
Chapter 1
Introduction to QUBO

Abraham P. Punnen

Abstract This chapter provides a general introduction to the quadratic uncon-
strained binary optimization problem (QUBO). Starting with a brief historical
review, we present some basic definitions and notations, equivalent representations,
examples of important combinatorial optimization problems that are equivalent to
QUBO and some additional motivating examples. We also discuss some of the basic
mathematical programming formulations of QUBO along with relevant pointers to
the contents of other chapters of the book.

1.1 Introduction

Mathematical programming models play a vital role in the socio-economic devel-
opments of the modern-day society. Optimization frameworks such as linear
programming, quadratic programming, combinatorial optimization, and mixed
integer programming are effectively used in engineering design, finance, healthcare,
economics, medicine, transportation, supply chains, environment, telecommunica-
tions among others. Perhaps the most fundamental among the various optimization
modeling tools is linear programming. This model building framework, as we know
it today, was originated around 1938 and evolved into an applicable modelling
technique in the early 1950s with the discovery of the simplex method [14].
Realization of the benefits associated with having integrality restrictions on some
or all of the decision variables of a linear program led to the development of integer
programming and significant advancements in this area continues to emerge [42].

The literature on unconstrained nonlinear optimization on the other hand, can be
traced back to early days of calculus [66]. However, the development of successful
methods for solving constrained nonlinear optimization problems took a very
long time. Special nonlinear programs of minimizing convex quadratic functions
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over linear constraints can now be solved very efficiently. Study of constrained
quadratic optimization problems started around the mid 1950s with applications
in portfolio optimization [56, 57]. Systematic investigations on the quadratic
programming problem with integrality restrictions on the decision variables took
another decade to initiate [34, 53]. This book addresses a versatile unconstrained
quadratic programming model called quadratic unconstrained binary optimization
problem (QUBO) where the decision variables take values 0 or 1. The literature on
QUBO is quite extensive and for a quick overview, we refer the reader to the survey
papers [28, 45, 48].

Before getting into the technical details, let us start with some basic notations.
All matrices are represented using bold capital letters and elements of a matrix are
represented by the corresponding small letters along with accents, if any, and the
location coordinates. For example the (i, j)th element of the matrix A is aij , of the
matrix B̄ is b̄ij , and of the matrix Dk is dk

ij . Similarly, vectors are represented by
boldface small letters along with appropriate accents, as applicable, and elements
of the vector is represented using the same letter (without boldface) along with its
location coordinate and accents, if any. For example, the ith element of the vector c
is ci , of the vector xk is xk

i , and of the vector ṽ is ṽi . Exceptions to this rule will be
stated explicitly and operators such as transpose etc. are not considered as accents in
the case of vectors. The zero vector in any dimension is represented by 0. Additional
notations will be introduced as need arises.

Let us now present a formal mathematical definition of QUBO. LetQ be an n×n

matrix, cT = (c1, c2, . . . , cn) be a row vector fromR
n, and xT = (x1, x2, . . . , xn) be

a row vector from {0, 1}n. Then, QUBO is defined as the mathematical programming
problem:

Maximize xTQx + cT x
Subject to

x ∈ {0, 1}n.

Since x2
i = xi for any binary variable xi , we can represent QUBO without the

linear term by simply adding ci to qii for i = 1, 2, . . . , n. Alternatively, we can
assume qii to be zero by replacing ci with ci + qii . In fact, QUBO is represented
in many other alternative forms which are discussed in more detail later in this
chapter. QUBO sometimes is presented as a minimization problem, different from
the standard maximization form. The data Q, c along with the orientation of
optimization completely defines a problem instance. Thus, a maximization instance
of QUBO can be represented by the triple (Q, c,max) and a minimization instance
of QUBO can be represented by (Q, c,min). Note that, the instances (Q, c,max)
and (−Q,−c,min) are equivalent. Unless otherwise specified, we assume that
QUBO is presented in the maximization form and we normally represent such an
instance by the ordered pair (Q, c).

Let us now look at an interpretation of QUBO from the point of view of matrix
theory. A principal submatrix of Q is a square submatrix obtained by deleting rows
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and columns corresponding to an index set S ⊆ {1, 2, . . . , n}. The value of a matrix
is the sum of its elements. Without loss of generality assume c = 0. Then QUBO
is precisely the problem of computing a principal submatrix of Q with maximum
value.

A graph theoretic interpretation of QUBO can be given as follows. Let G =
(V ,E) be a graph such that V = {1, 2, . . . , n} and (i, j) ∈ E if and only if qij �= 0.
The graph G is called the support graph ofQ. Let qij be the cost of edge (i, j) ∈ E

and qii + ci be the cost of the vertex i ∈ V . Let S be a subset of V and G(S) be the
subgraph of G induced by S. The cost of G(S) is defined as the sum of the cost of
its edges and vertices. Then the QUBO seeks a subset S of V such that the cost of
the induced subgraph G(S) of G is maximized.

Literature on QUBO, presented as a 0-1 quadratic program, can be traced back
to 1960s, particularly with the work of Hammer and Rudeanu [34] on pseudo-
Boolean functions and those of [13, 20, 21, 33, 80, 81]. Graph theoretic optimization
problems such as the maximum weight stable set problem, the maximum weight
clique problem, and the maximum cut problem have a hidden QUBO structure. As
we will see later, these graph theoretic optimization problems are indeed equivalent
to QUBO. In this sense, the history of QUBO is also linked to the origins of these
graph theoretic structures.

A stable set of a graphG = (V ,E) is a subset S of V such that no two vertices of
S are adjacent in G. Let di be a given weight associated with vertex i ∈ V . Then, the
maximum weight stable set problem is to find a stable set S in G such that

∑
i∈S di

is maximized. It is easy to formulate the maximum weight stable set problem as a
QUBO. Consider the binary decision variables xi for i = 1, 2, . . . , n where xi = 1
represents the event that vertex i is in the stable set. Then, for any stable set S and
(i, j) ∈ E, if the distinct vertices i, j ∈ S then xixj = 0. This constraint can be
forced using a quadratic term in the objective function. Define

qij =

⎧
⎪⎪⎨

⎪⎪⎩

di if i = j

−M if (i, j) ∈ E

0 if (i, j) /∈ E,

where M is a large positive number. Also, choose c as the zero vector. Then, the
maximum weight stable set problem can be solved as the QUBO instance (Q, c)
where Q and c are as defined above. Interestingly, it is possible to formulate any
instance (Q, c) of QUBO as a maximum weight stable set problem and this will be
discussed in Sect. 1.4 along with the other equivalent forms of QUBO.

A clique in the graph G is a subset S of V such that the subgraph G(S) of G

induced by S is a complete graph. It is easy to see that S is a clique in G if and only
if S is a stable set in the complement of G. Thus, in view of the discussion above,
the maximum weight clique problem can also be formulated as a QUBO and it is
also equivalent to QUBO.

Thus, from a historical perspective, cliques and stable sets play an indirect role in
the evolution of QUBO. The literature on computing maximum weight clique and
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maximum weight stable set is quite extensive and we will not attempt a detailed
review of historical developments of these structures. However, we briefly discuss
below some of the earlier works that introduced these notions. Although clique
(stable set) is a well established concept in graph theory at present, the terminology
has its roots in social sciences [19, 22, 55]. Luce and Perry [55] in 1949 defined a
clique as follows:

A subset of the group forms a clique provided that it consists of three or more members
each in the symmetric relation to each other member of the subset, and provided further
that there can be found no element outside the subset that is in the symmetric relation to
each of the elements of the subset.

The first algorithmic results on computing cliques was presented by Harrary and
Ross [36]. Without using the name ‘clique’, the concept of complete subgraphs and
independent sets (same as stable sets) were considered by Erdos and Szekeres [17]
in 1935 while discussing Ramsey Theory in the context of graphs.

QUBO can also be written as a continuous optimization problem [70, 71].
Consider the box-constrained quadratic program

Maximize xTQx + cTx − MxT(e − x)
Subject to

x ∈ [0, 1]n

where M is a large positive number and e is the all-one vector in R
n. Note that for

large M , the objective function becomes convex and hence an optimal solution is
attained at an extreme point of [0, 1]n [70, 71]. The collection of extreme points of
[0, 1]n is precisely {0, 1}n establishing the validity of the above representation of
QUBO.

QUBO is strongly NP-hard. A thorough complexity analysis of the problem and
various polynomially solvable special cases are discussed in Chap. 3 and complexity
results in connection with approximability is discussed in Chap. 8.

