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Abstract

Effective data mining models are powerful
tools for the prediction and management of
sub-regional groundwater resources. In this
work, an integrated attempt is employed to
assess the groundwater potentiality in C.
D. Block of Birbhum District, India using
GIS-based novel ensemble machine learning
models of Radial Basis Function neural net-
work (RBFnn) in form of RBFnn-Bagging
and RBFnn-Dagging. Fourteen hydro-
geomorphological factors were used to find
the most potential groundwater area. To
support the result, observation data of 86 sites
were incorporated empirically. Out of these,
70% were randomly split for the training
dataset to develop the model and remaining
30% were used for model validation. Results
predict excellent groundwater potentiality by
the RBFnn-Bagging and RBFnn-Dagging as
they covered 17.38% and 13.97% of the study
area, respectively. The prediction capacity of
newly built models was established with the

root mean square error (RMSE), accuracy,
precision, and receiver operating characteristic
(ROC) curve which shows a satisfactory result
as the RMSE values of 0.05 and 0.07 and
AUC values of 82.1% and 81.30% are
obtained for RBFnn-Bagging and RBFnn-
Dagging models respectively. Well-known
mean decrease Gini (MDG) from the random
forest (RF) algorithm, implemented to deter-
mine the relative importance of the factors,
reveals that distance from river, pond fre-
quency, aspect, stream junction frequency,
elevation, and geomorphology are most useful
determinants of groundwater potentiality in
the study area. The adopted approach has a
wide scope in effective planning and sustain-
able management of groundwater resources.
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15.1 Introduction

Drinking water crisis and groundwater scarcity
are major challenges among the various prevail-
ing contemporary issues of the earth. Ground-
water is the most important but fast depleting
natural resource whose appropriate delineation
and management are momentous at this
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conjuncture. India is the most groundwater-
consuming country in the world, which uses
nearly 230 km3 year−1 of groundwater (World
Bank 2010). According to the World Bank report
of 2010, if India does not reduce the use of
groundwater, more than 60% of the aquifers will
be dried within 20 years. In India, demand for
groundwater has been increasing through the
green revolution and the pace of industrializa-
tion, urbanization, and agricultural practices
(Suhag 2016). There are two different types of
aquifers in India, i.e., crystalline aquifers (located
in peninsular area) and another are alluvial
aquifers (developed in the Indo-Gangetic plain).
The former is characterized by low permeability
and hard rocks and the latter leads in terms of
groundwater resources (Suhag 2016). Thus,
groundwater quality and potentiality assessment
are important tasks at hand for reasons of sus-
tainability and livelihood.
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Therefore, most of the aquifers are in critical
situations, particularly in semi-arid and arid
regions, which may turn into a severe problem.
Several researchers have tried to determine
aquifer characteristics with the help of sediments
beneath, identifying pore space, and fractures in a
rock on the earth's surface, which is not adequate
for identifying reliable aquifers (Naghibi et al.
2017). Generally, groundwater potentiality
assessment including hydro-geological nature of
the region especially porosity, aquifer properties,
permeability, storage capacity, groundwater
recharge, and hydraulic conductivity of the
aquifer materials are very pertinent factors. These
are broadly dependent on physical variables like
geomorphology, geology, rainfall, soil, drainage,
and LULC (Saha 2017; Haque et al. 2020). Pre-
sently, the unnecessary use of groundwater and
unscientific management strategies are affecting
the groundwater recharge level (Chaudhry et al.
2019). Therefore, in such circumstances, it is
required that an adequate management strategy
for groundwater potentiality assessment is framed
(Chen et al. 2019). Thus, a groundwater potential
map can help to identify the prospect of ground-
water yield, which can guide toward proper
management of groundwater.

