Chapter 12 ®)
Haptic Software Design e

Arsen Abdulali and Seokhee Jeon

Abstract This chapter reviews design concepts of haptic modeling and rendering
software. The main focus lies in realistic kinesthetic and tactile haptic models for
virtual and augmented reality based on the data collected from physical objects. We
consider both data-driven algorithms providing a black-box action-response map-
ping and measurement-based approaches identifying parameters of physics-based
models. To show the research landscape and highlight ongoing research challenges,
we introduce a series of state-of-the-art methods including data-driven models with
deterministic and stochastic responses, physics-based simulation using optimization-
based FEM solver, and hybrid approaches of combining the concepts of both data-
driven and physics-based methods. These examples also cover a wide range of haptic
properties, i.e., modeling and rendering of elasticity and plasticity, tool deformation,
and haptic textures.

12.1 Introduction

Computer haptics is a research discipline studying the science, art, and engineering
of software design that synthesize and display haptic content. Depending upon the
target content, haptic software can be generally classified into algorithms encoding
the abstract information and simulating haptic interaction [17]. The abstract content
in the former methods is usually represented in the form of tactile patterns allowing
utilization of the haptic channel for communication [56], navigation [25], notifica-

A. Abdulali ()
Engineering Department, University of Cambridge, Trinity Lane, Cambridge CB2 1TN, UK
e-mail: aa2335@cam.ac.uk

S. Jeon

Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do
446-701, South Korea

e-mail: s.jeon@hapticdevices.eu

© The Author(s) 2023 537
T. A. Kern et al. (eds.), Engineering Haptic Devices, Springer Series on Touch
and Haptic Systems, https://doi.org/10.1007/978-3-031-04536-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04536-3_12&domain=pdf
mailto:aa2335@cam.ac.uk
mailto:s.jeon@hapticdevices.eu
https://doi.org/10.1007/978-3-031-04536-3_12

538 A. Abdulali and S. Jeon

tion and warning [33]. The latter approach, commonly known as haptic rendering,
represents an interactive process of computing and displaying haptic stimuli with
respect to the user’s action. The essential role of the rendering is a simulation of the
haptic interaction that enables a user to explore the haptic properties of a virtual entity
like stiffness and roughness, as well as its physical attributes like shape and weight.
The scope of this chapter is narrowed to rendering techniques of haptic interaction,
which coincide with engineering aspects of haptic sensors and actuators presented
in previous chapters.

The subject touching an object perceives its properties and attributes relying upon
kinesthetic and tactile senses. Kinesthetic perception, also known as proprioception,
provides spatial awareness of the body parts and joints, as well as the sense of external
forces causing a limb load. This sense allows perceptions of the object’s attributes
like shape and weight and its internal material properties, which are usually perceived
during deformation. The tactile, or cutaneous, sensation allows the subject to perceive
surface properties of an object through a skin contact. Both kinesthetic and tactile
feedback can be rendered either in the pure virtual configuration where the user
perceives only synthetic feedback or by mixing the real physical feedback with a
synthetic one.

12.1.1 Virtual Reality

The rendering environment where the user interacts only with virtual objects through
haptic interfaces is referred to as Virtual Reality [52]. Virtual Reality (VR) is a non-
physical computer-generated world that can be either newly created by a designer,
e.g., computer game, fantasy world, or can mimic the scene from the real world. VR
is typically expands to simulation of the other sensory modalities, e.g., visual and
auditory.

The ultimate goal of the VR simulation is to enable the user to feel connected with
or being a part of the virtual environment, which is referred to as immersion. Immer-
sive haptic simulation, among other modalities, is considered to be more challenging
as the user perceives the world through the prism of abundant haptic properties. Fur-
thermore, sensing organs of haptic perception are ubiquitously distributed in user’s
body, which makes the design of haptic devices and software even more difficult.
To render realistic haptic interaction, a wide range of haptic properties should be
simultaneously considered. For instance, when we stroke our fingers over a wooden
table, apart from high stiffness, we also feel the texture and friction. Likewise, we
distinguish plastic and metal spoons not only due to their weights but also consider-
ing the temperature flux, where the metal spoon feels colder. To achieve a high level
of realism, the research in haptic rendering strives to design a model that ultimately
reproduce the haptic interaction, by gradually modeling individual properties and
incorporating them into a unified framework.

In VR simulation, haptic properties can be broadly classified into surface proper-
ties, which we feel using our tactile perception, and material properties, which we
feel in form of force feedback. In both cases, we perceive the feedback with respect

12 Haptic Software Design 539

to certain actions. To achieve a high level of realism, the research in haptic rendering
strives to design a model that ultimately reproduce the feedback for all possible input
actions. The essential idea of data-driven and measurement-based modeling is to
build a virtual copy of an object from action-feedback data pairs collected during
real interaction.

12.1.2 Mixed Reality

Mixed Reality (MR) is an interactive environment where the real-world feedback and
computer-generated stimuli superimpose one another. Depending upon the amount
of the real and virtual content in the resultant feedback, the MR can be classified
as Augmented Reality (AR) or Augmented Virtuality (AV) [39]. There is no specific
rule clearly defining a boundary between AR and AV. However, taking into account
the richness of real-world haptic feedback, the Augmented Reality configuration has
been found more practical for applications with real-virtual mixed haptic content.

There are several abstraction levels in the design of AR applications. First, when
we want to recreate the virtual object and its all haptic properties in a physical world.
For instance, let’s imagine that you want to buy a lamp from an online store. The
AR techniques can render it on top of your table so you can touch it, press on the
switches, etc. The second level is when one wants to alter a particular haptic property
of a target object. For example, the pointiest is trying to switch from conventional
paper-pencil sketching to a digital one using a stylus and tablet [5]. The artist might
want to recreate the paper-pencil experience while drawing on the digital canvas of
the tablet. Another practical example is medical training, where the size and stiffness
of a tumor within a phantom body can be modulated to simulate various possible
cancer cases [40]. All in all, the main strength of the AR system is that the designer
can take advantage of the realism of the physical world and focus only on target
properties. In the VR system, on the other hand, the designer should take care of all
haptic properties.

Haptic properties of the physical world in AR simulation are either modulated
by direct overlaying the synthetic stimuli or occluded by a physical barrier to be
completely recreated. The former configuration, commonly known as a feel-through
strategy, can be applied when it is possible to estimate the stimuli correcting the
physical feedback. For instance, three-dimension force feedback during interaction
with an object can be modulated to change its stiffness and friction [40, 41]. When
then correcting stimuli is too challenging to estimate, the latter approach is more suit-
able. For example, direct modulation of haptic texture feedback having a stochastic
nature still remains impractical. It is more convenient to cancel the physical stimuli
using a special tool and then to recreate the complete feedback in a similar manner as
in VR simulation [22]. In this chapter, however, we focus mainly on a feel-through
approach, as our main goal is to deliver a software-related conceptual difference
between AR and VR systems. Designing the hardware that occludes physical stimuli
is beyond the scope of the current study.

540 A. Abdulali and S. Jeon

12.1.3 Touch User Interfaces

Recent trends in Human Computer Interaction (HCI) interfaces show the transi-
tion from conventional interfaces with physical buttons and switches to digital ones
simulated on touch screens. These interfaces typically miss the physical feedback
deteriorating the user experience. Haptic rendering techniques are getting popular for
simulation of physical interfaces. For instance, real-like feedback can be simulated
for virtual buttons, knobs, and switches displayed on smartphones and tablets [51].

It is important to note that we consider only rendering aspects of simulation of
physical interaction in Touch User Interfaces (TUI). The TUIs can also be used for
abstract information encoding and transfer, e.g., Braille display [38] and vibrotac-
tile patterns of notification or warning [33], which is outside of the current study’s
interest.

12.1.4 Structure and Contents

The focus of the current chapter mainly lies in data-driven haptic modeling and
rendering techniques used for Virtual Reality. We first introduce a generic definition
of the haptic model that relates the user’s action to response stimuli in Sect. 12.2.
Then we provide a series of examples addressing various aspects of modern haptic
modeling and rendering. In Sect. 12.3, the interpolation-based data-driven method is
introduced with deterministic input-output mapping. The data-driven haptic model
that governs a mapping of user’s action to stochastic response is presented in Sect.
12.4 along with the example of texture modeling and rendering. The physics-based
haptic simulation was introduced in Sect. 12.5, where the Finite Elements Method
was used to compute the deformation of a hyper-elastic object and corresponding
non-linear force feedback. Finally, to model the plastic deformation, we introduce
a hybrid approach of physics-based simulation with a data-driven controller (Sect.
12.6). Altogether, this chapter covers most modeling and rendering techniques that
a novice haptics researcher might encounter.

12.2 Haptic Rendering

Exploration and perception of haptic properties, as it has been already discussed
in Chap. 2, involves a complex cognitive process incorporating both action and
feedback. For instance, we perceive the object’s stiffness by relating the amount
of object deformation and sensed force feedback. Thus the key component in the
haptic rendering is a mathematical model or algorithm governing the action-feedback
mapping. The rendering pipeline can therefore be expressed in three steps: sensing
action, estimating and displaying the haptic feedback.

http://dx.doi.org/10.1007/978-3-031-04536-3_2

12 Haptic Software Design 541

12.2.1 Haptic Model

Haptic model is a numerical method employing the action-feedback mapping. Haptic
models can be generally classified into two groups, i.e., the parametric and data-
driven methods. In parametric methods, the model with a fixed number of parameters
is usually designed based-on rules, intuition, and empirical observations of under-
lying physical processes. Each parameter in these models, usually correlates with a
certain material or haptic property of an object. One widely used example of para-
metric model is the Hook’s elasticity model. In data-driven methods, the underlying
physical processes of the object are neglected and the model of action-feedback rela-
tion is discovered directly from observations of a physical interaction. This approach
is advantages in cases where the action-feedback relation is too complex or unclear
like in texture rendering. Sometimes, similar problem can be modeled using both
ways. For instance, the interaction with a fluid can be model by considering dynam-
ics of its particles [18], or instant action can be directly map to the feedback bypassing
the physics [35].

Haptic models can be designed in a closed- or open-loop setting. In close-loop
rendering, the model output is continuously computed and displayed to the user. In
open-loop simulation, the feedback stimuli is independent of the input action dur-
ing the simulation, but computed and triggered based-on an action dependent event
(event-based rendering). For example, object’s hardness can be simulated by ren-
dering contact vibrations, the pattern on which depends on the impact velocity [44].
The vibrotactile pattern of the click can be similarly rendered for digital buttons or
switches [51].

12.2.2 Action

The action representing a haptic contact is usually expressed in a form of a vector
having a finite set of variables correlated with the target response. For example,
the input action of an elastic stiffness model can be described by a displacement
vector representing the local deformation at the contact point [52]. In a physics-
based simulation, where the object deformation is simulated by an external numerical
solver, the action can be represented in the form of boundary conditions [9]. Tactile
feedback from haptic texture is correlated with the velocity and contact pressure at
the contact during the stroke over a surface. Hence the haptic texture model can
be designed with two-dimensional action space [23]. The dimension of input space
represents the degree of freedom of the model. By increasing the number of input
variables, the model captures new characteristics of the interaction. For instance,
to model the anisotropic texture, the authors in [4] included movement direction as
an additional action variable. However, it is important to mention that with every
additional input variable, the design and fine-tuning of the haptic model becomes
much more difficult [2].

542 A. Abdulali and S. Jeon

12.2.3 Response

The dimension of the response vector usually corresponds to degree of freedom of the
haptic device. For instance, the response of the virtual wall contains a single variable
repressing a force in a normal to wall direction. In order to model interaction with
a virtual sphere a three-dimensional force output is computed. If the user interact
with an environment through a virtual tool having arbitrary shape, an additional
three-dimensional torque vector is required [12].

Rendering system is considered to be under-actuated, when the device is inca-
pable to deliver the feedback for all response variables. In this cases, the model can be
adjusted trying to compensate missing actuation or simplified to eliminate unneces-
sary calculations. For instance, if haptic device supports only one dimensional force
actuation (e.g., force feedback for a finger of a haptic glove), a three-dimensional
force vector computed during interaction with virtual object can be project into actu-
ation dimension. In haptic texture rendering, taking into the account that the user
does not perceive the direction of vibrations, the model response output of the model
can be simplified from three- down to one-dimensional signal.

Several models with the same kind of feedback can share a single device for the
output if they compute independent haptic properties. For example, the model of
stiffness producing a force feedback in a normal to contact direction can be accom-
panied by a friction model with a force response in lateral direction. To simulate a
surface texture, stationary vibrations can be added to a force feedback [21].

Depending upon the nature of the response stimuli, the response stimuli of a
haptic model can be deterministic or stochastic. Training a stochastic data-driven
model, which produces a continuously changing output for a constant input, is more
complicated since in the current state of the art methods, the data should be seg-
mented into either piecewise constant action [4] or piecewise stationary output [23]
segments. Each segment of a stochastic model represents a single model point of
multidimensional input space.