1.2 The Ising Model

Long before the QUBO become popular within the operations research community,
the model was used in statistical mechanics in an alternative form [75]. This is
popularly known as the Ising model where the variables take values from {−1, 1}.
The Ising model was originally proposed by Ernst Ising and Wilhelm Lenz in the
1920s to understand the behaviour of magnetic materials. This model considers a
magnetic material as a set of molecules. The Molecules have spins which ‘align’
or ‘anti-align’ when a magnetic field is introduced and have pairwise interaction
with each other [3, 5]. Let V = {1, 2, . . . , n} be a collection of molecules and xi ∈
{−1, 1} represents the spin of molecule i. Let bi be the strength of the magnetic field
applied onmolecule i and aij represents joint interaction field between neighbouring
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spins of i and j . For a given spin vector x = (x1, x2, . . . , xn), the corresponding
energy value is defined as

E(x) =
n∑

i=1

n∑

j=1

aij xixj +
n∑

i=1

bixi.

At low temperature levels, the system tends to low energy states and hence the
sign of aij indicates possible spin direction. Thus, when aij > 0 the system favors
anti-aligned neighbouring spins, i.e. xixj = −1 leaving aij xixj < 0. Likewise,
when aij < 0 the spins xi and xj are likely to align; i.e. xixj = 1 leaving
aij xixj < 0. This simple hypothetical model has been validated through experi-
mental considerations by physicists for decades [10, 40, 61–63]. This underlying
model is the basis of some of the current quantum inspired computing machines [5]
which essentially brings a system to its lowest energy level which in turn indirectly
computes the minimum of the energy function (maximum of −E(x)) over variables
that takes values −1 or 1.

The associated optimization problem, presented in the maximization problem,
can be stated as

Maximize yTAy + bTy
Subject to

y ∈ {−1, 1}n

where A is an n × n real valued matrix and bT = (b1, b2, . . . , bn) is a row vector
from R

n and y is a column vector in {−1, 1}n. We refer to this version of QUBO as
the Ising QUBO.

The models QUBO and the Ising QUBO are equivalent from an optimality
point of view. Note that the linear transformation xi = 1

2 (yi + 1) for i =
1, 2 . . . , n reduces the QUBO (Q, c) to the Ising QUBO (A,b) where A = 1

4Q,

bi = 1
4

(
2ci + ∑n

j=1(qij + qji)
)

for i = 1, 2, . . . , n along with an additive

constant q0 = 1
4

(∑n
i=1

∑n
j=1 qij + ∑n

i=1 ci

)
, which can be discarded. Similarly,

an instance (A,b) of the Ising QUBO can be reduced to an instance (Q, c) of
QUBO using the transformation yi = 2xi − 1 for i = 1, 2 . . . , n with Q = 4A,
c = 2b + 2AT e + 2Ae along with the additive constant cT e + eTAe.

The original Ising model was in fact a special case of the Ising QUBO. There
are various extensions and generalizations of this popular model. For a historical
account of various developments related to this model, we refer to the survey
papers [10, 40, 61–63]. Although the name ‘Ising model’ is widely accepted within
the physics community, it is not without controversy. For example, Barry Simon in
his book on The Statistical Mechanics of Lattice Gases [75] writes:

Lattice models are caricatures invented to illuminate various aspects of elementary statis-
tical mechanics, especially the phenomena of phase transitions and spontaneously broken
symmetry. The simplest of all models is the Ising (or Lenz-Ising) model and this model
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was suggested to Ising by his thesis adviser, Lenz. Ising solved the one-dimensional model,
..., and on the basis of the fact that the one-dimensional model had no phase transition,
he asserted that there was no phase transition in any dimension. As we shall see, this is
false. It is ironic that on the basis of an elementary calculation and erroneous conclusion,
Ising’s name has become among the most commonly mentioned in the theoretical physics
literature. But history has had its revenge. Ising’s name, which is correctly pronounced “E-
zing,” is almost universally mispronounced “I-zing.”

Such discussions are probably important in physics to put contributions to
scientific developments in context. We continue to use the terminology QUBO and
Ising QUBO to distinguish between the nature of the underlying variables and to
recognize the linkages between the Ising model and Ising QUBO.

For QUBO, we have seen that the linear term can be absorbed into the Q matrix
or the diagonal of Q can be extracted and added to the linear term without altering
the optimal solutions set. It is possible to discard the diagonal elements of A from
the Ising QUBO since these elements simply contribute a constant value to any
feasible solution. Thus, it is customary to assume that diagonal entries of A are
zeros. Further, it is possible to reformulate Ising QUBO without the linear term [18,
38]. Define the (n + 1) × (n + 1) matrix Ā where

āij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aij , if 1 ≤ i, j ≤ n

1
2bi for j = n + 1, i = 1, 2, . . . , n
1
2bj for i = n + 1j = 1, 2, . . . , n

0 for i = j = n + 1.

Now, consider the Ising QUBO,

IQB: Maximize yTĀy
Subject to

y ∈ {−1, 1}n+1.

Note that if y is a solution to the Ising QUBO IQB then−y is also a solution. Further,
if both y and −y have the same objective function value in IQB. Thus, without loss
of generality we can assume that yn+1 = 1 in an optimal solution to IQB. Now, it
can be verified that IQB is equivalent to the Ising QUBO.

The validity of the Ising model is not restricted to physics. Its relevance has been
established in various other fields such as finance, biology, psychology, sociology
etc. For example, the Ising model can be adapted to study human behavior by
interpreting similarity between the behaviour of molecules and the behaviour of
human, as argued by Galam [24]. Specific applications of the Ising QUBO from this
point of view can be found in [49, 77]. Applications of QUBO and the Ising QUBO
are covered in detail in Chap. 8.
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1.3 Representations of the Q Matrix

Let fQ,c(x) = xTQx + cTx denote the objective function of the instance (Q, c) of
QUBO. We remove the suffix Q, c from fQ,c when the explicit consideration of Q
and c is unimportant. An instance (Q′, c′) of QUBO is an equivalent representation
of the instance (Q, c) if

1. fQ,c(x) = fQ′,c′(x) for all x ∈ {0, 1}n
2. Q and Q′ belongs to Rn×n, c and c′ belongs to Rn.

Equivalent representations, although preserving optimality, could generate instances
with different structural properties that may be exploited to obtain computational
advantages. Let us now look at some simple and commonly used equivalent
representations of QUBO [65]. More involved equivalent representations and
corresponding applications in computing strong lower bounds are discussed in
Chaps. 6 and 7.

Remark 1.1 (QT, c) and
(
1
2

(
Q + QT

)
, c

)
are equivalent representations of (Q, c).

The proof of this remark is straightforward. Note that 1
2

(
Q + QT

)
is a symmetric

matrix. Thus, it is possible to assume without loss of generality that the matrix Q
in the definition of QUBO is symmetric and this assumption is required for some of
the algorithms to solve the problem and in computing certain types of lower bounds.
For any matrix Q ∈ R

n×n, diagV(Q) is the diagonal vector of Q. i.e. diagV(Q) is
the vector of size n and its ith element is qii .

Remark 1.2 ([69]) If S is a skew-symmetric matrix, D is a diagonal matrix, Q′ =
Q + S + D, and c′ = c − diagV(D), then (Q′, c′) is an equivalent representation of
(Q, c).

The proof of Remark 1.2 follows from the fact that xTSx = 0 for any skew-
symmetric matrix S and x2

i = xi for all binary variables xi . Choosing S and D
appropriately, we can get different standard representations of Q. For example,
choose D such that dii = −qii for i = 1, . . . , n and choose S such that

sij =

⎧
⎪⎪⎨

⎪⎪⎩

qji if j > i

−qij if j < i

0 otherwise.

Then, the resulting matrix Q′ is upper triangular with zeros on the diagonal. This
is a common representation used in the QUBO literature and is also assumed in
some of the chapters in this book. If we choose S as the zero matrix and dii = M

for i = 1, . . . , n, where M is a sufficiently large nonnegative number, the resulting
matrixQ′ will be positive semidefinite. Consequently, without loss of generality one
may assume Q to be positive semidefinite. When Q is symmetric and not positive
semidefinite, choosing M to be the negative of the smallest eigenvalue of Q is
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sufficient to make Q′ to be positive semidefinite [32]. This makes the continuous
relaxation of the objective function of QUBO a convex quadratic function. In a
similar way, choosing M as a sufficiently small negative number, we can get a
representation of QUBO where the Q matrix is negative semidefinite and thereby
making the continuous relaxation of the objective function of QUBO a concave
quadratic function.

A QUBO (Q, c) of size n can be represented as a QUBO (Q′, 0) of size n + 1
such that the row sum and column sums of Q′ are zeros. We call this the zero sum
representation. Without loss of generality assume c = 0. From the instance (Q, 0)
construct the matrix Q′ as

q ′
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qij if i, j ≤ n

− ∑n
k=1 qik if j = n + 1, i ≤ n

− ∑n
k=1 qkj if i = n + 1, j ≤ n

∑n
k=1

∑n
�=1 qk� if i = n + 1, j = n + 1

It can be verified that the row and column sums of the matrix Q′ are zeros.
Consequently, the sum of all elements ofQ′ is also zero. If xn+1 is zero in an optimal
solution for (Q′, 0) then (Q′, 0) is equivalent to (Q, 0). Let x̄ = e− x where e is the
all one vector in R

n+1.