Different popular and well-accepted models
have been developed for preparing groundwater
potentiality mapping (Corsini et al. 2009; Ozde-
mir 2011; Lee et al. 2017; Saha 2017; Chen et al.
2019). For example, the analytical hierarchy
process (Razandi et al. 2015; Ghosh et al. 2020),
the weight of evidence (Tahmassebipoor et al.
2016), and frequency ratio (Guru et al. 2017; Das
2019), fuzzy logic (Mohamed and Elmahdy
2017). Nowadays those models were not applied
by researchers because they are unable to solve
multi-criteria decision problems. An examination
of the literature reveals that the integration of
machine learning models has provided better
results (Kenda et al. 2018; Chen et al. 2019). So,
machine learning models handle data with high
dimensionality and provide more perfect results
using geographical information systems and
remote sensing data (Gayen et al. 2019; Rudin
2019; Haque et al. 2020). Guzman et al. (2015)
applied artificial neural network (ANN) and
support vector machine (SVM) to predict
groundwater potentiality. Guzman et al. (2015)
have explained the superiority of the SVM
models over ANN models about prediction.
Naghibi et al. (2018) also applied some well-
accepted machine learning models, i.e., boosted
regression tree, classification and regression tree,
and random forest for groundwater potentiality
prediction. Their study shows that the boosted
regression tree model provides a better result with
an AUC value of 0.8103. Sajedi-Hosseini et al.
(2018) also implemented a few machine learning
models for groundwater risk assessment. Thus,
the previous research work confirms the predic-
tion capacity of machine learning models to pre-
dict groundwater potentiality. The present study
has focused on novel ensemble machine learning
models of Radial Basis Function neural network
(RBFnn)- Bagging (RBFnn-Bagging) and Dag-
ging (RBFnn-Dagging). The primary objective of
this research is to prepare a groundwater poten-
tiality map, along with groundwater quality of
Md. Bazar Block in Birbhum District, India.
Finally, researchers have tried to predict the
groundwater controlling efficiency of the applied
factors with mean decrease Gini (MDG).



15 Application of Ensemble Machine Learning Models to Assess … 295

15.2 Materials and Methods

15.2.1 Study Area

The Md. Bazar is a Jharkhand adjacent western
block of Birbhum District located in West Ben-
gal, India. It is extended from 87°25′ E to 87°
40′ E and 23°55′ N to 24°50′ N (Fig. 15.1). This
block was recognized as drought influenced
district of West Bengal. This region is formed of
gneisses and associated rocks, older alluvium,
and older alluvium with lateritic types of aquifer
media. The older alluvium has high to moderate
yield potentiality but in the cases of older allu-
vium with laterite rocks, the yield potentiality is
limited between 100 and 700 gpd ft−2 hydraulic
conductivity in the study area (Thapa et al.
2018). This falls under the warm monsoon cli-
mate where annual precipitation is approximately
1200 mm and temperature ranges from 6 to 40 °
C (Saha 2017). The maximum precipitation
occurs from July to September (monsoon per-
iod). The long gap of the rainy season and over-
increasing pressure of agriculture leads to con-
tinuous updraft of groundwater for irrigation
which is one of the major issues of this region.
The main routes of groundwater recharge in Md.
Bazar block is natural and anthropogenic activi-
ties such as artificial canals, hydropower dams,
and check dams.

15.2.2 Data Used

In the first instance, dug wells locations were
collected from the Central Ground Water Board.
A total of 85 dug wells and one piezometer were
recognized in Md. Bazar Block of Birbhum
District and verified using GPS and field survey
and considered for a groundwater inventory map
(CGWB, 2017). After that, the well and no-well
locations were classified into two sets by main-
taining 70:30 ratio. 70% of locations were used
as training dataset which was applied to predict
the GWPMs. At the same time, the unused 30%
locations were considered as a validation dataset

of the modeling result (Naghibi et al. 2017; Chen
et al. 2019).

Fourteen groundwater controlling factors viz.,
aspect, elevation, curvature, topographical posi-
tioning index (TPI), topographical wetness index
(TWI), slope, stream junction frequency (SJF),
geomorphology, distance to a river, rainfall, pond
frequency, land use\land cover (LULC), geology,
and soil texture were selected for the development
of the GWPMs (Fig. 15.2). Thematic data layers
of parameters were prepared using the GIS-spatial
analysis tool and the PALSAR Digital Elevation
Model (DEM) was taken from the Alaska Satellite
facility; LULC map was developed by applying
the Sentinal-2 data; rainfall data from Indian
Meteorological Department (IMD); soil map from
NBSS-LUP; and the geological map was col-
lected from Geological Survey of India (GSI).