12.2.4 Data-Driven Modeling

In data-driven haptic modeling, the model governing the action-response relation is
identified or trained exclusively using the experimental data collected during physi-
cal interaction with a real object or environment. Data-driven approaches generally
omit the meaning of the underlying physics of the interaction and do not require
manual design and tuning of the mathematical models. The data-driven modeling is
advantageous where the action-response is non-linear and too complex for the man-
ual design. Even the elastic object can exhibit high complexity and non-linearity due
to its irregular morphology (shape). For instance, the feedback while deformation
of the fork or spoon largely varies depending on the contact position and orienta-
tion (Sect. 12.3). In the case of texture modeling, it gets even more complex, as the

12 Haptic Software Design 543

feedback depends on many factors related to its surface properties and the applied
action (Sect. 12.4). It is very challenging to capture all these factors in a manual
model design, which greatly influences realism.

12.2.5 Measurement-Based Modeling

In measurement-based haptic modeling, the action-response mapping is usually gov-
erned using a parametric model. The set of parameters is usually identified using the
data collected during interaction with a real object or environment. For instance, the
linear stiffness model can be approximated using Hook’s law. The friction, on the
other hand, can be simulated using a Dahl formulation [41]. Since the parametric
models usually consider the underlying physics of the interaction, the rendering sta-
bility is usually guaranteed theoretically. Therefore, the parametric model is often
utilized for complex problems, where it is challenging to collect sufficient data for
interpolation-based approaches. For example, to render a large deformation of a
hyper-elastic object, the FEM model can provide a reasonable level of approxi-
mation as we discussed in Sect. 12.5. The approximation quality of physics-based
models, however, is limited as the many factors are often not included in the model.
To increase realism, the hybrid approach of data-driven and physics-based simula-
tion can be utilized. For instance, in Sect. 12.6, we overview the rendering of plastic
deformation, where the non-linear forces are computed using the FEM framework,
and the plastic flow of the deformation is handled by a data-driven controller.

Local initial Collision
contact model S)
1 Haptic device
Tool-Surface
Collision Detection l
! Virtual tool-surface
Global initial Computing collision
contact translation vectors
Data acquisition setup l
Tool deformation Data-driven Force
forces haptic model estimation —

[- Recording and processing [- Model building [- Force rendering

Fig. 12.1 General system overview

544 A. Abdulali and S. Jeon

12.3 Deterministic Data-Driven Modeling

Deterministic models are generally utilized when the response stimuli of the haptic
model remain the same for a given input action regardless of the time and history
of previous actions. For instance, the deformation of an elastic object that exhibits
a unique action-response correspondence can be approximated using a determin-
istic model [7]. In some cases, the short-term history can be used as a part of the
model input. To model visco-elasticity, for example, the rate of deformation, i.e., the
difference between immediate and previous deformation states, is required [35]. In
other cases, when the current feedback depends on a long sequence of actions, e.g.,
in plastic deformation modeling, incorporating history into a model input is rather
impractical and a physics-based modeling approach becomes inevitable [9].

Interpolation and regression techniques are considered to be the backbone of the
deterministic models. Interpolation methods compute the feedback stimuli based on
the neighboring data points collected during real interaction. The goal of regression
methods, on the other hands, is to find the best fit of a parametric function for a given
set of data points. The parametric function can be as simple as linear defined by a
single parameter or as large and complex as deep neural network.

In this section, for input-output mapping, we utilize Radial Basis Functions Net-
work (RBFN) interpolation method. This method has been found beneficial for hap-
tic rendering due to its simplicity, efficiency and the ability to handle non-linear
input-output mapping. As an example, we apply this approach for modeling a tool-
deformation [7], that exhibits non-linearity due to its morphological complexity.

12.3.1 Tool Deformation Modeling

Tool-deformation modeling is a challenging non-linear problem. The morphologi-
cal complexity of a tool like a spoon or a fork makes the force-displacement rela-
tion highly non-linear and anisotropic. Bending a spoon in different directions, for
instance, requires a different amount of force. Additionally, the physics-based simula-
tion for tool deformation is less practical, as the shape with a relatively thin and long
body requires a high resolution of FEM tessellation. Therefore, the interpolation-
based data-driven model is a good candidate to model the deformation of a tool.

To model the deformation of a tool, the RBFN-based data-driven approach can
be utilized. The main objective of the current example, on the other hand, is to learn
how to define the action and response spaces. By considering the action and response
spaces of the model, we also need to design the data-collections setup that captures
corresponding action-response pairs during the deformation of physical tools.

12 Haptic Software Design 545

Tool Origin

Global initial Deformed

contact (p") Tool Translation

Vectors

Initial
contact point
p=p

Translation
Vector (V)

(B . Object Surface

‘AfLocal initial

contact

Local initial

- World Origin Undeformed
contact (P)

tool
(a) Coordinate frames (b) The deformation (c) The translation vector field

Fig. 12.2 Descriptions of the model input space: a the input space is defined with respect to the
origin of a tool; b a six-dimensional input vector consists the position of an initial contact p and a
translation vector, v that describes the state of deformation; ¢ A set of recorded input vectors are
used in interpolation, and the force response is approximated at the tool’s origin during rendering

Local
initial contact

Multiple
collisions

Self collision

&

{)
) I
I Translation Trapglation.
Translation vector vector S
vector
/

Global

initial contact Actual contact

Global Global Local

Local
initial contact initial contact

initial contact initial contact

Fig. 12.3 Complex contact deformation: our data-driven model provides a non-linear input-output
mapping that allows simulating the following deformations a multiple-contact; b self-collision; and

¢ rolling-contact

12.3.2 Action and Response Spaces

To model contact deformation of the elastic tool, we define a six-dimensional input
space. First three dimensions describe the position of the initial contact in tool’s
local coordinate frame, which is denoted as the local initial contact (p in Fig. 12.2a).
p is determined at the moment of initial contact and remains constant in the local
coordinate frame during a contact. The last three dimensions are related to the posi-
tion of the initial contact that remains constant in the global coordinate frame, i.e.,
initial contact point on the object surface (p in Fig. 12.2b). We denote this as global
initial contact. At the initial moment of the contact, both the local and global initial
contact points represent the same point (Fig. 12.2a). However, when the tool begins
deforming, p penetrates into the surface and moves away from p as illustrated in Fig.
12.2b. The difference between the two point can explain the state of deformation, and
the difference vector v = p — p is referred to as translation vector. The translation

vector becomes the last three input dimensions (Fig. 12.3).

546 A. Abdulali and S. Jeon

The resultant input vector of the model is u = (p, v). Taking into account that
interaction happens in three-dimensional space, the final input space of the model
can be expressed in six dimensions u = <px, Dys Pzs Vxs Vy, vz).

It is important to notice that translation vector v differs from deformation vector
used in the continuum mechanics (a vector representing the total movement of a
particle on a deformed surface). In general, calculating this deformation vector needs
the actual geometry of the deformed surface, which requires geometry recalculation
of the tool deformation. This information is computationally expensive and is not
generally available in a data-driven modeling scenario. Thus, we decided to avoid it.
Instead, we utilize a vector representing a change of the initial contact point during
deformation.

The model output is a three-dimensional force vector f at the tool’s origin (Fig.
12.2a). The force response under a certain deformation should be explicitly deter-
mined by an initial contact point and the current position of the external force appli-
cation, i.e., the encountered surface in our case. Thus, the initial contact point and
the translation vector can fully explain the response force at the tool’s origin. In
our implementation, both of the inputs are presented in the local coordinate frame
of the tool.

12.3.3 Data Acquisition and Preprocessing

We designed and assembled a manual recording setup that captures data from three
sources (left side of Fig. 12.4). Three-dimensional force signal was captured by
force/torque sensor (Nanol7; ATI Industrial Automation, Inc., Apex, NC, USA)
using NI DAQ acquisition board (PCI-6220; National Instruments, Austin, TX, USA)
with a sampling rate of 1000 Hz. The position and orientation of the tool’s origin
were recorded by a haptic device (PHANToM Premium 1.5; Geomagic Inc., Rock
Hill, SC, USA). In order to acquire the orientation of the tool, we design a custom
gimbal encoder (right side of Fig. 12.4). The pitch and roll angles were measured
by incremental encoders with angular resolution 0.045° (E2-2000; US Digital, Van-
couver, WA, USA). The yaw angle was measured by a standard incremental encoder
(OME-N; Nemicon, Tokyo, Japan) with angular resolution 0.18°, which was mounted
by the manufacturer of the haptic device. The raw data from the gimbal encoder
was acquired through the original 24-pin Mini Delta Ribbon (MDR) interface of
the haptic device using the library (OpenHaptics 3.4; 3D Systems, Inc., Rock Hill,
SC, USA). In order to compute the position and orientation of the tool’s origin, we
implemented the forward kinematics of the haptic device considering the angular
resolution of the custom gimbal encoder.

The collision point between the tool and a flat surface was recorded using a
capacitive touch screen of the smartphone (Galaxy S7; Samsung Electronics Co.
Ltd., Suwon, Korea). In order to make the tool sensitive for the touch screen, we
coated it with a liquid that is comprised of evenly dispersed ultra-fine conductive
nano-particles (Nanotips Black; Nanotips Inc., Vancouver, BC, Canada). The position
of the initial contact was recorded from the smartphone through the network. The

12 Haptic Software Design 547

Yaw encoder

Force/Torque
(Nemicon; OME-N)

sensor

Deformable tool
(Spoon)

Gimbal
encoder

A

Thin layer of
“Nanotips Black”

Roll encoder \

(US Digital; E2-2000)
Pitch encoder
(US Digital; E2-2000)

Touch screen

Fig.12.4 Datarecording setup. A user holds the handle of the device and presses the tool to surface
of the touchscreen. Data from the tool deformation is recorded when the tool is in contact with the
touchscreen. Left side - recording hardware; Right side - gimbal encoder

package delivery latency of the network was less than one millisecond. The position
of the initial contact with respect to the world coordinate system (coordinate system
of the haptic device) is stored and translated to the local coordinate system of the
tool during the deformation. First translated initial contact point represents the local
initial contact and each subsequent translated initial contact point represents the
global initial contact. When the position and orientation of the tool’s origin are
changed, the global initial contact point moves away from the local initial contact.
The vector pointing from the local to global initial contact points is a translation
vector. The input vector of the proposed model u is a combination of the local initial
contact and the translation vector.

To minimize the noise, force signals were filtered using a three pole Butterworth
low-pass filter with a cut-off frequency 25 Hz. The cut-off frequency of the filter
was selected accordingly to the human hand movement capability [11]. Similarly,
the position data was smoothed using a third-order Butterworth low-pass filter with
a with a cut-off corner frequency 25 Hz. Only the data points where the tool was
in touch with the object were considered while other redundant data points were
removed.

Each of four tools that we used for data collection (Fig. 12.5), was cut at the grip
point, i.e., a point between index and thumb fingers while holding a tool. We refer
to this point as tool’s origin. Then, a 3D-printed adapter was attached to the edge
of the cut for mounting the tools to the recording setup as shown in Fig. 12.5b. It is
important to notice that the cut could cause mechanical changes in a tool’s structure.
However, the major contribution to the haptic feedback during tool-object interaction
is provided by the deforming part of a tool. The upper part of a tool, which is on
the other side of the grip point, is grasped in person’s hand contributing negligible
feedback.

In order to detect the contact with the touchscreen, each tool was coated with
a thin layer of Nanotips Black (Fig. 12.5b). For the best performance, the coating
layer was dried for 2 days. Hereafter, the modified versions of tool’s presented in
Fig. 12.5b are referred to as real tools.

548 A. Abdulali and S. Jeon

Thin layer of
“Nanotips Black”

Hausing
Mounts
Fork Spoon Enema Eraser Fork Spoon Enema Eraser
(a) Original tools. (b) Prepared for recording.

Fig. 12.5 A set of real tools for evaluation: a illustration of original tools; and b modified versions
of tools prepared for numerical and psychophysical experiments

12.3.4 Model Training

We develop a computational formulation that relates aforementioned input-output
spaces. Data-driven model of the tool deformation can be understood as a function,
whose parameters are optimized based on given observations, i.e., a set of input-
output recordings from the real tool-surface interaction. The process of computing
model parameters is referred to as modeling. During the simulation, the sequence of
input vectors is fed into the resultant model while the model computes a continuous
output of the force feedback.

In literature, there were several approaches proposed for input-output map-
ping. The most straightforward way is to utilize simplex-based methods [34] where
the data are stored in a look-up table and approximated using weighted interpola-
tion. The second way is to utilize feed-forward neural networks [1] that continuously
compute a feedback output based on a given input during rendering. In this work,
we adopted a radial basis functions network (RBFN), since it was successfully used
in the majority of data-driven simulators of the object deformation [27, 35, 60].

An RBFN consists of three layers, i.e., input, hidden, and the output layer. The
nodes of the hidden layer represent non-linear RBF activation functions. The input
vector belongs to an n-dimensional Euclidean vector space, u € R", and is trans-
formed to a single scalar value of the output layer, ¢ : R” — R, which can be
described by

N L
S =Y "wd(lu—g;)+) duge(w) ueR’, (12.1)

j=1 k=1

where w,; is the weight constant, g; is the center of the radial basis function, the
function g (1) (k = 1, ..., L) forms a polynomial term, 7 is basis of the output space
of the model, and ¢ (]| - ||) is a radial basis activation function. Since cubic spline

12 Haptic Software Design 549

¢(r) = r3 is chosen as the RBF kernel, the polynomial term is needed to ensure
stability [37].

