
Abraham P. Punnen Editor

The Quadratic
Unconstrained
Binary
Optimization
Problem
Theory, Algorithms, and Applications

The Quadratic Unconstrained Binary Optimization
Problem

Abraham P. Punnen
Editor

The Quadratic Unconstrained
Binary Optimization Problem
Theory, Algorithms, and Applications

Editor
Abraham P. Punnen
Department of Mathematics
Simon Fraser University
Surrey, BC, Canada

ISBN 978-3-031-04519-6 ISBN 978-3-031-04520-2 (eBook)
https://doi.org/10.1007/978-3-031-04520-2

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-04520-2

This book is dedicated to the memory of the
millions of people who lost their lives due to
the COVID-19 pandemic.

Preface

Studies on the quadratic unconstrained binary optimization problem (QUBO) can
be traced back to the late 1950s and early 1960s, when there was much work on
the more general class of pseudo-Boolean optimization problems. Since then, a
large number of papers have been published on the topic from different points of
view, including theory, algorithms, and applications. Moreover, QUBO has received
renewed interest lately due to the development of quantum and quantum-inspired
computers. The literature on QUBO has however been scattered across many
disciplines and, up to now, no comprehensive volume had been published on the
topic. This book is an effort to present important developments from the point of
view of theory, algorithms, and applications of QUBO in consolidated form.

There are 11 chapters in this book, each focusing on a specific aspect of the
problem. Chapter 1 provides an introduction to QUBO including some historical
notes, sample applications, and general representations of the problem. Chapter 2
presents a thorough summary of various application areas, with a detailed reference
list. It also covers some formulation techniques and sample experimental results.
Chapter 3 highlights the computational complexity of the problem and contains a
detailed discussion of polynomially solvable special cases. Chapter 4 deals with the
Boolean quadric polytope and its applications in developing branch-and-cut algo-
rithms for the problem. Chapter 5 deals with so-called autarkies and persistencies for
QUBO. They can be used to fix variables a priori and to enhance exact and heuristic
algorithms. Chapter 6 deals with exact algorithms. Various mixed-integer linear
programming and semidefinite programming formulations of QUBO are discussed,
and there is an overview of specially designed exact algorithms. The analysis of
random QUBO instances is the topic of discussion in Chap. 7. Chapter 8 talks about
approximation algorithms for QUBO, analyzed from a theoretical point of view,
followed by Chap. 9, which provides a state-of-the-art account on metaheuristics
for QUBO. The bipartite QUBO is the topic of discussion in Chap. 10, and Chap. 11
provides a summary of the currently available QUBO software, with pointers on
how to access this software.

vii

viii Preface

I believe researchers, students, and practitioners in various fields, including
operations research, computer science, mathematics, and industrial engineering,
will find this book useful as a state-of-the-art reference volume.

I would like to express my indebtedness to each of the authors who wrote various
chapters of the book. Without their unrelenting support, this book would not have
been possible. Each of the authors contributed significantly to the development
of the field and, as one can see, citations to their works appear throughout the
book. I am fortunate that such a distinguished and marvelous group of people
collaborated on this project. The chapters were prepared at an unusually difficult
time for everyone due to COVID-19, with universities closed, teaching completely
moved online, worldwide travel bans, and, sadly, even seeing loved ones depart from
the world.

Some chapter authors also participated in reading and providing feedback on
various chapters. Many other distinguished scholars also shared their valuable
time in providing feedback on the various chapters of the book. In particular, I
am thankful to Fred Glover, Adam Letchford, Karthik Natarajan, Renata Sotirov,
Brad Woods, Pooja Pandey, Snezana Minic, Gregory Gutin, Navpreet Kaur, Binay
Bhattacharya, and Konstantin Makarychev for their feedback. I am thankful to
Mikel Rodriguez for providing me with his drawing related to the “person-tracking”
example. I am also thankful to Simon Fraser University for providing me with
the facilities required to edit this book. The staff at Springer patiently supported
the project, despite us missing one deadline after another. In particular, I would
like to express my appreciation to Sujatha Chakkala, Katrin Petermann, and Rocio
Torregrosa. In retrospect, perhaps the delays were a blessing in disguise: what a
wonderful end product! Thank you again to all authors and everyone else involved.
I believe that the book will remain an authoritative reference on QUBO for many
years to come.

Surrey, BC, Canada, Abraham P. Punnen
31 December 2021

Contents

1 Introduction to QUBO . 1
Abraham P. Punnen

2 Applications and Computational Advances for Solving the
QUBO Model . 39
Fred Glover, Gary Kochenberger, and Yu Du

3 Complexity and Polynomially Solvable Special Cases of QUBO 57
Eranda Çela and Abraham P. Punnen

4 The Boolean Quadric Polytope . 97
Adam N. Letchford

5 Autarkies and Persistencies for QUBO . 121
Endre Boros

6 Mathematical Programming Models and Exact Algorithms 139
Abraham P. Punnen and Renata Sotirov

7 The Random QUBO . 187
Karthik Natarajan

8 Fast Heuristics and Approximation Algorithms . 207
Abraham P. Punnen

9 Metaheuristic Algorithms . 241
Yang Wang and Jin-Kao Hao

10 The Bipartite QUBO . 261
Abraham P. Punnen

11 QUBO Software . 301
Brad D. Woods, Gary Kochenberger, and Abraham P. Punnen

Index . 313

ix

Contributors

Endre Boros MSIS Department and RUTCOR, Rutgers Business School, Rutgers
University, Piscataway, NJ, USA

Eranda Çela Department of Discrete Mathematics, Graz University of Technol-
ogy, Graz, Austria

Yu Du College of Business, University of Colorado at Denver, Denver, CO, USA

Fred Glover ECEE, College of Engineering and Applied Science, University of
Colorado, Boulder, CO, USA

Jin-Kao Hao LERIA, Faculty of Sciences - University of Angers, Angers, France

Gary Kochenberger Entanglement, Inc., Westminster, CO, USA

Adam Letchford Department of Management Science, Lancaster University Man-
agement School, Lancaster, UK

Karthik Natarajan Engineering Systems and Design, Singapore University of
Technology and Design, Singapore, Singapore

Abraham P. Punnen Department of Mathematics, Simon Fraser University Sur-
rey, Surrey, BC, Canada

Renata Sotirov Department of Econometrics and Operations Research, Tilburg
School of Economics and Management, Tilburg University, Tilburg, The Nether-
lands

Yang Wang School of Management, Northwestern Polytechnical University,
Xi’an, China

Brad Woods 1QBit, Vancouver, BC, Canada

xi

Acronyms

BQUBO Bipartite quadratic unconstrained binary optimization problem
B-MaxCut Maximum weight cut in bipartite graph
CMCS Conditional Markov Chain Search
EMWCP Euclidean maximum weight cut problem
FPTAS Fully polynomial approximation scheme
ILP Integer linear program
LP Linear programming
MCCP Maximum cardinality cut problem
MILP Mixed-integer linear programming
MSSP Maximum sum submatrix problem
MWBCP Maximum weight biclique problem
MWClP Maximum weight clique problem
MWCP Maximum weight cut problem
MWSSP Maximum weight stable set problem
QAP Quadratic assignment problem
QCR Quadratic convex reformulation
QUBO Quadratic unconstrained binary optimization problem
PBF Pseudo-Boolean function
psd Positive semidefinite
RLT Reformulation linearization technique
SCPT Single machine scheduling with controllable processing times
SDP Semidefinite programming
SEMWCP Squared Euclidean maximum weight cut problem
SSP Stable set problem
SWPT Weighted shortest processing time rule
VLSI Very large-scale system integration
VLSN Very large-scale neighborhood

xiii

Chapter 1
Introduction to QUBO

Abraham P. Punnen

Abstract This chapter provides a general introduction to the quadratic uncon-
strained binary optimization problem (QUBO). Starting with a brief historical
review, we present some basic definitions and notations, equivalent representations,
examples of important combinatorial optimization problems that are equivalent to
QUBO and some additional motivating examples. We also discuss some of the basic
mathematical programming formulations of QUBO along with relevant pointers to
the contents of other chapters of the book.