Lemma 1.1 If row and column sums of Q′ are zeros, then xTQ′x = x̄TQ′x̄ for all
x ∈ {0, 1}n+1.

Proof x̄TQ′x̄ = (e − x)TQ′(e − x) = eTQ′e − xTQ′e − eTQ′x + xTQ′x = xTQ′x.
The last equality follows from the fact that row and column sums of Q′ are zeros,
which makes eTQ′e = 0, xTQ′e = 0 and eTQ′x = 0. ��
From Lemma 1.1, if x is an optimal solution to (Q′, 0), then x̄ is also an optimal
solution. Thus, xn+1 = 0 in one of these optimal solutions of (Q′, 0) and hence
(Q′, 0) and (Q, 0) are equivalent.

1.4 Some Equivalent Optimization Problems

We have seen that the problem of computing the maximum value principal minor
of an n × n matrix, the maximum weight induced subgraph problem, and the Ising
QUBO are alternative ways of representing a QUBO. In this section, we discuss
some additional problems that are equivalent to QUBO and these equivalent forms
are used in some of the chapters to follow to derive structural properties and to
develop solution algorithms.
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1.4.1 QUBO as a Bilinear Program

In this subsection, we assume that Q is symmetric and positive semidefinite. As
discussed in the previous section, this assumption is without loss of generality. Then
the continuous relaxation of QUBO is to

QUBO(C): Maximize f (x) = xTQx + cTx

Subject to: x ∈ [0, 1]n

Since Q is symmetric and positive semidefinite, f (x) is a convex function and
hence there exists an optimal solution to QUBO(C) which at an extreme point of
the hypercube [0, 1]n. Now consider the hypercube bilinear program

HBLP: Maximize η(x, y) = xTQy + 1
2c

Tx + 1
2c

Ty

Subject to: x ∈ [0, 1]n, y ∈ [0, 1]n

Lemma 1.2 ([51]) There exists an optimal solution (x∗, y∗) to HBLP such that both
x∗ and y∗ are extreme points of the hypercube [0, 1]n.
Proof Suppose that (x0, y0) is an optimal solution to HBLP. Now fix y = y0 in
HBLP and let x̄ be an optimal extreme point solution of the resulting linear program.
Then (x̄, y0) is an optimal solution to HBLP. Next fix x = x̄ in HBLP and let ȳ be
an optimal extreme point solution of the resulting linear program. Then (x̄, ȳ) is an
optimal solution to HBLP and this completes the proof. ��

Let us now prove a property of a symmetric positive semidefinite matrix which
is used in the proof of the theorem that follows.

Lemma 1.3 If Q is a symmetric positive semidefinite matrix such that xTQx = 0
then Qx = 0.

Proof Since Q is symmetric and positive semidefinite, there exists a matrix B such
that Q = BTB. Then, xTQx = xTBTBx = (Bx)T (Bx) = ||Bx||2. Thus, xTQx = 0
implies Bx = 0 and henceQx = BTBx = 0. ��
We now show that QUBO is equivalent to HBLP.

Theorem 1.1 ([50, 51]) If (x∗, y∗) is an optimal extreme point solution of HBLP
then both x∗ and y∗ are optimal solutions of QUBO(C). Conversely, if x∗ is an
optimal extreme point solution of QUBO(C) then (x∗, x∗) is an optimal solution to
HBLP.

Proof Let (x∗, y∗) be an optimal extreme point solution of HBLP and x0 be an
optimal extreme point solution of QUBO(C). Then,

f (xo) ≥ f (x∗) and f (x0) ≥ f (y∗). (1.1)
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Further,

η(x∗, y∗) = max{η(x, y) : x, y ∈ [0, 1]n}
≥ max{η(x, x) : x ∈ [0, 1]n} = f (x0) (1.2)

Since (x∗, y∗) is an optimal solution to HBLP,

η(x∗, y∗) − η(x∗, x∗) ≥ 0 and η(x∗, y∗) − η(y∗, y∗) ≥ 0 (1.3)

But

η(x∗, y∗) − η(x∗, x∗) = (x∗)TQ(y∗ − x∗) + 1

2
cT (y∗ − x∗) and (1.4)

η(x∗, y∗) − η(y∗, y∗) = (y∗)TQ(x∗ − y∗) + 1

2
cT (x∗ − y∗) (1.5)

From (1.3), (1.4) and (1.5) we have,

(x∗)TQ(y∗ − x∗) + 1

2
cT (y∗ − x∗) ≥ 0 and (1.6)

(y∗)TQ(x∗ − y∗) + 1

2
cT (x∗ − y∗) ≥ 0. (1.7)

Adding (1.6) and (1.7), we get (x∗ −y∗)TQ(x∗ −y∗) ≤ 0. SinceQ is symmetric and
positive semidefinite, from Lemma 1.3, Q(x∗ − y∗) = 0. Substituting this in (1.6)
and (1.7) we get cT (x∗ − y∗) = 0. Thus from (1.4) and (1.5) we have

η(x∗, y∗) = η(x∗, x∗) = η(y∗, y∗).

But η(x∗, x∗) = f (x∗) and η(y∗, y∗) = f (y∗). Thus,

η(x∗, y∗) = f (x∗) = f (y∗) (1.8)

From (1.1) and (1.8), η(x∗, y∗) ≤ f (x0) and the result follows in view of (1.2) and
(1.8). ��

1.4.2 The Maximum Cut Problem and QUBO

Let G = (V ,E) be a graph with V = {1, 2, . . . , n} and for each edge (i, j) ∈ E a
weight wij is prescribed. For any S ⊆ V , the pair (S, V \ S) is called a cut in G.
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The weight of the cut (S, V \ S) is

w(S, V \ S) =
∑

i∈S,j∈V \S,(i,j)∈E

wij .

In general, our definition of a cut allows the possibility that S = ∅ or S = V and in
either case w(S, V \ S) = 0. The minimum cut problem seeks a cut (S, V \ S) with
minimum w(S, V \ S) value. When wij ≥ 0 for all (i, j) ∈ E, we normally do not
permit S = ∅ or V for the minimum cut problem since otherwise the trivial solution
S = ∅ is optimal. Likewise, the maximum cut problem seeks a cut (S, V \ S) with
maximum w(S, V \ S) value. When wij ≥ 0 for all (i, j) ∈ E, the minimum
cut problem is solvable in polynomial time [44] but the maximum cut problem
is NP-hard [23]. When wij is allowed to take positive and negative values, both
minimum cut and maximum cut problems are NP-hard.We now observe that QUBO
and the maximum cut problem are essentially the same, presented under different
frameworks [7, 33, 38].

Let x ∈ {0, 1}n and x̄ = e − x where e is the all-one vector in Rn. An x ∈ {0, 1}n
is an incidence vector of S ⊆ V if and only if xi = 1 for all i ∈ S. Let Q be
the weighted incidence matrix of G. Define qij = qji = wij if (i, j) ∈ E (i.e.
i and j are adjacent in G) and zero, otherwise. Note that Q is symmetric. Then,
for any cut (S, S̄) (with S̄ = V \ S) and the incidence vector x of S, we have
w(S, V \ S) = xTQx̄. For example, consider the graph below with the associated
edge weights and the corresponding matrixQ (Fig. 1.1).

Fig. 1.1 An instance of WMCP
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Now, choose the cut (S, S̄) where S = {1, 4} and the incidence vector x =
(1, 0, 0, 1, 0)T associated with S. Then, w(S, S̄) = −24 = xTQx̄.

Thus, the maximum cut problem can be written as

max
S⊆V

w(S, V \ S) = max
x∈{0,1}n

xTQx̄ (1.9)

For calculating xTQx̄, the diagonal elements of Q are irrelevant. For any n × n

matrix Q,

xTQx̄ =
n∑

i=1

n∑

j=1

qij xi x̄j =
n∑

i=1

n∑

j=1

qij xi(1 − xj ) =
n∑

i=1

rixi −
n∑

i=1

n∑

j=1

qij xixj

(1.10)

where ri = ∑n
j=1 qij . Define the n × n matrix Q̂ = (

q̂ij

)
where

q̂ij =
{

−qij if i �= j

ri − qii if i = j.