The weight constants w; and polynomial coefficients d; can be estimated by solv-
ing the following linear system:

(67 6) (i) - (6) w2
where &;; = ¢(lu; —u;l), and Gy =g(u;) for i,j={1,..,N}, and
k = {1, ..., L}, respectively. Since the RBFN provides only vector-scalar mapping,
each basis of the force vector f; is computed independently.

The desired weight vector w, and polynomial coefficients d; of the RBFN model
can be calculated based on the inverse of the interpolations matrix, as follows

-1
D-GOW e

Since the size of the interpolation matrix is proportional to the square of the number
of selected samples, it becomes computationally expensive to find the inverse of the
interpolation matrix. It is important to notice that w, and d, are computed for three
basis of the force vector independently. In order to compute force responses during
rendering (Eq. (12.3)), three matrices should be provided, i.e., w, d, and ¢g. A set of
these matrices is referred to as Haptic Model.

During model building, the input vector can be directly derived from the sen-
sor readings, i.e., data from the touch-contact sensor and the PHANToM’s position
encoder. However, during rendering, we do not employ the touch-contact sensor, so
the initial contact positions and corresponding translation vector should be estimated.

In order to construct the input vector, the initial contact between virtual tool and
object surface is required. This indicates that the shape of the object must also be
provided to the rendering algorithm. One way is to use 3D mesh model of a tool
for collision detection. However, this approach requires perfect reconstruction of
the mesh model. Instead, we decided to build a Collision Model out of the local
initial contacts from the training set. The collision model is a mesh model where
its vertices are taken from the unique initial contact points measured for the haptic
model. In order to build the mesh model out of arbitrary point, we utilize a 3D mesh
processing software (MeshLab; ISTI-CNR, Pisa, Italy). The main benefit of such
design is that the collision model perfectly matches the haptic model that ensures
stability in rendering (Fig. 12.1).

550 A. Abdulali and S. Jeon

12.4 Stochastic Data-Driven Models

Stochastic data-driven models approximate the feedback stimuli with a random
nature. The distribution of the stochastic response signal is usually conditional on
the user’s action. The classic example of the stochastic data-driven methods is a
haptic texture modeling, where the distribution of the vibrotactile response changes
with respect to applied action, e.g., contact pressure, velocity and direction of the
movement [2].

To approximate stochastic signals conditional to a variable input, an interpolation
or regression methods are commonly utilized to convert the applied action to a latent
representation, which in turn, parameterizes a model of a stationary random process.
For instance, Romano and Kuchenbecker proposed to employ the bilinear interpola-
tion of the vibrotactile signals that are encoded in the form Linear Predictive Coding
(LPC) coefficients and stored in a look-up table of force-velocity action space [50].
This model was further improved in [23], by encoding acceleration patterns into
auto-regressive moving average (ARMA) coefficients and by using Delaunay tri-
angulation for interpolation of vibrotactile patterns. In [4], the vibrotactile patterns
was interpolated using RBFN network allowing the arbitrary dimension of the action
space of a model.

Another challenge in data-driven modelling of stochastic response is the segmen-
tation of a signal into stationary vibrotactile patterns with relatively constant applied
action. In [29], the authors proposed to segment acceleration patterns into sections
with decaying waveforms. They assumed that the acceleration signal consists of
decaying waves, where magnitudes of the local extrema are decreasing. The main
drawback of this method was over-segmentation of the stochastic signal and under-
segmentation of the patterned signal. These limitations were partially resolved in [30]
by including a deadband threshold into segmentation criteria that constraints a start-
ing point of new segments. Culbertson et al. proposed to use an AutoPARM algorithm
for acceleration signal segmentation [23]. The AutoPARM algorithm finds an opti-
mal partition of the signal by applying the evolutionary algorithm and minimizing the
minimum description length (MDL) of each fragment [24]. In a similar fashion, the
other algorithms estimating structural breaks of time series signals can be used for
acceleration signal partitioning, e.g., AutoSLEX [20]. Assuming that the stationary
acceleration corresponds to the relatively constant input, the input variables were
averaged. In [2], the segmentation was performed in the action space where the input
signals are partitioned into piecewise constant fragments. The optimal segmentation
was achieved using bottom-up agglomeration strategy.

In this section, we introduce a new method allowing modeling of both isotropic
and anisotropic textures through unconstrained tool-based interaction. To incorporate
the directionality of the texture, we developed an action-space segmentation concept
allowing modeling haptic textures with an arbitrary number of input variables. To
store and interpolate vibrotactile signals, we developed a Radial Basis Function
Network (RBFN) based haptic texture model allowing more general and flexible
data-driven modeling. The complete pipeline of the haptic texture modeling and
rendering is provided in Fig. 12.6.

12 Haptic Software Design 551

filtering - ' ‘ ' .
segmentaion
-)

applied input

response output =+l

.I‘I.I il Mo l Iy I|||. ||I;.*-I|I||:I|I.

sample selection nr
/reduction

W\ e
vy Uil Il

input-output segments

Data-collection and Processing

—#F Virtual textures
Al applied input
g = o
N) i |||.H. N
) o= | fﬁ
input vibrotactile synthesized
vectors texture model patterns T response
aoiel
Model training Rendering

Fig. 12.6 Data-driven haptic texture modelling/rendering pipeline

12.4.1 Haptic Texture Modeling Pipeline

Surface haptic texture is one of the essential information for human to discrimi-
nate objects. While small-scale geometry variation is one of the main causes of
haptic texture, human can effectively perceive fine details of the variation through
not only a bare-hand interaction, but also tool-mediated stroking as high frequency
vibrations. Sometimes, these small-scale geometry variations can be anisotropic:
the characteristic of the vibration varies depending on the stroking direction. This
direction-dependent haptic texture sometimes plays as a crucial cue for haptically
identifying surfaces, e.g., identifying wooden surface based on directional grain,
judging the quality of fabric using thread grain, etc.

Even though all haptic texture models have their own contributions, the conceptual
representation of most models remain similar. The model space is an abstract coordi-
nate system that describes the location of model points. Each model point is described
by alocation inside the model space and the feedback pattern m; = {x;, y;}, where x;
denotes the n —dimensional vector of the model points location, and y; represents the
feedback pattern y; = {a,, as, ..., a,}. Thus the general haptic texture model can be
described by the set of model points M = {m, my, ..., m,}. An example is provided
in Fig. 12.7. Since the data-driven model in most cases is an interpolation model,
a given minimal set of model points M,,;, is required for a stable output. In some
case the M,,;,, consists of the synthetic model points, which marks the interpolation
boundaries.

The modeling algorithm of haptic textures consists of three stages: data prepro-
cessing and segmentation; model building; and rendering.

552 A. Abdulali and S. Jeon

Fig. 12.7 General haptic X A Feedback pattern
texture model, ©2022, IEEE n

Reprinted, with permission,

from [3]

Extended
model point

Model point

v /%;\

(e

Model space

<

12.4.2 Data Processing and Segmentation

In this section, we develop a generic segmentation algorithm that partitions a mul-
tivariate input signal. The segmentation algorithm searches the optimal partition,
where the deviation of the input vectors within each segment is constrained by a set
of constraint functions and corresponding thresholds. The set of constraint functions
and thresholds is selected for a particular task, where a single pair of a constraint
function and threshold can be applied for single or multiple input variables at the
same time. To find the optimal partition of the input signal, we adopted a bottom-up
agglomeration principle and employed it in three configurations, i.e., offline seg-
mentation for single- and multi-trial data collection, and online segmentation of the
streaming signal.

Problem Formulation

The main objective of the algorithm is to partition a multivariate signal X into a

minimum number of segments M = {my, ..., m;} having an arbitrary number of
input vectors, such that the distribution of input vectors within each segment m;
must satisfy a given set of conditions G = {g1(m;) < 7y, ..., g,(m;) < 1,} where

G is a set of inequality constraints. It is important to notice that each constraint
can condition a single or multiple basis of the input space. Furthermore, any input
variable can be conditioned by multiple constraints.

The preceding formulation imposes the restriction on distribution of each segment
but can admit multiple solutions (several partitions can satisfy a given set of condi-
tions). For example, the signal which initially satisfies the given set of constraints
can be further partitioned until all segments become finest. Thus in order to find an
optimal partition of the signal, the number of resultant segments should be mini-
mized. In this manner, the signal segmentation task can be seen as an optimization
problem.

12 Haptic Software Design 553

minimize n(M)

n(M)eZ* (12.4)
subjectto g;j(m;) <t; forj=1,...,p
where n(-) denotes cardinality of a set and Z* = {1, ..., n(X)} is a finite set of

positive integers bounded by the maximum number of samples in X. Below, we
introduce the recursive constraint projection algorithm that segments a multivariate
signal into a minimum number of segments satisfying a given set of constraints.

12.4.3 Bottom-Up Agglomerative Segmentation

The bottom-up algorithm breaks the input signal into a set of segments, where each
segment contains at most &, data points. Then, the merging cost e for each pair of
neighboring segments is calculated using a cost function f and stored separately in set
E ={ey, ..., e,—1}. Apair of neighboring fragments with the lowest cost is merged,
and the merging costs for the resultant and neighboring segments are updated. The
agglomeration process is repeated until the lowest cost from the entire set E exceeds
the predefined threshold 7. Detailed steps of the algorithm are provided in the form
of pseudocode in Algorithm 1, where the function initial Partition(-, -) partitions
the input signal into a sequence of segments having §, data points each

Algorithm 1 Bottom-up Agglomerative Segmentation

1: function SEGMENTDATA(M, T, f(-))

n
2: M,n < initial Partition(M, 82) > M= Jm;
j=l1
3: for j < 1,n—1do
4: ej < f_(rhj Unjiy) > Costs of pairwise merging
5: end for
6: while min(E) <7 and |E| #0)do
7: i =idx(min(E))
8: n_1,- < n_1,~ U I’I_l,'+1
9: m <—m\ mj41
10: E < E\e¢;
11: if (i > 1) then
12: ei—1 < f(mi—1 Um;)
13: end if
14: if (i <|E|) then
15: e < f(m; Umjiy)
16: end if

17: end while
18: return M
19: end function

554 A. Abdulali and S. Jeon

Generally, the optimization problem given by Eq. 12.4 is a Zero-one integer pro-
gramming problem, which has been proven to be an NP-complete [42]. The Bottom-
up Agglomerative Segmentation algorithm, on the other hand, belongs to the family
of Branch-and-bound algorithms, which has been commonly used as the relaxation
to the Zero-one integer programming problem [19]. Therefore, the proposed algo-
rithm provides an approximation to Eq. 12.4. Although, the proposed approximation
is computationally efficient which is crucial for real-time applications. Furthermore,
due to the dynamic programming nature of the Bottom-up Agglomerative Segmen-
tation algorithm, the resultant partition achieves the minimum number of segments
balancing constraint function values across segments. This property of the Bottom-up
Agglomerative Segmentation is very important as the resultant partition represents
a set with evenly significant segments. Additionally, the bottom-up approach con-
verges in finite number of steps. When the complete signal satisfies given constraints
a single segment, the algorithm reaches the maximum number of operations (merg-
ing calls). The bottom-up approach also guarantees that all segments in the resultant
partition satisfy a given set of constraints, as long as all finest segments from initial
partition satisfy one.

Constraint Function Design

In order to evaluate the proposed algorithm, we developed two exemplary cases,
i.e., data segmentation for modeling isotropic haptic textures and anisotropic haptic
textures. Similarly, a user can define other task dependent constraints and apply them
to an arbitrary multivariate signal. For instance, our approach can be used for other
vibrotactile data-driven models, such as Virtual Reality bicycle [49], texture classi-
fication [54], and texture rendering on variable friction displays [47]. Furthermore,
our segmentation algorithm can be applied for redundancy reduction in modelling
non-linear force responses of visco-elastic object deformation [34], tool deforma-
tion [7], interaction with viscous fluids [35], where data segments with negligible
variation can be substituted by representative vectors.

Isotropic Haptic Texture

In order to build the model of isotropic haptic texture, at least two input variables
are required, i.e., normal force, and velocity magnitude [23]. The input stream X (¢)
from the recording device generates two-dimensional input vectors x;, = (f, v) at
each time step ¢. In order to build a reliable haptic texture, the input variables for
each segment should be relatively constant.

The average deviation of the normal force within each segment m; can be condi-
tioned using the following constraint

N ¢ —
film;) = \/M <1, (12.5)

where N denotes the size of the set, s is a mean force for segment. The mean
deviation of the velocity magnitude can be constrained as follows

12 Haptic Software Design 555

N R
Falmy) = # <o, (12.6)

where p, is a mean velocity magnitude per segment. Based on forgoing equations,
the segmentation algorithm finds the optimal partition, where the average deviation
of the normal force and velocity magnitude will be at most t; and 1, respectively.