1.1 Introduction

Mathematical programming models play a vital role in the socio-economic devel-
opments of the modern-day society. Optimization frameworks such as linear
programming, quadratic programming, combinatorial optimization, and mixed
integer programming are effectively used in engineering design, finance, healthcare,
economics, medicine, transportation, supply chains, environment, telecommunica-
tions among others. Perhaps the most fundamental among the various optimization
modeling tools is linear programming. This model building framework, as we know
it today, was originated around 1938 and evolved into an applicable modelling
technique in the early 1950s with the discovery of the simplex method [14].
Realization of the benefits associated with having integrality restrictions on some
or all of the decision variables of a linear program led to the development of integer
programming and significant advancements in this area continues to emerge [42].

The literature on unconstrained nonlinear optimization on the other hand, can be
traced back to early days of calculus [66]. However, the development of successful
methods for solving constrained nonlinear optimization problems took a very
long time. Special nonlinear programs of minimizing convex quadratic functions

A. P. Punnen (�)
Department of Mathematics, Simon Fraser University, Surrey, BC, Canada
e-mail: apunnen@sfu.ca

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_1&domain=pdf
mailto:apunnen@sfu.ca
https://doi.org/10.1007/978-3-031-04520-2_1

2 A. P. Punnen

over linear constraints can now be solved very efficiently. Study of constrained
quadratic optimization problems started around the mid 1950s with applications
in portfolio optimization [56, 57]. Systematic investigations on the quadratic
programming problem with integrality restrictions on the decision variables took
another decade to initiate [34, 53]. This book addresses a versatile unconstrained
quadratic programming model called quadratic unconstrained binary optimization
problem (QUBO) where the decision variables take values 0 or 1. The literature on
QUBO is quite extensive and for a quick overview, we refer the reader to the survey
papers [28, 45, 48].

Before getting into the technical details, let us start with some basic notations.
All matrices are represented using bold capital letters and elements of a matrix are
represented by the corresponding small letters along with accents, if any, and the
location coordinates. For example the (i, j)th element of the matrix A is aij , of the
matrix B̄ is b̄ij , and of the matrix Dk is dk

ij . Similarly, vectors are represented by
boldface small letters along with appropriate accents, as applicable, and elements
of the vector is represented using the same letter (without boldface) along with its
location coordinate and accents, if any. For example, the ith element of the vector c
is ci , of the vector xk is xk

i , and of the vector ṽ is ṽi . Exceptions to this rule will be
stated explicitly and operators such as transpose etc. are not considered as accents in
the case of vectors. The zero vector in any dimension is represented by 0. Additional
notations will be introduced as need arises.

Let us now present a formal mathematical definition of QUBO. Let Q be an n×n

matrix, cT = (c1, c2, . . . , cn) be a row vector from R
n, and xT = (x1, x2, . . . , xn) be

a row vector from {0, 1}n. Then, QUBO is defined as the mathematical programming
problem:

Maximize xTQx+ cT x
Subject to

x ∈ {0, 1}n.

Since x2
i = xi for any binary variable xi , we can represent QUBO without the

linear term by simply adding ci to qii for i = 1, 2, . . . , n. Alternatively, we can
assume qii to be zero by replacing ci with ci + qii . In fact, QUBO is represented
in many other alternative forms which are discussed in more detail later in this
chapter. QUBO sometimes is presented as a minimization problem, different from
the standard maximization form. The data Q, c along with the orientation of
optimization completely defines a problem instance. Thus, a maximization instance
of QUBO can be represented by the triple (Q, c, max) and a minimization instance
of QUBO can be represented by (Q, c, min). Note that, the instances (Q, c, max)

and (−Q,−c, min) are equivalent. Unless otherwise specified, we assume that
QUBO is presented in the maximization form and we normally represent such an
instance by the ordered pair (Q, c).

Let us now look at an interpretation of QUBO from the point of view of matrix
theory. A principal submatrix of Q is a square submatrix obtained by deleting rows

1 Introduction to QUBO 3

and columns corresponding to an index set S ⊆ {1, 2, . . . , n}. The value of a matrix
is the sum of its elements. Without loss of generality assume c = 0. Then QUBO
is precisely the problem of computing a principal submatrix of Q with maximum
value.

A graph theoretic interpretation of QUBO can be given as follows. Let G =
(V ,E) be a graph such that V = {1, 2, . . . , n} and (i, j) ∈ E if and only if qij �= 0.
The graph G is called the support graph of Q. Let qij be the cost of edge (i, j) ∈ E

and qii + ci be the cost of the vertex i ∈ V . Let S be a subset of V and G(S) be the
subgraph of G induced by S. The cost of G(S) is defined as the sum of the cost of
its edges and vertices. Then the QUBO seeks a subset S of V such that the cost of
the induced subgraph G(S) of G is maximized.

Literature on QUBO, presented as a 0-1 quadratic program, can be traced back
to 1960s, particularly with the work of Hammer and Rudeanu [34] on pseudo-
Boolean functions and those of [13, 20, 21, 33, 80, 81]. Graph theoretic optimization
problems such as the maximum weight stable set problem, the maximum weight
clique problem, and the maximum cut problem have a hidden QUBO structure. As
we will see later, these graph theoretic optimization problems are indeed equivalent
to QUBO. In this sense, the history of QUBO is also linked to the origins of these
graph theoretic structures.

A stable set of a graph G = (V ,E) is a subset S of V such that no two vertices of
S are adjacent in G. Let di be a given weight associated with vertex i ∈ V . Then, the
maximum weight stable set problem is to find a stable set S in G such that

∑
i∈S di

is maximized. It is easy to formulate the maximum weight stable set problem as a
QUBO. Consider the binary decision variables xi for i = 1, 2, . . . , n where xi = 1
represents the event that vertex i is in the stable set. Then, for any stable set S and
(i, j) ∈ E, if the distinct vertices i, j ∈ S then xixj = 0. This constraint can be
forced using a quadratic term in the objective function. Define

qij =

⎧
⎪⎪⎨

⎪⎪⎩

di if i = j

−M if (i, j) ∈ E

0 if (i, j) /∈ E,

where M is a large positive number. Also, choose c as the zero vector. Then, the
maximum weight stable set problem can be solved as the QUBO instance (Q, c)
where Q and c are as defined above. Interestingly, it is possible to formulate any
instance (Q, c) of QUBO as a maximum weight stable set problem and this will be
discussed in Sect. 1.4 along with the other equivalent forms of QUBO.

A clique in the graph G is a subset S of V such that the subgraph G(S) of G

induced by S is a complete graph. It is easy to see that S is a clique in G if and only
if S is a stable set in the complement of G. Thus, in view of the discussion above,
the maximum weight clique problem can also be formulated as a QUBO and it is
also equivalent to QUBO.

Thus, from a historical perspective, cliques and stable sets play an indirect role in
the evolution of QUBO. The literature on computing maximum weight clique and

4 A. P. Punnen

maximum weight stable set is quite extensive and we will not attempt a detailed
review of historical developments of these structures. However, we briefly discuss
below some of the earlier works that introduced these notions. Although clique
(stable set) is a well established concept in graph theory at present, the terminology
has its roots in social sciences [19, 22, 55]. Luce and Perry [55] in 1949 defined a
clique as follows:

A subset of the group forms a clique provided that it consists of three or more members
each in the symmetric relation to each other member of the subset, and provided further
that there can be found no element outside the subset that is in the symmetric relation to
each of the elements of the subset.

The first algorithmic results on computing cliques was presented by Harrary and
Ross [36]. Without using the name ‘clique’, the concept of complete subgraphs and
independent sets (same as stable sets) were considered by Erdos and Szekeres [17]
in 1935 while discussing Ramsey Theory in the context of graphs.

QUBO can also be written as a continuous optimization problem [70, 71].
Consider the box-constrained quadratic program

Maximize xTQx+ cTx−MxT(e− x)

Subject to
x ∈ [0, 1]n

where M is a large positive number and e is the all-one vector in R
n. Note that for

large M , the objective function becomes convex and hence an optimal solution is
attained at an extreme point of [0, 1]n [70, 71]. The collection of extreme points of
[0, 1]n is precisely {0, 1}n establishing the validity of the above representation of
QUBO.

