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A tribute to Francesco dell’Isola, a visionary
scientist of the 21th century



We believe ourselves to be incredibly lucky to be co-workers of Francesco dell’Isola,
whom each of us met in different periods of their lives. We all have in common the
fact that, soon after meeting him, we understood that he is a unique scientist, not
only because of his extremely wide knowledge and erudition, but also because of
his illuminating presence among his students and colleagues: Francesco dell’Isola
knows that teamwork is crucially important in science. While he is always busy
doing something scientifically, he puts much effort into inspiring new students as
well as in helping to create ingenious connections between people.

The workshops that he organizes in Arpino, where one is allowed to interrupt
the speaker to discuss any single point—the devil is in the details, after all—and
where the time schedule has not to be strictly followed (like Italian trains do!), have
definitely determined some of the recent research lines in theoretical and applied
mechanics. Such gatherings lead to establishment of many international research
collaborations. Therefore, we can confidently state that Francesco dell’Isola is a true
influencer of contemporary continuum mechanics. We dedicate this book to him on
the occasion of his 60th birthday, with the wish of continuing in his activities for
many more years, full of energy and curiosity.

Ivan Giorgio
Luca Placidi

Emilio Barchiesi
Bilen Emek Abali
Holm Altenbach
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Fig. 1 Francesco dell’Isola
with Richard Toupin, 4th
Canadian Conference on
Nonlinear Solid Mechanics,
Montreal, July 2013

Fig. 2 Francesco dell’Isola
is in action as a hobby pho-
tographer in Sora, province of
Frosinone
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There are a lot of things that would be worth saying about Francesco and his
scientific and academic activity. Here I prefer to spend just a few words about a
quality that, although it could seem of minor interest, in my opinion, deserves to be
stressed.

I dare say that (at least) in the Italian Academic Community, among appreciate
scientists, there are not many that are really able to teach something to someone.
And also between them there is a very limited number, quite exceptions, that can
be defined (using a Latin word) magister, that is a scientist able not only to teach
something to students but also to act as a real guide and mentor in research and
life for them. They can be distinguished from the others as having not only a strong
culture but also the ability to foster their students to develop autonomy, maturity,
critical sense and open mindedness, being also able to really help them to grow and
find a way as men/women as well as researchers.

This can be done in many ways even though a necessary condition is to encourage
and help students to interact, as far as possible, with other distinguished researchers
as, following Goffredo Fofi, it can be said that

(only) the bad teacher do not tolerate that their pupils could have other mentors, even though
no eminent teacher ever had only one teacher in his life.

With this in mind I think that Francesco, without any doubt, can be defined a good
teacher or, better, a magister.

Rome Nicola Luigi Rizzi

Foreword
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Fig. 3 Francesco dell’Isola
with Emilio Turco, Rome,
January 2021

Fig. 4 Lesson on Cyclopean
Wall at Arpino, 2019



Foreword xi

Francesco dell’Isola: Scholar, Scientist, Historian, Philosopher

I am delighted to have the opportunity to present to my dear friend and valued
colleague, Francesco dell’Isola, this collection of papers, authored by many of his
friends and admirers, on the occasion of his 60th birthday.

Francesco is quite literally the glue that binds together a far-flung community
of mechanicians, mathematical physicists, and engineers that spans the globe. Thus
has emerged the dell’Isola School, concerned with real-world applications of topics
such as strain-gradient elasticity, homogenization of lattice-like substructures, fab-
ric materials, and theories of n-th grade continua, once regarded as esoterica, but
now, thanks largely to Francesco’s efforts, playing a central role in the understand-
ing, modeling, and design of the advanced mechanical metamaterials so crucial to
emerging technologies. Francesco dell’Isola is a person of unusually deep culture
and a great aficionado of history. Thanks to his tireless efforts in translating the great
works of G. Piola from 19th century Italian to modern English, the international
community now has access to a profound corpus of thought on the foundations
of mechanics that, remarkably, presages much of what is now viewed as the most
compelling aspects of modern research.

All who have had the good fortune to interact with Francesco dell’Isola know
him as a devoted mentor and protector of promising young scientists. His efforts in
founding the M&MOCS center (Mathematics and Mechanics of Complex Systems),
and the prestigious journal of the same name, have yielded a most auspicious milieu
in which young talent can thrive and flourish.

I extend my thanks and best wishes to Francesco dell’Isola for his friendship
and guidance, and for setting such a fine example of dedication and devotion to our
subject.

Berkeley David Steigmann
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Fig. 5 At UC Berkeley with
a view over the bay and the
Golden Gate Bridge, 2018

Fig. 6 Pantographic struc-
tures get broken, too, sad but
true!



Foreword xiii

It is a pleasure and honor to write this birthdaymessage for Francesco dell’Isola—
a colleague, a guide, and a friend. As he reaches a significant juncture in his life
journey, Francesco has substantial accomplishments that are worthy of celebration. I
am certain he will be kind enough to indulge us in this felicitation. His contributions
in continuum mechanics are well known and formidable. One simply has to look
at his scholarly contributions to understand the breadth and depth of his impact on
contemporary continuum mechanics. The following quote from Gerard Maugin’s
work on developments in continuum mechanics says volumes:

“Presently, the most active and creative contributor to our field seems to be Francesco
dell’Isola (born 1962). Formed in Naples with A. Romano and true mathematician in his
style of approach, his interests span many particular fields . . . ” (in Continuum Mechanics
through the Twentieth Century: A Concise Historical Perspective, G.A. Maugin, Springer,
Dordrecht, 2013).

His investigations cover topics ranging from his early works on non-material in-
terfaces to recent works on metamaterials and generalized continua. It is his work
on second gradient continuum theories that resulted in our fortuitous and eventful
meeting at a conference in California in 2010. It was immediately clear to me that my
own quest would benefit with a deeper interaction with Francesco and his research
group in M&MoCS. My many interactions with him have been fruitful and have
resulted in many co-authored publications.

I will not catalog here the long list of topics that Francesco has researched and
published. Instead, I will highlight his commitment to the field of mechanics, its
history and to its growth as a fundamental mathematical science. M&MoCS and the
associated journal are efforts in this direction. So are the excellent workshops and
meetings with unfettered exchange in Cisterna di Latina, in Arpino, and in Guiliano
di Roma. Those who have participated in these will attest to the warm hospitality
of Francesco as well as recall the lessons in ancient Roman history besides the
intense scientific exchanges. The breadth of Francesco’s interests are astonishing
and are reflected in his publications that include works on economics as well as
unclassifiable work that interweaves fiction, facts, history, and mathematics; and
deals with human questions.

I have personally benefited from deep deliberations with Francesco on topic rang-
ing from Greco-Roman history, its philosophy, mathematical and scientific achieve-
ments, and medieval Italian accomplishments, current scientific questions to cultural
issues. In these interchanges, Francesco’s openness and ability to accept alternative
viewpoints are notable. I hope that these interchanges continue so we can live up to
the ideals of the ancient mantra from Rig-veda

“आ नो भ�ाः �तवो य�तु िव��व् अद�धासो अपरीतास उि�दः| …  ||1.89.1||
(May we receive noble/beneficial/munificent thoughts from all directions (every side), un-
altered, unconstrained, unsubdued in every possible way. . . . (1.89.1)).”

On his 60th birthday, I wish him unhindered success, perfect health, and infinite
energy, such that we may continue our discussions, collaborations, and explorations
on wide ranging topics.
Kansas Anil Misra



Francesco dell’Isola: a μαθητικός of Magna
Graecia

Emilio Barchiesi & Emilio Turco

Biographical Sketch

Francesco dell’Isola was born in July 1962, in Naples. He graduates in Physics in
1986 at the University of Naples Federico II under the direction of Prof. Antonio
Romano. Always under the direction of Prof. Romano, in 1992, he obtains the Doc-
torate for the research in Mathematical physics discussing a thesis entitled Rational
Thermodynamics of Nonmaterial Bidimensional Continua. In the academic year
1991/1992 he wins a competitive selection to become Researcher in Mathematical
physics at the University of Naples Federico II. Shortly after, in 1992, winner of a
competitive selection for becoming Researcher in Strength of materials, he moves to
the Sapienza University of Rome, where he will work with another of his Masters,
Prof. Antonio Di Carlo. In 1995, he obtains theQualification aux fonctions de maître
de conférences in the sixtieth section (Mécanique, génie mécanique, génie civil)
and, in 1997, becomes Associate Professor. In 2004, he takes up the role of Adjunct
Associate Professor at Virginia Polytechnic Institute and State University. In 2005
he obtains the National Eligibility to the functions of Full Professor. The following
year he becomes Full Professor at the Sapienza University of Rome.

In 2009 he is among the founders of the MEMOCS Research Center for Math-
ematics and Mechanics of Complex Systems, which since its foundation organizes
every year workshops, summer schools, research weeks, prestigious conferences
(Euromech Colloquia, Soriau Colloquium, ICoNSoM, ICMM, GeoMech, to name
a few) and to which are affiliated more than 200 scientists from all over the world.
In 2016 he moves to the University of L’Aquila, where he is also the Director of

E. Barchiesi
Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Italia.
e-mail: barchiesiemilio@gmail.com

E. Turco
Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Italia.
e-mail: eturco@uniss.it
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the MEMOCS Center, a position he still holds. Then, in 2017, he takes the role of
the Director of the Research Laboratory for the problems of strength, dynamics and
service life at Lobačevskij University in Nižnij Novgorod, Russia, where he is also
the Principal Investigator of a project funded under the prestigious MegaGrant pro-
gram. In 2018, he becomes Russell Severance Springer Professor in the Department
of Mechanical Engineering at the University of California, Berkeley.

Scientific Contributions

The scientific career of Francesco dell’Isola has been since the beginning focused on
avant-garde themes. On the one hand there are the more purely theoretical studies,
including early work on curved interphase interfaces, in which he began to be
interested in second gradient continua, fluids in this case. The interest in second
gradient theories, developed during his French period and inspired by the reading of
the texts of Paul Germain, led him to write jointly with Pierre Seppecher the work
The relationship between edge contact forces, double forces and interstitial working
allowed by the principle of virtual power, published in 1995 and of considerable
impact on much of the subsequent literature concerning the subject. Initially, the
most applied studies concern the De Saint-Venant’s Problem (addressed starting
with the contribution Outlooks in Saint-Venant Theory I: Formal Expansions for
Torsion of Bredt-like sections published in 1994), the mechanics of large ice masses
(in collaboration with Kolumban Hutter, addressed from the contributionContinuum
mechanical modelling of the dissipative processes in the sediment-water layer below
glaciers published in 1997), and then turn to passive control of beams, shells,
and plates through the use of distributed piezo-electric transducers, and finally to
deformable porous solids, with Olivier Coussy and Felix Darve.

Francesco dell’Isola moves with incredible agility between theoretical and ap-
plicative interests. While in 2003 he registers a patent at the US Patent Office for the
development of passive control systems, the problem of the synthesis of circuits anal-
ogous to structures,1 already addressed for the development of these control systems,
stimulates the first theoretical contributions in the theory of mechanical metamate-
rials, led by the work written with Jean-Jacques Alibert and Pierre Seppecher in
2003, Truss modular beams with deformation energy depending on higher displace-
ment gradients. In this last work some ingenious examples of micro-structures are
proposed which, at the macro-scale, present higher gradient effects. It becomes in-
creasingly clear to Francesco dell’Isola that the next challenge to face, the one in
which he is still engaged, is represented by the solution of the problem of synthesis
of metamaterials:

1 It is therefore no coincidence that Francesco dell’Isola, during his lectures, is used to quote a
statement taken from the twelfth of The Feynman Lectures on Physics: “The same equations have
the same solutions.”
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Having specified a given mechanical behavior at the macro-scale, what, if any, are the
micro-structures that realize it?

In this regard, the fact that he has recently coined the terminology “ontology of
metamaterials” plastically gives an idea of his intellectual spirit2 (cf. dell’Isola,
F., Barchiesi, E., & Misra, A. (2020). Naive Model Theory: Its Applications to the
Theory of Metamaterials Design. Discrete and Continuum Models for Complex
Metamaterials, 141.). This new branch of mechanics should deal with the question:

What are the constitutive equations, induced by the presence of a micro-structure, that can
translate into observable behavior in reality?

To give a better understanding of what is meant by this terminology, he traces the
origins of this new branch of mechanics to the arguments that lead to the conclusion
that the Poisson’s ratio for an isotropic, homogeneous solid has to take a value
between -1 and 0.5.

An Eclectic Scientist

At this point, as many of his colleagues and students could testify, it will not be
difficult to believe that Francesco dell’Isola’s lectures and scientific presentations are
characterized by the fact that, often, they include quotations from and comparisons
with the thought of Francis Bacon, Sextus Empiricus, Albert Einstein, Epicurus,
Galileo Galilei, Antonio Gramsci, Pierre Simon Laplace, Democritus, Giambattista
Vico, Immanuel Kant, Karl Popper, Archimedes, Aristotle, Plato and many others.
His propensity for interdisciplinarity is not reduced to this. We can mention, among
other things, that he was also involved in analyzing, by means of game theory
formalism, the short and long term consequences affecting a scientific system in
which merit is evaluated only on the basis of bibliometric indicators,3 as well as the
search for methods of evaluation and reward that induce virtuous behavior among
researchers.We note that on this occasion he did not fail to show off his characteristic

2 Probably cultivated since childhood by his dear uncle Luigi De Luca, professor of philosophy
at a High School. In the book Big-(Wo)men, Tyrants, Chiefs, Dictators, Emperors and Presidents.
Towards theMathematicalUnderstanding of SocialGroups published by Springer publishing house,
the dedication reads “This work is dedicated to the memory of my beloved uncle Luigi De Luca.
He was Professor of Classical Languages—Grammar and Literature and Principal of High Schools
and transmitted to many generations of students the pleasure of understanding the logic intrinsic
in reality. He was capable to explain to everybody, in a precise and rigorous way, every abstract
idea, even the most difficult. He has taught me nearly every concept which I later needed in my
scientific career, including the basics of set theory. I will never forget his lecture about Giambattista
Vico, where he let me understand Vico’s dream of transforming history into the phenomenological
evidence predicted by A New Science (Una Scienza Nuova). I hope that his pedagogical spirit will
revive in this work.”
3 Eight years after the writing of the work in which his thoughts on the subject are reported, we can
say that his theory has not yet been falsified.
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irony which, at times, is also expressed in his professional and intellectual life. His
considerations about the above mentioned problem are in fact collected in an article,
never published by any publishing house but not for this lacking of interesting
contents, A difficult problem for artificial intelligence: how to assess originality
of scientific research and the dangers of apostrophes in family names,4 written
in collaboration with his co-authors Francesco dell’Isola, Francesco D. Isola, and
Francesco dellìIsola. Among his many interests, there is the one, not unusual for
a physicist, for the new technologies, believing that they are not only a useful
scientific product, but also, if not especially, a means to facilitate scientific progress.
To this end, he has always wanted to equip himself with cutting-edge tools, from
photographic tools—he is passionate about photography and related problems in
optics—to computers, passing through 3D printers, which he was among the first to
use to produce prototypes of mechanical metamaterials.

As it is now clear, Francesco dell’Isola has a broad interest. What is common to
the intellectual activities to which he dedicates himself, is his effort in facing them
always in a rational way, even when their object does not fall among the themes
typically familiar to a mathematical-physicist. In this regard, it is worth mentioning
that, recently, Francesco dell’Isola has published the scientific popularization book
Big-(Wo)men, Tyrants, Chiefs, Dictators, Emperors and Presidents. Towards the
Mathematical Understanding of Social Groups, whose intent is manifestly to try to
apply the rationality typical of Lagrangian Mechanics also to the study of social
behaviors of groups formed by human beings:

Modern Science, evolved from Hellenistic Science, is the tool which humans have invented
to understand all natural phenomena. Scientific activity is based on the formulation of
mathematical models, which “mimic” natural systems. Using mathematical model one gets
the solution of some “problems” which allow for the prediction and control of natural
phenomena.

In this book we try to present, in a friendly way, the mathematics which governs the
dynamics of social groups: it has some aspects in common with the mathematics used
to describe the behaviour of Lagrangian Mechanical systems! This similarity may attract
the layman who has the curiosity to understand the intrinsic unity of natural phenomena.
The reader is warned: although the scientific method has been extremely successful in the
description of physical phenomena, human beings often refrain from applying it to the
study of themselves as species, social groups or individuals. But human behavior is still
based on specific natural laws (e.g. Darwinian selection) and the corresponding physical or
psychological structures. In this work aforementioned taboo is overcome by exploiting the
visionary understanding of the structure of social groups as gained by the results obtained
by Le Marquis de Condorcet, Kenneth Arrow and John Nash.

In this book there is no lack of insight on animal and human psychology, as evidence
of the great open-mindedness that characterizes him and, as mentioned before, does
not keep him from devoting himself to areas that are not completely within the scope
of his university studies. As further proof of this, Francesco dell’Isola has faced with

4 The article, not published, is however available online at the address: https://hal.archives-
ouvertes.fr/hal-01002678/document
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the same style of thought, even if encoding the problem in a mathematically rigorous
form, the analysis of the instability of economic markets.5

Having made this due introduction, in the next sections, we will not dwell on
particular aspects of his professional life, even if they are very representative of the
man. Rather, taking advantage of our position as privileged observers, we will try
to elaborate some aspects of a more general nature that, often, as the reader will not
struggle to understand, are also intertwined with his professional life.

Teoria è Pratica!

These words (Theory is practice!) still echo in the mind of the first author. Year
2012. It was the beginning of his third semester at the Faculty of Engineering of
the Sapienza University of Rome and he was in the middle of the so-called biennio
(first two-year course), where the basic subjects are studied in preparation for the
applied ones. Upon his arrival, on the first day of the course of Strength of Materials,
Francesco dell’Isola gave to all students a sheet of paper with the Osservazioni
sulla scuola: per la ricerca del principio educativo (Observations on the school: in
search of the educational principle) taken from the Quaderno 12 (Notebook 12) of
1932, Appunti e note sparse per un gruppo di saggi sulla storia degli intellettuali
(Memoranda and sparse notes for a group of essays on the history of intellectuals),
by Antonio Gramsci. In that first lecture, he did not mention any topic related
to the course, but, openly eschewing the desire to inform about the methods of
examination and evaluation—a practice that he said encouraged a study lacking
cultural foresight—he focused the attention of his speech on the following passage6:

In the old school [that organized by the Casati Law, a law entered into force in 1861 in
the Kingdom of Sardinia and extended, with the unification, to the whole of Italy] the
grammatical study of Latin and Greek, together with the study of their respective literatures
and political histories, was an educational principle—for the humanistic ideal, symbolised by
Athens and Rome, was diffused throughout society, and was an essential element of national
life and culture. Even the mechanical character of the study of grammar was enlivened
by this cultural perspective. Individual facts were not learnt for an immediate practical or
professional end. The end seemed disinterested, because the real interest was the interior
development of personality, the formation of character by means of the absorption and
assimilation of the whole cultural past of modern European civilisation. Pupils did not learn
Latin and Greek in order to speak them, to become waiters, interpreters or commercial
letter-writers. They learnt them in order to know at first hand the civilisation of Greece and
of Rome—a civilisation that was a necessary precondition of our modern civilisation: in
other words, they learnt them in order to be themselves and know themselves consciously.

Francesco dell’Isola strongly believes in the importance of historical knowledge:
relating current problems to their historical development, often consulting the sources

5 F. dell’Isola and A. del Monte, “Dynamic Flexibility, optimal organisation modes and price
instability,” Studi economici, 1995.
6 “On Education,” in Selections from the Prison Notebooks. Translated and Edited by Q. Hoare
and G. N. Smith. New York: International Publishers, 1979.
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directly, searching for their roots, the study of the archetype, are all elements that
distinguish his scientific activity, as well as his way of approaching the study of
any problem. For example, in his attempt to understand the causes underlying the
current situation of Southern Italy, he cultivated his natural passion for the history
of Italy, turning his attention to its unification in particular. It is not unusual to
hear him talk, either during presentations at conferences or during lunch breaks,
about French, Russian or Turkish history. In the area of the history of Mechanics,
he has successfully analyzed the works of, among others, Archimedes, Tullio Levi-
Civita, Ernst Hellinger, Erwin Schrödinger, Gabrio Piola, Giuseppe Luigi Lagrangia,
Leonhard Euler, Galileo Galilei, Jean-Baptiste Le Rond d’Alembert, Archita of
Tarentum, the Bernoulli brothers, Richard Toupin, Leonid Ivanovich Sedov, George
Green, Heinrich Hencky, James ClerkMaxwell, William Rowan Hamilton, Vladimir
Igorevič Arnol’d, Claude-Louis Navier, Augustin-Louis Cauchy, Enrico Betti, Luigi
Federico Menabrea, Alberto Castigliano, relating the sources to contemporary or
later knowledge.

Without neglecting philological aspects either, he sometimes confronted, with
the help of colleagues, the texts in the original language, of which he provided
commented translations, with original historical and scientific notes. It is worth
mentioning here the two volumes The Complete Works of Gabrio Piola: Commented
English Translation, the series of exegesis of Fundamentals of the Mechanics of
Continua by E. Hellinger, as well as the recent book Evaluation of Scientific Sources
in Mechanics. Heiberg’s Prolegomena to the Works of Archimedes and Hellinger’s
Encyclopedia Article on Continuum Mechanics. With his work, over the years, he
has shown that it is not unusual for valid scientific ideas to be ignored—or at best
lost and eventually rediscovered more or less independently in later times—because
they are written in a language inaccessible to the scientific community of interest.
In other words, he argues, with numerous arguments, that the establishment of a
lingua franca for science, as English is today and Latin and French were in the
past, in addition to the obvious advantages, inevitably involves significant losses of
knowledge

The reasons behind the vehemence with which the lecturer in the Construction
Science course taken by the first author7 repeated the mantra “Theory is practice!”8
deserve to be reported explicitly. That of the lecturer was an invitation to wake up
from the drowsiness and negligence with which, often not without the bad example
of the faculties, the theoretical issues underlying the results of major applicative
importance that are taught in engineering courses are addressed. Perpetuating and
transmitting only the “know-how,” clearly easier to do in the short time in which

7 Francesco dell’Isola, thanks to the reading of a book kept in the library G. Boaga of the Faculty
of Civil and Industrial Engineering of La Sapienza University of Rome, was aware of the historical
facts that in the Italian pre-unitary period led to the need to call professors from Vienna and Paris
to re-found the School of Engineering in Milan after the promulgation of a law that allowed to
become an Engineer by just doing a few years of apprenticeship in an engineering office.
8 This motto is also the basis of the pamphlet, which we recommend reading, “Teoria è pratica!
Un saggio sul metodo scientifico con un apologo raccontato al principiante” (Theory is practice!
An essay on the scientific method with an apologue told to the beginner) written by Francesco
dell’Isola and published in 2008 by the Esculapio publishing house.
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even degree programmes have been compressed in Italy following the introduction
of the so-called “3+2 system” leads to a dangerous loss of the theoretical knowl-
edge that generated such a “know-how.” This causes, generation after generation,
a progressive cultural impoverishment. Knowing how to do something, possessing
the so-called “skills,” as opposed to the theoretical knowledge at its base, does not
allow one to generate new knowledge or to improve and adapt current knowledge in
order to know how to do something tomorrow. The drift that such a society risks—if
a mere economic question could help raise awareness on the issue—should make
worry especially those countries like Italy that, poor in natural resources and lacking
in low-cost labor, base their economy on the development of high technology. When
the intellectual class, in our case the scientific one, dies out as it often happens—for
different reasons—in rather more dramatic situations (dictatorships, wars, periods
of economic crisis, etc.) society must necessarily import knowledge developed else-
where. This appears critical especially in the strategic sectors of a country. Francesco
dell’Isola is therefore strongly aware of the importance of his role as a teacher, and
not only as a scientist, within society.

The Scholarly Profession

The first author recalls that, continuing the reading of the above-mentioned passage
from Gramsci, the teacher placed great emphasis on the sacrifice required by true
study:

Would a scholar at the age of forty be able to sit for sixteen hours on end at his work-table if
he had not, as a child, compulsorily, through mechanical coercion, acquired the appropriate
psycho-physical habits? If one wishes to produce great scholars, one still has to start at this
point and apply pressure throughout the educational system in order to succeed in creating
those thousands or hundreds or even only dozens of scholars of the highest quality which
are necessary to every civilisation. (Of course, one can improve a great deal in this field by
the provision of adequate funds for research, without going back to the educational methods
of the Jesuits [known to be based primarily on discipline, coercion, and submission of the
student].)

Thefirst lecture of theConstruction Science course finally concludedwith the reading
of the following excerpt:

The child who sweats at Barbara, Baralipton is certainly performing a tiring task, and it is
important that he does only what is absolutely necessary and no more. But it is also true
that it will always be an effort to learn physical self-discipline and self-control; the pupil
has, in effect, to undergo, a psycho-physical training. Many people have to be persuaded that
studying too is a job, and a very tiring one, with its own particular apprenticeship—involving
muscles and nerves as well as intellect. It is a process of adaptation, a habit acquired with
effort, tedium and even suffering. Wider participation in secondary education brings with
it a tendency to ease off the discipline of studies, and to ask for “relaxations.” Many even
think that the difficulties of learning are artificial, since they are accustomed to think only
of manual work as sweat and toil.
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The discipline and sacrifice that Francesco dell’Isola demanded from those students
who really wanted to understand the reasons behind the most important results of the
Science of Construction were rewarded by the fact that, in the end, they went far be-
yond the usual program. What a willing student received at the end of the course was
a real initiation to the profession of scientist, including even knowledge of Greek phi-
losophy, equations of mathematical physics, history of construction science, stability
of dynamical systems, tensor analysis, model theory, rational mechanics, the axiom-
atizations of continuummechanics, the theory of epicycles, Dedekind’s construction
of real numbers, the Navier–Stokes and transport equations, chaotic systems, Pareto
and Nash equilibrium.

New Generations of Scientists

The first author recalls that Francesco dell’Isola used to invite the most curious
students to come to office hours, which often lasted until the evening, to talk about
science in the round, including philosophy of science, epistemology and quan-
tum mechanics, and not only strictly about the course Strength of Materials. The
wide-ranging nature of his course has certainly enabled many student engineers to
become “conscious” professionals, i.e. to apply practical tools with full knowledge
of the underlying theoretical facts, and others to discover new cultural horizons and
consciously head towards other branches of knowledge, such as philosophy, physics
and mathematics. It is not a coincidence or an arbitrary choice of his that it is the
Strength of Materials course that provides such a physical-mathematical vision to
engineering students. In the book adopted in the course, he himself in fact writes

Probably it is the familiarity with the various models of deformable bodies—together with
the necessary ability to pass from one description to another of the same physical entity and
to establish relations between such different descriptions—that makes, in general, the con-
noisseurs of the strength of materials simultaneously so inclined to the study of applications,
to mathematical abstraction and to metaphysical discussions. Another peculiar characteristic
of theirs is the tendency to extreme precision in their discourses, combined with an almost
maniacal care in the choice of words used. This characteristic is easily understandable when
we take into account that in the use of the various models currently employed by them it
is very important, under penalty of an inextricable confusion of concepts and meanings, to
distinguish, giving them different names, between different entities: the physical ones, which
belong to the world of phenomena that we want to describe (the deformable bodies) and the
abstract ones, which serve as a mathematical model of the first (Euler’s beam, Timoshenko’s
beam, Cauchy’s continuum). The necessary comparison between the performances of the
various models explains, finally, both the mentioned tendencies to metaphysics and the need
to choose different names to characterize the different mathematical entities used to describe
the same physical entity.

The authors believe that Francesco dell’Isola has a high ethical vision of science and
believes that in the academy, merit must emerge. Just as in a workshop, the proper
selection of Disciples by the Master is of primary importance for the transmission of
certain scientific ideas and, indeed, may determine their fate. Just from the analysis
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of his co-authors, Francesco dell’Isola turns out to have been mentor to at least forty
young scientists, many of which are now established professors and researchers in the
most prestigious universities and research centers in the world. Francesco dell’Isola,
in addition to being a Master, is in turn the heir of a noble tradition in physics and
mathematics: among the scientific ancestors of Francesco dell’Isola, as reported by
the database The Mathematics Genealogy Project,9 we find scientists of the caliber
of Tolotti, Levi-Civita, and Betti.

From what has been said so far, it is not difficult to believe that many promising
and intellectually curious young people have been, are, and will be attracted in the
future by the interaction with Francesco dell’Isola and led by him towards scientific
research. As proof of his vision of science, Francesco dell’Isola was early to initiate
the most deserving young people into research and allow them to benefit from all
the tools necessary to enhance their abilities, regardless of their economic situation.
Every year the MEMOCS Research Center welcomes in its residence professors,
researchers and students of bachelor, master and doctoral degrees from all over
the world, for periods of varying length. In particular, a selection is made of the
most deserving and needy students among those who request access to the summer
schools, university-level courses and internships offered by the MEMOCS Center,
supporting the most needy among the students admitted to the courses by means of
financial participation in the expenses necessary for their stay at the dormitory.

Even before the founding of the MEMOCS Center and the establishment of its
laboratories, Francesco dell’Isola was among the founders of the “Tullio Levi Civita”
Foundation for the development of scientific culture, which, among other things,
established the “Tullio Levi-Civita” School of University Excellence. The School
provided scholarships for the continuation of university studies and offered the
possibility of being housed in its facilities in Cisterna di Latina. In order to prepare
high school students in the Province of Latina for technical-scientific university
studies, the “Tullio Levi-Civita ” Foundation also promoted the creation of the
Preparatory School for university studies. The activities of the Preparatory School
were aimed at disseminating and strengthening the scientific culture of the students
of the last two classes of high school and complete the educational path related to
the teachings taught in high school through supplementary courses.

In the school years 2017/2018 and 2018/2020, Francesco dell’Isola took an active
role in the organization of activities for the professional updating of high school
teaching staff, as part of the project “Lincei per la scuola,” involving some of the
top experts in physics and mathematics in Italy. In order to encourage the scientific
transmission from the old to the new generations of scientists, the MEMOCS Center
has established since its foundation, at the impulse of Francesco dell’Isola, the
“Tullio Levi-Civita” international prize, awarded to scientists who have distinguished
themselves for their highly innovative results andwho have contributed to the training
of young researchers.

9 https://www.mathgenealogy.org/



xxiv Barchiesi, Turco

Amarcord10

The second author recalls meeting Francesco dell’Isola during a coffee break at the
Sperlonga summer school, organized by the latter in 2013. The previous scientific
experience of the second author concernedmainly, at the time, the analysis of discrete
systems, both intrinsically discrete and obtained by discretization of continuous
models. Francesco dell’Isola, on the contrary, up to that time had devoted himself
almost exclusively to the formulation and solution of continuous models. The second
author remembers that, Francesco dell’Isola, although aware of the diversity of their
points of view, was willing to discuss some scientific problems related to the analysis
of the nonlinear behavior of metamaterials with pantographic microstructure. It is
precisely their continuous and friendly discussions, a modern reinterpretation of
the discrete-continuous disputes that cyclically occur in the history of Science,
see the debate between Mach and Boltzmann, which define a fruitful scientific
collaboration between the two, in which the two views are adopted in a synergistic
way to better understand the mechanisms underlying the exotic behavior observed in
metamaterials. To date, the second author has not found a topic about which, if ready
to support a constructive contradiction, one cannot speak with Francesco dell’Isola
without receiving generously valuable advice.

The second author also recalls that, passing through Rome, he and Francesco
dell’Isola often met at a bar in the Rione Monti. In these meetings, where the best
scientific ideas discussed by the two would take shape, Francesco dell’Isola, taking
up what was said to be a habit of the famous Neapolitan mathematician Renato
Caccioppoli, would expound his ideas by writing on the papery placemat of the
bar. Rome was also the scene of their playful photo competition, of which both are
enthusiasts.

Both authors can’t help but mention, when thinking about long Roman walks, the
propensity that Francesco dell’Isola has for engaging in discussions while walking.
Although the authors are aware of the positive effects of this habit, they cannot fail
to mention how these walks are “inflicted” on them in any weather condition and in
any place in Europe!

10 Amarcord is a 1973 Italian comedy-drama film directed by Federico Fellini. The film’s title
is a univerbation of the Romagnolo phrase “a m’arcôrd” (I remember). The title then became a
neologism of the Italian language, with the meaning of “nostalgic revocation.”
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Happy Birthday Francesco dell’Isola!

The authors hope that this contribution will do at least partial justice to what
Francesco dell’Isola has transmitted to them: they cannot but be grateful to him
for being his collaborators and friends. As can be seen from the information re-
ported so far, his lively intellectual and educational activity, which began thirty-five
years ago and which the authors believe earned him the appellation of μαθητικός11
of Magna Graecia,12 has received due recognition from the scientific community.
Nevertheless, the authors believe that his enthusiasm and curiosity are still those,
genuine, of a child and that, therefore, new fruitful studies are waiting for him. On
the occasion of his sixtieth birthday, the authors wish him many more years of health
and scientific successes—why not, even in other fields of knowledge—as well as a
good reading of the contributions that many colleagues have dedicated to him in the
disciplines that have most interested him so far.

11 As reported in Henry George Liddell. Robert Scott. A Greek-English Lexi-
con. revised and augmented throughout by. Sir Henry Stuart Jones. with the
assistance of. Roderick McKenzie. Oxford. Clarendon Press. 1940, the Greek
term μαθητικός means “fond of learning” (Pl.Ti.88c)—see also the web page
http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry=maqhmatiko/s
12 In the introduction of his book Big-(Wo)men, Tyrants, Chiefs, Dictators, Emperors and Pres-
idents. Towards the Mathematical Understanding of Social Groups, he writes “I did not try to
hide my cultural roots, in writing this essay. I was educated in Magna Graecia, where a wonderful
melting pot mixed Greek philosophy, Roman pragmatism, Longobard proud sense of freedom,
Byzantine duplicity and culture, Arab initiative, inventive and tolerance, Normans loyalty and de-
termination, French sophisticated traditions and sense of State, Spanish opportunism, Piedmontese
administrative ideas.”
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Chapter 1
A Different Catch for Poisson

A. Derya Bakiler, Ali Javili

Abstract Poisson’s ratio, similar to other material parameters of isotropic elasticity,
is determined via experiments corresponding to small strains. Yet at small-strain
linear elasticity, Poisson’s ratio has a dual nature; although commonly understood
as a geometrical parameter, Poisson’s ratio is also a material parameter. From a
geometrical perspective only, the concept of Poisson’s ratio has been extended to
large deformations by Beatty and Stalnaker. Here, through a variational analysis, we
firstly propose an alternative relationship between the Poisson ratio and stretches at
finite deformations such that the nature of Poisson’s ratio as a material parameter
is retained. In doing so, we introduce relationships between the Poisson ratio and
stretches at large deformations different than those established by Beatty and Stal-
naker. We show that all the nonlinear definitions of Poisson’s ratio coincide at the
reference configuration and thus, material and geometrical descriptions too coincide,
at small-strains linear elasticity. Secondly, we employ this variational approach to
bring in the notion of nonlinear Poisson’s ratio in peridynamics, for the first time.
In particular, we focus on bond-based peridynamics. The nonlinear Poisson’s ratio
of bond-based peridynamics coincides with 1/3 for two-dimensional and 1/4 for
three-dimensional problems, at the reference configuration.

Keywords: Non-linear Poisson’s ratio · Variational elasticity · Peridynamics

1.1 Introduction

In its classical definition, that being a kinematic definition in a small deformations
context, Poisson’s ratio is a constant obtained from the deformation of a domain
under uni-axial tension or compression in the axial and lateral directions, illustrated
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in Fig. 1.1. More precisely, it relates to the case where an isotropic domain is subject
to an axial strain εext in a uni-axial tension test, resulting in the lateral strain εlat. For
the small-strain case the Poisson’s ratio definition reads

ν = − εlat
εext

, (1.1)

which is obviously a purely geometrical description in that only geometrical, and
not material parameters, are present. The definition of the Poisson ratio (1.1) is
the most elementary one. It stems from a purely kinematic stand point, relating the
two different resultant strain values of a body, rendering a constant that essentially
describes the compressibility of the material. Note that, on the one hand, Poisson’s

Fig. 1.1 Affine deformation of a unit domain under uni-axial tension test. Lateral deformations
occur naturally to minimize the energy, while extension εxx is a prescribed value.

ratio definition is geometrical in nature and is constant for a material at small strains.
On the other hand, from the linear elasticity analysis of isotropic Neo-Hookean
materials, one can immediately establish a one-to-one relationship between the
geometrical description of Poisson’s ratio (1.1) and Lamé parameters as

2D : ν =
Λ

Λ+ 2µ
, 3D : ν =

Λ

2 [Λ+ µ]
, (1.2)

where Λ and µ are the first and second Lamé parameters, respectively. Table 1.1 elu-
cidates the dual nature of Poisson’s ratio associated with small-strain linear elasticity.
For common (non-auxetic) materials, the Poisson ratio ranges from zero associated
with a fully compressible material, to ν = 0.5 corresponding to incompressibility
limit in three-dimensional elasticity. The incompressibility limit for two-dimensional
or plane-strain elasticity corresponds to ν = 1, as it can be immediately realized
from the geometrical constraints that correspond to a constant area of the domain.
Henceforth, for the sake of brevity, we use the term “2D” to represent plane-strain
conditions or purely two-dimensional elasticity similar to the interface elasticity
theory, see (dell’Isola and Romano, 1987). Poisson’s ratio can also take values less
than zero, attributed to auxetic materials.
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Table 1.1 Poisson’s ratio in small-strain linear elasticity and its dual nature as a material parameter
(left) or a geometrical definition (right).

Table 1.2 Poisson’s ratio at large deformations nonlinear elasticity. The geometrical description of
Poisson’s ratio has been extended to large deformations (top). We propose an extension of the
material description of Poisson’s ratio (bottom), via a variational approach. At the reference
configuration, both nonlinear variants coincide with their linear counterparts in Table 1.1.

Remark on the forthcoming approach to explain the dual nature of Poisson’s ratio.
Here, we have started from the elementary, geometrical definition of Poisson’s ratio
since it is themore established one compared to its material description. Nonetheless,
we demonstrate that for linear elasticity, the starting point is preferential because
both descriptions of Poisson’s ratio render identical results. However, for the rest
of the derivations we start from the material definition of Poisson’s ratio. This
particular approach, as we will see shortly, is motivated by the foresight gained from
the large-deformation analysis of the problem.
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1.1.1 Key Objectives

This contribution aims to define Poisson’s ratio from a variational perspective. The
variational approach at small-strain linear elasticity does not result in new findings.
At large deformations, however, it leads to an alternative description of the Poisson
ratio, different from those that stem from the commonly accepted approach by Beatty
and Stalnaker (1986). In summary, the objective of this contribution is two-fold.

Firstly, we show that the two descriptions of Poisson’s ratio, namely the geomet-
rical description (1.1) and the material description (1.2), coincide at small-strain
elasticity. We argue that both descriptions can be extended to large deformations.
The extension of the geometrical description (1.1) of Poisson’s ratio to large de-
formation elasticity was introduced by Beatty and Stalnaker (1986). In contrast, we
suggest an extension of the material description (1.2) to large deformations via a
variational approach. The analysis here results in a relationship between the Poisson
ratio and stretches at large deformations different than those currently established in
the literature on the topic. Table 1.2 summarizes the key features of this contribution
associated with Classical Continuum Mechanics (CCM).

Having established the variational formulation to capture Poisson’s ratio, in the
second part of the contribution, we introduce the notion of nonlinear Poisson’s ratio
to Peridynamics (PD). We demonstrate that the variational approach established for
CMM in the first part can also be adopted to define a nonlinear Poisson’s ratio in
PD at large deformations. In particular, we focus on bond-based PD, for the sake
of simplicity. We show that the nonlinear Poisson’s ratio of bond-based PD is not
constant, but it coincides with 1/3 for two-dimensional and 1/4 for three-dimensional
problems, at the reference configuration.

1.1.2 Notation and Definitions

Direct notation is adopted throughout. Occasional use is made of index notation, the
summation convention for repeated indices being implied. The scalar product of two
vectors a and b is denoted a · b = ai bi. The scalar product of two second-order
tensors A and B is denoted A : B = Aij Bij . The composition of two second-
order tensors A and B, denoted A ·B, is a second-order tensor with components
[A · B]ij = AisBsj . The identity tensor i is denoted as I when it is associated
with the material configuration. Trace of a second order tensorA is obtained via its
double-contraction with identity, i.e. TrA = A : I . The fourth-order identity tensor
is denoted as . Similarly, other fourth-order constitutive tensors are also written with
the same font, such as for the fourth-order constitutive tensor. The tensor product
of two second-order tensors A and B is a fourth-order tensor = A ⊗ B with
Dijkl = Aij Bkl. The two non-standard tensor products of two second-order tensors
A and B are the fourth-order tensors [A⊗B]ijkl = Aik Bjl and [A⊗B]ijkl =
AilBjk .

C
I

D



1 A Different Catch for Poisson 7

1.1.3 Organization of the Manuscript

The remainder of this contribution is organized as follows. Section 1.2 elaborates
on Poisson’s ratio in the context of classical continuum mechanics (CCM), and the
variational approach that underpins the discussion in this contribution is introduced.
Afterwards, this variational framework is employed to formulate a uni-axial tension
test for small-strain linear elasticity in Section 1.2.1, resulting in the well-known
definitions of the Poisson ratio, for both two-dimensional and three-dimensional
elasticity. Section 1.2.2 details on how the developed framework can be employed
for large deformation elasticity, resulting in novel definitions for the nonlinear Pois-
son ratio that mimic the material description of the Poisson ratio rather than its
geometrical one. Subsequently, Section 1.3 extends the discussion to Peridynamics
(PD) and introduces the notion of a nonlinear Poisson ratio in PD, for the first time. It
is shown that the variational approach can be immediately applied to bond-based PD,
resulting in a varying Poisson ratio dependent on deformation. Section 1.4 concludes
the work and provides further outlook.

1.2 Poisson’s Ratio in Classical Continuum Mechanics

In this section, we introduce a variational approach to capture Poisson’s ratio in
classical continuummechanics (CCM). To set the stage and convey the idea, we begin
with the case of small-strain linear elasticity in Section 1.2.1. We then employ the
same variational approach at large deformations nonlinear elasticity in Section 1.2.2.
For both discussions on small strains as well as finite deformations, the underlying
equation is the equilibrium of a domain under uni-axial tension. Hence, next we
formulate equilibrium for the problem at hand.

Under prescribed boundary conditions, equilibrium corresponds to a relaxed state
where the deformation field results in the minimum total energy functional. The total
energy functional Ψtot consists of the internal and external contributions denoted Ψint
andΨext , respectively. TominimizeΨtot , its first variationwith respect to deformation,
or rather motion, is set to zero as

Ψtot = Ψint + Ψext , δΨtot
.
= 0 ⇒ δΨtot = δΨint + δΨext

.
= 0 . (1.3)

The external energy Ψext , in first-order classical continuum mechanics, is essentially
minus work as

δΨext = −δW with δW =

∫
B0

b0 · δϕ dV +

∫
∂B0

t0 · δϕ dA , (1.4)

in whichW denotes the “working”, and b0 and t0 are the external body force density
and surface force density in the material configuration, respectively. For further
details and generalized boundary conditions, see (dell’Isola et al, 2012a,b; Javili
et al, 2013; Auffray et al, 2015). The arbitrary variation of motion, denoted as δϕ,
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is a vector-valued test function δϕ ∈ H 1
0 (B0) that is vanishing where Dirichlet-type

boundary conditions are imposed. For a uni-axial tension test which is of interest
here, the external body forces are zero and therefore the first integral in Eq. (1.4)
vanishes identically. The second integral in Eq. (1.4) vanishes too, since (i) δϕ is
zero where displacements are prescribed on the two ends of the domain and (ii)
t0 is zero everywhere that a homogeneous Neumann-type boundary condition is
imposed. That is, for the particular problem of a uni-axial tension test, we seek for
the solutions of δΨint = 0. The internal energy Ψint reads

Ψint =

∫
B0

ψ dV , (1.5)

and therefore equilibrium for the current problem reduces to

δΨint =

∫
B0

δψ dV
·
= 0 . (1.6)

For a uniform deformation in the domain, which holds for a uni-axial tension test,
the equilibrium (1.6) then corresponds to

δψ
·
= 0 . (1.7)

The variational constraint (1.7) is an underlying relationship that holds throughout
this discussion, and also holds for finite deformations as well as small strains.

1.2.1 Poisson’s Ratio for Small-Strain Linear Elasticity

Let ε be the strain tensor associated with small-strain linear elasticity. In order to
establish a variational approach, one needs to begin from the scalar free energy
density ψ corresponding to small-strain linear elasticity

ψ =
1

2
ε : : ε , (1.8)

with being the fourth-order constitutive tensor. The fourth-order constitutive tensor
in terms of the first and second Lamé parameters Λ and µ, respectively, reads

= µ [I⊗I + I⊗I] + Λ I⊗I , (1.9)

and therefore
ψ = ψ(ε) = µ ε : ε+

1

2
ΛTr2ε . (1.10)

Using the relationship (1.2), the free energy density (1.10) in terms ofµ and Poisson’s
ratio ν reads

C

C

C
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2D : ψ = µ ε : ε+

µν

1− ν Tr
2ε ,

3D : ψ = µ ε : ε+
µν

1− 2ν
Tr2ε .

(1.11)

For a uni-axial tension test in Fig. 1.1, the strain tensor simplifies to a diagonal tensor

2D : ε = Diag(εxx, εyy) , 3D : ε = Diag(εxx, εyy, εzz) , (1.12)

wherein εyy = εzz is the lateral strain in 3D. Inserting strains (1.12) into the internal
energy density (1.11) furnishes

2D : ψ = µ [ε2
xx + ε2

yy] +
µν

1− ν [εxx + εyy]2 ,

3D : ψ = µ [ε2
xx + 2 ε2

yy] +
µν

1− 2ν
[εxx + 2 εyy]2 .

(1.13)

Next, we set δψ ·
= 0 in order to impose equilibrium (1.7). In doing so, note that

ψ = ψ(εxx, εyy) and therefore

δψ =
∂ψ

∂εxx
δεxx +

∂ψ

∂εyy
δεyy

·
= 0 . (1.14)

However, for the problem at hand, the extension εxx is a prescribed quantity and
therefore εyy is the only remaining variable. This immediately results in

δψ
·
= 0 ⇒ ∂ψ

∂εyy

·
= 0 . (1.15)

Finally, we insert the energy densities (1.13) into the reduced equilibrium equa-
tion (1.15). That is

∂ψ

∂εyy

·
= 0 ⇒


2D : 2µ εyy +

2µν

1− ν [εxx + εyy]
·
= 0 ,

3D : 2µ εyy +
2µν

1− 2ν
[εxx + 2 εyy]

·
= 0 .

(1.16)

Solving each relation in Eq. (1.16), results in

2D : ν = − εyy
εxx

, 3D : ν = − εyy
εxx

, (1.17)

which shall be compared with Eq. (1.2). That is, starting from energy, via a varia-
tional procedure for a uni-axial tension test, one can show that the material descrip-
tion of Poisson’s ratio indeed coincides with its geometrical definition. This finding
per se is not surprising. Nonetheless, as we will see shortly, the same procedure at
finite deformations results in relationships for Poisson’s ratio that are different from
those previously reported in literature.
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1.2.2 Poisson’s Ratio for Large Deformations Nonlinear Elasticity

Consider the deformation of a continuum body, as illustrated in Fig 1.2. The con-
tinuum body occupies the material configuration B0 ⊂ 3 at time t = 0 that is
mapped to the spatial configuration Bt ⊂ 3 at any time t > 0 via the nonlinear
deformation map ϕ, with X and x identifying points in the material and spatial
configurations, respectively. The deformation gradient in the bulk, denoted F , is a
linear deformation map that relates an infinitesimal line element dX ∈ TB0 to its
spatial counterpart dx ∈ TBt via the relation dx = F · dX where F := Gradϕ.

Fig. 1.2 The deformation of a continuum body which occupies the material configuration
B0 ⊂ 3 at time t = 0 that is mapped to the spatial configuration Bt ⊂ 3 at any time t > 0 via
the nonlinear deformation map ϕ.

For large deformations, and from a geometrical perspective, the Poisson ratio can
still be expressed as minus the ratio of lateral strain to extensional strain, similar to
small-strain linear elasticity, if the strain measures themselves correspond to large
deformations. That is

ν = − lateral strain
extensional strain

with strain ≡ any finite strain measure , (1.18)

holds intuitively as an extension of the geometrical description of Poisson’s ratio to
finite strains. This case has been first explored by Beatty and Stalnaker (1986), who
essentially constructed the general definition for nonlinear Poisson’s ratio (1.18). In
its original definition, extensional and lateral strains were the (Biot) strain measures
Exx = λ− 1 and Eyy = η− 1, respectively, with λ and η being the extensional and
lateral stretches, respectively, associated with a uni-axial tension test. Nonetheless,
the term “strain” can be extended to a larger Seth-Hill family of strain functions,
collectively expressed as

E(U) =

 lnU if m = 0 ,

1

m
[Um − I ] if m 6= 0 ,

(1.19)

R
R

RR
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withU being the (right) stretch tensor. In particular, the most commonly used strain
measures are

m = 1 ⇒ Biot : EB = U − I ,
m = 0 ⇒ Hencky : EH = lnU ,

m = 2 ⇒ Green : EG = 1
2 [U2 − I] ,

m = −2 ⇒ Almansi : EA = − 1
2 [U−2 − I] .

(1.20)

Obviously, the definition (1.18) is in essence the same as the previously mentioned
Poisson ratio measure for linear, small deformations. What makes this case different
is that for finite deformations, there is not a single measure for strain. Hence every
strain measure renders a different definition of nonlinear Poisson ratio. This prohibits
us from directly equating the two kinematic measures of Poisson’s ratio associated
with Eq. (1.1) and Eq. (1.18). For instance, for the most commonly used strain
measures, the nonlinear Poisson ratio reads

Biot : ν =
1− η
λ− 1

, Hencky : ν = − ln η

lnλ
,

Green : ν =
1− η2

λ2 − 1
, Almansi : ν =

1− η−2

λ−2 − 1
.

(1.21)

Note that in all the definitions (1.21), but also throughout this contribution, λ and η
denote the extensional and lateral stretches, respectively, associated with the defor-
mation gradient

2D : F = Diag(λ, η) , 3D : F = Diag(λ, η, ζ) , (1.22)

wherein ζ = η is the lateral stretch in 3D. Notice that we now have a definition for
a nonlinear Poisson’s ratio where the Poisson’s ratio is not simply a constant for a
given material, but changes according to the stretch applied to the material.

Now moving onto the material description in a nonlinear setting, we employ the
variational approach established previously. To do so, we begin from a (polyconvex)
hyperelastic free energy density ψ = ψ(F ). For instance, for a compressible Neo-
Hookean model ψ reads

ψ = ψ(F ) =
1

2
µ [F : F − 3− 2 ln J ] + Λ [

1

4
[J2 − 1]− 1

2
ln J ] , (1.23)

where F is the deformation gradient defined previously, and J := DetF . The free
energy density (1.23) shall be compared with its counterpart (1.10) for small-strain
linear elasticity. Analogous to what was established in Section 1.2.1, using the
relationship (1.2), the free energy density in terms of µ and Poisson’s ratio ν reads
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2D : ψ =

1

2
µ [F : F − 2− 2 ln J ] +

2µν

1− ν [
1

4
[J2 − 1]− 1

2
ln J ] ,

3D : ψ =
1

2
µ [F : F − 3− 2 ln J ] +

2µν

1− 2ν
[

1

4
[J2 − 1]− 1

2
ln J ] .

(1.24)

For a uni-axial tension test, the deformation gradientF simplifies to a diagonal tensor
expressed in Eq. (1.22). Inserting the corresponding deformation gradient (1.22) into
the internal energy density (1.24) furnishes

2D : ψ =
1

2
µ
[
λ2 + η2 − 2− 2 ln(λη)

]
+

2µν

1− ν [
1

4
[(λη)2 − 1]− 1

2
ln(λη) ] ,

3D : ψ =
1

2
µ
[
λ2 + 2η2 − 3− 2 ln(λη2)

]
+

2µν

1− 2ν
[

1

4
[(λη2)2 − 1]− 1

2
ln(λη2) ] .

(1.25)

Next, we set δψ ·
= 0 in order to impose equilibrium (1.7). In doing so, note that

ψ = ψ(λ, η) and therefore

δψ =
∂ψ

∂λ
δλ+

∂ψ

∂η
δη
·
= 0 . (1.26)

However, for the problem at hand, the extension λ is a prescribed quantity and
therefore η is the only remaining variable. This immediately results in

δψ
·
= 0 ⇒ ∂ψ

∂η

·
= 0 . (1.27)

Finally, we use the energy densities (1.25) in the reduced equilibrium equation (1.27).
That is

∂ψ

∂η

·
= 0 ⇒


2D :

1

2
µ

[
2η − 2

η

]
+

2µν

1− ν

[
1

2
λ2η − 1

2η

]
·
= 0 ,

3D :
1

2
µ

[
4η − 4

η

]
+

2µν

1− 2ν

[
λ2η3 − 1

η

]
·
= 0 .

(1.28)

Solving each relation in Eq. (1.28), results in

2D : ν =
1− η−2

1− λ2
, 3D : ν =

1− η−2

2− η−2 − λ2η2
, (1.29)

which shall be compared with Eq. (1.21). That is, for large deformations too, starting
from energy, via a variational procedure for a uni-axial tension test, one can establish
a material description of Poisson’s ratio that no longer coincides with its commonly
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accepted geometrical definitions. Table 1.3 extends Table 1.2 and summarizes the
aspects of Poisson’s ratio at large deformations.

Table 1.3 Poisson’s ratio at large deformations nonlinear elasticity. The geometrical description of
Poisson’s ratio has been extended to large deformations (top). Via a variational approach, we
propose an extension of the material description of Poisson’s ratio (bottom).

Fig. 1.3 illustrates the different kinematic measures of Poisson’s ratio, namely that
of Biot, Hencky, Green and Almansi, as gathered in Eq. (1.21), at the incompressibil-
ity limit, against the current kinetic definition (1.29). The nonlinear Poisson ratio ν,
obtained for the various definitions, is plotted versus the axial stretch λ, which ranges
from 0.5 to 1.5, thus covering both contraction and extension. Clearly, all of the defi-
nitions coincide at λ = 1, to the expected, incompressible value of ν = 1 for 2D and
ν = 1

2 for 3D. The significance of this point lies in the fact that deformations close
to λ = 1 correspond to small stains. Hence as we move away from this small-strain
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limit, the geometrical and material descriptions of Poisson’s ratio move away from
each other, since the nonlinearity of the Poisson ratio becomes more pronounced
and consequently, the different functions begin to portray different behaviors. Only
the current definition and the Hencky definition at the incompressibility limit remain
constant regardless of the stretch λ.

Fig. 1.3 Comparison of the current kinetic nonlinear Poisson’s ratio definition with previously
established, kinematic definitions.

Equipped with the nonlinear Poisson’s ratio (1.29), another interesting aspect to
investigate is the relationship between the lateral stretch η and the Jacobian J . This
combination is particularly intriguing since J = DetF is the ratio of the current over
reference volume of the domain for 3D and the ratio of the current over reference
area of the domain for 2D. Therefore J serves as an indication of compressibility
of a material too. That is, for nearly incompressible materials we expect J → 1.
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In doing so, it proves helpful to define a dimensionless “compressibility parameter”
α = Λ/2µ, with α ranging from 0 at full compressibility, to α → ∞ at the
incompressibility limit. Using the relationships established for the nonlinear Poisson
ratio (1.29), we can immediately see that α boils down to the same function in terms
of η and J , for both 2D and 3D. That is

α =
Λ

2µ
⇒


2D : α =

ν

1− ν

3D : α =
ν

1− 2ν

 ⇒ α =
1− η2

J2 − 1
. (1.30)

Therefore, it is possible to express the lateral stretch η as a function of the compress-
ibility parameter α and the Jacobian J , where for a uni-axial tension test, J = λη in
2D and J = λη2 in 3D. That is

η =
√

1− α [J2 − 1] . (1.31)

Fig. 1.4 Illustration of the lateral stretch η versus Jacobian J and compressibility parameter α for
2D (left) and 3D (right). As we move towards full incompressibility, J converges to 1, as expected.

Even though the definition (1.31) is obtained through a variational approach
associated with the material description of the Poisson ratio, the geometrical inter-
pretation of it is still visible. As the domain becomes increasingly compressible,
this suggests geometrically that no matter what the axial stretch, λ is, there would
be close to no contraction in the lateral direction, corresponding to η → 1. This is
clearly seen in Fig. 1.4, for both 2D (left) and 3D (right), with the curve flattening and
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converging to a single value of η = 1, regardless of J hence of λ, as α→ 0. On the
other hand, as the material gets more and more incompressible with increasing α, the
range of admissible values for η increases. Additionally, as we move towards full in-
compressibility, since at full incompressibility the volume is preserved, J converges
to 1. We also see that the whole range of η becomes viable at the incompress-
ible limit. This stems from the fact that incompressibility dictates that J = 1 and
therefore η = 1/λ in 2D, or η = 1/

√
λ in 3D, which shows that for any value of ax-

ial stretch λ there exists a solution for the lateral stretch η to ensure incompressibility.

Remark on generalizing the methodology. The variational framework here to extend
the material description of Poisson’s ratio to large deformations was carried out so
far for the hyperelastic free energy density (1.23). This particular choice of (Ogden)
free energy density was only made to simplify the derivations and highlights the
key features of the procedure while avoiding technical complexities. Nonetheless,
the developed framework itself is generic and can be applied to any other free en-
ergy density of an elastic material. That is, while the nonlinear Poisson ratio (1.29)
is exclusively derived for the free energy density (1.23), it can be shown that any
ψ = ψ(F : F , J) furnishes a relationship between λ, η and ν akin to the nonlinear
Poisson ratio (1.29). Generalizing even further, the framework can also be applied to
any isotropic free energy density ψ = ψ(I1, I2, I3) with I1 := TrC, I2 := TrCofC
and I3 := DetC being the three principal invariants of the right Cauchy–Green
tensor C.

Remark on the utility of the nonlinear Poisson’s ratio. One application of the
nonlinear Poisson definition developed herein lies in understanding the instability
behavior of soft, compressible materials under plane deformations. Instabilities
that occur when a domain under compression buckles at a certain point to release
energy have found several applications and are ubiquitous in nature. However,
until recently, the large deformation instability analysis of a compressible domain
under compression had not been thoroughly carried out. For instance, it is well-
established that an incompressible half-space reaches instability at the critical stretch
of λ = 0.544, referred to as Biot instability. However, with the use of a compressible
material model, such as (1.23), imposing the uniform deformation related to uni-axial
compression yields the nonlinear Poisson ratio (1.29). The nonlinear Poisson ratio
can then be employed to solve for the critical stretch at which bifurcation occurs,
showing that the critical stretch ranges from λ = 0.486 at full compressibility
to λ = 0.544 at the incompressible limit. This utility is valid since, unlike the
commonly accepted definitions of nonlinear Poisson’s ratio, in our approach at
large deformations too the Poisson’s ratio is retained as a material parameter .
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1.3 Poisson’s Ratio in Peridynamics

Peridynamics (PD) established by Silling (2000), following the pioneering works
of Piola (dell’Isola et al, 2015, 2017), is a non-local continuum mechanics theory.
In PD, the behavior of each material point is dictated by its interactions with other
material points in its vicinity. Various applications and extensions of PD have been
investigated in the past two decades. For a brief description of PD together with a
review of its applications and related studies in different fields to date, see (Javili
et al, 2019) and the references therein. Similar to the variational approach developed
in Section 1.2, via minimizing the internal energy density, the Poisson ratio of
bond-based peridynamics is investigated next.

Again, consider the deformation of a continuum body that is mapped from thema-
terial configuration B0 to the spatial configuration Bt via the nonlinear deformation
map ϕ, as illustrated in Fig. 1.5. Here also,X and x identify points in the material

Fig. 1.5 Motion of a continuum body within the PD formulation. The neighborhood ofX is
mapped to the neighborhood of x.

and spatial configurations, respectively. The non-locality assumption of PD dictates
that any point X in the material configuration can interact with other points X |

within its horizonH0(X). Themeasure of the horizon in the material configuration,
denoted as δ, is generally the radius of a spherical neighborhood atX . The relative
positions between a point and its neighbors are denoted byΞ | and ξ| in the material
and spatial configurations, respectively. That is

Ξ
|

:= X
| −X , ξ

|
:= x

| − x .
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The bond stretch S| is defined by S| = l
|
/L
| with L| := |Ξ | | and l| := |ξ| | where

L
| and l| are the bond lengths in the material and spatial configurations respectively.
For an affine deformation, with a linear deformation map F between the line

elements dΞ
| ∈ TB0 and dξ

| ∈ TBt, the mapping reads

dξ
|

= F · dΞ
|

, ⇒ ξ
|

= F ·Ξ | . (1.32)

Of particular interest for this contribution is the deformation map F associated with
a uni-axial tension test, illustrated in Fig. 1.6. In order to compute the Poisson ratio

Fig. 1.6 Affine deformation of a unit domain via the linear deformation map F , for 2D (left) and
3D (right). The prescribed deformation represents a uni-axial tension test. Extensional and lateral
stretches are denoted as λ and η, respectively.

associated with the bond-based PD, we follow the same variational argument in
Section 1.2. That is, we minimize the internal energy density via imposing δψ = 0.
In contrast to CCM, however, the free energy density ψ itself is an integral over the
horizon.

For a two-dimensional domain, the internal energy density of PD per unit area
in the material configuration is the integral of its density ψ| over the horizon H0.
Similarly, for a three-dimensional domain, the internal energy density of PD per unit
volume in the material configuration is the integral of its density ψ| over the horizon
H0. Accordingly, ψ

| is the internal energy density per area squared for 2D and per
volume squared for 3D in the material configuration. That is

2D : ψ =
1

2

∫
H0

ψ
|

dA
|

, 3D : ψ =
1

2

∫
H0

ψ
|

dV
|
. (1.33)

wherein the factor one-half before the integral is introduced to prevent double-
counting since the combination of each pair of points within the horizon occurs
twice when going over the global integral. This means that for each pair of points
A and B, the pair-wise energy density gets counted twice, one from the sum over
point A, and once from the sum over point B. The density of the internal energy
density ψ| is commonly expressed via a harmonic potential with a bond constant C.
Therefore
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ψ
|

=
1

2
C L

|
[S
| − 1 ]2 ⇒


2D : ψ =

1

2

∫
H0

1

2
C L

|
[S
| − 1 ]2 dA

|
,

3D : ψ =
1

2

∫
H0

1

2
C L

|
[S
| − 1 ]2 dV

|
.

(1.34)

The bond-based interaction energy density (1.34) of PD shall be compared with its
counterpart (1.24) in CCM. Therefore, for the uni-axial tension test of interest here,
the internal energy density ψ reads

2D : ψ =
1

2

∫
H0

1

2
C |Ξ | |

[ |F ·Ξ | |
|Ξ | | − 1

]2
dA
|
,

3D : ψ =
1

2

∫
H0

1

2
C |Ξ | |

[ |F ·Ξ | |
|Ξ | | − 1

]2
dV

|
.

(1.35)

wherein F = Diag(λ, η) for 2D and F = Diag(λ, η, η) for 3D.
Next, we evaluate the internal energy densities (1.35) and identify their mini-

mum to obtain a relationship between the lateral contraction η and the prescribed
extensional stretch λ. More specifically, via setting δψ = 0, we compute a nonlinear
Poisson’s ratio associated with bond-based PD. In doing so, similar to the discussion
in Section 1.2.2, we recall ψ = ψ(λ, η) and therefore

δψ =
∂ψ

∂λ
δλ+

∂ψ

∂η
δη
·
= 0 ⇒ ∂ψ

∂η

·
= 0 , (1.36)

wherein the last step follows from the fact that for the problem at hand the extension
is a prescribed quantity and therefore η is the only remaining variable.

Figures 1.7 and 1.8 illustrate the energy densities (1.35) and its derivative with
respect to η, for a wide range of values for λ and η.

Furthermore, these two sets of graphs demonstrate how ∂ψ/∂η varies with re-
spect to the ratio 1−η

λ−1 that is of particular interest since it is reminiscent of Biot
nonlinear Poisson’s ratio. We emphasize, the prescribed longitudinal stretch λ is
not necessarily close to one and in fact, it ranges from nearly zero to four for both
two-dimensional and three-dimensional cases in the numerical studies here. Clearly,
large deformations can lead to Poisson’s ratio other than 1

3 for two-dimensional and
other than 1

4 for three-dimensional problems, associated with bond-based PD.
The nonlinear Poisson’s ratio in these graphs follow the Biot definition. Nonethe-

less, a similar study can be carried out for all the other canonical definitions based
on a geometrical interpretation of Poisson’s ratio, as well as the material description
thereof. With a little mathematical effort, and using L’Hospital’s rule if necessary, it
can be shown that in the vicinity of the reference configuration, the analysis leads to
ν = 1

3 for all the canonical definitions of the nonlinear Poisson’s ratio, as expected.
That is
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Fig. 1.7 Two-dimensional energy density ψ and its derivative with respect to the lateral stretch η
and the ratio 1−η

λ−1
for a wide range of values for λ and η. The ratio 1−η

λ−1
depends on the stretch λ

but approaches 1
3
as λ→ 1, as expected. Therefore, one can identify the ratio 1−η

λ−1
as a nonlinear

Poisson’s ratio associated with bond-based peridynamics.

if
1− η
λ− 1

=
1

3
⇒



Biot : ν =
1− η
λ− 1

⇒ ν =
1

3
,

Hencky : ν = − ln η

lnλ
⇒ ν =

1

3
,

Green : ν =
1− η2

λ2 − 1
⇒ ν =

1

3
,

Almansi : ν =
1− η−2

λ−2 − 1
⇒ ν =

1

3
,

Current : ν =
1− η−2

1− λ2
⇒ ν =

1

3
.

(1.37)
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Fig. 1.8 Three-dimensional energy density ψ and its derivative with respect to the lateral stretch η
and the ratio 1−η

λ−1
for a wide range of values for λ and η. The ratio 1−η

λ−1
depends on the stretch λ

but approaches 1
4
as λ→ 1, as expected. Therefore, one can identify the ratio 1−η

λ−1
as a nonlinear

Poisson’s ratio associated with bond-based peridynamics.

The same conclusion also holds for 3D. More specifically, in the vicinity of the
reference configuration, all the canonical definitions of the nonlinear Poisson’s ratio
coincide at ν = 1

4 , as expected. That is
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if
1− η
λ− 1

=
1

4
⇒



Biot : ν =
1− η
λ− 1

⇒ ν =
1

4
,

Hencky : ν = − ln η

lnλ
⇒ ν =

1

4
,

Green : ν =
1− η2

λ2 − 1
⇒ ν =

1

4
,

Almansi : ν =
1− η−2

λ−2 − 1
⇒ ν =

1

4
,

Current : ν =
1− η−2

2− η−2 − λ2η2
⇒ ν =

1

4
.

(1.38)

1.4 Conclusion

Among the material parameters of classical first-order linear elasticity, Poisson’s
ratio stands out in that (i) it is a dimensionless parameter and (ii) it can be interpreted
both as a material or a geometrical parameter. Due to its geometrical definition
in terms of strains, the Poisson ratio shall be revisited when it comes to large de-
formations. Beatty and Stalnaker (1986) extended the geometrical interpretation of
Poisson’s ratio to large deformations. In this contribution, however, we have extended
the material description of Poisson’s ratio via a variational approach. The variational
approach at small strains leads to the trivial outcome that the material and geometri-
cal descriptions of Poisson’s ratio coincide. For an example of a hyperelastic material
at finite deformations, we have proposed a novel definition for nonlinear Poisson’s
ratio. Inspired by the findings of the variational approach for classical elasticity, we
then employed the samemethodology to peridynamics, and in particular, bond-based
peridynamics. It is shown that the nonlinear Poisson’s ratio of bond-based peridy-
namics is no longer a constant, but it coincides with 1/3 for two-dimensional and
1/4 for three-dimensional problems, at the reference configuration, as expected. This
view can be extended to other formulations of PD and lattice structures. Also, it can
be utilized in the up-and-coming field of metamaterial design (Greaves et al, 2011),
specifically considering auxetic materials and pantographic structures (Barchiesi
et al, 2019; dell’Isola et al, 2019).
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Chapter 2
Nonlinear Deformation of a Clamped-Edge
Strip-Like Nano-Film

Anatolii Bochkarev

Abstract Nonlinear deformations of a clamped-edge nano-film are considered on
the basis of an extension of von Kármán’s theory of elastic plate, taken into account
the Gurtin–Murdoch surface elasticity and Kirchhoff’s hypothesis. Unlike most of
the previous related theories, surface tension, usually omitted in the conjugation
condition of Young–Laplace law in the transverse direction, is incorporated in the
two-dimensional motion and constitutive relations for membrane forces together
with quadratic terms equal to the von Kármán-type strains. The influence of the
linear and nonlinear terms of surface tension is illustrated in the cases of nonlinear
bending, post-critical compressive buckling, and free transverse vibration of a strip-
like nano-film with clamped edges

Keywords: Surface elasticity · Surface tension · Young–Laplace law

2.1 Introduction

The surface elasticity or surface stresses theory proposed by (Gurtin and Murdoch,
1978) is widely used in the two-dimensional models of nano-plates and -shells. The
surface stresses combine both the elastic properties of a solid and the surface tension
of a liquid. The validity of this continuum approach to problems in nano-mechanics
has been supported by the results of atomistic modeling (Miller and Shenoy, 2000).

Currently, many authors neglect the surface tension, taking into account only the
elastic part of the surface stresses. This simplification is possibly acceptable in the
plane problem of the theory of elasticity. However, in the theory of plates and shells,
it is necessary to satisfy the 3D-equilibrium condition of a surface layer and bulk
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phase, known as Young–Laplace’s law. If the equilibrium in the tangential directions
is provided mainly by the elastic part of the surface stresses, then in the transverse
direction it is provided exclusively by the surface tension.

The work (Lim and He, 2004) on the nonlinear bending of nano-plates was the
first one taking into account the Gurtin–Murdoch surface elasticity. In the same time,
this model had an obvious flaw: the conjugation condition of Young–Laplace in the
transverse direction, expressed through surface tension, was omitted. To eliminate
this flaw, it was proposed by (Lu et al, 2006) in the linear theory of plates to consider
that σ33 is nonzero in Hooke’s law. However, the results of (Huang, 2008) in the
nonlinear theory showed that this refinement leads to negligible size effects, thereby
confirming the basic principles of plate theory,where is it takenσ33 � σαα. Anyway,
most authors (Altenbach et al, 2010; Altenbach and Eremeyev, 2011; Eremeyev,
2016; Ru, 2016; Xu, 2016; Eugster and Glocker, 2017; Shaat, 2018; Bochkarev and
Grekov, 2019; Yue et al, 2019) prevailed the view that surface stresses affect bending
mainly due to the difference in the values of the surface and bulk elastic moduli, and
not by surface tension.

At the same time, publications appear that note the important role of gradient
energy for describing nanostructures (Bochkarev, 2020b; Javanbakht et al, 2021). So
in (Bochkarev, 2020b), it was shown that surface tension can significantly correct
the mechanical properties of the ultra thin-walled structures if the conjugaction
condition of Young–Laplace in the transverse direction is correct incorporated into
the bending equation. For this purpose, the model proposed by (Lim and He, 2004)
was further developed in (Bochkarev, 2020b) and the nonlinearity of surface tension,
equal to the von Kármán-type strain, has been taken into account also. These results
were shown on the example of the nonlinear bending, transverse free vibration,
and compressive buckling of a strip-like nano-film with simply supported edges.
In addition in (Bochkarev, 2020a), the post-critical deformation of the compressive
strip-like nano-film was shown also.

Present study develops this theme and shows the size effect with taken into ac-
count surface stresses with surface tension on the example of the nonlinear bending,
transverse free vibration, and post-critical deformation of a compressive strip-like
nano-film with clamped edges. This case of support is interesting because orthogo-
nality of the linear eigenforms does not help here to simplify the nonlinear problem.

2.2 Problem Formulation

An isotropic elastic nano-plate is considered. The stresses of the bulk phase obey
the constitutive relation of Hook’s law for plates (hereinafter α, β, γ = 1, 2)

σαβ =
E

1− ν2

(
(1− ν)εαβ + δαβνεγγ

)
(σ33 � σαα) (2.1)

On the top (+) and bottom (−) faces, there are the surface stresses obeying the
constitutive relations (Gurtin and Murdoch, 1978)
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τ±αβ = δαβτ0 + 2(µs − τ0)ε±αβ + δαβ(λs + τ0)ε±γγ + τ0
(
∇su

)±
αβ

τ±3β = τ0
(
∇su

)±
3β

(2.2)

The bulk stresses on the faces are balanced with the surface stresses according to
Young–Laplace law (Gurtin and Murdoch, 1978)

∇±s · τ± +ϕ± = ρsü
± ± n · σ± (2.3)

Here:E, ν and ρ are Young’s modulus, Poisson’s ratio and density of bulk phase; the
subscript s marks the surface properties – Lame’s parameters λs and µs, the density
ρs, and also the residual surface tension τ0 – all equal on the both faces; u and ε are
the displacement and the elastic strain, ∇s is the surface nabla-operator; p and ϕ±
are the external bulk and surface loads; n is a normal to the middle surface.

The nonlinear Kirchhoff model of complex bending of nano-plates takes into
account the surface stresses (2.2), incorporating the conjugation condition on the
faces (2.3) (including in the transverse direction), and also considering nonlinearity
of surface tension equal to the von Kármán-type nonlinear strain

ε0
βα =

1

2

(
u0
β,α + u0

α,β + w,αw,β
)

τ0(∇su)0
βα = τ0(u0

β,α − ww,βα), τ0(∇su)0
3α = τ0(w,α + u0

βw,βα)
(2.4)

was proposed in (Bochkarev, 2020b) and can be expressed as the von Kármán set

I∗ü0
β = T ∗βα,α − τ0(w2

,α),β + P ∗β

J∗ẅ,αα − I∗ẅ = D∗∇2
s∇2

sw − 2τ0∇2
sw − T ∗βαw,βα −m∗α,α − P ∗3

(2.5)

with the constitutive relation for the effectivemembrane forces and bendingmoments

T ∗βα = 2τ0δβα + 2τ0(∇su)0
βα + C∗

(
(1− ν∗t )ε0

βα + ν∗t δβαε
0
γγ

)
(2.6)

M∗βα = D∗
(
(1− ν∗f )κβα + ν∗f δβακγγ

)
(2.7)

Here the all tensor quantities in the midplane (except curvature κ and deflection w)
are marked by zero-index: in-plane strain ε0, surface tension τ0(∇su)0, in-plane
displacement u0. Also, the effective elastic, inertial and load properties are used

ν∗t =
1

C∗
(
νC + 2(λs + τ0)

)
, C∗=C+4µs+2(λs−τ0), C =

Eh

1− ν2

ν∗f =
1

D∗
(
νD+

h2

2
(λs+τ0)

)
, D∗ = D + h2

(
µs +

λs

2

)
, D =

Eh3

1− ν2

(2.8)

I∗ =

∫ +0.5h

−0.5h

ρdx3 + 2ρs, J
∗ =

∫ +0.5h

−0.5h

x2
3ρdx3 +

h2

2
ρs (2.9)
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P ∗i =

∫ +0.5h

−0.5h

pidx3 + (ϕ+
i −ϕ−i ), m∗α=

∫ +0.5h

−0.5h

pαx3dx3 +
h

2
(ϕ+
α+ϕ−α ) (2.10)

2.3 One-Dimensional Model of Deformation of Strip-Like
Nano-Film

A strip-like nano-film is considered of a finite width l along the x1 axis and infinitely
along the x2 axis, along both edges which the nano-film is supported. External load is
believed not depending on x2 and the nano-film stays in a plane-strain deformation.

In the case, the Eq. set (2.5) is simplified

I∗ü0
1 =

(
T ∗11 − τ0w′2

)′
+ P ∗1

J∗ẅ′′ − I∗ẅ = D∗wIV −
(
2τ0 + T ∗11

)
w′′ −m∗1,1 − P ∗3

(2.11)

Considering the nonlinearity of the in-plane strains and surface tension (2.4), the
constitutive relation for membrane force (2.6) gets the view

T ∗11 = 2τ0
(
1 + (u0

1)′ − ww′′
)

+ C∗
(
(u0

1)′ + w′2/2
)

(2.12)

The materials parameters for the iron free surface, taken from (Gurtin and Mur-
doch, 1978), were used in the computations

E = 17.73× 1010 N/m2, ν = 0.27, ρ = 7× 103 kg/m3

λs = −8 N/m, µs = 2.5 N/m, τ0 = 1.7 N/m, ρs = 7× 10−6 kg/m2
(2.13)

2.3.1 Nonlinear Bending under the Eigenform-Like External
Loading

The boundary problem of nonlinear bending of a clamped-edge nano-plate (2.11)-
(2.12) has the view

(
T ∗11 − τ0w′2

)′
= 0

D∗wIV =
(
2τ0 + T ∗11

)
w′′ + P ∗3

(C∗ + 2τ0)(u0
1)′ = T ∗11 − 2τ0

(
1− ww′′

)
− (C∗/2)w′2

(2.14)

w(0) = w(l) = 0, w′(0) = w′(l) = 0, u0
1(0) = u0

1(l) = 0 (2.15)

where the external load is like the deflection eigenform of the linear bending equation

P ∗3 = P0

(
1− cos(2πx1/l)

)
(2.16)

Note that the first two Eqs. (2.14) have the first integrals



2 Nonlinear Deformation of a Clamped-Edge Strip-Like Nano-Film 29

T ∗11 − τ0w′2 = N = const

D∗w′′′ =
(
2τ0 +N

)
w′ + (τ0/3)w′3 +

∫
P ∗3 dx1

(2.17)

while the third equation has not and the constant N remains unknown. In the case
of the simple support (the eigenform-like external load is P ∗3 = P0 sin(πx1/l)), the
third equation (2.14) has the first integral also and the constant N has been analyt-
ically found (Lim and He, 2004; Huang, 2008) but without taking into account the
transverse Young–Laplace law and the nonlinearity of the surface tension. There-
fore, in the case of clamped support, the set (2.14) is reduced to the set of ordinary
differential equations of 6th order in the dimensionless variables

y′1 = y2

y′2 = y3

y′3 = y4

y′4 =
Ch2

D∗

(2τ0
C

l2

h2
y3 +

l2

h2
y5y3 +

l3

h3

P ∗3
Ch

)
y′5 =

h2

l2
2τ0
C
y2y3

y′6 =
C

C∗ + 2τ0

(
y5 −

2τ0
C

+
2τ0
C

h2

l2
y1y3 − 0.5

C∗

C

h2

l2
y2

2

)
(2.18)

with the homogeneous boundary conditions

y1(0) = y1(1) = 0, y2(0) = y2(1) = 0, y6(0) = y6(1) = 0

or using symmetry
y1(0) = 0, y2(0) = y2(0.5) = 0, y4(0.5) = 0, y6(0) = y6(0.5) = 0

(2.19)

where

y1 = w/wm, y5 = T ∗11/C, y6 = u0
1/h; (...)′ = d(...)/dx̃1, x̃1 = x1/l (2.20)

The boundary value problem (2.18)-(2.15) was solved numerically by means of the
bvp5 MATLABr function. The results are shown in Fig.2.1 in comparison with
results of other models: without surface effect and with surface effect but without
the transverse Young–Laplace law and nonlinearity of surface tension like (Lim and
He, 2004; Huang, 2008). You can see that the size effect is more pronounced in
comparison with last model. An important detail when compared with a similar task
for a simply supported strip (Bochkarev, 2020b): for clamped support, the size effect
is opposite, that is, the surface stresses reduce the deflection amplitude.
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Fig. 2.1 Nonlinear bending of a clamped-edge nano-film under different models of accounting for
surface effects (the thickness h = 1 nm): (a) deflection semi-profile for P0 = 0.03E/(1− ν2), (b)
transverse load-deflection ratio

2.3.2 Post-Critical Buckling under Compression

The boundary value problem of compressive buckling of a clamped-edge nano-plate
(2.11)-(2.12) has the view

(
T ∗11 − τ0w′2

)′
= 0

D∗wIV =
(
2τ0 + T ∗11

)
w′′

(C∗ + 2τ0)(u0
1)′ = T ∗11 − 2τ0

(
1− ww′′

)
− (C∗/2)w′2

(2.21)

w(0) = w(l) = 0, w′(0) = w′(l) = 0, T ∗11(0) = T ∗11(l) = −T (2.22)

The first integrals (2.17) and the boundary conditions (2.22) allow to express the
unknown constant N = −T ∗11(0) − τ0w′2(0) = −T , to exclude the first and third
equations (2.21) and to reduce the order of the bending equation to 3

D∗w′′′ =
(
2τ0 − T

)
w′ + (τ0/3)w′3 (2.23)

Note that the model without taking into account the nonlinearity of surface tension
like (Lim and He, 2004; Huang, 2008) leads to a linear equation of bending, from
which it is possible to determine only the value of the critical compressive force

Tcr = 4π2D∗/l2 + 2τ0 (2.24)

This is the specificity of the one-dimensional model of the von Kármán theory,
in which, in contrast to the general two-dimensional case, there are no nonlinear
equations of continuity. In the present model under consideration, such nonlinearity
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is present in the equilibrium equation of internal forces, which makes it possible to
simulate the buckling of the strip-like nano-film and behind the critical force.

For this purpose, we represent the compressive force with a positive increment to
the value of the critical force T = Tcr + δD∗/l2 and reduce the bending equation
(2.23) the set of ordinary differential equations of 3rd order

y′1 = y2

y′2 = y3

y′3 = −y2

(
(4π2 + δ)− 1

3

τ0
C

Ch2

D∗
y2

2

) (2.25)

with the homogeneous boundary conditions

y1(0) = y1(1) = 0, y2(0) = 0 or y1(0) = 0, y2(0.5) = 0, y3(0) = 0 (2.26)

As an initial approximation,we used the first eigenformof the linear bending equation y1 = (wm/h)
(
1− cos(2πx̃1)

)
y2 = (wm/h)2π sin(2πx̃1)
y3 = (wm/h)(2π)2 cos(2πx̃1)

(2.27)

The boundary value problem (2.25)-(2.26) was also solved numerically by means of
the bvp5 MATLABr function. The results are shown in Fig.2.2 in comparison with
the critical Euler load. Some of them were given in (Bochkarev, 2020a). Here they
are supplemented with new ones.

As expected, the clamped-edge nano-film continues to resist compression upon
buckling behind the critical load. In this case, the membrane force is redistributed
from a constant like a second eigenform. With an increase in the thickness of the
nano-film, the size effect is weakened.

2.3.3 Nonlinear Free Transverse Vibration

In the problem of free transverse vibrations in a general nonlinear setting, like
Sec. 2.3.1 and 2.3.2, the spatial and time variables are not analytically separated.
Therefore, we have to resort to some simplification, taking into account, if possible,
the role of the basic factors. First of all, following (Lim and He, 2004; Huang, 2008),
we neglect the inertial terms in the plane of the plate, as well as the nonlinearity of the
surface tension in the equation of equilibrium of membrane forces. The simplified
stationary boundary value problem takes the form (T ∗11)′ = 0

J∗ẅ′′ − I∗ẅ = D∗wIV − (τ0 + T ∗11)w′′

(C∗ + 2τ0)(u0
1)′ = T ∗11 − 2τ0

(
1− ww′′

)
− (C∗/2)w′2

(2.28)

w(0) = w(l) = 0, w′(0) = w′(l) = 0, u0
1(0) = u0

1(l) = 0 (2.29)
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From the first equation (2.28) it follows that T ∗11 = N is a spatial constant, and we
arrive at an oscillation equation of that is linear in the spatial coordinate with one
unknown coefficient N(t) – a function of time

J∗ẅ′′ − I∗ẅ = D∗wIV −
(
2τ0 +N(t)

)
w′′ (2.30)

Separating spatial and time variables and using the first eigenform

w(x1, t) = wmT (t)(1− cos
(
2πx1/l

)
(2.31)

the third equation (2.28) can be integrated also, and the unknown N(t) is expressed
in terms of T (t)

N(t) = C
(2τ0
C

+ π2C
∗ + 4τ0
C

(wm/h)2(h/l)2T 2(t)
)

(2.32)

Substitution of expressions 2.31) and 2.32) for w and N(t) into the oscillation
equation 2.30) leads to Duffing’s equation

cT̈ (t) + aCT (t) + bC
(
wm/h

)2
T 2(t) = 0 (2.33)

where the constants are

a =
4π2

(l/h)2

( 4π2

(l/h)2

D∗

Ch2
+

4τ0
C

)
, b =

4π4

(l/h)4

C∗

C
, c = I∗h2+J∗

π2

(l/h)2
(2.34)

As is known, the nonlinear vibration frequency is expressed in terms of an elliptic
integral of the first kind with the parameter k
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ω =
π

2

√(
a+ b

(
wm/h

)2)
/c

K(k, π/2)
, k =

(wm/h)√
2
(
(wm/h)2 + (a/b)

) (2.35)

In particular, disregarding surface elasticity, the constants of Duffing’s equation
(2.33) are expressed through the usual elastic stiffnesses and moments of inertia

a0 =
4π4

3(l/h)4
, b0 =

4π4

(l/h)4
, c0 = ρh3

(
1 +

1

12

π2

(l/h)2

)
(2.36)

and the nonlinear vibration frequency is similar to (2.35)

ω0 =
π

2

√(
a0 + b0

(
wm/h

)2)
/c0

K(k0, π/2)
, k0 =

(wm/h)√
2
(
(wm/h)2 + (a0/b0)

) (2.37)

The frequency-amplitude ratio of free transverse vibration is shown in Fig.2.3 in
comparison with results of other models: without surface effect and with surface
effect but without the transverse Young–Laplace law like (Lim and He, 2004; Huang,
2008). It can be seen that taking into account the Young-Laplace law in the transverse
direction can double the size effect in comparison with last model.
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Fig. 2.3 Frequency-amplitude ratio of free transverse vibration of a clamped-edge nano-film under
different models of accounting for surface effects
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2.4 Conclusion

The plate theory proposed by (Lim and He, 2004) was further developed as an ex-
tension of von Kármám nonlinear theory of elastic plates incorporated the Gurtin–
Murdoch surface elasticity including the linear and nonlinear terms of surface tension
from the conjugation condition of the Young–Laplace law in the transverse direc-
tion. The examples of nonlinear deformation of a clamped-edge strip-like nano-film
considered above confirmed the previously obtained results of solving the same
problems for a simple supported nano-film. The surface tension in the transverse
direction introduces an additional linear term in the bending equation, which can
significantly affect the size effect. Taking into account the nonlinearity of surface
tension allows one to simulate more subtle nonlinear features of deformation, in
particular, post-critical deformation during compressive buckling.
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Chapter 3
Closed-form Analytic Solutions of the Problem
of a Hollow Sphere Made of Second Gradient
Plastic Porous Material and Subjected to
Hydrostatic Loading

Roy Burson, Koffi Enakoutsa

Abstract Gologanu, Leblond, Perrin, and Devaux (GLPD) developed a constitutive
model for ductile fracture for porousmetals based on generalized continuummechan-
ics assumptions. The model predicted accurately ductile fracture process in porous
metallic structures under several complex loads. The GLDP model’s performances
over its competitors has attracted the attention of several authors who explored fur-
ther capabilities of the model. The aim of this paper is to provide analytical solutions
for the problem of a porous hollow sphere subjected to hydrostatic loadings, the
matrix of the hollow sphere obeying the GLPD model. The exact solution for the
expressions of the stress and the generalized stress the GLPD model involved are
illustrated for the case where the matrix material does not contain any voids. The
results show that the singularities obtained in the stress distribution with the local
Gurson model are smoothed out, as expected with any generalized continuum mod-
els. The paper also presents some elements of the analytical solution for the case
where the matrix is porous and obeys the full GLPD model at the initial time when
the porosity is fixed. These analytical solutions can serve as benchmark solutions to
assess numerical implementations of any second gradient constitutive model.

Keywords: Gradient model · Analytical solutions · Plasticity · Hollow sphere prob-
lem · Fracture

R. Burson
Department of Mathematics, California State University, Northridge, 18111 Nordhoff Street,
Northridge, CA 91330, USA
e-mail: Roy.burson.618@my.csun.edu

K. Enakoutsa
Department of Mathematics, California State University, Northridge, 18111 Nordhoff Street,
Northridge, CA 91330 and Department of Mathematics, UCLA, Los Angeles, 520 Portola Plaza,
Los Angeles, CA 90095, USA
e-mail: koffi.enakoutsa@csun.edu

37
I. Giorgio et al. (eds.), Theoretical Analyses, Computations,
and Experiments of Multiscale Materials, Advanced Structured Materials 175,
https://doi.org/10.1007/978-3-031-04548-6_3

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04548-6_3&domain=pdf


38 Burson, Enakousta

3.1 Introduction

Metal structures often fail by ductile rupture when they are subjected to external
static or dynamic forces. The requirement to develop constitutive models (whether
they are physics, mechanics and/or mathematics based) that can predict precisely
ductile fracture processes in metals has become a key point in metal structure design
community. So far, such community has widely accepted that the model proposed by
Gurson (1977) and extended by Tvergaard (1981); Tvergaard and Needleman (1984)
to account for cavities interactions and coalescence (these features were disregarded
in Gurson (1977)’s original work) following an earlier suggestion by Rice and Tracey
(1969) can adequately describes ductile fracture in metals. Several extensions have
followed these pioneering works; among them, let us mention the contributions of
Perrin and Leblond (1990, 2000), and recently Nahshon and Hutchinson (2008). The
latter has modified Gurson model to include shear failure which often occurs, for
instance, during high velocity impact failures of many steel materials.

Another modification of Gurson model including a characteristic length scale
aimed at eliminating the pathological post-bifurcation mesh dependence issues pro-
posed by Leblond et al (1994) based on a previous suggestion of Pijaudier-Cabot
and Bažant (1987) in the context of concrete damage was adopted by Tvergaard and
Needleman (1995, 1997). This proposal was studied in details by Enakoutsa (2007);
Enakoutsa et al (2007) and adopted (thanks to its successes) in the context of high
rate deformation and failure of materials by Enakoutsa et al (2012a), Enakoutsa et al
(2012b), and Ahad et al (2014). However, the proposal was of less satisfaction from
a theoretical and physical view points since it does not rely on any serious physical
justification. This was themotivation of the development by Gologanu, Leblond, Per-
rin, and Devaux Gologanu et al (1997) of a second-gradient micromorphic model1
for porous plastic materials. The GLPD model was obtained from a refinement of
Gurson (1977)’s original homogenization procedure, which was based on conditions
of homogeneous boundary strain rate.

In contrast, the boundary velocity in the GLPD model approach was assumed
to be a quadratic, rather than linear, function of the coordinates. The physical idea
behind this assumption was to account in this way for possible quick variations of
the macroscopic strain rate over very short distances, for example at the scale of the
elementary cell the GLPD model is based on. The output of the procedure was a
model of "micromorphic" nature, involving the second gradient of the macroscopic
velocity and generalized macroscopic stresses of "moment" type (homogeneous to
the product of a stress and a distance.) Other type of higher-order gradient models
involing third-rank stress tensor with applications in bone remodeling design and
other domain of interest exist. Among them let us mention the works by Scerrato
et al (2021); Giorgio et al (2017); dell’Isola et al (2017).

In practice, the GLPD model was extensively studied by Enakoutsa (2007);
Enakoutsa and Leblond (2009) who have notably shown that the model has the
ability to predict mesh-independent FE solutions and to reproduce satisfactorily

1 micromorphic model will simply be denoted by GLPD model for shortness.
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ductile fracture tests. Other numerical simulations involving second gradient models
are available in the literature, see for instance Andreaus et al (2016); Reiher et al
(2017); Placidi et al (2021). A recent modification of the GLPD model numerical
implementation developed in Enakoutsa (2007); Enakoutsa and Leblond (2009) was
suggested by Bergheau et al (2014) and yielded the same conclusions. The assess-
ment of the reliability and accuracy of these two algorithms requires the development
of analytical solutions that have served as critical cross references, see Enakoutsa
(2007, 2014, 2015). These solutions are based on two crude approximations so as
for analytical solutions to be amenable: the porosity in the matrix material of the
geometry considered was assumed to vanish.

The objective of the present paper is to follow up the study of applications of the
GLPD model to simple problems that might be of interest to validate the numerical
implementation of this model into a finite element code. The problem considered
here is a hollow sphere subjected to a hydrostatic tension and made of porous plastic
material, obeying the GLPD model. We found the analytic solution of the hollow
sphere problem in terms of deformation, stress and moment distributions under the
conditions that the matrix obeys a reduced GLPD model for the case where the
porosity vanishes. We also consider some elements of solution of the problem in
the presence of porosity in the matrix material, which is a rather complex type of
problem. The complexity of the latter problem (a highly non-linear type of problem)
forces us to present only some elements of the analytical solution at the initial time
when the porosity is held constant. The rest of the paper is structured as follows.

• The first section describes the problem model, whereas the next section presents
the details of the analytical derivation of the exact solution for the case where
the porosity vanishes as in Enakoutsa (2013a).

• The follow up section assesses the solution obtained for the case where the
porosity vanishes. An algorithm that simulates the behavior of his model and
analyzes the effects of the characteristic length scale on the distribution of stress
and moments is also presented.

• Finally, we considered the solution of the problem for the case where the porosity
does not vanish at the initial time. We provide implicit analytic expressions for
the Cauchy stress andmoment components based on a highly non linear ordinary
differential equation, which involves the characterstic length scale of the GLPD
model.

3.2 Description of the Hollow Sphere Problem

We consider a hollow sphere of inner radius ri, outer radius re, representing an
elementary cell of a porous plastic metal, see Figure 3.1. The boundary of the central
void is free of traction whereas the outer boundary is subjected to some overall
hydrostatic tension T . The details of the derivation of these boundary conditions can
be found in Enakoutsa (2014). The matrix material of the porous hollow sphere is
supposed to obey the GLPD constitutive model.
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The hollow sphere model problem presented here have served to find the solutions
of several ductile fracture problems the solution ofwhich have yieldsmicromechanics
based models for ductile porous metals under various loading conditions. Some of
these problems as well as their solutions can be found in the works of Perrin and
Leblond (2000, 1990); Enakoutsa (2007, 2014) to mention a few of them.

3.3 Solution to the Hollow Sphere Problem When the Porosity is
Neglected

We are seeking a solution of the spherical shell problem for purely ideal-plastic
behavior, the yield stress in simple tension being denoted by Σ0 and the porosity in
the matrix neglected. As a result, the yield criterion Eq. (3.57) reduces

Φ(Σ,M , Σ) ≡ 1

Σ̄2

(
Σ2
eq +

Q2

b2

)
− 1 = 0. (3.1)

In this equation Σ represents the ordinary second-rank symmetric Cauchy stress
tensor andM is the third-rank "moment tensor" symmetric in its first two indices
only. The components ofM are related through the conditions.

Mijj = 0. (3.2)

In the same expression:

• Σeq ≡
(

3
2Σ
′ : Σ′

)1/2 (Σ′: deviator ofΣ) is the von Mises equivalent stress.
• Σ represents a kind of average value of the yield stress in the heterogeneous
metallic matrix.

Fig. 3.1 An illustration of the
hollow sphere model problem
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• Q2 is a quadratic form of the components of the moment tensor given by

Q2 ≡ A1M1 +A2M2 ,

{
A1 = 0.194
A2 = 6.108

(3.3)

whereM1 andM2 are the quadratic invariants of M defined by:{
M1 ≡ MmiMmi

M2 ≡ 3
2M

′
ijkM

′
ijk,

(3.4)

Mmi ≡ 1
3Mhhi and M′ denoting the mean and deviatoric parts of M, taken

over its first two indices.
• b represents the characteristic lenght scale.

The flow rule, Eq. (3.61), becomes, after development (see Enakoutsa (2007);
Enakoutsa and Leblond (2009) for the details),

Ḋp
ij = η

3

Σ2
0

Σ′ij

(
∇Ḋ

)p
ijk

=
η

Σ0
2b2

(
2

3
AIδijMmk + 3AIIM

′
ijk

)
+ δikUj + δjkUi,

(3.5)

Mmk ≡ 1
3Mhhk andM ′ denoting the mean and deviatoric parts ofM , taken over

its first two indices; η is the plastic multiplier, determined from the consistency
condition and defined as

η =

{
= 0 if Φ(Σ,M, Σ) < 0
≥ 0 if Φ(Σ,M, Σ) = 0.

}
We shall also assume that the parameter AI=0 for the analytical solution to be
amenable. Another, more elaborate reason for this choice is that the value of AI in
the GLPD model, 0.194, is very small with respect to that of AII , 6.108; hence, the
value of AI can safely be neglected.

We are looking for a solution in which the spherical shell is entirely plastic, so
that the yield function Φ(Σ,M , Σ0, f) is zero everywhere. Since such a solution
was already presented in Enakoutsa (2013a), only a summary of the procedure is
given in this work.

Let us consider the velocity, strain rate and its gradient fields first. As in the case
of purely elastic behavior, the matrix of spherical shell is incompressible; as a result,
the velocity field is radial and given by

U =
A

r2
, (3.6)

where A is a parameter which is independent of the material point position r. (In
fact, the expression of the velocity field U is obtained by writing the constraint that
div(U) equals zero because of the assumption of incompressibility of the matrix of
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the spherical shell.) Following this definition, the non-zero components of the strain
rate are found as

Drr = −2A

r3
, Dθθ = Dφφ =

A

r3
. (3.7)

Thanks to the spherical symmetries involved in the problem, the components of the
gradient of the strain rate are defined, here also, as

(∇D)rrr
(∇D)θθr = (∇D)φφr
(∇D)rθθ = (∇D)rφφ
other (∇D)ijk = 0.

(3.8)

The resulting strain gradient components are defined as in Enakoutsa (2013b).
The non-zero components of the stress and moment fields are found using the

flow rule, Eq. (3.5), and the incompressibility of the material (which yields U=0).
These components are obtained as

Σ′rr =
1

η

(
−2AΣ2

0

3r2

)

Σ′θθ = Σ′φφ =
1

η

(
AΣ2

0

3r2

) (3.9)

and 

M ′rrr =
1

η

2AΣ2
0b

2

AIIr4

M ′θθr = M ′φφr = −1

η

AΣ2
0b

2

AIIr4

Mrθθ = Mrφφ = −1

η

AΣ2
0b

2

AIIr4

(3.10)

The conditions Eq. (3.50) and a combination of the definitions of M ′rrr and Mrθθ

given by the relations Eq. (3.10)1 and Eq. (3.10)3 yieldMrrr = −2Mrθθ

Mθθr = M ′θθr.
(3.11)

Replacing the formulas for the stress Eq. (3.9) and moment Eq. (3.10) in the reduced
yield criterion, Eq. (3.1), we get the following expression for the plastic multiplier
η:

η =
AΣ0

r3

√
1 +

15

AII

b2

r2
. (3.12)
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The explicit relation of the plastic multiplier in Eq. (3.12) completes the definition of
the non-zero components of the moment tensor. However, the full expressions of the
non-zero components of the ordinary stress tensor are still unknown. After a tedious
but straightforward calculation which uses

(i) the expressions of the non-zero components of the moment tensor,
(ii) the spherical symmetry properties of the problem, and
(iii) the fact that Σrr −Σθθ = Σ′rr −Σ′θθ,
the formulas for the non-zero components of the ordinary Cauchy stress tensor are
obtained as

dΣrr
dr

= f(r) (3.13)

with 
f(r) =

2AΣ2
0

ηr3
+

2(η′′η2 − 2η′2η)

η4

AΣ2
0b

2

AIIr4
− 28η′

η2

AΣ2
0b

2

AIIr5

−
(

72

η
+

2η′

η2

)
AΣ2

0b
2

AIIr6
− 8AΣ2

0b
2

ηAIIr7

(3.14)

where η′ and η′′ denote the first and second derivatives of the plastic multiplier η
with respect to r. Eq. (3.13) implicitly defines the expression of the component Σrr
of the stress tensor. The non-zero components of the stress tensor are obtained as

Σrr =

∫ r

ri

f(τ)dτ ; Σθθ = Σφφ = Σrr −
1

η

(
AΣ2

0

r2

)
. (3.15)

The solution of Eq. (3.15) along with the non-zero components of the moment
provided above automatically satisfy the balance equations.

Table 3.1 List of constants parameters

Quantity Symbol Value Unit

internal radius ri 0.05 m
yield stress Σ0 100 MPa
parameter 1 A 0.001 m
parameter 2 A1 0.194
parameter 3 A2 6.108
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(a) Stress component Σrr

(b) Stress component Σθθ

(c) Moment componentMrrr

Fig. 3.2 Illustration of the stress components Σrr , Σθθ and moment componentMrrr .
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3.4 Numerical Illustrations of the Solution

The purpose of this section is to illustrate analytical solution presented in Enakoutsa
(2013b). More specifically, we shall derive the explicit expressions for the stress and
moment tensors left off from Enakoutsa (2013b)’s findings. We do so by evaluating
the integral Eq. (3.15) using a FORTRAN routine we developed. Each integral has
also been evaluated analytically so that we possess the exact solution. The explicit
solution to each integral is provided in Appendix (b) on p. 56. We evaluate the
following integrals: ∫ re

ri

2AΣ2
0

ηr3
dr ,∫ re

ri

2(η′′η − η′2)

η2
(
AΣ2

0b
2

A2r4
)dr ,∫ re

ri

20η′ + 8η′η
η2

(
AΣ2

0b
2

A2r5
)dr ,∫ re

ri

(72 + 2η′)
η

(
AΣ2

0b
2

A2r6
)dr ,∫ re

ri

AΣ2
0b

2

ηA2r7
dr

(3.16)

Table 3.1 identifies the material and model parameters that are used to obtain the
results mentioned in this work. Figures 3.2a, 3.2b, and 3.2c illustrate the solutions
for the stress components Σrr, Σθθ, and the moment components Mrrr and Mrθθ

respectfully. Figure 3.2 illustrates the analytical expressions of the non-zero com-
ponents of the Cauchy stress and the moment tensors as obtained in Enakoutsa
(2013a). The figure shows that singularities are absent from the stress. Also, there
is no discontinuity near the void as the first gradient Gurson model would have
predicted.

3.5 Analytic Results in the Presence of Porosity in the Matrix

In this sectionwe present the solution to the hollow sphere problem for the casewhere
the matrix obeys the full GLPD model described in the Appendix § 3.6. Therefore,
we loose the simplification that yields the prior results Enakoutsa (2013a). Most of
the results, if not all of them, presented in the works Perrin and Leblond (2000,
1990); Enakoutsa (2007, 2014) assume incompressibility within the matrix of the
material. This being said a complete solution of the hollow sphere problem obeying
the GLPD model has not been provided yet.
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3.5.1 Derivation of Cauchy Stress Components

The setup of the problem is provided by the balance equation of the problem which
are provided in Enakoutsa (2013a) (and are not duplicated here), the yield criterion,
and the booundary conditions which are also given in Enakoutsa (2013a):

dΣrr
dr

+
2

r
(Σrr −Σθθ)−

d2Mrrr

dr2
− 4

r

dMrrr

dr
− 2

r2
Mrrr

+
2

r2

dMθθr

dr
+

4

r

dMrθθ

dr
+

8

r2
Mrθθ = 0

(3.17.a)

1
Σ2

(
Σ2
eq + Q2

b2

)
+ 2p cosh

(
3
2
Σm
Σ

)
− 1− p2 = 0, (3.17.b)

with Mrrr and Mrθθ the components of the moment tensor M, Σrr and Σθ the
non-zero components of the stress tensor Σ,Σm the mean stress,Σeq the von Mises
stress. The boundary conditions are

r2Σrr −
d(r2Mrrr)

dr + 4rMrθθ = 0,

Mrrr = 0,

for r = ri and r = re. The stress components Σrr and Σθθ in the balance equation
Eq. (3.17).a can be expressed in terms of the invariantsΣm andΣeq as followed (see
Appendix (c) on p. 58)

dΣrr
dr

+
2

r
(Σrr −Σθθ) =

2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq +

d

dr
Σm (3.18)

Upon substituting Eq. (3.18) into Eq. (3.17).a and using the yield criterion Eq.
(3.17).b we then find the differential equation

d

dr
Σeq

(√
Σ0 −Σ2

eq − 2Σeq

)
+

2α

r
Σeq

(√
Σ0 −Σ2

eq

)
− α

(
Σ0 −Σ2

eq

)
= sinh (γΣm)

(
ρ
d

dr
Σm − 2p

)
(3.19)

with α = 3
√

3, γ = 3
2Σ0

, and ρ = pΣ0. Since the invariants Σeq and Σm are
independent of one another both sides of Eq. (3.19) must be equal to some constant
value, say λ, so then

d

dr
Σeq

(√
Σ0 −Σ2

eq − βΣeq
)

+
2α

r
Σeq

(√
Σ0 −Σ2

eq

)
− α

(
Σ0 −Σ2

eq

)
= λ

and
ρ sinh (γΣm)

d

dr
Σm − 2p sinh (γΣm) = λ. (3.20)
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The value λ is to be determined later. We found that the solution forΣm satisfies the
implicit expression

ρ

 Σm
p −

λ ln

(∣∣2pe−γΣm −√4p2 + λ2 − λ
∣∣∣∣2pe−γΣm +

√
4p2 + λ2 − λ

∣∣
)

γp
√

4p2 + λ2


2

= r + C,

(3.21)

for some arbitrary constantC which is to be determined from the boundary condition
(see Appendix (c) on p. 58). The formulation forΣeq is determined by the differential
equation

d

dr
Σeq =

α(Σ0 −Σ2
eq)−

6

r
Σeq

(√
Σ0 −Σ2

eq

)
+ λ√

Σ0 −Σ2
eq − βΣeq

. (3.22)

The constant C is provided by the formula

C =

ρ

 Σm(ri)
p −

λ ln

(∣∣2pe−γΣm(ri) −
√

4p2 + λ2 − λ
∣∣∣∣2pe−γΣm(ri) +

√
4p2 + λ2 − λ

∣∣
)

γp
√

4p2 + λ2


2

− ri

(3.23)

The constant λ is found by solving the root to the equation

Σm(re)−Σm(ri)

p

−
λ ln

(∣∣2pe−γΣm(re)−
√

4p2+λ2−λ
∣∣∣∣2pe−γΣm(re)+

√
4p2+λ2−λ

∣∣ ×
∣∣2pe−γΣm(ri)−

√
4p2+λ2−λ

∣∣∣∣2pe−γΣm(ri)+
√

4p2+λ2−λ
∣∣)

γp
√

4p2 + λ2

− 2 (ri − re)
ρ

= 0

(3.24)

From here we completely solve forΣeq andΣm for which we easily deduceΣrr and
Σθ by solving the linear system(

Σeq
Σm

)
=

(√
3 −
√

3
1 2

)(
Σrr
Σθθ

)
(3.25)

The solution is (
Σrr
Σθθ

)
=

1

3
√

3

(
2
√

3

−1
√

3

)(
Σeq
Σm

)
(3.26)

or simply
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Σrr =

2

3
√

3
Σeq +

1

3
Σm,

Σθθ =
1

3
Σm −

1

3
√

3
Σeq

 (3.27)

where the invariants Σm and Σeq are provided by the formula in Eq.(3.21) and the
solution to the ordinary differential equation 3.22.

3.5.2 Moment Components Derivation

In this section we solve the components of the moment tensor M. Using the deriva-
tions for the invariants Σm and Σeq provided in Appendix (c) on p. 58, we have
an analytic expression for the function M? (which was defined in the last section).
Recall from the constraint equations of the GLPD model Eq. (B.5) in Enakoutsa
(2013a)

Mijj = 0

which leads to the relation
Mrrr = −2Mrθθ.

The moment componentsMijk are recovered by the use of the flow rule Eq. (3.61)
and the velocity field, which we assume can be represented as

U = (f(r), 0, 0)

for some function f(r) dependent on the spherical radial coordinate r. This as-
sumption is crude but nonetheless provided one with a mechanical insight into the
solution of the problem under consideration. A more generalized velocity field will
be considered in future work by the authors of this paper. With this assumption the
flow rule Eq. (3.61) will reduce to

∇Dmk =
2

3
ηUk

where η is the plastic multiplier and U the velocity field (see Enakoutsa (2013a) for
exact details.)

In accordance with (Enakoutsa, 2013a, Eq. (36)) when A1 = 0 (this assumption
is necessary to simplify the solution for the moment components; maintaining a
nonzero value for A1 will not bring any significant difference with respect to the
analytic solution of the moment components we shall find in the subsequent results
(Enakoutsa, 2013a, see for instance)), the strain rate components become
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(∇D)rrr =
df

dr
=

η

Σ2
0b

2
3A2M

′
rrr

(∇D)rθθ = 0 =
η

Σ2
0b

2
3A2M

′
θθr

(∇D)θθr =
1

r

df

dr
=

η

Σ2
0b

2
3A2M

′
rθθ

(∇D)rφφ =
1

r

df

dr
=

η

Σ2
0b

2
3A2Mrθθ

(3.29)

Let κ =
Σ2

0b
2

3A2
then the deviatoric parts of the moment M satisfy

M ′rrr =
κ

η

df

dr
, M ′θθr = 0, M ′rθθ =

κ

η

1

r

df

dr
, Mrθθ =

κ

η

1

r

df

dr
.

The value of Q2 then is computed as follows

Q2 =
3

2
A2

(
M ′

2

rrr + 2M ′
2

θθr + 4M ′
2

rθθ

)
=

3

2
A2

((
κ

η

df

dr

)2

+

(
κ

η

1

r

df

dr

)2
)

=
3

2
A2

(
df

dr

κ

η

)2(
r2 + 1

r2

) (3.30)

Using the yield criterion

1

Σ2

(
Σ2
eq +

Q2

b2

)
+ 2p cosh

(
3

2

Σm
Σ

)
− 1− p2 = 0. (3.31)

we have
Q2 = b2

(
Σ2

(
p2 + 1− 2p cosh

(
3

2

Σm
Σ

))
−Σ2

eq

)
. (3.32)

Therefore the function f then satisfies the ordinary differential equation(
df

dr

)2

=
2

3A2

(η
κ

)2
(

r2

r2 + 1

)
b2
(
Σ2

(
p2 + 1− 2p cosh

(
3

2

Σm
Σ

))
−Σ2

eq

)
(3.33)

Using (Enakoutsa, 2013a, Eq. (37)), ones gets the deviatoric part of the stress

Σ′rr = −Σ
2
0

3

1

η
f(r), Σ′θθ =

Σ2
0

3

1

η
f(r). (3.34)

Since
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Σij = Σ′ij +Σmδij (3.35)

were Σ′ij is the deviatoric part of the stess the mean stress can then be expressed as

Σm = Σrr +
Σ2

0

3

1

η
f(r). (3.36)

Hence, the plastic multiplier then satisfies

η =
Σ2

0

3

f(r)

(Σm −Σrr)
(3.37)

Using Eq. (3.32) gives us the expression in terms of the invariants

η =
Σ2

0

2

f(r)(
Σm −

1√
3Σeq

) (3.38)

were Σm and Σeq are provided in the previous section. Substituting Eq. (3.38) into
Eq. (3.33) gives one the relation(

df

dr

)2

= f(r)2p(r) (3.39)

where p(r) is provided by
p(r) = h(r)ι(r)j(r) (3.40)

were

ι(r) =

(
Σ4

0

6(Σm −
1√

3Σeq
)2κ2A2

)
, j(r) =

(
r2

r2 + 1

)
, (3.41)

and
h(r) =

(
b2
(
Σ2

(
p2 + 1− 2p cosh

(
3

2

Σm
Σ

))
−Σ2

eq

)
. (3.42)

The solution for the function f reads

f(r) = exp

∫ r

ri

√
p(r)dr

 . (3.43)

Next the non-zero components of the moment are recovered by the formulas in
Eq. (3.29)
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M ′rrr =
κ

η

df

dr

M ′θθr = M ′φφr =
−κ
η

1

r

df

dr

M ′rθθ = Mrθθ =
κ

η

1

r

df

dr

(3.45)

where η and κ are again given as

η =
Σ2

0

2

f(r)(
Σm −

1√
3Σeq

)

κ =
Σ2

0b
2

3A2

The conditions (3.50) relate the rest of the non-zero components of the moment
tensor,Mrrr andMrθθ as follows:

Mrrr + 2Mrrr = 0 (3.47)

Furthermore, combining Eq. (3.47) and the values of Mrrr and Mrθθ given by the
relations in Eq. (3.46), we find

Mmr = Mrrr −M ′rrr = 2Mrθθ −M ′rrr, (3.48)

where Mmr denotes the deviatoric part of the tensor M over its first two indices.
The formula immediately yieldsMθθr = M ′θθr. The formula Eq. (3.48) immediatly
gives

Mrθθ = M ′θθr (3.49)

3.5.3 Discussion

In this section we elaborate on some of the results found in this work. If the char-
acteristic length scale b vanishes then all of the moment components also vanish
by Eq. (3.29). This means that any second gradient effects in the GLPD model no
longer exist. The yield criterion Eq. (3.63) reduces to the original Gurson model
yield criterion and the stress state of the material does not contain any length scale
effects (as one can expect). Unlike in the work of Enakoutsa (2013a) where a van-
ishing porosity is consider, this work was derived while the porosity is kept constant
i.e. at the initial time where the porosity has not yet evolved. Such effect is left for
future investigations by the authors. However, let us mention that the works by Perrin
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and Leblond (2000, 1990) have addressed such problem (the hollow sphere problem
with evolving porosity) but the model their analysis is based on does not contain any
strain gradient effects.

3.6 Conclusion

In this work we develop the complete solution for the micromorphic hollow sphere
model under tension obeying the GLPD constitutive model when the porosity is
constant at the initial time andwe illustrate the analytic solutions provided previously
by Enakousta’s work when the porosity is neglected, but some effects of the strain
gradient were involved. We express the stress solutions in terms of the invariants of
the Cauchy stress tensor. The solution of the nonzero components of the moments
due to the strain gradient effects are also provided in this work. The solution produced
in this work depends on the characteristic length scale and can be used as benchmark
solution to assess micromorphic gradient models; the solution can also be used to test
the efficiency of numerical implementation of gradient models into finite element
software.

Appendix (a)

Generalities

In the GLPD model, internal forces are represented through some ordinary second-
rank symmetric Cauchy stress tensor Σ plus some additional third-rank “moment
tensor”M symmetric in its first two indices only2. The components ofM are related
through the three conditions

Mijj = 0. (3.50)

(These conditions may be compared to the condition of plane stress in the theory of
thin plates or shells).

The virtual power of internal forces is given by the expression

P(i) ≡ −
∫
Ω

(Σ : D + M
... ∇D) dΩ (3.51)

where Ω denotes the domain considered, D ≡ 1
2

[
∇V + (∇V)T

]
(V: material

velocity) the Eulerian strain rate, ∇D its gradient, Σ : D the double inner product

ΣijDij and M
... ∇D the triple inner productMijkDij,k.

2 The component Mijk is noted Mk|ij in Gologanu et al (1997)’s original paper. The present
notation leads to more natural-looking expressions.
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The virtual power of external forces is given by

P(e) ≡
∫
dΩ

T.V dS (3.52)

where T represents some surface traction3.
The hypothesis of additivity of elastic and plastic strain rates reads{

D ≡ De + Dp

∇D ≡ (∇D)e + (∇D)p.
(3.53)

The elastic and plastic parts (∇D)e, (∇D)p of the gradient of the strain rate here do
not coincide in general with the gradients ∇(De), ∇(Dp) of the elastic and plastic
parts of the strain rate.

Hypoelasticity Law

The elastic parts of the strain rate and its gradient are related to the rates of the stress
and moment tensors through the following hypoelasticity law:

dΣij
dt

= λ δijD
e
kk + 2µDe

ij

dMijk

dt
=
b2

5

[
λ δij(∇D)ehhk + 2µ(∇D)eijk

−2λ δijU
e
k − 2µ

(
δikU

e
j + δjkU

e
i

)]
.

(3.54)

In these expressions λ and µ denote the Lamé coefficients and b the mean half-
spacing between neighboring voids. (In the homogenization procedure, b is the
radius of the spherical elementary cell considered). Also, dΣijdt and dMijk

dt are the
Jaumann (objective) time-derivatives of Σij andMijk, given by

dΣij
dt

≡ Σ̇ij +ΩkiΣkj +ΩkjΣik
dMijk

dt
≡ Ṁijk +ΩhiMhjk +ΩhjMihk +ΩhkMijh

(3.55)

where Ω ≡ 1
2

[
∇V − (∇V)T

]
is the antisymmetric part of the velocity gradient.

Finally Ue is a vector the value of which is fixed by equations (3.50) (written in rate
form, DMijj

Dt = 0):

Uei =
λ(∇D)ehhi + 2µ(∇D)eihh

2λ+ 8µ
. (3.56)

3 The general equilibrium equations and boundary conditions corresponding to the expressions
(3.51) and (3.52) of the virtual powers of internal and external forces need not be given since they
are not necessary for the numerical implementation.
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(This vector may be compared to the through-the-thickness component of the elastic
strain rate in the theory of thin plates or shells, the value of which is fixed by the
condition of plane stress).

Yield Criterion

The plastic behavior is governed by the following Gurson-like criterion:

1

Σ2

(
Σ2
eq +

Q2

b2

)
+ 2p cosh

(
3

2

Σm
Σ

)
− 1− p2 ≤ 0. (3.57)

In this expression:

• Σeq ≡
(

3
2Σ
′ : Σ′

)1/2 (Σ′: deviator ofΣ) is the von Mises equivalent stress.
• Σm ≡ 1

3 trΣ is the mean stress.
• Σ represents a kind of average value of the yield stress in the heterogeneous
metallic matrix, the evolution equation of which is given below.

• p is a parameter connected to the porosity (void volume fraction) f through the
relation:

p ≡ qf∗, f∗ ≡
{
f if f ≤ fc
fc + δ(f − fc) if f > fc

(3.58)

where q is Tvergaard’s parameter, fc the critical porosity at the onset of coa-
lescence of voids, and δ (> 1) a factor describing the accelerated degradation
of the material during coalescence Tvergaard (1981),Tvergaard and Needleman
(1984).

• Q2 is a quadratic form of the components of the moment tensor given by

Q2 ≡ A1M1 +A2M2 ,

{
A1 = 0.194
A2 = 6.108

(3.59)

whereM1 andM2 are the quadratic invariants of M defined by:{
M1 ≡ MmiMmi

M2 ≡ 3
2M

′
ijkM

′
ijk,

(3.60)

Mmi ≡ 1
3Mhhi and M′ denoting the mean and deviatoric parts of M, taken

over its first two indices.
• Again, b is the mean half-spacing between neighboring voids.
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Flow Rule

The plastic parts of the strain rate and its gradient are given by the flow rule associated
to the criterion (3.57) through normality:

Dp
ij = η

dΦ

dΣij
(Σ,M, Σ, f)

(∇D)pijk = η
dΦ

dMijk
(Σ,M, Σ, f) + δikU

p
j

+δjkU
p
i

 (3.61)

where
η =

{
= 0 if Φ(Σ,M, Σ, f) < 0
≥ 0 if Φ(Σ,M, Σ, f) = 0

}
(3.62)

The term δikU
p
j + δjkU

p
i in equation (3.61) represents a rigid-body motion of the

elementary cell, which is left unspecified by the flow rule but fixed in practice by
conditions (3.50). (The vector Up may be compared to the through-the-thickness
component of the plastic strain rate in the theory of thin plates or shells, the value of
which is fixed by the condition of plane stress).

The values of the derivatives of the yield function Φ(Σ,M, Σ, f) in equations
(3.61) are easily calculated to be

dΦ

dΣij
(Σ,M, Σ, f) = 3

Σ′ij

Σ2
+
p

Σ
δij sinh

(
3

2

Σm

Σ

)
dΦ

dMijk
(Σ,M, Σ, f) =

1

Σ2b2

(
2

3
A1δijMmk + 3A2M

′
ijk

)
 (3.63)

Evolution of Internal Parameters

The evolution of the porosity is governed by the classical equation resulting from
approximate incompressibility of the metallic matrix:

ḟ = (1− f) tr Dp. (3.64)

The parameter Σ is given by
Σ ≡ Σ(E) (3.65)

where Σ(ε) is the function which provides the yield stress of the matrix material
in terms of the local equivalent cumulated plastic strain ε, and E represents some
average value of this equivalent strain in the heterogeneous matrix. The evolution of
E is governed by the following equation:

(1− f)ΣĖ = Σ : Dp + M
... (∇D)p. (3.66)
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Appendix (b)

In this section we present the complicate analytic derivations of the integrals for the
hollow sphere problem while neglecting the porosity. Although, the formulation is
long and tedious we found some need to put it into a single equation. This equation
reads: 

f(r) =
2AΣ2

0

ηr3
+

2(η′′η2 − 2η′2η)

η4

AΣ2
0b

2

AIIr4
− 28η′

η2

AΣ2
0b

2

AIIr5

−
(

72

η
+

2η′

η2

)
AΣ2

0b
2

AIIr6
− 8AΣ2

0b
2

ηAIIr7

(3.67)

To obtain the result we integrated this formulation term by term. Evaluating the
integral of the first term in the expression for f we found∫ r

ri

2AΣ2
0

η(t)t3
dt = 2Σ0

∫ r

ri

dt√
1 + 15b2

A2t2

= 2Σ0

(√
A2r

2 + 15b2

A2
−
√
A2r

2
i + 15b2

A2

)
(3.68)

The second term in the expression for f is broken into two smaller integrals. The
result reads∫ r

ri

2AΣ2
0b

2

A2

η(t)′′η(t)− η(t)′

η(t)2t4
dt =

2AΣ2
0b

2

A2

[∫ r

ri

η(t)′′

η(t)t4
dt−

∫ r

ri

η(t)′

η(t)t4
dt

]
=

2AΣ2
0b

2

A3
2

[∫ r

ri

12A2
2t

4 + 495A2b
2t2 + 4500b4

t10(1 + 15b2

A2t2
)2

dt+
1

A2

∫ r

ri

60b2 + 3A2t
2

t7(1 + 15b2

A2t2
)
dt

]
(3.69)

Evaluating these two integrals we obtain∫ r

ri

12A2
2t

4 + 495A2b
2t2 + 4500b4

t10(1 + 15b2

A2t2
)2

dt =

[
A5

2r

450A2b4r2 + 6750b6

−
11A

9
2
2 arctan

(√
A2r√
15b

)
2·15

5
2 b5

− 2A4
2

75b4r
+

7A3
2

45b2r3
− 4A2

2

r5
+

11a
9
2
2 arctan

(√
A2ri√
15b

)
2·15

5
2 b5

− A5
2ri

450A2b4r2
i + 6750b6

+
2A4

2

75b4ri
− 7A3

2

45b2r3
i

+
4A2

2

r5
i

]
(3.70)

and
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ri

60b2 + 3A2t
2

t7(1 + 15b2

A2t2
)
dt =

[
A3

2 ln
(∣∣A2r

2
i + 15b2

∣∣)−A3
2 ln

(∣∣A2r
2 + 15b2

∣∣)
450b4

+
A3

2 ln (r)−A3
2 ln (ri)

225b4
− A2

2

20b2r2
i

+
A2

r4
i

+
A2

2

30b2r2
− A2

r4

] (3.71)

The integration of the third term for the function f is broken into two smaller
integrals. The result reads∫ r

ri

(
AΣ2

0b
2

A2
)
20η(t)′ + 8η(t)′η(t)

η(t)2t2
dt =

AΣ2
0b

2

A2

[∫ r

ri

20η(t)′

η(t)2t2
dt+

∫ r

ri

8η(t)′

η(t)t2
dt

]
= −

[
20Σ0b

2

A2
2

∫ r

ri

60b2 + 3A2t
2

t2(1 + 15b2

A2t2
)

3
2

dt+
8AΣ2

0b
2

A2

∫ r

ri

60b2 + 3A2t
2

A2t5 + 15bt3
dt

]
(3.72)

Now evaluating these two less complicated integrals, we obtain∫ r

ri

60b2 + 3A2t
2

t2(1 + 15b2

A2t2
)

3
2

dt =

[
3

3
2 ·
√

5
(
A2r

2 + 10b2
)
|r|

r
√

15
√
A2r2+16b2

A2

− 3
3
2 ·
√

5
(
A2r

2
i + 10b2

)
|ri|

ri
√

15
√
A2r2i+16b2

A2

] (3.73)

and∫ r

ri

60b2 + 3A2t
2

A2t5 + 15bt3
dt =

[
A3

2 ln(|A2r
2 + 15b2||)−A3 ln(|ar2

i + 15b2|)
6750b6

+
A3

2 ln(ri)−A3
2 ln(r)

3375b6
+

A2
2

450b4r2
i

− A2

60b2r4
i

+
2

3r6

− A2
2

450b4r4
+

A2

60b2r4
− 2

3r6

]
(3.74)

The integration of the fourth term for the function f is broken into two smaller
integrals. The result reads∫ r

ri

(72 + 2η′(t))
η(t)

(AΣ2
0b

2

A2t6

)
dt =

AΣ0b
2

A2

[∫ r

ri

72

η(t)t6
dt+

∫ r

ri

2η(t)′

η(t)t6
dt

]
=

72b2

A2

[∫ r

ri

dt

t3
√

1 + 15b2

A2t2

− 2AΣ0b
2

A2
2

∫ r

ri

60b2 + 3A2t
2

t9(1 + 15b2

A2t2
)
dt

] (3.75)

Integrating these two integrals we obtain
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∫ r

ri

dt

t3
√

1 + 15b2

A2t2

=

A2

[
r
√

A2r2i +15b2

A2
−
√

A2r2+15b2

A2
ri

]
15b2rri

(3.76)

and ∫ r

ri

60b2 + 3A2t
2

t9(1 + 15b2

A2t2
)
dt =

[
A4

2 ln
(∣∣A2r

2 + 15b2
∣∣)

6750b6
− A4

2 ln
(∣∣A2r

2
i + 15b2

∣∣)
6750b6

+
A4

2 ln (ri)−A4
2 ln (r)

3375b6
+

A3
2

450b4r2
i

− A2
2

60b2r4
i

+
2A2

3r6
i

− A3
2

450b4r2
+

A2
2

60b2r4
− 2A2

3r6

]
(3.77)

Now integrating the last term in the expression for f , we get∫ r

ri

2AΣ2
0b

2

η(t)t2
dt = 2Σ0b

2

∫ r

ri

t√
1 + 15b2

A2t2

dt

=

(
2
√
a2ri

√
a2r2

i + 15b2

4A2
−

15b2 ln

( ∣∣∣√a2√a2r2i +15b2−a2ri
∣∣∣

a2ri

)
4a2

−
15b2 ln

(√
a2
√
a2r2i +15b2+a2ri
a2ri

)
4A2

−
15b2 ln

(
|√a2√a2r2+15b2−a2r|

a2r

)
4A2

+
15b2 ln

(√
a2
√
a2r2+15b2+a2r

a2r

)
4A2

− −2
√
a2r
√
a2r2 + 15b2

4a2

)
(3.78)

Appendix (c)

Stress Equations

In this section we present the mathematical detail that was missing from the solution
to the hollow sphere problem when the porosity is present. The Von Mises stress
Σ2
eq reduces

Σ2
eq =

3

2
(Σ′ij : Σ′ij)

=
3

2

(
(Σrr −Σθθ)2 + (Σθθ −Σφφ)2 + (Σφφ −Σrr)2

)
= 3 (Σrr −Σθθ)2

(3.79)

By the last equality in Eq. (3.79) we find



3 Solution to the Hollow Sphere Problem with Strain Gradient Effects 59

Σeq =
√

3 (Σrr −Σθθ) (3.80)

Solving for Σrr in Eq. (3.80) we have Σrr = 1√
3
Σeq + Σθθ. Taking the derivative

d
dr we see that

d

dr
Σrr =

1√
3

d

dr
Σeq +

d

dr
Σθθ (3.81)

Now since 1√
3
Σeq = Σrr − Σθθ by adding 3Σθθ to both sides we get 1√

3
Σeq +

3Σθθ = Σrr + 2Σθθ. Multiplying throughout by 1
3 yields 1

3
√

3
Σeq + Σθθ =

1
3 (Σrr + 2Σθθ). Since,Σm = 1

3 (Σrr + 2Σθθ) it then follows that 1
3
√

3
Σeq+Σθθ =

Σm. Rearranging the last equality gives usΣθθ = Σm− 1
3
√

3
Σeq . Taking the deriva-

tive of both sides we find that

d

dr
Σθθ =

d

dr
Σm −

1

3
√

3

d

dr
Σeq (3.82)

Thus we can compute the value of dΣrrdr + 2
r (Σrr −Σθθ) as follows

dΣrr
dr

+
2

r
(Σrr −Σθθ) =

dΣrr
dr

+
2

r
√

3
Σeq

=

(
1√
3

d

dr
Σeq +

d

dr
Σθθ

)
+

2r√
3
Σeq

=
2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq +

d

dr
Σm

(3.83)

Von Mises and Mean Stress Formula

In this section we work out the mathematical detail that was left off in Section 3.5.
First letM? be given by the rule

M? =
d2Mrrr

dr2
+

6

r

dMrrr

dr
+

6

r2
Mrrr

4

r
− dMrθθ

dr
− 8

r2
Mrθθ (3.84)

According to Section 3.5, we may rewrite Eq. (3.84) as follows

M? =
2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq +

d

dr
Σm (3.85)

Now we calculate Σeq and d
drΣeq using the yield criteria. The result reads

Σeq =

√
(pΣ0)2 +Σ0 − 2pΣ2

0 cos

(
3

2

Σm
Σ0

)
−
(
Q

b

)2

(3.86)
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and

d

dr
Σeq =

2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
drΣm + 1

b2
d
drQ

2

2

√
(pΣ0)

2
+Σ0 − 2pΣ2

0 cosh
(

3
2
Σm
Σ0

)
−
(
Q
b

)2 (3.87)

Substituting Eq. (3.86) and Eq. (3.87) into Eq. (3.85) gives us the result

M? =
1

3
√

3

 2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
dr
Σm + 1

b2
d
dr
Q2√

(pΣ0)2 +Σ0 − 2pΣ2
0 cosh

(
3
2
Σm
Σ0

)
−
(
Q
b

)2


+
2

r

√(pΣ0)2 +Σ0 − 2pΣ2
0 cos

(
3

2

Σm

Σ0

)
−
(
Q

b

)2
+

d

dr
Σm

(3.88)

By subtracting Eq. (3.88) from Eq. (3.85) we find

2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq =

1

3
√

3

 2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
dr
Σm + 1

b2
d
dr
Q2√

(pΣ0)2 +Σ0 − 2pΣ2
0 cosh

(
3
2
Σm
Σ0

)
−
(
Q
b

)2


+
2

r

√(pΣ0)2 +Σ0 − 2pΣ2
0 cos

(
3

2

Σm

Σ0

)
−
(
Q

b

)2


(3.89)

Moving over terms and then squaring both sides of Eq. (3.89) we have

(
2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq−

1

3
√

3

 2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
dr
Σm + 1

b2
d
dr
Q2√

(pΣ0)2 +Σ0 − 2pΣ2
0 cosh

(
3
2
Σm
Σ0

)
−
(
Q
b

)2
)2

=

(
Σ2

0 +Σ0 − 2pΣ2
0 cos

(
3

2

Σm

Σ0

)
−
(
Q

b

)2
)
.

(3.90)

Finally dividing Eq. (3.90) throughout byΣ2
0 and after adding the value p2+

(
Σeq
Σ0

)2

to both sides of the equation we find

1

Σ2
0

(
2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq−

1

3
√

3

 2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
dr
Σm + 1

b2
d
dr
Q2√

(pΣ0)2 +Σ0 − 2pΣ2
0 cosh

(
3
2
Σm
Σ0

)
−
(
Q
b

)2
)2

=
1

Σ0
−
(
Σeq

Σ0

)2

(3.91)

taking the square root of both sides of Eq. (3.91) and multiplying by Σ0 gives
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2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq−

1

3
√

3

 2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
dr
Σm + 1

b2
d
dr
Q2√

(pΣ0)2 +Σ0 − 2pΣ2
0 cosh

(
3
2
Σm
Σ0

)
−
(
Q
b

)2


= Σ0

√
1

Σ0
−
(
Σeq

Σ0

)2

(3.92)

Now we do the same procedure to get rid of any terms involving the quadratic term
Q. By moving over terms in Eq. (3.92) it follows that

2

3
√

3

d

dr
Σeq +

2

r
√

3
Σeq −Σ0

√
1

Σ0
−
(
Σeq
Σ0

)2

=
1

3
√

3

 2pΣ2
0 sinh

(
3
2
Σm
Σ0

)
3

2Σ0

d
drΣm + 1

b2
d
drQ

2√
(pΣ0)

2
+Σ0 − 2pΣ2

0 cosh
(

3
2
Σm
Σ0

)
−
(
Q
b

)2


(3.93)

Dividing both sided of Eq. (3.93) by

1

3
√

3

(
2pΣ2

0 sinh

(
3

2

Σm
Σ0

)
3

2Σ0

d

dr
Σm +

1

b2
d

dr
Q2

)
we obtain

1
3
√

3
d
drΣeq + 2

r
√

3
Σeq −Σ0

√
1
Σ0
−
(
Σeq
Σ0

)2

1
3
√

3

(
2pΣ2

0 sinh
(

3
2
Σm
Σ0

)
3

2Σ0

d
drΣm + 1

b2
d
drQ

2
)

=
1√

(pΣ0)
2

+Σ0 − 2pΣ2
0 cosh

(
3
2
Σm
Σ0

)
−
(
Q
b

)2

(3.94)

reciprocating both sides of Eq. (3.94) and then after squaring both sides gives the
relation

( 1
3
√

3

(
2pΣ2

0 sinh
(

3
2
Σm
Σ0

)
3

2Σ0

d
drΣm + 1

b2
d
drQ

2
)

1
3
√

3
d
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r
√

3
Σeq −Σ0

√
1
Σ0
−
(
Σeq
Σ0

)2

)2

= (pΣ0)
2

+Σ0 − 2pΣ2
0 cosh

(
3

2

Σm
Σ0

)
−
(
Q

b

)2

(3.95)
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Again dividing Eq. (3.95) throughout byΣ2
0 and after adding the value p2 +

(
Σeq
Σ0

)2

to both sides gives us the relation

1

Σ2
0

( 1
3
√

3

(
2pΣ2

0 sinh
(

3
2
Σm
Σ0

)
3

2Σ0

d
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d
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1
3
√

3
d
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r
√
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√
1
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Σeq
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=
1
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(
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(3.96)

Now assumeΣeq ≥
√
Σ0 so that 1

Σ0
−
(
Σeq
Σ0

)2

≥ 0. In this case solving for 1
b2

d
drQ

2

in Eq. (3.96) gives us

1
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d
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3
√

3
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√
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d
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√
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√
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)2
×
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√
1

Σ0
−
(
Σeq
Σ0

)2
− (2pΣ2

0 sinh

(
3

2
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3
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d
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) (3.97)

But also by the yield criteria 3.57 we know that

− 1

b2
d

dr
Q2 = 2p sinh

(
3

2

Σm
Σ0

)(
3

2Σ0

d

dr
Σm

)
− 2Σeq

d

dr
Σeq (3.98)

Finally by adding Eq. (3.98) and Eq. (3.97) we have
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√

3
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3
√

3

d
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2

r
√

3
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√
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√
1

Σ0
−
(
Σeq
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(
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2
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)
(3.99)

Since Σ0

√
1
Σ0
−
(
Σeq
Σ0

)2

=
√
Σ0 −Σ2

eq Eq. (3.99) becomes
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√
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1
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√
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√
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(√
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))(√
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)
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d
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(
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(
3

2

Σm

Σ0

)
3

2Σ0

d
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)
− 2p sinh

(
3

2

Σm

Σ0

) (3.100)

Let α = 3
√

3, γ = 3
2Σ0

, and ρ = pΣ0 then Eq. (3.100) reads
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d

dr
Σeq +

6

r
Σeq − α

(√
Σ0 −Σ2

eq

))(√
Σ0 −Σ2

eq

)
= 2Σeq

d

dr
Σeq +

(
ρ sinh (γΣm)

d

dr
Σm

)
− 2p sinh (γΣm)

(3.101)

Combining like terms in Eq. (3.101) gives us the result(
d

dr
Σeq +

6

r
Σeq − α

(√
Σ0 −Σ2

eq

))(√
Σ0 −Σ2

eq

)
= 2Σeq

d
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Σeq + sinh (γΣm)

(
ρ
d

dr
Σm − 2p

) (3.102)

Factoring the left side of Eq. (3.102) and combining terms yields

d

dr
Σeq

(√
Σ0 −Σ2

eq − 2Σeq

)
+

6

r
Σeq

(√
Σ0 −Σ2

eq

)
− α

(
Σ0 −Σ2

eq

)
= sinh (γΣm)

(
ρ
d

dr
Σm − 2p

)
(3.103)

SinceΣeq andΣm are independent of one another both sides of Eq. (3.103) must be
equal to some constant value, say λ, then we can solve the system of ODE

d

dr
Σeq

(√
Σ0 −Σ2

eq − βΣeq
)

+
6

r
Σeq

(√
Σ0 −Σ2

eq

)
− α

(
Σ0 −Σ2

eq

)
= λ

ρ sinh (γΣm)
d

dr
Σm − 2p sinh (γΣm) = λ

(3.104)
where the value λ is to be determined later. By rearranging the above equation we
get

ρ sinh (γΣm)

λ+ 2p sinh (γΣm)
dΣm = dr (3.105)

Integrating both sides of Eq. (3.105) we have∫
ρ sinh (γΣm)

λ+ 2p sinh (γΣm)
dΣm = r + C1 (3.106)

for some constant C1. The integral on the left is complicated but nonetheless can be
evaluated by analytical means. Applying linearity Eq. (3.106) writes∫

ρ sinh (γΣm)

λ+ 2p sinh (γΣm)
dΣm = ρ

∫
sinh (γΣm)

λ+ 2p sinh (γΣm)
dΣm (3.107)

Next let u = γΣm then
du

dΣm
= γ so

du

γ
= dΣm. Therefore in terms of u

Eq. (3.107) writes
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ρ

∫
sinh (γΣm)

λ+ 2p sinh (γΣm)
dΣm =

ρ

γ

∫
sinh (u)

λ+ 2p sinh (u)
du (3.108)

Write sinh(u) as sin(u) =
1

2p
(2p sinh(u) + λ)− λ

2p
then

∫ (
sinh (u)

2p sinh (u) + λ

)
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∫ ( 1
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2p
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=
u

2p
− λ

2p

∫
1

2p sinh(u) + λ
du

(3.109)

Now we solve ∫ (
1

2p sinh(u) + λ

)
du.

By the tangent half angle substitution, otherwise known as the Weierstrass substitu-
tion, the integral writes∫ (

1

2p sinh(u) + λ

)
du =

∫ (
1

4p tanh
(
u
2

)
1− tanh2

(u
2

) + λ

)
du

(3.110)

Substitute κ = tanh
(
u
2

)
so that

dκ

du
=

sech2
(u

2

)
2

, du =
2

sech2
(u

2

) , and dκ =

2

1− κ2
du we obtain

∫ (
1

4p tanh
(
u
2

)
1− tanh2

(u
2

) + λ

)
du = −2

∫
1

λκ2 − 4pκ− λdκ

= −2

∫
dκ(√

λκ− 2p√
λ

)2

− 4p2

λ
− λ

(3.111)

Next, let w =
λκ− 2p

√
λ

√
−4p2

λ
− λ

then
dw

dv
=

√
λ

−4p2

λ
− λ

so dw
−4p2

λ
− λ

√
λ

= dv.

Upon substitution we get
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(3.112)

After plugging in w =
λκ− 2p

√
λ

√
−4p2

λ
− λ

we find
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Upon substitution u = γΣm the integral is solved as

∫
ρ sinh (γΣm)

λ+ 2p sinh (γΣm)
dΣm =

ρ

Σm
p −

λ ln

( |2pe−γΣm−√4p2+λ2−λ|
|2pe−γΣm+

√
4p2+λ2−λ|

)
γp
√

4p2+λ2


2

(3.114)
Therefore, by Eq. (3.106) we find Σm satisfies the implicit expression

ρ

Σm
p −

λ ln

( |2pe−γΣm−√4p2+λ2−λ|
|2pe−γΣm+

√
4p2+λ2−λ|

)
γp
√

4p2+λ2


2

= r + C1 (3.115)

We solve λ by solving the root of the equation
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Σm(re)−Σm(ri)

p
− 2 (ri − re)
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References

Ahad FR, Enakoutsa K, Solanki KN, Bammann DJ (2014) Nonlocal modeling in high-velocity
impact failure of 6061-T6 aluminum. International Journal of Plasticity 55:108–132

Andreaus U, dell’Isola F, Giorgio I, Placidi L, Lekszycki T, Rizzi NL (2016) Numerical simulations
of classical problems in two-dimensional (non) linear second gradient elasticity. International
Journal of Engineering Science 108:34–50

Bergheau JM, Leblond JB, Perrin G (2014) A new numerical implementation of a second-gradient
model for plastic porous solids, with an application to the simulation of ductile rupture tests.
Computer Methods in Applied Mechanics and Engineering 268:105–125

dell’Isola F, Della CorteA,Giorgio I (2017)Higher-gradient continua: The legacy of Piola,Mindlin,
Sedov and Toupin and some future research perspectives. Mathematics andMechanics of Solids
22(4):852–872

Enakoutsa K (2007) Modèle non-locaux en rupture ductile des métaux. PhD thesis, Pierre et Marie
Curie, Paris VI (in French)

Enakoutsa K (2013a) Exact results for the problem of a hollow sphere subjected to hydrostatic ten-
sion and made of micromorphic plastic porous material. Mechanics Research Communications
49:1–7

Enakoutsa K (2013b) Exact results for the problem of a hollow sphere subjected to hydrostatic ten-
sion and made of micromorphic plastic porous material. Mechanics Research Communications
49:1–7

Enakoutsa K (2014) Some new applications of the GLPD micromorphic model of ductile fracture.
Mathematics and Mechanics of Solids 19(3):242–259

Enakoutsa K (2015) An analytic benchmark solution to the problem of a generalized plane strain
hollow cylinder made of micromorphic plastic porous metal and subjected to axisymmetric
loading conditions. Mathematics and Mechanics of Solids 20(9):1013–1025

Enakoutsa K, Leblond JB (2009) Numerical implementation and assessment of the GLPD micro-
morphic model of ductile rupture. European Journal of Mechanics-A/Solids 28(3):445–460

Enakoutsa K, Leblond JB, Perrin G (2007) Numerical implementation and assessment of a phe-
nomenological nonlocal model of ductile rupture. Computer Methods in Applied Mechanics
and Engineering 196(13-16):1946–1957

Enakoutsa K, Ahad FR, Solanki KN, Tjiptowidjojo Y, Bammann DJ (2012a) Using damage de-
localization to model localization phenomena in Bammann-Chiesa-Johnson metals. Journal of
engineering materials and technology 134(4)

Enakoutsa K, Solanki KN, Ahad FR, Tjiptowidjojo Y, Bammann DJ (2012b) Damage smoothing
effects in a delocalized rate sensitivity model for metals. Theoretical and Applied Mechanics
Letters 2(5):051,005

Giorgio I, Andreaus U, dell’Isola F, Lekszycki T (2017) Viscous second gradient porous materials
for bones reconstructed with bio-resorbable grafts. Extreme Mechanics Letters 13:141–147

Gologanu JB Mand Leblond, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for
porous ductile metals. In: Suquet P (ed) Continuum micromechanics, vol CISM Courses and
Lectures 377, Springer, pp 61–130



3 Solution to the Hollow Sphere Problem with Strain Gradient Effects 67

Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I–
Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and
Technology 99(1):2–15

Leblond JB, Perrin G, Devaux J (1994) Bifurcation effects in ductile metals with nonlocal damage.
Journal of Applied Mechanics 61:236–242

Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. European
Journal of Mechanics-A/Solids 27(1):1–17

Perrin G, Leblond JB (1990) Analytical study of a hollow sphere made of plastic porous material
and subjected to hydrostatic tension-application to some problems in ductile fracture of metals.
International Journal of Plasticity 6(6):677–699

Perrin G, Leblond JB (2000) Accelerated void growth in porous ductile solids containing two
populations of cavities. International Journal of Plasticity 16(1):91–120

Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. Journal of engineering mechanics
113(10):1512–1533

Placidi L, Barchiesi E, Misra A, Timofeev D (2021) Micromechanics-based elasto-plastic–damage
energy formulation for strain gradient solids with granular microstructure. ContinuumMechan-
ics and Thermodynamics 33:2213–2241

Reiher JC, Giorgio I, Bertram A (2017) Finite-element analysis of polyhedra under point and line
forces in second-strain gradient elasticity. Journal of Engineering Mechanics 143(2):04016,112

Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial growth holes. Journal
of the Mechanics and Physics of Solids 17(3):201–217

Scerrato D, Bersani AM, Giorgio I (2021) Bio-inspired design of a porous resorbable scaffold for
bone reconstruction: A preliminary study. Biomimetics 6(1):18

Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions.
International Journal of fracture 17(4):389–407

Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta
metallurgica 32(1):157–169

Tvergaard V, Needleman A (1995) Effects of nonlocal damage in porous plastic solids. International
Journal of Solids and Structures 32(8-9):1063–1077

Tvergaard V, Needleman A (1997) Nonlocal effects on localization in a void-sheet. International
Journal of Solids and Structures 34(18):2221–2238



Chapter 4
Quantum Dynamics Effects on
Amplitude-Frequency Response of
Superharmonic Resonance of Second-Order of
Electrostatically Actuated NEMS Circular Plates

Dumitru I. Caruntu, Julio S. Beatriz

69
I. Giorgio et al. (eds.), Theoretical Analyses, Computations,
and Experiments of Multiscale Materials, Advanced Structured Materials 175,
https://doi.org/10.1007/978-3-031-04548-6_4

Abstract This work deals with the effects of Casimir and/or van der Waals forces
(quantum dynamics phenomena) on the amplitude-frequency response of the super-
harmonic resonance of second-order of axisymmetric vibrations of electrostatically
actuated nanoelectromechanical systems (NEMS) clamped circular plates. Electro-
static actuation consists of alternating current (AC) voltage of magnitude to produce
hard excitations and of frequency near one fourth the natural frequency of the clamped
circular plate. The intermolecular forces Casimir and van der Waals, damping force,
and electrostatic force are the forces acting on the NEMS plate. Six Reduced Order
Models (ROMs) with one and up to 6 modes of vibration are used. The ROM with
one mode of vibration is solved using the Method of Multiple Scales (MMS) in
which the hard excitations are modeled using first-order and second-order models
of hard excitations electrostatic force. Also, Taylor polynomials up to 25th degree
are used to approximate the electrostatic, Casimir and van der Waals forces in the
ROM with one mode of vibration. MMS predicts the amplitude-frequency response
(bifurcation diagram) of the resonance. The other ROMs, using from two to six
modes of vibration are solved using two methods, namely continuation and bifurca-
tion using AUTO software package to predict the amplitude-frequency response, and
numerical integration using Matlab to predict time responses of the NEMS plate.
The amplitude-frequency response predicts a softening effect, and the existence of
three branches, two stable and one unstable. A saddle-node bifurcation point of am-
plitude of 0.24 of the gap, and end points of amplitudes of 0.66 and 0.75 of the gap
of unstable and stable branches, respectively, are predicted. The increase of Casimir
and/or van der Waals forces shifts the branches, bifurcation points, and endpoints to
lower frequencies.
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4.1 Introduction

Micro- and Nano-electromechanical systems (M/NEMS) are known for their small
size, and variety of forms. By taking advantage of their size, these devices can be used
in several applications, while maintaining high efficiency and performance (Ashoori
et al, 2017). Their variety of shapes such as circular plates (Sajadi et al, 2018;
Caruntu and Oyervides, 2017, 2016; Liao et al, 2009), beams (Caruntu et al, 2019,
2013; Zhang et al, 2015), membranes (Dorfmeister et al, 2018), carbon nanotubes
(Caruntu and Juarez, 2019; Caruntu and Luo, 2014; Khadem et al, 2012), provide
options that allow one to decide which benefits a specific application the most. These
applications include, but are not limited to, micropumps (Wang and Fu, 2018; Nisar
et al, 2008), ultrasonic transducers (Ahmad and Pratap, 2010), energy harvesters
(Zhang et al, 2015), and shock switches (Khadem et al, 2012). Furthermore, these
systems are able to perform with a huge assortment of actuation methods, such as
thermal actuation (Varona et al, 2007), piezoelectric (Wang and Fu, 2018; Nisar
et al, 2008; Maurini et al, 2006), and electrostatic (Caruntu and Juarez, 2019; Nisar
et al, 2008). Electrostatic actuation in M/NEMS plates involves the use of parallel
plates, one of which is fixed and the other flexible. By applying a voltage between
the plates, an electrostatic force is induced between the plates, which leads to a
deformation of the flexible plate. By applying an alternating current (AC) voltage,
the flexible plate vibrates. However, these devices might also have a direct current
(DC) voltage component, which induces a static deflection onto the flexible plate
(Liao et al, 2009).

The frequency and amplitude of the AC voltage has a direct effect on the behavior
of the system. As these systems are non-linear, changing the voltage can have an
effect on the stability of the system. As shown by Sajadi et al (2018), different
parameters such as differential pressure can lead to unexpected behavior, i.e increased
stability with increasing voltage. Other parameters such as intermolecular forces
Casimir and van der Waals should be taken into consideration when designing
NEMS. Intermolecular forces are significant at nano scales, reaching the point of the
intermolecular forces overcoming the natural resistance of the structure (Batra et al,
2008). It should be said that Casimir and van der Waals forces cannot occur at the
same time. They describe the same phenomenon at different scales. For gaps greater
than 100 nm, Casimir force describes the intermolecular interaction, and for gaps
less than 50 nm, van der Waals force (Caruntu and Reyes, 2020; Caruntu et al, 2016;
Batra et al, 2008). If one reaches a critical voltage, or a combination of factors in the
system, pull-in can occur. Pull-in is a phenomenon in which the flexible plate gets
in contact with the ground plate (Caruntu and Reyes, 2020; Liao et al, 2009). This
occurs when the attracting forces overcome the natural resistance of the structure.
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M/NEMS circular plates are also affected by damping (Ishfaque and Kim, 2017;
Shabani et al, 2013) or surface effects (Lin et al, 2018). Damping depends on the
environment in which the M/NEMS are being used. Shabani et al (2013) mentioned
that if the fluid is a liquid, the model should take into consideration the damping
effect, as well as added mass. This has a great effect on the behavior of the system,
due to the energy loss. Designs such as perforated circular plates (Ishfaque and Kim,
2017) were also taken into consideration in order to control the level of damping the
system is influenced by. Surface effects including surface stress and elasticity affect
the pull-in voltage. Surface effects are significant if the circular plates are quite thin
or have a large surface to volume ratio (Lin et al, 2018). A variety of models have
been reported in the literature. Such models include the Kirchoff thin plate theory
(Anjomshoa and Tahani, 2016; Rahim, 2010a), or the Mindlin plate theory (Rahim,
2010a). The Mindlin plate theory takes into consideration the shear strain, while the
Kirchhoff does not.

Secondary resonances that occur at fractions of the natural frequency and un-
der hard excitations, i.e. superharmonic resonance, constitute a very important
topic. Many studies have been conducted on M/NEMS under secondary resonances
(Caruntu et al, 2021, 2019; Kacem et al, 2012; Najar et al, 2010; Nayfeh and Younis,
2005). Better understanding of the behavior of the system, would help to better de-
sign and optimize it. Superharmonic resonances occur at a frequency less than that
of the natural frequency, causing larger than normal amplitudes to occur due to hard
excitations. As shown by Kacem et al (2012); Najar et al (2010); Nayfeh and Younis
(2005), the behavior of a system varies, and depending on the situation, softening
and hardening behavior can occur. Furthermore, Najar et al (2010) showed that even
superharmonic resonances behave differently.

This paper investigates the amplitude-frequency response of superharmonic reso-
nance of second-order of electrostatically actuated M/NEMS clamped circular plate
resonators. Only AC voltage is considered in this work. This investigation has been
conducted using Reduced Order Models (ROMS) with a number of modes of vi-
bration (Caruntu et al, 2013) from one to six. These models have been solved using
the Method of Multiple Scales (MMS), continuation and bifurcation using AUTO,
and numerical integration using Matlab (fsolve and ode15s). The effects of various
parameters, such as voltage, damping, Casimir and van der Waals effects are re-
ported. The effect of higher degree Taylor polynomials approximating electrostatic,
Casimir, and van der Waals forces in the ROM with one mode of vibration on the
amplitude-frequency response is also reported. The effects of parameters voltage and
damping on the amplitude-frequency response are reported as well. ROMs are also
numerically integrated to predict time responses. While similar methods have been
used for circular plates (Caruntu and Oyervides, 2017, 2016), this is the first time a
second-order model for hard excitations is used, and an investigation regarding the
effect of the degree of Taylor polynomials approximating the electrostatic, Casimir
and van der Waals forces on the amplitude-frequency response are conducted. In
comparison to data reported in the literature, the behavior of the clamped circular
plate is similar to Kim and Lee (2015); Najar et al (2010) who investigated other
structures than circular plates. For example, (Kim and Lee, 2015) used a model in-
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cluding only AC which causes the super harmonic resonance of order two to appear
in carbon nanotubes. They reported a more linear behavior. This is different from the
predictions of present work for clamped circular plates in which the branches split at
higher amplitudes showing a strong nonlinear behavior. Similar behavior with (Kim
and Lee, 2015) is shown for clamped circular plates. Najar et al (2010) focused on
cantilevers. In their case the branches split as in present work. However their results
show a hardening effect, not a softening effect as in present work.

The novelty of this paper consists of:

1. Reporting the amplitude-frequency response of superharmonic resonance of
M/NEMS clamped circular plates,

2. in order to include quantum dynamics effects such as Casimir and van der Waals
forces.

3. The amplitude-frequency response (bifurcation diagram) predicts the existence
of a saddle-node bifurcation at an amplitude around 0.25 of the gap and three
branches, two stable and one unstable.

4. The two branches in higher amplitudes are shown to have endpoints around 0.7
of the gap, which leads to a narrow interval for which pull-in occurs.

5. Six ROMs are used in this investigation using from one to six modes of vibration
(terms).

6. The ROM using one term (1T ROM) is solved using MMS,
7. in which two models of hard excitations are proposed,
8. and an investigation regarding the degree of Taylor polynomials approximating

the electrostatic, Casimir and van der Waals forces is conducted.
9. The other ROMs using from two to six terms are solved using a continuation

and bifurcation software package AUTO, and are numerically integrated using
Matlab.

10. It is shown that ROM with 6 modes of vibration (6T ROM) is the one with the
best prediction for all amplitudes in the bifurcation diagram.

11. This work predicts that both Casimir and van der Waals forces in NEMS shift
the steady-state amplitudes in the bifurcation diagram to lower frequencies and
increase the softening effect.