Anisotropic Haptic Texture

Anisotropic texture modeling requires partitioning of position data into segments
with relatively straight movement trajectories. Thus, two additional input variables
should be included into streaming signal x; = (p, f, v) where p is a two-dimensional
position vector. The maximum deviation of the position points from the line segment
between starting and ending points can be computed as follows

g(m;) = H [(Pe — P1) x (P — PNl H (12.7)
I(py — POl o
where k = {2,..., N — 1} and | - || means a vector norm. The foregoing equation

can be used as a constraint function limiting the deviation of position points from
the straight line (Fig. 12.8a). However, it does not prevent the change of direction
close to the reverse movement, since the position points remain close to the line
segment [4]. Therefore, an additional equation preventing loop-outs (change of the
movement trajectory to reverse direction) is required.

—p 2= b2 — 2 _p2
homyy — Y P = PP = 52+ VI = pa I = b 125)

lpy — p1ll

where b is a distance between point p; and the line segment (py — p;). The function
h(-) equals to unity while a segment of the movement trajectory does not contain
loops, and exceeds one otherwise. Combining Eqs. 12.7 and 12.8, we can create a
constraint function allowing segmentation of position data into relatively straight
line segments.

fotmpy = {50 b =1 (12.9)
inf., Otherwise
By using three constraints, the algorithm can find the optimal partition, where move-
ment trajectories are approximately straight lines, whereas normal forces and velocity
magnitudes are maintained relatively constant.

The overall segmentation procedure is culminated with elimination of segments
that are shorter than 75 samples, which is assumed to be data in transition period
with very high curvature. Note also that we skip merging of neighboring segments if
a mutual mean of velocity or normal force magnitudes is equal to near zero. Number
of data in these subsegments is normally very small, and they are removed from the
set M. It is reasonable since subsegments with near zero mean velocity or normal

556 A. Abdulali and S. Jeon

1r /@'
Starting point
0.9r S . .
O Ending point
Segment line

Normalized position y

]] 0 02 04 0.6 0.8 1
(a) Segment constraints. (i) - Score estima- Normalized positiony
tion; (ii) - Loop-out prevention.]

(b) Segmentation results of 10 seconds data.

Fig. 12.8 Bottom-up Agglomerative Segmentation and resultant partition

force can be assumed to be data from very beginning or very end of the contact,
which normally has very small vibration. The segmentation result of 10 second data
is shown in Fig. 12.8b.

12.4.4 Multi-trial Data Collection

In this section, we propose a novel algorithm for representative sample selection
across multiple recording trials. The main aim of this algorithm is to populate the input
space by significant model points from multiple trials while reducing the number of
outliers. Furthermore, a generic haptic texture model is also provided. This generic
model provides the necessary platform to other haptic texture modeling algorithms
to benefit from the aforementioned sample selection algorithm.

Despite the fact that none of available sample selection algorithms can be directly
applied to model point selection for data-driven haptic texture modeling, the idea of
several sample selection algorithms can be generalized and extended for this task.
For example, Edited and Condensed Nearest Neighbor (ENN [58] and CNN [31])
were initially designed for classification task based on k-Nearest Neighbors (k-NN)
classifier. The former algorithm is usually used for outlier reduction, whereas the later
one eliminates redundant samples from the given set. Recently, Arnaiz-Gonzalez et
al. adopted the idea of CNN and ENN for regression tasks [10].

Inspired by the work in [10], we extended the idea of ENN and CNN for the
representative model point selection for data-driven haptic texture modeling. Instead
of using the k-nn classifier, the general haptic texture model can be used in our
approach.

The pseudo code of the proposed method is depicted in Algorithm 2. The algo-
rithm starts with the outlier reduction procedure (lines 1-11), which is followed by

12 Haptic Software Design 557

Algorithm 2 Sample Selection Algorithm
Input: M = {(x1, y1), ...Cens y) 1 K, L, 71, T2
Output: M C M

1: Removing outliers:

2: p < getAverageSparsity(M)

3:fori =k+1to|M|do

4: model < train(M \ {x;, yi})

5: 3 < model.simulate(x;)

6: d < getDistance(y;, y;)

7: P < getLocalSparsity(m;, M)
8 O<«utax(@/p—1

9: if (d > 6) then

10: M < M\ {x;, yi}

11: endif

12: end for

13: Removing redundant patterns:

14: M < {(x1, y1), ... Ok, YO}

15: for j = k+ 1to |M]| do

16: model < train(M U {x;, y;})
17: §j < model.simulate(x;)
18: d < getDistance(y;, y;)

19: if (c)i\ > tz)Athen

20: M <~ MU{x;,y;}
21: endif
22: end for

redundant sample elimination (lines 12-21). The input of the algorithm consists of
an initial set of model points M = {{x1, y1}, ...{x, y»}}, where the first k elements
form the minimal set of model points. Threshold values t; and 7, are used to control
the reduction rate of outliers and redundant model points, respectively.

Outlier Reduction

Outlier Reduction is an iterative process over the initial set M, where each model point
m; = {x;, y;} is examined one at a time, starting from the (k + 1)’ element of the
set. In each iteration, one model point is temporarily removed from the initial set M \
(x;, ¥;). The resultant set is used for the model training. Following this, the feedback
pattern y is estimated by feeding the input vector x; to the model. If the estimated y;
and original y; feedback patterns are considerably different, the probability that i’
sample is an outlier increases. This dissimilarity means that the contribution from
the feedback pattern y; contradicts to contributions of the neighboring ones. The
dissimilarity between two feedback patterns is calculated by a dissimilarity metric,
which is explained at the end of this section. The threshold value t; denotes the level
of dissimilarity, at which the model point is permanently removed from the set M.
This outlier detection strategy works well for dense regions, where the model
point resembles to the neighboring ones. However, it can be misleading for sparse
regions. The neighboring model points in sparse regions are usually different, since
they are far from each other. Thus the threshold 7; should be adaptive to the local
density of the model space. In order to solve this problem, the regularization term

558 A. Abdulali and S. Jeon

a * (p/p; — 1) is introduced, where p and p; are average and local sparsity of the
model space respectively. When the local sparsity equals to the average one, the
regularization term turns to zero. Similarly, when the local sparsity is higher then the
global one, the adaptive threshold value 6 is increased, and the other way around.
The parameter « represents the sensitivity of the algorithm to the local density. It is
recommended to estimate the « by using the following equation.

o~

o
o=1 %=, (12.10)
)

where the o denotes the mean deviation of local sparsity at each model point from the
average sparsity p. In order to estimate the local sparsity o; of each model point m; for
atwo-dimensional model space, we built the Delaunay triangulation by excluding the
target model point m;, and computed the average distance from m; to three enclosing
neighbors. Similarly, the average distance to four surrounding model points of the
tetrahedron represented the local density for a three-dimensional model space.

Redundant Sample Elimination

Unlike the previous stage, the process of redundant sample elimination starts with the
minimal set, which contains only £ model points. In every iteration, the haptic texture
model is trained by using the set M. The set M is extended by the candidate model
point m;, if the difference between the original and simulated feedback patterns
exceeds the threshold ;. This iterative process finishes when all samples from M
are assessed.

Error Metric

The error metric used for comparing the acceleration patterns is the spectral rms error.
It is the difference between the approximated a[n] and the recorded acceleration
pattern a[n]. The equation for spectral rms error is given as:

£ — o @]y = RMSEGInD = Faln)) .
RMS(F (aln)))

where RMS is the root mean square operator in the frequency domain, and F(.) is
the discrete Fourier transform. This error metric is preferred since it provides a better
account of the perceptual differences as compared to the time domain error metrics.

12.4.5 Online Segmentation of Motion Primitives

In order to perform online segmentation, we introduced two contributions. First, to
apply the given set of constraints, we developed a Recursive Constraint Projection
algorithm. The segmentation process starts with the first pair of constraint function
and threshold. The resultant segments from the first round are sub-segmented accord-
ingly to the second constraint function, and the process continues until all constraints

12 Haptic Software Design 559

5, o,
—i e —i i
input signal: |
g 1} =
Data
feedback stream
Repository of Segments Segmentation Queue

input signal ; |

: § % AN

Data
feedback stream
m4 ma2 m3 My
Repository of Segments Segmentation Queue

Fig. 12.9 Basic principle of the online segmentation schema. The example illustrates how the
repository having three segments in (a) is extended by the fourth one sometime later ©) 2022, IEEE
Reprinted, with permission, from [2]

are applied. The second improvement is an online segmentation schema. Inspired
by the sliding window approach in [43], we developed a novel concept, where the
streaming data is partitioned inside the segmentation queue (refer to Sect. 12.4.5 and
Fig. 12.9).

Recursive Constraint Projection

The algorithm segments a multivariate signal X by recursively projecting it onto con-
straints from set G. The first constraint is applied to partition the complete signal,
whereas each resultant segment is recursively sub-segmented utilizing the remaining
set of constraints individually. The algorithm consists of two parts, i.e., a recursive
function projecting multivariate signal onto the constraints and a bottom-up agglom-
erative data segmentation algorithm that finds an optimal segmentation for a given
constraint.

The algorithm starts with a single element in the set of segments M where the only
segment is represented by a complete multivariate signal M = {m|m; ~ X}. Every
call of the recursive function commences with pulling a single constraint g = {7, f}

560 A. Abdulali and S. Jeon

Algorithm 3 Recursive Constraint Projection

Input: X = {x1,...,xn}

G = {(11. 10). (5. ()}
Output: M = {my,...,my}
1: M« X
2: M < RecConstProj(M, G)
3: return M
4:

5: functi(_)n RECCONSTPROJ(M, G)

6: T, f < SelectConstraint(M, G)
7. G<G\(%)
8:

M <0
9: forallm; € M do
10: M << MU Segment Data(m;, T, f(~))
11: if G # ¢ then
12: M <« RecConstProj (M, G) > Recursive call
13: else
14: M« M
15: end if
16: end for

17: end function

from set G. Afterwards, each segment in M is partitioned satisfying the selected
constraint g, and resultant segments are stored in M. If the set G is nonempty,
the recursive function is called passing M and G. Thus, the depth of the recursion
equals the initial number of constraints, and the signal is sub-segmented in every call
such that the resultant segments satisfy a selected constraint. Regardless of which
constraint is selected first, the signal eventually will be partitioned into segments
satisfying all constraints. However, in order to reduce computational complexity, we
introduce a constraint selection criteria (Algorithm 4).

Due to the recursive nature of the proposed algorithm, the number of calls on each
next call equals the number of segments in the previous. It is reasonable to arrange
the order of constraints in such a way that the constraints producing a lower number
of segments are applied earlier. For instance, the same signal is partitioned using two
different constraints producing two and four segments, respectively. Next round, for
the former case, will require only two calls, whereas in the latter case the recursion
will be called four times. Thus, for a case with greater number of constraints, this
constraint selection strategy can considerably reduce the computational complexity.
On the other hand, it is also computationally expensive to apply every constraint
and select the one with the least number of segments. Therefore, we introduce an
alternative measure y; = ¢/t; representing a merging cost of complete signal nor-
malized by the threshold value of the constraint. The ; is correlated with a number
of resultant segments, meaning that lower value produces fewer segments and vice
versa. The value v; less or equal than one indicates that the signal on average satisfies
the given constraint, nevertheless should be further partitioned to meet the condition
locally throughout the complete signal.

12 Haptic Software Design 561

Algorithm 4 Constraint Selection
1: function SELECTCONSTRAINT(M, G)

2 C <9

3: forallg; € Gdo

4: c=gi(M) > Merging cost for complete M
- |Gl

5: vj/izi |>C=U1pi,andri>0
T i=1

6: end for

7. j=idx(min(C))

8: T, f<¢gj >gj = {7, fi}

9 return 7, f

10: end function

time final segmentation

\4

- time series data
(signals)

|
O
O

signals

| - constraint is applied l |

| - break points

| | (no breakpoint | |

found) N

Fig. 12.10 Example illustrating the recursive segmentation. For simplicity, we assume that con-
straints were selected in order and the segments are always bisected (partitioned into two sub-
segments with equal length) (©2022, IEEE Reprinted, with permission, from [2]

This selection criterion can be applied only if the threshold values of all constraints
are strictly positive. Furthermore, the most of the commonly used energy and distance
cost functions are non-negative and the thresholds are strictly positive. However, if
the task requires to use thresholds that are equal or less than zero, it is recommended
to follow the rules which are commonly used in coordinate descend optimization,
i.e., selecting constraints one by one or randomly.

A simple example illustrating the recursive process of the segmentation is depicted
in Fig. 12.10. Suppose that we have a three-dimensional signal where each variable
has an individual constraint. First, the RCP algorithm selects an optimal constraint
using Algorithm 4. Then, the complete signal is segmented by Algorithm 1 using the
selected constraint. The similar process is repeated for two resultant segments using
the remaining set of constraints. This recursive process continues until all constraints
are applied. The depth of the recursion in this example equals three, which is the
number of initially available constraints.