QUBO is strongly NP-hard. A thorough complexity analysis of the problem and
various polynomially solvable special cases are discussed in Chap. 3 and complexity
results in connection with approximability is discussed in Chap. 8.

1.2 The Ising Model

Long before the QUBO become popular within the operations research community,
the model was used in statistical mechanics in an alternative form [75]. This is
popularly known as the Ising model where the variables take values from {−1, 1}.
The Ising model was originally proposed by Ernst Ising and Wilhelm Lenz in the
1920s to understand the behaviour of magnetic materials. This model considers a
magnetic material as a set of molecules. The Molecules have spins which ‘align’
or ‘anti-align’ when a magnetic field is introduced and have pairwise interaction
with each other [3, 5]. Let V = {1, 2, . . . , n} be a collection of molecules and xi ∈
{−1, 1} represents the spin of molecule i. Let bi be the strength of the magnetic field
applied on molecule i and aij represents joint interaction field between neighbouring

1 Introduction to QUBO 5

spins of i and j . For a given spin vector x = (x1, x2, . . . , xn), the corresponding
energy value is defined as

E(x) =
n∑

i=1

n∑

j=1

aij xixj +
n∑

i=1

bixi.

At low temperature levels, the system tends to low energy states and hence the
sign of aij indicates possible spin direction. Thus, when aij > 0 the system favors
anti-aligned neighbouring spins, i.e. xixj = −1 leaving aij xixj < 0. Likewise,
when aij < 0 the spins xi and xj are likely to align; i.e. xixj = 1 leaving
aij xixj < 0. This simple hypothetical model has been validated through experi-
mental considerations by physicists for decades [10, 40, 61–63]. This underlying
model is the basis of some of the current quantum inspired computing machines [5]
which essentially brings a system to its lowest energy level which in turn indirectly
computes the minimum of the energy function (maximum of−E(x)) over variables
that takes values−1 or 1.

The associated optimization problem, presented in the maximization problem,
can be stated as

Maximize yTAy+ bTy
Subject to

y ∈ {−1, 1}n

where A is an n × n real valued matrix and bT = (b1, b2, . . . , bn) is a row vector
from R

n and y is a column vector in {−1, 1}n. We refer to this version of QUBO as
the Ising QUBO.

The models QUBO and the Ising QUBO are equivalent from an optimality
point of view. Note that the linear transformation xi = 1

2 (yi + 1) for i =
1, 2 . . . , n reduces the QUBO (Q, c) to the Ising QUBO (A, b) where A = 1

4 Q,

bi = 1
4

(
2ci +∑n

j=1(qij + qji)
)

for i = 1, 2, . . . , n along with an additive

constant q0 = 1
4

(∑n
i=1

∑n
j=1 qij +∑n

i=1 ci

)
, which can be discarded. Similarly,

an instance (A, b) of the Ising QUBO can be reduced to an instance (Q, c) of
QUBO using the transformation yi = 2xi − 1 for i = 1, 2 . . . , n with Q = 4A,
c = 2b+ 2AT e+ 2Ae along with the additive constant cT e+ eTAe.

The original Ising model was in fact a special case of the Ising QUBO. There
are various extensions and generalizations of this popular model. For a historical
account of various developments related to this model, we refer to the survey
papers [10, 40, 61–63]. Although the name ‘Ising model’ is widely accepted within
the physics community, it is not without controversy. For example, Barry Simon in
his book on The Statistical Mechanics of Lattice Gases [75] writes:

Lattice models are caricatures invented to illuminate various aspects of elementary statis-
tical mechanics, especially the phenomena of phase transitions and spontaneously broken
symmetry. The simplest of all models is the Ising (or Lenz-Ising) model and this model

6 A. P. Punnen

was suggested to Ising by his thesis adviser, Lenz. Ising solved the one-dimensional model,
..., and on the basis of the fact that the one-dimensional model had no phase transition,
he asserted that there was no phase transition in any dimension. As we shall see, this is
false. It is ironic that on the basis of an elementary calculation and erroneous conclusion,
Ising’s name has become among the most commonly mentioned in the theoretical physics
literature. But history has had its revenge. Ising’s name, which is correctly pronounced “E-
zing,” is almost universally mispronounced “I-zing.”

Such discussions are probably important in physics to put contributions to
scientific developments in context. We continue to use the terminology QUBO and
Ising QUBO to distinguish between the nature of the underlying variables and to
recognize the linkages between the Ising model and Ising QUBO.

For QUBO, we have seen that the linear term can be absorbed into the Q matrix
or the diagonal of Q can be extracted and added to the linear term without altering
the optimal solutions set. It is possible to discard the diagonal elements of A from
the Ising QUBO since these elements simply contribute a constant value to any
feasible solution. Thus, it is customary to assume that diagonal entries of A are
zeros. Further, it is possible to reformulate Ising QUBO without the linear term [18,
38]. Define the (n+ 1)× (n+ 1) matrix Ā where

āij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aij , if 1 ≤ i, j ≤ n

1
2bi for j = n+ 1, i = 1, 2, . . . , n

1
2bj for i = n+ 1j = 1, 2, . . . , n

0 for i = j = n+ 1.

Now, consider the Ising QUBO,

IQB: Maximize yTĀy
Subject to

y ∈ {−1, 1}n+1.

Note that if y is a solution to the Ising QUBO IQB then−y is also a solution. Further,
if both y and −y have the same objective function value in IQB. Thus, without loss
of generality we can assume that yn+1 = 1 in an optimal solution to IQB. Now, it
can be verified that IQB is equivalent to the Ising QUBO.

The validity of the Ising model is not restricted to physics. Its relevance has been
established in various other fields such as finance, biology, psychology, sociology
etc. For example, the Ising model can be adapted to study human behavior by
interpreting similarity between the behaviour of molecules and the behaviour of
human, as argued by Galam [24]. Specific applications of the Ising QUBO from this
point of view can be found in [49, 77]. Applications of QUBO and the Ising QUBO
are covered in detail in Chap. 8.

1 Introduction to QUBO 7

1.3 Representations of the Q Matrix

Let fQ,c(x) = xTQx + cTx denote the objective function of the instance (Q, c) of
QUBO. We remove the suffix Q, c from fQ,c when the explicit consideration of Q
and c is unimportant. An instance (Q′, c′) of QUBO is an equivalent representation
of the instance (Q, c) if

1. fQ,c(x) = fQ′,c′(x) for all x ∈ {0, 1}n
2. Q and Q′ belongs to R

n×n, c and c′ belongs to R
n.

Equivalent representations, although preserving optimality, could generate instances
with different structural properties that may be exploited to obtain computational
advantages. Let us now look at some simple and commonly used equivalent
representations of QUBO [65]. More involved equivalent representations and
corresponding applications in computing strong lower bounds are discussed in
Chaps. 6 and 7.

Remark 1.1 (QT, c) and
(

1
2

(
Q+QT

)
, c
)

are equivalent representations of (Q, c).

The proof of this remark is straightforward. Note that 1
2

(
Q+QT

)
is a symmetric

matrix. Thus, it is possible to assume without loss of generality that the matrix Q
in the definition of QUBO is symmetric and this assumption is required for some of
the algorithms to solve the problem and in computing certain types of lower bounds.
For any matrix Q ∈ R

n×n, diagV(Q) is the diagonal vector of Q. i.e. diagV(Q) is
the vector of size n and its ith element is qii .

Remark 1.2 ([69]) If S is a skew-symmetric matrix, D is a diagonal matrix, Q′ =
Q+ S+ D, and c′ = c− diagV(D), then (Q′, c′) is an equivalent representation of
(Q, c).

The proof of Remark 1.2 follows from the fact that xTSx = 0 for any skew-
symmetric matrix S and x2

i = xi for all binary variables xi . Choosing S and D
appropriately, we can get different standard representations of Q. For example,
choose D such that dii = −qii for i = 1, . . . , n and choose S such that

sij =

⎧
⎪⎪⎨

⎪⎪⎩

qji if j > i

−qij if j < i

0 otherwise.