Then xTQx̄ = xTQ̂x, establishing that the maximum cut problem can be formulated
as a QUBO. We now observe that any instance, say (Q, c), of QUBO can be
formulated as a maximum cut problem. To see this, from Eq. (1.10),

xTQx + cT x = rT x − xTQx̄ + cT x = (r + c)T x − xTQx̄ (1.11)

where r = (r1, r2, . . . , rn).
Now, consider the graph G′ = (V ′, E′) where V ′ = {0, 1, 2, . . . , n}. The edge

set E′ = E ∪ E0 where E = {(i, j) : qij �= 0; i, j = 1, 2, . . . , n, i �= j } and
E0 = {(0, i) : ri + ci �= 0}. Now, define the weight wij of the edge (i, j) as −qij

if (i, j) ∈ E and −(rj + cj ) for (0, j) ∈ E0. Let α = ∑n
i=1(ri + ci). For any cut

(S, S̄) in G′, without loss of generality assume that the node 0 ∈ S and consider
the binary variables x1, x2, . . . , xn with xi = 1 if and only if i ∈ S. Let w(S, S̄) be
the value of the cut (S, S̄) in G′ with the edge weight function w. Then, it can be
verified that w(S, S̄) + α = xTQx + cT x. Thus, any instance (Q, c) of the QUBO
with n variables can be formulated as a maximum weight cut problem on a graph
with n + 1 nodes.

We now illustrate this construction using the following example. Let

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 10 −5 −8 6
10 0 3 2 −4
−5 3 0 5 0
−8 2 5 0 8
6 −4 0 8 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−3
−5
11
−3
−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Fig. 1.2 The instance of
WMCP equivalent to (Q, c)

Then, (r + c)T = (0, 6, 14, 4, 8) and α = 32. The graph G′ constructed following
the procedure discussed above, is given in Fig. 1.2. The numbers on the edges are
the corresponding weights. Edges with weight zero are removed from the graph.

The QUBO formulation of the maximum cut problem is also evident from the
sum of squares formulation of the maximum cut problem given by

max
S⊆V

w(S, V \ S) = max
x∈{0,1}n

∑

(i,j)∈E

wij (xi − xj )
2.

Another popular formulation of the maximum cut problem is obtained by using
variables that take values −1 or 1. Define yi = 1 if i ∈ S and yi = −1 if i ∈ V \ S.
Assume that the edges of the graphG are labelled such that (i, j) ∈ E implies i < j

and wij = 0 if (i, j) /∈ E. Consider the symmetric matrixW. Then,

w(S, V \ S) =
∑

i∈S,j∈V \S
(i,j )∈E

wij = 1

2

n∑

i=1

n∑

j=i+1

wij (1 − yiyj )

= 1

4

n∑

i=1

n∑

j=1

wij (1 − yiyj ) = 1

4

n∑

i=1

n∑

j=1

wij

(
y2
i + y2

j

2
− yiyj

)

= 1

4

⎛

⎝−
n∑

i=1

n∑

j=1

wijyiyj + 1

2

n∑

i=1

( n∑

j=1

wij

)
y2
i + 1

2

n∑

j=1

( n∑

i=1

wij

)
y2
j

⎞

⎠

= 1

4

⎛

⎝−
n∑

i=1

n∑

j=1

wijyiyj +
n∑

i=1

( n∑

j=1

wij

)
y2
i

⎞

⎠ = 1

4
yTLy
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where L = D − W and D is a diagonal matrix such that dii = ∑n
j=1 wij assuming

wij = 0 for (i, j) /∈ E. Thus, the maximum cut problem can be formulated as the
Ising QUBO ( 14L, 0).

Let G = (V ,E) be a weighted graph with edge weight wij for each (i, j) ∈
E and V = {1, 2, . . . , n}. Choose wij = 0 if (i, j) /∈ E and define the weight
matrix W as the n × n matrix with its (i, j)th element wij . Let D be the weighted
degreematrix which is the diagonalmatrix with dii = ∑n

j=1 wij . Then the weighted
Laplacian matrix of G is L = D −W . The matrix L is positive semidefinite and the
row and columns sums of the matrix is zero. Note that the matrix L constructed in
our reduction from the maximumweight cut problem to the Ising QUBO is precisely
the Laplacian matrix of G.

In fact, any Ising QUBO can be written as a maximum cut problem as well. To
see this, consider an instance (A,b) of the Ising QUBO in n variables. Without loss
of generality, assume that A is symmetric and b is the zero vector. Now, consider
the graph G = (V ,E) where V = {1, 2, . . . , n} and E = {(i, j) : aij �= 0}.
Choose the weight of the edge (i, j) ∈ E as −aij and let L be the corresponding
weighted Laplacian matrix. Then, A = L + D where D is a diagonal matrix with
dii = −lii + aii . For any y ∈ {−1, 1}n,

yTAy = yTLy + yTDy = yTLy + tr(D)

where tr(D) is the trace of D which is a constant. Thus an optimal solution to the
Ising QUBO (A, 0) is obtained by solving the Ising QUBO (L, 0) which is precisely
the maximum cut problem on G with weights −aij for (i, j) ∈ E.

1.4.3 Equivalence with the Stable Set Problem

We have seen that the maximum weight stable set problem can be formulated
as a QUBO. We now show that any instance of QUBO can be formulated as a
maximum weight stable set problem. Our discussion here follows the paper by
Hammer, Hansen and Simeone [35]. First, let us rewrite the objective function
of a QUBO where all the quadratic terms have non-negative coefficients. After
rewriting, the quadratic terms could involve both the original binary variables and
their complements. Recall that

f (x) = xTQx + cT x =
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

qij xixj +
n∑

i=1

(qii + ci)xi,

where P = {(i, j) : qij > 0, i �= j } and N = {(i, j) : qij < 0, i �= j }. Also, let
Nj = {i : (i, j) ∈ N} and ρj = ∑

i∈Nj
qij . Let x̄i = 1 − xi be the complement of
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xi . i.e. xi ∈ {0, 1} if and only if x̄i ∈ {0, 1}. Now,

f (x) =
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

qij (1 − x̄i)xj +
n∑

i=1

(qii + ci)xi

=
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

(−qij )x̄ixj +
∑

(i,j)∈N

qij xj +
n∑

i=1

(qii + ci)xi,

=
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

(−qij )x̄ixj +
n∑

i=1

(qii + ci + ρi)xi (1.12)

= h(x), say.

Note that the coefficients of xixj and x̄ixj in h(x) are positive. This representation
h(x) of f (x) is sometimes referred to as Rhys form [35] indicating an early
work on a special case of QUBO [72] and is one of the posiform representations
of f (x) [7, 8, 35] when viewed as a pseudo-Boolean function. For interesting
properties of posiforms of the QUBO objective function, we refer to Chap. 5.
Note that maximizing f (x) over xi ∈ {0, 1} is equivalent to maximizing h(x)
over xi, x̄i ∈ {0, 1}. We now show that the problem of maximizing h(x) over
xi, x̄i ∈ {0, 1} is equivalent to solving a maximum weight stable set problem. The
proof is based on a construction given in [35].

For each (i, j) ∈ P ∪ N introduce a node vij with weight |qij |. Also, for i =
1, 2, . . . , n, introduce two nodes i and i ′ with respective weights wi = qii + ci +
ρi +M and wi′ = M , where M is a large positive number. Now introduce the edges
(vij , i

′), (vij , j ′) for each (i, j) ∈ P , the edges (vij , i), (vij , j ′) for each (i, j) ∈ N .
Finally connect each node i with node i ′ by an edge (i, i ′), for i = 1, 2, . . . n. Let
G′ = (V ′, E′) be the resulting graph.

Define the product node variables yij where

yij =
{
1 if vertex vij is selected

0 if vertex vij is not selected.

Similarly, define the selection variables for nodes i and i ′ as

xi =
{
1 if vertex i is selected

0 if vertex i is not selected
and x ′

i =
{
1 if vertex i ′ is selected
0 if vertex i ′ is not selected

Then, the standard integer programming formulation of the maximum weight stable
set problem (MWSSP) on G′ is

SSIP: Maximize
∑

(i,j)∈P

qij yij +
∑

(i,j)∈N

−qij yij +
n∑

i=1

(qii + ci + ri + M) xi +
n∑

i=1

Mx ′
i
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Subject to:

yij + x ′
i ≤ 1

yij + x ′
j ≤ 1

⎫
⎬

⎭
for (i, j) ∈ P (1.13)

yij + xi ≤ 1

yij + x ′
j ≤ 1

⎫
⎬

⎭
for (i, j) ∈ N (1.14)

xi + x ′
i ≤ 1, i = 1, 2, . . . , n, (1.15)

yij , xi, x ′
i ∈ {0, 1}. (1.16)

Theorem 1.2 If (y, x, x′) is an optimal solution to the SSIP defined above, then x
is an optimal solution to the QUBO with objective function f (x).