562 A. Abdulali and S. Jeon

Online Segmentation Schema

At this point, we will explain the architecture of the online segmentation algorithm
that finds the optimal partition of the streaming signal (Fig. 12.9). The algorithm
performs segmentation over the segmentation queue. The incoming input vectors
are buffered into fragments with length §;. Then, the buffered fragment is fed into
the segmentation queue, which triggers the process of segmentation by passing the
data from the segmentation queue and the set of constraints to recursive constraint
projection algorithm. If there is more than one segment in the segmentation queue
after partitioning, all except the last segment are stored into the repository. The last
segment remains in the queue and used for segmentation in the next iteration since it
can be a part of the future segment. Thus, the segmentation queue is always non-empty
having a variable length, which makes our technique different from conventional
sliding windows approaches [43].

The parameters §; and §, are required to reduce the processing time of the seg-
mentation. When §; is set to one, the segmentation process will be triggered at the
sampling frequency of the input signal. Usually, in haptic modeling, the streaming
frequency is very high and the change of the input state for one tick is negligible.
Thus, it is reasonable to invoke the segmentation process with the step of §; samples.
Similarly, if the §; is set to one, at the beginning of segmentation the signal will be
broken into fragments with one sample. In such a case, the agglomeration process
will take longer.

12.4.6 Interpolation Model

The goal of the interpolation model is to estimate the vibration output under a given
input data sample based on interpolating captured data. We denote the input data
sample as a 3D vector, u = (v,, vy, f,), where v, and v, are 2D tool velocity vector,
and f, is a normal response force. Since output of the interpolation model is a
time-series high frequency vibration, it is more convenient to express it using a time-
varying parametric model. For this, auto regression model (AR) are commonly used
in data-driven haptic texture rendering, which we also use.

However, the coefficients of the AR model cannot be directly interpolated due
to stability problem, which happens when poles of the transfer function H in Fig.
12.11 are not within the unit circle in the complex plane [26]. Therfore we convert
AR coefficients into line spectrum frequency (LSF) coefficients for storing in the
interpolation model as introduced in [23]. For rendering, we restore the AR coefficient
from LSF model.

Another contribution of this dissertation is the use of a radial basis function net-
work (RBFN) as an interpolation model for texture modeling. The RBFN interpola-
tion model outperforms simplex based in two aspects. First, the output is computed
using basic mathematical operations that makes it fast whilst the interpolation result
remains good. Second, the input space can be easily increased. For example it is

12 Haptic Software Design 563

a;

Input . Hidden © Output Buffer

Fig. 12.11 RBFN architecture for model storage and interpolation

possible to store several different models inside of the network, switch them or even
interpolate using additional input during rendering.

RBEFN architecture that we used in this work consists of three layers (Fig. 12.11).
The input of the network is a vector u € R" of the n-dimensional Euclidean vector
space. The nodes of the hidden one are non-linear RBF activation functions. The
output of RBFN is a scalar function of the input vector, ¢ : R — R, which is
described as

N L
F@) =Y "wipllu— ;D + Y digi(w), ueR" (12.12)

j=1 k=1

where w; is the weight constant and g; is the center of the radial basis function.
The functions g (u) (k = 1, ..., L) form a basis of the space P}, of polynomials with
degree at most m of n variables. Since we use the first order polyharmonic splines
¢ (r) = r as the kernel for RBF, the polynomial term is necessary. Otherwise, the
interpolation results might be not as accurate as we want [37]. Using Eq. (12.12),
a linear system can be obtained to estimate the weight constant vector w of radial
basis functions as well as the polynomial coefficient vector d, such that

(&0)(2)=) 19

where ®;; = ¢(|lu; —u;|), and Gix = gr(u;) of the range i, j = {1, ..., N}, k =
{1,...,L}.

564 A. Abdulali and S. Jeon

n

o 9o

o o -
O

0.4

Normalized F,
o
PN
Normalized F,

o
N

0.5

0
0.5

) 0. . 05 :
Normalized vy Normalized vy Normalized vy, P ™ Normalized vy

(a) Model points. (b) A convex hull that limiting feature space.

Fig. 12.12 Input feature space of the haptic texture model

The input vector u is fed into three nodes of input layer. There are n outputs each
of which corresponds to each LSF coefficient. One extra output is for interpolation
of the variance provided by the Yule-Walker algorithm [32].

Once a set of LSF coefficients is obtained, the output vibration can be estimated in
two steps. First, the estimated coefficients are converted to AR. Second, the vibration
value is calculated applying Direct Form I1 digital filter along with n previous outputs.
It is common way to use digital filter for AR signal estimation. The digital filter we
used in this work can be replaced by any of a kind.

The RBFN is trained as follows. First, the representative input points are calculated
from each segment by averaging data points in a segments after the zero-mean/unit
variance normalization along each axis of u (Fig. 12.12a as an example). Second, in
order to cover zero normal force area, we select points that lies on the convex hull
of existing points and are facing the (v, v,) plane. Then we project them onto the
(v, vy) plane (Fig. 12.12b). For the new points at the zero normal force, the LSF
coefficients is copied from that of the original point, while the variances are set to
zero. In case of zero velocity, new model points are uniformly created and scattered
along f, axis, whose variance is set to zero, and the LSF coefficients are copied
from the closest model points. Lastly, using the model points, we trained RBFN
applying a SpaRSA algorithm [59] that identifies sparse approximate solutions to
the undetermined system Eq. (12.13) using an extended set of features from the
previous step.

12.4.7 Real-Time Texture Rendering

In this section we will describe a setup for anisotropic texture rendering algorithm.
The setup consist of software and hardware components. The software compo-
nent is implemented in form of a computing library to make it independent from
the hardware. The software architecture of the computing library is depicted in

12 Haptic Software Design 565

ibration Tablet PC .
; \ P
input(ve, vy,) output /
¥ % / Amplifier
—_—
load LSF model | | vibration 4 N
models estimation | | estimation Haptuator e
LSF e
model output — s
model model I
files storage buffer buffer ‘m e
device RAM NI DAQ
(b) Hardware setup for algorithm demon-
(a) Software architecture of the computing stration.

library.

Fig. 12.13 Rendering setup and architecture

Fig. 12.13a. The hardware setup that will be used for rendering is shown in
Fig. 12.13b.

The architecture of the rendering software consists of three layers. The upper layer
is referred to as interactive layer. This layer computes the input vector u based on
readings from the input device. Additionally, this layer displays response vibrations
back to the user. The business logic of the anisotropic haptic texture library is repre-
sented by the second layer. This layer is developed in form of a platform independent
computing library. The computing library consist of three functional blocks. First
block loads the set of haptic texture models into device memory. The second block
estimates the LSF (line spectrum frequency) coefficients and the variance by feeding
the input vector u to the RBFN haptic texture model. The LSF coefficients and the
variance are updated inside the buffer in 100 Hz. Meanwhile, the output vibration
signal is generated by the third block, which runs on the other computing thread
having frequency 2 kHz. The output vibration signal is produced based on buffered
LSF coefficients, the variance and m buffered vibration outputs, where m is a number
of LSF coefficients. Note also that all functional blocks work in separate computing
threads. The frequency of each computing thread can be reset in accordance with
user needs.

Vibration Estimation

The set of LSF coefficients and the variance describe the contact vibration pattern for
a given vector u inside the input space of the RBFN haptic texture model. Therefore,
the main task of the RBFN haptic texture model is to provide the mapping of three-
dimensional input vector u with corresponding (m + 1)-dimensional output vector
(m LSF coefficients and the variance). This output vector can be calculated using
following equation

566 A. Abdulali and S. Jeon

O‘V
Y N 7]

fo— Q&)\. 5
OO =7
| Input Hidden Output Output
layer ; layer : layer buffer

RBFN network

Fig. 12.14 Model architecture for action-dependent vibrotactile signal synthesis

N L
fiw) = wiyd(lu—q;I)+) diegix(w), ueR" (12.14)

j=1 k=1

wherei = {1, ..., m + 1} denotes the index of LSF coefficients and the variance, w;;
is a weight constant and ¢g; is a center of the radial basis function. The functions
gr(u) (k =1, ..., L) form a basis of the space PZ of polynomials with degree at most
p of n variables.

The output vibration values are calculated using an approach similar to [23]. First,
the LSF coefficients are converted to AR ones. Second, the AR coefficients, variance,
and m buffered outputs are fed to the transfer function of the Direct Form II digital
filter

Hp) = — o (12.15)

P
k=1

where wy are AR coefficients, ¢, is a random sample from a normal distribution.
The output value of the transfer function (Eq. 12.15) is the output acceleration value.
Therefore the overall rendering algorithm of the stochastic vibrotactile signal can be
decomposed into two computing threads as in Fig. 12.14.

Rendering setup

In order to demonstrate the quality of the modeling and rendering algorithms, we
designed a tablet-PC-based hardware setup (Fig. 12.13b). The tablet PC (Surface
Pro 4; Microsoft) was selected as a rendering device. The contact velocity is cal-
culated based on the contact position data from the touch screen of the tablet PC.
The normal force of the contact is calculated based on readings from active digi-
tal pen (Surface Pen; Microsoft) with a sensing capability of 1024 pressure levels.

12 Haptic Software Design 567

The output vibrations are displayed using NI DAQ data acquisition device (USB-
6251; National Instruments). This output signal is amplified by an analogue amplifier
and is displayed using a voice coil actuator (Haptuator Mark II; Tactile Labs).

12.5 Physics-Based Modeling

In the physics-based simulation, the haptic properties of an object or environment
are approximated by an external mathematical model of the underlying physical pro-
cess of the interaction. In haptic rendering, physics-based modeling is commonly
used to simulate the global deformation of an object. The volume of an object is
usually discretized into a finite set of mass points, the dynamics of which is approx-
imated by Newton’s laws of motion. The relation among neighboring mass points is
modeled by constitutive models governing strain-stress relation. This relation can be
approximated by the mass-spring-damper system or Finite Element Method (FEM).
The solution of the former approach is estimated by a system of ordinary differen-
tial equations (ODESs). The latter approach is based on partial differential equations
(PDEs) is considered to be physically more accurate. In the physics-based simulation,
the haptic properties of an object or environment are approximated by an external
mathematical model of the underlying physical process of the interaction.

In this section, our goal is to model a hyper-elastic object deformation using FEM
based approach, where the stress-strain relationship derives from a strain energy
density function. This approach allows modeling large deformation of relatively
soft objects, which is challenging to approximate by other simulation methods.
A complete set of methods covering the whole process of the measurement-based
modeling/rendering paradigm is newly designed and implemented deformation phe-
nomenons, with a special emphasis on haptic feedback realism.

12.5.1 Hyper-Elastic Material Modeling

In this section, we establish an easy and standard procedure for identifying material
parameters of hyper-elastic object and corresponding real-time rendering algorithm.
While real-time simulation and digitization of large deformation for visual feedback
have been a mature research topic [15, 48, 57], those for haptic feedback are still
in their early stage. This is mainly due to that global deformation usually involves
changes of geometry throughout the whole object body which is very expensive to
simulate in so-called 1 kHz “haptic-real-time” and has nearly infinitely large input
and output space for measurement-based approach. What is worse is that for haptic
simulation, changes of particles inside the object matter. Due to these difficulties and
high realism requirement of these applications, the Finite Element Method (FEM)-
based approach is considered as the most suitable direction, which this paper follows.
In the FEM-based approach, physical deformation of an object’s continuum media is

568 A. Abdulali and S. Jeon

approximated using discretization methods and is commonly used for deformation
modeling, where the stress-strain relationship of the deformation is governed by
a constitutive model and material parameters. However, there are yet two critical
hurdles to overcome to apply the FEM-based approach to the haptic digital copy and
rendering scenario. First, there is no well-defined way to tune the FEM parameters
rendering the behavior of the virtual copy to be exactly the same as the one of an
existing real object. Second, it is still not quite feasible to use FEM in haptic rendering
due to rather slow update rate of even the state-of-the-art algorithms. Our goal is to
tackle these two problems.

We focus on identifying a single set of FEM parameters through the palpation
of an object with homogeneous and isotropic material where a single constitutive
model and the same material parameters can describe the whole elements within the
object. This identification procedure can be repeated for multiple objects, yielding
a material library, which can be used to design a heterogeneous or composite object
with multiple different materials. We put building material library as our future work.

Our approach of identification follows the conventional procedure; the parameters
are estimated by observing the object’s shape change in responses to well-defined
external force application. In order to facilitate the capturing procedure, our frame-
work assumes an object, from which the material parameters are extracted, having
a cylindrical shape. Unlike other volumetric primitives, the cylindrical object has a
beneficial property that simplifies deformation capturing. By fixing the bottom of
the cylinder and applying the orthogonal force to its top, the shape of the cylinder
expands away from its central axis symmetrically. This property allows capturing
the deformation at a particular level of the cylinder using several tracking markers.
Additionally, the simplicity of the cylindrical shape allows a user to prepare material
samples for the identification (Fig. 12.16).

12.5.2 Deformation Features

During compressive deformation, the shape of a cylindrical object expands outwards,
whereas the symmetry of deformed shape about cylinder axis is maintained. Thus
the right section of a cylinder (Fig. 12.15a) travels downwards and the area of the
right section increases. Relatively to its initial shape, the deformation of cylinder at
hy height level can be represented by axial Ady and radial Ary displacements (Fig.
12.15b).