Then, the resulting matrix Q′ is upper triangular with zeros on the diagonal. This
is a common representation used in the QUBO literature and is also assumed in
some of the chapters in this book. If we choose S as the zero matrix and dii = M

for i = 1, . . . , n, where M is a sufficiently large nonnegative number, the resulting
matrix Q′ will be positive semidefinite. Consequently, without loss of generality one
may assume Q to be positive semidefinite. When Q is symmetric and not positive
semidefinite, choosing M to be the negative of the smallest eigenvalue of Q is

8 A. P. Punnen

sufficient to make Q′ to be positive semidefinite [32]. This makes the continuous
relaxation of the objective function of QUBO a convex quadratic function. In a
similar way, choosing M as a sufficiently small negative number, we can get a
representation of QUBO where the Q matrix is negative semidefinite and thereby
making the continuous relaxation of the objective function of QUBO a concave
quadratic function.

A QUBO (Q, c) of size n can be represented as a QUBO (Q′, 0) of size n + 1
such that the row sum and column sums of Q′ are zeros. We call this the zero sum
representation. Without loss of generality assume c = 0. From the instance (Q, 0)

construct the matrix Q′ as

q ′ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qij if i, j ≤ n

−∑n
k=1 qik if j = n+ 1, i ≤ n

−∑n
k=1 qkj if i = n+ 1, j ≤ n

∑n
k=1

∑n
�=1 qk� if i = n+ 1, j = n+ 1

It can be verified that the row and column sums of the matrix Q′ are zeros.
Consequently, the sum of all elements of Q′ is also zero. If xn+1 is zero in an optimal
solution for (Q′, 0) then (Q′, 0) is equivalent to (Q, 0). Let x̄ = e− x where e is the
all one vector in R

n+1.

Lemma 1.1 If row and column sums of Q′ are zeros, then xT Q′x = x̄T Q′x̄ for all
x ∈ {0, 1}n+1.

Proof x̄T Q′x̄ = (e − x)T Q′(e − x) = eT Q′e − xT Q′e − eT Q′x + xT Q′x = xT Q′x.
The last equality follows from the fact that row and column sums of Q′ are zeros,
which makes eT Q′e = 0, xT Q′e = 0 and eT Q′x = 0. ��
From Lemma 1.1, if x is an optimal solution to (Q′, 0), then x̄ is also an optimal
solution. Thus, xn+1 = 0 in one of these optimal solutions of (Q′, 0) and hence
(Q′, 0) and (Q, 0) are equivalent.

1.4 Some Equivalent Optimization Problems

We have seen that the problem of computing the maximum value principal minor
of an n × n matrix, the maximum weight induced subgraph problem, and the Ising
QUBO are alternative ways of representing a QUBO. In this section, we discuss
some additional problems that are equivalent to QUBO and these equivalent forms
are used in some of the chapters to follow to derive structural properties and to
develop solution algorithms.

1 Introduction to QUBO 9

1.4.1 QUBO as a Bilinear Program

In this subsection, we assume that Q is symmetric and positive semidefinite. As
discussed in the previous section, this assumption is without loss of generality. Then
the continuous relaxation of QUBO is to

QUBO(C): Maximize f (x) = xTQx+ cTx

Subject to: x ∈ [0, 1]n

Since Q is symmetric and positive semidefinite, f (x) is a convex function and
hence there exists an optimal solution to QUBO(C) which at an extreme point of
the hypercube [0, 1]n. Now consider the hypercube bilinear program

HBLP: Maximize η(x, y) = xTQy+ 1
2 cTx+ 1

2 cTy

Subject to: x ∈ [0, 1]n, y ∈ [0, 1]n

Lemma 1.2 ([51]) There exists an optimal solution (x∗, y∗) to HBLP such that both
x∗ and y∗ are extreme points of the hypercube [0, 1]n.
Proof Suppose that (x0, y0) is an optimal solution to HBLP. Now fix y = y0 in
HBLP and let x̄ be an optimal extreme point solution of the resulting linear program.
Then (x̄, y0) is an optimal solution to HBLP. Next fix x = x̄ in HBLP and let ȳ be
an optimal extreme point solution of the resulting linear program. Then (x̄, ȳ) is an
optimal solution to HBLP and this completes the proof. ��

Let us now prove a property of a symmetric positive semidefinite matrix which
is used in the proof of the theorem that follows.

Lemma 1.3 If Q is a symmetric positive semidefinite matrix such that xT Qx = 0
then Qx = 0.

Proof Since Q is symmetric and positive semidefinite, there exists a matrix B such
that Q = BT B. Then, xT Qx = xTBTBx = (Bx)T (Bx) = ||Bx||2. Thus, xT Qx = 0
implies Bx = 0 and hence Qx = BTBx = 0. ��
We now show that QUBO is equivalent to HBLP.

Theorem 1.1 ([50, 51]) If (x∗, y∗) is an optimal extreme point solution of HBLP
then both x∗ and y∗ are optimal solutions of QUBO(C). Conversely, if x∗ is an
optimal extreme point solution of QUBO(C) then (x∗, x∗) is an optimal solution to
HBLP.

Proof Let (x∗, y∗) be an optimal extreme point solution of HBLP and x0 be an
optimal extreme point solution of QUBO(C). Then,

f (xo) ≥ f (x∗) and f (x0) ≥ f (y∗). (1.1)

10 A. P. Punnen

Further,

η(x∗, y∗) = max{η(x, y) : x, y ∈ [0, 1]n}
≥ max{η(x, x) : x ∈ [0, 1]n} = f (x0) (1.2)

Since (x∗, y∗) is an optimal solution to HBLP,

η(x∗, y∗)− η(x∗, x∗) ≥ 0 and η(x∗, y∗)− η(y∗, y∗) ≥ 0 (1.3)

But

η(x∗, y∗)− η(x∗, x∗) = (x∗)T Q(y∗ − x∗)+ 1

2
cT (y∗ − x∗) and (1.4)

η(x∗, y∗)− η(y∗, y∗) = (y∗)T Q(x∗ − y∗)+ 1

2
cT (x∗ − y∗) (1.5)

From (1.3), (1.4) and (1.5) we have,

(x∗)T Q(y∗ − x∗)+ 1

2
cT (y∗ − x∗) ≥ 0 and (1.6)

(y∗)T Q(x∗ − y∗)+ 1

2
cT (x∗ − y∗) ≥ 0. (1.7)

Adding (1.6) and (1.7), we get (x∗−y∗)T Q(x∗−y∗) ≤ 0. Since Q is symmetric and
positive semidefinite, from Lemma 1.3, Q(x∗ − y∗) = 0. Substituting this in (1.6)
and (1.7) we get cT (x∗ − y∗) = 0. Thus from (1.4) and (1.5) we have

η(x∗, y∗) = η(x∗, x∗) = η(y∗, y∗).

But η(x∗, x∗) = f (x∗) and η(y∗, y∗) = f (y∗). Thus,

η(x∗, y∗) = f (x∗) = f (y∗) (1.8)

From (1.1) and (1.8), η(x∗, y∗) ≤ f (x0) and the result follows in view of (1.2) and
(1.8). ��

1.4.2 The Maximum Cut Problem and QUBO

Let G = (V ,E) be a graph with V = {1, 2, . . . , n} and for each edge (i, j) ∈ E a
weight wij is prescribed. For any S ⊆ V , the pair (S, V \ S) is called a cut in G.

1 Introduction to QUBO 11

The weight of the cut (S, V \ S) is

w(S, V \ S) =
∑

i∈S,j∈V \S,(i,j)∈E

wij .

In general, our definition of a cut allows the possibility that S = ∅ or S = V and in
either case w(S, V \ S) = 0. The minimum cut problem seeks a cut (S, V \ S) with
minimum w(S, V \ S) value. When wij ≥ 0 for all (i, j) ∈ E, we normally do not
permit S = ∅ or V for the minimum cut problem since otherwise the trivial solution
S = ∅ is optimal. Likewise, the maximum cut problem seeks a cut (S, V \ S) with
maximum w(S, V \ S) value. When wij ≥ 0 for all (i, j) ∈ E, the minimum
cut problem is solvable in polynomial time [44] but the maximum cut problem
is NP-hard [23]. When wij is allowed to take positive and negative values, both
minimum cut and maximum cut problems are NP-hard. We now observe that QUBO
and the maximum cut problem are essentially the same, presented under different
frameworks [7, 33, 38].