12. It also predicts that hard excitations with dimensionless voltage parameter δ > 3
and dimensionless damping parameter b ≤ 0.025 lead to superharmonic reso-
nance of second-order. Several papers used MMS or the ROM with more than
one mode of vibration to simulate the behavior of these systems, whether they
were cantilevers (Caruntu et al, 2021, 2019, 2013; Liu et al, 2014; Kahrobaiyan
et al, 2011; Najar et al, 2010), carbon nanotubes (Caruntu and Juarez, 2019;
Caruntu and Luo, 2014; Kim and Lee, 2015), or plates (Caruntu and Oyervides,
2017, 2016; Sharafkhani et al, 2012; Batra et al, 2008). Most of the literature,
except for (Kim and Lee, 2015; Liu et al, 2014), model electrostatic actuation
with both DC and AC. Yet, these exceptions do not consider an MMS model for
hard excitation for circular plates.
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4.2 Differential Equation of Motion

Figure 4.1 shows an M/NEMS circular plate, which is parallel to a ground plate at
a gap distance d. The radius and thickness of the plate are R and h, respectively.
Between the M/NEMS circular plate and the ground plate there is an AC voltage of
amplitudeV0 of frequency Ω̂. TheAC voltage produces an electrostatic force between
the circular plate and the ground plate, which leads to the circular plate into vibrations
with the dimensional deflections û(r̂, t̂), where r̂, t̂ are the dimensional current
radius and dimensional time, respectively. This work considers only axisymmetrical
vibrations. The partial differential equation ofmotion describing the clamped circular
plate (Caruntu andOyervides, 2017, 2016), Fig. 4.1, is based onKirchoff plate theory
(classical plate theory) valid for thin plates (Rahim, 2010b; Lee et al, 1998; Baecker
et al, 2015), i.e. thickness to diameter radius ratio less than 0.05 (Zietlow et al, 2012),
and it includes Casimir and van der Waals forces:

Fig. 4.1 Circular plate suspended above ground plate

ρh
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(4.1)

where ρ is plate density, c1 damping coefficient, D flexural rigidity, ε∗ electrical
permitivity, V0 magnitude of AC voltage, H Hamaker constant, h̄ reduced Plank
constant, and c the speed of light in vacuum. The following dimensionless variable
are introduced: dimensionless radial coordinate r, dimensionless deflection u and
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dimensionless time t. They are written in terms of the dimensional variables r̂, û
and t̂ (Caruntu and Oyervides, 2017, 2016) are as follows:

r =
r̂

R
, u =

û

d
, t = t̂

√
D

ρhR4
. (4.2)

The dimensionless partial-differential equation ofmotion to include both intermolec-
ular forces, Casimir and van der Waals, is given by
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+ P [u] =

δ cos2Ωt
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α

[1− u(t, r)]4
,

(4.3)
where µ and α cannot be different than zero at the same time since Casimir and van
der Waals forces describe the same phenomenon but at different scales. Operator
P [u] is given by

P [u] =
∂4u(t, r)

∂r4
+

2
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. (4.4)

The dimensionless parameters are as follows: Ω is the dimensionless AC frequency,
b is dimensionless damping parameter, α is the dimensionless Casimir parameter, µ
is the dimensionless van derWaals parameter, δ the dimensionless voltage parameter
and ωi are the dimensionless natural frequencies of clamped circular plates. These
dimensionless parameters are as follows:
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√
ρhR4

D
, b = 2c1

√
R4

ρhD
, δ =

R4ε∗V 2
0

2Dd3
, α =
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240Dd5
,

µ =
R4H

6πDd4
, ωi = ω̂i

√
ρhR4

D
, D =

Eh3

12(1− ν2)
,

(4.5)

where E is the Young’s modulus, ν is Poisson’s ratio. Furthermore, ω̂i are the
dimensional natural frequencies. The first six dimensionless natural frequencies of
clamped circular plate are given in Table 4.1. The values of the constants of the

Table 4.1 First six natural frequencies

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ωi 10.2158 39.7711 89.1041 158.1842 247.0064 355.5693

system are given below in Table 4.2, and the dimensional system parameters are
given in Tables 4.3, 4.4, and 4.5 for 3 cases, namely electrostatic, α = µ = 0, in
Eq. (4.3), Casimir, µ = 0; and van der Waals, α = 0, respectively. The material
properties are of polysilicon (Ouakad, 2017; Lee et al, 1998; Sharpe et al, 1997)
and are in Table 4.2. The plate dimensions in Tables 4.3-4.5 satisfy criteria for thin
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plates from the classical plate theory (Zietlow et al, 2012). Tables 4.2-4.5 result in
the dimensionless system parameters shown in Table 4.6. The dimensionless mode

Table 4.2 Constants

Young’s modulus E 169 GPa
Poisson’s ratio ν 0.22
Permitivity of free space ε∗ 8.854× 10−12 C2/N/m2

Density of material ρ 2330.0 kg/m3

Planck’s constant / 2π h̄ 1.0546× 10−34 m2 kg/s
Speed of light in vacuum C 299 972 km/s
Hamaker constant H 4.4× 10−19 J

Table 4.3 Dimensional parameters,
electrostatic case MEMS

Initial gap distance d 1.014 µm
Plate thickness h 3.01 µm
Radius of plate R 250 µm
Damping c1 10.64 N s/m3

Voltage V0 9.865 V

Table 4.4 Dimensional parameters,
Casimir case NEMS

Initial gap distance d 0.15 µm
Plate thickness h 0.4 µm
Radius of plate R 57.675 µm
Damping c1 3.5307 N s/m3

Voltage V0 0.5109 V

Table 4.5 Dimensional parameters,
van der Waals case NEMS

Initial gap distance d 0.05 µm

Plate Thickness h 0.0301 µm

Radius of Plate R 2.1561 µm

Damping c1 14.305 N s/m3

Voltage V0 1.4522 V

Table 4.6 Dimensionless system parameters

Voltage Parameter δ 4.0
Damping Parameter b∗ 0.025
Casimir Parameter α 0.2
van der Waals parameter µ 0.2

shapes φi of the clamped circular plates are given in terms of J0 and I0 which are
Bessel functions of first kind and modified first kind, respectively, as follows:

φi(r) =
J0(
√
ωi · r)

J0(
√
ωi)

− I0(
√
ωi · r)

I0(
√
ωi)

(4.6)

The dimensionless mode shapes form an orthonormal set. The relationship between
the mode shapes φ1 and the natural frequency (Rao, 2007) is given by
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φ
(4)
i +

2

r
φ′′′i −

1

r2
φ′′i +

1

r3
φ′i = ω2

i φi (4.7)

4.3 Superharmonic Resonance of Second-Order

The dimensionless frequency Ω of the AC voltage, that produces electrostatic force,
is considered to be nearly one fourth of the natural frequency

Ω =
ω1

4
+ εσ (4.8)

where σ is the detuning parameter, and ε a bookkeeping parameter used in MMS.
The bookkeeping parameter ε is assumed to be small such that it indicates a small
detuning parameter in Eq. (4.8), and indicates the small terms in the equations of
motion of Sections 4.4 and 4.6. The dimensionless voltage V , Eq. (4.3), is given by

V =
√
δ cosΩt (4.9)

As the electrostatic force is proportional to the square of the voltage, the frequency
of the electrostatic force is twice the AC frequency. This leads to superharmonic
resonance of the second-order. The square of the dimensionless voltage is as follows:

V 2 = δ cos2Ωt = δ
1 + cos2Ωt

2
= δ
(1

2
+
e2iΩt + e−2iΩt

4

)
(4.10)

4.4 Method of Multiple Scales: First-Order Hard Excitations
Model

All forces at the right-hand side of Eq. (4.3), are approximated byTaylor polynomials.
In the first-order hard excitations model, the first term of the Taylor polynomial of the
electrostatic force on the right-hand side of the equation is being treated as significant
so it does not have the bookkeeping parameter ε as coefficient. All other terms of
the Taylor polynomial of the electrostatic force, the Taylor polynomials of Casimir
and/or van der Waals forces, as well as the damping force, are considered small, so
all these terms have the bookkeeping parameter ε as coefficient as follows:

∂2u

∂t2
+ εb

∂u

∂t
+ P [u] = δ

1 + cos 2Ωt

2
+ εδ(2u+ 3u2 + 4u3)

1 + cos 2Ωt

2

+ εµ(1 + 3u+ 6u2 + 10u3) + εα(1 + 4u+ 10u2 + 20u3) ,
(4.11)

where P [u] is given by Eq. (4.4). The first-order hard excitations model is also called
one term no epsilon (1TnE) model in this work. The solution of Eq. (4.11) uses the
first mode of vibration that is given by
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u(t.r) = u1(t)φ1(r) , (4.12)

where u1(t) is a function of time to be determined and φ1(r) is the first modeshape
of the clamped circular plate. Assume a uniform expansion (Caruntu et al, 2021) of
u1(t) as follows:

u1(t) = u10(t) + εu11(t) . (4.13)

Two time scales are considered, a fast time scale T0 = t and a slow time scale
T1 = ε · t. The partial derivatives with respect to the time scales are given by

D0 =
∂

∂T0
, D1 =

∂

∂T1
(4.14)

and the time derivatives become

∂

∂t
= D0 + εD1,

∂2

∂t2
= D2

0 + 2εD1D0 . (4.15)

Substituting Eqs. (4.12)-(4.15) into Eq. (4.11), usingGalerkinmethod bymultiplying
the resulting equation by rφ1 and integrating from 0 to 1, introducing the following
notations

g1 =

∫ 1

0

rφ1dr, g2 =

∫ 1

0

rφ2
1dr, g3 =

∫ 1

0

rφ3
1dr, g4 =

∫ 1

0

rφ4
1dr (4.16)

and then collecting the terms having the same power of ε, a zero-order problem and
a first-order problem result as follows:

ε0 : D2
0u10 + u10ω

2
1 = g1δ

(
1

2
+
e2iΩT0 + e−2iΩT0

4

)
(4.17)

ε1 : D2
0u11 + u11ω

2
1 = −2D0D1u10 − bD0u10 + δ(2u10 + 3u2

10g3

+ 4u3
10g4)

(
1

2
+
e2iΩT0 + e−2iΩT0

4

)
+ µ(g1 + 3u10 + 6u2

10g3 + 10u3
10g4)

+ α(g1 + 4u10 + 10u2
10g3 + 20u3

10g4)
(4.18)

It should be noted that g2 = 1. The zero-order problem Eq. (4.17) has the following
solution

u10 = Aeiω1T0 + Āe−iω1T0 + Λe2iΩT0 + Λe−2iΩT0 +K , (4.19)

where Λ and K are given by

Λ =
δ

4

g1

(ω2
1 − 4Ω2)

, K =
δg1

2ω2
1

. (4.20)

After substituting Eq. (4.19) into Eq. (4.18), the secular terms are collected and their
sum is set to zero. The complex amplitude A and its conjugate Ā, written in terms
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of the real phase β1 and real amplitude a1 are as follows:

A =
1

2
a1e

iβ1 , Ā =
1

2
a1e
−iβ1 . (4.21)

SubstitutingEq. (4.21) into the secular terms equation, dividing the resulting equation
by eiβ1 , and separating the real and imaginary parts, the following amplitude-phase
differential equations result

a′1 = − b
2
a1 +

Λsinγ

2ω1

{
δ + g3

[
3δ(Λ+K) + 4Λ(3µ+ 5α)

]
+ g4

[
δ(12KΛ+ 8Λ2 + 6K2 +

3

2
a2

1) + 60KΛ(µ+ 2α)
]}

,

(4.22)

γ′ = 4σ +
1

2ω1

[
δ + 3µ+ 4α

]
+

δ

2a1ω1
Λcosγ

+
1

a1ω1

{
g3

[3
2
δ(K + Λ)(a1 + Λcosγ) + 2(3µ+ 5α)(Λ2cosγ + a1K)

]
+ g4

[
3δ(K2a1 + 2KΛa1 + 2Λ2a1 +

1

4
a3

1 + Λ(2KΛ+
4

3
Λ2 +K2

+
3

4
a2

1)cosγ) + 15(µ+ 2α)(2KΛ2cosγ + a1K
2 + 2a1Λ

2 +
1

4
a3

1)
]}

,

(4.23)

where ′ is the derivative with respect to the slow scale T1, and γ is given by

γ = 4σT1 − β1 . (4.24)

In order to find the steady-state amplitudes, the derivatives of the amplitude a1

and phase γ are set to zero (a′1 = γ′ = 0). The resulting equations predicting the
amplitude-frequency response are

σ =
−1

4a1ω1
(A1a

3
1 +B1a

2
1 + C1a1 +D1) , (4.25)

where
A1 =

3

4
g4(δ + 5µ+ 10α)

B1 =
9

4
δg4Λcosγ

C1 =
δ

2
+

3

2
µ+ 2α+ g3

[3
2
δ(Λ+K) + 2K(3µ+ 5α)

]
+ g4

[
3δ(K2 + 2Λ2 + 2KΛ) + 15(µ+ 2α)(K2 + 2Λ2)

]
D1 = Λcosγ

{
1

2
δ + g3

[3
2
δ(Λ+K) + 2Λ(3µ+ 5α)

]
+ g4

[
δ(3K2 + 4Λ2 + 6KΛ) + 30KΛ(µ+ 2α)

]}
(4.26)
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and

a1 =
−B2 ±

√
B2

2 − 4A2C2

2A2
, (4.27)

where
A2 =

3δg4Λ

4ω1
sinγ

B2 =
−b
2

C2 =
Λsinγ

ω1

{
1

2
δ + g3

[3
2
δ(Λ+K) + 2Λ(3µ+ 5α)

]
+ g4

[
δ(3K2 + 4Λ2 + 6KΛ) + 30ΛK(µ+ 2α)

]}
.

(4.28)

4.5 Stability Testing

In order to test the stability of the steady-state solutions of the system of equations
(4.22 , 4.23) of the 1TnE electrostatic MMS model, the Jacobian

J =

[
∂a′1
∂a1

∂a′1
∂γ

∂γ′

∂a1

∂γ′

∂γ

]
=

[
V1 V2

V3 V4

]
(4.29)

is needed. The eigenvalues of the Jacobian are given by

det

[
V1 − λ V2

V3 V4 − λ

]
= 0 , (4.30)

where

V1 =
1

2ω1

(
− bω1 + 3δg4a1Λ sin γ

)
,

V2 =
Λ cos γ

2g2ω1

[
δg2 + 3δg3(Λ+K) + δg4(12KΛ+ 8Λ2 + 6K2 +

9

2
a2

1)
]
,

V3 =
− cos γ

2a2
1ω1

[
δΛ+ 3δg3Λ(Λ+K) + g4(12KΛ2 − 3a3

1

cos γ
+ 8Λ3 + 6K2Λ

− 9

2
a2

1Λ)
]
,

V4 =
−Λsinγ
2a2

1ω1

[
δ + 3δg3(Λ+K) + δg4(12KΛ+ 8Λ2 + 6K2 +

3

2
a2

1)
]
.

(4.31)
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4.6 Method of Multiple Scales: Second-Order Hard Excitations
Model

In the second-order hard excitations model, the first two terms of the Taylor poly-
nomial of the electrostatic force are considered significant, so they do not have the
bookkeeping parameter ε as coefficient

∂2u

∂t2
+ εb

∂u

∂t
+ P [u] = δ

1 + cos 2Ωt

2

+ 2δu
1 + ε cos 2Ωt

2
+ εδ(3u2 + 4u3)

1 + cos 2Ωt

2

+ εµ(1 + 3u+ 6u2 + 10u3) + εα(1 + 4u+ 10u2 + 20u3)

(4.32)

The second-order hard excitations model is also called two-term no epsilon (2TnE)
model in this work, This model allows for a better approximation of the solution.
Using Eqs. (4.12-4.16) and Eq. (4.7), the resulting zero-order and the first-order
problems are as follows:

ε0 : D2
0u10 + u10ω̄

2
1 = g1δ

(
1

2
+
e2iΩT0 + e−2iΩT0

4

)
,

(4.33)

ε1 : D2
0u11 + u11ω̄

2
1 = −2D0D1u10 − bD0u10 + δu10

e2iΩT0 + e−2iΩT0

2

+ δ(3u2
10g3 + 4u3

10g4)

(
1

2
+
e2iΩT0 + e−2iΩT0

4

)
+ µ(g1 + 3u10 + 6u2

10g3 + 10u3
10g4) + α(g1 + 4u10 + 10u2

10g3 + 20u3
10g4) ,

(4.34)
where ω̄2

1 is given by
ω̄2

1 = ω2
1 − δ . (4.35)

The solution of the zero-order problem is as follows:

u10 = Aeiω̄1T0 + Āe−iω̄1T0 + Λe2iΩT0 + Λe−2iΩT0 +K , (4.36)

where Λ and K are defined as

Λ =
δ

4

g1

(ω̄2
1 − 4Ω2)

, K =
δg1

2ω̄2
1

. (4.37)

Equation (4.36) is then substituted into the first-order problem Eq. (4.34), and the
resulting equation is then expanded. This allows the secular terms for this resonance
case to be gathered and their sum set equal to zero. The complex amplitudes Eq.
(4.21), are substituted into the resulting equation, which is then divided by eiβ1 . Eq.
(4.24) is used in the resulting equation and its real and imaginary parts are separated
resulting into the following amplitude-phase differential equations
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a′1 = − b
2
a1 +

Λ sin γ

2ω̄1

{
δ + g3

[
3δ(Λ+K) + 4Λ(3µ+ 5α)

]
+ g4

[
δ(12KΛ+ 8Λ2 + 6K2 +

3

2
a2

1) + 60KΛ(µ+ 2α)
]}

,

(4.38)

γ′ = 4σ +
1

2ω̄1

[
3µ+ 4α

]
+

δ

2a1ω̄1
Λcosγ

+
1

a1ω̄1

{
g3

[3
2
δ(K + Λ)(a1 + Λcosγ) + 2(3µ+ 5α)(Λ2cosγ + a1K)

]
+ g4

[
3δ(K2a1 + 2KΛa1 + 2Λ2a1 +

1

4
a3

1 + Λ(2KΛ+
4

3
Λ2 +K2

+
3

4
a2

1)cosγ) + 15(µ+ 2α)(2KΛ2cosγ + a1K
2 + 2a1Λ

2 +
1

4
a3

1)
]}

.

(4.39)

After setting the derivatives equal to zero, one can solve for the steady-state solutions,
a′1 = γ′ = 0. The equations predicting the amplitude-frequency response are

σ =
−1

4a1ω̄1
(A1a

3
1 +B1a

2
1 + C1a1 +D1) , (4.40)

where

A1 =
3

4
g4(δ + 5µ+ 10α) ,

B1 =
9

4
δg4Λ cos γ ,

C1 =
3

2
µ+ 2α+ g3

[3
2
δ(Λ+K) + 2K(3µ+ 5α)

]
+ g4

[
3δ(K2 + 2Λ2 + 2KΛ) + 15(µ+ 2α)(K2 + 2Λ2)

]
,

D1 = Λ cos γ

{
1

2
δ + g3

[3
2
δ(Λ+K) + 2Λ(3µ+ 5α)

]
+ g4

[
δ(3K2 + 4Λ2 + 6KΛ) + 30KΛ(µ+ 2α)

]}
,

(4.41)

and

a1 =
−B2 ±

√
B2

2 − 4A2C2

2A2
, (4.42)

where
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A2 =
3δg4Λ

4ω̄1
sin γ ,

B2 =
−b
2
,

C2 =
Λ sin γ

ω̄1

{
1

2
δ + g3

[3
2
δ(Λ+K) + 2Λ(3µ+ 5α)

]
+ g4

[
δ(3K2 + 4Λ2 + 6KΛ) + 30ΛK(µ+ 2α)

]}
.

(4.43)

4.7 Electrostatic Reduced Order Model

This electrostatic ROM is valid for MEMS circular plates with the gap distance
greater than one micron, d > 10−6m. ROM, if enough number of modes of vibra-
tion included, gives accurate results for both weak and strong nonlinearities. The
electrostatic ROM includes only the electrostatic force, so no Casimir or van der
Waals forces are present, see Eq. (4.3). Therefore the differential equation of motion
Eq. (4.3), has the Casimir and van der Waals parameters α and µ set to zero. This
equation is then multiplied by (1 − u)2 in order to have no denominator in the
differential equation. So Eq. (4.3) becomes

ü(1− 2u+ u2) + u̇b(1− 2u+ u2) + (1− 2u+ u2)P [u] = δ cos2Ωt , (4.44)

where P [u] is given by Eq. (4.4). The solution u, which describes the deflection of
the plate, is written in terms of the firstN dimensionless modeshapes of the circular
plate as follows:

u(r, t) =

N∑
i=1

ui(t)φi(r) , (4.45)

where φi(r) are the dimensionless modeshapes and ui(t) are time functions to be
determined. Substituting Eqs. (4.45) and (4.7) into Eq. (4.44), it results

N∑
i=1

üi

[
φi − 2

N∑
j=1

ujφiφj +

N∑
j,k=1

ujukφiφjφk

]

+ b

N∑
i=1

u̇i

[
φi − 2

N∑
j=1

ujφiφj +

N∑
j,k=1

ujukφiφjφk

]

+

N∑
i=1

uiω
2
i

[
φi − 2

N∑
j=1

ujφiφj +

N∑
j,k=1

ujukφiφjφk

]
= δ cos2Ωt ,

(4.46)

where N is the number of modes of vibration used in the ROM. Using Galerkin
procedure, Eq. (4.46) is multiplied by r and φn and then integrated from 0 to 1, i.e.
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Eq. (4.46) is transformed by the following operator∫ 1

0

•rφn(r)dr . (4.47)

One should mention that n = 1,2,...,N, so a system of N second-order differential
equation is obtained, where the h-coefficients are given by Eq. (4.48). Since this work
includes three ROMs, i.e. electrostatic ROM which includes only the electrostatic
force but no Casimir and van der Waals, Casimir ROM which includes the electro-
static and Casimir forces, and van der Waals ROM which includes electrostatic and
van der Waals forces, h-coefficents are given by Eq. (4.48) for all three cases. The
electrostatic ROM only uses the first four, hn, hni, hnij ,and hnijk, the van der Waals
ROM uses hn, hni, hnij , hnijk, and hnijkl, and the Casimir model uses hn, hni,
hnij , hnijk, hnijkl, and hnijklm,

hn =

∫ 1

0

rφndr , hni =

∫ 1

0

rφnφidr , hnij =

∫ 1

0

rφnφiφjdr ,

hnijk =

∫ 1

0

rφnφiφjφkdr , hnijkl =

∫ 1

0

rφnφiφjφkφldr ,

hnijklm =

∫ 1

0

rφnφiφjφkφlφmdr .

(4.48)

New variables yk are introduced as follows:

y2k−1 = uk, y2k = u̇k, ẏ2k = ük, k = 1, 2 . . . N (4.49)

With these new variables the system of N second-order differential equations is
transformed into a system of 2N first-order differential equations given by

ẏ2n−1 = y2n

N∑
i=1

ẏ2iAni = −b
N∑
i=1

y2iAni −
N∑
i=1

ω2
i · y2i−1Ani + δhn cos2Ωt

(4.50)

where n = 1, 2, . . . , N and Ani are as follows

Ani = hni − 2

N∑
j=1

hnij · y2j−1 +

N∑
j,k=1

hnijk · y2j−1 · y2k−1 . (4.51)

In order to predict the amplitude-frequency response (bifurcation diagram) of the
superharmonic resonance of second-order of the MEMS circular plate, the contin-
uation and bifurcation method (AUTO 07p software package) is used to solve Eqs.
(4.50). Also, same Eqs. (4.50) are numerically integrated using Matlab in order to
predict time responses of the MEMS circular plate.
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4.8 Casimir Reduced Order Model

Casimir ROM is valid for NEMS circular plates with the gap distance d less than
one micron and greater than 100 nanometers, 100 × 10−9m < d < 10−6m. The
governing equation of the Casimir ROM is given by

ü(1− 4u+ 6u2 − 4u3 + u4) + u̇b(1− 4u+ 6u2 − 4u3 + u4)

+ (1− 4u+ 6u2 − 4u3 + u4)P [u] = (1− 2u+ u2)δ cos2Ωt+ α ,
(4.52)

where Eq. (4.3) was multiplied by (1− u)4. The van der Waals parameter was set to
zero. P [u] is given by Eq.(4.4). Substituting Eq. (4.45) and Eq. (4.7) into Eq.(4.52),
it results

N∑
i=1

üi

[
φi − 4

N∑
j=1

ujφiφj + 6

N∑
j,k=1

ujukφiφjφk

− 4

N∑
j,k,l=1

ujukulφiφjφkφl +

N∑
j,k,l,m=1

ujukulumφiφjφkφlφm

]

+ b

N∑
i=1

u̇i

[
φi − 4

N∑
j=1

ujφiφj + 6

N∑
j,k=1

ujukφiφjφk

− 4

N∑
j,k,l=1

ujukulφiφjφkφl +

N∑
j,k,l,m=1

ujukulumφiφjφkφlφm

]

+

N∑
i=1

uiω
2
i

[
φi − 4

N∑
j=1

ujφiφj + 6

N∑
j,k=1

ujukφiφjφk . . .

(4.53)

. . .− 4

N∑
j,k,l=1

ujukulφiφjφkφl +

N∑
j,k,l,m=1

ujukulumφiφjφkφlφm

]

= δ

[
1− 2

N∑
i=1

uiφi +

N∑
i,j=1

uiujφiφj

]
cos2Ωt+ α

where N is the number of modes of vibration in the ROM. Multiplying Eq. (4.53)
by Eq. (4.47) and using Eqs. (4.48) and (4.49) it results
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ẏ2n−1 = y2n

N∑
i=1

ẏ2iBni = −b
N∑
i=1

y2iBni −
N∑
i=1

ω2
i · y2i−1Bni

+ δ

[
hn − 2

N∑
i=1

hni · y2i−1 +

N∑
i,j=1

hnij · y2i−1 · y2j−1

]
cos2Ωt+ αhn

(4.54)
where n = 1, 2, . . . , N and Bni are as follows:

Bni =hni − 4

N∑
j=1

hnij · y2j−1 + 6

N∑
j,k=1

hnijk · y2j−1 · y2k−1

− 4

N∑
j,k,l=1

hnijkl · y2j−1 · y2k−1 · y2l−1

+

N∑
j,k,l,m=1

hnijklm · y2j−1 · y2k−1 · y2l−1 · y2m−1 .

(4.55)

The amplitude-frequency response of the superharmonic resonance of second-order
is predicted using continuation and bifurcation (AUTO 07p software package) to
solve Eqs. (4.54). Also, time responses are predicted through numerical integration
of Eqs. (4.54) using Matlab.

4.9 Van der Waals Reduced Order Model

Van der Waals ROM is valid for NEMS circular plates with the gap distance d less
than 50 nanometers, d < 50× 10−9m. The ROM takes into consideration the effect
of van der Waals forces. Hence in Eq. (4.3) the Casimir parameter α is set to zero.
Multiplying both sides by (1 − u)3 as it is the largest denominator, and expanding,
it results

ü(1− 3u+ 3u2 − u3) + u̇b(1− 3u+ 3u2 − u3) + (1− 3u+ 3u2 − u3)P [u]

= δ(1− u) cos2Ωt+ µ .
(4.56)

Substituting Eq.(4.45) and Eq.(4.7) into Eq.(4.56), it results
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N∑
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]

+
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uiω
2
i

[
φi − 3
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ujφiφj + 3

N∑
j,k=1

ujukφiφjφk −
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j,k,l=1

ujukulφiφjφkφl

]

= δ

[
1−

N∑
i=1

uiφi

]
cos2Ωt+ µ .

(4.57)
where N is the number of modes of vibration in the ROM. Multiplying (4.57) by
Eq. (4.47), and using (4.48) and (4.49), it results

ẏ2n−1 = y2n

N∑
i=1

ẏ2iCni = −b
N∑
i=1

y2iCni −
N∑
i=1

ω2
i · y2i−1Cni

+ δ

[
hn −

N∑
i=1

hni · y2i−1

]
cos2Ωt+ µhn ,

(4.58)

where n = 1,2,...,N and Cni are given by

Cni = hni − 3

N∑
j=1

hnij · y2j−1 + 3

N∑
j,k=1

hnijk · y2j−1 · y2k−1

−
N∑

j,k,l=1

hnijkl · y2j−1 · y2k−1 · y2l−1 .

(4.59)

The system of 2N first-order differential equations is solved numerically using
AUTO 07p for predicting the bifurcation diagram, and numerically integrated using
Matlab’s built-in solver ode15s for time responses.
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4.10 Numerical Simulations

4.10.1 Electrostatic Model of Microelectromechanical Systems
Clamped Circular Plates

Figure 4.2 shows the amplitude-frequency response in the case of MEMS, i.e. the
gap distance, d > 10−6m. The horizontal axis represents the detuning frequency σ,
where at σ = 0, the AC frequency is exactly one fourth of the first dimensionless
natural frequency of the MEMS clamped circular plate. The vertical axis represents
the dimensionless amplitude at the center of the plate Umax. The stable branches
are denoted by solid lines, and the unstable branches by dashed lines. Figure 4.2
shows the predictions of three methods, 1) one term ROM of second-order model
of hard excitations (2TnE), and 25th degree Taylor polynomial to approximate the
electrostatic force, that was solved using MMS in order to predict the amplitude-
frequency response, 2) a six term (6T)ROMnumerically integrated usingMatlab that
predicted time responses, and 3) six term (6T) ROM solved using the continuation
and bifurcation method (AUTO) that predicted the amplitude-frequency response.
These methods predict the existence of saddle-node bifurcation point A. As the
frequency is swept up, the 6T ROM AUTO predicts that the steady state amplitude
increases along branch 1 until the system reaches pointA, where it experiences a jump
phenomenon, the amplitude jumping up from point A to branch 3. If the frequency
continues to be swept up the steady-state amplitudes decreases along branch 3. If
the frequency is swept down, the amplitude increases along branch 3 until it reaches
point C. At this point the system loses stability and experiences pull-in, i.e., the
dimensionless amplitude reaches the value of 1. In the case of constant frequency,
and initial amplitude above branch 3, the amplitudes settle on the stable branch
3. For frequencies between σB and σC and initial amplitudes above branch 2, the
MEMS circular plate experiences pull-in. For frequencies less than σB , regardless
the value of the initial amplitude, the amplitudes settle on the stable branch 1. For
any initial amplitude bellow branch 2, and for frequencies between σB and σA, the
amplitudes settle on the stable branch 1. For any initial amplitude above branch
2, and frequencies greater than σC , the amplitudes settle on branch 3. One should
mention that for zero initial amplitude and frequencies less than σA, the amplitudes
settle one branch 1. Figures 4.3 and 4.4 show predicted time responses resulted from
numerical integration of the 6T ROM. They are in agreement with the predictions
resulted from continuation and bifurcation of 6T ROM AUTO. Figures 4.3a and
4.3c for σ = −0.08, and Figs. 4.4a and 4.4c for σ = −0.12, show time responses
for initial amplitudes U0 = 0.4 and U0 = 0.8. One can notice that depending on
the initial amplitude U0, the amplitude settles either on branch 3 or 1, which is in
agreement with AUTO predictions. Figures 4.3b and 4.3d show time responses from
zero initial amplitudes U0 = 0.0 and frequencies greater than σA. The amplitudes
settle on branch 3. Figures 4.4a and 4.4b do not contradict the existence of end points
B andC. Figures 4.4b and 4.4d show time responses from high initial amplitudesU0

= 0.8 and frequencies less than σB . For both time responses the amplitudes settle on
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Fig. 4.2 Amplitude-frequency response using Electrostatic 6T ROM and Electrostatic 2TnE MMS
E = 25, δ = 4, b = 0.025, α = 0, µ = 0, where E is the degree of the electrostatic Taylor
polynomial in MMS

branch 1. This is in agreementwith 6TROMAUTOpredictions. Figure 4.5 shows the
effect of increasing the number of modes of vibration (terms) in ROM. ROMs with
two terms, three terms, four terms, five terms. and six terms are included. One can
notice that there is no significant difference between ROMs with five terms, and six
terms. This is the reason the 6T ROM is used in this research. Figure 4.6 illustrates
the convergence of MMS predictions with respect to the degree E of the Taylor
polynomial approximating the electrostatic force. The one term no epsilon model
(1TnE) is also compared to the two term no epsilon model (2TnE). As the number
of terms in the Taylor polynomial for the 2TnE model increases, the upper part of
the branches moves to lower amplitudes, toward AUTO predictions. As mentioned
before, MMS cannot predict the end points of the amplitude-frequency response.
Additionally, MMS is limited to good results in lower amplitudes, amplitudes less
than 0.2 of the gap. Overall, the change in lower amplitudes with increasing the
degree of Taylor polynomial is not significant. A polynomial of degree 25 was
deemed sufficient, as no significant changes in the predictions of 2TnE for degrees
of Taylor polynomial great than E = 25 were observed. However, MMS is not
reliable in predicting higher steady-state amplitudes.

Figure 4.7 shows the effect of voltage parameter on the amplitude-frequency
response using two methods, 6T ROMAUTO andMMS 2TnE. For a smaller voltage
of δ = 2, both methods show only one branch with a relatively small peak amplitude
and rather a linear behavior. MMS is in agreement with AUTO for amplitudes less
than 0.2 of the gap, regardless of the voltage values. As the voltage increases from δ
= 2 to δ = 3 the peak amplitude increases. As the voltage increases to δ = 4 the three
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Fig. 4.3 Electrostatic 6T ROM Time Responses: δ = 4, b = 0.025, α = 0, µ = 0: a) U0 = 0.4,
σ = −0.08, b) U0 = 0.0, σ = −0.06, c) U0 = 0.8, σ = −0.08, d) U0 = 0.0, σ = −0.04

branches 1,2, and 3 are born showing a consistent nonlinear behavior. The existence
of the unstable branch 2 explains the fact that for different initial amplitudes the
system can settle to either a small amplitude on branch 1, or a larger amplitude on
branch 3. Also in the case δ = 4 branches 2 and 3 have end points predicting the
existence of pull-in phenomenon for frequencies between σB and σC .

Figure 4.8 shows the effect of damping on the amplitude-frequency response.
This effect is investigated at high voltage δ = 4. In a similar fashion to the effect of
the voltage on the amplitude-frequency response, MMS predictions are in agreement
with 6TROMAUTOfor amplitudes lower than 0.2 of the gap. For damping parameter
values b = 0.035 and b = 0.025, the difference between MMS and 6T ROM AUTO
is quite significant in large amplitudes. Significant differences of the two methods,
MMS and 6T ROM AUTO, are seen in the case of smaller damping b = 0.025. For
higher damping b = 0.045, the peak amplitudes reduce, as well as the difference
between MMS and 6T ROM AUTO.

Figure 4.9 shows the voltage bias using 6T ROM AUTO. This bias is directly
related to Fig. 4.2. As shown in Fig. 4.9, the bias is at less than 5.5 % of the gap
distance d. This suggests that the bias does not have a significant influence on the
behavior of the system.
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Fig. 4.4 Electrostatic 6T ROM Time Responses: δ = 4, b = 0.025, α = 0, µ = 0: a) U0 = 0.8,
σ = −0.12, b) U0 = 0.8, σ = −0.125, c) U0 = 0.4, σ = −0.12, d) U0 = 0.8, σ = −0.15

Fig. 4.5 Effect of the number of modes of vibration N in ROM on the amplitude-frequency
response: δ = 4, b = 0.025, α = 0, µ = 0
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Fig. 4.6 Effect of E, the degree of the Taylor polynomial approximating the electrostatic force in
MMS, on the amplitude-frequency responses δ = 4, b = 0.025, α = 0, µ = 0

Fig. 4.7 Effect of δ, the dimensionless voltage parameter, on the amplitude-frequency response
using electrostatic 6T ROM AUTO, and electrostatic 2TnE MMS polynomial of E = 25 degree: b =
0.025, α = 0, µ = 0
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Fig. 4.8 Effect of b, the dimensionless damping parameter, on the amplitude-frequency response
using Electrostatic 6T ROM AUTO and Electrostatic 2TnE MMS polynomial of E = 25 degree, δ =
4, α = 0, µ = 0

Fig. 4.9 Voltage Bias using 6T ROM AUTO, δ = 4, b = 0.025
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4.10.2 Casimir Force Effect on Nanoelectromechanical Systems
Plates

Figure 4.10 shows the effect of the Casimir parameter α on the amplitude-frequency
response. Increasing the Casimir parameter α leads to an increase of the softening
effect, a decrease of the steady-state amplitudes for a given frequency σ in the
resonance zone, and/or a shifting of the amplitude-frequency response to lower
frequencies. MMS predictions are in agreement with 6T ROMAUTO for amplitudes
less than 0.2 of the gap, if α = 0, and amplitudes less than 0.1 of the gap if α = 0.2.
This is consistent with the fact that MMS is valid for weak nonlinearities and small
amplitudes. The increase of the Casimir parameter shifts the bifurcation pointA and
the endpoints B and C to lower frequencies. The bifurcation point A is significantly
shifted to lower frequencies. Figure 4.11 shows the amplitude-frequency response

Fig. 4.10 Effect of α, the dimensionless Casimir parameter, on the amplitude-frequency response
using electrostatic and Casimir 6T ROM AUTO and 2TnE MMS polynomials of 25th degree.
δ = 4, b = 0.025, µ = 0, E is the degree of the electrostatic Taylor polynomial, C is the degree of
the Casimir Taylor polynomial. It should be noted that if α = 0, then the model used was the
electrostatic model.

in the case of Casimir effect, α = 0.2, using 6T ROM AUTO. Also time responses
using 6T ROM are shown in Figs. 4.12 and 4.13. As one can see, the twomethods are
in agreement. Figure 4.12a shows a time response with an initial amplitudeU0 = 0.2
and detuning frequency σ = −0.085. This point is towards the left of bifurcation
point A, and moves away from the unstable branch 2 towards the stable branch 1.
Figure 4.12b shows a time response from U0 = 0.0 and σ = −0.08 that settles on
branch 3. This is not in disagreement with the existence of bifurcation point A. For
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the same σ = −0.085 as Fig. 4.12a, the time response in Fig. 4.12c starts now from
a U0 = 0.7 and the amplitude settles on stable branch 3. Figure 4.12d shows a point
in the lower amplitudes of branch 3. Figures 4.13a and 4.13c show time responses
for a frequency σ = −0.125 and initial amplitudes, U0 = 0.7 and U0 = 0.4,
respectively. The initial amplitude U0 = 0.4 is below the unstable branch 2, so the
amplitude settles on branch 1. In the case of U0 = 0.7, which is above branch 3,
the amplitude settles on branch 3. Figures 4.13b and 4.13d show time responses
from initial amplitude, U0 = 0.7 and frequencies σ = −0.13 and σ = −0.15, for
which the amplitudes settle on branch 1. Figure 4.14 shows the effect of the degree

Fig. 4.11 Amplitude-frequency response using Casimir 6T ROM AUTO and Casimir 6T ROM
Time Responses, δ = 4, b = 0.025, α = 0.2, µ = 0

of Taylor polynomial approximating the Casimir force, E and C are the degrees of
Taylor polynomials approximating the electrostatic and Casimir forces, respectively.
The 2TnEmodel is also comparedwith the 1TnEmodel. The 2TnEpredicts a stronger
softening effect, which is more accurate. Furthermore, 1TnE MMS model does not
predict the existence of the three branches in higher amplitudes. In order to see the
effect of increasing the degree of the Casimir Taylor polynomial, the 2TnE model
used a 25th degree electrostatic Taylor polynomial. Overall, increasing the degree of
the Casimir Taylor polynomial shows a similar behavior to that of the electrostatic
Taylor polynomial effect, in which the branches show a stronger softening effect.
As there was no significant difference in the amplitude-frequency response between
Casimir Taylor polynomials of 20th and 25th degree, the 25th degree Casimir Taylor
polynomial was sufficient.
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Fig. 4.12 Casimir 6T ROM Time Responses, δ = 4, b = 0.025, α = 0.2, µ = 0: a) U0 = 0.2,
σ = −0.085, b) U0 = 0.0, σ = −0.08, c) U0 = 0.7, σ = −0.085, d) U0 = 0.0, σ = −0.04

4.10.3 Van der Waals Force Effect on Nanoelectromechanical
Systems Plates

Figure 4.15 shows the effect of the van der Waals parameter on the amplitude-
frequency response using 6T ROM AUTO and 2TnE MMS. The van der Waals
parameter effect on the amplitude-frequency response is similar to the effect of
Casimir parameter, it causes a reduction of the higher amplitudes for both MMS
and ROM predictions. Furthermore, it also causes a shifting of stable and unstable
branches towards lower frequencies, which can also be seen in the case of saddle-node
bifurcation point A. The lower amplitudes remain unaffected outside the resonance
zone. Figure 4.16 shows the amplitude-frequency response to include van der Waals
forces. Both 6T ROM AUTO and 6T ROM time responses are included. Time
response with U0 = 0.25 and σ = −0.08 settles to an amplitude on the stable
branch 1, Fig. 4.17a. Time response with U0 = 0.0 and σ = −0.075 settles to an
amplitude on branch 3, Fig. 4.17b. Figure 4.17c shows a time response from higher
initial amplitude U0 = 0.75 and σ = −0.08, that settles to an amplitude on branch
3. Figure 4.17d shows a time response from U0 = 0.0 and σ = −0.04, which
settles to an amplitude on branch 3. Figures 4.18a and 4.18c show time responses
at σ = −0.12 from different initial amplitudes. Figure 4.18a starts from U0 = 0.75
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Fig. 4.13 Casimir 6T ROM Time Responses, δ = 4, b = 0.025, α = 0.2, µ = 0: a) U0 = 0.7,
σ = −0.125, b) U0 = 0.7, σ = −0.13, c) U0 = 0.4, σ = −0.125, d) U0 = 0.7, σ = −0.15

and settles on stable branch 3, while 4.18c starts at U0 = 0.25 and settles on stable
branch 1. Figure 4.18b shows a point from a higher initial amplitude U0 = 0.75 and
at a frequency σ = −0.125, which is lower than the end pointsB andC that settles to
an amplitude on the stable branch 1. This is not in disagreement with the endpoints
predicted by AUTO. Figure 4.18d shows behavior similar to that of Fig. 4.18b.
Figure 4.19 shows the effect of the degree of the Taylor polynomial approximating
the van der Waals force, where E and V are the degrees of the Taylor polynomials
approximating the electrostatic force and the van der Waals force, respectively. As
in the Casimir case and the Electrostatic case, the 2tnE model of the van der Waals
case is more accurate than the 1TnE. Therefore the Taylor polynomials in the 2TnE
model are used. The 1TnE MMS model also shows no splitting of the branches 2
and 3, unlike the 2TnE. As the degree of the Taylor polynomial increases, the 2TnE
MMS model shows a behavior similar to that predicted by the 6T ROM AUTO. One
can notice that there is no significant difference in predictions between V = 20 and
V = 25. Therefore a van der Waals Taylor polynomial of 25th degree has been used.
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Fig. 4.14 Effect of C, the degree of the Taylor polynomial approximating the Casimir force in
MMS, on the amplitude-frequency response using 1TnE MMS E = 3 and 2TnE MMS E = 25,
δ = 4, b = 0.025, α = 0.2, µ = 0, E is the degree of electrostatic Taylor polynomial, C is the
degree of the Casimir Taylor polynomial

Fig. 4.15 Effect of µ, the dimensionless van der Waals parameter, on the amplitude-frequency
response using electrostatic and van der Waals 6T ROM AUTO and 2TnE MMS polynomials of
25th degree, δ = 4, b = 0.025, µ = 0, E is the degree of electrostatic Taylor polynomial, V is the
degree of the van der Waals Taylor polynomial. It should be noted that if µ = 0, then the model
used was the electrostatic model.
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Fig. 4.16 Amplitude-frequency response using van der Waals 6T ROM AUTO and van der Waals
6T ROM Time response, δ = 4, b = 0.025, α = 0, µ = 0.2

4.10.4 Stability

Figure 4.20 shows points of the amplitude-frequency response that have been tested
for stability. The eigenvalues λ1 and λ2 of the Jacobian Eq. (4.30) are given in
Table 4.7. One can notice that points D, F and G have complex eigenvalues with
negative real parts which correspond to stable spiral points. Point E has two real
eigenvalues, one positive and one negative, which corresponds to a saddle point,
which is unstable.This does not contradict the stability of branches predicted by 6T
ROM AUTO.

Table 4.7 Stability testing

Point on Fig. 4.20 a0 γ0 σ λ1, λ2

D 0.00580 0.05 -0.11763 -0.01249+0.25708i, -0.01249-0.25708i
E 0.08843 0.8 0.06196 -0.07606, 0.05253
F 0.11703 2.0 -0.05943 -0.01127+0.09531i,-0.01127-0.09531i
G 0.00482 3.1 0.01996 -0.01249+0.30561i,-0.01249-0.30561i
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Fig. 4.17 van der Waals 6T ROM Time Responses, δ = 4, b = 0.025, α = 0, µ = 0.2: a)
U0 = 0.25, σ = −0.08, b) U0 = 0.0, σ = −0.075, c) U0 = 0.75, σ = −0.08 , d) U0 = 0.0,
σ = −0.04

4.11 Discussion and Conclusions

The novelty of this research consists of predicting the amplitude-frequency response
of superharmonic resonance of second-order of electrostatically actuated clamped
M/NEMS circular plates to include Casimir and van der Waals effects. Two MMS
models of hard excitations have been proposed, and an investigation on the degree
of Taylor polynomials approximating the electrostatic, Casimir, and van der Waals
forces has been conducted. Several ROMs have been used in this work, and it has been
concluded that the ROMusing sixmodes of vibrations (6T) is themost viablemethod
in all amplitudes, lower and higher. The 6T ROM has been solved using AUTO, a
software package for continuation and bifurcation, and numerical integrationMatlab
for time responses. 6T ROMAUTO and 6T ROM time responses were in agreement.

Overall MMS is a fast and easy way to predict the frequency response of clamped
circular plate resonators.MMSpredicts the lower amplitudes quite well, as it matches
those of the 6T ROM. Furthermore, for parameters in whichMMS branches are split,
the lack of endpoints B and C of branches 2 and 3 in the MMS model is a serious
deficiency in predicting the occurrence of pull-in. Also MMS does not necessarily
provide very accurate results in high amplitudes and definitely cannot predict B
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Fig. 4.18 van der Waals, 6T ROM Time Responses, δ = 4, b = 0.025, α = 0, µ = 0.2: a)
U0 = 0.75, σ = −0.12, b) U0 = 0.75, σ = −0.125, c) U0 = 0.25, σ = −0.12, d) U0 = 0.75,
σ = −0.15

and C. However, MMS predicts the amplitude-frequency response quite well in the
case of higher damping and/or low voltage. Secondary resonance superharmonic
of second-order has been reported in the literature (Kim and Lee, 2015; Liu et al,
2014), for AC electrostatic actuation and for different structures than plates. Najar
et al (2010); Kim and Lee (2015) have shown similar results, although for different
structures and a hardening effect rather than softening effect as in this research.

In this paper two models for hard excitations were used for MMS, a one term no
epsilon model (1TnE) and a two term no epsilon model (2TnE) for the electrostatic
actuation. 2TnE was the most accurate of the two and it was used to investigate the
effect of the degrees of the MMS Taylor polynomials approximating electrostatic,
Casimir and van der Waals forces. This investigation showed that beyond the Taylor
polynomial of 25th degree, there is no significant difference in the predictions. The
ROM shows various benefits when compared to the MMS models. 6T ROM AUTO
was able to predict the endpoints B and C, and the stable branches are in agreement
wit the predictions of time responses. Furthermore, the convergence of the ROM
showed that 6T ROM was deemed sufficient for this research. These methods were
used to investigate the effects influences of different parameters, such as voltage,
and damping on the amplitude-frequency response. Increasing the voltage led to a
stronger nonlinear behavior, such as the appearance of the unstable branch 2, when
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Fig. 4.19 Effect of V , the degree of the Taylor polynomial approximating the van der Waals force
in MMS on the amplitude-frequency response using 1TnE MMS E = 3 and 2TnE MMS E = 25,
δ = 4, b = 0.025, α = 0, µ = 0.2, E is the degree of the electrostatic Taylor polynomial, V is the
degree of the van der Waals Taylor polynomial.

Fig. 4.20 Stability Testing, δ = 4, b = 0.025, α = 0, µ = 0.2
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the branches were split. Increasing damping led to a more linear behavior. The
increase of the Casimir and the van der Waals parameters, led to an increase of the
softening effect, and therefore a decrease of higher amplitudes. The lower amplitudes
did not differ from the electrostatic models.
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Abstract We consider a simple stochasticN -particle system, already studied by the
same authors in Ciallella et al (2021b), representing different populations of agents.
Each agent has a label describing his state of health. We show rigorously that, in
the limit N → ∞, propagation of chaos holds, leading to a set of kinetic equations
which are a spatially inhomogeneous version of the classical SIRmodel. We improve
a similar result obtained in Ciallella et al (2021b) by using here a different coupling
technique, which makes the analysis simpler, more natural and transparent.
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at the initial time.When an infected particle and a susceptible particle are sufficiently
close, they may interact and become both infected. Each infected agent can recover
independently of the others in a random time of fixed rate. As in the classical SIR
model by Kermack and McKendrick (1927), recovered agents can no longer become
susceptible or infected. However, at variance with the SIR model, we intend to
allow spatially inhomogeneous distributions of the populations. A simple proposal
for such a model has been given in Ciallella et al (2021b), which we reconsider
in the present paper. Our purpose is not to provide realistic modelling of spatial
patterns (even though this can be important in applications), but rather follow a
natural approach, inspired by the kinetic theory of rarefied gases; see for instance
Bellomo et al (2020); Albi et al (2021) and references therein. There is therefore
no focus on identifying realistic interactions between agents. In particular, we shall
neglect possible individual strategies, and assume a binary interaction. In spite of
its simplicity, the kinetic model still provides a good description of the qualitative
behaviour of SIR-like equations, because the essential aspects of the evolution are
weakly dependent on the microscopic details (Pulvirenti and Simonella (2020);
Ciallella et al (2021a,b)).

In this paper we show that, in the limitN →∞, theN -particle model introduced
in Ciallella et al (2021b) reduces to kinetic equations ((5.15) below) for the one-
particle marginals of the probability measure describing the statistical behaviour of
the system. In particular as a crucial step, we prove propagation of chaos, namely the
asymptotic statistical independence of the agents. We use a coupling method, which
improves the result obtained in Ciallella et al (2021b) (obtained via the hierarchy
method) providing a simpler and more effective proof. More precisely we introduce
a second random process, accounting for the kinetic equations formally associated
with the limit N → ∞, and construct a realization of both processes on the same
probability space. This coupling is then used to estimate the distance between the
processes and verify that the two models are asymptotically equivalent.

The plan of the paper is the following. In Sections 5.2 and 5.3 we present the
model and the limiting kinetic equation, respectively. In Section 5.4 we discuss
the convergence of the particle model in the kinetic limit following the coupling
argument. Finally, Section 5.5 is devoted to concluding remarks.

5.2 Model

We now define the system we are going to study. We refer also to Ciallella et al
(2021b) for the description of the model and the derivation of the formal kinetic
limit. Consider N particles, representing the agents of the system, moving a square
in the plane R2 with periodic boundary conditions, i.e., the torus Λ = [0, D] ×
[0, D], where D > 0 is a fixed parameter. The particles are assumed to move
with velocities of modulus 1 so that the velocities belong to the unit circle S1.
Each particle has a label ai ∈ {S, I,R} =: L, i = 1, 2, . . . , N , representing the
class of the agent (susceptible, infected, recovered). We introduce the notations
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ZN = (z1, z2, . . . , zN ), where zi = (xi, vi) ∈ Λ×S1, andAN = (a1, a2, . . . , aN ).
At any time, the state of the system is described by the (4N)–tuple of coordinates
(ZN ;AN ) belonging to the phase space (Γ × L)

N , where Γ := Λ× S1.
The system evolves in time according to the following generator:

L = L0 + L1 + Ld + LNint, (5.1)

where we have generators for which we omit the dependence on N since they are
acting independently on single particles (L0, L1 and Ld), and a binary interaction
term between particles LNint.

More precisely, L0 + L1 is the generator of N independent copies of a random
walk:

L0 =

N∑
i=1

vi · ∇xi (5.2)

is the generator of free motion (particles are moving of linear motion with velocities
vi, i = 1, . . . , N ), and jumps happen as described by

L1Φ(ZN ) =

N∑
i=1

1

2π

∫
S1

dw[Φ(z1, . . . , xi, w, . . . , zN )− Φ(ZN )]. (5.3)

In particular, when we select the test function Φ of the form of a function of a single
particle state only, for instance of the first one Φ(ZN ) = φ(z1), we get

L1Φ(ZN ) =
1

2π

∫
S1

dw[φ(x1, w)− φ(x1, v1)]. (5.4)

Note that labels are not involved in the random flight process, so here we have left
out the dependency on them to shorten the notations.

The other contributions in the generator are instead acting on the labels of the
particles only. The term Ld describes the decay of infected agents I into recovered
R. It takes the form

LdΦ(ZN ;AN ) = γ

N∑
i=1

[Φ(ZN ; a1, . . . , ãi, . . . , aN )− Φ(ZN ;AN )], (5.5)

γ > 0 being a constant parameter representing the rate of decay, and where the
transition of an ai label into a ãi is defined by

ãi = R if ai = I; ãi = ai otherwise. (5.6)

Finally, the binary interaction term describing the infection process has generator
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LNintΦ(ZN ;AN ) =
λ

N

N∑
i,j=1
j>i

[
Φ(ZN ; a1, . . . , a

′
i, . . . , a

′
j , . . . , aN )

− Φ(ZN ; a1, . . . , aN )
]
.

(5.7)

Here, λ > 0 is the constant representing the rate of the process and for the involved
particles the transition from (ai, aj) into (a′i, a

′
j) is defined by{

if χi,j = 1 and ai = I, aj = S or aj = I, ai = S then a′i = a′j = I ;

otherwise a′i = ai, a
′
j = aj .

(5.8)
The characteristic function χi,j is introduced to allow two particles to interact only
when they are sufficiently close: fixing R0 > 0, we define

χi,j := {xi,xj | |xi−xj |<R0} . (5.9)

Thus, the evolution due to the defined generator (5.1) is describing the following
behaviour. Each agent is moving in the space Λ performing a random flight, where
the velocity jumps happen with rate 1. Each particle has a label describing its state:
susceptible (S), infected (I), or recovered (R). According to a Poisson process with
overall rate (N−1)λ

2 , a pair of agents is selected uniformly. Whenever the chosen
agents are at a distance smaller than R0, the infection process takes place only for
pairs made by an infected and a susceptible agent, which are changed in a couple
of infected agents. Finally, each infected agent becomes recovered according to a
different Poisson process with rate γ.

A statistical description is in order for dealing with such a system with a large
number of agents N . The initial configuration of the system at time zero is given by
the probability densityWN

0 , symmetric in the exchange of particles, such that

WN
0 : (Γ × L)N → R+ ,

∑
AN

∫
ΓN

dZNW
N
0 (ZN ;AN ) = 1. (5.10)

The time evolved measureWN
t (ZN ;AN ), t > 0 is given by∑

AN

∫
dZNW

N
t (ZN ;AN )Φ(ZN ;AN ) =

∑
AN

∫
dZNW

N
0 (ZN ;AN )E[Φ(ZN (t);AN (t))] ,

(5.11)

where Φ is a test function, (ZN ;AN ) → (ZN (t);AN (t)) is the process and E =
E(ZN ,AN ) is the expectation conditioned to the initial value (ZN ;AN ). Integrating
with respect to the lastN−j particle positions, velocities and labels, j = 1, . . . , N−
1, we build the j-particle marginal fNj , that gives the probability density of finding
j particles with labels Aj in the configuration Zj :

1
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fNj (Zj ;Aj ; t) =
∑

ĀN−j∈LN−j

∫
dZ̄N−jW

N
t (Zj , Z̄N−j ;Aj , ĀN−j) . (5.12)

We consider particles distributed independently at time zero. Given the one-particle
density distribution f0, with normalization∑

a∈L

∫
dzf0(z; a) = 1 , (5.13)

the initial state is

WN
0 (ZN ;AN ) =

N∏
i=1

f0(xi, vi; ai) := (f0)⊗N (ZN ;AN ). (5.14)

It is crucial to keep inmind that, evenwhen at time zero the particles are independent,
they do not remain independent at positive times. In fact, the dynamics creates
correlations between particles so that the measure is no longer factorized at positive
times. However, we will prove that the so–called ‘propagation of chaos’holds. This
means that this independence is recovered asymptotically in the limit N →∞.

5.3 Kinetic Limit

We aim at proving that the systemwe introduced in the previous section is asymptoti-
cally equivalent to the system one formally obtains in the limitN →∞ assuming the
propagation of chaos. We refer to Ciallella et al (2021b) for such formal derivation,
and for a proof of the rigorous result through the hierarchy of equations satisfied by
the marginals fNj (Zj ;Aj ; t). In the following section, we shall proceed in a simpler
and more natural way.

According to the formal limit, the triple of single-particle densities

(f(z;S; t), f(z; I; t), f(z;R; t))

satisfies the following system of kinetic equations (z = (x, v)):
(∂t + v · ∇x) f(z;S) = L1f(z;S)− λf(z;S)

∫
f(z1; I)χ(|x− x1| < R0)dz1

(∂t + v · ∇x) f(z; I) = L1f(z; I)− γf(z; I)

+ λf(z;S)
∫
f(z1; I)χ(|x− x1| < R0)dz1

(∂t + v · ∇x) f(z;R) = L1f(z;R) + γf(z; I)

.

(5.15)
Note that the sum

f(z, t) :=
∑
a∈L

f(z; a; t)

satisfies the simple random flight equation
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(∂t + v · ∇x) f(z, t) = L1f(z, t) .

Moreover, the system of kinetic equations (5.15) provides amore detailed description
of the classical SIR model when dealing with spatially inhomogeneous data (see
Ciallella et al, 2021b).

We now introduce as second model the process associated with the kinetic equa-
tions (5.15) that we will eventually couple with the one introduced in Section 5.2.
The single-particle generator is

L̃ = L̃0 + L̃1 + L̃d + L̃i (5.16)

where L̃0, L̃1 and L̃d are the operators defined in Section 5.2, namely L0, L1 and
Ld respectively, in the case N = 1; while the infection generator is given by the
non–linear (f -dependent) term

L̃iφ(z; b) = λNf (z){φ(z; b′)− φ(z; b)}, (5.17)

where Nf (depending on time through f ) is defined as

Nf (z) = (f(I; t) ∗ χR0)(z) :=

∫
f(z1; I; t)χ(|x− x1| < R0)dz1 , (5.18)

χ(A) is the indicator function of A, and (z; b) ∈ Γ × L. We are keeping the same
notation associated with the prime sign as in Section 5.2, i.e., b′ = I if b = S, while
in the other cases b′ = b.

We now consider theN–particle process defined byN independent copies of the
one–particle nonlinear process introduced above. The N–particle generator is

L̃N = L0 + L1 + Ld + L̃Ni (5.19)

where L0, L1, Ld are given by (5.2)-(5.5) and, for (ZN ;BN ) ∈ (Γ × L)N ,

L̃Ni Φ(ZN ;BN ) = λ

N∑
i=1

Nf (zi)
{
Φ(ZN ;BiN )− Φ(ZN ;BN )

}
(5.20)

with{
BiN =(b1, . . . , bi−1, I, bi+1, . . . , bN ) if BN =(b1, . . . , bi−1, S, bi+1, . . . , bN )

BiN = BN otherwise
.

(5.21)
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5.4 Particle Approximation

We are now ready to prove the validity of the kinetic equations (5.15) for the model
introduced in Section 5.2, in the limit N → ∞. We are assuming (5.13) and (5.14)
at time zero, i.e., the initial datum is factorized. On the other hand the dynamics of
labels creates correlations as

fN2 (z1, z2; a1, a2; t) 6= fN1 (z1; a1; t)fN1 (z2; a2; t) .

To show that these correlations are vanishing as N → ∞, we now introduce a
coupling between the process described by the generator (5.1) and the process
associated to the kinetic equations (5.15).

We start by considering a different equivalent form for the generator

LNintΦ(ZN ;AN )

=
λ

2N

N∑
i=1

N∑
j=1
j 6=i

δaj ,I{Φ(ZN ; a1, . . . , a
′
i, . . . , a

′
j , . . . , aN )− Φ(ZN ;AN )}

=
λ

N

N∑
i=1

N∑
j=1
j 6=i

δaj ,Iχi,j{Φ(ZN ;AiN )− Φ(ZN ;AN )}

= λ

N∑
i=1

Jiemp{Φ(ZN ;AiN )− Φ(ZN ;AN )} ,

(5.22)

where we use the prime superscript with the meaning of (5.8), i.e{
a′i = I if aj = I, ai = S and χi,j = 1,

a′i = ai, aj = a′j otherwise
,

and the i superscript (as in (5.21)) when we prefer to make explicit the role of both
δaj ,I and χi,j , i.e.{
AiN =(a1, . . . , ai−1, I, ai+1, . . . , aN ) if AN =(a1, . . . , ai−1, S, ai+1, . . . , aN )

AiN = AN otherwise
(5.23)

having introduced

Jiemp = Jiemp(ZN ;AN ) =
1

N

N∑
j=1
j 6=i

δaj ,Iχi,j . (5.24)

In words, we are interpreting the behaviour in the following equivalent way. The N
agents are still moving in Λ via a random flight, with velocity jumps in S1 taking
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place with rate 1 per agent and each infected agent becomes recovered according to
a Poisson process of rate γ. In the infection process we choose with rate N an agent
i uniformly and then, with a rate λ, we evaluate the interaction with an uniformly
picked agent. So that, if this latter is an infected agent and the i-th is a susceptible
one and if their distance is smaller than R0, then ai becomes I , otherwise nothing
happens.

We want to compare the behaviour of this process with that of the one–particle
non–linear process associated to the kinetic equation (5.15), described by the genera-
tor (5.17). The idea is now to couple the two processes. We remark that the positions
and velocities are the same, so that the difference is only in the distributions of the
labels. Let us call Ei the following difference

Ei := Nf (zi)− Jiemp(ZN ;BN ). (5.25)

We expect that, by the law of large numbers, Ei gives a vanishing contribution as
N → ∞ and hence, for sufficiently large N , generates a small perturbation in the
evolution of distributions of labels.

We consider as coupling the process t→ (ZN (t);AN (t), BN (t)) with generator

QN = L0 + L1 +QNd +QNi , (5.26)

where the decay term is defined as

QNd Φ(ZN ;AN , BN ) = γ

N∑
i=1

[Φ(ZN ; ÃiN , B̃
i
N )− Φ(ZN ;AN , BN )], (5.27)

denoting by ÃiN = (a1, . . . , ãi, . . . , aN ) the transition on the i–th agent as defined
in (5.6), and analogous definition for B̃iN . The interaction term is

QNi Φ(ZN ;AN , BN ) =λ

N∑
i=1

Ji{Φ(ZN ;AiN , B
i
N )− Φ(ZN , AN , BN )}

+ λ

N∑
i=1

Ji1{Φ(ZN ;AiN , BN )− Φ(ZN ;AN , BN )}

+ λ

N∑
i=1

Ji2{Φ(ZN ;AN , B
i
N )− Φ(ZN ;AN , BN )}

+ λ

N∑
i=1

Ei{Φ(ZN ;AN , B
i
N )− Φ(ZN ;AN , BN )},

(5.28)
whereAiN ,BiN follows the transition rule (5.23), and the label jump associated to Ji1
only affects the transition for AN , while the terms corresponding to Ji2 and Ei only
affect the transition for BN . Instead, the jumps described by the first term in (5.28)
and in (5.27) are simultaneous for particles labelled by both AN and BN (which is
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optimal for what concerns the propagation of chaos). We set

Ji =
1

N

N∑
j=1
j 6=i

δaj ,Iδbj ,Iχi,j ,

Ji1 =
1

N

N∑
j=1
j 6=i

δaj ,I(1− δbj ,I)χi,j ,

Ji2 =
1

N

N∑
j=1
j 6=i

(1− δaj ,I)δbj ,Iχi,j

(being δaj ,I the Dirac delta taking value 1 if and only if aj = I and 0 otherwise, and
analogously for the other deltas). Note that thanks to this choice, one has that

Ji + Ji1 = Jiemp(ZN ;AN ) , Ji + Ji2 + Ei = Jiemp(ZN ;BN ) + Ei = Nf (zi)

so that QN is actually generating a coupling of the two previously described pro-
cesses, i.e., we recover as the two marginals the two processes we are considering,
obtained by integrating over BN and AN , respectively.

Let RN (t) be the law at time t for the coupled process, and we consider as the
initial distribution at time 0 the factorized distribution with the same distribution
of labels for both a and b–labelled particles, i.e. RN (0) = f⊗N0 (ZN ;AN )δAN ,BN .
We define DN (t) as the average fraction of particles having different labels ai,
bi, i.e. we choose the test function Φ(ZN ;AN , BN ) = 1

N

∑N
i=1 d(ai, bi), where

d(a, b) = 1− δa,b: thanks to the symmetry

DN (t) =

∫
dRN (t)

1

N

N∑
i=1

d(ai, bi) =

∫
dRN (t)d(a1, b1). (5.29)

We notice that DN (0) = 0 and that DN (t) is positive. Our aim is to prove that
DN (t) can be estimated by an arbitrarily small quantity for finite time, provided that
N is sufficiently large.

Theorem 5.1. For any t > 0, the fraction of particles with different labels satisfies

DN (t) ≤ tλ

N
e2λt . (5.30)

for sufficiently large N .

Remark. The above estimate says that, for any positive time, for the time evolved
joint measure associated to theN–particle systems of the process whose generator is
(5.1), and of the one whose generator is (5.17), the fraction of particles with different
labels is arbitrarily small, provided that N is sufficiently large.
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Proof.We evaluate

d

dt

∫
dRN (t)d(a1, b1) =

∫
dRN (t)(L0 + L1 +QNd +QN1 )d(a1, b1) , (5.31)

where the contribution due to the terms L0 and L1 is vanishing since d(a1, b1) does
not depend on x and v.

The contribution due to the decay term (5.27) is

γ

∫
dRN (t)(d(ã1, b̃1)− d(a1, b1)) = −γ

∫
dRN (t)(δã1,b̃1 − δa1,b1). (5.32)

It is easy to verify that this contribution is non–positive. Indeed, in the case where
a1 and b1 are equal, also ã1 and b̃1 remain equal, and the contribution is vanishing.
In the case when a1 and b1 are different, after the transformation ã1 and b̃1 can
either remain different, or (if at the beginning there were an I and an R–labelled
agent) both become R. This last case is the only one in which the contribution is not
vanishing, but negative.

The same argument applies to the first term in the right hand side of the interaction
(5.28). This term can be written as

−λ
∫
dRN (t)J1(δa′1,b′1 − δa1,b1), (5.33)

and, in the same way as previously, a1 = b1 implies that after the transformation
a′1 = b′1, so that the only non–zero contribution is negative, and it happens when an
S and an I–labelled particle are transformed into two I–particles.

Now, let us evaluate the second term in the right hand side of the interaction
(5.28). It can be written as

(II) =λ

∫
dRN (t)J1

1(ZN ;AN , BN )(d(a′1, b1)− d(a1, b1))

=− λ
∫
dRN (t)J1

1(ZN ;AN , BN )(δa′1,b1 − δa1,b1).

(5.34)

Here, the difference of the deltas can take the values -1,0, or 1. Then

|(II)| ≤ λ
∫
dRN (t)

1

N

N∑
j=2

δaj ,I(1− δbj ,I)χ1,j

≤ λ
∫
dRN (t)

1

N

N∑
j=2

d(aj , bj) ≤ λDN (t).

(5.35)

The third term in (5.28) can be estimated in exactly the same way.
Finally,
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dRN (t)E1 =

∫
dRN (t)Nf (z1)−

∫
dRN (t)J1

emp(ZN ;BN )

=
∑
a

∫
dz dz1f(z; a; t)χ(|x− x1| < R0)f(z1; I; t)

−
∫
dRN (t)

1

N

N∑
j=2

δbj ,Iχ(|xj − x1| < R0) .

(5.36)

The last term, thanks to the symmetry, can be written as

−N − 1

N

∑
a

∫
dz dz1f(z; a; t)χ(|x− x1| < R0)f(z1; I; t), (5.37)

so that∣∣∣∣∫ dRN (t)E1

∣∣∣∣ ≤ 1

N

∑
a

∫
dz dz1f(z; a; t)χ(|x− x1| < R0)f(z1; I; t) ≤ 1

N
.

(5.38)
In conclusion, recalling that DN (0) = 0, we find that

d

dt
DN (t) ≤ 2λDN (t) +

λ

N
(5.39)

and the Theorem is proven by Grönwall’s Lemma. ut

We conclude this section with some comments. Theorem 5.1 implies the con-
vergence of the one-particle marginal fN1 (z; a; t) to the solution f(z; a; t) of the
kinetic equations (5.15). To see this one can use the Wasserstein distance W, which
we recall. Given two measures µ and ν on a metric spaceX with the discrete metric
d̄,

W(µ, ν) := inf
R∈C(µ,ν)

∫
dR(z, z′)d̄(z, z′)

where C(µ, ν) is the set of the joint representations of µ and ν, i.e. measures on
X ⊗X with marginals µ and ν respectively. This metric is equivalent to the Total
Variation and hence to theL1–norm, whenever suchmeasures have suitable densities
(Villani, 2003).

Arguing now on the phase space Γ × L endowed with the discrete metric

d̄(z1, z2) + d(a1, a2),

weconstruct a joint representation ofdfN1 (z; a; t) anddf(z; a; t), denoted bydRN (t),
along the coupled process. Since the trajectories (on Γ ) of the two processes are the
same, the configurational contribution vanishes and

W
(
dfN1 (t), df(t)

)
≤ tλ

N
e2λt .



116 Ciallella, Pulvirenti, Simonella

This also controls ‖fN1 (t)− f(t)‖L1 and, along similar lines, on can also show that

‖fNj (t)− f(t)⊗j‖L1 ≤ Cj tλ
N
e2λt

for some geometrical positive constant C.
The obtained estimates slightly improve the quantitative results obtained via the

hierarchy as sketched in Ciallella et al (2021b).

5.5 Concluding Remarks

In this paper we performed a mathematical analysis, based on a coupling method, of
a toy model for epidemic spread in a system of N individual agents as proposed in
Ciallella et al (2021b).

The study of epidemiological models has been obviously very fertile over recent
times (see Pulvirenti and Simonella, 2020; Flandoli et al, 2020; Ciallella et al, 2021a;
Bertaglia et al, 2021; Boscheri et al, 2021; Ciallella et al, 2021b; Loy and Tosin, 2021;
V. Vuong et al, 2021, for a very non-exhaustive list of recent mathematical works
oriented toward kinetic theory). Even in this context, the use of coupling methods is
not new.We canmention classical work asWhittle (1955) on the comparison of birth-
death processes with the SIRmodel, and several other contributions over more recent
times as for instance Ball and Donnelly (1995); Häggström and Pemantle (1998).
Of course coupling arguments have been a powerful tool for studying the behaviour
of stochastic processes for several years now. In particular such arguments have
been used to approximate kinetic equations of Boltzmann type (and justify related
numerical schemes) with particle systems in the spirit of Kac; see e.g. Graham and
Méléard (1997); Cortez and Fontbona (2016).

Multi-agent systems are important in a wide range of fields. As an example in
the theory of epidemic spread, the most common models divide the population in
several classes, going from the classical susceptible-infected-recovered quoted above,
to recent generalizations with several additional species (as the SUIHTER model
with susceptible uninfected individuals, undetected infected, isolated, hospitalized,
threatened, extinct, and recovered, proposed in Parolini et al, 2021). The models
aim at describing the evolution of average fractions for the different species, as in
the predator-prey system of Lotka–Volterra type (see Diz-Pita and Otero-Espinar,
2021, for a recent review). We would like to mention here, as another example,
the case of mathematical models describing the behaviour of bones, which include
cellular automata models (for instance Czarnecki et al, 2014; Van Scoy et al, 2017)
or empirical models based on variational formulation; see Giorgio et al (2019, 2021);
Lekszycki and dell’Isola (2012) among others.
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Chapter 6
On the Constitutive Assumptions for a
Continuum Model of Scintillating Crystals

Fabrizio Daví

Abstract For inorganic scintillating crystals, we show how the evolution equation for
the charge carriers densities can be obtained by modeling the crystal as a continuum
with structure. The resulting equation is a Reaction-Diffusion-Drift one. We deal
with various hypotheses on the reaction/recombination term which are induced by
two different choices for the associated entropy, namely those based either on the
Gibbs-Boltzmann or Fermi–Dirac statistics.

Keywords: Evolution equations · Scintillating crystals · Gibbs entropy · Fermi–
Dirac potentials

6.1 Introduction

A scintillating crystal or scintillator is a crystal that acts as a wavelength shifter, i.e.
that converts incoming ionizing energy into photons in the frequency range of visible.
In a previous paper (Daví, 2019) we modelled inorganic scintillators by the means of
a continuumwith structuremodel, to arrive at a reaction-diffusion-drift systemwhich
describes the evolution and the recombination in photons of the charged carriers.
A model of this kind, first proposed for scintillators in Vasil’ev (2008), was used
subsequently in many papers to get a phenomenological description of scintillation.
In this and similar models the diffusion-drift part and the recombination term (which
describes how the radiation-excited charge carriers recombine radiatively to generate
visible photons or lose energy through non-radiatively processes) were borrowed
directly either from the kinetics of chemical reactions or from similar models for
semiconductors.

F. Daví
DICEA & ICRYS, Universitá Politecnica delle Marche, Ancona, Italy
on leave at IMT-School for Advanced Studies, Lucca, Italy
e-mail: davi@univpm.it

119
I. Giorgio et al. (eds.), Theoretical Analyses, Computations,
and Experiments of Multiscale Materials, Advanced Structured Materials 175,
https://doi.org/10.1007/978-3-031-04548-6_6

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04548-6_6&domain=pdf


120 Daví

In Daví (2019) we showed how the reaction-diffusion-drift boundary value prob-
lem for scintillators can be obtained, in a coherent and consistent manner, by the
means of the mechanics of continua with microstructure (Capriz, 1989) for a non-
deformable crystal. Moreover, we showed how the reaction term can be obtained, by
using the formalism of chemical reaction kinetics, to deal with the recombination
mechanisms. Further, we showed that the whole boundary value problem admits a
gradient flow structure: for the various mathematical aspects and results vid. e.g. the
review in Daví (2021).

The aim of the present work is two-fold: first to extend the results of Daví (2019)
to deformable continua and then to investigate the effects of different constitutive
assumptions for the dissipative terms (which are represented by an entropy func-
tional) on the recombination term. In particular, we look at two possible choices for
the entropy functional, namely the Gibbs (or Boltzmann–Gibbs) entropy and the one
which is based on the Fermi–Dirac statistics. This last one seems more appropriate
to describe recombination in scintillator, but this is obtained by losing the simpler
mathematical structure induced by the Gibbs entropy and which is well studied from
a mathematical point of view (Daví, 2021). Accordingly, reaction-diffusion-drift
equations based on the Fermi–Dirac statistics deserve further study.

6.2 A Continuum with Microstructure Model for Scintillators

In a series of previous papers (Daví, 2019, 2021), we obtained a model for the
evolution and recombination of charge carriers in inorganic scintillating crystals:
here we recall the main results obtained.

Let Ω ⊂ E be a region of the three-dimensional euclidean space E which we
identify with the reference configuration of a continuum body, which we assume
comprised of a dielectric, non-magnetizable and deformable scintillating crystal.
Let

y(x , t) : Ω → E× [0 , τ) , (6.1)

be a motion and let Ωt = y(Ω , t) be the current configuration of Ω.
When incoming ionizing radiations hit Ωt at given (y , t), the radiation energy

generates a distribution of charged particles (electrons, holes, bounded electron-hole
pairs called exciton, and many others) collectively referred as excitation carriers.
These excitation carriers which evolves in the matter according to the Bethe-Bloch
equation (Inokuti, 1971), (Ziegler, 1999), follow a complicated path with many
kinks and bends for about 10 microns until either they lose their energy, excite
other particles or recombine, generating a shower of charged particle within a region
P ⊂ Ωt whose diameter is about 100 microns (Jaffe, 2007). We call the region P

about (y , t) the Scintillation region: it is within this region that the charged carriers
recombine, some of them generating photons.

In the initial stages, the particles follow a straight path of few nanometers: in
(Daví, 2019) we showed how, by the means of a suitable scaling procedure of an
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approximate solution of the Bethe-Bloch equation (Ulmer, 2007), we may obtain a
mesoscopic state variable N , the excitation carrier density. Such a variable, which
represents the particle density in the initial stage, brings to the mesoscopic scale the
material properties and the ray-energy which impinges the material at (y , t). We
henceforth assume N a continuous field on the scintillation region

N : P× [0 , τ)→ R+ , (y , t) 7→ N(y , t) > 0 . (6.2)

Since the charged particles may have different charge sign and also exhibits differ-
ent recombination and dissipation mechanics it is useful to differentiate them by
introducing an excitation carrier vector, the k−dimensional array:

n ≡ (n1 , n2 , . . . , nk) ,

k∑
j=1

nk(x , t) = N(y , t) , nj ≥ 0 ; (6.3)

the simplest non-trivial case is for k = 2 with say, n1 representing the electrons
density (which is equal to the holes density) and n2 the exciton density, i.e. bounded
electron-hole pairs which evolve together. However we may have cases with k = 3
(Williams et al, 2011; Moses et al, 2012), k = 7 (Gridin et al, 2015) or m ≥ 11 as
in Vasil’ev (2008). We notice that, since N is finite, this implies that n is bounded
in the L1(P) norm: ∫

P

N =

∫
P

k∑
j=1

|nj | = ‖n‖L1(P) <∞ . (6.4)

For e the elementary charge, the excitation carrier densities (6.3) induce a free-charge
density ρf within the scintillation volume:

ρf = eq · n , in P , (6.5)

where q = (q1 , q2 , . . . , qk), qj ∈ Z is the charge number vector. We assume that
within the scintillation region P there are no bound charges and hence the excitation
carrier density induces an electric potential ϕ (Wang, 1979):

−ε∆ϕ = ρ∗ , in R3

[[gradϕ]] ·m = 0 , on ∂P ,
(6.6)

wherem is the outward unit normal to ∂P and:

ρ∗ =


eq · n , in P ,

0 , in R3/P .

(6.7)

We define the Gibbs free-energy generated by the excitation carriers as the elec-
trostatic energy associated to (6.6) plus an entropic term which depends on the
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excitation carrier density

S(P) =

∫
R3

1

2
ε‖gradϕ‖2 + θkB

∫
P

F(n) , (6.8)

where kB is the Boltzmann constant and θ is the absolute temperature.
LetΠself(P) be the Scintillation self-power, that is the power which the charge car-

riers in P expend on P itself: then, by following a constitutive assumption introduced
in (DeSimone and Podio Guidugli, 1996) we set:

Πself(P) +
d

dt
S(P) = 0 ; (6.9)

by (6.6), from (6.9) and by the Reynold’s theorem and a procedure proposed in
(DeSimone and Podio Guidugli, 1996) we arrive at:

Πself(P) = −
∫
P

(g · ṅ + Tms · gradv) , (6.10)

where v is the material velocity:

v(y , t) =
∂y

∂t
(x , t)

∣∣∣
x(y ,t)

. (6.11)

In (6.10) the Scintillation potential, the k−dimensional array whose components
represent the potential associated to each charge carrier descriptor andwhich expends
power for the rate-of-change of the excitation carriers densities, is defined by:

g(n) = eqϕ(n) + θkB
∂F

∂n
(n) , (6.12)

whereas the symmetric Maxwell-Scintillation stress tensor is defined as:

Tms = ε(gradϕ⊗ gradϕ− 1

2
‖gradϕ|2I) + (eq · nϕ+ θkBF)I , (6.13)

which differs from the classical Maxwell stress for the presence of the scintillation-
depending term.

6.3 Balance Laws

We assume that the scintillation region P is comprised of a macroscopic continuum
superposed to a continuum with microstructure which, according to (Capriz, 1989)
we represent with a director d = d(y , t) and which belongs to a manifold M: at
this stage, we didn’t specify nor the manifold neither the physical meaning of d. The
volume microforce b and the surface microforce s represent the external actions on
the microstructure in P, whereas themicrostress T represents the internal action and
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the interactive microforce k accounts for the interaction between the microstructure
and the macroscopic continua. As far as the macroscopic state variables we assume
the Cauchy stress tensor T and the volume and surface densities pair (b , s) whereas
we assume that the crystal is isothermal with the absolute temperature fixed and
uniform.

We may accordingly define the external power expended on P by both the micro-
and macroscopic volume and surface densities as:

Πext(P) =

∫
P

(b · v + b · ḋ) +

∫
∂P

(s · v + s · ḋ) , (6.14)

and likewise, the internal power

Πint(P) =

∫
P

(
(T + Tms) · gradv + T · gradḋ + k · ḋ

)
; (6.15)

since the Total power is given by

Π(P) = Πext(P) +Πint(P)−Πself(P) . (6.16)

In order to make (6.16) a linear functional of the set {v , gradv , ḋ , gradḋ} we need
to identify the rate-of-change of director with the scintillation potential:

g = ḋ ; (6.17)

accordingly, M ≡Rk ∪ {0}, and the components of the director represents the
Lagrangean action:

dj(y , t) = dj(y , 0) +

∫ t

0

gj(y , τ)dτ , j = 1 , 2 , . . . , k . (6.18)

By (6.10), (6.14), (6.15), with (6.12) and by the divergence theorem we get

Π(P ,v , g) =

∫
P

(divT− k + b− ṅ) · g +

∫
∂P

(s− Tm) · g

+

∫
P

(div(T + Tms) + b) · v +

∫
∂P

(s− Tm) · v ;

(6.19)

we follow Mariano (2001) and require that the total power (6.19) be invariant under
the change of observer

Π(P ,v , g) = Π(P ,v∗ , g∗) , g∗ = g + go , v∗ = v + vo +W (y − o) ,
(6.20)

where go and vo are constant andW is a skew-symmetric tensor. We remark that the
total power is invariant for scintillation potentials which differs by a constant, as it is
customary, whereas for the velocity we required the usual Galileian and Leibnitzian
invariance: from such an invariance request we obtain both the macroscopical
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div(T + Tms) + b = 0 , in P× [0 , τ) ,

(T + Tms)m = s , on ∂P× [0 , τ) .
(6.21)

and the microscopical balance laws:

divT− k + b = ṅ , in P× [0 , τ) ,

Tm = s , on ∂P× [0 , τ) .
(6.22)

If we multiply both sides of (6.22)1 by the elementary charge e, we may see that the
physical meaning of the microscopical balance laws is, on a dimensional basis, that
of the conservation of the k electric currents associated to each charge carrier.

The balance laws (6.21) can be reformulated in a slightly different manner, by
writing the Maxwell-scintillation stress tensor as a volume and surface density pair
(b∗ , s∗) defined as

b∗ = ε(gradgradϕ)gradϕ− (eq · n)gradϕ+ (gradT n)g ,

s∗ = (ε
1

2
‖gradϕ‖2 − (eq · n)ϕ− θkBF)m ,

(6.23)

to get:
divT + b∗ + b = 0 , in P× [0 , τ) ,

Tm = s∗ + s , on ∂P× [0 , τ) .
(6.24)

6.4 Thermodynamics. Constitutive Relations

We assume that within the scintillation regionP it is well-defined aGibbs free-energy
ψ = ψ(y , t) such that the dissipation inequality holds

d

dt

∫
P

ψ ≤ Πint(P) , (6.25)

and whose local form leads to the reduced dissipation inequality:

ψ̇ − T · gradv − T · gradḋ− k · ḋ ≤ 0 . (6.26)

The constitutive hypotheses we are going to assume for the deformable scintillating
crystals are the following:

• the Gibbs free-energy depends at most on F , d and D:

ψ = ψ̂(F , d ,D) ; (6.27)

• the microstress and the interactive microforce can be split additively into a
conservative and a non-conservative (dissipative) part:

T = Tc + Td , k = kc + kd . (6.28)
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In force of these constitutive hypotheses then (6.26) can be rewritten, by the means
of the identities (Gurtin et al, 2010)

gradv = Ḟ F−1 , gradḋ = Ḋ + Dgradv , D = gradd , (6.29)

as

ψ̇ − (T + DTTc)F−T · Ḟ − Tc · Ḋ− kc · ḋ− Td · gradg − kd · g ≤ 0 , (6.30)

which in turn leads to:

(
∂ψ̂

∂F
− T − DTTc) · Ḟ + (

∂ψ̂

∂D
− Tc) · Ḋ

+(
∂ψ̂

∂d
− kc) · ḋ− Td · gradg − kd · g ≤ 0 .

(6.31)

By a customary procedure then from (6.31) we are led to the constitutive relations:

T (F , d ,D) =
∂ψ̂

∂F
− DT

∂ψ̂

∂D
,

Tc(F , d ,D) =
∂ψ̂

∂D
,

kc(F , d ,D) =
∂ψ̂

∂d
,

(6.32)

and, by a Lemma given in Gurtin and Voorhees (1993), to the representation of the
dissipative terms by the means of twom×m positive definite matrices S and H:

Td(F , d ,D , g , gradg) = S(F , d ,D , g)[gradg] , Tdij = Sijhkgh,k ,

kd(F , d ,D , g , gradg) = H(F , d ,D , gradg)g , kdi = Hijgj ,
(6.33)

to this regard we remark that, since by (6.12), (6.17) and (6.18) d, D, g and gradg
depends implicitly on n, then we can formally rewrite (6.33) as in (Daví, 2019):

Td(F , n , gradg) = S(F , n)[gradg] ,

kd(F , n , g) = H(F , n)g .
(6.34)

By using (6.28), (6.32) and (6.34) into (6.22) we finally arrive at the evolution
equations for the excitation carrier density:

div

(
∂ψ̂

∂D
+ S[gradg]

)
−
(
∂ψ̂

∂d
+ Hg

)
+ b = ṅ in P× [0 , τ) ,

g = ḋ ,(
∂ψ̂

∂D
+ S[gradg]

)
m = s in ∂P× [0 , τ) ,

(6.35)
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which are coupled with the Laplace equation (6.6)

− ε∆ϕ = ρ∗ , in R3 × [0 , τ)

[[gradϕ]] ·m = 0 , on ∂P× [0 , τ) ,
(6.36)

and with the macroscopic balance laws, in the form (6.24),

div

(
∂ψ̂

∂F
F T − DT

∂ψ̂

∂D

)
+ b∗ + b = 0 , in P× [0 , τ) ,

skw

(
∂ψ̂

∂F
F T − DT

∂ψ̂

∂D

)
= 0 ,(

∂ψ̂

∂F
F T − DT

∂ψ̂

∂D

)
m = s∗ + s , in ∂P× [0 , τ) .

(6.37)

In the evolution equation (6.35)1 we have two different regimes: one which depends
on the pair (g , gradg) and which is purely dissipative, the other which depends
on the pair (d ,D): the first regime describes the generation and recombination of
excitons into photons, a process whose decay in time is fast, in the order of few
nanoseconds. With the second regime, we may describe phenomena that decays in
longer times, like e.g. persistent luminescence and related phenomena, which evolves
in a time scale that ranges from seconds to hours and accordingly can be assumed as
conservative at the scale of scintillation. In the macroscopic balance laws, instead,
the coupling between scintillation and stress is given by the pair (b∗ , s∗) and through
the presence of D = gradd.

6.5 Reaction-Diffusion-Drift Equations for Scintillators:
Constitutive Assumptions

If we assume that the Gibbs free-energy simply represents the elastic energy density:

ψ = ψ̃(C) , C = F TF , (6.38)

and assume that the volume and surface microforces are neglibile, b = 0, s = 0,
then from (6.32)1,2 the conservative part of the stress and interactive microforce both
vanish and T = Td, k = kd, with (6.34) still holding. Then, from (6.22) we obtain
the evolution equations in term of the scintillation potential:

divS[gradg]−Hg = ṅ , in P× [0 , τ) ,

S[gradg]m = 0 , on ∂P× [0 , τ) ,
(6.39)

and which can be put in the gradient-flow form (Mielke, 2011)
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ṅ = −DΨ(gradg , g) , Ψ =

∫
P

1

2
(S[gradg] · gradg + H[g] · g) , (6.40)

whereD denotes the Frechet derivative andΨ is the conjugate dissipation functional.
As far as the macroscopic balance laws are concerned, they reduces to a simpler

form where the coupling with scintillation is given only by the pair (b∗ , s∗):

div

(
∂ψ̂

∂F
F T
)

+ b∗ + b = 0 , in P× [0 , τ) ,

skw

(
∂ψ̂

∂F
F T
)

= 0 ,(
∂ψ̂

∂F
F T
)
m = s∗ + s , in ∂P× [0 , τ) .

(6.41)

We are going now to write the evolution equation (6.39) in terms of the excitation
carrier vector n for a generic choice of the entropic term F(n). Since from (6.12):

gradg = eq⊗ gradϕ+ θkBFgradn , F(n) =
∂2F

∂n2
(n) , (6.42)

then by (6.33) we have

T = S(F , n)[gradg] = eS(F , n)[q⊗ gradϕ] + θkBS(F , n)F(n)[gradn] .
(6.43)

First of all we define the k × k Diffusivity matrix D as

D(F , n) = θkBS(F , n)F(n) ; (6.44)

then the k×k MobilitymatrixM is related to the Diffusivity matrix by the means of
the relation (Lindholm and Ayers, 1968; San Li and Lindholm, 1968; Nillson, 1973)

M = −N−1GD , (6.45)

where the k × k matrix G is
G =

dn

d(qϕ)
, (6.46)

and N(n) is the k × k matrix:

N(n) ≡ diag{n1 , . . . , nk} , (6.47)

whose formal inverse N−1(n) is them×m diagonal matrix whose entries are 1/nk
for nk 6= 0 and 0 for nk = 0.

Accordingly, from (6.45) and provided G be invertible, we have the generalized
Einstein–Smoluchowsky relation

D = −G−1NM , (6.48)
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and then, by (6.44) and (6.48),

eS =
e

θkB
DF−1 = − e

θkB
G−1NMF−1 . (6.49)

If we denote
M∗ = − e

θkB
G−1NM , (6.50)

then from the expression (6.43) for the microstress we recover the Nernst–Planck
relation:

T = D[gradn] + M∗F−1[q⊗ gradϕ] . (6.51)

We turn our attention to the dissipative microforce, which describes the recom-
bination mechanisms, both radiative and non-radiative. We follow the analogous
treatment given by Mielke (2011) for semiconductors and then we deal with the
recombination mechanism with the language of the chemical reactions. Therefore,
we assume that we may have s reversible recombination mechanisms described by
the 2s , k-dimensional arrays:

ah ≡ (ah1 , a
h
2 , . . . a

h
k) , bh ≡ (bh1 , b

h
2 . . . b

h
k) , h = 1 , . . . s , (6.52)

whose recombination rates kh = kh(F ) may depend on the deformation

ah
kh−−⇀↽−− bh , h = 1 , 2 , . . . s . (6.53)

Then we assume as a constitutive hypothesis, by following the suggestions provided
in Liero et al (2017); Peletier et al (2020); Esposito et al (2021) that in the conjugate
dissipation functional (6.40)2 the term ruled by the matrix H can be represented as

1

2
H(F , n)g · g =

s∑
h=1

kh(F )α(
na
h

wah
,
nb
h

wbh
)ξ((ah − bh) · g) , (6.54)

where

• the dual dissipation functional ξ : R→ R+ is such that

R 3 s 7→ ξ(s) ∈ R , ξ(o) = ξ′(0) = 0 , ξ′′(s) > 0 , ∀s ∈ R; (6.55)

• the interpolation function α(u , v) : R+ × R+ → R+ obeys

min{u , v} ≤ α(u , v) ≤ max{u , v} . (6.56)

• the symbol vu denotes the product:

vu =

k∏
j=1

v
uj
j = vu1

1 vu2
2 . . . vukk ; (6.57)
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• the detailed balance condition holds: in writing (6.54) we implicitly assumed
that the recombination mechanism represents what is called in the language of
chemical reactions a detailed balance, that is for any recombination mechanism
there exists a steady recombination state w ≡ (w1 , . . . , wk) such that

khfw
ah = khbw

bh = kh , h = 1 , 2 , . . . , s , (6.58)

where khf,b represent the forward and backward recombination rates, respectively.

The recombination term follows from (6.54) by keeping in mind that the Onsager
relation holds

H(F , n)g = r(F , n) , (6.59)

and that
Hg = D

∫
P

1

2
Hg · g , (6.60)

from which we get

r(F , n) =

s∑
h=1

kh(F )α(
na
h

wah
,
nb
h

wbh
)ξ′
(

(ah − bh) · g
)

(ah − bh) . (6.61)

The recombination mechanisms described by (6.52) involve charged excitation car-
riers: since for any mechanism the charge must be conserved, hence

q · ah = q · bh , h = 1 , 2 , . . . , s , (6.62)

and we have the condition of electrical neutrality of each recombination mechanism

q · (ah − bh) = 0 , h = 1 , 2 , . . . , s ; (6.63)

therefore, by (6.63) the recombination term (6.61) modifies into

r(F , n) =

s∑
h=1

kh(F )α

(
na
h

wah
,
nb
h

wbh

)
ξ′
(
θkB(ah − bh) · ∂F

∂n

)
(ah − bh) , (6.64)

whose explicit expression depends of the set (α , ξ ,F) which will be the object of
constitutive assumptions.

We say that the set (α , ξ ,F) is compatible if, for h = 1 , 2 , . . . , s

α(
na
h

wah
,
nb
h

wbh
)ξ′
(
θkB(ah − bh) · ∂F

∂n
(n)
)

=
na
h

wah
− nb

h

wbh
; (6.65)

then a compatible set leads to a polynomial expression for the recombination term,
like the one which is widely used into the existing phenomenological models for
scintillation like e.g. in Bizzarri et al (2009b,a); Moses et al (2012),
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r(F , n) =

s∑
h=1

kh(F )

(
na
h

wah
− nb

h

wbh

)
(ah − bh) . (6.66)

From (6.39) and by (6.51) and (6.64), we arrive at a Reaction-Diffusion-Drift evo-
lution equations for the charge carriers densities

div(D[gradn] + M∗F−1[q⊗∇ϕ])− r = ṅ , in P× [0 , τ) ,

D[gradn]m = 0 , in ∂P× [0 , τ) ,

(6.67)

where we took into account the boundary condition (6.36)2 and which is coupled
with (6.41) and (6.36).

As a final remark, we may notice that we can choose the scintillation volume
P as the smallest volume such that on its boundary the Neumann-type boundary
conditions (6.36)2 and (6.67)2 hold: then we can safely assume P as the smallest ball
where the generation and recombination take place with no electric field and current
fluxes across its boundary ∂P.

6.5.1 The Gibbs Entropy

We made, in this and the following subsections, some constitutive assumptions
on the set (α , ξ ,F) which lead to different expressions for the mobility and the
recombination terms in (6.67) and whose mathematical consequences are in some
cases yet to be studied.

We begin by choosing for the entropy functional F(n) the Gibbs entropy, which
is associated to the Gibbs-Boltzmann statistics:

F(n) =

m∑
k=1

nk(log(
nk
ck

)− 1) , (6.68)

where the normalizing constants ck have dimension Lenght−3. The Gibbs entropy
describes an ensemble entropy, defined as a weighted sum over entropies of all the
microstates, expressed by an analogous to the Boltzmann entropy definition for a
macrostate. Accordingly, it appears more appropriate to describe a system with low
energy and non-interacting particles, a description which is not completely suitable
for the charge carriers densities. However, as we shall remark later, it allows for a
simpler mathematical formulation of the evolution equation (6.67).

From (6.68), by using (6.45 ) and then (6.49), we obtain

∂F

∂n
= log(

n

c
) =

(
log(

n1

c1
) , . . . , log(

nk
ck

)
)
, F =

∂2F

∂n2
= N−1 ; (6.69)

further, since by (6.69) relation (6.12) can be inverted to get
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n = c exp
(g − eqϕ

θkB

)
, (6.70)

then we have the explicit result

G = − e

θkB
N , (6.71)

which leads to
M∗F−1 = MN. (6.72)

We turn our attention to the recombination term r(F , n) to search for the interpolation
function and the dual dissipation fuctional which, together with the Gibbs entropy,
make the set (α , ξ ,F) admissible and the recombination term polynomial. The
simplest choice is a quadratic dual dissipation functional

ξ(s) =
1

2
s2 , ξ′(s) = s , (6.73)

which in turn implies the logarithmic mean as interpolation function, as in Mielke
(2011),

α(u , v) =


u− v

θkB(log u− log v)
, u 6= v ,

u , u = v ;
(6.74)

in this case, provided the identification w = c, the recombination term reduces to a
polynomial function of n,

r(F , n) =

s∑
h=1

kh(F )(
na
h

cah
− nb

h

cbh
)(ah − bh) . (6.75)

A different choice was instead proposed in Mielke et al (2014) (see also Liero
et al, 2017; Peletier et al, 2020; Esposito et al, 2021): the dual dissipation func-
tional, motivated by a large-deviation Markovian principle and which still leads to a
gradient-flow structure, is of the hyperbolic cosine type:

ξ(s) = 4(cosh
s

2
− 1) , (6.76)

which reduces to the quadratic functional (6.73) to within higher-order terms

ξ(s) =
1

2
s2 +O(s4) . (6.77)

In this case the interpolation function which makes the set (α , ξ ,F) admissible is
the (modified) geometric mean:

α(u , v) = 2
√

(uv)θkB
v − u

vθkB − uθkB , (6.78)
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and then we recover once again (6.75).
Provided (6.72) and (6.75) hold, then from the evolution equation (6.35)1 we

arrive at the same reaction-diffusion-drift equation obtained in Daví (2019),

div(D[gradn] + MN[q⊗∇ϕ])− r = ṅ , in P× [0 , τ) ,

D(θ)[gradn]m = 0 , in ∂P× [0 , τ) ;

(6.79)

equations (6.79)1 are the same as proposed in Vasil’ev (2008) by following ideas
given by Fok (1964); Antonov-Romanovskiy (1966) and which was widely used
in its Kinetic or Diffusive approximation (disregarding respectively the microstress
or the interactive microforce) in many experimental and theoretical papers like e.g
Bizzarri and Dorenbos (2007); Bizzarri et al (2009b,a); Li et al (2011); Williams
et al (2011); Singh (2011); Moses et al (2012); Khodyuk and Dorenbos (2012); Grim
et al (2012); Khodyuk et al (2012); Singh and Koblov (2015); Williams et al (2015);
Gridin et al (2015); Lu et al (2015); Vasil’ev (2017); Lu et al (2017). The same result
was obtained, by starting from a very different approach, in (Albinus et al, 2002),
(Mielke, 2011) for semiconductors. Such an equation has obtained a great attention
in recent years (Fischer, 2017; Chen and Jüngel, 2017; Fellner and Kniely, 2018;
Chen and Jüngel, 2019), with results concerning both the existence of solutions and
the estimate of the scintillator decay time—for a comprehensive review of these
mathematical aspects, see also Daví (2021).

6.5.2 The Fermi–Dirac Integrals

The advantages and the limits of the choice (6.68) are discussed in some detail in
Mielke (2011): indeed, given the nature of the recombination process in scintillators
it would be more appropriate (as in the case of semiconductors) to choose for the
term F(n) an expression based on the Fermi–Dirac statistics (Blatt, 1957; Dingle,
1957; Blakemore, 1982), as it was proposed in Albinus et al (2002):

F(n) =

m∑
k

ck

(
zF−1

γ−1(z)− Fγ(F−1
γ−1(z))

)
, z =

nk
ck
, (6.80)

where
Fγ(z) =

1

Γ (γ + 1)

∫ ∞
0

sγ

1 + exp(s− z)
ds , γ > −1 , (6.81)

is the Fermi–Dirac integral of index γ (Huang, 2010).
The Fermi–Dirac integral (6.81) has the following properties (Blakemore, 1982;

Kim et al, 2019):

• its derivatives obeys
F ′γ(z) = Fγ−1(z) ; (6.82)
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• in the classical Boltzmann limit, non-degenerate case with z << 0 and small
charge carriers density it reduces to

Fγ(z) ≈ exp(z) , (6.83)

and we recover the same results we obtained when we used the Gibbs entropy:
• in the Fermi–Dirac degenerate extreme case with z >> 0 and very large charge
carriers density it becomes:

Fγ(z) ≈ 1

Γ (γ + 2)
zγ+1 . (6.84)

The Fermi–Dirac integral relates the energy levels, here represented by the scin-
tillation and the electric potential, with the charge carriers density and in the standard
parabolic band-edges approximation the index γ takes the value γ = 3/2 (Albinus
et al, 2002): therefore, we shall henceforth assume this value for which, given its im-
portance, some explicit results are known. The scintillation potential and its gradient
are given, in the case γ − 1 = 1/2, by

g = eqφ+ θkBf , (6.85)
gradg = eq⊗ gradφ+ θkBF(n)[gradn] ,

where the k-dimensional array f is given by

f

(
n

c

)
=

(
F−1

1/2

(n1

c1

)
, F−1

1/2

(n2

c2

)
, . . . , F−1

1/2

(nk
ck

))
, (6.86)

whereas

F = diag

{(
c1F−1/2

(n1

n1

))−1

, . . . ,
(
ckF−1/2

(nk
ck

))−1
}
. (6.87)

As a consequence of (6.85)1 and (6.82), then (6.70) is replaced by

ni = ciFγ−1

(
eqiφ− gi
kBθ

)
, i = 1 , 2 , . . . , k , (6.88)

and then from (6.46) we get

N−1G = −θkB
e

diag

{
F−1/2(n1

c1
)

F1/2(n1

c1
)
, . . . ,

F−1/2(nici )

F1/2(nici )

}
. (6.89)

The diffusivity matrix D is still defined by the relation (6.44) with F given by (6.87),
whereas from the generalized Einstein–Smoluchowsky relation (6.48) we get

D =
θkB
e

diag

{
F1/2(n1

c1
)

F−1/2(n1

c1
)
, . . . ,

F1/2(nici )

F−1/2(nici )

}
M , (6.90)
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and

M∗ = diag

{
F1/2(n1

c1
)

F−1/2(n1

c1
)
, . . . ,

F1/2(nici )

F−1/2(nici )

}
M . (6.91)

When the Fermi–Dirac integrals are taken into account, the recombination term
modifies strongly: indeed as pointed out in Mielke (2011) a linear combination of
scintillation potentials can no longer be written as a product of excitation carrier
densities, which is a special property of the logarithm which is associated to the
Gibbs entropy. Accordingly, we generalize here the results given in Albinus et al
(2002) and Mielke (2011) and write the recombination term as a function of a linear
combination of the scintillation potentials

r(F , n) =

s∑
h=1

kh(F )ξ′
(
(ah − bh) · g

)
(ah − bh) , (6.92)

which by (6.63) can be rewritten as

r(F , n) =

s∑
h=1

kh(F )ξ′
(
θkB(ah − bh) · f(n

c
)

)
(ah − bh) . (6.93)

Finally, the evolution equation for the charge carriers is in the case of the Fermi–
Dirac is formally identical to (6.67), provided D, M∗, F−1 and r are respectively
defined by (6.90), (6.91), the inverse of (6.87) and (6.93). These equations need a
further investigation in terms of the existence and asymptotic decay of solutions, as
is currently done for the boundary value problem (6.79).
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Chapter 7
Strong Ellipticity within the Strain Gradient
Elasticity: Elastic Bar Case

Victor A. Eremeyev, Emanuele Reccia

Abstract In this note we discuss the strong ellipticity condition within the nonlinear
strain gradient elasticity. Considering a one-dimensional case, i.e. an elastic bar
loaded by a tensile force, we analyze the correspondence of violation of the strong
ellipticity condition and compare the results with classic nonlinear elasticity. The
correspondence of ellipticity loss to the non-uniqueness of solutions are discussed
in more detail.

Keywords: Strong ellipticity · Strain gradient elasticity ·Nonlinear elasticity · Elas-
tic bar · Non-uniqueness

7.1 Introduction

Nowadays the generalized models of continua such as the strain gradient elasticity
found various fruitful applications in modelling of solids and fluids at the nanoscale,
see e.g. Forest et al (2011); Cordero et al (2016); Bertram and Forest (2020), and for
description of composite materials with essential difference in mechanical properties
of their constituents, see Alibert et al (2003); dell’Isola and Steigmann (2015, 2020);
Abdoul-Anziz and Seppecher (2018); Skrzat and Eremeyev (2020); Mawassy et al
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Fig. 7.1 An elastic bar of
length a loaded by force p.

p

0 xa

(2021). It is also worth to note the pantographic beam-lattice metamaterials which
modelling bring us a particular class of strain gradient media (Rahali et al, 2015;
Giorgio et al, 2017; dell’Isola et al, 2019a,b; Giorgio, 2021). Within the strain
gradient elasticity there exists a strain energy density given as a function of strains
and their gradients or higher-order gradients of the displacements, see the original
works by Toupin (1962, 1964); Mindlin (1964, 1965); Mindlin and Eshel (1968). As
a result, we face a system of higher-order partial differential equations (PDEs).

Considering it within the theory of elliptic systems of PDEs as in Agranovich
(1997); Fichera (1965); Hörmander (1983), we can characterize its properties using
the ellipticity notion. Let us note that in the nonlinear elasticity the strong ellipticity
condition and itsweak form calledHadamard’s inequality plays an important role, see
Lurie (1990); Ogden (1997); Truesdell (1966). In particular, it relates to infinitesimal
instability of solids. For the strain gradient elasticity the relation between ellipticity
and stability is less straightforward, see e.g. Eremeyev (2021) and the reference
therein. Moreover, some models of pantographic structures relate to differential
operators which are neither strongly elliptic nor elliptic but hypoelliptic ones, see
Eremeyev et al (2018b).

The aimof this chapter is to discuss the strong ellipticity condition and its violation
within the strain gradient elasticity. In order to underline the possible results of the
ellipticity loss we consider a one-dimensional (1D) case, that is stretching of an
elastic bar. We consider two cases of the 1D constitutive equations using classic
nonlinear elasticity in Section 7.2 and the strain gradient elasticity in Section 7.3.
In both cases we have an ordinary differential equation (ODE) as the equilibrium
equation and the strong ellipticity results in a simple inequality. So the analysis of
ellipticity loss and its relation to the behaviour of solutions is more simple than in the
general case. We show that similar to the case of simple nonlinear elastic materials,
the loss of ellipticity for strain gradient materials may result in non-existence of
smooth solutions of the corresponding boundary-value problem (BVP).

7.2 Nonlinear Elasticity

For a simple nonlinearly elastic material the loss of strong ellipticity may result in
some issues related to static solutions, see Lurie (1990); Ogden (1997); Truesdell
(1966). In order to demonstrate such a behavior let us discuss a one-dimensional
case. In what follows we consider an elastic bar of length a, which is loaded by a
load p at the right end of the bar and clamped at the left end, see Fig. 7.1. Introducing
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a displacement field
u = u(x), u(0) = 0, (7.1)

where x is an axial Lagrangian coordinate, we can setup the corresponding problem
as follows. The equilibrium conditions follow from the variational equation

δE = 0, (7.2)

where E is the functional of total energy given by

E =

a∫
0

W dx− pu(a), (7.3)

W = Wne(ε) is a strain energy density, and ε = ux is a strain. Hereinafter for
brevity we use the following notations for derivatives with respect to x:

ux =
du

dx
, uxx =

d2u

dx2
, etc. (7.4)

Using the standard technique of the calculus of variations from (7.2) we get the
equilibrium equation and the static boundary condition

σx = 0, x ∈ (0, a); σ = p, x = a, (7.5)

where σ is a stress given by

σ =
∂W

∂ε
. (7.6)

For one-dimensional case the strong ellipticity condition has a simple form

∂σ

∂ε
=
∂2W

∂ε2
> 0. (7.7)

Let us consider typical stress-strain dependencies shown in Fig. 7.2. We have the

Fig. 7.2 Stress vs. strain curves: a) monotonic dependence, elliptic ∀ε, one solution of σ = p; b)
curve with fading part, non-elliptic after ε ≥ εmax, two solutions for p < pmax; c) curve with
fading part, non-elliptic for εmax ≤ ε ≤ εmin, three solutions for pmin < p < pmax. Non-elliptic
zones are marked in red.
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violation of (7.7) along declined parts of the curves given in Fig. 7.2 b) and c). Let
us note that in Fig. 7.2 we can observe three types of material behavior, monotonic
growth Fig. 7.2 a), softening after a certain threshold Fig. 7.2 b), and softening with
further stiffening Fig. 7.2 c). In particular, the last case was studied by Ericksen
(1975), see also Truskinovsky and Zanzotto (1995, 1996). Obviously, if we observe
non-ellipticity, this may result in non-uniqueness or even non-existence of static
solutions. Indeed, solving of (7.5) results in the equation σ = p, which has no
solution for p > pmax (Fig. 7.2 b). For the case shown in Fig. 7.2 c) we have three
static solutions for pmin < p < pmax, whereas for Fig. 7.2 b) we have two solutions
if p < pmax.

Thus, we have seen that for an elastic bar made of nonlinearly elastic material,
non-ellipticity results in non-uniqueness of solutions or non-existence of solutions,
see Ericksen (1975); Truskinovsky and Zanzotto (1995, 1996) for further details.

7.3 Strain Gradient Elasticity

Let us now discuss the same problem considering the strain gradient elasticity
approach. We assume the following kinematic boundary condition

u(0) = 0, ux(0) = 0, (7.8)

and a strain energy density in the form

W = Wsg(ε, εx). (7.9)

From (7.2) and (7.9) it follows the equations of equilibrium and static boundary
conditions

σx − τxx = 0, x ∈ (0, a); (7.10)
σ − τx = p, τ = 0, x = a. (7.11)

Here stress σ and hyper stress τ are given by

σ =
∂W

∂ε
, τ =

∂W

∂εx
. (7.12)

For the general framework of the variational approach to the strain gradient media
we refer to Abali et al (2017); Bertram and Forest (2020); dell’Isola and Steigmann
(2020); Eremeyev et al (2018a) and the references therein.

In this case the strong ellipticity condition takes the form

∂τ

∂εx
=
∂2W

∂ε2
x

> 0, (7.13)

which is different from (7.7).
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In what follows we use the simple form of (7.9) given by

W = Wne(ε) +
1

2
αε2

x, (7.14)

which could be treated as a higher-order regularization of (7.3). Here we have
introduced an additional elastic modulusα. For (7.14) the strong ellipticity condition
results in the simple inequality

α > 0, (7.15)

σ = σ(ε) is given by (7.5), the hyper stress takes the form τ = αεx. So Eqs. (7.10)
and (7.11) transform into

[σ − αεxx]x = 0, x ∈ (0, a); (7.16)
σ − αεxx = p, εx = 0, x = a. (7.17)

From (7.16) and (7.17)1 it follows the nonlinear ODE with respect to ε

σ(ε)− αεxx = p, x ∈ (0, a). (7.18)

So we have reduced the BVP (7.16) and (7.17) to (7.18) with the following boundary
conditions

ε(0) = 0, εx(a) = 0. (7.19)

Using standard technique as in Arnold (1989) Eq. (7.18) could be integrated as
follows:

α

2
ε2
x = Wne(ε)− pε+ C, (7.20)

where C is an integration constant which should be found from (7.17)2. So we
transform the problem under consideration to an ordinary differential equation. Its
solution is given in an implicit form as follows:

ε∫
0

dε√
2 [W (ε)− pε+ C] /α

= x. (7.21)

For the further analysis of the problem under consideration we can use the phase
portrait of (7.18). Let us consider the most interesting case shown in Fig. 7.2 c). If the
strong ellipticity condition is fulfilled, i.e. if α > 0, a typical phase portrait is given
in Fig. 7.3. A solution of (7.18) satisfying boundary conditions (7.19) corresponds
to an integral curve in (ε−εx)-plane, which starts at the vertical axis ε = 0 and ends
at the horizontal line εx = 0. As an example, in Fig. 7.3 one can see three integral
curves. Obviously, for α > 0 BVP (7.18) and (7.19) always has a unique solution.
The black dots in Fig. 7.3 correspond to the extremes of W − pε. They constitute
two centers and one saddle point between centers.

The situation changes dramatically if α < 0. In this case we have a phase portrait
as shown in Fig. 7.4. Here one can also see three integral curves. The black dots in
Fig. 7.4 correspond to the extremes of pε −W . They constitute two saddle points
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Fig. 7.3 Phase portrait for the
strongly elliptic case, α > 0.
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x

and one center point between them. Obviously, since the first saddle locates at (0, 0),
here such an integral curve which begins at ε = 0 and finish at εx = 0 does not
exist. In other words, BVP (7.18) with (7.19) has no solution. So for the non-elliptic
case we may have no solutions. Note that we consider here smooth enough solutions
only.

Similar conclusions can be done for other cases shown in Fig. 7.2.

7.4 Conclusions

Considering an elastic bar in the framework of the nonlinear strain gradient elasticity
we illustrate the consequences of the strong ellipticity loss. The main conclusion
consists the ellipticity violations may lead to some issues in the solvability of the
corresponding boundary-value problems. So the strong ellipticity condition plays

Fig. 7.4 Phase portrait for the
non-elliptic case, α < 0.

e

0

e
x
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the same crucial role within higher-order models of continua as in the case of
nonlinear elasticity of simple materials. In particular, we see that under strong
ellipticity condition the second-order term ε2

x in constitutive relation may regularize
the solution. Let us also note that for 3D case, i.e. considering BVPs for strain
gradient media in the general framework, the situation with ellipticity could be more
complex, see e.g. Eremeyev (2021).
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Chapter 8
Two Thermodynamic Laws in Phenomenological
Mechanics of Continuum: Postulates or
Definitions ?

Dimitri Georgievskii

Abstract The role of the fourth and fifth postulates of continuum mechanics, also
known as the first and second laws of thermodynamics, in the axiomatization of
phenomenological theory is discussed. It is shown that, in contrast to the statis-
tical and molecular approaches, the internal energy and entropy of an individual
(liquid) volume can be fully determined by specifying their source, flow across the
boundary, and production. Thus, two thermodynamic postulates serve as definitions.
Energy conjugate pairs of quantities of different physical nature and the possibility
of extending the table of postulates are discussed.

Keywords: Thermodynamics · Analysis · Axioms vs. postulates

8.1 Various Ways of Axiomatization

Hilbert’s sixth problem, formulated at the Second International Congress of Math-
ematicians in Paris in 1900, is related to the issues of clear and internally correct
axiomatization of physics. The degree of global solution of this problem by the end
of the XX century is devoted to extensive discussions in the natural science literature
(Corry, 1997). An important sub-problem, for the analysis of which it would already
be possible to use a powerful mathematical apparatus, is the creation of a strict theory
of the limiting transition from processes described at the quantum level to processes
in the continuum. This can be viewed as an exclusively mathematical problem (Gor-
ban and Karlin, 2014; Saint-Raymond, 2009; Slemrod, 2013), as well as the question
of the axiomatization of continuum mechanics, in the phenomenological interpreta-
tion of which, generally speaking, there are no concepts of atoms, molecules, etc.
A significant contribution in this direction was made by the creators of the classic
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and internationally recognized courses of continuum mechanics (among others, see
Germain, 1962; Gurtin et al, 2010; Ilyushin, 1990; Kondepudi and Prigozhine, 2000;
Lurie, 2005; Malvern, 1969; Maugin, 2013; Noll, 1974; Novozhilov, 1961; Reddy,
2013; Sedov, 1997; Truesdell, 1977).

Perhaps, thermodynamics (Müller, 2007; Müller and Müller, 2009; Müller and
Weiss, 2005) precisely, in the sense of a branch of continuum mechanics, is the most
variable and difficult part of physics to axiomatize. It is not surprising that there is
a joke among physicists that thermodynamics is a humanitarian science. What are
definitions, what are postulates, and what are proved statements in the construction
of a strict theory ? Is it true that the formulation of any postulate should contain only
the quantities previously defined in the chosen axiomatization ? Otherwise, it turns
into a definition itself. Are there universal equations of thermodynamic balance and
is their form of writing unique (dell’Isola and Romano, 1987) ? It is known that the
theory is more perfect and “closer to mathematics” (any theory tends to be “closer
to mathematics”...), the fewer axioms and postulates in it, and the more deducible
propositions. The answers to the questions formulated above in each of thementioned
courses are given their own, in many ways they are original (see also Georgievskii,
2019; Pobedria and Georgievskii, 2015, 2016).

8.2 The General Form of Postulates in Mechanics of Continuum

As is known, classical mechanics of continuum is axiomatically based on five phe-
nomenological postulates that have the unifed integral form of writing as laws of
change (conservation) of certain thermomechanical quantities AV (t):

dAV
dt

= BV + CΣ +DV , (8.1)

AV (t) =

∫
V

ρa(x, t) dV, BV (t) =

∫
V

ρb(x, t) dV,

CΣ(t) =

∫
Σ

c(y, t) · n(y, t) dΣ, DV (t) =

∫
V

d(x, t) dV (8.2)

where

• ρ(x, t) is the scalar field of volume density at point x at time t;
• a(x, t) is the mass density of the value AV (t) in the volume V ;
• b(x, t) is the mass density of the value BV (t) being a source of AV in V ;
• c(y, t) · n(y, t) is the surface density of the value CΣ(t) being a flow of AV
across the boundary Σ = ∂V at each point of which y ∈ Σ the unit external
normal n exists;

• d(x, t) is the volume density of the value DV (t) which is called a production
AV in V .
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In (8.2) V is some arbitrary finite volume of the medium at any time consisting of
the same Lagrangian particles. It has various names in the literature: moving volume
of constant mass; individual volume; liquid volume; mobile Lagrangian volume.

The field a(x, t) can be scalar or vector; the tensor nature of the other quantities
included in (8.1) and (8.2) depends on this: rang a = rang b = rang c− 1 = rang d.

In Table 8.1, for each of the five postulates I –V it is indicated what the notation
introduced in (8.1) and (8.2) corresponds to. Here v is the velocity of particles; ṽ
is the symmetric strain rate tensor; σ̃ is the symmetric Cauchy stress tensor; F are
the mass forces; P (n) = σ̃ · n are the surface loadings on Σ; q is the mass density
of heat sources in V ; q is the vector of heat flow; u and s are the specific internal
energy and the specific entropy in V ; w∗ is the volume density of energy dissipation
in V ; T is absolute temperature. Taking advantage of the fact that the volume of V

Table 8.1 General balance equations with the notation introduced in (8.1) and (8.2)

a b c · n d

I 1 0 0 0

II v F P (n) 0

III x× v x× F y × P (n) 0

* |v|2

2
F · v P (n) · v − σ̃ : ṽ

IV |v|2

2
+ u F · v + q P (n) · v − q · n 0

V s
q

T
−
q · n
T

w∗

T
−
q · gradT

T 2

inside the medium is arbitrary, it is not difficult to derive a differential consequence
from the integral equality (8.1):

ρ
da

dt
= ρb+ Div c+ d, x ∈ V. (8.3)

The number of local equations (8.3) coincides with the number of integral equalities
(8.1).

8.3 Postulate IV. The Law on the Change of Internal Energy

The first three postulates I – III, namely the law of mass conservation and the laws
of change of both impuls and moment of impuls, use only isothermic quantities. The
fourth row of the table, marked with an asterisk, corresponds to an integral statement
called the kinetic energy theorem. It is usually written in terms of finite differentials:

dK = δA(e) + δA(i), (8.4)
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K =
1

2

∫
V

ρ|v|2 dV,

δA(i) =−
∫
V

σ̃ : dε̃ dV, δA(e) =

∫
V

ρF · du dV +

∫
Σ

P (n) · du dΣ,
(8.5)

where K is the kinetic energy contained inside the volume V ; δA(e) is the sum of
changing the work of mass and surface forces on actual displacements du; δA(i) is
changing the work of internal forces. If the external loads F and P (n) have scalar
potentials with respect to u, and also there is a scalar stress potential σ̃ with respect
to strains ε̃ for a given medium, then the differential relation (8.4) admits the first
integral, called the energy integral.

The kinetic energy theorem (8.4) is not an independent postulate (so it is not
assigned a separate number in the table), but is a consequence of postulates I – III.
But it plays an important role in the energy transition to the formulation of the
non-isothermal postulate IV — the law on the change of internal energy. In such
a transition, it is stated that the change in the stress-strain state of the medium can
involve thermal effects determined by the mass density q(x, t) of heat sources inside
the volume V and the heat flow (q · n)(y, t) across the boundary Σ. The heat flow
vector is defined, generally speaking, in the entire volume of V .

Then the row IV of the table is formed by the extension of the row ∗ as follows.
Let us assume that the mass density of the total energy contained in the volume V
consists of the term |v|2/2, which is already present in the row ∗, and some function
u(x, t), to which we give the meaning of the mass density of the internal energy.
We require this function that: a) its source in V is only the heat sources q(x, t); b)
its flow through Σ is only the heat flow −(q · n)(y, t) inside Σ; c) the total energy
|v|2/2 + u production is zero.

Taking the difference between the rows IV and ∗, we get the local equality (8.3)
for the function u:

ρ
du

dt
= ρq − div q + σ̃ : ṽ, x ∈ V, (8.6)

which is well-known as the local energy equation. Its integral analog, written in
finite differentials

dU = δQ− δA(i), (8.7)

U =

∫
V

ρu dV, δQ = dt

( ∫
V

ρq dV −
∫
Σ

q · n dΣ
)
, (8.8)

is one of the possible statements of the first thermodynamic law.
Thus, from the point of view of the axiomatic construction, it is natural to consider

the row IV as the definition of that new function, namely, the mass density u(x, t) of
the internal energy that appeared in it in comparison with the row ∗. This function,
as one of the four possible thermodynamic potentials (all of them are related to each
other by Legendre transformations), plays a major role in the theory of constitutive
relations of continuum thermomechanics.
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One can also suggest another, “mirror”, version of the axiomatics, i.e. the ex-
tension of the row ∗ of the table to the row IV, in which the latter will not be the
definition of internal energy. To do this, one must abandon the postulation of the
physical meaning of the thermal quantities q(x, t) and q(x, t), and only assume that
the total energy |v|2/2 + u, which is quite reasonable, should have zero production
in any individual (liquid) volume. This can be achieved by adding to |v|2/2 some
function u(x, t) with non-zero production, such that the last column of the row IV
has zero. Then the source of this quantity in the volume V and its flow through the
boundary Σ are interpreted as the functions q(x, t) and −(q · n)(y, t), which were
discussed above. With this approach, the row IV turns into definitions of the power
of heat sources and the heat flow vector. This way seems to be an alternative, but
logically more cumbersome, since here it is necessary to establish the uniqueness
of the function u choice. Indeed, the existence of adjacent internal energies with
the same production is certainly not excluded, but the source and flow through the
boundary of which is not due to thermal effects, but for example, electromagnetic
or biological and informational factors that have been actively studied recently from
the point of view of mathematical modeling in Abali and Queiruga (2019); Abali
and Reich (2017); Brechet and Ansermet (2014); Ericksen (2007); Hutter (1975).

8.4 Postulate V. The Law on the Change of Entropy

Note that the physical dimensions of all the quantities in the table except for the
row V are expressed in the basis {M,L,T}. This includes the phenomenological
functions q and q, which describe purely thermal effects but have dimension L2T−3

and MT−3, respectively. Let us now focus on some variants of the axiomatics of the
transition from all the previous rows of the table to the row V, which requires an
involvement of quantities with dimensions that do not fit in the basis {M,L,T}.

We assume that the heat flow vector for each selected medium is completely
determined by setting in V the scalar field of some phenomenological function
T (x, t), namely, it depends only on the gradient of this function over x. In this case,
the value T (x, t), called the absolute temperature, cannot be given a kinematic-force
interpretation, in contrast, for example, to the vector q, i. e. its dimension is not
expressed by a power monomial MαLβTγ , as required by dimension theory, so it is
necessary to expand the basis {M,L,T}: [T ] = K. We emphasize that here we are
talking about the phenomenological introduction of temperature. In the statistical
and molecular description, where the heat propagation is a result of the collisional
transfer of kinetic energy from fast-moving molecules to slow ones, the inclusion of
an additional variable in the basis {M,L,T} can be avoided. In the classical model
of a continuous medium the concept of “molecule” is absent.

The simplest connection between q and gradT is known to be the Fourier law

q = −Λ̃ · gradT, (8.9)
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where Λ̃ is the symmetric heat conductivity tensor of an anisotropic medium. To
simulate heat waves propagating at a finite speed, very popular in recent years
hyperbolic theories of heat conductivity may be used. They obtained by generalizing
(8.9) within the framework of the apparatus of vector-linear functions from the vector
argument:

q(x, t) = −
t∫

0

Γ̃ (t− ξ) · (gradT )(x, ξ) dξ. (8.10)

In particular, if the kernel Γ̃ is exponential: Γ̃ (t) = (1/τ)Λ̃e−t/τ , there is a Cattaneo
law with a characteristic relaxation time τ . The generalized function Γ̃ (t) = Λ̃δ(t)
corresponds to the Fourier law. For a homogeneous isotropic medium (Λ̃ = λĨ ,
where λ is the constant coefficient of heat conductivity), the field of the vector q is
vortex-free.

Vector relations (8.9) or more generally (8.10) are usually interpreted as consti-
tutive relations of a heat-conducting medium with the material functions Γ̃ , Λ̃, and
λ. But in such relations, as in the formulations of laws, only the physical quantities
defined earlier should appear. The temperature T is the first variable in the transition
from the rows I – IV to V, the dimension of which includes K. Therefore, it can not
be introduced on the basis of the variables available in isothermal mechanics, and
the relations (8.9) or (8.10) can be approached as a phenomenological definition of
T : this is a scalar function in V , the gradient of which is connected in this way with
the vector q already known from line IV (in the simplest case, it is counter-directed
to q).

The appearance of temperature leads to the need to introduce an energetically
conjugate scalar value of the same non-mechanical content — mass density of
entropy s(x, t) — and to form, along with the tensor pair (σ̃, ε̃), another scalar
pair (s, T ) of thermodynamic state parameters, one of which describes the process
realized in the volume V of the medium, and the other the response of the medium
on this process. Neither the density s(x, t), nor the entropy S =

∫
V
ρs dV of the

volume V are unobservable and immeasurable by any device in the experiment, they
are of an auxiliary nature.

It is easier to define the entropy s not by the row V of the table but using the local
equation (8.3)

ρTds = ρq dt− (div q) dt+ w∗dt, x ∈ V, (8.11)

in one of the parts of which must necessarily be “energetic product” Tds, the
dimension of which can be expressed in the basis {M,L,T}, and the other part
represents its transcript, namely, the division into the sum of the source, flow terms
and production,which carries themeaning of the definition. The need for dimensional
reasons to write a local equation for the product Tds, and not separately for ds, leads
to the appearance of the integrating factor 1/T . Dividing both parts of the relation
(8.11) by dt and integrating by V , we come to the row V, namely, the law on the
change of entropy. The factor 1/T when integrated in parts gives rise to the term
−(q · gradT )/T 2 in the entropy production.
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The principle of non-decreasing entropy in an isolated system, put forward at
the end of the XIX century by R. Clausius and L. Boltzmann and constituting the
physical meaning of the second law of thermodynamics, in relation to the considered
individual volume V is formulated as follows. If q|V = 0 and (q · n)Σ = 0 then∫

V

(
w∗

T
− q · gradT

T 2

)
dV ≥ 0. (8.12)

By virtue of the arbitrariness of V , the inequality (8.12) is equivalent to the non-
negativity of the integrand at each point x ∈ V . Substituting here, for example, the
Fourier law (9), we obtain the following inequality for the quadratic form:

gradT · Λ̃ · gradT ≥ −Tw∗, x ∈ V. (8.13)

In the case of w∗ ≡ 0, the non-decreasing entropy is equivalent to the positive
definiteness of the heat conductivity tensor Λ̃ (the positivity of the coefficient λ in
isotropic medium).

Thus, from the point of view of the phenomenological construction of axiomatics,
the two thermodynamic laws and the relation connecting the heat flow vector with
the temperature gradient can be approached as definitions of internal energy, entropy,
and temperature change. This does not contradict the fact that the local equations
of energy (8.6), entropy (8.11), as well as the Fourier law (8.9) or its hyperbolic
generalizations of the type (8.10) are present in closed systems of equations. In
addition to them, these systems also include constitutive relations of the medium,
which specify the dependence of the function u as a thermodynamic potential (or
another potential, for example, the free energy u − Ts) on its independent state
parameters.

An attempt to avoid treating these laws as definitions usually leads to the following
formulations: “There is a certain quantity such that . . . ”. But such statements
are completely descriptive of the given quantity, and not postulating the existence,
i.e. they are definitions in its essence. This applies not only to thermodynamics. So,
for example, the statement “There are inertial reference systems in which the body,
which is not subject to the action of force, is at rest or moves rectilinearly and evenly”
is essentially a definition of an inertial frame of reference, and not the conditions for
its existence.

8.5 Introduction to Mathematical Model of Interactions with a
New Nature

The theory of constitutive relations in continuum mechanics operates with energet-
ically conjugate pairs, such as (σ̃, ε̃) and (s, T ). One of the quantities included in
each pair is treated as an independent parameter of the state on which a certain
thermodynamic potential depends, for example, the internal energy u(ε̃, s). It is as-
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sumed that this element of the pair sets the process in medium. The another element
in each pair, which is a tensor of the same rank as the first one, has the meaning
of the response of the medium to this process and is specified by the constitutive
relations of medium. In these relations there are material functions representing the
experimentally obtained functions of coordinates and time (in particular, material
constants) that characterize the selected medium in the given class of constitutive
relations.

The physical dimensions of quantities from different energy conjugate pairs are
expressed, generally speaking, in different dimensional bases, which indicates their
different nature (mechanical, thermal, etc.) and irreducibility to each other.

If the thermodynamic potential is such that the constitutive relations express
some of the dependent quantities not only through the independent ones of the same
pair, but also through the independent parameters of other pairs, then this model is
coupled and more difficult for mathematical modeling.

The introduction of a new nature, which was not taken into account earlier, into
the mathematical model of interaction assumes the following:

• addition of the source and flow columns in the row IV of the table with terms
related to the change in internal energy due to a new type of interaction (while
the total energy production is still zero), which means giving physical sense and
mathematizing the new mass density of sources in V and the surface density of
the flow in Σ;

• the presentation of an energetically conjugate pair of new quantities that charac-
terize this interaction, which cannot be reduced or expressed in terms of existing
ones, and the expansion of the multiplicative basis of dimensions;

• the formulation of an analog of the row V which defines the source, flow, and
production of one of the quantities present in the new pair;

• giving the internal energy u or some adjacent potential to a new independent
variable and obtaining constitutive relations connecting the dependent parame-
ters in each of the pairs available in the model with the independent ones;

• creating (at least virtual) establishing experiments to find the material functions
present in the mentioned constitutive relations, including the material functions
that characterize the coupled effects.

Such a strong system of requirements, in addition to the purely mechanical and
thermal interactions discussed above, is currently satisfied only by electromagnetic
ones with an energetically conjugated pair (E,H), where E andH are the vectors
of electric and magnetic field strengths. Accordingly, over the past two centuries, it
is generally assumed that three disciplines have formed up — isothermal continuum
mechanics, phenomenological thermodynamics, and electromagnetism, as well as
their various coupled variants. Although there are still many difficulties and ways
to account for the interaction of these “three whales”. The next step in this series
is likely to be the accounting of chemical, biological, and information interactions,
which means, first of all, the mathematization of chemical energy, bioenergy, and
information energy.
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Chapter 9
On an Extended Family of Quasi-Equivalent
Models of the Gradient Elasticity Theory

Sergey Lurie, Petr Belov, Yury Solyaev

Abstract There are investigated the formulations of boundary value problems in
the Mindlin-Tupin gradient theory characterized by a higher differential order of
equilibrium equations and a varied spectrumof boundary value problems, formulated
both on a piecewise smooth surface and on the edges of this surface. We consider
the possibility of simplifying boundary value problems by eliminating boundary
conditions at the edges by introducing an extended spectrum of gradient applied
models in the class of equivalentmodels having the samepotential energy density. For
this purpose, we investigate the variational statements of boundary value problems,
which establish admissible kinematic connections on the surface in the form of linear
combinations of the displacement vector and the first derivatives of displacements
(both normal and tangential). Classes of gradient models obtained by introducing
kinematic constraints on the surface, in which there are no boundary conditions
at the edges, are indicated. These include models built by introducing kinematic
constraints on the displacement vector and some special classes of models in which
the kinematic constraints on the surface are set to the derivatives of displacements.

Keywords: Variational statement, Kinematic restrictions, Lagrange multipliers,
Edge conditions, Static friction model

9.1 Introduction

Strain gradient elasticity theory (SGET) in its general form with five additional
material constants for the isotropic material was developed by Toupin and Mindlin
(Toupin, 1962; Mindlin, 1964). Since their works, the discussion on the possible
simplified formulations of SGET continues and the variants of gradient theories
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with reduced number of additional parameters have been proposed by many authors
(Kleinert, 1989; Fleck and Hutchinson, 1997; Lam et al, 2003; Askes and Aifan-
tis, 2011; Zhou et al, 2016; Gusev and Lurie, 2017; Eremeyev et al, 2020; Lurie
et al, 2021). The main question is the basic reason for the development of simpli-
fied gradient theories. Generally, the rigorous identification of all five length scale
parameters of SGET can be performed based on ab initio calculations (Shodja et al,
2018) or by using homogenization approaches (Hua et al, 2020). Application of the
five-parametric SGET have been used, e.g. recently by Giorgio et al (2017) for the
simulations of the bone’s porous structure.

Relations between length scale parameters and critical length of a crack have
been shown recently by several authors (Askes and Susmel, 2014; Vasiliev et al,
2019, 2021), such that at least three length scales (similarly to three crack tip stress
intensity factors in fracture mechanics) can be needed in strain gradient theories
used in application to fracture (Askes and Susmel, 2014; Vasiliev et al, 2019, 2021;
Placidi andBarchiesi, 2018; Barchiesi et al, 2020;Misra et al, 2020). The need for two
additional length scaleswithin incomplete gradient theories have been established for
the pantographic metamaterials (Placidi et al, 2020; dell’Isola et al, 2019). Attractive
engineering theorieswould containminimal number of additional parameters (single,
in the best case) needed to capture the size effects or to provide the regular solutions
and mesh independent numerical methods (Barchiesi et al, 2020; Andreaus et al,
2016; Solyaev and Lurie, 2020).

Apart the simplifications, there may arise the need for the extended and refined
definition of the boundary conditions and loading type within the gradient theories.
For example, it was shown that additional boundary conditions of SGET for the
gradients of displacements and for the double stresses can be used to defined some
restricted state of the body surface and specific kind of the constraints and supports
(Froiio and Zervos, 2019; Lomakin et al, 2019; Vangelatos et al, 2021). In the present
paper we consider an approach for the development of particular models within strain
gradient elasticity theory with modified boundary conditions containing additional
kinematical constraints. Such constraints may arise from the specific supports (e.g.,
some kind of generalized elastic foundation condition). Also, as it will be shown,
the presented approach can be used for the analysis and comparison of different
simplified gradient theories, which contain similar form of equilibrium equations
and different form of boundary conditions due to used assumptions in constitutive
equations (Lurie et al, 2021; Madeo et al, 2015).

9.2 Basic Definitions

Let us consider the variational gradient linear elasticity of Mindlin–Tupin theo-
ries (Toupin, 1962; Mindlin, 1964), where a continuous vector of displacements Ri
and a continuous tensor of displacement gradientsRi,k are the generalized kinematic
variables in the volume and on the surface assuming that the considered elastic body
of volume V with a piecewise smooth surfaceF . We investigate the variational state-
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ment of the gradient model in displacements, which is determined by the expression
for the Lagrange functional

L = A−
∫
V

UV dV, (9.1)

where UV is the density of potential energy, and A is the work of forces given in the
volume and on the surface of the body.

The potential energy density has the following general form

2UV = CijmnRm,nRi,j +GijkmnlRm,nlRi,jk, (9.2)

where Cijkm is the tensor of the moduli of elasticity of the fourth rank, Gijkmnl
is the tensor of the gradient moduli of elasticity of the sixth rank, and the work of
external forces is written in the form

A =

∫
V

PVi Ri dV +

∫
F

PFi Ri dF +

∫
F

mF
i Ri,pnp dF +

∑∮
(fi)δRi ds, (9.3)

where PVi , PFi are external given forces in the volume V and on the surface F of
the body and mF

i and fi is the vector of moment forces and the vector of meniscus
forces, respectively, given on the surface of the body and surface edges.

The potential energy density completely determines the physical model of the
considered medium. Cauchy stress tensor σij and the double stress tensor σijk are
determined by the using Green’s formulas

σij =
∂U

∂Ri,j
= CijmnRm,n, σijk =

∂U

∂Ri,jk
= GijkmnlRm,nl. (9.4)

In the general case, the considered elastic body can be anisotropic, and the tensors
of generalized elastic properties satisfy the potentiality conditions:

Cijkm = Ckmij , Gijkmnl = Gmnlijk. (9.5)

Cauchy stress tensor σij in (9.4), (9.5) can be asymmetrical σij 6= σji, but the
moment stress tensor σijk must be symmetrical in the last pair of indices due to the
requirement of continuity of distortions, Ri,km (Ri,km − Ri,mk = 0) (Gusev and
Lurie, 2017):

σijk = σikj . (9.6)

The last equality entails additional symmetry conditions for the tensor of elastic
moduli of the sixth rank – the symmetry with respect to the permutation of the last
two indices in each of the triples of indices (9.6). In particular, for an isotropic body,
the tensors of the moduli of gradient elasticity have the form
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Cijkm = λδijδkm + µ(δikδjm + δimδjk),

GTijkmnl = C1(δijδkmδnl + δmnδliδjk + δikδjmδnl + δmlδniδjk) +

+ C2(δijδknδml + δmnδljδik + δijδklδmn + δikδjnδml) +

+ C3(δinδjlδkm + δmjδnkδli + δinδmjδkl + δilδjnδmk) +

+ C4(δimδjnδkl + δimδjlδnk) +

+ C5(δimδjkδnl),

(9.7)

where λ, µ are the Lame coefficients.
Note that the feature of the statement of boundary value problems of gradient

elasticity for the body bounded by the piecewise smooth surface F is, in contrast
to classical elasticity, the possibility of formulating boundary conditions on the
edges—the lines of intersection of smooth fragments of surfaces bounding the body
under consideration. This feature is often interpreted as one of the advantages of
gradient elasticity theories (Reiher et al, 2017), despite the fact that the question
of the existence of solutions in boundary value problems with edges in the space
of continuous functions with continuous derivatives (i.e., in the class of classical
solutions of equations of mathematical physics) remains open. Also the numerical
implementation of the high-order models with edge-type boundary conditions is
challenging (Bersani et al, 2020).

The variational formulation based on the Lagrange variational principle leads to
the following variational equation (see (9.1)–(9.4)):∫

V

{[CijmnRm,n −GijkmnlRm,nlk],j + PVi }δRi dV+

+

∫
F

{
PFi − [CijmnRm,n −GijkmnlGabkijlRm,nlk]nj+

+ (GmnlijkRm,nl)nk),pδ
∗
pj +H(GmnlijkRm,nl)nknj

}
δRi dF−

−
∫
F

(GmnlijkRm,nl)njnkδ(∂nRi) dF−

−
∑
k

∮
Sk

(GmnlijkRm,nl)vjnkδRi ds = 0.

(9.8)

Here the tensor δ∗pj = δ∗pj−npnj , δ∗pj = (spsj +vpvj), where sj , vj are unit vectors
lying in the plane orthogonal to the surface normal to 1 the surface nj , where sj
is the unit vector tangent to the edge contour, and vj is the unit normal vector to
the edge in the tangent plane, Ri,pnp = (∂Ri/∂xp)np = ∇nRi, H = ∇Sp (np),
∇Sp (. . . ) = (. . . ),qδ

∗
qp.

The arguments of the corresponding functional in the volume of the body and on
the surface are the displacement vector Ri, the scalar Ri,qninq , and on the contour
formed by the intersection of the surfaces—the scalar δ(Riνi).
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Let us give the following definition: A standard variation model is the variant
model in which the components of the displacement vector and the components of the
normal derivatives of the displacement vector are independent generalized kinematic
variables on the surface.

Recall that, in contrast to the classical theory of elasticity, in the variational
formulation of gradient elasticity, the space of possible kinematic arguments is
determined not only by the continuous field of displacements and the continuous
field of the distortion tensor, i.e. the first derivatives of displacements in the volume of
the body and on its surface, but also by a continuous field of second derivatives in the
volume. This is taken into account when we describe the mathematical formulation
of gradient elasticity.

Let us write down the complete mathematical formulation for gradient elasticity
in displacements, which is determined by the variational Lagrange equation (9.8).
Variational equality (9.8) gives a complete mathematical formulation for gradient
elasticity. The governing equilibrium equation (Euler’s equation) has the form

CijmnRm,nj −GijkmnlRm,nlkj + PVi = 0. (9.9)

Consequently, the desired displacement vector must be determined by a system of
fourth-order differential equations (9.9). Equilibrium equations (9.9) allow introduc-
ing the definition of “classical” stresses (total stresses) τij , i.e. stresses satisfying the
classical equilibrium equations:

τij,j + PVi = 0, (9.10)

where τij = σij − σij,k = CijmnRm,n −GijkmnlRm,nlk.
For a body surface formed by planes, the spectrum of boundary value problems

is determined by six pairs of alternative boundary conditions at each non-singular
point of the surface∫

F

{
[PFi − τijnj + (GijkmnlnkRm,nl),pδ

∗
pj ]δRi−

−(GijkmnlnkRm,nl)njδ(Ri,pnp)
}
dF = 0,

(9.11)

and by a pair of alternative boundary conditions on the edges, which are the focus
of the intersection points of piecewise smooth planes∑∮

(GijkmnlnkRm,nl)vjδRi ds = 0. (9.12)

Conditions (9.11) and (9.12) can be rewritten in the form of the corresponding pairs
of static and kinematic conditions:

On the surface of the body F = F1 ∪ F2 ∪ · · · ∪ FN−1 ∪ FN , Fi, i = 1, N ,
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PFi − τijnj + (GijkmnlnkRm,nl),pδ
∗
pj = 0, or Ri = Ri0,

(GijkmnlnkRm,nl)nj = 0 or (Ri,pnp) = R0
i,n,

(9.13)

On the edges l = l1 ∪ l2 ∪ · · · ∪ lN−1 ∪ lN , li, i = 1, N

GijkmnlnkRm,nlvj = f0
i or Ri = ri0. (9.14)

In the future, we will show that, along with the standard gradient elasticity models
with potential energy density (9.2), it can be constructed an extended family of
gradient elasticity models, in which the variational models have the same structure
for the potential energy density. Nevertheless, models from this class differ from the
standard model, the mathematical statements of the boundary conditions for them
are different than for the standard model (9.8)–(9.14).

Let’s give the following definition: The models will be called quasi-equivalent
models of gradient elasticity if thesemodels have the same set of kinematic arguments
and for them the density of potential energy in the volume has the same form.

The purpose of this work is to show that, along with the standard variational
models derived on the basis of the Lagrange variational principle, there is the family
of the model with the same form of the potential density energy, but differing in
mathematical formulation as whole, i.e. having different boundary value problems.
Note that for these different approaches the constitutive equations and governing
equations are the same due to the fact that the potential energy density uniquely
determines the physical model and the equilibrium equations for the deformation
process under consideration.

For the gradient elasticity, such a variety of models is of significant practical
interest due to the following circumstances:

• the existence of an ambiguous interpretation of static boundary conditions for
moment stresses and the impossibility of physical implementation of these con-
ditions;

• the possibility of simplifying mathematical formulations and defining new
classes of applied models;

• the existence of the alternative models and alternative solutions of the boundary
value problems including conditions on the edges (meniscus forces) or without
them.

The existence of alternative gradient elasticity models, together with the uncertainty
associated with the implementation of these conditions, often requires the formula-
tion of the criteria for choosing the most preferred models from the presented.

9.3 Family of Quasi-Equivalent Models

Let us consider as the main model the standard model of the gradient medium,
for which the Lagrangian has the form (9.1)–(9.3), and the mathematical model is
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determined by the variational equality (9.7), (9.8). Let us indicate the structure of
quasi-equivalent models and briefly discuss these models.

Following the definition, the set of extendedmodels are formulated by introducing
linear restrictions on the body surface for variations of standard model arguments. In
the general case, the variational problem on the surface of the body is associated with
the variation on the body surface of six independent variables—three components of
the displacement vector and normal derivatives of the displacement vector. Thus, we
can introduce and consider six independent restrictions for every considered model.
We assume that, in the general case, these relations include linear combinations of
the displacement vector and the first derivatives of the displacement vector. They are
introduced on the surface of the body F and are set by vector equations:

For any xi ⊂ F , F = F1 ∪ F2 ∪ · · · ∪ FN−1 ∪ FN Fi, i = 1, N

L
Ri∪Ri,j
k (Ri, Ri,j) = caikRi+c

a
ijkRi,j−gak = 0, i, j, k = 1, 2, 3, a = 1, 2.

(9.15)
Here caij , caijk are the tensors of the second and third rank, gai are known continuous
functions of surface coordinates.

The following statement holds.
Lemma. The space of quasi-equivalent models is completely determined by the

kinematical restrictions (9.15).
Proof. Indeed, if (9.15) takes place on a piecewise smooth surface of the body,

then we can introduce the extended Lagrange functional

L̃ = L+

∫
F

Λak(caikRi + caijkRi,j − gak) dF = A−
∫
V

UV (Ri,j , Ri,jk) dV +

+

∫
F

Λak(caikRi + caijkRi,j − gak) dF,

(9.16)
whereΛak are two vectors—Lagrangemultipliers,UV (Ri,j , Ri,jk) is potential energy
density defined in the body volume.

The spectrum of extended models is determined by the variational equation

δL̃ = 0. (9.17)

Obviously, for all the models defined in this way (9.16), (9.17), the potential energy
density is the same, equal to the potential energy density in the standard model,
since it is not modified by the relations introduced on the body surface. The lemma
is proved.
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9.3.1 Kinematic Restrictions for Displacement Vector Components

Let us consider the simplest class of quasi-equivalent models and try to clarify
their physical meaning. Suppose that an extended range of models is constructed
according to the following system of kinematic restrictions

LRij(Ri) = cijRi − gi = 0, i = 1, 2, 3, (9.18)

where cij = c1ninj + c2δ
∗
ij , c1, c2 are constants.

Let us consider the variational formassociatedwith the kinematic constraint (9.18)

δΛk(cikRi − gk) = 0, (9.19)

where Λj is the vector of Lagrange multiplies.
The set of quasi-equivalent models in this case (9.19) is determined by the

extended Lagrange functional

L̃ =L+

∫
F

Λk(cijRi − gai ) dF

=A−
∫
V

UV (Ri,j , Ri,jk) dV +

∫
F

Λk(cikRi − gk) dF,

(9.20)

The mathematical formulation is determined by the variational equation∫
V

{[CijmnRm,n −GijkmnlRm,nlk],j + PVi }δRi dV +

+

∫
F

{
PFi − [CijmnRm,n −GijkmnlRm,nlk]nj +

+ (GmnlijkRm,nl)nk),pδ
∗
pj +H(GmnlijkRm,nlnk)nj + Λjcij)

}
δRi dF −

−
∫
F

(GmnlijkRm,nl)njnkδ(∂nRi) dF +

∫
F

δΛk(cikRi − gk) dF −

−
∑
k

∮
Sk

(GmnlijkRm,nl)vjnkδRi ds = 0.

(9.21)
The Lagrange multipliers Λj in Eq. (9.21) are found so that the “classical” static
boundary conditions are satisfied

Λp = c−1
ip {PFi − [CijmnRm,n −GijkmnlGabkijlRm,nlk]nj +

+ (GmnlijkRm,nl)nk),pδ
∗
pj +H(GmnlijkRm,nl)nknj},

cijc
−1
ip = δjp.

(9.22)
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The boundary value problem for an extended spectrum of quasi-equivalent models
has the form:

τij,j + PVi = 0, xi ⊂ V.
a) if Λj = 0, τijnj + (σijknk),pδ

∗
pj +H(σijknknj) = PFi

or Ri = R0
i , xi ⊂ F,

b) if Λj 6= 0, cRkki − gi = 0, xi ⊂ F,
σijknjnk = µi, or ∂nRi = 0, xi ⊂ F,
σijkvjnk = µSi or Ri = R

Sj
i , xk ⊂ S,

S = S1 ∪ S2 ∪ · · · ∪ Sj ∪ · · · ∪ SN ∪ lN−1, j = 1, N.

(9.23)

Let’s note that the set of quasi-equivalent models (9.23) was established using
kinematic restrictions (9.18), i.e., using the boundary conditions formulated in dis-
placements

Rj = c−1
ij gi, xi ⊂ F,
c−1
ij cki = δjk

(9.24)

together with the boundary conditions in (9.23)

σijknjnk = µi or ∂nRi = 0, xi ⊂ F. (9.25)

These models with conditions (9.18)–(9.24) may be more attractive in terms of
applications since during the solution in displacements based on the Lagrange vari-
ational principle, the solution is defined in the class of continuous displacements,
and the boundary condition on the contours of the edges in the variational for-
mulation must be excluded. Thus, in the gradient quasi-equivalent model obtained
from the standard model by taking into account the kinematic constraints (9.18) on
the piecewise-smooth surface of the body, the conditions on the edge contour can
be disregarded. However, meniscus forces (GmnlijkRm,nl)vjnk can be found after
solving the boundary value problem. The question of the existence of solution for
a piecewise-smooth surface in the class of continuous functions with continuous
continuation on the boundaries of domains – edges, is solved in the affirmative with
the help of embedding theorems.

9.3.2 Gradient Static Friction Model

In addition to (9.18) let us consider the scalar kinematic restriction between normal
and tangent projection of the displacement

(d1Rini − d2Ris
∗
i ) = g, nis

∗
i = 0,

s∗k =
Riδ
∗
ik√

RpRqδ∗pq
=
Riδ
∗
ik

B
, B =

√
RaRbδ∗ab ,

(9.26)
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where d1, d2 are constants, d1 6= 0.
It is easy to show that scalar kinetic equation (9.26) could not be received

from (9.18) as a particular case and is the additional set of kinetic equations (9.18).
We show that it is possible to establish the variational static friction model

introducing these restrictions. Let us first consider a variational model of classical
elasticity and conditionally divide the surface of the body into the one on which the
forces are given and another where the displacements are given F = Fσ ∪ FR∫
V

(σij,j +PVi )δRi dV +

∫
Fσ

(PFi −σijnj)δRi dF −
∫
FR

σijnjδRi dF = 0. (9.27)

Let the stress tensor satisfy the equilibrium equations and static boundary conditions
on a part of the surface Fσ . Then for the any solutions the variational equality (9.27)
for ∀xi ⊂ FR can be presented as follows∫

FR

σijnjδRi dF = 0. (9.28)

Lemma 1. If on the part of surface∀xi ⊂ FR the components of the stress tensor
are satisfied to the relations corresponding to the model of static friction with the
coefficient of friction equal to kσ , then the variational equation (9.28) corresponds
to the introduction of kinematic restriction (9.26) R− kσr = 0, Ri = rjδ

∗
ij +Rni,

d2/d1 = −k on the part of the surface under consideration.
Proof. Let us consider the stress vector (σijnj) and introduce the unit vector

belonging to the tangent plane and collinear to the tangent projection of the stress
vector on the surface FR, sσk = σijδ

∗
iknj/

√
(σpana)(σqbnb)δ∗pq , δ∗pq = δ−pqnpnq .

We assume that normal and shear stresses satisfy the condition of the static friction
model for ∀xi ⊂ FR, (σijnj) = σni + τsσi , τ = (σijnj)s

σ
i , σ = (σijnj)ni:

(σijnj)s
σ
i = −kσ(σijnj)ni or τ = −kσσ, (9.29)

where kσ is coefficient of friction.
To prove the Lemma, let us consider the variational form (9.28) and transform it

taking into account Eq. (9.29). We get
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Fσ

σijnjδRi dF = −
∫
Fσ

(σajnj)δiaδRi dF

=

∫
Fσ

(σajnj)(nani + sσas
σ
i )δRi dF

=

∫
Fσ

[(σajnj)nani + (σajnj)s
σ
as
σ
i ]δRi dF

=

∫
Fσ

[(σajnanj)ni + (−kσajnanj)si]δRi dF

=

∫
Fσ

(σajnanj)(ni − kσsσi )δRi dF

=

∫
Fσ

(σajnanj)δ(Rini − kσRisσi ) dF.

(9.30)

The last term in the equation above determines the possible work of the internal
forces on the kinematic restriction in which the normal R = Rini and transverse
r = Ris

σ
i components are linked by an equality R/r = k for k = kσ . The Lemma1

is proven.
Consider the opposite statement and show that the quasi-equivalent models based

on the kinematic restriction (9.26) give us the set of the static friction models.
Assume that the condition (9.26) is satisfied in the form

Rini − kRis∗i = 0. (9.31)

Introducing the Lagrange multiplyΛ and taking into account Eq. (9.29) we can write
the equation as∫

Fσ

Λδ(Rini − kRis∗i ) dF =

∫
Fσ

[Λ(ni − ks∗i )δRi dF =

=

∫
Fσ

[(Λ)ni + (−kΛ)s∗i ]δRi dF −
∫
Fσ

σijnjδRi dF =

=

∫
Fσ

[(Λ)ni + (−kΛ)s∗i − σijnj ]δRi dF = 0.

(9.32)

Let us find the LagrangemultiplierΛ satisfying equation (9.32). To fulfill the equality
(9.32), one should take{

Λ = σijninj ,

−kΛ = σijs
∗
inj

⇒ −kσijninj = σijs
∗
inj ⇒ −kσ + τ = 0, (9.33)
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where τ = σijs
∗
inj , σ = σijninj .

As a result we found from (9.33) that the normal σ and transverse τcomponents
are connected by the ratio τ = −kσσ, kσ = −k, which determines the law of static
friction with the coefficient of friction kσ . The lemma is proven.

The proved statements for the static friction model are transferred to the general
case of the gradient model. It is only necessary to redefine the stresses involved in the
static boundary condition through the stress τijnj + (σijknk),pδ

∗
pj +H(σijknknj)

for which the static boundary conditions are written in the gradient theory

σ̂ij ∼ τijnj + (σijknk),pδ
∗
pj +H(σijknknj) (9.34)

and assume that the equilibrium equations, nonclassical boundary conditions on the
surface, boundary conditions on the edges, and static boundary conditions on a part
of the surface Fσ are satisfied for the gradient theory. Then, the equation defining
the model of static friction has the form

for ∀xi ⊂ FR (σ̂ijnj)s
σ
i = −kσ(σ̂ijnj)ni or τ = −kσσ

where (σ̂ijnj) = σni + τsσi , τ = (σ̂ijnj)s
σ
i , σ = (σ̂ijnj)ni.

Remark. Let us consider scalar kinematic restriction (9.26) and present this one
as the follow

ciRi = g,

ci = cnni + cssi + cvvi.

Note that the scalar kinematic equation ciRi = g is not a consequence of the vector
kinematic condition (9.18), which were considered as kinematic constraints on the
surface to elaborate the corresponding quasi-equivalent model (9.23). Consequently,
condition ciRi = g generates a special quasi-equivalent model. The mathematical
formulation of this model is determined by the variational equation∫
V

{
[CijmnRm,n −GijkmnlRm,nlk],j + PVi

}
δRi dV +

+

∫
F

{PFi − [CijmnRm,n −GijkmnlRm,nlk]nj +

+ (GmnlijkRm,nl)nk),pδ
∗
pj +H(GmnlijkRm,nlnknj) + Λci)}δRi dF −

−
∫
F

(GmnlijkRm,nl)njnkδ(∂nRi) dF +

∫
F

δΛ(ciRi − g) dF −

−
∑
k

∮
Sk

(GmnlijkRm,nl)vjnkδRi ds = 0.

(9.35)
A feature of the mathematical formulation for the gradient model that can be
elaborated on the based of scalar constraint ciRi − g = 0 is that three static
boundary conditions of the standard model are replaced by a system of three
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conditions among which there is one scalar kinematic condition ciRi − g = 0,
and the other two conditions PFi (si − nics/cn) − τs + σ(cs/cn) = 0 and
PFi (vi − nicv/cn) − τv + σ(cv/cn) = 0, τv = σijnivj are static conditions
which define the generalized friction model. The Lagrange multiplier is found so,
that the static boundary condition for the normal stress component is satisfied

Λ = −PFi ni/cn + σ/cn, σ = σijninj . (9.36)

The boundary value problem for an extended specific of quasi-equivalent model
based on the restriction ciRi − g = 0 has the form:

τij,j + PVi = 0, xi ⊂ V,
a) if Λ = 0, τijnj + (σijknk),pδ

∗
pj +H(σijknknj) = σ0

i

or Ri = R0
i , xi ⊂ F,

b) if Λ 6= 0,

xi ⊂ F,
ckRk − g = 0,

PFi (si − nics/cn)− τs + σ(cs/cn) = 0, τs = σijnisj ,

PFi (vi − nicv/cn)− τv + σ(cv/cn) = 0, τv = σijnivj ,

sivjnkeijk = 0,

xi ⊂ F
{
σijknjnk = µ0

i ,

or ∂nRi = 0,

xk ⊂ S, S = S1 ∪ S2 ∪ · · · ∪ Sj ∪ · · · ∪ SN ∪ lN−1,

j = 1, N

{
σijkvjnk = µSi ,

or Ri = R
Sj
i ,

here eijk is the permutation pseudo-tensor of the Tullio Levi-Civita.

9.3.3 Kinematic Restrictions for Components of Derivatives of
Displacements

Let us consider the spectrum of quasi-equivalent models built by introduction on the
body surface of three kinematic restrictions of the form:

aijk(Ri,j)− fk = 0, k = 1, 2, 3, (9.37)

aijk is a the transverse isotropy tensor of the third rank with respect to the normal to
the surface, aijk = a1δ∗ijnk + a2δ∗jkni + a3δ∗kinj + a4ninjnk, ai (i = 1 ÷ 4) are
constants.
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Accordingly, kinematic restrictions (9.37) are introduced on the vector of multi-
pliers of Lagrange Λk and the extended Lagrange functional has the form

L̃ = L+

∫
δ

L̄ = δL+ δ

∫
F

Λk[aijk(Ri,j)− fk] dF. (9.38)

In accordance with (9.37), (9.38), the variational equation for the extended spectrum
of models has the form

δL̃ =

∫
V

(CijmnRm,nj −GijkmnlRm,nlkj + PVi )δRi dV +

+

∫
F

(aaijRi,j − fFa )δΛa dF +

+

∫
F

{
[PFi − (CijmnRm,n −GlmnijkRl,mn)nj +

+H(GlmnijkRl,mnnknj − Λkakijnj) +

+ (GijklmnRl,mnnk − Λkakij),pδ∗pj ]δRi −
− (GijklmnRl,mnnk − Λkakij)njδ(Ri,pnp)

}
dF −

−
∑∮

(GijklmnRl,mnnk − Λkakij)vjδRi ds = 0.

(9.39)

Lagrange multipliers Λk can be found so that nonclassical boundary conditions are
satisfied in (9.39)

(GijklmnRl,mnnk − Λkakij)nj = 0. (9.40)

It is easy to verify that the vector of Lagrange multipliers, ensuring the fulfillment
of (9.40), has the form

Λp = Glmnijk(nknj A
−1
pi )Rl,mn = clmnpRl,mn, (9.41)

where according to (9.37)

Aik = aijknj = a3δ∗ki + a4nink, A−1
pi Aik = δ, A−1

pi = a−3δ∗pi + a−4ninp,

clmnp = Glmniak

(
1

a3
δ∗pinkna +

1

a4
ninpnkna

)
.

(9.42)
As a result the boundary conditions on the edges could be modified due to the
parameters included in the kinematic equations (9.40)∑∮

(GijklmnRl,mnnk − Λkakij)vjδRids = 0 (9.43)
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and meniscus forces ψi = (GijklmnRl,mnnk − Λkakij)vj in (9.43) also can be
modified due to the vector of the Lagrange multiplier using (9.41), (9.42).

Static boundary conditions following their variational equation (9.39) also can be
modified due to the parameters included in the kinematic conditions (9.40) and can
be presented in the terms of displacement using (9.41), (9.42).

Note that the quasi-equivalent model defined by variational equality (9.39) leads
to a change in the boundary value problem by replacing the “rigid” boundary con-
ditions Ri,pnp = Ṙ0

i in the nonclassical boundary condition with "softer" boundary
conditions (9.37) under which linear combinations of the derivatives of the displace-
ment vector are specified. Such an alternative formulation can be useful in conditions
of uncertainty in the interpretation of moment factors and the corresponding kine-
matic factors on the body surface. The choice between such two statements should
probably bemade by invoking an energy criterion. In (Lurie et al, 2021), for a specific
example of hydrostatic loading of a sphere, it is shown that “soft” boundary condi-
tions are preferable for a mechanical system if the criterion of total strain energy is
used.

9.4 Examples of Gradient Models without Edge Conditions

Let us consider two variants of variational gradient models of deformation, in which
the use of an extended class of semi-equivalent models makes it possible to construct
applied gradient models of elasticity without boundary conditions on the edges.

9.4.1 Variational Gradient Dilation Model

Let’s consider a gradient dilation model with a potential energy density in the
volume of the body 2w = CijmnRm,nRi,j + Cknθkθn, Ckn = Kl2δkn . K is
the volumetric modulus of elasticity, l2 is the scale parameter of the model. For
simplicity, we assume that the surface of a body is formed by a system of planes.
Then the standard variational model has the form

δL =

∫
V

[−Kl2∆Rk,ki + CijmnRm,nj + PVi ]δRi dV +

+

∫
F

[PFi − CijmnRm,nnj +Kl2∆θni +Kl2npθ,p),qδ
∗
iq]δRi dF −

−
∫
F

Kl2npθ,p δ(Ri,qninq) dF −
∑∮

Kl2npθ,p δ(Riνi) ds = 0.

(9.44)
Variational equality (9.44) can also be written in stresses
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δL =

∫
V

(σij,j − δijσk,jk + PVi )δRi dV +

+

∫
F

[PFi − (σij − δijσk,k)]njδRi dF −

−
∑∮

(σknkvi)δRi ds+

∫
F

(σknk),pδ
∗
ipδRi dF −

−
∫
F

(σknk)δ(Ri,pninp) dF = 0,

(9.45)

where σij = CijlmRl,m, σijk = GijklmnRl,mn = σkδij , σk = Cknθn =
CknRl,ln = (Kl2δkn)Rl,ln.

The nonclassical boundary condition in (9.44) (see also (9.45)) is scalar equation.
Therefore, we assume that the class of semi-equivalent models is determined by the
kinematic connection on the derivatives of displacements, represented in the form
of a scalar equality:

aijRi,j = f. (9.46)

For an isotropic bodywith an isotropic surface, a second-rank tensor aij can generally
have the following structure, aij = ninj + aδ∗ij , δ∗ijni = 0, where a is a constant.
Therefore, the kinematic relationship (9.46) on the surface of the body can be
represented in the form

(Ri,qnq)ni + a(Ri,jδ
∗
ij) = (Ṙ+ a(Ri,jδ

∗
ij)) = f. (9.47)

Taking into account (9.47), the variational equality for the class of semi-equivalent
models is written in the form

δ

{
L+

∫
F

Λ[f − (Ṙ+ a(Ri,jδ
∗
ij))] dF

}
=

=

∫
V

[−Kl2∆Rk,ki + CijmnRm,nj + PVi ]δRi dV +

+

∫
F

[PFi − CijmnRm,nnj +Kl2∆θni + (Kl2npθ,p + aΛ),jδ
∗
ij ]δRi dF −

−
∫
F

(Kl2npθ,p + Λ)δ(Ri,qninq) dF −
∑∮

(Kl2npθ,p + aΛ)δ(Riνi) ds+

+

∫
F

[f − (Ṙ+ a(Ri,jδ
∗
ij))]δΛ dF = 0.

(9.48)
here Λ is the Lagrange multiplier.
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Variational equality (9.48) defines the mathematical formulation for a generalized
model with an extended Lagrange functional. In accordance with the method of
Lagrange multipliers in the extended functional in the volume of the body, δRi
are independent variations, on the surface independent variations are δRi vary
independently and the variations δ(Ri,qninq), δΛ. The displacement vector Ri
varies independently on the contour, as well as in the traditional formulation.

The Lagrangemultipliermethod requires all the corresponding “static” conditions
to be equal to zero when all independent variables are varied:

[PFi − CijmnRm,nnj +Kl2∆θni + (Kl2npθ,p + aΛ),jηij ] = 0, xi ∈ F,
(9.49)

(Kl2npθ,p + Λ) = 0, xi ∈ F, (9.50)
(Kl2npθ,p + aΛ) = 0, xi ∈ S = ∪Sk, (9.51)

f − (Ṙ+ a(Ri,jδ
∗
ij) = 0, xi ∈ F = ∪Fk. (9.52)

The Lagrange multiplier Λ is determined from the condition of the fulfillment of the
nonclassical boundary condition (9.50):

Λ = −Kl2npθ,p. (9.53)

As a result, as follows from (9.48) and (9.49)–(9.52), in the general case, the classical
vector static boundary conditions (9.49) and the scalar contour static condition (9.51)
are modified due to the known Lagrange multiplier Λ satisfying the equality (9.53).