15.2.3 Preparing Groundwater
Influencing Factors

At first, 12.5 � 12.5 m spatial resolution based
PALSAR-DEM data was used to prepare the
aspect, elevation, curvature, TWI, and TPI maps
(Fig. 15.3a–e). Because these parameters are
considered by several researchers (Naghibi et al.
2016, 2017; Chen et al. 2019) to be an essential
parameters of the GWPM. Aspect and elevation
both are associated with soil moisture, sunlight,
temperature, wind, soil development, and pre-
cipitation therefore both factors can enhance the
rate of groundwater recharge (Golkarian et al.
2018; Gayen et al. 2019). The slope is an
important terrain factor that increases the velocity
of surface runoff wherein a high slope does not
allow infiltration of groundwater (Arabameri
et al. 2019). The regional slope angle ranges
from 0° to 34.21°. The TWI is applied for mea-
suring the influence of topological conditions on
hydro-geomorphic processes. It is the integration
of slope and the upstream contributing area per
unit orthogonal to the direction of flow (Araba-
meri et al. 2019). The calculation of TWI is
represented in Moore et al. (1991):
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Fig. 15.1 Location map of the study area; a West Bengal b Birbhum District of West Bengal c Md. Bazar block



� �

Pond, drainage, and stream dictate structural
characteristics and permeability of an area that
influences groundwater storage and movement
through a hydraulic gradient (Tien Bui et al.
2017). The distance to river and stream junction
frequency maps were developed using the
extracted drainage output from the 1:50,000

toposheet maps. Junction indicates the con-
fluence areas of two rivers. Generally, chances of
groundwater arability are more in the highest
pond frequency areas and confluence zone areas
because both are enhancing groundwater
recharge processes. The LULC can reflect less
susceptibility to groundwater potentiality (Saha
2017). A LULC map of study area was devel-
oped using Sentinal-2 data and results were
affirmed by applying Cohen’s Kappa index with
89.6% Kappa value. The Block is covered by
eight LULC classes: reservoir, watercourse, sand
cover, settlement, agricultural land, mining area,
wasteland, and vegetation cover (Fig. 3l). The
duration of the Rainfall and its intensity also play
a key role in groundwater recharge (Shekhar and
Pandey 2014). Jothibasu and Anbazhagan (2016)
noted that rainfall influences GPM accuracy and
moving water percolation for that reason spatial
distribution of rainfall was taken as a predis-
posing factor for this study (Fig. 3j).

TWI ¼ ln
As
tan b

ð15:1Þ
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Fig. 15.2 Flowchart
illustrated the applied
methodology of groundwater
potentiality mapping

where, As denotes cumulative catchment area
(m2 m−1) and b defines the slope angle.

The TPI and curvature both are exhibited to
affect groundwater potentiality (Grohmann and
Riccomini 2009; Arabameri et al. 2019). The TPI
and curvature maps were developed with the help
of PALSAR-DEM data. The TPI has been cal-
culated by using Eq. (15.2).

TPI ¼ Z0 � Z ð15:2Þ

Z ¼ 1
nR

X
i2R

Zi ð15:3Þ

where Z0 denotes the central point altitude,
Z represents the mean altitude within a particular
radius (R), and small R defines small ridges and
valleys (Weiss 2001). The highest and lowest TPI
values within the study area are 0.00 and 1.00. Soil types are most important predisposing

factors for the assessment of the infiltration rate of
any region. This study area falls under six major
soil types like sandy, clay loam, loamy, sandy
loam, sandy clay, and sandy clay loam. Maximum
areas of Md. Bazar block is covered by sandy
loam and clay loam soil types (Fig. 3n). Gener-
ally, potentiality of groundwater infiltration rate is



Fig. 15.3 The spatial data layers: a aspect, b elevation, c curvature, d TPI, e TWI, f slope, g stream junction frequency,
h geomorphology, i distance to river, j rainfall, k pond frequency, l LULC, m geology, n soil texture
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higher in sandy regions as compared to loamy or
clayey strata. TheMd. Bazar block is composed of
eight geological formations. The western part is
dominated by pink granite whereas rocks
belonging to the Vindhyan formation occur to the
east (Fig. 3m). The pisolitic and kankar

ferruginous concretions are mostly found in the
laterite track. Some parts of the block are covered
by basaltic rocks and younger alluvium. The block
falls under three primary geomorphological
regions, i.e., depositional plain, anthropogenic
origin, and denudational plain (Fig. 3h).
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Fig. 15.3 (continued)
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15.2.4 Machine Learning Ensemble
Meta-classifiers Modes
for the GWPMs