Let x ∈ {0, 1}n and x̄ = e− x where e is the all-one vector in R
n. An x ∈ {0, 1}n

is an incidence vector of S ⊆ V if and only if xi = 1 for all i ∈ S. Let Q be
the weighted incidence matrix of G. Define qij = qji = wij if (i, j) ∈ E (i.e.
i and j are adjacent in G) and zero, otherwise. Note that Q is symmetric. Then,
for any cut (S, S̄) (with S̄ = V \ S) and the incidence vector x of S, we have
w(S, V \ S) = xTQx̄. For example, consider the graph below with the associated
edge weights and the corresponding matrix Q (Fig. 1.1).

Fig. 1.1 An instance of WMCP

12 A. P. Punnen

Now, choose the cut (S, S̄) where S = {1, 4} and the incidence vector x =
(1, 0, 0, 1, 0)T associated with S. Then, w(S, S̄) = −24 = xTQx̄.

Thus, the maximum cut problem can be written as

max
S⊆V

w(S, V \ S) = max
x∈{0,1}n

xTQx̄ (1.9)

For calculating xTQx̄, the diagonal elements of Q are irrelevant. For any n × n

matrix Q,

xTQx̄ =
n∑

i=1

n∑

j=1

qij xi x̄j =
n∑

i=1

n∑

j=1

qij xi(1− xj) =
n∑

i=1

rixi −
n∑

i=1

n∑

j=1

qij xixj

(1.10)

where ri =∑n
j=1 qij . Define the n× n matrix Q̂ = (

q̂ij

)
where

q̂ij =
{
−qij if i �= j

ri − qii if i = j.

Then xTQx̄ = xTQ̂x, establishing that the maximum cut problem can be formulated
as a QUBO. We now observe that any instance, say (Q, c), of QUBO can be
formulated as a maximum cut problem. To see this, from Eq. (1.10),

xT Qx+ cT x = rT x− xT Qx̄+ cT x = (r+ c)T x− xT Qx̄ (1.11)

where r = (r1, r2, . . . , rn).
Now, consider the graph G′ = (V ′, E′) where V ′ = {0, 1, 2, . . . , n}. The edge

set E′ = E ∪ E0 where E = {(i, j) : qij �= 0; i, j = 1, 2, . . . , n, i �= j } and
E0 = {(0, i) : ri + ci �= 0}. Now, define the weight wij of the edge (i, j) as −qij

if (i, j) ∈ E and −(rj + cj) for (0, j) ∈ E0. Let α = ∑n
i=1(ri + ci). For any cut

(S, S̄) in G′, without loss of generality assume that the node 0 ∈ S and consider
the binary variables x1, x2, . . . , xn with xi = 1 if and only if i ∈ S. Let w(S, S̄) be
the value of the cut (S, S̄) in G′ with the edge weight function w. Then, it can be
verified that w(S, S̄) + α = xT Qx + cT x. Thus, any instance (Q, c) of the QUBO
with n variables can be formulated as a maximum weight cut problem on a graph
with n+ 1 nodes.

We now illustrate this construction using the following example. Let

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 10 −5 −8 6
10 0 3 2 −4
−5 3 0 5 0
−8 2 5 0 8
6 −4 0 8 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−3
−5
11
−3
−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 Introduction to QUBO 13

Fig. 1.2 The instance of
WMCP equivalent to (Q, c)

Then, (r + c)T = (0, 6, 14, 4, 8) and α = 32. The graph G′ constructed following
the procedure discussed above, is given in Fig. 1.2. The numbers on the edges are
the corresponding weights. Edges with weight zero are removed from the graph.

The QUBO formulation of the maximum cut problem is also evident from the
sum of squares formulation of the maximum cut problem given by

max
S⊆V

w(S, V \ S) = max
x∈{0,1}n

∑

(i,j)∈E

wij (xi − xj)
2.

Another popular formulation of the maximum cut problem is obtained by using
variables that take values −1 or 1. Define yi = 1 if i ∈ S and yi = −1 if i ∈ V \ S.
Assume that the edges of the graph G are labelled such that (i, j) ∈ E implies i < j

and wij = 0 if (i, j) /∈ E. Consider the symmetric matrix W. Then,

w(S, V \ S) =
∑

i∈S,j∈V \S
(i,j)∈E

wij = 1

2

n∑

i=1

n∑

j=i+1

wij (1− yiyj)

= 1

4

n∑

i=1

n∑

j=1

wij (1− yiyj) = 1

4

n∑

i=1

n∑

j=1

wij

(
y2
i + y2

j

2
− yiyj

)

= 1

4

⎛

⎝−
n∑

i=1

n∑

j=1

wijyiyj + 1

2

n∑

i=1

(n∑

j=1

wij

)
y2
i +

1

2

n∑

j=1

(n∑

i=1

wij

)
y2
j

⎞

⎠

= 1

4

⎛

⎝−
n∑

i=1

n∑

j=1

wijyiyj +
n∑

i=1

(n∑

j=1

wij

)
y2
i

⎞

⎠ = 1

4
yT Ly

14 A. P. Punnen

where L = D−W and D is a diagonal matrix such that dii =∑n
j=1 wij assuming

wij = 0 for (i, j) /∈ E. Thus, the maximum cut problem can be formulated as the
Ising QUBO (1

4 L, 0).
Let G = (V ,E) be a weighted graph with edge weight wij for each (i, j) ∈

E and V = {1, 2, . . . , n}. Choose wij = 0 if (i, j) /∈ E and define the weight
matrix W as the n × n matrix with its (i, j)th element wij . Let D be the weighted
degree matrix which is the diagonal matrix with dii =∑n

j=1 wij . Then the weighted
Laplacian matrix of G is L = D−W . The matrix L is positive semidefinite and the
row and columns sums of the matrix is zero. Note that the matrix L constructed in
our reduction from the maximum weight cut problem to the Ising QUBO is precisely
the Laplacian matrix of G.

In fact, any Ising QUBO can be written as a maximum cut problem as well. To
see this, consider an instance (A, b) of the Ising QUBO in n variables. Without loss
of generality, assume that A is symmetric and b is the zero vector. Now, consider
the graph G = (V ,E) where V = {1, 2, . . . , n} and E = {(i, j) : aij �= 0}.
Choose the weight of the edge (i, j) ∈ E as −aij and let L be the corresponding
weighted Laplacian matrix. Then, A = L + D where D is a diagonal matrix with
dii = −lii + aii . For any y ∈ {−1, 1}n,

yTAy = yTLy + yTDy = yTLy + tr(D)

where tr(D) is the trace of D which is a constant. Thus an optimal solution to the
Ising QUBO (A, 0) is obtained by solving the Ising QUBO (L, 0) which is precisely
the maximum cut problem on G with weights −aij for (i, j) ∈ E.

1.4.3 Equivalence with the Stable Set Problem

We have seen that the maximum weight stable set problem can be formulated
as a QUBO. We now show that any instance of QUBO can be formulated as a
maximum weight stable set problem. Our discussion here follows the paper by
Hammer, Hansen and Simeone [35]. First, let us rewrite the objective function
of a QUBO where all the quadratic terms have non-negative coefficients. After
rewriting, the quadratic terms could involve both the original binary variables and
their complements. Recall that

f (x) = xT Qx+ cT x =
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

qij xixj +
n∑

i=1

(qii + ci)xi,

where P = {(i, j) : qij > 0, i �= j } and N = {(i, j) : qij < 0, i �= j }. Also, let
Nj = {i : (i, j) ∈ N} and ρj = ∑

i∈Nj
qij . Let x̄i = 1 − xi be the complement of

1 Introduction to QUBO 15

xi . i.e. xi ∈ {0, 1} if and only if x̄i ∈ {0, 1}. Now,

f (x) =
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

qij (1− x̄i)xj +
n∑

i=1

(qii + ci)xi

=
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

(−qij)x̄ixj +
∑

(i,j)∈N

qij xj +
n∑

i=1

(qii + ci)xi,

=
∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

(−qij)x̄ixj +
n∑

i=1

(qii + ci + ρi)xi (1.12)

= h(x), say.