Let us note an important class of models whose boundary value problems are
solved without using conditions on the edge contour, in fact, as it is in problems of
elasticity theory. Due to the fact that the condition (9.50) is scalar, then if a = 1,
the static boundary condition in the contour integral (9.51) is identically satisfied,
and the classical boundary condition (9.49) is also simplified. The variational model
takes the form∫

V

[−Kl2∆Rk,ki + CijmnRm,nj + PVi ]δRi dV +

+

∫
F

[PFi − (CijmnRm,n −Kl2δij∆θ)nj ]δRi dF +

+

∫
F

Kl2[f − θ)]δ(θ,pnp) dF = 0.

(9.54)

A feature of this model is that the equilibrium equation and the static boundary
condition in (9.54) are formulated on the internal “classical” total stresses

σij = CijmnRm,n −Kl2δij∆θ. (9.55)
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As a result the classical first main problem (in stresses) is highlighted, and the
variational formulation does not contain conditions on the contour. Nevertheless,
after solving the problem as a whole and determining the Lagrange multiplier Λ, the
vector ψiof contour forces at the points whose coordinates correspond to the edges

ψi = −Λvi. (9.56)

Remarks.
1. Under fully kinematic boundary conditions, the standard variational gradient

dilation model (9.44) completely coincides with the non-standard variational model
(9.54).

2. In the case of static boundary conditions on the body surface with zero values
of moment forces on the body surface, determined by the boundary nonclassical
conditions in (9.45) σknk = σ0 = 0, the variational formulations of the standard
model (9.45) and nonstandard model (9.54) also coincide. To show this, let us
consider the variational equality for the dilatation standard model and present this
one as the follow

δL = δA−
∫
V

[σijδRi,j + σijkδRi,jk] dV =

=

∫
V

(σij,j − δijσk,jk + PVi )δRidV +

∫
F

[PFi − (σij − δijσk,k)njδRi dF −

−
∑

∮ (σknkvi)δRi ds+

∫
F

(σknk),pδ
∗
ipδRi dF −

−
∫
F

[(σknk)− σ0]δ(Ri,pninp) dF = 0

(9.57)
The non-classical boundary condition in the above equation for moment factors has
the form ∫

F

[σknk − σ0]δ(Ri,pninp) dF = 0. (9.58)

This equality defines a pair of moment alternative boundary conditions: static
“moment” condition: σknk = σ0 and the kinematic “nonclassical” condition of
rigid fixation of the normal Rn,n = Ri,knink = R0

n,n (no summation by n).
As a rule, it is not clear how the force moment condition can be realized, there-
fore, it is assumed reasonable to take on the surface σknk = σ0 = 0 where
such a static condition arises. Then we receive that the follow two equations hold∫
F

(σknk),pδ
∗
ipδRi dF = 0

∫
F

(σknk)niδ(Ri,pnp) dF = 0 . Then it can be argued

that the boundary value problem is determined by the above variational equation
gives the following variation quality

∫
V

(σij,j − δijσk,jk + PVi )δRi dV = 0 and
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F

[PFi − (σij − δijσk,k)njδRi dF = 0 and the boundary problem completely co-

incides with the classical boundary value problem formulated in displacements with
respect to semi-classical stresses τij = σij − δijσk,k. Obviously, the boundary con-
ditions on the edges are also fully satisfied automatically and can be omitted during
statement.

9.4.2 Variant of Vector Gradient Elasticity Model

Let us consider a variational standard model of general form (9.8) and assume that
an extended spectrum of semi-equivalent models is constructed using the kinematic
constraints on the derivatives of displacements (9.37). Following the method of
Lagrange multipliers, the vector of Lagrange multipliers is found in such a way to
satisfy the nonclassical boundary condition (9.39). Let us arrange at our discretion
the structure of tensors in kinematic constraints and assume that the third-rank tensor
caij in the definition of kinematic constraints (9.39) has the following particular form
caij = Cakijnk, where Cakij is the tensor of classical moduli of elasticity. Then the
nonclassical boundary condition in (9.39) can be presented as follows:

(GijkmnlnkRm,nl − ΛaCakijnk)nj = 0. (9.59)

Let us show that there is a particular form of the structure of the gradient elastic
moduli of the sixth rank, for which the last tensor condition can be represented in
the form of a convolution of two vectors. Indeed, we put that

Gijkmnl =
CakijCalmnl

2

C
, C =

√
CabcdCabcd. (9.60)

Then equality (9.59) can be rewritten as(
CakijCalmnl

2

C
nkRm,nl − ΛaCakijnk

)
nj =

= Cakijnknj

(
Calmnl

2Rm,nl
C

− Λa
)

= 0.

(9.61)

The peculiarity of the obtained structure of the nonclassical boundary condition is
that the tensor equality can be satisfied exactly by choosing the vector of Lagrange
multipliers

Λa =
Calmnl

2Rm,nl
C

. (9.62)

The proposed structure of the third-rank tensor caij in kinematic constraints (9.37)
and a special structure of physical gradient elastic moduli (9.60)–(9.62) make it
possible to simplify significantly the variational formulation of a non-standardmodel:
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δL̃ =

∫
V

(CijmnRm,nj −GijkmnlRm,nlkj + PVi )δRi dV +

+

∫
F

{[PFi − (CijmnRm,n −GijkmnlRm,nlk)nj ]δRi} dF +

+

∫
F

(caijRi,j − rFa )δCalmnl
2Rm,nl/C dF.

(9.63)

The specific feature of the formulation above (9.63) is that in the presented applied
model there are no boundary conditions on the edges and the first main problem is
clearly distinguished, formulated for the Cauchy stress tensor

σij = CijmnRm,n −GijkmnlRm,nlk. (9.64)

The presented non-standard one-parameter gradient elasticity model with the given
specific properties is a particular case of a wider set of vector models considered
earlier (Lurie et al, 2017). Vector models of gradient elasticity are of practical interest
because they make it possible to simplify significantly the solutions of specific
problems by explicitly separating the sequence of explicitly solvable boundary value
problems of second-order equations of mathematical physics instead of the original
general problem with the fourth-order operator.

9.5 General Case of Kinematic Restrictions. Generalized
Pinching

Let us consider the general case of kinematic constraints from the point of view of
boundary conditions at the edges. As it was noted earlier, in the case of specifying
three kinematic constraints for displacements, if ‖cij‖ 6= 0 in (9.15), the variational
mathematical model for the class of extended models does not include conditions on
the edge contour.

For the case of kinematic conditions on the derivatives of the displacement vector,
there were indicated the cases when conditions on the edges are also absent in the
variational formulation. More complicated is the question of the conditions on the
edges in the general case of kinematic constraints (9.15).

The theorem of the solution existence in such boundary value problems in the
class of continuous solutions is established by embedding theorems if the solution
is sought in the space W 2

2 . The question of the existence of smoother solutions in
the class of continuous functions with continuous derivatives remains open. In this
section, this issue is briefly studied for a special class of boundary value problems.

By generalized pinching we will call the conditions that reduce to the require-
ment that the variations of two different linear combinations of standard kinematic
variables and their first derivatives have to be equal to zero (9.15). Let us write the
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variational equation for this non-standard extended model, assuming for simplicity
that the surfaces are formed by a system of planes:

δL =

∫
V

(CijmnRm,nj −GijkmnlRm,nlkj + PVi )δRidV +

+

∫
F

(cakijRi,j + cakiRi)δΛ
a
kdF +

+

∫
F

{
[PFi − (CijmnRm,n −GijkmnlRm,nlk)nj +

+ (GijkmnlnkRm,nl + Λakc
a
kij),pδ

∗
pj + Λakc

a
ki]δRi −

− (GijkmnlnkRm,nl + Λakc
a
kij)njδ(Ri,pnp)

}
dF −

−
∑∮

(GijkmnlnkRm,nl + Λakc
a
kij)vjδRi ds = 0.

(9.65)

Six components of two vectors of indefinite Lagrange multipliers make it possible
to satisfy the requirement that all six static factors in the surface integral are equal
to zero. However, it arises the question how it is possible to satisfy the requirement
of equality to zero of the sum of contour integrals over edges.

If we consider the conditions on the contour as three alternative pairs of boundary
conditions on the contour of each smooth surface bounded by a contour of edges, then
we can assume that the displacement vector on the surface should not be determined
uniquely, but up to the certain vector field, the components of which satisfy the
system of differential equations of the second order on every smooth surface. Let us
prove that such a field exists in the generalized pinching problem.

The following statement holds.
Theorem. Let the kinematic conditions be satisfied

caijkRj,k + aaijRj = 0 and ‖c1,2kijnj‖ 6= 0,

then, there exists a vector field satisfying a second order partial differential equation
(of the type of the generalizedHelmholtz equation) on each smooth surface, forwhich
the following variational statement of the boundary value problem is formulated

δL =

∫
F

[AijrDrstδ
∗
pjλs,tp + (AirDrsp −AijrDrsδ

∗
pj)λs,p −AirDrsλs]δRi dF +

+
∑∮

(p∗i −AijrvjDrstλs,t +AijrvjDrsλs)δRi ds = 0.

(9.66)
Proof. We assume that the displacement field is determined as a solution to the

system of fourth-order differential equations:

CijmnRm,nj −GijkmnlRm,nlkj + PVi = 0 (9.67)
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provided that the displacement field on the surface of the body satisfies the postulated
constraints (9.15), which determine the boundary value problem of “generalized
pinching”. Let’s consider the nonclassical boundary condition GijkmnlnkRm,nl +
Λakc

a
kij)nj = 0 and express the components of the vector of Lagrange multipliers in

terms of the second derivatives of the displacement vector. Using the condition of
the theorem, we find{

Λ1
k = Λra

−1
rk − a−1

ki GijamnlnjnaRm,nl/2,

Λ2
k = −Λra−2

rk − a−2
ki GijamnlnjnaRm,nl/2,

(9.68)

where a1
ki = c1kijnj , a2

ki = c2kijnj , a
−1
ri a

1
ki = δrk, a−2

ri a
2
ki = δrk.

We can formulate “plane” differential equations with respect to the components
Λr, using the classical "static boundary conditions, given in the variational equality
(9.65)

lr(Λ
1
k, Λ

2
k) = PFi − (CijmnRm,n −GijkmnlRm,nlk)nj +

+(GijkmnlnkRm,nl + Λ1
kc

1
kij + Λ2

kc
2
kij),pδ

∗
pj + Λ1

kc
1
ki + Λ2

kc
2
ki = 0

After substituting the components Λr into these conditions using equalities (9.68),
we find the following system of differential equations for the components Λr

[PFi − (CijmnRm,n −GijkmnlRm,nlk)nj + (gijabGabcmnlncRm,nl),pδ
∗
pj −

− giaGabcmnlnbncRm,nl/2] + (AijrΛr),pδ
∗
pj +AirΛr = 0,

(9.69)
where

Air = (a−1
rk c

1
ki − a−2

rk c
2
ki), Aijr = (a−1

rk c
1
kij − a−2

rk c
2
kij),

gia = (a−1
ka c

1
ki + a−2

ka c
2
ki, gijab = (δiaδjb − a−1

ka c
1
kijnb/2− a−2

ka c
2
kijnb/2).

(9.70)
We represent the solution of the system of partial differential equations with respect
to Λr in the form of an expansion:

Λr = Λ∗r +Drstλs,t −Drsλs, (9.71)

where Λ∗r is the particular solution of the inhomogeneous system, and λs is the
general solution to the homogeneous system, Drst, Drs are arbitrary transversally
isotropic tensors.

In the general case, the vector field λs satisfies the generalized “plane” Helmholtz
equation. Indeed, the homogeneous equation (9.69) for λs can be presented in the
form

(Aijrδ
∗
pjDrst)λs,tp + (AirDrsp −Aijrδ∗pjDrs)λs,p − (AirDrs)λs = 0. (9.72)
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Thus, the field of total displacements is defined as a solution to the system of the
fourth-order differential equations (9.67) provided that the displacement field on
the surface of the body satisfies the postulated constraints (9.15), which determine
the boundary value problem of “generalized pinching”. Then the variational equa-
tion (9.65) will not contain the integral over the volume, and the surface integral,
containing variations of two vectors of Lagrange multipliers, takes the form:∫

F

{[PFi − (CijmnRm,n −GijkmnlRm,nlk)nj +

+ (GijkmnlnkRm,nl + Λakc
a
kij),pδ

∗
pj + Λakc

a
ki]δRi −

− (GijkmnlnkRm,nl + Λakc
a
kij)njδ(Ri,pnp)} dF −

−
∑∮

(GijkmnlnkRm,nl + Λakc
a
kij)vjδRi ds = 0. (9.73)

Let us take into account that, in accordance with the Lagrange multiplier procedure,
the components Λr are found in such a way that static nonclassical conditions are
satisfied (the condition of equality to zero of the static multiplier at δ(Ri,pnp)). As
a result, the equation (9.73), taking into account equalities (9.68), can be written in
terms of Λr

δL =

∫
F

[PFi − (CijmnRm,n −GijkmnlRm,nlk)nj +

+ (gijabGabcmnlncRm,nl),pδ
∗
pj −

− giaGabcmnlnbncRm,nl/2 + (AijrΛr),pδ
∗
pj +AirΛr]δRidF −

−
∑∮

(gijabGabcmnlncRm,nl +AijrΛr)vjδRi ds = 0.

(9.74)

Since the displacements satisfy the equilibrium equations (9.67) and the constraints
postulated on the surface (9.15), the vector of total displacements is completely
determined and in further reasoning can be considered as known. Therefore, for
brevity, we define the following generalized force fields:

at every non-singular point of the surface

Pi = PFi − (CijmnRm,n −GijkmnlRm,nlk)nj + (gijabGabcmnlncRm,nl),pδ
∗
pj −

− giaGabcmnlnbncRm,nl/2

at each point of the contour of edges on the surface

pi = −(gijabGabcmnlncRm,nl)vj .

As a result, the variational equation (9.74) defining the vector field Λrtakes the form



178 Lurie, Belov, Solyaev

δL =

∫
F

[P+
i (AijrΛr),pδ

∗
pj +AirΛr]δRidF +

+
∑∮

(pi −AijrvjΛr)δRi ds = 0. (9.75)

On each of the planes that make up the surface of the body, we can introduce a local
Cartesian coordinate system and, using the expansion (9.71), reduce the variational
equation (9.75) to the “multi-contact plane problem”

δL =

∫
F

[AijrDrstδ
∗
pjλs,tp + (AirD

−
rspAijrDrsδ

∗
pj)λs,p −AirDrsλs]δRi dF +

+
∑∮

(p∗i −AijrvjDrstλs,t +AijrvjDrsλs)δRi ds = 0. (9.76)

Here: {
Pi +Aijrδ

∗
pjΛ
∗
r,p +AirΛ

∗
r = 0,

pi = p∗i +AijrvjΛ
∗
r .

(9.77)

Thus, it was established that the vector field on each plane satisfies the generalized
Helmholtz equation (9.72) and has enough arbitrariness to satisfy the requirement of
continuity of the meniscus forces when passing from one plane to the neighboring
one through an edge. Relations (9.68), (9.71), (9.76), (9.77) actually indicate the
possibility of obtaining a vector field and prove the theorem of the existence of
solution to a boundary value problemwith edges for generalized pinching determined
by kinematic constraints (9.15).

This indicates the set of models for which the theorem of the existence of solutions
for domains with edges holds.

9.6 The Theorem on the Self-Balance of Meniscus Forces

In this part of the article, we will consider one specific formal feature of the behavior
of solutions associated with integral conditions for the edges on the body surface in
gradient elasticity, which is a consequence of the variational standard formulation.

Let us consider the variational Lagrange equality in stresses, has the form
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δL = δA−
∫
V

[σijδRi,j + σijkδRi,jk] dV =

=

∫
V

(σij,j − δijσk,jk + PVi )δRi dV+

∫
F

[PFi − (σij − δijσk,k)njδRi dF −

−
∑

∮ (σknkvi)δRi ds+

∫
F

(σknk),pδ
∗
ipδRi dF −

−
∫
F

(σknk)δ(Ri,pninp) dF = 0. (9.78)

The statement takes place: Meniscus forces determined by the expression (σknkvi)
are self-balanced along the contours formed by the edges.

Proof.Let us consider the classical boundary condition for varying displacements
in (9.78), and integrate it over the body surface. We obtain the following from the
variational equation.∫
F

[PFi − (CijmnRm,n −GijkmnlRm,nlk)nj + (GijkmnlnkRm,nl),pδ
∗
pj ] dF = 0.

(9.79)
Obviously, equality (9.79) can be rewritten as∫

F

PFi dF −
∫
F

[(CijmnRm,n −GijkmnlRm,nlk)nj ] dF +

+

∫
F

[(GijkmnlnkRm,nl),pδ
∗
pj ] dF = 0. (9.80)

Consider the second and the third terms in (9.80) and apply the Green-Ostrogradskii
theorem∫

F

[(CijmnRm,n −GijkmnlRm,nlk)nj ] dF =

=

∫
V

(CijmnRm,n −GijkmnlRm,nlk),jdV = −
∫
V

PVi dV. (9.81)

The equality (9.81) is obtained taking into account that displacements in the volume
of the body satisfy the equilibrium equation.

Similarly, consider the third term in (9.80) and use ofGreen–Ostrogradski theorem
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F

[(GijkmnlnkRm,nl),pδ
∗
pj ]dF =

∑∮
(GijkmnlnkRm,nl)vpδ

∗
pj ds =

=
∑∮

(GijkmnlnkRm,nl)vj ds. (9.82)

We take into account the equations (9.81) and (9.82) and transform the Eq. 3.2)
as follows∫

F

PFi dF −
∫
F

[(CijmnRm,n −GijkmnlRm,nlk)nj ] dF +

+

∫
F

[(GijkmnlnkRm,nl),pδ
∗
pj ] dF =

=

(∫
F

PFi dF +

∫
V

PVi dV

)
+
∑∮

(GijkmnlnkRm,nl)vj ds =

=
∑∮

(GijkmnlnkRm,nl)vj ds = 0. (9.83)

Here it is taken into account that there is an integral condition of global equilibrium∫
F

PFi dF +

∫
V

PVi dV = 0.

The condition of equation (9.83) implies the equality, which indicates the property
of self-balance along all edges (contours)∑∮

(GijkmnlnkRm,nl)vj ds = 0.

The theorem is proved.
We believe that last statement is extremely interesting for all formulations of

boundary value problems that include edges.

9.7 Conclusions

There are considered mathematical statements for the Mindlin-Tupin gradient elas-
ticity theories in displacements with the fourth-order system of governing equations,
including boundary conditions, according to which six boundary conditions (kine-
matic or static) are formulated at each non-singular point of the surface, as well as
three boundary conditions are formulated on the edges of piecewise—smooth sur-
face. The peculiarities of mathematical and physical formulations of boundary value
problems of the gradient theory are associated with the formulation of nonclassical
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boundary conditions for the moments for which physical interpretations seem to be
difficult, as well as with the formulation of boundary conditions on the edges of the
surface.

The need to formulate boundary conditions at the edges also requires an additional
study of the problem of the existence of classical solutions in the class of continuous
and differentiable functions. On the other hand, the choice between generalized
static and kinematic nonclassical boundary conditions is not so obvious in applied
problems.

Some of the questions above are considered in thework in the context of expanding
the spectrum of gradient models and boundary value problems by introducing the
kinematic constraints on the body surface using the Lagrange multiplier method.
Classes of gradient models obtained by introducing the kinematic constraints on the
surface, in which there are no boundary conditions at the edges, are indicated. These
include models built by introducing kinematic vector relations to the displacement
vector. Examples of models with the same properties obtained by introducing linear
combinations of the first derivatives of displacements are given.

It is considered the case when the kinematic scalar connection on the surface of
the body sets the relationship between the normal and tangential components of the
displacement vector and makes it possible to construct a model of static friction.

A general theorem on the self-balance of meniscus forces defined on the edges of
the body surface is established.
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Abstract The utilization of continuum modelling in describing complex material
systems is historically widespread because of the computational feasibility of such
an approach. Nevertheless, continuum models must be informed about the micro-
structure to have a satisfactory predictive capacity. Knowledge of micro-structural
features is fraught with challenges due to a litany of factors, including random
structure, contact conditions, and contact constitutive laws. In this scenario, the
granularmicromechanics approach (GMA) is away to conveniently provide a linkage
of the grain-scale behavior to the collective behavior of grains. In this short review,
we describe some salient features of GMA and discuss outlook of GMA based
continuum models.

Keywords: Granular micromechanics approach · Continuum modelling · Piola
ansatz

10.1 Introduction

The ideas of finite divisibility of all matter goes back to early epistemic effort
regarding character of matter that can be traced to 4th-5th century BCE Greek
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atomism of Leucippus and Democritus1, and the ancient Indian thought systems
(dating 6th century BCE and earlier) of Vaiśes. ika Gough (1873); Kak (2016) and
Nyaya Gotama (1913). It is worthwhile to reproduce here a particularly evocative
sutra taken from Nyayasutra of Gotama that illustrates the discrete nature of matter.2
Remarkably, in the Nyayasutra, arguments of regressus ad infinitum form the basis
to prove the untenability of infinite divisibility exemplified so vividly in the cited
sutra. When considering the deformability of 3D seemingly continuous mass, the
vanguards of continuum mechanics, Piola, Navier, Cauchy, and Poisson (cf. Piola
dell’Isola et al (2014)dell’Isola et al (2014), Navier Navier (1827), Cauchy Cauchy
(1830), PoissonPoisson (1828)), in the first half of 19th centuryCE, indeed conceived
the matter to be composed of discrete “molecules”. The application of molecular
hypothesis that formed the basis of many early investigations into the mechanics of
3D deformable media leads to anisotropic elasticity with restrictions on the number
of independent constants, known as Cauchy reductions. The derivation of Navier
Navier (1827), for instance, resulted in a single constant for isotropic elasticity
implying a singular Poisson’s ratio of 1/4. Utilizing energy arguments attributed
to George Green Love (1892), generalization of the molecular hypothesis has been
discussed by Kelvin Kelvin (1893) to derive elastic constants of general anisotropic
elasticitywithout the restrictions imposed byCauchy reductions or singular Poisson’s
ratio. A vivid account of the debate and alternate formulations presented for the
analytical description of material elasticity in the 19th century is given by Ibbetson
in “Appendix III-Hookes’s Law” and by Love in the “Historical Introduction” of
the treatise on mathematical theory of elasticity Love (1892); Ibbetson (1887). The
account includes the discussions of elasticity of anisotropic or aelotropic materials
based upon the energy arguments of Green, its earliest application to crystal elasticity
byNeumann, and its application to non-crystalline aelotropicmaterials, such aswood
and laminates, by St Venant.

At some spatial scale, all matter is recognizable as composed of discrete sub-
bodies or structural elements of sizes that can range from sub-nanometer to several
meters. The relative geometrical arrangements and interconnectivity of these granu-
lar elements forms the microstructure of the matter irrespective of the spatial scale.
In addition, the character of the interconnections, that possess their own geomet-
rical/mechanical attributes, forms the basis of micromechanics of the matter. The
combined effects produced through interaction of the microstructure and microme-
chanics can be termed as micro-mechano-morphology. For many materials utilized
in engineering activities, their granular nature (or micro-mechano-morphology) has
a profound effect on the behavior that emerges at the so-called macro-scale which
represents the combined behavior of a large number of elements (numbers such that
a discrete analysis is either not fruitful or not feasible from experimental and/or com-

1 Berryman, S. Ancient Atomism. Stanford Encyclopedia of Philosophy 2016; Available from:
https://plato.stanford.edu/entries/atomism-ancient/#AtomBefoLeuc.

2
केशसमूहे तैममरिकोपलब्धिवत्तदपुलब्धििः॥४।२।१३॥

(Matter appears as whole or continuous) like a pile of hair may appear to a person of blurred vision
(4.2.13).
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putational viewpoints). It is worthwhile to note here that for certain cases, structural
elements that are otherwise composed of large number of some other primary (dis-
crete) elements, may be discretized into rigid elements that interact via mechanisms
as in Hencky model of beams Hencky (1921); Wang et al (2020); Turco et al (2016);
Giorgio (2020). Such discrete models may be further homogenized, and the reason-
ing maybe extended to conceive hierarchical and nested models. At the macro-scale,
typically, the preferred means for description of material behavior is via the methods
of continuummechanics. The traditional approach in continuummechanics has been
to formulate these descriptions in terms of identified kinematical variables through
direct postulates of balance equations in terms of proposed quantities defined for
the continuum system. As noted, early development of mathematical theories of
deformable media rightly recognized the discrete/granular nature of matter in their
development of continuum models of deformable media.

The granular micromechanics approach (GMA) takes inspiration from the molec-
ular hypothesis to provide a paradigm for constructing continuummodels for a range
of materials appealing to their underlying granular nature/motif. In this regard it is
useful to define granular material systems as composed of nearly rigid elements
(or grains) such that the elastic strain energy is stored and/or energy dissipated
in the deformable mechanisms represented through interconnections or interfaces
between the grains. In GMA, the continuum material point consists of a set of inter-
acting grains. This granular view is consistent with the idea of coarse graining by
combining atoms and molecules into larger grains necessary for modeling polymeric
or complex multi-atomic systems Greene et al (2014); Misra and Ching (2013); So-
lar et al (2012). The key underlying feature is that relative movements of the grain
centroid/barycenter can be used to describe the deformation of such material sys-
tems regardless of the location of the actual deformation following Piola’s ansatz of
passage from a molecular to continuum description dell’Isola et al (2014); Eugster
and dell’Isola (2017, 2018b,a). Further, the GMA considers a parameterization of
the effective grain-pair deformation energies. In this way, it is possible to exploit the
advantage offered by GMA of interpreting the macro-scale constitutive parameters
in terms of the micro-scale mechano-morphological parameters.

For example, geomaterials, such as sands and clays, can be represented as grain
packing,which have been treated using analysis similar to themolecular hypothesis to
determine their macro-scale stiffness by considering grain-contact stiffness starting
from central interactions, in which only normal contact stiffness are considered, and
extending to non-central tangential contact interactions. A brief historical outline of
efforts along these lines is given inMisra et al (2020b) tracing fromwork ofHaraHara
(1935), through Mindlin and coworkers (for example Deresiewicz (1958); Duffy and
Mindlin (1957)), to Digby Digby (1981) and Walton Walton (1987), to works that
appeared in late 20th and early 21st century Cambou and Danescu (2009); Chang
and Misra (1990); Jenkins (1988); Koenders (1994); Kruyt and Rothenburg (2004);
Rothenburg and Selvadurai (1981); Theocharis et al (2020). Stiffness matrices of
granular crystals as well as granular packing with orthotropic symmetry have also
been reported following a similar methodology Chang and Misra (1990); Cambou
et al (2004); Chang et al (1995); Chang and Misra (1989); Jenkins (1991); Nicot and
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Darve (2005). Significantly, such estimates overlook the long-range interactions that
effect the behavior of a grain-pair embedded within a system of grains. A few efforts
have also beenmade to account for these long-range effects by estimating corrections
that are derived with an aim to enforce local equilibrium conditions for grains,
prominent among which are Jenkins et al (2005); Jenkins and Koenders (2004);
Koenders (2020); Misra and Chang (1993) or through representation of mesoscopic
structuresNicot andDarve (2011); Chang et al (1992), however, these primarily focus
on isotropic random grain packing and, make a number of assumptions. Notably,
these estimates retain the classical format of continuum mechanics.

It is remarkable that in granular systems, in which grains interact with nearest
neighbors, it is not possible to specify the effective grain-pair deformation energies
without the a priori knowledge of grain-scale mechano-morphology of next-nearest
neighbors and their neighbors and so on. Besides the long-range effects, the effort of
generating estimates of the elastic constants for grain packs or systems of cemented
grains in terms of the stiffness to two grains in contact is fraught with challenges
due to a litany of factors, including random structure, contact conditions, contact
constitutive laws etc. Nevertheless, the analysis of these materials according to
molecular hypothesis gives an advantage that can provide a linkage of the grain-
scale behavior to the collective behavior of grains. In this review, we describe some
salient features of GMA and discuss outlook of GMA based continuum models.

10.2 Granular Micromechanics Approach

Continuum material point represents the collective behavior of numerous grains
forming an infinitesimal volume element (VE) at spatial scales in which the indi-
vidual grains and their motions are considered latent (concealed or unresolvable).
The energy stored/dissipated in the deformation of grain collections, determines the
mapping of a continuum material point from reference to present configuration in a
macro body composed of such material. To this end, Piola’s ansatz dell’Isola et al
(2014); Eugster and dell’Isola (2017, 2018b,a) for micro-macro identification maybe
utilized to get the objective kinematic descriptor for grain-pair relative displacement
linked to the placement (see for example Barchiesi et al (2021b); Nejadsadeghi and
Misra (2020a)). Thus, the continuum description is achieved by expressing grain-
scale motions in terms of continuum strain measure. The macro-scale deformation
energy density is then expressed as the volume average of grain-pair deformation
energy and the constitutive relations determined in the manner introduced by Green
Love (1892) GMA is a heuristic homogenization scheme in which the deformation
energy density of a continuum material point and the granular volume it represents
are the same. In this case, the RVE is a volume of a granular system whose mechani-
cal response (deformation energy density) remains the same as the volume is moved
within a specimen. We briefly describe the seminal aspects of GMA. The discussed
micro-macro kinematic identification provides the pathway for formulating equiva-
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lent deformation energy postulates in terms of the continuum deformation and the
grain-pair deformations measures.

10.2.1 Piola Ansatz for Micro-Macro Kinematic Identification

Consider the deformation of a discrete model of granular microstructure composed
of N-sub bodies, each of which is composed of many grains, and its continuum
representation, as illustrated in Fig. 10.1 and described in detail in Misra et al
(2021). We may use the following Piola ansatz for identification of discrete and
continuum models:

χ(Xi, t) = χi(t), P (Xi, t) = Pi(t), ∀t ∈ R+ . (10.1)

Fig. 10.1 On the left, the discrete model. Each sub-body Bn, with n = 1, . . . N , in the reference
configuration is represented with black boundaries and is composed by many grains. Each grain is
represented with blue boundaries. For each sub-body Bn, two placements are defined. The
placement of the point Xn, belonging to one of the grain of the sub-body Bn, is χn (t). The
placement of the point X′n, belonging eventually to another grain of the sub-body Bn, is
χ′n (X′n, t). On the right, the continuum model. The reference configuration of the continuum body
is C∗. Its generic point is X ∈ C∗ and the corresponding placement is χ (X, t). Such a point X is
the representative of a micro-structure, e.g. the cube in the figure. Within the micro-structure (thus,
within the cube in the figure) two placements are defined. The first, is the same placement χ (X, t)

of the point X . The second placement χ′ (X,X′, t) defines that of any other point X′ of the
micro-structure.

It is clear in Eq. (10.1) that the continuum placement, χ(X, t), and microde-
formation, P (X, t), evaluated at Xi correspond to the placement χi(t) and micro-
deformation Pi(t) of the i-th sub-body of the granular structure. Here, microde-
formation is estimated using a 1st order Taylor expansion as the gradient of the
grain placement within the i-th sub-body with respect to the grain at Xi. Notably,
we observe, from Fig. 10.1, that microdeformation in granular systems arises as a
relative movement of grains within the i-th sub-body with respect to the grain placed
at Xi. Indeed, the grain motions can be quite complex depending upon the local
micro-mechano-morphology (or local grain arrangements and micromechanics of
grain interactions), and possibly, higher-order gradients could be significant requir-
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ing the inclusion of higher-order terms. The placement and microdeformation, thus
identified, are used to define the following three objective tensors that represent the
material deformation traceable to the micro-scale grain-pair relative displacements

gnp = G =
1

2

(
FTF − I

)
mnp = M +

L

2
PT∇P ĉ =

1

2

(
PTP − I

)
+
L

2
PT∇P ĉ

γnp = Υ − L
[
∇PT ĉ

]
F−T = I − PTF−T − L

[
∇PT ĉ

]
F−T (10.2)

In Eq. (10.2), F = ∇χ, L is the microstructural length parameter representing
separation between sub-bodies such that it can be given as a multiple of constituent
grain-size, and ĉ is interpreted as the unit vector representing grain-pair orientations.
The three tensors in Eq. (10.2) are termed as the macrostrain, microstrain and the
relative strain. The effective objective relative displacement of grain-pairs oriented
in the direction ĉ can thus be estimated decomposed into corresponding three mecha-
nisms that can be termed as macro-displacement, micro-displacement, micro-macro
relative displacement, given as follows:

unp = 2Lgnpĉ = 2LGĉ, rnp = 2Lmnpĉ, dnp = Lγnpĉ . (10.3)

In the linear approximation, it is shown Misra et al (2021) that the three tensors in
Eq. (10.2) simplify to those introduced by Mindlin (1963, 1964) as macrostrain ε,
microstrain Ψ and relative strain γ:

εij =
1

2
(ui,j + uj,i) , γij = uj,i − Ψij , κijk = Ψjk,i . (10.4)

10.2.2 Micro-Macro Kinematic Identification Using Prescribed
Micromotion

An alternative view in which micro-macro kinematic identification may be con-
ceived is by tracking the motion of the grains within the sub-bodies Nejadsadeghi
and Misra (2020a). In particular, the continuum material point is identified with
the barycenter of the sub-body and the grain motion considered with respect to this
barycenter. In this case, the continuum placement, χ(X, t), introduced in Eq. (10.1)
is associated to the barycenter of the sub-body. A microscale coordinate system X ′

attached to the barycenter of the material point is utilized to specify the placement
of grains composing the sub-body given as χ′(X,X ′, t). Motivated by experimental
observations and discrete simulations, we use a polynomial expansion to prescribe
the microscale grain displacement (truncated here at order 2 for micromorphic con-
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tinuum of degree 1) as follows, in which Ψij and Ψijk are termed microdeformation
tensors Nejadsadeghi and Misra (2020a)

u′i = χ′i (Xm, X
′
n)−X ′i = Ψij(X)X ′j + Ψijk(X)X ′jX

′
k . (10.5)

In the microscale coordinate system, the relative displacement between two neigh-
boring grain can be expressed as

δnpi = φpi − φni = Ψφij l
np
j + ΨφijkJ

np
jk . (10.6)

Here lnpj = X ′pj −X ′nj is a grain-pair branch vector joining the centroids of grains
n and p, the tensor product Jnpjk ≈ l

np
j lnpk /2 is the gyration tensor. We now consider

the linear approximation and utilize the following relative deformation tensors

γij = ui,j − Ψij , γijk = Ψij,k − Ψijk . (10.7)

Also we assume that the relative deformation tensor, γijk vanishes such that the 3rd
rank micro-deformation tensor, Ψij,k = Ψijk. In this case, the macro-displacement,
relative displacement, and micro-displacement, are given as follows

δMi = εij l
np
j , δmi = γij l

np
j , δgi = Ψij,kJ

np
jk . (10.8)

10.3 Outlook

It is clear from the foregoing discussion, that a continuum model constructed via
this identification is an approximate one. In this sense, all ‘so called’ classical
continuum models are essentially approximations whose efficacy and applicability
can be assessed only by careful examination of its prediction capability of all observed
phenomena of significance. To this end,we cannot emphasize enough the significance
of the imposed boundary conditions. Very often, the boundary conditions imposed in
the laboratory and those described in theoretical models are not in consonance. For
many engineering applications, it is expedient to overlook this dissonance.We further
note that the assumed smallest unit in the above-described kinematic identification
may be further subdivided into even smaller units (or grains) in a hierarchical
manner and one may attempt to estimate the consequences of the interactions and
arrangements of these smaller units in some nested manner. The necessary question
that arises is how the idealization (or so-called “coarse graining”) is to be developed.
In any case, the granular paradigm discussed here can be utilized to reveal the
micro-scale effects on emergent macro-scale behavior as shown by the authors,
for example, wave dispersion and other higher-order effects Misra and Poorsolhjouy
(2016); Nejadsadeghi andMisra (2020b, 2021); dependency of load-paths in damage
behavior Poorsolhjouy andMisra (2017); and anisotropy evolution and emergence of
chirality due to damage and plasticity Placidi et al (2021); Timofeev et al (2021).Most
importantly, GMA provides a framework for developing higher-gradient Barchiesi
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et al (2021b) (see also Abali et al (2021) where material coefficients of a phase-field
theory of brittle damage mechanics for second gradient metamaterials are chosen
using the identification in Barchiesi et al (2021b)) and higher-order Nejadsadeghi
and Misra (2020a); Misra et al (2021) continuum models that introduce additional
kinematic measures to describe the deformation behavior with higher fidelity. Such
models are necessary for elucidating many phenomena exhibited by materials whose
descriptions are often times tortuous and require many ad hoc mathematical fixes.
Furthermore, the preceding micro-macro identifications connect micro-mechanisms
to emergent behavior, and therefore, can be the basis of conceiving micro-mechano
morphology leading to interesting and predictable metamaterials dell’Isola et al
(2020); Barchiesi et al (2021a); Misra et al (2020a); Giorgio et al (2021).
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Chapter 11
Some Variational Principles in the
Three-Dimensional Micropolar Theories of
Solids and Thin Solids

Mikhail Nikabadze, Armine Ulukhanyan

Abstract In this work, we formulated the variational principles of Lagrange, Cas-
tigliano, the generalized Reissner-type variational principles (GRTVP), as well as the
principle of virtual work and the principle of complementary virtual work of three-
dimensional micropolar mechanics (MM) of solids of some rheologies in the case of
potentiality, as well as nonpotentiality of stress and couple stress tensors. Proceeding
from them and applying the new parametrization (NP) of the domains of single-layer
and multilayer thin bodies, the variational principles corresponding to the theories of
single-layer and multilayer thin bodies are formulated. In particular, the generalized
Reissner-type operator of three-dimensional MM of solids is constructed, on the
basis of which the generalized Reissner-type operators of three-dimensional MM
of solid single-layer and multilayer thin bodies with one small size are constructed.
From the latter Reissner-type operators, in turn, the GRTVP of three-dimensional
MM of solid single-layer and multilayer thin bodies with one small size are derived
under the NP of the domains of these bodies. It should be noted that the advantage
of the NP is that it is experimentally more accessible than other parameterizations
used in the scientific literature. Further, using the method of orthogonal polynomi-
als, from the above-mentioned GRTVP, the GRTVP of MM of solid single-layer
and multilayer thin bodies with one small size under the NP of the domains of these
bodies in moments with respect to the system of Legendre polynomials are derived.
Moreover, in the case of the theory of multilayer thin bodies, the representation of
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the generalized Reissner-type operator is given and the generalized Reissner-type
variational principle is formulated, both in the case of complete contact of adjacent
layers of a multilayer structure, and in the presence of zones of weakened adhesion.
In addition, the description of obtaining of dual Reissner-type operators and the
GRTVP, as well as of Lagrangian and Castiglianian and variational principles of
Lagrange and Castigliano is given. The interface (interphase boundary) is described
by a surface of zero thickness.

Keywords: Work generalized theorem · Legendre-type identity · Compatibility
conditions · Beltrami–Michell type equations · Multilayer thin body · Jump-type
model

11.1 Introduction

Variational principles and their application in many areas of natural sciences, in
particular, mathematical physics, physics and mechanics, including the theory of
elasticity, viscoelasticity, plasticity, economic sciences and etc., have a long history
of development. However, the importance of these principles began to be realized
only recently due to the development of the finite element method, which has become
widespread. Variational principles are a powerful tool in the mathematical formula-
tion of the finite element method and, conversely, the rapid development of the finite
element method has stimulated the improvement of variational principles. Problems
of natural science, in particular, of mathematical physics, admitting variational state-
ments, make it possible to maximally weaken the mathematical constraints that are
imposed on solutions, as well as to construct a priori stable difference schemes for
their numerical implementation. The calculus of variations is at the origin of the the-
ory of optimal control and optimal design of structures. In this regard, the popularity
of variational methods in the fields of natural sciences, in particular, in the fields of
mathematical physics, physics, mechanics, and engineering sciences is great. The
mathematical results obtained in this direction are quickly adopted by those who
deal with applied problems. This is what explains the growing demand for books on
variational calculus and, in fact, there are a lot of such books in various languages.
Without going into the details of the literature review, among the countless num-
ber of works we will name, for example, the books by Rektorys (1977); Washizy
(1982); Berdichevsky (2009); Vanko (2010); Vekua (1970); Pobedrya (1984, 1995);
Lanczos (2012); Besdo (2014); Nesbet (2002); Yourgrau (2012); Cline (2021); Ma-
son (2013); Basdevant (2007); Ghoussoub (2008); Lovelock (2012)). Moreover, the
books by Pobedrya (1984, 1995) are not books on the variational calculus. However,
it is important to note that in them the original style of presentation of the basic
variational principles of classical solid mechanics is given, which the authors of
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this work extended to micropolar three-dimensional solid mechanics and also to
single-layer and multilayer thin1 solid bodies.

It should be noted that on the theory of elastic thin bodies, the authors of this work
have published a lot of works and the interested reader is referred to, ampng others,
Nikabadze (2014, 2001b,a); Nikabadze and Ulukhanyan (2005); Nikabadze (2006,
2007a,b,c); Nikabadze and Ulukhanyan (2016, 2019b,c,a, 2020a,b, 2021). We also
note that in Vekua (1970) the variational principles of constructing the classical
theory of shells using the expansion of unknown quantities in terms of the system of
Legendre polynomials depending on the transverse coordinate are presented. M.U.
Nikabadze spread this method on the construction of various versions of micropo-
lar theories of elastic thin bodies, using the expansion in systems of Legendre and
Chebyshev orthogonal polynomials (Nikabadze, 2014) and the Pobedria style for
the presentation of the variational principles. In particular, in this work we have
derived the necessary integral relations and proved the concept of living force and
the generalized work theorem from which Clapeyron’s theorem is derived. We have
constructed Lagrangian, Castiglianian and generalized Reissner-type operators. We
have given the definition of the generalized Legendre transform and obtained the
Legendre-type identity. We have proved Lagrange and Castigliano’s theorems con-
cerning variational principles. We have written down the compatibility conditions
with respect to tensors of strain and bending-torsion in various forms. We have pre-
sented equations of the Beltrami–Michell type for the stress and couple stress tensors
with both asymmetric and symmetric differential tensor operators. We have given
statements of mixed boundary value problem and initial boundary value problem
with respect to vectors of displacements and rotations, as well as statements of the
mixed boundary value problem and the new statement of the boundary value problem
with respect to stress and couple stress tensors. We have given the definition of the
generalized solution of the boundary value problem. We have proved the theorem of
the minimum at the stationary point of the Lagrangian at the stationary point and the
theorem of the maximum of the Castiglianian at the stationary point, as well as the
theorem on the uniqueness of the generalized solution of boundary value problems.

The generalized Reissner-type operator of three-dimensional micropolar mechan-
ics of solids is presented, on the basis of which the generalized Reissner-type operator
of three-dimensional micropolar mechanics of thin solids with one small size is ob-
tained under the new parameterization of the domains of these bodies. From the last
Reissner-type operator, in turn, the generalized Reissner-type variational principle
of three-dimensional micropolar mechanics of thin solids with one small size is
derived under the new parametrization of the domains of these bodies. It should be
noted that the advantage of the new parameterization is that it is experimentally more
accessible than other parameterizations Nikabadze (2014, 2015, 2017).

Further, applying the method of orthogonal polynomials (expansion of unknown
quantities in series in terms of a system of orthogonal polynomials), from the general-

1 A three-dimensional body, one size of which is smaller than the others is called a thin body with
one small size, and a solid body, two sizes of which are small compared to the third dimension is
called a thin body with two small dimensions. The usual rules of tensor calculus adopted in Vekua
(1970, 1978, 1982); Pobedrya (1986); Nikabadze (2015, 2017) are used.
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ized Reissner-type variational principle of three-dimensional micropolar mechanics
of thin solids with one small size under the new parameterization of the domains
of these bodies, the Reissner variational principle of micropolar mechanics of thin
solids with one small size in the moments with respect to the system of Legen-
dre polynomials is derived. In addition, the method is described for obtaining the
variational principles of Lagrange and Castigliano of micropolar mechanics of thin
solid with one small size under the new parametrization of the domains of these
bodies in moments with respect to systems of the first and second kind Chebyshev
polynomials.

The effective parametrization of amultilayer thin domain, called a newparametriza-
tion, is considered and consists in using, in contrast to the classical approaches,
several base surfaces. In addition, the new parameterization is characterized by the
fact that it is experimentally more accessible than other parameterizations used in
the scientific literature, since the front surfaces are used as basic ones. Also, when
obtaining any relation (a system of equations, constitutive relations, boundary and
initial conditions, variational principles, etc.) in the moments of the theory of mul-
tilayer thin bodies under the new parametrization of the domain of a thin body, it is
sufficient in the corresponding relation of the theory of a single-layer thin body under
the root letters of the quantities to supply the index α, which denotes the number of
the layer α and give this index values from 1 toK, whereK is the number of layers.
Therefore, for the correct statement of the initial-boundary value problems to the
equations of motion and the boundary and initial conditions in the moments, it is also
necessary to add interlayer contact conditions, which must also be taken into account
when writing the variational operators and formulating the variational principles.
What has been said above can be called the rule of obtaining the desired relation in
the theory of multilayer thin bodies from the corresponding relation in the theory
of single-layer thin bodies. Applying this rule, below we give the representation of
the generalized Reissner-type operator and formulate the generalized Reissner-type
variational principle both in the case of full contact of adjacent layers of a multilayer
structure and in the presence of zones of weakened adhesion. The description of
obtaining of dual operators and variational principles of Reissner-type, as well as of
Lagrangian and Castiglianian and variational principles of Lagrange and Castigliano
is given. In the presence of domains of weakened adhesion at interphase boundaries
in a multilayer thin body, one of the main problems is the problem of modeling the
interface (interphase boundary). In this paper, the jump-type model (description of
the interface by a surface of zero thickness) is presented in comparative detail.

11.2 Some Definitions and Integral Identities

Before formulating these variational principles, we introduce definitions and ob-
tain certain integral identities for three-dimensional micropolar theories of solids
similarly to the classical theory Pobedrya (1995).
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Definition 11.1. Arbitrary continuously differentiable vector fields u (displacement
vector) and ϕϕϕ (rotation vector) are called the kinematic system, and arbitrary tensor
fields P˜ (stress tensor) and µµµ˜ (couple stress tensor) are called a static system.

Definition 11.2. A kinematically admissible system is a kinematic system that sat-
isfies the kinematic boundary conditions

u|S1
= u0, ϕϕϕ|S1

= ϕϕϕ0, (11.1)

and in the case of a dynamic problem the kinematic system must also satisfy the
initial conditions

u|t=t0 = f1, u̇|t=t0 = f2, ϕϕϕ|t=t0 = g1, ϕ̇ϕϕ|t=t0 = g2. (11.2)

Definition 11.3. Statically admissible system is a static system that satisfies the
equilibrium equations in the case of a static or quasistatic problem

∇·P˜ + ρF = 0, ∇·µµµ˜ + C
'

2
⊗P˜ + ρG = 0 (11.3)

or the motion equations in the case of a dynamic problem

∇·P˜ + ρF = ρ
dv

dt
, ∇·µµµ˜ + C

'

2
⊗P˜ + ρG = J˜· dωωωdt , ωωω =

dϕϕϕ

dt
, (11.4)

and static boundary conditions

n·P˜∣∣S2
= P0, n·µµµ˜

∣∣
S2

= µµµ0. (11.5)

It should be noted that S1 is one part, and S2 is another part of the surface S of
the body, n is the unit outward normal vector of the surface, ∇ is Hamiltonian. In
addition the following conditions are met: S1 ∪ S2 = S and S1 ∩ S2 = ∅, where
∅ denotes an empty set. Note also that the equations given in this paper in the
form (11.3) and (11.4) can be viewed, for example, in monographies by Nowacki
(1975); Kupradze et al (1976); Nikabadze (2014); Eringen (1999), in which they are
presented in various forms.

Definition 11.4. The real kinematic system u andϕϕϕ and the real static system P˜ and
µµµ˜ are called, respectively, displacement and rotation vectors and stress and couple
stress tensors, which satisfy the equilibrium equations (11.3) or movement equations
(11.4) in the case of a dynamic problem, kinematic relations

γγγ˜ = ∇u−C
'
·ϕϕϕ, κκκ˜ = ∇ϕϕϕ, (11.6)

constitutive relations
P˜ = F̌˜(γγγ˜,κκκ˜), µµµ˜ = Ǧ˜ (γγγ,κκκ˜) (11.7)

or in the case of potential operators F̌˜ and Ǧ˜ the system satisfies the following
constitutive relations
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P˜ =
∂W̌

∂γγγ˜ , µµµ˜ =
∂W̌

∂κκκ˜ , (11.8)

kinematic (11.1) and static (11.5) boundary conditions (and initial conditions (11.2)
in the case of dynamic problems).

Here P˜ is the stress tensor, µµµ˜ is the couple stress tensor, u is the displacement
vector, ϕϕϕ is the rotation vector, γγγ˜ = ∇u−C

'
·ϕϕϕ is the strain tensor, κκκ˜ = ∇ϕϕϕ is the

bending-torsion tensor, v is the velocity vector, ωωω is the vector of angular velocity,
C
'
is the third order discriminant tensor (or the Levi-Civita tensor), F is the vector of

mass force, G is the vector of mass moment, ρ is the density of the medium, J˜ is thetensor of the moment of inertia, n is the unit vector of external normal to the surface
to the surface of the body,

2
⊗ is the inner 2 -products Vekua (1978); Nikabadze

(2014, 2016); Nikabadze and Ulukhanyan (2016); Nikabadze (2017), W̌ (γγγ˜,κκκ˜) is
the operator (or potential) of strain and bending-torsion tensors, and if it exists, then
the constitutive relationships are defined by (11.8).

Note that in non-isothermal processes, instead of W̌ (γγγ˜,κκκ˜), the free energy
Ě(γγγ˜,κκκ˜, θ) = W̌ (γγγ˜,κκκ˜) − HT is considered, where H is the entropy, T is the
temperature, and θ = T − T0 is the temperature drop.

Now let us get some integral identities. For this, we multiply the first equation
(11.4) by some vector w, and the second one by the vectorψψψ. Then we integrate the
obtained relations over the volume of V and apply the formula

∇ · (Q˜ · a) = ∇ ·Q˜ · a + Q˜ 2
⊗∇a, ∀Q˜ , a (11.9)

and the Ostrogradsky–Gauss theorem. Then, as a result, we come to the following
integral identities:∫
V

ρv̇ ·wdV =
∫
V

ρF ·wdV +
∫
Σ

n ·P˜ ·wdV − ∫V P˜ 2
⊗∇wdV ,∫

V

ω̇ωω · J˜ ·ψψψdV =
∫
V

ρG ·ψψψdΣ +
∫
Σ

n ·µµµ˜ ·ψψψdV − ∫V (µµµ˜ 2
⊗∇ψψψ −P˜ 2

⊗C
'
·ψψψ)dV.

(11.10)
Adding (11.10) term-by-term, we get∫

V

(ρv̇ ·w + ω̇ωω · J˜ ·ψψψ)dV =
∫
V

ρ(F ·w + G ·ψψψ)dV

+
∫
Σ

(P(n) ·w +µµµ(n) ·ψψψ)dΣ −
∫
V

[P˜ 2
⊗ (∇w −C

'
·ψψψ) +µµµ˜ 2

⊗∇ψψψ]dV.
(11.11)

When writing the surface integral in the right-hand side of (11.11), we took into
account the Cauchy formulas: n · P˜ = P(n) and n · µµµ˜ = µµµ(n), where P(n) is the
stress vector, µµµ(n) is the couple stress vector.

Assuming that w = v and ψψψ=ωωω, from (11.11) we obtain the concept of living
force
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d

dt

∫
V

(ρ
v2

2
+

1

2
ωωω · J˜ ·ωωω)dV =

∫
V

(ρF · v + ρG ·ωωω)dV

+
∫
Σ

(P(n) · v +µµµ(n) ·ωωω)dΣ −
∫
V

(P˜ 2
⊗ γ̇γγ˜+µµµ˜ 2

⊗ κ̇κκ˜)dV,

(11.12)

where γ̇γγ˜ = ∇v −C
'
·ωωω, κ̇κκ˜ = ∇ωωω.

Introducing the notations

E =
∫
V

(ρ
v2

2
+

1

2
ωωω · J˜ ·ωωω)dV (11.13)

– for kinetic energy, δA(e) = δA
(e)
1 + δA

(e)
2 – for changing the work of external

forces and moments, where

δA
(e)
1 =

∫
V

(ρF · du + ρG · dϕϕϕ)dV (11.14)

is the change of the work of external mass forces and moments,

δA
(e)
2 =

∫
Σ

(P(n) · du +µµµ(n) · dϕϕϕ)dΣ (11.15)

is the change of the work of external surface forces and moments, and also

δA(i) = −
∫
V

(P˜ 2
⊗ dγγγ˜+µµµ˜ 2

⊗ dκκκ˜)dV, (11.16)

– for changing the work of stress and couple stress tensors with the opposite sign,
the concept of living force (11.11) can be written in a short form

dE = δA(e) + δA(i). (11.17)

Now let w = u, ψψψ = ϕϕϕ. Then, if we use the boundary conditions (11.1) and (11.5),
then from (11.11) we will have∫

V

(ρv̇ · u + ω̇ωω · J˜ ·ϕϕϕ)dV =
∫
V

ρ(F · u + G ·ϕϕϕ)dV +
∫
Σ2

(P0 · u +µµµ0 ·ϕϕϕ)dΣ

+
∫
Σ1

n · (P˜ · u0 +µµµ˜ ·ϕϕϕ0)dΣ −
∫
V

(P˜ 2
⊗ γγγ˜+µµµ˜ 2

⊗κκκ˜)dV.

(11.18)
Further, let us assume that the mass and surface forces and moments appearing in
(11.18) have potential (or do not depend on the displacement and rotation vectors).
Then the first two terms on the right side of (11.18) represent the work done by
external forces and moments in displacement u and rotation ϕϕϕ
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A(e)≡A(e)
1 +A

(e)
2 , A

(e)
1 ≡

∫
V

(ρF · u + ρG ·ϕϕϕ)dV,

A
(e)
2 ≡

∫
Σ2

(P0 · u +µµµ0 ·ϕϕϕ)dΣ.
(11.19)

The third term on the right side of (11.18) is called the work done by surface forces
and moments in the given displacement u0 and rotation ϕϕϕ0

A
(i)
Σ1
≡
∫
Σ1

n · (P˜ · u0 +µµµ˜ ·ϕϕϕ0)dΣ. (11.20)

The last term on the right side of (11.18) is the work of stress and couple stress
tensors in the strain and the bending-torsion tensors with the opposite sign

A(i) ≡ −
∫
V

(P˜ 2
⊗ γγγ˜+µµµ˜ 2

⊗κκκ˜)dV. (11.21)

The integral on the left side of (11.18) is the work done by D’Alembert forces (or
the work of inertial forces and moments)

AE ≡
∫
V

(ρv̇ · u + ω̇ωω · J˜ ·ϕϕϕ)dV . (11.22)

It is easy to see that if in (11.22) the vectors u and ϕϕϕ are replaced by du and dϕϕϕ,
respectively, then the change of work of D’Alembert forces will coincide with the
change of kinetic energy (11.13)

dAE = dE =
∫
V

(ρv̇ · du + ω̇ωω · J˜ · dϕϕϕ)dV.

Now let us suppose that the vectors w èϕϕϕ appearing in (11.11) satisfy the conditions

w|Σ1 = u0, ψψψ|Σ1 = ϕϕϕ0. (11.23)

In particular, u0 and ϕϕϕ0 can be equal to zero. Then it is easy to see that the relation
(11.11), taking into account (11.5) and (11.23), can be written in the form∫
V

[P˜(u,ϕϕϕ)
2
⊗ γγγ˜(w,ψψψ) +µµµ˜(u,ϕϕϕ)

2
⊗κκκ˜(ψψψ)]dV

=
∫
V

[ρ(F− ü) ·w + (ρG− J˜ · ω̇ωω) ·ψψψ]dV

+
∫
Σ1

n · (P˜ · u0 +µµµ˜ ·ϕϕϕ0)dΣ +
∫
Σ2

(P0 ·w +µµµ0 ·ψψψ)dΣ.

(11.24)

Hence, without inertial terms, we get∫
V

[P˜(u,ϕϕϕ)
2
⊗ γγγ˜(w,ψψψ) +µµµ˜(u,ϕϕϕ)

2
⊗κκκ˜(ψψψ)]dV =

∫
V

(ρF ·w + ρG ·ψψψ)dV

+
∫
Σ1

n · (P˜ · u0 +µµµ˜ ·ϕϕϕ0)dΣ +
∫
Σ2

(P0 ·w +µµµ0 ·ψψψ)dΣ.

(11.25)
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If in this case the kinematic boundary conditions are represented as

u|Σ1
= 0, ϕϕϕ|Σ1

= 0, (11.26)

i.e. u0 = 0, ϕϕϕ0 = 0, then from (11.25) we have∫
V

[P˜(u,ϕϕϕ)
2
⊗ γγγ˜(w,ψψψ) +µµµ˜(u,ϕϕϕ)

2
⊗κκκ˜(ψψψ)]dV

=
∫
V

(ρF ·w + ρG ·ψψψ)dV +
∫
Σ2

(P0 ·w +µµµ0 ·ψψψ)dΣ.
(11.27)

Note that in (11.24), (11.25) and (11.27) we have γγγ˜(w,ψψψ) = ∇w−C
'
·ψψψ, κκκ˜(ψψψ) =

∇ψψψ.
Assume that the operators F̌˜ and Ǧ˜ are potential, i.e. there exists a deformation

potential W̌ (γγγ˜,κκκ˜), by means of which the stress and couple stress tensors are defined
by the formulas (11.8). Then, using the definitions of the differential of operator and
the functional derivative Pobedrya (1995), it is easy to see that we will have

DW̌ (γγγ˜(u,ϕϕϕ),κκκ˜(ϕϕϕ), γγγ˜(w,ψψψ),κκκ˜(ψψψ)) ≡ DW̌ (u,ϕϕϕ,w,ψψψ)

= P˜(u,ϕϕϕ)
2
⊗ γγγ˜(w,ψψψ) +µµµ˜(u,ϕϕϕ)

2
⊗κκκ˜(ψψψ).

(11.28)

Determining the potential energy operator of the tensors of strain and bending-torsion
Π̌(γγγ˜,κκκ˜) by

Π̌(γγγ˜(u,ϕϕϕ),κκκ˜(ϕϕϕ)) ≡
∫
V

W̌ (γγγ˜(u,ϕϕϕ),κκκ˜(ϕϕϕ))dV, (11.29)

the relation (11.27) by virtue of (11.28) and (11.29) can be presented it short form

DΠ̌(u,ϕϕϕ,w,ψψψ)−A(e)(w,ψψψ) = 0. (11.30)

We can see that in this case from (11.24), taking into account the inertial terms,
instead of (11.30) we will have

DΠ̌(u,ϕϕϕ,w,ψψψ)−A(e)(w,ψψψ) +AE(w,ψψψ) = 0. (11.31)

Note that in (11.30) and (11.31) we introduce next notations:

A(e)(w,ψψψ) =
∫
V

(ρF ·w + ρG ·ψψψ)dV +
∫
Σ2

(P0 ·w +µµµ0 ·ψψψ)dΣ,

AE(w,ψψψ) =
∫
V

(ρv̇ ·w + ω̇ωω · J˜ ·ψψψ)dV.
(11.32)

Having (11.6) and (11.7), from (11.3) and (11.4) we obtain the equilibrium and
motion equations represented with respect to the displacement and rotation vectors,
which we symbolically write as follows:

∇·P˜(u,ϕϕϕ) + ρF = 0, ∇·µµµ˜(u,ϕϕϕ) + C
'

2
⊗P(u,ϕϕϕ) + ρG = 0, (11.33)
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∇·P˜(u,ϕϕϕ) + ρF = ρ
dv

dt
, ∇·µµµ˜(u,ϕϕϕ) + C

'

2
⊗P(u,ϕϕϕ) + ρG = J˜· dωωωdt .(11.34)

It can be seen that with each problem (11.33), (11.26) and (11.5) the equality (11.27)
or (11.30) is related for arbitrary differentiable vector fields w and ψψψ satisfying the
conditions

w|Σ1 = 0, ψψψ|Σ1 = 0. (11.35)

It should be noted that the equations (11.33) include the second derivatives with
respect to the coordinates of the vectors u andϕϕϕ. Therefore, the solution of problem
(11.33), (11.26) and (11.5) must be at least twice differentiable. Consequently, we
can abandon this requirement and understand the solution of the problem (11.33),
(11.26) and (11.5) in a generalized sense. In this regard, it is advisable to introduce
a definition.

Definition 11.5. The vector fields u and ϕϕϕ are called the generalized solution of
the problem (11.33), (11.26) and (11.5) if for all differentiable vectors w and ψψψ
satisfying the conditions (11.35) the identity (11.27) or (11.30) is true.

Note that only the condition for the existence of integrals in the right-hand side
(11.27) is required from the input data. Note also that the generalized solution will
be classical if the vector fields u and ϕϕϕ are twice continuously differentiable.

It is easy to show that if F̌˜ and Ǧ˜ are potential operators, then the change of the
work of the internal forces and moments (11.16) is the total differential and the work
of the internal forces and moments due to (11.29) is expressed by

A(i) = −Π̌ = −
∫
V

W̌dV. (11.36)

In addition, it is easy to see that if F̌˜ and Ǧ˜ are potential operators and mass and
surface forces and moments are potential (F = ∂χ1/∂u, m = ∂χ2/∂ϕϕϕ, P(n) =
∂χ3/∂u, µµµ(n) = ∂χ4/∂ϕϕϕ), the concept of living force is represented as

dE = dA(e) + dA(i),

whence by virtue of (11.36) it follows that

Ľ = E −A(e) + Π̌ = const. (11.37)

The operator Ľ is called the Lagrangian of a system, and the systems for which it
has a constant value are conservative.

Taking into account that the F̌˜ and Ǧ˜ operators are potential, while W̌ (γγγ˜,κκκ˜) is
a homogeneous operator of degree m, from (11.18) we come to the so-called work
generalized theorem

AE = A(e) −mΠ̌ +A
(i)
Σ1
. (11.38)

If the forces and moments of inertia are absent, the kinematic boundary conditions
are zero (11.26) and the operator W̌ (γγγ˜,κκκ˜) is quadratic, then from (11.38) the theorem
of Clapeyron follows
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A(e) = 2Π̌ = 2
∫
V

W̌ (γγγ˜,κκκ˜)dV.

Now let us consider the static (quasistatic) problem (11.3), (11.6), (11.8), (11.26)
and (11.5) and let us construct the Lagrangian for this problem

Ľ(u,ϕϕϕ) = Π̌(u,ϕϕϕ)−A(e)(u,ϕϕϕ), (11.39)

where the first term on the right side of (11.39) is determined by (11.29), and the
second one is determined by the first formula (11.32) if in it we change w and ψψψ to
u and ϕϕϕ, respectively.

11.3 Lagrange Variational Principle (Lagrange Theorem)

Theorem 11.1. Of all kinematically admissible systems the real system is different
in that for it and only for it the Lagrangian has a stationary value, i.e.

DĽ(u,ϕϕϕ, δu, δϕϕϕ) = 0, (11.40)

or, use the definition of the differential of operator and (11.8), the equality (11.40)
can be represented as∫
V

(P˜ 2
⊗ δγγγ˜+µµµ˜ 2

⊗ δκκκ˜)dV =
∫
V

(ρF · δu+ρG · δϕϕϕ)dV +
∫
Σ2

(P0 · δu+µµµ0 · δϕϕϕ)dΣ,

(11.41)
where the ratios are valid

δγγγ˜ = ∇δu−C
'
· δϕϕϕ, δκκκ˜ = ∇δϕϕϕ. (11.42)

δu and δϕϕϕ can be understood as the difference between two kinematically admissible
systems (δu = u2 − u1, δϕϕϕ = ϕϕϕ2 −ϕϕϕ1).

Proof of necessity. Assuming ρv̇ = 0, J˜ · ω̇ωω = 0, w = δu and ψψψ = δϕϕϕ, from
(11.11) immediately follows the necessity of the theorem, i.e. (11.40) or (11.41).

Proof of sufficiency.Taking into account (11.42), (11.9) and using theOstrogradsky-
Gauss theorem, by (11.26) from (11.41) we get∫
V

[(∇ ·P˜ + ρF) · δu + (∇ ·µµµ˜ + C
'

2
⊗P˜ + ρG) · δϕϕϕ]dV

=
∫
Σ2

[(n ·P˜ −P0) · δu + (n ·µµµ˜ −µµµ0) · δϕϕϕ]dΣ.
(11.43)

Since δu and δϕϕϕ are arbitrary then from (11.43) there are followed (11.3) without
inertial terms and (11.5).

Thus, when formulating the Lagrange variational principle, we require the ful-
fillment of the kinematic relations (11.6) and the kinematic boundary conditions
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(11.26), and from the stationarity condition (11.40) of the Lagrangian (11.39) the
equilibrium equations (11.3) and the static boundary conditions (11.5) follow.

Now, before we formulate the Castigliano variational principle, let us introduce
the notion of a generalized Legendre transform for operators and present the com-
patibility conditions in a micropolar theory. For this purpose, we recall that the usual
Legendre transformation of a differentiable function f(x), where

df = Xdx, X =
df

dx
,

associates with a function F (X) such that

dF = xdX, x =
dF

dX
.

At the same time, it is easy to show that the identity is valid

f(x) + F (X)− xX = const. (11.44)

The generalization of the Legendre transformation to operators consists in replacing
the usual derivative with a functional one. Let a scalar operator W̌ (γγγ˜,κκκ˜) be given,
where

DW̌ (γγγ˜,κκκ˜, δγγγ˜, δκκκ˜) = P˜ 2
⊗ δγγγ˜+µµµ˜ 2

⊗ δκκκ˜, P˜ =
∂W̌

∂γγγ
, µµµ˜ =

∂W̌

∂κκκ
.

Then the generalized Legendre transformation assigns to the operator W̌ (γγγ˜,κκκ˜),
called the potential of strain and bending-torsion tensors, the operator w̌(P˜ ,µµµ˜),
called the potential of stress and couple stress tensors, such that

Dw̌(P˜ ,µµµ˜, δP˜ , δµµµ˜) = γγγ˜ 2
⊗ δP˜ +κκκ˜ 2

⊗ δµµµ˜, γγγ˜ =
∂w̌

∂P˜ , κκκ˜ =
∂w̌

∂µµµ˜ . (11.45)

Whereby similarly to (11.44) the Legendre-tipe identity

W̌ (γγγ˜,κκκ˜) + w̌(P˜ ,µµµ˜)−P˜ 2
⊗ γγγ˜−µµµ˜ 2

⊗κκκ˜ = const. (11.46)

holds true. Note that if W̌ (0, 0) = 0 and w̌(0, 0) = 0, then the constant on the right
side of (11.46) is zero.

Thus, the Legendre transformation assigns to the potential of strain and bending-
torsion tensors the potential of stress and couple stress tensors. Obviously, similarly
to the operator of the potential energy of the tensors of strain and bending-torsion
(11.29), it is possible to introduce the operator of the potential energy of the tensors
of stress and couple stress π̌. So that we will have

π̌ =
∫
V

w̌dV, Dπ̌(P˜ ,µµµ˜, δP˜ , δµµµ˜) =
∫
V

(γγγ˜ 2
⊗ δP˜ +κκκ˜ 2

⊗ δµµµ˜)dV. (11.47)
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It should be noted that the second and third relations (11.45) assume the solvability
of the relations (11.7) in the form of

γγγ˜ = J̌˜(P˜ ,µµµ˜), κκκ˜ = Ȟ˜ (P˜ ,µµµ˜) (11.48)

and, in addition, the potentiality of the operators J̌˜ and Ȟ˜ , i.e.
γγγ˜ = J̌˜(P˜ ,µµµ˜) =

∂w̌

∂P˜ , κκκ˜ = Ȟ˜ (P˜ ,µµµ˜) =
∂w̌

∂µµµ˜ . (11.49)

11.3.1 On Compatibility Conditions in Linear Micropolar Theory

These conditions for a simply connected domain, consisting of 18 relations and
which for the first time, apparently, were obtained in Aero and Kuvshinsky (1960);
Kuvshinsky and Aero (1963) (see also Sandru (1966); Nowacki (1975); Eringen
(1999)), can be represented as Nikabadze (2010, 2012)

∇× γγγ˜+ I1(κκκ˜)E˜ −κκκ˜T = C
'

2
⊗∇γγγ˜+ I1(κκκ˜)E˜ −κκκ˜T = 0˜,

∇×κκκ˜ = C
'

2
⊗∇κκκ˜ = 0˜,

(11.50)

where C
'
is the discriminant tensor.

First, applying the transposition operation, and then the rotor operator to (11.50)
and taking into account the definition of the incompatibility tensor Pobedrya (1995,
1986); Nikabadze (2010, 2012)

ηηη˜ ≡ InkQ˜ = ∇×
(
∇×Q˜ )T

= −∆Q˜ −∇∇I1(Q˜ ) +∇(∇ ·Q˜ ) + [∇(∇ ·Q˜ T )]T + E˜ [∆I1(Q˜ )−∇∇
2
⊗Q˜ ]

and equalities

∇×
[
I1(κκκ˜)E˜] = −C' · ∇I1(κκκ˜), ∇×κκκ˜ = 0˜,

where Q˜ is an arbitrary second rank tensor, I1(κκκ˜) and I1(Q˜ ) are the first invariants
of κκκ˜ and Q˜ respectively, and E˜ is the unit tensor of the second rank, we obtain the
compatibility conditions in the form

Inkγγγ˜−C' · ∇I1(κκκ˜) = 0˜, Inkκκκ˜ = 0˜. (11.51)

It should be noted that the relations (11.51) are equivalent to the relations
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Ȟ˜ (γγγ˜,κκκ˜)≡−∆γγγ˜−∇∇I1(γγγ˜)+∇(∇ · γγγ˜)+[∇(∇ · γγγ˜T )]T−C' · ∇I1(κκκ˜)=0˜,
η̌ηη˜(κκκ˜) ≡ −∆κκκ˜ −∇∇I1(κκκ˜) +∇(∇ ·κκκ˜) + [∇(∇ ·κκκ˜T )]T = 0˜, (11.52)

which in the following we will call the compatibility relations in the micropolar
theory.

Using (11.48) (or (11.49)), the compatibility relations (11.52) can be represented
symbolically as follows:

Ȟ˜ (P˜ ,µµµ˜) = 0˜, η̌ηη˜(P˜ ,µµµ˜) = 0˜, (11.53)

which are called compatibility relations (equations) with respect to the tensors of
stresses and couple stresses. Obviously, the number of such equations is 18.

It should be noted that we assume that the equations (11.53) are obtained for those
bodies forwhich the constitutive relations (11.7) and (11.48) are valid simultaneously,
for example, for linearly elastic bodies, and also for linearly viscoelastic bodies of
arbitrary anisotropy, i.e. i.e. for those bodies for which the constitutive relations are
reversible.

Next, from (11.53) we get the equations for a homogeneous isotropic linearly
elastic micropolar body with a center of symmetry taking into account the equation
(11.3), i.e. we want obtain equations of the Beltrami–Michell type. In the case of a
homogeneous linearly elastic micropolar body with a center of symmetry, the direct
and inverse constitutive relations are represented as

P˜ = A˜̃ 2
⊗ γγγ˜, µµµ˜ = D˜̃ 2

⊗κκκ˜, γγγ˜ = A˜̃ ′ 2
⊗P˜ , κκκ˜ = D˜̃ ′ 2

⊗µµµ˜, (11.54)

where P˜ is the stress tensor, µµµ˜ is the couple stress tensor,
2
⊗ is the inner 2-

product Vekua (1978); Nikabadze (2014, 2016); Nikabadze and Ulukhanyan (2016);
Nikabadze (2017), A˜̃ and D˜̃ are the elastic modulus tensors, and A˜̃ ′ and D˜̃ ′ are theelastic compliance tensors. For an isotropic material, they have the following expres-
sions:

A˜̃ = λC˜̃ (1) + (µ+ α)C˜̃ (2) + (µ− α)C˜̃ (3),

D˜̃ = γC˜̃ (1) + (δ + β)C˜̃ (2) + (δ − β)C˜̃ (3),

A˜̃ ′=λ′C˜̃ (1) + (µ′ + α′)C˜̃ (2) + (µ′ − α′)C˜̃ (3),

D˜̃ ′=γ′C˜̃ (1) + (δ′ + β′)C˜̃ (2) + (δ′ − β′)C˜̃ (3).

(11.55)

Here C˜̃ (1), C˜̃ (2), C˜̃ (3) are fourth-rank isotropic tensors, the material constants are
related by the relations

λ′ = − λ

6µK
, µ′ =

1

4µ
, α′ =

1

4α
, K = λ+

2

3
µ, ν =

λ

2(λ+ µ)
,

γ′ = − γ

6δΩ
, δ′ =

1

4δ
, β′ =

1

4β
, Ω = γ +

2

3
δ, ε =

γ

2(γ + δ)
.

(11.56)
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Representing the tensors of stresses P˜ and couple stresses µµµ˜ as the sum of the
symmetric and skew-symmetric parts (P˜ = P˜S + P˜A and µµµ˜ = µµµ˜S + µµµ˜A) anddenoting the accompanying vectors for the skew-symmetric parts P˜A and µµµ˜A by
q and τττ (P˜A = −C' · q, µµµ˜A = −C' · τττ ), the equilibrium equations (11.3) of the

micropolar theory can be written as follows:

∇ ·P˜S +∇× q + ρF = 0, ∇ ·µµµ˜S +∇× τττ − 2q + ρG = 0. (11.57)

Next, finding the first invariants, for example, from (11.51), we will have

∇2I1
(
γγγ˜) = ∇∇

2
⊗ γγγ˜, ∇2I1

(
κκκ˜) = ∇∇

2
⊗κκκ˜. (11.58)

Based on Hooke’s inverse law obtained by the corresponding relations (11.54) and
(11.55), we find

I1
(
γγγ˜) = (3λ′ + 2µ′)I1

(
P˜), ∇∇

2
⊗ γγγ˜ = λ′∇2I1

(
P˜)+ 2µ′∇∇

2
⊗P˜ ,

I1
(
κκκ˜) = (3γ′ + 2δ′)I1

(
µµµ˜), ∇∇

2
⊗κκκ˜ = γ′∇2I1

(
µµµ˜)+ 2δ′∇∇

2
⊗µµµ˜,

(11.59)

and by the equilibrium equations (11.57) we have

∇∇
2
⊗P˜ = ∇∇

2
⊗P˜S = −ρ∇ · F,

∇∇
2
⊗µµµ˜ = ∇∇

2
⊗µµµ˜S = 2∇ · q− ρ∇ ·G.

(11.60)

Using (11.56), (11.59) and (11.60) from (11.58) we get

∇2I1
(
P˜)+

1 + ν

1− ν ρ∇ · F = 0,

∇2I1
(
µµµ˜)+

1 + ε

1− ε (−2∇ · q + ρ∇ ·G) = 0.
(11.61)

Considering (11.57) and (11.61), from (11.52) by simple transformations the desired
equations can be represented in the form Nikabadze (2010, 2012)

M˜̃ 2
⊗P˜S+∇(∇×q)+

[
∇(∇×q)

]T
+ρ
( ν

1− ν∇·FE˜+∇F+∇FT
)

=0˜,
(11.62)

N˜̃ 2
⊗µµµ˜S +∇(∇×τττ) +

[
∇(∇×τττ)

]T − 2
( ε

1− ε∇·q +∇q+∇qT
)

+ρ
( ε

1− ε∇·GE˜ +∇G+∇GT
)

= 0˜,
(11.63)

∇∇ · q− 2ε′q + ε′(ρG + C) = 0, β′∇ · τττ = const, divC = 0, (11.64)

where we have introduced the notations ε′ = α(1− 2ε)/
[
δ(1− ε)

]
and
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M˜̃T 6= M˜̃ = E˜̃∆+
1

1 + ν
(E˜∇∇)T , N˜̃ T 6= N˜̃ = E˜̃∆+

1

1 + ε
(E˜∇∇)T

for differential tensor-operators of equations with respect to tensors of stresses and
couple stresses. It is seen that they are nonsymmetric differential tensor operators of
the fourth rank and the second order.

It is easy to find the general solutions of the (11.64) equationswith respect toq and
τττ . Further, assuming that q and τττ are known, we will present the general expressions
for the skew-symmetric parts of the tensors of stresses and couple stresses using
formulas P˜A = −C

'
· q, µµµ˜A = −C

'
· τττ . After finding q and τττ , it is obvious that the

first relation (11.57) and the equation (11.62), as well as the second relation (11.57)
and the equation (11.63) make up decomposed systems of equations for finding
symmetric parts P˜S and µµµ˜S of tensors P˜ and µµµ˜, respectively.Applying the divergence operator to (11.62) and (11.63) and taking into account
(11.61), after simple transformations we get

∇2
(
∇ ·P˜S +∇× q + ρF

)
= 0,

∇2
(
∇ ·µµµ˜S +∇× τττ − 2q + ρG

)
= 0.

(11.65)

Based on (11.65) we conclude that the functions ∇ · P˜S + ∇ × q + ρF and ∇ ·
µµµ˜S +∇× τττ − 2q + ρG are harmonic functions in the body domain V . Therefore,
if these functions on the boundary S of the domain V take zero values, then due to
the properties of harmonic functions they will take zero values at all points inside
the domain V . Hence, we can formulate the following theorem:

Theorem 11.2. If the equilibrium equations (11.57) are satisfied only on the bound-
ary S, i.e. if the relations(

∇ ·P˜S +∇× q + ρF
)∣∣∣
S

= 0,
(
∇ ·µµµ˜S +∇× τττ − 2q + ρG

)∣∣∣
S

= 0,

(11.66)
are true, then from (11.62) and (11.63) it follows that they hold in the whole domain
V .

It should be noted that the formulated theorem is also valid for non-stationary and
isothermal processes, on which we will not dwell here in order to shorten the writing.

This theorem allows us to give a new statement of the boundary value problem
with respect to the tensors of stresses and couple stresses.

It is easy to see that the equations (11.62)–(11.63) can be written by using
symmetric tensor operators and the equations (11.62)–(11.64) can be represented in
the form
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M˜̃ 2
⊗P˜S+∇(∇×q)+

[
∇(∇×q)

]T
+ρ
(1+ν2

1−ν2
E˜∇·F+∇F+∇FT

)
=0˜

N˜̃ 2
⊗µµµ˜S +∇(∇×τττ)+

[
∇(∇×τττ)

]T − 2
(1+ε2

1−ε2
∇·q +∇q+∇qT

)
+ρ
(1+ε2

1−ε2
E˜∇·G +∇G +∇GT

)
= 0˜,

∇∇·q−2ε′q + ε′(ρG+C) = 0, β′∇ · τττ=const, divC = 0;
(11.67)

M˜̃ T = M˜̃ = E˜̃∆+
1

1 + ν
[E˜∇∇+ (E˜∇∇)T ],

N˜̃T = N˜̃ = E˜̃∆+
1

1 + ε
[E˜∇∇+ (E˜∇∇)T ],

where E˜̃ = 1/2(C˜̃ (2) + C˜̃ (3)), ε′ = α(1 − 2ε)/
[
δ(1 − ε)

]
, ν = λ/[2(λ + µ)],

ε = γ/[2(γ + δ)], c1 = λ, c2 = µ + α, c3 = µ − α, d1 = γ, d2 = δ + β,
d3 = δ − β.

It should be noted that from the first relation (11.67), when q = 0 (P˜A = 0˜),we obtain compatibility conditions with respect to the stress tensor of the classical
theory of elasticity with a symmetric differential operator.

Next, we formulate the statements of mixed initial-boundary value and boundary
value problems with respect to the vectors of displacements and rotations, a mixed
boundary value problem with respect to the tensors of stresses and couple stresses ,
as well as a new statement of the boundary value problem with respect to the tensors
of stresses and couple stresses.

11.3.2 The Mixed Boundary Value Problems and the New
Statement of the Boundary Value Problem with Respect to
the Tensors of Stresses and Couple Stresses in Micropolar
Solid Mechanics

The static (or quasistatic) mixed boundary value problem consists in solving the
equilibrium equations (11.3) and the compatibility equations (11.53) while satisfying
the boundary conditions (11.1) and (11.5).

It should be noted that the statement of a mixed boundary value problem with
respect to vectors of displacements and rotations is represented by the relations
(11.3), (11.6), (11.7) (or (11.8) for potential operators), (11.1) and (11.5) (or (11.33),
(11.1) and (11.5)); the statement of a mixed initial-boundary value problem with
respect to the vectors of displacements and rotations is represented by the relations
(11.4), (11.6), (11.7) (or (11.8) for potential operators), (11.1), (11.5) and (11.2) (or
(11.34), (11.1), (11.5) and (11.2)).

The statement of the mixed boundary value problem with respect to the stress
and couple stress tensors is represented by the relations (11.3), (11.53), (11.1) and
(11.5).
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The new statement of the static (or quasi-static) boundary value problem with
respect to stress and moment stress tensors is represented by the compatibility
equations (11.53) (the compatibility equations (11.62)–(11.64) with nonsymmetric
differential tensor operators in the case of the homogeneous isotropic medium or the
equations of compatibility (11.67) with symmetric differential tensor operators in
the case of the homogeneous isotropic medium) and the boundary conditions

n·P˜
∣∣∣
S

= P0, n·µµµ˜
∣∣∣
S

= µµµ0,(
∇ ·P˜S +∇× q + ρF

)∣∣∣
S

= 0,
(
∇ ·µµµ˜S +∇× τττ − 2q + ρG

)∣∣∣
S

= 0.

11.4 Castigliano’s Variational Principle (Castigliano’s Theorem)

Integrating the Legendre-tipe identity (11.46) over the volume of V and taking into
account (11.29), the first equality (11.47), as well as the formula∫

V

(P˜ 2
⊗ γγγ˜+µµµ˜ 2

⊗κκκ˜)dV = A(e) +A
(i)
Σ1
,

obtained from (11.18) with ρv̇ = 0, J˜ ·ωωω = 0 and the notations (11.19) and (11.20),
we will have

Π̌(γγγ˜,κκκ˜)−A(e) = −π̌(P˜ ,µµµ˜) +A
(i)
Σ1

+ const. (11.68)

Now for the problem (11.3) without taking into account inertial forces and moments,
(11.6), (11.8), (11.1) and (11.5), we construct the so-called Castiglianian

Ǩ = −π̌(P˜ ,µµµ˜) +A
(i)
Σ1
, (11.69)

where, of course, the terms on the right-hand side are expressed by the first formula
(11.47) and (11.20), respectively and formulate Castigliano’s theorem.
Theorem 11.3. Of all statically admissible systems, the real static system is distin-
guished by the fact that for it and only for it the Castiglianian (11.69) has a stationary
value, i.e.

DǨ(P˜ ,µµµ˜, δP˜ , δµµµ˜) = 0, (11.70)

or, using the definition of the differential of the operator and the formula (11.20) we
will have∫

V

(γγγ˜ 2
⊗ δP˜ +κκκ˜ 2

⊗ δµµµ˜)dV =
∫
Σ1

n · (δP˜ · u0 + δµµµ˜ ·ϕϕϕ0)dΣ. (11.71)

δP˜ and δµµµ˜ can be understood as the difference of two statically admissible systems.Proof of necessity. Assuming

ρv̇ = 0, J˜ · ω̇ωω = 0, w|Σ1
= u0, ψψψ|Σ1

= ϕϕϕ0, P˜ = δP˜ , µµµ˜ = δµµµ˜
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and considering that δP˜ and δµµµ˜ are the difference of two statically admissible
systems, the necessity for the theorem follows from (11.11), i.e. (11.70) (or (11.71)).

Proof of sufficiency. In order to proof the sufficiency of the theorem, one should
take into account that the Castiglianian has a conditional extremum, because in addi-
tion to (11.70) (or (11.71)), the equilibrium equation (11.3), the boundary conditions
(11.5) must be met also. In this connection, we introduce the system of functions
a(V )(x), χχχ(V )(x), x ∈ V and a(Σ)(y), χχχ(Σ)(y), y ∈ Σ2 (generalized Lagrange
multipliers) and construct the operator

Ǐ ≡ Ǩ −
∫
V

[(∇ ·P˜ + ρF) · a(V ) + (∇ ·µµµ˜ + C
'

2
⊗P˜ + ρG) ·χχχ(V )]dV

+
∫
Σ2

[(n ·P˜ −P0) · a(Σ) + (n ·µµµ˜ −µµµ0) ·χχχ(Σ)]dΣ.
(11.72)

It should be noted that using the Lagrange multiplier method, the variations δP˜ and
δµµµ˜ can be considered completely arbitrary, i.e. not subject to conditions

∇ · δP˜ = 0, ∇ · δµµµ˜ + C
'

2
⊗ δP˜ = 0, n · δP˜ |Σ2

= 0, n · δµµµ˜|Σ2
= 0.

Using the definition of the differential of operator, the formula (11.9) and the
Ostrogradsky-Gauss theorem, from (11.72) we get

DǏ(P˜ ,µµµ˜, δP˜ , δµµµ˜)=
∫
V

{[γγγ˜−(∇a(V )−C
'
·χχχ(V ))]

2
⊗ δP˜+(κκκ˜−∇χχχ(V ))

2
⊗ δµµµ˜}dV

−
∫
Σ1

n · [δP˜ · (a(V ) − u0) + δµµµ˜ · (χχχ(V ) −ϕϕϕ0)]dΣ

−
∫
Σ2

n · [δP˜ · (a(V ) − a(Σ)) + δµµµ˜ · (χχχ(V ) −χχχ(Σ))]dΣ = 0.

Hence, due to the arbitrariness of δP˜ and δµµµ˜, we have
γγγ˜ = ∇a(V ) −C

'
·χχχ(V ), κκκ˜ = ∇χχχ(V ),

a(V )|Σ1
= u0, χχχ(V )|Σ1

= ϕϕϕ0, a(V )|Σ2
= a(Σ), χχχ(V )|Σ2

= χχχ(Σ).
(11.73)

Thus, according the last two relations (11.73) there exist only one system of functions
(Lagrange multipliers) a = a(V ), χχχ = χχχ(V ) satisfying the kinematic relations (the
first two relations (11.73)) and the kinematic boundary conditions (the third and
fourth relations (11.73)). Knowing γγγ˜ and κκκ˜ and integrating the system of equations
consisting of the first two relations (11.73), we obtain the expressions for a(V ) and
χχχ(V ). However, to integrate this system, it is necessary to fulfill the compatibility
relations with respect to strain and bending-torsion tensors (11.50), which using the
compatibility relations (11.49) and equilibrium equations (11.57) (see also (11.3))
can be written in the stresses and moment stresses (11.53). Therefore, the vectors
a(V ) and χχχ(V ) have the meaning of displacement and rotation vectors, respectively,
and the third and fourth relations (11.73) define kinematic boundary conditions.

Consequently, in formulating the variational principle of Castigliano (11.70) (or
(11.71)), it is required that the equilibrium equations (11.57) (see also (11.3)),
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constitutive relations (11.49) and the static boundary conditions (11.5) are fulfilled,
and the compatibility relations with respect to the stress and couple stress tensors
(11.53) and the kinematic boundary conditions (11.1) follow from the stationary
condition (11.70) (see also (11.71)).

It should be noted that, under certain conditions, the stationary point of the
Lagrangian (Castiglianian) is the minimum (maximum) point. In order to prove
these propositions, we derive identities similar to those given in Pobedrya (1995) for
the case of the classical theory. In this connection, we prove the following theorem.

Theorem 11.4. If the function

f(ξ) ≡ Π̌[u1 + ξ(u2 − u1), ϕϕϕ1 + ξ(ϕϕϕ2 −ϕϕϕ1)]

≡ Π̌[γγγ˜1 + ξ(γγγ˜2 − γγγ˜1), κκκ˜1 + ξ(κκκ˜2 −κκκ˜1)]
(11.74)

is twice continuously differentiable on the segment 0 ≤ ξ ≤ 1, where Π̌ =∫∫∫
V

W̌dV is potential energy of deformation and bending-torsion, on this seg-

ment allows the representation

f(1) = f(0) + f ′(0) +
1

2
f ′′(η), 0 < η < 1, (11.75)

then the identity holds

Π̌(u2,ϕϕϕ2) = Π̌(u1,ϕϕϕ1) +
∫∫∫
V

{
P˜(u1,ϕϕϕ1)

2
⊗[γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)]

+µµµ˜(u1,ϕϕϕ1)
2
⊗[κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

}
dV +

1

2

∫∫∫
V

{∂P˜
∂γγγ˜ [u1 + η(u2 − u1),

ϕϕϕ1 + η(ϕϕϕ2 −ϕϕϕ1)]
4
⊗[γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)][γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)]

+
[∂P˜
∂κκκ˜ [u1+η(u2−u1),ϕϕϕ1+η(ϕϕϕ2−ϕϕϕ1)]+

(∂µµµ˜∂γγγ˜
)T

[u1 + η(u2−u1),

ϕϕϕ1 + η(ϕϕϕ2 −ϕϕϕ1)]
] 4
⊗[γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)][κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

+
∂µµµ˜∂κκκ˜

4
⊗[κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)][κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

}
dV.

(11.76)

Here expression [u1 +η(u2−u1), ϕϕϕ1 +η(ϕϕϕ2−ϕϕϕ1)] is argument of that magnitude
beside towhich it is written,

(
∂µµµ˜/∂γγγ˜)T denotes the tensor transposedwith

(
∂µµµ˜/∂γγγ˜).Proof. It is easy to check that, based on (11.74), we have
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f ′(ξ) =
∫
V

{P˜ 2
⊗ [γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)] +µµµ˜ 2

⊗ [κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]}dV,

f ′′(ξ) =
∫
V

{∂P˜
∂γγγ˜

4
⊗ [γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)][γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)]

+
[∂P˜
∂κκκ˜ +

(∂µµµ˜∂γγγ˜
)T ] 4
⊗ [γγγ˜(u2,ϕϕϕ2)−γγγ˜(u1,ϕϕϕ1)][κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

+
∂µµµ˜∂κκκ˜

2
⊗ [κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)][κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

}
dV.

(11.77)

Note that in the formulas (11.77) P˜ , µµµ˜, ∂P˜/∂γγγ˜, ∂P˜/∂κκκ˜ , ∂µµµ˜/∂γγγ˜ and ∂µµµ˜/∂κκκ˜ have
the argument [u1 + ξ(u2 − u1), ϕϕϕ1 + ξ(ϕϕϕ2 − ϕϕϕ1)], which is omitted in order to
shorten the letter. Taking into account (11.74) and (11.77) for the indicated values
of ξ in (11.75), we obtain (11.76), which proves the theorem.

Corollary. If u1 and ϕϕϕ1 are the real kinematic system, and u2 and ϕϕϕ2 are a
kinematically admissible system, then from the proved theorem (11.76) we get the
identity

Π̌(u2,ϕϕϕ2) = Π̌(u1,ϕϕϕ1) +A(e)(u2 − u1,ϕϕϕ2 −ϕϕϕ1)

+
1

2

∫∫∫
V

{∂P˜
∂γγγ˜ [u1 + η(u2 − u1),ϕϕϕ1 + η(ϕϕϕ2 −ϕϕϕ1)]

4
⊗[γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)][γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)]

+
[∂P˜
∂κκκ˜ [u1+η(u2−u1),ϕϕϕ1+η(ϕϕϕ2−ϕϕϕ1)]+

(∂µµµ˜∂γγγ˜
)T

[u1 + η(u2−u1),

ϕϕϕ1 + η(ϕϕϕ2 −ϕϕϕ1)]
] 4
⊗[γγγ˜(u2,ϕϕϕ2)− γγγ˜(u1,ϕϕϕ1)][κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

+
∂µµµ˜∂κκκ˜

4
⊗[κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)][κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

}
dV.

(11.78)

Theorem 11.5. If the constitutive relations (11.8) are such that for any two tensors
of the second rank h˜ and l˜ the inequality
∂P˜
∂γγγ˜

4
⊗(h˜ ⊗ h˜) +

[∂P˜
∂κκκ˜ +

(∂µµµ˜∂γγγ˜
)T ]4
⊗(h˜ ⊗ l˜) +

∂µµµ˜∂κκκ˜
4
⊗(l˜⊗ l˜)

≥ ah˜ 2
⊗h˜ + 2bh˜ 2

⊗l˜+ c l˜ 2
⊗l˜, a > 0, ac− b2 > 0,

(11.79)

is true, then the stationary point (see (11.40)) of the Lagrangian (11.39) is aminimum
point and the generalized solution of the static problem (11.3), (11.6), (11.8), (11.1)
and (11.5) is unique.

Introducing the tensor column X˜ , the tensor-block matrix M˜̃ and the matrix G

X˜ =

(
h
l̃˜
) (

X˜T =
(
h˜, l˜)

)
, M˜̃ =


∂P˜
∂γγγ˜

∂P˜
∂κκκ˜

∂µµµ˜∂γγγ˜
∂µµµ˜∂κκκ˜

 , G =

(
a b

b c

)
(11.80)
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the relation (11.79) can be written as

X˜T 2

⊗M˜̃ 2

⊗X˜ = (X˜TG)
2

⊗X˜ . (11.81)

It should be noted that the last two inequalities in (11.79) are necessary and sufficient
conditions for the matrix G to be positive definiteness, and the first relation (11.79)
or (11.81) is the necessary and sufficient condition for the positive definiteness of
the tensor-block matrix M˜̃ (see (11.80)). In linear micropolar theory, the tensor-
block matrix M˜̃ is usually a positive definite symmetric matrix and, therefore, has
18 positive eigenvalues and a complete system of eigentensor-columns consisting of
18 tensor-columns. The problem on the eigenvalues of a tensor and a tensor-block
matrix of any even rank and some of their applications in mechanics are described
in detail in Nikabadze (2016, 2017). We will not dwell on these questions.

Proof. Assuming in the identity (11.78) u2 = w and ϕϕϕ2 = ψψψ are any kinemat-
ically admissible system, and u1 = u and ϕϕϕ1 = ϕϕϕ are a solution to the problem
(11.3), (11.6), (11.8), (11.1) and (11.5) (real kinematic system), by virtue of (11.79),
the right-hand side of which under the indicated conditions is a positive definite
quadratic form, we obtain

Ľ(w,ψψψ) ≡ Π̌(w,ψψψ)−A(e)(w,ψψψ) ≥ Π̌(u,ϕϕϕ)−A(e)(u,ϕϕϕ)

+
1

2

∫
V

[aγγγ˜(w − u,ψψψ −ϕϕϕ)
2
⊗ γγγ˜(w − u,ψψψ −ϕϕϕ)

+2bγγγ˜(w − u,ψψψ −ϕϕϕ)
2
⊗κκκ˜(ψψψ −ϕϕϕ) + cκκκ˜(ψψψ −ϕϕϕ)

2
⊗κκκ˜(ψψψ −ϕϕϕ)]dV

≥ Π̌(u,ϕϕϕ)−A(e)(u,ϕϕϕ) ≡ Ľ(u,ϕϕϕ).

(11.82)

It is proved by the inequality (11.82) that the stationary point of the Lagrangian
is a minimum point. Now let us prove the uniqueness of the generalized solution.
Suppose the opposite. Let there be two solutions u1, ϕϕϕ1 and u2, ϕϕϕ2. Then from
(11.25), it follows that these solutions satisfy the identity∫

V

{[P˜(u2,ϕϕϕ2)−P˜(u1,ϕϕϕ1)]
2
⊗ γγγ˜(w,ψψψ)

+[µµµ˜(u2,ϕϕϕ2)−µµµ˜(u1,ϕϕϕ1)]
2
⊗κκκ˜(w,ψψψ)}dV = 0.

(11.83)

Further, taking into account the equality

P˜(u2,ϕϕϕ2)−P˜(u1,ϕϕϕ1)

=
1∫
0

d

dξ
{P˜ [u1 + ξ(u2 − u1),ϕϕϕ1 + ξ(ϕϕϕ2 −ϕϕϕ1)]}dξ

=
1∫
0

{
∂P˜
∂γγγ˜ [u1+ξ(u2−u1),ϕϕϕ1+ξ(ϕϕϕ2−ϕϕϕ1)]

2
⊗ [γγγ˜(u2,ϕϕϕ2)−γγγ˜(u1,ϕϕϕ1)]

+
∂P˜
∂κκκ˜ [u1 + ξ(u2 − u1),ϕϕϕ1 + ξ(ϕϕϕ2 −ϕϕϕ1)]

2
⊗ [κκκ˜(ϕϕϕ2)−κκκ˜(ϕϕϕ1)]

}
dξ

(11.84)
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and the equality obtained from (11.84), if P˜ is replaced by µµµ˜, and also, assuming
that w = u2 − u1, ψψψ = ϕϕϕ2 −ϕϕϕ1, from (11.79) by virtue of (11.79) we shall have∫

V

[
a||γγγ˜(u2 − u1,ϕϕϕ2 −ϕϕϕ1)||2 + 2bγγγ˜(u2 − u1,ϕϕϕ2 −ϕϕϕ1)

2
⊗κκκ˜(ϕϕϕ2 −ϕϕϕ1)

+c||κκκ˜(ϕϕϕ2 −ϕϕϕ1)||2
]
dV ≤ 0.

(11.85)
Based on (11.85), we conclude that

γγγ˜(u2,ϕϕϕ2) = γγγ˜(u1,ϕϕϕ1), κκκ˜(ϕϕϕ2) = κκκ˜(ϕϕϕ1).

Hence, obviously, we obtain

u2 = u1 + u0 + (x− x0) ·C
'
·ϕϕϕ0, ϕϕϕ2 = ϕϕϕ1 +ϕϕϕ0, (11.86)

where u0 and ϕϕϕ0 are two arbitrary constat vectors.
Finally, considering the kinematic boundary conditions (11.1), from (11.86) we

get u2 = u1 and ϕϕϕ2 = ϕϕϕ1, i.e. the uniqueness of the generalized solution of the
problem (11.3), (11.6), (11.8), (11.1) and (11.5) is proved.

It should be noted that if we have only static boundary conditions, then the solution
of the problem of the micropolar solid mechanics is unique up to rigid motion

u = u0 + (r− r0) ·C
'
·ϕϕϕ0, ϕϕϕ = ϕϕϕ0, u0 = const, ϕϕϕ0 = const.

If we fix some point x0, i.e. assume that u = 0 and ϕϕϕ = 0 for x = x0, then rigid
motion can be excluded. Note also that under static boundary conditions, we can
speak about the solvability of the problem of micropolar mechanics of a rigid body
only in the case when "the system is self-balanced", i.e. for the whole body, the
laws of change of the momentum and the angular momentum are fulfilled, which,
obviously, for the case of equilibrium can be written in the form∫

V

ρFdV +
∫
Σ

P0dΣ = 0,
∫
V

ρ(r× F + G)dV +
∫
Σ

(r′ ×P0 +µµµ0)dΣ = 0.

In addition, the uniqueness of the solution of the problem implies that the La-
grangian’s minimum point is unique.

It is easy to prove that, similarly to (11.76) and (11.78), the following theorem
and corollary are true:

Theorem 11.6. If the function

f(ξ) = π̌[P˜1 + ξ(P˜2 −P˜1),µµµ˜1 + ξ(µµµ˜2 −µµµ˜1)],

is twice continuously differentiable on the segment 0 ≤ ξ ≤ 1, where π̌ is the
potential energy of stress and couple stress tensors (11.47), which on this segment
admits the representation (11.75), then the identity holds
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π̌(P˜2,µµµ˜2) = π̌(P˜1,µµµ˜1)

+
∫∫∫
V

[
γγγ˜(P˜1,µµµ˜1)

2
⊗(P˜2 −P˜1) +κκκ˜(P˜1,µµµ˜1)

2
⊗(µµµ˜2 −µµµ˜1)

]
dV

+
1

2

∫∫∫
V

{ ∂γγγ˜∂P˜ [P˜1+η(P˜2−P˜1),µµµ˜1+η(µµµ˜2−µµµ˜1)]
4
⊗(P˜2−P˜1)(P˜2−P˜1)

+
[∂γγγ˜∂µµµ˜ [P˜1 + η(P˜2 −P˜1),µµµ˜1 + η(µµµ˜2 −µµµ˜1)]

+
( ∂κκκ˜
∂P˜
)T

[P˜1 + η(P˜2 −P˜1),µµµ˜1 + η(µµµ˜2 −µµµ˜1)]
] 4
⊗(P˜2 −P˜1)(µµµ˜2 −µµµ˜1)

+
∂κκκ˜
∂µµµ˜ [P˜1 + η(P˜2 −P˜1),µµµ˜1 + η(µµµ˜2 −µµµ˜1)]

4
⊗(µµµ˜2 −µµµ˜1)(µµµ˜2 −µµµ˜1)

}
dV.

(11.87)

Corollary. If P˜1 and µµµ˜1 are the real static system, and P˜2 and µµµ˜2 are a statically
admissible system, then from (11.87) we obtain the identity

π̌(P˜2,µµµ˜2) = π̌(P˜1,µµµ˜1) +AiΣ1
(P˜2 −P˜1,µµµ˜2 −µµµ˜1)

+
1

2

∫∫∫
V

{ ∂γγγ˜∂P˜ [P˜1+η(P˜2−P˜1),µµµ˜1+η(µµµ˜2−µµµ˜1)]
4
⊗(P˜2−P˜1)(P˜2−P˜1)

+
[∂γγγ˜∂µµµ˜ [P˜1 + η(P˜2 −P˜1),µµµ˜1 + η(µµµ˜2 −µµµ˜1)]

+
( ∂κκκ˜
∂P˜
)T

[P˜1 + η(P˜2 −P˜1),µµµ˜1 + η(µµµ˜2 −µµµ˜1)]
] 4
⊗(P˜2 −P˜1)(µµµ˜2 −µµµ˜1)

+
∂κκκ˜
∂µµµ˜ [P˜1 + η(P˜2 −P˜1),µµµ˜1 + η(µµµ˜2 −µµµ˜1)]

4
⊗(µµµ˜2 −µµµ˜1)(µµµ˜2 −µµµ˜1)

}
dV.

(11.88)
The theorem (11.87) and the corollary (11.88) are proved exactly the same way as
(11.76) and (11.78).

Theorem 11.7. If the constitutive relations (11.49) are such that for any two tensors
of the second rank h˜ and l˜ the inequality
∂γγγ˜∂P˜

4
⊗(h˜ ⊗ h˜) +

[∂γγγ˜∂µµµ˜ +
( ∂κκκ˜
∂P˜
)T ]4
⊗(h˜ ⊗ l˜) +

∂κκκ˜
∂µµµ˜

4
⊗(l˜⊗ l˜)

≥ k h˜ 2
⊗h˜ + 2mh˜ 2

⊗l˜+ n l˜ 2
⊗l˜, k > 0, kn−m2 > 0

(11.89)

is true, then the stationary point (see (11.70)) of the Castiglianian (11.69) is a
maximum point.

Proof. Assuming in the identity (11.88) P˜2 = Q˜ and µµµ˜2 = τττ˜ are any statically
admissible system, and P˜1 = P˜ and µµµ˜1 = µµµ˜ are real statical system, by virtue of
(11.89), the right-hand side of which under the indicated conditions is a positive
definite quadratic form, we obtain
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Ǩ(Q˜ , τττ˜) ≡ −π̌(Q˜ , τττ˜) +A
(i)
Σ1

(Q, τττ) ≤ −π̌(P˜ ,µµµ˜) +A
(i)
Σ1

(P˜ ,µµµ˜)

−1

2

∫
V

(k||Q˜ ||2 + 2mQ˜ 2
⊗ τττ˜+ n||τττ˜||2)dV

≤ −π̌(P˜ ,µµµ˜) +A
(i)
Σ1

(P˜ ,µµµ˜) ≡ Ǩ(P˜ ,µµµ˜),

(11.90)

what was required to prove.
It should be noted that (11.89) similarly to (11.81), can be written using the

tensor-block matrix and represented in the canonical form. However, in order to
shorten the letter, we will not dwell on this.

Theorem 11.8. In the equilibrium position, characterized by the displacement u∗

and rotation ϕϕϕ∗ vectors and stress P˜∗ and couple stress µµµ˜∗ tensors, Lagrangian
coincides with Castiglianian

Ľ(u∗,ϕϕϕ∗) = Ǩ(P˜∗,µµµ˜∗), (11.91)

and for arbitrary u, ϕϕϕ, P˜ and µµµ˜ the inequalities

Ǩ(P˜ ,µµµ˜) ≤ Ǩ(P˜∗,µµµ˜∗) = Ľ(u∗,ϕϕϕ∗) ≤ Ľ(u,ϕϕϕ) (11.92)

are true.

Proof. The equality (11.91) follows from (11.68), writing it for the equilibrium
position, and from (11.91) and the previous theorems we shall obtain the inequalities
(11.92).

The inequalities (11.92) are the powerful source for obtaining so-called two-sided
estimates.

11.5 Generalized Reissner-Type Variational Principle

Similarly to the three-dimensional classical theory Pobedrya (1986, 1995) we con-
sider the operator

Ř(u,ϕϕϕ,γγγ˜,κκκ˜,P˜ ,µµµ˜) =
∫∫∫
V

[W̌ (γγγ˜,κκκ˜)−P˜ 2
⊗ (γγγ˜−∇u+C

'
·ϕϕϕ)

−µµµ˜ 2
⊗ (κκκ˜ −∇ϕϕϕ)− ρF · u− ρG ·ϕϕϕ]dV −

∫∫
Σ1

[n ·P˜ · (u− u0)

+n ·µµµ˜ · (ϕϕϕ−ϕϕϕ0)]dΣ −
∫∫
Σ2

(P0 · u +µµµ0 ·ϕϕϕ)dΣ.

(11.93)

Then the generalized Reissner-type variational principle can be formulated as fol-
lows:

Of all the kinematic, static systems and systems described by the tensors γγγ˜ and
κκκ˜ , the real system (the system of real kinematic and static systems) is distinguished
by the fact that for it the operator (11.93) has a stationary value, i.e.
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DŘ(u,ϕϕϕ,γγγ˜,κκκ˜,P˜ ,µµµ˜, δu, δϕϕϕ, δγγγ˜, δκκκ˜, δP˜ , δµµµ˜) = 0. (11.94)

Indeed, using the definition of the differential of the operator Pobedrya (1986,
1995) and the Ostrogradsky-Gauss theorem, by virtue of (11.6) we have

DŘ=
∫∫∫
V

[(
∂W̌

∂γγγ˜ −P˜)
2
⊗δγγγ˜+ (

∂W̌

∂κκκ˜ −µµµ˜)
2
⊗δκκκ˜−(γγγ˜−∇u+C

'
·ϕϕϕ)

2
⊗δP˜

−(κκκ˜−∇ϕϕϕ)
2
⊗δµµµ˜ − (∇·P˜+ρF)·δu−(∇·µµµ˜+C

'

2
⊗P˜+ρG)·δϕϕϕ]dV

−
∫∫
Σ1

n · [δP˜ · (u− u0) + δµµµ˜ · (ϕϕϕ−ϕϕϕ0)]dΣ

−
∫∫
Σ2

(n·P˜−P0)·δu + (n·µµµ˜−µµµ0)·δϕϕϕ)dΣ = 0.

(11.95)

From here, taken into account δu, δϕϕϕ, δγγγ˜, δκκκ˜ , δP˜ , è δµµµ˜, we obtain equilibrium equa-
tions (11.3), kinematic relations (11.6), constitutive relations (11.8) and kinematic
(11.1) and static (11.5) boundary conditions.

Using the Legendre-type identity (11.46), it is easy to show that, that (11.93) can
be represented in the form

Ř(u,ϕϕϕ,P˜ ,µµµ˜) =
∫∫∫
V

[P˜ 2
⊗(∇u−C

'
·ϕϕϕ) +µµµ˜ 2

⊗∇ϕϕϕ− w̌(P˜ ,µµµ˜)

−ρF·u−ρG·ϕϕϕ]dV −
∫∫
Σ1

[n·P˜ ·(u− u0) + n ·µµµ˜ · (ϕϕϕ−ϕϕϕ0)]dΣ

−
∫∫
Σ2

(P0 · u +µµµ0 ·ϕϕϕ)dΣ.

(11.96)

In what follows operators (11.93) and (11.96) will be called generalized Reissner
operators for a micropolar medium.

Based on the Reissner operator (11.96), the generalized Reissner-type variational
principle can be formulated as follows: Of all kinematic and static systems, the real
one is distinguished by the fact that for it the operator (11.96) has a stationary value,
i.e.

DŘ(u,ϕϕϕ,P˜ ,µµµ˜, δu, δϕϕϕ, δP˜ , δµµµ˜) = 0.

Indeed, using the definition of the differential of the operator Pobedrya (1986, 1995)
and the Ostrogradsky-Gauss theorem, from (11.96) similarly to (11.95) we obtain

DŘ=
∫∫∫
V

[(γγγ˜− ∂w̌∂P˜ )
2
⊗δP˜+(κκκ˜− ∂w̌∂µµµ˜ )

2
⊗δµµµ˜−(∇·P˜+ρF)·δu

−(∇·µµµ˜+C
'

2
⊗P˜+ρG)·δϕϕϕ]dV −

∫∫
Σ1

n · [δP˜ · (u− u0)

+δµµµ˜ · (ϕϕϕ−ϕϕϕ0)]dΣ −
∫∫
Σ2

(n·P˜−P0)·δu + (n·µµµ˜−µµµ0)·δϕϕϕ)dΣ = 0.

(11.97)
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It can be seen that, taking into account the arbitrariness δu, δϕϕϕ, δP˜ è δµµµ˜, from(11.97), we obtain the equilibrium equations (11.3), inverse constitutive relations
(11.49), kinematic (11.1) and static (11.5) boundary conditions.

It should be noted that, using the D’Alembert principle and replacing ρF and
ρm with ρF − ρ∂2

t u and ρm − J˜ · ∂2
tϕϕϕ, respectively, the variational principles

of Lagrange, Castigliano, and Reissner-type can be formulated for the case when
forces and moments of inertia are taken into account. In addition, it is easy to see
that the Lagrangian is a special case of the operator (11.93), if we assume that the
kinematic relations (11.6) and constitutive relations (11.8) are valid in advance, and
the Castiglianian due to the transformation∫

V

(P˜ 2
× γγγ˜+µµµ˜ 2

×κκκ˜)dV = −
∫
V

[∇ ·P˜ · u + (∇ ·µµµ˜ + C
'

2
×P˜) · ϕ]dV

+
∫
Σ

n · (P˜ · u +µµµ˜ · ϕ)dΣ

is a special case of the operator (11.96) if the equilibrium equations (11.3) and the
static boundary conditions (11.5) are satisfied.

Note also that replacing in (11.11) w andψψψ by δu and δϕϕϕ, respectively, we obtain
the principle of virtual work in the form∫
V

[P˜ 2
⊗ δγγγ˜) +µµµ˜ 2

⊗ δκκκ˜]dV

=
∫
V

[ρ(F− ∂2
t u) · δu + (ρG− J˜ · ∂2

t ϕ) · δϕϕϕ˜)]dV

+
∫
Σ

(P(n) · δu +µµµ(n) · δϕϕϕ)dΣ,

(11.98)

where δγγγ˜ = ∇δu − C' · δϕϕϕ, δκκκ˜ = ∇δϕϕϕ, and δu and δϕϕϕ are arbitrary virtual

displacement and rotation vectors. Therefore, the left side (11.98) is the virtual work
of stress and couple stress tensors on virtual tensors of strain and bending-torsion,
respectively, and the right side is the virtual work of external forces and moments
and inertial forces and moments.

From the above material, neglecting the characteristics of the micropolarity of the
medium (the rotation vector, couple stresses tensor, volume and surface moments,
etc.), it is easy to obtain the corresponding relations for classical mechanics of solids,
but we did not dwell on these issues. If necessary, the interested reader can easily deal
with this problem. In addition, it is easy to obtain appropriate relations for classical
and micropolar media with specific rheology (for example, elastic, viscoelastic, etc.)
and anisotropy (for example, isotropic, transversely isotropic, orthotropic, etc.). For
this, it is sufficient to take into account the constitutive relations that correspond to
the particular media.
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11.6 The Generalized Reissner-Type Variational Principle in the
Micropolar Theory of Thin Bodies with One Small Size
under the New Parameterization of the Body Domain

Let us consider a three-dimensional thin domain V with one small size bounded by

two front surfaces
(−)

S and
(+)

S and the ruled lateral surface Σ (see Fig 11.1).
The position vector of an arbitrary point of the domain of the thin body is

represented in the form in Fig. 11.1.

r(x′, x3)=
(−)

r (x′)+x3h(x′)=(1−x3)
(−)

r (x′)+x3(+)

r (x′),

x′ = (x1, x2), ∀x3 ∈ [0, 1],
(11.99)

where the relations
(−)

r =
(−)

r (x′),
(+)

r =
(+)

r (x′), x′ = (x1, x2), (11.100)

are the vector parametric equations of base surfaces
(−)

S and
(+)

S , respectively, x′ =

(x1, x2) is the arbitrary point on
(−)

S , i.e. x1 and x2 are the curvilinear (Gaussian)

coordinates2 on the inner base surface
(−)

S .
The vector-values

h(x′) =
(+)

r (x′)− (−)

r (x′), x′ = (x1, x2), (11.101)

Fig. 11.1 To the new param-
eterization of the thin body
domain

2 The dependence of the quantities on x′ means their dependence on the curvilinear coordinates
x1 and x2 of the base surface. The notations and agreements adopted in previously published
works (see (Nikabadze, 2001b,a; Nikabadze and Ulukhanyan, 2005; Nikabadze, 2006, 2007a,b,c,
2010, 2012, 2014, 2015, 2016; Nikabadze and Ulukhanyan, 2016; Nikabadze, 2017; Nikabadze
and Ulukhanyan, 2019b,c,a, 2020a,b, 2021, and others)) are preserved.
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that topologically maps the inner base surface of
(−)

S to the outer
(+)

S , generally is not
perpendicular to the base surfaces. The parameterization of thin domain carried out
by the relation (11.99) is called the new parameterization, which can be found in
detail in Nikabadze (2014, 2015, 2017).

Then the generalized Reissner-type operator (11.93) for the thin domain will be
presented in the form

Ř(u,ϕϕϕ,γγγ˜,κκκ˜,P˜ ,µµµ˜, (−)

u ,
(−)

ϕϕϕ ,
(−)

P˜ , (−)

µµµ˜ , (+)

u ,
(+)

ϕϕϕ ,
(+)

P˜ , (+)

µµµ˜ ) =
∫∫∫
V

[W̌ (γγγ˜,κκκ˜)

−P˜ 2
⊗ (γγγ˜−∇u+C' ·ϕϕϕ)−µµµ˜ 2

⊗ (κκκ˜ −∇ϕϕϕ)− ρF · u− ρG ·ϕϕϕ]dV

−
∫∫
Σ1

m·[P˜ ·(u−u0)+µµµ˜·(ϕϕϕ−ϕϕϕ0)]dΣ −
∫∫
Σ2

(P0 · u +µµµ0 ·ϕϕϕ)dΣ

−
∫∫
(−)

S1

(−)

n ·[
(−)

P˜ ·((−)

u −(−)

u 0)+
(−)

µµµ˜ ·((−)

ϕϕϕ −(−)

ϕϕϕ 0)]d
(−)

S −
∫∫
(−)

S2

(
(−)

P 0 ·
(−)

u +
(−)

µµµ 0 ·
(−)

ϕϕϕ )d
(−)

S

−
∫∫
(+)

S1

(+)

n ·[
(+)

P˜ ·((+)

u −(+)

u 0)+
(+)

µµµ˜ ·((+)

ϕϕϕ −(+)

ϕϕϕ 0)]d
(+)

S −
∫∫
(+)

S2

(
(+)

P 0 ·
(+)

u +
(+)

µµµ 0 ·
(+)

ϕϕϕ )d
(+)

S ;

Σ=Σ1 ∪Σ2, Σ1 ∩Σ2 =∅,
(−)

S =
(−)

S1∪
(−)

S2,
(−)

S1∩
(−)

S2 =∅,
(+)

S =
(+)

S1∪
(+)

S2,
(+)

S1∩
(+)

S2 =∅.
(11.102)

where m is the unit outward normal vector on the lateral face Σ of the thin body.
It should be noted that the kinematic and static boundary conditions on the front

surfaces are represented as

u
∣∣
(−)

S1

=
(−)

u 0, ϕϕϕ
∣∣
(−)

S1

=
(−)

ϕϕϕ 0, u
∣∣
(+)

S2

=
(+)

u 0, ϕϕϕ
∣∣
(+)

S2

=
(+)

ϕϕϕ 0;

(n ·P˜)
∣∣
(−)

S1

=
(−)

n ·
(−)

P˜ =
(−)

P 0, (n ·µµµ˜)
∣∣
(−)

S1

=
(−)

n ·
(−)

P˜ =
(−)

µµµ 0,

(n ·P˜)
∣∣
(+)

S2

=
(+)

n ·
(+)

P˜ =
(+)

P 0, (n ·µµµ˜)
∣∣
(+)

S2

=
(+)

n ·
(+)

P˜ =
(+)

µµµ 0

(11.103)

and on the lateral face the kinematic and static boundary conditions will have the
form

u
∣∣
Σ1

= u0, ϕϕϕ
∣∣
Σ1

= ϕϕϕ0, (m ·P˜)
∣∣
Σ2

= P0, (m ·µµµ˜)
∣∣
Σ2

= µµµ0. (11.104)

It should be noted that the following notation is used in the relations (11.103): for
example, for an arbitrary value F (x1, x2, x3) we have

(−)

F = F (x1, x2, x3)|x3=0,
(+)

F = F (x1, x2, x3)|x3=1, if 0 ≤ x3 ≤ 1,
(−)

F = F (x1, x2, x3)|x3=−1,
(+)

F = F (x1, x2, x3)|x3=1, if − 1 ≤ x3 ≤ 1.
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Using the definition of the differential of the operator Pobedrya (1986, 1995)
and the Ostrogradsky-Gauss theorem, from (11.102) by virtue of kinematic relations
(11.6) we obtain the desired principle in the form

DŘ=
∫∫∫
V

[(
∂W̌

∂γγγ˜ −P˜)
2
⊗δγγγ˜+(

∂W̌

∂κκκ˜ −µµµ˜)
2
⊗δκκκ˜−(γγγ˜−∇u+C

'
·ϕϕϕ)

2
⊗δP˜

−(κκκ˜−∇ϕϕϕ)
2
⊗δµµµ˜−(∇·P˜+ρF)·δu−(∇·µµµ˜+C

'

2
⊗P˜+ρG)·δϕϕϕ]dV

−
∫∫
Σ1

m·[δP˜ ·(u−u0)+δµµµ˜·(ϕϕϕ−ϕϕϕ0)]dΣ

−
∫∫
Σ2

[(m·P˜ −P0)·δu+(m·µµµ˜ −µµµ0)·δϕϕϕ]dΣ

−
∫∫
(−)

S1

(−)

n ·[δ
(−)

P˜ ·((−)

u −(−)

u 0)+δ
(−)

µµµ˜ ·((−)

ϕϕϕ −(−)

ϕϕϕ 0)]d
(−)

S

−
∫∫
(−)

S2

[(
(−)

n ·
(−)

P˜ − (−)

P 0)·δ(−)

u +(
(−)

n ·(−)

µµµ˜ − (−)

µµµ 0)·δ(−)

ϕϕϕ )]d
(−)

S

−
∫∫
(+)

S1

(+)

n ·[δ
(+)

P˜ ·((+)

u −(+)

u 0)+δ
(+)

µµµ˜ ·((+)

ϕϕϕ −(+)

ϕϕϕ 0)]d
(+)

S

−
∫∫
(+)

S2

[(
(−)

n ·
(+)

P˜ −(+)

P 0)·δ(+)

u +(
(+)

n ·(+)

µµµ˜ −(+)

µµµ 0)·δ(+)

ϕϕϕ )]d
(+)

S =0.

(11.105)

From here, taking into account the arbitrariness of δu, δϕϕϕ, δγγγ, δκκκ, P˜ , µµµ˜, δ(−)

u , δ
(−)

ϕϕϕ ,
(−)

P˜,
(−)

µµµ˜, δ
(+)

u , δ
(+)

ϕϕϕ ,
(+)

P˜ è
(+)

µµµ˜, we obtain equilibrium equations

∇·P˜ + ρF = 0, ∇·µµµ˜ + C
'

2
⊗P˜ + ρG = 0,

kinematic and static boundary conditions (see (11.103) and (11.104)), kinematic
relations (11.6), that is, a three-dimensional formulation of the problem for thin
bodies with one small size. We can write down the statement of the problem taking
into account the representations of the gradient and divergence under the consid-
ered parameterization. Taking into account the representations of the gradient and
divergence Nikabadze (2007c, 2014); Nikabadze and Ulukhanyan (2016) in the con-
sidered parametrization (not necessarily with a new one), of course, this statement
of the problem can be written at the used parametrization.

It is easy to see that at the beginning (11.105) could be written at the considered
parametrization, and then the problem statement could be deduced from the obtained
relation. Since the formulations of boundary value problems were given above, we
will not dwell on this here.

Next, let us present the principle (11.105) under the new parametrization of the
thin body domain inmomentswith respect to the systems of Legendre andChebyshev
polynomials.
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11.7 Generalized Reissner-Type Variational Principle in the
Micropolar Theory of Thin Bodies with One Small Size in
Moments under the New Parameterization of a Body
Domain

Before formulating the Reissner variational principle for the theory of thin bodies,
let us remember some relations Nikabadze (2014) which connect the geometric
characteristics included in (11.102) and (11.105). These relations have the following
form:

dx1dx2dx3 =
dV√
g

=
dSdx3√
gg33

=
d

(−)

S dx3√
(−)

g g
−
3
−
3

=
d

(+)

S dx3√
(+)

g g
+
3
+
3

,

dΣmI√
g

=
d

(−)

Σ
(−)

m−
I√

(−)

g

=
d

(+)

Σ
(+)

m+

I√
(+)

g

=
dsdx3mI√

gg33
=
d

(−)

s dx3(−)

m−
I√

(−)

g g
−
3
−
3

=
d

(+)

s dx3(+)

m+

I√
(+)

g g
+
3
+
3

.

(11.106)

Now let us represent the relations (11.105) in moments with respect to the Legendre
polynomial system. In this regard, we expand each factor of integrand expressions
of the volume integral and integrals along the lateral face in a series of the Legendre
polynomial system and transform the integrals on the right side of (11.105). It can
be seen that more attention is deserved the transformation of integrals of the form∫∫∫

V

Q˜ 2
⊗ a˜dV, ∫∫

Σ

m ·Q˜ · bdΣ, (11.107)

and the other integrals can be easily transformed. Here a˜ is some tensor of the second
rank, and b is a vector. So, we transform the first integral from (11.107). Taking into

account dV =
(−)

ϑ hd
(−)

S dx3, coming from the first line (11.106), we get

∫∫∫
V

Q˜ 2
⊗ a˜dV =

∫∫
(−)

S

h(x′)
( 1∫

0

(−)

ϑ Q˜ 2
⊗ a˜)d(−)

S . (11.108)

By virtue of the relations

Q˜ 2
⊗

(−)

ϑ a˜=Q˜ 2
⊗ a˜∗=

∞∑
k=0

∞∑
m=0

(k)

Q˜ 2
⊗ (m)

a˜ ∗Pk(x3)Pm(x3), a˜∗=
(−)

ϑ a˜, 0 ≤ x3 ≤ 1

and the orthogonality of the Legendre system of polynomials we have

1∫
0

Q˜ 2
⊗

(−)

ϑ a˜dx3 =
∞∑
k=0

∞∑
m=0

(k)

Q˜ 2
⊗ (m)

a˜ ∗ 1∫
0

Pk(x3)Pm(x3)dx3

=
∞∑
k=0

∞∑
m=0

(k)

Q˜ 2
⊗ (m)

a˜ ∗ 1√
(2k + 1)(2m+ 1)

δkm =
∞∑
k=0

1

2k + 1

(k)

Q˜ 2
⊗ (m)

a˜ ∗,
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that is,

1∫
0

Q˜ 2
⊗

(−)

ϑ a˜dx3 =
∞∑
k=0

1

2k + 1

(k)

Q˜ 2
⊗ (k)

a˜ ∗ =
∞∑
k=0

1

2k + 1

(k)

Q˜ ∗ 2
⊗ (k)

a˜ , (11.109)

where Q˜ ∗ =
(−)

ϑ Q˜ , a˜∗ =
(−)

ϑ a˜, à Pk(x3), 0 ≤ x3 ≤ 1, is a shifted Legendre
polynomial of k degree.

Considering (11.109), from (11.108) we find

∫∫∫
V

Q˜ 2
⊗ a˜dV =

∞∑
k=0

1

2k + 1

∫∫
(−)

S

h(x′)
(k)

Q˜ 2
⊗ (k)

a˜ ∗d(−)

S

=
∞∑
k=0

1

2k + 1

∫∫
(−)

S

h(x′)
(k)

Q˜ ∗ 2
⊗ (k)

a˜ d(−)

S .
(11.110)

Therefore, in (11.110) the scalar productQ˜ 2
⊗a˜ can be replaced by the scalar productof tensors of any rank or by some product arbitrary tensors.

Note that the representation of the volume integral (11.110) is selected depending
on the representation of the system of equations ofmotion (or equilibrium equations),
which determines the representations of the constitutive relations and static boundary
conditions under the considered parameterization of the body domain.

It is easy to see that, due to the relation in the second line of (11.106) we have the
relations

dΣm√
g

=
d

(−)

Σ
(−)

m−
I
rI√

(−)

g

=
dsdx3m√

gg33
=
d

(−)

s dx3(−)

m−
I
rI√

(−)

g g
−
3
−
3

,

based on which the second integral (11.107) is reduced to

∫∫
Σ

m ·Q˜ · bdΣ =
∫

(−)

L

h(x′)
(−)

m−
I
(x′)

( 1∫
0

(−)

ϑ QI · bdx3
)
d

(−)

s . (11.111)

Obviously, similarly to (11.109) we find

1∫
0

(−)

ϑ QI · bdx3 =
∞∑
k=0

1

2k + 1

(k)

M(QI) ·
(k)

b ∗

=
∞∑
k=0

1

2k + 1

(k)

M(
(−)

ϑ QI) ·
(k)

b , b∗ =
(−)

ϑ b.

(11.112)

Considering (11.112), the integral (11.111) can be written in the form
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Σ

m ·Q˜ · bdΣ =
∞∑
k=0

1

2k + 1

∫
(−)

L

h(x′)
(−)

m−
I
(x′)

(k)

M(QI) ·
(k)

b ∗d
(−)

s

=
∞∑
k=0

1

2k + 1

∫
(−)

L

h(x′)
(−)

m−
I
(x′)

(k)

M(
(−)

ϑ QI) ·
(k)

bd
(−)

s .

(11.113)

Next it is easy to see that

∫∫
Σ

P˜0 · udΣ =
∫∫
(−)

Σ

(dΣ/d
(−)

Σ )P˜0 · ud
(−)

Σ

=
∫

(−)

L

h(x′)
( 1∫

0

(−)

ϑ a(x′, x3)P˜0 · udx3
)
d

(−)

s ,
(11.114)

where the notation a(x′, x3) = (dΣ/d
(−)

Σ )
(−)

ϑ −1 is introduced and, in addition, the

formula d
(−)

Σ = h(x′)d
(−)

s dx3, following from the second line (11.106) is taken into
account.

Due to (11.111) and (11.114) we have

∫∫
Σ

(m ·P˜ −P˜0) · udΣ =
∫

(−)

L

h(x′)
( 1∫

0

(−)

ϑ T(1) · udx3
)
d

(−)

s ,

∫∫
Σ

(m ·µµµ˜ −µµµ˜0) ·ϕϕϕdΣ =
∫

(−)

L

h(x′)
( 1∫

0

(−)

ϑ T(2) ·ϕϕϕdx3
)
d

(−)

s ,

(11.115)

where we introduce the notations

T(1) =
(−)

m−
I
PI − a(x′, x3)P0, T(2) =

(−)

m−
I
µµµI − a(x′, x3)µµµ0. (11.116)

Considering (11.109), from (11.115) we get

∫∫
Σ

(m ·P˜ −P˜0) · udΣ =
∞∑
k=0

1

2k + 1

∫
(−)

L

h(x′)
(k)

T(1) ·
(k)

u ∗d
(−)

s

=
∞∑
k=0

1

2k + 1

∫
(−)

L

h(x′)
(k)

T∗(1) ·
(k)

ud
(−)

s ,

∫∫
Σ

(m ·µµµ˜ −µµµ˜0) ·ϕϕϕdΣ =
∞∑
k=0

1

2k + 1

∫
(−)

L

h(x′)
(k)

T(2) ·
(k)

ϕϕϕ ∗d
(−)

s

=
∞∑
k=0

1

2k + 1

∫
(−)

L

h(x′)
(k)

T∗(2) ·
(k)

ϕϕϕd
(−)

s ,

u∗ =
(−)

ϑ u, T∗(1) =
(−)

ϑ T(1), ϕϕϕ∗ =
(−)

ϑ ϕϕϕ, T∗(2) =
(−)

ϑ T(2).

(11.117)
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Further, by virtue of the formulas
(−)

f =
∞∑
k=0

(−1)k
(k)

f ,
(+)

f =
∞∑
k=0

(k)

f , the surface

integrals on the right-hand side of (11.105) are reduced to

∫∫
(−)

S1

(−)

n · δ
(−)

P˜ · ((−)

u − (−)

u 0)d
(−)

S =
∞∑
k=0

(−1)k
∫∫
(−)

S1

(−)

n · δ
(k)

P˜ · ((−)

u − (−)

u 0)d
(−)

S ,

∫∫
(−)

S2

(
(−)

n ·
(−)

P˜ − (−)

P˜0) · δ(−)

u d
(−)

S =
∞∑
k=0

(−1)k
∫∫
(−)

S2

(
(−)

n ·
(−)

P˜ − (−)

P˜0) · δ(k)

ud
(−)

S ,

∫∫
(+)

S1

(+)

n · δ
(+)

P˜ · ((+)

u − (+)

u 0)d
(+)

S =
∞∑
k=0

∫∫
(−)

S ′1

(+)

n · δ
(k)

P˜ · ((+)

u − (+)

u 0)
(∓)

η d
(−)

S ,

∫∫
(+)

S2

(
(+)

n ·
(+)

P˜ − (+)

P˜0) · δ(+)

u d
(+)

S =
∞∑
k=0

∫∫
(+)

S ′′2

(
(+)

n ·
(+)

P˜ − (+)

P˜0) · δ(k)

u
(∓)

η d
(−)

S ,

∫∫
(−)

S1

(−)

n · δ(−)

µµµ˜ · ((−)

ϕϕϕ − (−)

ϕϕϕ 0)d
(−)

S =
∞∑
k=0

(−1)k
∫∫
(−)

S1

(−)

n · δ(k)

µµµ˜ · ((−)

ϕϕϕ − (−)

ϕϕϕ 0)d
(−)

S ,

(11.118)∫∫
(−)

S2

(
(−)

n · (−)

µµµ˜ − (−)

µµµ˜0) · δ(−)

ϕϕϕ d
(−)

S =
∞∑
k=0

(−1)k
∫∫
(−)

S2

(
(−)

n · (−)

µµµ˜ − (−)

µµµ˜0) · δ(k)

ϕϕϕd
(−)

S ,

∫∫
(+)

S1

(+)

n · δ(+)

µµµ˜ · ((+)

ϕϕϕ − (+)

ϕϕϕ 0)d
(+)

S =
∞∑
k=0

∫∫
(−)

S ′1

(+)

n · δ(k)

µµµ˜ · ((+)

ϕϕϕ − (+)

ϕϕϕ 0)
(∓)

η d
(−)

S ,

∫∫
(+)

S2

(
(+)

n · (+)

µµµ˜ − (+)

µµµ˜0) · δ(+)

ϕϕϕ d
(+)

S =
∞∑
k=0

∫∫
(−)

S ′′2

(
(+)

n · (+)

µµµ˜ − (+)

µµµ˜0) · δ(k)

ϕϕϕ
(∓)

η d
(−)

S ,

where the formula

d
(+)

S =
(∓)

η d
(−)

S
((−)

η =

√
gg33/(

(−)

g g
−
3
−
3 ) =

(−)

ϑ

√
g33/g

−
3
−
3 ,

(∓)

η =
(−)

η
∣∣
x3=1

)
,

which is obtained from the first line (11.106), is taken into account.

It should be noted that parts
(−)

S ′1 and
(−)

S ′′2 of the surface
(−)

S , generally, may not

have common points with parts
(−)

S 1 and
(−)

S 2. Introducing the notations

S(1) = ∇ ·P˜ + ρF, S(2) = ∇ ·µµµ˜ + C'
2
⊗P˜ + ρG (11.119)

and taking into account (11.110), (11.113) and (11.116) – (11.118), the generalized
Reissner-type variational principle (11.105) in moments will present as follows
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DŘ=
∞∑
k=0

1

2k + 1

{∫∫
(−)

S

h(x′)
{[ (k)

M˜((−)

ϑ
∂W̌

∂γγγ˜
)
−

(k)

P˜ ∗] 2
⊗δ(k)

γγγ˜
+
[ (k)
M˜((−)

ϑ
∂W̌

∂κκκ˜
)
−(k)

µµµ˜ ∗] 2
⊗δ(k)

κκκ˜ − [
(k)

γγγ˜ −
(k)

M˜(∇u)+C' ·
(k)

ϕϕϕ ]
2
⊗δ

(k)

P˜ ∗
−[

(k)

κκκ˜ − (k)

M˜(∇ϕϕϕ)]
2
⊗δ(k)

µµµ˜ ∗−
(k)

S ∗(1) ·δ
(k)

u−
(k)

S ∗(2) ·δ
(k)

ϕϕϕ ]
}
d

(−)

S

−
∫

(−)

L1

h(x′)
(−)

m−
I

[ (k)
M(

(−)

ϑ δPI)·((k)

u−(k)

u 0)+
(k)

M(
(−)

ϑ δµµµI)·((k)

ϕϕϕ− (k)

ϕϕϕ0)
]
d

(−)

s

−
∫

(−)

L2

h(x′)
((k)
T∗(1) ·δ

(k)

u +
(k)

T∗(2) ·δ
(k)

ϕϕϕ
)
d

(−)

s

−(−1)k(2k + 1)
{ ∫∫

(−)

S1

(−)

n ·[δ
(k)

P˜ ·((−)

u −(−)

u 0)+δ
(k)

µµµ˜ ·((−)

ϕϕϕ −(−)

ϕϕϕ 0)]d
(−)

S

−
∫∫
(−)

S2

[(
(−)

n ·
(−)

P˜ − (−)

P 0)·δ(k)

u +(
(−)

n ·(−)

µµµ˜ − (−)

µµµ 0)·δ(k)

ϕϕϕ )]
}
d

(−)

S

−(2k + 1)
{ ∫∫

(+)

S1

(+)

n ·[δ
(k)

P˜ ·((+)

u −(+)

u 0)+δ
(k)

µµµ˜ ·((−)

ϕϕϕ −(+)

ϕϕϕ 0)]d
(+)

S

−
∫∫
(+)

S2

[(
(+)

n ·
(+)

P˜ − (+)

P 0)·δ(k)

u +(
(+)

n ·(+)

µµµ˜ − (+)

µµµ 0)·δ(k)

ϕϕϕ )]
}}
d

(+)

S = 0,

(11.120)

where we introduced the notations
(k)

P˜ ∗=
(k)

M˜(
(−)

ϑ P˜),
(k)

µµµ˜ ∗=
(k)

M˜(
(−)

ϑ µµµ˜),

(k)

S ∗(I) =
(k)

M˜(
(−)

ϑ S(I)),
(k)

T∗(I) =
(k)

M˜(
(−)

ϑ T(I)).

(11.121)

Note that the last two integrals in (11.120) could be replaced, for example, similarly
to the last two integrals in (11.118), but this was not done. If desired, this is not
difficult to do. Although, there is no need for that. And in the further presentation,
we will act in a similar way.

It is easy to see that due to the arbitrariness of δ
(k)

γγγ˜ , δ(k)

κκκ˜ , δ(k)

u˜ , δ(k)

ϕϕϕ˜ , δ
(k)

P˜ ∗, δ(k)

µµµ˜ ∗from (11.120) we obtain equilibrium equations, kinematic and static boundary con-
ditions on the contour of the base surface and front surfaces. Obviously, the number
of relations obtained from (11.120), except for the kinematic and static boundary
conditions on the front surfaces, is infinite. Using the reduction methods Nikabadze
(2014), an infinite system can always be reduced to a finite.

Note that if in (11.120) the quantities
(k)

P˜ ∗, (k)

µµµ˜ ∗,
(k)

S ∗(I),
(k)

T∗(I),
(k)

M(
(−)

ϑ δPI),
(k)

M(
(−)

ϑ δµµµI) are replaced by
(k)

P˜ , (k)

µµµ˜ ,
(k)

S (I),
(k)

T(I),
(k)

M(δPI),
(k)

M(δµµµI) and
(k)

γγγ˜ , (k)

κκκ˜ , (k)

u˜ , (k)

ϕϕϕ˜ ,(k)

M(∇u),
(k)

M(∇ϕϕϕ) are replaced by
(k)

γγγ˜ ∗, (k)κκκ˜ ∗, (k)u˜ ∗, (k)ϕϕϕ˜ ∗,
(k)

M(
(−)

ϑ∇u),
(k)

M(
(−)

ϑ∇ϕϕϕ), respec-
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tively, we obtain a different form of representation of the generalized Reissner-type
variational principle, but we will not dwell on it.

It should also be noted that it was possible to present the generalized Reissner-
type principle (11.102) in moments, and then get (11.120). In fact, doing the same as
when getting (11.120), by virtue of (11.110), (11.113) and (11.118) from (11.102)
we will have

Ř(
(0)

u , ...,
(n)

u , ...,
(0)

ϕϕϕ, ...,
(n)

ϕϕϕ , ...,
(0)

γγγ , ...,
(n)

γγγ , ...,
(0)

κκκ , ...,
(n)

κκκ ,

...,
(0)

P˜ , ..., (n)

P˜ , ..., (0)µµµ˜ , ..., (n)

µµµ˜ , ..., ) =
∞∑
k=0

Řk(
(k)

u ,
(k)

ϕϕϕ,
(k)

γγγ ,
(k)

κκκ ,
(k)

P˜ , (k)µµµ˜ ),
(11.122)

where the notation

Řk(
(k)

u ,
(k)

ϕϕϕ,
(k)

γγγ ,
(k)

κκκ ,
(k)

P˜ , (k)µµµ˜ )

=
1

2k + 1

{∫∫
(−)

S

h(x′)
{
Wk(

(k)

γγγ˜ , (k)κκκ˜ )−
(k)

P˜ 2
⊗[

(k)

γγγ˜ −
(k)

M˜(∇u)+C' ·
(k)

ϕϕϕ ]

−(k)

µµµ˜ 2
⊗[

(k)

κκκ˜ − (k)

M˜(∇ϕϕϕ)]−
(k)

M˜(ρF) · (k)u −
(k)

M˜(ρG) · (k)ϕϕϕ
}
d

(−)

S

−
∫

(−)

L1

h(x′)
(−)

m−
I

[ (k)
M(

(−)

ϑ PI)·((k)

u−(k)

u 0)+
(k)

M(
(−)

ϑ µµµI)·((k)

ϕϕϕ− (k)

ϕϕϕ0)
]
d

(−)

s

−
∫

(−)

L2

h(x′)
((k)
P∗(0) ·

(k)

u +
(k)

µµµ ∗(0) ·
(k)

ϕϕϕ
)
d

(−)

s

−(−1)k(2k + 1)
{ ∫∫

(−)

S1

(−)

n ·[
(k)

P˜ ·((−)

u −(−)

u 0)+
(k)

µµµ˜ ·((−)

ϕϕϕ −(−)

ϕϕϕ 0)]d
(−)

S

−
∫∫
(−)

S2

(
(−)

P 0 ·
(k)

u +
(−)

µµµ 0 ·
(k)

ϕϕϕ )d
(−)

S
}

−(2k + 1)
{ ∫∫

(+)

S1

(+)

n ·[
(k)

P˜ ·((+)

u −(+)

u 0)+
(k)

µµµ˜ ·((−)

ϕϕϕ −(+)

ϕϕϕ 0)]d
(+)

S

−
∫∫
(+)

S2

(
(+)

P 0 ·
(k)

u +
(+)

µµµ 0 ·
(k)

ϕϕϕ )d
(+)

S
}}
,

(11.123)

called the common term of a series of generalized Reissner-type operator, is intro-
duced.

It should be noted thatWk(
(k)

u ,
(k)

ϕϕϕ ) is a common term of the series

(0)

W ∗(
(0)

γγγ˜ , ..., (n)

γγγ˜ , ..., (0)κκκ˜ , ..., (n)

κκκ˜ , ...) =
1∫
0

(−)

ϑ W̌ (γγγ˜,κκκ˜)dx3 =
∞∑
k=0

1

2k + 1
Wk(

(k)

γγγ˜ , (k)κκκ˜ ).

(11.124)
We also note that in specific cases the strain and bending-torsion operator W̌ in
(11.124) can be represented in a similar to (11.109) form (for example, in the case of
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the linear micropolar theory of elasticity W̌ is the quadratic form with respect to γγγ˜andκκκ˜). We will not dwell on the consideration of special cases of the representation
W̌ .

It can be seen that the generalized Reissner operator (11.122) and (11.124) depend

on infinitely many variables
(k)

u ,
(k)

ϕϕϕ ,
(k)

γγγ ,
(k)

κκκ ,
(k)

P˜ and
(k)

µµµ˜ , k = 0,∞, as indicated by the

dots in the arguments of these operators (Řk depends only on
(k)

γγγ ,
(k)

κκκ ,
(k)

P˜ and
(k)

µµµ˜ , andWk depend on
(k)

γγγ˜ and
(k)

κκκ˜ , however, they themselves
(k)

γγγ˜ and
(k)

κκκ˜ depend on infinitely

many variables
(k)

u ,
(k)

ϕϕϕ , k = 0,∞, since
(k)

M˜(∇u) and
(k)

M˜(∇ϕϕϕ) contain infinitely many
terms).

In order to get the desired principle from (11.122), we need to derive an auxiliary
identity. For this purpose, integrating the identity

∇ · (Q˜ · a) = ∇ ·Q˜ · a + Q˜ 2
⊗∇a, ∀Q˜ , a

over the volume V and applying the Ostrogradsky–Gauss theorem, we have∫∫∫
V

Q˜ 2
⊗∇adV =

∮
Γ

n ·Q˜ · adS − ∫∫∫V ∇ ·Q˜ · adV. (11.125)

Further, applying (11.125) to the thin body with the volume V and the border

Γ =
(−)

S ∪
(+)

S ∪ Σ,
(−)

S =
(−)

S1 ∪
(−)

S2,
(−)

S1 ∩
(−)

S2 = ∅,
(+)

S =
(+)

S1 ∪
(+)

S2,
(+)

S1 ∩
(+)

S2 = ∅,
Σ = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅ (see the last two lines (11.102)) and assuming, as
above, that

n
∣∣
x3=0

=
(−)

n , n
∣∣
x3=1

=
(+)

n , Q˜
∣∣
x3=0

=
(−)

Q˜ ,
Q˜
∣∣
x3=1

=
(+)

Q˜ , a
∣∣
x3=0

=
(−)

a , a
∣∣
x3=1

=
(+)

a ,

we get

∫∫∫
V

Q˜ 2
⊗∇adV =

∫∫
Σ

m ·Q˜ · adS +
∫∫
(−)

S

(−)

n ·
(−)

Q˜ · (−)

a d
(−)

S

+
∫∫
(+)

S

(+)

n ·
(+)

Q˜ · (+)

a d
(+)

S −
∫∫∫
V

∇ ·Q˜ · adV.
(11.126)

By virtue of (11.110), (11.113) and (11.118) from (11.126), using simple transfor-
mations, the desired identity is represented as
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1

2k+1

∫∫
(−)

S

h(x′)
(k)

Q˜ ∗ 2
⊗

(k)

M˜(∇a)d
(−)

S

=
1

2k+1

( ∫
(−)

L1

h(x′)
(−)

m−
I

(k)

Q∗I · (k)a d
(−)

s +
∫

(−)

L2

h(x′)
(−)

m−
I

(k)

Q∗I · (k)a d
(−)

s
)

+(−1)k
[ ∫∫
(−)

S1

(−)

n ·
(k)

Q˜ · (−)

a d
(−)

S +
∫∫
(−)

S2

(−)

n ·
(−)

Q˜ · (k)a d
(−)

S
]

+
∫∫
(+)

S1

(+)

n ·
(k)

Q˜ · (+)

a d
(+)

S

+
∫∫
(+)

S2

(+)

n ·
(+)

Q˜ · (k)a d
(+)

S − 1

2k+1

∫∫
(−)

S

h(x′)
(k)

M(
(−)

ϑ∇ ·Q˜ ) · (k)a d
(−)

S , k ≥ 0,

(11.127)

where
(−)

L is the border (contour) of the base surface
(−)

S and
(−)

L =
(−)

L1 ∪
(−)

L2,
(−)

L1 ∩
(−)

L2 = ∅,
(k)

Q∗I =
(k)

M(
(−)

ϑ QI).
If we now in (11.127) Q˜ and a first replace with P˜ and δu, and then replace with

µµµ˜ and δϕϕϕ, respectively, and also then add the obtained identities term by term by
virtue of

δu
∣∣
(−)

L1

= 0, δϕϕϕ
∣∣
(−)

L1

= 0, δ
(−)

u
∣∣
(−)

S1

= 0,

δ
(−)

ϕϕϕ
∣∣
(−)

S1

= 0, δ
(+)

u
∣∣
(+)

S1

= 0, δ
(+)

ϕϕϕ
∣∣
(+)

S1

= 0,

we get

1

2k+1

∫∫
(−)

S

h(x′)
[(k)
P˜ ∗ 2
⊗

(k)

M˜(∇δu) +
(k)

µµµ˜ ∗ 2
⊗

(k)

M˜(∇δϕϕϕ)
]
d

(−)

S

=
1

2k+1

∫
(−)

L2

h(x′)
(−)

m−
I

[ (k)
M(

(−)

ϑ PI) · δ(k)

u +
(k)

M(
(−)

ϑ µµµI) · δ(k)

ϕϕϕ
]
d

(−)

s

+
∫∫
(−)

S2

(−)

n · (
(−)

P˜ · δ(k)

u +
(−)

µµµ˜ · δ(k)

ϕϕϕ )d
(−)

S +
∫∫
(+)

S2

(+)

n · (
(+)

P˜ · δ(k)

u +
(+)

µµµ˜ · δ(k)

ϕϕϕ )d
(+)

S

− 1

2k+1

∫∫
(−)

S

h(x′)
[ (k)
M(

(−)

ϑ∇ ·P˜) · δ(k)

u +
(k)

M(
(−)

ϑ∇ ·µµµ˜) · δ(k)

ϕϕϕ
]
d

(−)

S , k ≥ 0.

(11.128)
By the definition of the differential of the operator and (11.128), as well as the
formulas

DW ∗k (
(k)

γγγ˜ , (k)κκκ˜ , δ(k)

γγγ˜ , δ(k)

κκκ˜ ) =
∂W ∗k

∂
(k)

γγγ˜
2
⊗ δ(k)

γγγ˜ +
∂W ∗k

∂
(k)

κκκ˜
2
⊗ δ(k)

κκκ˜ ,
(k)

P˜ ∗ =
∂W ∗k

∂
(k)

γγγ˜
=

(k)

M˜
((−)

ϑ
∂W̌

∂γγγ˜
)
,

(k)

µµµ˜ ∗ =
∂W ∗k

∂
(k)

κκκ˜
=

(k)

M˜
((−)

ϑ
∂W̌

∂κκκ˜
)

from (11.122) we get (11.120).
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It should be noted that it is not difficult, similarly to (11.120) to formulate the
variational principles of Lagrange, Castigliano and Reissner-type or similarly to
(11.122) and (11.123) introduce the Lagrangian, the Castiglianian and the gen-
eralized Reissner-type operator, and then use them to obtain the corresponding
variational principles for the theory of thin bodies.

We also note that, using the D’Alembert principle and replacing the volume force
ρF and moment ρGwith ρF−ρ∂2

t u and ρG−J˜ ·∂2
tϕϕϕ respectively, it is not difficult

to formulate the variational principles presented above in the case when the force
and moment of inertia are taken into account.

In conclusion, we note that the formulated variational principles (or the La-
grangian, Castiglianian, Reissner-type operators) for the thin body theories are pre-
sented in the form of series and contain infinitelymany variables

(k)

u and
(k)

ϕϕϕ , k = 0,∞.
Therefore, it is not advisable to use them in practice. In this regard, they should be
reduced to finite series, which will contain a finite number of variables. There are
various reduction methods Vekua (1982); Nikabadze (2014), of which we will focus
only on one (simplified reduction method). This reduction method consists in the
following: we fix some non-negative integer N and assume that all the moments
(k)

u = 0 and
(k)

ϕϕϕ = 0, if k > N . In this case, of course, the vectors of displacements
u and rotations ϕϕϕ are represented as

uN =
N∑
k=0

(k)

u (x′)Pk(x3), ϕϕϕN =
N∑
k=0

(k)

ϕϕϕ (x′)Pk(x3), 0 ≤ x3 ≤ 1. (11.129)

Therefore, for the strain and bending-torsion tensors, as well as for the tensors of
stresses and couple stresses, by virtue of (11.129) we will have expressions

γγγ˜N =
N∑
k=0

(k)

γγγ˜ (x′)Pk(x3), κκκ˜N =
N∑
k=0

(k)

κκκ˜ (x′)Pk(x3),

P˜N =
N∑
k=0

(k)

P˜ (x′)Pk(x3), µµµ˜N =
N∑
k=0

(k)

µµµ˜ (x′)Pk(x3), 0 ≤ x3 ≤ 1,

that contain only moments
(k)

u and
(k)

ϕϕϕ , k = 0, N .
Then, for example, instead of (11.122) we will have

Ř(uN ,ϕϕϕN ) ≡ Ř(
(0)

u , ...,
(N)

u , ...,
(0)

µµµ˜ , ..., (N)

µµµ˜ ) =
N∑
k=0

Řk(
(k)

u ,
(k)

ϕϕϕ,
(k)

γγγ ,
(k)

κκκ ,
(k)

P˜ , (k)µµµ˜ ),

(11.130)
called the Reissner-type operator of N order approximation.

It should be noted that based on (11.130) the Reissner-type variational principle
of approximation of order N will be presented in the form
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DŘ(uN ,ϕϕϕN ) ≡ DŘ(
(0)

u , ...,
(N)

u , ...,
(0)

µµµ˜ , ..., (N)

µµµ˜ )

≡ DŘ(
(0)

u , ...,
(N)

u ,
(0)

ϕϕϕ, ...,
(N)

ϕϕϕ ,
(0)

γγγ , ...,
(N)

γγγ ,
(0)

κκκ , ...,
(N)

κκκ ,
(0)

P˜ , ..., (N)

P˜ , (0)µµµ˜ , ..., (N)

µµµ˜ )

=
N∑
k=0

DŘk(
(k)

u ,
(k)

ϕϕϕ,
(k)

γγγ ,
(k)

κκκ ,
(k)

P˜ , (k)µµµ˜ ).

(11.131)

We also note that if f(x′, x3) =
∞∑
k=0

(k)

f Pk(x3), then the following uniform estimates

hold Vekua (1970, 1982):

|
(k)

f | ≤ Ck−3/2, |RN+1| ≤ Ck−1/2, k ≥ 1, (11.132)

whereC is a positive constant independent ofk, andRN+1(x′, x3)=
∞∑

k=N+1

(k)

f Pk(x3).

Taking into account (11.132), similarly to the classical case Vekua (1970), it is
easy to prove that

|Ř(u,ϕϕϕ)− ŘN (uN ,ϕϕϕN )| = O(1/
√
N). (11.133)

So, the Reissner operator Ř(u,ϕϕϕ) is approximated by operators of the form
ŘN (uN ,ϕϕϕN ). Therefore, for sufficiently large N , by virtue of (11.133), the varia-
tional principle (11.120) can be replaced by (11.131).

(
In case of the classical theory

of elastic shells for the energy functional, the relation similar to (11.133) given in
Vekua (1970) has the form U(u)− UN (uN ) = O(1/

√
N )
)
.

It can be seen from the foregoing that in formulating the variational principles for
the theory of thin bodies in moments with respect to the Legendre system of poly-
nomials, the relations (11.110), (11.113) and (11.118) play the main role. Therefore,
when applying other polynomial systems (for example, Chebyshev polynomial sys-
tems of the first and second kind), the analogous to (11.110), (11.113) and (11.118)
relations will play the main role in the presentation of variational principles in mo-
ments with respect to the considered systems of polynomials. In this regard, without
dwelling on a detailed presentation of thematerial when applying Chebyshev polyno-
mial systems, we restrict ourselves to the derivation of similar to relations (11.110),
(11.113) and (11.118) for these polynomial systems.

First of all, we note that, by virtue of the recurrence formula for the system of
shifted Chebyshev polynomials of the second kind U ′n+1(t) = 4(n + 1)Un(t) +
U ′n−1(t) or from the definition of this system of polynomials we have

Un(t) =
1

4(n+ 1)
[U ′n+1(t)− U ′n−1(t)] =

1

2(n+ 1)
T ′n+1.

From here, obviously, we get

1∫
0

Un(t)dt=
1

2(n+ 1)
[1+(−1)n],

1∫
0

Ûn(t)dt=
Û0

2(n+ 1)
[1+(−1)n], (11.134)
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where ||Un||−1 = Û0 = 2/
√
π.

Further, considering the recurrence relation (see Nikabadze (2007a,b, 2014))

Ûn−p(t)Ûp(t) = Û0(t)
p∑
s=0

Ûn−2p+2s(t),

based on the second relation (11.134) we find

Anp≡
1∫
0

Ûn−p(t)Ûp(t)dt= Û2
0

[ p∑
s=0

1

2(n− 2p+ 2s+ 1)

]
[1+(−1)n]. (11.135)

Quite similarly to (11.135) using the recurrence relation Nikabadze (2007a,b, 2014)

22stsÛm(t)Ûn(t) = Û0(t)
m∑
p=0

2s∑
q=0

Cq2sÛn−m−s+2p+q(t)

and the second formula (11.134) we find

Asmn=
1∫
0

22stsÛm(t)Ûn(t)dt

=
m∑
p=0

2s∑
q=0

Û2
0

2(n−m−s+ 2p+ q +1)
Cq2s[1+(−1)n−m−s+q].

(11.136)

In case of a system of shifted Chebyshev polynomials of the first kind, using the
recurrence relation (see in Nikabadze (2007a,b, 2014))

4(n2 − 1)Tn(t) = (n− 1)T ′n+1(t)− (n+ 1)T ′n−1(t), n ≥ 1,

we will have

1∫
0

Tn(t)dt =


0, n = 1,

1

2(n2 − 1)
[(−1)n+1 − 1], n 6= 1, n ≥ 0.

(11.137)

By virtue of the recurrence relations

2Tm(t)Tn(t) = Tn−m(t) + Tn+m(t), m ≥ n,
22stsTn(t) =

2s∑
p=0

Cp2sTn+p−s(t), n− s ≥ 0
(11.138)

it is easy to prove that the formula

22stsTm(t)Tn(t) =
2s∑
p=0

1

2
Cp2s[Tn−m+p−s(t) + Tn+m+p−s(t)] (11.139)

holds.
Using (11.137), from the first formula (11.138) we get
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Bmn =
1∫
0

Tm(t)Tn(t)dt =
1

2

1∫
0

[Tn−m(t) + Tn+m(t)]dt

=


0, n = m+ 1;

n2+m2−1

2[(n−m)2−1][(n+m)2−1]
[(−1)n+m+1−1],

n 6=m+1, n≥m.

(11.140)

Similarly to (11.140), by virtue of (11.137) we find

Bspmn =
1

2

1∫
0

[Tn−m+p−s(t) + Tn+m+p−s(t)]dt

=


0, n−m = 1 + s− p, n−m ≥ 0, s ≥ 0 (p = 0, 2s);

n2+m2−1−(2n−s+p)(s−p)
2[(n−m+p−s)2−1][(n+m+p−s)2−1]

[(−1)n+m+p−s+1−1],

n−m+ p− s 6= 1, n ≥ m, s ≥ 0.
(11.141)

Seeing (11.141), from (11.139) we will have

Bsmn =
1∫
0

22stsTm(t)Tn(t)dt =
2s∑
p=0

Cp2sB
sp
mn. (11.142)

Let us note that Amn = A0
mn, Bmn = B0

mn = B00
mn.

Having the above relations obtained by using the Chebyshev polynomial systems,
it is easy to obtain similar to (11.110) and (11.113) formulas in case of using these
polynomial systems. Indeed, based on (11.135), the similar equality to (11.110) in
the case of applying the system of orthonormal Chebyshev polynomials of the second
kind is represented in the form

∫∫∫
V

Q˜ 2
⊗a˜dV =

∞∑
k=0

2k∑
p=0

A2kp

∫∫
(−)

S

h(x′)
(2k−p)

Q˜ 2
⊗(p)

a˜ ∗d(−)

S

=
∞∑
k=0

2k∑
p=0

A2kp

∫∫
(−)

S

h(x′)
(2k−p)

Q˜ ∗ 2
⊗(p)

a˜ d(−)

S ,

(11.143)

and when applying the system of Chebyshev polynomials of the first kind, by virtue
of (11.140) we will have∫∫∫

V

Q˜ 2
⊗a˜dV

=
∞∑
k=0

k∑
p=0

(Bk−pp −Bk−ppδpk−p+1)
∫∫
(−)

S

h(x′)
(2k−p)

Q˜ 2
⊗(p)

a˜ ∗d(−)

S

=
∞∑
k=0

k∑
p=0

(Bk−pp −Bk−ppδpk−p+1)
∫∫
(−)

S

h(x′)
(2k−p)

Q˜ ∗ 2
⊗(p)

a˜ d(−)

S ,

(11.144)
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It is easy to show that a similar (11.113) relation when using the system of orthonor-
mal Chebyshev polynomials of the second kind is as follows

∫∫
Σ

m ·Q˜ · bdΣ =
∞∑
k=0

2k∑
p=0

A2kp

∫
(−)

L

h(x′)
(−)

m−
I
(x′)

(2k−p)

M (QI) ·
(p)

b ∗d
(−)

s

=
∞∑
k=0

2k∑
p=0

A2kp

∫
(−)

L

h(x′)
(−)

m−
I
(x′)

(2k−p)

M (
(−)

ϑ QI) ·
(p)

bd
(−)

s ,

(11.145)

and in the case of applying the system of Chebyshev polynomials of the first kind,
we obtain∫∫
Σ

m ·Q˜ · bdΣ
=
∞∑
k=0

k∑
p=0

(Bk−pp −Bk−ppδpk−p+1)
∫

(−)

L

h(x′)
(−)

m−
I
(x′)

(k−p)

Q I ·
(p)

b ∗d
(−)

s

=
∞∑
k=0

k∑
p=0

(Bk−pp −Bk−ppδpk−p+1)
∫

(−)

L

h(x′)
(−)

m−
I
(x′)

(k−p)

Q ∗I ·
(p)

bd
(−)

s ,

(11.146)

where
(k−p)

Q I =
(k−p)

M (QI) and
(k−p)

Q ∗I =
(k−p)

M (
(−)

ϑ QI). Note that in the more general
case the formulas (11.136) and (11.142) should be used.

Further, if we take into account at the ends of the segment [0, 1] the values of
polinomials Ûk(0) = (−1)k(2/

√
π)(k + 1) and Ûk(1) = (2/

√
π)(k + 1) and in

the right parts (11.118) after the sign of sum, put the coefficient (2/
√
π)(k+ 1) and

assume that the moments are considered with respect to this system of polynomials,
thenwe obtain relations similar to (11.118) when applying the system of orthonormal
shifted Chebyshev polynomials of the second kind.

SinceTk(0) = (−1)k andTk(1) = 1, when using the systemof shiftedChebyshev
polynomials of the first kind, the relations (11.118) will remain the same, provided
that the moments should be considered with respect to the Chebyshev polynomial
system.