At every time step, the data collection setup recorded a state of the deformation. A
complete session of the deformation consists of # states, where each i -th state is repre-
sented by compressing displacement As; (a distance that top end of cylinder traveled
downwards during deformation), normal force f;, and sixteen three-dimensional
position points of markers p;;. The absolute marker positions p defined in the world
coordinate system are variant to translations and rotations. Therefore, to use the p;;
position points in material identification, the coordinate system of the data collection
device and that of the FEM simulation should be aligned. As the miss-alignment of

12 Haptic Software Design 569

Deformation coordinates

radial pisRS |
. . -
right section at /1, Ary displacement plane 2
origin 1 r 0.025
origin 2
Ad i
* >
T N -104 L o008
axial o
displacement 20 ‘0_ 1
3 0
<10 Spatial X-axis [m]
Initial shape Deformed shape © - points projected into plane 1
- points projected into plane 2
(a) Deformation parameters. (b) Coordinate frame of axial and

radial displacements.

Deformation Example

103 Deformation Patterns

0
-0.5
E 4
5
2 15 -
g 2 '
% 0.01
a-25
8 3 Level 4 N 0
< - O Level3 -
Level 2
. -0.01
35 O Level1
4 002 +—mu [
0 5 10 15 0.02 g 002
Radial Displacement [m] x 107 ' Spatial x-gxis [m] 002

(c) Estimated deformation patters at

four height levels f;. (d) Reconstructed deformation using esti-

mated deformation patterns.
Fig. 12.15 Deformation parameters definition, deformation feature construction, and deformation

pattern extraction (©2022, with permission from Elsevier [9], all rights reserved

applied force original shape

permanent
<4 deformation

finite
elements

tetrahedral

L=

(a) Tetrahedral mesh.

current state

(b) Plastic deformation of the finite element.

Fig. 12.16 Elasto-plastic deformation of the tetrahedral mesh

570 A. Abdulali and S. Jeon

the coordinate systems might degrade the model identification quality, using absolute
positions is inappropriate. In order to build translation and rotation invariant defor-
mation features, the positions p;; are transformed into more convenient coordinate
frames, describing relative displacements of each marker. The origin point pg; and
the plane passing through the central axis of the cylinder and fitted to the position
points p;; describe the coordinate frame of the displacements for the marker j (Fig.
12.15). The axial Ad;; and radial Ar;; displacements are coordinates of position
points p;; projected on to the plane of the coordinate frame of the displacements. At
every height level &, of the cylinder, the radial and axial displacements are averaged
and stored into matrices D; . and R, x, which define our deformation features. The
deformation patterns of four levels of the cylinder can be seen in Fig. 12.12c. The
deformation of the cylinder at any height level A can be reconstructed using defor-
mation patterns as shown in Fig. 12.15d. Thus, the deformation of a cylinder can be
represented by two matrices. Note that the deformation features do not describe the
whole deformation dynamics. To describe the whole deformation dynamics, along
with deformation features, the normal forces f and the compressing displacements
d of all states are needed as well.

12.5.3 Model Identification

Our goal is to estimate model parameters based on observations collected during
deformation of a real object. In order to optimize material parameters, i.e., Young’s
modulus k and Poisson ratio v, we define a FEM solver as a function /I"(-) mapping
vector of compressing displacement d to the synthesized normal forces f and shape
deformation patterns, i.e., D and R.

{f,D,R} = I'tk, v, d) (12.16)

Then the model identification can be seen as a nonlinear optimization problem with
a following objective function

. = 1 ~ 1 ~
min(|If — 113 + «(—ID = DI} + .~ IR = RI[})), (12.17)

where /. and r, are reference height and radius of the cylinder, respectively. The &,
and r, are required to make objective function invariant to the physical dimensions
of the cylinder. The parameter « is used to balance the force error with the error of
deformation. In our case we selected « equals 0.1.

Note that any FEM solver being able to describe deformation of the target object
can be utilized in a function I"(-) for model identification. However, it is recom-
mended to use the same solver for both modeling and rendering. In this work, we
adopted the FEM solver with implicit integration schema based on Alternating Direc-
tion Method of Multipliers (ADMM) [48]. This solver having the generic formulation

12 Haptic Software Design 571

allows to use of any constitutive model by defining a proximal operator (Sect. 12.5.4).
We employed two commonly used nonlinear hyper-elastic material models, i.e., St.
Venant-Kirchhoff and Neo-Hookean models.

In order to solve the nonlinear optimization problem (equation Eq. 12.17), we
utilized a single objective Genetic Algorithm (GA). We first created an initial pop-
ulation of 50 two-dimensional genes. Then we ran optimization with 0.7 crossover
and 0.1 mutation rates. Other gradient-free optimization algorithms can also be used
for a given objective.

12.5.4 Finite Elements Method Solver

The second goal of the work is to make FEM simulation run fast enough for haptic
rendering. In this section, we integrated the optimization-based FEM solver from [48]
into a haptic rendering environment. Here, we first provide a brief background
required for the contact forces computations. Next we explain how the actual contact
forces are computed and rendered in our setup.

In FEM modeling, a deformable object is understood to be a set of material points
having individual masses m;, which are interconnected with each other forming a
tetrahedral mesh. Each tetrahedron of a mesh can be treated as a generic spring that
keeps mass points at the equilibrium state by raising conservative forces. External
forces applied to the deformable object cause a motion of mass points, which in
terms obeys the Newton’s second law. Thus, in order to approximate the motion
of mass points, one can perform explicit or implicit time integration. The implicit
method has been found to be more practical for real-time applications providing a
stable approximation for relatively large time steps, whereas the explicit methods
tend to overshoot the equilibrium point and explode. The implicit time integration
method, the backward Euler method, is computationally intractable for real-time
haptics since it requires to solve a large non linear system of equations. However, for
the conservative system f = —VU, the backward Euler method can be formulated
as an optimization problem [28]. The main advantage of this formulation is that
the parallelizable solvers can be utilized. Here, we provide a brief summary of the
framework. For detailed explanation, refer [48].

The optimization problem for the state of a deformable object at Ar time step
later can be formulated as,

S M2 (= DI} + U) (12.18)

X = arg min(
X
where M is inertia matrix, X is the predicted state of the deformable object in the
absence of implicit forces, and U (x) is elastic potential energy of a deformable object
at Ar time step later.
The first and second terms of the objective function (Eq. 12.18) represent the
momentum and the elastic potentials respectively. The optimization problem itself

572 A. Abdulali and S. Jeon

can be seen as finding the equilibrium between the momentum and the elastic poten-
tials. In order to solve the optimization problem, ADMM-based solver splits equation
(12.18) into two objective functions by introducing a dual variable and a constraint
function, which relates these objective functions. In this way, each objective function
is optimized separately satisfying constraint relating both. As aresult, the solution sat-
isfying the both of new objective functions converges to the solution of Eq. (12.18) in
iterations. The dual variable u introduced by ADMM is also updated at each iteration.
As the deformable object is modeled as FEM, elastic potentials can be calculated
locally for each mesh element. Based on [48], the dual variable u correlates with
implicit conservative forces caused by elastic potentials, and can also be updated
locally for each tetrahedral element.

Elastic Potential (local-step) During the collision with a haptic probe, the internal
deformation undergoes in elastic object raising conservative forces. The deformation
gradient F(x) of whole mesh object can be calculated by its current state x. The strain
of each tetrahedral element can be defined separately by its deformation gradient F;.
Integration of elastic potential energies of all tetrahedral elements constitutes the
elastic potential energy of full mesh.

U= Z V,w (F). (12.19)

Here, ¥ (F) is strain energy density function which can be calculated from deforma-
tion gradient and material parameters, V; is the volume of the tetrahedron element.

Inlocal step, the ADMM-based solver searches updated deformation gradient val-
ues minimizing the elastic potentials and approaching optimal gradient deformation
which is F,’ +u;.

F'*! = arg min(¥ (F) + %HF — (F" +u)|) (12.20)
F

Note that the dual variable u; is also updated in this local-step.
't =u! +F - F (12.21)

Momentum Potential (global-step). At global step the solver iteratively updates
the state of whole mesh. ADMM algorithm introduces the following optimization
problem that searches solution for minimizing momentum potentials satisfying the
solution of optimal elastic potentials:

Xy +1 = arg min(ZA1 SIIME (x — D13+ lIIW(F(x) —F' +u)|) (1222)
x t 2

Here, W is a weight matrix which affects the convergence rate. Linearized constraints

Cx = d about the current state are also incorporated into 12.22 to handle the col-

lisions. The solution satisfying the constraints and above optimization problem is

found by introducing Lagrange multipliers A in a saddle point system and solved

12 Haptic Software Design 573

using Uzawa Conjugate Gradient for General Constraints [55]. The self-collision
can be handled in the similar manner as in [48]. However, in the current study, the
self-collision was not considered to reduce the computational load. Note that the
algorithm is optimized globally for the whole mesh, so we call this update rule
global-step. The whole algorithm converges to the optimal solution of the prob-
lem (12.18) by updating the local- and global-steps alternatively in iterations. The
interaction forces can be computed using Lagrange multipliers, which explain in
Sect. 12.6.7.

12.6 Combination of Physics-Based and Data-Driven
Models

As we discussed earlier, the simulation approach, whether it is physics-based or data-
driven, is usually determined by considering the nature and complexity of the target
stimuli. The physics-based simulation is usually preferred when the global deforma-
tion is in priority. For instance, the physics simulation is beneficial when the object
undergoes large or plastic deformation, when the visually plausible rendering is also
required, and when the interaction is complex with self and multi-point collisions.
The data-driven methods, on the other hand, are usually used when realistic modeling
of the local contact is in priority with a highly non-linear action-feedback relation.
Many haptic modeling problems, however, fall on neither side of this trade-off. In
such cases the hybrid approach of physics-based and data-driven can designed. For
instance, to simulate FEM, the authors in [46] computed deformation forces at eight
points around the haptic probe positioned on a virtual grid and performed a real-time
interpolation at haptic update rate. Bickel et al. [14] proposed to adjust the strain
of each element of the linear FEM model with non-linear function. In this section,
we explain the hybrid approach of modeling the elastoplastic deformation, where
the non-linear forces are computed using a hyper-elastic model from Sect. 12.5 and
the plastic flow is approximated by a neural network-based controller. The goal of
this section is to demonstrate the joint optimization of physics-based and black-box
data-driven models.

12.6.1 Plasticity Modeling

The ability to portray three-dimensional shapes by sculpting malleable materials
played an important role in human evolution. Plastic modeling has been actively used
in pottery, molding, architecture, and sculpture. Modeling the desired shape from a
pliable material like clay or dough requires a special set of sensory-motor skills,
which can be developed only through haptic interaction. In order to achieve a target
deformation, the artist fine-tunes the contact manipulations relying upon kinesthetic

574 A. Abdulali and S. Jeon

A
A
Yield stress Fracture
@ ___.-"”Ejmsmaled strain
ici energy densit
$ elasticity plasticity g ay ¥
o A
»
remaining strain
energy density
! »>
> elasticity | plasticity
strain
strain (b) Strain energy of elastic and plastic components
(a) Yield point. ©2022, IEEE Reprinted, with permission, from [10].

Fig. 12.17 Elasto-plastic deformation curve and strain energy density

perception of the plastic flow and force feedback. Due to the lack of realistic haptic
feedback, learning the plastic and pastry arts in online or by using virtual reality
(VR) simulation remains rather impractical. The realistic haptic feedback might
also be beneficial for the digital sculpting in modern computer-aided design (CAD),
which in turn shares common manipulation operations as in physical sculpting. In
this dissertation, we aim to develop an end-to-end framework that captures material
properties from plastic objects, builds the corresponding digital copy, and renders it
in a haptic-enabled simulation.

Plasticity is a physical property of a material undergoing permanent deforma-
tion due to external forces. The permanent changes generally occur when the applied
stress exceeds the material-specific yield point, i.e., transition point when the material
behavior changes from elastic to the plastic regime (Fig. 12.16). The total deforma-
tion at the plastic regime, however, consists of both elastic and plastic components,
as the material partially recovers after load removal. The plastic part of the deforma-
tion can be determined by the additive or multiplicative decomposition model. The
multiplicative decomposition rule has been proven to be more appropriate since it
preserves the physical meaning while keeping the object’s volume persistently [36].
In computer graphics, the multiplicative decomposition is usually governed with a
parametric model with manual tuning.

The multiplicative decomposition rule has been successfully used in computer
graphics rendering. The decomposition is generally governed by a flow model with
several parameters, e.g., yield point, flow rate, hardening parameter. In computer
graphics, this parameters are generally manually tuned to achieve photo-realistic
rendering. However, in haptic rendering, to achieve a realism, the accurate force
feedback can be computed using multiplicative decomposition decomposition mod-
els allowing modeling plastic flow with arbitrary complexity.