Novel ensemble models, the RBFnn-Bagging
and RBFnn-Dagging, are used for mapping
groundwater potentiality in this study. RBFnn
originated in the late 1980s is a version of an
artificial neural network. In a two-layer neural
network, where each hidden unit implements a
radial-activated function, RBFs are embedded.
A weighted sum of hidden unit outputs is
implemented by output units. Although the out-
put is linear, the input into an RBF network is
nonlinear. Their exceptional approximation
capacities are investigated. RBF networks can
model complex mappings due to their nonlinear
approximation properties. The RBFnn was used
as a base learner in this study. As for the
ensemble technique, because of its utility in
ensemble estimation, the Bagging and Dagging
were applied as the meta-learner.

15.2.4.1 Bagging
The bagging algorithm has introduced by Brei-
man (1996), is the developer of bootstrapping
(Freedman 1981). Several researchers have
applied this model to predict susceptibility maps
(i.e., flood, landslide, etc.) as this model has
excellent performance ability (Hong et al. 2020).
The bagging tree is a bagging algorithm com-
prised of models based on decision trees. This
algorithm is selected because it fabricates the
decision tree with the help of each produced
subset and ultimately, they are assembled within
the final model (Hong et al. 2020). It enhances
the alignment accuracy by minimizing the
inconsistency of the alignment error (Saha et al.
2021; Wu et al. 2020). A bagging classifier is
considered a three-step bagging system (Breiman
1996; Yariyan et al. 2020). It is developed as a
bootstrap sample through substantive training
samples through the displacement approach
(Saha et al. 2021). This MLA can promote the
success of all arrays of subset by connecting
them to the actual feature process for the bagging

classification stage; also, this model is not
dependent upon the precision of past models
(Breiman 1996; Yariyan et al. 2020).

15.2.4.2 Dagging
The Dagging algorithm was introduced by Ting
and Witten (1997), using another sampling
method to extract a basic classifier. Dagging is
very similar to bagging—name is a portmanteau
derived from the phrase “disjoint bagging.” In
dagging, once data is used for classification the
subset is “disjointed” (or set aside). In bagging,
each subset is not disjointed and the data is
returned to the full set to be used again. Dagging
is a well-known group-sampling technique using
majority votes to combine several classifiers to
improve prediction accuracies of basic classifiers
(Kotsianti and Kanellopoulos 2007).

15.2.5 Validation of Groundwater
Potentiality Models

Models’ evaluation and validation is an impor-
tant steps in prediction work and without vali-
dation, the model does not have any scientific
significance (Talukdar and Pal 2020; Pal and
Mandal 2021). The applied model’s prediction
capacity was investigated by ROC curve, RMSE,
MAE, accuracy, and precision (Chen et al. 2018).
The two categories of ROC curve on prediction
and success rate, are developed using validation
and training datasets, respectively. It is a graph-
ical illustration of model prediction through a
diagnostic test (Chen et al. 2019). The area under
the curve (AUC) varies from 0.5 to 1.0 and the
value close to 1.0 predicts the power of models
(Mishra et al. 2020).

Also, error within the predictive models was
calculated through RMSE and MAE tests to
identify the prediction capacity (Abedinpour
et al. 2012). Each error was calculated with the
comparison between model values and field
observed values (Rahmati et al. 2017). The pre-
cision, RMSE, MAE, and AUC have been cal-
culated by using Eqs. (15.4)–(15.7).



Precision ¼ TP
TPþ FP

ð15:4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðNÞPN
i¼1 ðOi � SiÞ2

s
ð15:5Þ

MAE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðSi � OiÞ
n

s
ð15:6Þ

AUC ¼ RTPþRTN
PþN

ð15:7Þ
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where TN and TP denote true negative and true
positive, FP and FN denote false positive and
false negative, Oi and Si are observed and pre-
dicted values, n is the number of observations,
P and N are the dug wells location points, and
N is the total number of non-dug wells location
points.

15.3 Results and Analysis

15.3.1 Groundwater Potentiality
Models

At first, two accepted meta classifier based
MLAs were developed by applying the training
dataset. The constructed models were divided
into four classes (i.e., high, very high, moderate,
and low) to calculate the groundwater potential-
ity indices (GWPI) (Chen et al. 2018) (Fig. 4a,
b). Actually, the user-defined classification of
GWPMs is nearly hard for readers to justify and
interpret. Therefore, nature break statistics were
most convenient for the arrangement of GWPI
following the histogram of data distribution
(Chen et al. 2019).