Thus, in the form (11.143)–(11.146) and also in the form relations, on the con-
clusions of which were mentioned in the previous paragraph, all the promised above
relations were obtained. It remains only to write out the variational principles when
applying these systems of polynomials. But We will not write them out in order to
shorten the letter. It should be noted that, if necessary, in the same way it is possible
to obtain variational principles in moments with respect to the systems of Legendre
and Chebyshev polynomials under the other parametrizations of the thin body do-
main that are different from the new one. We also will not dwell on these issues in
order to shorten the letter.
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11.8 Generalized Variational Principle of Reissner-Type in the
Micropolar Theory of Multilayer Thin Bodies with One
Small Size with Full Contact of the Layers

Let’s consider a multilayer three-dimensional thin domain consisting ofK layers, for
each layer of which we use a new parameterization Nikabadze (2014, 2015, 2017).
Let the layers be numbered in ascending order, i.e. if, for example, α (1 < α < K)
is the number of some layer, then the number of the previous layer will be α−1, and
the number of the next one will be α + 1. We assume that each layer has two front
surfaces. The front surface of the layer α (2 < α < K − 1) located on the side of

the previous layer α− 1, we call it the inner base surface and denote by
(−)

S
α
, and the

front surface of the layer α, located on the side of the subsequent layer α+ 1, will be

called the external base surface and denoted by
(+)

S
α
. Note that for α = 1 (α = K), the

inner (outer) base surface is denoted by
(−)

S
1
(
(+)

S
K
). Surfaces

(−)

S
1
and

(+)

S
K

are also called
face surfaces of a multilayer thin body. We assume that the front surfaces of each
layer are regular surfaces, and in the case of a bounded unclosed layer, its lateral
surface is a ruled surface.

So, considering the new parameterization Nikabadze (2014, 2015, 2017) of the
domain of a multilayer thin body, by virtue of what was said above and the gener-
alized Reissner-type operator (11.102), the generalized Reissner-type operator with
complete contact (perfect or ideal adhesion) of layers can be to present in the form

Ř =
K∑
α=1

Ř
α

(u
α
,ϕϕϕ
α
, γγγ
α̃
,κκκ
α̃
,P
α̃
,µµµ
α̃
,T
α
,µµµ
α
,
(−)

u
α
,
(−)

ϕϕϕ
α
,
(−)

P
α̃
,
(−)

µµµ
α̃
,
(+)

u
α
,
(+)

ϕϕϕ
α
,
(+)

P
α̃
,
(+)

µµµ
α̃

)

=
K∑
α=1

∫∫∫
V
α

[W̌
α

(γγγ
α̃
,κκκ
α̃

)−P
α̃

2
⊗ (γγγ

α̃
−∇
α

u
α

+C'
α

·ϕϕϕ
α

)−µµµ
α̃

2
⊗ (κκκ

α̃
−∇

α
ϕϕϕ
α

)

−ρ
α
F
α
·u
α
− ρ
α
G
α
·ϕϕϕ
α

]dV
α
−

K∑
α=1

{∫∫
Σ
α1

m
α
·[P
α̃
·(u
α
−u
α0)+µµµ

α̃
·(ϕϕϕ
α
−ϕϕϕ
α

0)]dΣ
α 1

+
∫∫
Σ
α2

(P
α 0 · uα+µµµ

α
0 ·ϕϕϕ

α
)dΣ

α 2

}
−
∫∫
(−)

S
1
1

(−)

n
1
·[

(−)

P
1̃
·((−)

u
1
−(−)

u
1

0)+
(−)

µµµ
1̃

·((−)

ϕϕϕ
1
−(−)

ϕϕϕ
1

0)]d
(−)

S
1

1

−
∫∫
(−)

S
1
2

(
(−)

P
1

0 ·
(−)

u
1

+
(−)

µµµ
1

0 ·
(−)

ϕϕϕ
1

)d
(−)

S
1

2−
∫∫
(+)

S
K

1

(+)

n
K
·[

(+)

P
K̃
·((+)

u
K
−(+)

u
K

0)+
(+)

µµµ
K̃

·((+)

ϕϕϕ
K
−(+)

ϕϕϕ
K

0)]d
(+)

S
K

1

−
∫∫
(+)

S
K

2

(
(+)

P
K

0 ·
(+)

u
K

+
(+)

µµµ
K

0 ·
(+)

ϕϕϕ
K

)d
(+)

S
K

2−
K−1∑
α=1

∫∫
S
α

[T
α
· ((+)

u
α
− (−)

u
α+1

)+µµµ
α
· ((+)

ϕϕϕ
α
− (−)

ϕϕϕ
α+1

)]dS
α
.

(11.147)
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Here, S
α

=
(+)

S
α

=
(−)

S
α+1

is the contact surface of the layers, α è α+ 1 (α = 1,K − 1),

T
α

=
(+)

T
α

= −
(−)

T
α+1

is the vector of interlayer (contact) forces, and µµµ
α

=
(+)

µµµ
α

= − (−)

µµµ
α+1

is
the vector of interlayer moments.

It should be noted that inside each volume V
α
, α = 1,K, it is changed the

displacement and rotation vectors, the deformation and bending-torsion tensors, as

well as stress and couple stress tensors, on Σ
α 1, α = 1,K,

(−)

S
1
1 and

(+)

S
K

1 are changed

the stress and couple stress tensors, on Σ
α 2, α = 1,K,

(−)

S
1

2 and
(+)

S
K

2 are changed
the displacement and rotation vectors, and on S

α
are varied the vectors of contact

displacements and rotations, as well as the vectors of contact forces and moments.
Further, similarly to the theory of one-layer thin bodies, we introduce the defini-

tions:
Definition 11.6. A kinematic system is defined as arbitrary continuously differen-
tiable vector fields u

α
(displacement vector of the α) and ϕϕϕ

α
(rotation vector of the α

layer), α = 1,K, and a static system is defined as arbitrary tensor fields P
α̃
(stress

tensor of the α layer) and µµµ˜α (tensor of moment stresses of the α layer), α = 1,K

(they are not necessary to satisfy the compatibility condition).

Definition 11.7. Kinematically admissible is a kinematic system that satisfies the
kinematic boundary conditions

u
α

∣∣
Σ
α1

= u
α0, ϕϕϕ

α

∣∣
Σ
α1

= ϕϕϕ
α

0, (11.148)

and in the case of a dynamic problem, kinematically admissible is a system that
satisfies both the kinematic boundary conditions and the initial conditions

u
α

∣∣
t=t0

= f
α1, ϕϕϕ

α

∣∣
t=t0

= g
α

1, u̇
α

∣∣
t=t0

= f
α2, ϕ̇ϕϕ

α

∣∣
t=t0

= g
α

2, α = 1,K.

(11.149)

Definition 11.8. Statically admissible is a static system that satisfies the equilibrium
equations

∇
α
·P
α̃

+ ρ
α
F
α

=0, ∇
α
·µµµ
α̃

+ C
'
α

2
⊗P

α̃
+ ρ
α
G
α

=0, α=1,K (11.150)

or in the case of a dynamic problem it must satisfy the motion equations

∇
α
·P
α̃

+ ρ
α
F
α

= ρ
α
dv
α
/dt, v

α
= du

α
/dt,

∇
α
·µµµ
α̃

+ C
'
α

2
⊗P

α̃
+ ρ
α
G
α

= J
α̃
·dωωω
α
/dt, ωωω

α
= ϕ̇ϕϕ

α
= dϕϕϕ

α
/dt, α=1,K

(11.151)

and static boundary conditions

n
α
·P
α̃

= P
α 0, n

α
·µµµ
α̃

= µµµ
α

0, α=1,K. (11.152)
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Definition 11.9. A real kinematic and static system in the case of a multilayer thin
body is the set of displacement and rotation vectors (u

α
and ϕϕϕ

α
, α= 1,K) and stress

and moment stress tensors (P
α̃

and µµµ˜α, α = 1,K) of all layers of multilayer thin
body, which satisfies the equilibrium equations (11.150) (or in the case of dynamic
problem it must satisfy the motion equations (11.151)), kinematic relations

γγγ
α̃

= ∇
α

u
α
−C'
α

·ϕϕϕ
α
, κκκ

α̃
= ∇

α
ϕϕϕ
α
, α=1,K, (11.153)

constitutive relations

P
α̃

= F̌
α̃

(γγγ
α̃
,κκκ
α̃

), µµµ
α̃

= Ǧ
α̃

(γγγ
α̃
,κκκ
α̃

), α=1,K (11.154)

or at the existence of potential operators F̌
α̃
and Ǧ

α̃
, α=1,K, the system must satisfy

the constitutive relations,

P
α̃

= ∂W̌
α
/∂γγγ

α̃
, µµµ

α̃
= ∂W̌

α
/∂κκκ

α̃
, α=1,K, (11.155)

kinematic (11.148) and static (11.152) boundary conditions (in the case of dynamic
problem it must also satisfy the initial conditions (11.149)), as well as interlayer
contact conditions and boundary conditions on the front surfaces.

Here W̌
α

(γγγ˜α,κκκα̃) is the operator of deformation and bending-torsion of the layer α,
and if it exists, then the constitutive relations are given using the (11.155). Note
that in nonisothermal processes, instead of W̌

α
(γγγ˜α,κκκα̃), the free energy Ě

α
(γγγ˜α,κκκα̃ , θα) =

W̌
α

(γγγ˜α,κκκα̃) − H
α
T
α
, is considered, where H

α
is the entropy, T

α
is the temperature, θ

α
=

T
α
− T

α 0 is the temperature drop of the α layer.
The generalized Reissner-type variational principle for a multilayer thin body can

be formulated as: of all kinematic and static systems and systems described by the
tensors γγγ˜α and κκκ

α̃
, α = 1,K, only the operator for the real system (11.147) has a

stationary value, i.e.

DŘ =

=
K∑
α=1

DŘ
α

(u
α
,ϕϕϕ
α
, γγγ
α̃
,κκκ
α̃
,P
α̃
,µµµ
α̃
,T
α
,µµµ
α
,
(−)

u
α
,
(−)

ϕϕϕ
α
,
(−)

P
α̃
,
(−)

µµµ
α̃
,
(+)

u
α
,
(+)

ϕϕϕ
α
,
(+)

P
α̃
,
(+)

µµµ
α̃
, δu
α
, δϕϕϕ
α
,

δγγγ
α̃
, δκκκ
α̃
, δP

α̃
, δµµµ
α̃
, δT

α
, δµµµ
α
, δ

(−)

u
α
, δ

(−)

ϕϕϕ
α
, δ

(−)

P
α̃
, δ

(−)

µµµ
α̃
, δ

(+)

u
α
, δ

(+)

ϕϕϕ
α
, δ

(+)

P
α̃
, δ

(+)

µµµ
α̃

) = 0.

(11.156)
Indeed, using the definition of the differential of the operator Pobedrya (1995) and
the Ostrogradskii-Gauss theorem, by virtue of (11.147) and (11.153), the relation
(11.156) will appear in the following form:
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DŘ =
K∑
α=1

DŘ
α

=
K∑
α=1

∫∫∫
V
α

[
(∂W̌

α
/∂γγγ

α̃
−P

α̃
)

2
⊗ δγγγ

α̃
+ (∂W̌

α
/∂κκκ

α̃
−µµµ
α̃

)
2
⊗ δκκκ

α̃

−(∇
α
·P
α̃

+ ρ
α
F
α

)·δu
α
− (∇

α
·µµµ
α̃

+ C'
α

2
⊗P
α̃

+ ρ
α
G
α

)·δϕϕϕ
α

−(γγγ
α̃
−∇
α

u
α

+C'
α

·ϕϕϕ
α

)
2
⊗ δP

α̃
− (κκκ

α̃
−∇

α
ϕϕϕ
α

)
2
⊗ δµµµ

α̃

]
dV
α

−
K∑
α=1

{∫∫
Σ
α1

m
α
·
[
δP
α̃
·(u
α
−u
α0)+δµµµ

α̃
·(ϕϕϕ
α
−ϕϕϕ
α

0)
]
dΣ
α 1

−
∫∫
Σ
α2

[
(m
α
·P
α̃
−P

α 0) · δu
α

+ (m
α
·µµµ
α̃
−µµµ
α

0) · δϕϕϕ
α

)
]
dΣ
α 2

}
−
∫∫
(−)

S
1
1

(−)

n
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(11.157)

It is easy to see that due to the arbitrariness of the variations δu
α
, δϕϕϕ

α
, δγγγ
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α
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and δ
(+)

µµµ
α̃
, α = 1,K, from (11.157)

implies the equilibrium equations (11.150), the constitutive relations (11.155), the
kinematic relations (11.153), the kinematic (11.148) and static (11.152) boundary
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conditions on the lateral face, as well as the kinematic and static boundary conditions
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on the front surfaces, and conditions on the interlayer boundaries (ideal contact
conditions)
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(+)
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=
(−)
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α
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·

(−)
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µµµ
α
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·(+)

µµµ
α̃

= − (−)

n
α+1
· (−)

µµµ˜α+1

íà S
α
, α = 1,K − 1.

(11.159)

Note that using the Legendre-type identity (11.46) one can obtain the generalized
Reissner-type operator dual to the operator (11.147), and then from it one can derive
the generalized Reissner-type principle dual to the principle (11.157). Based on
the above, it is not difficult to consider these issues, as well as to formulate other
variational principles. In this regard, we will not dwell on them.

11.9 Generalized Reissner-Type Variational Principle in the
Micropolar Theory of Multilayer Thin Bodies with One
Small Size in the Case of Domains of Weakened Adhesion

Before formulating this principle, let us consider some issues related to multilayer
thin bodies if there are domains (or zones) of weakened adhesion. Generally, if on
some parts of the interlayer boundaries during deformation of a multilayer thin body
there is a violation of full (or ideal) contact, then it is said that we are dealing with
a multilayer thin body with weakened adhesion (or having domains of weakened
adhesion). If there are domains of weakened adhesion in interphase boundaries of
the multilayer thin body, then the issue of modeling the interface (or interphase
boundary) becomes to be important. There are two approaches in this direction
Pelekh and Korovaichuk (1984). First, the physical approach is associated in view
of certain properties of interfacial adhesion layers. Apparently, this approach was
first proposed for heat conduction problems in Podstrigach (1963). Later it was
generalized to problems of mechanics Podstrigach (1982). The second one is a phe-
nomenological approach based on the representation of the interface as a surface of
zero thickness which separates the volume components (such as phases, layers), and
on the postulation of the existence of jumps (i.e., discontinuities) of the displacement
and rotation vectors, as well as stress and couple stress vectors in zones of weakened
adhesion. For these approaches, the following models are considered: a) a jump-type
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model (in the case of describing the interface by a surface of zero thickness); b) a
model of a smooth transition (in case of the presence of interphase layers between
interacting layers); c) a model of the reduced interphase characteristics.

In the case of the first two models, the main parameters are the vectors of mutual
displacements and rotations of adjacent layers (or phases). In the classical theory,
of course, only vectors of mutual displacements of adjacent phases are considered.
The third model is characterized by the introduction of some coefficients that reflect
the effect of weakened adhesion and the named fullness coefficients of interfacial
contact. Below we will consider in detail the jump-type model.

11.9.1 Jump-Type Model. Interphase (Interlayer) Displacements
and Rotation Vectors. Vectors of Generalized Interfacial
Forces and Moments

In the presence of domains of weakened adhesion it is advisable to introduce vectors
of interfacial (or relative) displacements and rotations, i.e. v

α
(x′) and ψψψ

α
(x′) respec-

tively, where x′ ∈ S
α0 ⊂ S

α
, S
α0 is the domain of weakened adhesion, α = 1,K−1,

andK is the number of layers. However, for a complete description of this model, it
is necessary to consider the state parameters corresponding to the vectors of mutual
displacements and rotations, namely, the vectors of interphase (generally speaking,
dissipative) forces P

α
and moments Q

α
(α = 1,K−1) in domains of weakened ad-

hesion. Further, we omit the index under the vectors of interphase displacements,
rotations, forces, moments and quantities related to this subsection, since all the
relations obtained below will be valid also if the index α is preserved.

From physical reasons, the sum of the work of the interphase forces P and mo-
ments Q on the corresponding vectors of mutual displacements v(x′) and rotations
ψψψ(x′) of adjacent phases must be non-negative, that is

P · v + Q ·ψψψ ≥ 0 (11.160)

for any vectors v and ψψψ, provided that at least one of them is nonzero.
Note that if we are considering a non-stationary process, then instead of v andψψψ,

we should write v̇ = ∂tv and ψ̇ψψ = ∂tψψψ respectively.
From (11.160) it follows that the vectors of interphase forces P and moments

Q must be functions of vectors of mutual displacementsv(x′) and rotations ψψψ(x′)
of adjacent phases, as well as some other parameters, namely, temperature, contact
pressure, coefficient of friction and etc., i.e.

P = P(v,ψψψ, ...), Q = Q(v,ψψψ, ...), (11.161)

where three dots denotes dependence on other parameters. In the case of potential
vectors P and Q there is a dissipative potential (or dissipative operator) χ̌(v,ψψψ)
of vectors of mutual displacement v(x′) and rotation ψψψ(x′) of adjacent phases, by
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means of which P and Q are defined by the formulas

P =
∂χ̌

∂v
, Q =

∂χ̌

∂ψψψ
. (11.162)

From (11.162) it follows that the conditions in the domains of weakened adhesion
are based on the construction or choice of the dissipative operator χ̌(v,ψψψ), which
expresses the interaction mechanism in these domains.

Let us consider some possible special cases of defining the operator χ̌(v,ψψψ),
corresponding to different conditions of phase interaction. In this regard, expanding
χ̌(v,ψψψ) in the Maclaurain’s series in a neighborhood of the point v = 0 and ψψψ = 0
and neglecting the terms containing v and ψψψ higher than the second degree, taking
into account χ̌(0, 0) = 0 we get

χ̌(v,ψψψ) =

(
∂χ̌

∂v

)
0

· v +

(
∂χ̌

∂ψψψ

)
0

·ψψψ

+
1

2

{(
∂2χ̌

∂v2

)
0

2
⊗vv +

[(
∂2χ̌

∂v∂ψψψ

)
0

+

(
∂2χ̌

∂ψψψ∂v

)T
0

]
2
⊗vψψψ +

(
∂2χ̌

∂ψψψ2

)
0

2
⊗ψψψψψψ

}
.

Hence, introducing the notation

a=

(
∂χ̌

∂v

)
0

, b=

(
∂χ̌

∂ψψψ

)
0

, f˜=

(
∂2χ̌

∂v2

)
0

,

2g˜=

(
∂2χ̌

∂v∂ψψψ

)
0

+

(
∂2χ̌

∂ψψψ∂v

)T
0

, h˜=

(
∂2χ̌

∂ψψψ2

)
0

,

we will have

χ̌(v,ψψψ) = a · v + b ·ψψψ +
1

2
(f˜ 2
⊗vv + 2g˜ 2

⊗vψψψ + h˜ 2
⊗ψψψψψψ). (11.163)

1. If χ̌(v,ψψψ) = 0, then adjacent phases do not interact, which corresponds to the
complete absence of conjunction. In this case, the parameters that characterize
the weakening of the interphase contact are the vectors of mutual displacements
v(x′) and rotations ψψψ(x′) of adjacent phases.

2. If χ̌(v,ψψψ) is a linear functionwith respect tov(x′) andψψψ(x′), then from (11.163)
we have

χ̌(v,ψψψ) = a · v + b ·ψψψ. (11.164)

In this case, new parameters a and b of weakened adhesion appear. In the
particular case, when a = ass and b = bnn, where s and n are the unit vectors
of the tangent and normal to the interface, as and bn are the coefficients that
characterize the status of conjunction in areas of weakened adhesion. Note that
according to (11.164), from (11.162) we find P = a and Q = b.

3. If χ̌(v,ψψψ) is a homogeneous quadratic form with respect to v(x′) and ψψψ(x′),
then from (11.163) we get
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χ̌(v,ψψψ) =
1

2
(f˜ 2
⊗vv + 2g˜ 2

⊗vψψψ + h˜ 2
⊗ψψψψψψ). (11.165)

In view of (11.165), from (11.162) we will have

P = f˜ · v + g˜ ·ψψψ, Q = g˜ · v + h˜ ·ψψψ. (11.166)

Here f˜, g˜, h˜ are symmetric tensors of the second rank, called tensors of friction
coefficients. They can depend on the coordinates x1, x2, the temperature drop, the
normal component of the limiting stress vector, and other parameters. Obviously, the
formulas (11.166) take into account the inhomogeneity and anisotropy of friction.
Therefore, in the case of isotropic friction, f˜, g˜, h˜ are spherical tensors.

Note that we can consider other cases of the representation χ̌(v,ψψψ), which wewill
not dwell on in order to shorten the letter. Note also that in the case of a multilayer
thin body, for example, instead of (11.163) we will have
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(11.167)
Therefore, similarly to (11.167), we can represent other relationships given above.
However, we will not dwell on them in order to shorten the letter.

Let us now return to the variational principle if there are domains of weakened
adhesion and formulate it. It is easy to see that in this case, similarly to (11.147), the
generalized Reissner-type operator (generalized functional) will have the form
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0, (11.168)

where S
α

= S
α

0 ∪ S
α

(i), S
α

0 ∩ S
α

(i) = ∅, α = 1,K − 1, S
α

0 is the domain of weakened

adhesion, and S
α

(i) is the domain of ideal adhesion (perfect contact).
The stationarity condition for the operator (11.168), similarly to (11.157), can be

represented as
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Note, both when obtaining (11.157), and when deriving (11.169), we used the
relation∫∫∫
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Here we assume that S
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(i), α = 1,K−1. If S
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then from (11.168) we get (11.147), and from (11.169) follows (11.157).
It is easy to see that due to the arbitrariness of the variations δu
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, α = 1,K−1, from (11.169), we obtain the equilibrium equations

(11.150), constitutive relations (11.155), kinematic relations (11.153), kinematic
(11.148) and static (11.152) boundary conditions on the lateral face, kinematic and
static boundary conditions on the front surfaces (11.158) (in S
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(i), α = 1,K−1),

perfect contact conditions in the domains of ideal adhesion (11.159) and conditions
in domains of weakened adhesion
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11.9.2 Generalized Reissner-Type Variational Principle in the
Theory of Multilayer Thin Bodies in Moments if There Are
Domains of Weakened Adhesion

Having the generalized Reissner-type operator (11.168) or the generalized Reissner-
type variational principle (11.169), we can easily obtain the generalized Reissner-
type variational principle in moments with respect to systems of orthogonal poly-
nomials if there are domains of weakened adhesion. Indeed, taking into account
the relations (11.110), (11.113) and (11.116) – (11.119), recorded for the layer α
(α = 1,K), from (11.169) we obtain the generalized Reissner-type variational prin-
ciple inmoments with respect to the system of Legendre polynomials in the following
form:
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It should be noted that according to the above, for example, the following notations
were introduced
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It is easy to see that if S
α0 = ∅, α = 1,K − 1, then from (11.171) follows the

generalizedReissner-type variational principle inmomentswith respect to the system
of Legendre polynomials for the theory of multilayer thin bodies with perfect contact
of layers and under new parametrization of the body domain.

Note also that, having (11.168) and (11.171), with the help of the Legendre-
type identity (see (11.46)), it is easy to obtain from them the Reissner-type dual
operator and variational principle, respectively, as well as other variational principles
(Lagrange, Castigliano) under the conditions which characterize these principles. In
this regard, we will not dwell on the consideration of these particular cases. However,
we note that some questions concerning the variational principles considered above
are presented in Nikabadze (2014).

11.10 Conclusion

Extending the narrative style of the variational principles of classical mechanics of
solids, adopted in Pobedrya (1984, 1995), to three-dimensional micropolar mechan-



248 Nikabadze, Ulukhanyan

ics of solids of some rheologies,we formulated the variational principles of Lagrange,
Castigliano, generalized Reissner-type variational principles, the principle of virtual
work and the principle of additional virtual work in the case of potentiality as well
as nonpotentiality of stress and couple stress tensors. In particular, we have given
the definition of the generalized Legendre transform and proved the Legendre-type
identity. We have constructed Lagrangian, Castiglianian and generalized Reissner-
type operators and have proved Lagrange and Castigliano’s theorems on variational
principles. We have presented equations of the Beltrami–Michell type for the stress
and couple stress tensors with both asymmetric and symmetric differential tensor-
operators. The statements of mixed boundary value problem and initial boundary
value problem with respect to vectors of displacements and rotations and the state-
ments of themixed boundary value problem and of the new statement of the boundary
value problem with respect to stress and couple stress tensors are formulated. We
have proved theorems on the minimum of the stationary point of the Lagrangian and
the maximum of the stationary point of the Castiglianian, as well as the theorem on
the uniqueness of the generalized solution of boundary value problems.

By virtue of the constructed generalized Reissner-type operator of three-dimen-
sional micropolar mechanics of solids the generalized Reissner-type operators of
three-dimensional micropolar mechanics of solid single-layer and multilayer thin
bodies with one small size under the new parametrization of the domains of these
bodies are obtained and from them, in turn, the generalized Reissner-type variational
principles of three-dimensional micropolar mechanics of solid single-layer and mul-
tilayer thin bodies with one small size are derived. Further, using the method of
orthogonal polynomials, from the above-mentioned generalized Reissner-type vari-
ational principles, the generalized Reissner-type variational principles of micropolar
mechanics of solid single-layer and multilayer thin bodies with one small size under
the new parameterization of the domains of these bodies in moments with respect to
the system of Legendre polynomials are derived. Moreover, in the case of the theory
of multilayer thin bodies, the above-mentioned generalized Reissner-type operators
and the generalized Reissner-type variational principles are given, both in the case
of complete contact of adjacent layers of a multilayer structure, and in the pres-
ence of zones of weakened adhesion. Besides, the description of obtaining of dual
Reissner-type operators and the generalized Reissner-type variational principles, as
well as of Lagrangian and Castiglianian and variational principles of Lagrange and
Castigliano is given. In the presence of domains of weakened adhesion at interphase
boundaries in amultilayer thin body formodeling the interface (interphase boundary)
the jump-type model (description of the interface with a surface of zero thickness)
is considered in comparative detail.

In the near future, the authors propose similarly to the classical theory Pobedrya
(1984, 1995) to consider the new variational principle for three-dimensional mi-
cropolar mechanics of solids of various rheology, associated with a new formulation
of the boundary value problem for stress and couple stress tensors. Then, based on
the new variational principle and the principles set forth above, the authors assume
to formulate the corresponding variational principles of micropolar mechanics of
solid single-layer and multilayer thin bodies with one and two small sizes under
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the different parameterizations of the domain of these bodies and different contact
conditions between the layers in the case of multilayer thin bodies.

In addition, we assume to spread the Vekua method on the construction of various
versions of classical and micropolar theories of solid single-layer and multilayer thin
bodies with one small size of different rheology, using the expansion in systems
of Legendre and Chebyshev orthogonal polynomials and the Pobedria style for the
presentation of the variational principles. In particular,we suppose that thesemethods
can be extended to the second-gradient and second-gradient type theories of solids
and thin solid bodies. In this regard, it is interesting, for example, the following
works: Cosserat and Cosserat (1909); Le Roux (1911, 1913); Jaramillo (1929);
Mindlin (1964); Toupin (1964); Eringen (1999); dell’Isola et al (2009); Alibert et al
(2003); Askes and Aifantis (2011); Aifantis (2014); dell’Isola et al (2015a,b); Abali
et al (2017); Giorgio (2020); Giorgio et al (2020b); Barchiesi et al (2020); Giorgio
et al (2020a); Ciallella et al (2021); Giorgio (2021); Barchiesi et al (2021).
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Chapter 12
Asymptotic Comparison of the Strain-Gradient
and Micromorphic Models when Loading Forces
Are Widely Spread

Pierre Seppecher, Lukáš Jakabčin

Abstract In this paper we reconciliate different homogenization results which de-
scribe the effective behavior of a heterogeneous material either by a strain-gradient
model either by a micromorphic one. Indeed we prove that the solutions of both
models are asymptotically very close when considering a loading with increasing
wavelength. This result is obtained using the Fourier analysis on the tensor spaces
and applies to a large class of micromorphic models. However, we provide an exam-
ple of a micromorphic model that does not belong to this class and thus cannot be
approximated by a strain-gradient model.

Keywords: Continuum mechanics · Strain-gradient ·Micromorphic model

12.1 Introduction

The theory of elasticity is well founded since the work of Cauchy and generally
gives satisfactory descriptions of the displacement field u of a solid submitted to
an external load f . Let us recall that the deformation of the solid is, in the linear
formulation, measured by the strain tensor e(u) := (∇u+ t∇u)/2. Here∇u stands
for the jacobian matrix of u and t∇u its transpose. The behavior of the solid is
described by a stiffness tensor C. The elastic energy of the solid contained in a
domain Ω is
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Ee(u) :=

∫
Ω

1

2
e(u) : C : e(u) dx.

At equilibrium, the displacement field ue minimizes the total energy

Ee(u)−
∫
Ω

f · u dx.

The existence of a unique solution of this minimization problem is ensured if suitable
boundary conditions are imposed. Here, in order to compare our results with the
literature (see for instance Smyshlyaev and Cherednichenko (2000)), we assume that
f and u are [−L,L]3-periodic function with vanishing mean value on any period Ω
(
∫
Ω
u dx = 0). Hence ue is the unique [−L,L]3-periodic function in L2

loc(R3,R3)
with vanishing mean value and which satisfies, in the sense of distributions on R3,
the Euler–Lagrange equation

div(C : e(ue)) + f = 0. (12.1)

However Cauchy theory must sometimes be generalized. Indeed, when one fo-
cuses on small samples, scale effects are observed which cannot be explained by
this theory (cf. Lam et al (2003)). Two main generalizations have been considered
in order to encompass this difficulty.

• The first one, called “strain-gradient theory” consists in adding in the elastic
energy a quadratic term depending on the gradient ∇e(u) of the strain tensor
(see among many others: Mindlin and Tiersten, 1962; Mindlin, 1965; Germain,
2020; Casal, 1972)

Es(u) :=

∫
Ω

(
1

2
∇e(u)

... D̃
...∇e(u) +

1

2
e(u) : C : e(u)

)
dx.

This model can alternatively be called “second-gradient model” as it is well

known that any quadratic form∇e(u)
... D̃

...∇e(u) of∇e(u) is a quadratic form

∇∇u...D
...∇∇u of the second gradient of the displacement field and reciprocally.

Hence

Es(u) :=

∫
Ω

(
1

2
∇∇u ... D

...∇∇u+
1

2
e(u) : C : e(u)

)
dx.

The equilibrium us is the unique [−L,L]3-periodic function in L2
loc(R3,R3)

with zero mean value and which satisfies, in the sense of distributions on R3,
the Euler–Lagrange equation

div
(
− div(D

...∇∇us) + C : e(us)
)

+ f = 0. (12.2)

• The second generalization (see Forest and Sab, 2020; Misra et al, 2021; Forest,
1999; Cosserat and Cosserat, 1896) consists in introducing a new kinematic
descriptor φ and assuming that the elastic energy couples φ with ∇u and also
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depends on the gradient of φ, reading:

Ec(u) := inf
φ

∫
Ω

(1

2
∇φ ... G

...∇φ+
1

2
(∇u− φ) :H : (∇u− φ)

+
1

2
e(u) : C : e(u)

)
dx.

The equilibrium displacement field uc and the associated field φc are the unique
[−L,L]3-periodic functions in L2

loc(R3,R3) and L2
loc(R3,R3×3) which satisfy∫

Ω
uc dx = 0 and, in the sense of distributions on R3, div

(
H : (∇uc − φc) + C : e(uc)

)
+ f = 0,

div(G
...∇φc) +H : (∇uc − φc) = 0.

Note that the new kinematic descriptor φ is a tensor field of order two. In the
sequel, we refer to this second generalization as the “micromorphic model.” A
particular case of this energy is the “Cosserat model” in which φ is a skew-
symmetric matrix coupled to the rotational of u (cf. Cosserat and Cosserat,
1896).

These two generalizations are strongly related (see Germain, 1973): some authors
like considering Es as the limit of Ec when G = D and H becomes very large
while others consider Ec as an approximation of Es more suitable for numerical
simulations.

It is convenient to remark that all the aforementioned models are particular cases
of a more general one which mix non-local and strain-gradient terms with an elastic
energy Em(u), which is the infimum over φ:

Em(u) := inf
φ

∫
Ω

(1

2
∇∇u ... D

...∇∇u+
1

2
∇φ ... G

...∇φ

+
1

2
(∇u− φ) :H : (∇u− φ) +

1

2
e(u) : C : e(u)

)
dx. (12.4)

The corresponding equilibrium solution (um, φm) is the unique couple of [−L,L]3-
periodic functions inL2

loc(R3,R3) andL2
loc(R3,R3×3) which satisfy

∫
Ω
um dx = 0

and, in the sense of distributions on R3, div
(
− div(D

...∇∇um) +H : (∇um − φm) + C : e(um)
)

+ f = 0,

div(G
...∇φm) +H : (∇um − φm) = 0.

(12.5)
Our aim is to compare these two generalizations. In this direction, the choice we
have made of a periodic framework is specially suitable. It avoids discussing about
the effects of boundary conditions which cannot be identical for both models and
about the presence of boundary layers.
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It is important to notice that all generalized models contain intrinsic lengths.
Indeed any ratio of an entry of D or G to an entry of C is the square of such a
length. Hence, deciding whether the supplementary terms in the energy are small
perturbations of the Cauchy model is not a question about the constitutive laws of the
material only but on the scale at which the effects of such supplementary terms are
observed. At a very large scale all models must be close to the Cauchy model. “Large
scale” means here that the characteristic size of the domain and the characteristic
wavelength of the applied load are large compared to the intrinsic lengths.

On the other hand, the use of generalized models is justified in the literature
by several homogenization results. It is known that, when the tensor C oscillates
periodically, with a very short period, the solution of associated Cauchy elasticity
problems converges to the solution of a new problem in which the displacement min-
imizes the so-called “effective or homogenized energy.” The study of this asymptotic
problem is now well understood from the mathematical point of view when C os-
cillates between fixed bounds: the effective energy is still of Cauchy type and the
new tensor Chom can be computed through the solution of an auxiliary problem set
on the rescaled periodic cell (see Allaire, 1992; Bakhvalov and Panasenko, 2012;
Bensoussan et al, 1978; Sanchez-Palencia, 1980).When it oscillates between bounds
whose ratio tends to infinity while the period length tends to zero, things are less
clear. In this so-called “high-contrast” case, different results have been obtained (cf.
Camar-Eddine and Seppecher, 2003; Abdoul-Anziz and Seppecher, 2018a,b): some
still give a Cauchy model, others lead to a strain-gradient model (cf. Pideri and
Seppecher, 1997; Briane and Camar-Eddine, 2007; Alibert and Della Corte, 2015;
Turco et al, 2016; dell’Isola et al, 2016; Rahali et al, 2015; Alibert et al, 2003;
Durand et al, 2022), still others lead to non-local models like micromorphic models
(see Abdoul-Anziz and Seppecher, 2018b; Jakabčin and Seppecher, 2020). In Jak-
abčin and Seppecher (2020) a mixed model of type (12.5) has even been obtained.
Again we must emphasize that speaking of “high-contrast” is not a purely material
property: indeed the ratio between the stiffness of the stiffest part of the material to
the weakest one has to be compared to the ratio of the wavelength of these variations
to the size of the domain or to the wavelength of the applied load.

To sum up, in a periodic homogenization framework, there exist at least three
characteristic lengths. The first one is the period ε of the oscillations of the stiffness
tensor: at such a scale homogenization is irrelevant. The second one is the intrinsic
length ` of an effective energy of strain-gradient or micromorphic type: at this scale
strain-gradient or micromorphic effects are important. If such a scale is of the same
order of magnitude as ε, strain-gradient or micromorphic effects are never important.
The third one, L, is large compared to `: at this scale the material behaves essentially
like a classical Cauchy material and strain-gradient or micromorphic terms are small
corrections to the Cauchy energy.

In recent studies (Smyshlyaev and Cherednichenko, 2000; Allaire et al, 2016), it
has been proved that the first approximation of the solution of an elasticity problem,
when the tensor C oscillates periodically with a very short period, minimizes at the
leading order, the usual effective energy but that the first correction to this leading
order solution corresponds to the solution of a strain-gradient model. This result
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could appear in contradiction with the results of Jakabčin and Seppecher (2020);
Abdoul-Anziz and Seppecher (2018a,b); Abdoul-Anziz et al (2021); Camar-Eddine
and Seppecher (2003) where non-local limits are obtained. It is not, because the
assumptions made by Smyshlyaev and Cherednichenko (2000) or Allaire et al (2016)
prevent the appearance of a macroscopic intrinsic length ` in the limit energy. In
other words, all the intrinsic lengths ` contained in the models obtained in these
works are of the same order of magnitude as ε and tend to zero when ε tends to zero.

Though the results of Smyshlyaev and Cherednichenko (2000) or Allaire et al
(2016) and those of Camar-Eddine and Seppecher (2003); Abdoul-Anziz and
Seppecher (2018a) or Abdoul-Anziz et al (2021) seem to apply to different situ-
ations, a numerical study (Jakabčin and Seppecher, 2020) has suggested a strong
correlation between them. In the present paper we show that this correlation is not
fortuitous.

Our study results from the following observation: when the applied load is
widely spread, then it often becomes very difficult to distinguish strain-gradient
and Cosserat-type solutions (see Jakabčin and Seppecher, 2020). Considering a
widely spread load is equivalent to considering the material at a large scale. As
aforementioned, at such a scale, all extra energy terms become small corrections
to standard elastic energy and all solutions converge toward the Cauchy solution.
What we prove here is more surprising. We show that the corrections brought by
strain-gradient terms or by the extra kinematic descriptor can be identical, up to a
higher order correction.

The paper is organized as follows. After a short section where notation is fixed,
we set the asymptotic problem when the applied load becomes wider spread in a
large domain. A small parameter η characterizes this large wavelength. A change of
variable brings back to a fix domain and the parameter η makes the strain-gradient
andmicromorphic terms small corrections of the classical Cauchy elasticity problem.
We then write the equilibrium problem in the Fourier framework where it reduces
to the inversion of a tensor which linearly relates the Fourier components of the
applied force to the Fourier components of the solution. Our result comes from
careful estimations of this inverse tensor.

These estimations need a fundamental assumption. Roughly speaking, if the
micromorphic energy couples only a part of the extra kinematic variable with the
gradient of the displacement field and if it also couples the gradient of this part with
the gradient of the remaining part, then themicromorphicmodel is not asymptotically
close to any strain gradient model. In Section 12.6 we provide an explicit example
of this rather rare situation.

12.2 Notation

The different elastic energy densities that we have introduced contain quadratic
forms. These forms are represented by tensors. We use the standard notation ⊗ for
the tensor product. We simply shorten some notation by writing T⊗2 for T ⊗ T .
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Different conventions may be adopted for defining contraction products of tensors.
Here we adopt the following ones: whenQ is a fourth-order tensor andM andN are
matrices,Q :M andN :Q :M stand for the matrix and the real defined respectively
by

(Q :M)ij =
∑
k,l

QijklMkl and N :Q :M =
∑
i,j,k,l

NijQijklMkl.

Similarly whenQ is a sixth-order tensor andM andN are third-order tensors,Q
...M

and N
... Q

... M stand for the third-order tensor and the real defined by

(Q
... M)ijk =

∑
l,m,n

QijklmnMlmn, N
... Q

... M =
∑

i,j,k,l,m,n

NijkQijklmnMlmn.

Let ξ ∈ R3. To any quadratic form Q over matrices, we can associate the sym-
metric matrix ξ :Q : ξ defined1 by setting, for any u ∈ R3,

u · (ξ ·Q · ξ) · u = (u⊗ ξ) :Q : (u⊗ ξ).

Similarly, to any quadratic form Q over third-order tensors, we can associate the
quadratic form over matrices ξ · Q · ξ and, if N is a given matrix, the symmetric
matrix N ·Q ·N defined2 by setting, for any matrixM or any u ∈ R3,

M :(ξ ·Q·ξ):M = (M⊗ξ):Q:(M⊗ξ), u·(N :Q:N)·u = (u⊗N)
...Q
...(u⊗N).

The tensors which represent quadratic forms are naturally symmetric: in (12.5)
C andH are fourth order tensors andD andG are sixth order tensors satisfying, for
any i, j, k, l,m, n in {1, 2, 3},

Cijkl = Cklij , Hijkl = Hklij , Dijklmn = Dlmnijk, Gijklmn = Glmnijk.

Moreover, due to the symmetric nature of the tensor e(u) on which C operates
and to the natural right-symmetry of ∇∇u (defined by (∇∇u)ijk = ∂j∂kui), the
tensors C and D which appear in (12.5) are assumed, without loss of generality, to
satisfy the symmetries

Cijkl = Cijlk = Cjikl, Dijklmn = Dijklnm = Dikjlmn.

1 In terms of indices (ξ ·Q · ξ)ij =
∑
k,lQikjlξkξl.

2 In terms of indices (ξ · Q · ξ)ijkl =
∑
m,nQijmklnξmξn and

(
N : Q : N

)
ij

=∑
k,l,m,nQikljmnNklNmn.
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In the sequel we will have to compare several quadratic forms. If Q and Q̃ are
quadratic forms over the same space, writingQ ≤ Q̃will simply mean that Q̃−Q is
a non-negative quadratic formor equivalently3 that, for anyM ,M :Q:M ≤M :Q̃:M .

Any fourth-order tensorQ can also be considered as a linear operator on the space
of matrices. Composition of Q and Q̃ corresponds to the product Q : Q̃ defined by

(Q : Q̃)ijkl =
∑

QijmnQ̃mnkl.

It is also in that sense that we will use its image or kernel Im(Q), Ker(Q), its
pseudo-inverse (Moore–Penrose inverse) Q+ and, when invertible, its inverse Q−1.

The different minimization problems that we have introduced are all well-posed
because we assume that C is a positive definite quadratic form over the spaceMsym

of symmetric matrices and that D, G, H are non-negative forms. Specifically, we
assume that there exists 0 < α < β such that, for any M in Msym, any matrix N
and any third-order tensor T ,

α‖M‖2 ≤M : C :M ≤ β‖M‖2, (12.6)

0 ≤ T ... D
... T ≤ β‖T‖2, 0 ≤ T ... G

... T ≤ β‖T‖2, (12.7)
0 ≤ N :H :N ≤ β‖N‖2, N :H+ :N ≤ β‖N‖2. (12.8)

Note that, applying assumption (12.6) to matricesM = (u⊗ ξ + ξ ⊗ u), gives

u · (ξ · C · ξ) · u =
1

4
M : C :M ≥ α

4
‖M‖2 ≥ α

2
‖ξ‖2‖u‖2. (12.9)

Thus, for any ξ 6= 0, the matrix ξ · C · ξ is definite positive.
Note that these assumptions ensure that the equilibrium problem (12.5) is

well-posed. Indeed, any minimizing sequence (un) of [−L,L]3-periodic functions
with zero mean value has bounded energy Em(u) ≤ γ and thus is bounded in
H1([−L,L]3,R3). As the energy functional is lower semi-continuous, the sequence
converges, up to a sub-sequence, to a solution of (12.5).

12.3 Spread Loads

We consider equilibrium problems in a domainwhose size is large comparedwith the
lengths which are intrinsic to the micromorphic or second-gradient models. We also
consider force fields whose characteristic wave lengths are comparable to the size
of the domain. To make these assumptions precise we introduce a small parameter
η > 0 and we consider the domain Yη := 1

ηY where Y := [−π, π]3. Let f be a Y -
periodic vector-valued function with zero mean value. We assume that the material
is submitted to the Yη-periodic load fη(x) := f(ηx).

3 The product used in this formula must be adapted to the space on which Q and Q̃ apply.
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We assume that the material is homogeneous: its elastic energy Em is given by
(12.4) where the tensorsC,D,G,H are constant. We look for a Yη-periodic solution
(uη, φη) with

∫
Yη
uη dx = 0 of div

(
− div(D

...∇∇uη) +H : (∇uη − φη) + C : e(uη)
)

+ fη = 0,

div(G
...∇φη) +H : (∇uη − φη) = 0.

(12.10a)

(12.10b)

We will now study the asymptotic behavior of uη when η tends to zero. Indeed,
letting η tend to zero is considering an increasingly spread out load. To that aim we
make the change of variables vη(y) = η2uη( yη ), ψη(y) = ηφη( yη ). Introducing this
change of variables in the previous system of equations is straightforward. We are
reduced to the search of the Y -periodic solution (vη, ψη) with

∫
Y
vη dx = 0 of the

following system:η
2 div

(
−div(D

...∇∇vη)+H : (∇vη − ψη))+C : e(vη)
)
+f =0,

η2 div(G
...∇ψη) +H : (∇vη − ψη) = 0.

(12.11a)

(12.11b)

12.4 Fourier Expansion

Owing to the periodicity framework, it is convenient to rewrite the system using
periodic expansions of vη and ψη . We set

f(x) = <

∑
ξ∈Z3

fξei ξ·x

 and

vη(x) = <

∑
ξ∈Z3

vξηe
i ξ·x

 , ψη(x) = <

∑
ξ∈Z3

(−i)ψξηei ξ·x
 .

From
∫
Y
f(x) dx = 0 we deduce f0 = 0 and, similarly, condition

∫
Y
vη dx = 0

now reads v0
η = 0. Using the symmetry properties ofC, system (12.11) is equivalent

to the fact that, for any ξ ∈ Z3,
η2(D

... (v
ξ
η ⊗ ξ ⊗ ξ)) · ξ · ξ + (H : (vξη ⊗ ξ − ψξη)) · ξ

+ (C : (vξη ⊗ ξ)) · ξ − fξ = 0,

η2(G
... ψ

ξ
η ⊗ ξ) · ξ −H : (vξη ⊗ ξ − ψξη) = 0.

(12.12a)

(12.12b)
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Equation (12.12b) can be written

Jξη : ψξη = H : (vξη ⊗ ξ) with Jξη = H + η2 ξ ·G · ξ. (12.13)

As Jξη ≥ H , the kernels ofH and Jξη satisfyKer(Jξη ) ⊂ Ker(H) and their images
satisfy Im(H) = Ker(H)⊥ ⊂ Ker(Jξη )⊥ = Im(Jξη ). Introducing the pseudo-
inverse (Jξη )+ of Jξη , the solutions of (12.13) read

ψξη = (Jξη )+ : (H : (vξη ⊗ ξ)) +∆

where∆ is any element inKer(Jξη ). We haveH :ψξη = H : (Jξη )+ : (H : (vξη ⊗ ξ)))
and we can eliminate ψξη from Equation (12.12a). We get

Kξ
η · vξη = fξ (12.14)

with

Kξ
η = ξ ·

(
C +H −H : (Jξη )+ :H

)
· ξ + η2 (ξ ⊗ ξ) :D : (ξ ⊗ ξ). (12.15)

The product Jξη
+

: Jξη is the orthogonal projection onto the image Im(Jξη ). We
have (Jξη )+ : Jξη : (Jξη )+ = (Jξη )+ and the fact that Im(H) ⊂ Im(Jξη ) implies
H : Jξη

+
: Jξη = H . Using these remarks, one can check that H −H : (Jξη )+ :H is

identical to

H · (Jξη )+ : (Jξη −H) : (Jξη )+ :H + (Jξη −H) : (Jξη )+ :H : (Jξη )+ : (Jξη −H).

Since Jξη −H = η2ξ ·G · ξ is non-negative, we deduce that H −H : (Jξη )+ :H is
non-negative and thatKξ

η ≥ α‖ξ‖2Id is definite positive. The solution of (12.14) is
thus given by

vξη = (Kξ
η)−1 · fξ. (12.16)

12.5 Comparison of Different Models at Large Scale

Our goal is to compare the solutions of problem (12.11) for different values of the
material parameters C,D,G,H when η is small. In the Fourier setting, this will be
obtained by estimating the tensor (Kξ

η)−1. To that aim we first focus on the term
H : (Jξη )+ :H .

Lemma 12.1. Let P = H+ :H and Q = Id4 − P be the projectors onto the image
and the kernel ofH . For any ξ ∈ R3, let us consider the following generalized Schur
complement:

Gξ// := P : (ξ ·G ·ξ) :P − (P : (ξ ·G ·ξ) :Q) : (Q : (ξ ·G ·ξ) :Q)+ : (Q : (ξ ·G ·ξ) :P ).
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We have
H : (Jξη )+ :H = (H+ + η2H+ :Gξ// :H+)+.

Proof. Let M be any matrix in Im(H) and set N := (Jξη )+ : H : M . We have
H : M = Jξη : N that is H : M = (H + η2ξ · G · ξ) : N . Once projected onto the
image and the kernel of H this equation reads

H :M = (H + η2P : (ξ ·G · ξ)) :N and 0 = η2Q : (ξ ·G · ξ) :N.

Decomposing also N = P :N +Q :N , we get
H :M = (H + η2P : (ξ ·G · ξ) : P ) : (P :N)

+ η2P : (ξ ·G · ξ) :Q : (Q :N),

0 = η2Q : (ξ ·G · ξ) : P : (P :N) + η2Q : (ξ ·G · ξ) :Q : (Q :N).

(12.17a)
(12.17b)

Equation (12.17b) implies

Q :N = −(Q : (ξ ·G · ξ) :Q)+ :Q : (ξ ·G · ξ) : P : (P :N) + E

where E is any element ofKer(Q : (ξ ·G · ξ) :Q). We now remark that

(Q : (ξ ·G · ξ) :Q) : E = 0 =⇒ (P : (ξ ·G · ξ) :Q) : E = 0.

Indeed, for any matrix Z, the affine function of the real λ

Z : P : (ξ ·G : ξ) : P : Z + 2λZ : P : (ξ ·G · ξ) :Q : E

= (P : Z + λQ : E) : (ξ ·G · ξ) : (P : Z + λQ : E)

is non negative and this implies that Z : P : (ξ ·G · ξ) :Q :E = 0 for any matrix Z.
In consequence

P :(ξ ·G·ξ):Q:(Q:N) = −P :(ξ ·G·ξ):Q:(Q:(ξ ·G·ξ):Q)+ :Q:(ξ ·G·ξ):P :(P :N)

and Equation (12.17a) becomes H : M = (H + η2Gξ//) : P : N. Recalling that
P = H+ :H and N = (Jξη )+ :H :M , we obtain

H :M = (H + η2Gξ//) :H+ :H : (Jξη )+ :H :M

and finally

M = H+ :H :M =
(
H+ : (H + η2Gξ//) :H+

)
:
(
H : (Jξη )+ :H

)
:M.

As this is true for anyM in the image ofH and thus in the image ofH : (Jξη )+ :H ,
we get the desired result. ut
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Remark 12.1. The Schur complement corresponds to a minimization problem: for
any matrixM , we have

inf
N∈Ker(H)

{(
(P :M +N)⊗ ξ

)...G...((P :M +N)⊗ ξ
)}

= inf
N∈Ker(H)

{
(P :M +N) : (ξ ·G · ξ) : (P :M +N)

}
= inf
N∈Ker(H)

{
M :

(
P : (ξ ·G · ξ) : P

)
:M + 2N :

(
Q : (ξ ·G · ξ) : P

)
:M

+N :
(
Q : (ξ ·G · ξ) :Q

)
:N
}
.

The infimum is reached when
(
Q : (ξ ·G · ξ) :P

)
:M +

(
Q : (ξ ·G · ξ) :Q

)
:N = 0

that is whenN = −
(
Q : (ξ ·G · ξ) :Q

)+
:
(
Q : (ξ ·G · ξ) :P

)
:M. At this minimum

we have

N :
(
Q : (ξ ·G · ξ) :Q

)
:N = −N :

(
Q : (ξ ·G · ξ) : P

)
:M

= M :
(
P : (ξ ·G · ξ) :Q

)
:
(
Q : (ξ ·G · ξ) :Q

)+
:
(
Q : (ξ ·G · ξ) : P

)
:M

and we finally get

inf
N∈Ker(H)

{(
(P :M +N)⊗ ξ

) ...G... ((P :M +N)⊗ ξ
)}

= M :Gξ// :M.

A straightforward consequence of this minimization formulation is that, for any
matrixM ,

0 ≤M :Gξ// :M ≤ β‖ξ‖2‖M‖2. (12.18)

Lemma 12.2. We have the following estimations forKξ
η:

Kξ
η ≥ ξ · C · ξ, (12.19)

Kξ
η ≥ ξ · C · ξ + η2

(
ξ ·Gξ// · ξ + (ξ ⊗ ξ) :D : (ξ ⊗ ξ)

)
− η4ξ · (Gξ// :H+ :Gξ//) · ξ, (12.20)

Kξ
η ≤ ξ · C · ξ + η2

(
ξ ·Gξ// · ξ + (ξ ⊗ ξ) :D : (ξ ⊗ ξ)

)
. (12.21)

Proof. First estimation will be a consequence of

H : (Jξη )+ :H ≤ H (12.22)

while the two last ones are respectively equivalent to

H : (Jξη )+ :H ≤ H − η2Gξ// + η4Gξ// :H+ :Gξ//, (12.23)

H : (Jξη )+ :H ≥ H − η2Gξ//. (12.24)
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As all these quadratic forms vanish outside of Im(H), it is enough to check the
inequalities on this space.As, on this space, (H :(Jξη )+:H)+ = H++η2H+:Gξ//:H

+

is invertible, we can multiply previous inequalities by this tensor on the left and on
the right. In order to shorten notation, let us temporarily introduce the non-negative
tensor Xξ = H+ :Gξ// :H+. We are reduced to proving

H++ η2Xξ ≤ (H++ η2Xξ) :H : (H++ η2Xξ),

H++ η2Xξ ≤ (H++ η2Xξ) : (H − η2Gξ// + η4Gξ// :H+ :Gξ//) : (H++ η2Xξ),

H++ η2Xξ ≥ (H++ η2Xξ) : (H − η2Gξ//) : (H++ η2Xξ).

This is obvious when developing the right-hand side of these three inequalities as
they become respectively

0 ≤ Xξ + η2Xξ :H :Xξ,

0 ≤ Xξ :H :Xξ :H :Xξ + η2Xξ :H :Xξ :H :Xξ :H :Xξ,

0 ≥ −Xξ :H :Xξ − η2Xξ :H :Xξ :H :Xξ.

ut

Remark 12.2. From estimation (12.19), we deduce

‖fξ‖ = ‖Kξ
η · vξη‖ ≥ α‖ξ‖2‖vξη‖. (12.25)

We recover the fact that, when f belongs toL2
loc, the equilibrium solution vη belongs

to H2
loc:∫

Ω

‖∇∇vη‖2 dx = π
∑
ξ∈Z3

‖vξη ⊗ ξ ⊗ ξ‖2 ≤ π
∑
ξ∈Z3

‖vξη‖2‖ξ‖4

≤ πα−2
∑
ξ∈Z3

‖fξ‖2 = α−2

∫
Ω

‖f‖2 dx.

Theorem 12.1. When η goes to zero, all solutions vη converge to the solution v0

of the classical elasticity problem. More precisely, for any ξ ∈ Z3, we have the
following estimation

‖vξ0 − vξη‖ ≤ 2η2 β

α2
‖fξ‖

which directly implies ‖vη − v0‖L2 ≤ 2η2 β
α2 ‖f‖L2 .

Proof. When η = 0 (which is equivalent to assuming thatD = G = 0 andH = 0),
we have Kξ

0 = ξ · C · ξ and equation (12.14) reduces to (ξ · C · ξ) · vξ0 = fξ. From
Kξ
η · vξη = fξ = (ξ · C · ξ) · vξ0 , we deduce

Kξ
η · (vξ0 − vξη) = (Kξ

η − ξ · C · ξ) · vξ0.
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Using Lemma 12.2, we get

α‖ξ‖2‖vξ0 − vξη‖ ≤ η2‖(ξ ·Gξ// · ξ + (ξ ⊗ ξ) :D : (ξ ⊗ ξ)) · vξ0‖.

Definition ofGξ// clearly shows thatG
ξ
// ≤ P : (ξ ·G · ξ) :P and thus that ‖(ξ ·Gξ// ·

ξ) · vξ0‖ ≤ β‖ξ‖4‖vξ0‖. As we have the same estimation for the term ‖(ξ ⊗ ξ) : D :

(ξ ⊗ ξ)) · vξ0‖, we get

‖vξ0 − vξη‖ ≤ 2η2 β

α
‖ξ‖2‖vξ0‖ ≤ 2η2 β

α2
‖fξ‖.

Therefore
‖vη − v0‖2L2 = π

∑
ξ∈Z3

‖vξ0 − vξη‖2 ≤ 4η4 β
2

α4
‖f‖2L2 .

ut
Previous theorem states that, in any case, the minimizer of a strain-gradient or

a generalized continuum energy behaves, at the main order with respect to the
characteristic length of the applied force, like a classical elastic model. Clearly
different models sharing the same elasticity tensor C cannot be differentiated at this
order.

Let us now compare more precisely the solutions vη and ṽη of (12.11) associated
respectively the sets of material tensors (C,D,H,G) and (C,D+L, 0, 0). In Fourier
setting, these equations readKξ

η · vξη = fξ and K̃ξ
η · ṽξη = fξ with

Kξ
η = ξ ·

(
C +H − (H+ + η2H+ :Gξ// :H+)+

)
· ξ + η2 (ξ ⊗ ξ) :D : (ξ ⊗ ξ),

K̃ξ
η = ξ · C · ξ + η2(ξ ⊗ ξ) : (D + L) : (ξ ⊗ ξ).

We have
K̃ξ
η · (vξη − ṽξη) = (K̃ξ

η −Kξ
η) · vξη. (12.26)

From Lemma 12.2 we deduce{
K̃ξ
η −Kξ

η ≥ η2ξ · (ξ · L · ξ −Gξ//) · ξ,
K̃ξ
η −Kξ

η ≤ η2ξ · (ξ · L · ξ −Gξ//) · ξ + η4ξ · (Gξ// :H+ :Gξ//) · ξ.
(12.27)

In order to proceed further, we need an important assumption over the tensor Gξ//
defined in Lemma 12.1 in terms of G, P and Q, that is in terms of H and G.

Assumption 1 The tensors H and G are such that there exists a six-order tensor
G// satisfying, for any vector ξ ∈ Z3,

ξ ·Gξ// · ξ = (ξ ⊗ ξ) :G// : (ξ ⊗ ξ). (12.28)

We still call β a constant which, in addition to (12.6)-(12.7) satisfies, for any third-
order tensor T ,
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T
... G//

... T ≤ β‖T‖2.
In many cases Assumption 1 is obtained as the consequence of stronger assump-

tions. Let us denote P :G :Q the sixth order tensor defined by (P :G :Q)ijklmn :=∑
p,q,u,v PijpqGpqkuvnQuvlm. The tensor P :G : P is defined in a similar way.

Assumption 2 P :G :Q = 0.

Indeed, in that case, Assumption 1 is satisfied with G// = P :G : P .

Assumption 3 H is non degenerate.

Indeed, in that last case, P = Id4 and Q = 0, Assumption 2 is obviously satisfied
and we have G// = G.

Theorem 12.2. Assume that f is smooth and that G and H satisfy Assumption
1. Then the solution vη of (12.11) associated with the set of material tensors
(C,D,H,G) shares the same asymptotic behavior at order η2 as the solution ṽη of
(12.11) associated with the set of material tensors (C,D+G//, 0, 0). More precisely,
we have

‖ṽξη − vξη‖ ≤ η4 β
3

α2
‖ξ‖2‖fξ‖

which directly implies ‖vη − ṽη‖L2(Ω) ≤ η4 β
3

α2 ‖f‖H2(Ω).
Reciprocally if, for any smooth force field f , vη shares the same asymptotic

behavior at order η2 as the solution ṽη of (12.11) associated with the set of material
tensors (C,D + L, 0, 0), then Assumption 1 is satisfied with G// = L.

Proof. Indeed, replacing L by G// and ξ · Gξ// · ξ by ξ · (ξ · G// · ξ) · ξ in (12.27),
we get

0 ≤ K̃ξ
η −Kξ

η ≤ η4ξ · (Gξ// :H+ :Gξ//) · ξ.

From (12.26) we get the estimation

α‖ξ‖2‖ṽξη − vξη‖ ≤ η4‖(ξ · (Gξ// :H+ :Gξ//) · ξ) · vξη‖.

Using (12.25) (12.18), we obtain the desired result

‖ṽξη − vξη‖ ≤ η4 β
3

α2
‖ξ‖2‖fξ‖.

To prove the converse, let us assume that, for any smooth force field f ,

1

η2
‖vη − ṽη‖L2(Ω) → 0.

Dividing equation (12.26) by η2, using (12.27) and passing to the limit η → 0, we
get

0 = (ξ · (ξ · L · ξ −Gξ//) · ξ) · v
ξ
0.
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Let w be a C∞ Y -periodic function satisfying w0 = 0 and, for any ξ 6= 0, wξ 6= 0.
Let k ∈ {1, 2, 3}. Consider the load f := − div(C : e(wek)). Clearly, the solution
v0 of the classical elasticity problem when this load is applied coincides with wek.
For this load, previous equality reads

wξ
(
(ξ ⊗ ξ) : L : (ξ ⊗ ξ)− ξ ·Gξ// · ξ

)
· ek = 0.

As, for ξ 6= 0, wξ 6= 0, we have
(
(ξ ⊗ ξ) : L : (ξ ⊗ ξ)− ξ ·Gξ// · ξ

)
· ek = 0 which

remains true for ξ = 0. This being true for any k ∈ {1, 2, 3}, we get for any ξ ∈ Z3,

(ξ ⊗ ξ) : L : (ξ ⊗ ξ)− ξ ·Gξ// · ξ = 0. (12.29)

ut

12.6 Examples

We study in this section different energies which enter the general model introduced
in (12.4): they correspond to the choiceD = 0 and to different choices of the tensors
H and G. Let us first provide examples for which Theorem 12.2 applies and thus
which can be approximated, up to order η4 by a strain-gradient model.

i) Micromorphic models of the type

E(u) := inf
φ

∫
Ω

(1

2
∇φ ... G

...∇φ+
1

2
‖∇u− φ‖2 +

1

2
e(u) : C : e(u)

)
dx

correspond to the choice H = Id4. They satisfy Assumption 3 and thus can be
approximated, up to order η4 by strain-gradient models with energy

E(u) := inf
φ

∫
Ω

(1

2
∇∇u ... G

...∇∇u+
1

2
e(u) : C : e(u)

)
dx.

ii) Cosserat models of the type

E(u) := inf
w

∫
Ω

(1

2
∇w :B :∇w +

1

2
‖∇ × u− w‖2 +

1

2
e(u) : C : e(u)

)
dx

correspond to the choice Hijkl =
∑
p εijpεklp and Gijklmn =

∑
p,q εijpBpkqnεlmq

where εijm stands for the usual Levi-Civita symbol. The expression in terms of
w instead of φ is simply obtained by substituting wi = εikjφjk in the original
expression. We have P = 1

2H , G : P = G and thus G : Q = 0. Assumption 2 is
satisfied: Cosserat models can be approximated, up to order η4 by strain-gradient
models (actually couple-stress models) with energy
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E(u) := inf
w

∫
Ω

(1

2
∇(∇× u) :B :∇(∇× u) +

1

2
e(u) : C : e(u)

)
dx.

iii) Consider now the following energy:∫
Ω

(
1

2

((
∂φ11

∂x2
+
∂φ22

∂x2

)2

+

(
∂φ22

∂x2

)2
)

+
1

2

(
∂u1

∂x1
− φ11

)2

+
1

2
e(u) : C : e(u)

)
dx.

This energy corresponds to the choice{
D = 0, H = (e1 ⊗ e1)⊗2,

G = (e2 ⊗ e2 ⊗ e2)⊗2 + (e1 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e2)⊗2.

(12.30a)
(12.30b)

Neither assumption 3 nor Assumption 2 are satisfied. Computation of Gξ// needs
some work. We check successively that P = H+ = H and

ξ ·G · ξ = ξ2
2

(
(e2 ⊗ e2)⊗2 + (e1 ⊗ e1 + e2 ⊗ e2)⊗2

)
,

P : (ξ ·G · ξ) : P = ξ2
2 (e1 ⊗ e1)⊗2,

Q : (ξ ·G · ξ) : P = ξ2
2 e

2 ⊗ e2 ⊗ e1 ⊗ e1,

P : (ξ ·G · ξ) :Q = ξ2
2 e

1 ⊗ e1 ⊗ e2 ⊗ e2,

Q : (ξ ·G · ξ) :Q = 2ξ2
2 (e2 ⊗ e2)⊗2,

(Q : (ξ ·G · ξ) :Q)+ = (2ξ2
2)−1 (e2 ⊗ e2)⊗2.

We finally obtain

Gξ// =
ξ2
2

2
(e1 ⊗ e1)⊗2 = ξ ·

(1

2
(e1 ⊗ e1 ⊗ e2)⊗2

)
· ξ.

Note that this computation is valid only when ξ2 6= 0 but one can easily check that
the result remains true when ξ2 = 0. This micromorphic model satisfies Assumption
1 with G// = 1

2 (e1 ⊗ e1 ⊗ e2)⊗2 and Theorem 12.2 again applies. The model can
be approximated, up to order η4 by the strain-gradient model with energy∫

Ω

(
1

4

(
∂2u1

∂x1∂x2

)2

+
1

2
e(u) : C : e(u)

)
dx.

iv) Let us now show that there exist energies for which the conclusion of Theorem
12.2 does not apply. We modify a little bit the previous example by considering the
following energy:
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inf
φ

∫
Ω

(
1

2

((
∂φ11

∂x2
+
∂φ22

∂x1

)2

+

(
∂φ22

∂x2

)2
)

+
1

2

(
∂u1

∂x1
− φ11

)2

+
1

2
e(u) : C : e(u)

)
dx,

which corresponds to the choice{
D = 0, H = (e1 ⊗ e1)⊗2,

G = (e2 ⊗ e2 ⊗ e2)⊗2 + (e1 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1)⊗2.

(12.31a)
(12.31b)

Again we have P = H+ = H . Computation of Gξ// is straightforward: for any
ξ 6= 0, we have

ξ ·G · ξ = ξ2
2 (e2 ⊗ e2)⊗2 + (ξ2 e

1 ⊗ e1 + ξ1 e
2 ⊗ e2)⊗2,

P : (ξ ·G · ξ) : P = ξ2
2 (e1 ⊗ e1)⊗2,

Q : (ξ ·G · ξ) : P = ξ1 ξ2 e
2 ⊗ e2 ⊗ e1 ⊗ e1,

P : (ξ ·G · ξ) :Q = ξ1 ξ2 e
1 ⊗ e1 ⊗ e2 ⊗ e2,

Q : (ξ ·G · ξ) :Q = (ξ2
1 + ξ2

2) (e2 ⊗ e2)⊗2,

(Q : (ξ ·G · ξ) :Q)+ = (ξ2
1 + ξ2

2)−1 (e2 ⊗ e2)⊗2.

(P : (ξ ·G · ξ) :Q) : (Q : (ξ ·G · ξ) :Q)+ : (Q : (ξ ·G · ξ) : P )

=
ξ2
1 ξ

2
2

ξ2
1 + ξ2

2

(e1 ⊗ e1)⊗2

and finally

Gξ// =
ξ4
2

ξ2
1 + ξ2

2

(e1 ⊗ e1)⊗2 and ξ ·Gξ// · ξ =
ξ4
2ξ

2
1

ξ2
1 + ξ2

2

e1 ⊗ e1.

Assume, by contradiction that Assumption 1 is satisfied: for any ξ 6= 0 in Z3 we
would have

ξ · (ξ ·G// · ξ) · ξ −
ξ4
2ξ

2
1

ξ2
1 + ξ2

2

e1 ⊗ e1 = 0

that is, for any ξ in Z3,

(ξ2
1 + ξ2

2) ξ · (ξ ·G// · ξ) · ξ − ξ4
2ξ

2
1 e

1 ⊗ e1 = 0.

This polynomial identity extends to wholeC3. We get a contradiction by considering
for instance ξ = (1, i, 0). By converse statement of Theorem 12.2 we know that
there is no strain-gradient model which can approximate the considered model more
accurately than what is done at order η2 by the standard model
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Ω

1

2
e(u) : C : e(u) dx.

12.7 Conclusion

Our study has practical implications. Assume that you are analyzing the results of
an experimental campaign, that is the equilibrium displacement fields of samples
submitted to different force fields. Assume moreover that you have noticed scale
effects and thus that you are suspecting your material to behave either like a strain-
gradient one or a micromorphic one. Our study shows that it is rather difficult to
differentiate these two possibilities. Indeed, in general, the characteristic wavelengths
of the applied force fields are much larger than the intrinsic lengths of the suspected
models. Let η � 1 be their ratio. Then both strain-gradient and micromorphic
models provide a correction to the Cauchy model of order η2 but, for well tuned
material parameters, the difference between the two corrections is extremely small: of
order η4. In other words, in order to decide whether your material is better described
by a micromorphic model or by a strain-gradient one, you must be extremely precise
or use force fields which vary extremely rapidly in space.

Our study gives also a new insight on recent results about periodic homoge-
nization of elastic materials: results of Smyshlyaev and Cherednichenko (2000);
Allaire et al (2016) state that the first correction which must be applied to the
classical homogenized strain model is always obtained by adding in the energy
a small strain-gradient term. On the other hand, results from Abdoul-Anziz and
Seppecher (2018a,b); Jakabčin and Seppecher (2020) provide micromorphic effec-
tive behaviors. These seemingly contradictory results may become coherent when
spread enough forces are considered.

We must emphasize that our results apply only for micromorphic models which
satisfy Assumption 1. The question of the status of models which do not satisfy
this assumption remains open: previous conclusion does not apply. We suspect that
such models cannot be obtained through periodic homogenization. We recall that
the example that we provide in Section 12.6 corresponds to a quadratic, objective
and lower-semi-continuous functional and thus, as proved in Camar-Eddine and
Seppecher (2003), that it can be obtained as the limit of heterogeneous classical
elastic continua. However the results of Camar-Eddine and Seppecher (2003) are
obtained using non-periodic heterogeneities. This leads to a new general question:
what is the subclass of all functionals which can be obtained as the limit of periodi-
cally heterogeneous classical elastic continua? And, in particular, is it equivalent, for
a functional Em defined by (12.4), to belong to this class and to satisfy Assumption
1?
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Chapter 13
Quasiconvexity and Rank-One Convexity in
Cosserat Elasticity Theory

Milad Shirani, David J. Steigmann

Abstract The quasiconvexity and rank-one convexity conditions of conventional
nonlinear elasticity theory are extended to nonlinear Cosserat elasticity. These fur-
nish necessary conditions for energy minimizers in conservative boundary-value
problems.

Keywords: Cosserat elasticity · Quasiconvexity · Rank-one convexity

13.1 Introduction

In this work we present derivations of the quasiconvexity and rank-one convexity
conditions in the framework of Cosserat elasticity theory. These are necessary condi-
tions for strong relative minimizers of the potential energy in conservative problems,
and generalize the Legendre-Hadamard necessary conditions for weak relative min-
imizers recently obtained in Shirani et al (2020). Background material on Cosserat
elasticity may be found in Cosserat and Cosserat (1909); Truesdell and Noll (2004);
Reissner (1975, 1987); Pietraszkiewicz and Eremeyev (2009); Neff (2006).

For the sake of completeness we present a brief resumé of equilibrium Cosserat
elasticity theory in Section 13.2. Conservative problems are discussed in Section
13.3, and the quasiconvexity condition for energy minimizers is derived in Section
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13.4. This is used, in Section 13.5, as the basis of the derivation of the relevant
rank-one convexity condition.

Concerning notation, bold face is used for vectors and tensors and a dot interposed
between bold symbols is used to denote the standard Euclidean inner product. For
example, ifA andB are second-order tensors, then their inner product isA · B =
tr(ABt),where tr(·) is the trace and the superscript t is used to denote the transpose.
The symbol ⊗ identifies the standard tensor product of vectors. We use skwA to
denote the skew part of A. The axial vector of a skew tensor W is denoted by
axW and defined by axW × v = Wv for any vector v. The symbols ∇ and
Div respectively stand for the three-dimensional referential gradient and divergence
operators. For a fourth-order tensor A, the notation A[B] stands for the second-
order tensor resulting from the linear action ofA onB (Truesdell and Noll, 1965; eq.
(7.10)). Its transposeAt is defined byB ·At[A] = A·A[B], andA is said to possess
major symmetry if At = A. The notation GS stands for the second-order-tensor-
valued derivative of the scalar-valued function G(S) with respect to the second-
order tensor variable S. The second derivative is the fourth-order tensor GSS ;
this possesses major symmetry if G is twice differentiable. The second derivatives
GST and GTS of a twice differentiable scalar-valued function G(S,T ) satisfy
A · GST [B] = B · GTS [A]; accordingly, GTS = (GST )t. Finally, the Landau
symbol o(ε) is used to identify a quantity which is such that ε−1o(ε)→ 0 as ε→ 0.

13.2 Cosserat Elasticity,

We present a brief outline of the equilibrium theory for the sake of completeness.

13.2.1 Kinematical and Constitutive Framework

The relevant kinematical variables of a Cosserat continuum are a deformation field
χ(x) and a rotation field R(x), where x is the position of a material point in a
fixed reference configuration κ. Naturally these may depend on time, but this is
not important for our purposes and is thus not made explicit. The deformation and
rotation fields are regarded as being independent in the spirit of the conventional
Cosserat theory (see § 98 Truesdell and Noll, 2004).

To model elasticity, we introduce an energy density U(F ,R,∇R;x), per unit
volume of κ, where F = ∇χ is the deformation gradient and ∇R is the rotation
gradient. In Cartesian index notation, these are

F = FiAei ⊗EA, R = RiAei ⊗EA and ∇R = RiA,Bei ⊗EA ⊗EB

(13.1)
with

FiA = χi,A, (13.2)



13 Quasiconvexity and Rank-One Convexity in Cosserat Elasticity Theory 275

where (·),A = ∂(·)/∂xA. Here {ei} and {EA} are fixed orthonormal bases associ-
ated with Cartesian coordinates yi and xA, where yi = χi(xA).

We assume the strain energy to be Galilean-invariant and thus impose

U(F ,R,∇R;x) = U(QF,QR,Q∇R;x), (13.3)

whereQ is an arbitrary spatially uniform rotation and (Q∇R)iAB = (QijRjA),B =
QijRjA,B . The restriction

U(F ,R,∇R;x) = W (E,Γ ;x), (13.4)

where (Pietraszkiewicz and Eremeyev, 2009)

E = RtF = EABEA ⊗EB ; EAB = RiAFiB , (13.5)

and
Γ = ΓDCED ⊗EC ; ΓDC =

1

2
eBADRiARiB,C , (13.6)

with W the reduced energy and eABC the permutation symbol (e123 = 1, etc.), is
both necessary and sufficient for Galilean invariance. Sufficiency is obvious, whereas
necessity follows by choosing Q = Rt

|p, where p is the material point in question,
and making use of the fact that for each fixed C ∈ {1, 2, 3}, the matrix RiARiB,C
is skew in the indices A,B. This follows by differentiating RiARiB = δAB (the
Kronecker delta). The associated axial vectors γC have components

γD(C) =
1

2
eBADRiARiB,C , (13.7)

yielding (Pietraszkiewicz and Eremeyev, 2009)

Γ = γC ⊗EC , (13.8)

and thus Γ - the wryness tensor - is isomorphic to the Cosserat strain measure
Rt∇R. The strain measures E and Γ are generally non-symmetric.

Henceforth we assume W to be a continuous function of x and continuously
differentiable with respect to E and Γ .

13.2.2 Virtual Power and Equilibrium

Equilibria are defined to be states that satisfy the virtual-power statement

Ṡ = P, (13.9)

where P is the virtual power of agencies acting on the body,
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S =

∫
κ

Udv (13.10)

is the total strain energy, and superposed dots are used to denote variational deriva-
tives. Thus, by the chain rule,

U̇ = Ẇ = σ · Ė + µ · Γ̇ , (13.11)

where
σ = WE and µ = WΓ (13.12)

are evaluated at equilibrium, i.e., at states satisfying (13.9).
In (Shirani et al (2020)) it is shown that virtual powers consistent with (13.9) are

of the form

P =

∫
∂κ

(t · u+ c · ω)da+

∫
κ

(g · u+ π · ω)dv, (13.13)

where u = χ̇ is the virtual velocity and ω = ax(ṘRt) is the virtual spin; t and c
are densities of force and couple acting on ∂κ; and g and π are densities of force and
couple acting in κ. Further, in that work it is shown that if there are no kinematical
constraints; that is, if u and ω can be chosen independently and arbitrarily, then,

g = −Div(Rσ) and π = −Div(Rµ)− 2ax[Rskw(σEt)Rt] in κ,
(13.14)

whereas

t = (Rσ)ν on ∂κt and c = (Rµ)ν on ∂κc, (13.15)

where ν is the exterior unit normal to the (piecewise smooth) surface ∂κ; where ∂κt
is a part of ∂κwhere position is not assigned; and where ∂κc is a part where rotation
is not assigned. We assume position to be assigned on ∂κ\∂κt, so that u = 0 there,
and rotation to be assigned on ∂κ \ ∂κc, where ω = 0.

Equations (13.14) and (13.15) are the Euler equations for (13.9) and furnish the
equilibrium conditions for an elastic Cosserat continuum.

13.3 Conservative Problems and Potential Energy

We are concerned with conservative problems for which a potential energy is avail-
able. These are such that there exists a load potentialL, say, the variational derivative
of which is equal to the virtual power. Thus,

L̇ = P, (13.16)

and the potential energy is
E[χ,R] = S − L, (13.17)
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apart from an unimportant constant. Energy minimizers are equilibria and therefore
render the potential energy stationary, i.e.,

Ė = 0, (13.18)

for all admissibleu andω.This of course is just a restatement of (13.9). Accordingly,
energy minimizers, if sufficiently regular, necessarily satisfy (13.14) and (13.15).

13.3.1 Example: Dead-Load Problems

Among the simplest examples of conservative problems are the dead-load problems
with vanishing volumetric densities of force g and coupleπ. These are characterized
by load potentials of the form

L =

∫
∂κt

t · χda+

∫
∂κc

M ·Rda, (13.19)

modulo an unimportant constant, in which t and M respectively, with the former
assigned on ∂κt and the latter on ∂κc, are configuration-independent vector and
tensor fields. Here t is as in (13.15)1, and the couple traction in (13.15)2 is

c = 2ax[skw(MRt)]. (13.20)

Thus the couple traction is configuration dependent in the dead-load problem.
Indeed, it is well known that configuration-independent couples are associated with
non-conservative problems (Ziegler, 1977) for which no potential energy exists.

We seek further necessary conditions for energy minimizers. That is, we seek
inequalities satisfied by those χ(x) andR(x) which are such that

E[χ,R] ≤ E[χ̃, R̃] (13.21)

for all deformations χ̃ such that χ̃ = χ on ∂κ \ ∂κt, and all rotations R̃ such that
R̃ = R on ∂κ \ ∂κc.

13.4 The Quasiconvexity Condition

Written out explicitly for the dead-load problem, (13.21) is
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κ

[U(F̃ , R̃,∇R̃;x)− U(F ,R,∇R;x)]dv

−
∫
∂κt

t · (χ̃− χ)da−
∫
∂κc

M · (R̃−R)da ≥ 0, (13.22)

for all χ̃ and R̃ subject to the stated restrictions. Among these, we consider

χ̃(x) = χ(x)+εφ(z) and R̃(x) = R(x)Q(z; ε) with z = ε−1(x−x0),
(13.23)

where ε is a positive constant and x0 is a point in the interior of κ. Here φ(z)
is a smooth vector field and Q(z; ε) is a smooth rotation field, not to be confused
with the rotation used in the discussion of Galilean invariance. Accordingly, as the
composition of two rotation fields, R̃(x) is a rotation field, as required. We stipulate
that φ(z) and Q(z; ε) − I, where I is the identity for 3-space, be compactly
supported in a region D, so that φ = 0 andQ = I for z /∈ D.We further suppose
that D be the image of a region κ′ under the inverse of the map (13.23)3, such that
κ′ is a subregion of κ and κ′ ∩ ∂κ is the empty set.

For this choice the boundary terms in (13.22) vanish, leaving the inequality∫
κ′

[U(F̃ , R̃,∇R̃;x)− U(F ,R,∇R;x)]dv(x) ≥ 0. (13.24)

Naturally the same restriction follows for boundary potentials that are more general
than that associated with dead loading; all that is required is that these be determined
by the boundary values of χ andR. Noting that the gradient of the map (13.23)3 is
ε−1I, we have dv(z) = ε−3dv(x); and, after division by ε3, (13.24) becomes∫
D

U(F (x0+εz)+∇′φ(z),R(x0+εz)Q(z; ε), S(x0+εz, z; ε);x0+εz)dv(z)

≥
∫
D

U(F (x0 + εz),R(x0 + εz),∇R(x0 + εz);x0 + εz)]dv(z),

(13.25)
in which∇′ is the gradient with respect to z, and S(x, z; ε) is the third-order tensor
field with components

SiAC = RiB,CQBA + ε−1RiBQ
′
BA,C , (13.26)

where (·)′,C = ∂(·)/∂zC .
To fulfill the stated restrictions onQ, we adopt the function

Q(z; ε) = exp(εW (z)), (13.27)

whereW (z) is a smooth skew tensor field compactly supported in D, and exp is
the tensor-valued function defined by the uniformly convergent power series
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expA =

∞∑
n=0

1

n!
An, with A0 = I. (13.28)

It is well known (Chadwick, 1976) that the right-hand side of (13.27) is a rotation
at each z. Moreover, as W (z) vanishes in the region exterior to D, we have
Q(z; ε) = I for z /∈ D and all the conditions stipulated for Q are satisfied. Then,
with

Q′BA,C = εW ′BD,CQDA, (13.29)

(13.26) reduces to

SiAC = (RiD,C +RiBW
′
BD,C)QDA. (13.30)

We now divide (13.25) by ε, let ε→ 0 and invoke the Dominated Convergence The-
orem (Fleming, 2012). Noting thatQ(z; 0) = I, we thus obtain the quasiconvexity
condition∫
D

[U(F 0 +∇′φ(z),R0, S(x0, z; 0);x0)−U(F 0,R0, (∇R)0;x0)]dv(z) ≥ 0,

(13.31)
where F 0 = F (x0), R0 = R(x0), (∇R)0 = ∇R|x0

, and S(x0, z; 0) is the
tensor field with components

S0
iAC(z) = (RiA,C)0 +R0

iBW
′
BA,C(z), (13.32)

in which (RiA,C)0 are the components of (∇R)0 and R0
iB , those ofR0.

If {χ(x),R(x)} is an energyminimizer, then inequality (13.31)must be satisfied
at each x0 ∈ κ, and for all D, φ(z) andW (z) with the stated properties.

The quasiconvexity condition takes a more convenient form when expressed in
terms of the reduced energyW (E,Γ ;x). To derive this form we use (13.4)-(13.6)
to obtain

U(F 0,R0, (∇R)0;x0) = W (E0,Γ 0;x0), (13.33)

where E0 = Rt
0F 0 and Γ 0 is the tensor with components

Γ 0
DC =

1

2
eBADR

0
iA(RiB,C)0; (13.34)

and,

U(F 0 +∇′φ(z),R0, S(x0, z; 0);x0) = W (E0 +Rt
0∇′φ(z), Γ 0 +T (z);x0),

(13.35)
where T (z) is the tensor field with components

TDC(z) =
1

2
eBADW

′
BA,C(z), (13.36)
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and where use has been made of R0
iAR

0
iB = δAB . With reference to the discussion

preceding (13.7), we note that Γ 0 +T (z) qualifies as a wryness tensor field because
W ′BA,C = −W ′AB,C .

The quasiconvexity condition, expressed in terms of the reduced energy, is thus
given by∫
D

[W (E0 +Rt
0∇′φ(z), Γ 0 +T (z);x0)−W (E0,Γ 0;x0)]dv(z) ≥ 0. (13.37)

13.5 Rank-One Convexity

The rank-one convexity inequality is a pointwise necessary condition for (13.37). We
derive it by adapting a construction due toGraves (1939).Wework in two dimensions,
for the sake of illustration and to ease the presentation. Graves’s treatment is valid
in n dimensions, and the rank-one convexity condition that we derive also applies in
three dimensions in particular.

The origin of z in (13.23)3 is located at x = x0.We attach an orthonormal basis
{m,n} to this point, and introduce Cartesian coordinates x = m ·z and y = n ·z,
so that z = xm+ yn. Let R ⊂ D be the region defined by

R = {(x, y) : |x| < h, 0 < y < B(x)} = R1 ∪R2, (13.38)

where

R1 = {(x, y) : |x| < h, 0 < y < θB(x)} and R2 = R \R1, (13.39)

with θ ∈ (0, 1) and B(x) = h2 − x2.
Consider the continuous composite function

F (z) =

 (1− θ)y in R1,
−θ[y −B(x)] in R2

0, outside R.

 . (13.40)

For the functions φ(z) andW (z), we choose

φ(z) = F (z)α and W (z) = F (z)Ω, (13.41)

where α is a constant vector andΩ is a constant skew tensor. These yield

∇′φ(z) = α⊗∇′F (z) and ∇′W (z) = Ω ⊗∇′F (z), (13.42)

where

∇′F (z) = Fxm+ Fyn =

{
(1− θ)n in R1

−θn− θ(2x)m in R2.

}
(13.43)
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The gradient ∇′F (z) is not a continuous function, and therefore φ(z) andW (z)
do not meet the differentiability conditions stipulated in the derivation of (13.37).
This technicality, which arises frequently in the Calculus of Variations, is addressed
via mollification, or smoothening, with no effect on the final conclusions. See the
treatment of mollifiers in Section 2.3 of Giaquinta and Hildebrandt (2004), for
example.

As h→ 0 and because |x| < h, we have that F (z)→ 0 and

∇′F (z)→
{

(1− θ)n in R1

−θn in R2

}
. (13.44)

Accordingly, φ(z) andW (z) vanish in the limit, whereas

∇′φ(z)→
{

(1− θ)α⊗ n in R1

−θα⊗ n in R2

}
and

∇′W (z)→
{

(1− θ)Ω ⊗ n in R1

−θΩ ⊗ n in R2

}
, (13.45)

the latter implying that

T (z)→
{

(1− θ)b⊗ n in R1

−θb⊗ n in R2

}
, (13.46)

where b = axΩ, i.e., bD = 1
2eBADΩAB .

Let V, V1 and V2 be the measures of R,R1 and R2, respectively, i.e,

V =

∫ h

−h
B(x)dx, V1 = θV and V2 = (1− θ)V. (13.47)

On dividing (13.37) by V, we obtain

θ

V1

∫
R1

W (E0 +Rt
0∇′φ(z), Γ 0 + T (z);x0)dv

+
1− θ
V2

∫
R2

W (E0 +Rt
0∇′φ(z), Γ 0 + T (z);x0)dv −W (E0,Γ 0;x0) ≥ 0.

(13.48)

Application of the Mean-Value Theorem to the integrals and passage to the limit
h→ 0 then yields, after division by θ,

W (E0 + (1− θ)a⊗ n, Γ 0 + (1− θ)b⊗ n;x0)

+
1− θ
θ

W (E0 − θa⊗ n, Γ 0 − θb⊗ n;x0)− 1

θ
W (E0,Γ 0;x0) ≥ 0, (13.49)

where a = Rt
0α. For small θ we use (13.12) to obtain the estimate
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W (E0 − θa⊗ n, Γ 0 − θb⊗ n;x0) =W (E0, Γ 0;x0)

− θ{σ(E0, Γ 0;x0) · a⊗ n}
− θ{µ(E0, Γ 0;x0) · b⊗ n}+ o(θ),

(13.50)
implying, from (13.49) that

W (E0 + (1− θ)a⊗ n, Γ 0 + (1− θ)b⊗ n;x0) ≥W (E0,Γ 0;x0)

+ (1− θ)
{
σ · a⊗ n

+µ · b⊗ n
}

+ (1− θ)o(θ)
θ
,

(13.51)
in which σ and µ are evaluated at {E0,Γ 0, x0}. Passage to the limit θ → 0 finally
delivers the rank-one convexity condition

W (E0 + a⊗ n, Γ 0 + b⊗ n;x0)−W (E0,Γ 0;x0) ≥ σ(E0, Γ 0;x0) · a⊗ n
+ µ(E0, Γ 0;x0) · b⊗ n.

(13.52)
This must be satisfied at all x0 ∈ κ and for all vectors a, b and n if {χ(x),R(x)}
is an energy minimizer.

In the derivation of this condition we have allowed for finite perturbations of
F (x) and ∇R(x). Accordingly rank-one convexity is a necessary condition for
strong relative minimizers; weak relative minimizers are those configurations that
minimize the energy relative to small perturbations of F (x) and ∇R(x). The
operative necessary condition in this case is obtained by estimating (13.52) for small
values of |a⊗ n| and |b⊗ n| .Taking |n| = 1without loss of generality, we replace
a and b by θa and θb, and, assuming W to be twice differentiable with respect to
E and Γ , deduce from (13.52) that

θ2{a⊗ n ·WEE[a⊗ n] + a⊗ n ·WEΓ [b⊗ n]}
+ θ2{b⊗ n ·WΓE[a⊗ n] + b⊗ n ·WΓΓ [b⊗ n]}+ o(θ2) ≥ 0,

(13.53)

in which the derivatives are evaluated at {E0,Γ 0, x0}. Dividing by θ2 and passing
to the limit, we obtain the Legendre–Hadamard condition

a⊗ n ·WEE[a⊗ n] + a⊗ n ·WEΓ [b⊗ n] + b⊗ n ·WΓE[a⊗ n]

+b⊗ n ·WΓΓ [b⊗ n] ≥ 0,
(13.54)

which was derived directly from the non-negativity of the second variation of the
energy in Shirani et al (2020).

The foregoing necessary conditions apply if the deformation field χ and rotation
field R are independent. This is not the case if there is any a priori constraint
connecting these fields. An example of such a constraint is afforded by the Cosserat
theory of fiber-reinforced materials (Shirani and Steigmann, 2020) in which the
fibers are assumed to be convected as material curves. In this case we have obtained
the operative version of the Legendre-Hadamard condition elsewhere (Shirani and
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Steigmann, 2021), but the relevant quasiconvexity and rank-one convexity conditions
remain open.

13.6 Conclusion

In this chapter we have derived the quasiconvexity and rank-one convexity conditions
for Cosserat elasticity theory. These are necessary conditions that the deformation
and rotations fieldsmust satisfy if they are to furnishminima of the potential energy in
conservative boundary-value problems. While these conditions alone do not ensure
the existence of minimizers, it is to be expected, on the basis of experience with
conventional nonlinear elasticity theory, that they would play a central role in any
existence proof based on the direct method of the calculus of variations.
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Chapter 14
Models of Viscoelastic Materials: a Review on
Historical Development and Formulation

Marina V. Shitikova, Anastasiya I. Krusser

Abstract A classification of different mathematical models of viscoelastic materials
is presented. The review covers the classical models of viscoelasticity with integer
order derivatives, as well as models with fractional derivatives and fractional oper-
ators. This paper provides a detailed historical background of the basic viscoelastic
models with their mechanical schemes and mathematical formulations. A compar-
ative analysis of contribution of Western and Russian scientists to the development
of linear viscoelasticity is carried out. The paper fully tracks the recent theories on
the topic of linear and nonlinear viscoelasticity.

Keywords: Viscoelasticity ·Mathematical models · Fractional calculus

14.1 Introduction

Under the influence of different loads, the body can move or its various particles
could experience relative movement, i.e. could deform. The deformation resulting
from a given load will depend on the mechanical properties. It could be reversible
(elastic deformation) or irreversible (viscous, plastic or permanent deformation, or
flow), or it could contain both a recoverable and a residual part. Equations describing
the properties of a material in a way that does not depend on the size or shape (that
is, geometry) of the body and depends only on its nature are called the rheological
equations (Tschoegl, 1989). The first constitutive equation for solids was formulated
by Hooke in 1676 in his famous statement (Hooke, 1676) “Ut tensio sic vis” (as the
extension, so the force), first published as an anagram (CEIIINOSSSTTUU). Hooke
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Fig. 14.1 a) the Maxwell
element (M-element), and
b) the Kelvin–Voigt element
(KV-element).

denoted any pure elastic solid as a spring (H-element), the relative deformation of
which is directly proportional to the stress:

σ = Eε , (14.1)

where σ is the stress, ε is the strain of the spring, and E is a constant called the
modulus of elasticity. The spring has the ability to accumulate mechanical energy.

Instead of deformation of a solid, a laminar shear flow of a pure viscous fluid
could be considered. The governing equation for an ideal viscous fluid, according
to which the strain rate is directly proportional to the stress, was first presented by
Newton in Newton (1687):

σ = ηDε , (14.2)

where η is a constant known as the viscosity coefficient of the damper, andD denotes
differentiation in time. By analogy with the Newtonian fluid, a pure viscous element
in the theory of viscoelasticity corresponds to a dashpot (N-element) that exhibits
the ability to dissipate mechanical energy.

Recently, polymeric materials with viscoelastic properties have become wide-
spread. The behaviour of viscoelastic bodies cannot be described only from the
standpoint of the classical theory of elasticity, as pure elastic solids, or the hydro-
dynamic theory, as a pure viscous fluid. Bodies stresses in which are determined by
strains and strain rates (or higher order time derivatives of the strain) characterize
the deformation process in both an ideal elastic and an ideal viscous body; therefore,
they are called viscoelastic bodies. If there is a linear relationship between the com-
ponents of stress, strain and strain rates, then the body exhibits linear viscoelastic
behaviour (Bland, 1960).

The behaviour of a material is called viscoelastic if the material accumulates
part of the deformation energy elastically, as potential energy, and dissipates the
rest simultaneously through viscous forces (Tschoegl, 1989). In order to visualize
the work of various viscoelastic materials, it is appropriate to consider similar
mechanical models. They consist of a combination of pure elastic and pure viscous
elements connected in series or in parallel (Bland, 1960; Christensen, 1971).

In 1867, Maxwell described the equation for the series connection of elastic and
viscous elements, which is the simplest scheme in Fig. 14.1a, called the Maxwell
element (M-element) (Maxwell, 1867). The connection of elastic (H-element) and
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viscous (N-element) elements in series could be denoted by letters in the form of a
structural formula M=H-N, as it was suggested in (Reyner, 1960). In this case, the
stress σ is the same for the spring and the dashpot, and the total deformation ε is
equal to the sum of their deformations

σ + τεDσ = EτεDε , (14.3)

where τε is the relaxation time.
In 1865, Lord Kelvin in his experiments (Thomson, 1865) observed the phe-

nomenon of a change in the rate of energy dissipation depending on the vibration
frequency in various materials, which he later explained by the existence of the
“elastic aftereffect” (Thomson, 1875). Kelvin also discovered that “in an elastic solid
there is molecular friction, which with good reason can be called the viscosity of a
solid,” and also proposed a model of a material in the form of an elastic porous solid,
in which the pores and gaps between them are filled with a viscous fluid obeying
Stokes’s law (which is a generalization of Newton’s law) (Reyner, 1960). Shortly
thereafter, in 1892 Voigt wrote down the differential equation of the mathematical
model (Voigt, 1889, 1892) describing the same behaviour of anisotropic materials
that Kelvin observed in his experiments studying of the properties of various metals.
This model, which is schematically represented in the form of a parallel connection
of elastic and viscous elements in Fig. 14.1b, was called the Kelvin–Voigt element
(KV-element). Parallel connection of elastic (H-element) and viscous (N-element)
elements can be denoted as KV=H|N. In this case, the deformations ε are the same,
and the stress σ is equal to the sum of the stresses in the stretched spring and dashpot

σ = Eε+ EτσDε , (14.4)

where τσ is the retardation (creep) time, or the delayed time (Rabotnov, 1969).
In his detailed review of viscoelastic models, Thompson (1933) mentioned that

Meyer in 1873 also proposed relations linearly connecting stress components in a
solid with strain and strain rate components, with the help of which the author tried
to describe the phenomenon of elastic aftereffect (Meyer, 1874).

14.2 The Simplest Models of Viscoelasticity

14.2.1 Three-Element Models

Three-element models consist of a combination of two springs and one dashpot or
one spring and two dashpots. In the literature, there is a wide variety of names for
these models and there is no unified structure for their classification (Krusser and
Shitikova, 2020; Shitikova, 2022).
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14.2.1.1 Three-Element Models of the Standard Linear Solid

Three-element elastic models (Bland, 1960), also called standard linear solid mod-
els (Kružík and Roubíček, 2019; Mainardi and Spada, 2011; Nonnenmacher and
Glockle, 1991; Roylance, 2001; Tschoegl, 1989; Ward and Sweeney, 1983; Emri
and Gergesova, 2010; Zhou et al, 2016), are obtained by connecting the spring in se-
ries with the Kelvin–Voigt element (Fig. 14.2a) or in parallel to the Maxwell element
(Fig. 14.2b). In this regard, these models are also called the standard three-parameter
Voigt and Maxwell models (Tschoegl, 1989), or Kelvin and Maxwell standard linear
solid models (Steinmann and Runesson, 2021), respectively.

The first appearance of the model shown in Fig. 14.2a is often associated in the
literature (Tschoegl, 1989; Bogomolov et al, 2016; Kružík and Roubíček, 2019;
Liang and Huang, 2019) with the names of Poynting and Thomson (1902). However,
when recurring to the book (Poynting and Thomson, 1902), it could be seen that
the authors, considering the process of energy dissipation in metals and referring to
the phenomenon of elastic aftereffect, offered only a graphical scheme of the model
presented in Fig. 14.3a, which was the first attempt to “represent a linear solid in
the form of a suitable mechanical model” (Zener, 1948). As it turned out, Russian

Fig. 14.2 Three-element
standard linear solid models:
a) H-KV-element, and b)
M|H-element.

Fig. 14.3 Mechanical model of a standard linear solid: a) Poynting–Thomson model; b) Ishlinsky
model; c) and d) particular cases of the Ishlinsky model.
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mechanician Ishlinsky in his studies (Ishlinskiy, 1940a,b) also presented the diagram
of a mechanical model that obeys this law of deformation (Fig. 14.3b), and pioneered
in writing down the differential equation of the proposed model:

σ + τεDσ = E0(ε+ τσDε) , (14.5)

where E0 is the relaxed (prolonged or the rubbery) elastic modulus of the model
and τσ = η/E2, τε = η/(E1 + E2), E0 = E1E2/(E1 + E2) for the model in
Fig. 14.2a; and τε = η/E1, τσ = (E1 + E2)η/E1E2, E0 = E2 for the model
in Fig. 14.2b.

In his research, Ishlinsky applied the obtained equation to solve the problem of
longitudinal vibrations of a homogeneous rod of length l of constant cross-section.
Later, Rabotnov (1948) called this model as the Islinsky elastically relaxed body.
In this regard, this model should be called the Poynting–Thomson–Ishlinsky model,
which could be represented in the form of a structural formula PTI=H-H|N=H-KV.
Figure 14.3 shows that the Poynting–Thomson–Ishlinsky standard linear solid model
is a series connection of a spring and the Kelvin–Voigt element. Ishlinskiy (1945)
also noted the possibility of illustrating particular cases of the presented mechan-
ical model with a corresponding simplification of its scheme. For example, when
removing the internal spring (Fig. 14.3c), then Maxwell model without aftereffect is
obtained, and if, leaving the internal spring, the external spring is replaced with a
rigid rod (b =∞), then the model is reduced to the Kelvin–Voigt model (Fig. 14.3d).

It should be noted that Poynting, Thomson, and Ishlinsky presented a standard
linear solid in the form of a mechanical model (Fig. 14.3), but its schematic repre-
sentation in terms of springs and dashpot was first presented in Zener (1948) in the
form as it is shown in Fig. 14.2b, while Rzhanitsyn (1949) discussed both schemes
according to Fig. 14.2a and Fig. 14.2b. In this regard, the three-element generalized
Maxwell model (Fig. 14.2b) will henceforth be called the Zener–Rzhanitsyn model,
which has the formula ZR=H|(H-N)= H|M. Zener (1948) also drew attention to the
importance of the relationship

τε
τσ

=
E0

E∞
(14.6)

where (E∞ is the non-relaxed (instantaneous) or glassy modulus of elasticity), with
which one could determine an unknown value with the given three parameters
of the model. Rzhanitsyn (1949) showed that both models presented in Fig. 14.2
are described by one and the same differential Eq. (14.5) within the accuracy to
coefficients. He also defined the value of the relaxed (prolonged)modulus of elasticity
as the value obtained “by simply throwing out all viscous elements”, and described the
non-relaxed (instantaneous) modulus of elasticity as “a value determined under the
assumption that viscous elements are absolutely rigid”, while that the instantaneous
modulus of elasticity is always greater than the prolonged one.

Further Feda (1992) also showed that both rheological models in Fig. 14.2 could
reveal the samemechanical behaviour, although their structure is different. According
to the “principle of conversion” one model can be replaced by another, and they are
described by the same equation. The equivalence of the three-parameter Kelvin
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(Fig. 14.2a) and Maxwell (Fig. 14.2b) models of the standard linear solid was also
discussed in (Steinmann and Runesson, 2021), wherein the relations connecting the
coefficients for both models and the values of the instantaneous and prolonged elastic
moduli were given.

Sobotka (1981) quite rightly called the H|M model (Fig. 14.2b) as the Zener
model, and the H-KV model (Fig. 14.2a) as the Poynting–Thomson model, but the
author also believed that although these models are similar to each other, they were
not identical.

Some authors (Chen and Ai, 2020; Huang et al, 2020, 2021) improperly refer to
the model in Fig. 14.2b as the Poynting–Thomson model. Thus, Duque-Daza and
Alexiadis (2021) also mistakenly refer to the model in Fig. 14.2a as the Kelvin–Voigt
model, but call the real Kelvin–Voigt model as the Kelvin model.

In some references (Rabotnov, 1969; Malinin, 1975; Fung, 1981; Georgiyevskii
et al, 2004), researchers refer to the standard linear solid as the Kelvin body. As it was
already mentioned, Rabotnov in 1948 called this model as the Ishlinsky elastically
relaxing body (Rabotnov, 1948), but already in 1966 he considered the behaviour
of a similar viscoelastic body, which he called the Kelvin body, although mentioned
that there exist other names for this model in the literature (Rabotnov, 1969). Fung
(1965), when describing the properties of linear viscoelastic materials with memory
effect, considered such viscoelastic models as theMaxwell, Voigt and standard linear
solid models, but in 1981 he also called the latter model as the Kelvin body (Fung,
1981). However, it should be emphasized that Lord Kelvin himself only suggested
the existence of a more complex law, which obeys the behaviour of the materials
under investigation, but did not provide a differential equation of this dependence or
the scheme of such a model (Thompson, 1933).

It is known that authors often obtain similar results using the same mathematical
models to describe phenomena and processes in various fields of science, such as
mechanics, geoengineering, electrical engineering or biomechanics, while remaining
ignorant of the recent achievements in related fields. For example, Christie (1964)
showed that the equation of the standard linear solid model is the same as that
presented in 1939 by Merchant (1939) in geomechanics, who investigated uniaxial
solidification of clay rocks. Fung (1981) considering some problems in biomechanics
called the model of a standard linear solid as the Kelvin model, explaining this by the
fact that Lord Kelvin had shown the inconsistency of equations of the Maxwell and
Voigt models when measuring the change in the rate of energy dissipation depend
on the vibration frequency in various materials .

14.2.1.2 Three-Element Models of Standard Linear Liquid

Three-element viscous models (Bland, 1960) are often referred to in the literature as
Jeffreys models (Jeffreys, 1929; Kružík and Roubíček, 2019; Mainardi and Spada,
2011; Reyner, 1960) or standard linear liquid models (Kružík and Roubíček, 2019;
Mainardi and Spada, 2011). They could be obtained by connecting the dashpot in
series with the Kelvin–Voigt element, i.e. N-KV-element in Fig. 14.4a, or in parallel
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Fig. 14.4 Three-element
standard linear liquid Jef-
freys models with: a) N-KV-
element, and b) M|N-element.

to the Maxwell element, i.e. N|M-element in Fig. 14.4b. In this regard, Tschoegl
(1989) called these models as non-standard three-parameter Voigt and Maxwell
models, respectively.

We could not agree with such a name for a scheme in Fig. 14.4a, which describes
the behaviour of a viscoelastic fluid. In the theory of viscoelasticity all models are
divided in two types: Voigt-type models describing the behaviour of viscoelastic
solids and Maxwell-type models describing behaviour of viscoelstic fluids (Rzhan-
itsyn, 1949; Rabotnov, 1969).

Mainardi and Spada (2011) mistakenly referred to standard linear liquid models
as anti-Zener models, without knowing that the equation for this model was written
by Jeffreys (1917) in the following form:

n

(
S + t2

dS

dt

)
= F +

I

t1

∫
Fdt , (14.7)

where S is the strain, F is the stress, and n, t1, t2 are constants.
Jeffreys (1915, 1917) also considered the possibility for describing the behaviour

of impure elastic bodies using the elastic-viscous relations of Maxwell’s hypothesis
or Voigt’s hypothesis, which are special cases of Eq. (14.7) for t2 = 0 and t1 =∞,
respectively. Later Jeffreys (1929) presented his calculations in more detail showing
that Eq. (14.7) could be rewritten as:

σ + τεDσ = η0(Dε+ τσD
2ε) , (14.8)

where τε = (η1 + η2)/E, τσ = η2/E, η0 = η1 for the model in Fig. 14.4a, and
τε = η1/E, τσ = η1η2/E(η1 + η2), η0 = η1 + η2 for the model in Fig. 14.4b;
η0 is the relaxed viscosity of the model, while η∞ is the non-relaxed viscosity of the
model.

By analogy with the models of a standard linear solid, for the models of a standard
linear liquid the following relation is fulfilled:

τε
τσ

=
η0

η∞
. (14.9)
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Note that Rzhanitsyn (1949) presented both schemes of the model of a standard
linear liquid, and also showed that both models are described by one and the same
second-order differential equation with a difference only in the coefficients.

14.2.2 Four-Element Models

Further increase in the number of elements, i.e. springs and dashpots, in schemes
results in more intricate laws of deformation. In so doing, Rzhanitsyn (1949) estab-
lished the following very important rules enabling one to make a conclusion about
the physical meaning of any model of viscoelasticity, namely:

1. The order of the differential equation describing the law of deformation corre-
sponds to the number of viscous elements in the scheme.

2. In the absence of the continuous elastic connection between deformed points
(for example, schemes in Figs. 14.1a and 14.4) the law of deformation lacks
the elastic part of strain. In such schemes, under prolonged exposure to constant
stress the strain ε tends to infinity. In other words, the term E0ε is absent in the
rheological equation, therefore such an equation describes the behaviour of a
viscoelastic fluid.

3. In schemes with continuous elastic connection (schemes in Figs. 14.1b and
14.3), under prolonged exposure to constant stress the strain ε tends to a finite
value defined by the prolonged (relaxed) modulus of elasticity E0. In other
words, rheological equations involving the term E0ε describe the behaviour of
viscoelastic solids.

4. Under rapidly varying stresses, the deformation of a scheme occurs in such a way
if all viscous elements are absolutely rigid. The modulus of elasticity defined
under the assumption that viscous elements are absolutely rigid, is called as the
instantaneous modulus of elasticity E∞.

5. In schemes with continuous viscous connection, the instantaneous modulus of
elasticity is equal to infinity.

6. The instantaneous (nonrelaxed) modulus of elasticity is always larger than the
prolonged (relaxed) modulus of elasticity E∞ > E0.

These rules will be used further for defining the type of multi-term models. Similar
reasoning could be found in Flugge (1967), wherein the author provided the well-
defined classification of viscoelasticmodels showing that all of them could be divided
in two groups: models of solids and models of fluids.

Let us consider first the four-element models consisting of a combination of
two springs and two dashpots. A wide variety of these models are described in the
literature.
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14.2.2.1 Four-Element Models of Viscoelastic Fluids

Figure 14.5 shows the first type of four-element model and its equivalent schemes
(Bland, 1960; Flugge, 1967). The four-element model of the first type, also called the
Burgers model (Burgers, 1935, 1939; Bogomolov et al, 2016; Kružík and Roubíček,
2019; Mainardi and Spada, 2011; Tschoegl, 1989; Zhou et al, 2016; Malkin and
Isayev, 2017), is obtained by serial connection of Maxwell and Kelvin–Voigt ele-
ments, which can be denoted as (H-N)-(H|N)=M-KV (Fig. 14.5a). In the literature,
this model is also called the Burgers liquid (Kružík and Roubíček, 2019).

The models shown in Fig. 14.5a,b were called by Tschoegl (1989) as the standard
four-parameter Voigt and Maxwell models, respectively. Once again we agree with

Fig. 14.5 Four-element Burgers models of viscoelastic fluids: a) M-KV-element, b) M|M-element,
c) H-(M|N), and d) N-(M|H)

the name of the model in Fig. 14.5b, and completely disagree with the name of the
model shown in Fig. 14.5a, since this model and its rheological Eq. (14.10) describe
the behaviour of a viscoelastic fluid. Thus, it could not be referred to the Voigt-type
model.

Applying the combination rules for series and parallel connected elements and
performing the simplest transformations, a general equation that determines the
relationship between stress σ and strain ε could be written as

σ + p1Dσ + p2D
2σ = q1Dε+ q2D

2ε , (14.10)

where p2 = η1η2
E1E2

; p1 = E1η2+η1(E1+E2)
E1E2

; q2 = η1η2
E2

; q1 = η1 for the model in
Fig. 14.5a.

It was shown in Alfrey (1948) that the behaviour of any polymer, the viscoelastic
properties of which are described by the model shown in Fig. 14.5a, could be equally
and accurately described by the model in Fig. 14.5b, in so doing the constants
of one model are expressed in terms of equivalent constants of the other. Although
mathematically thesemodels are equivalent, but from the point of viewof interpreting
the physical meaning, the model in Fig. 14.5a has advantages and is more often used.
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14.2.2.2 Four-Element Models of Viscoelastic Solids

Four-element models of the second type (Bland, 1960; Flugge, 1967) are shown in
Fig. 14.6. Following the rules by Rzhanitsyn (1949), it could be concluded that all

Fig. 14.6 Four-element models of viscoelastic solids: a) KV-KV-element, b) N|M|H-element, c)
(H-KV)|N, and d) (N-KV)|H.

four schemes in Fig. 14.6 possess continuous elastic connection between deformed
points, thus, describe the behaviour of viscoelastic solids.

Applying the combination rules for series and parallel connected elements and
performing the simplest transformations, a general equation that determines the
relationship between the stress σ and the strain ε could be written as

σ + p1Dσ = q0ε+ q1Dε+ q2D
2ε , (14.11)

where p1 = η1+η2
E1+E2

; q2 = η1η2
E1+E2

; q1 = η2E1−η1E2

E1+E2
; q0 = E1E2

E1+E2
for the model

in Fig. 14.6a.
The models shown in Fig. 14.6a and Fig. 14.6b were also called in Tschoegl

(1989) as non-standard four-parameter Voigt and Maxwell models, respectively.
Once again the model in Fig. 14.6b could not be referred to Maxwell-type model,
since it describes the behaviour of a viscoelastic solid.

The model in Fig. 14.6c sometimes is also called the generalized four-parameter
model of a standard linear solid (Kružík and Roubíček, 2019).

14.2.3 Models with Large Numbers of Elements

Three- or four-element models could describe the observed behaviour of viscoelastic
materials with reasonably good approximation. Typically, however, representing the
behaviour of most viscoelastic materials requires models with a large or even infinite
number of elements. Such models could be easily derived from generalizations
of three- or four-element serial-parallel models. Generalized series-parallel models
have two forms: generalized Maxwell-type models, which are useful for the analysis
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of viscoelastic fluids and rubber-like materials, and generalized Voigt-type models,
which should be used for viscoelastic solids.

14.2.3.1 Generalization of the Maxwell Model

By adding Maxwell elements to the standard four-parameter Maxwell model
(Fig. 14.5b), a generalized Maxwell model is obtained with the structural formula
GM=M1|M2|M3...|Mn, where n is the number of Maxwell elements connected in
parallel (Christensen, 1971; Tschoegl, 1989; Ferry, 1980; Adolfsson et al, 2005;
Feda, 1992). Such a model (Fig. 14.7) is introduced to describe the so-called “rheo-
dictic” behaviour, when a steady-flow fluidity is present in a viscoelastic material
(Tschoegl, 1989). Therefore, in such a formulation, this model describes the be-
haviour of viscoelastic fluid, and it is not capable of displaying reversible creep, that
is why other varieties of the classical Maxwell model are often used (Renaud et al,
2011), which could be applicable for viscoelastic solids (Renaud et al, 2011).

By adding a spring in parallel to the generalized Maxwell element (Fig. 14.7),
Wiechert (1893) obtained the model (Fig. 14.8) (Roylance, 2001; Tschoegl, 1989;
Knauss et al, 2008; Emri and Gergesova, 2010; Zhou et al, 2016; Morro, 2017),
which could describe the so-called “areodictic” behaviour when there is no steady
flow in a viscoelastic material (Tschoegl, 1989). In other words, the model shown in
Fig. 14.8 is capable to be used for solving problems of dynamics of solids.

Mattei and Ahluwalia (2019) proposed a new analytical method for deriving the
constants of this model equation from the strain rate test. Renaud et al (2011) also
focused on determining the parameters of this model and wrote down an expression
for its transfer function and asymptotes (Renaud et al, 2011).

Another generalization of the Maxwell model (Fig. 14.7) is obtained by adding
Maxwell elements in parallel to the Kelvin–Voigt element (Bland, 1960; Flugge,
1967), resulting in a Voigt-type model. This model (Fig. 14.9) was used by Bland
(1960) in the stress-relaxation test to study the relaxation function of the material
and the spectrum of relaxation times.

Fig. 14.7 Generalized
Maxwell model involv-
ing n Maxwell elements:
GM=M1|M2|M3...|Mn-
element
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Fig. 14.8 Wiechert model
of a viscoelastic solid:
W=H|M1|M2|M3...|Mn-
element

Fig. 14.9 Voigt-type model
involving one Kelvin–
Voigt element in paral-
lel with n Maxwell ele-
ments KV|M1|M2|M3...|Mn-
element.

14.2.3.2 Generalization of Voigt or Kelvin Models

Christensen (1971) introduced the generalized Kelvin model obtained by serial
connection of a finite number of Kelvin–Voigt elements (Fig. 14.10). This model
can be denoted by the structural formula GKV=KV1-KV2-KV3-...-KVn, where n is
the number of Kelvin–Voigt elements connected in series (Christensen, 1971; Ferry,
1980; Knauss et al, 2008; Feda, 1992; Steinmann and Runesson, 2021).

Fig. 14.10 Generalized Kelvin model: GKV=KV1-KV2-KV3-...-KVn-element.
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Adding a Maxwell element or a spring in series with n Kelvin–Voigt elements
(Fig. 14.10) results, respectively, in viscoelastic fluid (Fig. 14.11a) and viscoelas-
tic solid (Fig. 14.11b) models (Bland, 1960; Tschoegl, 1989; Emri and Gergesova,
2010) which could describe the so-called rheodictic and areodictic behaviour of a
viscoelastic material (Tschoegl, 1989). The model in Fig. 14.11a was used by Bland
(1960) in the strain-creep test to investigate the creep function of the material, its
compliance and the retardation time spectrum.

This model was also considered by Alfrey (1948) to describe the behaviour of
materials with a continuous distribution of retardation times. As special cases of
the generalized (continuous) model, the author also singled out models with six and
eight elements, which are more accurate than the Burgers model and are used in such
a range of experimental conditions under which simpler models no longer provide
the required accuracy. He also drew attention to the equivalence of the models in
Fig. 14.7 and Fig. 14.11a, the first of which describes the relaxation time dependence
of the distribution of elastic moduli, and the second represents the retardation time
dependence of elastic compliance.

Fig. 14.11 Generalized viscoelastic models: a) M-KV1-KV2-KV3-...-KVn-element, and b)
H-KV1-KV2-KV3-...-KVn-element.

Formulas for the creep and relaxation functions for the eight basic models of vis-
coelasticity (Bland, 1960; Flugge, 1967) are given in Table 14.1. The main relations
of the models are expressed in terms of the stress and strain, however, these relations
can be rewritten in terms of the force F and the elongation a for an element with a
cross-sectional area A and a length L, considering that F = σA and a = εL. Since
the rules for series and parallel connection of elements are the same in both cases,
then each model describing the relationship between the force and elongation will
be the same as the model in terms of stresses and strains.
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Some researchers draw an analogy between the schemes of models of viscoelastic
materials and electrical circuits and their elements, despite their different physical
meaning (Alfrey, 1948; Gross, 1956; Tschoegl, 1989; Guido et al, 2014). In fact,
viscoelastic models involve elastic and viscous elements, which are represented
by springs and dashpots. These models can be equivalently considered as electrical
circuits, where the spring and dashpot are analogous to the capacitance of a capacitor
and the resistance of a resistor, respectively. The application of an electrical analog
in viscoelasticity may help to investigate the real behaviour of hereditary materials
described by fractional order models of viscoelasticity (Guido et al, 2014).

14.3 Viscoelastic Models with Fractional Derivatives

Fractional differentiation and fractional integration of functions are generalizations
of classical differentiation and integration. These generalizations were first proposed
in Liouville (1832) and in Riemann (1876) and are easily formulated in the domain of
generalized functions, as a result of which the expression for the fractional Riemann–
Liouville derivative has the form (Samko et al, 1993):

RLDγσ =
d

dt

∫ t

0

σ(t′)
Γ (1− γ)(t− t′)γ dt

′, (14.12)

where 0 < γ < 1 is the order of the fractional derivative, and Γ (1 − γ) is the
Gamma-function.

Grünwald (1867) and Letnikov (1868) developed an approach to fractional
integro-differentiation based on the extension of the Riemann formula f (n)(x) =

lim
h→0

(∆nhf)(x)
hn to the case of non-integer n:

Dαf(x) = lim
h→0

(∆a
hf)(x)

ha
, (14.13)

Letnikov (1868) has shown that the expression forD−αf coincideswith the construc-
tion of the fractional Riemann–Liouville derivative. The Grunwald–Letnikov ap-
proach and its comparison with other definitions of fractional integro-differentiation
are presented in Samko et al (1993).

Along with the publications of Liouville, Riemann, Grunwald and Letnikov, at
the turn of the 19th and 20th centuries, many other approaches to the description of
the fractional derivative appeared, some of which entered into polemics with their
predecessors, others developed and supplemented some issues (Hadamard, 1892;
Hardy and Riesz, 1916; Weyl, 1917).

One of the nowadays widely used definitions of the fractional derivative is so
called Gerasimov–Caputo derivative (Gerasimov, 1948; Caputo, 1967). Thus, the
Soviet scientist Gerasimov (1948) introduced a time derivative of order α(0 < α <
1) for the strain function ε(t) in the form (Gerasimov, 1948):
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∂αε(t)

∂tα
=

1

Γ (1− α)

∫ ∞
0

ε̇(t− τ)dτ

τα
, (14.14)

This definition and its properties were not included in the encyclopaedic monograph
by Samko et al (1993), it was done in Podlubny (1999) and Diethelm (2004).

It was later shown (Bagley, 2007) that both definitions of the fractional derivative
due to the Riemann–Liouville and Gerasimov–Caputo give an equivalent mathe-
matical description of the behaviour of viscoelastic materials if its properties are
described by the fractional derivative standard linear solid model.

14.3.1 First Applications of Fractional Calculus in Viscoelasticity

During the twentieth century, many authors have used fractional calculus as an
empirical method for describing the properties of viscoelastic materials. The first
mention of this new approach in the theory of viscoelasticity could be found in the
paper by Nutting (1921), who suggested that the stress relaxation phenomenon could
be modelled using fractional orders of time (Bagley and Torvik, 1983; Mainardi,
2012). From a series of experiments for the whole range of materials from an elastic
solid to a viscous fluid, Nutting supposed that the general law of deformation, which
relates to shear stress, shear strain and time, when shear stress is kept constant, can
be expressed as

ε = aσmtn, (14.15)

where ε is the shear strain, σ is the shear stress, t is time, and a,m, n are constants.
Experimentally Nutting found that the values of n for viscoelastic materials are

in the range from 0 to 1. Moreover, for n = 0 and m = 1 his equation describes
the behaviour of a linear elastic solid, and for n = 1 and m = 1 the behaviour of
Newton’s viscous fluid (Koeller, 1986). Later Gemant (1936, 1938) substantiated the
necessity of using fractional differential operators to calculate the shape of relaxation
curves for some viscous elastic fluids.

Scott-Blair (1944, 1949) introduced fractional time derivative, which simulta-
neously combined observations by Nutting and Gemant. Scott-Blair considered the
linear case of the Nutting’s equation atm = 1, which could be represented as

σ = KDnε, 0 < n < 1, (14.16)

where K is a positive constant, and Dnε is a fractional derivative of deformation
with respect to time t.

Equation (14.16) is a fractional model of the Newtonian fluid. Scott-Blair and
colleagues showed that shear stress is proportional to the fractional derivative of
shear strain with respect to time, but they were unable to provide a definition of
fractional derivative that would satisfy mathematicians of the time. Dr. J. Scott-
Blair wrote the following words in his letter to Dr. Stiassnie (1979) :“I was working
on the assessing of firmness of various materials (e.g. Cheese and clay by experts
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handling them) these systems are of course both elastic and viscous but I felt sure
that judgements were made not on an addition of elastic and viscous parts but on
something in between the two so I introduced fractional differentials of strain with
respect to time. I gave up the work eventually, mainly because I could not find a
definition of a fractional differential that would satisfy the mathematicians.”

It should be noted that the Soviet scientist Gerasimov (1948) proposed to use a
fractional derivative viscoelasticity model similar to the Scott-Blair model, but his
work remained unknown to most Western scientists due to the absence of translation
of his article into English for a long time (Rossikhin, 2010). Thus, Gerasimov (1948)
proposed a linear relationship between the strain ε(t) and stress functions σ(t) in the
following form:

σ(t) = æ
∂αε(t)

∂tα
, (14.17)

which for limiting values of α = 0 and α = 1 turns over into the Hooke’s law of
elasticity and Newton’s law of internal friction, respectively.

The relationship (14.17) has been also used by Bland (1960) for materials that
exhibit neither instantaneous elasticity nor prolonged viscous flow.

Several years later, the same fractional order operator was also discussed in
Rabotnov (1969) with reference to Gerasimov (1948) in a monograph published in
Moscow.

The simplest element with a fractional derivative, proposed by Scott Blair, was
later called a “spring-pot” by Koeller (1984), and the model equation was rewritten
as:

σ = EτγσD
γε, 0 ≤ γ ≤ 1, (14.18)

where τγσ = η/E is the retardation time, and γ is the memory parameter, whence
it is evident that this equation accurately describes two boundary cases, namely: at
γ = 0 the model corresponds to a material with ideal memory (elastic solid), and at
γ = 1 describes a material without memory (viscous liquid).

Koeller (1984) also pointed out that in order to show the connection of fractional
calculus to the theory of linear viscoelasticity, he based on the concepts of Rabotnov’s
theory (Rabotnov, 1980). It was emphasized (Koeller, 1984) that “Rabotnov’s theory
of Hereditary SolidMechanics is equivalent to requiring that the stress in the dashpot
be proportional to the fractional derivative of the strain in the dashpot”. However,
this fact was noted by Rabotnov (1948) himself.

14.3.2 The Simplest Fractional Calculus Viscoelastic Models

In the 60-s of the last century, the simplest models of viscoelasticity with fractional
derivatives were proposed. They are based on replacing the derivative of an integer
order in classical viscoelastic models by the Riemann–Liouville derivative of the
fractional order.
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14.3.2.1 Maxwell Model with Fractional Derivatives

The Maxwell model with fractional derivatives (Fig. 14.12a, wherein hereafter a

Fig. 14.12 The simplest fractional derivative viscoelastic models: a) Maxwell model, b)
Kelvin–Voigt model, and c) standard linear solid model.

spring-pot element is displayed like a diamond as suggested by Bagley and Torvik
(1979)) was first presented in Meshkov (1967):

σ + τγε D
γσ = E∞τ

γ
ε D

γε, (14.19)

where E∞ is non-relaxed (instantaneous) modulus of elasticity, and τε is the relax-
ation time.

It should be noted that Gemant (1936) was the first to expand the classical
Maxwell model proposing a model with a fractional derivative of the order of 1/2,
i.e. a semiderivative:

σ + τ1/2
ε D1/2σ = ηε̇, (14.20)

The fractional Maxwell model was also independently introduced in Caputo and
Mainardi (1971a).

The equation of the fractional derivative Maxwell model could be represented in
the form of the Boltzmann–Volterra relations with a fractional exponential function
as a weakly singular kernel of heredity (Shermergor, 1966):

σ = E∞

[
ε−

∫ t

0

�γ (−t′/τε)ε(t− t′)dt′
]

(14.21)

or expressed in terms of the fractional operator (Rossikhin and Shitikova, 2020)

σ = E∞
[
1− �∗γ (tγσ)

]
ε(t), (14.22)

where �∗γ (τγσ ) = 1
1+τγσDγ

is the Rabotnov’s dimensionless fractional operator
(Rossikhin and Shitikova, 2014, 2015), and
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�γ (−t′/τε) =
tγ−1

τγε

∞∑
n=0

(−1)n(t′/τε)γn

Γ [γ(n+ 1)]

is the Rabotnov fractional exponential function (Rabotnov, 1948), which reduces to
the usual exponential function at γ = 1.

Further Koeller (1984) presented a model consisting of a finite number of frac-
tional Maxwell elements connected in parallel (Fig. 14.13a) and recorded the rela-
tionship between the strain and the total stress of the model, which is the sum of the
stresses in the individual Maxwell elements. The relationship between the stress and
strain of the system expressed in terms of the Rabotnov’s dimensionless fractional
operator has the form (Rossikhin and Shitikova, 2014):

σ =

N∑
n=0

σn = E∞n[1− �∗γn (tγnn )]ε(t). (14.23)

14.3.2.2 Kelvin–Voigt Model with Fractional Derivatives

The Kelvin–Voigt model with fractional derivatives (Fig. 14.12b) was first presented
by Watanabe (1959) and Shermergor (1966):

σ = E0ε+ E0τ
γ
σD

γε, (14.24)

whereE0 is the relaxed modulus of elasticity and τσ is the retardation time. At γ = 1
the model (14.24) turns over into the classical Kelvin–Voigt model (14.4).

The advantage of this model over the classical Kelvin–Voigt model is in good
agreement between the obtained results and experimental data (Eldred et al, 1995).

Almost simultaneously with Shermergor (1966), the fractional Kelvin–Voigt
model was presented in Caputo (1967) and Smit and de Vries (1970).

The equation of the Kelvin–Voigt model with fractional derivatives can also
be represented in the form of the Boltzmann–Volterra relations with a fractional
exponential function as a weakly singular kernel of heredity (Shermergor, 1966)

ε = J0

∫ t

0

�γ (−t′/τσ)σ(t− t′)dt′ (14.25)

or expressed in terms of the fractional operator (Rossikhin and Shitikova, 2020)

ε = J0 �∗γ (τγσ )σ(t). (14.26)

Koeller (1986) presented a model consisting of a finite number of Kelvin–Voigt
elements with fractional derivatives connected in series (Fig. 14.13b), and recorded
the relationship between the stress and the total strain of the model, which is the sum
of the strains of the individual elements. The relationship between the stress and
strain of the system expressed in terms of the Rabotnov’s dimensionless fractional
operator has the form:
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ε =

N∑
n=0

εn = J0n �∗γn (τγnn )σ(t), (14.27)

where N + 1 is the total number of elements in the model.
Katicha and Flintsch (2012) obtained analytical expressions for the creep function

for the generalized Maxwell model with fractional derivatives and the relaxation
function for the generalized Kelvin–Voigt model with fractional derivatives.

Fig. 14.13 Fractional models of viscoelasticity with a finite number of elements: a) Maxwell
model; b) Kelvin–Voigt model.

14.3.2.3 Standard Linear Solid Model with Fractional Derivatives

The model of a standard linear solid with fractional derivatives (Fig. 14.12c) was
first presented in Meshkov (1967):

σ + τγε D
γσ = E0(ε+ τγσD

γε), (14.28)

where (
τε
τσ

)γ
=

E0

E∞
=
J∞
J0

, (14.29)

J∞ = E−1
∞ is the instantaneous (nonrelaxed) compliance, and J0 = E−1

0 is the
prolonged (relaxed) compliance.

This model was also independently introduced into consideration by Caputo and
Mainardi (1971b).

The fractional standard linear solid model (14.28) is known to be a four-parameter
fractionalmodel, since in order to unambiguously determine the relationship between
the stress and strain functions, it is necessary that four parameters (constants) be
initially specified:E0,E∞, τε and γ. The thermodynamic admissibility of this model
was analysed in (Bagley and Torvik, 1986). It was shown in (Pritz, 1996) that it is
able to describe the change in dynamic modulus and loss factor of real viscoelastic
materials over a wide frequency range, provided that there is one symmetric loss
peak. The quasi-static viscoelastic behaviour of polymeric materials described by
a fractional four-parameter model was studied in (Welch et al, 1999). Huang et al
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(2019) applied a standard linear solid model with fractional derivatives to describe
the creep of concrete considering its age and duration of load application.

The equation of the standard linear solid model with fractional derivatives could
also be represented in the form of the Boltzmann–Volterra relations with a fractional
exponential function as a weakly singular kernel of heredity (Rabotnov, 1948; Gross,
1947)

σ = E∞[ε− νε
∫ t

0

�γ (−t′/τε)ε(t− t′)dt′] (14.30)

or expressed in terms of the fractional operator (Rossikhin and Shitikova, 2020)

σ = E∞[1− νε �∗γ (tγσ)]ε(t), (14.31)

where νε = ∆EE−1
∞ and ∆E = E∞ − E0 is the defect of elastic modulus.

The equivalence of the rheological equations of the fractional-derivative vis-
coelastic models and the equations of the generalized Rabotnov theory was discussed
in (Rossikhin and Shitikova, 1997, 2007).

A historical survey of contributions made by Russian and Western researchers in
application of Fractional Calculus in problems of Mechanics in the 40-70s of the
previous century is presented in Table 2 (Rossikhin, 2010).

The review of applications of the simplest fractional derivative models of vis-
coelasticity could be found in (Rossikhin and Shitikova, 1997, 2010; Liu and Xu,
2006; Sasso et al, 2011; Zhou et al, 2016), as well as in the recent survey by Bonfanti
et al (2020), including such examples as modelling of brain tissue, artery walls,
cancerous cells, behaviour of rocks, sandstones and different polymeric materials.

The generalizations of the viscoelastic models of fractional order (14.19), (14.24),
(14.28) have been subsequently developed in several ways:

1. by adding additional fractional derivative terms with different fractional orders
and/or relaxation/retardation times in rheological equations (Rabotnov, 1969;
Rossikhin and Shitikova, 2010);

2. by replacing constant magnitudes of orders of fractional derivatives with time-
dependentmagnitudes γi(t) (a review of applications of variable-order fractional
operators was recently made in Patnaik et al (2020));

3. by utilizing fractional distributed order models (Ding et al, 2021);
4. by applying fractional derivatives to nonlinear characteristic values (Amabili,

2018, 2019);
5. by using fractional derivatives to describe both types of relaxation: shear and

volumetric, resulting in time-dependent operators for all viscoelastic character-
istics: Young’s modulus, shear modulus, bulk modulus, Lame’s constants and
Poisson’s ratio (Rossikhin and Shitikova, 2015, 2019, 2020; Shitikova, 2022;
Rossikhin et al, 2016).



14 Models of Viscoelastic Materials 307

14.3.3 Viscoelasticity Models with Several Different Fractional
Parameters and One Relaxation (Retardation) Time

Viscoelastic models containing fractional derivatives of different orders and other
fractional operators with more than one independent fractional parameter have been
attracting the attention of researchers for a long time. This is due to the fact that
such models make it possible to vary the rheological parameters over a wide range
and, more importantly, make it possible to obtain the best agreement between the
experimental data and the theoretical result.

Let us consider the simplest types of generalized models using fractional deriva-
tives of different orders with the same retardation (relaxation) time, which are cur-
rently used by rheologists to describe experimental data on the rheological properties
of various materials and by mechanical engineers to describe the damping properties
of structures (Rossikhin and Shitikova, 2010).

14.3.3.1 Maxwell Models with Several Different Fractional Parameters

The following fractional derivative Maxwell models with several different fractional
parameters are in use:

• the generalized fractional derivative Maxwell model (Makris et al, 1991)

σ + ταε D
ασ = E∞τ

β
ε D

βε, (14.32)

• the first modified fractional derivative Maxwell model (Friedrich, 1991)

σ + ταε D
ασ = E∞(ταε D

αε+ τβε D
βε), (14.33)

• the second modified fractional derivative Maxwell model (Rossikhin and Shi-
tikova, 2001)

σ + ταε D
ασ + τβε D

βσ = E∞τ
β
ε D

βε, (14.34)

• the thirdmodified fractional derivativeMaxwellmodel (Rossikhin andShitikova,
2001)

σ + ταε D
ασ + τβε D

βσ = E∞(ταε D
αε+ τβε D

βε), (14.35)

where 0 < α, β < 1 are the fractional parameters of various orders.

By introducing an additional parameter ϕ, Su et al (2021) proposed a modified
fractional Maxwell model with five-parameters:

σ
α−β
ϕ + τα−βε Dα−βσ = E∞τ

α
ε D

αε, (14.36)

where ϕ is positive and can be larger than 1.
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According to Eqs. (14.32)-(14.35), the generalized Maxwell models are four-
parameter models, i.e. to determine the relationship between stress and strain, it is
necessary to initially set four constants: E∞,τε, α and β.

14.3.3.2 Kelvin–Voigt Model with Several Different Fractional Parameters

The Kelvin–Voigt model with two different fractional parameters was proposed in
(Rossikhin and Shitikova, 2001)

σ = E0(ε+ τασD
αε+ τβσD

βε), (14.37)

whence it follows that the generalized Kelvin–Voigt model is also four-parameter
model, i.e. to determine the relationship between the stress and strain, it is necessary
to initially set four constants: E0, τσ , α and β.

14.3.3.3 Standard Linear Solid Models with Several Different Fractional
Parameters

The following standard linear solid models with several different fractional parame-
ters have been proposed:

• the generalized fractional derivative standard linear solid model (Bagley and
Torvik, 1983)

σ + ταε D
ασ = E0(ε+ τβσD

βε), (14.38)

• the first modified fractional derivative standard linear solid model (Friedrich and
Braun, 1992)

σ + ταε D
ασ = E0(ε+ τασD

αε+ τβσD
βε), (14.39)

• the second modified fractional derivative standard linear solid model (Rossikhin
and Shitikova, 2001)

σ + ταε D
ασ + τβε D

βσ = E0(ε+ τασD
αε+ τβσD

βε). (14.40)

According to Eqs. (14.38)-(14.40), generalized standard linear solid models are five-
parameter models, i.e. to determine the relationship between the stress and strain, it
is necessary to initially set five constants: E∞, E0, τε, α and β.

Pritz (2003) showed that the five-parameter model (14.39) is suitable not only for
describing the asymmetric peak of losses, but also for describing a peculiar high-
frequency change in the dynamic properties of some polymer damping materials.
King (2019) compared the application of four- and five-parameter models of a
standard linear solid to describe the properties of rubbery polymers commonly used
in hearing aids.
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Table 14.2 A historical overview of Russian and Western contributors to the use of fractional
calculus in the mechanics of solids from the 1940s to the 1970s

The simplest fractional calculus
models

Russian
researchers

Western
researchers

Applications carried
out prior to 1980

Fractional Newtonian model
σ = E∞τ

γ
ε D

γε(t)

σ = E∞τ
γ
ε I

1−γdε(t)

Gerasimov
(1948)

Scott-Blair
(1944)
Bland
(1960)

Watanabe (1959)
Stiassnie (1979)
Gerasimov (1948)
Caputo (1976)

Standard linear solid model
a) via Boltzmann–Volterra rela-
tionships
σ = E∞[ε − νε

∫ t
0

�γ
(−t′/τε)ε(t− t′)dt′]
ε = J∞[σ + νσ

∫ t
0

�γ
(−t′/τσ)σ(t− t′)dt′]

Rabotnov
(1948)

Gross
(1947)

Rozovskii and
Sinaiskii (1966)
Meshkov and
Rossikhin (1968)
Zelenev et al (1970b)
Meshkov et al (1971)
Gonsovskii and
Rossikhin (1972,
1973)

b) via fractional derivatives
σ + τγε D

γσ = E0(ε+ τγσD
γε)

Meshkov
(1967)

Caputo and
Mainardi
(1971b)

Caputo and Mainardi
(1971a,b)

c) via fractional operators
σ = E∞

[
1− νε

τ−γε Iγ

1+τ
−γ
ε Iγ

]
ε

Rabotnov
(1969)

Kelvin–Voigt model
a) via Boltzmann–Volterra rela-
tionships
ε = J0

∫ t
0

�γ (−t′/τσ)σ(t −
t′)dt′

Shermergor
(1966)

b) via fractional derivatives
σ = E0ε+ E0τ

γ
σD

γε
Shermergor
(1966)

Watanabe
(1959) Ca-
puto (1967)
Smit and
de Vries
(1970)

Watanabe (1959)
Caputo (1967, 1974)
Bagley and Torvik
(1979)

Maxwell model
a) via Boltzmann–Volterra rela-
tionships
σ = E∞[ε−

∫ t
0
�γ (−t′/τε)ε(t−

t′)dt′]

Shermergor
(1966)

Zelenev et al (1970a)

b) via fractional derivatives
σ + τ

1/2
ε D1/2σ = ηε̇

σ + τγε D
γσ = E∞τ

γ
ε D

γε,

Meshkov
(1967)

Gemant
(1936)
Caputo and
Mainardi
(1971a)

Buchen andMainardi
(1975)

c) via fractional integral
ε = J∞[σ + τ−γσ Iγσ]

Shermergor
(1966)

Generalized standard linear solid
model
σ = E∞[ε − νε

∫ t
0

∑n
j=1 ej �γ

(−t′/τεj)ε(t− t′)dt′]

Rabotnov
(1969)
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The general form of the rheological equation with fractional derivatives for the
standard linear solid model in the one-dimensional case was presented in Bagley and
Torvik (1979, 1983):

σ +

n∑
i=1

ταiε Dαiσ = E0

ε+

m∑
j=1

τβjσ Dβjε

 , (14.41)

where αi(i = 1, 2, ..., n) and βj(i = 1, 2, ...,m) are fractional parameters
(0 < αi, βj < 1), and Dαiσ and Dβjε are the Riemann–Liouville fractional
derivatives.

14.3.3.4 Burgers Models with Several Different Fractional Parameters

The Burgers model with several different fractional derivative in its general form
could be written as

σ + a1D
ασ + a2D

βσ + a3D
γσ = b1D

µε+ b2D
νε, (14.42)

where αi(i = 1, 2, 3) and bj(j = 1, 2) are the model parameters (0 < αi; 0 < bj),
α, β, γ, µ, ν are the fractional parameters, α, β, µ ∈ [0, 1] at α ≤ β and γ, ν ∈ [1, 2].

However it was shown in Okuka and Zorica (2018) that the orders of fractional
differentiation in the generalized Eq. (14.42) could not be arbitrary. In this regard,
eight thermodynamically consistent fractional Burgers models with various com-
binations of fractional parameters containing from five to nine model parameters
have been formulated. Expressions were obtained also for the relaxation and creep
functions in the integral form for all eight models (Okuka and Zorica, 2020).

14.3.3.5 Fractional Operator Models with Several Different Fractional
Parameters

Fractional operator models with two different fractional parameters have been sug-
gested in (Havriliak and Negami, 1967, 1969)

σ = E∞[ε− νε(1 + ταε D
αε)−βε], νε = ∆EE−1

∞ , (14.43)

ε = J∞[σ + νσ(1 + τασD
αε)−βσ], νσ = ∆JJ−1

∞ , (14.44)

where ∆E = (E∞ − E0), and ∆J = (J0 − J∞).
Reference to Eqs. (14.43) and (14.44) shows that these fractional operator models

are also five-parameter models. For model (14.43), the constants E∞, E0, τε, α and
β should be known, and for model (14.44) constants E∞, E0, τσ , α and β.
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The application of viscoelastic models with several different fractional parameters
and one relaxation (retardation) time has been discussed by many authors, a review
of which is presented in Rossikhin and Shitikova (2010).

14.3.4 Viscoelastic Models with One or More Fractional
Parameters and Several Relaxation (Retardation) Times

Fractional derivative models of viscoelasticity that include several retardation (re-
laxation) times make it possible to adequately describe relaxation processes in some
polymer materials. The presence of several times of retardation (relaxation) leads
to the fact that the distribution function of retardation (relaxation) times includes
several maxima. At the molecular level, this can be explained by the simultaneous
action of several mechanisms of energy dissipation (Rossikhin and Shitikova, 2010).

14.3.4.1 Rabotnov Model

One of the first mathematical models with several retardation (relaxation) times was
proposed by Rabotnov (1969):

ε = J∞

[
1 +

n∑
i=1

gj �γ (−τγi )

]
σ ,

σ = E∞

1−
n∑
j=1

ej �∗γ (−tγj )

 ε , (14.45)

where gi and ei (i = 1, ..., n) are yet unknown coefficients, τi and ti (i = 1, ..., n)
are retardation and relaxation times, respectively, and γ (0 < γ < 1) is the fractional
parameter.

Rabotnov (1969) showed that for the kernels in Eqs. (14.45) to be resolvent, it is
necessary and sufficient that the following condition to be satisfied:

τγ1 < tγ1 < τγ2 < · · · < tγn−1 < τγn < tγn. (14.46)

The properties of the Rabotnov’s model (14.45) have been studied in detail in
(Rossikhin and Shitikova, 2007, 2010, 2014), and examples of its application could
be found in (Rossikhin and Shitikova, 2008).

14.3.4.2 Fractional Calculus Models with Several Different Fractional
Parameters

The following polynomial model was suggested in (Koeller, 1986):
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(α0 + α1D
γ + a2D

2γ)ε = (b0 + b1D
γ + b2D

2γ)σ, (14.47)

which could be rewritten as

E(Dγ + τ−γ1 )(Dγ + τ−γ2 )ε = (Dγ + t−γ1 )(Dγ + t−γ2 )σ. (14.48)

Some researchers, for example, Welch et al (1999), knowing nothing about Rabot-
nov’s investigations and later Koeller himself (Koeller, 2007) without any hesita-
tion called this model as Koeller’s model with six parameters: E, τ1, τ2, t1, t2 and
γ (Fig. 14.14). However, Koeller did not consider the thermodynamic constraints
for this model, but Rossikhin and Shitikova (2010) showed that the thermody-
namically acceptable Koeller’s model is nothing more than three-term Rabotnov’s
model (14.45). Thus, for fairness’ sake, Eqs. (14.45) and (14.47) should be called as
Rabotnov–Koeller equations.

A more general case of the polynomial model (14.47) could be presented in the
following form:

n∑
i=0

αiD
iγε =

n∑
j=0

bjD
jγσ. (14.49)

It has been proved by Rossikhin and Shitikova (2014) that the models involving the
sums (14.49) or products

n∏
j=1

(Dγ + γi)σ = E∞

n∏
i=1

(Dγ + βi) ε (14.50)

of fractional derivatives have the physical meaning if and only if they are reduced
to the generalized Rabotnov models (14.46), i.e., when the coefficients entering
in (14.49) and (14.50) satisfy certain conditions (Rossikhin and Shitikova, 2014),
among them (14.46).

The models (14.45) can be easily generalized for the case of n different fractional
parameters (Koeller, 1984; Rossikhin et al, 2010) for varying values of γi

Fig. 14.14 Fractional cal-
culus solid model with six
parameters.
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ε = J∞

[
1 +

n∑
i=1

gj �∗γi (−τγii )

]
σ ,

σ = E∞

1−
n∑
j=1

ej �∗γj (−tγjj )

 ε , (14.51)

where 0 < γi < 1 are various fractional parameter, but unlike Eqs. (14.45), which
are inverses of one another, Eqs. (14.51) do not possess such a feature. Nevertheless,
each may be used as a self-contained rheological model. Thus, the application of the
generalized Rabotnov–Koeller model (14.51) for analyzing the dynamic behaviour
of a hereditarily elastic oscillator with several different relaxation times and different
fractional parameters was carried out in (Rossikhin et al, 2010).

Welch et al (1999) reviewed the experimental data of Tobolsky and Catsiff (1956)
for polyisobutylene and proposed two models for their description: a five-parameter
model with one fractional parameter obtained from Eq. (14.46) at α0 = 0 and a
seven-parameter model obtained from Eqs. (14.51) for n = 2 and γ1 = 0, 648, γ2 =
0, 474. From the comparison of experimental data with the results obtained by the
five- and seven-parameter models, it follows that the model with seven parameters
gives a more accurate representation of the distribution of times and frequencies than
the model with five parameters. It is shown that the seven-parameter model, which
involves two different fractional parameters and two relaxation times, accurately
simulates glassy and elastic areas, as well as the corresponding transition regions,
including the terminal relaxation region.

Heymans (1996) considered modified fractional models of a standard linear solid
with five and six parameters and Burgers models with fractional derivatives. Song
and Jiang (1998) presented a fractional-order Jeffreys model with five parameters
and found a good agreement with experimental data for such materials as xanthan
gum and Sesbania gel. Arikoglu (2014) proposed a ten-parameter standard linear
solid model for better simulation of viscoelastic properties in the frequency range
and showed that this model is consistent with experimental data for several polymer
damping materials described in the literature. The author showed that the proposed
model could better describe the properties of viscoelasticmaterials inwide frequency
range in comparison with the previously known models of a standard linear solid
with four, five and six parameters.

Ding et al (2021) studied in detail the so-called fractional distributed order (DO)
models to describe the behaviour of viscoelastic materials with multiple relaxation
times. DO statements allow one to visualize multiple relaxation times as individ-
ual viscoelastic elements operating simultaneously. Thus, a superposition of several
separate fractional operators of constant order (CO) (or, equivalently, several relax-
ation times) is achieved by defining the DO derivative for viscoelastic solids. Such
models are capable of describing such physical phenomena as the memory effect
of composite materials or the effect of multiple time scales and have wide practical
applications.
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14.3.5 Models of Viscoelastic Fluids with Two or More Scott-Blair
Fractional Derivative Elements

A variety of fractional derivative models of viscoelastic fluids have been proposed
by replacing all springs and dashpots in classical models with Scott-Blair fractional
derivative elements of different orders and different relaxation times (Schiessel et al,
1995; Wang and Harris, 2020), as well as considering the schematic arrangement of
spring-pots in the form of stairs, trees or fractal structures (Schiessel and Blumen,
1993; Heymans and Bauwens, 1994; Heymans, 1996). Below are some examples:

1. reconstruction of the Maxwell model (Fig. 14.1a) by changing its spring and
dashpot by two fractional elements (E1, τ1 and α) and (E2, τ2 and β)
(Fig. 14.15a)

σ(t) +
E1τ

α
1

E2τ
β
2

dα−βσ(t)

dtα−β
= E1τ

α
1

dαε(t)

dtα
, (14.52)

where α > β;
2. reconstruction of the Kelvin–Voigt model (Fig. 14.1b) by changing its spring

and dashpot by two fractional elements (E1, τ1 and α) and (E2, τ2 and β)
(Fig. 14.15b)

σ(t) = Eτα
dαε(t)

dtα
+ Eτβ

dβε(t)

dtβ
, (14.53)

where τ = (E1τ
α
1 /E2τ

β
2 )1/(α−β) and E = E1(τ1/τ)α;

Fig. 14.15 Viscoelastic fluid models with two Scott-Blair elements connected a) in series, and b) in
parallel.

3. reconstruction of the Poynting–Thomson–Ishlinsky model (Fig. 14.2a) with
three Scott-Blair elements (E1,τ1, α), (E2,τ2, β) and (E3,τ3, γ) (Fig. 14.16a)

σ(t)+
E0

E
τα−γ

dα−γσ(t)

dtα−γ
+
E0

E
τβ−γ

dβ−γσ(t)

dtβ−γ
=E0τ

α d
αε(t)

dtα
+E0τ

β d
βε(t)

dtβ
,

(14.54)
where τ = (E1τ

α
1 /E2τ

β
2 )1/(α−β), E0 = E1(τ1/τ)α, E = E3(τ3/τ)γ , 0 ≤

β < α ≤ 1, and 0 ≤ γ ≤ 1;
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Fig. 14.16 Three-element
models of viscoelastic fluids
with Scott-Blair fractional
elements.

4. reconstruction of the Zener–Rzhanitsyn model by replacing its elements via
three Scott-Blair elements (Fig. 14.16b)

σ(t) + τα−β
dα−βσ(t)

dtα−β
= E0τ

α d
αε(t)

dtα
+ Eτγ

dγε(t)

dtγ
+ Eτγ+α−β d

γ+α−βε(t)
dtγ+α−β ,

(14.55)
where τ0 = (E1τ

α
1 /E2τ

β
2 )1/(α−β), E0 = E1(τ1/τ0)α, τ = τ0, E =

E3(τ3/τ)γ ,
0 ≤ β < α ≤ 1, and 0 ≤ γ ≤ 1.

Note that all models presented in Fig. 14.15 and Fig. 14.16 are certain variations of
Maxwell-type models.

14.4 Viscoelastic Models with Variable Viscosity

The so-called classical models of viscoelasticity such as Maxwell, Kelvin–Voigt,
standard linear solid model models (14.3)-(14.5) and others describe the behaviour
of materials, the viscosity of which remains constant over long time scales (Find-
ley, 1976), as well as with time-independent Poisson’s ratio (Shitikova, 2022). But
there exist materials with time-dependent viscosity, and/or time-dependent Poisson’s
ratios, which could vary from -1 to 1/2.

Yang et al (2020) studied the behaviour of materials, the viscosity of which
changes with time or in space under certain conditions. The authors replaced the
constant viscosity coefficient of the dashpot in classical viscoelastic models with a
time-dependent viscosity function η(t) retaining the conventional integer order time-
derivative for stress and strain (Fig. 14.17), and also investigated modified models
with viscosity varying according to various laws: linear, power, and exponential.
Thus, the governing equations for viscoelastic models with variable viscosity have
the form:

• Maxwell model
σ +

η(t)

E
Dσ = η(t)Dε, (14.56)
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• Kelvin–Voigt model
σ = Eε+ η(t)Dε, (14.57)

• Zener–Rzhanitsyn model

σ +
η(t)

E2
Dσ = E1ε+

η(t)(E1 + E2)

E2
Dε, (14.58)

where E1 is the modulus of elasticity of the spring in the first branch, and E2

is the modulus of elasticity of the spring in the branch of the modified Maxwell
element (Fig. 17d).

Viscosity η(t) varies according to one of the following laws:

(a) linear law (Buckingham, 2000)

η(t) = η0 + θt, (14.59)

where η0 is the initial viscosity, θ is the strain-hardening coefficient;
(b) power law (Yang et al, 2020)

η(t) = η0 + θ1t
β , (14.60)

where β is an exponent, and θ1 is pre-factor;
(c) exponential law (Zhou et al, 2013)

η(t) = η0e
ϕt, (14.61)

where ϕ is a constant value.

Fig. 14.17 Schemes of viscoelastic elements with variable viscosity: a) Maxwell model, b)
Kelvin–Voigt model, and standard linear solid models: c) Poynting–Thomson–Ishlinsky model, d)
Zener–Rzhanitsyn model.

Another way of considering time-dependent features of viscoelastic materials was
suggested by Rossikhin and Shitikova (2015); Rossikhin et al (2016); Rossikhin
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and Shitikova (2019, 2020). It has been proposed to represent two mechanical char-
acteristics of a viscoelastic material (longitudinal and bulk moduli, or shear and
bulk moduli, or Lame parameters) in terms of fractional derivative operators using
Kelvin–Voigt, Maxwell or standard linear solid model, and to find other two moduli
(Lame operators, or longitudinal and one Lame operator, or longitudinal and bulk
moduli) and Poisson’s operator in terms of the given two operators using the algebra
of fractional Rabotnov’s operators.

The overview of the fractional derivative models involving the time-dependent
Poisson’s operators, which allow one to reveal rather interesting features of advanced
viscoelastic materials, among them auxetic materials possessing negative Poisson’s
ratios (Bhullar, 2015; Carneiro et al, 2013; Gorodtsov and Lisovenko, 2020), has
been recently given in Shitikova (2022).

14.5 Nonlinear Viscoelasticity Models with Fractional
Derivatives

Nonlinear models of viscoelastic materials have been studied by many authors for
a long time. In 1948, Alfrey introduced the concept of nonlinear elasticity and
viscosity of elements, which are very common among models for describing the
properties of high polymers (Alfrey, 1948). For example, based on the creep curves,
a mechanical model describing the behaviour of cellulose acetate must necessarily
contain nonlinear elements depicting a non-Newtonian flow. An overview of fluid-
type viscoelastic models is presented in (Bird et al, 1987a,b).

Polymer and rubber-like materials are often subjected to significant deformations
in engineering applications, therefore, recently, many authors have asked the question
of extending linear viscoelastic models based on fractional order derivatives or
integrals to the region of finite deformations. The use of fractional order operators
in viscoelastic models with finite strains and in nonlinear models was studied in
Drozdov (1997, 1998); Bonet (2001); Sjoeberg (2002); Haupt and Lion (2002);
Adolfsson and Enelund (2003); Adolfsson (2004); Ramrakhyani et al (2004); Lion
and Kardelky (2004); Deng et al (2006); Müller et al (2011); Fukunaga and Shimizu
(2011).

Wollscheid and Lion (2014) have shown that constitutive models based on frac-
tional derivatives are suitable for approximating pre-strain and frequency-dependent
dynamic behavior of rubber-like materials even at large strains. Zopf et al (2015) pre-
sented two approaches for obtaining a fractional Zener–Rzhanitsyn model at large
strains, consisting of a nonlinear elastic spring and a fractional Maxwell element
connected in parallel. Fukunaga and Shimizu (2015) proposed a method for obtain-
ing fractional derivative models to describe the finite deformations of viscoelastic
materials in continuum mechanics. Khajehsaeid (2018) investigated the efficiency
of using fractional viscoelasticity models to describe the relaxation behavior of elas-
tomers with different filler contents under finite deformations. King (2019) examined
the application of nonlinear fractional derivative models to viscoelastic materials in
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hearing aids and sound transducers. Such nonlinear fractional viscoelastic models
are used to predict the long-term viscoelastic creep of a loudspeaker suspension over
a much longer period of time than is commonly analyzed.

Recently Amabili (2018, 2019) described nonlinear damping for a nonlinear
oscillatory system with one degree of freedom using a fractional standard linear
solid model with nonlinear springs. A good agreement between the experimental
and numerically calculated results was declared.

Singh et al (2020) used a modified standard linear solid model to represent
the strain rate dependent response of polylactic acid (PLA) fibers at high strains.
Observations based on the experimental data made it possible to conclude that the
viscosity coefficients of the model decrease with an increase in the deformation rate,
what clearly demonstrates the phenomenon of pseudoplasticity in polymers. This
model was previously proposed in Khan et al (2006) to describe the nonlinear finite
thermomechanical behavior of viscoelastic polymers.

14.6 Conclusion

For a long time mechanics of solids has been based on Hooke’s law, i.e. most of the
materials are considered to be elastic. But it is well known that most engineering
materials like metals, concrete, wood, soil, are not linearly elastic, that is why
starting from the 19th century models of viscoelastic materials began to develop.
Mathematical models are commonly used to describe the properties of viscoelastic
materials, such as creep and relaxation. According to the review of existing literature
in the filed, there is a wide variety of names for the same viscoelastic models, and
very often many authors incorrectly cite each other without referring to primary
sources. In this regard, the main goal of this paper was to understand the origin of
all currently known models of viscoelastic materials and also to classify the latest
models that have appeared nowadays.

As it turned out, one of the main mistakes in the classification of viscoelastic
models was wrong authorship of models of standard linear solid presented in litera-
ture. A comparative analysis of the papers by Russian and Western scientists shows
that the correct names for the two variants of the standard linear solid should be
the following: Poynting–Thomson–Ishlinsky model and Zener–Rzhanitsyn model,
since these scientists pioneered in presenting graphical schemes and mathematical
equations for the corresponding models.

The models of linear viscoelasticity were generalized by the introduction of frac-
tional derivatives of various orders, resulting in the appearance of viscoelasticmodels
based on fractional order operators. The use of fractional models is largely due to
the fact that fewer parameters are required to represent the viscoelastic behaviour of
materials than when using traditional integer order models, therefore such models
allow rheological parameters to be varied over a wide range. In addition, there is a
better agreement of experimental data for models with fractional derivatives than for
those with integer-order derivatives. The overview of main early contributions made
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by Western and Russian researchers in the field of fractional calculus applications in
linear viscoelasticity is presented.

The latest developments in the field of fractional calculus viscoelasticity are also
presented, such as modified viscoelastic models with several different fractional pa-
rameters, models with variable viscosity and nonlinear viscoelasticity models. All
these new classes of models are generalizations of classical models and are intro-
duced for more accurate description of the properties of modern polymer viscoelastic
materials, which expands the range of their applicability. Today, a wide variety of
viscoelastic models are used to describe the properties of human tissues and cells,
various soils and foundations, building materials and structures, polymers, etc. It has
been emphasized that all models of viscoelasticity, classical models and fractional
calculus models, are divided in two parts, namely: the models which describe the
behaviour of viscoelastic solids and viscoelastic fluids, and therefore the choice of
this or that model for solving a certain problem should be made very carefully.

Acknowledgements This Survey involves the research results carried out under the financial
support of Russian Foundation for Basic Research (Projects Nos. 20-01-00443, 20-51-00008, 20-
31-70035), Russian Science Foundation (Project No. 21-19-00634), as well as during fulfilling the
projects Nos. 0706-2020-0024, FZGM-2020-0007 from the Russian Ministry of Science and High
Education.

References

Adolfsson K (2004) Nonlinear fractional order viscoelasticity at large strains. Nonlinear Dynamics
38:233–246

Adolfsson K, Enelund M (2003) Fractional derivative viscoelasticity at large deformations. Non-
linear Dynamics 33:301–321

Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Me-
chanics of Time-Dependent Materials 9:15–34

Alfrey T (1948) Mechanical behavior of high polymers. Interscience Publishers, New York
Amabili M (2018) Nonlinear damping in large-amplitude vibrations: modelling and experiments.

Nonlinear Dynamics 93:5–18
Amabili M (2019) Derivation of nonlinear damping from viscoelasticity in case of nonlinear

vibrations. Nonlinear Dynamics 97:1785–1797
Arikoglu A (2014) A new fractional derivative model for linearly viscoelastic materials and param-

eter identification via genetic algorithms. Rheologica Acta 53:219–233
Bagley RL (2007) On the equivalence of the Riemann–Liouville and the Caputo fractional or-

der derivatives in modeling of linear viscoelastic materials. Fractional Calculus and Applied
Analysis 10:123–126

Bagley RL, Torvik PJ (1979) A generalized derivative model for an elastomer damper. Shock and
Vibration 49:135–143

Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to
viscoelasticity. Journal of Rheology 27:201–210

Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. Journal of
Rheology 30:133–155

Bhullar SK (2015) Three decades of auxetic polymers: A review. E-Polymers 15:205–215
Bird RB, Armstrong RC, Hassager O (1987a) Dynamics of Polymeric Liquids. Vol. 1: Fluid

Mechanics, vol 30. Wiley



320 Shitikova, Krusser

Bird RB, Curtiss CF, Armstrong RC, O, Hassager (1987b) Dynamics of Polymeric Liquids. Vol.2:
Kinetic Theory. Wiley

Bland DR (1960) The Theory of Linear Viscoelasticity. Pergamon Press
Bogomolov V, Zhdanyuk V, Tsynka A (2016) Viscoelastic structural model of asphalt concrete.

Avtomobil’nyy transport (Khar’kov) pp 117–125
Bonet J (2001) Large strain viscoelastic constitutive models. International Journal of Solids and

Structures 38:2953–2968
Bonfanti A, Kaplan JL, Charras G, Kabla A (2020) Fractional viscoelastic models for power-law

materials. Soft Matter 16:6002–6020
Buchen PW, Mainardi F (1975) Asymptotic expansions for transient viscoelastic waves. Journal de

Mecanique 14:597–608
Buckingham MJ (2000) Wave propagation, stress relaxation, and grain-to-grain shearing in sat-

urated, unconsolidated marine sediments. The Journal of the Acoustical Society of America
108:2796–2815

Burgers J (1939) Mechanical considerations—model systems—phenomenological theories of re-
laxation and viscosity. In: First Report on Viscosity and Plasticity, 2nd edn, Nordemann Pub-
lishing Company, Inc.