Proof Recall that optimizing f (x) over x ∈ {0, 1}n is equivalent to optimizing h(x)
over x, x̄ ∈ {0, 1}n. Let φ(y, x, x′) denote the objective function of SSIP. Since M is
large enough, x ′

i = 1 − xi in every optimal solution to SSIP on G′ for otherwise, a
better solution can be obtained. The inequalities (1.13) imply that yij ≤ min{xi, xj }
in every optimal solution and hence yij = 0 if at least one of xi or xj is zero. If
xi = xj = 1 then, yij = 1 in an optimal solution since qij > 0 for (i, j) ∈ P .
Thus yij = xixj in an optimal solution of SSIP on G′. Similarly, we can show that
yij = x ′

ixj in an optimal solution. Noting that x ′
i = 1 − xi = x̄i , we have

φ(y, x, x′) = h(x) + nM (1.17)

for every optimal solution (y, x, x′) of SSIP on G′.
Conversely, for any x ∈ {0, 1}n define yij = xixj for all (i, j) ∈ P , yij = (1−xi)xj

for all (i, j) ∈ N , and x ′
i = x̄i = 1− xi . The solution (y, x, x′) constructed above is

indeed a feasible solution to SSIP on G′ satisfying

φ(y, x, x′) = h(x) + nM (1.18)

and the result follows. ��
Example 1.1 Consider the QUBO with objective function

f (x) = 7x1x2 − 3x1x3 − 12x1x4 + 4x2x3 + 8x2x4 + 3x1 − 10x2 + 5x4.

Then, P = {(1, 2), (2, 3), (2, 4)} and N = {(1, 3), (1, 4)}. The cost matrix Q, the
sets Ni, i = 1, 2, 3, 4, and the values ρi and qii +ci +ρi, for i = 1, 2, 3, 4 are given
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Fig. 1.3 The graph for the maximum weight stable set problem constructed from the QUBO in
Example 1.1.

below

Q =

⎛

⎜
⎜
⎝

0 7 −3 −12
0 0 5 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

i Ni ρi qii + ρi + ci

1 ∅ 0 3
2 ∅ 0 −10
3 {1} −3 −3
4 {1} −12 −7

Now construct graph G′ = (V ,E) for the stable set problem as discussed above.
The resulting graph is given in Fig. 1.3. In the figure, the numbers shown outside
the nodes represent the weight of the node.

It can be verified that x1 = 0, x2 = x3 = x4 = 1 is an optimal solution to
the QUBO with optimal objective function value 7. An optimal solution to the con-
structed maximum weight stable set problem is S = {v13, 1′, v14, 4, v23, v24, 2, 3}
with value equal to 7 + 4M . Also, the QUBO solution recovered from S is x1 =
0, x2 = x3 = x4 = 1 and this is optimal with optimal objective function value 7.

Considering the equivalence between the maximum weight stable set problem
and the maximum weight clique problem, we can see that QUBO is equivalent to
the maximum weight clique problem as well.

1.4.4 QUBO and the Generalized Stable Set Problem

Let G = (V ,E) be a graph and ci be the weight associated with vertex i ∈ V .
Also, for each edge (i, j) ∈ E a cost qij is given. Recall that a stable set in G is
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a subset S of V such that no two nodes in S are adjacent in G. In the generalized
stable set problem [37, 39, 65], we relax the restriction that no two vertices in S

are adjacent by imposing a penalty. That is, if two vertices in S are adjacent in G,
a penalty qij is incurred. The generalized stable set problem on a complete graph
is precisely a QUBO. If G is not complete, we can define qij = 0 for (i, j) /∈ E

to yield a QUBO formulation. The generalized stable set problem and some of its
variations are studied by many authors [4, 37, 39, 65].

1.4.5 Quadratic Pseudo-Boolean Optimization

A quadratic function in variables X = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n} where
xi, x̄i ∈ {0, 1} is called a quadratic pseudo-Boolean function (quadratic PBF) [8].
The objective function xTQx̄ of the maximum-cut problem is a quadratic PBF and
so is the objective function f (x) = xTQx + cT x of QUBO. A quadratic PBF
is in posiform if all associated coefficients (except possibly the constant term)
are positive. A posiform is homogeneous if the associated constant is zero. A
homogeneous posiform ζ can be written as

ζ(x, x̄) =
∑

i<j

(
aij xixj + bij x̄ixj + cij xix̄j + dij x̄i x̄j

) +
n∑

i=1

(αixi + βix̄i)

The function h(x) given in Eq. (1.12) has positive coefficients for quadratic terms
but the associated linear terms still have positive and negative coefficients. Note that
−xi = x̄i − 1 and −x̄i = xi − 1. Using these transformations, we can construct
a posiform h1(x, x̄) such that f (x) = α1 + h1(x, x̄) for all x ∈ {0, 1} and the
coefficients of h1 are positive. Likewise, we can construct a posiform h2(x, x̄) such
that f (x) = α2 − h2(x, x̄) for all x ∈ {0, 1}n.
Lemma 1.4 ([35]) f (x) = α1 − ζ 1(x, x̄) = α2 + ζ 2(x, x̄), where ζ 1 and ζ 2 are in
homogeneous posiform and α1 and α2 are constants.

Proof Without loss of generality, we assume that the matrix Q is lower triangular
and the diagonal entries are zero (see Sect. 1.3). Thus

f (x) =
∑

i<j

qij xixj +
n∑

i=1

cixi .

Note that when xi and xj are binary variables,

xixj = 1

2

(
xixj + x̄i x̄j + xi + xj − 1

)
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and

−xixj = 1

2

(
xix̄j + x̄ixj − xi − xj

)

Substitute these values in f (x) and simplify. Then, in the linear terms, if coefficient
of xi or x̄i is negative, make a substitution using the equalities −xi = x̄i − 1 and
−x̄i = xi − 1 and we get the first equality in the lemma. An analogous proof can be
given for the second part also. ��

The homogeneous posiforms ζ 1 and ζ 2 are not unique. The function h(x)

constructed in Eq. (1.12) have positive coefficients for all quadratic terms and can
be converted into posiform by applying the transformation for linear terms used in
the proof above. There are many other ways to obtain the required posiforms in the
lemma above.

Since ζ 1(x, x̄) and ζ 2(x, x̄) are positive for all x ∈ {0, 1}n, we have
α2 ≤ f (x) ≤ α1 for all x ∈ {0, 1}n.

Let α be the smallest value real number for which there exist a homogeneous
posiform ζ(x, x̄) such that f (x) = α − ζ(x, x̄). Then, f (x) ≤ α for all x ∈ {0, 1}n
and ζ(x, x̄) is called the complement of f (x). Thus, by computing the complement
of f (x) we get an immediate upper bound on f (x). For interesting discussions
on computing the best upper bound of this type and other related results, we refer
to [35].

1.5 Roof Duality

Consider the objective function of QUBO in Rhys form h(x). i.e.,

∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

(−qij )x̄ixj +
n∑

i=1

lixi .

Without loss of generality assume that qij = 0 if i > j . Recall that P = {(i, j) :
qij xixj ∈ h(x), i �= j, qij �= 0} and N = {(i, j) : qij x̄ixj ∈ h(x), i �= j, qij �= 0}.
The set inclusion notation qij xixj ∈ h(x) used here simply indicates that qij xixj is
a term in h(x).

For qij ≥ 0 and xi, xj ∈ {0, 1}, qij xixj ≤ λij xi + μij xj and qij x̄ixj ≤ λij (1 −
xi) + μij xj for all λij + μij = qij , λij ≥ 0, μij ≥ 0. A roof of h(x) is a linear 0-1
function of the form [35]

r(x,λ,μ) =
n∑

i=1

lixi +
∑

(i,j)∈P

(
λij xi + μij xj

) +
∑

(i,j)∈N

(
λij (1 − xi) + μij xj

)

(1.19)
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where λij + μij = qij and λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪ N . By construction

h(x) ≤ r(x,λ,μ) for all x ∈ {0, 1}n.

Let G = (V ,E) be a graph with V = {1, 2, . . . , n} and E = P ∪ N . For each
i ∈ V , define the set of outgoing and incoming arcs at node i by

O(i) = {j ∈ V : (i, j) ∈ E} and I (i) = {k ∈ V : (k, i) ∈ E}.
Then the coefficient, pi(λ,μ), of xi in r(x,λ,μ) is given by

pi(λ,μ) = li +
∑

k∈I (i)

μki +
∑

j∈O(i)

δij λij ,

where

δij =
{
1 if (i, j) ∈ P

−1 if (i, j) ∈ N

Thus, r(x,λ,μ) can be written as

r(x,λ,μ) =
n∑

i=1

pi(λ,μ)xi +
∑

(i,j)∈N

λij

where λij +μij = qij , λij ≥ 0, μij ≥ 0. Then the roof dual of QUBO [7, 35], when
given in terms of h(x), is

Minimize max{r(x,λ,μ) : x ∈ {0, 1}n}
Subject to: λij + μij = qij for all (i, j) ∈ P ∪ N

λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪ N.

Since r(x,λ,μ) is linear in x, its maximum is attained when xi = 1 for all
pi(λ,μ) ≥ 0 and xi = 0 otherwise. i.e.,

max{r(x,λ,μ) : x ∈ {0, 1}n} =
n∑

i=1

max{0, pi(λ,μ)} +
∑

(i,j)∈N

λij .