12 Haptic Software Design 575

1d conv fully connected
/ \
10 50 50

O O 2 plasticity
exponent
0, O n

I

gamma
distribution

<X

energy e
density buffer sigmoid
FEM
parameters,
State yield point
independent : DQ
parameters
normal
softplus distribution

Fig. 12.18 Plasticity (top) and physics (bottom) policy models ©2022, IEEE Reprinted, with
permission, from [6]

12.6.2 Elasto-Plastic Decomposition

The object undergoing a plastic deformation typically passes through four stages,
i.e., elastic regime, yielding, plastic regime, and fracturing (Fig. 12.17a). Before
reaching the yield point, the object recovers to its original shape after removal of
all external forces. The system before the yield point remains conservative and can
be approximated by optimization-based numerical integration that we already intro-
duced in Sect. 12.5.4. When the deformation reaches the yield point, some strain
energy start dissipating into the other forms of energy, e.g., turns to a heat during
particle dislocation. The remaining energy is elastic causing partial recovery after the
load removal and producing the force feedback during the contact (Fig. 12.17b). In
nature, there is no any perfectly plastic solid material, as the minimal elastic potential
is needed to withstand the shape against the gravity. Another important criterial is
rate of dissipation of the strain energy in the plastic regime, as the underlying physical
processes of turning one energy into the others require different time. Therefore, we
should consider at least two factors to approximate the plastic flow. Note that in this
study, we don’t consider factors related to environment, e.g., temperature, humidity,
etc. As long as these factors do not change rapidly, we can build models for different
environmental conditions.

576 A. Abdulali and S. Jeon

[
Policy Network N /\ i [B pa— FEM
(state independent))4\ £ Environment
T normal dist.

l setting hyper-
elastic model

c T ? l :
| compute e

; : | strai
Policy Network s /\4_ @ [tota itram

(state dependent) elasto-plastic

gamma dist. :| decomposition
¥

'y

compute loss

[| ;

Computing update mesh
Returns : i
I Simulation 1o0p |

stress buffer —

Fig. 12.19 Model identification pipeline. The blue and red lines of the pipeline represent the data
flow for the update of state-dependent and -independent parameters, respectively ©2022, IEEE
Reprinted, with permission, from [6]

The elasto-plastic decomposition is a continuous process where the total strain F;
from (12.18), is split into elastic and plastic components. In multiplicative decompo-
sition, the amount of plastic component can be determined relying upon the following
rule

F;, = F F/. (12.23)

To find the strain of the permanent deformation, we first diagonalize the total strain,

F; = VIV, where X is a diagonal matrix with eigenvalues, as in [16]. To prevent

changes of the tetrahedral volume, we constrain the determinant of the diagonalized
strain A to 1, as follows

EP = (det (M)A (12.24)

Then, the plastic strain can be estimated using plastic flow constitutive model
Bl = (Y, (12.25)

where the exponent y is usually a function relating the current stress with the ratio of
the plastic component in the original strain F;. For instance, if y always equals zero,
then the material is elastic. Likewise, if constant y equals one, the plastic component
occupies the complete strain. We approximate the y for each finite element as follows

WF) —ey) 1), (12.26)

y =min (v
ey

12 Haptic Software Design 577

where ¥ (F;) is the energy density function, e, denotes the yield point, and v controls
the rate of plasticity.

The rest configuration of the mesh model X can then be updated using the plastic
strain that we obtained in Eq. (12.25).

X < XV(F)H='vT (12.27)

As it can be seen in equation Eq. 12.26, we compute the plastic flow y directly
using the strain energy density. This is advantages for the haptic rendering as the
energy density is already computed in ADMM routines and we do not have to com-
pute the the second Piola-Kirchhoff stress as in [13]. However, since we update the
mesh object after ADMM iterations, we have to perform Cholesky factorization of
a matrix used in a global step of ADMM solver [48]. This requires some additional
computation, which can also be done in parallel using GPU.

12.6.3 Data-Driven Modeling of Plastic Flow

Identification of the physically-based dynamic models is a non-linear problem that is
commonly solved by meta-heuristic methods, e.g., the genetic algorithm [8, 45]. The
objective used in optimization usually requires running a complete simulation for
each candidate set of parameters. Thus the training of the black-box controller with
a relatively large number of parameters becomes computationally intractable using
these methods. To tackle this problem, we propose a novel approach based on inverse
reinforcement learning, that optimizes a complex controller by taking advantage of
the intermediate steps of simulation.

Reinforcement learning (RL) is a machine learning technique optimizing the con-
trol model while interacting with a dynamic environment. The controller in RL
changes the state of the environment by executing an action and receives the reward.
The main goal in RL is to optimize the state-action mapping function that maxi-
mizes cumulative reward. In inverse RL, the reward is derived from observations of
an expert acting in an environment. In the case of plasticity modeling, we derive the
reward function based on data collected from real deformation and identify a control
model that tries to mimic the plastic flow.

The main requirement for modeling the homogeneous object is that the same
controller should be able to approximate the plastic flow for any finite elements of
the mesh no matter its size and location. The main difficulty is that the deformation
measurement (force-displacement field) inside the physical object is infeasible and
there is no practical way to compute the reward for each finite element. To address
this issue, we propose a multi-agent single-policy reinforcement framework, where
each finite element is individually represented by an Agent. The agent observes a
deformation State of the corresponding finite element, which we represent in the
form of a vector with recent energy densities. For a given deformation state, the
agent executes the action, which is the exponent of the multiplicative elasto-plastic

578 A. Abdulali and S. Jeon

decomposition y;. The common policy model is optimized by all Agents in a Markov
Game. The execution of simultaneous actions by multiple agents, however, interferes
and becomes non-stationary since the next state that each agent observes is also
conditional to previous actions of others. To mitigate this problem, we design the
inter-agent cooperation in a relaxed form, where the stochastic action is executed by
a single agent for a complete run of the simulation (trajectory). The idle agents apply
the action from the fixed policy. In this way, we limit the variation of the reward at
each time step to an action executed by a particular agent.

Considering the symmetric property of the cylindrical specimen, finite elements
can be classified into several groups having similar topology and experiencing similar
stress during deformation. The tetrahedral mesh of 63 elements that we used in
material identification, thereby can be partitioned into nine groups. At each iteration,
one out of nine groups can be randomly selected to sample the next game trajectory.
The system reaches the Nash equilibrium point when the agents don’t have to move
towards improving the policy.

12.6.4 Policy Model

The RL algorithm is commonly classified into Value- and Policy-based methods. In
our model, we employ the policy-based concept that performs a direct search over
the policy space. The policy function samples continuous actions from distribution
conditional to the observed state and parametrized by function approximators like
deep neural networks. The main advantages of the policy-based methods are that they
directly learn stochastic processes and allow using a gradient-based optimizer. This
is beneficial for training deep neural networks using the backpropagation technique.

The material model in our framework consists of state-independent and -dependent
learn-able parameters (Fig. 12.19). The state-independent parameters represent
material-specific properties that do not change during the deformation. In this model,
the state-independent parameters were encoding the normal distributions of Young’s
modulus and Poisson ratio used for total strain energy computation, as well as the
yield point denoting the elastic limit. The state-dependent parameters are used to
control the plastic flow in elasto-plastic decomposition by establishing the relation
between the total density and the ratio of the plastic component in current defor-
mation. We approximate the plastic flow using a deep neural network depicted in
Fig. 12.18. The input of the model is a vector accommodating recent strain energy
densities of a particular finite element. The 1D convolutional layers help to com-
pute rate dependant features encoding the possible viscosity, as well as for filtering
undesired oscillations. The fully connected layers map incoming feature vectors to
the parameters of the gamma distribution. The plastic flow exponent can be sampled
from the resultant gamma distribution in the training process, or represented by its
mean in rendering.

12 Haptic Software Design 579

12.6.5 Model Training

The model identification pipeline is depicted in Fig. 12.19. We identify the mate-
rial model in iterations by alternating the optimization of physics and plastic flow
parameters. In the first step, we sample a number of vectors with FEM parameters
and run the simulation for each vector. In this step, the plastic flow was taken as a
mean of distribution characterized by a fixed policy model. Likewise, in the second
step, we randomly select one out of nine groups and sample state-dependent trajecto-
ries using the plasticity model, while keeping state-independent parameters constant.
After each step, we update corresponding model parameters using Proximal Policy
Optimization (PPO) algorithm [53]. The PPO, like other policy-based algorithms,
tries to increase the probability of the action producing a higher return, and penalize
the probabilities of actions leading to a lower return,

= TS g g, (12.28)

776,,;4 (a[|s[)

where R™ (s;, a,) is the infinite-horizon discounted return function computed at time
step ¢, s; is a vector of recent strain energy densities of a finite element representing its
state, and a, = {y;, k, v, e, } is an action. The PPO, however, additionally penalizes
large update steps by clipping the probability ratio p, as follows

L =min(p, clip(p,1 —¢,1+¢)). (12.29)

To estimate the ongoing reward, we adopted the objective function that we used
for identification of hyper-elastic parameters in Sect. 12.5.1.

= 1 - 1 ~
r= —IIf—fII§+0t(r—IIXa = Xl + — 11X, = X, [3), (12.30)

c hC

where f denotes contact forces, X, and X, represent axial and radial projections of
cylinder deformation, respectively Fig. 12.20.

Note that we don’t apply the actor-critic schema used in the original PPO algo-
rithm. Since each agent in our environment has a different influence on the reward, the
expected return should be computed for each agent by an individual critic network.
Instead, to reduce the variance, from ongoing reward we subtracted the expected
reward computed for a mean action of current policy distribution.

12.6.6 Recording Setup and Sample Set

To capture the non-linear force response during the deformation of an elastoplastic
sample, we build a motorized data collection setup (Figs. 12.21 and 12.22). The

580 A. Abdulali and S. Jeon

0 ? 12 12
2 1000 g
5 g s 8
2 S 6 6
3 2000 E
S
2 g 4 4
o & 2 2

-3000 0

0
0 100 200 300 400 500 0 200 400 600 800 1000 0 200 400 600 800 1000

Number of PPO updates time [ms] time [ms]
12 12
10 10
8 8
6 6
4 4
2 2

0
OO 200 400 600 800 1000 0 200 400 600 800 1000
time [ms] time [ms]

Fig. 12.20 Model identification progress: cumulative reward for 500 steps of PPO update; three
snapshots of during training; force response for testing data ©2022, IEEE Reprinted, with permis-
sion, from [6]

device enables a uni-directional position and velocity control of the carriage for the
compressive deformation of a cylindrical material sample. The carriage compressing
the sample was equipped with a force sensor (Nanol7; ATI Technologies) and was
aligned in a normal direction by two rail rod sliders. The movement of the carriage
was actuated by a stepper motor (17HS8401; NEMA 17), which was managed by
the TMC-2130 controller in 1/16- microstepping mode. The motion of the carriage
was smoothed by stealthChop algorithm with 1/256-microstepping interpolation
(configured in the controller). The revolving resolution of the motor was 3200 steps
per complete cycle, which corresponds to 0.025 mm resolution of the carriage’s
linear motion. In order to capture the shape deformation, we attached a grid of 15
IR markers to target samples and utilized four IR cameras (Flex 13; OptiTrack) for
tracking. The force sensor was connected to the same data-acquisition board, which
recorded force responses with 1000 Hz update frequency. For the evaluation, we
prepared three elastoplastic material samples, i.e., dough, clay, and chewing gum.
Two mounts were attached to both ends of each sample allowing fixating it in the
device.

To identify material parameters, we performed the relaxation test with a constant
strain rate. This test consists of two steps, i.e., loading and relaxation phases. In the
loading step, the material sample was compressed with a constant velocity, 10 mm/s.
In the relaxation step, the position of the carriage is fixed, and the decaying force
feedback was collected for the same duration as in the loading step. For the training
and testing datasets, the samples were compressed 5 mm and 6 mm, respectively.

12 Haptic Software Design 581

] > stress relaxation
mounts . A
' testing device \

dough

i

clay chewing
gum

50 cm '

tracking cameras

Plastic samples Data collection setup

Fig. 12.21 Data-collection setup and sample set of plastic objects (©2022, IEEE Reprinted, with
permission, from [6]

. ocontrol circuit

stepper motor

railrods
time belt handle

movin
& force sensor
carrage
mounting
aluminum _, -- housings
base

Fig. 12.22 Force-displacement measurement device of vertical deformation of cylindrical samples

12.6.7 Rendering Collision Forces

During the contact, the global deformation raises conservative forces in the object’s
media, such that the sum of all internal and external forces equals zero. In the virtual
environment, a virtual tool coupled to a haptic manipulator applies external forces
to contacting vertices of an object. However, impedance type haptic devices hav-
ing a closed-loop control provide the position and orientation of the end-effector
and accepts the force to be rendered. The contact deformation, in this case, can be
described by a set of boundary constraints for contacting vertices C;. The response

582 A. Abdulali and S. Jeon

mesh model total response force
— haptic probe -

\ force field at

connecting vertices

\::_Tﬁbtic device

Fig. 12.23 Illustration of the force field at the contacting vertices and resultant force vector during
contact © 2022, with permission from Elsevier [9], all rights reserved

force due to the contact can be computed as a sum of normal forces raised at the m
contacting vertices (Fig. 12.23) due to boundary constraints as follows

_ _AL Xz: (12.31)

where X is Lagrange multipliers from the saddle point system.