Note that the coefficients of xixj and x̄ixj in h(x) are positive. This representation
h(x) of f (x) is sometimes referred to as Rhys form [35] indicating an early
work on a special case of QUBO [72] and is one of the posiform representations
of f (x) [7, 8, 35] when viewed as a pseudo-Boolean function. For interesting
properties of posiforms of the QUBO objective function, we refer to Chap. 5.
Note that maximizing f (x) over xi ∈ {0, 1} is equivalent to maximizing h(x)

over xi, x̄i ∈ {0, 1}. We now show that the problem of maximizing h(x) over
xi, x̄i ∈ {0, 1} is equivalent to solving a maximum weight stable set problem. The
proof is based on a construction given in [35].

For each (i, j) ∈ P ∪ N introduce a node vij with weight |qij |. Also, for i =
1, 2, . . . , n, introduce two nodes i and i ′ with respective weights wi = qii + ci +
ρi +M and wi′ = M , where M is a large positive number. Now introduce the edges
(vij , i

′), (vij , j ′) for each (i, j) ∈ P , the edges (vij , i), (vij , j ′) for each (i, j) ∈ N .
Finally connect each node i with node i ′ by an edge (i, i ′), for i = 1, 2, . . . n. Let
G′ = (V ′, E′) be the resulting graph.

Define the product node variables yij where

yij =
{

1 if vertex vij is selected

0 if vertex vij is not selected.

Similarly, define the selection variables for nodes i and i ′ as

xi =
{

1 if vertex i is selected

0 if vertex i is not selected
and x ′i =

{
1 if vertex i ′ is selected

0 if vertex i ′ is not selected

Then, the standard integer programming formulation of the maximum weight stable
set problem (MWSSP) on G′ is

SSIP: Maximize
∑

(i,j)∈P

qij yij +
∑

(i,j)∈N

−qij yij +
n∑

i=1

(qii + ci + ri +M) xi +
n∑

i=1

Mx ′i

16 A. P. Punnen

Subject to:

yij + x ′i ≤ 1

yij + x ′j ≤ 1

⎫
⎬

⎭
for (i, j) ∈ P (1.13)

yij + xi ≤ 1

yij + x ′j ≤ 1

⎫
⎬

⎭
for (i, j) ∈ N (1.14)

xi + x ′i ≤ 1, i = 1, 2, . . . , n, (1.15)

yij , xi, x ′i ∈ {0, 1}. (1.16)

Theorem 1.2 If (y, x, x′) is an optimal solution to the SSIP defined above, then x
is an optimal solution to the QUBO with objective function f (x).

Proof Recall that optimizing f (x) over x ∈ {0, 1}n is equivalent to optimizing h(x)

over x, x̄ ∈ {0, 1}n. Let φ(y, x, x′) denote the objective function of SSIP. Since M is
large enough, x ′i = 1 − xi in every optimal solution to SSIP on G′ for otherwise, a
better solution can be obtained. The inequalities (1.13) imply that yij ≤ min{xi, xj }
in every optimal solution and hence yij = 0 if at least one of xi or xj is zero. If
xi = xj = 1 then, yij = 1 in an optimal solution since qij > 0 for (i, j) ∈ P .
Thus yij = xixj in an optimal solution of SSIP on G′. Similarly, we can show that
yij = x ′ixj in an optimal solution. Noting that x ′i = 1− xi = x̄i , we have

φ(y, x, x′) = h(x)+ nM (1.17)

for every optimal solution (y, x, x′) of SSIP on G′.
Conversely, for any x ∈ {0, 1}n define yij = xixj for all (i, j) ∈ P , yij = (1−xi)xj

for all (i, j) ∈ N , and x ′i = x̄i = 1− xi . The solution (y, x, x′) constructed above is
indeed a feasible solution to SSIP on G′ satisfying

φ(y, x, x′) = h(x)+ nM (1.18)

and the result follows. ��
Example 1.1 Consider the QUBO with objective function

f (x) = 7x1x2 − 3x1x3 − 12x1x4 + 4x2x3 + 8x2x4 + 3x1 − 10x2 + 5x4.

Then, P = {(1, 2), (2, 3), (2, 4)} and N = {(1, 3), (1, 4)}. The cost matrix Q, the
sets Ni, i = 1, 2, 3, 4, and the values ρi and qii+ci+ρi, for i = 1, 2, 3, 4 are given

1 Introduction to QUBO 17

Fig. 1.3 The graph for the maximum weight stable set problem constructed from the QUBO in
Example 1.1.

below

Q =

⎛

⎜
⎜
⎝

0 7 −3 −12
0 0 5 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

i Ni ρi qii + ρi + ci

1 ∅ 0 3
2 ∅ 0 −10
3 {1} −3 −3
4 {1} −12 −7

Now construct graph G′ = (V ,E) for the stable set problem as discussed above.
The resulting graph is given in Fig. 1.3. In the figure, the numbers shown outside
the nodes represent the weight of the node.

It can be verified that x1 = 0, x2 = x3 = x4 = 1 is an optimal solution to
the QUBO with optimal objective function value 7. An optimal solution to the con-
structed maximum weight stable set problem is S = {v13, 1′, v14, 4, v23, v24, 2, 3}
with value equal to 7 + 4M . Also, the QUBO solution recovered from S is x1 =
0, x2 = x3 = x4 = 1 and this is optimal with optimal objective function value 7.

Considering the equivalence between the maximum weight stable set problem
and the maximum weight clique problem, we can see that QUBO is equivalent to
the maximum weight clique problem as well.

1.4.4 QUBO and the Generalized Stable Set Problem

Let G = (V ,E) be a graph and ci be the weight associated with vertex i ∈ V .
Also, for each edge (i, j) ∈ E a cost qij is given. Recall that a stable set in G is

18 A. P. Punnen

a subset S of V such that no two nodes in S are adjacent in G. In the generalized
stable set problem [37, 39, 65], we relax the restriction that no two vertices in S

are adjacent by imposing a penalty. That is, if two vertices in S are adjacent in G,
a penalty qij is incurred. The generalized stable set problem on a complete graph
is precisely a QUBO. If G is not complete, we can define qij = 0 for (i, j) /∈ E

to yield a QUBO formulation. The generalized stable set problem and some of its
variations are studied by many authors [4, 37, 39, 65].

1.4.5 Quadratic Pseudo-Boolean Optimization

A quadratic function in variables X = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n} where
xi, x̄i ∈ {0, 1} is called a quadratic pseudo-Boolean function (quadratic PBF) [8].
The objective function xT Qx̄ of the maximum-cut problem is a quadratic PBF and
so is the objective function f (x) = xT Qx + cT x of QUBO. A quadratic PBF
is in posiform if all associated coefficients (except possibly the constant term)
are positive. A posiform is homogeneous if the associated constant is zero. A
homogeneous posiform ζ can be written as

ζ(x, x̄) =
∑

i<j

(
aij xixj + bij x̄ixj + cij xix̄j + dij x̄i x̄j

)+
n∑

i=1

(αixi + βix̄i)

The function h(x) given in Eq. (1.12) has positive coefficients for quadratic terms
but the associated linear terms still have positive and negative coefficients. Note that
−xi = x̄i − 1 and −x̄i = xi − 1. Using these transformations, we can construct
a posiform h1(x, x̄) such that f (x) = α1 + h1(x, x̄) for all x ∈ {0, 1} and the
coefficients of h1 are positive. Likewise, we can construct a posiform h2(x, x̄) such
that f (x) = α2 − h2(x, x̄) for all x ∈ {0, 1}n.

Lemma 1.4 ([35]) f (x) = α1 − ζ 1(x, x̄) = α2 + ζ 2(x, x̄), where ζ 1 and ζ 2 are in
homogeneous posiform and α1 and α2 are constants.