Thus the roof dual [6, 35] can be written as

RD: Minimize
n∑

i=1

ui +
∑

(i,j)∈N

λij

Subject to: ui ≥ pi(λ,μ)
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λij + μij = qij for all (i, j) ∈ P ∪ N

λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪ N

ui ≥ 0 for i = 1, 2, . . . , n.

Note that RD is a linear program and it is closely linked to network flows on
the support graph G. The optimal objective function value of RD provides an
upper bound for the optimal objective function value of QUBO. The dual of RD is
precisely the continuous relaxation of the linearization of the Rhys form of QUBO.
Thus, the upper bound obtained by the roof dual is precisely the upper bound
obtained by solving the continuous relaxation of the linearization of Rhys form of
QUBO. Let us take an example to illustrate the concept of roof dual.

Example 1.2 Let f (x) = 10x1x2 − 5x1x3 + 20x1x4 − 12x2x4 − 2x3x4 − 6x1 −
5x2 + 8x3 + 5x4. Then P = {(1, 2), (1, 4)} and N = {(1, 3), (2, 4), (3, 4)}. Using
the transformation xi = 1 − x̄i for (i, j) ∈ N we obtain the Rhys form h(x) given
by

h(x) = 10x1x2 + 5x̄1x3 + 20x1x4 + 12x̄2x4 + 2x̄3x4 − 6x1 − 5x2 + 3x3 − 9x4.

The support graph associated with h(x) is given below (Fig. 1.4).
Note that, O(1) = {2, 3, 4},O(2) = {4},O(3) = {4},O(4) = ∅ and I (1) =
∅, I (2) = {1}, I (3) = {1}, I (4) = {1, 2, 3}. Therefore,

p1(λ,μ) = −6 + λ12 − λ13 + λ14

P2(λ,μ) = −5 − λ24 + μ12

P3(λ,μ) = 3 − λ34 + μ13

P4(λ,μ) = −9 + μ14 + μ24 + μ34.

Then, the roof dual RD is given by,

RD: Minimize
n∑

i=1

ui + λ13 + λ24 + λ34

Subject to: u1 − λ12 + λ13 − λ14 ≥ −6

u2 + λ24 − μ12 ≥ −5

Fig. 1.4 The support graph
of h(x)
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u3 + λ34 − μ13 ≥ 3

u4 − μ14 − μ24 − μ34 ≥ −9

λij + μij = qij for all (i, j) ∈ P ∪ N

λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪ N

ui ≥ 0 for i = 1, 2, . . . , 4.

The dual of this linear program is

Maximize− 6x1 − 5x2 + 3x3 − 9x4 + 10y12 + 5y13 + 20y14 + 12y24 + 2y34

Subject to: y12 ≤ x1, y12 ≤ x2

y13 ≤ 1 − x1, y13 ≤ x3

y14 ≤ x1, y14 ≤ x4

y24 ≤ 1 − x2, y24 ≤ x4

y34 ≤ 1 − x3, y34 ≤ x3

0 ≤ xi ≤ 1, i = 1, 2, 3, 4

yij unrestricted for all (i, j) ∈ P ∪ N.

and this is the continuous relaxation of the linearization of h(x). (The notion of
linearization is discussed in Sect. 1.7 and Chap. 4 and 6.)

1.6 Model Building Using QUBO

Let us now look at some motivating applications of the QUBO model. For a detailed
discussion on the applications of QUBO and its power of providing a unifying
framework to represent a large class of combinatorial optimization problems we
refer to Chap. 2.

1.6.1 Person Detection and Tracking in a Crowded
Environment

Identifying and tracking people is an important problem within a variety of appli-
cation scenarios. These include, examination and exploration of group behaviour,
video surveillance, pedestrian detection systems, disaster management, among
others. The problem however is very complex, particularly due to the high level
of occlusions, and researchers in computer vision developed various techniques
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to solve this problem making use of statistical machine learning, mathematical
modelling, and optimization [16, 73, 74]. Let us now discuss one such application
modelled as a QUBO by Rodriguez et al. [73].

Let N = {1, 2, . . . , n} be a set of points identified in an image as possible person
detection locations and let ci be an associated confidence score for location i, for
i ∈ N . The point i and the score ci can be estimated in different ways, as by
appropriately trained preprocessing algorithms. We are also given person density
information di (i.e. the number of people per pixel) estimated in a window of size
σ at location i, for i ∈ N . We want to find locations of people in the image
such that the sum of detector confidence score is maximized while making use
of the density information to minimize selection of locations with significantly
overlapping neighborhoods, which in turn minimizes potential counting errors
accumulated due to multiple detection of the same person. Figure 1.5a gives a
sample shot of a crowd and (b) represents the density contours. Part (c) of the figure
gives potential locations and (d) gives the filtered solution produced by QUBO. Note

Fig. 1.5 Person detection sample and crowd density contours
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that some of the red rectangles, that are potential locations, are either removed as
irrelevant or confirmed in the QUBO solution.1

Let x = (x1, x2, . . . , xn) ∈ {0, 1}n, where xi = 1 implies a detection at
location i is confirmed and 0, otherwise. Then cx measures the total confidence
score of ‘confirmed’ locations. To make sure that only valid configurations of
non-overlapping locations are selected, we construct a penalty matrix W, where
wij = −∞ if detections at locations i and j have significant area overlap ratio,
and 0 otherwise. Then, maximizing cT x + xTWx provides a meaningful model
to represent the person detection problem. This, in fact, is a variation of a model
proposed in [16].

To improve the accuracy of the model, Rodriguez et al. [73] introduced another
quadratic term penalizing the difference between the density values estimated in two
ways: (i) the vector d obtained using a regression-based density estimator and (ii)
the vector Ax counting the density of active detections for an appropriately defined
A matrix. This leads to the penalty term ||d−Ax||21. Then, the objective function to
be maximized is

cT x + xTWx − α||d − Ax||21,

where x ∈ {0, 1}n and α is a parameter. This problem can be written as QUBO by
simplifying ||d − Ax||21 and combining it with xTWx.

1.6.2 Module Flipping in Circuit Layout Design

Let us now look at another example of QUBO that arises in the layout design of
VLSI (very large scale system integration). Our discussion here is based on the
works of Boros and Hammer [7] and Cheng et al. [12]. In the layout design of
circuits, rectangular modules containing one or more pins are embedded in a base
board. Each pin on a module has a compatible pin on another module and these
compatible pairs need to be connected using horizontal and/or vertical wiring. The
reliability has an inverse relationship with wire length and hence we are interested
in minimizing the total wire length. Each module can be placed in four different
ways on its designated space on the base board by flipping horizontally, vertically,
or both. In Fig. 1.6a, we give a layout of modules and in Fig. 1.6b we give a layout
after vertically flipping module 1, horizontally flipping module 2, and a vertical flip
followed by a horizontal flip on module 5. The compatible pairs of pins are labelled
using the same alphabets. For example, a pin with label a needs to be connected to
another with the same label a and so on.

1 Figure 1.5 was provided by Mikel Rodriguez and reproduced here with his permission.
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Fig. 1.6 Module flipping example. Applied a vertical flip on module 1, horizontal flip on module
2, vertical flip followed by horizontal flip on module 5. (a) Original position. (b) After flip
operations are applied on modules 1, 2, and 5

The module flipping problem is to find the orientations of the placement of each
module on the base board, identified by one or more flipping operations, so that
the total wire length is minimized. This problem was originally proposed by Cheng
et al. [12] and they presented a maximum cut formulation, which as we know, is
equivalent to QUBO. Boros and Hammer [7] presented a direct QUBO formulation
of the problem and we discuss this model here.

Let N = {1, 2, . . . , n} be the collection of all modules placed on the base board
with an initial layout. Consider the binary decision variable xi which takes value
1 if module i is flipped horizontally, for i = 1, 2, . . . , n. Likewise, consider the
binary decision variable yi which takes value 1 if module i is flipped vertically, for
i = 1, 2, . . . , n. For each pair (i, j) of modules and (r, s) ∈ {0, 1} × {0, 1}, let
H

(r,s)
ij denotes the total length of horizontal wire segments which connects the pins

of modules i and j under the flipping sequence (r, s). For example, if (r, s) = (0, 0)
no horizontal flipping occurs for modules i and j , if (r, s) = (0, 1), only module
j is flipped horizontally, and so on. Similarly, let V

(r,s)
ij denotes the total length of

vertical wire segments which connects the pins of modules i and j under the flipping
sequence (r, s). Now, the total wire-length, as a function of flipping operation of the
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modules, can be expressed as

φ(x, y) =
n−1∑

i=1

n∑

j=i+1

(
H

(0,0)
ij x̄i x̄j + H

(0,1)
ij x̄ixj + H

(1,0)
ij xi x̄j + H

(1,1)
ij xixj

)

+
n−1∑

i=1

n∑

j=i+1

(
H

(0,0)
ij ȳi ȳj + H

(0,1)
ij ȳiyj + H

(1,0)
ij yi ȳj + H

(1,1)
ij yiyj

)

(1.20)

where x̄i = 1 − xi . Then, the optimal flipping of the modules corresponds to
assigning 0 − 1 values to the variables xi and yi for i ∈ N such that φ(x, y) is
minimized. It can be verified that minimization of φ(x, y) decomposes into two
problems, one with the x-variables and the other with the y-variables and each such
problem is a QUBO.