The RBFnn-Bagging produced result shows
that low potentiality zone has the maximum area
(68.64%), followed by the very high (16.92%),
moderate (11.51%), and high (2.92%) in the
study area. The corresponding area covered by
RBFnn-Dagging mode is 68.03%, 13.70%,
13.59%, and 4.68% for the low, very high,
moderate, and high zones, respectively. It is
manifest through both models GWPMs; the lar-
gest GWP area is found in the southern part of

the Md Bazar Block because of the more forest
cover and presence of water reservoir
(Table 15.1).

15.3.2 Validation and Comparison
of Applied Models

For validation and comparing the applied mod-
els; RMSE, MAE, accuracy, precision, and ROC
were implemented using validation and training
data sets (Fig. 5a, b), as they are important
aspects to conclude the prediction capacity of
applied models (Pal and Mandal 2021).

The results show that the RBFnn-Bagging
algorithm has higher AUC values of 0.837 and
0.847, respectively, for the success and predic-
tion rate curves, followed by the RBFnn-
Dagging algorithm with an AUC value of
0.793 and 0.829, respectively. So, it is concluded
that both models have excellent GWP prediction
capacity. The RMSE and MAE values of
RBFnn-Bagging and RBFnn-Dagging were cal-
culated for the training phase as 0.237, 0.057,
0.270, and 0.74 and validation phase as 0.039,
0.198, 0.51, and 0.227, respectively (Table 15.2).
Also, results of accuracy and precision tests are
presented in Table 15.2 for both the applied
models. The accuracy and precision values of
both models were 0.88, 0.79, 0.83, and 0.75 for
RBF-Bagging and RBFnn-Dagging, respectively
which indicates that both the models have uni-
form prediction capacity for assessment of
groundwater potentiality.

15.3.3 Significant Factors
Identification by MDGs

The significant factors identification is a chal-
lenging task because groundwater recharge is
impacted by various groundwater controlling
factors (Conforti et al. 2010). The mean decrease
Gini was applied to evaluate factor’s relative
importance by using the random forest (RF) al-
gorithm (Breiman 2001). The MDG varies from
14.09 to 286.01. Distance to a river (286.01),
pond frequency (229.96), aspect (103.56), stream
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Fig. 15.4 The groundwater
potentiality maps by RBF-
Bagging and RBF-Dagging
models

Table 15.1 Areal share
under potentiality classes of
groundwater potentiality
models (area in km2)

GWP classes RBF-Bagging RBF-Dagging

Low 68.64 68.03

Moderate 11.51 13.59

High 2.92 4.68

Very high 16.92 13.70
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Fig. 15.5 Validation of
groundwater potentiality
maps applying ROC curve:
a success rate curve (applying
training dataset) and
b prediction rate curve
(applying validation dataset)

Table 15.2 Estimation of root mean square error (RMSE), MAE, accuracy, and precision for both models

Models Training dataset Validation dataset

RMSE MAE Accuracy Precision RMSE MAE Accuracy Precision

RBF-Bagging 0.237 0.057 0.85 0.81 0.039 0.198 0.88 0.83

RBF-Dagging 0.270 0.074 0.71 0.74 0.051 0.227 0.79 0.75



15.4 Discussion

For the groundwater potentiality (GWP) assess-
ment factors like rainfall, land use, slope, eleva-
tion, pond frequency, stream junction frequency,
distance to a river, TWI, soil texture, geology,
geomorphology, curvature, and aspect are used.
The elevation and slope are very low in the
south-eastern portion of Md. Bazar block.
Recharge of groundwater is negatively related to
the elevation of study area. Thus, locations that
are situated in low elevation areas show high
groundwater potentiality at a particular region
within the study area rather than being uniformly
distributed across it.

