 +v1 andM22µ
2 = N22µ

2 +v2. By using these functions,
we can transform the problem (20.28) to the following:

(aξαθβ(x, z)M22µ
θ,β ),α = 0 in P,

aξαθβ(x, z)M22µ
θ,β nα = 0 in Γ,

[M22µ
1 ]x = −νzµ[x]x, [M

22µ
3 ]x = 0,

(20.35)

where []x means the jump of the function value at the opposite sides of the PC in the
direction Ox.

The case ν(x, z) 6= const. In this general case, we can transform the problem
(20.28) into a thermoelasticity problem.

In (20.28)

aξαθβ(x, z)NABµ
θ,β + (−1)µaξαAB(y)zµ =

aξαθβ(x, z)NABµ
θ,β + aξαθβeθβ = aξαθβ(x, z)(NABµ

θ,β + eθβ),

where eθβ are given by (20.33). Then (20.28) may be written in the form
(aξαθβ(x, z)(NABµ

θ,β + eθβ)),α = 0 in P,
aξαθβ(x, z)(NABµ

θ,β + eθβ)nα = 0 on Γ,
(NABµ

1 , NABµ
3 )(x, z) periodic in x.

(20.36)

Problem (20.36) is the thermoelasticity problem with the coefficients of thermal
expansion eθβ . Since e11 = e22 = −ν(x, z)zµ and e13 = e31 = 0, this tensor
is isotropic. For ν = 1, coefficients e11 = e22 = −ν(x, z)z, where ν(x, z) takes
constant values in the fibers and the matrix. Some ANSYS APDL programming is
required to input such kind coefficients. The local stresses are

σξα = aξαθβ(x, z)(NABµ
θ,β + eθβ))nα. (20.37)



20 Bending/Tension of Reinforced Plate 439

The effective rigidities are

Sµ+ν
ξαθβ =

1

L

∫
P

(aξαθβ(x, z)NABµ
θ,β + aξαAB(x, z))zνdxdy =

1

L

∫
P

(aξαθβ(x, z)(NABµ
θ,β + eθβ(x, z))zνdxdy.

Index AB = 11. Tension and bending perpendicular to the fibers. In this
case, we arrive at the problem

∂v1

∂x
= −zµ, ∂v3

∂z
= 0,

∂v1

∂z
+
∂v3

∂x
= 0. (20.38)

The problem (20.38) may be solved in the explicit form. Its solution is

v1 = −x, v1 = 0 for µ = 0,

v1 = −xz, v1 = x2/2 for µ = 1.

IntroduceM11µ
1 = N11µ

1 + v1 andM11µ
2 = N11µ

2 + v2. By using the functions,
we can transform the problem (20.28) to the following:

(aξαθβ(x, z)M11µ
θ,β ),α = 0 in P,

aξαθβ(x, z)M11µ
θ,β nα = 0 on Γ,

[M11µ
1 ]x = −νzµ[x]x, [M

11µ
3 ]x = 0.

(20.39)

Index AB = 12, 21. Shift/torsion. For AB = 12, 21 , equation (20.29) takes
the form aξαθβeθ,β = aξα12z

µ = 0, ξ, α = 1, 3. Its solution is eθβ = 0. Then
v1 = v3 = 0 and solution to (20.28) is trivial.

20.3 Numerical Computations

In this section, we present several numerical solutions interesting from mechanic’s
point of view. In our computations the fibers Young’s modulus E=170GPa and
Poisson’s ratio ν=0.3; and the matrix E=2GPa and Poisson’s ratio ν=0.36. These
values correspond to carbon/epoxy composite (Agarwal et al, 2017).

The computer programwas developed by using the APDL programming language
(Thompson and Thompson, 2017). The finite elements PLANE183 are used for the
fibers and the matrix, the characteristic size of the finite elements is 0.03, the total
number of finite elements is about 10000.

Figure 20.2 displays the solution to the PCP corresponding to the bending in the
direction perpendicular to the fibers. We have observed edge effects near the top
and the bottom surfaces of the plate. The edge effect zone thickness is less than the
thickness of one structural layer (fiber + surrounding matrix). To the best knowledge
of the authors, such kind edge effect was not reported before.
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Fig. 20.2 PC formed of two adjacent PCs of 5-layer fiber-reinforced plate

If the plate is thick, these top/bottom edge layers do not influence the effective
rigidity of the plate. But they influence the local SSS, thus, the strength of the plate.

An analysis of Fig.20.2 leads to the conclusion that the found edge effect does
not lead to a stress concentration in the edge effect zone. In Fig.20.2, we observe the
von Mises stress decrease in the edge effect zone. The stress concentration between
the fibers is the result of the dense packing on the fibers (Flaherty and Keller, 1973;
Kolpakov and Kolpakov, 2009; Kang and Yu, 2020; Kolpakov, 2007; Rakin, 2014).

One result of the edge effect is the wrinkling of the top/bottom boundaries of the
plate. The wrinkling is especially good seen for the PCP formed of two adjacent
PCs, see Fig.20.2. The wrinkling may influence the plate-to-surrounding media
interaction. The various kinds of wrinkling were discussed in the literature on the
composite materials (Boisse et al, 2018, 2021; Giorgio et al, 2018). The authors find
no analogs between the wrinkling effects describer early and the wrinkling described
in this paper.

The top/bottom edge effect (including wrinkling) described above never occurs
in uniform plates or plates made of uniform layers. The solutions to the PCPs for the
homogeneous plates and plates made of uniform layers are well known and may be
easily computed.

20.4 Conclusion

We developed a procedure of transition from the original 3-D PCP (20.2) in a thin
domain with a system of parallel cylindrical inhomogeneities to 2-D boundary-
value problems. We arrive at 2-D boundary-value problems (20.11) and (20.25)
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corresponding to the shift and torsion of the plate. These problems have the forms of
the anti-plane elasticity problems with and without mass forces (Laplace-type and
Poisson-type problems). 2-D boundary-value problem (20.25) is a new problem. 2-
D boundary-value problems (20.35) and (20.36) correspond to the tension/bending.
They have the forms of planar elasticity and thermo-elasticity problems.

Our numerical analysis of the obtained 2-D problems demonstrates the existence
of boundary layers near the top and bottom surfaces of the plate. The boundary layer
thickness is less than the thickness of one structural layer (the diameter of the fiber
+ the thickness of the surrounding matrix).

One of the manifestations of the found boundary layer is the wrinkling of the
top and the bottom of the plate. To the best knowledge of the authors, such kind
boundary layers and the wrinkling effect did not refer earlier. Note that the boundary
layers and the wrinkling effect described in this paper cannot occur in uniform plates
or plates made of homogeneous layers.
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