Burgers JM (1935) First report on viscosity and plasticity. Proceedings of the Koninklijke Neder-
landse Akademie van Wetenschappen 15

Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent-II. Earth
13:529–539

Caputo M (1974) Vibrations of an infinite viscoelastic layer with a dissipative memory. Journal of
the Acoustical Society of America 56:897–904

Caputo M (1976) Vibrations of an infinite plate with a frequency independent Q. Journal of the
Acoustical Society of America 60:634–639

Caputo M, Mainardi F (1971a) Linear models of dissipation in anelastic solids. La Rivista del
Nuovo Cimento 1:161–198

Caputo M, Mainardi F (1971b) A new dissipation model based on memory mechanism. Pure and
Applied Geophysics PAGEOPH 91:134–147

Carneiro VH, Meireles J, Puga H (2013) Auxetic materials - a review. Materials Science- Poland
31:561–571

Chen YF, Ai ZY (2020) Viscoelastic analysis of transversely isotropic multilayered porous rock
foundation by fractional Poyting-Thomson model. Engineering Geology 264

Christensen RM (1971) Theory of viscoelasticity. Academic Press
Christie IF (1964)A re-appraisal ofMerchant’s contribution to the theory of consolidation.Geotech-

nique 14:309–320
Deng R, Davies P, Bajaj AK (2006) A nonlinear fractional derivative model for large uni-axial

deformation behavior of polyurethane foam. Signal Processing 86:2728–2743
Diethelm K (2004) The analysis of fractional differential equations: An application-oriented expo-

sition using differential operators of Caputo type. Springer
Ding W, Patnaik S, Sidhardh S, Semperlotti F (2021) Applications of distributed-order fractional

operators: A review. Entropy 23:1–42
Drozdov AD (1997) Fractional differential models in finite viscoelasticity. Acta Mechanica

124:155–180
Drozdov AD (1998) A model of temporal polymeric networks in nonlinear viscoelasticity. Me-

chanics Research Communications 25:83–90
Duque-Daza C, Alexiadis A (2021) A simplified framework for modelling viscoelastic fluids in

discrete multiphysics. ChemEngineering 5
Eldred LB, Baker WP, Palazotto AN (1995) Kelvin-Voigt versus fractional derivative model as

constitutive relations for viscoelastic materials. AIAA Journal 33:547–550
Emri I, Gergesova M (2010) Time-Dependent Behavior of Solid Polymers, vol 1. Eolss Publishers

Co. Ltd.
Feda J (1992) Creep of Soils and Related Phenomena. Elsevier
Ferry JD (1980) Viscoelastic properties of polymers. John Wiley & Sons, Inc.



14 Models of Viscoelastic Materials 321

Findley WN (1976) Creep and relaxation of nonlinear viscoelastic materials. Dover publications,
Inc.

Flugge W (1967) Viscoelasticity. Blaisdel Publishing Company
Friedrich C (1991) Relaxation and retardation functions of the Maxwell model with fractional

derivatives. Rheologica Acta 30:151–158
Friedrich C, Braun H (1992) Generalized Cole-Cole behavior and its rheological relevance. Rheo-

logica Acta 31:309–322
Fukunaga M, Shimizu N (2011) Nonlinear fractional derivative models of viscoelastic impact

dynamics based on entropy elasticity and generalized Maxwell law. Journal of Computational
and Nonlinear Dynamics 6:021005

Fukunaga M, Shimizu N (2015) Fractional derivative constitutive models for finite deformation of
viscoelastic materials. Journal of Computational and Nonlinear Dynamics 10:1–8

FungY (1981) Biomechanics.Mechanical Properties of Living Tissues. Springer Science+Business
Media, LLC

Fung YC (1965) Foundations of Solid Mechanics. Prentice-hall, inc
Gemant A (1936) A method of analyzing experimental results obtained from elasto-viscous bodies.

Journal of Applied Physics 7:311–317
Gemant A (1938) On fractional differentials. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science 25:540–549
Georgiyevskii DV,KlimovDM, PobedryaBE (2004) Specific features of the behavior of viscoelastic

models. Mechanics of Solids 39:88–120
Gerasimov A (1948) A generalization of linear laws of deformation and its applications to problems

of internal friction. Journal of Applied Mathematics and Mechanics 12:251–260
Gonsovskii VL, Rossikhin YA (1972) On the propagation of an impulsive load in a viscoelastic

medium. Proceedings of the Scientific-Research Institute of Mathematics of Voronezh Univer-
sity 6:63–66

Gonsovskii VL, Rossikhin YA (1973) Stress waves in a viscoelastic medium with a singular
hereditary kernel. Journal of Applied Mechanics and Technical Physics 14:595–597

Gorodtsov VA, Lisovenko DS (2020) Auxetics among materials with cubic anisotropy. Mechanics
of Solids 55:461–474

Gross B (1947) On creep and relaxation. Journal of Applied Physics 18:212–221
Gross B (1956) Electrical analogs for viscoelastic systems. Journal of Polymer Science 20:371–380
Grünwald AK (1867) Über “begrenzte” derivationen und deren anwendung. Zeitschrift für ange-

wandte Mathematik und Physik 12:441–480
Guido A, Paola MD, Francomano E, Li Y, Pinnola FP (2014) Viscoelasticity: An electrical point of

view. 2014 International Conference on Fractional Differentiation and Its Applications, ICFDA
2014

Hadamard J (1892) Essai sur l’étude des fonctions données par leur développment de taylor. Journal
de Mathématiques Pures et Appliquées 8:101–186

Hardy GH, Riesz M (1916) The general theory of Dirichlet’s series. The Mathematical Gazette 8
Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta

Mechanica 159:87–124
Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relax-

ation processes in some polymers. Polymer 8:161–210
Havriliak S, Negami S (1969) On the equivalence of dielectric and mechanical dispersions in some

polymers; e.g. poly(n-octyl methacrylate). Polymer 10:859–872
Heymans N (1996) Hierarchical models for viscoelasticity: Dynamic behaviour in the linear range.

Rheologica Acta 35:508–519
Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential equations

for viscoelastic behavior. Rheologica Acta 33:210–219
Hooke R (1676) A description of helioscopes and some other instruments. T.R. for John Martyn

Printer



322 Shitikova, Krusser

Huang P, Zhang J, Zhang Q, Damascene NJ, Guo Y (2020) Nonlinear creep model of deep
gangue backfillingmaterial and time-dependent characteristics of roof deformation in backfilling
mining. Geofluids 2020:8816871

Huang P, Zhang J, Yan X, Spearing AJS, Li M, Liu S (2021) Deformation response of roof in solid
backfilling coal mining based on viscoelastic properties of waste gangue. International Journal
of Mining Science and Technology 31:279–289

Huang Y, Xiao L, Bao T, Liu Y (2019) Fractional order creep model for dam concrete considering
degree of hydration. Mechanics of Time-Dependent Materials 23:361–372

Ishlinskiy AY (1940a) Linear deformation laws of not quite elastic bodies. Comptes Rendus (Dok-
lady) de l’Academie des Sciences de l’URSS Reports of the USSR Academy of sciences
24:23–27

Ishlinskiy AY (1940b) The longitudinal vibrations of a rod in the presence of a linear law aftereffect
and relaxation[in Russian]. Applied Mathematics and Mechanics 4:79–92

Ishlinskiy AY (1945) Deformation equations for not completely elastic and viscoplastic solids
[in Russian]. Proceedings of the USSR Academy of sciences, a series of technical sciences
1-2:34–45

Jeffreys H (1915) The viscosity of the earth. Monthly Notices of the Royal Astronomical Society
75:648–658

JeffreysH (1917)The viscosity of the earth (third paper).MonthlyNotices of theRoyalAstronomical
Society 77:447–449

Jeffreys H (1929) The Earth: Its Origin, History and Physical Constitution. Cambridge University
Press

Katicha SW, Flintsch GW (2012) Fractional viscoelastic models: Master curve construction, inter-
conversion, and numerical approximation. Rheologica Acta 51:675–689

Khajehsaeid H (2018) Application of fractional time derivatives in modeling the finite deformation
viscoelastic behavior of carbon-black filled NR and SBR. Polymer Testing 68:110–115

Khan AS, Lopez-Pamies O, Kazmi R (2006) Thermo-mechanical large deformation response and
constitutivemodeling of viscoelastic polymers over awide range of strain rates and temperatures.
International Journal of Plasticity 22:581–601

King AW (2019) Nonlinear fractional order derivative models of components and materials in
hearing aids and transducers. PhD thesis, Technical University of Denmark

Knauss WG, Emri I, Lu H (2008) Mechanics of polymers: Viscoelasticity. In: Sharpe W (ed)
Springer Handbook of Experimental Solid Mechanics, Springer, pp 49–95

Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. Journal of
Applied Mechanics, Transactions ASME 51:299–307

Koeller RC (1986) Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary
mechanics. Acta Mechanica 58:251–264

Koeller RC (2007) Toward an equation of state for solid materials with memory by use of the
half-order derivative. Acta Mechanica 191

Krusser AI, Shitikova MV (2020) Classification of viscoelastic models with integer and fractional
order derivatives. IOP Conference Series: Materials Science and Engineering 747

Kružík M, Roubíček T (2019) Mathematical Methods in ContinuumMechanics of Solids. Springer
Nature Switzerland AG

Letnikov A (1868) Theory of differentiation with an arbitrary indicator. Matem Sbornik 3:1–68
Liang J, Huang G (2019) Application of a viscoelastic model to creep settlement of high-fill

embankments. Advances in Civil Engineering 2019:1–8
Lion A, Kardelky C (2004) The payne effect in finite viscoelasticity: Constitutive modelling based

on fractional derivatives and intrinsic time scales. International Journal of Plasticity 20:1313–
1345

Liouville J (1832)Mémoire sur quelques quéstions de géometrie et de mécanique, et sur un nouveau
genre de calcul pour résoudre ces quéstions. Journal de l’école Polytechnique 13:1–69

Liu JG, Xu MY (2006) Higher-order fractional constitutive equations of viscoelastic materials
involving three different parameters and their relaxation and creep functions. Mechanics of
Time-Dependent Materials 10:263–279



14 Models of Viscoelastic Materials 323

Mainardi F (2012) Short survey : An historical perspective on fractional calculus in linear vis-
coelasticity. Fractional Calculus and Applied Analysis 15:712—717

Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models
in rheology. European Physical Journal: Special Topics 193:133–160

Makris BN, Constantinou MC, Member A (1991) Fractional-derivative Maxwell model for viscous
dampers. Journal of Structural Engineering 117:2708–2724

Malinin NN (1975) Applied theory of plasticity and creep [in Russian], 2nd edn.Mashinostroyeniye
Malkin AY, Isayev A (2017) Rheology. Concepts, Methods, and Applications: Concepts, Methods,

and Applications: 3rd Edition. ChemTec Publishing
Mattei G, Ahluwalia A (2019) A new analytical method for estimating lumped parameter constants

of linear viscoelastic models from strain rate tests. Mechanics of Time-Dependent Materials
23:327–335

Maxwell J (1867) On the dynamical theory of gases. Philosophical Transactions of the Royal
Society of London 157:49–88

Merchant W (1939) Some theoretical considerations on the one-dimensional consolidation of clay.
PhD thesis, Massachusetts Inst. of Technology

Meshkov SI (1967) Description of internal friction in the memory theory of elasticity using kernels
with a weak singularity. Journal of Applied Mechanics and Technical Physics 8:100–102

Meshkov SI, Rossikhin YA (1968) Propagation of acoustic waves in a hereditary elastic medium.
Journal of Applied Mechanics and Technical Physics 9:589–592

Meshkov SI, Pachevskaya GN, Postnikov VS, Rossikhin YA (1971) Integral representations of
εγ-functions and their application to problems in linear viscoelasticity. International Journal of
Engineering Science 9:387–398

Meyer OE (1874) Zur theorie der inneren reibung. Journal fur die Reine und Angewandte Mathe-
matik 1874:130–135

Morro A (2017)Modelling of viscoelastic materials and creep behaviour.Meccanica 52:3015–3021
Müller S, Kästner M, Brummund J, Ulbricht V (2011) A nonlinear fractional viscoelastic material

model for polymers. Computational Materials Science 50:2938–2949
Newton I (1687) Philosophiae naturalis principia mathematica. Jussu Societatis Regiæ ac Typis

Joseph Streater
Nonnenmacher TF, Glockle WG (1991) A fractional model for mechanical stress relaxation. Philo-

sophical Magazine Letters 64:89–93
Nutting PG (1921) A new general law of deformation. Journal of the Franklin Institute 191:679–685
Okuka AS, Zorica D (2018) Formulation of thermodynamically consistent fractional Burgers

models. Acta Mechanica 229:3557–3570
Okuka AS, Zorica D (2020) Fractional Burgers models in creep and stress relaxation tests. Applied

Mathematical Modelling 77:1894–1935
Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: A

review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
476:0498

Podlubny I (1999) Fractional differential equations : an introduction to fractional derivatives,
fractional differential equations, to methods of their solution and some of their applications, vol
198. Academic Press

Poynting J, Thomson J (1902) Properties of Matter. C. Griffin and Co
Pritz T (1996) Analysis of four-parameter fractional derivativemodel of real solid materials. Journal

of Sound and Vibration 195:103–115
Pritz T (2003) Five-parameter fractional derivative model for polymeric dampingmaterials. Journal

of Sound and Vibration 265:935–952
Rabotnov YN (1948) Equilibrium of an elastic medium with after effect. Journal of Applied

Mathematics and Mechanics 12:81–91
Rabotnov YN (1969) Creep Problems in Structural Members. North-Holland
Rabotnov YN (1980) Elements of Hereditary Solid Mechanics. Mir Publishers



324 Shitikova, Krusser

Ramrakhyani DS, Lesieutre GA, Smith EC (2004) Modeling of elastomeric materials using non-
linear fractional derivative and continuously yielding friction elements. International Journal of
Solids and Structures 41:3929–3948

Renaud F, Dion JL, Chevallier G, Tawfiq I, Lemaire R (2011) A new identification method of
viscoelastic behavior: Application to the generalized Maxwell model. Mechanical Systems and
Signal Processing 25:991–1010

ReynerM (1960) Deformation,strain and flow. An elementary introduction to rheology. H. K. Lewis
& Co. Ltd

Riemann B (1876) Versuch einer allgemeinen Auffassung der Integration und Differentiation.
Gesammelte Mathematische Werke

Rossikhin YA (2010) Reflections on two parallel ways in the progress of fractional calculus in
mechanics of solids. Applied Mechanics Reviews 63:1–12

Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of
linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews 50:15–67

Rossikhin YA, Shitikova MV (2001) Analysis of rheological equations involving more than one
fractional parameters by the use of the simplest mechanical systems based on these equations.
Mechanics Time-Dependent Materials 5:131–175

Rossikhin YA, Shitikova MV (2007) Comparative analysis of viscoelastic models involving frac-
tional derivatives of different orders. Fractional Calculus and Applied Analysis 10:111–121

Rossikhin YA, Shitikova MV (2008) Free damped vibrations of a viscoelastic oscillator based on
Rabotnov’s model. Mechanics of Time-Dependent Materials 12:129–149

Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of
solid mechanics: novel trends and recent results. Applied Mechanics Reviews 63:1–52

Rossikhin YA, Shitikova MV (2014) Centennial jubilee of Academician Rabotnov and contempo-
rary handling of his fractional operator. Fractional Calculus and Applied Analysis 17:647–683

RossikhinYA, ShitikovaMV (2015) Features of fractional operators involving fractional derivatives
and their applications to the problems of mechanics of solids. In: Daou R, Xavier M (eds)
Fractional Calculus: History, Theory and Applications, vol 8, Nova Science Publishers, Inc., pp
165–226

Rossikhin YA, Shitikova MV (2019) Fractional calculus models in dynamic problems of viscoelas-
ticity. In: Applications in Engineering, Life and Social Sciences, Part A, vol 7, De Gruyter, pp
139–158

Rossikhin YA, Shitikova MV (2020) Fractional operator models of viscoelasticity. Encyclopedia
of Continuum Mechanics pp 971–982

Rossikhin YA, Shitikova MV, Shcheglova TA (2010) Analysis of free vibrations of a viscoelastic
oscillator via the models involving several fractional parameters and relaxation/retardation
times. Computers and Mathematics with Applications 59:1727–1744

Rossikhin YA, Shitikova MV, Krusser AI (2016) To the question on the correctness of fractional
derivative models in dynamic problems of viscoelastic bodies. Mechanics Research Communi-
cations 77:44–49

Roylance D (2001) Engineering viscoelasticity. Department of Materials Science and Engineering
2139:1–37

RozovskiiMI, Sinaiskii ES (1966)Vibrations of an oscillator with residual creep. Journal ofApplied
Mathematics and Mechanics 30:696–703

Rzhanitsyn AR (1949) Some questions of the mechanics of systems deformed in time [in Russian].
State publishing house of technical and theoretical literature

Samko S, Kilbas A, Marichev O (1993) Fractional Integrals and Derivatives. Theory and Applica-
tions. Gordon and Breach Science Publishers

Sasso M, Palmieri G, Amodio D (2011) Application of fractional derivative models in linear
viscoelastic problems. Mechanics of Time-Dependent Materials 15:367–387

Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. Journal
of Physics A: Mathematical and General 26:5057–5069

Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models:
Their fractional equations with solutions. Journal of Physics A: General Physics 28:6567–6584



14 Models of Viscoelastic Materials 325

Scott-Blair GW (1944) Analytical and integrative aspects of the stress-strain-time problem. Journal
of Scientific Instruments 21:80–84

Scott-Blair GW (1949) A survey of general and applied rheology. Pitman
Shermergor TD (1966) On the use of fractional differentiation operators for the description of

elastic aftereffect properties of materials. Journal of Applied Mechanics and Technical Physics
7:85–87

Shitikova MV (2022) Fractional operator viscoelastic models in dynamic problems of mechanics
of solids: A review. Mechanics of Solids 57

Singh A, Guedes RM, Paiva D, Magalhães FD (2020) Experiment and modelling of the strain-rate-
dependent response during in vitro degradation of pla fibres. SN Applied Sciences 2

Sjoeberg M (2002) On dynamic properties of rubber isolators. PhD thesis, Royal Institute of
Technology

Smit W, de Vries H (1970) Rheological models containing fractional derivatives. Rheologica Acta
9:525–534

Sobotka Z (1981) Reologie hmot a konstrukci (Rheology of materials and constructions — in
Czech). Academia

Song DY, Jiang TQ (1998) Study on the constitutive equation with fractional derivative for the
viscoelastic fluids - modified Jeffreys model and its application. Rheologica Acta 37:512–517

Steinmann P, Runesson K (2021) Visco-Elasticity. Springer International Publishing
Stiassnie M (1979) On the application of fractional calculus for the formulation of viscoelastic

models. Applied Mathematical Modelling 3:300–302
Su X, Yao D, Xu W (2021) Processing of viscoelastic data via a generalized fractional model.

International Journal of Engineering Science 161
Thompson J (1933) On the theory of visco-elasticity: A thermodynamical treatment of visco-

elasticity, and some problems of the vibrations of visco-elastic solids. Philosophical Transactions
of the Royal Society A:Mathematical, Physical and Engineering Sciences 231(694–70:339–407

Thomson W (1865) On the elasticity and viscosity of metals. Proceedings of the Royal Society of
London 14:289–297

Thomson W (1875) Elasticity. In: Encyclopaedia Britannica, vol 7, pp 796–825
Tobolsky AV, Catsiff E (1956) Elastoviscous properties of polyisobutylene (and other amorphous

polymers) from stress–relaxation studies. ix. a summary of results. Journal of Polymer Science
19:111–121

Tschoegl NW (1989) The Phenomenological Theory of Linear Viscoelastic Behavior. Springer-
Verlag

Voigt W (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper.
Annalen Der Physik 274:573–587

Voigt W (1892) Ueber innere reibung fester körper, insbesondere der metalle. Annalen der Physik
283:671–693

Wang Y, Harris JM (2020) Seismic attenuation models: Multiple and fractional generalizations.
SEG 2020 pp 2754–2758

Ward IM, Sweeney J (1983) Mechanical properties of solid polymers. John Wiley & Sons, Ltd.
Watanabe S (1959) An approach to visco-elastic behaviors with a mathematical method. Journal of

the Textile Machinery Society of Japan 5:10–13
Welch SW, Rorrer RA, Duren RG (1999) Application of time-based fractional calculus methods

to viscoelastic creep and stress relaxation of materials. Mechanics Time-Dependent Materials
3:279–303

WeylH (1917)Bemerkungen zumBegriff desDifferentialquotienten gebrochenerOrdnung.Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zürich 62

Wiechert E (1893) Gesetze der elastischen Nachwirkung für constante Temperatur. Annalen der
Physik 286

Wollscheid D, Lion A (2014) The benefit of fractional derivatives in modelling the dynamics of
filler-reinforced rubber under large strains: A comparison with the Maxwell-element approach.
Computational Mechanics 53:1015–1031



326 Shitikova, Krusser

Yang X, Cai W, Liang Y, Holm S (2020) A novel representation of time-varying viscosity with
power-law and comparative study. International Journal of Non-Linear Mechanics 119:103,372

Zelenev VM, Meshkov SI, Rossikhin YA (1970a) Damped vibrations of hereditary-elastic systems
with weakly singular kernels. Journal of Applied Mechanics and Technical Physics 11:290–293

Zelenev VM, Meshkov SI, Rossikhin YA (1970b) Effect of the �-function singularity parameters
on the damped vibrations of elastic systems with aftereffect. Mechanics of Solids 5:92–94

Zener C (1948) Elasticity and anelasticity of metals. University of Chicago press
Zhou HW, Wang CP, Mishnaevsky L, Duan ZQ, Ding JY (2013) A fractional derivative approach

to full creep regions in salt rock. Mechanics of Time-Dependent Materials 17:413–425
Zhou XQ, Yu DY, Shao XY, Zhang SQ, Wang S (2016) Research and applications of viscoelastic

vibration damping materials: A review. Composite Structures 136:460–480
Zopf C, Hoque SE, Kaliske M (2015) Comparison of approaches to model viscoelasticity based on

fractional time derivatives. Computational Materials Science 98:287–296



Chapter 15
Invariance Aspects of F = F eF i

Representations in Coupled-Field Problems

Marek Werner, Kerstin Weinberg

Abstract In multi-field problems, the free energy contributions of different fields are
coupled. For the kinematic of deformation, explicit assumptions on the independent
fields are necessary, and the intermediate configurations of composed deformations
are not uniquely determined. Here, a thermodynamic free energy potential with
two primary variables is analyzed. The two energy representations Ψ(c,C) and
Ψ(c,Ce), based on the concentration c, the right Cauchy-Green tensor C, and
its elastic part Ce, are studied in full detail. The considerations are specified to
the chemomechanical coupling of a regular solution model and two types of elastic
energy potentials, but all derivations can be generalized to arbitrary material models.

Keywords: Continuum mechanics · Coupled-field problems · Finite strain · State
equations · Intermediate configuration · Finite element method

15.1 Introduction

A continuummechanical description determines a point of a bodyB in the reference
configuration at location X and time t0. The deformation mapping to the current
configuration, χ : X → x, defines its position at time t > t0. The corresponding
linear approximation of themapping is the deformation gradient,F = ∇Xχ, and the
local volume change is described by the Jacobian, J = detF . For compositions of
n > 1 deformations, F is split multiplicatively, F = F n · · ·F 2F 1, referring to one
or more intermediate configurations, see Fig. 15.1. Such intermediate configurations
may be compatible and realistic, but in most cases, an intermediate configuration is
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incompatible and serves as a hypothetical construct to analyze different contributions
of a deformation.

In multi-field problems, thermal, chemical, electrical, and other fields contribute
with different magnitudes to the resulting deformation, and so F decomposes with
respect to the given fields. In the case of two fields,F = F 2F 1, the partF 2 is usually
chosen as the purely elastic part of deformation F e, and F 1 is the non-elastic part.
The latter can be related to deformations due to temperature (F θ), plasticity (F p),
viscosity (F v), growth (F i), or others. The corresponding multiplicative formula-
tions are attributed in the framework of thermoelasticity, F = F eF θ, to Stojanović
et al (1964), for elastoplasticity, F = F eF p, to Lee (1969), for viscoelasticity,
F = F eF v , to Sidoroff (1974), for growth modeling, F = F eF i, to Kondaurov
and Nikitin (1987); Takamizawa and Hayashi (1987), and for a combined elastic,
viscoelastic and elasto(visco)plastic model to Perić and Dettmer (2003), to name a
few.

Fig. 15.1 Schematics of a body with reference configuration B0, intermediate configuration B̂t
and current configuration Bt. The elastic deformation patches incompatible material elements to a
body again.

The most intuitive, generally valid decomposition of the deformation gradient
is the polar decomposition, F = RU . Assuming a plane uniform deformation for
simplicity, it reads F (α, λ) = R(α)U(λ), and can be understood as a separation of
variables, such that the rotation angle α and the stretch λ are independent quantities.
The right Cauchy-Green tensor C(λ) = F>F , which is employed to formulate
invariant constitutive relations, does not depend on the rotation angle.

The intermediate configuration introduced by a multiplicative decomposition is
not unique with respect to its rotational part. This is inconsequential for isotropic
materials but introduces extended invariance requirements for anisotropy, see e.g.
Haupt (2002).

At any stage of deformation, elastic relaxation of the body in the current configu-
ration occurs instantaneously Kelly (2013) and thereby introduces the intermediate
configuration as a pointwise-unloaded, stress-free, and therefore incompatible con-
figuration. Isotropic materials, which remain isotropic during deformation, do not
depend on local rotation, and so the elastic unloading takes place without rotation
Lubarda (2004). A pre-stressed intermediate configuration may also be considered,
but then the total stress depends on additional arising strains Sauer et al (2019), e.g.,
eigen-strains.
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For composed deformations, the order of mappings, F = F n · · ·F 2F 1, is not
uniquely determined. In elastoplasticity, for example, the composition F = F eF p
is established. The underlying assumption is that the plastic deformations are local;
they induce no long-range stress whereas the solid’s elastic response is structure
insensitive, i.e., invariant under the internal processes. A comparison of different
decompositions in the two-field problem of thermoelasticity has been made by
Hartmann (2012). The two decompositions, F = F θF e and F = F eF θ, are
considered for the case of isotropic material and a purely volumetric temperature
response, F θ = J

1/3
θ 1. It appears that both formulations yield the same stress state

in the current configuration, although the intermediate configuration differs.
The situation is similar for chemomechanical modeling, where inelastic deforma-

tions are attributed to the intercalation of species, and elastic deformations result from
the local swelling. The diffusing species have a normalized concentration c ∈ [0, 1],
and so the inelastic part of the deformation gradient is a (purely volumetric) function
of the concentration field,

F i(c) = Ji(c)
1/31 . (15.1)

Such models are proposed in Anand (2012); Huttin and Kamlah (2012); Weinberg
et al (2018); Zhao et al (2015), for example. Here the unknown function Ji(c) is
approximated by a Taylor series

Ji(c) ≈ Ji|c=c0 +Ω(c− c0) + O((c− c0)2) , (15.2)

where the linear slope Ω = ∂cJi|c=c0 matches with the normalized partial molar
volume, and c0 is the species’ concentration in the reference concentration, Ji(c =
c0) = 1. So in the following we will focus on an isothermal environment and
concentrate on the chemical concentration only.

From the multiplicative decompositionF = F eF i along with the generally valid
relation (15.3) we obtain for the particular case (15.1) the form (15.4)

Ĉe = F T −1
i C F−1

i (15.3)

Ĉe = J
−2/3
i C . (15.4)

Note that Ĉe = F>e F e is living in the intermediate configuration (IC), see Fig. 15.1,
hence a purely elastic, symmetric, rotation-free deformation measure and therefore
the proper argument in the elastic potential, since the IC is the reference configuration
for elastic deformation up to the current configuration. However, the attribution of
the additional concentration field c to C and Ĉe is not that clear. In other words:
Is there a concentration dependency of the total right Cauchy-Green tensor, C(c),
or is there an inverse concentration dependency of Ĉe(c) such that it relaxes C to
be concentration-independent? Formulated in terms of the free energy density Ψ ,
which determines the constitutive relations, we need to know which consequences
are induced by primarily writing Ψ(c,C) or Ψ(c, Ĉe).

In this paper, we investigate both modeling perspectives and show the conse-
quences stating Ψ(c,C) and Ψ(c, Ĉe). We remark that our understanding of writing
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a function’s argument is such that the listed variables are pairwise independent to
each other. The notation F (C) and F (Ĉe) is chosen for purpose of illustration; all
functions are understood to depend on the corresponding right Cauchy-Green tensor
indeed.

To embed the investigation into a chemomechanically coupled framework, we
briefly formulate a variational material model and the governing equations in Sec-
tion 15.2. Then, we study in Section 15.3 the derivatives, which are needed to con-
struct the residual and the tangent of a standard finite element implementation for
the two modeling representations. In Section 15.4, we compare both representations,
present a numerical example and discuss the results.

15.2 Basic Equations and Free Energy Expressions

The coupled chemomechanical problem’s constitutive model is stated in a fully vari-
ational form, cf. Weinberg et al (2018). The energy density is additively decomposed
according to

Ψ = Ψ con + Ψ int + Ψ el (15.5)

based on a configurational energy Ψ con, an assigned interfacial energy Ψ int, and an
elastic energy Ψ el. For a binary mixture, a configurational energy density of the form

Ψ con = θ(T )(c ln(c) + (1− c) ln(1− c)) + χ c(1− c) (15.6)

is often referred to as the regular solution model, where a temperature function
θ(T ) weights the logarithmic entropy term, and where a Flory-Huggins interaction
parameter χ scales the second term. The interface-related energy

Ψ int =
κ

2
|∇c|2 (15.7)

ensures with κ > 0 the lowest energy for a vanishing gradient, i.e., minimal inter-
faces. The elastic energy splits into a volumetric and an isochoric part,

Ψ el = Ψ el
vol + Ψ el

iso . (15.8)

We assume finite strain elasticity here. For elastic deformations, with components
F e and Je = detF e, the volumetric part of the energy density reads

Ψ el
vol = Λβ−2(J−βe − 1 + β ln(Je)) (15.9)

as proposed by Ogden and Hill (1972). In this relation, Λ = K − 2/3G is the first
Lamé constant which is expressed here by bulk modulus K and shear modulus G.
Different values for β were proposed, e.g., β = −2 in Simo and Taylor (1991),
β = −1 in Miehe (1994), or β = 1 together with a Taylor series expansion (see
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Appendix). The latter leads to

Ψ el
vol =

Λ

2
(Je − 1)2 . (15.10)

Exemplarily, for the (purely elastic) spherical deformationF e = λ1, the normalized
elastic energy potentials are shown in Fig. 15.2. For moderate volumetric expansion,
the expressions for different β are similar and convex.

Pister et al. Simo and Pister (1984) proposed the simple potential

Ψ el
iso =

G

2
(Ie1 − 3− 2 ln(Je)) (15.11)

with Ie1 = tr(Ĉe) for the isochoric part of the elastic energy density. Another
common model is the classical Neo-Hookean expression for rubber-like materials,

Ψ el
iso =

G

2
(Īe1 − 3) , (15.12)

where Īe1 = J
−2/3
e Ie1 . Both expressions differ only for large tension or compression,

as shown exemplarily in the right plot of Fig. 15.2. For our coupled field model,
we state that the Lamé constants to depend on the concentration, Λ = Λ(c) and
G = G(c).

With all energetic contributions at hand, the governing equations comprise the
Cahn-Hilliard equation for the chemical diffusion field and the balance of linear
momentum for the mechanical field,

ċ = ∇ · (M∇µ) µ = δcΨ , (15.13)
0 = ∇ · (FS) S = 2 ∂CΨ (15.14)

as a coupled set of equations with mobility tensor M , chemical potential µ, and
the second Piola-Kirchhoff stress tensor S. The variational derivative in Eq. (15.13)
reads δc• = ∂c • −∇ · (∂∇c•).

Fig. 15.2 Free energy of elastic material models shown for a spherical expansion F = λ1 without
inelasticity, Je = J . A volumetric change of 700% is given for λ = 2.
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15.3 Modeling Representation

Here we will equip the free energy density Ψ with the kinematic assumption of the
total or the elastic deformation as a function of the concentration, F (c) or F e(c),
respectively. The functional dependency of Ψ on the pairs (c,C) or (c, Ĉe) will be
studied in full detail.

In particular, the chemical potential µ, i.e., as the derivative with respect to c,
Eq. (15.13)2, and the second Piola-Kirchhoff stress tensor S, as the derivative of the
potential Ψ with respect to C, Eq. (15.14)2, will be derived.

15.3.1 First Modeling Representation: Ψ(c, C)

Fig. 15.3 Illustration of the free energy representation Ψ(c,C)

In this representation, the two independent variables, c andC, construct the energy
potential Ψ(c,C). Nonetheless, as visualized in Fig. 15.3, the total deformation
depends on the right Cauchy-Green tensor only,F (C). Its inelastic part is a function
of concentration, F i(c), whereas the elastic response F e(c,C) is the mediator
between the inelastic deformation and the total deformation.

We start deriving the chemical potential. An application of Jacobi’s formula toC,
∂cJ

2 = J2 tr
(
C−1∂cC

)
= 0, leads to a concentration-independent total Jacobian,

∂cJ = 0, (15.15)

and the explicit expression J = J(C). As illustrated by the arrow between B0 and
Bt in Fig. 15.3, the total deformation depends onC only. The inelastic deformation
between B0 and Bt̄ depends on c, and therefore it follows that the elastic relaxation
between Bt̄ and Bt depends on both, c and C. Thus, inspection of the elastic
Jacobian Je(c,C) = J(C)J−1

i (c) shows that it can be decomposed multiplicatively
with separation of variables. The commutator between both derivatives is zero, i.e.,
[∂C , ∂c]Je = 0, so the chronological order of taking the derivatives is exchangeable,
which is known as Schwarz theorem. An expression for the partial derivative ∂cĈe

results from the mutual independence of c and C,
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0 = ∂cC = ∂c(J
2/3
i Ĉe) = 2/3ΩJ

−1/3
i Ĉe + J

2/3
i ∂cĈe (15.16)

⇒ ∂cĈe = −2/3ΩJ−1
i Ĉe . (15.17)

With Eq. (15.15) it holds further that

0 = ∂cJ = (∂cJi)Je + Ji(∂cJe) ⇒ ∂cJe = −ΩJeJ−1
i . (15.18)

In this way, an expression for the partial derivative of the elastic Jacobian is found,
which enters the derivation of the chemical potential trough the elastic energy po-
tential (15.10). Other expressions, which are needed for the gradient of the chemical
potential, as well as for the construction of S, are summarized in Table 15.1.

∇µ(c,C) = (∂cµ)∇c+ (∂Cµ) : ∇C = (∂2
cΨ)∇c+ (∂C∂cΨ) : ∇C . (15.19)

With the results of Table 15.1, the total gradient of the chemical potential reads

∇µ(c,C) = (θ(T )c−1(1− c)−1 − 2χ)∇c− κ∇∆c
+
(

1/2 (∂2
cΛ)(Je − 1)2

)
∇c (15.20)

+
(
ΩJ−1

i

(
Je(Je − 1)(ΩJ−1

i − 2∂cΛ)− (2Je − 1)
))
∇c

+
(

1/2 (∂cΛ)Je(Je − 1)− 1/2ΛJe(2Je − 1)ΩJ−1
i

)
C−1 : ∇C ,

where the first line result from the chemical energy density and the remaining
expressions from the coupled elasticity. The second Piola-Kirchhoff stress tensor
then follows as

S = 2 ∂CΨ = ΛJe(Je − 1)C−1 . (15.21)

We remark that this approach has a certain similarity to the “microforce” concept
of Anand Anand (2012), used for chemomechanical simulations in Huttin and Kam-
lah (2012); Zhao et al (2015). However, in opposite to our approach, in Anand (2012),
the elastic free energy density refers explicitly to the intermediate configuration, see
Werner et al (2021) for a discussion.

Table 15.1 Derivatives of Ψ(c,C) wrt. concentration c and right Cauchy-Green tensor C; symbol
S denotes the fourth order super-symmetric identity tensor.

J Ji Je C Ĉe I1 Ie1 Ī1 = Īe1

∂c 0 Ω −Je ΩJi 0 − 2
3
Ω
Ji
Ĉe 0 − 2

3
Ω
Ji
Ie1 0

∂2c 0 0 Je
Ω2

J2
i

0 10
9
Ω2

J2
i
Ĉe 0 10

9
Ω2

J2
i
Ie1 0

∂C
J
2
C−1 0 Je

2
C−1 S J

−2/3
i S 1 J

−2/3
i 1 J−2/3(1− I1

3
C−1)

∂C∂c 0 0 −Je
2
Ω
Ji
C−1 0 − 2

3
Ω
Ji
J
−2/3
i S 0 − 2

3
Ω
Ji
J
−2/3
i 1 0
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15.3.2 Second Modeling Representation: Ψ(c, Ĉe)

Fig. 15.4 Illustration of the free energy representation Ψ(c, Ĉe)

In this representation, the set of independent variables is c and Ĉe. As shown
in Fig. 15.4, the inelastic and the elastic processes are coupled in the sense that
the inelastic part of deformation is a function of concentration again, F i(c), and
the elastic part is independent of c and just relaxes the intermediate configuration.
The total deformation relates both processes to the current configuration. In other
words, F is the mediator between the total deformation C and both fields (Ĉe, c).
Consequently, we get ∂cĈe = 0 here.

We begin the examination with the derivative ∂Ĉe
C = ∂Ĉe

(J
2/3
i Ĉe) = J

2/3
i S,

where S denotes the fourth order super-symmetric identity tensor. With this, we
investigate if the concentration depends on the right Cauchy-Green tensor, c(C),
and write 0 = ∂Ĉe

c = (∂Cc) : (∂Ĉe
C). With ∂Ĉe

C 6= 0 directly follows that

∂Cc = 0. (15.22)

From the application of Jacobi’s formula to C, we get the condition

2ΩJ−1
i = C−1 : ∂cC . (15.23)

Since the left hand side of Eq. (15.23) is greater than zero for any inelastic de-
formation, the derivative ∂cC cannot be chosen as zero. However, it is deduced
from

∂cC = ∂c(J
2/3
i Ĉe) = 2/3ΩJ−1

i C , (15.24)

and with this, Eq. (15.23) holds true. At first glance, this result looks strange, since
there is a one-way dependency ofC(c) and no explicit reverse dependency of the con-
centration neither on the total deformation c 6= c(C) accordingly to Eq. (15.22)nor
on the elastic deformation c 6= c(Ĉe) accordingly to Ψ(Ĉ, c). Such one-directional
dependency has the negative taste that the derivatives ∂c and ∂C do not commute.
These circumstances require more caution by the calculation of the residuum and
the tangent. Consequently, the change of the stress with the concentration (∂c∂CΨ )
differs from the change of the chemical potential with deformation (∂C∂cΨ ).
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By applying Jacobi’s formula this time to Ĉe, we get the expression ∂cJ2
e =

J2
e tr

(
Ĉ
−1

e ∂cĈe

)
= 0. With this result, there is no concentration dependency of

Je,
∂cJe = 0 , (15.25)

which restricts Je(Ĉe) only. Moreover, we find an expression for the concentration
dependency of the total deformation,

∂cJ = (∂cJi)Je + Ji(∂cJe) ⇒ ∂cJ = ΩJe , (15.26)

and due to the linear definition of Ji(c), it holds ∂2
cJ = 0. Moreover, with Eq. (15.22)

follows that

∂CJ = (∂CJi)Je + Ji(∂CJe) =
J

2
C−1 ⇒ ∂CJe =

Je
2
C−1 . (15.27)

At this stage, we want to mention, that the explicit dependency is Je(Ĉe), and
although the expression Ĉe = J

−2/3
i C is given, it is not possible to write Je(C) as

the following calculation shows:

0
(15.25)

= ∂cJe(Ĉe)
!
= ∂cJe(C) = (∂CJe) : (∂cC)

(15.27)
=

(
Je
2
Ĉ
−1

e

)
:

(
2

3

Ω

Ji
C

)
= JeΩJ

−1/3
i > 0 E . (15.28)

With this at hand, the elastic part of the gradient of the chemical potential reads

∇µel(c, Ĉe) = (∂cµ
el)∇c+ (∂Ĉeµ

el) : ∇Ĉe . (15.29)

Table 15.2 summarizes the derivatives of relevant quantities arising in the poten-
tial. It can be directly seen that in general they do not commute and therefore the
order of taking the derivatives matters. The total gradient of the chemical potential
then reads

Table 15.2 Derivatives of Ψ(c, Ĉe) wrt. concentration c and right Cauchy-Green tensor C;
symbol S denotes the fourth order super-symmetric identity tensor.

J Ji Je C Ĉe I1 Ie1 Ī1 = Īe1

∂c ΩJe Ω 0 2
3
Ω
Ji
C 0 2

3
Ω
Ji
I1 0 0

∂2c 0 0 0 − 2
9

( Ω
Ji

)2C 0 − 2
9

( Ω
Ji

)2I1 0 0

∂Ĉe
J
2
Ĉ
−1
e 0 Je

2
Ĉ
−1
e J

2/3
i S S J

2/3
i 1 1 J

−2/3
e (1− I1

3
Ĉ
−1
e )

∂C
J
2
C−1 0 Je

2
C−1 S J

−2/3
i S 1 J

−2/3
i 1 J−2/3(1− I1

3
C−1)

∂C∂c
Ω
2
JeC

−1 0 0 2
3
Ω
Ji
S 0 2

3
Ω
Ji

1 0 0

∂c∂C
Ω
6
JeC

−1 0 −Je
3
Ω
Ji
C−1 0 − 2

3
Ω
Ji
J
−2/3
i S 0 − 2

3
Ω
Ji
J
−2/3
i 1 − 2

3
Ω
Ji
J−2/3(1− I1

3
C−1)
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∇µ(c, Ĉe) = (θ(T )c−1(1− c)−1 − 2χ)∇c− κ∇∆c
+ 1/2 (∂2

cΛ)(Je − 1)2∇c (15.30)

+ 1/2 (∂cΛ)Je(Je − 1)Ĉ
−1

e : ∇Ĉe ,

and the second Piola-Kirchhoff stress tensor follows as

S = 2∂CΨ = ΛJe(Je − 1)C−1 . (15.31)

15.3.3 Relation Between Both Representations

In a consistent theory, the results, which are here the stresses and the gradient of the
chemical potential, must be independent of the primarily chosen set of arguments.
For the stress tensor (15.21) and (15.31), this is obvious. To recover the gradient
expression (15.20) from expression (15.30), we write the elastic part of the second
representation, Eq. (15.29), at fixed variables

∇µel(c, Ĉe) = (∂cµ)|Ĉefix
∇c+ (∂Ĉeµ)|cfix : ∇Ĉe . (15.32)

We rewrite the third-order tensor as

∇Ĉe = ∇(J
−2/3
i C) = −2/3ΩJ−1

i ∇c� Ĉe + J
−2/3
i ∇C . (15.33)

Insertion of Eq. (15.33) into Eq. (15.32) leads to

∇µ =
(

(∂cµ)|Ĉefix
− 2/3ΩJ−1

i (∂Ĉeµ)|cfix : Ĉe

)
∇c+ J

−2/3
i (∂Ĉeµ)|cfix : ∇C ,

(15.34)

where the relation (A �B) : C = A(B : C) has been used. The derivatives are
fixed at different variables, so we show the two relations

(∂Cµ(Ĉe, c))|cfix = (∂Ĉe
µ)|cfix : (∂CĈe) = J

−2/3
i (∂Ĉe

µ)|cfix , (15.35)

and

(∂cµ)|Ĉefix
= (∂Cµ)|cfix : (∂cC) + (∂cµ)|Cfix = 2/3ΩJ−1

i (∂Cµ)|cfix : C + (∂cµ)|Cfix .
(15.36)

One should read Eq. (15.35) backward and insert the first term together with expres-
sion of Eq. (15.36) into Eq. (15.34), which gives

∇µ = (∂cµ) |Cfix∇c+ (∂Cµ)|cfix : ∇C . (15.37)

What follows is an expression for ∇µ which is known from Eq. (15.20) of the first
representation.
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15.4 Discussion and Example

The chemomechanical potential is characterized by two independent primary vari-
ables, here in the two representations Ψ(c,C) and Ψ(c, Ĉe). The driving forces
of the state equations, i.e., the gradient of the chemical potential and the current
stresses, are derived with respect to the concentration and the total deformation C.
Our study shows that the partial derivatives with respect to c and with respect to C
do not commute for the potential Ψ(c, Ĉe), since the thermodynamic variables have
been chosen as c and Ĉe and fulfill the Maxwell relations to this set of variables.
However, both formulations lead to the same gradient chemical potential and the
same resulting stresses, although the calculations differ.

Above, we have calculated expressions required for the correct implementation
of a chemomechanical coupled-field model within a finite element framework. To
illustrate that, wewill showhere a sample calculation. For the two elasticitymodels of
Sect. 15.2, namely the simplified finite elasticity model with energy density (15.11)
and the classical Neo-Hookean model with energy density (15.12), both extended to
the volumetric range with density (15.10), we calculate the mechanical deformation
of a cylindrical rod under chemical loading.

The elastic rod has a radius of r = 0.5µm and a length of l = 7µm. It is
clamped at both ends, i.e., its longitudinal displacements are constraint. The initial
concentration of species is uniform with cini = 0.4. Without additional loading, the
system evolves over time. The material is described by Λ = 10GPa, G = 10GPa,
c0 = 0.25. The chosen material parameters result in symmetric equilibrium phases,
cα = 0.855 and cβ = 0.145, whereby these values refer to phase decomposition
by diffusion only. For more details on the model and a consistent thermodynamical
background, we refer toWeinberg et al (2018);Werner andWeinberg (2019);Werner
et al (2021).

In Fig. 15.5, we display the rod radius evolution over the length for five instances
of time. Because both representations, Ψ(c,C) and Ψ(c, Ĉe), deliver essentially the
same, the contour curves lay on top of each other. Initially, the rod radius jumps to
r = 0.53µm because cini 6= c0. Then three phases evolve, and it can be seen that
both elastic potentials result in a similar shape. The maximum volumetric expansion
is about 14%, and so the deviation between the curves is small. The average velocity
for the swelling process is calculated to be 10−11 m/s.

We find that evolution of the radius can be described by simple trigonometric
functions. First we fit the contour curves by r(x) = r0 + A cos(πkx) to get a
time dependent amplitude A. Then, the amplitude is fitted by an arctan function,
A = rA arctan(a(t− t1)) + b. To ensure the initial condition r(x, t = 0) = r0, we
get the fit function

r(x, t) = r0 + rA cos(πkx)(arctan(at̄1)− arctan(a(t̄1 − t̄ ))) (15.38)

and the specific fit values rA = 0.0145, k = 0.8569, a = 0.1445 and t̄1 = 120.7.
We can estimate the maximum radius rmax ≈ 0.5738 for t̄→∞, which is reached in
good approximation after 200 time steps. What we see is that phase decomposition
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Fig. 15.5 Chemomechanical expansion of a cylindrical rod: contour plot and fitted radius-over-time
curve

is a rapid process and might be numerically challenging, in particular with regard to
time marching schemes.

15.5 Summary and Conclusion

Field coupling leads to the combination of different energy potentials. Here, an
explicit assumption is made for the pairwise independent variables of a two-field
problem. An ad-hoc convincing choice is the formulation of the material’s potential
as a function of the inelastic field and the (superposed) elastic part of the mechanical
deformation. The resulting free energy potential depends directly on the elastic
variables, like Je or Ĉe, and so the well-known models of finite elasticity can be
used. In the context of coupled problems, such a choice reduces the number of terms
in the derivatives required for the state equations. However, a suitable transformation
must be found in order to obtain the stresses in the body in its current configuration.
Less intuitive butmathematically sound is the formulation of the free energy potential
as a function of the total deformation only, where the local elastic deformation Ĉe

but not the total deformationC depend implicitly on the inelastic field c. This model
gives the elastic response as a function of both inelastic and elastic field. Since the
stresses and the chemical potential are defined by the partial derivative with respect
to C and c, we prefer the representation Ψ = Ψ(c,C). Here the corresponding
derivatives commute. However, our detailed derivation and an illustrating sample
calculation show that both formulations yield equivalent results.
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Appendix

Ogden Elastic Free Energy Density and its Taylor Series

Ogden elastic free energy density reads

Ψ el
vol = Λβ−2(J−βe − 1 + β ln(Je)) . (15.39)

A Taylor series expansion of the two functions

J−βe = J−β0 − βJ−β−1
0 (Je − J0) +

1

2
(−β)(−β − 1)J−β−2

0 (Je − J0)2 − O(J3
e )

(15.40)

ln(Je) = ln(J0) + J−1
0 (Je − J0) +

1

2
(−1)J−2

0 (Je − J0)2 + O(J3
e ) (15.41)

around Je = 1 leads to
Ψ el
vol =

Λ

2
(Je − 1)2 . (15.42)

Configurational Free Energy Density and its Taylor Series

Also here, a series expansion of the functions c ln(c) and (1 − c) ln(1 − c) around
the evaluation concentration c0 = 1/2 gives the fourth order potential approximation

Ψ con
2 = 4/3 c2(1− c)2 + (χ− 8/3) c(1− c) + 7/12− ln(2) (15.43)

by exploiting (c − 1/2)2 = 1/4 − c(1 − c). Both potentials are shown in Fig. 15.6
together with mobilitiesM1 = c(1− c) andM2 = 1/8.

Fig. 15.6 Configurational energy and mobility.
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Chapter 16
Strain-Gradient Modeling and Computation of
3-D Printed Metamaterials for Verifying
Constitutive Parameters Determined by
Asymptotic Homogenization

Gokhan Aydin, M. Erden Yildizdag, Bilen Emek Abali

AbstractMetamaterials exhibit significantly different mechanical deformation than
in classical “first-order” theory. One possible modeling approach is to use a “strain-
gradient” theory by incorporating also higher gradients of displacements into the
formulation. This procedure clearly brings in additional constitutive parameters. In
this study, a numerical framework is presented by applying strain-gradient theory to
3-D printed structures with an infill ratio used frequently in additive manufacturing
for weight reduction. This choice causes metamaterials; the additional constitutive
parameters in the strain-gradient model are determined by an asymptotic homoge-
nization. In order to demonstrate the reliability of this methodology, we verify the
accuracy by computations using the finite element method.
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16.1 Introduction

Recently, the usage of additive manufacturing (AM) has considerably increased ef-
fected by its ability to construct sophisticated geometries not possible in conventional
manufacturing techniques like casting or milling. AM techniques build 3-D objects
in a layer-by-layer fashion by using virtual models created in a CAD software. As
its layer-wise approach eliminates dependency on many constraints in terms of de-
sign and manufacturing, AM techniques are able to provide suitable solutions for
complex manufacturing requirements in different industrial applications. Indeed, in
the last decade, additive manufacturing techniques have substantially changed the
viewpoint of designers and engineers in terms of geometric complexity, topology op-
timization, multifunctionality and customization. Presently, fabrication of materials
with complex microstructures exhibiting exotic properties is not an unlikely effort
with the inexorable progress in additive manufacturing and material technology
(Yildizdag et al, 2019). Therefore, design of metamaterials has become a popular re-
search subject with increasing advanced manufacturing techniques to obtain unique
application-tailored responses, and many new ideas from biomechanics (Lekszycki
and dell’Isola, 2012; Giorgio et al, 2016, 2017; George et al, 2018; Giorgio et al,
2019, 2021; Scerrato et al, 2021) to micrometer length scale designs (Kwon et al,
2020; Vangelatos et al, 2021a; Casalotti et al, 2020) have been promulgated relying
on sophisticated microstructure based designs.

Matematerials belong to a class of materials showing unconventional overall
behavior due to their complex microstructures, and in general, metamaterials are
categorized based on the main interaction phenomena occurring in their microstruc-
tures. This study is concerned with one of the most popular metamaterials, namely
mechanical metamaterials. In mechanical metamaterials, the overall behavior is
obtained via mechanical interaction between micro-structural constituents of the
material. Obviously, they are the most suitable type of metamaterials, which are de-
signed and fabricated even with regular 3-D printers. For instance, among different
mechanical metamaterials, pantographic metamaterials have garnered a lot of atten-
tion in the recent literature as reviewed by Barchiesi et al (2019) due to their distinct
properties and have been investigated numerically and experimentally in various
studies (for example, see dell’Isola et al, 2019c; Yildizdag et al, 2020; Vangelatos
et al, 2021b; Spagnuolo et al, 2021; Hild et al, 2021). In fact, studies on pantographic
metamaterials have had an important role to initiate the concept of higher-gradient
mathematical modeling for materials with complex microstructures (see dell’Isola
et al, 2019b,a, 2016). Although this is not a new concept in theoretical mechanics,
fabrication of materials showing higher-gradient effects has been enabled by ad-
vanced 3-D printing techniques as discussed in Alibert et al (2003); dell’Isola et al
(2015); Giorgio et al (2018); Ciallella et al (2021). Actually, development of new
mathematical models is inevitable from a theoretical point of view, while tremendous
effort made in additive manufacturing and material technology enables fabrication
of complex structures. In addition, these novel mathematical models may play an
important role for exploring new potential metamaterials (Skrzat and Eremeyev,
2020; Rahali et al, 2015; Eremeyev and Turco, 2020). For interested readers, we
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refer to the recently published works of Turco et al (2016); Berezovski et al (2020);
Desmorat et al (2020); Barchiesi et al (2021); Laudato et al (2021); Shekarchizadeh
et al (2021a,b) on different aspects of higher-gradient theories and their applications.

In this study, a numerical framework is presented, which is suitable to identify
the second-gradient mathematical model for 3-D printed specimens with different
infill patterns and ratios. This infill ratio is a standard feature in slicer software that
is used to construct numerical control code (G-code) defining how to manufacture
the structure. Hence, it is frequently used in AM and we examine the metamaterials
parameters in one possible infill pattern. To this end, a representative volume element
(RVE) is first formed by using the periodicity of the internal structure of specimen,
i.e. infill pattern. Then, second-gradient constitutive parameters are determined by
using an asymptotic homogenization technique. The mechanical behavior of speci-
men as a cantilever is investigated by means of simulations for the second-gradient
model by using the determined constitutive parameters. In order to examine the
accuracy of the numerical framework, the solution based on classical 1st-gradient
model, i.e. Cauchy continuum, is used as a reference solution. Compared with this
reference solution, we obtain adequate results by means of the 2nd-gradient model,
which indeed decreases the computational cost significantly. As a target problem, a
specimen with “grid” infill pattern is selected, since this pattern is one of the mostly
usedmicrostructure in AM. Albeit the computational formulation is readily available
in 3-D continuum, we present a 2-D analysis for the sake of simplicity.

The rest of the manuscript is as follows. In Section 16.2, the numerical frame-
work based on an asymptotic homogenization technique is briefly reviewed. Then,
numerical results are presented for the target specimen and verified comparing with
the results of classical 1st-gradient theory in Section 16.4. Finally, in Section 16.5,
conclusions are drawn. All the computations for the parameter determination as well
as simulations are employed by means of open-source packages under license of
Gnu Public (2007) from the FEniCS project (Logg et al, 2011; Hoffman et al, 2005)
and we make the code publicly available in Abali (2021) in order to increase the
scientific exchange.

16.2 Asymptotic Homogenization

We follow the homogenizationmethod and its implementation in Abali and Barchiesi
(2021) that is verified and applied in Vazic et al (2021); Yang et al (2022). Homoge-
nization method starts with a microstructure expressed in y and with a givenmaterial
model, we use linear elastic isotropic model with the known stiffness tensor,Cm. At
the microscale, the deformation energy is quadratic,

em =
1

2
εmijC

m
ijklε

m
kl . (16.1)

Herein we use standard continuum mechanics formulation and understand summa-
tion convention over repeated indices. For the sake of simplicity, we use linearized
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displacement gradients as a strain measure,

εmij =
1

2

(∂ui
∂yj

+
∂uj
∂yi

)
. (16.2)

In the homogenized continuum, modeled by the strain-gradient modeling approach,
the energy reads

eM =
1

2
εMijC

M
ijklε

M
kl + εMijG

M
ijklmε

M
kl,m +

1

2
εMij,kD

M
ijklmnε

M
lm,n . (16.3)

A comma notation denotes a partial derivative in x. We aim for obtaining the
numerical values of metamaterials tensors, CM andDM. The only assertion of the
whole method is that the deformation energy is equal in a representative volume
element (RVE), Ω, leading to∫

Ω

em dV =

∫
Ω

eM dV . (16.4)

In the asymptotic homogenization, the displacement field is expanded by using
additional unknowns, ϕ and ψ. Then by comparing coefficients out of Eq. (16.4),
we obtain differential equations to solve and calculate ϕ and ψ. By means of the
finite element method, we obtain the numerical solution for ϕ by solving

∂

∂yj

(
Cm
ijklLabkl

)
= 0 , Labkl = δakδbl +

∂ϕabk
∂yl

. (16.5)

With the solution of ϕ, we determine

CM
abcd =

1

V

∫
Ω

Cm
ijklLabijLcdkl dV . (16.6)

The macroscale stiffness tensor, CM, is used in order to solve ψ by the following
governing equation:

− ρ
m

ρM
CM
icab + Cm

icklLabkl +
∂

∂yj

(
Cm
ijklNabckl

)
= 0 , Nabckl = ϕabkδcl +

∂ψabck
∂yl

.

(16.7)
With this solution, we construct

Mabcij = ycLabij +Nabcij , Īkn = ε2
∫
ΩP

ykyn dV , (16.8)

and obtain all strain-gradient parameters



16 Second-Gradient Modeling and Computation of 3-D Printed Metamaterials 347

GM
abcde =

ε

V

∫
Ω

Cm
ijklLabijMcdekl dV ,

DM
ijklmn =

ε2

V

∫
Ω

Cm
ijklMabcijMdefkl dV − CM

ijlmĪkn .

(16.9)

16.3 Computation

For the numerical solution of Eq. (16.5) as well as Eq. (16.7), we utilize the finite
element method (Zohdi, 2018) and span a finite dimensional Hilbertian Sobolev
space for trial functions. The same space is used for the test functions, known as
the Galerkin procedure. The triangulation of the RVE is generated by NetGen al-
gorithms in Salome. We solve the discrete problem by minimizing the weak form
obtained after a standard variational formulation with an implementation in the FEn-
iCS platform, we refer to Abali (2017) for an introductionwith examples. Specifically
in strain-gradient method, we refer to Abali et al (2015); Reiher et al (2017); Khakalo
and Niiranen (2020). The weak form is obtained after integrating by parts; periodic
boundary conditions vanish boundary integrals. Determining CM, GM, and DM

necessitates linear form functions for ϕ and ψ.
For verification purposes, we solve the same application for a continuum body

B at microscale as well as at macroscale. At the microscale, the problem is linear
elastic problem with the weak form∫

B

Cm
jiklε

m
klδui,j dV =

∫
∂BN

t̂iδui dA . (16.10)

On Dirichlet boundaries, the displacement is given such that the test function
vanishes. Hence, only on Neumann boundaries, ∂BN, traction vector, t̂, is defined.
We solve the displacement at themicroscale,um, again by using linear form functions
within the elements. The discrete nature of the finite element method allows a
continuous displacement function across elements.

At the macroscale, we minimize the energy involving second gradient of dis-
placement at the macroscale, uM. Hence, for the computation, we use quadratic
form functions. In order to enforce a continuous and differentiable field across the
elements, we use a mixed formulation and solve derivative of displacement as an ad-
ditional unknown,∇u. For ensuring consistency, uMi,j = ∇uij , we use a Lagrange
multiplier, λ, as an additional unknown. For the multiplier, we use a constant (dis-
continuous) form functions. In this way, we employ strain and its gradient from two
unknown fields,

εMij =
1

2

(
uMi,j + uMj,i

)
, ∇εijk =

1

2

(
∇uij,k +∇uji,k

)
, (16.11)

and generate the weak form, as follows:
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(
CM
jiklε

M
klδui,j +DM

ijklmn∇εlmnδ∇uij,k+

+ λij(δ∇uij − δui,j) + (∇uij − ui,j)δλij
)

dV =

∫
∂BN

t̂iδui dA .

(16.12)
We refer for technical details to an analogous implementation in Abali et al (2021). In
each node, displacement, uM, gradient of displacement, ∇u, and multiplier, λ, are
solved in a coupled manner. The unknowns are tensor rank 1, 2, and 2, respectively.
Therefore, the computational cost is high. Specifically, for a 2-D problem 2+4+4 =
10 degrees of freedom (DOFs) and for a 3-D problem 3 + 9 + 9 = 21 DOFs are
used in each node. This method is a method to ensure C1 continuity, which ensures
a monotonous convergence in strain-gradient solved by the finite element method.

16.4 Results and Verification

In this study, a 3-D printed structure is considered for the verification. The specimen
has length L = 110mm and height H = 22mm, with a grid infill pattern which
corresponds to a 70.25% infill ratio as shown in Fig. 16.1 and 16.2. We model the
specimen out of PLA, poly(lactic acid), which is a thermoplastic polyester. By using
Young’s modulus E = 3500MPa and Poisson’s ratio ν = 0.3, we use an isotropic
material model at the microscale,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

Cm
ijkl = λδijδkl + µδikδjl + µδilδjk .

(16.13)

Kronecker delta, δij , is the identity (unit tensor of rank 2). Also, in order to apply
boundary conditions properly, additional parts are added to the left and right of the
beam, see the CAD shown Fig. 16.1, the computational domain is the orange domain
(of interest) and gray supports on left and right for clamping.

Fig. 16.1 Dimensions of 3-D printed of approx. 70% infill ratio structure with “rigid” left and right
parts for clamping to a machine.
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Fig. 16.2 Dimensions of
selected RVE of the specimen.

16.4.1 Reference Solution Based on 1st-Gradient Theory

The structure has been analyzed by a 1st-gradient model in the context of linearized
elasticity theory in order to have a reference solution. In the analysis, a vertical
traction vector of 0.1MPa is applied along the free end of the specimen as shown in
Fig. 16.3. For acquiring the numerical accuracy of the reference solution, a posteriori
error analysis is employed. For this purpose, an h-convergence is conducted by
using discretizations with local mesh lengths of 0.2, 0.1, and 0.05mm, respectively
(see Fig. 16.3 for a mesh sample). The error is measured by the deflection change
occurring at the tip of the specimen as a consequence of h-convergence. Herein we
use the well-known feature of monotonous convergence of the finite element method
(by using adequate shape functions). In Table 16.1, for each discretization, the

Fig. 16.3 Boundary conditions and a mesh sample used in the simulations based on 1st-gradient
theory.

obtained deflection is presented along with the number of nodes and computational
time required (using one IntelXeonE7-4850with 40MBcache). Obviously, achieved
convergence with the most refined discretization is adequate as a reference solution
with a predicted numerical error of 0.3%. In Fig. 16.4, the obtained deformation with
the 1st-gradient theory is presented. Here, the contour plot shows the deformation in
the vertical direction, and the result is given with scale factor of 16 to obtain a better
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Table 16.1 Convergence study with the simulations based on 1st-gradient model.

Mesh length in mm Deflection in mm Number of nodes Computation time in s

0.2 1.135 45 029 1.46

0.1 1.143 160 887 7.49

0.05 1.146 606 293 57.93

illustration. As expected, bending occurs due to the applied shear stress at the short
side of the specimen.

Fig. 16.4 Deformation obtained by 1st-gradient theory, colors denote the magnitude of
displacement, deformation is shown by scaling 16 times.

16.4.2 Determination of Constitutive Parameters in the
Strain-Gradient Model

To conduct simulations with the strain-gradient model, the constitutive parameters
are first obtained through the aforementioned asymptotic homogenization procedure.
To this end, in this study, an appropriate representative volume element (RVE) was
extracted from the geometry of specimen by the periodicity of its microstructure.
The choice of RVE is to be depicted in Fig. 16.5. For the asymptotic homogenization
process, this selected RVE is discretized and periodic boundary conditions are ap-
plied on all boundaries. For voids inside RVE, we choose a “numerical zero” for their
Young’s modulus of 0.01MPa. Therefore, the whole RVE domain is discretized.
Asymptotic homogenization generates the parameters, for writing the results, we
use an extended Voigt notation, where A, B indicate {11, 22, 12} and α, β denote
{111, 221, 121, 112, 222, 122}, as follows:
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Fig. 16.5 Selected RVE with
4 unit cells (left) and its mesh
as the homogenized body
(right).
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(16.14)

The convergence characteristics of the parameters are not known. Hence, another
h-convergence study has been conducted to check the estimated constitutive param-
eters and their mesh dependency. Five different local mesh lengths, namely 0.4,
0.2, 0.1, 0.05, and 0.025mm, have been utilized. The convergence of two consti-
tutive parameters, namely CM

11 and DM
11, are presented in Fig. 16.6. The monotonic

Fig. 16.6 Convergence of constitutive parameters CM
11 (left) and DM

11 (right).

convergence is obviously showing the robustness of the methodology. Parameters
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obtained by the mesh with local mesh length length of 0.025mmmay be used in the
strain-gradient simulations. With the most refined mesh, the predicted constitutive
parameters read

CM
AB =

1987 475 0
475 1987 0
0 0 281

MPa , GM
Aα =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N/mm ,

DM
αβ =


469 634 1 3 1 −75
634 4078 0 1 −2 1473
1 0 1142 1473 −75 0
3 1 1473 4079 636 1
1 −2 −75 636 469 −1
−75 1473 0 0 0 1143

N.

(16.15)

Here, it must be remarked that the computed constitutive matrixGM
Aα becomes zero,

as expected from the RVE that is centro-symmetric. Albeit some components are
negative, the total energy is positive since the homogenization is achieved by using
the microscale energy with a quadratic form and a positive definite stiffness tensor at
the microscale. The positive-definiteness is an important feature for defining a 2nd-
gradient problem with a unique solution as studied in Nazarenko et al (2021a,b);
Eremeyev (2021).

16.4.3 Simulations with 2nd-Gradient Theory and Validation

To investigate the validity of determined strain-gradient constitutive parameters,
the same specimen as a homogenized continuum has been simulated. As shown in
Fig. 16.7, for strain-gradient simulations, a rectangular domain is assigned as the
computational domain, and the same boundary conditions are applied to both ends.
The numerical simulations have been conducted by discretizing the computational

Fig. 16.7 Boundary conditions of computational domain used in the 2nd-gradient theory
simulations.

domain with five different local mesh lengths, namely 4, 3, 2, 1, and 0.5mm. In
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Table 16.2, the obtained tip deflection, error with respect to the reference (1st-
gradient) solution, and computation time with the same machine are presented for
each simulation. Also in Fig. 16.8, error obtained by the strain-gradient model with

Table 16.2 Convergence study and calculated accuracy by using the reference solution by
2nd-gradient simulations

Mesh Length in mm Deflection in mm Error in % Computation time in s

4 1.112 2.95 0.39

3 1.118 2.43 0.60

2 1.124 1.97 1.16

1 1.128 1.60 6.94

0.5 1.130 1.37 69.36

respect to the reference solution is given as a function of number of nodes. This plot
is on logarithmic axes such that a linear convergence is expected from an adequate
implementation by using proper form functions. Obviously, the results given in
Table 16.2 and Fig. 16.8 demonstrate the robustness and reliability of the acquired
parameters as well as simulations by the strain-gradient model. Also, as expected,
the computational cost is greatly reduced by the strain-gradient modeling. In short,
when both results are compared, it is apparent that strain-gradient model can have a
robust prediction of mechanical behavior in a shorter time period with a sufficiently
small margin of error. In addition, deformed configurations obtained by 1st-gradient
and 2nd-gradient models are compared in Fig. 16.9. It is seen that the error is not
only low on the chosen point for error calculation, but the same trend is visible
in the whole displacement field. Therefore, constitutive parameters are suitable to
investigate the mechanical behavior of homogenized continuum at a significantly
lower computational cost.

16.5 Conclusion

In conclusion, a numerical framework has been presented in this study in order to de-
termine strain-gradientmodel of 3-D printedmetamaterials. As a result of a long term
study in strain-gradient modeling and parameter determination, we have acquired
a robust implementation with an adequate accuracy and monotonous convergence.
Specifically, an easy-to-print specimen with grid infill has been considered and its
strain-gradient constitutive parameters have been determined by using asymptotic
homogenization. Then, the determined parameters have been verified by using the
reference solution obtained by computations based on the classical 1st-gradient the-
ory. The obtained results in this study show that the proposed numerical framework
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Fig. 16.8 Convergence of strain-gradient solutions.

Fig. 16.9 Comparison between 1st-gradient model (orange, with mesh) and strain-gradient model
(white, transparent).

is suitable to determine strain-gradient constitutive parameters and can be applied to
materials with different infill ratios and a more complex microstructure. We empha-
size that the 3-D printed structures possess the effect of microstructure generated by
infill ratio. The mechanical response deviation may be significant between a CAD
model designed with 100% material and its 3-D printed structure with only 70%
infill ratio.
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Chapter 17
On Boundary Layers Observed in Some 1D
Second-Gradient Theories

Emilio Barchiesi, Alessandro Ciallella, Ivan Giorgio

Abstract Boundary layers are regions into a material domain where gradients lo-
calize. They often arise in non-local theories such as second gradient ones, which
introduce various internal length scales. This work aims at exploring the properties
linked to boundary layers for a few typologies of one-dimensional continua moving
in plane. More particularly, three cases are explored: the deflection of an extensi-
ble Euler–Bernoulli beam, and the axial deformation of a pantographic beam with
nonlinear first gradient and second gradient effects. It is concluded that the size
of boundary layers depends on the internal lengths and, when nonlinearities are
considered, on the external load.
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17.1 Introduction

Research in materials exceeding mechanical performances of conventional materi-
als is nowadays incredibly audacious. Defined by renowned engineers Gibson and
Ashby as ‘an interconnected network of solid struts or plates which form the edges
and faces of cells’ (Ashby and Gibson, 1997; Ashby, 2006), architected materials
are periodical structures that can take either stochastic or non-stochastic forms, de-
pending on the arrangement of their unit cells. Recent developments in experimental
Science enabling the examination of defects at very low scales provide an unprece-
dented possibility to link the structure with the properties of materials (Spanos et al,
2021). Techniques ranging from high-resolution electronmicroscopy to atomic-force
microscopy reveal new insights into the micro-mechanical foundations of material
behaviors, but also pose deep challenges concerning theory, modeling and simula-
tion (dell’Isola et al, 2019c). Indeed, the link between the structure and the observed
behaviors is still often a difficult one to forge theoretically or computationally, and
remains an active area of research (Misra et al, 2020; Abdoul-Anziz et al, 2019; Abali
et al, 2019; Abali and Barchiesi, 2021; Mandadapu et al, 2021; Falsone and La Valle,
2019). Establishing such a link is of utmost importance in advancing the design and
fabrication of improved engineeringmaterials. Indeed, properly designed architected
materials can exhibit extremely favorable performances like low weight-to-stiffness
ratios (De Angelo et al, 2019), high element-failure tolerance (Turco et al, 2016b),
and high energy-absorption capability (Barchiesi et al, 2021b).

The significance of micro-scale mechanisms in influencing macro-scale material
behaviors has been nowadays largely recognized in the context of mechanics (Nejad-
sadeghi et al, 2019; Greco, 2020). Micro-scale mechanisms can be extremely inter-
esting, being a complex combination of local buckling phenomena (Vangelatos et al,
2019), folding (Lin et al, 2020), snapping (Barchiesi et al, 2021a), and many others.
At the architecture element scale, many modeling approaches in the literature make
use of fine-geometry finite element models based on Cauchy continuum and elasto-
plastic constitutive laws.Manymicro-structures have been investigated in the existing
literature. It is particularly worth to remark, also in view of the topics presented in
this paper, that special emphasis has been placed on those micro-structures based on
the pantographic motif (dell’Isola et al, 2019b,a; Ciallella, 2020), i.e., a mechanism
which is well known from everyday life (pantographic mirrors, expanding fences,
scissor lifts, etc.), which is characterized by a zero-energy accordion-like homoge-
neous extension/compression deformation mode. These materials can be suitably
designed to show strong anisotropic effects, namely to be extremely compliant in
some directions and extremely stiff in others. Owing to the otherwise unbearable
computational complexity, properly identified coarse-geometry continuum models
are the go-to choice when dealing with the macro-scale (Eremeyev and Morozov,
2010; Niiranen et al, 2019; Tran and Niiranen, 2020). It is nowadays well-established
that, when the micro-structure is not resolved spatially, so-called generalized con-
tinua (including also higher gradient theories (Germain, 2020; Alibert et al, 2003;
dell’Isola et al, 2015)), as opposed to Cauchy continuum, are the proper tool to
capture relevant micro-scale deformation mechanisms originating from non-local
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interactions and strong local stiffness contrast, especially below the threshold for a
sufficient length scale difference allowing a scale separation (Rosi et al, 2018).

Indeed, it is well known that continuum descriptions based on Cauchy continuum,
due to the dependence of the strain energy density on the first space gradient of
the displacement field only, cannot correctly deal with energy localizations due to
strong local stiffness contrast (as in micro-structured materials) or due to localized
loading (as in impact dynamics), leading to numerical instabilities and severe mesh
sensitivity in computations, thus giving physically unrealistic results with increasing
mesh refinement (Abali et al, 2017). Despite several attempts, mainly based upon
ad hoc enhancements, no satisfactory solution to the above problems has been
achieved within the framework of Cauchy continuum. A satisfactory mitigation of
these issues can be obtained by non-local continuum formulations, like enriched-
kinematics and higher-gradient theories, that introduce internal characteristic lengths
that manifest as the formation of boundary layers, i.e. layers where gradients are
concentrated. When these theories must be addressed numerically by the Finite
Element Method, one should employ suitably smooth test functions (Placidi et al,
2018; Greco and Cuomo, 2013; Greco et al, 2017; Greco and Cuomo, 2016; Cazzani
et al, 2016a,b; Yildizdag et al, 2020). At the architecture scale, many approaches
in the literature make use of discrete à la Hencky spring models (Turco et al,
2016a; Giorgio, 2020). Aimed at bridging the gap between discrete and continuum,
variational asymptotic homogenization technique (Barchiesi et al, 2020b,a) (à la
Piola) are exploited transferring the discrete description of a self-similar finite-
dimensional system into a continuous formulation when the degrees of freedom tend
to infinity.

The main objective of this paper is to explore the properties linked to boundary
layers for a few typologies of one-dimensional continua moving in plane. Only a few
simple theories are explored to avoid being distracted by very complex circumstances.
Three cases are considered: the deflection of an extensible Euler–Bernoulli beam,
and the axial deformation of a pantographic beamwith nonlinear first gradient effects
and with nonlinear second gradient effects. While all the beam theories considered
in this contribution are second gradient ones, unlike the pantographic beam, Euler–
Bernoulli beam is an incomplete second gradient 1D continuum in plane. These
theories can all be obtained by means of homogenization procedures, including
variational asymptotic homogenization, applied to Hencky spring models (Placidi
et al, 2020). The plan of the work is the following one. In Sect. 17.2, the properties
of boundary layers arising in the solution of an Euler–Bernoulli beam problem are
explored, while Sect. 17.3 addresses the case of a pantographic beam, at first with
nonlinear first gradient effects and, then, with nonlinear second gradient effects.
Finally, some conclusions are presented.
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17.2 Euler–Bernoulli Beam

The first case which is considered deals with an extensible planar Euler–Bernoulli
beam (Eugster and Harsch, 2020; Harsch and Eugster, 2020; Harsch et al, 2021;
Della Corte et al, 2017; Greco and Cuomo, 2015). Such a beam is assumed to be
straight in the reference configuration. To represent the axis line of the beam in the
current configuration in the framework of a Lagrangian description, we introduce a
‘material’ abscissa X ∈ [0, 1] and then the following parametrization{

x1(X) = X + u1(X)

x2(X) = u2(X)
(17.1)

where ui stand for the coordinates of the displacement field in the given right-hand
reference frame whose x1-axis is directed along the beam-axis prior to the defor-
mation. The static behavior of this one-dimensional nonlinear mechanical system is
characterized by the elastic energy:

W [u′i(·), u′′i (·)] =
1

2

∫ 1

0

Ke(ρ− 1)2 dX +
1

2

∫ 1

0

Kb (θ′)2 dX (17.2)

which is a quadratic form of the two measures of deformation: i) the elongation
ρ − 1; ii) and the curvature θ′ (Spagnuolo and Andreaus, 2019). Specifically, the
considered quantities can be expressed as a function of the displacement as follows:

ρ =
√

(1 + u′1) 2 + (u′2) 2, θ′ =
u′′2 (1 + u′1)− u′′1u′2

ρ2
(17.3)

where the symbol ′ denotes differentiation with respect toX . The two stiffnessesKe

andKb can be regarded as the reluctance of the system to be deformed, respectively,
with stretching and bending. The current shape of the beam is the curve (17.1)
that minimizes the energy (17.2) and satisfies the given boundary conditions. To
avoid an excessive variety of scenarios, we consider from this point forth only
essential boundary conditions; therefore, without losing generality, we can afford
the lack of introduction on the boundary of an external elastic potential to complete
the characterization of the system. The results presented herein are obtained by
a finite element formulation implemented in the commercial software COMSOL
Multiphysics with the weak form tool, which simply requires the specification of the
deformation energy.

In this system, the boundary layers are a direct consequence of a possible inter-
action of the two kinds of energy considered (first and second gradient), the relative
weight bestowed to them by their stiffnesses, and the necessity of satisfying the
boundary conditions.

As a matter of fact, in the linearized case:
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Wlin [u′i(·), u′′i (·)] =
1

2

∫ 1

0

Ke(u
′
1)2 dX +

1

2

∫ 1

0

Kb (u′′2)2 dX (17.4)

the two energetic terms of the first and second gradient are utterly decoupled, and then
there is no possibility of having a boundary layer. Indeed, the two solutions for the
longitudinal displacement u1 and the transverse one u2 are completely independent.
In the absence of an external bulk potential, the longitudinal displacement is uniform
within the span of the beam to minimize the current length. At the same time, the
transverse displacement is characterized by the minimum (linearized) curvature
compatibly with the boundary conditions. These circumstances do not lead to a
localization of the deformation energy near the boundary conditions; therefore, no
boundary layers are detected.

Clearly, the two energy contributions can have some possible interactions only
in the nonlinear case. Therefore, we deal with this instance. In the most general
nonlinear case, the two components of the displacement are linked since they appear
simultaneously in both deformation measures. Consequently, the energy related to
the second gradient deformation, namely the term incorporating the curvature, and
the term of the first gradient, involving the elongation, can exhibit a certain level of
interaction depending on the specific boundary conditions considered. Particularly, in
the case in which the boundary conditions are chosen in such a way that no extension
is involved, this interaction is not triggered, and consequently, the solution is only
governed by the second gradient deformation measure (the curvature). See Fig. 17.1
where a shear test with fixed orientations at ends are considered and the longitudinal
displacement is kept free on the right end in order to avoid any elongation of the
beam. In this picture, the boundary layers are clearly absent. Of course, even in the
inextensible case, we have the same behavior: The solutions are governed by the
curvature only. Indeed, the energy becomes

Winx [u′i(·), u′′i (·)] =

∫ 1

0

λ (ρ− 1) dX +
1

2

∫ 1

0

Kb (θ′)2 dX (17.5)

where λ is the Lagrange multiplier that ensures the constraint ρ = 1 and thus
represents the axial contact force.

On the contrary, if we consider a shear test with orientations at ends fixed and we
also set to zero the longitudinal displacement u1 in both the ends, the two energies
interact, and the level of this interaction depends on the ratio between the stiffnesses
Kb and Ke, as well as on the transverse displacement imposed during the test at
one end. The ratio between the aforementioned stiffnesses has the dimensions of a
squared length; therefore, we can define a characteristic length as

α =

√
Kb

Ke
(17.6)

If Kb is very small with respect to Ke, as it occurs in common applications,
bending the beam is easier than stretching it. Thus, the current shape of the beam
is characterized by the minimum possible length, and the boundary conditions are
satisfied via localization of curvature strain occurring because of the small work
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Fig. 17.1 Equilibrium shapes varying the assigned displacement u0 where no extension is involved.

needed to have higher curvatures. Clearly, this mechanism of deformation that leads
to the formation of boundary layers strongly depends on the characteristic length,
namely the ratio between the stiffnesses and how the two deformations of the first
and second gradient are prone to be activated in the particular case examined. See
Fig. 17.2, where the current shapes of the beam for different displacements and
characteristic lengths (α = 0.01, α = 0.03, α = 0.06) are shown. Increasing
Kb with respect to Ke, indeed, the boundary layer width changes giving growing
importance to the second gradient term.

To illustrate the dependence of the boundary layer width on the characteristic
length α and the level of the deformation, we have performed different numerical
simulations changing them. The boundary layer width is evaluated as follows. Firstly,
we normalize the deformation energy density to its maximum value; secondly, con-
sidering as a reference, the value of the energy density at the middle, namely in the
farthest place from the boundaries, the width of the boundary layer is defined as
the interval in which the energy density localizes itself deviating from the reference
value of a threshold of 1% (see, Fig. 17.3).

In particular, considering a parametric study on shear tests, Fig. 17.4a displays
that independently by α, when the imposed displacement u0 at the right side of the
beam is very small, namely the linear approximation holds, there is no boundary layer
as expected. As u0 increases, instead, the boundary layer width decreases because
the share of the deformation energy due to the elongation grows, and hence the
possibility of localizing curvature near the ends waxes as well. Moreover, as shown
in Fig. 17.4b for a given displacement, the boundary layer width rises, naturally with
different ratios for each displacement, because the relative importance of the second
gradient term in the energy becomes increasingly important with the growing of
α. When α increases and goes beyond 0.1, the boundary layer invades the whole
structure. Therefore, it loses its importance.

In common applications, we have
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α2 =
Kb

Ke
=
YbJ

YbA
' d2 (17.7)

where Yb is the Young modulus of the material employed, J the second moment of
area of the beam cross-section, A is the area of the beam cross-section, and d can be
interpreted as a characteristic transverse size of the beam. Namely, the characteristic
length α and the transverse size d, which is negligible with respect to the length of
the beam, are of the same order of magnitude. Having said this, the boundary layer
has meaning at the macroscopic level of observation if and only if its width is much
greater than the characteristic length α. In this context, this is verified as it is shown
in Fig. 17.4. This aspect is quite crucial since the boundary layer width should always
have a non-negligible size at the macro-scale to be of some relevance. Besides, if
the continuum model considered is the result of a homogenization procedure, the
boundary layer width never shall be smaller than the size of the characteristic length
of the unit cell at the microlevel of observation. Otherwise, the considered model is
inconsistent and must be reformulated.
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Fig. 17.2 Equilibrium shapes varying u0: a) α = 0.01; b) α = 0.03; c) α = 0.06.
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Fig. 17.3 Normalized energy densities varying α = {0.01− 0.1}, u0 = 0.5 a). Graphic display of
the boundary layer widths b); the two markers highlight the extreme cases for α = 0.01 and
α = 0.1.
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Fig. 17.4 Some boundary layer widths as function of α and u0.

A final comment on the buckling of a beam under a compressive load deserves
to be made to fully understand the link between the characteristic length and the
behavior of the beam. Albeit, the buckling modes of a beam loaded at the tip are
almost indistinguishable for different values of α. They mostly depend on the bound-
ary conditions. See, for example, the clamped-clamped beam case in Fig. 17.5. The
critical values of the imposed displacement or compressive force change drastically
with it (see Figs. 17.6 and 17.7). The reason for that lies in the ratio between the two
stiffnesses, i.e., bending and stretching. Indeed, a very small bending stiffness allows
the lateral deviation of the beam much earlier since the work done for have higher
curvature is in turn reduced.
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Fig. 17.5 The first three buckling shapes of the clamped-clamped beam.
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Fig. 17.6 Force vs displacement: a) α = 0.01; b) α = 0.02.
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Fig. 17.7 Pitchfork bifurcation: a) α = 0.01; b) α = 0.02.

17.3 Pantographic Beam

17.3.1 Longitudinal Pantographic Beam with Nonlinear First
Gradient Term

The second example taken into account is the so-called pantographic beam. The
continuum one-dimensional model capable of describing the behavior of such a
complex system is characterized by the presence in the deformation energy of a
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term with the second derivative of the displacement with respect to its abscissa (see,
e.g., Giorgio et al (2017); Alibert et al (2003); Seppecher et al (2011)). The mi-
crostructure of the considered system is constituted by a unit cell of two inextensible
flexible elastic elements connected through one hinge, say principal nodes (the blue
circles in Fig. 17.8). All these unit cells are then connected to compose a panto-
graphic mechanism employing other hinges, namely auxiliary nodes (the red circles
in Fig. 17.8). This particular ‘mechanism’ is the responsible for the presence of the
second-gradient term in the deformation energy because each principal node has a
‘long’ range interaction which involves three adjacent nodes (therefore, not only the
first nearest neighbors but also the second neighbors in the chain) differently from
the first-gradient case where the elastic interaction is defined only for a couple of
nodes. Themicrostructure is completed by springs connecting two adjacent principal
nodes. These last elements provide the presence in the energy of a term related to
the first gradient of the displacement.

For the sake of simplicity, in what follows, we consider deformation modes in
which the principal nodes can have only longitudinal displacements, namely u.

Fig. 17.8 Kinematical scheme of a pantographic beam with nonlinear first gradient term.

Considering Piola’s ansatz that identifies the principal nodes in the discrete mi-
crostructure with the points of the continuum system and under the hypothesis of
small deformations of the pantographic microstructure, the homogenized 1D model
can be characterized by the following deformation energy:

Wa [u′(·), u′′(·)] =
1

2

∫ 1

0

KI

[
(u′)2 +

β

2
(u′)4

]
dX +

1

2

∫ 1

0

KII (u′′)2 dX

(17.8)
where KI and KII are the stiffnesses related to the first and second gradient con-
tribution of the deformation energy, respectively. The parameter β is introduced to
consider also possibly nonlinear effects (a material nonlinearity) coming from the
first-gradient interaction. Similarly to the previous case, we have the characteristic
length

α =

√
KII

KI
(17.9)

To activate the formation of a boundary layer in this system, we consider a tensile
test controlled in displacement, i.e., we fixed the displacement of the left end of
the continuum 1D system and imposed a given displacement in the opposite end.
Furthermore, since this is a second-gradient continuum model, we impose boundary
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conditions on the first derivative of the displacement at both ends. Indeed, if we set
to zero such derivatives, a boundary layer occurs due to the interaction between the
two contributions of the deformation energy of the first and second gradient.

a) b)

Fig. 17.9 Normalized energy densities varying u0 = {0.01− 0.5}, α = 0.03, β = 100 a). Graphic
display of the boundary layer widths b); the two markers highlight the extreme cases for u0 = 0.01

and u0 = 0.5.

Figure 17.9 shows the normalized distributions of deformations energy for dif-
ferent values of the imposed displacement and for a fixed value of α = 0.03 and
β = 100. In this case, the boundary layer has a profile where the deformation energy
presents a peak near the external edge and then slowly asymptotes to the reference
value at the middle of the pantographic beam.

Moreover, contrary to the previous case, the linear approximation experiences a
boundary layer since the energy of the first and second gradient contribution can
interact with each other (see Fig. 17.10a). As expected, as α grows, the boundary
layer width increases. The reason for that is quite clear since increasing α involves
a second-gradient term in the energy with a more influential weight with respect to
the first-gradient term, and then the localization of the deformation energy becomes
increasingly inconvenient for an energetic viewpoint. Figure 17.10b exhibits the effect
of the nonlinear term in the first gradient energy term. For small displacements the
non linear effect is negligible and the boundary layer width is almost insensitive
to the imposed displacement. However, when the imposed displacement becomes
sufficiently high, the nonlinear effect manifests itself with decreasing width, and
the ratio of the decrease is larger for higher α. This behavior is because, in the
model, the nonlinear contribution is attributed only to the first-gradient energy;
therefore, when large imposed displacements activate it, the weight of this energy
contribution becomes increasingly significant, and then it is like there is an ‘effective’
characteristic length that decreases.
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Fig. 17.10 Boundary layer widths as function of α and u0: a) β = 0; b) β = 100.

17.3.2 Longitudinal Pantographic Beam with Nonlinear Second
Gradient Term

Finally, we examine a variant of the longitudinal pantographic beam that could be
described by a continuum model with a nonlinear second-gradient energy contribu-
tion (see, for more details, Barchiesi et al (2019)). In the microstructure, we assume
that the arms of the pantograph are extensible and flexible elastic elements then they
can be represented in a lumped discrete model as extensional and rotational springs,
all connected by hinges. In this case, the principal nodes related to the scissor-like
mechanism of the pantograph are also connected by extensional springs to provide
a first-gradient contribution of the energy (see Fig. 17.11).

Fig. 17.11 Kinematical scheme of a pantographic beam with nonlinear second gradient term.

The homogenized model resulting from this scheme can be expressed in terms of
longitudinal displacement u as follows:

Wb [u′(·), u′′(·)] =
1

2

∫ 1

0

KI(ρ− 1)2 dX+

1

2

∫ 1

0

KEKF
ρ2

(2− ρ2) [(KE − 4KF ) ρ2 + 8KF ]
(ρ′)

2
dX (17.10)
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where the variable ρ is defined as

ρ = 1 + u′ (17.11)

The stiffnesses KI , KE , and KF are material parameters obtained by rescaling
the rigidities at the micro-level associated with the extensional springs of the first-
gradient term, the extensional and rotational springs of the arms of the pantograph,
respectively.

Defining the characteristic length as the ratio between the linearized coefficient
of the second-gradient energy and the first-gradient linear rigidity as follows

KEKF

KI (KE + 4KF )
= α3 (17.12)

we can study the influence of this parameter on the width of the boundary layer.
In this case, we consider a tensile test with one end fixed, namely (u(0) = 0,
u′(0) = 0), and a given imposed displacement u0 at the opposite end (u(1) = u0)
with the clamped condition u′(1) = 0. Fig. 17.12 shows the distributions of the
deformation energy density changing α for a moderate value of the displacement
u0. The qualitative behavior is very similar to the previous case, albeit the boundary
layer widths are larger. This property is expected since, for small displacement, the
two pantographic models tend to act in a similar way.
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Fig. 17.12 Normalized energy densities varying α = {0.01− 0.25}, u0 = 0.15 a). Graphic
display of the boundary layer widths b); the two markers highlight the extreme cases for α = 0.01
and α = 0.25.

However, the nonlinear behavior of the second-gradient term in the energy pro-
duces some differences when the imposed displacement increases beyond a certain
threshold (see Fig. 17.13). Figure 17.13, indeed, displays a typical behavior for small
displacements. On the contrary, the boundary layer width changes drastically when
the displacement is sufficiently large, i.e., u0 = 0.35. In fact, after a first positive
slope, the boundary layer width has a maximum, and subsequently, it decreases,
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and finally, after a minimum it returns to grow. We remark that near the minimum
value of the boundary layer, there is a transition behavior for which the shape of the
localized deformation energy changes, as shown in Fig. 17.14, from the shape with
the swelling to the monotonic one.
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Fig. 17.13 Some boundary layer thicknesses as function of α and u0.
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Fig. 17.14 Normalized energy densities u0 = 0.35: a) α = 0.17, b) α = 0.1966.

This peculiar characteristic is related to the specific distribution of the two energy
contributions, i.e., first and second gradient (see Fig. 17.15). Indeed, the two distribu-
tions exhibit a complementary trend, and the variability ratio with the characteristic
length α is sensibly diverse for the two energetic contributions.
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Fig. 17.15 Normalized energy densities u0 = 0.35: a) α = 0.17, b) α = 0.1966. Energy
distribution of the first and second gradient contributions.

17.4 Concluding Remarks

In this paper we have explored the properties linked to boundary layers for a few
typologies of one-dimensional continua moving in plane. As expected from previous
works in the literature Andreaus et al (2016) it is possible to conclude that whenever
there are interacting first-gradient and second-gradient deformation modes, it is
possible to observe boundary layers.
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Chapter 18
Design and Parametric Enhancement of a
Flexible Planar TEG - Numerical Study

Maria Carolina Fernandes, Cristina Furtado, Daniela Campanhã,
Sónia Isabel Silva Pinto

Abstract A thermoelectric generator (TEG) can recover waste energy and convert
it into electricity. Therefore, a TEG is a sustainable and reliable device that can
be applied in several fields. The current work aims to go further in the design and
enhancement of a flexible planar TEGmade with bismuth telluride. For this purpose,
ANSYS® software was used. An initial design of the generator was created, and a
sensitivity analysis was carried out to understand which parameters most impact its
performance. Setting a satisfactory mesh, numerical simulations of the TEG were
performed in its operating conditions to obtain the corresponding output properties.
The device was enhanced for an industrial application through a numerical model
based on the parametric enhancement of themost relevant design parameters, namely
the height and width of the semiconductor components and the number of thermo-
couples. A theoretical model was used for comparison of the numerical model, and
both models were validated with experimental data from literature. The numerical
simulations produced more complete results, such as contours of temperature and
voltage in the TEG and led to an optimal design capable of reaching a maximum
of 0.10W and an output voltage of 9.973V when exposed to a temperature gradient
of 130◦C. Additionally, the generator fit within the desired area of this specific in-
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dustrial application and exhibited an efficiency of approximately 5%. This research
study is expected to encourage TEG manufacturing in industrial applications.

Keywords: Thermoelectricity · Flexible planar device · Energy harvesting ·Numer-
ical simulation · Additive manufacturing · Power generation

18.1 Introduction

The growth of the world’s population led to the increase of energy needs, and due
to the rising efforts of reducing global warming, this growth is accompanied by
an increase of the employment of more sustainable methods of energy production,
that utilize natural and renewable resources (International Energy Agency, 2020).
Besides the clear environmental advantages, the current evolution of the energy
paradigm can also bring political and economical advantages, such as the reduction
of the strong dependency on the small group of countries that possess reserves of
fossil fuels, the increase of qualified professionals in the renewable energy fields
and the consequent obsolescence of non-sustainable energy facilities (Sztekler et al,
2017). However, the transport sector, one of the main contributors of pollutant gas
emissions to the atmosphere, requires a mobile energy source, and, therefore, cannot
be easily powered by resources such as the wind or the sun (International Energy
Agency, 2020). Thus, alternative technologies are being developed for recovery and
generation of useful energy through less conventional methods. Semiconductors can
produce electricity recovered from waste heat associated, for instance, for industrial
processes, and produce electricity to power other machines and devices, increasing
the overall efficiency of the energy cycle (Sztekler et al, 2017).

Thermoelectric generators (TEG) use these materials, and, because they have
several advantages, they are currently being researched and developed in a wide
range of applications, such as automotive (Lan et al, 2018; Khan et al, 2018; Pandit
et al, 2014), aeronautic (Lan et al, 2018; Khan et al, 2018; Pandit et al, 2014; Gusev
et al, 2011), electronics (Suarez et al, 2016; Zhang et al, 2019) and medicine (Suarez
et al, 2016; Zhang et al, 2019; Siddique et al, 2016). In fact, thermoelectric generators
do not emit any pollutants to the atmosphere (Jia and Gao, 2014), and do not have
any moving parts, granting it low maintenance levels, low operational costs, and the
absence of noise pollution (Lan et al, 2018; Jia and Gao, 2014; Liao et al, 2018;
Fan et al, 2016). Furthermore, they are wireless, lightweight (Wu and Yu, 2014),
portable and highly customisable, meaning that they can be easily adapted to specific
situations (Zhang et al, 2019; Jia and Gao, 2014). Moreover, due to the Peltier effect,
these machines, which take advantage of a thermal gradient to produce electricity,
can be reversed and turned into a heating or cooling machine which preserves a
temperature gradient by consuming electricity, becoming a Peltier heater or cooler,
respectively (Twaha et al, 2016; Snyder and Toberer, 2008).

However, the biggest disadvantage of TEGs is their low efficiency when compared
to otherwell-established heat engines (Zhang et al, 2019;Dhoopagunta, 2016), which
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is usually below 10% (Twaha et al, 2016; He and Tritt, 2017). Yet, since the intent of
these devices is the recovery of waste energy, they are still valuable and sustainable
tools to obtain useful energy, and should continue to be studied, researched, and
improved to become competitive energy conversion devices. Looking at some of the
existing literature (Sztekler et al, 2017; Lan et al, 2018; Pandit et al, 2014; Gusev et al,
2011; Liao et al, 2018; Wu and Yu, 2014; Snyder and Toberer, 2008; Kishore et al,
2018; Teichert et al, 2015; Goldsmid, 2014; Brostow et al, 2012; Lowhorn et al, 2011;
Chen and Lee, 2016; Stuban and Torok, 2010), research regarding thermoelectric
generators is more focused on the output properties they can achieve, such as output
power or efficiency, and not on the process of the design of the thermoelectric
generators which leads to these outcome properties. This part of the manufacturing
process of TEGs is of great importance, because a generator is composed of expensive
materials, synonymous of their great potential, and the appropriate materials and
geometry needs to be set a priori to avoid unnecessary costs and material waste
(He and Tritt, 2017). In addition, these devices can have smaller dimensions, in
order of magnitude of micro and nano meters (Kao et al, 2010), when they are
inserted into small components like microsensors. Thus, manufacturing processes
with low levels of geometrical resolution would not be adequate. Additionally, the
analysis of TEG manufacturing processes and their suitability to produce generators
are not significantly researched in literature. In fact, additive manufacturing methods
would be ideal to manufacture these devices since they do not promote material
waste and have high printing resolution (He and Tritt, 2017). Specifically, methods
like dispenser printing or screen printing, used in the textile industry, have been
successfully employed to print planar thermoelectric generators (Siddique et al,
2016; Chen et al, 2011; Madan et al, 2011), since their thickness is negligible, and
show great potential.

Going further than the available literature, the present study intends to analyze
the design process of planar thermoelectric generators, by the definition of the most
significant parameters involved in the design process of the generator and the de-
velopment of a theoretical and a numerical tool used to generate an optimal design.
Through the definition of the conditions in which the generator is meant to work, the
initial design of the generator, based on the design of Chen et al (2011), was analyzed
through numerical simulations using ANSYS® software. Then, its dimensions were
parametrically altered until an optimal design of the generator was achieved, guaran-
teeing a maximum power condition. A theoretical model, based on equations found
in literature, was created with the same purpose and to act as comparison of the
numerical results. Then, both numerical and theoretical models were validated with
experimental data of Chen et al (2011). Subjacent to the developed models was the
study of the state-of-the-art device materials, since the choice of the semiconductor
materials, which are separated into different material families, is conditioned by the
operating temperatures and the configuration that the generator assumes according
to its desired application.

The created tools are expected to encourage distinct industries to easily design
thermoelectric generators that fit specific requirements and increase their manufac-
turing and application, promoting sustainable energy recovery in industrial settings.
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18.2 Materials and Methodology

To find an optimal design of a thermoelectric generator, it is essential to first un-
derstand the theoretical basis regarding the thermoelectric effect, composed of the
Seebeck, Peltier and Thomson effects. Defining the involved physical processes, ge-
ometrical parameters and materials, the initial generator design can be attained. To
perform numerical simulations in ANSYS® software, a mesh capable of balancing
a greater mesh detail with low computational time needs to be chosen. Afterwards,
the boundary conditions can be defined in ANSYS® software to numerically sim-
ulate the generator in its practical operating conditions. Then, a sensitivity analysis
is carried out to study the different parameters involved and their influence on the
output properties. Finally, the parameters which most impact the performance can
be parameterized in ANSYS® and altered until an optimal design is found.

Parallelly, equations from literature were used to develop a model which returns
a theoretical optimal design to act as validation to the results obtained through the
numerical analysis.

18.2.1 Theoretical Analysis

Generically, a thermoelectric generator can be analyzed as a heat engine producing
power while working in a power cycle between a hot and cold source, as illustrated
in Fig. 18.1a (Twaha et al, 2016; Chen et al, 2018). Through the First Law of
Thermodynamics, the output electrical power, Ẇ [W], is the subtraction of Q̇h
[W] and Q̇` [W], the rates of heat flow from the heat source and to the heat sink,
respectively.

Fig. 18.1 Thermoelectric generator (a) as a generic power cycle, (b) in a closed circuit. Adapted
from Twaha et al (2016).
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A thermoelectric generator is composed of one or more thermocouples comprised
of “legs” made from semiconductor material (Snyder and Toberer, 2008), connected
to each other with contact made from a conductive material. Each thermocouple
possesses two legs made with different materials, the p-type with positive charges,
called holes (h+), and the n-type with negative particles such as electrons (e-) (Snyder
and Toberer, 2008), represented with white and black circles in Fig. 18.1b, respec-
tively (Twaha et al, 2016). The different thermocouples are connected electrically in
series, while they are thermally in parallel with the heat source and heat sink (Twaha
et al, 2016).

According to the Seebeck effect, when placed between a heat source and a heat
sink, the carriers migrate and accumulate near the colder junction, creating a voltage,
V [V], calculated by

V = −n
∫ Th

T`

S(T )dT (18.1)

where n is the number of thermocouples present in the TEG, Th [K] and T` [K] are
the temperatures of the heat source and heat sink, respectively, and S [V K-1] is the
Seebeck coefficient of the whole thermocouple, calculated through the subtraction
of the Seebeck coefficients of each leg (Lan et al, 2018; Dhoopagunta, 2016). S
is temperature dependent (Dhoopagunta, 2016; Goldsmid, 2014). The Peltier effect
suggests that when a voltage is applied to two dissimilar materials connected in two
junctions, the temperature of one of the junctions rises while the temperature of the
other decreases (Liao et al, 2018;Wu andYu, 2014; Twaha et al, 2016; Dhoopagunta,
2016; Szczech et al, 2011). Moreover, through Joule’s First Law, the output power
can be calculated by

Ẇ = RI2, (18.2)

where R [Ω] is the internal resistance of the generator and I [A] is the current (Watt,
P. J., 2009). The performance of thermoelectric materials is measured through the
figure of merit, zT, a non-dimensional number calculated through

zT =
S2T

ρk
; (18.3)

where T [K] is the absolute temperature, ρ [Ω m] is the electric resistivity and k
[W m-1 K-1] is the thermal conductivity (Liao et al, 2018; Fan et al, 2016; Twaha
et al, 2016; Dhoopagunta, 2016; He and Tritt, 2017; Goldsmid, 2014). It is possi-
ble to correlate thermal and electrical equations, consequently linking geometrical,
thermal, and electrical parameters. In fact, Q̇h and Q̇` can be calculated by

Q̇h = −1

2
I2R+ (Th − T`)K + SITh, (18.4)

Q̇` =
1

2
I2R+ (Th − T`)K + SIT`, (18.5)

where the internal resistance and the thermal conductance K [W K-1] of a thermo-
couple are obtained, respectively, through
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R =
ρpLp
Ap

+
ρnLn
An

, (18.6)

K =
kpLp
Ap

+
knLn
An

, (18.7)

where L [m] is the leg length, A [m2] is its cross-sectional area and the indexes n
and p are relative to the n-type and p-type legs, respectively (Lan et al, 2018; Suarez
et al, 2016).

In fact, the generator is meant to power a load, which has an internal resistance,
in a closed-circuit. Defining m as the ratio between the load resistance, Rload [Ω]
and the internal resistance,

m =
Rload
R

, (18.8)

the output power can be determined by replacing Eq. (18.4) , Eq. (18.5) and Eq. (18.8)
in the First Law of Thermodynamics equation:

Ẇ =
S2(Th − T`)2

R

m

(1 +m)2
. (18.9)

In heat recovery, the TEG must extract as much energy as possible and, therefore,
should be set to work in maximum power conditions (Kempf and Zhang, 2016). The
optimum resistance ratio, mopt, that leads to the maximum power, Ẇmax [W] is
achieved when

mopt = 1, (18.10)

Ẇmax =
S2(Th − T`)2

4R
, (18.11)

From Eq. (18.10), it is concluded that the optimal internal resistance is the load
resistance (Liao et al, 2018; Wu and Yu, 2014; Dhoopagunta, 2016; Chen et al,
2011), and this condition is accounted for in the TEG design enhancement.

18.2.2 Numerical Analysis

The numerical simulation software is based on two general equations regarding the
heat flux vector, {q} [Wm-2], and the current density vector, {J} [A m-2], as follows:

{q} = T [S]{J} − [K]{∇T}, (18.12)

{J} = [σ]({E} − [S]{∇T}), (18.13)

where [S] is the matrix of the Seebeck coefficients, [K] represents, for a null current
density state, the matrix of thermal conductivity, {∇T} [K] is the vector for the
thermal gradient, [σ] [S m-1] represents the electrical conductivity matrix for a null
thermal gradient, and {E} [V m-1] is the electric field vector. Moreover, [S], [K] and
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[σ] are diagonal matrices that contain the respective properties in each direction xx,
yy and zz. Applying the principles of the conservation of energy and electric charge,
Eq. (18.12) and Eq. (18.13) can be compiled, and ANSYS® utilizes the following
finite element matrix equation to perform the numerical analysis of thermoelectric
processes:[

[Ct] [0]
[0] [Cv]

]{
{Ṫ}
{V̇ }

}
+

[
[Kt] [0]
[Kvt] [Kv]

]{
{T}
{V }

}
=

{
{Q}+ {Qp}
{I}

}
(18.14)

where [Ct] is the specific heat matrix, [Cv] represents the matrix of the dielectric
permittivity coefficients, {Ṫ} [K s-1] and {V̇ } [V s-1] are the time derivative vectors
of temperature {T} [K] and voltage {V} [V], respectively, [Kt] is the diffusion con-
ductivity matrix, [Kvt] is the finite element coupling matrix of Seebeck coefficients,
and [Kv] is the thermal conductivity matrix. Moreover, the vector {Q} [W] is the
sum of the finite element heat generation load vector and the convection surface heat
flow vector, {Qp} [W] is the load vector of Peltier heat, and {I} [A] is the nodal
current load vector (Chen et al, 2011).

18.2.3 Geometrical Parameters

To design the generator of the present work, the geometrical parameters were defined
according to the design of a standard planar thermoelectric generator, which can
be observed in Fig. 18.2. The parameters c, hc, hl, p, t, ts and wl are, respectively,
half the distance between thermocouples, contacts’ height, leg height, pitch (distance
between consecutive legs in a thermocouple), generator thickness, substrate thickness
and leg width.

Fig. 18.2 Technical drawing of a planar thermocouple.

Thus, by replicating the planar thermoelectric generator developed by Chen et al
(2011), since it proved to have a notable thermoelectric performance, and following
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the created nomenclature, the initial design of a one-thermocouple generator was
created.

18.2.4 Boundary Conditions

The thermoelectric generator is meant to work in conditions which are applied
in ANSYS® software, avoiding the need for an experimental set-up to enhance the
prototype and to obtain the output propertieswith larger costs. Firstly, the temperature
of the heat sourcewas defined as 150◦C (423.15K),while the heat sinkwas deemed as
the environment at a constant temperature of 20◦C (293.15K). In ANSYS® software,
Th was applied to the top surface of the top contact, whereas T` was applied to the
bottom surfaces of the two bottom contacts, as visible in Fig. 18.3a and Fig. 18.3b,
respectively. Additionally, the remaining surfaces of the generator were considered
to have a null heat flux and be thermally insulated, as observed in Fig. 18.3c. Finally,
an electrical condition of null voltage was applied on the leftmost surface of the
generator, shown in Fig. 18.3d.

Fig. 18.3 Boundary conditions (a) heat source temperature, (b) heat sink temperature, (c) thermal
insulation condition, (d) null voltage.
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It is worth mentioning that the boundary conditions are equally applied to every
thermocouple, guaranteeing that the heat source and sink are connected to the top
and bottom surfaces of the generator respectively; and that the TEG is completely
insulated, with the exception being the electrical boundary condition, which only
applies to the leftmost thermocouple.

18.2.5 Material Choice

The boundary conditions impact the material choice, since thermoelectric materials
excel in different temperature ranges, as well as the TEG output properties. The ther-
moelectric generator is composed of semiconductor legs, where the thermoelectric
effect occurs, metallic contacts, which connect consecutive legs electrically in series
and connect the legs to the heat source and heat sink, and a polymeric substrate,
where the generator is printed onto.

In general, semiconductors are ideal thermoelectric materials, since the conflict-
ing properties of elevated electric conductivity and reduced thermal conductivity
are better in these materials than polymers or metals (Fraisse et al, 2013; Lu et al,
2016; Park et al, 2017). The chosen material for the two legs of the TEG is Bi2Te3
(bismuth telluride).

Semiconductor materials have temperature dependent properties, such as the
Seebeck coefficient, thermal conductivity, and electrical conductivity. Fraisse et al
(2013) was able to interpolate experimental data into the theoretical equations

Sp(T ) = −Sn(T ) = (22224 + 930.6T − 0.9905T 2)10−9 [V K−1], (18.15)

kp(T ) = kn(T ) = (62605 + 277.7T − 0.94131T 2)10−4 [Wm−1K−1], (18.16)

σp(T ) = σn(T ) = (5112 + 163.4T − 0.6279T 2)−11010 [Sm−1], (18.17)

where the n-type leg was considered to have a negative p-type Seebeck coefficient,
but identical thermal and electrical conductivities (Omnexus, 2020).

Regarding the contacts, silver was the material of choice for having high thermal
and electrical conductivities. The thermal conductivity is 406 W m-1 K-1 and the
electrical resistivity equal to 1.59 × 10-8 Ω m.

The substrate should be flexible, lightweight, and insulating to withstand the
inherent mechanical and thermal stresses. Fabrics, paper, and polymers have been
used as substrate for generators in literature (Lu et al, 2016; Park et al, 2017; Yuan
et al, 2019). For the current TEG, polyimide was chosen because, despite its elevated
cost, the material complies with the mechanical, electrical, and chemical demands
of the device.

Finally, to simulate the TEG in a closed circuit with the load, a fourth generic
material with a customisable electrical resistivity was created. The geometry of this
new component is known, since it can be related to dimensions of the TEG, and,
therefore, it is possible to relate the load resistance with its resistivity:
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Rload =
ρloadLload
Aload

, (18.18)

where Lload [m] is the medium length of the load object and Aload [m2] is its cross-
sectional area. The current, I [A], combining Ohm’s Law and Joule’s First Law, is
given by

I =
S(Th − T`)
R+Rload

(18.19)

representing the ratio between the open-circuit voltage and the sum of the existing
resistances.

18.2.6 Mesh Convergence Analysis

The definition of the mesh is a necessary part of a numerical study. Since a detailed
mesh generates more accurate results, but also higher computational times, a balance
needs to be set between refinement and computational time in the simulations. For
the initial TEG design, ten different cubic mesh sizes were applied to the model.
In Fig. 18.4, keeping T` as 20◦C (293.15K), Th was set at 260◦C (533.15K), and
measuring the computational times for the mesh sizes, the open-circuit voltage, Voc,
was obtained.

Fig. 18.4 Voc, computational time and mesh size.

Looking at the results, the voltage was not impacted by the increase of the number
of elements, but the computational time increased. It is possible to conclude that,
since the computational times are very low for all meshes, a 59 µm cubic mesh
should be chosen.
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18.2.7 Sensitivity Analysis

A sensitivity analysis allows researchers to find the most relevant aspects concerning
the TEG, by imposing small changes and analyzing their degree of influence in the
simulated results. Thus, a parametric change took place by holding all parameters
but one, whose impact was measured through the comparison of the TEG output
properties.

18.2.7.1 Number of Thermocouples

Firstly, the number of thermocouples was changed, since its growth increases the
number of legs in which the thermoelectric phenomena occur. However, the internal
resistance also increases, so an optimal number of thermocouples should be found
for the final TEG. In this section, the number of thermocouples studied ranged from
one to nine. In an open circuit, the voltage was measured, and, in a closed circuit, the
nine TEGs were linked to the load material, and its resistivity was altered to find the
optimum Rload value that maximizes the produced power. The output open-circuit
voltage and the maximum electrical power were plotted as a function of the number
of thermocouples (Fig. 18.5).

Fig. 18.5 Theoretical and numerical values of Voc and Pmax as a function of the number of
thermocouples.

All the measured properties changed linearly with the increase of n, meaning that,
for the same temperature gradient, Voc [V] is directly proportional to the number of
thermocouples, as well as Pmax [W] when the load resistance corresponds to the
optimal value (equal to the internal resistance of the device).
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18.2.7.2 Presence of Protective Coating

The insulation of a single thermocouple TEG, to prevent oxidation at higher tem-
peratures, was numerically studied (Fig. 18.6). Since it is widely available, a boron
nitride coating of varying thicknesses, equal to 0 µm, 30 µm, and 60 µmwas chosen,
with an estimated thermal conductivity of 500 W m-1 K-1 (Final Advanced Engi-
neering, 2020) and an electrical resistivity equal to 1014 Ω m (Suarez et al, 2016;
Siddique et al, 2016). Moreover, heat transfer through natural convection was estab-
lished between the TEG and three different environments at 0◦C (273.15K), 20◦C
(293.15K) and 40◦C (313.15K), with a natural convection coefficient of 5 W m-2

K-1 for all coating thicknesses. The thermal insulation boundary condition was not
applied in the coating of the TEG. The load needs to be equal in all simulations and,
thus, the convection boundary condition was not implemented in this component.
Recovering the data for the optimum load resistance value, the maximum output
power, absorbed heat and efficiency (η) were obtained and the results are presented
in Tab. 18.1.

Fig. 18.6 New boundary conditions for the coating analysis numerical simulations.

Coating a thermoelectric devicemay prolong its useful life, but negatively impacts
its performance and, looking at the obtained results, the thickness of the coating
should be as minimal as possible. Moreover, with the increase of heat transfer
processes with the environment, the TEG produces less electrical power.
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Table 18.1 Coating of TEG and its output properties.

Coat thickness [µm] T [◦C] Pmax [mW] Q̇h,Pmax [mW] ηPmax [%]

0
0 0.366 14.89 2.46
20 0.362 13.73 2.63
40 0.357 12.57 2.84

30
0 0.343 79.20 0.43
20 0.343 78.05 0.44
40 0.340 76.58 0.44

60
0 0.325 142.4 0.23
20 0.325 141.1 0.23
40 0.325 139.8 0.23

18.2.7.3 Substrate Material and Dimensions

Given its small dimensions, a thermoelectric generator could be applied in wearable
parts, taking advantage of the metabolism to produce useful power (Jiao, 2020).
Hence, since polyimide could be uncomfortable for the individual, a softer material
should be used, preferably one that is commonly used in wearables.

In this section, a cotton substrate was analyzed and compared to polyimide and,
to simulate different environmental conditions the person may be inserted in. Like
the previous subsection, the environment temperature was changed to 0◦C, 20◦C and
40◦C, and a convection coefficient was set at 5 W m-2 K-1. Moreover, two thickness
values were studied, 0.0508 mm and 0.1016 mm. The material properties of the
two substrate materials were already defined in the material library of ANSYS®
software. The heat flux between the environment and the TEG was measured for
both substrates and the results are represented in Tab. 18.2.

Table 18.2 Influence of the ambient temperature and substrate thickness in the heat flux.

ts [mm] T [◦C] q̇pol [W m-2] q̇cot [W m-2]

0.0508
0 1935.64 1647.30
20 1704.54 1431.32
40 1619.04 1215.43

0.1016
0 1935.64 1647.30
20 1704.54 1431.32
40 1619.04 1215.43

It is evident that the heat flux for each temperature is independent of the thickness
of the substrate, although it is harmed by the increase of the ambient temperature.
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Therefore, it is possible to conclude that it does not impact the electrical properties
of the device. The results could be complemented by considering the heat produced
by the individual, but since this value changes according to the location where the
wearable is placed (Chen et al, 2011; Madan et al, 2011), as well as the metabolism
levels of each person, it was not analyzed in this study.

18.2.7.4 Generator Thickness

A planar generator is, as indicated by its name, a very thin device, and the thickness
of the materials depends mostly on the precision of the manufacturing equipment.
The generator in question is meant to be fabricated through dispensing, an additive
manufacturing known for its high printing precision and ability to print materials
at room temperature (Yang et al, 2017). However, the dimension of the extrusion
nozzle determines the thickness of the filament (Kramer et al, 2019).

Ten generator thickness values, between 100 µm and 500 µm, were examined
in an open and closed circuit. The open-circuit voltage and the maximum electrical
power are registered in Fig. 18.7.

The numerical simulation reveals the independence between the thickness of the
generator and the voltage in its terminals. In addition, the increase of the thickness
is responsible for the increase of the cross-sectional area of the semiconductor legs,
consequently increasing the maximum power.

18.2.7.5 Leg Dimensions

The semiconductor legs have two in-plane dimensions, namely the width and the
height (wl and hl, respectively) which should be analyzed. Once more, one ther-
mocouple was analyzed, and, firstly, its height was changed from 1 mm to 10 mm,
to understand the impact on the output voltage, maximum power. Those results are
shown, respectively, in Fig. 18.8.

Fig. 18.7 Theoretical and
numerical values of Voc and
Pmax as a function of the
thickness of generator.
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Fig. 18.8 Output properties
as a function of hl (bottom
horizontal axis) and wl (top
horizontal axis) (a) open-
circuit voltage, (b) maximum
power.

Once again, the open-circuit voltage did not change when geometric variations
were imposed. However, the output power decreased and, when the height tends
to infinity, this electrical property tends to zero. In fact, since the direction of the
heat flow is parallel to the direction of the height of the legs, an increase of these
dimensions inevitably leads to the increase of the internal thermal resistance and,
consequently, the decrease of the current, given that Voc continued unchanged. Since
the maximum output power depends on the square of I, from Eq. (18.2), this property
is vastly affected by changes of the current.

Likewise, the width of the legs was altered between the values of 100 µm and 800
µm, and Voc and Pmax were obtained. The results can also be seen in Fig. 18.8. The
differing conclusion from the previous analysis is that the increase of the width of the
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legs increased the cross-sectional area, decreasing the internal resistance. Therefore,
the output power, as well as the absorbed heat rate, are benefited by the increase of
the leg width in a linear manner.

18.2.7.6 Contact Dimensions

Finally, a study of the height and width (wc [mm]) of the contact components, which
connect the legs and conduct the heat to the heat sink and from the heat source,
was carried out. To analyze the impact of the width, the parameters p (pitch) and
c (half of the distance between thermocouples) were changed, and Voc and Qh,oc
were obtained. For all cases, the open-circuit voltage and absorbed heat rate were
practically constant and equal to 59.04 mV and 5.002 mW, respectively. Since silver
has large values for thermal and electrical conductivities, hc andwc have a negligible
impact on the performance of the TEG.

18.2.8 Enhancement Methodology

From the conducted sensitivity analysis, it is possible to conclude that, to increase
the maximum power, the number of thermocouples and the dimensions of their legs
are the properties to optimize, since properties such as the temperature gradient
are set by existing conditions. This enhancement was done through theoretical and
numerical methods, the former acting as validation for the latter.

18.2.8.1 Constraints

The generator has thermal, geometrical, and electrical constraints that ought to
be defined to mimic the real operating conditions in the theoretical and numerical
methods. The imposed constraints correspond to the needs and restraints of a specific
industrial application defined by the company CeNTI.

The goal of the enhancement of the design can be expressed as the minimization
of the difference between the internal and the load resistances, for m to be as close to
the unit as possible. The operating conditions are the constraints of the enhancement
problem, which can be formulated with
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minimize R−Rload

subject to Th = 150◦C(423.15K)

T` = 20◦C(293.15K)

A ≤ 100mm× 100mm
t = 90µm
ts = 50.8µm
c = 0.28125wl

P = 2c

Vload = 5V
P ≥ 0.1W

(18.20)

The geometrical parameter γ [mm] was created and it is defined as the ratio between
the cross-sectional area of the legs and their height. This parameter allows the
simplification of theoretical formulas and, on the other hand, since the thickness of
the generator is constant, it can be used to linearly relate the width and the height of
the semiconductor legs.

18.2.8.2 Numerical Parametrization

While the theoretical model was created using equations, the used numerical model
was developed in ANSYS® in a particular manner. Firstly, the dimensions of the
TEG were parameterized in SpaceClaim, an application of the software employed
in the modeling of the geometries, and the assembly tool of surface alignment was
used to preserve the arrangement of all the different parts that compose the generator.
Therefore, ANSYS® software was able to update the geometry at every parametric
alteration made. In addition, this application also allows the parametrization of the
number of components in an array, for instance the number of thermocouples in the
generator. However, the load component would need to stretch with the increase of
n. So, given the complexity of this process, the number of thermocouples was not
parameterized, and the load geometry and resistivity values were changed manually.

In ANSYS® software, the height of the legs was set to change from 1 µm to 10
mm in regular increments of 1 µm and, similarly, it was determined that the width
would alter from 1 µm to 5 mm in steps of 1 µm. Finally, as mentioned, the number
of thermocouples was manually altered, from 100 to 800, in increments of 70.
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18.3 Results and Discussion

18.3.1 Parametric Theoretical Enhancement

The voltage consumed by the load is not the same as the open-circuit voltage, but
the parameters can be related with

Vload =
VocRload
R+Rload

. (18.21)

Since the load resistance and the internal resistance need to be identical, it can be
deduced that the load consumed by the voltage is half of Voc (Kramer et al, 2019) and
equal to 10V. From Eq. (18.11) and the defined constraints, the internal resistance is
equal to 250 Ω.

From this result, since Voc is independent of the geometry, it is possible to
calculate the minimum number of thermocouples the generator should have. From
Eq. (18.1), n is obtained and, approximating to the closest integer, should be equal
to 170. Then, the resistivity of the Bi2Te3 legs is calculated through

ρBi2Te3 =
n

Th − T`

∫ Th

T`

dT

σ(T )
, (18.22)

and its value is 2.456041 × 10-3 Ω m. Moreover, using Eq. (18.6), the parameter
γ can be obtained considering that this parameter is the same for both p type and
n-type legs, to preserve the symmetry and to harmonize the geometry of the legs, γ is
equal to 1.96563× 10-5 m. Then, looking at Fig. 18.2 and Eq. (18.20), the enhanced
dimensions of the TEG can be discovered through{

wTEG = n(2wl + 2c+ p)
wTEG ≤ 0.1m (18.23)

From Eq. (18.23), the maximum possible values for the height and width of the legs
are 0.8619 mm and 0.1882 mm, respectively. Then, the theoretical linear equation
that relates hl and wl is

hl(wl) = 4.5790wl ; wl ≤ 0.1882mm. (18.24)

18.3.2 Parametric Numerical Enhancement

The numerical analysis took place in ANSYS® software. Firstly, all the different
models were simulated in an open circuit; then, the load component was introduced
and set as equal to 250 Ω. The retrieved variables, namely Voc and the absorbed
and rejected heat rates in a closed-circuit, were examined in EXCEL. After handling
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the data, scatter plots of the open-circuit voltage and the output power results were
made, by interpolating the different points into surfaces.

In Fig. 18.9a, the numerical open-circuit voltage is plotted as a function of the
parameter γ and n. A plane represented in gray marks the required 10V, and the
intersection of this plane with the interpolated surface is the line represented in
black. Therefore, similarly to the theoretical model, 170 is the closest integer value
for the number of thermocouples.

Moreover, the values for Q̇h and Q̇` of the models in a closed circuit were used to
obtain the relation between the power, γ and n, visible in Fig. 18.9b. The interpolated
surface indicates that the obtained power increases with the increase of the number
of thermocouples and γ. Intercepting the surface with the plane, represented in gray,
where the power is equal to the desired value of 0.1W, it becomes clear that γ evolves
in an inversely proportional manner to the number of thermocouples. Thus, it can be
observed from Fig. 18.9c that, for 170 thermocouples, γ is 2.23472 × 10-5m.

Considering only the values of the power for a TEG with 170 thermocouples, the
power was plotted as a function of the width and the height of the legs, visible in
Fig. 18.9c.

The power evolved linearlywith thewidth, but inversely proportional to the height.
The interception of the surface with the plane of P = 0.1W, in gray, is represented in
black and it represents the numerical linear relation between hl and wl, equal to

hl(wl) = 4.0266wl ; wl ≤ 0.1882mm. (18.25)

18.3.3 Validation with the Literature

To assess the tools with other TEGs, the material data, design, and experimental
results of the 50-unit TEG of Chen et al (2011) were introduced in the developed
tools without optimizing the dimensions, and Vload, I and Pmax for a load resistance
equal to the internal resistance were computed and collected (Tab. 18.3).

Table 18.3 Comparison of numerical and theoretical results with experimental data from the
literature Chen et al (2011).

Property Results of Chen et al (2011) Numerical results Theoretical results

Vload [mV] 171.6 178.5 157.0
Rint [kΩ] 2.79 2.36 1.736
I [µA] 61.3 75.6 90.4
Pmax [µW] 10.5 13.5 14.2

As expected, the theoretical and numerical properties are improved over the ex-
perimental ones since the tools do not consider environmental losses. The theoretical
model is simpler and more optimistic than the numerical method, whose properties
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Fig. 18.9 Numeric results as a function of γ and n (a) open-circuit voltage, (b) output power as a
function of γ and n, (c) output power as a function of the legs dimensions hl and wl.
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lie closer to the expected experimental results. Yet, the theoretical and numerical
electrical properties are similar and seem accurate enough to validate the precision
of the created numerical tool.

18.3.4 Final TEG design

It is possible to conclude that the theoretical model attests the results of the numerical
model. Since the dimensions of the generator should be as big as possible, to ensure a
highermanufacturing resolution, the chosenwidth should be as close to themaximum
0.1882mm allowed. For being rounder numbers, a width of 0.188mm and a height
of 0.757mm were chosen. The thermocouple design is represented in Fig. 18.10.

Fig. 18.10 2D drawing of a thermocouple of the enhanced TEG (dimensions in millimeters) and its
3D representation.

Through the numerical simulations carried in theANSYS® software, it is possible
to obtain the voltage and the temperature profile of the enhanced TEG, represented
in Fig. 18.11.

The voltage increased in the direction of the width of the legs, from a null value
(defined in the boundary conditions) to themaximum value, whereas the temperature
varied in parallel to the legs of the generator. In Tab. 18.4, the output properties of
the final TEG are displayed.
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Fig. 18.11 3D profile of (a) voltage, (b) temperature.

Table 18.4 Output properties of the enhanced TEG.

Property Value

n 170
ATEG 99.88 mm × 2.357 mm
Voc 9.973 V
I 0.020 A
Rint 250.91 Ω
P 0.1 W
η 4.99%
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18.4 Conclusions

Themain goal of finding an optimal design of the planar thermoelectric generator, for
the established constrains of utility, was achieved. First, the obtained results indicate
that the number of thermocouples and the dimensions of the semiconductor legs were
the parameters that were the most impactful on the power and on the open-circuit
voltage. Additionally, the chosen material needs to have excellent thermoelectric
properties in the defined temperature range, so bismuth telluride was a suitable
selection.

Moreover, the theoretical and the numerical models were validated through the
experimental data of Chen et al (2011). Since the models produced similar results in
the optimization of the TEG for the proposed industrial application, it is concluded
that the numerical model led to realistic results and it is a tool that could be used in the
development of an optimal design of the generator, as well as in the prediction of the
output properties of any TEG when restricted to specific thermal and geometrical
conditions. Moreover, the complete voltage and temperature contours of the final
TEG were obtained through numerical simulations. This is the advantage of using a
numerical software instead of using theoretical approach, which is more restricted
and only serves for comparison.

The attained enhanced design of the generator corresponded to a TEG with 170
thermocouples, each with a thickness of 90µm, and with semiconductor legs with a
width of 0.188mm and height of 0.757mm, leading to an overall area of 99.88mm×
2.357mm. The final generator was able to produce an open-circuit voltage of 9.973V
and a power of 0.1W when connected to a load with an internal resistance of 250Ω,
and while exposed to a temperature gradient of 130K.

The generator should be manufactured resorting to additive manufacturing proce-
dures such as dispensing since it would generate a device with appropriate dimension
resolution for the given geometry. With this work, the optimization and validation
tools created are expected to be used by industries from various areas which consider
that there are conditions for energy recovery. This way, there is an effort in stimu-
lating the production of TEGs. In fact, the restrictions imposed by the enhancement
problem can be altered, and thus each user can build a TEG that suits their operating
conditions.
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Chapter 19
Implementation and Comparison of
Non-Newtonian Viscosity Models in
Hemodynamic Simulations of Patient Coronary
Arteries

Maria Carolina Fernandes, Luísa Costa Sousa, Catarina Ferreira de Castro,
José Manuel Laginha Mestre da Palma, Carlos Conceição António,
Sónia Isabel Silva Pinto

Abstract Realistic numerical simulations of blood flow in patient-specific coronary
arteries constitute a challenge in the study of hemodynamics. Several blood vis-
cous models are available; yet their direct comparison has not been carried out.
This work innovates by programming and implementing six viscosity models (Car-
reau, Carreau-Yasuda, Casson, Cross, generalized power-law and power law) as
user-defined functions in ANSYS® Fluent to compare the major hemodynamic pa-
rameters, the time-averaged wall shear, the oscillatory shear index and the relative
residence time, and to evaluate atherosusceptibility in coronary arteries. The study
used the left coronary arteries of an apparently healthy patient and an unhealthy
patient, with 40% stenosis in the left anterior descending. Flow simulations com-
prised two sets (steady-state and pulsatile flows), each based on Newtonian and
non-Newtonian fluid, i.e., a total of four cases. Results indicate that the Casson
model originates larger areas of atherosusceptibility and the generalized power-law
models returns the most healthy results. The non-Newtonian pulsatile cases show
less critical areas than the remaining studied regimes.
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19.1 Introduction

Cardiovascular diseases have been a major cause of death in developed countries
(Mozaffarian et al, 2015). Clinical practice indicates that arterial curves and bifur-
cations are more sensitive to the accumulation of fat, calcium, and other substances,
and the development of a stenosis (narrowing of the artery) precludes normal blood
flow circulation, and the onset of eventual health problems, like atherosclerosis, must
be prevented (Barquera et al, 2015).

Hemodynamic simulation is an auxiliary tool that can be used for the prevention
and diagnosis of cardiovascular diseases. Computed tomography angiography (CTA)
images of coronary arteries provide information about the geometry and location of
the stenosis, but the images alone do not explain the hemodynamic properties. Thus,
to better assist in research and clinical practice, a numerical tool of computational
fluid dynamics (CFD) is needed to simulate hemodynamic flow as close to reality
as possible. The complex geometries of patient-specific coronary arteries, fluid
properties and simulation settings are essential in ensuring the similarities between
the actual and numerical blood flow. However, utilizing more complex and time-
consumingmodels may not produce significant differences, unnecessarily increasing
the required computational power.

According to Ballyk et al (1994); Chaichana et al (2012), there were some sim-
ilarities in the wall shear stress measured in Newtonian and non-Newtonian blood
flow numerical simulations in a simplified artery geometry, andMarossy et al (2009)
states that, since the rheological properties of blood in large vessels are linear, blood
can be modeled as a Newtonian fluid. Yet, other authors (Jonášová and Vimmr,
2018; Varchanis et al, 2018; Jonášová and Vimmr, 2021) concluded that Newtonian
models do not accurately represent the blood’s rheology, and non-Newtonian viscos-
ity models should be used instead. Since there are multiple experimental methods
of measuring the viscosity of blood, many theoretical viscosity models are used to
model blood (Chien et al, 1966; Merrill and Pelletier, 1967; Sandeep and Shine,
2021). For instance, Soulis et al (2008) and Husain et al (2020) concluded that the
generalized power-law model led to more satisfactory results for wall shear stress
in right coronary arteries and simplified aneurysms, respectively, while Apostolidis
and Beris (2014) claims Casson is the more accurate viscosity model for blood. The
majority of studies which aim at studying the different viscosity models do so with
heavily simplified geometries of blood vessels and simplified boundary conditions,
distancing the numerical simulations from real circulatory system conditions, and
do not analyze relevant hemodynamic parameters like the time-averaged wall shear
stress (TAWSS), the oscillatory shear index (OSI) and the relative residence time
(RRT) to evaluate the regions prone to develop atherosclerosis.

Going beyond the current literature (Apostolidis et al, 2016; Jonášová andVimmr,
2018; Varchanis et al, 2018; Jonášová and Vimmr, 2021), this study aims to compare
a wide range of viscosity models used in literature to model blood’s rheology,
specifically Carreau, Carreau-Yasuda, Casson, Cross, generalized power-law and
power law. Thus, thesemodels were implemented inANSYS® Fluent as user-defined
functions (UDFs). Different types of fluid flow, steady-state and transient, in patient-
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specific left coronary arteries were also analyzed. This study helps the analysis of
the impact of the choice of flow regime and blood properties on hemodynamic
descriptors (OSI, RRT and TAWSS), wall shear stress and pressure drop in patient
arteries, and contribute to medical intervention.

Therefore, blood flow simulations in coronary arteries of two patients, one with
atherosclerotic disease and another with no apparent disease, were carried out for
steady-state and transient flows, i. e. one with an average velocity value and another
with estimated velocity and pressure profiles (Pinho et al, 2019). Then, they were
arranged into four combinations:

(1) steady-state flow of Newtonian fluid,
(2) steady-state flow of non-Newtonian fluid,
(3) pulsatile flow of Newtonian fluid, and
(4) pulsatile flow of non-Newtonian fluid.

19.2 Methodology

19.2.1 Theoretical Analysis

19.2.1.1 Hemodynamic Indices

The hemodynamic descriptors (TAWSS, OSI and RRT) are empiric. TAWSS mea-
sures the average shear stress in the artery wall over a cardiac cycle with a period
T. It is considered that individuals with TAWSS inferior to 0.4 Pa have a higher
probability of developing atherosclerosis (Malek et al, 1999). This parameter can be
calculated through Eq. (19.1) (Jonášová and Vimmr, 2021), where τwall is the wall
shear stress (WSS), t is time and s is the artery wall location. It is considered that the
WSS is proportional to the radial gradient of the velocity along x direction, u, in the
wall and the viscosity µ. The WSS was calculated through the linear model of in-
compressible Newtonian fluids (Eq. (19.2)), as considered by others in the literature
(Sandeep and Shine, 2021).

TAWSS =
1

T

∫ T

0

|τwall (s, t)| dt (19.1)

τwall = µ
∂u

∂r

∣∣∣∣
r=R

(19.2)

Moreover, there is the oscillatory shear index. This is a non-dimensional value that
indicates whether the vector of the wall shear stress suffers any changes in direction.
It is measured like an angle, and, following Eq. (19.3), it belongs to the interval [0,
0.5]. When OSI is null, there is no directional change (0◦), while when it is equal
to the maximum value of 0.5, the blood flow is oscillatory and the vector changes
180◦. For values of OSI above 0.1, the patient is more prone to develop neointimal
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hyperplasia, a condition in which the arterial layers thicken and the lumen narrows
(Chiastra et al, 2013).

OSI =
1

2

1−

∣∣∣∫ T0 τwall(s, t)
∣∣∣∫ T

0
|τwall| (s, t)

 (19.3)

Additionally, RRT is an indicative of blood flow disturbance. According to Lagache
et al (2021), there is greater atherosusceptibility when this parameter is greater than
8 Pa-1. The relative residence time results from the combination of TAWSS and OSI
(Eq. (19.4)).

RRT =
1

TAWSS (1− 2 OSI)
(19.4)

19.2.1.2 Blood Rheology

The viscosity of a Newtonian fluid is a thermodynamic property which varies with
temperature and pressure (Munson et al, 2012). For these fluids, the shear stress is
linearly related to the rate of shearing strain. However, Non-Newtonian blood has
a shear-thinning evolution, meaning blood gets less viscous with the increase of
the shear rate, γ̇. Usually, the viscosity has a lower and an upper bound, µ0 and
µ∞, which are the zero-shear viscosity and the infinite-shear viscosity, respectively.
For low shear rate values, it is also important to know the power-law index, n, and
the time constant, λ. The Casson viscosity model measures µ through N∞, the
consistency index, µ2

∞, the square of the yield stress, µp, the plasma viscosity and
Hct, hematocrit, the volume percentage of red blood cells. The used viscosity models
are shown in Fig. 19.1 and described in Table 19.1. Theoretically, the Casson and the
generalized power-law viscosity models diverge from the other models, which are
similar to each other.

Fig. 19.1 Representation of the used viscosity models.
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Table 19.1 Studied viscosity models (Sandeep and Shine, 2021).

Name Equation Constants

Carreau µ = µ∞ + (µ0 − µ∞)(1 + (λγ̇)2)
n−1
2

µ∞ = 0.0035 Pa s,

µ0 = 0.056 Pa s,

λ = 3.313 s,

n = 0.3568.

Carreau-Yasuda µ = µ∞ + (µ0 − µ∞)(1 + (λγ̇)a)
n−1
a

µ∞ = 0.0035 Pa s,

µ0 = 0.056 Pa s,

λ = 1.902 s,

n = 0.22,

a = 1.25.

Casson

µ =
µ2∞
γ̇

+
2µ∞N∞√

γ̇
+N2

∞

N∞ =

√
µp

8
√

1−Hct
µ∞ =

√
0.625 Hct

Hct = 0.4,

µp = 0.00145.

Cross µ = µ∞ +
µ0 − µ∞

1 +
(
γ̇
γc

)n
µ∞ = 0.0035 Pa s,

µ0 = 0.0364 Pa s,

γc = 2.63 s-1,

n = 1.45.

Generalized

power-law

µ = λ (γ̇) |γ̇|n(γ̇)−1

λ (γ̇) = µ∞ +∆µ e
−
(
1+
|γ̇|
a

)
e
−b
|γ̇|

n (γ̇) = n∞ −∆n e
−
(
1+
|γ̇|
c

)
e
−d
|γ̇|

∆µ = 0.25,

∆n = 0.45,

µ∞ = 0.0035 Pa s,

n∞ = 1,

a = 50, b = 3,

c = 50, d = 4.

Power-law µmin < µ = λ |γ̇|n−1 < µmax

µmax = 0.025 Pa s,

µmin = 0.00345 Pa s,

λ = 0.01467,

n = 0.7755.
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19.2.2 Patients Data and Artery Models

The coronary arterymodels used in the numerical simulations were obtained through
a series of steps. The patients were selected from a database of the Hospital Center
of Vila Nova de Gaia/Espinho (CHVNG/E). A case of a clearly unhealthy patient, a
63 year-old male with a heartbeat rate, HBR, of 59 bpm, was chosen for this study,
as well as an apparently healthy patient, who is a 29 year-old male with a HBR of
80 beats per minute. The two patients included in the study gave informed consent
and the current study was approved by the local institutional ethics committee.

From CTA image sequences, all of the visible arterial branches’ start and end
points were manually selected. The aorta, as well as the left main stem, left anterior
descending (LAD) artery, and the left circumflex (LCx) artery were picked from
an axial view of the heart using MIMICS® (Materialize Interactive Medical Image
Control System), an image processing software. This program then automatically
established the centerline of the artery and the lumen frontier, producing the 3D shell
of the artery of the patient. The arteries were then truncated, and the final models
were created (Fig. 19.2). The unhealthy patient has a visible stenosis of 40% in the
LAD, and the LCx did not exhibit any obstruction.

19.2.3 Boundary Conditions

The necessary boundary conditions for the numerical simulations are the profiles of
the blood pressure and velocity, conditioned by many biological and physiological
parameters, including body weight, gender, and overall health. The fluid properties
must also be selected.

19.2.3.1 Pressure Boundary Condition

For transient flow, the pressure of blood was first measured by Dong et al (2015) in
the outlets of the arteries during a cardiac cycle, and the generated profile was ap-
proximated by a Fourier series in MATLAB® (Eq. (19.5)). The series was truncated
after 8 terms (Table 19.2).

f(t) = a0 +

∞∑
i=1

(ai cos iωt + bi sin iωt) (19.5)

The shape of the pressure profile was considered identical for both patients, but
the angular cardiac frequency, ω, determined by the HBR, is specific to each patient.
The period, T depends on ω and HBR:

ω =
2πHBR

60
(19.6)
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Fig. 19.2 3D models of the left coronary artery of the two patients.

Table 19.2 Parameters of Fourier series of the pressure profiles.

Index i 0 1 2 3 4 5 6 7 8

ai 22.19 -14.12 -6.355 -0.5552 2.077 0.9805 0.3492 0.07955 -0.5758

bi 0 5.662 -0.8518 -4.236 -1.853 0.5314 0.6549 0.6130 0.1042
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T = 2π ω (19.7)

In Fluent®, the pressure distribution was implemented through an interpreted
UDF and applied to all outlets.

In the transient simulations, the temporal average outlet pressure was determined
with the previous data, being equal to 2932.12 Pa for the healthy patient and 2962.18
Pa for the unhealthy one.

19.2.3.2 Velocity Boundary Condition

The shape of the velocity profile at the inlet can be considered identical for both
patients (Dong et al, 2015), depending on circulatory properties of each patient,
specifically the duration of the cardiac cycle, T, and the Womersley number, α. This
non-dimensional parameter measures the change of the velocity profile’s shape, and
it represents the ratio between transient inertial forces and viscous forces (Eq. (19.8)).
It depends on the cardiac frequency, ω, the radius of the artery, R, and properties
such as viscosity and density of blood (Womersley, 1955).

α = R

√
ρω

µ
(19.8)

To calculate the latter parameter in the entrance of the artery, the inlet area
was measured for both models in SpaceClaim®, an application of ANSYS®, and
equivalent radii, Req , of circles with those areas were calculated. α was calculated
considering blood as a Newtonian fluid with constant viscosity. These parameters
are represented in Table 19.3.

Table 19.3 Parameters used for transient blood flow.

Parameters for blood flow Unhealthy patient Healthy patient

Womersley number, α 3.265 3.941

Cardiac pulse frequency, ω [rad s-1] 6.178 8.378

Period, T [s] 1.017 0.7500

Inlet area, Ainlet [mm2] 17.64 18.95

Equivalent radius, Req [mm] 2.370 2.456

Blood density, ρ [kg m-3] 1060 1060

Newtonian blood viscosity, µ [kg m-1 s-1] 3.45×10-3 3.45×10-3

Numerically, the Womersley velocity profile is created from a flow waveform
(Womersley, 1955) (Eq. (19.9)) and approximating it through a Fourier transform
usingMATLAB®. Thus, the first six harmonic coefficients, an and bn, were obtained
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(Table 19.4). The longitudinal velocity was implemented in a compiled UDF as a
function of time and radial position, where i is the index of the N = 5 harmonic
coefficients and the index of the Fourier’s series terms, and J0 and J1 are Bessel
functions. Only the real part of the equation is considered:

u(r, t) =
ao
πR2

[
1−

( r
R

)2
]

+

+
1

πR2

N∑
n=1


1− J0

(
α r
R i

3
2

)
J0
(
α i

3
2

)
1− 2J1

(
α i

3
2

)
α i

3
2 J0

(
α i

3
2

)

 (an cosωnt+ bn i sinωnt)

(19.9)

Table 19.4 Parameters of Fourier series of the velocity profiles.

Index n 0 1 2 3 4 5

an 26.16 5.282 -0.9090 -2.733 2.509 -0.2680

bn 0 -4.866 -1.040 0.2598 2.111 -1.372

Additionally, it is assumed that there is a no-slip condition in the wall, meaning
the blood velocity in the vicinity of the wall is null.

In the steady-state simulations, the velocity profiles were considered uniform
with an amplitude of 0.12495 m s-1 for the healthy patient and 0.10313 m s-1 for the
unhealthy one (the average values of the transient velocity distributions).

As a result, the implemented profiles of velocity, u, and pressure, p, are represented
(see Fig. 19.3).

The viscosity models described in Table 19.1 were implemented as UDFs (See
Fig. 19.17 in Appendix 19.5).

19.2.4 Mesh Convergence Analysis

Tofind themost appropriatemesh size, amesh convergence testwas done for transient
flow and with the model of the unhealthy patient, since the conclusions apply to both
models. To perform the mesh convergence test, the maximum element size (MES) of
the elements was changed from 3.5×10-4 m to 4.0×10-4 m, in intervals of 0.1×10-4
m and the maximum values of TAWSS and OSI were measured (Fig. 19.4).

Looking at the results, the ideal maximum mesh size is 3.9×10-4 m because
the differences in the measured hemodynamic parameters are no longer substantial
after refinement (the error between this mesh and the most refined one was 0.97%
for the TAWSS and 2.07% for the OSI). Properties of the created meshes are shown
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Fig. 19.3 Velocity and pressure profiles in steady-state and pulsatile regime flow (a) healthy
patient, (b) unhealthy patient.

(Table 19.5). According to ANSYS Inc. (2009), the maximum skewness should never
be greater than 0.95 and the average skewness should be below 0.33. The results
indicate that the orthogonality of the tetrahedral elements of the geometries of both
patients is not compromised.
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Fig. 19.4 Hemodynamic indicators for different mesh sizes (a) TAWSS, (b) OSI.

Table 19.5 Final mesh properties.

Mesh property Unhealthy patient Healthy patient

MES [m] 3.9×10-4 3.9×10-4

Number of nodes 66238 75490

Number of elements 336765 388782

Maximum skewness 0.72273 0.65364

Average skewness 0.13981 0.13384

19.2.5 Numerical Simulation Definitions

The SIMPLE scheme of pressure-velocity couplingwas chosen to obtain the pressure
field while assuring mass conservation (Patankar and Spalding, 1972). For spatial
discretization, the preferred solution method for gradients was the Green-Gauss
node based, for pressure the second order solution method, while second order
upwind solutionmethod was chosen for the calculations of momentum. The transient
formulation was solved through first order implicit solution method. A node-based
approach was selected for the evaluation of gradients and derivatives over a cell-
based one because it has been proven to be more accurate (ANSYS Inc., 2009). An
absolute convergence criterion of 1×10-18 was used for the computation of all the
necessary equations. Moreover, the flows were considered laminar.

In transient flow simulations, assuming a maximum of 20 iterations for each time
step and selecting a time step size of 5×10-3 s, the number of time steps was defined
as the division of T by the time step size. The total number of iterations was defined
by the product of the number of time steps with the maximum number of iterations
per time step. Hence, the numerical simulations for the unhealthy patient required
204 time steps and 4080 iterations, while the healthy patient simulations took 150
time steps and 3000 iterations.
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In steady-state flow simulations, the number of iterations was set to 200 for both
patients, considered a large enough number to allow a satisfactory convergence of
the results without requiring much computational time. For steady-state and transient
simulations, the used reference values for inlet area and density of blood are displayed
in Table 19.3.

19.2.6 Validation of Numerical Method with the Literature

To validate the chosen methods and settings with literature, an ANSYS® course
(ANSYS Inc., 2014), which used a coronary artery obtained from GrabCAD (2012)
and specific boundary conditions, was followed, but applying the numerical method
defined in this paper. The pressure gradient andwall shear stress of the tutorial course
and the ones obtained through the application of the presented numerical settings
were measured and are displayed in Table 19.6. The calculated relative error values
are very low and, therefore, the utilized numerical methodology can be considered
valid.

Table 19.6 Validation of the numerical methods and settings by comparison with results of
ANSYS Inc. (2014).

Property Present work results Literature results Relative error

∆p [Pa] 13385.5 13384.5 0.0067 %

τwall [Pa] 4.0290 4.1814 3.82 %

19.3 Results and Discussion

The pulsatile nature of the blood flow and the elasticity of the arterial walls could
mean the control volume changes in each instance,with the expansion and contraction
of the blood vessel. However, according to the findings of Pinho et al (2018), WSS,
OSI, TAWSS and RRT were not significantly affected by the existence of elastic
boundary walls and, therefore, a fluid-solid interaction (FSI) was not taken into
consideration.
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19.3.1 Steady-State Flow of Newtonian Blood

The average mass flow rate of blood entering the arteries is constant and equal to
1.921 g s-1 and 2.504 g s-1, for the unhealthy and healthy patient, respectively. The
maximum wall shear stress is equal to 7.419 Pa and to 7.520 Pa, accordingly. The
maximum pressure drop, ∆p, of the healthy patient is 82.6 Pa, larger than the ∆p
of the unhealthy patient, equal to 72.1 Pa. The spatial and temporal data regarding
WSS was collected in order to calculate OSI, RRT and TAWSS. CFD-Post® was
used to plot RRT and TAWSS (Fig. 19.5 and Fig. 19.6), while the oscillatory shear
index is null in the artery of both patients.

Fig. 19.5 RRT distribution in LCA in Newtonian steady-state flow (a) unhealthy patient, (b)
healthy patient.

The unhealthy patient possesses higher values of RRT, beingmore prone to plaque
formation in the regions represented in red. The time-averaged wall shear stress is
lower for the unhealthy patient, being the lowest in the same location as the elevated
RRT, before and after outlet6 and outlet7.

This section of the artery jeopardizes the blood flow to the myocardium in outlet1
through outlet7, whereas the healthy patient does not possess such areas of urgent
concern, like the bifurcation area between outlet1 and outlet2. So, the results show
that the healthy patient has lower risk of developing atherosclerosis despite having a
greater ∆p.
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Fig. 19.6 TAWSS distribution in LCA in Newtonian steady-state flow (a) unhealthy patient, (b)
healthy patient.

19.3.2 Transient Flow of Newtonian Blood

The maximum wall shear stress was measured (Fig. 19.7). Its evolution over time is
shaped similarly to the velocity, since τwall is a function of the flow speed adjacent
to the wall. The initial peak of the wall shear stress in both patients results from the
initialization of the computation process, and it should be disregarded.

Fig. 19.7 Max. WSS in LCA in Newtonian transient flow (a) unhealthy patient, (b) healthy patient.

In the velocity peak (0.6 s in the healthy patient, and 0.725 s for the unhealthy
patient), the maximum pressure gradients increases significantly, equal to 189.55 Pa
for the unhealthy patient and 185.19 Pa to the healthy one.

Then, a three-dimensional distribution of OSI, RRT and TAWSS was obtained in
order to evaluate the atherosusceptibility in both arteries (Fig. 19.8 - Fig. 19.10).

In comparison to the results of the steady-state flow, the introduction of the
realistic transient blood flow condition increases the concern over the occurrence of
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Fig. 19.8 OSI distribution in LCA in transient flow of Newtonian blood (a) unhealthy patient, (b)
healthy patient.

Fig. 19.9 RRT distribution in LCA in transient flow of Newtonian blood (a) unhealthy patient, (b)
healthy patient.

plaque formation for the unhealthy individual. OSI become greater than zero near
bifurcations (See Fig. 19.8) and, in relation to the steady-state flow, the critical area
of atherosusceptibility increases from 0% to 3.87% in the healthy patient and to
6.40% in the unhealthy patient. Additionally, there is a change in the areas where
RRT is equal or greater than 8 Pa-1 from 1.36% in the steady-state flow to 1.38% in
the healthy patient and from 5.88% to 5.40% in the unhealthy patient. The regions
where TAWSS is lower than 0.4 Pa decrease (from 17.95% to 16.53% in the healthy
patient and from 38.55% to 27.12% in the unhealthy patient). The results suggest
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Fig. 19.10 TAWSS distribution in LCA in transient flow of Newtonian blood (a) unhealthy patient,
(b) healthy patient.

that the healthy patient is less prone to having atherosclerosis when compared to the
results of the unhealthy patient.

19.3.3 Steady-State Flow of Non-Newtonian Blood

The velocity and the mass flow rate are not altered by the viscosity models in both
patients, being equal to the values of the Newtonian model, however, there is a
larger discrepancy in the obtained values of the maximum ∆p and maximum τwall
(Fig. 19.11).

With the exception of the Casson viscosity model, the pressure drop and the
maximum wall shear stress of the non-Newtonian models are greater than the ones
where blood was considered a Newtonian fluid. The generalized power-law model
leads to the biggest pressure gradients in both patients, which is in accordance
with the results of Sandeep and Shine (2021), while the Carreau model led to the
largest shear stress in the artery walls of the two patients. The pressure gradients of
the Carreau, Carreau-Yasuda, Cross and Power-law viscosity models are relatively
similar to each other.

TheRRTandTAWSSdistribution of the unhealthy patientwere plotted (Fig. 19.12).
OSI is null for all models. The results considering the Carreau, Carreau-Yasuda,
Cross and the power-law model for blood are very similar. The Casson model leads
to more critical regions of atherosusceptibility (49.09% of the area distribution of
TAWSS is below 0.4 Pa and 6.46% of the RRT distribution is above 8 Pa-1), while
the generalized power-law model returns more healthy results (the critical regions
of TAWSS are only 8.33% and RRT values do not surpassed 8 Pa-1). Comparing all
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Fig. 19.11 Maximum∆p and τwall for non-Newtonian blood in steady-state flow in LCA (a)
unhealthy patient, (b) healthy patient.

the studied viscosity models, the generalized power-law provides the furthest values
of RRT and TAWSS from the results of the remaining viscosity models.

19.3.4 Transient Flow of Non-Newtonian Blood

In transient flow, the flow properties of mass flow rate and velocity are not affected
by the viscosity models. At the velocity peak, the same properties are computed
(Fig. 19.13).
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Fig. 19.12 Hemodynamic indicators of the non-Newtonian steady-state blood flow for the
unhealthy patient (a) RRT, (b) TAWSS.
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Similarly to the non-Newtonian steady-state flow, the pressure drop in the un-
healthy patient is greater than the one of the healthy patient for all viscosity models.
In addition, the Casson model returns reduced values of maximum ∆p and τwall.
The application of generalized power-law model led to the highest values of pressure
drop, the imposition of the Carreau model returns the highest values of wall shear
stress, and the results of the remaining viscosity models are very close to one another.

Fig. 19.13 Maximum∆p and τwall in the velocity peaks for non-Newtonian blood in transient
flow in LCA (a) unhealthy patient, (b) healthy patient.

RRT and TAWSS of the unhealthy model were plotted (Fig. 19.14).
The generalized power-law viscosity model shows the most distant results and,

once more, the Casson viscosity model results present more critical regions than the
remaining results. In fact, the Casson viscosity model returns critical regions of OSI,
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Fig. 19.14 Hemodynamic indicators of the transient flow of non-Newtonian blood flow for the
unhealthy patient (a) RRT, (b) TAWSS.
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RRT and TAWSS occupying an area of 8.31%, 6.10% and 35.76%, respectively,
while in the generalized power-law model, these areas are 2.60%, 0.01% and 0%,
accordingly.

In comparison to the steady-state flow (Fig. 19.12), the RRT of both patients in-
creases with the application of the transient boundary conditions (with the exception
of the Casson viscosity model), as well as the OSI. Yet, all the TAWSS values at
the velocity peak in the transient flow decrease for all the studied non-Newtonian
models when in comparison to the steady-state flow (See Table 19.7).

Table 19.7 Atherosusceptible area comparison through hemodynamic descriptors between patients
and between flow regimes for all the studied non-Newtonian viscosity models.

Patient Flow regime Viscosity model Critical OSI (%) Critical RRT (%) Critical TAWSS (%)
Carreau 0 0.60 6.21
Carreau-Yasuda 0 0.70 8.53
Casson 0 1.44 31.66
Cross 0 1.06 14.95
Gen. power-law 0 0 0.01
Power-law 0 0.48 4.52

Steady-state

Newtonian 0 1.36 17.95
Carreau 1.84 0.64 5.99
Carreau-Yasuda 2.19 0.72 7.80
Casson 6.34 2.33 29.92
Cross 3.04 1.06 13.95
Gen. power-law 0.57 0 0
Power-law 1.61 0.53 4.63

Healthy

Transient

Newtonian 3.87 1.38 16.54
Carreau 0 0.44 27.24
Carreau-Yasuda 0 0.86 30.83
Casson 0 6.46 49.09
Cross 0 3.86 36.57
Gen. power-law 0 0 8.33
Power-law 0 0.22 23.05

Steady-state

Newtonian 0 5.88 38.55
Carreau 3.08 1.51 17.17
Carreau-Yasuda 3.63 2.14 19.17
Casson 8.31 6.10 35.76
Cross 5.25 4.15 24.38
Gen. power-law 2.60 0.01 0
Power-law 2.68 0.99 14.88

Unhealthy

Transient

Newtonian 6.40 5.40 27.12

A volumetric rendering and a vector distribution of the velocity were generated
in CFD-Post® at the velocity peak (Fig. 19.15). In all viscosity models except for
the generalized power-law one there is an increase in velocity after the obstruction
in the LAD of the unhealthy patient.
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Fig. 19.15 Velocity distribution during the velocity peak (at 0.725s) in the transient flow in LCA of
the unhealthy patient.

It is found that, from t = 0.375 s until t = 0.450 s, the blood velocity at the stenosis
is almost null in every viscosity model (Fig. 19.16). Therefore, there are instances
where the blood is primarily flowing through the LCx during the velocity peak. No
recirculation regions are found in the illustrated area, yet the results indicate that this
zone is prone to the development of atheroma plaque.

Thus, the majority of the results substantiate the negative impact the obstruction
in the LCA has on the blood flow of the patient.

19.4 Conclusions

Blood flow in three-dimensional models of coronary arteries of two patients with
varying degrees of stenosis, one with clear evidence of disease development and
the other seemingly healthy, was studied through computational fluid dynamics.
The numerical simulations allowed the quantification of parameters that could not
be measured in vivo and should be used to aid doctors in diagnosing and treating
atherosclerosis.

The velocity and pressure fields were analyzed, as well as the main hemodynamic
descriptors, OSI, RRT and TAWSS, which can be used to identify problematic areas
linked to the creation and development of atherosclerotic plaque. Moreover, since
there is not a global consensus on the theoretical model that best describes the
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Fig. 19.16 Time instances from t = 0.300 s until t = 0.500 s where blood flow was almost stagnated.

viscosity of blood, the Carreau, Carreau-Yasuda, Casson, Cross, generalized power-
law and power-law viscosity models in patient-specific arteries were compared.

The numerical results showed that the most problematic areas of the arteries
were the bifurcations and the sudden changes in diameter in obstructions, where
there were signs of stagnation and sometimes absence of blood flow. The Casson
viscositymodel is the only one that considers blood properties such as hematocrit and
plasma viscosity, and it produced greater critical areas of hemodynamic descriptors.
Thus, critical values of TAWSS, OSI and RRT strongly depend on the model. The
generalized power-law viscosity model produced the most healthy and most distant
results when compared to the remaining studied models, which produced similar
results. Apart from the generalized power-law viscosity model, the implementation
of the transient flow and the non-Newtonian viscosity models generally decreased
the critical regions of atherosusceptibility in both patients in comparison with the
steady-state model, since properties such as wall shear stress and pressure gradient at
the velocity peak decreased and, therefore, diminished the probability of the patients
developing future health problems. For the steady-state regime and Newtonian blood
flow simulations, the opposite behavior was observed and, this disparity highlights
the fact that blood should be correctly modeled and, therefore, not considered a
Newtonian fluid and be simulated under more realistic boundary conditions.

All in all, from the collected results, it became evident that the unhealthy patient
should be performing treatment to prevent possibly deadly repercussions of non-
normal blood flow, yet the healthy patient showed that it too could develop serious
health problems in the future. Therefore, routine analysis and an improvement of the
overall lifestyle could prevent impending complications.
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19.5 Appendix I

Fig. 19.17 Definition of the viscosity models in UDFs (a) Carreau-Yasuda, (b) Casson, (c) Cross,
(d) Generalized power-law.
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Chapter 20
Bending/Tension of Plate Reinforced by a System
of Parallel Fiber

Alexander G. Kolpakov, Sergei I. Rakin

Abstract We present a 3-D to 2-D dimension reduction procedure as applied to the
periodicity cell problem (PCP) of the homogenization theory for plates reinforced
with a unidirectional system of fibers. The original 3-D PCP is reduced to several
2-D problems. The reduction procedures are not trivial, in one case we encounter the
incompatibility condition, which makes impossible to transform the 3-D elasticity
problem to the 2-D elasticity problem (only the transformation to 2-D thermoe-
lasticity problem is possible). Numerical analysis of 2-D periodicity cell problems
demonstrates new phenomena: the boundary layers on the top and bottom surfaces
of the plate and, as a result, the wrinkling of the top and bottom surfaces of the plate.
Note that these phenomena never occur in uniform plates or plates made of uniform
layers.

Keywords: Fiber-reinforced plates · Homogenization · Dimensional reduction

20.1 Introduction

We consider a plate reinforced by a periodic system of parallel fibers, see Fig.20.1.
Assume the fibers are parallel to the Oy-axis and form a periodic structure in the
Oxz-plane. The periodicity cell (PC) P3 = [0, L]× [0, 1]× [−h, h] of such structure
and its 2-D cross-sections P = [0, L]× [−h, h] are displayed in Fig.20.1.

Since the plate under consideration is invariant with respect to translation along
the Oy-axis, there is a reason to look for a 2-D model of the plate. The procedure
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Fig. 20.1 a - fiber-reinforced plate, b - its 2-D periodicity cells

of dimension reduction is known for the solids with periodic systems of fibers
or channels (Sendeckyj, 1974; Grigolyuk and Fil’Shtinskii, 1966; Grigolyuk and
Fil’shtinskij, 1992; Lu, 1995; Mityushev and Rogosin, 2000; Gluzman et al, 2018;
Drygaś et al, 2019) and for plates of complex geometry made of homogeneous
materials (Annin et al, 2017; Kolpakov and Kolpakov, 2020; Grigolyuk et al, 1991).