In other works (e.g., Corsini et al. 2009;
Ozdemir 2011; Rahmati et al. 2017; Naghibi

et al. 2017; Chen et al. 2019), similar factors
have been used for assessing GWP and the
applied relation between the factor used and the
wells are also found to be the same. Usually,
there is no algorithm with an extreme prediction
capacity that works completely as natural pro-
cesses, and groundwater modeling is a complex
and nonlinear process and cannot be based on
normal models with a linear structure (Chen et al.
2019). Several researchers have applied MLAs
like Bagging and Dagging, in various fields of
research, like gully erosion, landslide, flood
hazard, and deforestation susceptibility assess-
ment (Chen et al. 2018, 2019; Arabameri et al.
2020; Hong et al. 2020; Pal et al. 2020; Talukdar
et al. 2020; Saha et al. 2021). In every case,
prediction capacity of the meta classifier
ensemble model’s results was extremely appre-
ciable. So, the application of machine learning
algorithms (MLAs) is not a new thing, but the
implication of these machine learning meta-
classifiers models for groundwater potentiality
assessment is unique.

Previous research work like that by Corsini
et al. (2009), Ozdemir (2011), Lee et al. (2017),
Naghibi et al. (2018), concluded that MLAs
provided adequate results with respect to

junction frequency (101.45), elevation (62.06),
and geomorphology (61.10) were the most
important factors. These were followed in order
of influence by the slope (45.32), TWI (42.94),
soil types (36.11), curvature (31.45), geology
(28.38), rainfall (26.88), TPI (24.99), and LULC
(14.09) (Fig. 15.6 and Table 15.3). All the
fourteen predisposing factors were subjected to
the modelling—purpose because all are contrib-
utors to GWP occurrence.

304 S. Saha et al.

Table 15.3 Calculated MDGs values for significant
factors identification

Factors Mean decrease Gini

Curvature 31.45

TPI 24.99

TWI 42.94

Slope 45.32

Distance to river 286.01

Pond frequency 229.96

Aspect 103.56

Elevation 62.06

Stream junction frequency 101.45

Rainfall 26.88

Geology 28.38

Land use/land cover 14.09

Soil types 36.11

Geomorphology 61.10

Fig. 15.6 Significant factors identification by mean
decrease Gini



multivariate and bivariate statistical models. In
other studies, like floods, landslides, and assess-
ments of spring potential, the RBFnn-Bagging
model has also given good results. In the sense
that no overfeeding of data is executed, the
RBFnn-Bagging model is the most important. It
consists of multiple decision trees with an inter-
action between predisposing factors and non-
linearity (Hong et al. 2020; Saha et al. 2021). The
results also revealed that the processing speed of
RBFnn-Bagging is much higher concerning
RBFnn-Dagging mode, which means assignment
of input factors is very important. As a matter of
fact, concerning percentage of the low and high
GWP zones, two models displayed a uniform
spatial distribution. So, the RBF-Bagging and
RBFnn-Dagging models can be applied for haz-
ard vulnerability and susceptibility mappings
such as flood, landslide, forest fire, and gully
erosion at a local and regional scale.

15.5 Conclusion

Groundwater potential mapping, applying vari-
ous predisposing factors, is an important aspect
of groundwater research. For the accurate
experiment of groundwater conditions, several
algorithms have been applied around the globe.
In this study, a well-accepted methodology was
applied to delineate GWP zones in Md. Bazar
Block. After critically evaluating the study,
fourteen predisposing factors were overlaid with
RBF-Bagging and RBFnn-Dagging models. The
RBFnn-Bagging and RBFnn-Dagging models
identified 16.92 and 13.70% of areas with very
high groundwater potentiality and 68.64 and
68.03% of the block with low groundwater
potentiality. The results alert that this block may
face vulnerable conditions in the future if the
government back-steps from introducing various
schemes (i.e., rainwater harvesting, dam con-
struction, etc.) and generating awareness among
common people. Based on the experiment
results the following conclusions can be sum-
marized. First, the RBFnn-Bagging model has
better prediction capacity than the RBFnn-
Dagging model because the Bagging algorithm

can be applied to find out reliable features of the
real data. Second, researchers can solve the
model overfitting problems by applying the
RBF-Bagging model. Third, based on the mean
decrease Gini, the most effective factors of
groundwater potentiality are the distance to a
river, pond frequency, aspect, stream junction
frequency, elevation, and geomorphology,
respectively. Finally, this proposed approach
should be useful for the exploration, develop-
ment, and management of groundwater. At the
outset, it is pertinent that groundwater recharge
processes along with their management are taken
at the earliest in Md. Bazar Block.
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