Related applications of QUBO in equivalent forms such as Maximum Cut,
weighted stable set etc., can be found in [3, 9, 15, 46, 54].

1.6.3 Side-Chain Positioning in Protein Design

The side chain positioning problem arises as a subproblem in protein structure
prediction which has a natural QUBO formulation. Our discussion here is based on
the works [11, 30, 31, 47]. While the formulation itself is straightforward, to make
the discussion clearer, let us very briefly review some related concepts, terminology,
and background information and for this purpose, we follow the articles [11, 31].

A protein molecule is composed of a chain of amino acids and each amino acid
consists of a centralized single carbon atom along with a hydrogen atom, an amino
group NH2, a carboxyl group COOH, and a side chain which characterizes the
amino acid. Carbon, hydrogen, the amino group, and the carboxyl group are called
the main atoms and the protein backbone is formed by a repeating sequence of the
main atoms (main chain) and a side chain is attached to the backbone for each
element of this sequence (Fig. 1.7).

Fig. 1.7 A chain of three amino acids. The labels S1, S2 and S3 indicate the corresponding side-
chains
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The chemical composition of a protein molecule is specified by the sequence of
the associated amino acids. Every amino acid main chain has the freedom to rotate at
specified points. A side chain of amino acids (with the exception of glycine) can also
rotate at different points and the three dimensional structure of a protein is identified
by the location of its backbone (main chain) atoms and the combined rotations of
the main chain and the side chains. For an appropriate notion of energy, a protein
structure folds into a minimal energy state to reach chemical stability. Quoting
from [31], “Chemical stability of a protein comes from four sources: the internal
stability of the three-dimensional structure of its backbone; the internal stability of
each rotamer; the interaction of each rotamer with the main chain of the amino acid
it is attached to; and the chemical interactions of the rotamers that are positioned
close to each other, either on the protein sequence, or in three-dimensional space.”
In protein synthesis, we want to maximize the chemical stability using appropriate
quantitative stability measures.

The backbone structure is assumed to be given and our aim is to select one
rotamer (side-chain molecule) to be associated with each amino acid sequence in
the backbone. Let e0 be the stability measure for the backbone structure, which is
constant. Suppose that the backbone consists of m amino acid sequences and for
amino acid k, we select a rotamer from the candidate list Vk, k = 1, 2, . . . ,m.
For rotamer i ∈ Vk let ek

i be the contribution of i to the stability measure which
consists of the sum of the interaction stability measure of candidate rotamer i with
its associated amino acid k and the internal stability measure of rotamer i. For each
i ∈ Vk and j ∈ Vt , let ekt

ir be the stability measure due to the interaction between
rotamer i ∈ Vk and j ∈ Vt . This value depends on the nature of the rotamers
involved, the nature of the amino acids they attach to, and the proximity level of
i and j . Since the backbone is already known, the proximity level is also known.
The values e0, ek

i , and ekt
ir are estimated either by experiments or by theoretical

considerations. For our modeling purpose, it is not highly relevant the way these
values are obtained or their magnitudes. The side-chain positioning problem is to
select an ik from Vk for each k = 1, 2, . . .m such that

e0 +
m∑

k=1

ek
ik

+ 1

2

m∑

k=1

m∑

t=1

ekt
ik it

is maximized. Let us now formulate this problem as QUBO.
Let V = ∪m

k=1Vk . Without loss of generality, assume V = {1, 2, . . . , n}.
Construct the complete m-partite undirected graph G = (V ,E) where (i, j) ∈ E if
i ∈ Vk, j ∈ Vt , t �= k. Note that we need to select precisely one element for each Vk

for k = 1, 2 . . . , m. For each i ∈ V consider the binary decision variable xi where
xi = 1 if rotamer i is selected and, 0 otherwise. Define the n×n cost matrix Q with
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its (i, j)th element qij as

qij =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = j

−M if i �= jand i, j ∈ Vk for some k,

1
2e

kt
rs if (i, j) ∈ E,

where M is a large positive number and the n vector cT = (c1, c2, . . . , cn) where
ci = ek

j if i ∈ V k and i = j . Now an optimal solution to the QUBO instance
(Q, c,max) gives an optimal solution to the side chain positioning problem. Note
that, no two elements from the same set Vk will be selected in an optimal solution
for any k because of the penalty value and since the objective function is of
maximization type, ci ≥ 0 for all i and ekt

rs ≥ 0 for all k, t, r, s at least one elements
from each Vk will be selected, establishing the validity of the model.

1.6.4 QUBO and Machine Scheduling

We now discuss a general framework of a special case of QUBO, which can be used
to model several important machine scheduling problems. A matrix Q is called a
half product matrix if it is upper triangular with diagonal elements zero and there
exist vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) such that qij = aibj for
i = 1, 2, . . . , n and j > i. A half-product QUBO is a special case of QUBO where
Q is a half-product matrix. Thus, a QUBO with a half-product matrix can be written
as

Maximize
∑

1≤i<j≤n

aibjxixj +
n∑

j=1
cjxj

Subject to
x ∈ {0, 1}n

The half-product QUBO was introduced by Badics and Boros [2] and independently
by Kubiak [52]. Despite the apparently simple special structure, the half-product
QUBO is still NP-hard since the subset sum problem is a special case of it [2].

Various single machine scheduling problems can be formulated as a half-product
QUBO. This includes, the single-machine variance minimization problem [2, 52],
Single machine scheduling to minimize total weighted earliness and tardiness[43]
and scheduling with controllable processing times [41]. The Ising version of the
half-product QUBO was considered by Kubiak [52], Amit [1], and Mattis [58].
Scheduling jobs on two machines to minimize makespan [43] as well as scheduling
on two machines to minimize total weighted completion time [43] can also be
formulated as a half-product QUBO. Let us discuss one such formulations using
the example of single machine scheduling with controllable processing times
(SCPT) [41].
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There are n jobs to be processed on a single machine where the processing time
of jobs are variables. For job j , let the processing time pj ∈ [0, αj ], j = 1, 2, . . . , n.
To schedule the jobs, one needs to identify the optimal values of the processing times
pj and then order the jobs so that the sum of the total weighted completion time∑n

j=1 wjCj and the total weighted processing time compression
∑n

j=1 vj (uj −pj )

is minimized. Here, Cj denote the completion time of job j . This scheduling
problem, denoted by SCPT, was first studied by Vickson [78, 79] and the half-
product QUBO formulation discussed here is from [41]. Vickson [78] showed that
there exists an optimal processing time vector p = (p1, p2, . . . , pn) such that
pj = 0 or αj . Combining this observation with the well-known weighted shortest
processing time rule (SWPT) [76], we can see that there exists an optimal solution to
SCPT such that jobs processing times pj = αj are sequenced in the non-decreasing
order of the ratios

αj

wj
[41]. With this observation, define the decision variables

xj =
{
0 if pj = 0

1 if pj = αj

and the problem SCPT is well defined when the vectorsw = (w1, w2, . . . , wn), α =
(α1, α2, . . . , αn, and v = (v1, v2, . . . , vn) are given. Then, the objective function of
SCPT is to minimize f (x), where

f (x) =
n∑

j=1

wjxj

j∑

i=1

αixi +
n∑

j=1

vjαj (1 − xj )

=
∑

1≤i<j≤n

αiwjxixj −
n∑

j=1

αj (vj − wj)xj +
n∑

j=1

vjαj

Note that
∑n

j=1 vjαj is a constant and can be discarded. Choosing, ai = αi, bi =
−wi and ci = αi(vi − wi), we can see that minimization of f (x) can be
accomplished by solving the half-product QUBO.

1.7 Mixed Integer Programming Formulations

Various mixed integer linear programming (MILP) formulations of QUBO are
discussed in detail in other chapters of this book. Most of the basic formulations
are based on writing the product of two variables (not necessarily both are of
binary type) as a new variable and force the definition of the underlying product
by imposing additional constraints, that may or may not exploit the sign of the
qij values. Early research work on these types of reductions goes back to 1960s
[13, 20, 29, 80, 81] where product of two binary variables are ‘linearized’. Later,
Glover [25, 26] and Glover and Woolsey [27] considered linearization of the
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product of a binary variable and a continuous variable. Most of these linearization
techniques can be presented under a general approximation framework introduced
by McCormick [59, 60].

Consider the bounded variables

l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2.