Proof Without loss of generality, we assume that the matrix Q is lower triangular
and the diagonal entries are zero (see Sect. 1.3). Thus

f (x) =
∑

i<j

qij xixj +
n∑

i=1

cixi .

Note that when xi and xj are binary variables,

xixj = 1

2

(
xixj + x̄i x̄j + xi + xj − 1

)

1 Introduction to QUBO 19

and

−xixj = 1

2

(
xix̄j + x̄ixj − xi − xj

)

Substitute these values in f (x) and simplify. Then, in the linear terms, if coefficient
of xi or x̄i is negative, make a substitution using the equalities −xi = x̄i − 1 and
−x̄i = xi − 1 and we get the first equality in the lemma. An analogous proof can be
given for the second part also. ��

The homogeneous posiforms ζ 1 and ζ 2 are not unique. The function h(x)

constructed in Eq. (1.12) have positive coefficients for all quadratic terms and can
be converted into posiform by applying the transformation for linear terms used in
the proof above. There are many other ways to obtain the required posiforms in the
lemma above.

Since ζ 1(x, x̄) and ζ 2(x, x̄) are positive for all x ∈ {0, 1}n, we have

α2 ≤ f (x) ≤ α1 for all x ∈ {0, 1}n.
Let α be the smallest value real number for which there exist a homogeneous

posiform ζ(x, x̄) such that f (x) = α − ζ(x, x̄). Then, f (x) ≤ α for all x ∈ {0, 1}n
and ζ(x, x̄) is called the complement of f (x). Thus, by computing the complement
of f (x) we get an immediate upper bound on f (x). For interesting discussions
on computing the best upper bound of this type and other related results, we refer
to [35].

1.5 Roof Duality

Consider the objective function of QUBO in Rhys form h(x). i.e.,

∑

(i,j)∈P

qij xixj +
∑

(i,j)∈N

(−qij)x̄ixj +
n∑

i=1

lixi .

Without loss of generality assume that qij = 0 if i > j . Recall that P = {(i, j) :
qij xixj ∈ h(x), i �= j, qij �= 0} and N = {(i, j) : qij x̄ixj ∈ h(x), i �= j, qij �= 0}.
The set inclusion notation qij xixj ∈ h(x) used here simply indicates that qij xixj is
a term in h(x).

For qij ≥ 0 and xi, xj ∈ {0, 1}, qij xixj ≤ λij xi + μij xj and qij x̄ixj ≤ λij (1 −
xi)+μij xj for all λij +μij = qij , λij ≥ 0, μij ≥ 0. A roof of h(x) is a linear 0-1
function of the form [35]

r(x,λ,μ) =
n∑

i=1

lixi +
∑

(i,j)∈P

(
λij xi + μij xj

)+
∑

(i,j)∈N

(
λij (1− xi)+ μij xj

)

(1.19)

20 A. P. Punnen

where λij + μij = qij and λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪N . By construction

h(x) ≤ r(x,λ,μ) for all x ∈ {0, 1}n.

Let G = (V ,E) be a graph with V = {1, 2, . . . , n} and E = P ∪ N . For each
i ∈ V , define the set of outgoing and incoming arcs at node i by

O(i) = {j ∈ V : (i, j) ∈ E} and I (i) = {k ∈ V : (k, i) ∈ E}.
Then the coefficient, pi(λ,μ), of xi in r(x,λ,μ) is given by

pi(λ,μ) = li +
∑

k∈I (i)

μki +
∑

j∈O(i)

δij λij ,

where

δij =
{

1 if (i, j) ∈ P

−1 if (i, j) ∈ N

Thus, r(x,λ,μ) can be written as

r(x,λ,μ) =
n∑

i=1

pi(λ,μ)xi +
∑

(i,j)∈N

λij

where λij +μij = qij , λij ≥ 0, μij ≥ 0. Then the roof dual of QUBO [7, 35], when
given in terms of h(x), is

Minimize max{r(x,λ,μ) : x ∈ {0, 1}n}
Subject to: λij + μij = qij for all (i, j) ∈ P ∪N

λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪N.

Since r(x,λ,μ) is linear in x, its maximum is attained when xi = 1 for all
pi(λ,μ) ≥ 0 and xi = 0 otherwise. i.e.,

max{r(x,λ,μ) : x ∈ {0, 1}n} =
n∑

i=1

max{0, pi(λ,μ)} +
∑

(i,j)∈N

λij .

Thus the roof dual [6, 35] can be written as

RD: Minimize
n∑

i=1

ui +
∑

(i,j)∈N

λij

Subject to: ui ≥ pi(λ,μ)

1 Introduction to QUBO 21

λij + μij = qij for all (i, j) ∈ P ∪N

λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪N

ui ≥ 0 for i = 1, 2, . . . , n.

Note that RD is a linear program and it is closely linked to network flows on
the support graph G. The optimal objective function value of RD provides an
upper bound for the optimal objective function value of QUBO. The dual of RD is
precisely the continuous relaxation of the linearization of the Rhys form of QUBO.
Thus, the upper bound obtained by the roof dual is precisely the upper bound
obtained by solving the continuous relaxation of the linearization of Rhys form of
QUBO. Let us take an example to illustrate the concept of roof dual.

Example 1.2 Let f (x) = 10x1x2 − 5x1x3 + 20x1x4 − 12x2x4 − 2x3x4 − 6x1 −
5x2 + 8x3 + 5x4. Then P = {(1, 2), (1, 4)} and N = {(1, 3), (2, 4), (3, 4)}. Using
the transformation xi = 1 − x̄i for (i, j) ∈ N we obtain the Rhys form h(x) given
by

h(x) = 10x1x2 + 5x̄1x3 + 20x1x4 + 12x̄2x4 + 2x̄3x4 − 6x1 − 5x2 + 3x3 − 9x4.

The support graph associated with h(x) is given below (Fig. 1.4).
Note that, O(1) = {2, 3, 4},O(2) = {4},O(3) = {4},O(4) = ∅ and I (1) =
∅, I (2) = {1}, I (3) = {1}, I (4) = {1, 2, 3}. Therefore,

p1(λ,μ) = −6+ λ12 − λ13 + λ14

P2(λ,μ) = −5− λ24 + μ12

P3(λ,μ) = 3− λ34 + μ13

P4(λ,μ) = −9+ μ14 + μ24 + μ34.

Then, the roof dual RD is given by,

RD: Minimize
n∑

i=1

ui + λ13 + λ24 + λ34

Subject to: u1 − λ12 + λ13 − λ14 ≥ −6

u2 + λ24 − μ12 ≥ −5

Fig. 1.4 The support graph
of h(x)

22 A. P. Punnen

u3 + λ34 − μ13 ≥ 3

u4 − μ14 − μ24 − μ34 ≥ −9

λij + μij = qij for all (i, j) ∈ P ∪N

λij ≥ 0, μij ≥ 0 for all (i, j) ∈ P ∪N

ui ≥ 0 for i = 1, 2, . . . , 4.

The dual of this linear program is

Maximize− 6x1 − 5x2 + 3x3 − 9x4 + 10y12 + 5y13 + 20y14 + 12y24 + 2y34

Subject to: y12 ≤ x1, y12 ≤ x2

y13 ≤ 1− x1, y13 ≤ x3

y14 ≤ x1, y14 ≤ x4

y24 ≤ 1− x2, y24 ≤ x4

y34 ≤ 1− x3, y34 ≤ x3

0 ≤ xi ≤ 1, i = 1, 2, 3, 4

yij unrestricted for all (i, j) ∈ P ∪N.

and this is the continuous relaxation of the linearization of h(x). (The notion of
linearization is discussed in Sect. 1.7 and Chap. 4 and 6.)

1.6 Model Building Using QUBO

Let us now look at some motivating applications of the QUBO model. For a detailed
discussion on the applications of QUBO and its power of providing a unifying
framework to represent a large class of combinatorial optimization problems we
refer to Chap. 2.