To set the boundary constraints, all object’s vertices are tested for a collision
with a virtual tool using Axis-Aligned Bounding Box (AABB) collision detection
algorithm. In our case, the virtual tool was in the form of a sphere. Depending upon
the application, the shape of a virtual tool can be selected arbitrarily. The global
positions of the colliding vertices are moved to the boundary of a virtual tool by
forming equality constraints. The equality constraint is generally not recommended
for haptic rendering. During a shallow and sliding contact, some vertices can provide
oscillation by getting in and out of the contact. To solve this issue, we set a small
dead-band allowing vertices to travel out of the object without the loss of the contact
and employed the virtual coupling compensating the small contact oscillations.

12.7 Conclusion

The development of haptic software is a complex process that requires consider-
ing various engineering aspects of sensing and actuation additionally to the design
of algorithms and mathematical models. In this chapter, with a special emphasis
on realism, we discussed measurement-based and data-driven approaches that are
optimized using data collected during real haptic interaction. The main goal was to
deliver a fundamental knowledge of haptic modeling and rendering that can help a

12

Haptic Software Design 583

reader to formulate haptic models and implement realistic VR and MR simulators. To
show the research landscape on haptic modeling and rendering, we provided a series
of state-of-the-art methods, i.e., optimization-based FEM simulation, data-driven
models with deterministic and stochastic response spaces, and the hybrid approach
of the physics-based and data-driven models. The presented examples also pro-
vide an introduction to ongoing challenges in object deformation and haptic texture
rendering.

References

10.

11.

12.

13.

14.

15.

16.

17.

Abdelrahman W et al (2011) A comparative study of supervised learning techniques for data-
driven haptic simulation. In: Systems, man, and cybernetics (SMC), 2011 IEEE international
conference on. IEEE, pp 2842-2846

Abdulali A, Atadjanov IR, Jeon S (2020) Visually guided acquisition of contact dynamics and
case study in data-driven haptic texture modeling. IEEE Trans Haptics 13(3):611-627
Abdulali A, Hassan W, Jeon S (2017) Sample selection of multi-trial data for data-driven haptic
texture modeling. In: 2017 IEEE world haptics conference (WHC), pp 66—71. https://doi.org/
10.1109/WHC.2017.7989878

Abdulali A, Jeon S (2016) Data-driven modeling of anisotropic haptic textures: data segmenta-
tion and interpolation. In: International Conference on human haptic sensing and touch enabled
computer applications. Springer, pp 228-239

Abdulali A, Jeon S (2016) Data-driven rendering of anisotropic haptic textures. In: International
AsiaHaptics conference. Springer, pp 401407

Abdulali A, Jeon S (2021) Data-driven haptic modeling of plastic flow via inverse reinforcement
learning. In: 2021 IEEE world haptics conference (WHC), pp 115-120. https://doi.org/10.1109/
WHC49131.2021.9517181

Abdulali A et al (2018) Data-driven modeling and rendering of force responses from elastic
tool deformation. Sensors 18(1):237

Abdulali A et al (2019) Measurement-based hyper-elastic material identification and real-time
FEM simulation for haptic rendering. In: 25th ACM VRST. New York, USA: ACM

Abdulali A et al (2020) Realistic haptic rendering of hyper-elastic material via measurement-
based FEM model identification and real-time simulation. Comput Graph 89:38—49
Arnaiz-Gonzalez A et al (2016) Fusion of instance selection methods in regression tasks. Inform
Fusion 30:69-79

Bachmann ER (2000) Inertial and magnetic tracking of limb segment orientation for inserting
humans into synthetic environments. Tech. rep, Naval Postgraduate School Monterey CA
Barbic J, James DL (2008) Six-dof haptic rendering of contact between geometrically complex
reduced deformable models. IEEE Trans Haptics 1(1):39-52

Bargteil AW et al (2007) A finite element method for animating large viscoplastic flow. ACM
Trans Graph (TOG) 26(3):16-es

Bickel B et al (2009) Capture and modeling of non-linear heterogeneous soft tissue. ACM
Trans Graph (TOG) 28(3):89. ACM

Chen D et al (2015) Data-driven finite elements for geometry and material design. ACM Trans
Graph (TOG) 34(4):74

Choi MG (2014) Real-time simulation of ductile fracture with oriented particles. Comput
Animation Virt Worlds 25(3-4):455-463

Choi S, Kuchenbecker KJ (2012) Vibrotactile display: Perception, technology, and applications.
Proc IEEE 101(9):2093-2104

https://doi.org/10.1109/WHC.2017.7989878
https://doi.org/10.1109/WHC.2017.7989878
https://doi.org/10.1109/WHC49131.2021.9517181
https://doi.org/10.1109/WHC49131.2021.9517181

584 A. Abdulali and S. Jeon

18. Cirio G et al (2010) Six degrees-of-freedom haptic interaction with fluids. IEEE Trans Vis
Comput Graph 17(11):1714-1727

19. Clausen J (1999) Branch and bound algorithms-principles and examples. In: Department of
computer science, University of Copenhagen, pp 1-30

20. Cranstoun SD et al (2002) Time-frequency spectral estimation of multichannel EEG using the
auto-SLEX method. IEEE Trans Biomed Eng 49(9):988-996

21. Culbertson H, Delgado JJL, Kuchenbecker KJ (2014) One hundred data-driven haptic texture
models and open-source methods for rendering on 3D objects. In: IEEE haptics symposium
(HAPTICS). IEEE, pp 319-325

22. Culbertson H, KuchenbeckerKJ (2017) Ungrounded haptic augmented reality system for dis-
playing roughness and friction. IEEE/ASME Trans Mechatron 22(4):1839-1849

23. Culbertson H, Unwin J, Kuchenbecker KJ (2014) Modeling and rendering realistic textures
from unconstrained tool-surface interactions. IEEE Trans Haptics 7(3):381-393

24. Davis RA, Lee TCM, Rodriguez-Yam GA (2006) Structural break estimation for nonstationary
time series models. J Amer Stat Assoc 101(473):223-239

25. Elliott LR et al (2010) Field-based validation of a tactile navigation device. IEEE Trans Haptics
3(2):78-87

26. Erkelens JS (1996) Autoregressive modelling for speech coding: estimation, interpolation and
quantisation. Citeseer

27. Fong P (2009) Sensing, acquisition, and interactive playback of data-based models for elastic
deformable objects. Int J Robot Res 28(5):630-655

28. Gast TF et al (2015) Optimization integrator for large time steps. IEEE Trans Vis Comput
Graph 21(10):1103-1115

29. Guruswamy VL, Lang J, Lee W-S (2009) Modelling of haptic vibration textures with
infiniteimpulse-response filters. In: IEEE international workshop on haptic audio visual envi-
ronments and games. IEEE, pp 105-110

30. Guruswamy VL, Lang J, Lee W-S (2010) IIR filter models of haptic vibration textures. IEEE
Trans Instrum Measur 60(1):93-103

31. Hart P (1968) The condensed nearest neighbor rule. IEEE Trans Inform Theory 14:515-516

32. Hayes MH (2009) Statistical digital signal processing and modeling. Wiley

33. Hogema JH et al (2009) A tactile seat for direction coding in car driving: field evaluation. IEEE
Trans Haptics 2(4):181-188

34. Hover R, Harders M, Székely G(2008) Data-driven haptic rendering of visco-elastic effects.
In: Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008.
Symposium on. IEEE, pp 201-208

35. Hover R et al (2009) Data-driven haptic rendering-from viscous fluids to visco-elastic solids.
IEEE Trans Haptics 2(1):15-27

36. Irving G, Teran J, Fedkiw R (2004) Invertible finite elements for robust simulation of large
deformation. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics SCA, pp 131-140

37. Iske A (2004) Multiresolution methods in scattered data modelling, Vol 37. Springer Science
& Business Media

38. Jayant C et al (2010) V-braille: haptic braille perception using a touch-screen and vibration on
mobile phones. In: Proceedings of the 12th international ACM SIGACCESS conference on
Computers and accessibility, pp 295-296

39. Jeon S, Choi S (2009) Haptic augmented reality: taxonomy and an example of stiffness mod-
ulation. Presence: Teleoper Virt Environ 18(5):387—408

40. Jeon S, Choi S, Harders M (2011) Rendering virtual tumors in real tissue mock-ups using
haptic augmented reality. IEEE Trans Haptics 5(1):77-84

41. Jeon S (2011) Extensions to haptic augmented reality: modulating friction and weight. In: IEEE
World haptics conference. IEEE, pp 227-232

42. Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer
computations. Springer, pp 85-103

43. KeoghE et al (2004) Segmenting time series: a survey and novel approach. Data Mining Series
Databases 57:1-22

12

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Haptic Software Design 585

Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based
haptic feedback. IEEE Trans Visu Comput Graph 12(2):219-230

Lloyd B, Székely G, Harders M (2007) Identification of spring parameters for deformable
object simulation. IEEE Trans Vis Comput Graph 13(5):1081-1094

Mazzella F, Montgomery K, Latombe J-C (2002) The forcegrid: a buffer structure for haptic
interaction with virtual elastic objects. In: Proceedings 2002 IEEE international conference on
robotics and automation (Cat. No. 02CH37292), vol 1. IEEE, pp 939-946

Meyer DJ, Peshkin MA, Colgate JE (2016) Tactile Paintbrush: a procedural method for gener-
ating spatial haptic texture. In: IEEE Haptics symposium (HAPTICS). IEEE, pp 259-264
Overby M etal (2017) ADMM projective dynamics: fast simulation of hyperelastic models with
dynamic constraints. IEEE Trans Vis Comput Graph 23(10)::2222-2234. ISSN: 1077-2626.
https://doi.org/10.1109/TVCG.2017.2730875

Rakhmatov R (2018) Virtual reality bicycle with data-driven vibrotactile responses from road
surface textures. In: IEEE games, entertainment, media conference (GEM). IEEE, pp 1-9
Romano JM, Kuchenbecker KJ (2011) Creating realistic virtual textures from contact acceler-
ation data. IEEE Trans Haptics 5(2):109-119

Sadia B et al (2020) Data-driven vibrotactile rendering of digital buttons on touchscreens. Int
J Human-Comput Stud 135:102363

Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. IEEE Comput
Graph Appl 24(2):24-32

Schulman J et al (2017) Proximal policy optimization algorithms. In: arXiv preprint
arXiv:1707.06347

Strese M, Boeck Y, Steinbach E (2017) Content-based surface material retrieval. In: IEEE
world haptics conference (WHC). IEEE, pp 352-357

Uzawa H (1958) Iterative methods for concave programming. Stud Linear Nonlinear Program
6:154-165

Wada C, Shoji H, Ifukube T (1999) Development and evaluation of a tactile display for a tactile
vocoder. Technol Disab 11(3):151-159

Wang B et al (2015) Deformation capture and modeling of soft objects. ACM Trans Graph
(TOG) 34(4):94

Wilson DL (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE
Trans Syst Man Cybern 3:408-421

Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approxima-
tion. IEEE Trans Signal Process 57(7):2479-2493

Yim S, Jeon S, Choi S (2016) Data-driven haptic modeling and rendering of viscoelastic and
frictional responses of deformable objects. IEEE Trans Haptics 9(4)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/TVCG.2017.2730875
http://arxiv.org/abs/1707.06347
http://creativecommons.org/licenses/by/4.0/

	12 Haptic Software Design
	12.1 Introduction
	12.1.1 Virtual Reality
	12.1.2 Mixed Reality
	12.1.3 Touch User Interfaces
	12.1.4 Structure and Contents

	12.2 Haptic Rendering
	12.2.1 Haptic Model
	12.2.2 Action
	12.2.3 Response
	12.2.4 Data-Driven Modeling
	12.2.5 Measurement-Based Modeling

	12.3 Deterministic Data-Driven Modeling
	12.3.1 Tool Deformation Modeling
	12.3.2 Action and Response Spaces
	12.3.3 Data Acquisition and Preprocessing
	12.3.4 Model Training

	12.4 Stochastic Data-Driven Models
	12.4.1 Haptic Texture Modeling Pipeline
	12.4.2 Data Processing and Segmentation
	12.4.3 Bottom-Up Agglomerative Segmentation
	12.4.4 Multi-trial Data Collection
	12.4.5 Online Segmentation of Motion Primitives
	12.4.6 Interpolation Model
	12.4.7 Real-Time Texture Rendering

	12.5 Physics-Based Modeling
	12.5.1 Hyper-Elastic Material Modeling
	12.5.2 Deformation Features
	12.5.3 Model Identification
	12.5.4 Finite Elements Method Solver

	12.6 Combination of Physics-Based and Data-Driven Models
	12.6.1 Plasticity Modeling
	12.6.2 Elasto-Plastic Decomposition
	12.6.3 Data-Driven Modeling of Plastic Flow
	12.6.4 Policy Model
	12.6.5 Model Training
	12.6.6 Recording Setup and Sample Set
	12.6.7 Rendering Collision Forces

	12.7 Conclusion
	References