Then,

(x1 − l1)(u2 − x2) ≥ 0, (u1 − x1)(x2 − l2) ≥ 0

(x1 − l1)(x2 − l2) ≥ 0, and (u1 − x1)(u2 − x2) ≥ 0.

Expanding and rearranging the terms, we have

x1x2 ≤ l1x2 + u2x1 − l1u2

x1x2 ≤ l2x1 + u1x2 − l2u1

x1x2 ≥ l1x2 + l2x1 − l1l2

x1x2 ≥ u2x1 + u2x2 − u1u2

Now, let us replace the term x1x2 by a new variable w in the above inequalities and
we get

w ≤ l1x2 + u2x1 − l1u2 (1.21)

w ≤ l2x1 + u1x2 − l2u1 (1.22)

w ≥ l1x2 + l2x1 − l1l2 (1.23)

w ≥ u2x1 + u2x2 − u1u2 (1.24)

The inequalities (1.21) and (1.22) are called lower McCormick envelops and (1.23),
and (1.24) are called upper McCormick envelops [59, 60]. The variable w along
with the McCormick envelop inequalities provide an approximation to the product
x1x2. This approximation becomes exact when one of the variables x1 or x2 is
binary and it becomes the linearizations proposed by Glover [25, 26] and Glover
and Woolsey [27]. To see the validity of the linearization, without loss of generality,
assume x2 is binary. Then l2 = 0 and u2 = 1. When x2 = 0, the inequalities
(1.22) and (1.23) guarantees that w = 0. Likewise, when x2 = 1, inequalities
(1.21) and (1.24) guarantees that w = x1. The special case of McCormick envelop
inequalities involving binary variables leads to a natural MILP formulation of
QUBO which is the well-known Glover’s linearization Glover [25, 26]. When both
variables involved in a product are binary, McCormick envelop inequalities reduces
to Glover-Woolsey linearization [27]. We also want to highlight that the linearization
of product of two binary variables are reported in literature either explicitly or
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implicitly, even prior to [27]. For example, Goldman [29] pointed out the works
of Fortet [20, 21] and Dantzig [13] in this context.

Replace the product xixj with a new variable wij in the objective function
of QUBO and force the equality xixj = wij by introducing the McCormick
envelop inequalities. The resulting MILP formulation, known as Glover-Woolsey
linearization or the standard linearization, is given below.

GW: Maximize
n∑

i=1

n∑

j=1

qijwij +
n∑

i=1

cixi

Subject to: wij − xi ≤ 0 for i, j ∈ {1, 2, . . . , n} (1.25)

wij − xj ≤ 0 for i, j ∈ {1, 2, . . . , n} (1.26)

xi + xj − wij ≤ 1 for i, j ∈ {1, 2, . . . , n} (1.27)

wij ≥ 0 for i, j ∈ {1, 2, . . . , n} (1.28)

xi ∈ {0, 1} for i = 1, 2 . . . , n. (1.29)

Recall the definition of the sets P and N introduced in Sect. 1.4.3. For (i, j) ∈ P

constraints (1.27) and (1.28) can be removed and for (i, j) ∈ N constraints
(1.25) and (1.26) can be removed. Thus GW becomes the reduced Glover-Woolsey
linearization

RGW: Maximize
n∑

i=1

n∑

j=1

qijwij +
n∑

i=1

cixi

Subject to: wij − xi ≤ 0 for (i, j) ∈ P (1.30)

wij − xj ≤ 0 for (i, j) ∈ P (1.31)

xi + xj − wij ≤ 1 for (i, j) ∈ N (1.32)

wij ≥ 0 for (i, j) ∈ N (1.33)

xi ∈ {0, 1} for i = 1, 2, . . . , n. (1.34)

The convex hull of solutions of GW is called the Boolean quadric polytope[64]
which is discussed in detail in Chap. 4. Various other MILP formulations of QUBO
are known in literature and most of them uses Glover-Woolsey linearization or
Glover’s linearization in one form or another. For a through discussion of this, we
refer to Chap. 6 and the recent papers [67, 68].

The continuous relaxation of GW (and RGW) is denoted by CGW (CRGW) and
it is obtained by replacing constraint (1.29) (constraint (1.34)) by xi ∈ [0, 1] for i =
1, 2 . . . , n. CGW and CRGW are linear programs and hence can be solved using
general purpose linear programming solvers. However, their special structure also
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brings us additional structural properties and efficient algorithms. Some of these
connections and linkages with roof duality is discussed in Chap. 5.

The polytope defined by the constraints of CGW is called the fractional Boolean
quadric polytope. Let us first present a useful necessary condition for a solution
(x,w) to be an extreme point of the fractional Boolean quadric polytope.

Lemma 1.5 If (x,w) is an extreme point of the fractional Boolean quadric polytope
then wij ∈ {0,min{xi, xj }, xi + xj − 1} for all i, j .
Proof Suppose (x,w) is an extreme point of the fractional Boolean quadric
polytope. Then, choose a cost matrix Q and a cost vector c such that (x,w) is
an optimal solution to CGW. Without loss of generality assume that qij �= 0 for
i �= j and ci �= 0 for all i. Clearly, by feasibility 0 ≤ wij ≤ min{xi, xj } for
every i, j, i �= j . If possible let 0 < whk < min{xh, xk} for some h, k, h �= k and
xh + xk − 1 �= whk . Define the solution (x, ŵ) where

ŵij =
{

wij + ε if (i, j) = (h, k)

wij Otherwise,

where ε �= 0. If qhk > 0 then (x, ŵ) is a feasible solution to CGW for sufficiently
small ε > 0 which is better that (x,w), contradicting the optimality of (x,w).
Similarly, if qhk < 0 then (x, ŵ) is a feasible solution to CGW for sufficiently
large ε < 0 which is better than (x,w), contradicting the optimality of (x,w). This
completes the proof. ��

We now prove the half integrality property of extreme points of the fractional
Boolean quadric polytope [64].

Theorem 1.3 If (x,w) is an extreme point of the fractional Boolean quadric
polytope the xi ∈ {0, 1, 1

2 } for all i and wij ∈ {0, 1, 1
2 } for all (i, j) ∈ P ∪ N .

Proof Let F denote the fractional Boolean quadric polytope and (x,w) be an
extreme point. Let

E1 = {i : 0 < xi <
1

2
} and E2 = {i : 1

2
< xi < 1}.

If E1 ∪ E2 = ∅ then from Lemma 1.5, (x,w) is of the required type. So assume
that E1 ∪ E2 �= ∅. Now construct the solutions (x1,w1) and (x2,w2) as follows:
For ε > 0 let

x1
i =

⎧
⎪⎪⎨

⎪⎪⎩

xi + ε if i ∈ E1

xi − ε if i ∈ E2

xi Otherwise

and x2
i =

⎧
⎪⎪⎨

⎪⎪⎩

xi − ε if i ∈ E1

xi + ε if i ∈ E2

xi Otherwise.
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From Lemma 1.5, wij ∈ {0,min{xi, xj }, xi + xj − 1}. Define

w1
ij =

⎧
⎪⎪⎨

⎪⎪⎩

min{x1
i , x1

j } if wij = min{xi, xj }
x1
i + x1

j − 1 if wij = xi + xj − 1

0 Otherwise

w2
ij =

⎧
⎪⎪⎨

⎪⎪⎩

min{x2
i , x2

j } if wij = min{xi, xj }
x2
i + x2

j − 1 if wij = xi + xj − 1

0 Otherwise

For sufficiently small ε > 0, (x1,w1) and (x2,w2) are feasible solutions. It can be
verified that (x,w) = 1

2 {(x1,w1)+ (x1,w1)}, contradicting the fact that (x,w) is an
extreme point and the result follows. ��

In Sect. 1.4 we observed that the maximum cut problem and QUBO are
equivalent. In this sense, an integer programming formulation of the maximum
cut problem provides an indirect integer programming representation of QUBO.
Consider a complete graph Kn = (V ,E) and let qij be the weight of edge
(i, j) ∈ E. Then the maximum cut problem in Kn can be written as an MILP

MCUT: Minimize
∑

i≤i<j≤n

qij xij

Subject to: xij + xik + xjk ≤ 2 for 1 ≤ i < j ≤ n

xij − xik − xjk ≤ 0 for 1 ≤ i < j ≤ n, k �= i, j

xij ∈ {0, 1} for 1 ≤ i < j ≤ n.

The convex hull of feasible solutions of MCUT is called the cut polytope. The
relationship between the Boolean quadric polytope and the cut polytope is discussed
in Chap. 4.

1.8 Conclusion

The primary goal of this chapter was to give a brief introduction to QUBO along
with basic definitions and motivating examples. Each of the chapters that follows is
more focussed and is on a specific aspect of QUBO providing a comprehensive and
in-depth analysis of the topic.

Acknowledgments I am thankful to Fred Glover and Navpreet Kaur for their feedback on an
earlier version of this chapter which improved the presentation. This work was partially supported
by an NSERC discovery grant.
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