The specific features of plates are:

• the free (top and bottom) surfaces;
• the bending/torsion modes of deformation.

These features distinguish the plates from the solids with the periodic structure
considered in Sendeckyj (1974); Grigolyuk and Fil’Shtinskii (1966); Grigolyuk
and Fil’shtinskij (1992); Lu (1995); Mityushev and Rogosin (2000); Gluzman et al
(2018); Drygaś et al (2019). The inhomogeneity also brings some new effects.

There exists a great variety of approaches to the analysis of thin plates. In order to
mention the recent papers, see Barchiesi and Khakalo (2019); Franciosi et al (2019);
Yang et al (2020); Placidi and El Dhaba (2017); Altenbach et al (2010); Wang et al
(2021) as well as references in them. As follows from the literature, the classical
(Kirchoff–Love, Timoshenko, etc.) approaches work well for homogeneous plates or
plates made of uniform layers. The classical theories do not work as applied to the
inhomogeneous plates of general structure (for example, fiber-reinforced plates or
plates with high-porous core). In some cases, even the basic notions of the classical
theories are not well defined as applied to the inhomogeneous plates of general
structure (for example, the inhomogeneous plate may have several "neutral" planes).
The problem of construction of platemodel was solved in the homogenization theory.
The rigor homogenization theories as applied to elastic thin plates were developed
first in Caillerie (1984); Kohn and Vogelius (1984). The papers (Caillerie, 1982,
1984) were devoted to the investigation of 3-D model of thin elastic periodic plate
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when the thickness of the plate and the size of the periods are small. In the paper
(Kohn and Vogelius, 1984), the elastic thin body with rapidly varying thickness was
considered.

Note that the homogenization theory is a mathematical theory and it does not
answer the questions of mechanical nature on its own.

The homogenization theory justifies that solution of the elasticity theory problem
in a thin inhomogeneous layer of complex geometry has the form (A,B = 1, 2)

uε = uA(x, z)eA + yw(x, z),AeA + εNAB0(x/ε)uA,B(x, z)+

εNAB1(x/ε)w,AB(x, z),
(20.1)

where ε is the characteristic thickness of the plate; uA(x, z) are the global in-plane
displacements, w(x, z) is the global normal deflection; eAB = uA,B are global in-
plane strains and ρAB = w,AB are global curvatures/torsion (A,B = 1, 2). These
functions have the same meaning as in the classical theory. We use the notations
f,i(x) = ∂f(x)/∂xi and f,i(y) = ∂f(y)/∂yi for the partial derivatives and assume
summation with respect the repeating indices.

The term εNAB0(x/ε)uA,B(x, z) + εNAB1(x/ε)w,AB(x, z) (known in the ho-
mogenization theory as “corrector” (Caillerie, 1984; Kohn and Vogelius, 1984) has
the order of the thickness ε of the plate. Note that the plate may have rapidly varying
thickness (top and/or bottom surfaces of the plate may be wavy). Therefore, the
corrector has little effect on the global shape of the deformed plate. On the contrary,
the derivatives of the functions εNAB0(x/ε) and εNAB1(x/ε) in x are not small
and may strongly influence the local stress-strain state of the plate.

It is known from the homogenization theory (Caillerie, 1984; Kohn and Vogelius,
1984) that the functions NABµ are solutions to the following so-called periodicity
cell problems:

(aijkl(x, z)NABµ
k,l + (−1)µaijAB(x, z)zµ),j = 0 in P3,

(aijkl(x, z)NABµ
k,l + (−1)µaijAB(x, z)zµ)nj = 0 on Γ3,

NABµ is periodic in x, y,
(20.2)

Γ3 = Γ−3 ∪Γ+
3 . Hereafter,y = (x, y, z) = x/ε. The variable-index correspondence:

x ↔ 1, y ↔ 2, z ↔ 3 . The Latin indices take values 1, 2, 3; the capital Greek
indices takes values 1, 2; the indices µ, ν take values 0, 1. Γ3 means the top and the
bottom surfaces of the PC P3.

The local stresses in the PC are (Caillerie, 1984; Kohn and Vogelius, 1984)

σij = aijkl(x, z)NABµ
k,l + (−1)µaijAB(x, z)zµ

correspond to the in-plane strains (µ = 0) of the unit magnitude or the bend-
ing/torsion (µ = 1) of the unit magnitude.

In the plates subjected to the macroscopic stress-strain state (SSS) eAB , ρAB , the
local stresses are computed as
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σij = (aijkl(x, z)NAB0
k,l + aijAB(x, z))eAB+

(aijkl(x, z)NAB1
k,l − aijAB(x, z)z)ρAB .

(20.3)

This formula may be used for analysis of the local strength of plates, local stability
of the constitutive elements of plate, etc. The effective rigidities of the plate are
computed in accordance with the formulas (Caillerie, 1984; Kohn and Vogelius,
1984)

Sν+µ
αβAB =

1

|PrP3|

∫
P3

(aαβkl(y)NABν
k,l + (−1)νzνaijAB(y)(−1)µzµdy =

1

L

∫
P

(aαβkδ(x, z)NABν
k,δ + (−1)νzνaijAB(x, z))(−1)µzµdxdz.

(20.4)
2-D PC P = [0, L] × [−h, h] is projection PrP3 of 3-D PC P3 on Oxz-plane;
|PrP3| = L× 1; L is the width of the 2-D periodicity cell P ; Γ+ and Γ− are the
top and the bottom of the PC P , correspondingly; Γ = Γ− ∪ Γ+.

One can conclude that the functions NABµ are the key to the analysis of the
macro and microscopic properties of the inhomogeneous plate.

The homogenization theory itself provides us with no information about the
solution to the PCP (20.2). One can see that the PCP (20.2) is a special type of 3-D
elasticity theory problem, which is the subject of the elasticity theory. It would be
reasonable to regard the PCP as the point of torch transfer from the homogenization
theory to the elasticity theory. In particular, it would be reasonable to apply the
methods developed in the elasticity theory to the analysis of PCP.

20.2 Reduction of 3-D PCP (20.2) to 2-D problems

Although the dimension reduction procedures have a longstanding history, the first
work (to the best knowledge of the authors) devoted to the dimension reduction in
the bending problem for the 3-D elastic body of the periodic structure is in Grigolyuk
et al (1991). Grigolyuk et al (1991) was devoted to the bending of an elastic layer
with the periodic systems of tunnel cuts. Grigolyuk et al (1991) used the double
periodic function technique, thus treated the body as a layer of “infinite” thickness.
It means that Grigolyuk et al (1991) is not the case of the plate, which thickness is
small in the original variables x or finite in the fast variables y = x/ε. The results
in Grigolyuk et al (1991) can be used to predict the SSS inside the plate, but not
near-surface phenomena. Do not confuse the dimension reductions in Grigolyuk et al
(1991) and one discussed in this paper with the traditional dimensional reduction
in the plane of the plate (Love, 2013). The dimensional reduction discussed in this
paper is based on the transition to the problems on the cross-section of the plate.

Our starting point is the PCP (20.2) of the homogenization theory as applied to
thin plates. The PC P is a cylinder parallel to the Oy-axis, see Fig.20.1, and the
elastic constants aijkl do not depend on the variable y . In this case, the solution to
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the problem (20.2) does not depend on y and has the form NABµ = NABµ(x, z).
Substituting into (20.2), we arrive at the following 2-D PCP:

(aiαkβ(x, z)NABµ
k,β + (−1)µaiαAB(x, z)zµ),α = 0 in P,

(aiαkβ(x, z)NABµ
k,β + (−1)µaiαAB(x, z)zµ)nα = 0 on Γ,

NABµ(x, z) is periodic in x.
(20.5)

Hereafter α, β=1,3; i,k=1,2,3; AB=11, 22, 12,21.
In the equations (20.5)

aiαkβ(x, z)NABµ
k,β + (−1)µaiαAB(x, z)zµ =

aiαθβ(x, z)NABµ
θ,β + aiα2β(x, z)NABµ

2,β + (−1)µaiαAB(x, z)zµ.
(20.6)

The boundary-value problem (20.5) decomposes into several 2-D problems. The
form of the 2-D problems depends on the index i in (20.5). For i = 2 , the original
problems are reduced to scalar 2-D problems. For i = ξ = 1, 3 the original problems
are reduced to 2-D elasticity or thermoelasticity problems.

For this reason, we consider problem (20.2) for i = 2 and i = ξ = 1, 3, separately.
In this paper, we pay the main attention to the case i = 2, which leads to the analogs
of the anti-plane elasticity problem. The case i = ξ = 1, 3, leads to the analogs of
the planar elasticity problem.

Problem (20.2) with index i = 2. We assume the fibers and matrix are made
of isotropic materials. It is convenient to save the notations aijkl for the elastic
constants in our analysis. In special cases below, we will use the technical constants,
see formulas (20.31) below.

In the case, under consideration a2αθβ = 0 , a2αAB = 0 (Love, 2013) and
expression in (20.6) takes the form ( α = 1, 3)

a2αθβ(x, z)NABµ
θ,β + a2α2β(x, z)NABµ

2,β + (−1)µaiαAB(x, z)zµ =

a2α2α(x, z)NABµ
2,α +

{
(−1)µa2121(x, z)zµ if AB = 12, 21,

0 else.
(20.7)

By virtue of (20.7), the solution to (20.2) NABµ
2 (x, z) = 0 if AB 6= 12, 21. Only

NABµ
2 (x, z) 6= 0 . This is the case of in-plane shift (if µ = 0 ) or torsion (if µ = 1).

The in-plane shift is also called anti-plane deformation (Love, 2013).
The problem for N21µ

2 (x, z) takes the form
(a2α2α(x, z)N21µ

2,α + (−1)µa2121(x, z)zµδα1),α = 0 in P,
(a2α2α(x, z)N21µ

2,α + (−1)µa2121(x, z)zµδα1)nα = 0 on Γ,
N21µ

2 (x, z) periodic in x.
(20.8)

It is convenient to eliminate the "mass" and "surface" forces in (20.8). It may be
done if there exists a function w , such that (ν = 0, 1)
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a2δ2δ(x, z)w,δ = (−1)µa2121(x, z)zµ. (20.9)

For δ = 2 and δ = 2 , we obtain from (20.9) a2δ2δ(x, z)w,1 = (−1)µa2121z
µ and

a2δ2δw,2 = (−1)µa2121(x, z)zµ , correspondingly. From these equalities, we obtain
the following system of differential equations

w,1 = (−1)µ, w,3 = 0. (20.10)

In-plane shift (µ = 0). For µ = 0, the system (20.9) takes the form w,1 =
1, w,3 = 0. The solution to this system is w(x, z) = x . Introduce function

M(x, z) = N120
2 (x, z) + x,

and write (20.8) in the form of a boundary-value problem without "mass" and
"surface" forces: 

(a2α2α(x, z)M,α),α = 0 in P,
a2α2α(x, z)M,αnα = 0 on Γ,
M(x, z)− x periodic in x.

(20.11)

The problem (20.11) is the anti-plane elasticity theory problem.
After some algebra, we obtain the following formulas for the local stresses:

σij = aij2α(x, z)N120
2,α + aij21(x, z) = aij2α(x, z)M,α, (20.12)

and the homogenized shift rigidity

S0
2121 =

1

L

∫
P

(a212α(x, z)N210
2,α + a2121(x, z))dxdz =

1

L

∫
P

(a212α(x, z)M,αdxdz,

S1
2121 =

1

L

∫
P

(a212α(x, z)N210
2,α + a2121(x, z))zdxdz =

1

L

∫
P

(a212α(x, z)M,αzdxdz.

(20.13)

The local stresses (20.12) and the homogenized shift rigidity (20.13) depend on the
elastic constants of the composite plate.

These formulas may be used for the analysis of the local strength of the plates,
local stability of the constitutive elements of the plate, etc. The effective rigidities of
the plate are computed in accordance with the formulas (Caillerie, 1984; Kohn and
Vogelius, 1984).

Torsion (µ = 1). In this case, we meet a problem, which has no analog in the
classical theory of elasticity or classical plate theory.

For µ = 1, the system (20.10) takes form w,1 = −z, w,3 = 0 . This system is not
integrable. Really, the necessary integrability condition (Love, 2013) is not satisfied
for this system because w,13 = −z,3 = −1 6= w,31 = 0 .
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For µ = 1 , (20.8) takes the form
(a2α2α(x, z)N211

2,α − a2121(x, z)zδα1),α = 0 in P,
(a2α2α(x, z)N211

2,α − a2121(x, z)zδα1)nα = 0 on Γ,
N211(x, z) is periodic in x.

(20.14)

To write (20.14) in compact form, we introduce function as

ϕ,3 = a2121(x, z)(N211
2,1 − z), ϕ,1 = −a2323(x, z)N211

2,3 . (20.15)

The function ϕ(x, z) introduced by (20.15) is similar to the conjugate function
(Sedov, 1971). The equality

ϕ,31 − ϕ,13 = (a2121(x, z)(N211
2,1 − z)),1 + (a2323(x, z)N211

2,3 ),3 = 0, (20.16)

follows from (20.14). This equality justifies the existence of the function ϕ(x, z) .
Express N211

2 (x, z) from (20.15)

N211
2,1 =

1

a2121(x, z)
ϕ,3 + z,N211

2,3 = − 1

a2323(x, z)
ϕ,1. (20.17)

Differentiation of (20.17) yields

0 = N211
2,13 −N211

2,31 = (
1

a2121(x, z)
ϕ,3 + z),3 + (

1

a2323(x, z)
ϕ,1),1. (20.18)

Taking into account that for the isotropic materials a2121 = a2323, we obtain

(
1

a2121(x, z)
ϕ,3),3 + (

1

a2121(x, z)
ϕ,1),1 = 1. (20.19)

With the use of the function ϕ(x, z), the boundary conditions on the top and bottom
boundaries Γ+ and Γ− (20.8) can be written as

(a2121(x, z)N21ν
2,1 − a2121(x, z)z)n1 + a2323(x, z)N21ν

2,3 n3 =

ϕ,3n1 − ϕ,1n3 =
∂ϕ

∂s
= 0 on Γ,

(20.20)

where ∂ϕ/∂s is the derivative along the boundary Γ+ or Γ− . Because of (20.20),
the function ϕ(x, z) takes constant values on the top and bottom boundaries Γ+ and
Γ− :

ϕ(x, z) = const± on Γ±. (20.21)

Without loss of generality, we can assume that ϕ(x, z) = 0 at the bottom boundary
Γ−.

Integrating the first equality in (20.15) over z from −h to h, we have
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ϕ(x, L) = ϕ(x,−L) +

∫ h

−h
a2121(x, z)(N211

2,1 − z)dz. (20.22)

Integrating the (20.23) over x from 0 to L, we have

ϕ(−h, L)L = ϕ(−h,−L)L+

∫
P

a2121(x, z)(N211
2,1 − z)dxdz. (20.23)

Writing (20.23), we take into account that ϕ(x, L) and ϕ(x,−L) are constants.
Multiplying (20.14) by x and integrating by parts, we have∫

P

a2121(x, z)(N211
2,1 − z)dxdz =

∫
P

ϕ,3dxdz.

As the result

S1
2121 =

1

L

∫
P

a2121(x, z)(N211
2,1 − z)dxdz =

1

L

∫
P

ϕ,3dxdz. (20.24)

Comparing (20.23) and (20.24), we find that the RHP (20.23) is equal to

ϕ(h,−L) = φ(−h,−L) + S1
2121.

We have assumed that ϕ(x, z) = 0 on the bottom boundary Γ+, in particular,
ϕ(−h,−L) = 0 and ϕ(x, z) = S1

2121 on the top boundary Γ+ . As a result, we
arrive at the following boundary value problem:

(
1

a2121(x, z)
ϕ,1),1 + (

1

a2121(x, z)
ϕ,3),3 = 1 in P,

ϕ = 0 on Γ−, ϕ = S1
2121 on Γ+,

ϕ(x, z) is periodic in x.

(20.25)

The problem (20.25) involves the asymmetric effective stiffness S1
2121 of the plate,

which has been expressed in (20.24) through the solution ϕ to the BVP (20.25).
The problem (20.25) with the condition (20.24) has a not usual form. This is lucky
for us that the asymmetric effective stiffness S1

2121 also may be computed by using
the second formula in (20.13). As a result, we have the problem (20.25) with S1

2121

known after the BVP (20.11) be solved.
The local stresses, corresponding to the case under consideration, are expressed

in the form

σij = aij2α(x, z) + aij21(x, z)z =
aij21(x, z)

a2121(x, z)
(ϕ,3 − ϕ,1),

and the homogenized torsion rigidity is expressed in the form

S2
2121 = −

∫
P

(ϕ,3 − ϕ,1)zdxdz. (20.26)
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Problem (20.2) with index i = ξ = 1, 3. Deformation perpendicular to
the fibers. In this case, aξα2β(y) = 0 and expression in (20.6) takes the form
(α, β, θ, ξ = 1, 1 ).

In the equations (20.5)

aiαkβ(y)NABµ
k,β + (−1)µaiαAB(x, z)zµ =

aξαθβ(x, z)NABµ
θ,β + aξα2β(x, z)NABµ

2,β + (−1)µaςαAB(x, z)zµ =

aξαθβ(x, z)NABµ
θ,β + (−1)µaξαAB(x, z)zµ.

(20.27)

Here AB = 11, 22, 12, 21 . Then the PCP (20.5) takes the form
(aξαθβ(x, z)NABµ

θ,β + (−1)µaξαAB(x, z)zµ),α = 0 in P,
aξαθβ(x, z)NABµ

θ,β + (−1)µaξαAB(x, z)zµ)nα = 0 on Γ,
(NABµ

1 , NABµ
3 )(x, z) periodic in x.

(20.28)

Note that aξα12 = 0 and aξα21 = 0 for i = ξ = 1, 3 , then (N21µ
1 , N21µ

3 )=0 and
(N12µ

1 , N12µ
3 )=0. The problem (20.28) is non-trivial for AB = 11, 22.

In some cases, (20.28) for AB = 11, 22 may be transformed into problems
without free terms. We shall check if it is possible to represent the free term
(−1)µaξαAB(x, z)zµ in (20.28) in the form (−1)µaξαθβ(x, z)eABµθβ with the strains
eABµθβ = vABµθ,β corresponding proper displacements vABµθ,β (µ =0, 1):

aξαθβ(x, z)vABµθ,β = aξαAB(x, z)zµ. (20.29)

Index AB = 22. Tension and bending along the fibers. Equation (20.29) takes
the form aξαθβ(x, z)eθ,β = aξα22(x, z)zµ. In the coordinate-wise form, it is

a1111e11 + a1133e33 = −a1122z
µ,

a3311e11 + a3333e33 = −a1122z
µ,

a1313e13 = 0, a1111e31 = 0.

(20.30)

Write the elastic constants in terms of Young’s E modulus and Poisson’s ratio ν
(Love, 2013)

a1111 = a1111 =
E(1− ν)

(1 + ν)(1− 2ν)
,

a1133 = a3311 = a1122 = a3322
E(1− ν)

(1 + ν)(1− 2ν)
.

(20.31)

In this case, the first two equations in (20.30) take the form

(1− ν)e11 + νe33 = −ν(x, z)zµ,

νe11 + (1− ν)e33 = −ν(x, z)zµ.
(20.32)
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The solution to (20.32) is

e11 = e33 = −ν(x, z)zµ. (20.33)

Taking into account that e13 = e31 = 0, we arrive at the following system:

∂v1

∂x
= −ν(x, z)µ,

∂v3

∂z
= −ν(x, z)µ,

∂v1

∂z
+
∂v3

∂x
= 0. (20.34)

Generally, the compatibility condition (Love, 2013) is not satisfied for the system
(20.34) for arbitrary ν(x, z).

This incompatibility indicates that a simple transfer from 3-D to the 2-D problem
is impossible in the general case.

The case ν(x, z) = const. If ν(x, z) = ν = const, the system (20.34) is
compatible. In this case, the solution to (20.34) may be obtained in the explicit form.
For µ = 0 , v1 = −νx and v3 = −νz.

IntroduceM22µ
1 = N22µ

1 +v1 andM22µ
2 = N22µ

2 +v2. By using these functions,
we can transform the problem (20.28) to the following:

(aξαθβ(x, z)M22µ
θ,β ),α = 0 in P,

aξαθβ(x, z)M22µ
θ,β nα = 0 in Γ,

[M22µ
1 ]x = −νzµ[x]x, [M

22µ
3 ]x = 0,

(20.35)

where []x means the jump of the function value at the opposite sides of the PC in the
direction Ox.

The case ν(x, z) 6= const. In this general case, we can transform the problem
(20.28) into a thermoelasticity problem.

In (20.28)

aξαθβ(x, z)NABµ
θ,β + (−1)µaξαAB(y)zµ =

aξαθβ(x, z)NABµ
θ,β + aξαθβeθβ = aξαθβ(x, z)(NABµ

θ,β + eθβ),

where eθβ are given by (20.33). Then (20.28) may be written in the form
(aξαθβ(x, z)(NABµ

θ,β + eθβ)),α = 0 in P,
aξαθβ(x, z)(NABµ

θ,β + eθβ)nα = 0 on Γ,
(NABµ

1 , NABµ
3 )(x, z) periodic in x.

(20.36)

Problem (20.36) is the thermoelasticity problem with the coefficients of thermal
expansion eθβ . Since e11 = e22 = −ν(x, z)zµ and e13 = e31 = 0, this tensor
is isotropic. For ν = 1, coefficients e11 = e22 = −ν(x, z)z, where ν(x, z) takes
constant values in the fibers and the matrix. Some ANSYS APDL programming is
required to input such kind coefficients. The local stresses are

σξα = aξαθβ(x, z)(NABµ
θ,β + eθβ))nα. (20.37)
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The effective rigidities are

Sµ+ν
ξαθβ =

1

L

∫
P

(aξαθβ(x, z)NABµ
θ,β + aξαAB(x, z))zνdxdy =

1

L

∫
P

(aξαθβ(x, z)(NABµ
θ,β + eθβ(x, z))zνdxdy.

Index AB = 11. Tension and bending perpendicular to the fibers. In this
case, we arrive at the problem

∂v1

∂x
= −zµ, ∂v3

∂z
= 0,

∂v1

∂z
+
∂v3

∂x
= 0. (20.38)

The problem (20.38) may be solved in the explicit form. Its solution is

v1 = −x, v1 = 0 for µ = 0,

v1 = −xz, v1 = x2/2 for µ = 1.

IntroduceM11µ
1 = N11µ

1 + v1 andM11µ
2 = N11µ

2 + v2. By using the functions,
we can transform the problem (20.28) to the following:

(aξαθβ(x, z)M11µ
θ,β ),α = 0 in P,

aξαθβ(x, z)M11µ
θ,β nα = 0 on Γ,

[M11µ
1 ]x = −νzµ[x]x, [M

11µ
3 ]x = 0.

(20.39)

Index AB = 12, 21. Shift/torsion. For AB = 12, 21 , equation (20.29) takes
the form aξαθβeθ,β = aξα12z

µ = 0, ξ, α = 1, 3. Its solution is eθβ = 0. Then
v1 = v3 = 0 and solution to (20.28) is trivial.

20.3 Numerical Computations

In this section, we present several numerical solutions interesting from mechanic’s
point of view. In our computations the fibers Young’s modulus E=170GPa and
Poisson’s ratio ν=0.3; and the matrix E=2GPa and Poisson’s ratio ν=0.36. These
values correspond to carbon/epoxy composite (Agarwal et al, 2017).

The computer programwas developed by using the APDL programming language
(Thompson and Thompson, 2017). The finite elements PLANE183 are used for the
fibers and the matrix, the characteristic size of the finite elements is 0.03, the total
number of finite elements is about 10000.

Figure 20.2 displays the solution to the PCP corresponding to the bending in the
direction perpendicular to the fibers. We have observed edge effects near the top
and the bottom surfaces of the plate. The edge effect zone thickness is less than the
thickness of one structural layer (fiber + surrounding matrix). To the best knowledge
of the authors, such kind edge effect was not reported before.
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Fig. 20.2 PC formed of two adjacent PCs of 5-layer fiber-reinforced plate

If the plate is thick, these top/bottom edge layers do not influence the effective
rigidity of the plate. But they influence the local SSS, thus, the strength of the plate.

An analysis of Fig.20.2 leads to the conclusion that the found edge effect does
not lead to a stress concentration in the edge effect zone. In Fig.20.2, we observe the
von Mises stress decrease in the edge effect zone. The stress concentration between
the fibers is the result of the dense packing on the fibers (Flaherty and Keller, 1973;
Kolpakov and Kolpakov, 2009; Kang and Yu, 2020; Kolpakov, 2007; Rakin, 2014).

One result of the edge effect is the wrinkling of the top/bottom boundaries of the
plate. The wrinkling is especially good seen for the PCP formed of two adjacent
PCs, see Fig.20.2. The wrinkling may influence the plate-to-surrounding media
interaction. The various kinds of wrinkling were discussed in the literature on the
composite materials (Boisse et al, 2018, 2021; Giorgio et al, 2018). The authors find
no analogs between the wrinkling effects describer early and the wrinkling described
in this paper.

The top/bottom edge effect (including wrinkling) described above never occurs
in uniform plates or plates made of uniform layers. The solutions to the PCPs for the
homogeneous plates and plates made of uniform layers are well known and may be
easily computed.

20.4 Conclusion

We developed a procedure of transition from the original 3-D PCP (20.2) in a thin
domain with a system of parallel cylindrical inhomogeneities to 2-D boundary-
value problems. We arrive at 2-D boundary-value problems (20.11) and (20.25)
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corresponding to the shift and torsion of the plate. These problems have the forms of
the anti-plane elasticity problems with and without mass forces (Laplace-type and
Poisson-type problems). 2-D boundary-value problem (20.25) is a new problem. 2-
D boundary-value problems (20.35) and (20.36) correspond to the tension/bending.
They have the forms of planar elasticity and thermo-elasticity problems.

Our numerical analysis of the obtained 2-D problems demonstrates the existence
of boundary layers near the top and bottom surfaces of the plate. The boundary layer
thickness is less than the thickness of one structural layer (the diameter of the fiber
+ the thickness of the surrounding matrix).

One of the manifestations of the found boundary layer is the wrinkling of the
top and the bottom of the plate. To the best knowledge of the authors, such kind
boundary layers and the wrinkling effect did not refer earlier. Note that the boundary
layers and the wrinkling effect described in this paper cannot occur in uniform plates
or plates made of homogeneous layers.
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Chapter 21
Semi-Automatic Method of Stent Development
for Hemodynamic Simulations in Patient
Coronary Arteries with Disease

Luís Matias, Catarina Ferreira de Castro, Carlos Conceição António,
Luísa Costa Sousa, Sónia Isabel Silva Pinto

Abstract Atherosclerosis contributes to the development cardiovascular diseases,
the leading cause of death in the world. Complications arising from atherosclerosis,
such as stenosis (an abnormal narrowing of a blood vessel, which can lead to its
clogging) exacerbate the risk of cardiovascular disorders. Besides aging, sedentary
lifestyle, unhealthy diet and tobacco consumption are among the risk factors which
increase the likelihood of developing atherosclerosis overtime. One way to prevent
stenosis development, due to atherosclerosis, is by inserting stents inside the relevant
blood vessels. Stents are small metal tubes which can be expanded to keep the
passageway open and improve blood flow, essentially resulting in an arterioplasty.
The achievement of an accurate stent, such as accurate mesh, length and other
features, specific for a patient coronary artery with atherosclerosis, is still a challenge
in clinical practice. Therefore, after developing numerical based coding solution that
simulate hemodynamic conditions as close as possible to reality, the goal of the
present work is to develop a semi-automatic method to create a stent in the stenotic
location of patient-specific coronary arteries. As far aswe know, no authors have been
able to quickly and effectively place the stent in a model of a patient’s artery, which
is subject to the complex geometry of the coronary such as curvature, tortuosity,
etc. The impact of stent length was considered, in order to verify which is the ideal,
for a patient case, avoiding restenosis occurrence. After hemodynamic simulations
in the model artery with stenosis and in the model artery with stent, it is observed
that strong atherosusceptible regions just after the stenosis are eliminated after stent
insertion.
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21.1 Introduction

Cardiovascular diseases have been one of the main causes of death in developed
countries (Mozaffarian et al, 2015). The clinical practice highlights that specific lo-
cations in the human circulatory system, such as arterial curvatures and bifurcations,
are sensitive to the development of cardiovascular diseases such as atherosclerosis,
caused by a stenosis – accumulation of lipoproteins, calcium and other (fat) sub-
stances in the arterial wall. The stenosis blocks the normal circulation of blood flow.
Therefore, in clinical practice, a stent is inserted in the stenotic location of the artery
for its enlargement. From there, the hemodynamics occurs in a best way.

The stent is an endoprosthesis composed by a metallic tube in a mesh format.
According toNikolic and Filipovic (2020), stents can be divided into three categories:
(1) Method of Spread: balloon-expanding or self-expanding stents; (2) Coating: with
or without drug coating; (3) Persistence in the body: permanent or bioabsorbable. As
for materials, in balloon-expandable stents the most used is stainless steel 316L and
in self-expanding stents, nitinol. Despite their ability to restore normal blood flow,
stents have some limitations. The biggest obstacle encountered is restenosis. This,
as the name implies, is the reappearance of stenosis in the stent area.

The hemodynamic simulation is an important and auxiliary tool for the prevention,
diagnostic and treatment of cardiovascular diseases. Computed tomography images
of coronary arteries can give information about the geometry of the artery and
location and degree of the stenosis. However, they do not explain the hemodynamics
with detail. Thus, for better assistance in research and clinical practice, a numerical
tool to simulate the hemodynamics, as close as possible to the reality, is of extreme
necessity. This numerical tool has been developed, recently, by the present authors
(Pinho et al (2018); Pinho et al (2019), Pinto et al (2020)). The Simplified Phan-
Thien/Tanner (sPTT) model implemented as an user-defined function (UDF), in
Ansys® software, takes into account the viscoelastic property of blood (Bodnár et al
(2011); Campo-Deaño et al (2013)). The sPTT model was achieved as efficient by
Pinto et al (2020). The hemodynamic results using sPTT model were in accordance
with the literature (Good et al, 2016). Moreover the arterial walls are assumed to
be rigid. Another type of blood flow analysis is the fluid-structure interaction (FSI)
which has into account the deformability of the arterial wall. It was concluded in
Miranda et al (2020), that FSI requiresmore computational time and the results do not
differ from the case where the arterial wall movement is neglected. Hemodynamic
descriptors, based in the wall shear stress (WSS) are used to predict the areas of
the arteries that are more susceptible to the appearance of stenosis (Miranda et al
(2020); Pinto et al (2020)).

Regarding stent creation, David Chua et al (2003) and Gay et al (2006), modeled
a crimped stent, uniquely in a straight cylindrical format, analyzed his expansion
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with a balloon applying a radial force. Bonsignore (2010) starting with an unit cell,
projected and embossed it to a cylinder obtaining a circular unit cell. Repeating that
circular cell, he obtains the final crimped stent model. Using previous method, Hsiao
et al (2012), Amin et al (2015), Wang et al (2019) and Chen et al (2019) analyzed
the mechanical performance of different stent designs. Migliavacca et al (2007)
studied the expansion and drug elution of a coronary stent in an ideal straight artery.
Recently, Okereke et al (2021), using Bonsignore method, show a virtual testing
approach for the development of 3D printable artery stents based on biomaterials.
Besides the advances that these studies contribute for the cardiovascular engineering
field, none of them have created a stent inside the complex geometry of a patient
coronary artery.

Thus, going further than the available literature, the goal of the present work is to
develop a semi-automatic method of an expanded stent creation in a patient-specific
coronary artery with stenosis, in order to perform hemodynamic simulations in pa-
tients with stents. Then, using numerical simulationwe can predict the hemodynamic
performance of a stent in the main branch of a coronary artery.

21.2 Methodology

Computed tomography (CT) is becoming an emerging role in coronary ischemia
diagnosis, by enabling a 3D visualization of arteries and their geometries, and even
providing the means for identifying the presence of atheromatous plaque buildup,
which constrains blood flow. When analyzed via computational fluid dynamics,
the 3D models obtained from CT enable a more detailed study of the respective
hemodynamics.

The following methodmakes it possible to place a stent in the damaged area of the
artery for further hemodynamic analysis: (1) obtaining the three-dimension model
of artery lumen from CT images, (2) designing stent and combine artery lumen with
it (3) analyzing the 3D model obtained, using computational fluid dynamics (CFD).
This method can be observed with more detail in Fig. 21.1.

For this study, it was selected a patient-specific case (male, with 55 years old)
with atherosclerotic disease (degree of 50% stenosis) in the left circumflex artery
(LCx) of the left coronary artery (LCA). DICOM images, obtained with CT by the
Vila Nova de Gaia/Espinho (CHVNG/E) Hospital Center, were segmented, using
MIMICs®, to obtain the contours of the LCA, Fig. 21.2. The patient subject to the
study gave informed consent and the present research was approved by the local
institutional ethics committee.
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Fig. 21.1 Diagram of the semi-automatic method used with the software references.

Fig. 21.2 Left coronary artery contours obtained after DICOM images segmentation.

21.2.1 Left Coronary Artery Geometry and Stent Design

21.2.1.1 Stenotic Zone Reconstruction

Using MIMICs®, the model is softened and the limits of the artery branches are
defined. The damaged area of the LCA is recovered in an approximate way. Although
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the result of this recovery corresponds to a healthy arterywithout a stent, the objective
is to obtain the line that passes through the center of the artery. Figure 21.3(a)
illustrates all the modifications and it is possible to observe the differences between
the damaged artery and the recovery made (with transparency).

Fig. 21.3 Stent design: (a) Softened coronary artery with branches limits defined; (b) Coronary
artery model after removing damaged zone; (c) Final stent with cylindrical shape; (d) Stent
subtracted from a cylinder - stent-lumen; (e) Curved stent-lumen; (f) Final model obtained after
combining coronary artery model (red), the curved stent-lumen (green) and transition zone
(yellow).
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21.2.1.2 Stenotic Zone Disposal

Using the softened LCA model and centerline, the damaged zone is removed,
Fig. 21.3(b), and the minimum dimensions of the sent, diameter (2.9 mm) and
length (9.0 mm), are obtained. For this the IGS model obtained in MIMICs® was
imported to SolidWorks®. The centerline was imported indicating the set of points
that describe it. In addition a small portion of the LCA was also removed at the ends.
In this way, when the stent is placed, it is possible to make a smooth connection to
the rest of the artery, avoiding creating turbulence zones and bringing the results
closer to reality. Model was saved in SolidWorks® format (.SLDRPT) for further
assembly with stent.

21.2.1.3 Flat Stent Design

Stents can be divided into three categories regarding: (1) form of expansion (self-
expanding or balloon expanding); (2) coating (with or without drug coating); (3)
permanence in the body (permanent or biodegradable). Concerning biocompatibil-
ity, 316L stainless steel is the most used material in balloon expanding stent. To
develop the semi-automatic method of stent placement in real arteries, an uncoated,
permanent and balloon expanding stent was used. Patents associated with stents
make it difficult to define their dimensions. The chosen stent, taken from the lit-
erature (Lee et al, 2020), is an adaptation of the Palmaz-Schatz stent. Based on
the following authors, (Hall and Kasper (2006); Kiousis et al (2007); Migliavacca
et al (2007); Bekal et al (2018); Lee et al (2020)), the dimensions of the stent
structure were defined, see Fig. 21.4(a). The final diameter and length will depend

Fig. 21.4 (a) Stent structure dimensions (mm); (b) Flat stent (9 mm).

on the size of this structure. To increase/decrease the diameter, a simple structure
in the vertical direction is removed/added. The same is true for the length, in the
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horizontal direction. Considering the dimensions taken from Section 21.2.1.2, using
Solidworks®, structures were added in both directions to obtain the flattened stent
mesh in illustrated in Fig. 21.4(b). Final stent dimensions are indicated in Table 21.1.
SolidWorks® uses geometric modeling kernel, for that reason Parasolid format was
used to import/export in the different used software.

Table 21.1 Final stent dimensions.

Length Diameter

9 mm stent 9 mm 1.4 mm
12 mm stent 12 mm 1.4 mm

21.2.1.4 Bending to Cylindrical Form and Curve Adaptation

Flat stent was imported into Creo® and rolled 360 degrees to obtain a cylindrical
shape as shown in Fig. 21.3(c).

In simulations, the artery wall thickness will not taken into account, as explained
previously. For this reason, using SolidWorks® , the stent was subtracted from a
cylinder to simulate the blood surrounding the device and to obtain the stent-lumen,
Fig. 21.3(d). Artery central line, previously obtained, is now used to adapt the stent-
lumen to artery curves, Fig. 21.3(e), using ZW3D® software.

21.2.1.5 Combining Artery Geometry with Stent-Lumen

Using SolidWorks®, the artery geometry obtained in Section 21.2.1.2 and the stent-
lumen obtained in Section 21.2.1.4 were combined. Transition zone was constructed
and the final geometry, illustrated in Fig. 21.3(f) was obtained.

21.2.2 Mesh Generation

The mesh was automatically generated with the algorithm implemented in the Ansys
Meshing, Tetrahedrons Patch Independent Model. To verify mesh quality, skewness
was obtained for all mesh elements. Skewness is defined as the difference between the
shape of the element and the shape of an equilateral element of equivalent volume. It
allows checking homogeneity and orthogonality of the mesh. For a tetrahedral mesh,
a maximum skewness should be kept bellow 0.95 to avoid convergence difficulties
(ANSYS, 2016). In addition to the quality indicator presented, a mesh test was
performed for different element sizes with the objective of reducing the number of
elements, without decreasing the precision of the results. This test compares the
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maximum values at peak systolic (maximum velocity of flow) with the number of
elements. According to the Fig. 21.5 a number of elements of 400000 should be
used. Thus, this mesh is represented in Fig. 21.6.

21.2.3 Blood Properties

Blood was considered as a non-Newtonian, isotropic and homogeneous viscoelastic
fluid. The density of blood used in the equations was 1060 kg/m3. The user defined
functions (UDFs) for the sPTT model, implemented by Pinto et al (2020), take into
account the viscoelastic property of blood. These properties are introduced in Ansys
as differential equations to obtain results close to reality. sPTT model is given by[

1 +
λkεk
µek

tr (τ ek)

]
τ ek + λk

∇
τ ek = 2µekD, (21.1)

where k represents each mode number, λ is the relaxation time, ε the extensibility
coefficient, µe the elastic viscosity, τ e the elastic contribution of the extra stress ten-
sor, ∇τ e the upper convective derivative andD the velocity gradient. The parameters
of sPTT model are defined in Table 21.2.

Fig. 21.5 Maximum WSS
during systolic peak vs. Num-
ber of mesh elements for the
patient specific case under
study.
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Fig. 21.6 Generated mesh for
LCA domain.

Table 21.2 Parameters of sPTT model (Campo-Deaño et al, 2013).

Mode µek [Pa s] λk [s] εk

1 0.05 7 0.2
2 0.001 0.4 0.5
3 0.001 0.4 0.5
4 0.0016 0.06 0.5

Solvent µs = 0.0012 Pa s

21.2.4 Boundary Conditions

As boundary conditions, it is necessary to define the inlet blood velocity at the
entrance of the artery and the pressure at the outlet of all the branches. The arterial
wall was considered rigid as explained with detail in previous section.

Blood is pumped by the heart in a pulsatile and complex way. However, it can be
approximated to a sinusoidal periodic movement and heart rate ω, (Dong et al, 2015)
based on the pulsatile flow rate. Thus, the mean inlet velocity and outlet pressure
were obtained using Fourier series in Matlab, Fig. 21.7.

One way of representing the evolution of the average input velocity is the Wom-
ersley velocity profile. Taking into account the inlet radius of the artery, R, and
the heart rate, ω, the Poiseuille profile is adapted to obtain the Womerlsey profile
described in Eq. (21.2):

v(rd, t) =
AR2

iµfW 2
o

[
1− J0

(
i3/2Wo

rd
R

)
J0

(
i3/2Wo

) ] eiwt (21.2)

Womersley velocity is given as a function of time, t, and the radial distance
from the central axis of the artery to a given point, rd, within the arterial wall. The
dynamic viscosity of blood is considered constant, equal to 0.00345 Pa · s, and is
represented by µf , i represents the imaginary unit, J0 the first order Bessel function,
A the pressure gradient and Wo the Womersley number. Only the real part of the
equation is considered.
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Fig. 21.7 Mean inlet velocity in the LCA and the outlet pressure profile in its branches (Pinto et al,
2020).

The number of Womersley is given by the Eq. (21.3) and relates the inertia forces
to the viscosity forces, in transient flows. The parameters used to calculate the
Womersley number are shown in Table 21.3.

Wo = R

√
ρω

µ
(21.3)

Table 21.3 Womersley number parameters.

Inlet radius 2.36mm
Viscosity 0.00345 Pa s
Frequency 8.49 s−1

Density 1060 kg/m3

21.2.5 Numerical Method

The CFD model was defined as transient and calculations were performed with
a time step equal to 0.005 s. Thus, 148 time steps were necessary in order to
achieve the total time of the cardiac cycle, 0.74 s. The algorithm chosen to solve
the Navier-Stokes equations, SIMPLE (Semi-Implicit Method for Pressure Linked
Equations), is implemented in Ansys Fluent and uses a relationship between velocity
and pressure corrections to enforcemass conservation and to obtain the pressure field.
For compressible flow calculations, Ansys Fluent applies upwind interpolation of
density at cell faces. There are several schemes for the density upwinding at cell
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faces: first-order upwind, second-order upwind, QUICK, etc. Second-order upwind
discretization was used with a convergence criterion equal to 1× 10−4 and provides
stability for supersonic flows and capture shocks better then the first-order upwind
interpolation scheme. This numerical method was used and tested by Pinto et al
(2020).

21.2.6 Hemodynamic Descriptors

Hemodynamic descriptors (Pinto et al, 2020), based on the wall shear stress (WSS),
predict the areas of the arteries that are more prone to the atherosclerosis appearance.
The TimeAveragedWall Shear Stress (TAWSS) evaluates themean value of theWSS
magnitude along the cardiac cycle, Eq. (21.4):

TAWSS (s) =
1

T

∫ T

0

|WSS (s, t)| dt (21.4)

where T is the duration of the cardiac cycle and s is the location in the wall. The
units are in Pa and values less than 0.4Pa indicate a higher probability of plaque
formation.

The Oscillatory Shear Index (OSI), Eq. (21.5), is a dimensionless parameter that
describes the flow along the wall, taking into account the variation of the WSS
throughout the cardiac cycle:

OSI (s) = 0.5

[
1− |

∫ T
0
WSS (s, t) dt|∫ T

0
|WSS (s, t)| dt

]
(21.5)

This parameter can range between 0 and 0.5. The minimum value corresponds to
zero deflection and the maximum value corresponds to highly disturbed flow with
180° deflections.

Relative Residence Time (RRT), Eq. (21.6), estimates the residence time of blood
particles in the arterial wall. The RRT descriptor results from the combination of the
OSI and TAWSS descriptors. It is directly dependent on OSI and inversely dependent
on TAWSS. Thus, RRT, is the one that best assesses the tendency of atherosclerosis
appearance:

RRT (s) =
1

(1− 2×OSI)× TAWSS
(21.6)

RRT values greater than 8Pa−1 indicate zones susceptible to atherosclerosis.
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21.3 Results and Discussion

Three simulations were made: (1) left coronary artery with stenosis; (2) left coronary
artery with 9 mm stent (length of the stent); (3) left coronary artery with 12 mm
stent.

The hemodynamic descriptors (OSI, RRT and TAWSS) were obtained. The hot
spots (red) are areas favorable to the onset of atherosclerosis. These regions are the
ones which OSI is equal or greater than 0.2, RRT higher than 8.0Pa−1 and TAWSS
close to 0 Pa. Figures 21.8, 21.9 and 21.10 show the spatial distribution of the

Fig. 21.8 OSI spacial distribution for the patient-specific case.

descriptors for the patient-specific case. We can observe that the stent eliminates
strong atherosusceptible regions after the stenosis.

For a quantitative analysis the maximum values of the descriptors in the area after
the stent were obtained, Table 21.4. The relative difference of the OSI between the
model with stenosis in relation to the 9mm stent is 83.33%; in TAWSS the difference
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Fig. 21.9 TAWSS spacial distribution for the patient-specific case.

is 18.35%; in the RRT the difference is 83.84%. The relative difference, for the same
descriptors, between the models with different stent sizes does not exceed 3%. Thus,
it can be verified, quantitatively, that there is a great decrease in the OSI and RRT
values, that is, a decrease in atherosusceptibility, when a stent is introduced.

However, we can verify a tendency to occur restenosis in the stent location.

Table 21.4 Maximum value for hemodynamic descriptors after stent.

Model OSI TAWSS [Pa] RRT [Pa−1]

Stenosis 0.48 1.09 129.3
9mm stent 0.08 1.29 20.89
12mm stent 0.07 1.29 18.90
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Fig. 21.10 RRT spacial distribution for the patient-specific case.

21.4 Conclusion

After analyzing the results, it is concluded that the implantation of stents in the
left coronary arteries improves blood flow. After the stented area, the blood flow
approaches of a normal flow situation, with no great propensity for atherosclerotic
plaque formation. Atherosusceptible zones in the stent zone were expected and
are related to the increase in shear stresses due to the stent own geometry. At a
clinical level, this increase in stress is related to the reappearance of the stenosis, the
restenosis. Increasing the length of the stent did not result in improvements, on the
opposite, the susceptible zone to restenosis is greater the larger is the stent. Thus,
according to this study, the shortest stent is the best choice.
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Chapter 22
The Efficient Trabecular Bone Remodeling
Numerical Tool Enabling Multiple Load Case
Simulation

Jan Polak, Michał Nowak

Abstract Paper concerns a simulation of the trabecular bone remodeling process
taking into account its real geometric form. The efficient trabecular bone remodeling
numerical tool enabling multiple load case simulation is presented. The observation
proposed by Julius Wolff - called the Wolff’s law - can be described as a structural
adaptation of the bone to the external forces. Thus the trabecular bone remodeling
process numerical simulation has to include the very important aspect of external
load, namely the variable loads. For simulation purposes it means, that the numerical
tool must be able to simulate multiple load case and the geometric form of the bone
must correspond to these loads. Technically the numerical system is .Net C# project
designed with Inversion of Control paradigm design pattern that provides pluggable
and extensible platform.

Keywords: Trabecular bone remodeling ·Multiple load case

22.1 Introduction

The trabecular bone structure is continually rebuilt. This process is the subject of
intensive research due to its high medical significance (Parfitt et al, 1983; Ehrlich
and Lanyon, 2002; Müller, 2005; Giorgio et al, 2021). The observation proposed
by Julius Wolff - called the Wolff’s law (Wolff, 1892) - can be described as a
structural adaptation of the bone to the external forces. Thus, the trabecular bone
remodeling process numerical simulation has to include the very important aspect of
external load, namely the variable loads. For simulation purposes it means, that the
numerical tool must be able to simulate multiple load case and the geometric form
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of the bone must correspond to these loads. The second, equally important aspect
of the trabecular bone remodeling phenomenon is the fact, that this process takes
place on the bone surface. The need to build models and simulate the trabecular
bone structure evolution taking into account the actual geometric form has been
recognized already. Consequently, a number of scientific research has appeared that’s
this fact the center of attention (Huiskes, 2000; Huiskes et al, 2000; Van Oers et al,
2008; Müller et al, 2014; Callens et al, 2021). Including the real structural surface
into the consideration provides significant approximation of numerical simulations
and allows for the introduction of modeling on cells scale to the numerical models
(Adachi et al, 2009; Hemmatian et al, 2021). Any attempts to correlate the developed
models and theories with actual observations requires an accurate model of the
trabecular bone structure for each problem under consideration. An accurate model
of the trabecular bone structure will also be needed to verify multi-scale simulation
approaches (Hamed et al, 2012; Fernandes et al, 2012; Wierszycki et al, 2014).

Mechanical aspects of the trabecular bone remodeling phenomenon are not the
only ones that should be used to correctly build numerical models and predict
trabecular bone evolution. In addition to considering the mechanical aspects, it is
also necessary to take into account other factors, such as purely biological aspects
of tissue growth or, for example, issues related to electrical interactions. This is
of particular importance when the task is not only to model the trabecular bone
remodeling phenomenon itself, but to design an appropriate materials to replace
damaged or diseased bone tissue (Giorgio et al, 2016, 2017).

The assumptions concerning the modeled phenomenon of bone remodeling used
to create the simulation environment will be presented below in this paper.

22.2 The Trabecular Bone Remodeling Regulatory Model with
the Lazy Zone Concept

A model of the trabecular bone remodeling phenomenon is based on the idea of a
regulatory model presented by Huiskes et al (1987, 2000). The lazy zone concept -
proposed by Carter (1984) - is also included in the presented model, but this issue
will be discussed in a section devoted to the simulation approach.

It was also assumed that the geometry of the bone structure would be reproduced
as accurately as possible by medical imaging methods. The tissue of trabecular
bone has a very sophisticated structure which is capable of handling a wide range
of loads. The network of beams called trabeculae with lengths of 100 or 200µm,
and diameters of ca. 50µm. is continually rebuilt so that the whole bone tissue
is replaced in the course of a few years. The process is called trabecular bone
adaptation or remodeling and is responsible for self-optimization of the trabecular
bone structures. The phenomenon of trabecular bone adaptation has two important
attributes. First, mechanical stimulation is needed to conserve the rebuilding balance.
Second, the process of resorption and formation occurs only on the trabecular bone
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surface. The process takes place within Basic Multicellular Unit (BMU), areas with
a smaller volume, but comparable to a small part of a single trabecula.

This is where the sequence of resorption and new tissue formation takes place.
Adding the ability to determine the level of local mechanical stimulation, all the
actors needed to build the model are now present. The model consists of a regula-
tory mechanism (on the bone surface only) between bone resorption and formation,
corresponding to the intensity of mechanical stimulation and this is the main as-
sumption of the discussed model. The regulatory mechanism depends, in turn, on
the mechanical stimulation of the entire bone structure.

The assumption based on clinical observations is that, if the strain energy density
is close to observed equilibrium, there is no change in the bone mass during the
bone remodeling process. In this way, if the intensity of mechanical stimulation
differs slightly from the homeostatic value of the strain energy density, bone mass
does not change. However when the intensity of mechanical stimulation is larger or
smaller than the reference value, the bone mass increases or decreases respectively.
Modeling the actual bone geometry allows the simulation of the bone remodeling
phenomenon in the most similar way to the process occurring on the surface of the
BMU’s. Hence the necessity of geometrical modeling of the real geometry of the
reconstructed structure becomes clear.

22.3 Multiple Loading Conditions

The physical activity is only one source for mechanical stimulation of bone. Different
activities result in different distribution of bone mass density. There is no possibility
to investigate experimentally the change in bone mass distribution as a response for
the different loading conditions. But it is possible using the numerical simulation
methods. Experiments show clearly, that the bone structure is not isotropic and it is
the result of bone mechanosensation.

Studies dedicated to multiple load cases representing different activities of daily
living has been published already in Miller et al (2002); Geraldes et al (2016).
The used adaptation algorithms usually assume orthotropic material properties and
try to obtain information about the bone density. In this kind of simulations, the
computational system remains at the level of continuous material model. The change
in bone structure is represented by the modification of the Young’s modulus and the
isotropic material model is replaced, for example, with an orthotropic one.

The purpose of the computing environment presented in this paper is to go down
to the level of analysis of the actual structure of the trabecular bone. Multiple loading
conditions have a different dimension in the presented approach, because they not
only determine the material properties (expressed globally, for example, by Young’s
modulus distribution), but also allow the observation of the actual evolution of the
bone structure.
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22.4 The Simulation Approach Including the Postulates based on
Shape Optimization Studies

Continuous models, although they currently dominate the area of modeling the
evolution of the trabecular bone structure, are not sufficient to simulate real processes
on the surface of the bone structure (George et al, 2019;Giorgio et al, 2019; Lekszycki
and dell’Isola, 2012). The microarchitecture of bone tissue has a major influence
on the mechanical properties and must also be considered when trying to explain
disease processes.

In order to be able to provide general relationships between the geometric form of
the structure observed in imaging studies and its mechanical properties, an accurate,
three-dimensional simulation model of the trabecular bone structure is necessary. As
indicated above, there are two elements necessary to build a computing environment -
the inclusion ofmultiple load cases and an accurate geometricmodel of the trabecular
tissue. The simulation approach presented in this paper uses two postulates (Nowak,
2020) concerning the trabecular bone remodeling regulatory model, based on shape
optimization studies in Nowak et al (2018, 2020).

These studies show that the remodeling of the trabecular bone can be treated
as a simultaneous optimization of shape and topology. The similarity between the
phenomenon of trabecular bone remodeling and topology optimization has been
recognized and it is used in two opposite research approaches. The first approach
is to use exact mathematical results from the optimization area (maximization or
minimization of a function) to predict the evolution of the bone structure (Sigmund,
1999; Wu et al, 2017; Lee et al, 2015).

And the second approach which is presented also in the paper is to apply the
bio-mechanical observations and models to the structural optimization issues (Nutu,
2015; Klarbring and Torstenfelt, 2012; Nowak et al, 2018). In the latter paper we
proved with use of shape derivative, that the maximization of a structure stiffness
needs the structural form, having on the part of the boundary, subject to modification,
constant value of the strain energy density. This is also the purpose of the trabecular
bone remodeling phenomenon.

The postulates are as follows:
Postulate 1.: during the remodeling process, the trabecular bone tends to maxi-

mize the stiffness of a structure (i.e. to find the stiffest design) by the strain energy
density equalization on the structural surface of the trabecular tissue. According to
formula

σ(u) : ε(u) = λ = const. (22.1)

where

• σ(u) : ε(u) - strain energy density at the point on structural surface
• λ - homeostatic value of strain energy density (surrounded by the lazy zone)

mean that the bone remodeling phenomenon can be interpreted as structural opti-
mization process. It means that for the stiffest design, the strain energy density on
the part of the boundary subject to modification must be constant. Comparing this
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result with the regulatory model of bone remodeling, it can be deduced that the
mechanical stimulation (measured by strain energy density distribution on structural
surface) has to be between the values determined by the lazy zone. In other words,
at each point of the surface of the trabecular bone, the strain energy density should
be similar, and this can be achieved by remodeling the bone structure.

Postulate 2.: the regulatory model of the trabecular bone remodeling can be
applied to the multiple load problem maintaining its character and the basic assump-
tions about the existence of the homeostatic value of the strain energy density. The
’lazy zone’ is an important element of the model which provides the opportunity to
find a solution for many load cases. The local change (in this case related to different
loads) on the structural surface leads to global minimization of the strain energy for
the whole structure.

According to formula

α1σ(u1) : ε(u1) + α2σ(u2) : ε(u2) = λ = const. (22.2)

where α1σ(u1) : ε(u1) + α2σ(u2) : ε(u2) - weighted sum of strain energy density
at the point on structural surface for different load cases, λ - homeostatic value of
strain energy density (surrounded by the lazy zone), the regulatory model can be
directly used for the simulation of the multiple load problem.

22.5 The Numerical Implementation and Mesh Generation
Parallelization

To carry out the simulation of trabecular bone structure it is necessary to combine
two areas - numerical simulation of deformation of the bone structure under load
and structural evolution. Finite Element Method will be used for this purpose. In
terms of structural calculations, there is no alternative but to use the already ex-
isting FEM systems. The presented implementation uses the Elmer open source
multiphysical simulation software (http://www.elmerfem.org). Tetrahedral, 10-node
volume elements were used for computational purposes.

Themore difficult task is to plan how to reflect the evolution of the structure. Based
on previous experienceNowak (2006), it was decided to build separate computational
meshes for each simulation step. The idea of building a volumetric mesh based on
data in the form of two-dimensional images containing the cross-sections of tissue
is presented schematically in Fig.22.1. This is a natural way of mesh generation
since the visualization for the biological entities is based on the digital images
e.g. Computer Tomography. Also the evolution of the structure is based on the
two-dimensional images modification, which is depicted schematically in Fig.22.2.
According to remodeling scenario described by regulatory model, depending on the
calculated value of the energy density, the surface of the structure is modified by
adding or removing material on its surface.
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Fig. 22.1 Data Discretization and Volumetric Mesh Building algorithms applied for sample image.
Image is divided into squares, in this particular example size of 3 was selected. For each square,
four points are selected and used for volumetric mesh building. Last image shows volumetric mesh
created from two identical images.

System was implemented using .Net platform, activity diagram is depicted in
Fig.22.3. System created has been designed with two main goals: high performance
and flexibility for future enhancements and modifications. Underlying phenomenon
of trabecular bone remodeling is a process that happens over time hence the algorithm
works in iterations, each run is a full remodeling cycle. Single loop consists of a
series of steps. First step is data discretization to reduce the size of data used to build
mesh.

Scale factor is input parameter for algorithm and allows choosing between fine and
coarse meshes and consequent trade-off between solution resolution and resources
required to perform calculations. Each two-dimensional image (slice) is divided into
squares of size depending on scale factor that are used as an input for Volumetric
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Fig. 22.2 Showcase of the multiple load case and mesh evolution algorithm. On the left element
with random holes subjected to shear stress (top) and compression (bottom). In the middle both
cases aggregated using formula 22.2. On the right the same element after the evolution algorithm
has been applied and then both load cases calculated and aggregated together. New material
’grows’ in high and is removed from low strain energy density areas. Material with strain energy
density values inside the lazy zone is left intact.
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Fig. 22.3 Activity diagram of system for efficient trabecular bone remodeling numerical
simulation enabling multiple load case analysis.

Mesh Building. For each square up to 4 points on edges are selected in such a way
that the resulting tetragon approximates material inside each square.

Second step is the Volumetric Mesh Building and it consists of three operations.
First, pairs of adjacent discretized images are converted into layers of mesh cells –
squares from adjacent two-dimensional images are paired and for each pair, mesh
cells are created, each consists of 6 tetrahedral elements spanned between points
from adjacent squares. Data is filtered to remove mesh items that are not eligible for
strain energy density (SED) calculation, mesh items that are connected only by a
single point or single edge.

Filtered data is collected and merged into a single mesh – each cell and vertex
gets assigned a number and boundary faces are computed. Prepared mesh is saved
and FEM software is used to calculate displacement and SED values. To support
multiple load scenarios, for each load case, separate simulation is executed in a loop.
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Results of all calculations are merged together according to equation 22.2. Provided
formula is not limited to two cases and thus implementation supports any amount of
load cases, each allowing a different set of forces and boundary conditions.

The only limiting factor is time - each load case requires a separate SED calcula-
tion which is the most time consuming part of the whole process. After all load cases
are evaluated, the stop criterion is evaluated - if surface SED values are all inside
the lazy zone or maximum allowed number of iteration is exceeded, algorithm stops.
SED data is passed to the Mesh Evolution algorithm where it is applied onto two-
dimensional images used for mesh building. Each image is remodelled depending
on a surface SED – areas where SED exceeds the upper bound of lazy zone grow
and those where SED is below the lower bound shrink. Remodeled stack of images
is input for the next iteration.

Slices Discretization, Volumetric Mesh Building and Mesh Evolution algorithms
are optimised for execution speed in a multithreaded environment. Slices Discretiza-
tion and Mesh Evolution steps operate on two-dimensional images (slices) directly
without the need for exchanging information between workers hence parallelism is
achieved by executing parallel processing of each item independently. To maximise
efficiency of parallel operations Parallel LINQ (PLINQ) and .Net ThreadPool are
used. It utilizes a hill climbing algorithm to dynamically control an optimal amount
of thread running in the system to maximise processing throughput (Hellerstein et al,
2010).

Each of three phases of the VolumetricMesh Building algorithm is executed using
ThreadPool in sequence. Unlike two other algorithms, Volumetric Mesh Building
was challenging to scale horizontally because the last phase - data collection - requires
collecting all mesh data into the single data structure. Data structures provided by
.Net framework, ConcurrentDictionary and ConcurrentBag in particular, were used
to provide capabilities of writing data from multiple threads without need to use any
additional critical section locking.

During development, the system was analysed with a .Net profiler to find non
performing parts. Because this created system contains multiple source code micro-
optimisations, i.e. commonly used LINQ extensions were replaced with classic for
loops for data iteration to speed up execution by order ofmagnitude.Allmathematical
operations such as geometric transformations or vector operations are performed
using System.Numerics library that provides SIMD (single instruction, multiple
data) capabilities enabling hardware parallelisation of those operations. Data lookups
were used when possible to save CPU time (and increase RAM consumption as a
trade-off) for frequently run operations, i.e. the Volumetric Mesh Building algorithm
builds tetrahedral elements based on pre-computed vertex tables and produces both
volume and surface elements at the same time.

Important part of system design is the use of the Inversion of Control principle
using Castle.Windsor dependency injection container (Burns, 2012). Each algorithm
is an independent project and is able to operate independently of other system
components. Core system parts, like an orchestrator that is responsible for the main
loop and executing described algorithms, references class interfaces, not concrete
implementations which are instead injected by Castle container. Main application
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executable is a place where concrete implementations are loaded, depending on
application configuration. System described above consists of the set of the best
of algorithms explored during research, but can be run with implementations that
yielded less promising results such as mesh discretization based on fuzzy logic
approach or hexahedral volumetric mesh generator. In future research it will be
possible to extend the platform with new algorithms and approaches whilst keeping
the baseline system intact as a reference.

22.6 The Sample Simulation Results

Sample simulation was run on micro CT of rat bone. Input data set consisted of
400 black-and-white images with resolution of 1024x911px. A single step of the
system was executed using a scale factor of 2 and produced a mesh with 54 million
elements, 10 million vertices and additional 67 million points located on element’s
edges required for T10 structural elements. The cross section of produced mesh and
results of stress simulation are visible on Fig.22.4.

Fig. 22.4 Left: Cross-section view of mesh with 54 millions of elements showing trabecula
network of the bone (Cross-section plane in black). Insets show detailed structure of highlighted
mesh fragments with edges of tetrahedral cells highlighted. Right: The same bone fragment after
FEM simulation of shear stress applied to top part. Nonlinear coloring scale was used to increase
contrast between trabeculae. Data from the MIAB project (Waarsing et al, 2004).

22.7 The System Efficiency and Scalability

All tests were run on a PC with Ryzen 7 5800x CPU with 8 physical cores and 64GB
of DDR4 3600Mhz RAM. Two series of tests were conducted: scalability tests and
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resource utilization in function of input data size. Scalability tests were run using
CPU affinity settings in the operating system. Dataset used was the same as in chapter
22.7. Physical CPU cores were selected for testing and tests were run on 1, 2, 4, 6
and 8 processors. Processor affinity was selected in such a way that each processor
was a different physical core – CPU used for tests has 8 physical and 16 logical cores
- each physical core has two sets of registers allowing the running of two threads at
once without switching context. Running CPU-bound code on both virtual cores of
a single physical core would not increase performance and lead to invalid results.

Plot 22.5 shows speedup, defined as in Eager et al (1989)

Sp =
T1

Tp
(22.3)

where T1 is real time used to run calculations on a single core and Tp is real time
used at p processors. Optimal value is observed when Sp = p. Speedup for each of
the three main algorithms was calculated separately. Data discretization algorithm
exhibits suboptimal speedup. This particular algorithm has no critical sections or
locking, but reads and writes big amounts of data into memory - creates scaled down
copies of input data. Volumetric Mesh Building exhibits little speedup - current
implementation is I/O bound and data processing is no longer a bottleneck. Mesh
Evolution algorithm, that works on structures established by previous steps scales
nearly optimally with more processors, exhibiting optimal behaviour up to 4 cores.

Table 22.1 contains results of resource utilization tests. Tests were run for input
data of different size to measure resource utilization - real time, RAM and disk
space - by system during end-to-end tests, excluding FEM (Finite Element Method)
calculations (this also excludes writing input files for Elmer). Mesh points counts list
are tetrahedron vertices – to save memory 6 of T10 tetra points that are on edges are
calculated as average of vertex positions during writing input file for FEM software.
The biggest case analysed – creation of a mesh with 56 million elements took less
than a minute and required less than 16GB of RAM which is very little compared to
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Fig. 22.5 The results of scalability tests of three core components of system.
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Table 22.1 Comparison of output mesh size and resources utilization for different sizes of input
data. Data from the MIAB project (Waarsing et al, 2004).

Input Images Mesh Elements Mesh Points Peak RAM Use Total Real Time Elmer Input Size

50 5.6M 1.0M 1.56GB 6.2s 816MB

100 14.5M 2.7M 3.83GB 13.7s 2.2GB

200 32.6M 6.2M 8.44GB 30.6s 5.1GB

300 45.2M 8.5M 11.08GB 41.9s 7.2GB

400 54.6M 10.2M 14.74GB 58.3s 8.6GB

the amount of resources used by FEM calculations. Moreover Elmer, FEM software
used by the system, uses text file format as an input.

This requires creation of very big input files and with storage devices reaching
write speeds over 100MB/s writing data takes the same amount of time as data
generation making any efforts to optimise current system even more unnecessary
because the bottleneck is data transfer. To enable processing of bigger meshes some
optimisation might be removed in future. When time is no longer a priority some
auxiliary data structures maintained for fast data lookups might be removed to save
RAM instead.

22.8 Conclusions

The presented trabecular bone remodeling numerical tool enables multiple load case
simulation taking into account the postulates regarding the evolution of the trabec-
ular bone. The trabecular bone remodeling regulatory model applied to an actual
three-dimensional trabecular structure requires the preparation of an appropriate nu-
merical approach. Since the local change on the structural surface leads to global
minimization of the strain energy for the whole structure, the fulfillment of both
postulates requires energy distribution analysis on the structural surface. Thus, the
most important role in such an approach must be played by a very efficient finite
element mesh generator for structural computations as well as an efficient computa-
tional environment. In both cases, it becomes necessary to use parallel processing.
Such a numerical tool is able to mimic the trabecular bone remodeling process by
structural surface evolution. So, on the one hand it will be possible to repeat virtually
the observations recorded on the micro-CT scans, and on the other hand, to better
adjust the continuous models of the trabecular bone remodeling phenomenon.

The developed software promises to simulate significant fragments of trabecular
bone tissue, and as equipment develops, also structures covering the entire bone.
Mesh generator performance is no longer a limiting factor nor is computing power.
Created algorithms are I/O-bound and the main challenge in large-scale simulations
is handling of very large amounts of physical data that needs to be transferred to the
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FEM software. Highly optimised code enables using system on a single high-end
PC while HPC grid is required only for FEM simulations.
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Chapter 23
Modeling the Magnetic Relaxation Behavior of
Micropolar Ferrofluids by Means of
Homogenization

Wilhelm Rickert, Max Winkelmann, Wolfgang H. Müller

Abstract In this paper a simple particle population homogenization approach is
used in order to estimate the magnetic relaxation time of a ferrofluid by means of a
microscopic analysis. At amacroscopic level the ferrofluid ismodeled as amicropolar
fluid with rotational degrees of freedom. The governing equations for these degrees
of freedom are the spin balance and the magnetic relaxation equation. They are
solved analytically for a simple unidirectional magnetic setup. On a microscopic
level the ferrofluid is considered to consist of rigid spherical permanent magnets
suspended in a non-magnetic carrier fluid. Due to both, the friction of the micro
magnets with the carrier fluid and their own inertia, the alignment of the magnets
with an applied external field is retarded. By neglecting thermal effects and therefore
the Brownian motion, it is possible to reduce the equations of motion to a nonlinear
pendulum equation, which is readily solved using numerical methods for ordinary
differential equations. By averaging over all possible initial configurations of the
micro magnets, a pseudo homogenization is obtained, which can then be compared
to themacroscopic solution. From this comparison the relaxation time at a continuum
level can be estimated.
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23.1 Introduction

The theory as well as almost all experimental considerations regarding ferrofluids are
outlined in Rosensweig (1997), see also the references therein. In short, ferrofluids
are a suspension of magnetic nanoparticles in a carrier fluid. Magnetite (Fe3O4) is
commonly used for the particles and fluids like water, kerosene and other oils are
used as a carrier. At a continuum level ferrofluids can be modeled as micropolar
fluids. In addition to the translational degrees of freedom of material points, their
intrinsic rotation is represented by a local angular velocity field, ω. Ferrofluids
exhibit a complex magnetic behavior. They can be approximated as linear magnets,
but with additional viscous behavior, i.e., the magnetization undergoes the process
of relaxation, Torres-Diaz and Rinaldi (2014). This is captured by the magnetic
relaxation equation,

dM

dt
= ω ×M − 1

τr
(M −M eq) , (23.1)

where M is the (Minkowskian) magnetization vector and τr is the magnetic re-
laxation time. The equilibrium magnetizationM eq = M̂ eq(H) is usually modeled
using a linear approximation, M eq = χH, where H is the magnetic field. This
evolution equation is motivated in (Rosensweig, 1997) and derived using rational
thermodynamics in (Felderhof and Kroh, 1999).

The goal of this paper is to use a simple homogenization approach in order to
obtain the relaxation time τr of the ferrofluid by means of analyzing the suspension
at a microscopic level. It is assumed that the material parameters of both the carrier
fluid and the magnetic particles are known. The procedure from Vilchevskaya and
Müller (2021) is followed closely.

23.2 Problem Setup and Homogenization Procedure

Consider an infinitely large domain of resting ferrofluid that is subjected to a homo-
geneous magnetic field HM(t), which is only a function of time. This is depicted
schematically in Fig. 23.1 (left). At a continuum level the fluid is modeled by means
of micropolar theory. Hence, each material point has both a translational velocity
vM and an angular velocityωM. The index “M” indicates that these are macroscopic
quantities, i.e., they are defined at a continuum level. The ferrofluid is considered to
be incompressible and therefore its mass density ρM is constant. Furthermore, the
rotational inertia, given by the micropolar inertia tensor JM, is also assumed to be
constant. In this idealized scenario, no field is expected to have a spatial dependence.
In particular, there is no translational velocity, vM ≡ 0. The quantities of interest
are both the magnetization, MM, as well as the angular velocity field, ωM. For a
comprehensive review of micropolar theory see (Cowin, 1974).
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In order to find themagnetic relaxation time τr in Eq. (23.1), the scenario described
above is additionally analyzed from a microscopic point of view. At a microscopic
level the particles suspended in the carrier fluid are assumed to be spherical magnets.
Their magnetizationMm is approximately constant, which is referred to as perma-
nent magnetization. The index “m” indicates a quantity at the microscopic level. The
view onto a single particle at the microlevel is depicted schematically in Fig. 23.1.
The suspended particles are assumed to be far enough away from each other such

microscalemacroscale

ey

ez

ex

Mm(t)

mm, R,Jm

H(t)

ey

ez

ex

H(t)

�c
�M,JM, �M

MM(x, t)

Fig. 23.1 Schematic depiction of both the macroscopic and the microscopic view of a ferrofluid.
Left: Section of a ferrofluid bath at a continuum level. Right: Zoom into the microstructure of the
ferrofluid.

that their mutual interaction can be neglected. Furthermore, these micro magnets
are assumed to be rigid. Therefore, rigid body mechanics is used to determine their
motion. In addition to the mass of a rigid body, its moment of inertia tensor Jm is
required. For a spherical rigid body the moment of inertia tensor is spherical, i.e.,
Jm = Jm1, where 1 is the unit tensor.

Note that the micropolar inertia tensor JM and the moment of inertia tensor
Jm are different quantities. In general, JM = ĴM(x, t) is a field quantity in the
context of a continuum similar to themass density. It connects themicropolar angular
velocity ωM with the specific spin field and has the unit m2. In contrast, the tensor
Jm = Ĵm(t) may be a function of time only and represents a property of a rigid
body as a whole similar to its mass. The moment of inertia tensor connects the
angular velocity of a rigid body with its angular momentum and has the unit kg·m2.

At the microscopic level all particles are considered to be equal, i.e., they have the
same radius, mass and magnetization, namelyR,mm andMm, respectively. As the
micro magnets are assumed to have a permanent magnetization, its temporal change
is solely given by the rotation of the magnet,

dMm

dt
= ωm ×Mm , (23.2)

where ωm is the rigid body angular velocity at the microscale.
The connections between the microscale and the macroscale are found by means

of a particle population homogenization approach. The particle population average
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operator is defined via, see Vilchevskaya and Müller (2021),

〈Mm〉 :=

2π∫
ϕ=0

π∫
ϑ=0

MmP (ϑ, ϕ) sin(ϑ) dϑ dϕ , (23.3)

where P (ϑ, ϕ) is a probability density, ϑ and ϕ are the azimuthal angle and polar
angle, respectively. Initially, a micro magnet may have an orientation that deviates
from the external magnetic field. This difference in orientation is captured by the
two angles ϑ and ϕ. The function P (ϑ, ϕ) returns the probability of finding a micro
magnet with the orientation specified by ϑ and ϕ. The integration with respect to
all possible orientations yields an averaged magnetization 〈Mm〉. It is assumed
that the application of the same averaging procedure to other quantities yields their
counterpart at the continuum level, e.g.,

ωM = 〈ωm〉 , JM =

〈
Jm

mm

〉
. (23.4)

Note that since all microparticles are assumed to be identical spheres, it follows that
JM = m−1

m Jm, see (Vilchevskaya and Müller, 2021). Furthermore, the external
magnetic field does not depend upon the scale and henceH(t) := Hm(t) = HM(t).
For the magnetization, however, the identification of the macroscopic version,MM,
by means of the microscopic one, 〈Mm〉, is not given by the particle population
average. This is due to the fact that the magnetization vector is a volume density, i.e.,
the magnetic moment per volume. Hence, a volumetric average is more appropriate
which requires knowledge of the spatial particle distribution, see the comments in
Nicot et al (2017). In order to simplify the analysis we assume that the macroscopic
magnetization and the averaged microscopic magnetization are at least proportional,

MM ∼ 〈Mm〉 . (23.5)

In order to perform the comparison between the two magnetization represen-
tations, solutions to the corresponding microscopic and macroscopic problems for
one process are to be found. At both scales the external magnetic field H(t) is the
process defining quantity. Two simple field evolutions could be considered. First, a
ramping magnetic field in one direction is considered. A second process that seems
natural to analyze is a rotating magnetic field. The latter may reveal the influence
of the micropolar rotational shear viscosity. However, the ramping magnetic field is
easier to analyze. Furthermore, an experimental investigation is easier to perform for
a non-rotating field. In short, the following magnetic field strength will be used:

H =

{
H0

t
t0
ez , t ≤ t0 ,

H0ez , t > t0 .
(23.6)

The starting time interval is defined by t0 = 1 s.
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23.3 The Governing Equations

At the continuum level, the ferrofluid is modeled as amicropolar fluid. The governing
equation for the micropolar angular velocity ωM is given by the spin balance, see
(Eringen and Maugin, 1990),

ρM
d

dt
(JM · ωM) = ∇ · µ+ σ ·· 〈3〉ε +m , (23.7)

where the constitutive equations for the stress tensor, the couple stress tensor and the
volumetric moment density are given by:

σ = −pM1 + 2µM sym(∇⊗ vM)− 2τM
(

skw(∇⊗ vM) +
〈3〉
ε · ωM

)
,

µ = αM(∇ · ωM)1 + 2βM sym(∇⊗ ωM) + 2γM skw(∇⊗ ωM) ,

m = MM ×B .

(23.8)

Therein, ρM is the mass density, pM denotes the pressure andB is the magnetic flux
density. The latter is connected to the magnetization MM and the magnetic field
H via B = µ0(MM + H), where µ0 is the magnetic field constant. The operators
sym(A) = 1

2 (A+AT) and skw(A) = 1
2 (A−AT) yield the symmetric and skew-

symmetric part of a tensor. The symbol 〈3〉ε denotes the Levi-Civita tensor. The
various coefficients in the constitutive equations represent viscosities of different
kinds. The parameter µM is the classical shear viscosity and αM, βM as well as γM

represent generalized viscosities. A comprehensive review of micropolar theory is
given in (Cowin, 1974).

For the following analysis, however, only the rotational shear viscosity τM is
relevant. This is due to the specialized setting of an infinitely large domain. It is
assumed that there are no spatial dependencies, i.e., all fields are functions of time
only. In particular, we have ω = ω̂(t). Hence, all gradients vanish and the spin
balance in Eq. (23.7) reduces to

ρMJM ·
dωM

dt
= −4τMωM +MM × µ0H , (23.9)

where JM = JM1 is assumed to be constant. Note that ρM is the mass density on
the macroscale, i.e., of the suspended particles and the carrier fluid combined. This
equation is to be solved together with the relaxation relation in Eq. (23.1).

By assuming a planar setting with ωM = ωMex and the magnetic field from
Eq. (23.6) as well asMM = MM

y ey +MM
z ez , the system of equations reduces to

ρMJMω̇M = −4τMωM + µ0HM
M
y ,

ṀM
y = −ωMM

M
z −

1

τr
MM
y ,

ṀM
z = ωMM

M
y −

1

τr

(
MM
z − χH

)
.

(23.10)
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At the microscopic level the scenario depicted in Fig. 23.1 (right) is considered.
The rigid permanent magnet experiences a moment similar to the moment density in
Eq. (23.9). Since the micro magnetizationMm may not be aligned with the applied
magnetic field H(t), a rotation is initiated. Consequently, friction occurs between
the magnet and the initially resting carrier fluid. Together, the balance of moment of
momentum for the spherical magnet Ω with respect to its center of mass reads

d

dt
(Jm · ωm) =

∫
Ω

Mm ×B dV +

∫
∂Ω

x× t dA . (23.11)

Therein, the microscropic moment of inertia is given by Jm = Jm1 = 2
5mmR

21.
Furthermore, the stress vector exerted by the surrounding fluid is obtained from the
corresponding stress tensor in the carrier fluid,

t = −pcn+ 2µcn ·D , D = 1
2 (∇⊗ vc + vc ⊗∇) , (23.12)

where pc andvc are the pressure and the velocity field in the carrier fluid, respectively,
µc is its shear viscosity and n = er is the outward normal vector of the rigid sphere,
see Fig. 23.1 (right). In spherical coordinates the position vector at the surface of
the sphere is given by x = Rer. It turns out that only the ϕ-r component of the
symmetric velocity gradient is relevant. Hence, the moment density due to friction
is given by x× t = −2RµmDϕreϑ.

In order to obtain the velocity field of the carrier fluid, the Navier–Stokes
equations are solved. To this end a simplified scenario is considered. Assume that
there is no magnetic field and the rigid sphere spins with a constant angular velocity
ω0 = ω0ez . At the sphere’s interface a no-slip condition is used, i.e.,

vc(r = R) = ω0 × x = ω0R sin(ϑ)eϕ . (23.13)

Additionally, it is assumd that the velocity disturbance due to the motion of the
magnet vanishes as ||x|| → ∞. By means of Bernoulli’s separation method one
obtains an analytical solution for the velocity field of the carrier fluid,

vc = ω0R
3r−2 sin(ϑ)eϕ ⇒ Dϕr = −3ω0R

3

2r3
sin(ϑ) . (23.14)

Consequently, the mechanical moment due to friction can be written as∫
∂Ω

x× t dA = −4µcR
3ω0 . (23.15)

This shows that the mechanical moment acting on the sphere is proportional to
its (constant) angular velocity. A key simplification of Eq. (23.11) is obtained by
adopting this relation also for the case of non constant angular velocities. We replace
ω0 → ωm(t), where ωm(t) is the time dependent angular velocity of the magnet
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that is subjected to an external field. The resulting representation for the mechanical
moment due to friction was also suggested in (Shliomis, 1971).

Finally, the balance of moment of momentum for the spherical permanent magnet
subjected to an external magnetic field H(t) is given by

Jmω̇m = 4
3πR

3µ0Mm ×H(t)− 4µcR
3ωm . (23.16)

Note that the magnetic field disturbance caused by the magnet itself does not con-
tribute to the moment. This is due to the fact that a magnet does not accelerate on its
own.

All relevant parameters are given in Tab. 23.1. A value for the rotational shear
viscosity τM was not found in the literature. Instead, an estimate is used based on
the results from (Kolpashchikov et al, 1983) for water. One should note that the

Table 23.1 Material parameters on the micro and macroscale for magnetite particles suspended in
kerosene.

parameter symbol value reference

micro mass density ρm 5170 kg/m3 Kampf et al (2001)
radius of one particle R 2.5− 10 nm Torres-Diaz and Ri-

naldi (2014)
carrier fluid viscosity µc 2.2× 10−3 Pa s Rosensweig (1997)
micromagnetization Mm =

mmag

V
2.2× 105 − 1.4× 106 A/m Odenbach (2004);

Torres-Diaz and Ri-
naldi (2014)

mass density ρM 1330 kg/m3 estimated
shear viscosity µM 2.9× 10−3 Pa s (Rosensweig, 1997,

Tab. 8.1)
rotational shear viscosity τM (1 to 2) µM estimated
susceptibility χ 0.37 (Rosensweig et al,

1969, Tab. 1)

macroscopic material parameters can vary significantly with the magnetic field. In
(Rosensweig, 1997, Tab. 8.1) the relative change of the shear viscosity due to an
external magnetic field ranges from 13% for moderate field strengths up to 77% for
strong fields. Hence, our assumption of constant material parameters in Tab. 23.1
is questionable. However, as will be seen later, several parameters do not influence
the analysis, e.g., τM is not contained in the magnetization solution. Additionally,
from the table it follows that the mass of one microparticle can be obtained by
mm ≈ ρm

4
3πR

3 ≈ 2.7× 10−21 kg.
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23.4 Solution to the Microscopic Problem

First, the problem is reformulated by using nondimensional quantities. By introduc-
ing

ωm =
1

tref
ω̃m , Mm = MmM̃m , H = H0H̃ , (23.17)

the problem on the microscale from Eq. (23.16) is written as

dω̃m

dt̃
= M̃m × H̃−Dmω̃m , (23.18)

where the reference time was chosen in order to emphasize the moment due to
magnetic misalignment, i.e.,

tref =

√
3mm

10µ0MmH0πR
, Dm =

10trefµcR

mm
. (23.19)

The newly introduced parameterDm characterizes the damping due to friction. Both
the reference time and the damping parameter depend strongly upon the magnitude
of the applied magnetic field. In particular, since very small field strengths could be
applied, the damping parameter could become very large as Dm → ∞ as H0 → 0.
For commonly used solenoids and their corresponding magnetic field strengths a
lower bound for the damping parameter of 100 ≤ Dm can be estimated.

The differential Eq. (23.18) is supplemented with the following initial conditions:

M̃m(t̃ = 0) = M̃
0

m = er(ϑ0, ϕ0) , ω̃m(t̃ = 0) = 0 . (23.20)

Therein, er is the radial base vector in spherical coordinates and ϑ0 and ϕ0 are the
polar and azimuthal angle of the initial magnetization with respect to a coordinate
system for which the z axis is aligned with H̃. The magnetization vector M̃m

represents the orientation of the magnet, from which the angular velocity ω̃m can
be obtained. Hence, Eq. (23.18) can be formulated solely in terms of the magnet’s
orientation. In general, the orientation can be described by, e.g., Euler angles,
Byrant angles or Euler parameters, see (Wittenburg, 1977). Then, the orientation
parameters are connected to the angular velocity via a coupled linear system of
differential equations.

However, due to the azimuthal symmetry of the problem and due to the simple
magnetic excitation in z direction only, the scenario simplifies significantly. If the
micro magnet is initially at rest, its motion is restricted to the plane spanned by the
vectors ez and M̃

0

m. The current magnetization is obtained by means of a rotation
about the z axis

M̃m(t̃) = cos(ϑ)ez + sin(ϑ)d× ez +
(
1− cos(ϑ)

)
(d · ez)d , (23.21)

where ϑ = ϑ̂(t̃) is the angle of rotation and d is the normalized axis of rotation,
which is constant in this scenario. Note that the angle of rotation coincides with the
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polar angle in spherical coordinates. Hence, the same symbol is used. Furthermore,
one has

ϑ̂(t̃ = 0) = ϑ0 , d =
ez × M̃

0

m

||ez × M̃
0

m||
= const. (23.22)

Note that every vector perpendicular to the z axis can be used as the axis of rotation.
Hence, without loss of generality we put d = −ex and obtain

M̃m(t̃) = sin(ϑ)ey + cos(ϑ)ez . (23.23)

Since the axis of rotation is constant, the angular velocity is simply proportional to
this axis and it follows from Eq. (23.18) that

ω̃m =
dϑ

dt̃
d ⇒ d2ϑ

dt̃2
+Dm

dϑ

dt̃
+ H̃(t̃) sin(ϑ) = 0 , (23.24)

which is a nonlinear pendulum equation that is solved numerically usingMathemat-
ica’s build in function “NDSolve,” (Inc., 2015). The resulting solutions for different
values of Dm are depicted in Fig. 23.2. From the figure it can be seen that for small
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Fig. 23.2 Time evolution of the microscopic magnetization for different damping parameters. The
initial direction of the magnetization is characterized by ϑ0 = 3

4
π. The black dashed line

represents the evolution of the external magnetic field.

values of the damping parameter the stationary state, i.e., alignment with the z axis is
achieved even before the external field reached its maximum value. With increasing
damping in this system the alignment of the magnetization lacks behind further and
further.

23.5 Solution to the Macroscopic Problem

The equations on themacroscopic scale are also normalized, but in a slightly different
manner:
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ωM =
1

tref
ω̃M , H = H0H̃ , MM

i = H0M̃
M
i . (23.25)

Both the micro and macroproblem should be considered on the same timescale.
Therefore, tref from Eq. (23.19) is used. Note, however, that the normalization fac-
tors for the magnetization on both scales are different. Subsequently, the system in
Eq. (23.10) reads

I
dω̃M

dt̃
= −DMω̃M + H̃M̃M

y ,

dM̃M
y

dt̃
= −ω̃MM̃

M
z −

1

τ̃r
M̃M
y ,

dM̃M
z

dt̃
= ω̃MM̃

M
y −

1

τ̃r

(
M̃M
z − χH̃

)
.

(23.26)

with
I :=

ρM

ρm

Mm

H0
, DM :=

4τM
µ0H2

0tref
, τ̃r :=

τr
tref

. (23.27)

With the parameters from Tab. 23.1 one can estimate the dimensionless parameters
as

I ≈ 69 , DM ≈ 798 036 . (23.28)

In general, the system in Eq. (23.26) needs to be solved numerically, e.g., for a
rotating H field both components M̃M

y and M̃M
z are expected to be present. Due to

the simple form of the exciting magnetic field, however, a rotational motion never
start to develop from the zero initial conditions for all fields,

ω̃M(t̃ = 0) = 0 , M̃M
y (t̃ = 0) = 0 , M̃M

z (t̃ = 0) = 0 . (23.29)

Hence, one finds ω̃M ≡ 0 as well as M̃M
y ≡ 0 and

M̃M
z (t̃) =

χ

τ̃r

T=t̃∫
T=0

exp
(T − t̃

τ̃r

)
H̃(T ) dT . (23.30)

For the magnetic field in Eq. (23.6) the integration yields with t̃0 = t0/tref

M̃M
z (t̃) =

χ

t̃0


(t̃− τ̃r) + τ̃r exp

(
− t̃

τ̃r

)
, t̃ < t̃0

t̃0 + τ̃r exp

(
− t̃

τ̃r

)
− τ̃r exp

(
− t̃− t̃0

τ̃r

)
, t̃ ≥ t̃0 .

(23.31)

Note that in contrast to the microscopic problem, the dimensionless solution to the
macroscopic problem does not depend upon the magnitude of the external field.
The time evolution of this field is depicted in Fig. 23.3. As expected, the lag of the
alignment with the external field decreases with decreasing relaxation time.
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Fig. 23.3 Time evolution of the macroscopic magnetization for different relaxation times. The
black dashed line represents the evolution of the external magnetic field.

23.6 Homogenization and Parameter Identification

In order to compare themicroscopic fields with themacroscopic ones, a homogeniza-
tion is to be performed. Following (Vilchevskaya and Müller, 2021) a transversally
isotropic probability density function

P (ξ, ϑ) =
1

2π

((
1 + ξ2

)
exp(−ξϑ)− 1

2
exp(−ξπ)

)
, 0 ≤ ϑ ≤ π , (23.32)

is introduced, where ξ is a dimensionless scatter parameter. This function represents
transversally isotropic behavior since the azimuthal dependence is removed, i.e., the
angle ϕ has no influence. Therefore, any two micro magnetizations that differ only
by a rotation about the z axis are treated equally. The macroscopic magnetization
is subsequently found via homogenization of the microscopic function with respect
to the different initial configurations, i.e., the angles ϑ0 and ϕ0. If the solution to
the microscopic problem is denoted as being parametrically dependent upon these
initial angles, its homogenization reads

〈M̃m
z 〉 :=

2π∫
ϕ0=0

π∫
ϑ0=0

M̃m
z (t̃;ϑ0, ϕ0)P (ξ, ϑ) sin(ϑ0) dϑ0 dϕ0 . (23.33)

Since the microscopic field is only available numerically, this integral is approxi-
mated numerically by means of Riemann sums. There is, however, one analytical
simplification that can be employed. As mentioned earlier, a difference in the ini-
tial azimuthal orientation ϕ0 has no influence on the resulting z component of the
micro magnetization. Therefore, the ϕ integration is readily performed resulting in
a factor of 2π. Furthermore, the initial distribution of the micro magnetizations is
assumed to be completely randomized, i.e., a fully isotropic configuration is con-
sidered. Then, following (Vilchevskaya and Müller, 2021), one has ξ = 0 and the
probability density reduces to P (ξ, ϑ) = 1

4π . Hence, without loss of generality we
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set

〈M̃m
z 〉 =

1

2

π∫
ϑ0=0

M̃m
z (t̃;ϑ0, ϕ0 = 0) sin(ϑ0) dϑ0 . (23.34)

The resulting time evolution is depicted in Fig. 23.4 for different damping param-
eters. The solutions look very similar to the results in Fig. 23.2 with the important
difference, that there is no magnetization present in the initial state.
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m z
⟩

Dm
102

103

104

105

106

Fig. 23.4 Time evolution of the homogenized microscopic magnetization for different damping
parameters. The black dashed line represents the evolution of the external magnetic field.

The goal function f that is to be minimized with respect to the relaxation time
τ̃r is given by the difference between the macroscopic magnetization M̃M

z and the
averaged microscopic solution 〈M̃m

z 〉:

minimize
τ̃r

(f) , f =
∣∣M̃M

z − 〈M̃m
z 〉
∣∣ . (23.35)

It should be noted that both magnetization functions are normalized differently such
that both fields assume a value of one when the relaxation is complete. Since the
microscopic solution does not depend upon the relaxation time, it only has to be
calculated once. Furthermore, as the macroscopic solution is given analytically, this
minimization problem is rather a nonlinear model fit.

23.7 Results and Conclusion

By solving Eq. (23.35) numerically, one obtains a relaxation time of

τr ≈ 0.185× 10−3 s . (23.36)

The corresponding homogenized microscopic and macroscopic solutions are shown
in Fig. 23.5. The fit is not perfect, but the time at which the stationary solution is
reached is predicted equally by both models. The magnitude of the applied mag-
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netic field H0 ≈ 1800 A
m results in a damping parameter of Dm = 0.5 × 105, see

Eq. (23.19). The relaxation time in Eq. (23.36) is not in agreement with values for

0.5 1 1.5 2 2.5 3

0

0.5

1

t∕t0

⟨M̃m
z ⟩

M̃M
z

Fig. 23.5 Time evolution of both the homogenized microscopic as well as the macroscopic
magnetization solution. The black dashed line represents the evolution of the external magnetic
field.

the relaxation time in the literature. For example in (Rosensweig, 1997) the order
of magnitude of the relaxation time is 10−7 to 10−6. In (Torres-Diaz and Rinaldi,
2014) a similar range of 10−7 to 10−5 is given. This discrepancy may arise due to
the simplicity of the models in our paper. First of all the applied magnetic process
H(t) is unidirectional such that, e.g., the rotational shear viscosity and therefore the
damping parameterDM become irrelevant. Additionally, our “microscale” is actually
a nanoscale when the radius of the particles R ≈ 10 nm is considered. Hence, this
problem cannot be analyzed using only mechanical considerations. The Brownian
motion becomes relevant at these scales. This may be the most significant influences
that is missing in our simple analysis. Furthermore, the assumption of permanent
magnets on the microscale is questionable and a linear magnetic behavior would be
more appropriate. Last, a probably minor error is introduced by the assumption of
constant material parameters at both levels.

With little effort the presented method could be extended to incorporate also
thermal effects and thus to account for the Brownian motion. It would be interesting
to see how the macroscopic system reacts to a rotating external magnetic field, which
would trigger the ω ×M term in the relaxation equation. However, the resulting
system of differential equations probably does not permit an analytical solution,
which in turn renders the parameter identification more complex. Finally, one could
restrict the computational domain such that boundary conditions are to be imposed.
This would allow for a comparison with real experiments, but requires additional
numerical effort as, e.g., the spin balance becomes a partial differential equation and
gradients of all fields have to be considered.
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Chapter 24
Numerical Homogenisation of Gradient
Materials

Felix Schmidt, Melanie Krüger, Christian Hesch

Abstract In this contribution, we present a numerical homogenization procedure
for gradient materials. In particular, we investigate the prototypical example of fiber
reinforced materials and demonstrate, that even at a typical microscale we obtain
second order continuum. In particular, we make use of immersed technologies to
embed the fibers within the matrix material. Introducing a novel approach IGA2

using spline based approximations on both, the micro- and the macroscale, allows for
the numerical homogenisation of complex microstructures with anisotropic second
gradient contributions of the fibers as shown in a representative example.

Keywords: Numerical homogenization ·Gradient materials · IGA2 approach · Fiber
reinforced polymers

24.1 Introduction

In this contribution we focus on second gradient materials on the microscale with
respect to the particular example of fiber reinforced materials with high stiffness
ratio. Hence, the constitutive relation of this class of materials is governed by the
givenmicrostructure. In Giorgio (2016) a detailed analysis demonstrates that amodel
using a Cauchy continuum on the finest scale can be homogenized using a macro
second gradient model. In Kouznetsova (2002) and Kouznetsova et al (2002) a
homogenization method using a representative volume element for the microscopic
first order Cauchy continuum leads also to a second order macroscopic continuum.

However, we consider the length scales of the embedded fibers on the microscale
as small compared to the surrounding continuum. Hence, the diameter of the em-
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bedded fibers is even small compared to the size of the microstructure, such that
there exist also a ’nanostructure’, resolving the structure of the fibers, such that the
microstructure only represents an intermediate scale model. In dell’Isola et al (2019),
panthographic mechanisms as prototypical material with dedicated microstructure
have been investigated, see also dell’Isola et al (2016) for a suitable Piola homoge-
nization of rod-like structures. We refer also to Asmanoglo and Menzel (2017) for
higher-order formulations used in the context of composites based on the early work
of Spencer and Soldatos (2007).

Attached unit cells or representative volume elements (RVE) are used in Keip et al
(2014) and Schröder and Keip (2012) for electro-mechanically coupled boundary
value problems. Here, first gradient theories are applied for the displacement and
the electric potential. Furthermore, a two-scale homogenization approach is imple-
mented with the FE2-method using a consistent linearization of the macroscopic
stresses, see Schröder (2014). Fundamentals on homogenisation based on energy
criteria for first order continua can be found in Hill (1963, 1972) and Mandel (1972),
along other homogenisation techniques, i.e. in Barboura and Li (2018); Abali and
Barchiesi (2021).

To deal with higher-order continuity requirements, isogeometrical analysis (IGA)
has become popular in recent years. IGA employs the same NURBS basis functions
for the geometric design as well as for the analysis and was introduced in Hughes et al
(2005). It allows for the construction of finite element basis functions with adjustable
continuity across the element boundaries, in contrast to classical Lagrangian basis
functions, which are always C0 continuous at the element boundaries. This enables
the numerical treatment of higher-order partial differential equations, e.g. for Cahn–
Hilliard or Cahn–Hilliard like formulations (see Gomez et al, 2008; Hesch et al,
2016), for the application on fracture mechanics (see Borden et al, 2014; Dittmann
et al, 2018), in structural mechanics (see, e.g., Benson et al, 2010; Kiendl et al, 2009;
Reali and Gomez, 2015), and for generalized continua (see Fischer et al, 2011).

In this work, we introduce first the basic concepts in Section 24.2, 24.3 and 24.3.2.
Afterwards, in Section 24.4 a continuous distribution of fibers is taken into account
using a homogeneous second gradient model. The corresponding homogenisation
procedure of this gradient material on the microscale is shown in Section 24.5. A
final example is given in Section 24.6 and conclusion are drown in Section 24.7.

24.2 Basic Notation

In the following, we briefly summarize the basic notation used throughout the article.
The scalar product of two vectors a, b, two second order tensors A,B, two third
order tensors A,B and two fourth order tensors A,B is given by

[a · b] = ai bi , [A : B] = Aij Bij ,

[A
... B] = Aijk Bijk , [A :: B] = AijklBijkl .

(24.1)
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Here, Latin indices range in the set {1, 2, 3}. We will make use of the Einstein
summation convention on repeated indices. Other multiplications of two tensors of
different order are given in the following way, here for example, for a fourth order
tensor A with a third order tensor B, second orderB and vector b

[A b]ijk = Aijkl bl , [A : B]ij = Aijkl Bkl , [A
... B]i = AijklBjkl . (24.2)

All other combinations follow analogously. The dyadic product ⊗ increases the
order of the tensor. For example, a dyadic product of two vectors a, b is given by
A = a⊗ b withAij = ai bj . Next, we define the macroscopic gradient with respect
to the macroscopic reference ∇̄(•) of a vector field ā and of a second order tensor
field Ā as

[∇̄ā]iJ =
∂[ā]i
∂[X̄]J

and [∇̄Ā]iJK =
∂[Ā]iJ
∂[X̄]K

. (24.3)

For the macroscopic divergence operator it follows

[∇̄ · Ā]i =
∂[Ā]iJ
∂[X̄]J

and [∇̄ · Ā]iJ =
∂[Ā]iJK
∂[X̄]K

. (24.4)

The microscopic gradient ∇a and ∇A as well as the divergence operators ∇ · A
and ∇ · A are given analogously to (24.3) and (24.4) omitting the overlined symbol
“ ¯ .”

24.3 Second Gradient Macroscopic Continuum and First
Gradient Microscopic Continuum

In this first section, we start with a short summary of a homogenization technique
for a second gradient continuum in the macroscale and a first gradient continuum
in the microscale. In particular, we follow the work of Kouznetsova et al (2002,
2004), introducing the fundamental equations and settings for a numerical two-scale
homogenisation problem.

24.3.1 Macroscopic Boundary Value Problem

At first, we introduce a reference configuration Ω̄0 ⊂ R3 with boundary ∂Ω̄0 and
outward unit normal N̄ and a current configuration Ω̄ ⊂ R3 with boundary ∂Ω̄ and
outward unit normal n̄. The deformationmapping ϕ̄ : Ω̄0 → R3 relates the reference
and current configuration to each other, Ω̄ = ϕ̄(Ω̄0). Furthermore, the vector to an
arbitrary material point P is labeled by X̄ ∈ Ω̄0. In the current configuration, the
corresponding point p is given by x̄ = ϕ̄(X̄), see Fig. 24.1.
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The first order deformation measure F̄ : Ω̄0 → R3×3 and the second order
deformation measure F̄ : Ω̄0 → R3×3×3 are given by the first and second derivative
of the mapping ϕ̄(X̄)

F̄ = ∇̄ϕ̄ and F̄ = ∇̄2ϕ̄ , (24.5)

where ∇̄ refers to the gradient with respect to X̄ , see (24.3). Following Kouznetsova
(2002), Javili et al (2013) and Dittmann et al (2021), we postulate the virtual work
of the internal contributions as follows

δΠ̄ int =

∫
Ω̄0

(
P̄ : δF̄ + P̄

... δF̄

)
dV , (24.6)

where P̄ denotes the macroscopic two-point first Piola-Kirchhoff stress tensor and
P̄ the macroscopic two-point third order stress tensor, conjugate to F̄. Moreover,

δF̄ = ∇̄δϕ̄ and δF̄ = ∇̄2δϕ̄ , (24.7)

where the space of virtual or admissible test functions is given by

V = {δϕ̄ ∈ H2(Ω̄) | δϕ̄ = 0, ∇̄δϕ̄ N̄ = 0 on Γ̄ϕ} (24.8)

with boundary Γ̄ϕ, see Fig. 24.2. The external contributions to the virtual work are
given by

δΠ̄ext =

∫
Ω̄0

B̄ext · δϕ̄ dV +

∫
Γ̄σ

T̄ ext · δϕ̄ dA+

∫
Γ̄∇σ

M̄ ext : ∇̄δϕ̄ dA (24.9)

with the common body force per unit volume B̄ext, the traction forces T̄ ext on
boundary Γ̄ σ and the hyperstress traction force M̄ ext on boundary Γ̄∇σ , see once
again Fig. 24.2.

Fig. 24.1 Reference and
current configuration.
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Ω̄

∂Ω̄0

∂Ω̄
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X̄ ∈ Ω̄0

X

e1
e2

e3

Γ̄ϕ

Γ̄∇σΓ̄σ

RVE
RVE driven by

F̄ , F̄

constitutive quantities
P̄ , P̄,∆P̄ , ∆P̄

Fig. 24.2 Micro-macro transition of the mechanical boundary value problem. Left: Boundary
decomposition of the macro continuum in Dirichlet boundaries Γ̄ϕ and Neumann boundaries Γ̄σ ,
Γ̄∇σ of the traction force and the hyperstress traction force. Right: RVE as defined for every
macroscopic point.

The principle of virtual work reads now

δΠ̄ int − δΠ̄ext = 0 , ∀ δϕ̄ ∈ V. (24.10)

The internal contributions can be related by applying partial integration and the
Gaussian integral theorem to the external contributions, see Javili et al (2013)

T̄ ext = (P̄ − ∇̄ · P̄) N̄ ,

M̄ ext = P̄ N̄ .
(24.11)

Note, that the last equation can be decomposed in tangential and normal components,
see Madeo et al (2016) for details. Taking the balance equation

∇̄ · (P̄ − ∇̄ · P̄) + B̄ext = 0 (24.12)

into account, completes the set of equations for the strong form of the second gradient
boundary value problem. In the following, we omit volumetric body forces as gravity
forces, thereby B̄ext = 0.
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24.3.2 Microscopic Boundary Value Problem (First Gradient)

In every material point P , we assume the existence of a representative finite domain
RVE containing the information on the microscopic continuum, see Fig. 24.2. To be
specific, we postulate a first gradient material in the domain RVE.

We start with the mapping for the microscopic relative position of the material
points x = ϕ(X)

ϕ(X) = F̄ X +
1

2
F̄ : (X ⊗X) + w̃ . (24.13)

Here, w̃ describes the unknown microscopic fluctuation field, which includes all
higher-order terms of theTaylor series expansion, seeKouznetsova et al. Kouznetsova
et al (2002). For consistency, we require

∫
RVE

w̃ dV = 0. In analogy to the
macroscopic quantities, we obtain the microscopic first order deformation measure
F = ∇ϕ

F = F̄ + F̄X + F̃ , (24.14)

where F̃ := ∇w̃. The averaged microscopic deformations over the volume of the
RVE can be connected to the macroscopic counterpart of F̄ via

1

V

∫
RVE

F dV = F̄ , (24.15)

if the fluctuations fulfill the following restrictions on the boundary1

1

V

∫
∂RVE

w̃ ⊗N dA = 0 and
1

V

∫
∂RVE

∇w̃ ⊗N dA = 0 . (24.19)

1 Placing the coordinate system in the center of the RVE, yielding
∫

RVE

~X dV = ~0, and inserting

the kinematic 24.13 into the volume averages, it follows

1

V

∫
RVE

F dV =
1

V

∫
RVE

(
F̄ + F̄ ~X +∇w̃

)
dV = F̄ +

1

V

∫
RVE

∇w̃ dV (24.16)

and
1

V

∫
RVE

F dV =
1

V

∫
RVE

(
F̄ +∇2w̃

)
dV = F̄ +

1

V

∫
RVE

∇2w̃ dV. (24.17)

Since the macroscopic values are exactly the volume averages of the microscopic values and do not
depend on the fluctuations, we require

1

V

∫
RVE

∇w̃ dV = ~0 and 1

V

∫
RVE

∇2w̃ dV = 0 , (24.18)

which can be rewritten into surface integrals.
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The local balance equation of the microscopic first gradient continuum is given
by

∇ · P = 0 , (24.20)

where P := ∂FΨ(F ) is defined in terms of a Helmholtz energy function Ψ .
The macro-homogeneity condition as given by a suitable energy criterion, stating

that the virtual work applied to the system in the material point P is equal to the
virtual work in the domain RVE, hence we assume

1

V

∫
RVE

P : ∇δϕ dV = P̄ : δF̄ + P̄
... δF̄ . (24.21)

Note, that this assumption excludes Neumann conditions with an effective contribu-
tion to the virtual work.

After inserting the variations of the material points ϕ

δϕ = δF̄ X +
1

2
δF̄ : (X ⊗X) + δw̃ (24.22)

and
∇δϕ = δF̄ + δF̄X + δF̃ (24.23)

into 24.21 along with partial integration and separation towards δF̄ and δF̄, the left
side of the energy criteria can be rewritten as follows

1

V

∫
RVE

P dV : δF̄ +
1

V

∫
RVE

P ⊗X dV
... δF̄ = P̄ : δF̄ + P̄

... δF̄ . (24.24)

Comparing the left and right sides of the last equation, yields

P̄ =
1

V

∫
RVE

P dV and P̄ =
1

V

∫
RVE

P ⊗X dV . (24.25)

Here, the macroscopic third order stress tensor P̄ is given by the volume average
of the first moment of the microscopic stresses P . To obtain information about the
boundary conditions, (24.21) can be rewritten as:

1

V

∫
RVE

[
P̄ − P

]
: [δF̄ + δF̄X − δF ] dV = 0 . (24.26)

An alternative expression of (24.26) yields:

1

V

∫
∂RVE

([
P̄ − P

]
N
)
·
[
δF̄ X +

1

2
δF̄ : (X ⊗X)− δϕ

]
dA = 0 . (24.27)
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Thus, regarding a deformation driven approach, we derive two different sets of
boundary conditions. Either we set the whole boundary as Dirichlet or we apply
a periodicity condition on ∂RVE. A suitable Dirichlet boundary condition on the
boundary ∂RVE is

F̄ X +
1

2
F̄ : (X ⊗X)−ϕ = 0 , (24.28)

satisfying (24.27). A comparison of the Dirichlet boundary conditions with (24.13)
yields w̃ = 0 on the boundary. Furthermore, periodic boundary conditions can be
used via the enforcement of

w̃(X+) = w̃(X−) , T ext(X
+) = −T ext(X

−) , (24.29)

satisfying again the energetic criteria (24.21).
In Kouznetsova (2002) is noted, that (24.19)2 yields higher-order boundary con-

ditions and as a consequence the microstructural formulation becomes higher-order.
This contradicts the intention to solve themicrostructuralRVE problem as a classical
boundary value problem, where the Dirichlet boundaries are given by (24.28). As
a remedy of this drawback, we will next investigate suitable reasons to introduce a
second gradient material on the microscale.

24.4 Continuous Strain Energy Formulation for Fibers

In Schulte et al (2020) we investigated fiber-reinforced materials. In particular, glass-
fibers embeddedwithin a thermoplastic is analysed; due to the large differences in the
Young’s modulus (about 1.5 [GPa] for the matrix material and 71 [GPa] for the glass-
fiber) a linear deformation within the cross section is reasonable leading to bending
and torsional stress contributions. For a detailed investigation, an overlapping domain
decomposition model for fiber-reinforced material is proposed in Khristenko et al
(2021), using a dimensional reduction of the thin fibers within the threedimensional
model for the matrix material. This is resonable even within a microscaleRVE due to
the length-to-diameter ratio of 20 in the scale of [µm] of the fibers. The contribution
of a single fiber may be negligible, however, industrial composites uses more then
50 volume percentage of fiber within the material. Hence, we have to formulate a
continuous second gradient formulation next.

Concerning the fiber material, we introduce

λL = ‖l‖ = ‖FL‖ and λM = ‖m‖ = ‖FM‖ (24.30)

as stretch of the respective fiber and

ϕ = acos(l ·m)− π

2

= acos

(
(FL) · (FM)

‖FL‖‖FM‖

)
− π

2

(24.31)
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as change of the angle between two fibers. Here l = λLl and m = λMm are
deformed fiber configurations decomposed into fiber stretches and normalized fiber
directions. To describe fiber bending directly for the continuum, the gradients of the
deformed fiber vectors, i.e. ∇l = ∇FL and ∇m = ∇FM , have to be taken into
account. In particular, we consider

∇lL = λL∇lL+ (∇λL ·L)l and ∇mM = λM∇mM + (∇λM ·M)m
(24.32)

which are projections of the fiber configuration gradients onto the initial fiber direc-
tion, cf. Asmanoglo and Menzel (2017). These expressions include terms related to
stretch gradients of the fibers as well as fiber curvatures. We introduce the curvature
measure for the fiber initially aligned in L-direction as

κL =
1

λL
∇lL

=
1

λ2
L

(∇l− l⊗∇λL)L

=
1

‖FL‖2
(
∇FL− FL

‖FL‖ ⊗
(
FL

‖FL‖ ⊗L
)

: ∇F
)
L

(24.33)

and for the fiber initially aligned inM -direction as

κM =
1

λM
∇mM

=
1

λ2
M

(∇m−m⊗∇λM)M

=
1

‖FM‖2
(
∇FM − FM

‖FM‖ ⊗
(
FM

‖FM‖ ⊗M
)

: ∇F
)
M .

(24.34)

Note that the latter form is equivalent to a Piola homogenisation approach as demon-
strated in dell’Isola et al (2016) Assuming that the fiber portion in both directions is
identical, the corresponding elastic contribution of the fiber material is defined by

Ψ e
fib =

1

2
a
(
(λL − 1)2 + (λM − 1)2

)
+ b φ2

+
1

2
(κL · cκL + κM · cκM)

(24.35)

where a and b are stiffness parameters related to stretch and shear of the fibermaterial.
Moreover, the stiffness tensor related to fiber curvature is given as

c = c#(l⊗ l+m⊗m) + c⊥n⊗ n with n = l×m (24.36)

taking into account a geometric dependency via the stiffness parameters c# and
c⊥, which can be interpreted as the in-plane and out-of-plane bending stiffness, see
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Schulte et al (2020), Asmanoglo and Menzel (2017), and dell’Isola et al (2016) for
details.

This model allows now for large volume fractions of directed fibers to introduce
a homogeneous second gradient model within the RVE. It is obvious, that extremely
finemeshes resolving every fiber using elements in the nanoscale (typical glass fibers
have a diameter of 10 [µm]) allows us to circumvent the usage of second gradient
formulations within the microscale RVE. However, in our opinion this is even in
the microscale highly inefficient. Hence, we need a homogenisation procedure for
second gradient materials, which we introduced in Schmidt et al (2021) as IGA2

method, outlined in the following section.

24.5 Second Gradient Macroscopic Continuum and Second
Gradient Microscopic Continuum

In Schmidt et al (2021), we extended the formulation of Kouznetsova et al (2002,
2004) and reformulate the FE2 method (see, e.g., Schröder (2014)) on higher order
continua using a spline based approach in the context of isogeometric analysis (IGA)
for the discretisation, introducing the IGA2 method. Here, we will briefly summarize
the application on second gradient microscopic continua to be homogenized on a
second gradient macroscopic continuum.

24.5.1 Microscopic Boundary Value Problem (Second Gradient)

For a second gradientmicroscopic continuum the equations (24.13) to (24.19) remain
valid. The local balance equation of the microscopic second gradient continuum is
given analogously to (24.12) by:

∇ · [P −∇ ·P] = 0 , (24.37)

where P := ∂FΨ(F ,F) and P := ∂FΨ(F ,F) are defined in terms of a Helmholtz
energy function Ψ .

The macro-homogeneity condition as given by energetic criteria states that the
virtual work applied to the system in the material point P is equal to the virtual work
in the domain RVE, hence we assume

1

V

∫
RVE

(
P : ∇δϕ+ P

... ∇2δϕ
)

dV = P̄ : δF̄ + P̄
... δF̄ . (24.38)

After again inserting the variations for ϕ in 24.22 to 24.23, partial integration and
separation towards δF̄ and δF̄, the left side of the energetic criteria can be rewritten
as follows
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1

V

∫
RVE

P dV : δF̄+
1

V

∫
RVE

(
P⊗X+P

)
dV

... δF̄ = P̄ : δF̄+P̄
... δF̄ , (24.39)

Comparing the left and right sides of the last equation, yields

P̄ =
1

V

∫
RVE

P dV and P̄ =
1

V

∫
RVE

P ⊗X dV

︸ ︷︷ ︸
P̄P

+
1

V

∫
RVE

P dV

︸ ︷︷ ︸
P̄P

. (24.40)

Now, the macroscopic third order stress tensor P̄ is split into P̄P , which is once
again given by the volume average of the first moment of the microscopic stresses
P , and P̄P, which is a volume average of the microscopic third order stress tensor
P. Rewritting (24.38), we receive information about the boundary conditions:

1

V

∫
RVE

([
P̄ − P

]
: [δF̄ + δF̄X − δF ] +

[
P̄P −P

] ... [δF̄− δF]) dV = 0 ,

(24.41)
In this case, the simplest assumption for all points of the microscopic scale, that
fulfills the last equation is given by postulating the constraints P̄ := P or δF̄ +
δF̄X := δF and additionally P̄P := P or δF̄ := δF, compare Schröder (2014).
An alternative expression of (24.41) yields

1

V

∫
∂RVE

([
P̄P −P

]
N
)

:
[
δF̄ + δF̄X − δF

]
dA

+
1

V

∫
∂RVE

([
P̄ − (P −∇ ·P)

]
N
)
·
[
δF̄ X +

1

2
δF̄ : (X ⊗X)− δϕ

]
dA = 0 .

(24.42)
Thus, regarding a deformation driven approach, suitable Dirichlet boundary condi-
tions on the boundary ∂RVE are

F̄ X +
1

2
F̄ : (X ⊗X)−ϕ = 0 ,

F̄ + F̄X − F = 0 ,
(24.43)

satisfying (24.42). Note that due to F̄ the boundaries are quadratic functions.
For a stress driven approach, (24.42) yields possible Neumann boundary condi-

tions, however, that would render an inherently complex implementation for large
deformations, see Kouznetsova (2002). A comparison of the Dirichlet boundary con-
ditions with the mappings (24.13) and (24.14)1 provides the following relationship
for these conditions, w̃ = 0 and∇w̃ = 0 on the boundary. Furthermore, the micro-
scopic stress tractions are T ext = (P −∇ ·P) N and the hyperstress tractions are
given byM ext = PN , periodic boundary conditions as shown in Fig. 24.3 require
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Fig. 24.3 Microscopic bound-
ary value problem, peri-
odic boundary conditions on
∂RVE, here only displayed
for top and bottom for better
understanding.
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−) ,

∇w̃(X+) = ∇w̃(X−) , M ext(X
+) = −M ext(X

−) ,
(24.44)

satisfying the energetic criteria (24.38).
Note that the periodicity is given in term of the fluctuation w̃, thus, the boundary

deformation emanating from F̄ is periodic whereas the deformation emanating
from F̄ may not due to the quadratic formulation in X , see (24.13). A consistent
linearisation is presented in Schmidt et al (2021), such that a Newton-Raphson
iteration can be used on the macroscale for non-linear materials on the microscale.

24.6 Numerical Example: Cook Membrane

To demonstrate the applicability of the proposed homogenisation, we examine a
Cook’s membrane as macroscopic system, see Fig. 24.4 left, using a second gradient
model for the microscopic system. As first order material model for the matrix, we
apply a classical Mooney Rivlin material,

Ψ(J, I1, I2) = c (J − 1)2 − d ln(J) + c1 (I1 − 3) + c2 (I2 − 3) . (24.45)

where J = det( ~F ), I1 = tr( ~FT ~F ) = ~F : ~F and I2 = tr(cof( ~FT ~F )). For the
second order unidirectional fibers we use

Ψfib :=
1

2

[
a (λ− 1)

2
+ bκ ·

(
F FTκ

)]
, (24.46)

where the stretch of the fibers λ in direction L reads λα = ||l|| = ||F L|| and
the curvature measure for the fiber initially aligned in L-direction is introduced as
follows

κ =
1

(λ)
2

(
I − l̃⊗ l̃

)
F : (L⊗L) . (24.47)
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Fig. 24.4 Cook’s membrane. Left: Cook’s membrane with Dirichlet boundaries Γ̄ϕ on the left
side and Neumann boundaries Γ̄σ on the right side. Right: RVE of the Cook’s membrane with a
second gradient material for fiber-reinforced polymers with parallel oriented fibers for anisotropic
behavior and periodic boundary conditions.

The full model reads
Ψfrp := ζ Ψmat +

1− ζ
2

Ψfib , (24.48)

where ζ ∈ [0, 1] is the volume fraction of the matrix material. For the macroscopic
system, the Cook’s membrane is clamped on the left side, i.e. ϕ̄ = ~0 mm on Γ̄ϕ.
On the right hand side, the Cook’s membrane a constant traction force T̄ ext =
[0; 50; 0] N on Γ̄ σ is applied. Periodic boundary conditions are applied on the RVE
and the material values are given in table 24.1.

For the results shown in Fig. 24.5 24×24×6 Elements using quadratic B-Splines
are used. For 27 Gauss points per Element, a total of 93312 RVE have to be eval-
uated in every Newton–Raphson iteration, using 64 nodes on the OMNI cluster of
the University of Siegen with each 64 cores (AMD EPYC 7452). The von Mises
stress distribution of the first order stresses and the Fröbenius norm of the second
order hyperstresses are displayed. Note that the deformation is scaled by a factor
of 5. Note that the second order hyperstresses concentrate on the notching effect at
the left boundary. Moreover, the anisotropic effects of the fibers are clearly visible.
Although the RVE is geometrically homogeneous, more advanced models using ge-
ometrical inhomogeneities as they are common nowadays in additive manufacturing
for lightweight design can be easily applied using the proposed formulation, see
(Schmidt et al, 2021) for details.

24.7 Conclusion

In this contributions, we motivate the usage of second gradient material models on
a microscale with application to fiber reinforced materials. The high stiffness ratio
of the fibers on the microscale allows to assume a rigid cross section, such that we
obtain a torsional-bending strain vector. For large volume fractions of fibers, a three
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Fig. 24.5 Cook’s membrane. Up: von Mises stress distribution of the first order Cauchy stresses.
Down: Fröbenius norm of the second order hyperstresses.
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Table 24.1 Second gradient material.Material setting of the fiber-reinforced polymere.

parameter of matrix material

c1 2000 MPa

c2 1000 MPa

c 1/3(c1 + c2) MPa

d 2(c1 + 2c2) MPa

volume fraction of matrix material ζ 0.5 −

stretch parameter of fiber material a 3000 MPa

curvature parameter of fiber material b 1.25 N

orientation L 1√
4.25

[−1;−1; 1.5] −

dimensional model has been derived as well. This model penalizes the curvature
contributions in fiber directions and leads to a full three dimensional second order
model on the microscale.

The necessary homogenisation step is build on an energetic criteria, i.e. on both
scales the same virtual work is enforced.With this assumption Dirichlet and periodic
boundary conditions can be defined for the microscale, such that a finite element
discretisation using IGA to account for the higher regularity of the second order
terms can be applied. This novel IGA2 approach allows now for arbitrary complex
geometries and materials on the microscale, as demonstrated in the final example.

Acknowledgements Support for this researchwas provided by theZIMT (Zentrum für Informations-
undMedientechnologie) and theOMNICluster at theUniversity of Siegen. This support is gratefully
acknowledged.

References

Abali BE, Barchiesi E (2021) Additive manufacturing introduced substructure and computational
determination of metamaterials parameters by means of the asymptotic homogenization. Con-
tinuum Mechanics and Thermodynamics 33(4):993–1009

Asmanoglo T,Menzel A (2017) A finite deformation continuummodelling framework for curvature
effects in fibre-reinforced nanocomposites. Journal of the Mechanics and Physics of Solids
107:411–432

Barboura S, Li J (2018) Establishment of strain gradient constitutive relations by using asymptotic
analysis and the finite element method for complex periodic microstructures. International
Journal of Solids and Structures 136-137:60–76

Benson D, Bazilevs Y, HsuM, Hughes T (2010) Isogeometric shell analysis: The Reissner–Mindlin
shell. Computer Methods in Applied Mechanics and Engineering 199:276–289

Borden M, Hughes T, Landis C, Verhoosel C (2014) A higher-order phase-field model for brit-
tle fracture: Formulation and analysis within the isogeometric analysis framework. Computer
Methods in Applied Mechanics and Engineering 273:100–118



502 Schmidt, Krüger, Hesch

dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016) Large deformations of planar extensible
beams and pantographic lattices: heuristic homogenization, experimental and numerical exam-
ples of equilibrium. Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 472(2185)

dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T, Giorgio I, Placidi L, An-
dreaus U, CuomoM, Eugster S, Pfaff A, Hoschke K, Langkemper R, Turco E, Sarikaya R, Misra
A, De Angelo M, D’Annibale F, Bouterf A, Pinelli X, Misra A, Desmorat B, Pawlikowski M,
Dupuy C, Scerrato D, Peyre P, LaudatoM,Manzari L, Göransson P, Hesch C, Hesch S, Franciosi
P, Dirrenberger J, Maurin F, Vangelatos Z, Grigoropoulos C, Melissinaki V, Farsari M, Muller
W, Abali B, Liebold C, Ganzosch G, Harrison P, Drobnicki R, Igumnov L, Alzahrani F, Hayat T
(2019) Advances in pantographic structures: design, manufacturing, models, experiments and
image analyses. Continuum Mechanics and Thermodynamics 31:1231–1282

DittmannM, Aldakheel F, Schulte J, Wriggers P, Hesch C (2018) Variational Phase-Field Formula-
tion of Non-Linear Ductile Fracture. ComputerMethods in AppliedMechanics and Engineering
342:71–94

DittmannM, Schulte J, Schmidt F, Hesch C (2021) A strain-gradient formulation for fiber reinforced
polymers: Hybrid phase-field model for porous-ductile fracture. Computational Mechanics
67:1747–1768

Fischer P, Klassen M, Mergheim J, Steinmann P, Müller R (2011) Isogeometric analysis of 2D
gradient elasticity. Computational Mechanics 47(3):325–334

Giorgio I (2016) Numerical identification procedure between a micro-Cauchy model and a macro-
second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathe-
matik und Physik 67:95:1–17

Gomez H, Calo V, Bazilevs Y, Hughes T (2008) Isogeometric analysis of the Cahn–Hilliard phase-
field model. Computer Methods in Applied Mechanics and Engineering 197:4333–4352

Hesch C, Schuß S, DittmannM, FrankeM,Weinberg K (2016) Isogeometric analysis and hierarchi-
cal refinement for higher-order phase-field models. Computer Methods in Applied Mechanics
and Engineering 303:185–207

Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. Journal of the
Mechanics and Physics of Solids 11(5):357–372

Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings
of the Royal Society of London A Mathematical and Physical Sciences 326:131 – 147

Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering
194(39–41):4135–4195

Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with
energetic boundaries. Journal of the Mechanics and Physics of Solids 61(12):2381–2401

Keip MA, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-
elasticity at finite strains. ComputerMethods in AppliedMechanics and Engineering 278:62–79

Khristenko U, Schuß S, Krüger M, Schmidt F, Wohlmuth B, Hesch C (2021) Multidimensional
coupling: A variationally consistent approach to fiber-reinforced material. Computer Methods
in Applied Mechanics and Engineering 382:113,869

Kiendl J, Bletzinger K, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–
Love elements. Computer Methods in Applied Mechanics and Engineering 198:3902–3914

Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase
materials. Ph.D. thesis. Technische Universiteit Eindhoven

Kouznetsova V, Geers M, Brekelmans W (2002) Multi-scale constitutive modelling of heteroge-
neous materials with a gradient-enhanced computational homogenization scheme. International
Journal for Numerical Methods in Engineering 54:1235–1260

Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homoge-
nization of multi-phase materials: a nested finite element solution strategy. Computer Methods
in Applied Mechanics and Engineering 193(48-51):5525–5550



24 Numerical Homogenisation of Gradient Materials 503

Madeo A, Ghiba ID, Neff P, Münch I (2016) A new view on boundary conditions in the Grioli–
Koiter–Mindlin–Toupin indeterminate couple stress model. European Journal of Mechanics A
59:294–322

Mandel J (1972) Plasticité classique et viscoplasticité 97
Reali A, Gomez H (2015) An isogeometric collocation approach for Bernoulli–Euler beams and

Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering 284:623–636
Schmidt F, Krüger M, Hesch C (2021) Homogenization of higher-order continua. International

Journal for Numerical Methods in Engineering, submitted for publication
Schröder J (2014) A numerical two-scale homogenization scheme: the FE2-method. In: Schröder

J., Hackl K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences,
vol 550. Springer, Vienna.Journal of Applied Mechanics

Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary
value problems. Computational Mechanics 50:229–244

Schulte J, Dittmann M, Eugster S, Hesch S, dell’Isola F, Hesch C (2020) Isogeometric analysis of
fiber reinforced composites using Kirchhoff-Love shell elements. ComputerMethods in Applied
Mechanics and Engineering 362:112,845

Spencer A, Soldatos K (2007) Finite deformations of fibre-reinforced elastic solids with fibre
bending stiffness. International Journal of Non-Linear Mechanics 42:355–368



Chapter 25
Modeling the Slow Crack Growth of an Edge
Crack within the Cohesive Zone Model
Approach

Mikhailo Selivanov, Lidiia Nazarenko, Holm Altenbach

Abstract The problem of quasi-static growth of the mode I edge crack in a vis-
coelastic material is solved. The stages of analysis are indicated, namely (i) choice of
rheological model, (ii) choice of crack model and fracture criterion, (iii) solution of
the elastic problem of crack mechanics within the chosen model approach, (iv) con-
structing the viscoelastic solution of the problem and equations of crack propagation.
The last two of these stages were given particular attention. The proposed algorithm
for determining the crack opening in the framework of the cohesive zone model
approach is based on the methodology developed in previous papers of the authors.
A regularized singular integral equation is used to obtain an elastic crack opening.
When modeling the quasi-static crack growth, the hypothesis of the independence
of the cohesive law on the rate of slow crack propagation is assumed to be true. To
construct numerical solutions, the exponential kernel of the slow crack growth equa-
tions is utilized. The smoothed triangular traction–separation law with the hardening
segment ensures smooth crack closure. Auxiliary solutions of the problem that are
obtained at each step and should be used to describe hereditary viscoelastic behavior
are illustrated. The dependence of crack length on time is obtained for some nu-
merical values of model parameters. The proposed methodology for modeling slow
crack growth has demonstrated its effectiveness by fast convergence of solutions at
each iteration of the algorithm.

Keywords: Edge crack · Cohesive zone model · Slow crack growth
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25.1 Introduction

Slow propagation of cracks due to creep of the material is one of the most common
types of fracture. This phenomenon has led to numerous theoretical and experi-
mental studies over the past forty six years beginning with the pioneering work
(Schapery, 1975). It was established that this type of fracture cannot be described
in the framework of classical fracture mechanics, which cannot predict the rate of
crack propagation, and a cohesive model (Dugdale, 1960; Barenblatt, 1962; Hiller-
borg et al, 1976; Needleman, 1987; Hui et al, 2011) must be used (Ciavarella et al,
2021a). Another approach to treat the crack propagation in viscoelastic materials is
proposed in (Persson and Brener, 2005) and gives similar results. Using the cohesive
zone model, the crack propagation can be treated not only for homogeneous mate-
rials. For example, in (Ciavarella et al, 2021b), this model was used to investigate
the subcritical crack growth along the interface between an elastic and a viscoelastic
material. A review of the basic concepts of modeling the slow propagation of cracks
in viscoelastic materials is made in (Kaminskii, 2014; Knauss, 2015). The three im-
portant stages of crack growth were considered: initiation, slow steady growth, and
the onset of rapid unstable propagation. It is believed that the initiation of fracture
from a crack preexisting in a viscoelastic body requires some time (incubation time),
which depends on the geometry, the scheme of the applied load, and the hereditary
viscoelastic properties of the material. The load level can be significantly lower than
the critical level in the absence of hereditary viscoelastic properties of the material.
During the initial stage, the material at the crack tip gradually loses the ability to
resist crack propagation. The second stage of fracture is the subcritical growth of
the crack, which occurs even at a constant level of external loading and can be
characterized by a slight change in the rate of propagation. The state of instability
is characterized by a significant increase in the velocity of the crack tip. The time
when critical growth initiates is important because it determines the time of failure
of the structural member with a crack.

Building a model of quasi-static crack growth in viscoelastic bodies is a multilay-
ered process. At each level, modeling concepts or solution methods are developed
and combined into a common model. In the first step, a rheological model is selected
and the relaxation functions of the viscoelastic material are determined. These func-
tions can be obtained both experimentally and by modeling using the mechanics
of composite materials from the viscoelastic properties of the composite phases if
the fracture of such materials is studied (Kaminskii, 2021). Although this approach
does not take into account many of the factors accompanying composite failure
(Nazarenko et al, 2019; Khoroshun and Nazarenko, 2013), it can provide satisfac-
tory results for engineering applications. Fractional constitutive equations (Peng et al,
2019) can be used as well as classical viscoelastic models. In the second step, the
crack model and the fracture criterion are selected. When modeling the slow propa-
gation of cracks, the cohesive zone model is often used. According to this model, a
fictitious crack is introduced on the continuation of the physical crack. The cohesive
traction is applied to the faces of the fictitious crack. This traction is assumed to be the
function of displacement of the fictitious crack faces, thus establishing the traction–



25 Slow Crack Growth 507

separation law. The crack faces are assumed to close smoothly at the fictitious crack
tip. In the last two decades, an alternative approach has been proposed to eliminate
the singularity at the crack tip (e.g. (Gourgiotis and Georgiadis, 2009; Mousavi
and Aifantis, 2016) among others). Within the framework of the gradient theory of
elasticity, it was possible to describe the smooth crack closure without introducing a
cohesive zone. When the velocity of crack propagation is low, it is natural to assume
the time-independence of fracture parameters (the fracture energy, cohesive strength,
and shape parameters of the cohesive law). Thus, the traction–separation law must
be satisfied at every moment of time. The rate-dependent cohesive law can be imple-
mented using the models proposed in (Bažant and Li, 1997;Musto and Alfano, 2015;
Nordmann et al, 2020). At the third stage, the problem of crack mechanics within
the chosen model is solved. Analytical, semi-analytical, and numerical methods can
be used. In the first two cases, it is sometimes possible to present a solution in the
form of product of elastic moduli and function of coordinate. When the cohesive
zone model is implemented, it is necessary to determine the displacement of the
fictitious crack faces (this solution is necessary to construct the equations of slow
crack growth). In the case of isotropic material, the multiplier is the compliance
function. In the case of orthotropic material, the multiplier with orthotropic moduli
can be obtained utilizing the elastic–viscoelastic correspondence principle. If this
factorization is possible, the solution can be presented in an integral form, which
is the basis of the theory of slow crack propagation in the hereditary solid. The
obtained equations are solved in the fourth, last step of solving the problem. We
find the solution in the form of dependence of crack length on time. Additionally,
the cohesive length also varies with time (Hakim and Mikhailov, 2015, 2018). The
smooth crack closure condition embedded in the cohesive zone model defines the
position of the cohesive zone tip.

This paper illustrates an example of modeling the quasi-static propagation of an
edge crack normal to the boundary due to the hereditary viscoelastic properties of
the material. It develops the theory of the long-term failure of cracked viscoelastic
solids, which was experimentally tested for some polymeric and composite materials
(Kaminskii, 1998). In Section 25.2, the crack opening displacement is obtained as the
solution of the singular integral equation of the first kind. The example is illustrated
for the critical state of a crack. The shortcomings of this solution are noted and
eliminated in Section 25.3. The regularization of the first kind integral equation
allowed us to obtain the correct solutions corresponding to the subcritical crack state
in Section 25.4. We pay particular attention to solving the equation of slow crack
growth in Section 25.5. We propose the algorithm at each step of which the auxiliary
elastic solution of the problem and the corresponding time are being obtained. The
paper ends with conclusions in Section 25.6.
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Fig. 25.1 The effective
traction–separation law (T
and ∆ are the cohesive trac-
tion and the separation respec-
tively, σmax and ∆max are
their maximum values, a1 and
a2 are the shape parameters of
the traction–separation law).
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25.2 An Edge Crack with Cohesive Zone

The fracture in quasi-brittlematerials can occur due to the propagation of a crack, near
the tip ofwhich a failure zone is formed. The cohesive zonemodel is successfully used
to simulate the failure zone. According to this model, the crack tip is represented by
a fictitious cut on the continuation of the crack line with the cohesive traction applied
to its faces. This traction is assumed to be dependent on the opening displacement
along a fictitious crack according to a traction–separation law, which can take into
account the various effects that take place around the tip of a physical crack. The
model received its main features in (Dugdale, 1960; Barenblatt, 1962; Hillerborg
et al, 1976; Needleman, 1987) and is widely used in the study of crack resistance of
structures made of various materials. Despite the widespread use of the model, there
are not many analytical and semi-analytical solutions obtained within the model.
With the help of such solutions, it is possible to make quantative conclusions about
the application of the model.

An important step in solving problems within the cohesive zone model approach
is to satisfy the smooth crack closure, which ensures the absence of stress discon-
tinuity along the crack line, and, in the case of constructing an analytical solution,
satisfies the requirement of finite stress in the body. For the traction–separation law
with the maximum cohesive traction corresponding to zero separation, the condi-
tion of smooth closure can be provided by the iterative procedure (Selivanov and
Chornoivan, 2018; Selivanov et al, 2018). The solution can be obtained by a small
number of iterations, on each of which a system of nonlinear equations is solved by
a fast-convergent iterative method. The smooth crack closure can also be ensured by
modifying the traction–separation law by assigning zero cohesion to zero separation
(Fig. 25.1) with small interval for the ascending branch (a1 is close to zero), thus rep-
resenting the model without the cohesive zone tip (Hui et al, 2011). In this case, the
rate of convergence of the iterative method decreases significantly, but the solution
can be obtained by solving a single system of nonlinear equations. In this section,
in the framework of the first approach, we investigate the solution of the problem
for the critical state of the edge crack modeled using the cohesive zone model. The
second approach is used in Section 25.4 to model the subcritical crack mode.

If an edge crack (Fig. 25.2) is perpendicular to the boundary of a half-infinite
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plane, the following equation embodies the solution of the boundary value problem
((Broberg, 1999), p. 155)

1

π

∫ δ

0

K(ξ, τ)ϕ(τ)dτ = Λσ̃(ξ), 0 6 ξ 6 δ, (25.1)

where δ is the crack length, σ̃(x) is the traction along the crack line in an uncracked
solid,Λ = (κ+1)/(2µ) is the elastic parameter (κ andµ are theKolosov’s parameter
(Muskhelishvili, 1977) and the shear modulus respectively),

K(ξ, τ) =
1

τ − ξ + h(ξ, τ),

h(ξ, τ) =

3∑
i=1

Ci(ξ)

(τ + ξ)i
, C1 = −1, C2 = 6ξ, C3 = −4ξ2.

(25.2)

The idea behind the solution is to represent the sought function as a shape func-
tion with unknown parameters that need to be found from the boundary conditions.
We have chosen a piecewise linear shape function. In contrast to the expansion in
Chebyshev polynomials, this choice makes it possible to better account for the dis-
continuity of the boundary conditions on the contour of a fictitious crack (conditions
of this type will be considered in Section 25.4). In Selivanov et al (2018), a similar
approach was used to find a solution to the problem for a central crack in an infinite
plane. In this case, the calculations are quite simple in comparison with the solution
given below.

Thus, the solution of (25.1) can be obtained by the collocation method (Erdogan
et al, 1973). We find the unknown function ϕ(x) as the product of the piecewise
linear function g(x) and weight function w(t) selected according to the results of
(Savruk et al, 1999)

g(t) = gkqk(t) + gk+1[1− qk(t)], t ∈ (tk, tk+1),
gk = g(tk), qk(t) = (tk+1 − t)/Mtk, Mtk = tk+1 − tk. (25.3)

Further, we consider the change of variables

Fig. 25.2 The edge crack (λ
and β correspond to the tips of
physical and fictitious cracks
respectively).

l
b

x

y

sҐ

sҐ
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τ = δt, ξ = δx, 0 6 t, x 6 1 (25.4)

in (25.1) and use g(δt) instead of g(t) and σ̃(δt) instead of σ̃(t). Then, the integral
in (25.1) can be written in the form∫ 1

0

K(x, t)w(t)g(t)dt =

n∑
k=1

gkJk(x), (25.5)

where
J1(x) = T ′1(x)−Q1(x), Jn(x) = −T ′n−1(x),
Jk(x) = T ′k(x)− T ′k−1(x), k = 2, . . . , n− 1;

(25.6)

Qk(x) = Q(x, tk), T ′k(x) =
Tk+1(x)− Tk(x)

Mtk
, Tk(x) = T (x, tk); (25.7)

Q(x, t) = Q̂(x, t) + Q̌(x, t),

Q̂(x, t) =

∫
w(t)

t− xdt = w(x) ln

∣∣∣∣w(t)− w(x)

w(t) + w(x)

∣∣∣∣ ,
Q̌(x, t) =

∫
h(x, t)w(t)dt =

3∑
i=1

Pi(x)Ii(x, t),

(25.8)

w(t) = (1−t)−1/2. After the integration, the functions Ii(x, t) =
∫
w(t)/(t+ x)idt

can be rewritten as follows

I1(x, t) = v(x) ln

∣∣∣∣w(t)− v(x)

w(t) + v(x)

∣∣∣∣ , v(x) = (1 + x)−1/2,

I2(x, t) = v2(x)
[

1
2I1(x, t)−H1(x, t)

]
, H1(x, t) =

w(t)

t+ x
,

I3(x, t) = v2(x)
[

3
4I2(x, t)− 1

2H2(x, t)
]
, H2(x, t) =

H1(x, t)

t+ x
.

(25.9)

The function T (x, t) in (25.7) takes the form

T (x, t) = T̂ (x, t) + Ť (x, t),

T̂ (x, t) =

∫
Q̂(x, t)dt = (t− x)Q̂(x, t) + 2w−1(t),

Ť (x, t) =

∫
Q̌(x, t)dt =

3∑
i=1

Pi(x)Ǐi(x, t).

(25.10)

Integration in Ǐi(x, t) =
∫
Ii(x, t)dt gives

Ǐ1(x, t) = (t+ x)I1(x, t) + 2w−1(t),
Ǐ2(x, t) = v2(x)

[
1
2 Ǐ1(x, t)− Ȟ1(x, t)

]
,

Ǐ3(x, t) = v2(x)
[

3
4 Ǐ2(x, t)− 1

2Ȟ2(x, t)
]
,

Ȟ1(x, t) = v−2(x)I1(x, t) + 2w−1(t),
Ȟ2(x, t) = − 1

2I1(x, t)−H1(x, t).

(25.11)



25 Slow Crack Growth 511

We write the function Q1 from (25.7) in detail

Q1(x) =
1√

1− x ln
1−
√

1− x
1 +
√

1− x+

1

(x+ 1)2

(
x2 + 2x− 2

2
√

1 + x
ln

√
1 + x− 1√
1 + x+ 1

− 4− x
)

; (25.12)

it has two singular addends (see (25.8)) at x = 0. Using their asymptotic properties,
we can find

Q1(0) = −4, Q1(1) = −13

4
−
√

2

16
ln

√
2 + 1√
2− 1

≈ −3.4. (25.13)

In Fig. 25.3, the function T (x, t) is illustrated. To satisfy continuity, it ia assumed
that

T̂ (t, t) = 2
√

1− t, T̂ (1, t) = 4
√

1− t. (25.14)

If the functions Q1(x) and Tk(x) are bounded, then Jk(x) are also bounded.

T(x,t)

1

0

x

0.51

1

0.8

2

t

0.6

3

0.4

4

0.2 0

5

0

Fig. 25.3 Geometrical characteristics of the problem.

The discretization of (25.1) yields

Jg = b, (25.15)

J = [jmk], m, k = 1, . . . , n, jmk = 1
πJk(xm),

g = {g1, . . . , gn}T, b = {b1, . . . , bn}T, bm = δΛσ̃(xm).
(25.16)

Numerical implementation of the technique for determining the stress intensity
factor in the case of σ̃(x) = σ∞ gives K̄I =

√
2 · g(1) = 1.12146 when n = 11

(K̄I = KI/(σ∞
√
πδ)). The exact stress intensity factor value of this problem is

K̄I = 1.12152 ((Broberg, 1999), p. 169). Thus, the error is 5.5 · 10−5. In numerical
calculations, we choose evenly spaced quadrature points tk that coincide with the
collocation points xm.

The crack opening displacement
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∆(x) = δΛ

∫ 1

x

ω(t)g(t)dt (25.17)

after discretization takes the following form

∆(x) = δΛ ·Vg, x = {x1, . . . , xn}T, (25.18)

V =


N1 N2 N3 . . . Nn−1 Nn
0 G′2 −R2 N3 . . . Nn−1 Nn
0 0 G′3 −R3 . . . Nn−1 Nn

. . .
0 0 0 . . . G′n−1 −Rn−1 Nn
0 0 0 . . . 0 0

 , (25.19)

N1 = G′1 −R1, Nn = Rn −G′n−1

Nk = G′k −G′k−1 (k = 2, . . . , n− 1)
Rk = R(tk), Gk = G(tk), G′k = (Gk+1 −Gk)/Mtk

R(t) =
∫
ω(t)dt, G(t) =

∫
R(t)dt.

(25.20)

The equation in (25.1) can be written for the given boundary conditions as follows

1

π

∫ β

0

K(ξ, τ)ϕ(τ)dt = Λσ̃(ξ)

σ̃(ξ) = σ∞ − T [∆(ξ)].
(25.21)

This equation has to be satisfied together with the smooth crack closure condition

∆′(β) = 0. (25.22)

The equations (25.21) and (25.22) determine the stress state of the edge crack with
cohesive zones (Fig. 25.4 a). The function T (∆) describes the traction–separation
law. The position of the cohesive zone tip β is the problem unknown that must meet
the condition (25.22). When studying the critical state, the following condition is
added to the governing system

∆(λ) = ∆max. (25.23)

We consider the modified problem statement (Fig. 25.4 b), which lead to the
governing equations that do not contain the unknown cohesive length. According to
this statement, the cohesive traction is to be found in the form

σ(ξ) = T̂ [∆(ξ)]− σ̂(ξ), λ < ξ < δ, (25.24)

where

T̂ (∆) =

{
T (∆), ∆ > 0

P (∆), ∆ < 0
(25.25)
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Fig. 25.4 Parameters of the problem statement (a) and modified problem statement (b); T̂ is the
traction extended to negative separation.

is the cohesive traction extended to a negative separation, σ̂(ξ) is the auxiliary
traction, which is determined by the condition ∆(ξ) > 0. The proposed technique
does not give an exact value for the cohesive length but provides a smooth crack
closure and allows us to determine the parameters of the critical state accurately.
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Fig. 25.5 The traction–separation law extended to negative separation (a) and discrete
displacement density (b).

The unknown function g(ξ) (0 < ξ < δ) is found for the cohesive traction in the
form (25.24); the mentioned interval has to contain the position of the cohesive zone
tip, which is as well unknown. The solution of the problem at hand is given by the
integral equation (25.1). For the subcritical state, the solution is determined by the
following set of integral equations and inequalities

1

π

∫ 1

0

K(x, t)w(t)g(t)dt = σ∞ − T̂
[
δΛ

∫ 1

x

ω(t)g(t)dt
]

+ σ̂(x)∫ 1

x

ω(t)g(t)dt > 0.

(25.26)

To solve this system of equations, we construct its discretization and iterative pro-
cedure, at each step of which the system of linear algebraic equations is solved. The
set (25.26) coupled with the condition (25.23) can be written in the form
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Jg = σ∞1− T̂ (δΛVg) + σ̂
Vig > 0, i = 1, . . . , n
δΛVp g = ∆max,

(25.27)

whereVp is the row-vector constructed from the elements of p th row of thematrixV,
1 is the column vector of ones. The collocation point xp corresponds to the position
of the physical crack tip (Fig. 25.5 b). The elements of σ̂ are σ̂(xk), k = 1, . . . , n.

The set of equations and inequalities (25.27) can be solved using the iterative
procedure. To construct the procedure, we define the function T for negative values
of argument:

P (∆) =

{
0, ∆ < −1

P3(∆), −1 6 ∆ < 0
, (25.28)

where the polynomial P3(x) is defined by the following boundary conditions
P3(0) = T (0), P ′3(0) = T ′(0), P3(−1) = P ′3(−1) = 0.

In the first step of the procedure, we introduce two sets of indices S andM . The
first set corresponds to collocation points ξs that satisfy the condition 0 6 ξs < β,
the second one corresponds to all other collocation points. In the first step of the
iterative procedure, we can assume

S = {s : ξs < λ+ `}, ` =
π

8

Eφ

σ2
max

, (25.29)

where φ and σmax are the fracture energy and the cohesive strength respectively.
Next, we solve the system of equations

Js g = σ∗∞1− T̂ (δΛVsg)
Vm g = 0
δΛVp g = ∆max,

(25.30)

s ∈ S,m ∈M . The elements of the row vectors Jk and Vk are the elements of the
k th row of the corresponding matrix. The defining system (25.30) is nonlinear but
its Jacobi matrix is calculated quite easily if it is easy to find the derivative of T̂ .

Now we can determine g and the critical load parameter σ∗∞ using (25.30) and
estimate the elements of the auxiliary vector that prevents negative separation. The
following system of equations gives the solution

σ̂ = Jg − σ∞ + T̂ (δΛVg). (25.31)

In the second step, we reassign the indices S = {s : σ̂s > 0} and continue the
iterative procedure until all the elements σ̂ are non-negative.

In the numerical example, the traction–separation law with a hardening branch is
used

T̄ (∆̄) = (σ̄l∆̄+ σ̄n)(1− ∆̄)2, ∆max =
12φ

σmax(σ̄l + 4σ̄n)
, (25.32)
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T̄ = T/σmax, ∆̄ = ∆/∆max are the relative tractions and displacements respec-
tively, the first shape parameter σ̄n defines the traction for zero separation, the second
shape parameter, σ̄l is defined by the equation max{T̄ (∆̄)} = 1, which takes the
form

4

27
σ̄l

(
1 +

σ̄n
σ̄l

)3

= 1 (25.33)

for the law (25.32).
The polynomial that determine the law for negative displacements is taken in the

following form: P3(∆̄) = (σ̄l − 4σ̄n)∆̄3 + (2σ̄l − 7σ̄n)∆̄2 + (σ̄l − 2σ̄n)∆̄ + σ̄n
(see Fig. 25.5 a).

Figure 25.6 illustrates the solution for the specified parameters. The plane stress
state is considered, so Λ = 4/E. The value of β corresponds to the smallest ξl, such
that ḡl = 0. The critical value of the external load is σ∗∞ = 0.619σmax.
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Fig. 25.6 The relative displacement density ḡ(ξ) = g(ξ)/(Λσmax) (a), the relative traction
σ̄(ξ) = {T̂ [∆(ξ)]− σ̂(ξ)}/σmax and the crack opening displacement ∆̄(ξ) (b) obtained for
δ = 1 cm, σ̄n = 0.8, σ̄l = 3.8109, E = 40 GPa (Λ = 4/E), φ = 200 N/m, σmax = 35 MPa,
n = 101 (mesh parameter).

Thus, in this section, a semi-analytical method of crack mechanics based on the
cohesive zone model approach is constructed and illustrated for the case of an edge
crack. The method uses the iterative procedure at each step of which the integral
equation with the generalized Cauchy kernel is solved by the collocation method
without regularization. Quadrature formulas are constructed taking into account the
stationary singularity of the specified kernel. A numerical solution corresponding
to the critical condition is obtained. The solution is constructed for the traction–
separation law according to which the zero opening displacement corresponds to the
traction that is close to the cohesive strength. This allowed us to obtain a continuous
force function (the right part of the singular equation associated with the boundary
conditions). When studying the subcritical state or even the critical state with a
larger initial cohesion (σ̄n > 0.8), the presented technique gives the solution g(x)
with pronounced oscillation (Fig. 25.7). To obtain a physically correct solution, the
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regularization of the initial integral equation is necessary, which is the subject of
Section 25.3.
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Fig. 25.7 The relative displacement density (a), the relative traction and separation (b) for
σ̄n = 0.95 and other parameters used to obtain the results shown in Fig. 25.6.

25.3 Solving a Problem on an Edge Crack with Cohesive Zone by
the Regularization of Singular Integral Equation

This section is a continuation of the study presented in Section 25.2, where the
integral equation with the generalized Cauchy kernel, which determines the solution
of the boundary crack problem, is solvedwithout regularization. This direct approach
lead to the oscillation of the solution under some traction–separation laws.

We consider the same problem of determining the stress state of a semi-infinite
plane with an edge crack in the presence of a failure zone near its front (Fig. 25.2).
The crack lies along the normal to the half-plane boundary; the distributed tensile
load is applied perpendicular to crack plane at a considerable distance from it.

The problem solution, the function ϕ(t) is defined by the generalized Cauchy
integral equation and the condition of smooth crack closure:

1

π

∫ β

0

K(ξ, τ)ϕ(τ)dτ = Λψ(ξ), 0 < ξ < β,

ψ(ξ) = σ∞ − σmaxT̄ [∆̄(ξ)], ∆(ξ) =

∫ β

ξ

ϕ(τ)dτ,

∆′(β) = 0,

(25.34)

where T̄ (∆) is the given traction–separation law, ∆̄ = ∆/∆max is the relative
separation. Fig. 25.4 a illustrates the notations introduced above. As before, the
cohesive strength σmax and critical separation ∆max are the main parameters of
crack resistance,
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K(ξ, τ) =
1

τ − ξ − h(ξ, τ),

h(ξ, τ) =

2∑
r=0

drξ
r ∂

r

∂ξr
1

τ + ξ
, d0 = 1, d1 = 6, d2 = 2.

(25.35)

Point out that in addition to the function ϕ in the problem (25.34), the value of β
is also unknown. When studying the critical state, the equation ∆(λ) = ∆max is to
be added to the governing system (25.34). The analytical expression of the function
h is chosen for the convenience of further analysis. A more common form for this
function is as follows

h(ξ, τ) =
τ2 − 4ξτ − ξ2

(τ + ξ)3
. (25.36)

After dividing of the first equation in (25.34) by Λσmax and replacement τ = βt,
ξ = βx t, x ∈ [0, 1], we obtain

B(f, x) = σ̃(x), (25.37)

f(t) =
ϕ(βt)

Λσmax
, σ̃(x) =

ψ(βx)

σmax
, B(f, x) =

1

π

∫ 1

0

K(x, t)f(t)dt. (25.38)

To regularize (25.37), we solve the equation

1

π

∫ 1

0

f(t)

t− xdt = y(x), (25.39)

with the function

y(x) = σ̃(x) +
1

π

∫ 1

0

h(x, t)f(t)dt (25.40)

assumed to be known. The solution of (25.39) is well-known (Muskhelishvili, 1977):

f(x) = − 1

πX̌(x)

∫ 1

0

X̌(t) y(t)

t− x dt, X̌(t) =
(1− t)1/2

t1/2
. (25.41)

Substituting

y(t) = σ̃(t) +
1

π

∫ 1

0

h(t, s)f(s)ds (25.42)

into the expression for f(x) and taking into account that

1

π

∫ 1

0

X̌(t)h(t, s)

t− x dt = − R(x, s)

s1/2(1 + s)3/2
,

R(x, s) = 5− 7x+ s+Rs(x, s), Rs(x, s) =

2∑
r=0

cr(x)xr
∂r

∂xr
1

s+ x
,

c(x) = {17x2 − 19x+ 3.5, 2(7x− 4)(x− 1), 2(x− 1)2},
(25.43)

we obtain
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f(x) =
1

X̌(x)

{
P̃ (x) +

1

π

∫ 1

0

R(x, s)f(s)

s1/2(1 + s)3/2
ds

}
, (25.44)

where

P̃ (x) = − 1

π

∫ 1

0

X̌(t)σ̃(t)

t− x dt. (25.45)

Note that when σ̃(x) = σ̃0 we have P̃ (x) = σ̃0.
In the kernel R(x, t), the term Rs(x, t) is called the generalized Cauchy kernel,

and it has a stationary singularity at the left end of the interval (0, 1). The kernel R
is aslo can be written as follows

R(x, s) =
s2(2s2 + 10s+ 7)− 2xs(4s2 + 4s+ 1)− x2(2s2 + 2s+ 1)

2(s+ x)3
.

(25.46)
We next rewrite (25.44):

X̌(x)f(x)− 1

π

∫ 1

0

R(x, t)f(t)

t1/2(1 + t)3/2
dt = P̃ (x). (25.47)

This equation can also be rewritten as

a(x)u(x)− 1

π

∫ 1

0

R(x, t)u(t)dt = P̃ (x), (25.48)

where

a(x) = (1− x)
1/2(1 + x)

3/2, u(x) =
f(x)

x1/2(1 + x)3/2
. (25.49)

Further, we introduce the weigh function xb in (25.48) and write down the charac-
teristic equation to determine b (see equation (25b) in (Savruk et al, 1999)):

1 +
1

sinπb

{
c0(0) + c1(0)b+ c2(0)b(b− 1)

}
= 0, (25.50)

whence b = −1/2. Thus, to distinguish the singularity in (25.48), the unknown
function must be sought in the form u(x) = q(x)/x1/2, where q is a regular function.
To take into account this conclusion as well as the singularity at the right end of the
interval (0, 1), we find the unknown function in the form

u(x) =
q(x)

X̂(x)
, X̂(x) = [x(1− x)]

1/2. (25.51)

To take into account the condition of smooth crack closure (the third line in (25.34)),
we increase the length of the fictitious crack from β to δ and rewrite the force function
in the form (Fig. 25.4 b)

σ̃(x) = σ̄∞ − T̂ [∆̄(x)] + σ̂(x), (25.52)



25 Slow Crack Growth 519

where σ̄∞ = σ∞/σmax and T̂ (∆̄) is the relative traction extended to negative
separation

T̂ (∆̄) =

{
T̄ (∆̄), ∆̄ > 0

P (∆̄), ∆̄ < 0
, ∆̄(x) = w

∫ 1

x/δ

f(t)dt, w =
δΛσmax

∆max
, (25.53)

The equation (25.48) takes the form

A(q, x) = P̃ (x), (25.54)

with the left-hand side

A(q, x) =
(1 + x)3/2

x1/2
q(x)− 1

π

∫ 1

0

R(x, t)
q(t)

X̂(t)
dt,

q(t) =
f(t)

ω1(t)
, ω1(t) =

(1 + t)3/2

(1− t)1/2
,

(25.55)

and the force function

P̃ (x) = σ̄∞ − P̄ (x) + P̂ (x),

P̄ (x) = − 1

π

∫ 1

λ/δ

X̌(t)T̂ [∆̄(t)]

t− x dt, P̂ (x) = − 1

π

∫ 1

β/δ

X̌(t)σ̂(t)

t− x dt.
(25.56)

The unknown regular function q can be defined from (25.54) in the piecewise-linear
form. To find the parameters of q, we rewrite the left side of (25.54) as follows:

A(q, x) =
(1 + x)3/2

x1/2
q(x)− 1

π

n∑
k=1

Jk(x)qk, (25.57)

where qk are the values of q(x) at the quadrature points tk,

Q′k(x) = [Q(x, tk+1)−Q(x, tk)] /Mtk,
S′k(x) = [S(x, tk+1)− S(x, tk)] /Mtk, Mtk = tk+1 − tk, (25.58)

Q(x, t) =

∫
R(x, t)

X̂(t)
dt =

(
7x− 11

2

)
I(t)− X̂(t) +

2∑
r=0

cr(x)I0r(x, t),

S(x, t) =

∫
tR(x, t)

X̂(t)
dt =

(
7x− 23

4

){
1
2I(t) + X̂(t)

}
− 1

2 tX̂(t) +

2∑
r=0

cr(x)I1r(x, t).

(25.59)

The integrals that define functions Q(x, t) and S(x, t) are as follows

Ikr(x, t) =
∂r

∂xr

∫
tkdt

X̂(t)(t+ x)
, k = 0, 1, r = 0, 1, 2. (25.60)
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After integration, we can rewrite the functions Ikr,

I00(x, t) = − 2

[x(1 + x)]1/2
arctan

x1/2X̌(t)

(1 + x)1/2
,

I01(x, t) = − 1

x+ 1

{(
x+ 1

2

)
I00(x, t) +

X̂(t)

t+ x

}
,

I02(x, t) =
1

(x+ 1)2

{(
2x2 + 2x+ 3

4

)
I00(x, t)

+
8x2 + 6tx+ 3t+ 5x

2(t+ x)2
X̂(t)

}
;

(25.61)

I10(x, t) = −xI00(x, t)− I(t), I(t) = 2 arctan X̌(t),

I11(x, t) =
x

1 + x

{
− 1

2I00(x, t) +
1

t+ x
X̂(t)

}
,

I12(x, t) =
x

(1 + x)2

{(
x+ 1

4

)
I00(x, t)− 4x2 + 2tx− t+ x

2(t+ x)2
X̂(t)

}
.

(25.62)

It is easy to see thatS(x, tk) (k = 1, . . . , n) andQ(x, tk) (k = 2, . . . , n) are bounded
when x→ 0, and

Q(x, t1) = − π

x1/2
+O(1), (25.63)

thus
J1(x) =

π

x1/2
+O(1), Jk(x) = O(1), k = 2, . . . , n. (25.64)

The right-hand part of (25.54) contains the expression (see (25.56))

P̄ (x) = − 1

π

∫ 1

λ/δ

X̌(t)T̂ [∆̄(t)]

t− x dt, ∆̄(t) = w

∫ 1

t/δ

ω1(s)q(s)ds, (25.65)

where it is difficult to perform integration. Instead, consider the function T̂ [∆̄(x)]−
σ̂(x) (λ < x < δ) which is linear on each quadrature interval, then

P̃ (x) = σ̄∞ −
n−p∑
k=1

Zk(x)(σ̄k − σ̂k), σ̄k = T̂ [∆̄(xp+k)], (25.66)

Z1(x) = B′1(x)−A1(x), Zn(x) = −B′n−1(x) +An(x),
Zk(x) = B′k(x)−B′k−1(x), k = 2, . . . , n− 1,

(25.67)

where

Ak(x) = A(x, tk), B′k(x) = [Bk+1(x)−Bk(x)]/Mtk,
Bk(x) = B(x, tk);

(25.68)
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A(x, t) = X̌(x) ln

∣∣∣∣X̌(t)− X̌(x)

X̌(t) + X̌(x)

∣∣∣∣+ I(t),

B(x, t) = Ã(x, t) + 1
2I(t)− X̂(t),

Ã(x, t) = (t− x)A(x, t) =


0, x = t

−πx, t = 0

tI(t)− 2X̂(t), x = 0

.

(25.69)

The quadrature formulae for ∆̄(x) is as follows

∆̄(x) = wVq, x = {x1, . . . , xn}T, (25.70)

where the matrix V is given in (25.19); to define V, it is necessary to replace the
function ω in (25.20) with ω1 and to calculate the integrals

R(t) = 3
2U(t)−

(
1
2 t+ 2

)
Y (t),

G(t) =
(

3
2 t− 1

)
U(t)− 1

6 (t2 + 6t− 10)Y (t),
(25.71)

where

U(t) = 2 arctanα−1(t), α(t) =
(1− t)1/2

(1 + t)1/2
, Y (t) = (1− t2)

1/2. (25.72)

The discretization of (25.54) takes the following form:

Jq = σ̄∞1− Z
[
T̂ (wVq)− σ̂

]
, (25.73)

where 1 is n× 1 vector of ones,

J = [jmk], m, k = 1, . . . , n,
Z = [zmk], zmk = Zm(xk), m = 1, . . . , n, k = 1, . . . , n− p, (25.74)

q = {q1, . . . , qn−s, 0, . . . , 0︸ ︷︷ ︸
s

}T,

T̂ (wVq) = {σ̄1, . . . , σ̄n−p}T, σ̄k = T̂ (wVp+kq),
σ̂ = {0, . . . , 0︸ ︷︷ ︸

n−p−s

, σ̂1, . . . , σ̂s}T,
(25.75)

the row vectorVk is defined by the k th row of the matrixV, the index p corresponds
to the quadrature point xp = λ/δ.

The nonlinear system (25.34) contains n unknowns: n−s nonzero components of
q and s nonzero components of σ̂. To satisfy the condition of smooth crack closure,
it is necessary to choose the index s so that for the corresponding solution of the
system (25.34) the inequality holds

Vn−sq > 0. (25.76)



522 Selivanov, Nazarenko, Altenbach

The position of the cohesive zone tip is determined with the accuracy of Mt: β =
δxn−s.

When studying the critical state, it is necessary to include into the governing
system (25.34) the equation that meets the fracture criterion

wVpq = 1. (25.77)

This condition add one more unknown σ∞ = σ∗∞ into the governing system.
In the numerical example, the stress state under the critical state condition is

determined. According to the used traction–separation law, the maximum separation
corresponds to zero cohesive traction, and we have T̂ [∆̄(xp)] = 0, which is taken
into account in (25.66).

The stresses on the crack faces is determined by the integral

σ(x) = −Λσmax

π

∫ 1

0

K(x, t)w1(t)q(t)dt = −Λσmax

π

n∑
k=1

qkJk(x), (25.78)

the functions Jk(x) can be written in similar to (25.67) way, where it is assumed that

Q(x, t) = Q̂(x, t) + Q̌(x, t),

Q̂(x, t) =

∫
ω1(t)

t− xdt =

ω1(x) ln

∣∣∣∣α(x)− α(t)

α(x) + α(t)

∣∣∣∣+ (x+ 2)U(t)− Y (t),

Q̌(x, t) =

∫
h(x, t)ω1(t)dt =

2∑
r=0

drx
r Îr(x, t);

(25.79)

and the functions
Îr(x, t) =

∂r

∂xr

∫
w1(t)

t+ x
dt (25.80)

after integration take the form

Î0(x, t) = α(x)W (x, t)(1− x) + (2− x)U(t)− Y (t),

Î1(x, t) = −α(x)W (x, t)
x+ 2

x+ 1
− U(t) +

α2(x)

x+ t
Y (t),

Î2(x, t) =
1

x+ 1

(
3W (x, t)

α(x)(x+ 1)2
−
(
x+ 4

x+ 1
+

1− x
x+ t

)
Y (t)

x+ t

)
,

(25.81)

where
W (x, t) = ln

1− α(x)α(t)

1 + α(x)α(t)
. (25.82)

The second function from (25.67) can be written as
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T (x, t) = T̂ (x, t) + Ť (x, t),

T̂ (x, t) =
x+ 1

α(x)
(t− x) ln

∣∣∣∣α(t)− α(x)

α(t) + α(x)

∣∣∣∣
+
[
(x+ 2)t− (x+ 1)2 − 1

2

]
U(t) +

(
x+ 2− 1

2 t
)
Y (t),

Ť (x, t) =

∫
Q̌(x, t)dt =

2∑
r=0

drx
r Ǐr(x, t).

(25.83)

Ǐ0(x, t) = α(x)W (x, t)(1− x)(t+ x)
+
[
(2− x)t− (1− x)2 − 1

2

]
U(t)

+
(
2− x− 1

2 t
)
Y (t),

Ǐ1(x, t) = α(x)W (x, t)

[
1− x− x+ 2

x+ 1
(t+ x)

]
+ (2(1− x)− t)U(t)− 2x

x+ 1
Y (t),

Ǐ2(x, t) = α(x)W (x, t)
3t− 4 + x+ 4x2 + 2x3

(x+ 1)2(1− x)

− 2U(t) +

(
1− x
x+ t

− x+ 4

x+ 1

)
Y (t)

x+ 1
.

(25.84)

Write down the functions from (25.67),

Q1(x) =
1

(x+ 1)2

{
− 2x(3x3 + 4x2 − 4x− 8)

Y (x)
ln

1− α(x)

1 + α(x)

+ 4
(
πx3 +

(
2π + 3

2

)
x2 + (π + 2)x− 1

)}
, Qn(x) = 8πx. (25.85)

The two terms in the expression of Q1 (see (25.79)) are singular. Using asymptotic
properties, we can assume that Q1(0) = −4 and Q1(1) = 4π. It is also easy to
obtain the asymptotic behavior of Tk(x).

To obtain the numeric solution, we use the traction–separation lawwith hardening
segment

T̄ (∆̄) = (σ̄l∆̄+ σ̄n)(1− ∆̄)2,

∆max =
12φ

σmax(σ̄l + 4σ̄n)
,

4

27
σ̄l

(
1 +

σ̄n
σ̄l

)3

= 1.
(25.86)

The dashed line in Fig. 25.8 b shows the discretized function T̂ [∆̄(ξ)]− σ̂(ξ) (stress
on the crack line). Here, the oscillation about σ(x) on the interval β < ξ < δ takes
place. Though, the function σ̂(ξ) is auxiliary and has no physical meaning. Instead,
the opening displacement density q(x) has no oscillation in contrast to the solution
without regularization. It is shown for some other values of shape parameter σ̄n in
Fig. 25.8 c.

The critical value of the external load σ∗∞ = 0.6021σmax. We obtained
0.6023σmax when solving the problem without regularization in Section 25.2. The
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corresponding solution ḡ illustrated in Fig. 25.7 of the mentioned section is also
shown in Fig. 25.8 a for the comparison.
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Fig. 25.8 The relative displacement density q(ξ) (a), corresponding cohesive traction
T̂ [∆̄(ξ)]− σ̂(ξ) and separation ∆̄(ξ) (b) for δ = 1 cm, σ̄n = 0.95, σ̄l = 2.8406, E = 40 GPa,
φ = 200 N/m, σmax = 35 MPa, n = 101 (discretization parameter). The comparison of
regularized solutions with non-regularized ones for some additional values of shape parameter σ̄n
(c).

Thus, in this section, a semi-analytical technique is developed to solve the problem
of crack mechanics for an edge crack. The integral equation with the generalized
Cauchy kernel, which gives the solution of the problem, after regularization is
solved by the collocation method. The solution is constructed taking into account the
stationary singularity of the specified kernel. The use of regularization allowed us to
obtain a physically correct (without oscillation) solution for the density of opening
displacement (the function ϕ in (25.34)). It is established that both solutions (with
and without regularization) give very close values of the critical load, which due to
the simplicity of implementation makes the semi-analytical algorithm presented in
the previous section more attractive.
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25.4 Subcritical State of a Crack

Consider the problem of the subcritical state of an edge crack with a failure zone
near its front in a semi-infinite plane (Fig. 25.2). The crack is located along the
normal to the boundary of the half-plane, the distributed tensile load is applied at a
considerable distance from the crack along the normal to its plane.

For this problem, the governing system of the equations is given in Section 25.2
(see (25.34)) and regularized in Section 25.3. When studying the subcritical state,
the mentioned equation have be solved together with the condition ∆(λ) = ∆0

(∆0 < ∆max).
In Section 25.3, the integral equation of the first kind (25.1) is transformed into

the following second kind equation

(1 + x)3/2

x1/2
q(x)− 1

π

∫ 1

0

R(x, t)
q(t)

X̂(t)
dt = σ̄∞+

1

π

∫ 1

λ/δ

X̌(t)T̄ [∆̄(t)]

t− x dt, (25.87)

where

X̂(t) = t1/2(1− t)1/2, X̌(t) =
(1− t)1/2

t1/2
,

∆̄(t) = w

∫ 1

t/δ

ω1(s)q(s)ds, w =
δΛσmax

∆max
, ω1(t) =

(1 + t)3/2

(1− t)1/2

(25.88)

(δ is a constant, which is greater than the unknown characteristic β (Fig. 25.4 b)),

R(x, s) = 5− 7x+ s+Rs(x, s), Rs(x, s) =

2∑
r=0

cr(x)xr
∂r

∂xr
1

s+ x
,

c(x) = {17x2 − 19x+ 3.5, 2(7x− 4)(x− 1), 2(x− 1)2}.

The unknown functions q(x) and σ̄(x) = T̄ [∆̄(x)] can be defined from (25.87)
in piece-wise linear form. We rewrite (25.87) according with results of the previous
section,

(1 + x)3/2

x1/2
q(x)− 1

π

∑n
k=1 Jk(x)qk = σ̄∞ +

1

π

∑n
k=p Zk(x)σ̄k,

qk = q(xk), σ̄k = σ̄(xk).
(25.89)

To satisfy (25.89) at the collocation points, we solve the following systemof equations

n∑
k=1

jmkqm = σ̄∞ −
n∑
k=p

zmkσ̄k, (25.90)

the coefficients of which are defined in Section 25.3.
Similarly, we can determine the displacement at the collocation points
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∆̄ = wVq, ∆̄ = {∆1, ∆2, . . . ,∆n}T, ∆̄k = ∆̄(xk), (25.91)

and using this expression, rewrite the system of equations (25.90) in the matrix form

Jq = σ̄∞1− ZT̄ (wVq), (25.92)

where 1 is the n× 1 vector of ones,

q = {q1, q2, . . . , qn}T, J = [jmk], Z = [zmk], m, k = 1, . . . , n. (25.93)

The system of equations (25.92) contains n nodal values of the unknown function
q(x). The standard iterative process of the numerical method for solving a system
of nonlinear equations often does not converge to the solution. This is due to the
presence of two solutions for load values close to their critical value (Selivanov and
Chornoivan, 2018). This inconvenience can be avoided by assuming quantity σ̄∞
unknown and supplementing the system (25.92) with the equation

wVpq = ∆(λ), (25.94)

where ∆(λ) is the given crack tip opening displacement. The components of the
row vector Vp are the elements of the p th row of V, the index p corresponds to the
quadrature point xp = λ/δ.

We construct a numerical example for the smoothed trapezoidal traction–
separation law (the effective law is illustrated in Fig. 25.1).

T̄ (∆̄) =


a−1

1 ∆̄
(
2− a−1

1 ∆̄
)
, ∆̄ ∈ [0, a1)

1, ∆̄ ∈ [a1, a2]

(1− ∆̄)2(1 + 2∆̄− 3a2)(1− a2)−3, ∆̄ ∈ (a2, 1]

(25.95)

After introducing the constant ω =
∫ 1

0
T̄ (∆̄)d∆̄ = 1

6 (3 − 2a1 + 3a2), the inner
model parameter ∆max = φ/(ωσmax) can be determined. The quantity ω ∈ (0, 1)
is one of the measures of deviation of the traction–separation law from the uniform
one, which corresponds to the Dugdale model (Dugdale, 1960).

In Fig. 25.9, the problem solution q(x) is illustrated. On the second plot, nondi-
mensional cohesive traction σ̄(x) and corresponding separation ∆̄(x) are shown. The
solution is obtained for the following values of the problem parameters: δ = 1 cm,
a1 = a2 = 10−3, E = 40 GPa, φ = 200 N/m, σmax = 35 MPa, n = 500
(disretization parameter). Thus, the oscillation is not observed both for the solu-
tion of the critical state problem (∆(λ) = ∆max) and the subcritical state solution
(∆(λ) < ∆max). In the second case, with a decrease in the crack tip opening dis-
placement, the influence of the discontinuity of the contour conditions begins to
appear, which causes the singularity of the solution. Taking into account this feature
may be the subject of further research.

In Fig. 25.10, the solutions of the equations of the first and second kind are com-
pared and the levels of external load corresponding to these solutions are indicated.
For small cohesive lengths (small levels of subcritical load), there are differences



25 Slow Crack Growth 527

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

q(
x
)

D(x)

s(x)

``

`

x

`
`
`

D
D
D
D

Fig. 25.9 Solution of the problem for the edge crack within the cohesive zone model approach.

in the two solutions. For load levels close to critical, these discrepancies are within
graphical accuracy. The parameters of the previous example were used to construct
numerical solutions, except for E, which is taken to be equal to 4 GPa.

D
(x

)
`

x

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

0.1 - 0.093, 0.091
0.2 - 0.122, 0.121
0.3 - 0.141, 0.141
0.4 - 0.156, 0.156
0.5 - 0.166, 0.166
0.6 - 0.172, 0.173
0.7 - 0.176, 0.177
0.8 - 0.178, 0.179
0.9 - 0.178, 0.179
1.0 - 0.177, 0.178

D(0.5)=0.1

0.2

0.3

0.4

1.0

-

-s¥

I II
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curves) kind yield.
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25.5 Modeling the Slow Crack Growth

According to the results of Section 25.2, the elastic solution of the boundary problem
for a crack in an infinite half-plane is given by a singular integral equation

1

πΛ

∫ 1

0

K(x, ξ)ψ(ξ)dξ = σ̄∞ − T̄
(
δ
Λσmax

∆max

∫ 1

x/δ

ψ(ξ)dξ︸ ︷︷ ︸
∆̄(x)

)
, (25.96)

whereψ(x) is the sought solution, T̄ is the effective traction–separation law (T̄ (∆̄) =
0 for ∆̄ < 0 and ∆̄ > 1), which lies in the base of the cohesive zone model, σmax

and∆max are the cohesive strength and the critical crack tip opening displacement,
respectively. These parameters along with shape parameters of the law T̄ are the
fracture characteristics of the material, σ̄∞ is the remote stress divided by σmax,Λ is
the function of elastic moduli (when the isotropic material is studied and plane stress
is under consideration Λ = 4/E, where E is Young’s modulus), the kernelK(x, ξ)
is given in (25.2), δ is the tip of fictitious crack, and ∆̄(x) is the crack opening
displacement divided by ∆max. Thus, elastic moduli and functions of coordinates
are separated.

The disadvantages of the solution of (25.96) are discussed in Section 25.2, and
in Section 25.3, the following regularized equation is obtained

a(x)q(x)− 1

π

∫ 1

0

J(x, ξ)q(ξ)dξ =

σ̄∞ +
1

π

∫ 1

0

Z(x, ξ)T̄
(
δ
Λσmax

∆max

∫ 1

ξ/δ

ω(η)q(η)dη︸ ︷︷ ︸
∆̄(ξ)

)
dξ. (25.97)

In the case of the subcritical state, the solution of this equation is analyzed in
Section 25.5. In (25.97), q(x) is the sought solution, the functions a(x), J(x, ξ),
Z(x, ξ) and ω(x) are listed in Section 25.3. To solve (25.97), we use the collocation
method, which requires finding the function q(x) at the collocation points x: q(x) =
q. The piece-wise linear form for q(x) is used. The equation (25.97) thus can be
reduced to the system of nonlinear equations:

Jq = σ̄∞1− ZT̄ (l · w ·Vq︸ ︷︷ ︸
∆̄(x)

), (25.98)

where
w = δ

Λ0σmax

∆max
, l =

Λ

Λ0
, (25.99)

q = {q1, q2, . . . , qn}T, J = [jmk], Z = [zmk], m, k = 1, . . . , n, (25.100)
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1 is then×1 vector of ones,J,Z andV are listed in Section 25.3, the nondimensional
elastic constant l is introduced for the further determination of viscoelastic analogues
of displacement ∆(x, t) (it is obvious that in the elastic problem solution l = 1).

We study the quasi-static stable growth of the preexisting mode I crack in a semi-
infinite plate made of viscoelastic non-aging material in isothermal conditions. The
propagation initiates under the constant subcritical external load applied at infinity,
σ∞ due to the viscoelastic properties of the material. We consider the growth of a
crack along the predefined path.

At the time of load application, the crack is in a subcritical state. The crack tip
opening displacement does not exceed the maximum level:

∆(λ, t = 0) < ∆max. (25.101)

Due to the creep, the value of ∆(λ, t) reaches with time its critical value ∆max,
ending the incubation period and initiating the beginning of growth. Both during
the incubation period and quasi-static propagation, the traction–separation law holds
true (Fig. 25.11 a):

σ̄(x, t) = T̄
[
∆̄(x, t)

]
, (25.102)

where σ̄(x, t) = σ(x, t)/σmax.
Due to the isotropy of the material, the function of viscoelastic moduli in the

factorized solution (25.96) coincides with the compliance function up to the constant
multiplier. Thus, the crack opening displacement can be represented in the same form
as the constitutive equations:

∆̄(x, t) =

∫ t

−∞
l(t− τ)∆̃′τ (x, τ)dτ, (25.103)

where ∆̃(x, t) is nondimensional solution of the problem for instantaneous values
of viscoelastic moduli:

∆̃(x, t) = w

∫ 1

x/δ

ω(η)q(η, t)dη. (25.104)

If an external load is applied instantaneously at time t = 0,

∆̄(x, t) = l(t)∆̃(x, 0) +

∫ t

0

l(t− τ)∆̃′τ (x, τ)dτ. (25.105)

Next, an algorithm for determining the length of a crack that increases with time will
be constructed. There are two methologies to build the algorithm. According to the
first one, the points on the crack path that the crack tip passes have to be found for the
given moments of time. In the present paper we use another approach: the moments
when the crack tip passes the given points on its path are found at each step.

Thus, at each step, we find the value of ∆̃m(x) and time tm that determine the
solution from the equation
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T̄
(
l(tm)∆̃0(x) +

m∑
i=1

Λi(tm)
[
∆̃i(x)− ∆̃i−1(x)

]
︸ ︷︷ ︸

∆̄(x, tm)

)
= σ̄(x, tm), (25.106)

where ∆̃i(x) = ∆̃ (x, ti), σ̄(x, tm) is nondimensional cohesive traction that causes
the displacement ∆̄(x, tm), and nondimensional creep function is as follows

Λi(tn) =
1

M ti

∫ ti

ti−1

l(tn − τ)dτ. (25.107)

At each step of the algorithm, we solve (25.106) with the following condition

∆̄(λm, tm) = ∆̄(m). (25.108)

During the incubation, λm = λ0 (λ0 is the initial length of a crack), ∆̄(m) <
∆̄(m+1) < 1. When modeling the crack growth, the crack length is given at each
step, λm+1 > λm and ∆̄(m) = 1 (Fig. 25.11 b). We next illustrate solving the

a b
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l(t )3
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y

Fig. 25.11 Dependence of cohesive traction on opening displacement (a), and modeling the slow
crack growth within the cohesive zone model approach (b).

equations of quasi-static crack growth in the first steps of the algorithm. The solution
∆̄0(x) = ∆̃(x) at the moment t0 = 0 is defined by (25.98). The argument of T̄ is
the instantaneous opening displacement at the collocation points, ∆̃0(x).

The solution {q(1), t1} in the second step is defined by the following system of
equations:

Jq(1) = σ̄∞1− ZT̄
{
l(t1)∆̃0(x) +

[
wVq(1) − ∆̃0(x)

]
Λ1(t1)︸ ︷︷ ︸

∆̄(x, t1)

}
∆̄(λ1, t1) = ∆̄(1)

(25.109)
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For the found solution q(1), it is necessary to obtain the displacement ∆̃1(x) =
wVq(1) that is used in the following steps.

In the third step, solving the system of equations

Jq(2) = σ̄∞1−
ZT̄
{
l(t2)∆̃0(x) +

[
∆̃1(x)− ∆̃0(x)

]
Λ1(t2) +

[
wVq(2) − ∆̃1(x)

]
Λ2(t2)︸ ︷︷ ︸

∆̄(x, t2)

}
∆̄(λ2, t2) = ∆̄(2)

(25.110)
yields a solution q(2) and t2. For the obtained q(2), it is necessary to calculate
∆̃2(x) = wVq(2) and continue the algorithm until the solution of (25.98) exists.

We find the numerical solution for the classical Kelvin–Voigt material model

l(t) = l∞ − (l∞ − 1) exp(−t/η). (25.111)

In this case, the nonlinear equations (25.109) and (25.110) can be easily linearized.
To obtain numerical results, we use the following effective traction–separation

law

T̄ (∆̄) =

{
∆̄/a

(
2− ∆̄/a

)
, ∆̄ ∈ (0, a)

(1− ∆̄)2(1 + 2x− 3a)/(1− a)3, ∆̄ ∈ (a, 1)
(25.112)

The function T̄ is zero outside the interval (0, 1). The initial hardening segment is
introduced to ensure the smooth crack closure that lies in the base of the cohesive
zone model approach. The length of this segment should be small enough. When a
is small, on the other hand, it is observed a significant increase in iterations when
solving nonlinear equations in the implementation of the proposed algorithm.

In Fig. 25.12, the problem solution is illustrated for l∞ = 4, η = 100 sec (creep
function parameters), a = 1/1000 (parameter of hardening segment in the effective
traction–separation law (25.112)), λ0 = 2/5 cm, δ = 4/5 cm (geometric parameters),
w = 28/5, σ̄∞ = 11/35 (relationship between the elastic moduli, crack resistance
characteristics and geometric parameters) and n = 500 (discretization parameter).
The incubation period is described by two subcritical values of the nondimensional
crack tip opening displacement: ∆̄(1) = 1/3, ∆̄(2) = 2/3. Thus, the duration of the
incubation period is determined by the time t3. The bold curves correspond to the
instantaneous solution and the beginning of crack propagation. The circles indicate
the crack tip position.

Fig. 25.13 illustrates auxiliary solutions of the problem for the moments of time
tm calculated during the solving process. Note that all values of ∆̄i(x) must be
preserved when solving the equations of slow crack growth.

In Fig. 25.14 a, the selected creep function is shown. The circles at the curve
correspond to the found moments of time tm. In Fig. 25.14 b, the dependence of
crack length on time (tm, λm) is illustrated.
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Thus, this section illustrates solving the problem of slow propagation of an edge
crack along a known path. Particular attention is paid to the transition from elastic to
viscoelastic opening displacement and solving the equations of slow crack growth.
Numerical solution demonstrated the effectiveness of the proposed methodology for
modeling quasi-static crack growth due to the hereditary viscoelastic properties of
the material.

25.6 Conclusion

The present work is related to the problem of the critical and subcritical states of a
semi-infinite plane with a mode I crack and its slow growth due to the hereditary
viscoelastic properties of thematerial. The problemwas solvedwithin the framework
of the cohesive zone model approach. The integral equation with the generalized
Cauchy kernel, which determines the solution of this problem, is solved without
regularization. It is established that the solution of the problem–the density of crack
opening displacement–oscillates. This oscillation is due to the fact that the cohesive
traction applied to the fictitious crack faces within the model are not continuous
functions and can have a jump at the point corresponding to the tip of the physical
crack. This feature of the formulation can be taken into account by introducing an
additional weight function, but such an approach makes it impossible to find the ob-
tained integrals analytically. The mentioned oscillation consequently was eliminated
by regularizing the singular integral equation of the first kind. First, the solution
corresponding to the conditions of the critical state was obtained, i.e. when the co-
hesive traction is zero provided that the maximum possible separation in the zone is
reached (boundary conditions are not a jump function at the transition to the faces of
a physical crack). It was shown that the oscillation disappears. The question arises as
to how the solution of the problem behaves in the study of the subcritical state in the
absence of weight functions. It was illustrated that the oscillation is absent in this case
as well. Moreover, the crack opening displacement obtained using the regularized
equation is more adequate than the one obtained from the first-kind integral equation
(see Fig. 25.10), especially for the small cohesive lengths. Based on the methodology
of finding the solution for the elasticity problem, the algorithm for modeling the slow
crack growth in viscoelastic material was described and illustrated.
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Chapter 26
An Insight into Computational Challenges in
Damage Mechanics: Analysis of a Softening
Hooke’s Spring

Salvatore Sessa, Emilio Barchiesi, Luca Placidi, Massimo Paradiso,
Emilio Turco, Nahiene Hamila

AbstractWhile many efforts are being currently spent to forge reliable damage laws
based on the physics of thematerials to be studied, damagemodeling is still addressed
numerically too naively in many situations. This article highlights some topical con-
ceptual aspects that have been up to now dealt with too superficially by comparing
the performances of different numerical algorithms in solving Karush–Kuhn–Tucker
conditions for a simple linearly softening Hooke’s spring. It is concluded that even
such a primitive model, because of the multiplicity of solutions satisfying simul-
taneously equilibrium, damage law and irreversibility conditions, actually requires
well-established numerical algorithms to face unexpected challenges. A compari-
son between different numerical strategies, beyond highlighting critical behaviors of
traditional algorithms, permitted to observe an appealing robustness shown by an
iterative strategy based on the fixed-point theorem. As a closure remark, evidences
collected within this contribution naturally lead to the following question, which is
left open for future studies: Is it possible to envisage the formulation of a criterion
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– possibly an energetic one, like that distinguishing stable and unstable solutions
in elasticity – to establish which solution should be considered as valid in a given
situation?

Keywords: Damage mechanics · Karush–Kuhn–Tucker conditions · Irreversibility

26.1 Introduction

Despite modeling of damage represents one of the most investigated topics of con-
tinuum mechanics (Auffray et al, 2015; Cazzani et al, 2017; Cuomo et al, 2014;
dell’Isola et al, 2015, 2012), it still represents an open problem characterized by
unsolved issues. Moreover, its importance fostered the development of different ap-
proaches depending on the fact that the significance of micro-scale mechanisms in
influencing macro-scale material behaviors is nowadays largely recognized in the
context of mechanics (dell’Isola et al, 2019a,b; Eremeyev et al, 2018; Grazioso et al,
2021).

The seminal ideas at the base of such a scientific paradigm can be traced back
to the early developments of continuum mechanics (dell’Isola et al, 2017; Eugster
and dell’Isola, 2017a,b, 2018). To incorporate structural information into models for
predicting material behaviours, many approaches applicable at different scales can
be contemplated.

At the smallest scale, one can conceive atomistic models which investigate mate-
rial behaviours by considering atomic interactions (Ching et al, 2010; Dharmaward-
hana et al, 2013, 2016; Poudel et al, 2017). These models are practically infeasible at
scales larger than a few hundred atoms for complexmaterial systems.Moreover, their
difficulty is not only confined to their high computational cost but, more importantly,
it is due to the difficulty of specifying the atomic structures of the myriad of material
phases and interphases, including also their defects. As a matter of fact, for such
models, classic mechanics may be not feasible while quantum mechanics should be
considered.

Alternative approaches introduce large scale formulation of such constitutive
behavior. Within such approaches, coarse graining ideas have been prevalent and
widely applied. Indeed, several coarse grained methods of incorporating micro-
scale effects can be conceived, such as molecular models (Misra and Poorsolhjouy,
2017, 2020) and bead-spring models (dell’Isola et al, 2020; Turco, 2020; Turco and
Barchiesi, 2019; Turco et al, 2020, 2016, 2019).

Challenges encountered in using these models include defining particles, their
shapes and sizes, their contacts and interaction relationships, the evolution of their
contacts during loading, surface properties and their change during loading, and
many more which are extremely difficult to define experimentally. For this reason,
the description of coarse graining materials is often provided by means of phe-
nomenological models (Gibson et al, 1989; Triantafillou et al, 1989) addressing
continuous homogeneous mediums (Serpieri et al, 2018; Sessa et al, 2019a, 2017).
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Damage phenomena in materials take place through a wide range of mechanisms
(Spagnuolo et al, 2017)which are generally complex and interactions betweenmicro-
constituents at different intervening scales should be considered for their understand-
ing. In the past twenty years, several modelling strategies, including plasticity-based
(Valoroso and Rosati, 2009a,b), probabilistic (Sessa et al, 2019b), phenomenological
(Formica et al, 2021; Losanno et al, 2020, 2021) and algebraic approaches (Vaiana
et al, 2017, 2018, 2019, 2021c,b,a), have been developed to simulate damage and
failure processes, and more in general nonlinear behaviors, in materials.

Among these strategies, the continuum damage mechanics approach (Placidi
et al, 2018a, 2020a, 2019) is particularly attractive because it provides a compu-
tationally and experimentally viable framework for the description of distributed
damage, including material stiffness degradation, initiation, growth and coalescence
of microcracks and voids. Various continuum damagemodels for brittle, quasi-brittle
(Valoroso and Stolz, 2020) and ductile materials (Valoroso and Fedele, 2010) have
been proposed in the literature (Barchiesi et al, 2021b; Dittmann et al, 2018; Placidi
and Barchiesi, 2018). They can roughly classified into micro-mechanical (Ju, 1991)
and macro-mechanical (Barchiesi et al, 2021a; Boutin et al, 2017; Giorgio et al,
2017) approaches.

In the macro-mechanical damage approach, a material is idealized as a homoge-
neous medium and damage is introduced via an internal variable whose tensorial na-
ture depends on assumptions about crack/damage orientation induced by the micro-
structure (Ju, 1990; Wu et al, 2020). The micro-mechanical damage approach, on
the other hand, treats each micro-constituent as a statistically homogeneous medium.
Local damage variables are defined to represent the state of damage in each micro-
constituent and the overall response is subsequently obtained by homogenization
(Barchiesi et al, 2020a,b; dell’Isola et al, 2016; Placidi et al, 2020b; Rahali et al,
2015). Both approaches can be viewed as the result of a two-step procedure. Themain
difference between the two approaches lies in the fact that in the macro-mechanical
approach, homogenization is performed first and then is followed by the applica-
tion of damage mechanics principles to the homogeneous medium, while in the
micro-mechanical approach damage mechanics is applied to each micro-constituent
followed by homogenization.

A pivotal aspect concerning most of the damage models is related to the existence
and uniqueness of the solution of the mechanical problem. Such an issue has been
widely investigated for plasticity and large-displacement problemswhile applications
to damage still present unsolved questions.

In particular, both non-existence and the presence of multiple solutions may be
related both to numerical or analytical issues of the mathematical model, as well as
to the physical behavior of the material. The latter case is rather significant since it
involves possible bifurcations of the equilibrium path of the material.

This article takes its steps from the numerical pitfalls experienced by the authors
in addressing large discrete systems, i.e. models made of a large number of ele-
ments, exploiting the multi-level micro-mechanical approach to continuum damage
mechanics presented in Timofeev et al (2020).
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Rather surprisingly, in scoping the specialized literature on the topic, neither spe-
cific examples related to damage models nor a detailed assessment of the numerical
properties of iterative strategies used in nonlinear analysis applied to damage mod-
elling could be found if not vague statements, yet well-known, on the possibility that
such methods cannot discriminate between two or more competing solutions.

For this reason we have decided to pinpoint a simple softening Hooke’s spring in
order to a-priori exclude phenomena related to the collective interaction of particles
at microscale, complex loading conditions and more realistic damage laws as to in-
vestigate in depth the actual numerical properties of celebrated numerical procedures
that, as a matter of fact, still present some obscure aspect that we hope to clarify.

The study is organized as follows. The mechanical formulation is introduced in
Section 26.2 by means of a variational inequality and then specialized to the case
under study. Analytical solutions are then derived in Section 26.3 for monotonous
load and displacement control conditions. Subsequently, in Section 26.4, three dif-
ferent classes of explicit and implicit algorithms, based on displacement, force, and
arc-length control, respectively, are introduced and adapted to the case under study.
In Section 26.5, numerical results are presented allowing their performances in re-
covering the structural response of the previously introduced model to be assessed.
Finally, conclusions are discussed along with some outlooks.

26.2 Formulation of the Problem

We begin by considering a finite dimensional Lagrangian system, whose state is
univocally described by the displacement u ∈ R and the damage d ∈ [0, 1] –
d = 0 is the undamaged state, while d = 1 corresponds to failure – namely the two
fundamental kinematic quantities, which are both functions of the time t ∈ [0, T ],
with T ∈ R+ being the time horizon

u = u (t)

d = d (t) .
(26.1)

In a variational framework, constitutive relationships, which determine the response
of the system as the result of an external action, are encoded in terms of an energy
functional E = E (u, d), which will be referred to as the total energy. As custom-
arily done in the mechanics, let us henceforth assume that the following additive
decomposition holds for such an energy functional

E = U +W − Uext. (26.2)

In other words, we require it to be expressed as the sum of the elastic U = U (u, d),
dissipatedW = W (d), and external Uext = L (u) energies. Remark that the previ-
ous formula should be amended to deal with loading processes that do not meet the
quasi-static assumption, as a non-negligible kinetic energy should be then consid-
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ered, thus requiring to define a time-integral functional – customarily called action
functional – in terms of the energy functionals. For the considered finite dimensional
system, a motion is defined as a family of pairs made up by the displacement u and
the associated damage d, i.e. (u(t), d(t)). Tomake the evolution problemwell-posed,
namely the problem of determining the dependence – be it numerically or analyti-
cally – of u and d upon the time t, initial data on damage should be given at t = 0,
namely d (t = 0) = d0.

Let us denote withAMt ⊂ R andAVt ⊂ R, respectively, the set of kinematically
admissible displacements and the linear space of kinematically admissible displace-
ment variations at time t. The generic element of AVt will be denoted with δu.
To lighten the discussion, we omit to introduce analogous symbols for the damage
variable. We only declare that admissible variations of the damage variable d will
be denoted with δd. Remark that, because of a non-healing constraint on the damage
variable, i.e. d(t2) ≥ d(t1) for t2 > t1, that makes the system irreversible without
the need for any thermodynamic quantity such as temperature and entropy to be
introduced – namely the formulation is purely mechanical – the quantity δd must be
non-negative, i.e. δd ∈ R+∪0. At the generic time instant t, the forward variation δE
of the energy functional evaluated in (u, d) along the directions (δu, δd) is defined
as

δE(u, d) = lim
|δu|,δd→0+

E (u+ δu, d+ δd)− E (u, d) . (26.3)

The variational principle, modernly referred to as maximum energy release rate
principle (Hill, 1948), which characterizes the motions (u(t), d(t)) of the finite-
dimensional Lagrangian system, consists in the following inequality, that should be
fulfilled for all t ∈ [0, T ]

Ė(t)dt ≤ δE(u(t), d(t)) (26.4)

for any admissible variation δu ∈ AVt and δd ∈ R+. The dot in Eq. (26.4) stands
for the total time derivative.

Aiming at utilising numerical algorithms, it is convenient to introduce a discrete
set of time instants spanning the whole time domain [0, T ]. For the sake of simplicity,
uniformly spaced time instants are chosen as

ti = i∆t, i ∈ [0;N ], (26.5)

where∆t = T/N ∈ R+ is the amplitude of the time step. We make use of the time
discretization above to define the discrete forward increments of the displacement
and damage variables at the generic i-th time instant

(∆u)(ti) = u (ti+1)− u (ti)

(∆d)(ti) = d (ti+1)− d (ti) ,
(26.6)

which entail the following forward increment∆E(ti) of the energy functional E =
E (u, d) at the generic i-th time instant
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∆E(ti) = E(u (ti) +∆u, d (ti) +∆d)− E(u(ti), d (ti)) =
= E(u(ti+1), d (ti+1))− E(u(ti), d (ti)).

(26.7)

We have now introduced all the ingredients needed to state the variational principle
that characterizes the motions (u(t), d(t)) of the finite-dimensional Lagrangian sys-
tem under study in time-discrete form. The following inequality should be fulfilled
for all i ∈ [1;N ]

∆E(ti) ≤ δE(u(ti), d(ti)) (26.8)

for any admissible variation δu ∈ AVti and δd ∈ R+. Henceforth, for the sake of
brevity, we shall use the notations ui = u(ti) and di = d(ti).

26.2.1 Linearly Softening Hooke’s Spring

Let us specialize the constitutive relationships encoded in terms of the energy func-
tional E = E(u, d), see Eq. (26.2), to the most simple case that can be considered in
damage mechanics, which is the linearly softening extensional Hooke’s spring with-
out pre-stress, namely a zero-dimensional mechanical element in space. Without any
loss of generality, one end of the spring will be always considered to be fixed. We
also introduce the external force F = F̂ (t) that may be applied at the other end of
the spring (free-boundary condition). Henceforth, for the sake of brevity, we shall
use the notation Fi = F (ti).

We aim to define a constitutive model presenting a linear-elastic behavior in the
undamaged state by means of a limited set of parameters. This can be done by
adopting an elastic energy functional defined as:

U =
1

2
kel (1− d)u2 (26.9)

where kel is the stiffness at the undamaged state and d is the damage. Such an
expression is conceptually similar to the classic formulation of the Clapeyron’s
theorem with the sole difference that the tangent stiffness linearly decreases with the
damage.

The dissipated energy is defined by a similar functional:

W =
1

2
kdd

2 + ktd, (26.10)

where kd is the resistence to damage and kt serves as a threshold for specifying the
damage-yielding point.

External energy yields
Uext = Fu, (26.11)

so that, recalling Eq. (26.2), the energy functional becomes

E = (1/2)kel (1− d)u2 + (1/2)kdd
2 + ktd− Fu (26.12)
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while its variation δE and increment ∆E respectively read as

δE = [kel (1− d)u− F ]δu+ [kt + kdd− (1/2)kelu
2]δd (26.13)

and
Ė = [kel (1− d)u− F ]u̇+ [kt + kdd− (1/2)kelu

2]ḋ. (26.14)

A first Euler–Lagrange equation can be obtained by choosing (δu, δd) = (u̇+ v, ḋ)

and then (δû, δd̂) = (u̇− v, ḋ), so that, for arbitrary v, exploiting the linearity of δE
with respect to δu and δd, we obtain from Eq. (26.4) two inequalities implying the
following relationship (Placidi et al, 2018b)

[kel (1− d)u− F ] δu = 0, ∀δu ∈ AVt, (26.15)

which, when no displacement is applied at the non-fixed end of the spring (free-
boundary condition, hence no restriction on u and, subsequently, on δu), implies

kel (1− d)u = F (26.16)

A second Euler–Lagrange equation can be obtained by choosing (δu, δd) = (u̇, 2ḋ)
and then (δu, δd) = (u̇, 0), so that, exploiting the linearity of δE with respect
to δu and δd, we obtain from Eq. (26.4) two inequalities implying the following
relationship (Placidi et al, 2018b)

[kt + kdd− (1/2)kelu
2]ḋ = 0, (26.17)

which is customarily referred to as Karush–Kuhn–Tucker condition.

26.3 Analytical Solutions

Clearly, the main reason which led us to study a simple linearly softening Hooke’s
spring, is that analytical solutions are at hand. This is particularly beneficial to get
an insight into the issue we aim at studying as, provided the non-triviality of the
chosen example, unnecessary complexities are avoided allowing to emphasize only
the salient points.

26.3.1 Displacement Control Solution

The response F̂ (t) associated with a time-varying applied displacement u (t),
namely – by Castigliano’s first theorem – the force that one should apply on the
non-fixed spring end to get such displacement, or equivalently the reaction force that
the spring exerts on the external world, can be computed in closed form. We study a
linear displacement control defined as
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û (t) = αt, (26.18)

where the parameter α is a real coefficient, namely the rate of the applied strain.
In such a case, the first Euler-Lagrange equation (26.15) is automatically satisfied,
because δu = 0, while the second one (26.17) has the following analytical solution

d (t) =

(
kelα

2t2

2kd
− kt
kd

)
H

(
kelα

2t2

2kd
− kt
kd

)
, (26.19)

where H (x) is the Heaviside function

H (x) =

{
1 x ≥ 0

0 x < 0.
(26.20)

Remark that the irreversibility condition ḋ ≥ 0 has been already taken into account
in (26.19) and (26.20). Hence, the force corresponding to the displacement control
(26.18) is computed by Eqs. (26.16) and (26.19) as

F = F̂ (t) = kel (1− d)u = kelαt+

(
ktkel
kd

αt− k2
elα

3t3

2kd

)
H

(
− kt
kd

+
kelα

2t2

2kd

)
,

(26.21)
which can be expressed by two different continuous solutions depending on the
argument of the Heaviside function. Specifically, the response turns out to be

F̂ (t) =

{
kelαt for t ≤ typ

kelαt+ ktkel
kd

αt− k2elα
3t3

2kd
for t > typ

(26.22)

where

typ =
1

α

√
2kt
kel

. (26.23)

It is worth being emphasized that the condition t ≤ typ holds when the condition

− kt
kd

+
kelα

2t2

2kd
< 0 (26.24)

is satisfied; in such a case, the Heaviside function in Eq. (26.21) attains a null value
and the response turns out to be linear elastic. On the other hand, for t > typ, because
of the onset of softening, the response is cubic with respect to the time variable.

The time instant typ represents the time yielding point of the spring and determines
the transition between undamaged and damaged states of the spring. Plots of the
analytically computed reaction force and damage as functions of time are reported,
respectively, in Figs. 26.1a and 26.1b, where the parameters’ values kt = 1, kd = 8,
kel = 2, and α = 1 have been considered. As mentioned above, Fig. 26.1a shows
that, as time increases, following the purely elastic phase, onset of damage occurs and
the spring softens. Subsequently, the reaction force reaches a stationary maximum
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(a) Reaction force vs. time (b) Damage vs. time

Fig. 26.1 Plots of the analytically computed reaction force and damage as functions of time for a
linearly softening extensional Hooke’s spring subjected to linear displacement control.

value and then decreases until failure. The response and displacement at the time
yielding point are, respectively,

F̂ (typ) = kelαtyp =
√

2kelkt, u (typ) =

√
2kt
kel

. (26.25)

The complete failure of the spring occurs when the damage variable attains the value
d = 1 and, from Eq. (26.19), it is determined by the condition

− kt
kd

+
kelα

2t2

2kd
= 1, (26.26)

which is met when the time

tc =
1

α

√
2kt
kel

(
1 +

kd
kt

)
is reached. The peak of the reaction force Fp, attained at t = tp, can be computed
by enforcing the stationarity condition, in terms of vanishing first derivative, on the
reaction force (26.21). In formulas, such a stationarity condition reads as

kelα+
ktkel
kd

α− 3
k2
elα

3t2

2kd
= 0,

which is fulfilled for

tp =
1

α

√
2

3

(
kd + kt
kel

)
. (26.27)

The peak force thus reads
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F̂ (tp) = kel
2

3

(
kd + kt
kd

)√
2

3

(
kd + kt
kel

)
. (26.28)

An essential aspect concerning the derived solution consists in the fact that, as long
as a displacement control is applied, the model has a unique solution. This is because
the damage due to a monotonic displacement law is univocally determined, see Eq.
(26.19).

26.3.2 Force Control Solution

Let us now apply an external forceF = F̂ (t), rather than a displacement, on the non-
fixed spring end. We anticipate that, in such a case, the solution lacks of uniqueness.
We study a linear force control defined as

F̂ (t) = βt, (26.29)

where the parameter β is a real coefficient, namely the rate of the applied stress.
Displacement and damage are given by Eqs. (26.16) and (26.17), that specialize to{

kel (1− d)u = βt[
kt + kdd− 1

2kelu
2
]
ḋ = 0.

(26.30)

Thus, damage can be analytically retrieved as

d = H

(
1

2

kel
kd
u2 − kt

kd

)(
1

2

kel
kd
u2 − kt

kd

)
(26.31)

or, equivalently, as

d =

{
0 u2 < 2kt

kel

− kt
kd

+ 1
2
kel
kd
u2 u2 ≥ 2kt

kel
,

(26.32)

thus indicating that the yielding condition reads as

u2 <
2kt
kel

. (26.33)

Therefore, before that the yielding condition is reached, the displacement linearly
depends upon time.

u (t) =
β

kel
t (26.34)

while, after that, it is given by the solution of the cubic equation

kel

(
1 +

kt
kd
− 1

2

kel
kd
u2

)
u = βt, (26.35)
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that is derived by the insertion of (26.32)2 in (26.30)2. Such an equation presents
three solutions in the complex plane, namely

u1 =
2 3
√

3kel (kd + kt) + x2

(3kel)
2/3

x

u2 =
−2
(
3i+

√
3
)

3
√
kel (kd + kt) + i 6

√
3
(
i+
√

3
)
x2

2 · 35/6 (kel)
2/3

x

u3 =
−2
(
−3i+

√
3
)

3
√
kel (kd + kt) + 6

√
3
(
−1− i

√
3
)
x2

2 · 35/6 (kel)
2/3

x
,

(26.36)

where

x = x̂ (t) =
3

√
−9kdF̂ (t) +

√
−24kel (kd + kt)

3
+ 81k2

d[F̂ (t)]2. (26.37)

The real and imaginary parts of these three solutions, computedwithα = 1, kel = 1,

(a) Real part (b) Imaginary part

Fig. 26.2 Plots of the analytically computed displacement as function of time for a linearly
softening extensional Hooke’s spring subjected to linear force control.

kt = 1 and kd = 8, are plotted in Figs. 26.2a and 26.2b, respectively. Among these
solutions, u3 represents the correct load-control analytical solution as long as its
imaginary part remains zero. In fact, u2 is not physically meaningful since it is
associated with a negative virtual work.

On the contrary, although not consistent with the load path of Eq. (26.29), u1

represents a solution associated with the softening branch which the material can
activate after that the peak force has been attained. Specifically, denoting by typ the
time yielding point (attained at t =

√
2 in Fig. 26.2), for each load state in which

t < typ, the force βt is associated with two possible displacement values, one on the
loading curve and belonging to u3 and a further one on the softening branch, and
belonging to u1.
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Obviously, the latter solution is purely numerical because of the initial conditions
of the load path, belonging to u3.

In order to compute typ, we plug the selected displacement solution in the yielding
condition (26.33) allows to retrieve

typ =
1

β

√
2kelkt. (26.38)

The displacement and force at the time yielding point can thus be computed as

u (typ) =

√
2kt
kel

, F̂ (typ) =
√

2kelkt, (26.39)

which are the same calculated in Eq. (26.25). The motion obtained by the force
control (26.29) is such that the damage variable cannot reach the unitary maximum
value, because the strain rate reaches an infinite value before complete failure. This
is clear by looking at the analytically computed damage and displacement plotted
as functions of time, respectively, in Figs. 26.3a and 26.3b, where the parameters’
values kt = 1, kd = 8, kel = 2, and α = 1 have been considered. We remark that
this issue can be overcome by considering a non-negligible kinetic energy.

(a) Damage vs. time (b) Displacement vs. time

Fig. 26.3 Plots of the analytically computed damage and displacement as functions of time for a
linearly softening extensional Hooke’s spring subjected to linear force control.

26.4 Numerical Integration Algorithms

Within the context of computational analysis, the determination of the structural
response predicted by a given model is usually performed by integration algorithms.
In general, such procedures are formulated according to different philosophies (Cr-
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isfield, 2001) which can be grouped in three main classes. The first class consists
of displacement control strategies, which, conceptually, are equivalent to the solu-
tion reported in Subsection 26.3.1. They are all based on prescribing the evolution
of a subset of nodal displacements and the subsequent determination of the corre-
sponding external force. Displacement control strategies are used both in dynamic
analyses, where the displacement is governed by a differential equation of motion,
and static ones. A second approach consists in the load-control technique, analogous
to the force-control solution reported in Subsection 26.3.2, which determines the
displacement corresponding to a prescribed external force. The third class includes
approaches, such as the arc-length, where we do not prescribe neither displacement
alone nor external force alone, but adopt conditions involving both variables. It is
worth to mention that a possible classification consists also in distinguishing explicit
strategies, i.e. strategies where the solution at a generic step i + 1 is computed in
closed-form as a function of the solution at the time step i, and implicit strategies
which, on the contrary, are such that each step requires in turn an additional iterative
procedure.

Since existence and uniqueness of the solution of the considered problem, as we
have previously seen, are not guaranteed, it is possible that numerical integration
may lack of convergence and robustness. The following subsections investigate the
performance of the most popular strategies used in common practice.

26.4.1 Displacement Control Integration

The damage variable at step i+ 1 can be computed by Eq. (26.17) as

di+1 =

−
kt
kd

+
kelui+1

2kd
for − kt

kd
+
kelui+1

2kd
> di

di otherwise,
(26.40)

so that the external force can be computed by Eq. (26.16) as

Fi+1 =

{
kel (1− di+1)ui+1 for di+1 < 1

0 for di+1 ≥ 1,
(26.41)

where the second equation (26.41)2 represents failure since the damage reached its
maximum admissible value d = 1. Equations (26.40) and (26.41) can be computed
in succession for i = 1, . . . , N in order to determine the complete solution. In
this sense, the displacement control procedure is an explicit strategy capable of
determining the exact solution of the considered problem.
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26.4.2 Load Control Integration

Load control strategies are based on the definition of an arbitrary path of the external
force assigned to the model. Differently from the case of the displacement control
strategy, within a load control context, if the equilibrium state (ui, Fi) and its
corresponding damage di at the generic step i are known, the determination of
the solution associated with an arbitrary value Fi+1 of the external force is not
straightforward. In fact, in such a case, the value Fi+1 is fixed, while ui+1 needs
to be determined so that its relationship with di+1 is satisfied. This implies that,
once fixed the force Fi+1, the displacement ui+1 is a solution of the cubic equation
(26.35). As shown in Subsection 26.3.2, in such a case, the solution is not unique in
the complex space and its existence in the real space is not even guaranteed.

In order to determine the load control solution, it is necessary to adopt appropriate
algorithms to address the non-linear relationship between external force, damage and
displacement at each step of the analysis.

26.4.2.1 Explicit Algorithm

One of the most intuitive strategies consists in computing at time step i+1 the linear
solution associated with the values of damage and stiffness computed at the previous
time step. Specifically, given the triple (Fi, ui, di) at step i and the external force
Fi+1, the displacement ui+1 is computed by a simplification of Eq. (26.16) as

ui+1 =
Fi+1

kel (1− di)
, (26.42)

being kel (1− di) the tangent stiffness at the previous step i, and the damage di+1

is computed:

di+1 =

−
kt
kd

+
kelu

2
i+1

2kd
for − kt

kd
+ kelui+1

2kd
> di

di otherwise.
(26.43)

Such a procedure is actually an explicit strategy. It is worth being emphasized that,
analogously to similar algorithms such as the central difference method in dynamics
(Chopra, 2007), the accuracy of the explicit algorithm strongly depends on the time
discretization of the load control algorithm. The smaller the time step is adopted,
the more accurate will the solution be. Moreover, since the displacement in Eq.
(26.42) is computed by adopting stiffness and damage of a different time step, such
explicit approach may provide numerical solutions even for those states for which
no theoretical solution exists.
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26.4.2.2 Newton–Raphson Algorithm

One of the most popular implicit strategies to assess quantitatively the non-linear
behaviour of a system is the Newton–Raphson algorithm. It consists of an iterative
procedure aiming to determine, for a given time step i, a sequence of trials ui+1,j ,
where j ∈ N is the iteration index, so that the following residual

Ri+1,j =
ui+1,jkel (1− di+1,j)− Fi+1

Fi+1
(26.44)

with

di+1,j = max

{
di,

kelu
2
i+1,j

2kd
− kt
kd

}
. (26.45)

tends to zero for increasing values of the iteration index j. The recurrence function
is obtained by linearisation of the residual function. To fix ideas, let us consider Fig.
26.4, where a generic residual function, represented by the black curve, is plotted
with respect to the displacement. The point at u? represents the target solution since
it corresponds to the zero of the residual function and the point with coordinates
(ui+1,j , Ri+1,j) is the equilibrium state relevant to the j-th iteration of the algorithm.
The subsequent trial displacement ui+1,j+1 is estimated by a linear approximation
of the residual function. Specifically, we have

ui+1,j+1 = ui+1,j +∆uj (26.46)

where the trial increment ∆uj is computed by

∆uj = − Ri+1,j

tan (θj)
. (26.47)

Recalling that the tangent of θj is the first derivative of the residual with respect to
the displacement, the Newton–Raphson recurrence function turns out to be

ui+1,j+1 = ui+1,j −
(
dRi+1,j

dui+1,j

)−1

Ri+1,j (26.48)

Fig. 26.4 Recurrence scheme
of the Newton–Raphson
algorithm.
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For the case of the elastic damage spring defined in Section 26.2, the residual
derivative is computed as

dRi+1,j

dui+1,j
=
kel (1− di+1,j)

Fi+1
− ui+1,jkel

Fi+1

d
dui+1,j

(di+1,j) (26.49)

where the latter term is the derivative of the damage with respect to the displacement

d
dui+1,j

(di+1,j) =

 0 for di+1,j − di = 0
kelui+1,j

kd
for di+1,j − di > 0

. (26.50)

Initial trial values with j = 0 of the involved variables ui+1,0 and di+1,0 for the
time step i+ 1 are assumed to be equal to the convergence values determined at the
previous time step i:

j = 0; ui+1,0 = ui; di+1,0 = di, (26.51)

so that the initial trial values with j = 0 of the residual and of its derivative are:

Ri+1,0 =
Fi − Fi−1

Fi−1
, ∇Ri,0 = ∇Ri−1. (26.52)

The computation of the points of the sequence is stopped when the residual becomes
smaller than a fixed tolerance: |Ri+1,j | ≤ δ. Hence, the accuracy of the algorithm can
be directly controlled. The Newton–Raphson algorithm is one of the fastest iterative
strategies to determine the zeros of nonlinear functions and can be generalized for
multi-dimensional problems. In such a case, the variables are defined in vectorial
spaces and the derivative is replaced by the gradient – or Jacobian matrix – of the
residual vector with respect to the displacement vector.

Despite of its fast convergence, the Newton–Raphson algorithm presents some
drawbacks. A first one concerns the value of the tolerance δ: it influences the number
of iterations required to reach accurate enough solutions, and even the chance that
the algorithm may fail in finding a solution or it may converge on incorrect ones. A
further aspect concerns the dependency of the trials on the residual gradient. As a
first consideration, if the gradient is null, then the algorithm may not converge since
it cannot update the trials. As a further consideration, if such a procedure is applied to
multi-dimensional problems, the determination of the gradient can be very complex.

26.4.2.3 Fixed-Point Iterative Method

To overcome the drawbacks of the Newton–Raphson algorithm, alternative strategies
are available in the literature most of them based on the fixed-point theorem (Reed
and Simon, 1980). A possible implementation of an iterative strategy belonging to
the fixed-point class is based on the recurrence relationship
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ui+1,j+1 = g (ui+1,j) =
Fi+1

kel (1− di+1,j)
(26.53)

where the trial displacement at iteration j+1 is computed as a function of the current
force Fi+1 and of the damage di+1,j computed at the previous trial iteration j. The
latter quantity is

di+1,j = max

{
di,

kelu
2
i+1,j

2kd
− kt
kd

}
. (26.54)

The strategy adopts as initial conditions the displacement and damage values relevant
to the last converged state at time step i

j = 0; ui+1,0 = ui; di+1,0 = di (26.55)

while the stopping criterion consists in checking that the norm of a residualRi+1,j+1

is smaller than a suitable tolerance δ. Hence, as for the case of the Newton–Raphson
algorithm, the accuracy of the iterative procedure can be set by the analyst.Within the
scopes of this research, two different residuals are investigated. Both are expressed
as relative increment between two subsequent iterations; the first residual Rdi+1,j+1

determines the variation of the damage while the second residualRei+1,j+1 computes
the energy increment

Rdi+1,j+1 =
di+1,j+1 − di+1,j

di+1,j
(26.56)

Rei+1,j+1 =
[1− di+1,j+1]u2

i+1,j+1 − [1− di+1,j ]u
2
i+1,j

[1− di+1,j ]u2
i+1,j

. (26.57)

An essential property of the iterative procedures based on the fixed-point theorem
consists in the fact that the procedure has a sufficient condition for the convergence
of the trial sequence. It is expressed by means of the derivative of function g (ui) of
Eq. (26.53) and turns out to be ∣∣∣∣dg (ui+1,j)

dui+1,j

∣∣∣∣ ≤ 1 (26.58)

which, accounting for Eqs. (26.53) and (26.54), becomes

dg (ui)

dui
=


0 for di,j − di−1 = 0

Fiui

kd

[
kt
kd
− kelu

2
i

2kd
+ 1

]2 for di,j − di−1 > 0 . (26.59)

This issue represents a pivotal aspect of the robustness of iterative strategies. As it is
discussed in details in Section 26.5, the Newton–Raphson algorithm, besides of its
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fast convergence, often presents issues in determining the correct root. In this sense,
a convergence condition permits to control the robustness of the fixed-point strategy.

26.4.3 Arc-Length Control Integration

In order to address non linear problemswhose equilibriumpath, i.e. load-displacement
response, presents limit points, namely local maxima/minima, or snap-back/snap-
through regions, integration strategies different from those presented previously are
required since the algorithms introduced in the previous subsections are not capable
of determining the correct solution. To fix ideas, let us consider the load-displacement
curve represented in Figure 26.5. Once that the equilibrium state of point A has been
reached, load control strategies are not capable of determining the states belonging
to the descending branch; indeed, the response will present a snap-through to point
A’. Analogously, a displacement control strategy is not capable of determining the
backward branch after point B so that the response will present a snap-back to point
B’. A very popular technique utilised to solve such issues is the Arc-length integra-
tion control proposed by Riks (1979) and extended by several researchers, including
Crisfield (1981).

Referring to the original papers for its formulation, which is omitted for brevity,
the arc-length control determines the increments ∆u and ∆F of the displacement
and of the external force, respectively, so that the normalized distance between two
subsequent equilibrium states remains constant

α∆u2 + β∆F 2 = α (ui+1 − ui)2
+ β (Fi+1 − Fi)2

= λ2. (26.60)

In the latter relationship, α and β are scale coefficient introduced to ensure compat-
ibility between the units of displacement and force and λ is the arc length. Such a
strategy is capable of determining the correct sequence of equilibrium states even in
presence of limit points, softening and backward branches. Nevertheless, it presents a
serious drawback since the relationship between force and displacement increments
depends on a quadratic condition and, thus, multiple roots may be obtained. In some
cases, such an issue compromises the chance of determining the correct solution.

Fig. 26.5 Critical points of a
load-displacement response in
increasing displacement/load
control.
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(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.6 Explicit method, monotonic load.

(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.7 Newton–Raphson method, monotonic load,∆F = 0.1

(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.8 Fixed-point method (damage residual), monotonic load,∆F = 0.1

(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.9 Fixed-point method (energy residual), monotonic load,∆F = 0.1
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26.5 Numerical Results

The algorithms discussed in Section 26.4 have been implemented in MatLab®v.
R2020b and are hereby compared in terms of robustness, speed and accuracy. While
robustness is analysed by a qualitative point of view by checking if the algorithm
presents convergence issues, the computational speed is determined by reporting, for
each analysis, the number of the performed computations. This consists in the sum
of all the trial computations eventually performed for each time step. Algorithmic
accuracy is investigated by determining the error θ defined by means of (squared)
mean-square of the relative error between the algorithmic response and the theoretical
solution. For the case of force control integration, the error is

θ2 =
1

n

n∑
i=1

[
ui − ûi
ûi

]2

(26.61)

where ui is the algorithmic displacement and ûi is the exact solution, computed at
time step i.

Numerical tests take into account a spring with kt = 1, kd = 8 and kel = 1 and,
according to (26.38), reaching yielding at

u(typ) =

√
2kt
kel

=
√

2; F̂ (typ) = kelu(typ) =
√

2. (26.62)

Afirst investigation concerns the load-control analysiswithmonotonically increasing
external force until collapse. In general, all the approaches introduced in Subsec-
tion 26.4.2 provide sufficiently accurate results (see Figs. 26.6–26.9). The explicit
algorithm, whose load-displacement response is reported in Figure 26.6, presents a

(a) Implicit schemes’ force increment:
∆F = 0.1.

(b) Implicit schemes’ force increment:
∆F = 0.01.

Fig. 26.10 Error θ, load-control integration, monotonic load.
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significant drift as long as the force increment increases. The remaining strategies
present responses which are almost indistinguishable by the exact solution. Figures
26.10a and 26.10b show the mean-square error θ vs. the overall number of computa-
tions performed by the load control strategies. Specifically, results of Fig. 26.10a have
been computed by adopting a force increment∆F = 0.1 for the implicit algorithms,
while Fig. 26.10b assumes ∆F = 0.01. Obviously, the explicit strategy, where no
iterations are necessary, adopts different force increments in order to improve ac-
curacy. Such curves show that, in general, the Newton–Raphson algorithm is the
one presenting the best compromise between computational burden and accuracy:
fixed-point algorithms require a higher number of iterations in order to get the same
errors, while accuracy of the explicit method is far worse. A further set of analyses
concerns cyclic loads where the external force is monotonically increased with step
∆F = 0.1 up to a maximum value of Fmax = 1.8 < Fm, slightly smaller than its
theoretical peak of Eq. (26.28). Then, the external force is monotonically reduced to
zero.

Figures 26.11 and 26.12 present the responses computed by the explicit strat-
egy and the fixed-point algorithm, respectively. In both figures, the black-dotted
curve represents the exact solution of the force-path problem discussed in Subsec-
tion 26.3.2: since the peak Fm has not been reached, then the response is linearly
decreasing till the origin. As expected, responses computed by the explicit algorithm
present a significant drift from the exact solution while the Fixed-point strategy
provides accurate results. Both strategies do not present any convergence issue.
Concerning the fixed-point algorithm, Fig. 26.14 reports the value of the derivative
dg (ui)/dui, used in the convergence criterion of Eq. (26.59), vs. the displacement.
Remarkably, such a derivative remains smaller than one during all the analysis, this
meaning that convergence of the fixed-point algorithm is ensured.

In order to check the stability of the algorithms implemented in finite element
codes, further analyses have been performed in OpenSees 3.0.3, an open source
framework for finite element analysis released by the University of California, Berke-
leyMcKenna (2011), inwhich the investigated damagemodel has been implemented.
The modified release and the input file relevant to the shown example can be down-
loaded at Sessa (2021).

In particular, while the Newton–Raphson algorithm provides solutions similar
to the fixed-point procedure discussed above, the test has been focused on the well
known Arc-Length control.

In such a case, the presence of multiple solutions is a significant drawback af-
fecting the results, as shown in Fig. 26.15. In particular, once considered a generic
equilibrium state A, the arc-length algorithm tries to determine a point belonging to
the equilibrium path lying at a prescribed distance (i.e. the arc-length) from point A.

After that yielding has been achieved, the system presents two possible equilib-
rium paths starting from point A so that both points B and B’ are possible solutions.
As a matter of fact, it is not possible to make any physical discrimination between
them. Such a behaviour is confirmed by the analysis reported in Fig. 26.16, where the
blue curve is the displacement control response and the red curve has been computed
by the arc length control integrator.
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(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.11 Explicit method, cyclic load.

(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.12 Fixed-point algorithm (damage residual), cyclic load,∆F = 0.1

(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.13 Fixed-point algorithm (energy residual), cyclic load,∆F = 0.1

As a matter of fact, in such problems, arc-length control is expected to determine
the softening branch (Crisfield, 2001) even in presence of snap-through or snap-back
behaviors. On the contrary, as previously discussed in commenting Fig. 26.15, after
the response reaches the peak force, the arc length procedure fails in determining
the softening branch and converges to the unloading linear branch.

It is worth being emphasized that the states belonging to the arc length solution are
all correct equilibrium states. Moreover, an essential aspect concerns the physical
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(a) Damage residual (b) Energy residual

Fig. 26.14 Convergence criterion of the fixed-point algorithm.

Fig. 26.15 Examples of unloading multiple solutions in Arc-length control.

(a) Load vs. displacement (b) Damage vs. displacement

Fig. 26.16 Load-displacement response for a cyclic loading-unloading analysis via arc-length
integration.

meaningfulness of the solution. In fact, considering the analysis reported in Fig.
26.16a, once that the algorithm reaches the peak force (i.e. the limit point), there
are two possible equilibrium states fulfilling the prescribed arc length condition,
belonging to the softening curve and to the unloading branch, respectively. The
critical issue consists in the fact that both points are meaningful solutions and there
is no reason for which one of them should be preferred. We emphasize that such a
circumstance for which the problem presents multiple solutions occurs for all points
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whose displacement is greater than the yielding value. For this reason, the arc length
algorithm naturally may present several bifurcations.

26.6 Conclusions

In this contribution we investigated the performances of different algorithms in
analyzing a simple uniaxial linearly damaging spring with quadratic dissipation
energy.

Analyses have proved that, because of the multiplicity of solutions satisfying
at once equilibrium, damage law and irreversibility conditions, well-established
numerical algorithms may face unexpected pitfalls and failures even in studying
simple damage problems. The reported evidence should stimulate future research
dealing with the problem of discriminating – among physically meaningful (and
meaningless, albeit this seems a more easy task) solutions – the one that is actually
occurring experimentally in damaging systems.

Concerning load-control integration, among the considered algorithms, the fixed-
point algorithm provided stable results confirmed by a convergence criterion. Hence,
it could be preferential in using damage constitutive relationships in more complex
applications such as coarse graining continuum (dell’Isola et al, 2020).

The non-uniqueness issue arised for the arc-length algorithm is well known for
the case of some classic topics in structural analysis, such as buckling and bifurcation.
In such cases, different solutions are discriminated by energetic criteria, hence, we
conjecture that a kind of second order energy criterion – like that distinguishing
stable and unstable solutions in elasticity – may serve to the scope. A variational
formulationmay thus provide a fertile ground to profitably explore the subject, which
is the reason why, in this contribution, albeit for a very simple system, a variational
inequality, known as the maximum energy release rate principle, has been used as
a postulate. Moreover, a variational approach may ensure that the fulfillment of the
thermodynamic principles in analyzing those materials for which the Karush–Kuhn–
Tucker condition is not directly enforced (Sessa, 2022).

A further aspect worth of investigation concerns the determination of alternative
equilibrium paths after bifurcation points. While computation of such paths was
straightforward for the Hooke’s spring analyzed in this research, it may become
very complex when the considered damage formulation models multi-dimensional
systems such as continuum media. In such cases, alternative equilibrium paths may
be substantially unknown.

Future research directions will investigate both aspects in order to exploit com-
putational strategies for analyzing generalized finite element models.
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Chapter 27
Thermodynamic Compatibility of the
HystereticPoly Uniaxial Material Implemented
in OpenSees

Salvatore Sessa, Nicoló Vaiana, Massimo Paradiso, Luciano Rosati

Abstract The fulfillment of the Drucker postulate applied to a phenomenological
hysteretic constitutive model is hereby investigated. Such a material is defined in
terms of analytical functions so that it is capable of determining the response and its
tangent operator in closed form and does not require any iterative algorithm. Hence,
the constitutive model is very appealing for several applications, including structural
analysis and homogenization techniques. Within this context, the thermodynamic
compatibility implied by the Drucker’s postulate aims to ensure that the model does
not provide responses associated with negative values of the dissipated energy, this in
order to fulfill the 2nd law of thermodynamics. In particular, the research is focused
on two peculiar phenomena associated with non-consisten energy dissipations: the
negative softening and the hysteretic crossing paths. It is shown that the thermo-
dynamic compatibility may be violated because of negative softening although it
is possible to determine a displacement range for which the material preserves its
physical significance. On the contrary, it is proved that the analytical formulation
of the investigated model avoids the crossing path phenomenon thus ensuring the
fulfillment of the Drucker’s postulate.

Keywords: Drucker postulate · Thermodynamic compatibility · Plasticity

27.1 Introduction

Within the context of structural analysis and continuum mechanics, uniaxial consti-
tutive models describing hysteretic behaviors play an important role (Dimian and
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Andrei, 2008). In particular, such models are capable of reproducing the behavior
of fragile (Bahn and Hsu, 1998) and ductile materials (Nuzzo et al, 2018) as well
as seismic devices (Castellano et al, 2014; Kikuchi and Aiken, 1997; Losanno et al,
2020, 2021; Vaiana et al, 2017).

An essential aspect of these applications consists in the fact that such uniaxial rela-
tionshipsmay be used inmore complexmodels, based on homogenization techniques
(De Angelo et al, 2020; Placidi et al, 2020) addressing continuum and multiaxial
problems, including micromechanic approaches (Barchiesi et al, 2021; Maksimov
et al, 2021; Misra et al, 2021; Placidi et al, 2019), metamaterials (Abali et al, 2021;
Ciallella et al, 2021; dell’Isola et al, 2019; Turco and Barchiesi, 2019; Turco et al,
2020), and multiscale approaches (Giorgio and Scerrato, 2017). Within this context,
it is convenient if hysteresis loops are characterized by smooth load-displacement
relationships so that both the response and its first derivative are continuous.

To this end, the use of analytical expressions is a very popular technique and
several models are available in the literature. One of the most popular ones was
proposed by Bouc (1971) and extended by Wen (1976, 1980). Its popularity is due
to its capability of reproducing complex and smooth hysteresis loops by means of a
limited set of parameters and a simple analytical function.

On the other hand, most of these models, including the Bouc–Wen material, are
based on differential relationships involving both the response and its first derivative
in time. For this reason, the computation of the structural responsemust be performed
by adopting iterative algorithms, hence increasing the computational burden, since
no closed form solutions is available.

To avoid such a drawback, a new class of hysteretic models has been recently
proposed (Vaiana et al, 2018). Such materials are characterized by closed-form ex-
pressions determining the constitutive response (Vaiana et al, 2021). In particular,
the model proposed by Vaiana et al (2019), defined by means of five constitutive
parameters, is particularly appealing since it provides smooth hysteresis loops with
hardening and softening behaviors. Moreover, since its parameters can be directly
related to quantities deduced from experimental data, their identification is straight-
forward (Sessa et al, 2020). Themodel, addressed asHystereticPoly uniaxialmaterial,
has been implemented in OpenSees (Sessa, 2019), an open-source framework for
finite element analysis.

An essential aspect in order to use such a constitutive model in structural analyses
consists in investigating the fulfillment of the Drucker’s postulate (Drucker, 1959).
Specifically, such a condition prescribes that the increments of the dissipated energy
must always be non-negative in order to fulfill the second law of thermodynamics
and to avoid physically impossible energy balances.

A general purpose condition for hysteretic models belonging to the class intro-
duced in Vaiana et al (2018) has been proposed in Sessa (2022) where it has been
also specialized for the HystereticPoly material. In particular, it is shown that, de-
pending on the values of the constitutive parameters, thermodynamic compatibility
may not be always fulfilled by the model. Nevertheless, it is possible to determine
a compatibility range in terms of displacement/strain where the response fulfills the
Drucker’s postulate.
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(a) Physical interpretation of ka, kb, f̄ and u0
with β1 = β2 = 0

(b) Influence of β1 and β2 with ka = 120,
kb = 5 and α = 30

Fig. 27.1 Physical interpretation of the constitutive parameters

Such an interval was computed in Sessa (2022) by means of a strongly conser-
vative condition. Hence, numerical tests have shown that, in general, the response
may be thermodynamically consistent even for equilibrium states located outside the
compatibility range.

The present research aims to illustrate further insights about the thermodynamic
compatibility of the HystereticPoly constitutive model presented in Vaiana et al
(2019). In particular, two peculiar behaviors of the hysteresis loop are investigated
in order to get more accurate compatibility conditions depending on the constitutive
parameters.

In particular, the first investigated behavior, i.e. the negative softening, consists
in the fact that, because of negative stiffness, the model provides responses asso-
ciated with negative work. A further behavior, i.e., the hysteresis crossing paths,
consists in loops in which loading and unloading branches present anomalous in-
tersections. Both the cases are discussed in order to identify suitable compatibility
ranges ensuring the fulfillment of the second law of thermodynamics.

Numerical tests are provided in order to prove the effectiveness of the discussed
conditions and to show the stability of the HystereticPoly constitutive model.

27.2 A Review of the HystereticPoly Constitutive Model

TheHystereticPoly uniaxial material proposed in Vaiana et al (2019) is a constitutive
model, defined by five parameters, capable of reproducing complex hysteresis loops
with various shapes.

In particular, it is defined by two stiffness coefficients ka and kb associated
with the elastic and inelastic region, respectively, a transition parameter α ruling a
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smooth passage from elastic to inelastic states, and two shape parameters, β1 and
β2, governing hardening, softening, and pinching behaviors.

It is worth being emphasized that, being the constitutive model completely phe-
nomenological, it can express both displacement/force and strain/stress relationships
aswell as any different couple of energetically associated structural quantities. Never-
theless, we will hereby refer to displacement and forces to avoid needless complexity.

For convenience, two auxiliary parameters, schematized in Fig. 27.1a, are intro-
duced:

u0 =
1

2

[(
ka − kb

δ

) 1
α

− 1

]
(27.1)

f̄ =
ka − kb

2

[
(1 + 2u0)

1−α − 1

1− α

]
(27.2)

Specifically, u0 measures the displacement needed to reach the complete inelastic
state while f̄ is the hysteretic response with zero displacement and δ is a tolerance.

A few realizations of the hysteresis loops that it is possible to reproduce with such
a constitutive model are represented in Fig. 27.1b.

In order to introduce the closed form expression of the material’s response, we
make reference to the symbology usually adopted by the finite element method.
Specifically, we denote by uc and fc, respectively, the displacement and force of a
generic equilibrium state which has been reached during the analysis. Moreover, sc
is the sign of the velocity associated with uc.

The analysis algorithms typical of the finite element method use a trial value ut
of the displacement that perturbs the equilibrium state. The constitutive model must
compute the force ft associated with such perturbation and its first derivative.

To this end, it is necessary to introduce the history variable:

uj = uc + st (1 + 2u0)− st (∆1∆2)
1

1−α (27.3)

where
∆1 =

st (1− α)

ka − kb
(27.4)

∆2 = fc − β1uc
3 − β2uc

5 − kbuc − stf̄ +∆3 (27.5)

and

∆3 = (ka − kb)
(1 + 2u0)

1−α

st (1− α)
(27.6)

As shown in Fig. 27.1a, the history variable uj represents the displacement relevant
to the latest inversion of the displacement path. In particular, Equation (27.3) takes
advantage by the fact that, for a known equilibrium state (uc, fc), the relevant
hysteresis curve can be univocally determined and uj represents the maximum
displacement associated with the current hysteresis loop.

Eventually, the trial force is computed as
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ft = β1ut
3 + β2ut

5 + kbut + (ka − kb) (∆4 −∆5) + stf̄ (27.7)

with

∆4 =
(1 + stut − stuj + 2u0)

1−α

st (1− α)
(27.8)

and

∆5 =
(1 + 2u0)

1−α − 1

1− α (27.9)

The tangent operator, defined as the derivative of the force with respect to the
displacement, is:

k(ut) =
dft
dut

= 3β1ut
2 + 5β2ut

4 + kb + st (ka − kb) (1 + stut − stuj + 2u0)
−α

(27.10)
An important aspect concerning the definition of the tangent operator is relevant to
the fact that this may be expressed by the combination of two quantities:

k(ut) = ke(ut) + kh(ut) (27.11)

where ke does not depend on the history variable

ke(ut) = 3β1ut
2 + 5β2ut

4 + kb (27.12)

while kh is
kh(ut) = st (ka − kb) (1 + stut − stuj + 2u0)

−α (27.13)

An essential property of kh(ut) consists in the fact that it is a symmetric decaying
function univocally defined by the difference between the current displacement u
and the history variable uj , as shown in Fig. 27.2.

Fig. 27.2 History-dependent
stiffness kh typical trend
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27.3 The Thermodynamic Compatibility

Within the context of nonlinear mechanics, the Drucker’s postulate Drucker (1959)
states that, for any possible equilibrium state and assumed an arbitrary displacement
increment, the variation of the inelastic work must be non-negative.

Such a condition, often addressed as thermodynamic compatibility, is of excep-
tional importance because it states that the energy dissipated by the constitutive
model is never negative, according to the second law of thermodynamics. Hence,
the Drucker’s postulate represents a fundamental condition to be fulfilled in order to
reproduce physically meaningful constitutive responses.

To investigate the fulfillment of such a postulate in the case of the HystereticPoly
material, let us assume a generic equilibrium state, represented in Fig. 27.3, defined
by the current displacement value u, by the associated force value f(u), both sup-
posed positive for simplicity, and by the tangent stiffness k(u) = df(u)/du. The blue
curve represents the equilibrium path followed before the attainment of the current
state.

Moreover, let the red curve be the unloading path, i.e., the path that the constitutive
response follows if the current force is reduced to zero, so that the value u?(u)
represents the residual displacement associated with the state (u, f(u)). Let us also
denote by k?(u) the tangent stiffness associated with the unloading branch at u?(u).

The integral of the unloading curve in the interval [u, u?], represented by the yel-
low area in Fig. 27.4, is the energy that the system releases if the force is suppressed.
For simplicity and following the classic nomenclature of structural mechanics, such
a quantity will be addressed as elastic energy Wel below. Hence, a simple thermo-
dynamic balance permits to define the inelastic workWin, i.e. the energy dissipated
by the constitutive model, as difference between the total work Wtot and the elastic
energyWel:

Win = Wtot −Wel (27.14)

A previous research Sessa (2022) investigated the fulfillment of such a condition
for all the constitutive models belonging to the class proposed by Vaiana et al. Vaiana
et al (2018), including the HystereticPoly material Vaiana et al (2019). In particular,

Fig. 27.3 Generic initial
stress-strain state
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Fig. 27.4 Elastic energy
associated with the state
[u, f(u)]

the research provided the general-purpose relationship:

min [ks(u)|∀u]

max [k(u)|∀u]
≥ 1

2
(27.15)

where ks(u) = f(u)/u denotes the secant stiffness.
It is worth being emphasized that such a condition was developed regardless of the

peculiar computational model and has a conservative nature that has been observed
numerically. Actually, it is possible to provide further insights about the energetic
balances of the HystereticPoly material so that less conservative conditions for the
fulfillment of the thermodynamic compatibility can be determined. In particular,
we will focus on two thermodynamically non-consistent phenomena that well be
addressed as negative softening and hysteresis crossing paths below.

27.3.1 Negative Softening

Let us denote by f̂+(u) and f̂−(u), respectively, the top and bottom boundaries of
the hysteresis loops. These functions are defined as:

f̂+(u) = max [f (u, uj)] ∀uj (27.16)

f̂−(u) = min [f (u, uj)] ∀uj (27.17)

where the explicit dependency on the history variable uj has been specified. Such
boundaries are the maximum and minimum value that the force f can attain at a
specific displacement u for any possible load history of the material.

The phenomenological characterization of the HystereticPoly material provides
that ka > kb as unique analytical condition on the values of the constitutive parame-
ter. For this reason, the top and bottom boundaries of the hysteresis loops are defined
by 5th degree polynomial functions:

f̂±(u) = ±f̄ + β1u
3 + β2u

5 + kbu (27.18)
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Fig. 27.5 Example of thermo-
dynamically non-compatible
softening

In general, such boundary curves may cross the horizontal axis thus determining
states for which the total work Wtot turns out to be negative, as for the example
reported in Fig. 27.5 in which the negative work increment is represented by the
cyan area.

The Drucker’s postulate is not fulfilled for displacements greater than ulim, i.e.,
the displacement for which the boundary function crosses the horizontal axis. The
computation of ulim cannot be solved in closed form if β2 6= 0 but it can be easily
determined numerically.

The latter represents the boundary of a compatibility range of the displacements,
already discussed in Sessa (2022). It does not depend on the past load history of the
material and can be used as a limit state condition of the response.

27.3.2 Hysteresis Crossing Paths

A further circumstance for which thermodynamic not-consistent states may occur
consists in the fact that, in case of load inversion, the unloading path crosses the
previous loading curve, as schematized in Fig. 27.6.

To better clarify the reason of possible thermodynamic violations, let us consider
an initial state relevant to an unloaded state with non-zero residual displacement as
the one represented by the point (u?, 0) in Fig. 27.7. The elastic energy associated
with such an equilibrium state is obviously zero.

Fig. 27.6 Example of hystere-
sis crossing paths
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Let us assume that the material response, because of a displacement increment
∆u, follows the blue curve in the figure. Moreover, let the red curve be the unloading
branch associated with the equilibrium state at u? +∆u.

Actually, the total work increment is represented by the area underneath the blue
curve while the elastic energy increment is equal to the area underneath the red one.
As a matter of fact, if the unloading path crosses the loading one, the increment of
elastic energy may result greater than the total work increment thus violating the
Drucker’s postulate since such a condition corresponds to negative dissipated energy.

To investigate the existence of possible crossings in the responses of the Hys-
tereticPoly model, let us consider the analytical expressions of the loading and
unloading curves as functions of the stiffness. Specifically, assuming that the value
of the force f (u? +∆u) at u? +∆u is known.

Following the loading branch, the force f (uc) at the crossing displacement uc is:

f (uc) = f (u? +∆u)−
∫ u?+∆u

uc

ke (υ) dυ −
∫ u?+∆u

uc

kh (υ, uj) dυ (27.19)

while the force fu (uc) at uc obtained by following the unloading path turns out to
be:

fu (uc) = f (u? +∆u)−
∫ u?+∆u

uc

ke (υ) dυ −
∫ u?+∆u

uc

kh (υ, u? +∆u) dυ

(27.20)
in fact, assuming for simplicity that the response has reached the top boundary curve,
the history variable uj must be updated because of the load inversion and becomes
equal to the displacement where the load is inverted.

Eventually, since at the crossing point f (uc) = fu (uc) and considering Equa-
tions (27.19) and (27.20), it yields:∫ u?+∆u

uc

kh (υ, uj) dυ =

∫ u?+∆u

uc

kh (υ, u? +∆u) dυ (27.21)

Fig. 27.7 Thermodynamically
non-consistent increments
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Because of the symmetry and the monotonic trend of kh, such an equality is
fulfilled only if uc = uj , i.e., if the response reaches the symmetric (negative)
boundary of the hysteresis loops. Hence, regardless of the values of the constitutive
parameters, the unloading response of the HystereticPoly material (i.e. the response
obtained by dropping the force to zero) cannot cross the relevant loading path since
the latter condition uc = uj is attained for negative values of the force.

In conclusion, the analytical formulation of the HystereticPoly material intrinsi-
cally prevents the chance of getting equilibrium states violating the thermodynamic
compatibility because of the crossing path phenomenon.

27.4 Numerical Applications

To exploit the thermodynamic compatibility of the investigated material from the
numerical point of view, two sets of constitutive parameters have been used to
determine the energetic quantities of interest.

In particular, such models have been calibrated on experimental responses of real
devices by the procedure described in Sessa et al (2020); the first one is relevant to
the Fiber Reinforced Rubber Bearer (FREB) tested by Kelly and Takhirov Kelly and
Takhirov (2001) while the second one (test PW16010L) reproduces the longitudinal
response of the wire-rope isolator type PWHS 16010 tested in Vaiana et al (2017).

Analyses have been performed in Matlab by means of a displacement-control
algorithm and the considered sets of parameters are reported in Table 27.1.

Table 27.1 Values of the constitutive parameters relevant to the investigated models (δ = 10−8)

Test ka kb α β1 β2 u? umax

FREB 5.3 · 106 3.7 · 105 280.43 −2.4 · 107 9.8 · 108 −0.0248 0.15

PW1610L 1.8 · 106 2.6 · 105 704.96 1.0 · 108 5.0 · 1011 −0.0042 0.03

The numerical investigations consist in a displacement-control path-following
analysis with monotonic increasing load starting from different initial equilibrium
states. To define such starting points, we recall the nature of the investigated phe-
nomenological model and schematized in Fig. 27.1a.

The model is defined by means of the two boundary curves reported in Equations
(27.16) and (27.17) which do not depend on the previous load history of the material.
Moreover, each equilibrium state is associated with a transition curve of which uj
denotes the initial displacement. To fix ideas, if we assume positive displacement
increments, uj represents the displacement at which the transition curve, associated
with the current response, intersects the bottom boundary curve while it reaches the
top bound at the displacement uj + 2u0.
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Fig. 27.8 Example of transition curves for uj ≤ u? − 2u0

In order to account for all possible equilibrium states, the analyses adopt dif-
ferent values of the history variable. In particular, uj spans within the interval
[u? − 2u0, umax[. The upper limit umax, reported in the last column of Table 27.1,
is the maximum value of the displacement for which the response of the analyzed
devices preserves physical significance.

The lower limit has been computed as function of the residual displacement u?,
i.e. the displacement for which the upper boundary curve intersects the horizontal
axis. As schematized in Fig. 27.8, the transition curve associated with uj = u?−2u0

reaches the top boundary at u? with f = 0. We emphasize that the increments of
the inelastic energy are non-zero only for those equilibrium states for which u > u?

since all those with u < u? are associated with increments of the total work that
are in perfect balance with the decrease of the elastic energy. As a matter of fact,
all loops with uj ≤ u? − 2u0 coincide in the region u ≥ u?; hence, the energy
dissipated for uj ≤ u? − 2u0 and u > u? depends on the top boundary curve only
and is equal to its value computed with uj = u? − 2u0.

Finally, the numerical analyses computed inelastic energy Win dissipated by
the model for equilibrium states associated with uj ∈ [u? − 2u0, umax[, u ∈
[uj , umax[, and du > 0. The outcomes of the computations are reported in Fig-
ures 27.9 and 27.10 reporting the first derivative dWin/du of the inelastic energy
vs. uj and u, relevant to the parameter sets FREB and PW1610L, respectively.

As amatter of fact, the derivative of the inelastic energy dissipated by the analyzed
models turns out to be non-negative for positive increments du of the displacement,
thus confirming the fulfillment of the Drucker’s postulate by the HystereticPoly
hysteretic material. Analyses relevant to negative increments of the displacement
have been omitted for brevity because of the symmetry of the constitutive response.
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Fig. 27.9 First derivative dWin/du of the inelastic energy vs. the history variable uj and the
displacement u relevant to the FREB model

Fig. 27.10 First derivative dWin/du of the inelastic energy vs. the history variable uj and the
displacement u relevant to the PW1610L model

To provide a further insight of the energetic balances relevant to the analyzed
models, two further analyses have been performed. Both consist in adopting the
cyclic, quasi-static displacement path represented in Fig. 27.11.

Figures 27.12a and 27.13a report the load-displacement hysteresis responses of
materials FREB and PW16010L, respectively, while Figures 27.12b and 27.13b
report their total, inelastic, and elastic energy vs. the displacement.

The two latter figures clearly confirm that, while the total and elastic energy
present decreasing regions, the inelastic energy dissipated by the models is always
non-decreasing.
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Fig. 27.11 Normalized displacement path

(a) Load-displacement response (b) Total and inelastic work

Fig. 27.12 Load-displacement response and energy of material FREB

(a) Load-displacement response (b) Total and inelastic work

Fig. 27.13 Load-displacement response and energy of material PW16010L

27.5 Discussion and Conclusions

The fulfillment of the Drucker’s postulate Drucker (1959) by the phenomenological
material HystereticPoly presented by Vaiana et al. Vaiana et al (2019), and thus its
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thermodynamic compatibility, have been investigated. Such a condition provides
that the inelastic energy dissipated by the model is non-decreasing according to the
second law of thermodynamics.

In particular, the presented research focused on two possible behaviors associated
with non-compatible energetic rates and specifically the negative softening and the
hysteresis crossing paths.

The first behavior is associated with hysteresis loops presenting softening regions
in which the response becomes negative for positive displacements, thus providing
negative increments of the total work. Such a behavior is not intrinsically prevented
by the analyzedmodel since and can be obtained by adopting inappropriate parameter
sets. Nevertheless, it is possible to determine the maximum displacement range for
which the model provides physically significant outcomes by numerically solving a
5th degree polynomial equation.

Conversely, it has been proved that the analytical formulation of theHystereticPoly
material intrinsically avoids the phenomenon of crossing paths thus providing out-
comes that are always thermodynamically consistent and fulfill the Drucker’s postu-
late.

The latter property is of the outmost importance for several applications since
the event of crossing path is far more difficult to control during nonlinear analyses
especially if the uniaxial hysteretic relationship is used within a context of more
complex homogeneized materials, such as the ones described in Barchiesi et al
(2021). In fact, the case of negative softening does not depend on the load history
but on the constitutive parameters only. For this reason, it is possible to determine
the maximum displacement range, for which the response preserves its physical
significance, and to use such a boundary as a limit state condition of the uniaxial
response.

On the contrary, the event of crossing paths, if possible, may occur at equilibrium
states that are difficult to determine a priori. This implies to include computationally
demanding checks while the analysis is performed in order to compare the evolution
of the dissipated energy. As a matter of fact, such a task could even be impossible to
be done in case of homogeneization procedures.

The fact that circumstances in which crossing paths compromise the fulfillment of
theDrucker’s postulate are prevented by theHystereticPolymaterial, opens appealing
perspectives for its diffusion within the scientific and professional communities.
With this respect, future research directions will take advantage of the fact that
each possible equilibrium state is univocally associated with a value of the elastic
energy regardless of the load history. For this reason, authors are confident that the
inelastic energy can be expressed as function of some history variable, such as the
residual displacement and/or some sort of plastic multiplier, so that the analytical
model can be defined by means of an energetic formulation. This would foster the
implementation of the analytical model in hemivariational models Timofeev et al
(2021) and would permit its generalization for multiaxial responses.
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Chapter 28
Studying the Higher-Order Inertia in the
Second-Order Theory of Elasticity for Modeling
Metamaterials

Navid Shekarchizadeh, Alberto Maria Bersani

AbstractModeling the materials with a complex microstructure, such as metamate-
rials, is challenging especially in the dynamic regime. Higher-gradient models have
been widely used for modeling the mechanical behavior of metamaterials. In dy-
namic loading problems, the inertia plays an important role. Including higher-order
inertia in the model could possibly improve the accuracy of the model close to the
eigenfrequencies of the structure. Such inertial terms have been presented in theory
but they are not understood experimentally, therefore it has not been possible to
quantify their value. Herein, we consider a macro-scale model for a pantographic
structure and simulate a dynamic loading on it. We run the simulation for a range of
frequencies of loading and for a number of arbitrary values for a higher-order inertial
term that we have added to the model. The results show a clear relation between the
value considered for the inertial term and the eigenfrequency of the structure that we
get from the model. This result sheds light on finding an algorithm for determining
the higher-order inertial terms experimentally in further studies.

Keywords: Higher-order inertia · Finite element method ·Dynamic loading ·Meta-
materials
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28.1 Introduction

The structures with a complex substructure show specific mechanical behaviors that
make it challenging to model them. The classical continuum mechanics usually
is not a suitable candidate for describing such structures since it considers only a
close vicinity of the material point unless we use a very fine mesh which results in
high computational cost. An approach to overcome this issue is utilizing generalized
continuummechanics such asmodelswhich include higher gradients of displacement
and additional material parameters. By using higher-gradient models, it is possible
to model the structure as a homogenized domain and with a rather coarse mesh.
Therefore, such a macro-scale model is capable of correctly modeling a complex
structure at a low computational cost.

Metamaterials are a group of architectured materials with peculiar properties
(Barchiesi et al, 2019; Eugster et al, 2019; Surjadi et al, 2019). They usually have
a complex and detailed microstructure. The behavior of metamaterials in macro-
scale is a result of their underlying microstructure. This microstructure is purposely
designed to result in a specific performance in the structure. This performance is
usually independent of the material from which the microstructure is made (Giorgio
et al, 2021). Examples of metamaterials are structures with negative Poisson’s ratio
(Larsen et al, 1997; Jafari Nedoushan et al, 2021), locally resonant plates (Russillo
and Failla, 2021), and pantographic structures which are capable of undergoing large
deformations in the elastic regime (dell’Isola et al, 2015, 2019a,b).

In the literature, many models have been presented for modeling pantographic
structures (for a review, see Placidi et al, 2016; Barchiesi and Placidi, 2017). An
important issue is determining the parameters of a model for a specific structure.
Numerical parameter identification studies have been carried out in Giorgio (2016);
De Angelo et al (2019); Shekarchizadeh and Abedi (2019). In Abali and Barchiesi
(2021), an asymptotic homogenization is used to determine the parameters for de-
scribing a material on a macroscopic level.

In a recent study (Shekarchizadeh et al, 2021a), a method is proposed for inverse
analysis and numerical parameter determination of metamaterials through an autom-
atized optimization algorithm. In this algorithm, the parameters of a macroscopic
model are determined by fitting the strain energy of the macro-scale model with
that of the microscopic solution of the problem.With the determined parameters, the
model predicts the deformation of a pantographic structure in a tensile test accurately.
In that paper, the loading is quasi-static.

In a subsequent research (Shekarchizadeh et al, 2021b), the identified parameters
are validated for the dynamic regime. The displacement plots are compared with
experimental results which are obtained by applying forced oscillations to panto-
graphic specimens made by 3D-printing technology. The cyclic loading is simulated
in the computations for different frequency ranges. The outcome is that the simula-
tions are matching the dynamic experimental tests in some frequency ranges while
in some other ranges, especially close to the eigenfrequencies, the computations are
deviating.
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In the problems in the dynamic regime, the higher-order inertia is usually ignored
since the experimental characterization of such inertial terms is not yet understood.
Hence, so far there is no clear algorithm for determining the values of higher-order
inertial parameters. The theory of including such terms is presented in Polizzotto
(2013a,b); Abali (2018). In Shekarchizadeh et al (2021b), a higher-order term is
included in the model to investigate the effect. The values of the new term are
chosen arbitrarily. The results show that the new term introduced in the model has a
noticeable effect and in some cases, it makes the results closer to the experimental
data.

We herein consider a homogenized second-gradientmodel for pantographic struc-
tures. We study the behavior of the model with the identified parameters in a range of
frequencies of sinusoidal loading. The frequency range includes the eigenfrequency
of the structure. Furthermore, the effect of adding a higher-order inertial term to the
model is investigated more deeply by considering different values for it. We try to
perceive the behavior of the model with respect to the value considered for the new
inertial term. We aim to gain an insight into the characterization of such complex
inertial parameters.

28.2 Model Implementation

The macroscopic model presented in dell’Isola et al (2016) is a 2D description of
planar pantographic structures. The pantographic structure consists of two families of
parallel beams and cylindrical pivots which connect the beams together as shown in
Fig. 28.1. The reduced-order model considers the structure as a homogenized plate.
Second-gradients of displacement are present in the model. The energy definition
takes into account the deformation energy of the elongation of the beams, the in-
plane bending of the beams, and the twisting shear of the pivots. The stored energy
density is expressed as

WM(ε,κ, γ) =
1

2
Ke(ε

2
1 + ε2

2) +
1

2
Kg(κ

2
1 + κ2

2) +
1

2
Ksγ

2, (28.1)

where ε,κ, γ are the “stretch of fibers”, the “beam geodesic curvature”, and the
shear distortion of the pivots, respectively. The term κ includes second-gradient of
displacement terms. For the detailed formulation of the above-mentioned parameters,
see Shekarchizadeh et al (2021a). The model has three parameters, Ke,Kg,Ks,
namely the stretching, the geodesic bending, and the shear stiffness values.

By using the variational principle, the discretized weak form of the governing
equation of the problem is obtained as
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where ui is the primary variable of the equation, i.e. the displacement field over
the domain B0, δui is the test function, ∆t is the time increment, t̂i is the traction
applied on the Neumann boundary ∂BN0 , ρ0 is the structure’s surface mass density,
and d is the added higher-order inertial term, which is a length scale (unit of length).

The geometrical parameters and the material of the pantographic structure are
the same as the ones used in Shekarchizadeh et al (2021b). By following the
procedure elaborated in Shekarchizadeh et al (2021a), the three unknown stiff-
nesses in Eq. (28.1) are determined for the considered pantographic structure as
Ke = 2.847× 105 N/m,Kg = 3.697× 10−2 Nm, andKs = 8.160× 102 N/m.

For the numerical implementation of the model, we employ the finite element
method in the FEniCS open-source package (Logg et al, 2012). For a discussion
on the engineering applications of FEniCS, see Abali (2017). The domain is a
rectangular plate meshed with standard FEM elements with quadratic polynomial
form functions constituting the vector space

V =

{
{ux, uy} ∈ [H2(B)]2 : {ux, uy}

∣∣∣
∂BD

0

= given
}
, (28.3)

where the displacement is given on the so-called Dirichlet boundaries, ∂BD
0 . After

an h-convergence analysis, the FEM mesh of 308,482 degrees of freedom has been
used. For time discretization, each sinusoidal period of loading is applied in 48 time
increments.

As shown in Fig. 28.1, the lower side of the rectangular domain is fixed in x and
y directions, and the upper edge is fixed in the x direction while a sinusoidal forced
oscillation is applied on it to simulate a cyclic loading as

uy = A sin(2πft), (28.4)

where A is the amplitude of loading, f is the frequency of loading over time, t. We
set the amplitude of loading, A = 3.0× 10−4 m for all the simulations. The loading
is continued for five cycles to make sure that the solution has reached a steady state.

We run the simulations separately for all the frequencies of the range,
f = {80, 81, 82, ..., 198, 199, 200} Hz. In addition, the same simulations are re-
peated with different values for the higher-order inertial term d in Eq. (28.2). We
choose the arbitrary values for d as d = {0.0, 0.005, 0.01, 0.015, 0.02} m. Based
on the eigenfrequency identification study in Laudato et al (2020), we expect that
the selected frequency range (80-200 Hz) includes one or more eigenfrequencies of
the structure. Our goal is to determine the behavior of the model in detecting the
eigenfrequencies and also the effect of the value of the higher-order inertia on the
observed eigenfrequency. This study is an effort to acquire an understanding of the
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Fig. 28.1 The pantographic structure (left), and the boundary conditions applied on the
homogenized plate (right)

characterization of the higher-order inertial terms and their role in a process since
the experimental characterization of such inertial terms is not yet resolved.

28.3 Results and Discussion

In the following, the results of the simulations are presented. The solutions of the
numerical analyses are saved in PVD files. For visualization and post-processing
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the results, we utilize the Paraview open-source package (Ahrens et al, 2005). A
python script is generated for post-processing of all the PVD files in Paraview. Each
solution file includes the displacement field for a specific frequency of loading and
a higher-order inertial term. For each case, the so-called gain is extracted in x and y
directions separately. We define the gain-x and gain-y as the maximum displacement
that has happened in the domain B in x and y directions, respectively.

We plot the gain versus the frequency of the dynamic loading. The plotted gain
is normalized with respect to the starting point of the graph therefore each graph
begins from the value 1. Figure 28.2 shows the gain-y for five different values of
the higher-order inertial term d in Eq. (28.2). The first case is d = 0.0 m, which is
equivalent to not considering any higher-order inertia in the model. Two peaks are
visible for each d which are known as the eigenfrequencies of the structure given
by the computations. In fact, in the eigenfrequencies, the gain is expected to go to
infinity but here we see finite peak values which is due to the numerical viscosity as
a matter of the time discretization.

The values of the frequencies of the first and second peaks of the plot in Fig. 28.2,
denoted by f1 and f2, respectively, are compiled in Table 28.1. A noticeable pat-
tern is visible in Fig. 28.2 and Table 28.1: the larger the term d is, the less the
eigenfrequencies are. This meaningful relation can lead to an approach for detecting
the higher-order inertial term experimentally in future studies. Figure 28.3 shows
the gain-x for five different values of the higher-order inertial term d. Compar-
ing Fig. 28.3 with Fig. 28.2, the same pattern is seen for the relation between the
eigenfrequency and the term d.

Fig. 28.2 The gain in y direction versus the frequency of loading for different values of the
higher-order inertial term d in Eq. 28.2
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Table 28.1 The first, f1, and second, f2, eigenfrequencies from Figs. 28.2 and 28.3 and their ratio,
f2/f1

d (m) f1 (Hz) f2 (Hz) f2/f1

0.0 127 156 1.23
0.005 124 153 1.23
0.01 117 145 1.24
0.015 108 133 1.23
0.02 98 120 1.22

The ratio of the second eigenfrequency to the first one (f2/f1) from Figs. 28.2 and
28.3 is reported in Table 28.1. The change in the eigenfrequency ratio is less than 1%
for different values of d. This changemight be due to the numerical discretization.We
consider the hypothesis that the f2/f1 is constant, andwemake a deeper study around
the eigenfrequencies to see if this hypothesis is proved. We repeat the simulations
with a finer step of frequency (0.25 Hz) around the f1 and f2 values. Therefore,
we obtain more precise values for the eigenfrequencies f1 and f2. The results are
presented in Table 28.2.

In Table 28.2, for each d value, the eigenfrequencies are equal in x and y directions
except in some cases that we see minor differences. Moreover, there still exists slight
variation in the f2/f1 ratio. We need to investigate more deeply these two intriguing
aspects, either from a theoretical point of view, or from a numerical one. For example,
wemay choose a finer discretization of time in the simulations, in order to understand
if the peaks appear exactly at same frequencies in x and y directions and if the f2/f1

ratio is constant with respect to d. The equality of eigenfrequencies in x and y
directions could match what we expect, since all the displacement components are
simultaneously affected by the vibrations happening in the structure close to the
eigenfrequencies.

Table 28.2 The first, f1, and second, f2 eigenfrequencies, in x and y directions, with higher
precision, and their ratio, f2/f1

x direction y direction
d (m) f1 (Hz) f2 (Hz) f2/f1 f1 (Hz) f2 (Hz) f2/f1

0.0 126.75 156.50 1.235 126.75 156.50 1.235
0.005 124.00 153.25 1.236 124.25 153.25 1.233
0.01 117.00 144.75 1.237 117.25 144.75 1.234
0.015 107.75 133.50 1.239 107.75 133.25 1.237
0.02 97.50 120.25 1.233 97.75 120.00 1.228
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We should mention that in this study we have not studied the phase shift between
the input and output of the model. For all the frequencies, the gain values are read at
the same time step, i.e. at the peak of the last cycle of loading. The discussion of the
phase shift is left to further studies.

Fig. 28.3 The gain in x direction versus the frequency of loading for different values of the
higher-order inertial term d in Eq. 28.2

28.4 Conclusion

In this work, a macro-scale homogenized model is considered for a metamaterial and
the parameters of the model are identified through an optimization algorithm. Then,
the model is utilized for simulating a dynamic loading on the structure. Moreover,
the effect of adding a higher-order inertial term to the formulation is studied. The
simulations are carried out for a range of frequencies of loading and also for a
number of arbitrary values for the higher-order inertial term. From the results, we
perceive that the larger the value of the higher-order inertial term is assumed, the
lower the eigenfrequencies are seen in the plots. This result sheds light on the topic
of higher-order inertia which still has not been characterized experimentally in the
literature.
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Chapter 29
Structural Analysis of Doubly-Curved Shells
with General Boundary Conditions

Francesco Tornabene, Matteo Viscoti, Rossana Dimitri

Abstract The paper focuses on a bi-dimensional (2D) formulation for the dynamic
and static analysis of arbitrary shaped laminated doubly-curved shells enforced with
general boundary conditions via the Generalized Differential Quadrature (GDQ).
Following the Equivalent Single Layer approach, a 2D theory based on a miscel-
laneous assessment of the displacement field variable is provided, accounting for
different higher order theories. The geometry of the structure is described with a set
of principal coordinates. The fundamental equations are derived from the Hamil-
tonian principle, together with the natural boundary conditions. Unconventional
constraints are assessed by means of in-plane and out-of-plane sets of linear elastic
springs distributed along the shell edges. The accuracy of the formulation is out-
lined by means of a series of validating examples. Doubly-curved shells of variable
thickness and different curvatures enforced with non-conventional boundary con-
ditions are investigated. In particular, mode frequencies and shapes, as well as the
static three-dimensional deflection of the structure, have been calculated employ-
ing different kinematic assumptions. The results have been successfully compared
to predictions by high-computationally demanding Finite Element simulations. The
methodology outlined in this chapter well predicts with a reduced computational
effort both the static and the dynamic response of generally anisotropic laminated
structures embedding all the effects that are usually depicted by 3D formulations.
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29.1 Introduction

In the last years new insights in many engineering fields have been endeavoured,
and even more complex structures have been usually required in disparate applica-
tions (Pilato and Michno, 1994). In this perspective, new issues have found their
way in the scientific debate, namely to the structural assessment of generally-shaped
structures with various geometric features, as well as non conventional mechanical
properties (Vasiliev and Morozov, 2018). It is well-known that doubly-curved shell
structural theories are the most comprehensive modelling strategies for a wide range
of applications (Reddy et al, 1997). Among literature, they are commonly developed
essentially following three-different main approaches: the three-dimensional strategy
(Sokolnikoff et al, 1956), the bi-dimensional Layer-Wisemodel (Li, 2021; Tornabene
et al, 2022), and the bi-dimensional Equivalent Single Layer (ESL) approach (Reddy,
1993; Demasi et al, 2017). With particular reference to ESL, all the geometric, kine-
matic and mechanical parameters are reduced to a 2-manifold located at the middle
thickness of the structure (Tu, 2017). The accuracy of the simulation lies on a proper
selection of the field variables along the normal direction to the middle surface. As
a matter of fact, classical approaches like the First Order Shear Deformation Theory
(FSDT) developed by Reissner (1945) andMindlin (1951), as well as the Third Order
Shear Deformation Theory (TSDT) by Reddy (1984) assume a linear and a cubic
expression for in-plane displacement components, respectively, whereas a constant
out-of-plane one is assessed. It has been shown that such axiomatic assumptions are
very likely to yield erroneous results when innovative and pantographic materials
(Giorgio, 2021; Giorgio et al, 2017) are embedded in the structure employing the
continuum hypothesis (Tornabene et al, 2021b), since lattice elements behave like
a softcore in the lamination sequence (Ganzosch et al, 2017). Actually, significative
warping and stretching phenomena can be seen in the bending deflection, as it has
been shown by dell’Isola et al (2015); Giorgio et al (2021) following both numer-
ical and experimental approaches. Nevertheless, formulations with a higher order
description of the displacement field components have been provided. Moreover,
the definition of the shape function can be done starting from the actual lamination
scheme shear properties that has been adopted in the shell object of analysis (Tessler
et al, 2009) in order to seek the actual shear mechanical behaviour of the structure.

In Wang et al (2021) a comprehensive weak formulation employing a power se-
ries expansion of the kinematic field variables accounts for the static behaviour of
rectangular plates of uncompressive Hookean materials. Another interesting issue
is the assessment of the coupling effects occurring between two adjacent laminae
within an ESL framework, since interlaminar effects are determining during the de-
sign of laminated structures in order to avoid the delamination phenomenon (Gürdal
et al, 1999). Generally speaking, both classical and higher order approaches are not
capable of well predicting the structural response in the interlaminar region as abrupt
variations of stiffnesses occur at the interface between two layers. As a matter of
fact, a layer coupling cannot be properly described unless a significative higher order
power expansion of smooth functions is performed. To solve this issue, the so-called
zigzag functions have been proposed in literature, accounting for a discontinuous
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variation of the field variable. In this way, all these very complex issues can be well
described employing a reduced number of Degrees of Freedom (DOFs). In the work
by Toledano andMurakami (1987) andMurakami (1986) it is shown that this trick al-
lows to catch very complex shear effects occurring in laminated structures, which can
be prominent in many laminated appliances (the interested reader can refer to Whit-
ney, 1969;Whitney and Pagano, 1970). Apart fromfirst pioneeringworks concerning
isotropic and non-homogeneous stacking sequences, several works can be found in
literature where formulations for orthotropic materials have been presented, like that
of Wang and Redekop (2005). On the other hand, there are few works investigating
the problem of laminated structures infilled with generally anisotropic materials,
accounting for all the possible coupling effects between static and kinematic quan-
tities. In Tornabene et al (2011) a bi-dimensional model has been developed for the
dynamic analysis of doubly-curved shells accounting for very innovative materials.
Actually, we mention some research referred to FGM (Tornabene and Reddy, 2013;
Ansari and Darvizeh, 2008) CNTs (Tornabene et al, 2019), honeycomb and lattice
structures (Tornabene et al, 2021a). In particular, it is shown that the employment
of very complex infills within the stacking sequence can dramatically orient both
the local and global structural response of the structure. Moreover, when a suitable
formulation for generally anisotropic materials is provided, disparate homogenized
material syngonies can be easily modelled employing a reduced number of design
parameters since the formulation turns out to be a particular case of the generalized
one. As a matter of fact, when very complex shapes and materials are considered, the
proper selection of the thickness functions set allows to catch with success typically
three-dimensional effects even with a 2D ESL formulation (Tornabene et al, 2021c).

Once the structural model is developed, the accuracy of the simulation is dramati-
cally affected by the numerical assessment of the developed theoretical formulation.
The classical Finite Element Method (FEM) has largely demonstrated to be very
reliable in many applications, due to its high efficiency and stability (Zienkiewicz
et al, 1977). Belonging to the class of the weighted residual numerical technique
(Finlayson and Scriven, 1966), it provides a weak formulation of the differential
problem based on a local a-priori interpolation of the unknown field variable. On
the other hand, no higher order continuity is contemplated between two adjacent
elements. In addition, the discretization of the physical continuum model accounts
for a discrepancy between the designed object shape and that of the computational
model. Besides, the class of spectral collocation methods (Tornabene et al, 2015b)
accounts for an interpolation procedure of the unknown field variable performed
alongside the entire computational domain. Among these, the Generalized Differen-
tial Quadrature (GDQ) Method is the best performing algorithm for the numerical
assessment of structural problems concerning laminated anisotropic doubly-curved
shells. Based on a higher order Lagrange polynomials-based procedure (Tornabene
and Bacciocchi, 2018), it has been applied to a series of doubly-curved structures
of complex shapes and stacking sequences. It has been shown that it can provide
very accurate results with respect to refined model employing a significative reduced
number of DOFs with respect to other numerical techniques (Fazzolari et al, 2021).
Since the GDQ Method accounts for a squared computational domain, when shells
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of arbitrary shape are investigated it is possible to perform a distortion of the ge-
ometry via the implementation of a proper set of blending functions employing a
Non Uniform Rational B-Spline (NURBS) formulation, as extensively adopted in
the Computer Aided Design (CAD) methodology (Piegl, 1991). In the case of struc-
tural problems with singularities (Dimitri et al, 2018), the local version of the GDQ
Method (Tornabene et al, 2016b) has been demonstrated to be an appropriate tool.
We recall some works on fracture mechanics (Dimitri and Tornabene, 2018) and
discontinuities (Dimitri et al, 2016), among others, where a GDQ formulation has
been adopted. Last but not least, this innovative computational model is applied also
for time-stepping analyses (see among others Bellman and Casti, 1971; Tornabene
et al, 2016a). It has been demonstrated that the accuracy of the GDQ numerical tech-
nique comes from the computation of the quadrature weighted coefficients (Shu and
Richards, 1992), as well as the selection of the computational grid (Shu et al, 2001).
In the case of bi-dimensional domains, some considerations should be taken on the
implementation of the natural boundary conditions at the corners (see Shu and Du,
1997b; Brischetto et al, 2017). In the case of structural problems embedding very
complex shapes, sometimes the computational domain should be properly patched
(Viola et al, 2013), therefore the compatibility conditions should be fulfilled between
two adjacent elements as well. As far as the external constraints on bi-dimensional
curved structures is concerned, a general methodology is required for the assessment
of the boundary conditions of the structural problem. The FEM procedure simply
accounts for the limitation of the desired DOFs in a selected set of nodes. In Wang
et al (2018), some cylindrical panels have been considered with a localized clamped
boundary condition. Accordingly, in the work by Shu and Du (1997a) an innovative
method is proposed for the assessment of external elastic constraints by means of a
set of linear elastic springs within the GDQ implementation. In this way it is pos-
sible to assess generalized external constraints, accounting for a clamping only of a
portion of the structure, or providing a smooth continuous variation of the external
bonding in-plane and out-of-plane stiffness.

Generally speaking, when the static performance is studied by means of bi-
dimensional models, the exact three-dimensional structural response is not well
predicted in terms of both kinematic and mechanical quantities due to the ap-
proximating hypothesis hold on the through-the-thickness field variable. For this
reason, a reconstruction of both stresses and strains is generally introduced. In Pat-
ton et al (2021) a stress recovery methodology based on the equilibrium equations
is performed employing a composite trapezoidal rule for the numerical integration
throughout the structure width. In Katili et al (2017) the three-dimensional profiles
of stresses has been recovered employing various procedures from the outcomes of
a Finite Element formulation employing bi-dimensional elements developed for the
analysis of thin and thick plates and shells via the Naghdi shell model (Chapelle and
Bathe, 1998). In particular, the Averaging Method, the Projection Method and the
Superconvergent Patch Recovery have been checked for the continuity assessment of
stresses from one element to the other. In Rah et al (2012) a very accurate method for
the reconstruction of stresses and strains profiles is developed employing solid-shell
elements. On the other hand, in classical Finite Element simulations employing brick
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elements, stresses are calculated at the internal integration points and then they are
extrapolated at the interface between two adjacent elements, which usually coincides
with the interface between two adjacent laminae. On the other hand, in the work by
Tornabene et al (2015a) an innovative recovery procedure has been developed for a
bi-dimensional layerwise simulation held on doubly-curved structures, whereas in
Tornabene et al (2012) the same procedure has been presented in a ESL framework.

In the present Chapter an ESL formulation is presented for the static and the free
vibration analysis of doubly-curved shell structures with variable thickness. The ge-
ometry of the structure is described in terms of principal curvilinear coordinates de-
fined from the geometric properties of the referencemiddle surface.Moreover, a gen-
eralized NURBS-based mapping procedure is implemented so that arbitrary shaped
structures can be taken into account as well. A displacement field-based theory
has been presented, accounting for a unified formulation of each three-dimensional
field variable component. Namely, a higher order polynomial assumption has been
adopted, as well as classical approaches like FDST and TSDT. The fundamental gov-
erning equations, derived from the variational form of the Hamiltonian principle,
are numerically tackled with the GDQ Method, setting a rectangular non-uniform
grid alongside the computational domain. A lamination scheme characterized by
a generic orientation of each lamina is accounted in the model. In the same way,
within each layer a three-dimensional generally anisotropic stiffness matrix has been
implemented. A generalized set of external boundary conditions has been developed,
employing a non-uniform dispersion of linear elastic springs that can be effectively
assessed in both in-plane and out-of-plane components. Moreover, natural external
constraints have been considered too. Despite the formulation is provided for the
dynamic problem, the static formulation eventually comes out by neglecting the
inertial properties of the structure object of analysis. An efficient reconstruction of
the through-the-thickness stress distribution has been considered, accounting for the
exact fulfilment of the compatibility between stresses and applied external loads. A
series of validating examples have been presented, in which mode frequencies and
the corresponding mode shapes have been calculated for structures characterized
by different curvatures and lamination schemes under different external boundary
conditions. The influence of the shell distortion via NURBS curves has been con-
sidered too, accounting for different shapes of the physical domain. After that, the
same structures have been subjected to surface elastic loads, and the deflection of the
shell has been outlined. An efficient reconstruction of the three-dimensional stress
and strain distributions along the three-dimensional solid led to a three-dimensional
assessment of the proposed bi-dimensional static formulation. The results have been
compared to that provided by a refined FEM simulation developed with 20 nodes
brick elements, showing an excellent agreement between predictions from different
approaches. Last but not least, the GDQ formulation accounts for an efficient model
involving a reduced number of DOFs, such that it can be considered as a valid alter-
native to many common commercial software packages for the static and dynamic
analysis of curved and layered structures. The research work is included within the
DiQuMASPAB project (Tornabene et al, 2018), a research software which embeds



596 Tornabene, Viscoti, Dimitri

several GDQ tools for the static and dynamic analysis of shell structures infilled with
innovative laminated materials.

29.2 Geometrical Representation of Shells in Principal
Coordinates

A doubly-curved shell is a three-dimensional structure, whose arbitrary point can be
defined by its position vector R. If we denote with Ox1x2x3 the global coordinate
system of the Euclidean space defined from the unit vectors e1, e2, e3, the following
relation can be assessed (Fig. 29.1)

R (α1, α2, α3) =

3∑
i=1

fi (α1, α2, α3) ei (29.1)

where α1, α2, α3 accounts for the three parameters required for the representa-
tion of the three-dimensional solid. If we introduce the so-called reference surface
r (α1, α2), it is possible to turn Eqn. (29.1) as follows (Tornabene and Bacciocchi,
2018):

R (α1, α2, α3) = r (α1, α2) +
h(α1, α2)

2
zn(α1, α2) (29.2)

Thus, the parametrization of Eqn. (29.1) can be identified with the in-plane principal
coordinates α1, α2 of the reference surface r, whereas the remaining one can be
taken along the thickness of the shell, setting the dimensionless parameter z =
2ζ/h (α1, α2) where α3 = ζ. Actually, it should be noticed that z ∈ [−1, 1]. For
the sake of completeness, a graphic representation of what exerted in Eqn. (29.2)
can be found in Fig. 29.1. A physical significance is provided to the ESL shell
description outlined in Eqn. (29.2) setting (α1, α2) ∈

[
α0

1, α
1
1

]
×
[
α0

2, α
1
2

]
and

ζ ∈ [−h/2, h/2]. Accordingly, the normal unit vector n (α1, α2) can be defined
starting from the partial derivatives of r(α1, α2)with respect to in-plane coordinates,
setting ∂r/∂αi = r,i for i = 1, 2,

n =
r,1 × r,2
|r,1 × r,2| (29.3)

The geometric assessment of the shell according to Eqn. (29.1) is referred to a set
of coordinates taken along the principal parametric lines of r (α1, α2). Accordingly,
the main curvature radii R1, R2 can be computed in each (α1, α2) point of r as
follows:

R i (α1, α2) = −r,i · r,i
r,ii · n

for i = 1, 2 (29.4)

where r,ij = ∂2r/
(
∂αi∂αj

)
for i, j = 1, 2 denotes the second order derivatives

with respect to in-plane coordinates α1, α2. Moreover, the thickness parameter
Hi (α 1, α 2, ζ) for i = 1, 2 accounts for the curvature effects coming into the varia-
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tion of out-of-plane quantities

Hi = 1 +
ζ

Ri
for i = 1, 2 (29.5)

whereHi = 1 for straight structures like rectangular plates. Moreover, Lamè param-
eters A1, A2 of the reference surface r (α1, α2) can be expressed in terms of first
order derivatives r,i for i = 1, 2 according to the following expressions:

A 1 =
√

r,1 · r,1, A 2 =
√

r,2 · r,2 (29.6)

Based on Eqn. (29.2), the shell thickness h (α1, α2) can be varied throughout
the whole physical domain via the introduction of some analytical expressions
φ j (α1, α 2) for j = 1, ..., 4 associated to a set of scaling parameters δj and a
shift δ̄. Eventually, the dimensionless thickness variation ∆̄ (α 1, α 2) can be as-
sessed to this end, being h̄ the reference width of the structure defined directly from
the lamination scheme

h (α1, α2) = h̄∆̄ (α1, α2) = h̄

1 + δ̄ +

4∑
j=1

δjφj (α1, α2)

 (29.7)

As far as the univariate expressions of φj (α1, α2) for j = 1, ..., 4 are concerned,
a dimensionless coordinate ᾱ i is introduced. In this way, thickness univariate ex-
pressions can be written in a consistent way regardless the effective dimensions of
shells

ᾱi =
αi − α0

i

α1
i − α0

i

for i = 1, 2 (29.8)

In the following, some expressions for each φ j (α1, α 2) are provided. Accordingly,
a power and a sinusoidal thickness variation have been considered, setting n j ∈ N,
αjm ∈ [0, 1] and p j ∈ R for j = 1, ..., 4,

φ 1 (α1) =

{
ᾱp 1

1

(sin (π (n1ᾱ1 + α1m)))
p 1

φ 2 (α2) =

{
ᾱp 2

2

(sin (π (n2ᾱ2 + α2m)))
p 2

φ 3 (α1) =

{
(1− ᾱ1)

p 3

(sin (π (n3 (1− ᾱ1) + α3m)))
p 3

φ 4 (α2) =

{
(1− ᾱ2)

p 4

(sin (π (n4 (1− ᾱ2) + α4m)))
p 4

(29.9)

Referring to each point (α1, α2) of the reference surface, the overall thickness h of
the bi-dimensional model can be obtained from the superimposition of all the layers
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of the stacking sequence, whose total number is denoted with l, as follows:

h (α 1, α 2) =

l∑
k=1

h k (α 1, α 2) =

l∑
k=1

(ζ k+1 (α 1, α 2)− ζ k (α 1, α 2)) (29.10)

where [ζk, ζk+1] refers to the definition interval along α3 = ζ direction of the k-th
layer of the stacking sequence according to Eqn. (29.2), setting k = 1, ..., l.

Fig. 29.1 Doubly-curved shell geometry according to the ESL approach. The shell is described
starting from the reference surface position vector r (α1, α2) geometrical features. The distortion
of the physical domain is defined in terms of NURBS curves so that arbitrary shaped surfaces can
be accounted within the formulation. The kinematic field variable is described via the employment
of generalized thickness functions Fαiτ for i = 1, 2, 3 along the shell thickness.

29.3 ESL Assessment of Kinematic Quantities

In the present section the unknown field variable vector U (α1, α2, α3, t) =

[ U1 U2 U3 ]
T referred to each point of the three-dimensional structure is analyzed.

According to the ESL methodology, for each Ui with i = 1, ..., 3 an axiomatic
through-the-thickness distribution is taken so that a bi-dimensional model with 3D
capabilities comes out. In this way, a set of displacement field variables u

(τ)
i is
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introduced for each αi direction and for each τ -th kinematic expansion, together
with a set of thickness functions Fαiτ . Employing a generalized expression of the
field variable, one gets

U1

U2

U3

 =

N+1∑
τ=0


Fα 1
τ 0 0

0 Fα 2
τ 0

0 0 Fα 3
τ



u

(τ)
1

u
(τ)
2

u
(τ)
3

 (29.11)

In a more compact form, Eqn. (29.11) can be written as

U (α 1, α 2, ζ, t) =

N+1∑
τ=0

F τ (ζ) u(τ) (α 1, α 2, t) (29.12)

As can be seen, the employment of the ESL methodology allows to introduce the
unknown variables uτ independently from the thickness coordinate ζ. Actually,
they can be considered the DOFs of the bi-dimensional higher order differential
problem. The employment of the generalized thickness functions in Eqn. (29.11)
provide a generalized formulation of the structural problem, and different analytical
expressions can be chosen, according to the assumption that best fits the three-
dimensional solution, as shown in Fig. 29.1. In the present work, a set of power
polynomial thickness functions has been selected. Moreover, a zigzag function has
been adopted for each αi = α1, α2, α3 so that coupling effects between adjacent
laminae can be simulated

Fα iN+1 (ζ) = (−1)
k
z k = (−1)

k

(
2

ζk+1 − ζk
ζ − ζk+1 + ζk

ζk+1 − ζk

)
for i = 1, 2, 3

(29.13)
Since differentmaximumpower expansion ordersN can be selected, a useful nomen-
clature is introduced in order to identify the displacement field variable selection.
Accordingly, a generic bi-dimensional formulation can be named with EDZ-N ,
where "E" means that the ESL methodology has been followed in the formulation
and "D" tells that the fundamental governing equations have been derived in terms of
the unknown kinematic field. "Z" capital letter is introduced if the kinematic zig-zag
thickness function of Eqn. (29.13) refers to the N + 1-th order of the kinematic ex-
pansion. For instance, the EDZ4 displacement field assumption takes the following
form:

U 1 = u
(0)
1 + ζu

(1)
1 + ζ2u

(2)
1 + ζ3u

(3)
1 + ζ4u

(4)
1 + (−1)

k
z ku

(5)
1

U 2 = u
(0)
2 + ζu

(1)
2 + ζ2u

(2)
2 + ζ3u

(3)
2 + ζ4u

(4)
2 + (−1)

k
z ku

(5)
2

U 3 = u
(0)
3 + ζu

(1)
3 + ζ2u

(2)
3 + ζ3u

(3)
3 + ζ4u

(4)
3 + (−1)

k
z ku

(5)
3

(29.14)

Starting from the ESL assumption of Eqn. (29.11), it is possible to assess the kine-
matic congruence relation for a three-dimensional shell. To this end, we introduce
the kinematic differential operators Dα i

Ω , i = 1, 2, 3 to account for derivatives with
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respect to in-plane coordinates α1, α2. Nevertheless,Dζ accounts for the derivatives
with respect to the ζ outward coordinate

Dα 1

Ω =

d
α 1
11 d

α 1
21 d

α 1
31 d

α 1
41 d

α 1
51 d

α 1
61 d

α 1
71 d

α 1
81 d

α 1
91

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


T

Dα 2

Ω =

 0 0 0 0 0 0 0 0 0

dα 2
12 d

α 2
22 d

α 2
32 d

α 2
42 d

α 2
52 d

α 2
62 d

α 2
72 d

α 2
82 d

α 2
92

0 0 0 0 0 0 0 0 0


T

Dα 3

Ω =

 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

dα 3
13 d

α 3
23 d

α 3
33 d

α 3
43 d

α 3
53 d

α 3
63 d

α 3
73 d

α 3
83 d

α 3
93


T

(29.15)

where quantities dα iji with i = 1, 2, 3 and j = 1, ..., 9 read as follows:

dα1
11 =

1

A1

∂

∂α1
dα2
12 =

1

A 1A 2

∂A 1

∂α2
dα3
13 =

1

R1

dα1
21 =

1

A1A2

∂A2

∂α1
dα2
22 =

1

A 2

∂

∂α2
dα3
23 =

1

R2

dα1
31 = −

1

A 1A2

∂A1

∂α2
dα2
32 =

1

A 1

∂

∂α1
dα3
33 = 0

dα1
41 =

1

A2

∂

∂α2
dα2
42 = −

1

A 1A2

∂A2

∂α1
dα3
43 = 0

dα1
51 = −

1

R1
dα2
52 = 0 dα3

53 =
1

A1

∂

∂α1

dα1
61 = 0 dα2

62 = −
1

R 2
dα3
63 =

1

A2

∂

∂α2

dα1
71 = 1 dα2

72 = 0 dα3
73 = 0

dα1
81 = 0 dα2

82 = 1 dα3
83 = 0

dα1
91 = 0 dα2

92 = 0 dα3
93 = 1

(29.16)

Accordingly, Dζ matrix assumes the following extended form:
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Dζ =



1

H1
0 0 0 0 0 0 0 0

0
1

H2
0 0 0 0 0 0 0

0 0
1

H1

1

H2
0 0 0 0 0

0 0 0 0
1

H1
0

∂

∂ζ
0 0

0 0 0 0 0
1

H2
0

∂

∂ζ
0

0 0 0 0 0 0 0 0
∂

∂ζ


(29.17)

Referring to the previously discussed principal reference system O′α1, α2, ζ (Fig.
29.1), the three-dimensional strain component vector

ε (α1, α2, ζ, t) =
[
ε1 ε2 γ12 γ13 γ23 ε3

]T (29.18)

is introduced. Thus, the kinematic relations can be derived, such that ε can be
expressed in terms of the three-dimensional displacement field U = [ U1 U2 U3 ]

T :

ε = DU = Dζ (Dα 1

Ω + Dα 2

Ω + Dα 3

Ω ) U = Dζ

(
3∑
i=1

Dα i
Ω

)
U (29.19)

If the generalized ESL assessment of the displacement field U of Eqn. (29.11) is
adopted for the computation of the three-dimensional strain component vector ε
according to Eqn. (29.19), a new kinematic array

ε(τ) (α 1, α 2, t) =
[
ε

(τ)
1 ε

(τ)
2 γ

(τ)
1 γ

(τ)
2 γ

(τ)
13 γ

(τ)
23 ω

(τ)
13 ω

(τ)
23 ε

(τ)
3

]T
(29.20)

can be introduced for each τ = 0, ..., N + 1 order of the kinematic expansion, as
follows:

ε =

N+1∑
τ= 0

3∑
i=1

D ζD
α i
Ω F τu

(τ) =

N+1∑
τ= 0

3∑
i=1

Z (τ)α iDα i
Ω u(τ) =

N+1∑
τ= 0

3∑
i=1

Z (τ)α iε(τ)α i

(29.21)
In this way, a higher order expansion for the three-dimensional strain component
vector ε (α1, α2, ζ, t) is assessed. Note that the array Z(τ)αi with αi = α1, α2, α3

accounts for all the derivatives with respect to ζ coordinate. In an expanded form, it
reads as follows:
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Z(τ)α i =



Fα iτ

H1
0 0 0 0 0 0 0 0

0
Fα iτ

H2
0 0 0 0 0 0 0

0 0
Fα iτ

H1

Fα iτ

H2
0 0 0 0 0

0 0 0 0
Fα iτ

H1
0

∂Fα iτ

∂ζ
0 0

0 0 0 0 0
Fα iτ

H2
0

∂Fα iτ

∂ζ
0

0 0 0 0 0 0 0 0
∂Fα iτ

∂ζ



(29.22)

As can be seen from the previous equation, the generalized strain component vector
lying on the reference surface r (α1, α2) can be computed for each τ -th order of the
kinematic expansion and for each αi principal direction according to the following
relation:

ε(τ)αi = Dαi
Ω u(τ) for τ = 0, . . . , N + 1 i = 1, 2, 3 (29.23)

29.4 Generalized Constitutive Equations

Once the generalized displacement field has been assessed in Eqn. (29.11) according
to the generalized ESL methodology, a description of the linear elastic constitutive
behaviour of the entire lamination scheme is set, embedding the mechanical proper-
ties of each generally anisotropic layer. Moreover, a generalized relation should be
derived for each τ -th kinematic expansion order. For a linear elastic anisotropic ma-
terial, the stiffness matrix C(k) should be declared for each k-th layer of the stacking
sequence. Referring to the material reference system provided from the symmetry
axes of the periodic unit cell, the generally anisotropic Hooke’s law can be expressed
as

σ̂(k) = C(k)ε̂(k) ⇔



σ̂
(k)
1

σ̂
(k)
2

τ̂
(k)
12

τ̂
(k)
13

τ̂
(k)
23

σ̂
(k)
3


=



C
(k)
11 C

(k)
12 C

(k)
16 C

(k)
14 C

(k)
15 C

(k)
13

C
(k)
12 C

(k)
22 C

(k)
26 C

(k)
24 C

(k)
25 C

(k)
23

C
(k)
16 C

(k)
26 C

(k)
66 C

(k)
46 C

(k)
56 C

(k)
36

C
(k)
14 C

(k)
24 C

(k)
46 C

(k)
44 C

(k)
45 C

(k)
34

C
(k)
15 C

(k)
25 C

(k)
56 C

(k)
45 C

(k)
55 C

(k)
35

C
(k)
13 C

(k)
23 C

(k)
36 C

(k)
34 C

(k)
35 C

(k)
33





ε̂
(k)
1

ε̂
(k)
2

γ̂
(k)
12

γ̂
(k)
13

γ̂
(k)
23

ε̂
(k)
3


(29.24)

where σ̂(k) = [ σ̂(k)
1 σ̂

(k)
2 τ̂

(k)
12 τ̂

(k)
13 τ̂

(k)
23 σ̂

(k)
3 ]

T and ε̂(k) = [ ε̂(k)1 ε̂
(k)
2 γ̂

(k)
12 γ̂

(k)
13 γ̂

(k)
23 ε̂

(k)
3 ]

T

denote the three-dimensional stress and strain component vector, respectively, com-
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puted with respect to the above discussed material reference system. Since Eqn.
(29.23) is expressed for each k-th layer with respect to the material reference system
of the actual layer, it is useful to turn it to the curvilinear principal reference system
O′α1α2α3. In this perspective, an orthogonal transformation matrix T(k) is intro-
duced accounting for the three eulerian angles which completely define the material
orientation. If we assume αk3 = ζ as happens in most practical applications, only a
single rotation angle θk is required. Accordingly, the rotated stiffness matrix reads
as follows:

Ē(k) = T(k)TC(k)T(k) =



Ē
(k)
11 Ē

(k)
12 Ē

(k)
16 Ē

(k)
14 Ē

(k)
15 Ē

(k)
13

Ē
(k)
12 Ē

(k)
22 Ē

(k)
26 Ē

(k)
24 Ē

(k)
25 Ē

(k)
23

Ē
(k)
16 Ē

(k)
26 Ē

(k)
66 Ē

(k)
46 Ē

(k)
56 Ē

(k)
36

Ē
(k)
14 Ē

(k)
24 Ē

(k)
46 Ē

(k)
44 Ē

(k)
45 Ē

(k)
34

Ē
(k)
15 Ē

(k)
25 Ē

(k)
56 Ē

(k)
45 Ē

(k)
55 Ē

(k)
35

Ē
(k)
13 Ē

(k)
23 Ē

(k)
36 Ē

(k)
34 Ē

(k)
35 Ē

(k)
33


(29.25)

As can be seen, Eqn. (29.25) relates the stress and strain field in the geo-
metric reference system, thus giving σ(k) = [ σ(k)

1 σ
(k)
2 τ

(k)
12 τ

(k)
13 τ

(k)
23 σ

(k)
3 ]

T and
ε(k) = [ ε(k)1 ε

(k)
2 γ

(k)
12 γ

(k)
13 γ

(k)
23 ε

(k)
3 ]

T , respectively. Nevertheless, the symbol Ē(k)
ij

for i, j = 1, ..., 6 accounts for the rotated three-dimensional stiffness coefficients
C̄

(k)
ij , as well as the reduced ones Q̄(k)

ij in the case of plane stress assumption. From
the computation of the elastic strain energy by means of the kinematic assump-
tion of Eqn. (29.11) it is possible to homogenize the stress-strain constitutive re-
lationship so that a single equation is obtained for the entire lamination scheme.
To this purpose, the array of generalized stress resultants S(τ)αi (α1, α2, t) =

[N(τ)αi
1 N

(τ)αi
2 N

(τ)αi
12 N

(τ)αi
21 T

(τ)αi
1 T

(τ)αi
2 P

(τ)αi
1 P

(τ)αi
2 S

(τ)αi
3 ]

T is introduced. Even-
tually, the generalized constitutive relationship can be written in a compact matrix
form for each τ -th expansion order as:

S(τ)αi =

N+1∑
η=0

3∑
j=1

A(τη)αiαjε(η)αj (29.26)

In Eqn. (29.26) the generalized stiffness constants can be computed as follows, setting
Fαiτ = ∂0Fαiτ /∂ζ0 and Fαjη = ∂0F

αj
η /∂ζ0 :

A
(τη)[fg]α iα j
nm (pq) =

l∑
k=1

ζk+1∫
ζk

B̄
(k)
nm

∂fF
α j
η

∂ζf
∂gFα iτ

∂ζg
H1H2

Hp
1H

q
2

dζ for

τ, η = 0, ..., N + 1
n,m = 1, ..., 6
p, q = 0, 1, 2

αi, αj =α1, α2, α3

f, g = 0, 1
(29.27)

It should be noted that the generalized relation at issue has been considered starting
from the stiffness coefficients B̄(k)

nm, for n,m = 1, ..., 6 and k = 1, ..., l, being l the
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total number of layers, accounting for both the three-dimensional rotated constants
C̄

(k)
nm, and the reduced elastic coefficients Ē(k)

nm = Q̄
(k)
nm which are successfully

adopted in the case of displacement field assumptions (29.11) accounting for a plane
stress state. Moreover, if the out-of-plane stretching effect is not contemplated, the
so-called shear correction factor κ (ζ) is introduced

B̄(k)
nm =

{
Ē

(k)
nm

κ (ζ) Ē
(k)
nm

for n,m = 1, 2, 3, 6

for n,m = 4, 5
(29.28)

In the present work, the shear correction factor is set κ = 5/6 accounting for a con-
stant through-the-thickness distribution. Starting from the higher order constitutive
relation of Eqn. (29.26) it is useful to express, in each point of the physical domain,
the generalized stress resultants S(τ)αi , defined for each τ = 0, ..., N + 1, as a
combination of the displacement field vector uαiη for i = 1, 2, 3 and η = 0, ..., N +1
according to the following relation:

S(τ)αi =

N+1∑
η=0

3∑
j=1

A(τη)αiαjD
αj
Ω u(η) =

N+1∑
η=0

3∑
j=1

O(τη)αiαju(η) (29.29)

29.5 External Loads

We discuss, now, about the distributed external loads applied on the top and the bot-
tom surface of the structure, which are geometrically located at ζ = ±h (α1, α2) /2.
From the direct application of the static equivalence principle, an equivalent set
of surface loads are defined for each order of the kinematic expansion, and they
are located on the middle surface of the shell. We start from the computation of
the virtual work δLes of the three-dimensional external loads component vector
q(j) (α1, α2, α3) = [ q(j)1 q

(j)
2 q

(j)
3 ]

T in a variational form δU
(j)
i for i = 1, 2, 3 of the

three dimensional displacement field U(j) components acting at the top (j = 1)
and the bottom (j = 2) surface of the shell. Referring to the curvilinear coordinate
system (α1, α2, ζ), one gets

δL es =

∫
α 1

∫
α 2

 2∑
j=1

(
3∑
i=1

q
(j)
i δU

(j)
i

)
H

(j)
1 H

(j)
2

A 1A 2dα 1dα 2 (29.30)

where j = 1 denotes the geometrical and mechanical quantities calculated at ζ =
h/2, whereas j = 2 identifies the quantities referred to the bottom surface located
at ζ = −h/2. For the sake of conciseness, it is useful to identify the external loads
component vectors applied at the top and the bottom surface of the shell so that
q(1) = q(+) = [ q(+)

1 q
(+)
2 q

(+)
3 ]

T and, q(2) = q(−) = [ q(−)
1 q

(−)
2 q

(−)
3 ]

T respectively.
Remembering the generalized assumption of the displacement field of Eqn. (29.11), a
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vector of external loads, denoted withq(τ) (α1, α2) = [ q(τ)1 q
(τ)
2 q

(τ)
3 ]

T , is introduced
on the reference midsurface r (α1, α2). The computation of the virtual work of
q(τ) accounts, for each τ -th order of the kinematic expansion, for the generalized
displacement field component vector u(τ) introduced in Eqn. (29.11) as follows:

δL is =

∫
α 1

∫
α 2

N+1∑
τ=0

3∑
i=1

q
(τ)
i δu

(τ)
i A 1A 2dα 1dα 2 (29.31)

According to the static equivalence principle, it is

δL es = δL is (29.32)

Starting from the extended exomputation of Eqn. (29.32) by means of Eqns. (29.30)-
(29.31), the following expression of q(τ)

i for i = 1, 2, 3 can be derived

q
(τ)
i =

2∑
j=1

q
(j)
i Fαi(j)τ H

(j)
1 H

(j)
2 for i = 1, 2, 3 (29.33)

being Fαi(j)τ the thickness function referred to the αi = α1, α2, α3 principal direc-
tion according to Eqn. (29.11), evaluated at the top (j = 1) and the bottom (j = 2)
external surfaces.

29.6 Equation of Motion

In this section we focus on the determination of the fundamental relations for the
statics and dynamics of a doubly-curved shell. To this end, a unified expression
of the displacement field is adopted, according to Eqn. (29.12). The well-known
Hamiltonian principle has been employed in its variational form, accounting for
the virtual variation δ of the total elastic strain energy Φ, as well as the inertia
contribution coming from the kinetic energy T of the three-dimensional structure,
and the external load potential δLe. Referring to a generic time interval [t1, t2] of
extremes t1, t2, one gets

δ

t2∫
t1

(T − Φ+ Le) dt = 0 →
t2∫
t1

(δT − δΦ+ δLe) dt = 0 (29.34)

Referring to the three-dimensional solid described by means of the principal
α1, α2, α3 coordinates, from the application of the integration by parts rule, the
kinetic energy of the structure can be expressed in terms of first order time derivative
of the three-dimensional displacement field component vector U = [ U1 U2 U3 ]

T .
For a laminated structure, the following relation can be derived
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δT =

l∑
k=1

ζk+1∫
ζk

∫
α1

∫
α2

ρ(k)
(
δU̇
)T

U̇H 1H 2A 1A 2dα 1dα 2dζ (29.35)

being ζk and ζk+1 the coordinates of the external skins of the k-th lamina of the
stacking sequence, characterized by a density ρ(k). Introducing Eqn. (29.35) into
the general formulation of the Hamiltonian principle (29.34), and applying the inte-
gration by parts rule, the dependence from the three-dimensional second order time
derivative array Ü = [ Ü1 Ü2 Ü3 ]

T can be outlined

t 2∫
t 1

δT dt = −
l∑

k=1

t 2∫
t 1

ζ k+1∫
ζ k

∫
α 1

∫
α 2

ρ(k)(δU)
T
ÜH 1H 2A 1A 2dα 1dα 2dζdt (29.36)

It should be recalled that the previous relation is valid under a syncronous motion
assumption, with zero displacements at the two instants of time t1, t2. Based on the
unified formulation of the displacement field assessed in Eqn. (29.11), the following
expression of T is derived

t 2∫
t 1

δT dt = −
N+1∑
τ=0

t 2∫
t 1

∫
α 1

∫
α 2

(
3∑
i=1

(
N+1∑
η=0

I0(τη)α iα i ü
(η)
i

)
δu

(η)
i

)
A 1A 2dα 1dα 2dt

(29.37)
where the generalized inertial terms are defined for each αi = α1, α2, α3 with
respect to the generic τ -th and η-th kinematic expansion order according to the
following expression:

I0(τη)αiαi =

l∑
k=1

∫ ζk+1

ζk

ρ(k)Fαiτ Fαiη H1H2dζ (29.38)

As far as the elastic strain energy virtual variation δΦ is concerned, we start from
the computation in terms of three-dimensional stress and strain component vectors
σ(k) and ε(k) referred to the geometric reference system O′α1α2ζ. In a compact
notation, it is

δΦ =
l∑

k=1

∫
α 1

∫
α 2

ζ k+1∫
ζ k

δε(k)Tσ(k)A 1A 2H 1H 2dα 1dα 2dζ (29.39)

Starting from the previous relation, the virual variation δΦ of the elastic strain energy
can be expressedwithin the ESL framework taking into account the generalized stress
resultant component vector S(τ)α i (α1, α2, t) and the higher order strain component
vector ε(τ)α i (α1, α2, t) defined for τ = 0, ..., N + 1 and i = 1, 2, 3 according to
the following definition:
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δΦ =

N+1∑
τ=0

3∑
i=1

∫
α 1

∫
α 2

(
δε(τ)α i

)T
S(τ)α iA 1A 2dα 1dα 2 (29.40)

Keeping in mind the virtual work δLe = δLes = δLis related to the external surface
loads (29.32) in an ESL setting, it is possible to perform a time integration with
respect to [t1, t2] interval so that it can be embedded in the Hamiltonian principle of
Eqn. (29.34). One gets∫ t2

t1

δL edt =

N+1∑
τ=0

∫ t2

t1

∫
α 1

∫
α 2

3∑
i=1

q
(τ)
i δu

(τ)
i A 1A 2dα 1dα 2dt (29.41)

Introducing Eqns. (29.37),(29.40)-(29.41) into the general formulation of the Hamil-
tonian principle of Eqn. (29.34), the final form of the dynamic equilibrium equations
is derived. In a compact notation, it is

3∑
i=1

D∗αiΩ S(τ)αi + q(τ) =

N+1∑
η=0

M(τη)ü(η) for τ = 0, ..., N + 1 (29.42)

where M(τη) accounts for the generalized ESL inertial matrix, defined by means of
the generalized inertial coefficients I0(τη)α iα i with i = 1, 2, 3 introduced in Eqn.
(29.38) for each τ, η-th order of the kinematic expansion, as follows:

M(τη) =

I
0(τη)α 1α 1 0 0

0 I0(τη)α 2α 2 0

0 0 I0(τη)α 3α 3

 for τ, η = 0, ..., N + 1

(29.43)
The equilibrium operators D∗α1

Ω ,D∗α2

Ω ,D∗α3

Ω are defined in an expanded form, as

D∗α 1

Ω =

d
∗α 1
11 d∗α 1

12 d∗α 1
13 d∗α 1

14 d∗α 1
15 d∗α 1

16 d∗α 1
17 d∗α 1

18 d∗α 1
19

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


D∗α 2

Ω =

 0 0 0 0 0 0 0 0 0

d∗α 2
21 d∗α 2

22 d∗α 2
23 d∗α 2

24 d∗α 2
25 d∗α 2

26 d∗α 2
27 d∗α 2

28 d∗α 2
29

0 0 0 0 0 0 0 0 0


D∗α 3

Ω =

 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

d∗α 3
31 d∗α 3

32 d∗α 3
33 d∗α 3

34 d∗α 3
35 d∗α 3

36 d∗α 3
37 d∗α 3

38 d∗α 3
39



(29.44)

where the coefficients d∗α iij for i = 1, 2, 3 and j = 1, ..., 9 assume the following
form:
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d
∗α1
11 =

1

A1

∂

∂α1

+
1

A1A2

∂A2

∂α1

d
∗α2
21 = − 1

A1A2

∂A 1

∂α2

d
∗α3
31 = − 1

R 1

d
∗α1
12 = − 1

A1A2

∂A 2

∂α1

d
∗α2
22 =

1

A2

∂

∂α2

+
1

A1A2

∂A1

∂α2

d
∗α3
32 = − 1

R 2

d
∗α1
13 =

1

A1A2

∂A1

∂α2

d
∗α2
23 =

1

A1

∂

∂α1

+
1

A1A2

∂A2

∂α1

d
∗α3
33 = 0

d
∗α1
14 =

1

A2

∂

∂α2

+
1

A1A2

∂A1

∂α2

d
∗α2
24 =

1

A1A2

∂A2

∂α1

d
∗α3
34 = 0

d
∗α1
15 =

1

R 1

d
∗α2
25 = 0 d

∗α3
35 =

1

A1

∂

∂α1

+
1

A1A2

∂A2

∂α1

d
∗α1
16 = 0 d

∗α2
26 =

1

R 2

d
∗α3
36 =

1

A2

∂

∂α2

+
1

A1A2

∂A1

∂α2

d
∗α1
17 = −1 d

∗α2
27 = 0 d

∗α3
37 = 0

d
∗α1
18 = 0 d

∗α2
28 = −1 d

∗α3
38 = 0

d
∗α1
19 = 0 d

∗α2
29 = 0 d

∗α3
39 = −1

(29.45)
Taking into account the dynamic equilibrium relations (29.42) written for each τ =
0, ..., N + 1, and remembering the generalized higher order constitutive relationship
(29.26) in lieu ofS(τ)αi , as well as the definition of ε(τ)αi in terms of the generalized
displacement field description of Eqn. (29.11), the fundamental set of equations can
be derived for each τ -th kinematic expansion order so that they are referred to the
generalized displacement field component vector u(η) for η = 0, ..., N + 1,

N+1∑
η=0

L(τη)u(η) + q(τ) =
N+1∑
η=0

M(τη)ü(η) for τ = 0, ..., N + 1 (29.46)

whereL(τη) denotes the ESL fundamentalmatrix, referred to each τ, η = 0, ..., N+1
as follows:

L(τη) =

3∑
i=1

3∑
j=1

D∗αiΩ A(τη)αiαjD
αj
Ω for τ, η = 0, ..., N + 1 (29.47)

In a more expanded form, one gets

L(τη) =


L

(τη)α1α1

11 L
(τη)α1α2

12 L
(τη)α1α3

13

L
(τη)α2α1

21 L
(τη)α2α2

22 L
(τη)α2α3

23

L
(τη)α3α1

31 L
(τη)α3α2

32 L
(τη)α3α3

33

 for τ, η = 0, ..., N + 1

(29.48)
An extended expression of all the terms in the fundamental matrix L(τη) has been
provided by Tornabene and Bacciocchi (2018), setting τ, η = 0, ..., N + 1. If all
the kinematic expansion orders are taken into account, Eqn. (29.46) is assembled as
follows:

L̃ũ + q̃ = M̃¨̃u (29.49)

where L̃ and M̃ stand for the assembled form of the fundamental and inertial matrix
introduced in Eqn. (29.48) and Eqn. (29.43) for each τ, η = 0, ..., N + 1. In an
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expanded form, they read as follows:

L̃ =



L(00) L(01) · · · L(0(N)) L(0(N+1))

L(10) L(11) · · · L(1(N)) L(1(N+1))

...
...

. . .
...

...

L((N)0) L((N)1) · · · L((N)(N)) L((N)(N+1))

L((N+1)0) L((N+1)1) · · · L((N+1)(N)) L((N+1)(N+1))


(29.50)

and

M̃ =


M(00) M(01) · · · M(0(N)) M(0(N+1))

M(10) M(11) · · · M(1(N)) M(1(N+1))

...
...

. . .
...

...
M((N)0) M((N)1) · · · M((N)(N)) M((N)(N+1))

M((N+1)0) M((N+1)1) · · ·M((N+1)(N)) M((N+1)(N+1))

 (29.51)

On the other hand, in Eqn. (29.49) the assembled vector of the external loads q̃ is
introduced

q̃ =
[
q(0) q(1) · · · q(N) q(N+1)

]T (29.52)

In the same way, the extended array of the generalized displacement field ũ, together
with his second-order time derivative ¨̃u is defined as follows:

ũ =
[
u(0) u(1) · · · u(N) u(N+1)

]T
¨̃u =

[
ũ(0) ũ(1) · · · ũ(N) ũ(N+1)

]T (29.53)

Then, the application of the variational form of the Hamiltonian principle leads to
the assessment of the external constraints enforced on the doubly-curved structure
edges. In particular, the Clamped (C) boundary condition is pursued when all the
components of the generalized displacement field u(τ) for τ = 0, ..., N+1 are equal
to zero

u
(τ)
1 = u

(τ)
2 = u

(τ)
3 = 0 for α1 = αi1 i = 0, 1

u
(τ)
1 = u

(τ)
2 = u

(τ)
3 = 0 for α2 = αi1 i = 0, 1

(29.54)

A Free (F) external constraint is applied to a shell edge when

N
(τ)α1

1 = N
(τ)α2

12 = T
(τ)α3

1 = 0 for α1 = αi1 i = 0, 1

N
(τ)α1

21 = N
(τ)α2

2 = T
(τ)α3

2 = 0 for α2 = αi1 i = 0, 1
(29.55)
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29.7 Isogeometric Mapping of the Physical Domain

We now deal with the determination of a procedure for the mapping of the physical
domain in order to account for doubly-curved shells of arbitrary shape in Eqn.
(29.49).Accordingly, a description of the structural edgeswith respect to the principal
parametric lines α1, α2 is provided, identified with

(
ᾱ1(p), ᾱ2(p)

)
for p = 1, ..., 4.

In the same way, the four corners locations
(
α1(q), α2(q)

)
are provided within the

physical domain too, being q = 1, ..., 4. Then, a set of generalized blending functions
α1 = α1 (ξ1, ξ2) and α2 = α2 (ξ1, ξ2) is introduced (Fig. 29.1)

α 1 (ξ1, ξ2) =
1

2

(
(1− ξ2) ᾱ1(1) (ξ1) + (1 + ξ1) ᾱ1(2) (ξ2) +

+ (1 + ξ2) ᾱ1(3) (ξ1) + (1− ξ1) ᾱ1(4) (ξ2)
)
−

1

4

(
(1− ξ1) (1− ξ2)α1(1)+

+ (1 + ξ1) (1− ξ2)α1(2) + (1 + ξ1) (1 + ξ2)α1(3) + (1− ξ1) (1 + ξ2)α1(4)

)
α 2 (ξ1, ξ2) =

1

2

(
(1− ξ2) ᾱ2(1) (ξ1) + (1 + ξ1) ᾱ2(2) (ξ2) + (1 + ξ2) ᾱ2(3) (ξ1) +

+ (1− ξ1) ᾱ2(4) (ξ2)
)
−

1

4

(
(1− ξ1) (1− ξ2)α2(1) + (1 + ξ1) (1− ξ2)α2(2)+

+ (1 + ξ1) (1 + ξ2)α2(3) + (1− ξ1) (1 + ξ2)α2(4)

)
(29.56)

Starting from the blending transformations, it is possible to assess the first order
derivatives with respect to the in-plane coordinates α1, α2 in terms of the natural
coordinates set ξ1, ξ2, as follows:

∂

∂α1

∂

∂α2

 =


∂ξ1
∂α1

∂ξ2
∂α1

∂ξ1
∂α2

∂ξ2
∂α2



∂

∂ξ1
∂

∂ξ2

 (29.57)

In the same way, the derivative with respect to the natural coordinates ξ1, ξ2 of the
parent element stems from the partial derivatives with respect to α1, α2 as

∂

∂ξ1
∂

∂ξ2

 =


∂α1

∂ξ1

∂α2

∂ξ1
∂α1

∂ξ2

∂α2

∂ξ2




∂

∂α1

∂

∂α2

 = J


∂

∂α1

∂

∂α2

 (29.58)

where J denotes the Jacobian matrix of the transformation. Accordingly, its deter-
minant det (J) can be expressed as

det (J) =
∂α1

∂ξ1

∂α2

∂ξ2
− ∂α2

∂ξ1

∂α1

∂ξ2
(29.59)

The first order derivatives of Eqn. (29.59) with respect to ξ1, ξ2 read as follows
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det (Jξ1) =
∂α1

∂ξ1

∂2α2

∂ξ1 ∂ξ2
− ∂α2

∂ξ1

∂2α1

∂ξ1 ∂ξ2
+
∂α2

∂ξ2

∂2α1

∂ξ2
1

− ∂α1

∂ξ2

∂2α2

∂ξ2
1

det (Jξ2) = −∂α1

∂ξ2

∂2α2

∂ξ1 ∂ξ2
+
∂α2

∂ξ2

∂2α1

∂ξ1 ∂ξ2
− ∂α2

∂ξ1

∂2α1

∂ξ2
2

+
∂α1

∂ξ1

∂2α2

∂ξ2
2

(29.60)

When the transformation of Eqn. (29.56) is an invertible function, it is det (J) 6= 0,
therefore the inverse transformation of Eqn. (29.58) can be performed, leading to the
following expression:

∂

∂α1

∂

∂α2

 = J−1


∂

∂ξ1
∂

∂ξ2

 =


∂ξ1
∂α1

∂ξ2
∂α1

∂ξ1
∂α2

∂ξ2
∂α2



∂

∂ξ1
∂

∂ξ2

 (29.61)

where J−1 can be written in an expanded form as:

J−1 =
1

det (J)


∂α2

∂ξ2
−∂α2

∂ξ1

−∂α1

∂ξ2

∂α1

∂ξ1

 =

[
ξ1,α1

ξ2,α1

ξ1,α2
ξ2,α2

]
(29.62)

Based on Eqns. (29.61)-(29.62), the following definitions are introduced

ξ1,α1
=
∂ξ1
∂α1

=
1

det (J)

∂α2

∂ξ2
,

ξ2,α1
=
∂ξ2
∂α1

= − 1

det (J)

∂α2

∂ξ1
,

ξ1,α2
=
∂ξ1
∂α2

= − 1

det (J)

∂α1

∂ξ2

ξ2,α2
=
∂ξ2
∂α2

=
1

det (J)

∂α1

∂ξ1

(29.63)

In this way all the transformation coefficients can be easily computed in each point
of the distorted physical domain, once the external edges of the blended structure are
provided with respect to the principal coordinates α1, α2. Following a similar pro-
cedure, the second order derivatives can be computed within the mapped geometry
in terms of ξ1, ξ2 natural coordinates, as follows:

∂2

∂α1
2

= ξ21,α1

∂2

∂ξ21
+ ξ22,α1

∂2

∂ξ2
2

+ 2ξ1,α1ξ2,α1

∂2

∂ξ1∂ξ2
+ ξ1,α1α1

∂

∂ξ1
+ ξ2,α1α1

∂

∂ξ2

∂2

∂α2
2

= ξ21,α2

∂2

∂ξ21
+ ξ22,α2

∂2

∂ξ22
+ 2ξ1,α2

ξ2,α2

∂2

∂ξ1∂ξ2
+ ξ1,α2α2

∂

∂ξ1
+ ξ2,α2α2

∂

∂ξ2

∂2

∂α1∂α2
= ξ1,α1

ξ1,α2

∂2

∂ξ21
+ ξ2,α1

ξ2,α2

∂2

∂ξ22
+
(
ξ1,α1

ξ2,α2
+ ξ1,α2

ξ2,α1

) ∂2

∂ξ1∂ξ2
+

+ ξ1,α1α2

∂

∂ξ1
+ ξ2,α1α2

∂

∂ξ2
(29.64)
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In the following, the expressions of the coefficients for second order derivatives
occurring in Eqn. (29.64) are reported.

ξ1,α1α1
=

1

det (J)2

(
∂α2

∂ξ2

∂2α2

∂ξ1 ∂ξ2
−
(
∂α2

∂ξ2

)2 det
(
Jξ1
)

det (J)
− ∂α2

∂ξ1

∂2α2

∂ξ22
+
∂α2

∂ξ1

∂α2

∂ξ2

det
(
Jξ2
)

det (J)

)

ξ1,α2α2
=

1

det (J)2

(
∂α1

∂ξ2

∂2α1

∂ξ1 ∂ξ2
−
(
∂α1

∂ξ2

)2 det
(
Jξ1
)

det (J)
− ∂α1

∂ξ1

∂2α1

∂ξ22
+
∂α1

∂ξ1

∂α1

∂ξ2

det
(
Jξ2
)

det (J)

)

ξ1,α1α2
=

1

det (J)2

(
−∂α2

∂ξ2

∂2α1

∂ξ1 ∂ξ2
+
∂α2

∂ξ2

∂α1

∂ξ2

det
(
Jξ1
)

det (J)
+
∂α2

∂ξ1

∂2α1

∂ξ22
− ∂α2

∂ξ1

∂α1

∂ξ2

det
(
Jξ2
)

det (J)

)

ξ2,α1α1 =
1

det (J)2

(
−∂α2

∂ξ2

∂2α2

∂ξ21
+
∂α2

∂ξ2

∂α2

∂ξ1

det
(
Jξ1
)

det (J)
+
∂α2

∂ξ1

∂2α2

∂ξ1 ∂ξ2
−
(
∂α2

∂ξ1

)2 det
(
Jξ2
)

det (J)

)

ξ2,α2α2
=

1

det (J)2

(
−∂α1

∂ξ2

∂2α1

∂ξ21
+
∂α1

∂ξ2

∂α1

∂ξ1

det
(
Jξ1
)

det (J)
+
∂α1

∂ξ1

∂2α1

∂ξ1 ∂ξ2
−
(
∂α1

∂ξ1

)2 det
(
Jξ2
)

det (J)

)

ξ2,α1α2
=

1

det (J)2

(
−∂α2

∂ξ1

∂2α1

∂ξ1 ∂ξ2
+
∂α1

∂ξ2

∂α1

∂ξ1

det
(
Jξ1
)

det (J)
+
∂α2

∂ξ2

∂2α1

∂ξ21
− ∂α2

∂ξ1

∂α1

∂ξ1

det
(
Jξ2
)

det (J)

)
(29.65)

To define the external boundary conditions on a mapped shell, a local coordi-
nate system is derived starting from the geometrical differential properties of the
curves describing the shell edges. Namely, the orthogonal coordinate set of vec-
tors nn = [nn1 nn2 nn3]

T , n s = [n s1 n s2 n s3]
T and n ζ = [n ζ1 n ζ2 n ζ3]

T

are defined in terms of their cosine directors with respect to the three-dimensional
curvilinear axes α1, α2, α3. Accordingly, the generalized displacement field com-
ponent vector u(τ) should be referred to the local reference system so that

u(τ) =
[
u

(τ)
n u

(τ)
s u

(τ)
ζ

]T
for each τ = 0, ..., N + 1. It should be noted that

nn3 = ns3 = nζ1 = nζ2 = 0 and nζ3 = 1; whereby it isu
(τ)
n

u
(τ)
s

u
(τ)
ζ

 =

nn1 nn2 0

ns1 ns2 0

0 0 1


u

(τ)
1

u
(τ)
2

u
(τ)
3

 (29.66)

Following a similar procedure, generalized stress resultants N (τ)α 1
n , N (τ)α 2

ns and
T

(τ)α 3

ζ defined from the local reference system can be computed as

N (τ)α1
n =N

(τ)α1

1 n2
n1 +N

(τ)α1

2 n2
n2 +N

(τ)α1

12 nn1nn2 +N
(τ)α1

21 nn1nn2

N (τ)α2
ns =N

(τ)α2

1 nn1ns1 +N
(τ)α2

2 nn2ns2 +N
(τ)α2

12 nn1ns2 +N
(τ)α2

21 nn2ns1

T
(τ)α3

ζ =T
(τ)α3

1 nn1 + T
(τ)α3

2 nn2

(29.67)
Employing the relations settled in Eqns. (29.66)-(29.67), Clamped (C) boundary
condition of Eqn. (29.54) for an arbitrarily-shaped domain reads as follows:

u(τ)
n = u(τ)

s = u
(τ)
ζ = 0 for τ = 0, ..., N + 1, at ξ 1 = ±1

u(τ)
n = u(τ)

s = u
(τ)
ζ = 0 for τ = 0, ..., N + 1, at ξ 2 = ±1

(29.68)
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On the other hand, when the blending transformations of Eqn. (29.56) are adopted,
the Free (F) edge, introduced in Eqn. (29.55), is defined in terms ofN (τ)α 1

n ,N (τ)α 2
ns

and T (τ)α 3

ζ ,

N (τ)
n = N (τ)

ns = T
(τ)
ζ = 0 for τ = 0, ..., N + 1, at ξ 1 = ±1

N (τ)
ns = N (τ)

n = T
(τ)
ζ = 0 for τ = 0, ..., N + 1, at ξ 2 = ±1

(29.69)

Note also that the four arbitrary-shaped sides of the distorted physical domain em-
ployed in Eqn. (29.56) are described in terms of NURBS curves. In this context,
a parametrization C (u) of the curve is provided with u ∈ [a, b] and a, b ∈ R.
A weigthed interpolation is defined starting from a proper set of basis functions
Ni,p (u) with respect to n control points Pi for i = 1, ..., n,

C (u) =

n∑
i=0

Ni,p (u)wiPi

n∑
i=0

Ni,p (u)wi

(29.70)

being p the selected order of each Ni,p and wi the weighting coefficients. In the
present Chapter it has been assumed a = 0 and b = 1. Moreover, a knot vector Ω
has been introduced, settingm the number of breakpoints of the curve

Ω =

a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

 (29.71)

A recursive expression has been employed for the determination ofNi,p (u)B-Spline
basis functions

Ni,0 (u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Ni,p (u) =
u− ui

ui+p − ui
Ni,p−1 (u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1 (u)

(29.72)

29.8 Numerical Implementation via GDQ Method

In what follows we provide the numerical assessment of the derived fundamental
governing equations reported in Eqn. (29.46) for each τ, η-th kinematic expansion or-
der. Referring to the parent element described in terms of ξ1, ξ2 physical coordinates,
a bi-dimensional grid composed by IN × IM points is employed. Accordingly, if a
generic bivariate function f (ξ1, ξ2) is introduced, the derivative of the n-th andm-th
order performed along natural coordinates ξ1, ξ2, respectively, forn,m = 0, 1, 2, can
be defined as follows, setting f (ξ 1k, ξ 2l) the values assumed by f at the arbitrary
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point of the computational grid with k = 1, ..., IN and l = 1, ..., IM ,

∂n+mf (ξ 1, ξ 2)

∂ξn1∂ξ
m
2

∣∣∣∣ξ 1 = ξ1i,

ξ 2 = ξ2j

∼=
IN∑
k=1

ς
ξ 1(n)
ik

(
IM∑
l=1

ς
ξ 2(m)
jl f (ξ 1k, ξ 2l)

)
i = 1, 2, ..., IN
j = 1, 2, ..., IM

(29.73)
In other works from literature it has been demonstrated that the best performances
of the GDQ Method in the previous relation are reached for non-uniform discrete
grids. Referring to the bi-dimensional interval [−1, 1] × [−1, 1] described in terms
of natural coordinates, the arbitrary ξrp point of the non-uniform grid employed in
Eqn. (29.73) is located following the well-known Chebyshev-Gauss-Lobatto (CGL)
distribution:

ξrp = − cos

(
p− 1

IP − 1
π

)
, p = 1, ..., IP , r = 1, 2, IP = IN , IM (29.74)

Hereafter, the GDQ weighting coefficients for the numerical implementation of
derivatives are computed employing the well-known Shu’s formula, based on the
properties of the Lagrangian polynomials L. If q ≥ 1 with q ∈ N is assumed, it
gives

ς
ξ r(1)
pv =

L(1)(ξ rp)

(ξ rp−ξ rv)L(1)(ξ rv)
, ς

ξ r(q)
pv = q

(
ς
ξ r(1)
pv ς

ξ r(q−1)
pp − ςξ r(q−1)

pv

ξ rp−ξ rv

)
p 6= v

ς
ξ r(q)
pp = −

N∑
v=1v 6=p

ς
ξ r(q)
pv p = v

(29.75)
When q = 0, we assume that

ςξ r(0)
pv = δ pv =

{
0 for p 6= v
1 for p = v

(29.76)

As far as the numerical integration is concerned, the GDQ algorithm of Eqn. (29.73)
is adopted within the fundamental theorem of integrals so that the Generalized Inte-
gral Quadrature (GIQ) is derived. Accordingly, the integral of a univariate function
f (ζ) reads as

ζk+1∫
ζk

f (ζ) dζ =

IT∑
g=1

(
w(k+1)g − wkg

)
f (ζ g) (29.77)

where wkg and w(k+1)g are the weighting coefficients that can be computed starting
from Eqn. (29.75) following the procedure extensively reported in Tornabene and
Bacciocchi (2018). A CGL discrete grid of IT has been introduced as well, referring
to the interval [-1,1],

ξkg = − cos

(
g − 1

IT − 1
π

)
, k = 1, ..., l, g = 1, ..., IT ξkg ∈ [−1, 1] (29.78)
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In order to assess a discrete grid for the computation of integrals within the interval
[ζ k, ζ k+1] for k = 1, ..., l according to Eqn. (29.77), the following scaling relation
is employed

ζkg =
ζk+1 − ζk

2
(ξkg + 1) + ζk, k = 1, ..., l, g = 1, ..., IT for ξkg ∈ [−1, 1]

(29.79)
When the modal analysis of a generic doubly-curved shell is performed, the fun-
damental set of Eqn. (29.46) should be solved assuming harmonic solutions. In
particular, a separation of spatial and time variables of u(η) (α 1, α 2, t) is performed
according to the following expression:

u(η) (α 1, α 2, t) = U(η) (α 1, α 2) eiωt (29.80)

where U(η) (α 1, α 2) for each η = 0, ..., N + 1 denotes the modal shape vector
associated to the circular frequency ω. Referring to an arbitrary τ = 0, ..., N + 1
kinematic expansion order, the harmonic solution introduced in Eqn. (29.80) can be
derived from Eqn. (29.46) setting q(τ) = 0,

N+1∑
η=0

L(τη)U(η) + ω2
N+1∑
η=0

M(τη)U(η) = 0 for τ = 0, ..., N + 1 (29.81)

In the same way, the fundamental set of equations of Eqn. (29.46) can be employed
to define the differential relations for the statics of a doubly-curved anisotropic
laminated structure under the constant assumption of the generalized displacement
field, namely

u(τ) (α1, α2, t) = u(τ) (α1, α2) (29.82)

such that ü(τ) = 0. In this way, the fundamental set of equations becomes

N+1∑
η=0

L(τη)u(η) + q(τ) = 0 for τ = 0, ..., N + 1 (29.83)

For both the static and the dynamic problem it is possible to assess a DOFs rear-
rangement from the discrete form of Eqns. (29.81)-(29.83). In particular, a distinction
between boundary nodes (b) and inner DOFs (d) is introduced, whose vectors are
denoted as δb and δd. In the same way, the discrete assembled vector of external
loads is split in qb and qd. More specifically, the static case, we will refer to the
following relations:

L̄δ =

[
L̄bb L̄bd
L̄db L̄dd

] [
δb
δd

]
=

[
q b

q d

]
(29.84)

where L̄ is the assembled discrete stiffness matrix. From the displacement field δb,
the condensed form of the discrete system for the static analysis is introduced

δd =
(
L̄dd − L̄ dbL̄

−1
bb L̄ bd

)−1 (
q d − L̄ dbL̄

−1
bb q b

)
(29.85)
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similarly, the fundamental relations (29.46) get into

L̄δ =

[
L̄bb L̄bd
L̄db L̄dd

] [
δb
δd

]
= ω2

[
0 0
0 M̄dd

] [
δb
δd

]
(29.86)

Employing the above-discussed DOFs condensation, it gives(
M̄−1

dd

(
L̄dd − L̄dbL̄

−1
bb L̄bd

)
− ω2I

)
δd = 0 (29.87)

29.9 Equilibrium-Based Recovery Procedure

Once the solution of the differential problem for the linear static analysis is found
according to Eqn. (29.85), the three-dimensional distributions of kinematic and
mechanical quantities can be derived starting from the ESL-based definitions of
generalized strains and stresses. Accordingly, this procedure can lead to erroneous
results if the constitutive relation is only used. Nevertheless, the three-dimensional
governing differential equations can be used as well, since they are always valid for
a doubly-curved structure. In this way, some mechanical quantities provided by the
ESL procedure can be adjusted in order to provide very accurate results.
Taking into account the arbitrary k-th layer of the stacking sequence, for k = 1, ..., l,
for each point of the reference surface a set of IT points is considered along the
ζ thickness direction. Some discrete points

(
α1i, α2j , ζ

(k)
g

)
, are selected from the

whole three-dimensional structure for i = 1, ...IN , j = 1, ...IM and g = 1, ...IT .
Accordingly, the discrete form of the unknown field variable assessment of Eqn.
(29.11) assumes the following form:

U
(k)
(ijg) =

N+1∑
τ=0

F
(k)
τ(g)u

(τ)
(ij) (α1i, α2j) (29.88)

In expanded form, it gives:U
(k)
1(ijg)

U
(k)
2(ijg)

U
(k)
3(ijg)

 =

N+1∑
τ=0

F
α 1(k)
τ(g)

(
ζ
(k)
g

)
0 0

0 F
α 2(k)
τ(g)

(
ζ
(k)
g

)
0

0 0 F
α 3(k)
τ(g)

(
ζ
(k)
g

)

u

(τ)
1(ij)

(α1i, α2j)

u
(τ)
2(ij)

(α1i, α2j)

u
(τ)
3(ij)

(α1i, α2j)


(29.89)

Employing the discrete form of the higher order description of the displacement field
variable, the ESL congruence relations of Eqn. (29.21) turns into

ε
(k)
(ijg) =

N+1∑
τ= 0

3∑
q=1

Z
(kτ)α q
(ijg) ε

(τ)α q
(ij) (29.90)

being
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ε
(k)
(ijg) =

[
ε
(k)

1(ijg)
ε
(k)

2(ijg)
γ
(k)

12(ijg)
γ
(k)

13(ijg)
γ
(k)

23(ijg)
ε
(k)

3(ijg)

]T (29.91)

In this way, the three-dimensional strain component defined in each discrete point(
α 1i, α 2j , ζ

(k)
g

)
selected from the three-dimensional solid, for i = 1, ..., IN ,

j = 1, ..., IM and g = 1, ..., IT for each k-th layer, is expressed in terms of the
generalized higher order strain component ε(τ)α q

(ij) for q = 1, 2 located on the cor-
responding point (α 1i, α 2j) belonging to the reference surface r. Employing the
three-dimensional constitutive relationship (29.4), the in-plane membrane stresses
σ

(k)
1(ijg), σ

(k)
2(ijg), τ

(k)
12(ijg) can be computed in terms of ε(k)

(ijg) together with the ro-
tated stiffness coefficients C̄(k)

λµ(g) with λ, µ = 1, ..., 6 of the k-th layer of the stacking
sequence


σ

(k)
1(ijg)

σ
(k)
2(ijg)

τ
(k)
12(ijg)

 =


C̄

(k)
11(g) C̄

(k)
12(g) C̄

(k)
16(g) C̄

(k)
14(g) C̄

(k)
15(g) C̄

(k)
13(g)

C̄
(k)
12(g) C̄

(k)
22(g) C̄

(k)
26(g) C̄

(k)
24(g) C̄

(k)
25(g) C̄

(k)
23(g)

C̄
(k)
16(g) C̄

(k)
26(g) C̄

(k)
66(g) C̄

(k)
46(g) C̄

(k)
56 C̄

(k)
36





ε
(k)
1(ijg)

ε
(k)
2(ijg)

γ
(k)
12(ijg)

γ
(k)
13(ijg)

γ
(k)
23(ijg)

ε
(k)
3(ijg)


(29.92)

On the other hand, it is not feasible to follow a simular procedure based on the
constitutive relationship (29.4) for the computation of the out-of-plane stresses
τ

(k)
13(ijg), τ

(k)
23(ijg), σ

(k)
3(ijg). Actually, the equilibriumequations for a three-dimensional

doubly-curved solid described in terms of curvilinear principal coordinatesα 1, α 2, ζ
are adopted to this purpose in each k-th layer of the stacking sequence

q 11 0 0

0 q 22 0

0 0 q 33



τ

(k)
13

τ
(k)
23

σ
(k)
3

 =

a
(k)

b(k)

c(k)

 (29.93)

being
q 11 =

∂

∂ζ
+

(
2

R 1 + ζ
+

1

R 2 + ζ

)
q 22 =

∂

∂ζ
+

(
1

R 1 + ζ
+

2

R 2 + ζ

)
q 33 =

∂

∂ζ
+

(
1

R 1 + ζ
+

1

R 2 + ζ

) (29.94)
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a(k) =−
1

A 1 (1 + ζ/R 1 )

∂σ
(k)
1

∂α 1
+

σ
(k)
2 − σ

(k)
1

A 1A 2 (1 + ζ/R 2 )

∂A 2

∂α 1
+

−
1

A 2 (1 + ζ/R 2 )

∂τ
(k)
12

∂α 2
−

2τ
(k)
12

A 1A 2 (1 + ζ/R 1 )

∂A 1

∂α 2

b(k) =−
1

A 2 (1 + ζ/R 2 )

∂σ
(k)
2

∂α 2
+

σ
(k)
1 − σ

(k)
2

A 1A 2 (1 + ζ/R 1 )

∂A 1

∂α 2
+

−
1

A 1 (1 + ζ/R 1 )

∂τ
(k)
12

∂α 1
−

2τ
(k)
12

A 1A 2 (1 + ζ/R 2 )

∂A 2

∂α 1

c(k) =−
1

A 1 (1 + ζ/R 1 )

∂τ
(k)
13

∂α 1
−

τ
(k)
13

A 1A 2 (1 + ζ/R 2 )

∂A 2

∂α 1
+

−
1

A 2 (1 + ζ/R 2 )

∂τ
(k)
23

∂α 2
−

τ
(k)
23

A 1A 2 (1 + ζ/R 1 )

∂A 1

∂α 2
+

σ
(k)
1

R 1 + ζ
+

σ
(k)
2

R 2 + ζ
(29.95)

Starting from the membrane stresses calculated by means of the discrete constitutive
relation (29.92), the out-of-plane three-dimensional stresses can be derived fromEqn.
(29.93). Thus, the first order derivatives of σ(k)

1 , σ
(k)
2 , τ

(k)
12 with respect to α1, α2 are

calculated in discrete form by means of Eqn. (29.73) for each
(
αi, αj , ζ

(k)
g

)
,

σ
(k)
1,1(ijg) =

∂σ
(k)
1

∂α 1

∣∣∣∣∣
(ijg)

∼=
IN∑
q=1

ς
α 1(1)
iq σ

(k)
1(qjg)

σ
(k)
2,2(ijg) =

∂σ
(k)
2

∂α 2

∣∣∣∣∣
(ijg)

∼=
IM∑
q=1

ς
α 2(1)
jq σ

(k)
2(qjg)

τ
(k)
12,1(ijg) =

∂τ
(k)
12

∂α 1

∣∣∣∣∣
(ijg)

∼=
IN∑
q=1

ς
α 1(1)
iq τ

(k)
12(qjg)

τ
(k)
12,2(ijg) =

∂τ
(k)
12

∂α 2

∣∣∣∣∣
(ijg)

∼=
IM∑
q=1

ς
α 2(1)
jq τ

(k)
12(qjg)

(29.96)

Once the discrete form of three-dimensional balance relations (29.93) is derived by
means of the GDQ procedure, we can solve the problem with a proper enforcement
of the natural equilibrium boundary conditions. Remembering that the relations
at issue have been described within each k-th layer of the stacking sequence, the
stress compatibility conditions between the discrete points

(
α1i, α2j , ζ

(k)
IT

)
and(

α1i, α2j , ζ
(k+1)
1

)
for each k = 1, ..., l − 1 should be fulfilled

τ̃
(k)
13(ijIT ) = τ̃

(k+1)
13(ij1)

τ̃
(k)
23(ijIT ) = τ̃

(k+1)
23(ij1)

for
i = 1, ..., IN

j = 1, ..., IM

k = 1, ..., l − 1

(29.97)
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Referring to the first layer (k = 1), the out-of-plane shear stresses τ (1)
13(ij1), τ

(1)
23(ij1)

for each discrete computational point, should balance the external loads q(−)
r(ij) =

q r(ij) (−h/2) with r = 1, 2 applied to the bottom surface (ζ = −h/2) of the
structure along αr principal direction

τ̃
(1)
13(ij1) = q

(−)
1(ij)

τ̃
(1)
23(ij1) = q

(−)
2(ij)

(29.98)

On the other hand, the boundary conditions referred to the in-plane external surface
loads q(+)

1(ij), q
(+)
2(ij) enforced at the top surface of the shell (ζ = +h/2) at each

(αi, αj) point, are embedded in the model observing that the solution in terms of
τ̃

(k)
13 , τ̃

(k)
23 of the first two three-dimensional balance relations (29.93) with boundary

constraints (29.97)-(29.98) is defined. Therefore, the actual value τ (k)
13 , τ

(k)
23 can be

easily derived setting a new index s = kg. In this way, for each (α i, α j) discrete
point of the reference surface two arrays are introduced, namely τ̃ 13, τ̃ 23,

τ̃13 =
[
τ̃
(1)
13(ij1)

· · · τ̃ (1)
13(ijIT )

τ̃
(k)
13(ij1)

· · · τ̃ (k)
13(ijIT )

τ̃
(l)
13(ij1)

· · · τ̃ (l)
13(ijIT )

]T
τ̃23 =

[
τ̃
(1)
23(ij1)

· · · τ̃ (1)
23(ijIT )

τ̃
(k)
23(ij1)

· · · τ̃ (k)
23(ijIT )

τ̃
(l)
23(ij1)

· · · τ̃ (l)
23(ijIT )

]T (29.99)

Accordingly, the adjusted out-of-plane shear stresses act as follows:

τ13(ijs) = τ̃13(ijs) +

(
ζ s +

h(ij)

2

)
q

(+)
1(ij) − τ̃13(ijIL)

h(ij)

τ23(ijs) = τ̃23(ijs) +

(
ζ s +

h(ij)

2

)
q

(+)
2(ij) − τ̃23(ijIL)

h(ij)

for
i = 1, ..., IN
j = 1, ..., IM
s = 1, ..., IL

(29.100)
being h(ij) = h(αi, αj) and q

(+)
r(ij) = q r(ij) (ζ = +h/2) for r = 1, 2 and

s = 1, ..., IL = lIT .
Once the adjusted shear stresses τk13, τ

k
23 fork = 1, ..., l have been computed through-

out the entire shell thickness, they can be employed in the third equilibrium relation
of Eqn. (29.93) to determine the out-of-plane normal stress σk3 for k = 1, ..., l.
As a premise, the first order derivative of τk13, τ

k
23 with respect to α1, α2 principal

directions are computed by means of the GDQMethod (29.73), setting g = 1, ..., IT ,

∂τ
(k)
13

∂α 1

∣∣∣∣∣
(ijg)

∼=
IN∑
q=1

ς
α 1(1)
iq τ

(k)
13(qjg)

∂τ
(k)
23

∂α 2

∣∣∣∣∣
(ijg)

∼=
IM∑
q=1

ς
α 2(1)
jq τ

(k)
23(qjg)

(29.101)
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Besides, normal stress compatibility conditions between two generic adjacent lami-
nae k and (k + 1), for k = 1, ..., l − 1 act as follows:

σ̃
(k)
3(ijIT ) = σ̃

(k+1)
3(ij1)

(29.102)

Referring to each point
(
α1ij , α2ij , ζ

(k)
1

)
of the bottom side of the shell, it is

σ̃
(1)
3(ij1) = q

(−)
3(ij) = q3(ij1) (ζ = −h/2) (29.103)

Following a similar procedure of Eqn. (29.100), the array σ̃3 is introduced

σ̃3 =
[
σ̃

(1)
3(ij1) · · · σ̃

(1)
3(ijIT ) σ̃

(k)
3(ij1) · · · σ̃

(k)
3(ijIT ) σ̃

(l)
3(ij1) · · · σ̃

(l)
3(ijIT )

]T
(29.104)

The corrected values for the out-of-plane normal stress σ3ijs are obtained for each
(αi, αj , ζs) discrete point from a linear rotation of σ̃3 components according to the
following relation:

σ3(ijs) = σ̃ 3(ijs) +

(
ζ s +

h(ij)

2

)
q

(+)
3(ij) − σ̃ 3(ijIL)

h(ij)

(29.105)

where i = 1, ...IN , j = 1, ..., IM and s = 1, ..., IL = lIT .
We now focus to the adjustement of the through-the-thickness profiles of out-of-plane
strains,which are conveniently arranged in the array x(k) =

[
γ
(k)

13(ijg)
γ
(k)

23(ijg)
,ε

(k)

3(ijg)

]T
for k = 1, ...l. Referring to a generic k-th layer, a linear system can be determined
starting from the three-dimensional generally anisotropic Hooke’s law reported in
Eqn. (29.4) for each

(
αi, αj , ζ

(k)
g

)
discrete point of the k-th layer

A(k)x(k) = b(k) (29.106)

where

A(k) =


C̄

(k)
44(g) C̄

(k)
45(g) C̄

(k)
34(g)

C̄
(k)
45(g) C̄

(k)
55(g) C̄

(k)
35(g)

C̄
(k)
34(g) C̄

(k)
35(g) C̄

(k)
33(g)



b(k) =


τ

(k)
13(ijg) − C̄

(k)
14(g)ε

(k)
1(ijg) − C̄

(k)
24(g)ε

(k)
2(ijg) − C̄

(k)
46(g)γ

(k)
12(ijg)

τ
(k)
23(ijg) − C̄

(k)
15(g)ε

(k)
1(ijg) − C̄

(k)
25(g)ε

(k)
2(ijg) − C̄

(k)
56(g)γ

(k)
12(ijg)

σ
(k)
3(ijg) − C̄

(k)
13(g)ε

(k)
1(ijg) − C̄

(k)
23(g)ε

(k)
2(ijg) − C̄

(k)
36(g)γ

(k)
12(ijg)


(29.107)

Since det A(k) 6= 0, the linear system introduced in Eqn. (29.106) provides a unique
solution that can be computed as
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x(k) =
(
A(k)

)−1

b(k) (29.108)

In extended form, each component of x(k) reads as follows:

γ
(k)
13(ijg) =

1

∆(k)

(
C̄

(k)
33(g)C̄

(k)
55(g) − C̄

(k)2
35(g)

)(
τ

(k)
13(ijg) − C̄

(k)
14(g)ε

(k)
1(ijg) − C̄

(k)
24(g)ε

(k)
2(ijg) − C̄

(k)
46(g)γ

(k)
12(ijg)

)
+

+
1

∆(k)

(
C̄

(k)
34(g)C̄

(k)
35(g) − C̄

(k)
33(g)C̄

(k)
45(g)

)(
τ

(k)
23(ijg) − C̄

(k)
15(g)ε

(k)
1(ijg) − C̄

(k)
25(g)ε

(k)
2(ijg) − C̄

(k)
56(g)γ

(k)
12(ijg)

)
+

+
1

∆(k)

(
C̄

(k)
35(g)C̄

(k)
45(g) − C̄

(k)
34(g)C̄

(k)
55(g)

)(
σ

(k)
3(ijg) − C̄

(k)
13(g)ε

(k)
1(ijg) − C̄

(k)
23(g)ε

(k)
2(ijg) − C̄

(k)
36(g)γ

(k)
12(ijg)

)
γ

(k)
23(ijg) =

1

∆(k)

(
C̄

(k)
34(g)C̄

(k)
35(g) − C̄

(k)
33(g)C̄

(k)
45(g)

)(
τ

(k)
13(ijg) − C̄

(k)
14(g)ε

(k)
1(ijg) − C̄

(k)
24(g)ε

(k)
2(ijg) − C̄

(k)
46(g)γ

(k)
12(ijg)

)
+

+
1

∆(k)

(
C̄

(k)
33(g)C̄

(k)
44(g) − C̄

(k)2
34(g)

)(
τ

(k)
23(ijg) − C̄

(k)
15(g)ε

(k)
1(ijg) − C̄

(k)
25(g)ε

(k)
2(ijg) − C̄

(k)
56(g)γ

(k)
12(ijg)

)
+

+
1

∆(k)

(
C̄

(k)
34(g)C̄

(k)
45(g) − C̄

(k)
35(g)C̄

(k)
44(g)

)(
σ

(k)
3(ijg) − C̄

(k)
13(g)ε

(k)
1(ijg) − C̄

(k)
23(g)ε

(k)
2(ijg) − C̄

(k)
36(g)γ

(k)
12(ijg)

)
ε

(k)
3(ijg) =

1

∆(k)

(
C̄

(k)
35(g)C̄

(k)
45(g) − C̄

(k)
34(g)C̄

(k)
55(g)

)(
τ

(k)
13(ijg) − C̄

(k)
14(g)ε

(k)
1(ijg) − C̄

(k)
24(g)ε

(k)
2(ijg) − C̄

(k)
46(g)γ

(k)
12(ijg)

)
+

+
1

∆(k)

(
C̄

(k)
34(g)C̄

(k)
45(g) − C̄

(k)
35(g)C̄

(k)
44(g)

)(
τ

(k)
23(ijg) − C̄

(k)
15(g)ε

(k)
1(ijg) − C̄

(k)
25(g)ε

(k)
2(ijg) − C̄

(k)
56(g)γ

(k)
12(ijg)

)
+

+
1

∆(k)

(
C̄

(k)
44(g)C̄

(k)
55(g) − C̄

(k)2
45(g)

)(
σ

(k)
3(ijg) − C̄

(k)
13(g)ε

(k)
1(ijg) − C̄

(k)
23(g)ε

(k)
2(ijg) − C̄

(k)
36(g)γ

(k)
12(ijg)

)
(29.109)

being

∆(k) = det A(k) = C̄
(k)
33(g)C̄

(k)
44(g)C̄

(k)
55(g) + 2C̄

(k)
34(g)C̄

(k)
35(g)C̄

(k)
45(g)+

− C̄(k)
44(g)C̄

(k)2
35(g) − C̄

(k)
33(g)C̄

(k)2
45(g) − C̄

(k)
55(g)C̄

(k)2
34(g)

(29.110)

29.10 General Boundary Conditions

In the previous section the fundamental set of equations has been derived from the
Hamiltonian principle in a variational form, together with the static and kinematic
boundary conditions. Accordingly, they have been derived within the ESL approach
accounting for the generalized stress resultants and displacement field variable act-
ing on the shell reference surface r (α1, α2). We recall that the vector S(τ)αi with
αi = α1, α2, α3 and τ = 0, ..., N + 1 has been determined in Eqn. (29.26) from a
numerical through-the-thickness integration of the stresses dispersion. Referring to
a generic edge of an arbitrarily-shaped domain, the three-dimensional stress compo-
nent vector σ̄ (α 1, α 2, ζ) = [σ̄1 σ̄2 τ̄12 τ̄13 τ̄23 σ̄3]

T is introduced. General bound-
ary conditions can be enforced on the doubly-curved shell structure if σ̄ (α 1, α 2, ζ)
components are considered within the ESL approach in terms of generalized stress
resultants. Referring to the points of the physical domain located at α 1 = αs1 with
s = 0, 1 it gives, setting α 2 ∈

[
α0

2, α
1
2

]
,
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N̄

(τ)α1

1

N̄
(τ)α2

12

T̄
(τ)α3

1

 =

l∑
k=1

ζk+1∫
ζk


σ̄1 0 0

0 τ̄12 0

0 0 τ̄13



Fα1
τ

Fα2
τ

Fα3
τ

 λ̄H2dζ for τ = 0, ..., N + 1

(29.111)
Following a similar procedure, the generalized stress resultants N̄ (τ)α1

21 , N̄
(τ)α2

2 , T̄
(τ)α3

2

acting at α 1 ∈
[
α0

1, α
1
1

]
with α 2 = αs2 for s = 0, 1 can be defined as

N̄
(τ)α1

21

N̄
(τ)α2

2

T̄
(τ)α3

2

 =

l∑
k=1

ζk+1∫
ζk


τ̄12 0 0

0 σ̄2 0

0 0 τ̄23



Fα1
τ

Fα2
τ

Fα3
τ

 λ̄H1dζ for τ = 0, ..., N + 1

(29.112)
whose expressions account for a through-the-thickness dispersion of stresses. To
this purpose, a univariate parameter λ̄ = λ̄ (ζ) has been introduced. In this way, a

constant
(
λ̄ = 1

)
, linear

(
λ̄ = 2ζ

h

)
or parabolic

(
λ̄ = 1−

(
2ζ
h

)2
)
variation along

the outward normal unit direction n has been implemented.
In order to provide an in-plane assessment of the external constraints along the

shell edges, the dimensionless coordinates ξ̄, ξ̃ ∈ [0, 1] are introduced, according to
the following definitions:

ξ̄ =
α r − α0

r

α1
r − α0

r

, ξ̃ =
α1
r − α r

α1
r − α0

r

= 1− ξ̄ for r = 1, 2 (29.113)

Nevertheless, two univariate expressions in terms of ξ̄, ξ̃ have been considered.
Accordingly, a Double - Weibull (D) distribution has been implemented, letting p be
a power exponent and ξ̄m, ξ̃m ∈ [0, 1] the position parameters

f (ξ) = 1− e
−

 ξ̄

ξ̄m

p
+ e

−

 ξ̃

ξ̃m


p

(29.114)

Based on a Super Elliptic (S) function it is

f (ξ) = e
−

∣∣∣∣∣∣
ξ̄ − ξ̄m
ξ̃m

∣∣∣∣∣∣
p

(29.115)

where ξ̄m ∈ [0, 1] is the position parameter, whereas ξ̃m ∈ [0, 1] is a shape factor.
For a proper assessment of a generalized set of external constraints, it is useful to
associate the boundary stress component vector to a three-dimensional dispersion
of linear elastic springs acting along the three principal directions of the shell
α1, α2, α3. Accordingly, the linear elastic springs stiffness is denoted with k(k)αmj

if ,
activated by the three-dimensional displacement field componentUi with i = 1, 2, 3.
Nevertheless, the springs at issue are distributed along the edge located at αmj , with
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m = 0, 1 and j = 1, 2. Referring to the shell sides located at α1 = αm1 with
α 2 ∈

[
α0

2, α
1
2

]
, the following relations are valid

σ̄
(k)
1 (αm1 , α 2, ζ) = −k(k)αm1

1f f (αm1 , α 2)U 1 (αm1 , α 2, ζ)

τ̄
(k)
12 (αm1 , α 2, ζ) = −k(k)αm1

2f f (αm1 , α 2)U 2 (αm1 , α 2, ζ)

τ̄
(k)
13 (αm1 , α 2, ζ) = −k(k)αm1

3f f (αm1 , α 2)U 3 (αm1 , α 2, ζ)

for m = 0, 1 (29.116)

In the same way, stresses τ̄ (k)
12 , σ̄

(k)
2 , τ̄

(k)
23 act at α 1 ∈

[
α0

1, α
1
1

]
, letting α 2 = αm2 ,

τ̄
(k)
12 (α 1, α

m
2 , ζ) = −k(k)αm2

1f f (α 1, α
m
2 )U 1 (α 1, α

m
2 , ζ)

σ̄
(k)
2 (α 1, α

m
2 , ζ) = −k(k)αm2

2f f (α 1, α
m
2 )U 2 (α 1, α

m
2 , ζ)

τ̄
(k)
23 (α 1, α

m
2 , ζ) = −k(k)αm2

3f f (α 1, α
m
2 )U 3 (α 1, α

m
2 , ζ)

for m = 0, 1 (29.117)

Starting from the higher order ESL assumption for the displacement field of Eqn.
(29.11), Eqn. (29.116) becomes as follows:

σ̄
(k)
1 (αm1 , α 2, ζ) = −k(k)αm1

1f f (αm1 , α 2)

N+1∑
η=0

Fα 1
η (ζ)u

(η)
1 (αm1 , α 2)

τ̄
(k)
12 (αm1 , α 2, ζ) = −k(k)αm1

2f f (αm1 , α 2)

N+1∑
η=0

Fα 2
η (ζ)u

(η)
2 (αm1 , α 2)

τ̄
(k)
13 (αm1 , α 2, ζ) = −k(k)αm1

3f f (αm1 , α 2)

N+1∑
η=0

Fα 3
η (ζ)u

(η)
3 (αm1 , α 2)

for m = 0, 1

(29.118)
On the other hand, Eqn. (29.117) applied at α 2 = αm2 comes into the following
relations:

τ̄
(k)
12 (α 1, α

m
2 , ζ) = −k(k)αm2

1f f (α 1, α
m
2 )

N+1∑
η=0

Fα 1
η (ζ)u

(η)
1 (α 1, α

m
2 )

σ̄
(k)
2 (α 1, α

m
2 , ζ) = −k(k)αm2

2f f (α 1, α
m
2 )

N+1∑
η=0

Fα 2
η (ζ)u

(η)
2 (α 1, α

m
2 )

τ̄
(k)
23 (α 1, α

m
2 , ζ) = −k(k)αm2

3f f (α 1, α
m
2 )

N+1∑
η=0

Fα 3
η (ζ)u

(η)
3 (α 1, α

m
2 )

for m = 0, 1

(29.119)
Thus, the three-dimensional stresses acting at the boundaries of the structure can
be expressed in terms of the generalized displacement field component vector. They
can be generally distributed on both in-plane and out-of-plane directions, leading
to the definition of a three-dimensional set of external constraints even though a
bi-dimensional model is developed.

Rearranging Eqns. (29.118)-(29.119), it is useful to introduce a new set of fun-
damental coefficients Lfb(τη)α i

i(p)αmn
for each τ, η = 0, ..., N + 1, setting n, p = 1, 2,
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m = 0, 1 and i = 1, 2, 3,

L
fb(τη)α i
i(p)αmn

=

l∑
k=1

ζ k+1∫
ζ k

k
(k)αmn
if Fα iη Fα iτ H pdζ (29.120)

Eqn. (29.118) can be also expressed in a unified manner as follows:
N̄

(τ)α1

1

N̄
(τ)α2

12

T̄
(τ)α3

1

 = −
N+1∑
η=0


L
fb(τη)α 1

1(2)αm1
0 0

0 L
fb(τη)α 2

2(2)αm1
0

0 0 L
fb(τη)α 2

3(2)αm1



u

(η)
1

u
(η)
2

u
(η)
3

 (29.121)

In the same way, the generalized boundary stresses defined in Eqn. (29.119) can be
defined as

N̄
(τ)α1

21

N̄
(τ)α2

2

T̄
(τ)α3

2

 = −
N+1∑
η=0


L
fb(τη)α 1

1(1)αm2
0 0

0 L
fb(τη)α 2

2(1)αm2
0

0 0 L
fb(τη)α 3

3(1)αm2



u

(η)
1

u
(η)
2

u
(η)
3

 (29.122)

29.11 Applications and Results

The proposed formulation is here applied to investigate the static and modal be-
haviour of different structural members. The attention is focused on different ge-
ometric properties, involving positive, zero and negative curvatures. The physical
domain is described in terms of principal coordinates, and an isogeometric mapping
is considered by means of the blending functions in Eqn. (29.56). Different material
syngonies are employed, setting different numbers of layers and material symme-
try planes. Moreover, each lamina can feature a general orientation. Accordingly,
different kinds of layers are modeled, namely isotropic, orthotropic and generally
anisotropic materials. All the material properties are provided from the built-in
database of the DiQuMASPAB software, see Tornabene et al (2018). In particular,
to the first class belong Steel

(
E = 2.10 · 1011 Pa, ν = 0.3, ρ = 7800 kg/m3

)
and

the Zirconia material
(
E = 1.68 · 1011 Pa, ν = 0.3, ρ = 5700 kg/m3

)
. In addition,

two different orthotropic composite materials are considered in the analyses, whose
mechanical behaviour has been implemented in terms of the engineering constants.
Accordingly, the graphite-epoxy

(
ρ = 1450 kg/m3

)
mechanical behaviour are re-

ported below

E1 = 1.379 · 1011 Pa, G12 = 7.10 · 109 Pa, ν12 = 0.30

E2 = 8.960 · 109 Pa, G13 = 7.10 · 109 Pa, ν13 = 0.30

E3 = 8.960 · 109 Pa, G23 = 6.21 · 109 Pa, ν23 = 0.49



29 Structural Analysis of Doubly-Curved Shells with General Boundary Conditions 625

The glass-epoxy
(
ρ = 1900 kg/m3

)
material properties are, thus, collected as

E1 = 5.38 · 1010 Pa, G12 = 8.96 · 109 Pa, ν12 = 0.25

E2 = 1.79 · 1010 Pa, G13 = 8.96 · 109 Pa, ν13 = 0.25

E3 = 1.79 · 1010 Pa, G23 = 3.45 · 109 Pa, ν23 = 0.34

Moreover, two examples of generally anisotropic continuum are considered through-
out the simulations, namely the trigonal material

(
ρ = 2649 kg/m3

)
and the triclinic

material
(
ρ = 7750 kg/m3

)
. Their stiffness matrices have been expressed with re-

spect to the material reference system, following the notation adopted in Eqn. (29.4).
The first one reads as follows:

C(k) =


86.74 6.99 0 0 −17.91 11.91
6.99 86.74 0 0 17.91 11.91

0 0 39.88 −17.91 0 0
0 0 −17.91 57.94 0 0

−17.91 17.91 0 0 57.94 0
11.91 11.91 0 0 0 107.20

 GPa

Accordingly, the triclinic material stiffness constants are collected

C(k) =


98.84 53.92 0.03 1.05 −0.1 50.78
53.92 99.19 0.03 0.55 −0.18 50.87
0.03 0.03 22.55 −0.04 0.25 0.02
1.05 0.55 −0.04 21.1 0.07 1.03
−0.1 −0.18 0.25 0.07 21.14 −0.18
50.78 50.87 0.02 1.03 −0.18 87.23

 GPa (29.123)

The first set of analyses focuses on a rectangular plate of constant thickness under
different external constrains. A central triclinic core has been considered, covered by
two external sheets of orthotropic graphite-epoxy. All useful information regarding
the assessment of external constraints can be found in Fig. 29.2.

A constant out-of-plane profile of linear elastic springs has been modelled in all
cases, whereas the employment of the Super Elliptic distribution of Eqn. (29.115)
has allowed to partially clamp a single edge of the structure. The ESL analysis has
been conductedwith a CGL grid characterized by IN = IM = 37. Actually, different
higher order theories have been employed according to Eqn. (29.11). Moreover, the
contribution of the generalized zigzag function has been checked. The reference
solution for the validation of results has been obtained from a 3D FEM model
composed by 242445 DOFs.

The second case study consists of a doubly-curved structure belonging to the
class of shells with positive curvature. Namely, a parabolic paraboloid of arbitrary
shape has been investigated (Fig. 29.3). It has been provided with a bivariate sinu-
soidal thickness variation so that the central part of the mapped physical domain is
characterized by the maximum stiffness and width. As visible in Fig. 29.3, the map-
ping of the physical domain can be obtained starting from both concave and convex
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NURBS curves. The central core is characterized by a non-homogeneous isotropic
layer, made of zirconia and steel. Besides, two outer layers of triclinic material have
been modelled. A GDQ model with IN = IM = 37 has been developed according
to the present formulation employing higher order theories, here validated against a
3D FEM simulation characterized by 930810 DOFs.

A similar mapping of the physical domain has been considered for an arbitrarily-
shaped hyperbolic hyperboloid, whose features are reported in Fig. 29.4. The shell
at issue is obtained from a translation on a parabolic shape over another parabola
of different concavity. A sinusoidal thickness variation has been considered, but a
constant shift turns the central part of the structure to be the thinnest part of the entire
shell. The lamination scheme is characterized by three generally-oriented layers, two
trigonal external sheets and a central isotropic region made of zirconia. The ESL
approach has been built with a CGL computational grid discretized by 37 points for
each direction, whereas the 3D FEM simulation is developed with brick elements,
leading to a refined model of 188826 DOFs.

Next example consists of a truncated cone characterized by a rhombic squared
mapping, with geometric properties as reported in Fig. 29.5, together with the
lamination scheme characteristics and the distorted edges dataset. The stacking
sequence consists of two layers of orthotropic composite materials, namely graphite-
epoxy and glass-epoxy, and a lamina of triclinic material. A sinusoidal thickness
variation is considered in this case. The last case study refers to a catenoid (Fig. 29.6)
of variable thicknessmade by two external laminae of generally anisotropicmaterials,
and a central layer of orthotropic material singony. The main issue related to the
present example is the blending assessment of the shell from the parametrization
with physical coordinates. Accordingly, four circular NURBS arches with the same
concaviy have been considered, such that the structured CGL computational grid
IN = IM = 37 developed for the GDQ model has required an extensive distortion
of the physical domain.

The numerical simulations have been organized as follows: a free vibration anal-
ysis is performed, first, for each structural member under different boundary condi-
tions. Ten mode frequencies have been calculated with the proposed formulation em-
ploying different higher order theories. Then, for the rectangular plate, the parabolic
paraboloid and the catenoid a linear static analysis has been conducted. Neverthe-
less, the through-the-thickness displacement field assumption is identified with the
notation introduced in the previous sections. In particular, in the case of unmapped
rectangular plate, the parabolic paraboloid and hyperbolic paraboloid have been
modelled based on a 3D finite elements whose results are here considered as refer-
ence solutions for validation purposes. The truncated cone and the arbitrary-shaped
cone have been investigated via a generalized higher order ESL approach.
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Fig. 29.2 Geometric and mechanical features of a rectangular plate of constant thickness and
generally anisotropic lamination scheme. Two external skins of generally oriented orthotropic
graphite-epoxy are considered, with a central layer of triclinic material. The structure is studied in
both its static and dynamic behaviour setting different generalized external constraints.
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Fig. 29.3 Geometric and mechanical features of a parabolic paraboloid with a variable thickness
and general lamination scheme. The structure is mapped with a generalized algorithm based on a
NURBS description of the edges in the physical domain. Two external skins of generally oriented
triclinic material are considered, with a central non-homogeneous core made of two isotropic
materials.
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Fig. 29.4 Geometric and mechanical features of a hyperbolic paraboloid with a variable thickness
and general lamination scheme. The structureis mapped with a generalized algorithm based on a
NURBS description of the edges in the physical domain. Two external skins of generally oriented
trigonal material are considered, with a central isotropic core made of a zirconia layer.
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Fig. 29.5 Geometric and mechanical features of an arbitrary shaped truncated cone with a variable
thickness and general lamination scheme. The structure is mapped with a generalized algorithm
based on a NURBS description of the edges in the physical domain. Two external skins of generally
oriented orthotropic materials are considered, with a central triclinic layer.
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Fig. 29.6 Geometric and mechanical features of an arbitrary shaped catenoid with a variable
thickness and general lamination scheme. The structure is mapped with a generalized algorithm
based on a NURBS description of the edges in the physical domain. Two external skins of generally
oriented triclinic and trigonal materials are considered, with a central glass epoxy core modelled as
an orthotropic continuum medium.
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29.11.1 Free Vibration Analysis

The mode frequencies and mode shapes are now computed for each selected struc-
ture, both based on the proposed ESL formulation and 3D FEM approach.
As far as the unmapped rectangular plate is concerned, the first ten mode frequencies
are reported in Table 29.1 for all boundary conditions. In Fig. 29.7 we also report
the first nine mode shapes of the rectangular plate calculated by means of the GDQ
Method employing the EDZ4 displacement field assumption. Accordingly, the ex-
ternal constraint identified with

(
FBKSSSFC

)
has been considered. For the first mode

shape a limited displacement can be observed near the partially free edge of the
structure. From the second eigenvector on, the region at issue is even more interested
by vibration deflections, coming into a non-conventional modal deformation. Refer-
ring to the natural frequencies reported in Table 29.1, the GDQ solution employing
higher order theories best fits the 3D FEM outcomes. In particular, for the first case,
the employment of a fourth order kinematic expansion (N = 4) yields a perfect
alignment between different approaches also for higher modes. The second and the
third external constraint configurations are characterized by two parallel edges (E-W)
fixed at half length. On the other hand, for the second case also the North (N) edge is
constrained. For both cases, the GDQ approach provide the same level of accuracy,
showing a mean discrepancy from 3D FEM of about 1%.

The second set of simulations, reported in Table 29.2, is performed on a hyper-
bolic paraboloid under three different generalized boundary conditions. The first
configuration employed the Double - Weibull distribution for the assessment of the
external constraints. The dispersion parameters have been selected so that only four
corners of the structure are clamped. In this case, the EDZ4 displacement field
assumption is required for a proper computation of both lower and higher natural
frequencies of the structure, as provided by the 3D FEM model. This means that a
coupling between stretching and warping effects occurs within each lamina, together
with a zigzag phenomenon between two adjacent layers. Lower order theories, as
well as classical approaches (FSDT and TSDT) do not provide a perfect alignment
for all the frequency ranges. In Fig. 29.8 we show the first nine mode shapes for the
selected case, along with the fixed points of the structure, as well as the asymmetry
of the deflection due to the anisotropy of the lamination scheme. As far as the second
configuration is concerned, the employment of the Super Elliptic distribution has
been adopted so that a quarter of the East (E) and West (W) edges of the mapped
hyperbolic paraboloid are blocked. Since an abrupt variation of the boundary spring
stiffness should be modelled, the power parameter has been chosen for p = 1000.
Also for this case, a perfect alignment between higher order ESL theories and the
3D FEM outcomes can be noticed for both lower and higher modes.
The last simulation performed on the mapped hyperbolic hyperboloid has been
provided with conventional (FFCF) external constraints, so that the validity of the
formulation is checked even for common configurations. Accordingly, a cantilever
assessment of the structure has been considered for the present doubly-curved struc-
ture. In this case, the peculiarity of the lamination scheme required a higher order
assumption of the displacement field, as the classical FSDT approach leads to rel-
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Table 29.1 Mode frequencies of a rectangular plate enforced with general boundary conditions
employing different higher order theories.

Rectangular Plate
Mode
[Hz] 3D FEM FSDT FSDTZ TSDT TSDTZ ED1 EDZ1 ED2 EDZ2 ED3 EDZ3 ED4 EDZ4

DOFs 242445 7350 110225 14700 18375 7350 11025 11025 14700 14700 18375 18375 22050(
FBK

SSSFC
)

1 75.642 75.370 75.486 75.383 75.292 73.929 82.693 75.532 75.494 75.689 75.588 75.631 75.534
2 101.709 100.574 100.811 100.679 100.498 98.175 108.964 100.757 100.691 101.050 100.858 100.973 100.778
3 159.592 155.682 156.222 155.986 155.581 151.782 167.045 155.828 155.687 156.506 156.084 156.381 155.973
4 202.392 201.902 202.567 202.133 201.678 198.041 221.028 202.137 201.972 202.961 202.483 202.763 202.293
5 218.481 211.347 212.265 211.766 211.140 206.907 228.546 211.504 211.301 212.623 211.967 212.428 211.781
6 249.980 244.850 245.954 245.438 244.602 238.103 262.348 244.903 244.619 246.268 245.413 246.034 245.181
7 271.630 269.469 270.593 270.108 269.257 262.475 289.706 269.507 269.212 270.899 270.022 270.654 269.784
8 337.023 331.616 333.295 332.632 331.247 322.249 349.274 331.340 330.859 333.467 332.048 333.174 331.775
9 370.648 368.508 370.456 369.719 368.219 359.228 395.999 368.273 367.774 370.698 369.182 370.322 368.811
10 388.488 387.467 389.606 388.421 387.011 380.084 422.500 387.390 386.927 389.974 388.530 389.507 388.078

Boundary Springs:
Super Elliptic distribution (ξ̄m = 1, ξ̃m = 0.5, p = 1000)

k
(k)ξ11
1f = 1 · 1021 Pa/m, k(k)ξ

1
1

2f = 1 · 1021 Pa/m, k(k)ξ
1
1

3f = 1 · 1021 Pa/m(
BK

SSSFBK
SSSBK

SSS
)

1 52.571 54.613 54.958 54.816 54.619 52.787 57.502 54.605 54.557 54.973 54.755 54.926 54.711
2 72.665 72.805 72.947 72.846 72.748 71.373 79.689 72.946 72.907 73.124 73.016 73.065 72.960
3 94.549 95.076 95.300 95.168 94.990 92.323 101.192 95.145 95.080 95.429 95.242 95.369 95.180
4 146.012 148.943 149.580 149.322 148.779 145.527 156.971 148.899 148.713 149.728 149.171 149.602 149.058
5 166.167 169.266 169.938 169.616 169.107 164.076 176.763 169.249 169.077 170.071 169.543 169.932 169.404
6 182.768 186.914 187.963 187.557 186.721 181.797 197.342 186.668 186.409 187.987 187.148 187.817 186.990
7 204.224 204.502 205.208 204.730 204.212 199.900 222.046 204.574 204.389 205.462 204.922 205.266 204.734
8 227.903 229.102 229.924 229.520 228.909 222.997 246.725 229.105 228.901 230.132 229.499 229.947 229.320
9 270.478 271.571 272.586 272.253 271.304 264.698 284.184 271.295 270.953 272.625 271.663 272.426 271.466
10 292.852 293.721 294.923 294.363 293.393 285.465 313.824 293.482 293.150 295.003 294.013 294.741 293.761

Boundary Springs:
Super Elliptic distribution (ξ̄m = 1, ξ̃m = 0.5, p = 1000)

k
(k)ξ01
1f = k

(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
1

2f = k
(k)ξ02
2f = k

(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
1

3f = k
(k)ξ02
3f = k

(k)ξ12
3f = 1 · 1021 Pa/m(

BK
SSSFBK

SSSF
)

1 18.458 19.164 19.240 19.217 19.170 18.462 19.625 19.162 19.154 19.248 19.197 19.242 19.192
2 40.695 41.616 41.827 41.785 41.661 40.016 42.952 41.582 41.555 41.814 41.684 41.799 41.672
3 71.219 71.440 71.563 71.469 71.385 70.196 78.378 71.589 71.553 71.743 71.652 71.684 71.593
4 89.348 89.647 89.806 89.683 89.554 87.902 96.428 89.664 89.623 89.876 89.734 89.825 89.688
5 101.102 102.693 103.021 102.882 102.653 99.923 108.448 102.670 102.597 103.064 102.826 103.002 102.769
6 148.433 150.670 151.096 150.834 150.429 146.679 157.876 150.479 150.333 151.063 150.650 150.951 150.545
7 166.148 169.186 169.824 169.435 168.880 164.133 175.213 168.973 168.784 169.806 169.236 169.661 169.101
8 199.764 200.297 200.835 200.477 200.099 196.340 217.774 200.237 200.099 200.896 200.509 200.735 200.356
9 205.929 206.912 207.555 207.175 206.694 202.862 225.110 206.888 206.725 207.697 207.196 207.519 207.030
10 221.906 222.944 223.624 223.192 222.648 215.805 237.908 222.763 222.577 223.643 223.074 223.475 222.918

Boundary Springs:
Super Elliptic distribution (ξ̄m = 1, ξ̃m = 0.5, p = 1000)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m

Lamination Scheme:
(0/30/45), h̄1 = h̄3 = 0.02, h̄2 = 0.03m
Materials Sequence: 1st layer graphite-epoxy, 2nd layer triclinic material, 3rd layer graphite-epoxy
Computational Issues: CGL bi-dimensional computational grid with IN = IM = 37 discrete points
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Fig. 29.7 First nine mode shapes of a rectangular plate enforced with general boundary conditions
calculated by means of the ESL formulation via the GDQ Method. The employment of the higher
order assumption of the displacement field allows to properly describe the deflection of the
structure for each mode, accounting for the through-the-thickness warping and stretching effects
coming from the lamination scheme. The areas colored with blue are characterized by minimum
displacements magnitude. The maximum deflection has been highlighted with red instead.

atively erroneous natural frequencies with respect to 3D FEM. Looking at the first
natural frequency, the EDZ4 approach has revealed to be capable of well predicting
the 3D FEM frequency with a precision of 0.01 Hz.
We now present the results of the free vibration analysis for the generally-constrained
mapped parabolic paraboloid with variable thickness. Three different arrangements
of the structure have been studied, involving two non conventional boundary condi-
tions and a (CFCF) configuration. The first ten mode frequencies are listed in Table
29.3 together with the generalized external constraints. A sistematic analysis has
been performed by employing various higher order theories as proposed before. The(
BK
SSSB

K
SSSFF

)
boundary condition accounts for the clamping of two different edges

of the structure, namely West (W) and South (S). The results have been compared to
predictions from a 3D FEM model, with a great accuracy of results even for lower
order assumptions. Besides, the first ten mode shapes are essentially characterized
by a bending behaviour. On the other hand, the warping and coupling effects are
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Table 29.2 Mode frequencies of an hyperbolic paraboloid enforced with general boundary
conditions employing various higher order theories.

Hyperbolic Paraboloid
Mode
[Hz] 3D FEM FSDT FSDTZ TSDT TSDTZ ED1 EDZ1 ED2 EDZ2 ED3 EDZ3 ED4 EDZ4

DOFs 2962260 7350 110225 14700 18375 7350 11025 11025 14700 14700 18375 18375 22050(
BK

DDDBK
DDDBK

DDDBK
DDD
)

1 106.793 108.824 108.601 106.705 106.554 107.505 108.764 107.116 105.956 107.122 106.866 106.846 106.622
2 301.836 305.973 305.284 300.830 300.393 304.208 309.008 303.188 300.661 303.114 302.376 302.122 301.618
3 348.882 357.390 356.020 350.518 349.947 349.002 356.444 352.763 348.288 351.828 350.796 351.151 350.143
4 359.522 365.396 364.838 359.855 359.048 362.862 368.729 362.382 359.251 362.137 361.059 360.942 360.252
5 418.548 427.332 426.615 419.755 418.395 423.896 429.243 421.832 417.926 421.454 419.652 420.295 419.240
6 449.226 452.598 450.750 447.083 446.120 440.862 453.952 452.885 447.606 450.974 448.951 450.438 448.713
7 486.617 490.384 488.901 484.378 483.627 477.201 491.180 488.586 483.086 486.982 485.363 486.167 484.670
8 489.079 492.745 490.767 486.944 485.947 479.504 493.252 492.282 486.587 490.418 488.403 489.841 488.057
9 581.650 590.076 588.448 582.028 580.970 574.587 589.911 586.920 579.458 584.894 582.668 584.014 582.044
10 614.159 627.665 625.696 617.119 616.049 617.466 630.386 621.959 615.336 620.443 618.480 618.980 617.416

Boundary Springs:
Double - Weibull distribution (ξ̄m = ξ̃m = 0.0025, p = 20)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m(

BK
SSSBK

SSSBK
SSSBK

SSS
)

1 500.369 511.225 508.840 502.247 501.304 505.672 514.413 506.817 501.596 505.443 503.998 503.999 502.860
2 545.860 559.921 557.334 551.218 550.029 551.035 560.692 555.965 549.479 554.168 552.373 553.038 551.209
3 643.635 656.515 654.213 647.755 646.520 638.854 656.545 653.050 645.427 650.701 648.224 649.942 647.556
4 646.508 660.575 657.251 651.249 649.436 642.328 658.500 657.663 648.479 653.789 650.861 652.877 650.529
5 711.494 726.263 722.724 715.348 713.707 713.908 725.706 721.030 712.217 718.601 716.090 717.492 714.983
6 758.888 773.803 770.217 762.806 761.205 756.987 773.463 768.792 759.736 766.201 763.580 764.975 762.606
7 783.808 800.599 796.965 789.978 788.481 781.911 800.639 797.222 787.201 793.767 791.016 792.524 789.794
8 798.964 822.327 819.546 808.187 806.640 814.208 828.601 815.631 807.264 813.720 811.516 811.182 809.532
9 835.187 849.766 846.475 837.117 835.830 829.786 852.050 845.597 834.864 841.864 839.137 840.265 837.604
10 885.723 909.547 906.768 894.875 893.082 895.748 912.807 901.753 891.612 899.693 896.971 897.550 895.268

Boundary Springs:
Super Elliptic distribution (ξ̄m = 1, ξ̃m = 0.25, p = 1000)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m

(FFCF)
1 23.725 24.152 24.027 23.628 23.757 23.810 24.248 23.900 23.572 23.883 24.056 23.722 23.720
2 39.465 41.128 40.922 39.804 39.583 40.988 40.804 39.843 39.339 39.801 39.547 39.681 39.707
3 103.071 105.772 105.181 103.076 102.634 104.945 105.938 103.776 102.658 103.426 102.853 103.234 102.881
4 151.874 154.571 153.823 152.013 152.034 151.696 155.488 153.597 151.782 153.098 152.958 152.583 152.336
5 276.084 281.669 280.794 276.912 276.233 277.358 283.235 278.811 275.987 278.214 277.217 277.577 276.829
6 310.490 317.801 316.449 311.170 310.427 315.093 319.937 313.408 310.496 312.838 311.719 311.910 311.303
7 472.480 479.486 477.880 473.940 473.109 462.830 478.643 478.025 471.608 475.707 473.789 475.335 473.503
8 551.882 561.807 559.949 553.124 552.267 554.358 566.984 557.818 552.727 556.766 555.424 555.065 553.740
9 584.307 596.849 595.274 586.618 585.308 587.784 599.415 590.245 584.231 589.118 586.936 587.939 586.300
10 597.510 610.857 608.790 598.170 597.068 602.206 613.062 602.243 595.910 601.017 599.130 599.583 598.221

Lamination Scheme:
(45/0/70), h̄1 = h̄3 = 0.005, h̄2 = 0.008m
Materials Sequence: 1st layer trigonal material, 2nd layer zirconia, 3rd layer trigonal material
Computational Issues: CGL bi-dimensional computational grid with IN = IM = 37 discrete points



636 Tornabene, Viscoti, Dimitri

Fig. 29.8 First nine mode shapes of a mapped hyperbolic paraboloid of variable thickness enforced
with general boundary conditions calculated by means of the ESL formulation via the GDQ
Method. The employment of the higher order assumption of the displacement field allows to
properly describe the deflection of the structure for each mode, accounting for the
through-the-thickness warping and stretching effects coming from the lamination scheme. The
areas colored with blue are characterized by minimum displacements magnitude. The maximum
deflection has been highlighted with red instead.

limited, but always present, as clearly visible from mode shapes in Fig. 29.9. As far
as the second layup is concerned, the Super Elliptic analytical expression of Eqn.
(29.115) has been employed so that a quarter of the East (E) and West (W) sides of
the doubly-curved shell gets fixed. Also in this case, a very good agreement between
GDQ and 3D FEM approaches can be noticed. The results show a clear bending of
the structure during the modal deflection, since even lower order displacement field
assumptions predict quite well the free vibration response. In the last investigation,
the same edges of the paraboloid (E-W) have been completely clamped. In this case,
the best agreement can be found with the ED4 field variable configuration (N = 4).
The employment of the zigzag function within Eqn. (29.11) induces a little discrep-
ancy with respect to the reference finite element solution for both lower and higher
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modes. On the other hand, lower order theories like the FSDT and the TSDT kine-
matic assumptions do not show the same level of accuracy of higher order theories,
expecially for the first four modes.

Table 29.3 Mode frequencies of a parabolic paraboloid enforced with general boundary conditions
employing various higher order theories.

Parabolic Paraboloid
Mode
[Hz] 3D FEM FSDT FSDTZ TSDT TSDTZ ED1 EDZ1 ED2 EDZ2 ED3 EDZ3 ED4 EDZ4

DOFs 930810 7350 110225 14700 18375 7350 11025 11025 14700 14700 18375 18375 22050(
BK

SSSBK
SSSFF

)
1 86.001 86.195 86.298 86.267 86.262 83.548 89.020 86.687 86.665 86.523 86.516 87.720 87.857
2 111.499 111.589 111.727 111.691 111.685 109.618 110.092 111.943 111.914 111.881 111.866 112.728 112.826
3 175.841 178.105 178.346 178.282 178.274 171.514 167.020 178.325 178.260 178.747 178.707 178.748 178.668
4 202.198 202.754 202.951 202.864 202.858 196.609 182.768 202.786 202.743 203.078 203.042 202.788 202.714
5 268.918 268.822 269.397 269.295 269.273 266.335 255.280 268.822 268.731 269.615 269.538 268.495 268.334
6 328.673 331.314 332.241 332.068 332.035 324.996 318.081 331.636 331.472 332.774 332.616 331.756 331.583
7 343.885 348.796 350.297 350.180 350.124 344.056 358.835 349.428 349.297 351.081 350.925 350.800 350.722
8 404.321 411.102 412.541 412.420 412.368 391.217 427.651 412.995 412.807 413.828 413.654 413.770 413.657
9 438.558 439.081 440.309 440.161 440.115 431.497 444.834 440.200 439.989 441.115 440.953 442.061 442.033
10 483.522 483.949 484.640 484.402 484.373 461.677 494.432 484.607 484.374 485.041 484.852 485.419 485.309

Boundary Springs:
Super Elliptic distribution (ξ̄m = 0 (W), ξ̄m = 1 (S), ξ̃m = 0.53, p = 1000)

k
(k)ξ01
1f = 1 · 1021 Pa/m, k(k)ξ

0
1

2f = 1 · 1021 Pa/m, k(k)ξ
0
1

3f = 1 · 1021 Pa/m

k
(k)ξ02
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = 1 · 1021 Pa/m, k(k)ξ
0
2

3f = 1 · 1021 Pa/m(
BK

SSSCBK
SSSF

)
1 63.543 64.72259 64.909 64.882 64.877 64.404 67.262 64.717 64.695 65.076 65.059 64.925 64.888
2 75.229 76.75496 76.891 76.876 76.870 71.877 78.310 77.004 76.980 77.118 77.127 76.863 76.795
3 159.343 160.5996 160.889 160.818 160.811 159.363 164.704 160.829 160.792 161.097 161.063 161.163 161.151
4 182.497 185.0347 185.687 185.605 185.580 183.410 188.946 185.463 185.397 185.944 185.895 185.996 185.968
5 213.368 214.9603 215.370 215.237 215.223 210.834 222.860 215.288 215.230 215.696 215.630 215.624 215.602
6 336.569 339.0331 339.872 339.727 339.697 329.727 353.213 339.595 339.468 340.350 340.244 340.052 339.934
7 361.366 363.064 363.939 363.678 363.648 354.827 386.241 363.328 363.121 364.517 364.355 364.541 364.428
8 385.468 389.2896 390.332 390.149 390.114 377.055 404.575 389.583 389.383 391.022 390.881 390.926 390.790
9 463.153 468.0446 469.216 469.053 469.014 451.597 486.304 469.029 468.873 470.172 470.052 470.261 470.175
10 469.721 472.754 473.837 473.683 473.649 452.254 490.034 473.136 472.987 474.115 473.964 474.197 474.131

Boundary Springs:
Super Elliptic distribution (ξ̄m = 1 ξ̃m = 0.25, p = 1000)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m

(CFCF)
1 296.274 294.705 295.377 295.245 295.219 289.921 317.904 295.624 295.451 296.243 296.079 296.100 295.992
2 370.090 368.9118 369.570 369.418 369.393 359.850 387.195 369.673 369.529 370.197 370.065 370.105 370.011
3 428.102 426.3081 427.096 426.960 426.933 389.099 442.974 427.548 427.392 428.051 427.911 427.947 427.850
4 448.421 446.6566 447.389 447.243 447.219 408.337 460.731 447.759 447.616 448.174 448.047 448.077 447.990
5 549.193 549.147 549.320 549.116 549.109 498.638 563.556 549.541 549.420 549.380 549.278 549.313 549.250
6 580.704 579.7162 580.827 580.586 580.543 546.737 612.570 580.784 580.502 581.656 581.405 581.476 581.314
7 590.313 587.9078 589.082 588.877 588.830 567.415 615.824 589.636 589.409 590.535 590.330 590.392 590.248
8 632.400 629.2459 630.715 630.453 630.395 591.277 668.318 631.882 631.585 632.861 632.585 632.664 632.480
9 658.097 657.6485 658.369 658.024 657.993 614.353 697.867 658.526 658.220 658.905 658.629 658.762 658.579
10 728.586 726.7233 728.735 728.345 728.264 691.962 742.991 728.456 728.001 730.161 729.757 729.932 729.661

Lamination Scheme:
(30/0/0/70), h̄1 = h̄4 = 0.01, h̄2 = h̄3 = 0.005m
Materials Sequence: 1st layer triclinic material, 2nd layer zirconia, 3rd layer steel, 4th layer triclinic material
Computational Issues: CGL bi-dimensional computational grid with IN = IM = 37 discrete points
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Fig. 29.9 First nine mode shapes of a mapped parabolic paraboloid of variable thickness enforced
by general boundary conditions, as computed by the ESL formulation and GDQ Method. The
employment of the higher order assumption of the displacement field allows to describe the
deflection of the structure for each mode, accounting for the through-the-thickness warping and
stretching effects coming from the lamination scheme. The areas colored with blue are
characterized by minimum displacements magnitude. The maximum deflection has been
highlighted with red instead.

In the next simulation, a singly-curved structure has been investigated. A free
vibration analysis of a truncated cone mapped with a rhombic shape (see Fig. 29.5)
has been performed via the GDQ approach, and different higher order assumptions
of the displacement field. The results sensitivity has been outlined when the zigzag
function is introduced. Three different configurations have been developed employ-
ing the Super Elliptic distribution. Namely, East (E) and North (N) sides of the shell
have been progressively constrained by setting a proper value of ξ̃m. A refined 3D
FEM solution has been provided as reference value for each case. As observable
in Fig. 29.10, the first layup provides mode shapes featuring different warping and
coupling phenomena. This aspect is evident since the accuracy of the solution with
respect to FEM increases as the order N of the kinematic expansion gets higher.
Moreover, the EDZ4 provides outcomes more accurate results than an ED4, for both
lower and higher modes, as visible in Table 29.4. In the second case, two adjacent
shell edges are fully constrained for an half length, whereas the remaining part is
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kept free. In this case the application of an EDZ4 assumption becomes decisive for
seeking good accuracy, since other ESL theories are unable of well predicting the
structural response. Nevertheless, higher modes are properly predicted regardless the
field variable assumptions, with an acceptable accuracy in any case. For a conven-
tional boundary condition configuration (FFCC), the performance of the proposed
formulation is very high. Note that the zigzag displacement field assumption is a key
for the determination of the actual modal response of the mapped shell. If N = 3
or N = 4 is assumed in Eqn. (29.11), a higher accuracy of results is obtained by an
EDZ3 and the EDZ4 theory rather than an ED3 and ED4.

Up to now, all the proposed case studies provide a validation of the structural
theory for the static analysis of doubly-curved structures, accounting for the presence
of angle-ply lamination schemes with generally anisotropic layers. Moreover, the
validity of the formulation has been checked also with respect to the presence
of a single and a double curvature, as well as different kinds of physical domain
distortion and thickness variation. The influence of the governing parameters has
been considered for the assessment of non-conventional boundary conditions.

We now present a modal analysis of a catenoid of variable thickness and arbitrary
shape. All the geometric and mechanical features of the structure at issue have
been commented in the previous section, see Fig. 29.6 for the three-dimensional
representation of the geometry. In this case the mapping of the physical domain
gets a significative distortion on the structured CGL computational grid. Three non
conventional boundary conditions have been considered. In the first two layups,
the structure has been fixed in four points, namely the shell corners (in the first
configuration) and the half point of each boundary edge (for the second layup). In
the last case, an area surrounding one corner position has been fixed. The first ten
mode frequencies have been calculated for all boundary conditions, as provided by
various higher order theories, see Table 29.5, and mode shapes in Fig. 29.11.

In the first case, the structure has been constrained at its four half edges by em-
ploying the Super Elliptic distribution while properly setting the shape and position
parameters. A very good agreement between GDQ simulations can be noticed re-
gardless the displacement field assumption. Generally speaking, a slight decrease
in the mode frequency can be traced if the N -th order of the kinematic expansion
increases. Moreover, when N assumes an odd value, higher values are provided
with respect to structural theories embedding N = 2, 4. The same behaviour can
be noticed when the zigzag function is embedded in the model. In the second set of
simulations, the doubly-curved catenoidal panel is constrained at the corners of the
physical domain via the adoption of the Double - Weibull distribution. The funda-
mental frequency seems to decrease under higher order theoretical assumptions. The
adoption of zigzag theories provides a significative relaxation of the model, leading
to lower eigenvalues. In the last configuration, the shell is fixed for a quarter of two
adjacent curved edges so that a cantilever configuration is reached. Accordingly, for
lower modes a certain agreement between different structural theories outcomes is
observed except for the EDZ1 theory. On the other hand, different values of natural
frequencies are provided for higher modes.
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Fig. 29.10 First nine mode shapes of a mapped truncated cone of variable thickness enforced by
general boundary conditions, as computed by the ESL formulation and GDQ Method. The
employment of the higher order assumption of the displacement field allows to describe the
deflection of the structure for each mode, accounting for the through-the-thickness warping and
stretching effects coming from the lamination scheme. The areas colored with blue are
characterized by minimum displacements magnitude. The maximum deflection has been
highlighted with red instead.
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Fig. 29.11 First nine mode shapes of a mapped catenoid of variable thickness enforced by general
boundary conditions, as computed by the ESL formulation and GDQ Method. The employment of
the higher order assumption of the displacement field allows to describe the deflection of the
structure for each mode, accounting for the through-the-thickness warping and stretching and effects
coming from the lamination scheme. The areas colored with blue are characterized by minimum
displacements magnitude. The maximum deflection has been highlighted with red instead.
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Table 29.4 Mode frequencies of a mapped truncated cone enforced with general boundary
conditions employing various higher order theories.

Truncated Cone
Mode
[Hz] 3D FEM FSDT FSDTZ TSDT TSDTZ ED1 EDZ1 ED2 EDZ2 ED3 EDZ3 ED4 EDZ4

DOFs 244800 7350 110225 14700 18375 7350 11025 11025 14700 14700 18375 18375 22050(
FFBK

SSSBK
SSS
)

1 23.354 23.372 23.452 23.349 23.193 22.685 24.889 23.357 23.322 23.393 23.257 23.352 23.209
2 59.337 57.196 57.750 57.565 56.977 56.982 58.369 57.134 57.045 57.601 57.033 57.564 56.970
3 108.779 108.957 108.980 108.685 108.650 97.252 109.923 109.578 109.458 109.631 109.517 109.566 109.448
4 192.572 193.119 193.915 193.405 192.720 186.255 195.820 192.705 192.554 193.398 192.739 193.275 192.593
5 278.473 283.363 284.945 284.248 283.396 274.494 291.226 282.929 282.518 284.355 283.483 284.155 283.266
6 383.277 378.037 380.182 379.075 378.056 365.520 391.989 378.005 377.450 379.886 378.888 379.473 378.444
7 462.697 437.682 438.916 437.805 437.206 425.406 448.488 436.663 436.056 437.731 437.116 437.412 436.772
8 573.179 562.095 565.464 563.925 562.173 497.247 574.961 561.333 560.571 564.649 562.893 564.218 562.443
9 584.780 581.488 582.106 581.188 580.862 555.734 585.645 582.912 582.225 583.264 582.656 583.055 582.437
10 644.948 645.296 647.783 645.999 644.859 631.789 680.828 645.176 643.696 646.991 645.777 646.152 644.882

Boundary Springs:
Super Elliptic distribution (ξ̄m = 0(E), ξ̄m = 1(N), ξ̃m = 0.25, p = 1000)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m(

FFBK
SSSBK

SSS
)

1 71.568 73.664 73.844 73.624 73.443 68.722 76.389 73.838 73.777 74.057 73.848 74.009 73.802
2 108.471 110.118 110.774 110.488 110.200 108.460 115.367 110.218 110.117 110.853 110.555 110.799 110.506
3 249.584 253.052 254.111 253.591 253.053 245.050 258.461 252.996 252.728 254.117 253.561 254.035 253.471
4 331.115 339.840 340.116 339.431 339.216 307.651 342.822 341.103 340.927 341.522 341.163 341.369 341.013
5 368.493 374.091 376.361 375.289 374.234 362.882 382.012 372.794 372.369 375.144 374.086 375.008 373.953
6 488.993 492.950 494.995 492.724 491.991 486.694 501.853 490.608 490.103 492.706 491.937 492.453 491.681
7 569.718 578.575 581.933 580.361 579.037 555.391 610.621 576.912 576.389 580.466 579.146 580.110 578.766
8 683.228 690.505 694.310 692.068 690.450 672.884 723.656 688.344 687.729 692.300 690.673 691.938 690.299
9 775.175 786.867 792.914 790.414 787.748 749.968 820.686 784.921 784.059 791.411 788.680 790.933 788.176
10 881.111 892.821 894.406 893.088 892.258 791.773 899.722 892.549 892.035 894.409 893.324 894.067 892.990

Boundary Springs:
Super Elliptic distribution (ξ̄m = 0(E), ξ̄m = 1(N), ξ̃m = 0.5, p = 1000)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m

(FFCC)

1 228.963 228.695 229.326 228.867 228.240 215.731 230.395 228.452 228.250 229.105 228.420 229.042 228.336
2 275.099 275.179 276.096 275.599 274.608 267.012 279.304 274.768 274.466 275.826 274.781 275.737 274.691
3 484.070 485.471 486.485 485.175 484.295 468.869 496.492 484.427 484.093 485.572 484.652 485.350 484.427
4 542.098 541.417 543.422 542.350 540.993 526.440 571.196 540.820 540.301 543.027 541.706 542.709 541.413
5 803.085 808.084 811.941 810.640 807.308 775.072 824.844 805.486 804.382 809.762 806.432 809.381 806.024
6 890.224 890.695 895.387 893.037 889.086 805.714 905.471 889.456 888.174 895.062 890.950 894.661 890.489
7 899.689 899.991 904.431 901.925 899.938 884.620 949.850 898.711 897.971 903.134 901.179 902.710 900.705
8 982.755 985.893 991.819 988.673 983.864 955.878 1022.577 982.736 981.427 989.064 984.323 988.433 983.665
9 1125.182 1125.538 1134.735 1133.333 1126.526 1078.476 1168.324 1122.274 1120.359 1132.481 1125.708 1131.894 1125.074
10 1295.975 1297.864 1309.458 1306.468 1298.529 1276.744 1336.798 1292.017 1289.798 1305.120 1297.293 1304.412 1296.519

Lamination Scheme:
(70/30/45), h̄1 = h̄3 = 0.01, h̄2 = 0.02m
Materials Sequence: 1st layer graphite-epoxy, 2nd layer triclinic material, 3rd layer graphite-epoxy
Computational Issues: CGL bi-dimensional computational grid with IN = IM = 37 discrete points

29.11.2 Static Analysis

We now deal with a static analysis of shell structures according to Eqn. (29.85).
Three structures have been considered, namely an unmapped rectangular plate (Fig.
29.2), an arbitrary shaped parabolic paraboloid (Fig. 29.3) and a catenoid (Fig. 29.6).
For each panel, the same general external constraints considered for the free vibra-
tion analysis simulations provided for the first case of Table 29.1, Table 29.3 and
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Table 29.5 Mode frequencies of a catenoid of arbitrary shape enforced by general boundary
conditions employing various higher order theories.

Catenoid
Mode
[Hz] FSDT FSDTZ TSDT TSDTZ ED1 EDZ1 ED2 EDZ2 ED3 EDZ3 ED4 EDZ4

DOFs 7350 110225 14700 18375 7350 11025 11025 14700 14700 18375 18375 22050(
BK

SSSBK
SSSCBK

SSS
)

1 174.747 166.690 184.000 166.234 172.254 168.878 174.481 164.723 184.622 165.305 185.330 165.417
2 199.101 196.914 184.000 192.412 190.797 201.966 197.731 195.445 184.622 195.518 185.330 195.273
3 208.315 207.218 198.452 202.613 202.538 209.169 206.949 202.370 200.833 207.335 199.937 207.558
4 224.635 221.396 228.014 224.117 217.343 225.768 223.789 219.501 227.971 220.117 227.579 219.674
5 272.826 262.833 264.820 258.893 268.598 263.758 272.223 257.662 266.144 261.907 265.721 261.718
6 289.470 280.450 282.682 278.772 285.390 282.541 287.558 275.694 283.032 278.326 282.015 277.895
7 315.635 308.338 313.344 304.081 305.475 313.301 313.617 304.265 314.949 306.648 311.642 306.355
8 336.873 322.014 320.116 316.534 331.142 329.706 335.435 316.697 321.751 320.842 321.201 320.180
9 340.041 331.582 327.934 328.871 331.918 335.479 337.668 327.559 328.983 329.175 328.899 328.686
10 382.669 364.314 373.752 363.695 374.947 372.281 380.289 359.106 374.865 364.350 373.588 364.099

Boundary Springs:
Super Elliptic distribution (ξ̄m = 0.5, ξ̃m = 0.01, p = 40)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m(

BK
DDDBK

DDDBK
DDDBK

DDD
)

1 64.064 63.064 56.707 61.827 63.457 63.242 63.390 62.052 79.088 61.127 61.444 60.035
2 87.263 83.991 85.686 83.127 85.178 84.526 86.215 81.789 82.578 83.007 83.352 83.503
3 95.566 91.494 93.505 90.587 93.216 91.401 94.433 89.356 93.445 90.815 92.972 89.985
4 123.276 120.018 121.401 119.094 120.286 122.391 122.378 118.073 120.762 119.484 118.550 121.904
5 131.323 126.187 121.401 124.541 129.638 129.663 130.922 124.571 141.397 122.554 122.643 121.904
6 150.443 145.180 147.656 144.189 148.310 150.308 150.184 143.014 147.836 144.997 143.634 149.225
7 187.448 183.491 184.221 182.426 181.593 187.988 186.938 181.724 170.311 182.793 194.013 170.688
8 237.053 232.549 228.912 230.181 232.594 234.023 235.154 229.376 194.613 228.666 232.409 230.436
9 259.707 257.331 258.019 256.073 252.616 258.159 258.422 252.255 255.587 255.557 244.712 252.836
10 270.351 258.081 265.308 256.734 266.265 259.451 268.292 255.502 255.587 257.161 258.792 273.273

Boundary Springs:
Double - Weibull distribution (ξ̄m = ξ̃m = 0.0025, p = 20)

k
(k)ξ02
1f = k

(k)ξ12
1f = 1 · 1021 Pa/m, k(k)ξ

0
2

2f = k
(k)ξ12
2f = 1 · 1021 Pa/m, k(k)ξ

0
2

3f = k
(k)ξ12
3f = 1 · 1021 Pa/m(

BK
SSSFFBK

SSS
)

1 16.046 16.112 15.536 16.059 16.428 15.993 16.165 16.208 16.329 16.496 16.718 17.100
2 22.519 22.895 20.761 23.089 23.051 22.413 22.952 23.114 21.603 23.692 21.765 24.099
3 56.278 55.133 56.872 54.842 55.808 55.738 56.038 54.611 56.895 55.027 56.419 54.658
4 77.273 76.103 77.367 75.905 76.299 79.600 77.546 75.982 77.393 76.026 76.832 75.691
5 128.197 127.706 126.430 127.170 126.214 128.291 127.678 126.717 126.467 127.261 125.888 126.991
6 143.660 140.855 142.376 140.071 140.733 145.000 143.067 139.101 142.674 140.310 142.363 140.091
7 165.398 162.823 159.161 161.579 158.628 167.625 165.037 160.959 160.076 162.241 159.318 162.349
8 191.859 185.184 190.214 183.868 189.426 186.514 190.145 182.193 190.211 184.006 189.751 183.722
9 243.940 236.193 241.810 234.787 240.978 238.120 242.123 232.484 242.086 234.958 241.589 234.768
10 271.341 264.447 266.870 262.588 264.191 270.061 270.181 260.568 267.970 263.327 267.380 263.353

Boundary Springs:
Super Elliptic distribution (ξ̄m = 0, ξ̃m = 0.25, p = 1000)

k
(k)ξ01
1f = k

(k)ξ02
1f = 1 · 1021 Pa/m, k(k)ξ

0
1

2f = k
(k)ξ02
2f = 1 · 1021 Pa/m, k(k)ξ

0
1

3f = k
(k)ξ02
3f = 1 · 1021 Pa/m

Lamination Scheme:
(45/0/70), h̄1 = h̄3 = 0.005, h̄2 = 0.008m
Materials Sequence: 1st layer triclinic material, 2nd layer glass-epoxy, 3rd layer trigonal material
Computational Issues: CGL bi-dimensional computational grid with IN = IM = 37 discrete points
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Table 29.5, respectively, have been assessed according to Eqns. (29.118)-(29.119)
employing different in-plane and out-of-plane linear springs distributions. In all the
investigated cases, a uniform loading distribution has been applied at the top sur-
face of the structure (ζ = h/2) acting along the outward normal unit direction of
the reference surface r (α1, α2) defined in Eqn. (29.113). The through-the-thickness
dispersion of both static and kinematic quantities has been provided for each case.
The influence of the kinematic order assumption of Eqn. (29.11) has been also
highlighted. Once again, a 3D FEM evaluation of the structural response has been
provided as reference solution for comparative purposes.
The first simulation considers an unmapped rectangular plate (see Fig. 29.2), un-
der a surface loading equal to q

(+)
3 = −5.0 × 103 Pa applied on the external

layer of the structure. The boundary conditions configuration is FBK
SSSFC, as ob-

tained from a Super Elliptic distribution delined in Table 29.1. The through-the-
thickness plots refer to the point of the physical domain located at (ξ1, ξ2) =(
0.50

(
ξ1
1 − ξ0

1

)
, 0.50

(
ξ1
2 − ξ0

2

))
, whose results have been found via the GDQ for-

mulation and different higher order theories. In Fig. 29.12 we depict the three-
dimensional displacement field vector U, whereas the kinematic primary variables
are collected in Fig. 29.13, and the stress components are shown in Fig. 29.14. From
a comparison with the refined FEM it is shown that for very complex lamination
schemes a higher order assumption of the displacement field is mandatory in or-
der to get accurate results. Lower order theories characterized by N = 1 do not
provide good results in terms of in-plane displacement field, even when using the
zigzag function. Moreover, the employment of a higher order assumption of the
displacement field can predict well the stretching effect acting along the α3 = ζ
principal direction, as visible from the dispersion of U3 field component obtained
from a 3D FEM. This means that the EDZ4 approach gives the best accuracy of
results. The same considerations can be repeated for the strain distributions reported
in Fig. 29.13. The employment of complicated through-the-thickness displacement
field assumptions in Eqn. (29.11) is capable of well predicting both the in-plane and
out-of-plane deformations for all the laminae embedded in the stacking sequence.
The stress distributions reported in Fig. 29.14 provided by the 3D FEM are well pre-
dicted by the ESL approach. Unlike the former distribution, the latter one perfectly
fulfills the boundary values of the applied loads on the top and bottom surfaces of
the shell, since they are directly enforced during the stress recovery procedure. The
finite element approach applies a local extrapolation to element nodes of the calcu-
lated stresses starting from the internal sampling points, thus showing a dispersion
of values.

The second simulation for the static analysis considers a mapped parabolic
paraboloid with geometric and mechanical properties as reported in Fig. 29.3,
with external constraints as reported in Table 29.3, and subjected to a surface load
q

(+)
3 = −1× 104 Pa. The thickness plots now refer to the point located a the center
of the physical domain, of coordinates (ξ1, ξ2) =

(
0.50

(
ξ1
1 − ξ0

1

)
, 0.50

(
ξ1
2 − ξ0

2

))
.

The three-dimensional displacement field is reported in Fig. 29.15, whereas the strain
and stress field are depicted in Fig. 29.16 and Fig. 29.17, respectively. The in-plane
displacement field provided by a refined 3D FEM simulation is well predicted by the



29 Structural Analysis of Doubly-Curved Shells with General Boundary Conditions 645

Fig. 29.12 Static analysis of a rectangular plate of constant thickness enforced by general boundary
conditions

(
FBK

SSSFC
)
. Representation of the through-the-thickness displacement field at the point

of the physical domain located at (ξ1, ξ2) =
(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ

solution, calculated employing various higher order theories, is compared to predictions from a
refined three-dimensional model.
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Fig. 29.13 Static analysis of a rectangular plate of constant thickness enforced by general boundary
conditions

(
FBK

SSSFC
)
. Representation of the through-the-thickness strain dispersion at the point

of the physical domain located at (ξ1, ξ2) =
(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ

solution, calculated employing various higher order theories, has been compared to predictions
from a refined three-dimensional model.

proposed formulation. A linear dispersion ofU1 andU2 can be outlined; on the other
hand, the out-of-plane U3 component requires at least the ED4 theory, due to the
meaningful presence of through-the-thickness stretching and warping phenomena.
The classical ESL approaches provide only a constant distribution of the out-of-
plane displacement field. As far as the three-dimensional strain component vector
is concerned (Fig. 29.16), a perfect agreement between different ESL kinematic
assumptions is noticed, whereas some discrepancies emerge in the out-of-plane de-
formations γ13, γ23, ε3. Accordingly, the proposed formulation best predicts the 3D
FEM outcomes, whereas ESL theories characterized byN = 4 do not provide good
results, even when the zigzag function is implemented. A similar behaviour can be
observed in Fig. 29.17. The in-plane stress predictions are in perfect alignment with
the 3D FEM ones, whereas the out-of-plane components are well described by the
EDZ3 theory. As far as the σ3 component is concerned, the recovery procedure
points out the value of the applied load at the top surface of the shell. The last nu-
merical investigation studies the structural behaviour of an arbitrary shaped catenoid
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Fig. 29.14 Static analysis of a rectangular plate of constant thickness enforced by general boundary
conditions

(
FBK

SSSFC
)
. Representation of the through-the-thickness stress dispersion at the point

of the physical domain located at (ξ1, ξ2) =
(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ

solution, calculated employing various higher order theories, is compared to predictions from a
refined three-dimensional model.

under a static loading, see Fig. 29.6. The structure has been externally fixed at three
points located in the corner of the mapped physical domain, whereas the remain-
ing edge is fully clamped, as reported in Table 29.5. The static deflection has been
checked, as well as the induced strain and stress fields, setting a uniform load equal to
q

(+)
3 = −5×103 Pa. A systematic investigation has been performed employing vari-
ous through-the-thickness kinematic assumptions. Referring to the point of the refer-
ence surface located at (ξ1, ξ2) =

(
0.50

(
ξ1
1 − ξ0

1

)
, 0.50

(
ξ1
2 − ξ0

2

))
, the distribution

of the three-dimensional displacement field component vectorU = [ U1 U2 U3 ]
T has

been outlined (see Fig. 29.18). In this case, the EDZ4-based results do not match the
other ESL outcomes. On the other hand, deflections based on lower order theories
with N = 1, 2 are in line with the ones obtained from the FSDT formulation when
the zigzag through-the-thickness assumption is employed. Looking at Fig. 29.19, it
can be observed that in-plane deformations are characterized by a piecewise linear
distribution. Moreover, we outline the presence of differently oriented layers with
various stiffnesses. Some discrepancies can be found between findings from differ-
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Fig. 29.15 Static analysis of an arbitrary shaped parabolic paraboloid of variable thickness
enforced by general boundary conditions

(
BK

SSSBK
SSSFF

)
. Representation of the

through-the-thickness displacement field dispersion at the point of the physical domain located at
(ξ1, ξ2) =

(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ solution, calculated employing various

higher order theories,is compared to predictions from a refined three-dimensional model.

ent approaches in terms of out-of-plane deformations. The ED3 and ED4 theories,
indeed, provide different results from classical FSDT theory. The same behaviour
can be observed in the stress distributions from Fig. 29.20. The recovery procedure
provides the exact fulfillment of the boundary conditions induced by the external
loads. Moreover, the profiles obtained for N = 4 are almost the same regardless the
employment of the zigzag function. The present example yields good results in line
with the EDZ4 formulation.
To sum up, it can be said that the present formulation is an affordable numerical
technique characterized by great efficiency and accuracy. It can be considered as
a valid alternative to widespread commercial codes for the structural analysis of
doubly-curved structures. For both the static and free vibration simulations a very
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Fig. 29.16 Static analysis of an arbitrary shaped parabolic paraboloid of variable thickness
enforced with general boundary conditions

(
BK

SSSBK
SSSFF

)
. Representation of the

through-the-thickness strain components dispersion at the point of the physical domain located at
(ξ1, ξ2) =

(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ solution, calculated employing various

higher order theories, is compared to that obtained from a refined three-dimensional model,
pointing out the accuracy of the formulation.

good agreement with respect to refined predictions has been observed, providing a
unified framework in which systematic investigations can be performed.

29.12 Conclusion

In the present Chapter a theoretical formulation based on the ESL approach has
been proposed for the static and the dynamic analysis of doubly-curved shells under
general external constraints. A geometric representation has been provided employ-
ing curvilinear principal coordinates, together with a distortion mapping based on a
NURBS description of the structure alongside the physical domain. A generalized
approach has been adopted for the assessment of the displacement field variable. In
this way, higher order theories have been introduced, accounting for stretching, warp-
ing and coupling three-dimensional effects occurring in the structure. An effective
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Fig. 29.17 Static analysis of an arbitrary shaped parabolic paraboloid of variable thickness
enforced by general boundary conditions. Representation of the through-the-thickness stress
components dispersion at the point of the physical domain located at
(ξ1, ξ2) =

(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ solution, calculated employing various

higher order theories, is compared to predictions from a refined three-dimensional model.

homogenization on the reference surface of the shell mechanical properties has been
performed taking into account the elastic strain energy of the structure. An arbitrary
orientation of each lamina has been considered, setting a generally anisotropic mate-
rial in all the layers of the stacking sequence. External loads have been applied on the
top and the bottom surfaces of the structure, accounting for arbitrary distributions
along each parametric line. The governing equations have been derived from the
Hamiltonian principle, together with the external boundary conditions. Generalized
in-plane and out-of-plane distributions of linear elastic springs have been consid-
ered for each shell edge, thus setting a comprehensive set of external constraints.
For static analyses, an effective through-the-thickness reconstruction of stresses and
strains allowed the determination of the three-dimensional quantities starting from a
bi-dimensional formulation. The theoretical assessment has been numerically tack-
led from a discretization of derivatives employing the GDQ technique. Some case
studies have been presented and the accuracy of the proposed formulation has been
checked from a benchmark with the outcomes of refined three-dimensional Finite
Element simulations for both the static and the free vibration analysis. The presented
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Fig. 29.18 Static analysis of an arbitrary shaped catenoid of variable thickness enforced by general
boundary conditions

(
BK

SSSBK
SSSCBK

SSS
)
. Representation of the through-the-thickness displacement

field dispersion at the point of the physical domain located at
(ξ1, ξ2) =

(
0.50

(
ξ11 − ξ01

)
, 0.50

(
ξ12 − ξ02

))
. The GDQ solution has been calculated employing

various higher order theories.

ESL model has demonstrated to be very reliable for a proper prediction of very
complex three-dimensional effects expecially when higher order assumptions of the
displacement field are assumed, even with a reduced computational cost with respect
to more expensive reference solutions.
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Chapter 30
Characterisation of Mechanical Properties of
Wood: Size Effect

Reza Afshar

Abstract In the areas such as cultural heritage, there are various non-standard
sample sizes and shapes to characterise the mechanical properties of materials. In
addition, there is a need for minimum intervention, which leads to minimisation of
samples in sizes and numbers. The aim of this study is to investigate the size effect
on material properties of hard wood, as an orthotropic material, in terms of stiffness
properties. The compression tests in combinationwith image analysis techniquewere
used to find the stiffness of the oak samples in the radial direction of wood. Small
clear specimens made from oak (Quercus robur L.) were tested. The specimens were
divided into two groups: A and B. The testing volumes of group A and B were 10×
10× 10 mm3 and 25× 25× 25 mm3 respectively. A total number of 8 samples from
group A and 9 samples from group B were tested. The results show that the average
difference between the two sizes of the samples in term of stiffness in radial direction
is 5.5%, with slightly higher values for smaller cubic specimens. More experiments
in all orthogonal directions of wood are needed to confirm the results of this study.
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30.1 Introduction

30.1.1 Wood Properties and Importance

Since prehistoric times, wood has been used as a buildingmaterial due to its unrivaled
properties and abundance. It is still considered an excellent building material due to
its high stiffness to weight ratio, flexibility and damage tolerance. Recently, wood is
seeing a renaissance as a renewable and sustainable building material.

Wood and biological tissues like bone are examples of non-homogenous and
anisotropic materials. Wood is a biomaterial with a cellular structure and imperfec-
tions (defects) such as knots that are influencing its strength properties. For the case
of small clear samples, the assumption of Cartesian orthotropic behaviour of wood
is valid. The stiffness matrix C is the inverse of the compliance matrixD such that

C−1 = D (30.1)

where

D =



1
EL

−νLT
ET

−νLR
ER

0 0 0
−νTL
EL

1
ET

−νTR
ER

0 0 0
−νRL
EL

−νRT
ET

1
ER

0 0 0

0 0 0 1
GLT

0 0

0 0 0 0 1
GLR

0

0 0 0 0 0 1
GTR


(30.2)

in the orthotropic case, where L represents longitudinal direction, T is for tangential
and R is for radial direction of wood. In this study the R-direction of wood is
considered.

The structural properties of both green as well as dry wood are the result of its
complex structure from the macroscale annual rings down to the composite-like
microstructure of its cell walls. Properties vary within a single tree, between species
and due to growth conditions. Even after harvesting, the properties of wood depend
on the climate (humidity and temperature) and change over time due to chemical and
biological influences. Clear straight-grained wood is used for determining funda-
mental mechanical properties (Green et al, 1999). Mechanical properties of wooden
specimens are dependent on the specimen dimensions (Showalter, 1987; Bohannan,
1966). This phenomenon is often called size effect.

30.1.2 Size Effect

In the areas such as cultural heritage, there are various non-standard sample sizes
and shapes to characterise the mechanical properties of materials, which inherently
are heterogeneous. In addition, there is a need for minimum intervention, which
leads to minimisation of samples in sizes and numbers (Válek and Veiga, 2005). It



30 Characterisation of Mechanical Properties of Wood: Size Effect 661

is well known that size effects play an important role in the mechanical behavior
of heterogeneous material, like bone tissues at different scales (Giorgio et al, 2017,
2021). One should note that, it is not the absolute size of the sample that is related to
the size effect; instead, it is the ratio between a characteristic size of themicrostructure
and the overall size of the sample that can trigger such an effect.

The first-order gradient elasticity theory is accurate for structure in the meter
length-scale; however, it is inaccurate for structure in the micrometer length-scale,
where the substructure of the material becomes dominant. Therefore, in Abali et al
(2017); Vazic et al (2021) a second-order theory is used, which is able to model the
deformation of structure even on smaller length-scales, with an adequate amount
of computational cost. To incorporate the scale of the microstructure of a hetero-
geneous material within the continuum framework, a number of phenomenological
approaches have been proposed that involve the relaxation of the local action hypoth-
esis of classical continuum mechanics. Among others, higher-order gradient models
are proposed in dell’Isola et al (2015, 2009).

In order to explain the size effect phenomenon for wood, there are different sug-
gested approaches in the literature. The most famous approach is Weibull’s weakest
link theory (Weibull, 1939).Weibull states that increased stressed volume is attended
by a decrease in wood strength due to stochastically appearing weak locations in the
wood. Thus, there is an increased probability of encountering a strength-reducing
flaw, when the volume of the material under stress is increased (Pedersen et al, 2003).
Only few literature addresses the effect of specimen size on stiffness parameters of
the wooden material (Schlotzhauer et al, 2017). In Madsen and Tomoi (1991), the
influence of span length in bending testing on stiffness parameters are given. The
effect of size and geometry on strength values and stiffness in longitudinal (L) di-
rection of selected hardwood species were investigated in Schlotzhauer et al (2017).
They found that for the case of compression and bending stiffness, in most cases, the
dimensions did not influence the stiffness parameters. In tensile testing, EL differed
significantly for the different specimen sizes.

30.2 Materials and Method

Materials: Small clear specimens made from oak (Quercus robur L.) were tested.
Before the sampling, boards were conditioned in a climate condition at 22°C and
55% relative humidity (RH). The boards were cut into the small cubic specimens, in
two different sizes, with the dimensions displayed in Fig. 30.1. The specimens were
divided into two groups: A and B. The testing volume of group A and B was 10 ×
10 × 10 mm3 and 25 × 25 × 25 mm3 respectively. The total number of 8 samples
from group A and 9 samples from group B were tested. The mass density of all of
the samples is measured and summarised in Table 30.1. The average and standard
deviation of samples in group A and B are 705±11 (kg/m3) and 686±15 (kg/m3),
respectively.
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(a) Specimen A (b) Specimen B

Fig. 30.1 Cross section of the two specimens

Table 30.1 The mass density values for each group of samples

Sample 1A 2A 3A 4A 5A 6A 7A 8A Average± STD

Mass density (kg/m3) 687 694 714 715 712 797 695 714 705±11

Sample 1B 2B 3B 4B 5B 6B 7B 8B 9B Average± STD

Mass density (kg/m3) 717 702 693 682 675 676 672 680 679 686±15

Method: In this study, all the tests were performed in compression by using a com-
pression rig (Fig. 30.2), which previously was used in creep experiments in Afshar
et al (2020). The area of applied load for each sample is considered for calculation
of applied stress. For both samples the applied stress was in linear elastic range of
material. The average applied stress for sample A and B was 4.78MPa and 1.88MPa
respectively. The applied stresses are in elastic range of material in the R-direction,
which allows us to test the same sample in other wood’s orthogonal directions. The
samples loaded for 100 s. For each sample a camera recorded the deformationwith an
interval of every 1 s until 100 s. The strain field was obtained by using digital image
correlation (DIC) method (also called digital speckle photography), by considering
the deformations between 4-13 s. The strains in R-direction (εR) as a function of time
for some of the samples are given in Fig. 30.3, where it is evident that response of the
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Fig. 30.2 Test rig used for compression tests.

samples within first 13 s is instantaneous response, i.e, it is strain-rate independent.
This means that the ER of the samples can be calculated within this time period.

Fig. 30.3 Strain in R-direction (εR) as a function of time for some of the samples.

30.2.1 Digital Image Correlation (DIC) Method

The Digital Image Correlation (DIC) method is a robust non-contact technique
for measuring material deformation (Peters and Ranson, 1982), (Chu et al, 1985),
(Vendroux and Knauss, 1998). Digital speckle photography is well suited for mea-
surements on small objects (Jernkvist and Thuvander, 2001). An open source 2D
DICMatlab code ncorr (Blaber et al, 2015) was used for image analysis in this study.
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The basic principle of DIC is to record a series of images of the sample during
deformation, and then to calculate the degree of displacement from the images. The
strain field then can be calculated from the displacement field. Any DIC imple-
mentation consists of three main steps: sample preparation, image recording and
image processing. If only one camera is used (2D DIC analysis), it is best suited
for strain measurements in which there are modest deformations of planar surfaces.
The sample surface needs to have a random texture that does not have a specific
orientation and is non-periodic (Sutton et al, 2009). This can be achieved by spray
paint, where by spraying a black colour on a white background a random black and
white speckles are generated. For the recordings of the displacements, only a digital
camera and natural light, or a white light source, are needed. The image process-
ing starts by dividing the image into subsets. The displacement is then calculated
separately for each subset. The basic principle of DIC is to use cross correlation to
identify the same subset in the images recorded both before and after the deforma-
tion. The correlation function is a function of 2D displacement and the location of
the peak of the correlation function gives the position of the deformed subset. An
iterative cross-correlation algorithm is needed for more complex deformation fields.
Deformation of the subset can be accounted for by introducing a shape function that
translates the pixel coordinates in the reference subset into coordinates in the image
after deformation. The grey values can be interpolated between the pixels in the
image to achieve sub-pixel accuracy (Sutton et al, 2009).

30.2.2 Steps for Stiffness Parameter Calculation

As it is mentioned in the Introduction, in this study, only radial direction is considered
to calculate the stiffness parameter (ER). The steps for the ER calculation is as
follows:

• First, the applied load on the sample, according to Fig. 30.2, was set by having
the known weight at the end of the rig and the known arm distance.

• Then, the applied stress on each sample is evaluated by dividing the applied
force divided to the cross-section at the top of each sample (LT-plane).

• After that, the average strain in the loading direction (εR) in a plane parallel to
applied load (RT-plane) by using DIC method is calculated.

• Finally, ER is obtained by simply dividing the applied stress to the computed
average strain (εR)

30.3 Results and Discussions

By usingDICmethod, the 2D displacement fields, where x-axis represents tangential
and y-axis denotes radial direction, as well as 2D strain fields in normal directions T
and R and shear strain RT of the two groups of specimens (A and B) are measured.
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The displacement fields of one of the samples from group A (1A) are given in
Fig. 30.4 and the strain fields are depicted in Fig. 30.5.

(a) uT (b) uR

Fig. 30.4 The displacement fields of sample 1A: x-axis represents tangential and y-axis denotes
radial direction.

The displacement fields of one of the samples from group B (1B) are given in
Fig. 30.6 and the strain fields are depicted in Fig. 30.7.

As it is mentioned in Section 30.2, the average strain in the loading direction
(εR) in a plane parallel to applied load (RT-plane) is used for calculation of stiffness
parameter in R-direction. As it can be seen from Fig. 30.5 and Fig. 30.7, the strain
field in loading direction (εR) is quite uniform for both samples with different sizes.

The results in terms of modulus of elasticity in R-direction of the samples for
the two size of the samples are summarised in Table 30.2. Notice that, the results
for one of sample from group B (3B) was excluded in Table 30.2 due to error in
measurements. As it can be seen from Table 30.2, the average ER for the small

Table 30.2 Modulus of elasticity in R-direction for the two groups of samples.

Sample 1A 2A 3A 4A 5A 6A 7A 8A Average±STD

ER (GPa) 1.25 5.15 1.32 1.30 2.77 1.56 2.27 5.88 2.70±1.83

Sample 1B 2B 4B 5B 6B 7B 8B 9B Average±STD

ER (GPa) 2.37 4.72 2.69 1.26 2.69 1.55 2.68 2.34 2.54±1.04

Difference (%) 5.53

samples (group A) is 2.70±1.83 GPa, whereas this value is lower (5.53%) for the
large samples (group B) with 2.54±1.04 GPa. The standard deviation (STD) is
relatively high for the both groups, which requires more number of samples to be
tested in order to have a higher coefficient of confidence of the results. In addition,
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(a) εT (b) εTR

(c) εR

Fig. 30.5 The strain fields of sample 1A.

(a) uT (b) uR

Fig. 30.6 The displacement fields of sample 1B: x-axis represents tangential and y-axis denotes
radial direction.
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(a) εT (b) εTR

(c) εR

Fig. 30.7 The strain fields of sample 1B.

it indicates the higher sensitivity of the small samples (group A) in term of average
strain field evaluation compared to the large samples (group B).

According to Jernkvist and Thuvander (2001), samples with larger curvature
of annual rings are expected to have higher stiffness. It worth mentioning that, a
similar high STD for stiffness of hard wood samples in L-direction is reported in
Schlotzhauer et al (2017), where a possible reason for this phenomenon stated as the
resulting stiffness would be a result of compression and buckling.

The ER of recent oak cubic samples with the same size as group B is reported in
Table 1 in Vorobyev et al (2016). The samples were tested using quasi-static method,
with the value of 2.01± 0.15 MPa, which has a difference of about 20% with the
finding of this study. The conditioning of samples in that study was similar to this
work.
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30.4 Conclusions and Future Work

This study was an effort to investigate the size effect on material properties of hard
wood, as an orthotropic material, in term of stiffness properties. The compression
tests in combination with image analysis technique were used to find the stiffness
in radial direction (ER) of the oak samples. The results show that the difference
between the two sizes of the samples in term of ER is 5.53%, with lower values
for larger cubic specimen. One expects to have higher stiffness in the R-direction
with larger curvature of annual rings in the smaller samples. More experiments in
all orthogonal directions of wood are needed to confirm the results of this study.

The idea for future work is:
• to continue investigating the oak samples in the other two directions, i.e., tan-
gential (T) and longitudinal (L) direction to obtain the corresponding stiffness
parameters in those directions.

• After that, the samples will be loaded until failure to find the strength properties
in the three normal directions.

• Regarding the shear properties of wood, another set of samples with inclined
fiber directions (45o) are needed.

• The more detailed properties of sample such as moisture content, annual rings,
early wood and late wood distributions and modular ray angles will be needed
to understand the relationship between the stiffness parameters of each sample
and its properties.

• In addition, the possibility of 3-D image analysis, i.e. using two cameras aiming
a surface with a certain angle, to avoid measurement error due to out-of-plane
movement of the sample will be explored.
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Chapter 31
Covering a Surface with Pre-Stressed Ribbons:
From Theory to Nano-Structures Fabrication

Alexandre Danescu, Philippe Regreny, Pierre Cremillieu,
Jean-Louis Leclercq, Ioan R. Ionescu

Abstract The paper deals with the fabrication of nano-shells from pre-stressed nano-
plates release. Due to geometrical and technological restrictions we have to cover a
given surface with three-dimensional thin ribbons. We discuss the key role of the
geodesic curvature in the design of such shell-ribbons.We show that including small-
strains but large rotationswe are able to control themetric tensor of both un-deformed
(or planar) and deformed (or shell) ribbons by an appropriate choice of the width and
thickness of the ribbons. Moreover, the strain tensor is controlled by the difference
between the curvature of the planar (un-deformed) ribbon and the geodesic curvature
of the supporting curve of the shell (deformed) ribbon. Under suitable constitutive
assumptions, we deduce the field equations, the boundary conditions and the design
equations. The former relate the pre-stress in the planar layer to the final geometry
of the desired shell-ribbon. A fine tuning of the composition, geometry and of the
pre-stress of the plate-ribon is necessary to design and fabricate the shell-ribbon.
We design and fabricate a partial cover of the sphere with constant latitude ribbons
starting from planar multi-layer semiconductor materials grown by molecular beam
epitaxy. The details of fabrication method and its limitations are discussed in detail.
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31.1 Introduction

Nowadays the fabrication processes in semiconductor industry use essentially the
planar technology and among the various methods of crystal growth, the molecular
beam epitaxy (MBE) presents the significant advantage of highly accurate control
of composition (up to 1%) and thickness (up to monolayer). Composition control
endow multi-layered planar structures with pre-stress which may be beneficial for
the design on 3D objects by pre-stress relaxation. The prototype of this phenomena
is the bi-layer material where the presence of the pre-stress in one of the layers
induced the bending of the free bi-layer structure. Initiated in Prinz et al (2000)
(see also Prinz et al, 2001; Prinz, 2003; Seleznev et al, 2003; Prinz and Golod,
2006; Prinz et al, 2017) for simple rolls, curls and developable ribbons the method
was extended to cover more complex situations in Danescu et al (2013, 2018).
Introduced by an heuristic method in Danescu et al (2013) and later reconsidered in
the framework of small-strains and large-rotations in Danescu and Ionescu (2021),
the geodesic curvature represents the key concept for the design of 3D structures
from planar pre-stresses films. From a different point of view, the equilibrium shape
of a pre-stressed material was investigated by using dimension reduction in Le Dret
and Raoult (1995); Friesecke et al (2002a,b, 2006); de Benito Delgado and Schmidt
(2020); Wang et al (2019); de Benito Delgado, Miguel and Schmidt, Bernd (2021)
leading to a hierarchy of non-linear elastic models (Lewicka and Raoult, 2018).

These previous results concerning relaxation of pre-stressed bi-layer materials
focus on straight ribbons that relax toward rolls and curls, all based on isometric
transformations. However, it is well-known that the class of isometries between
planar and three-dimensional surfaces, extensively studied in Fosdick and Fried
(2016), is too narrow to cover simple non-developable surfaces occurring in pre-
stressed relaxation design problems. To circumvent this theoretical drawback, in a
recent paper (Danescu and Ionescu, 2020), we developed a shell design model built
on a non-isometric perturbation assumption of Love-Kirchhoff type superposed on
a plate-to-shell theory. Extending shell models in Steigmann (2013); Ciarlet and
Mardare (2018); Steigmann (2007b,a); Steigmann and Ogden (2014), the geometric
description involves a single small parameter δ � 1, the product between shell’s
thickness and its curvature.

The main difficulty in applying the shell-design model in Danescu and Ionescu
(2020) is of a geometric nature. Indeed, for several common mid-surfaces the small-
strain assumption drastically reduces the surface width. However, since we are fo-
cusing on brittle-elastic materials (such as semiconductors), the small deformations
assumption is merely a technological restriction and not a mathematical simplifi-
cation. To encompass this limitation, in Danescu and Ionescu (2021) another type
of shell, (called a strip-shell) is constructed, for which this assumption can be ful-
filled by an appropriate choice of an additional geometric parameter, namely the
strip width. In this restricted framework, if the product between the strip-shell width
and its curvature is of order δ1/2 the assumptions of plate-to-shell theory (Danescu
and Ionescu, 2020) are fulfilled so that, for any strip of a given shell we provide a
simple model able to design the corresponding plate-strip (i.e., to compute the shape
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and pre-stress momentum of the plate). The next step analyzed here is to cover the
given surface (shell) with one or several strips, situation in which we can provide an
explicit design of the corresponding planar (plate) strips.

The paper is organized as follows: the first two sections recall the geometric
and mechanical assumptions of the plate to shell model for design proposed in
Danescu and Ionescu (2020). We relate the geometric aspects to the pre-stress via
constitutive relations and field equations in finite strains through the assumption of
weak-transversal heterogeneity, fulfilled here by the weak variation of the compo-
sition in our crystal growth process. The third section discuss the main geometric
aspects of the theory (see Danescu and Ionescu (2021) for more details), with a
particular accent on the metric tensors for planar ribbons along curves and three
dimensional ribbons as subsets of arbitrary surfaces in R3. The main result shows
that the distance between the curvature of the planar curve (the planar design) and
the geodesic curvature of the three dimensional supporting curve of the ribbon con-
trols the Green-Lagrange strain tensor, so that the small-strain (but large rotations)
assumptions can be fulfilled by an appropriate choice of the planar geometry. The
fourth section describes a specific application: fabrication of a partial cover of the
sphere from a planar pre-stressed bi-layer material by using a design based on the
geodesic curvature of constant-lattitude circles.

31.2 Geometric and Kinematical Settings

Let us consider a plate with mid-surface R0 ⊂ R2 and thickness H = H(X̄) in the
Lagrangian configuration (here X̄ = (X1, X2)) and let S0 ⊂ R3 be the mid-surface
of an Eulerian shell of thickness h, with e3 the unit normal and K the curvature
tensor acting from the tangent plane into itself.

In what follows, δ � 1 will be a small parameter characterizing the Eulerian and
Lagrangian shell thickness and such that

h|K| = O(δ), H/Lc = O(δ), |∇2H| = O(δ), (31.1)

where Lc is the characteristic length of the surface and ∇2 is the gradient with
respect to X̄ ∈ R0.

Themain geometric assumption in Danescu and Ionescu (2020) is that there exists
a transformation x : R0 → S0 of the Lagrangian mid-surface R0 into the designed
Eulerian oneS0 such that the associated deformation of the geometric transformation
is small, i.e.,

|E2| =
1

2
|∇T2 x∇2x− I2| = O(δ). (31.2)

Here I2 = c1 ⊗ c1 + c2 ⊗ c2 is the identity tensor on R2 and {c1, c2, c3} is
the Cartesian basis in the Lagrangian description and herafter we denote by K =
∇T2 xK∇2x the Lagrangian curvature tensor acting from R2 into itself.
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The kinematics of the plate deformation considered in Danescu and Ionescu
(2020) involves the classical Love–Kirchhoff assumption, i.e.: the normal to the plate
mid-plane remains normal to the designed mid-surface but in a finite deformation
context and thus including large rotations. In addition, the transversal deformation
is affine with respect to the plate thickness. Superposed to the kinematics associated
to the exact design which reproduces the target mid-surface, we consider a small
perturbation of Love-Kirchhoff type in order to compensate the small (membrane)
deformation of the proposed geometric transformation. As a consequence, the mid-
surface of this overall kinematics will be close to the designed mid-surface, and for
this reason we called it approximate design kinematics.

31.3 Weak Transversal Homogenenity and the Moment
Equations

Although, the general theory developed in Danescu and Ionescu (2020) can cover
the general anisotropic framework, here we restrict to cubic materials since our de-
signed experiment involve multilayered cubic III-V semiconductor alloy In1−αGaαP
for α small. In order to account for small-strains but large rotations including inho-
mogeneous pre-stress we consider a linear constitutive relation between the second
Piola–Kirchhoff stress S tensor and the Green strain-tensor E = 1

2 (FTF− I) in the
form

S = C(X3)[E] + S?(X3) +ΣO(δ2), (31.3)

whereΣ is a characteristic stress and both the material parametersC = (Cij) (Voigt
notation) and the pre-stress S? depends on the normal coordinate in the reference
configuration. Morover, following Danescu and Ionescu (2021) we assume that the
elasticities C obey the weak transversal heterogeneity condition, i.e.,

〈Cij〉2 = ΣO(δ), 〈Cij〉3 =
1

12
〈Cij〉1 +ΣO(δ), (31.4)

where the successive averages (moments) of a X3-dependent function 〈f〉n (n =
1, 2, 3) are defined through

〈f〉n =
1

Hn

∫ H/2

−H/2
Xn−1

3 f(X3)dX3. (31.5)

Taking into account that during the MBE growth the upper surface of the multi-
layer structure is stress-free, we assume that the pre-stress acting surfaces parallel to
the mid-surface vanishes, so that S?e3 = 0. Then, following Danescu and Ionescu
(2020), the moments equations are

div(
H

12
M[K] + 〈S?2〉2) = 0 inR0, (

H

12
M[K] + 〈S?2〉2)νext = 0 on ∂R0, (31.6)
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(
H

12
M[K] + 〈S?2〉2) : K = 0 in R0, (31.7)

where S?2 is the in-plane pre-stress andM = {Mij} is related to the in-plane reduced
elasticity, i.e.,

M[A] = 〈D2〉1[A]− 〈C12〉21
〈C11〉1

(I : A)I (31.8)

and D2 is the in-plane part of the Voigt tensor.
Obviously, equations (31.6)-(31.7) are satisfied if the pre-stress S? is such that

〈S?2〉2 = −H
12

M[K]. (31.9)

H D(S)

T (S)

N(S)

R0

(mid-surface)

C0

t⊥(s)

t(s)

n(s)
m(s)

S0

C

(mid-surface)

h(s)

d(s)

b1 b2

Fig. 31.1 Geometric elements of the planar ribbon: thickness H(S), width D(S), the tangent and
normal vectors (T (S) andN(S)) along the curve C0 located in the mid-surface R0 and the
geometric elements for the shell-ribbon with mid-surface S0 along the curve C:
{t(s),n(s),m(s)} Frenet frame along C, the vector t⊥ (located in the tangent plane to S0),
thickness h(s) and width d(s).

31.4 Small Strain Deformation of a Ribbon

If S ∈ [0, L] and κ0(S) are the arc-length and the curvature of a planar curve
C0 located at R(S) ∈ R2 with tangent T (S) and normal N(S), we define (see
Fig. 31.1) the planar ribbon R0 ⊂ R2 along C0 of width D = D(S) as
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R0 = {R(S) +QN(S);S ∈ (0, L), Q ∈ (−D(S), D(S))}. (31.10)

Let S0 denotes the mid-surface of a shell, given by its parametric description u →
rS0

(u) ∈ R3, whereu = (u1, u2) are coordinates in some subsetΩ ⊂ R2. If δ � 1
is a small parameter, our goal is to provide conditions for the existence of a map
x : R0 → S0 with small strain, i.e. (31.2) holds uniformly with respect toX ∈ R0.

Let us compute the (Lagrangian) metric tensor of the planar ribbon defined in
(31.10). The local basis, associated to the coordinates (S,Q), is bS = T −Qκ0N
and bQ = N and thus the Lamé coefficients and metric tensor are

L2
S = gSS = 1− 2Qκ0 +Q2κ2

0, gSQ = 0, L2
Q = gQQ = 1. (31.11)

In order to chose among the multiple ways that map a ribbon on a surface, we study
the particular case in which the ribbon cover the shell mid-surface along a given
curve C ⊂ S0 (see Fig. 31.1). As a curve in R3, C posses its intrinsic geometric
features: arc-length s, Frenet frame (t(s),n(s),m(s)), curvature κ(s) and torsion
τ(s) and, obviously, the tangent plane to the shell mid-surfaceS0 contains the tangent
vector t(s) to C.

Let u0(s) = (u0
1(s), u0

2(s)) be the arc-length parametrization of the curve C ⊂
S0. Then, t = ∂r

∂u0
i

du0
i

ds = bi
du0
i

ds is the description of the tangent vector to C in
the covariant basis {b1, b2} on S0. The main idea is to map the q coordinates in a
neighborhood of the curve C ⊂ S0 in the direction t⊥(s), which is orthogonal to
its tangent vector of the curve and belongs to the tangent plane of the surface , i.e.
t⊥(s) = e3(u0(s)) ∧ t(s). More precisely, if we put

ui(s, q) = u0
i (s) + qvi(s, q), v0

i (s) = vi(s, 0), i = 1, 2, (31.12)

then the ribon surface is given by

S0 = {rS0
(u(s, q)); s ∈ (0, l), q ∈ (−d(s), d(s))}, (31.13)

where d is the ribbon width, and from t⊥(s) = ∂r
∂q (s, 0) = ∂r

∂ui
∂ui
∂q (s, 0) = biv

0
i (s)

we get
v0
i (s) = t⊥(s) · bi(u0(s)). (31.14)

If the order of magnitude for the ribbons widths with respect to the curvatures of the
curves C0 and C as well as to the curvature tensor of the surface S0, are such that

D(S)κ0(S) = O(δ1/2), d(s)|K(u0(s))|, d(s)κ(s)(t⊥ ·m) = O(δ1/2),
(31.15)

then an estimation of the Lagrangian and Eulerian metric tensors at order O(δ) was
obtained in Danescu and Ionescu (2021). To see that, let us compute the (Eulerian)
metric tensor of the surfaceS0 up to first-orderwith respect to q.Wehave successively
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gqq(s, q) = gij(s, q)
∂ui
∂q

∂uj
∂q

=

(
gij(s, 0) + q

∂gij
∂q

(s, 0)

)
∂ui
∂q

∂uj
∂q

+ O(δ) =

gij(s, 0)v0
i v

0
j + q

(
4gij(s, 0)v0

i

∂vj
∂q

(s, 0) +
∂gij
∂uk

(s, 0)v0
i v

0
j v

0
k

)
+ O(δ)

= |t⊥(s)|2 + qv0
i (s)

(
4gij(s, 0)

∂vj
∂q

(s, 0) +
∂gij
∂uk

(s, 0)v0
j (s)v0

k(s)

)
+ O(δ),

and by choosing

∂vl
∂q

(s, 0) = −1

4
gli(s, 0)

∂gij
∂uk

(s, 0)v0
j (s)v0

k(s), (31.16)

we obtain gqq = 1 + O(δ).Moreover,

gsq = gij
∂ui
∂s

∂uj
∂q

=

(
gij(s, 0) + q

∂gij
∂q

(s, 0)

)
∂ui
∂s

∂uj
∂q

+ O(δ) =

= gij(s, 0)
du0

i

ds
v0
j + q

(
gij(s, 0)

dv0
i

ds
v0
j + 2gij(s, 0)

du0
i

ds

∂vj
∂q

(s, 0)+

+
∂gij
∂uk

(s, 0)v0
k

du0
i

ds
v0
j

)
+ O(δ)

and, since gij(s, 0)
du0
i

ds v
0
j = t · t⊥ = 0, using (31.16) we obtain

gsq =
q

2

(
2gij(s, 0)

dv0
i

ds
v0
j +

∂gij
∂uk

(s, 0)
du0

i

ds
v0
kv

0
j

)
+ O(δ) =

=
q

2

d

ds
(t⊥ · t⊥) + O(δ).

Finally,

gss(s, q) =

(
gij(s, 0) + q

∂gij
∂uk

∂uk
∂q

)
∂ui
∂s

∂uj
∂s

+ O(δ) = gij(s, 0)
du0

i

ds

du0
j

ds
+

+ q

(
2gij(s, 0)

du0
i

ds

dv0
j

ds
+
∂gij
∂uk

(s, 0)v0
k

du0
i

ds

du0
j

ds

)
+ O(δ) =

= |t(s)|2 + 2q

(
dt⊥
ds
· t
)

+ O(δ) = 1 + 2q

(
dt⊥
ds
· t
)

+ O(δ).

But, since t⊥ · t = 0 we have t⊥ = (t⊥ ·n)n+ (t⊥ ·m)m so that, using the Frenet
formulae, we obtain

dt⊥
ds
· t = −dt

ds
· t⊥ = −κ(t⊥ ·m). (31.17)

This last result emphasize the role played by the geodesic curvatureκgeo = κ(t⊥·m),
which is the projection of the curvature of C into the tangent plane of the manifold
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S0, in the estimation of the metric tensor. To summarize, we obtained

gss = 1− 2qκ(s)t⊥ ·m+ O(δ), gsq = O(δ), gqq = 1 + O(δ), (31.18)

gSS = 1− 2Qκ0(S) + O(δ), gSQ = 0, gQQ = 1 + O(δ). (31.19)

By using (s, q) = (S,Q) ∈ (0, L) × (−D,D), we are now able to estimate the
Green-Lagrange strain tensor of the map x : R0 → S0. Since the gradient tensor F
can be written as F = bs ⊗ bS + bq ⊗ bQ, taking into account (31.19) and (31.18),
we obtain

F TF = L2
sbS ⊗ bS + bQ ⊗ bQ + O(δ) = I − (1− gss/gSS)eS ⊗ eS + O(δ)

and thus

E2 =
1

2
(
gss
gSS
− 1)eS ⊗ eS + O(δ) =

= Q[κ0(S)− κ(S)(t⊥ ·m)]eS ⊗ eS + O(δ).

(31.20)

We conclude that by choosing the curvature of the planar curve C0 equal to the
geodesic curvature of the supporting curve of the shell-ribbon C ⊂ S0 the Green-
Lagrange tensor is small, i.e.

if κ0 = κgeo = κt⊥ ·m, then E = O(δ). (31.21)

31.5 From Theory to Fabrication of a Nano-Sphere

Let (r, θ, φ) be the spherical coordinates in R3 and denote by er = er(θ, φ),
eθ = eθ(θ, φ), eφ = eφ(φ) the local physical basis. Let S0 denote the surface of
the sphere of radius R∗ with Lamé coefficients Lθ = R∗, Lφ = R∗ sin(θ) and the
unit normal e3(θ, φ) = er(θ, φ). Then, the curvature tensor on S0 is

K = − 1

R∗
(eθ ⊗ eθ + eφ ⊗ eφ) .

Let C ⊂ S0 be a given curve with arc-length s, parametric description s →
(θ0(s), φ0(s)) and geodesic curvature κgeo(s). If C0 is the planar curve with curva-
ture κ0(s) = κgeo(s) and R0 is the planar ribbon along C0 (see definition (31.10))
with the width d(s) such that (31.15) holds then, from the small-strain membrane
condition (31.2) we get

K =
1

R∗
(I2 + O(δ)).

From the plate-to shell model we find that a shell-ribbon S0 of a spherical shell
of radius R∗ along the curve C, could be designed from a planar ribbon R0 along a
curve C0 if (31.21) holds. The pre-stress momentum have to be designed such that
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〈S∗2〉2 = − H3

12R∗
M[I2] and can be obtained with an isotropic and homogeneous

pre-stress, i.e., S∗2 = σ∗I2, where

〈σ∗〉2 =
H

12R∗

〈C2
11〉1 + 〈C12〉1〈C11〉1 − 2〈C12〉21

〈C11〉1
. (31.22)

31.5.1 Optimal Covering with Constant Parallel Ribbons

For constant latitude curves, i.e., θ(s) = θ0, we have φ0 = s/(R∗ sin(θ0)) so
that d/R∗ = O(δ1/2), d cot(θ0)/R∗ = O(δ1/2) and the goedesic curvature is
κ0 = κgeo = cot(θ0)/R∗. This means that the width of successive ribbons will
decrease with the latitude. As a straightforward consequence, the fit of successive
positions and widths of constant latitude ribbons for a complete cover of the sphere
is a nontrivial problem. We recall here a result from Danescu and Ionescu (2021)
concerning a semi-analytical optimal covering of the sphere.

Fig. 31.2 An optimal covering of the sphere with constant latitude ribbons obtained by
implementing the solutions of recursive system (31.24) for δ = 10−2.

If θk denote the latitudes of the supporting curve for successive ribbons then, for
the kth ribbon, the arc-length is such that s ∈ (−πR∗ cos θk, πR∗ cos θk) and the
angular variable θ(q) = π/2− θk − q/R∗ for q ∈ (−dk, dk). A symmetric solution
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can be obtained as follows: take θ0 = 0, θ
k

= −θk and notice that the covering
condition and (31.15) can be expressed as

dk ≤ δ1/2R∗min(1, cot θk), R∗(θk+1 − θk) = dk + dk+1. (31.23)

It follows that for θ < π/4we can consider constant width ribbons with θk = 2kδ1/2

and thus dk = δ1/2R∗ for |k| ≤ b π
8
√
δ
− 1

2c (here [x] is the entire part of x) while
for k > b π

8
√
δ
− 1

2c we have to solve recursively the nonlinear equation

x− δ1/2 cotx = θk +
dk
R∗

, (31.24)

whose solution θk+1 provide

dk+1 = R∗(θk+1 − θk). (31.25)

An implementation of this procedure for δ = 10−2 provide the design illustrated in
Fig. 31.2.

31.5.2 Elastic Layers with Pre-Stress: Material Parameters

The experimental implementation of the sphere coveringwith variablewidth ribbons,
presented in the previous subsection, is difficult due to very sharp angles between
successive ribbons near the vertical symmetry axis, and thus incompatible with the
spatial resolution of the photo-lithography processes. However, in order to illustrate
the role of the geodesic curvature in the design problem we focus here on the partial
cover of the sphere with constant latitude ribbons.

Since the planar design is dependent on the target surface curvature we start by the
epitaxial growth of the bi-layer semiconductor structure: a 60 nm thick In0.88Ga0.12P
layer (further denoted InGaP) grown on a 145 nm thick InP layer. The bi-layer was
grown on an InP substrate previously covered by a 500 nm thick InGaAs sacrificial
layer. Using data from the literature, we have

C InP
11 = 101.1 GPa, C InGaP

11 = 105.8 GPa,
C InP

12 = 56.1 GPa, C InGaP
12 = 56.8 GPa,

C InP
44 = 45.6 GPa, C InGaP

44 = 48.5 GPa,
(31.26)

so that the caracteristic stress Σ = 100 GPa. For δ = 10−2 we verify that indeed

〈Cij〉2 = ΣO(δ), 〈Cij〉3 −
1

12
〈Cij〉1 = ΣO(δ), (31.27)

so that the assumption of weak transversal homogeneity is fullfilled. The lattice
parameters for the InP and InGaP layers are respectively
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aInP = 5.8687 Å, aIn0.88Ga0.12P = 5.8185 Å, (31.28)

and correspond to a spherical pre-strain (extension) in the upper layer of m =
diag(0.86%, 0.868%). For pratical applications, it is the fraction of Ga in the upper
layer (InαGa1−αAs) which has to be fixed as a function of the radius of the target
sphere, but for simplicity here we use the equation (31.9) in order to compute the
radius of the object that can be obtained at α = 0.12.

Fig. 31.3 The planar grid designed to cover the sphere. The horizontal straight line will fully cover
the ecuator while the lower and upper parts will cover the North and South hemispheres,
respectively. Notice the slight modification of the length for small arcs near the South pole needed
in order to keep the relaxed structure attached through the filled round dot (with a characteristic
size larger than the lateral dimensions of the curved ribbons) to the substrate during the
under-etching process.

31.5.3 Design and Fabrication

In order to cover the sphere of radius R∗ with constant latitude ribbons we notice
that the radius of the ribon at latitude θ is R∗ cos θ and their geodesic curvature,
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Fig. 31.4 SEM image of the sample after the developement process before the reactive ion etching
(RIE).

which is exactly the inverse of tha planar design radius, is constant and equal to
κ(θ) = 1

R∗
tan θ. For simplicity, we chose the width of all ribbons equal to 1.5 µm

(for visual comfort, the actual scale in Fig. 31.3 is not the same as the implemented
design in 31.5) and design a geodesic half-circle to ensure connectivity between the
constant latitude ribbons. Using the intersection of the two strait lines in figure 31.3 as
the origin of the coordinate system in the plane, positions of the 8 pairs of symmetric
arcs corresponding to constant lattitude arcs located at ±nπ18 (n = 1, . . . , 8) in
the North and South hemi-sphere. Their corresponding centers radii and angular
extensions are

C±n = (0,±R
(
nπ

18
+

1

tan θ

)
, Rn = R/ tan θ, θn = π sin

(nπ
18

)
. (31.29)

Fabrication of the design illustrated in Fig. 31.3 involve several steps: we start by
the deposition of a 90 nm thick SiO2 hard mask followed by the deposition of a 130
nm thick negative resist film (AR-N7520.07). Next step is electron beam lithography
performed by using a modified SEM (FEI Inspect F) and the RAITH Elphy Quantum
software. The result after the development of the lithographic process is illustrated
in Fig. 31.4. The reactive ion etching (RIE) is then performed in order to transfer the
pattern into the silica mask and then into the multilayer structure. The result of this
process is represented in Figures 31.5 (both optical microscope and SEM images). At
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Fig. 31.5 Optical microscope view of the structure obtained after etching the multilayer material,
still maintained attached to the substrate by the sacrificial layer.

this step, the structure is still attached on the sacrificial layer but the lateral relaxation
of the pre-stress in the bi-layer material takes place. Despite the small width (1.5
µm) and the ultra-small thickness (205 nm) the axial pre-stress is still present in
the structure and will be released only during the process of under-etching of the
sacrificial layer. In order to keep the relaxed structure attached to the substrate the
radius of the attachement circle (designed in the lower part of Fig. 31.3) have to be
slightly larger then the width of various arcs of the design.

Next, the under-etching is performed using diluted FeCl3 to selectively remove the
InGaAs sacrificial layer so as to release the pre-stress in the multi-layer. Successive
H2O, acetone and methanol rising baths were performed before a CO2 supercritical
drying step, needed in order to circumvent the mechanical actions induced by the
surface tension at liquid/solid interfaces. As expected, the fully relaxed structure
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Fig. 31.6 The relaxed shape confirms that the geodesic curvature design relax as expected into
constant latitude circles on the sphere.

covers the surface of the sphere with constant latitutde ribbons, with only small
alignment defects at the ends. Obviously, a large variety of different designs can
be implemented but, as already stated, technological limitations associated with the
photolithographic process (sharp angles) do not allow all of these designs to be
successfully implemented.

31.6 Conclusions and Perspectives

The fabrication of nano-shells, is in itself a technological challenge as it encompasses
the traditional planar technology. One way to obtain such structures is to release the
pre-stressed nano-plates, fabricated by layer-by-layer deposition, to obtain a target
shell geometry. The presence of several geometrical and technological restrictions
can be circumvent by the use of three-dimensional thin ribbons in order to cover
a desired surface. The geodesic curvature plays an fundamental role for the design
of both the geometry of ribbons that cover arbitrary surfaces starting from planar
structures and the pre-stress needed to obtained them. The main result shows that, for
multilayered structures with weak-transversal homogeneity, if the curvature of the
planar ribbon is equal to the geodesic curvature of the supporting curve then there
exists a pre-stress such that a small-width and small-thickness planar ribbon relaxes
toward a 3D ribbon covering the surface along the suporting curve. We illustrate our
theoretical results by the design and fabrication of a partial cover of the sphere with
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Fig. 31.7 Top: Optimal covering of the sphere for δ = 10−2. Alternative distribution of the
constant latitude arcs on the left (respectively right) part of the initial design present in Fig. 31.2 to
avoid sharp angles along the vertical symmetry axis. Bottom: zoom on the central zone.

constant-latitude ribbons starting from a planar design containing arcs with constant
curvature and a bilayer semi-conductor bi-layer material with controled composition
(In0.88Ga0.12P/InP).

Extensions of these results to obtain a complete cover of the sphere are limited by
the resolution of the lithographic process, difficult to implement at very sharp angles.
A solution to overcome this technological drawback of the (sharp angles) lithographic
process is illustrated in Fig. 31.7. Here, in order to avoid the sharp angles between
successive ribbons located at constant latitude we chose to design alternative left
and right constant radius arcs corresponding to successive constant latitude ribbons.
The ideal picture in Fig. 31.7 does not include a small vertical segment, which is
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nedded in order to attach the constant curvature arcs to the structure. In fact, the
design in Fig. 31.7 contains exactly the same arcs as that of the Fig. 31.2 but their
positions are such that sharp angles along the vertical symmetry line in Fig. 31.2
are avoided. However, a closer look to the design in Fig. 31.7, reveals very small
distances between successive ribbons (also present in the initial design in Fig. 31.2
between large latitude ribbons.

The general results in Danescu and Ionescu (2021) provide solutions to both par-
tial and total covers of other non-developable (orientable or not) three-dimensional
surfaces as the torus and the Mobius ribbon, extending the classical setting of iso-
metric transformations. We mention here two interesting extensions: the first one
concerns the class of arbitrary transversal homogeneity (and not only weak transver-
sal homogeneity) in which case one has to adapt the general setting in Danescu and
Ionescu (2020). The second perspective concerns the fabrication of more complex
geometries which require not only bending but also torsion, a problem already dis-
cussed in Danescu and Ionescu (2021) which is dependent to more complex (not
only hydro-static) pre-stress. Controled spatial modulation of the pre-stress, and in
particular including controlled shear still remains a technological landmark at the
nano-scale.
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Chapter 32
Experimental and Theoretical Investigations of
Auxetic Sheet Metal

Arash Gordanshekan, Tobias Heib, Wolfgang Ripplinger,
Hans-Georg Herrmann, Stefan Diebels

Abstract This paper deals with the mechanical and thermal behavior of aluminum
sheets with a rectangular perforation structure exhibiting an auxetic behaviour. The
negative Poisson’s ratio is basically achieved by the rigid rotation mechanism of the
squares between the perforations. In this work uniaxial quasistatic tensile tests are
carried out to characterize the perforation pattern. During the mechanical tests, the
samples are observed simultaneously with a optical camera, used for Digital Image
Correlation (DIC) to determine the local deformation fields, and passive thermogra-
phy to visualize the heat evolution in the sample due to plastic deformation process.
This led to the in situ thermomechanical characterization of the component and
moreover to the determination of the effective material parameters such as Young’s
modulus, Poisson’s ratio and thermoelastic constant. The results were then compared
and validated by means of FEM simulations. Furthermore, the thermographic im-
ages were optimized in this work by using optical images to segement the sample
from the background. These improved images were used to extract the temperature
change due to plastic deformation to determine the yield stress.
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32.1 Introduction

Most natural materials are isotropic and characterized by a positive Poisson’s ratio.
Nevertheless, materials with negative Poisson’s ratio can exist based on the classical
theory of elasticity. Such materials are known as “auxetic” after Evans (1991),
which means a lateral expansion in response to stretching, as well as a uniform
and opposite densification in the compressed state (Lakes, 1987; He et al, 2005).
From the requirement that the deformation energy of an isotropic elastic solid cannot
become negative, it is concluded that the Poisson’s ratio for a linear elastic isotropic
material theoretically lies between −1 und 0.5 (Timoshenko, 1955).

Auxetic behavior can occur on different scales. On the molecular level, auxetic
properties can be caused by a special microstructure, on the macro level by a suitable
mechanism (Evans and Alderson, 2000; Prawoto, 2012; Stavroulakis, 2005). Py-
rolytic graphite (Voigt, 1888), α-cristoblaite (Evans et al, 1991) and some biological
tissues (Lees et al, 1991) are examples of such naturally occurring molecular auxet-
ics. Artificial auxetic materials and structures are found much more frequently than
natural ones, often as cellular materials such as honeycomb structures and foams,
which are also called metamaterials (Lakes, 1993, 1987). The currently widespread
topic of metamaterials refers not only to auxetics but also to a vast number of other
materials whosemechanical properties are mainly caused by their complex geometry
e.g. pantographic metamaterials (dell’Isola et al, 2015, 2019b). Design, manufactur-
ing and modeling of the pantographic metamaterials are widely discussed especially
in the works of Seppecher et al (2019); dell’Isola et al (2019a); dell’Isola and
Steigmann (2020). Such man-made materials, which mostly exhibit an anisotropy
in the macro-scale, can have any positive or negative values for the Poisson’s ratio
as long as the strain energy function is positive and it is not necessarily required for
them to have a Poisson’s ratio between −1 and 0.5 (Norris, 2006; Ting and Barnett,
2005).

Due to the cellular structures and the reduced density and the relatively im-
proved mechanical properties of the auxetic structures such as higher shear modulus,
enhanced load-carrying capacity, higher resistance to indentation, larger fracture
toughness and enhanced vibration absorption, their applications are basically found
in lightweight constructions and they are used specially as crash absorbers (Friedrich,
2017; Grima and Gatt, 2010; Lakes, 1987). Furthermore, auxetic geometries are in-
creasingly finding their place in the development of novel products mostly in the
fields of intelligent expandable actuators, shape memory structures and minimally
invasive implantable devices (Scarpa et al, 2010; Bianchi et al, 2010). The fact that
auxetic materials are no longer exotic but are already widely used is described, for
example, in the paper of Seppecher et al (2019).

The structures that potentially exhibit auxetic behavior are divided into three main
groups, namely “rotating unit structures” (Fig. 32.1a) proposed by Chetcuti et al
(2014); Gatt et al (2015); Grima and Evans (2000), “chiral structures” (Fig. 32.1b)
proposed by Scarpa et al (2007); Prall and Lakes (1997) and the most common and
widely researched “re-entrant structures” such as auxetic honeycombs (Fig. 32.1c)
proposed by Choi and Lakes (1992); Dong et al (2019), whose deformation mech-
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anisms respectively are based on rotation, rolling up and unfolding of their cellular
structures (Elipe and Lantada, 2012).

Fig. 32.1 Typical auxetic structures; a) rotating unit; b) chiral; c) re-entrant structures

Besides these relatively simplemodels there is a vast number of other auxeticswith
a more complex structure and deformation mechanism such as auxetic microporous
and molecular polymers (Alderson and Evans, 1997), auxetic composites (Milton,
1992) and auxetic open-cell foam as the first auxetic material with irregular pattern
(Lakes, 1987). Their deformation process is rather complex, however it can be
simplified through the use of different models such as the nodule-fibre-model for
auxetic molecular polymers or the rod-and-hinge model for auxetic composites.

By assuming that the macroscopic behavior of auxetic structures is essentially
caused by their microstructure, the in situ-characterization of the component is of
great importance. The mechanical and thermal behaviour of materials during the
deformation can be coupled via thermomechanical investigations. Deformation is
accompanied with heat transfer, which can vary depending on the material and strain
rate. This is typical for Polymeric materials, such as elastomers, because of the high
heat transfer to use such coupled thermomechanical calculation. However, based on
a high thermal conductivity, metals show lower temperature changes (usually less
than 1 °C). Therefore highly precise measurement techniques are required to perform
coupled thermomechanical investigations (Lee and Chen, 1991). Lord Kelvin in
1851 (Swalin and Rice, 1963) has demonstrated for the first time that material
becomes colder during elastic deformations, while during plastic deformations the
heat dissipates and, accordingly, the material becomes warmer. This phenomenon,
is also called the Joule Thomson effect, which is comparable to the ideal gas law
(temperature decrease of a gas leads to increasing volume), only for solid materials.
The minimum of this temperature evolution in a tensile test can be used to determine
the yield point (Vitzthum et al, 2019).

In this work we investigate experimentally and numerically the in-plane thermo-
mechanical characterization of deformation behavior of sheet metal with rectangular
perforations, which belongs to the auxetic group “rotating unit structure” due to its
deformation mechanism. The analysis is carried out by combination of digital image
correlation (DIC) for measuring local strain fields and infrared thermography for
measuring local temperature fields during the deformation process.
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32.2 Material and Methods

32.2.1 Sample Material

In the present work, all the samples are made out of the aluminium alloy AlMg3
(EN AW-5754). Its mechanical properties as written in the technical datasheet are a
Young’s modulus of E = 70 GPa, a Poisson’s ratio of ν = 0.34 and a yield strength
ofR0.2 = 80 MPa. For the following experimental tests, these values were taken into
account to set up the testing machine. Further properties are presented in the results
section in Table 32.3. The AlMg3 alloy has excellent corrosion resistance also in sea-
water. Therefore this material is widely used in the maritime industry, constructions
in railways, car body elements, pressure vessels and facade applications.

32.2.2 Perforated Aluminium Sheet

As shown in Fig. 32.2 the sheet metal of an aluminium alloy (AlMg3) has a regu-
lar pattern of rectangular perforations, which are perpendicular to each other. The
perforations have been cut in the sheet by micro waterjet cutter. Waterjet cutting
technology enables the production of such perforated metallic samples in small di-
mensionswith optimal results in terms of dimensional accuracy and residual stresses.
The plate consists of a cellular core area and two small solid areas at the two ends,
each with five holes in it, which only contribute to clamping the specimen in the
testing machine and are not taken into account in the data evaluation. To calculate
the volume fraction of perforations (Vp) in the sheet, only one unit cell should be
considered because of the periodicity. This can be determined as Eq.32.1:

Vp = 4
Ap
Auc

=
4ab

(a+ b+ 2c)2
(32.1)

where a is the length, b the width and c the distance of the perforations. Ap and
Auc represent area of a single perforation and area of the unit cell respectively. The
auxetic sheet metal used in this study has the parameters a = 10 mm, b = 2 mm,
c = 2 mm and thickness of 1 mm, which results an aspect ratio of AR = a

b = 5
and according to Eq.32.1 a porosity of Vp = 31 %. Ripplinger et al (2018) have
demonstrated the significant influence of aspect ratio of rectangular perforation on
the effective mechanical behavior of such auxetic structures with the same volume
fraction of perforations.
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Fig. 32.2 AlMg3 Sheet sample with rectangular perforations including corresponding geometry
parameters. From left to right: unit cell with rectangular perforation, measurement area of the
sample, full sample including clamping area. All perforations have the same dimensions (a, b) and
distance to its neighbours (c) within the entire sheet.

32.2.3 Experimental Setup

In a first step tensile tests of bulk samples are performed. A universal material testing
machine ElectroPulsTM E10.000 of Ltd. Instron, Pfungstadt, Germany equipped with
a ±10 kN and ±100 Nm Dynacell load sensor was used. The tensile specimens
were prepared according to DIN 50125-E. For evaluating the local deformation of
the sample and therefore the Poisson’s ratio an optical camera for digital image
correlation is used. For this reason one side of the specimen is first coated with a
frosted white spray paint followed by a black speckle pattern.

In a second step tensile tests of the auxetic samples are performed. A biaxial
testing machine with a ±25 kN loadcell (ME meassuring systems KD9363s, Hen-
nigsdorf, Germany) was used. The machine is self developed by the Chair of Applied
Mechanics at Saarland University1. One speciality are the synchronised electrical
axis, which deform the sample on both sides of the clamping simultaneously in such
a way, that the middle of the sample stays stationary during the whole test. The fur-
ther setup consists of an optical camera (Manta MG-235B, Allied Vision, Stadtroda,
Germany) used for digital image correlation and a thermography camera (Infratec
Variocam HD, Dresden, Germany). The optical camera with a resolution of 1920 x
1200 pixels is equipped with a 12.5 mm lens (Fujifilm HF12.5SA-1, Minato, Japan).
On the other hand the thermography camera has a spectral range from 7.5 to 14 µm
and a resolution of 1024 × 768 pixels. Both cameras are aligned in one axis facing
their lenses to each other. In the middle the sample is positioned. To minimize the
influence of temperature from the surrounding and the optical camera in combination
with the illumination, a glass pane is placed between the sample and the camera. In
the spectral range of the thermographic camera nearly the whole thermal radiation is
absorbed. The setup for these experiments is displayed in Fig. 32.3. The test routine

1 https://www.youtube.com/watch?v=C0KcvnHf6Wc
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is set up in discrete deformation steps with a constant deformation rate. For each
deformation step the testing machine is sending a trigger signal to the optical and
the thermal camera. Meanwhile, the current load and position are recorded.

Fig. 32.3 Experimental setup for tensile tests with stationary sample, DIC camera and
thermography camera.

32.2.4 Sample Preparation

Optical and thermographic camera systems have different requirements to the surface
finish of the sample. For performing digital image correlation with the optical camera
the sample background has to be homogeneous in a dull matt colour while the
stochastic speckle pattern has a high contrast to the background. A white primer
spray paint is used for the background to get a good adhesion on the rolled aluminum
surface, even when the sample is highly deformed. The speckle patterns are made
with a black acrylic spray paint and must be distributed stochastically and as finely
as possible on the surface to achieve higher resolution. In order to have the correct
gray value contrast, the ratio of 30%-black 70%-white should be kept.

On the other side, the thermographic camera has as well the requirement of a
homogeneous surface. Furthermore, it is neccessary to have a low reflecting surface.
Therefore this side of the sample is painted with a black varnish, called Tetenal
Kameralack (Tetenal, Norderstedt, Germany), with a emissivity of ε = 0.97 (Silva
et al, 2019).



32 Experimental and Theoretical Investigations of Auxetic Sheet Metal 695

32.3 Results and Discussion

32.3.1 Mechanical Properties of Bulk AlMg3

The experimentswere startedwith a displacement controlled and quasi-static uniaxial
tensile test on a bulk AlMg3-sample at room temperature. Themechanical properties
of the bulk sample primarily provided the input values for FE-modeling of the
associated auxetic sample. They also present basic values for later comparison with
their auxetic counterparts. The resulting stress-strain curve is shown in Fig. 32.4.
The Young’s modulus was determined by a self-developed MATLABr-Tool, which
is based on an advanced tangent method and provides the value with minimal error.
The first step in this method is to gather a set of measurement data points within
the elastic range from the stress-strain curve, where the tangent moduli deviates the
least from the mean value. These are the data points which successively show the
maximum linearity. The intersection point of the line drawn through this data point
set and the x-axis is used as the new origin to calculate the secant moduli. Finally,
the value of Young’s modulus is obtained as the average value of the secant moduli
of this data set. Transverse strain to determine Poisson’s ratio was calculated using
DIC. The resulting material parameters are shown in Table 32.1.

Fig. 32.4 Stress-strain curve of the bulk AlMg3-sample with noisy experimental data (red) and
low-pass filtered data (blue)

Table 32.1 Material parameters of bulk AlMg3

Young’s modulus Yield stress Poisson’s ratio Ultimate stress Fracture strain

60.04 GPa 119.6 MPa 0.33 233.86 MPa 13.87%
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32.3.2 Experiment on the Auxetic Sheet

The uniaxial strain-controlled tensile test was performed quasi-static at room temper-
ature and a strain rate of ε̇ = 0.0025 s−1. As mentioned in Section 32.1 the auxetic
structure used in this study belongs to the group of “rotating unit structures”. This
is due to the special nature of its deformation mechanism. As shown in Fig. 32.5,
when the auxetic sheet is loaded, the squares surrounded between the perforations
rotate while retaining their original shape. In order to evaluate this phenomenon
more accurately, the principal strains of the unit cell at the center of the plate were
calculated using DIC, as shown in Fig. 32.9. The results show that the plate does not
experience any elongation within the area of the squares, which confirms that the
squares do not undergo any deformations but a rigid body rotation upon loading. The
direction of rotation of the squares caused by the uniaxial tension allows the sheet
to expand in both directions. This leads to the auxetic behavior in the sheet metal.

The observations of deformed and non-deformed areas in the sample can be
proven with electron backscatter diffraction (EBSD) as a part of a scanning electron
microscope (SEM). In Fig. 32.6 two images of inverse pole figures are shown. In the
left image themeasured area is in themiddle of the rotating square. The different grain
orientations can be identified. Furthermore, in each grain the color is homogeneous,
which is an indicator for a non deformed texture. In contrast to that, in the right image
the probed area is between the rotating squares. Besides the grain orientations, in each
grain a color gradient is visible. Due to plastic deformation the lattice parameters
change slightly and differ from the reference lattice which was used to register the
grain orientation.

In addition to this information the grain size can be identified in the range of
10µm to 50µm.

Fig. 32.5 Representation of rotating squares responsible for the auxetic behavior in deformed state.

Concerning the mechanical properties of the auxetic sheet and as shown in
Fig. 32.7, the stress-strain curve in contrast to the bulk AlMg3 develops continu-
ously from the elastic range to the plastic range without showing any Lüders strain.
In this case a self-developed MATLABr-Tool was used to determine the more pre-
cise yield point by analytically calculating the second derivative at each data point
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Fig. 32.6 Inverse pole figure
of an area in the middle of the
square of the red square (left)
and in the area of the small
section between the rotating
squares (right).

on the fitted transition curve and selecting the data point as the yield point at which
the absolute value of second derivative is a maximum. For calculation of the Young’s
modulus, the advanced tangent method was also used here, as for bulk AlMg3. The
resulting material parameters of auxetic sheet are shown in Table 32.2

Fig. 32.7 Low-pass filtered stress-strain curve of auxetic sheet metal in blue. Fit curve for the
computation of the yield point in red.

Table 32.2 Material parameters of auxetic sheet metal

Young’s modulus Yield stress Ultimate stress Fracture strain

2.63 GPa 12.98 MPa 35.32 MPa 10.67%

DIC was used to determine the local strain fields both in the axial and in the
transverse direction. The commercial DIC software ISTRA4D V4.4 by Dantec Dy-
namics (Skovlunde, Denmark) was employed for post-processing and visualization
of the displacements during the deformation. The local displacements in both di-
rections at a deformation of 10% global strain are shown in Fig. 32.8. To determine
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the effective Poisson’s ratio, the difference in the mean displacements of all material
points in opposite edges of the specimen was calculated and then divided by their
initial distance. It should be noted that the calculated Poisson’s ratio by this method
is basically influenced by the boundary effects in the clampings of the sample.

Fig. 32.8 Local displacement fields after approx. 10% of global strain. The widening of the
specimen in transversal direction can clearly be seen.

In order to eliminate the boundary effects and to represent the Poisson’s ratio in
an infinite system, the displacements of a unit cell in the center of the sheet were then
observed upon the tensile test. The course of deformation of the unit cell is shown
incrementally in Fig. 32.9. The resulting Poisson’s ratios in both cases of global and
local evaluation during deformation are shown in Fig. 32.10 and indicate that the
maximum auxetic effect occurs in the center of the sheet, where the boundary effects
have the least influence. It should also be noted that the boundary effects increase
with increasing deformation, so that the minimum auxetic behavior occurs by the
consideration of Poisson’s ratio over the edges and especially at large deformation.

Thermography was used to determine the local temperature fields and to monitor
the damage evolution in the material. As a non-destructive testing method, passive
thermography, can be used in situ during a mechanical loading test, as shown by
(Summa et al, 2018). As the sample is made of an aluminum alloy with a high
thermal conductivity and numerous perforations, it is hard to distinguish between
the sample and the background in the thermograms. Therefore in this paper a method
is developed to use the thermographic information in combination with the optical
images to get more usefully thermograms. The single steps are shown exemplary
in Fig. 32.11 and 32.12 for an image at the end of the tensile test with a global
deformation of approx. 10%. All image processing steps are performed with a self-
developed MATLABr-Tool. As the lenses of both cameras are facing each other
(see Fig. 32.3) with the sample in the middle, they record a similar region. This
algorithm, developed by the author, was already used in (Klein et al, 2021). Only
one image is mirrored from one to the other. It is assumed that the heat generation
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Fig. 32.9 Local displacements, principal strains and temperature changes of the unit cell at the
center of the sheet during the tensile test.

Fig. 32.10 Resulting Poisson’s ratio during deformation up to 10% of global strain. The maximum
auxetic effect can be observed in the center of the sample using a local evaluation of the Poisson’s
ratio.
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and deformation of the sample is the same on both faces, due to the small sample
thickness of only 1mm.

At first, the optical images are corrected. In Fig. 32.11 (a) the original image is
shown. The optical axis of the camera is not perfectly perpendicular to the sample
surface, which can be recognised by the perspective distortion of the upper and lower
edges. They are not parallel to each other. To correct this distortion two boundaries
are set. First, it is necessary that the sample is a flat sheet and second, the real
geometry of the sample is rectangular with known dimensions (length, width). All
four edge points of the sample are selected and registered to a rectangular geometry
with the dimensions of the real sample. Then, the projective mapping is done with
the help of the “image processing toolbox” in MATLABr. The result is shown in
step (b). For reducing data in step (c) the image is cropped to a region of interest with
the perforated area. For matching the thermographic and optical image the displayed
image was flipped along the vertical axis to get the illusion that both cameras seem
to be on the same side.

In the following procedure, the thermographic images are processed. The original
image is shown in Fig. 32.12 (a) in false colors from blue (low temperature) to yellow
(high temperature). As both cameras have a different resolution for their combination
a common coordinate systems is required. In Fig. 32.12 (b) the thermography image
is set to the same coordinate system as the optical image, in their resolution and
position. The following step (c) is a binarization of the last image in Fig. 32.11, with
the sample as a white level and the background in black. By a multiplication of
the images (b) and (c) the final processing is done. Step (d) shows the sample with
temperature information and the fade out of the background. These processing steps
are done for each image.

Fig. 32.11 Processing of optical camera data with MATLABr. (a) original image; (b) image after
perspective correction; (c) cropped and mirrored image.

With these results it is possible to determine the temperature evolution during
the tensile test. The results are already shown in Fig. 32.9. In the first picture of the
thermography row at εglobal = 0% the sample is unloaded and in an equilibrium
state with the surrounding. With rising displacement, in a first step the sample gets
colder. The deformationmechanism is predominated by elastic deformation, which is
energy consuming from the surroundings. This is the so-called thermoelastic effect.
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Fig. 32.12 Processing of thermography data with MATLABr. All images are displayed in false
colors representing the temperature. (a) original thermogram; (b) thermogram with adjusted
coordinate system; (c) binarized optical image; (d) final thermogram obtained by multiplication of
(b) and (c) and section of the middle unit cell.

In the further development of the test the dominating deformation mechanism is
changing to plastic deformation. As can be seen the sample temperature is rising
until the end of the test, at εglobal = 10%. In contrast to the localized strains (ε1 and
ε2), the temperature doesn’t show localized higher values at the small seams. Instead
the temperature seems to be lower in these areas than in the squares. A possible
reason for this behaviour is the high thermal conductivity of the aluminum alloy.
While heat is generated in the small cross-sections due to plastic deformation, in the
larger sections no heat generation occurs. Conduction is the main mode, in which
the energy is transferred from warmer to colder areas. Besides generated heat can
dissipate by convection with the surrounding, which has a lower energy level.

As already mentioned, the high thermal conductivity of AlMg3 restricts a lo-
calized temperature distribution during the quasi-static tensile test. By calculating
the mean temperature change in comparison to the first image of the experiment
we get a strain-temperature curve that can be overlayed with the strain-stress data.
Both curves are shown in Fig. 32.13. In the beginning of this section the mechan-
ical parameters of the auxetic sheet are calculated by traditional techniques of the
experimental mechanics (see Table 32.2). With the combination of thermographic
and mechanical data by using the thermoelastic effect we can use a new method
to determine the yield point. This point is defined by the beginning of the plastic
deformation and corresponds with the minimum of the temperature deviation curve.
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Fig. 32.13 Consideration of the thermoelastic effect to determine the yield point.

32.3.3 Simulation

The purpose of the before mentioned experiments is to generate specific parameters
of an auxetic structure that can be used to develop a material model, e.g. for finite
element simulations.

In order to compare the experimental results of the deformation and temperature
evolution a coupled temperature-displacement FEM-simulation is generated with
ABAQUSr (Dassault Systems, United States). As a model the whole sample is
loaded into the software tool with a 3D geometry. The element type C3D8T (8-node
thermally coupled brick, trilinear displacement and temperature) with a seed size
of 0.5 is used. The load is applied on each side of the sample on the five holes
which are in direct contact with the fixtures of the machine. To be comparable to the
deformation rate of ε̇ = 0.0025 s−1 a boundary condition with a displacement of
5mm for each side and a step time of 84 s is set.

For the material model a large number of parameters are necessary. The basic
parameters are listed in Tables 32.3 and 32.4. Values of the Young’s modulus,
Poisson’s ratio and for the plastic deformation are used from the experiments in
Section 32.3.1. Further properties are taken by literature (Gleich, 2020; Pottier et al,
2011). As the surface of the sample in the real experiment is painted with a black
camera varnish the emissivity is considered to 0.97 corresponding to Silva et al
(2019). Since this is a first coupled temperature-displacement FEM-simulation of an
auxetic aluminum sheet, several assumptions are made. The convection between the
surrounding air and the sample surface, as well as the heat transfer by conduction
from the sample to the clamping are out of scope. Both limitations may lead to higher
temperature values than in the experiment.

In Fig. 32.14 a comparison of the nodal temperature change in the FEM simulation
and the thermographic image at the end of the tensile test at 10% global deformation
is shown. It is interesting to note that both images look similar even under the strong
assumptions made for the simulation. In both images the heat evolution has a higher
level in the middle of the sample and gets lower in the directions of the clamping.
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Table 32.3 Input Parameters for
the thermomechanical simulation.

Parameter Value

Young’s modulus 60.04GPa

Mass density 2.67× 10−9 t mm−3

Poisson’s ratio 0.33

Thermal conductivity 145mJ s−1 mm−1 K−1

Thermal expansion 2.39× 10−5 K−1

Specific heat 9× 109 mJ t−1 K−1

Inelastic heat fraction 0.65

Table 32.4 Input Parameters for the
hardening simulation of the auxetic sheet
obtained from the experiment results of the
bulk sample instead of using a classic
plasticity model.

True stress (MPa) True plastic strain
119.64 0
126.24 0.004151
158.40 0.017051
195.00 0.041381
227.84 0.093941
232.7 0.127941

Higher plastic deformation leads to higher temperatures. Due to the clamping in the
upper and lower areas, the auxetic behaviour and therefore the plastic deformation
is restrained. By comparing the maximum temperature change of the middle unit
cell, the one with the highest degree of free deformation, the simulation shows a
temperature rise of 0.94K,while the thermogram shows up 0.50K. These differences
can be explained by convection, non-exact material parameters and an uncertainty
of the thermographic camera.

Fig. 32.14 Simulated nodal temperature change and thermogram at 10% of global strain.

The global stress-strain curve from the simulation was calculated analogously to
the experiment. In this regard the simulation results are in a acceptable accordance
with the experimental results according to Fig. 32.15. The small deviations between
the simulation and the experiment can be justified because of the idealized situation
in the simulationwith respect to the edges, clamping areas as well as the homogeneity
of the material in the whole sample. in addition, the local von Mises stresses in the
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sheet metal at 10% of global strain is also shown in Fig. 32.15. The results indicate
that the maximum stresses occur in the thin areas between the squares and the
minimum stresses in the area of the squares. In the center of the squares, the stresses
are even close to zero. These were to be expected based on the local strain fields
calculated by DIC shown in Fig. 32.9.

Fig. 32.15 Global stress-strain curves from simulation and experiment (left) and local von Mises
stresses (in MPa) at 10% of global strain (right).

In Fig. 32.16 the equivalent plastic strain is presented, which is a scalar variable
that is used to represent the material’s inelastic deformation. If this value is greater
than zero, the material is above its yielding point. In the figure only values greater
than zero are displayed in color. In order to compare the plastic deformed areas with
those of the DIC Analysis in Fig. 32.9, they are the same. When monitoring of the
sample condition is the aim, the highly deformed edges may lead to cracks by further
deformation.

Future work will also investigate the natural convection with the surroundings to
reproduce the real experiment even more accurate.

32.4 Conclusion

The aim of this study is to extend current knowledge of the deformation behaviour
of the auxetic sheets with rectangular perforations made of aluminum alloy. The
combination of DIC and thermography during the tensile test expressed the correla-
tion between deformation and heat transport in the specimen successfully. For this
purpose, a method was proposed to determine the yield point by considering the
thermoelastic effect in the specimen, which showed a good agreement with the ana-
lytically calculated yield point. In addition, the in situ micromechanical deformation
mechanism was investigated by identifying the deformed and non-deformed areas in
the sample. The effective material parameters such as Young’s modulus, Poisson’s



32 Experimental and Theoretical Investigations of Auxetic Sheet Metal 705

Fig. 32.16 Simulation result
of the equivalent plastic strain
(PEEQ) at 10% of global
strain.

ratio, etc. were carefully calculated, which can be used as reference values for later
comparison of the specimens with different aspect ratio, cell size and pattern orien-
tation angle. They are also used as the specific parameters for the development of
the corresponding macroscopic material model. To validate the experimental results,
a coupled temperature-displacement finite element simulation was performed. The
measured parameters of the bulk material were used for the material model. Temper-
ature evolution and plastic deformation were compared with the real experiments,
which were in a good agreement with each other.

The results obtained in thiswork serve as a basis for understanding the deformation
behavior of such rotating unit structures for their extended 2.5D or 3D cases such
as shell structures and tubes, respectively. Future works will concentrate on the
variation of aspect ratio and the resulting anisotropy in these auxetic structures is
investigated explicitly. Finally it is intended to develop an effective 2D or 3D elasto-
plastic material model for the considered auxetic sheet metal. Moreover, further
non-destructive testing methods, like ultrasound and computer tomography, will be
used to inspect the sample before and after a tensile test with respect to cracking or
geometry changes.
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