1.6.1 Person Detection and Tracking in a Crowded
Environment

Identifying and tracking people is an important problem within a variety of appli-
cation scenarios. These include, examination and exploration of group behaviour,
video surveillance, pedestrian detection systems, disaster management, among
others. The problem however is very complex, particularly due to the high level
of occlusions, and researchers in computer vision developed various techniques

1 Introduction to QUBO 23

to solve this problem making use of statistical machine learning, mathematical
modelling, and optimization [16, 73, 74]. Let us now discuss one such application
modelled as a QUBO by Rodriguez et al. [73].

Let N = {1, 2, . . . , n} be a set of points identified in an image as possible person
detection locations and let ci be an associated confidence score for location i, for
i ∈ N . The point i and the score ci can be estimated in different ways, as by
appropriately trained preprocessing algorithms. We are also given person density
information di (i.e. the number of people per pixel) estimated in a window of size
σ at location i, for i ∈ N . We want to find locations of people in the image
such that the sum of detector confidence score is maximized while making use
of the density information to minimize selection of locations with significantly
overlapping neighborhoods, which in turn minimizes potential counting errors
accumulated due to multiple detection of the same person. Figure 1.5a gives a
sample shot of a crowd and (b) represents the density contours. Part (c) of the figure
gives potential locations and (d) gives the filtered solution produced by QUBO. Note

Fig. 1.5 Person detection sample and crowd density contours

24 A. P. Punnen

that some of the red rectangles, that are potential locations, are either removed as
irrelevant or confirmed in the QUBO solution.1

Let x = (x1, x2, . . . , xn) ∈ {0, 1}n, where xi = 1 implies a detection at
location i is confirmed and 0, otherwise. Then cx measures the total confidence
score of ‘confirmed’ locations. To make sure that only valid configurations of
non-overlapping locations are selected, we construct a penalty matrix W, where
wij = −∞ if detections at locations i and j have significant area overlap ratio,
and 0 otherwise. Then, maximizing cT x + xTWx provides a meaningful model
to represent the person detection problem. This, in fact, is a variation of a model
proposed in [16].

To improve the accuracy of the model, Rodriguez et al. [73] introduced another
quadratic term penalizing the difference between the density values estimated in two
ways: (i) the vector d obtained using a regression-based density estimator and (ii)
the vector Ax counting the density of active detections for an appropriately defined
A matrix. This leads to the penalty term ||d−Ax||21. Then, the objective function to
be maximized is

cT x+ xTWx− α||d− Ax||21,

where x ∈ {0, 1}n and α is a parameter. This problem can be written as QUBO by
simplifying ||d− Ax||21 and combining it with xT Wx.

1.6.2 Module Flipping in Circuit Layout Design

Let us now look at another example of QUBO that arises in the layout design of
VLSI (very large scale system integration). Our discussion here is based on the
works of Boros and Hammer [7] and Cheng et al. [12]. In the layout design of
circuits, rectangular modules containing one or more pins are embedded in a base
board. Each pin on a module has a compatible pin on another module and these
compatible pairs need to be connected using horizontal and/or vertical wiring. The
reliability has an inverse relationship with wire length and hence we are interested
in minimizing the total wire length. Each module can be placed in four different
ways on its designated space on the base board by flipping horizontally, vertically,
or both. In Fig. 1.6a, we give a layout of modules and in Fig. 1.6b we give a layout
after vertically flipping module 1, horizontally flipping module 2, and a vertical flip
followed by a horizontal flip on module 5. The compatible pairs of pins are labelled
using the same alphabets. For example, a pin with label a needs to be connected to
another with the same label a and so on.

1 Figure 1.5 was provided by Mikel Rodriguez and reproduced here with his permission.

1 Introduction to QUBO 25

Fig. 1.6 Module flipping example. Applied a vertical flip on module 1, horizontal flip on module
2, vertical flip followed by horizontal flip on module 5. (a) Original position. (b) After flip
operations are applied on modules 1, 2, and 5

The module flipping problem is to find the orientations of the placement of each
module on the base board, identified by one or more flipping operations, so that
the total wire length is minimized. This problem was originally proposed by Cheng
et al. [12] and they presented a maximum cut formulation, which as we know, is
equivalent to QUBO. Boros and Hammer [7] presented a direct QUBO formulation
of the problem and we discuss this model here.

Let N = {1, 2, . . . , n} be the collection of all modules placed on the base board
with an initial layout. Consider the binary decision variable xi which takes value
1 if module i is flipped horizontally, for i = 1, 2, . . . , n. Likewise, consider the
binary decision variable yi which takes value 1 if module i is flipped vertically, for
i = 1, 2, . . . , n. For each pair (i, j) of modules and (r, s) ∈ {0, 1} × {0, 1}, let
H

(r,s)
ij denotes the total length of horizontal wire segments which connects the pins

of modules i and j under the flipping sequence (r, s). For example, if (r, s) = (0, 0)

no horizontal flipping occurs for modules i and j , if (r, s) = (0, 1), only module
j is flipped horizontally, and so on. Similarly, let V

(r,s)
ij denotes the total length of

vertical wire segments which connects the pins of modules i and j under the flipping
sequence (r, s). Now, the total wire-length, as a function of flipping operation of the

26 A. P. Punnen

modules, can be expressed as

φ(x, y) =
n−1∑

i=1

n∑

j=i+1

(
H

(0,0)
ij x̄i x̄j +H

(0,1)
ij x̄ixj +H

(1,0)
ij xi x̄j +H

(1,1)
ij xixj

)

+
n−1∑

i=1

n∑

j=i+1

(
H

(0,0)
ij ȳi ȳj +H

(0,1)
ij ȳiyj +H

(1,0)
ij yi ȳj +H

(1,1)
ij yiyj

)

(1.20)

where x̄i = 1 − xi . Then, the optimal flipping of the modules corresponds to
assigning 0 − 1 values to the variables xi and yi for i ∈ N such that φ(x, y) is
minimized. It can be verified that minimization of φ(x, y) decomposes into two
problems, one with the x-variables and the other with the y-variables and each such
problem is a QUBO.

Related applications of QUBO in equivalent forms such as Maximum Cut,
weighted stable set etc., can be found in [3, 9, 15, 46, 54].

1.6.3 Side-Chain Positioning in Protein Design

The side chain positioning problem arises as a subproblem in protein structure
prediction which has a natural QUBO formulation. Our discussion here is based on
the works [11, 30, 31, 47]. While the formulation itself is straightforward, to make
the discussion clearer, let us very briefly review some related concepts, terminology,
and background information and for this purpose, we follow the articles [11, 31].

A protein molecule is composed of a chain of amino acids and each amino acid
consists of a centralized single carbon atom along with a hydrogen atom, an amino
group NH2, a carboxyl group COOH, and a side chain which characterizes the
amino acid. Carbon, hydrogen, the amino group, and the carboxyl group are called
the main atoms and the protein backbone is formed by a repeating sequence of the
main atoms (main chain) and a side chain is attached to the backbone for each
element of this sequence (Fig. 1.7).

Fig. 1.7 A chain of three amino acids. The labels S1, S2 and S3 indicate the corresponding side-
chains

1 Introduction to QUBO 27

The chemical composition of a protein molecule is specified by the sequence of
the associated amino acids. Every amino acid main chain has the freedom to rotate at
specified points. A side chain of amino acids (with the exception of glycine) can also
rotate at different points and the three dimensional structure of a protein is identified
by the location of its backbone (main chain) atoms and the combined rotations of
the main chain and the side chains. For an appropriate notion of energy, a protein
structure folds into a minimal energy state to reach chemical stability. Quoting
from [31], “Chemical stability of a protein comes from four sources: the internal
stability of the three-dimensional structure of its backbone; the internal stability of
each rotamer; the interaction of each rotamer with the main chain of the amino acid
it is attached to; and the chemical interactions of the rotamers that are positioned
close to each other, either on the protein sequence, or in three-dimensional space.”
In protein synthesis, we want to maximize the chemical stability using appropriate
quantitative stability measures.

The backbone structure is assumed to be given and our aim is to select one
rotamer (side-chain molecule) to be associated with each amino acid sequence in
the backbone. Let e0 be the stability measure for the backbone structure, which is
constant. Suppose that the backbone consists of m amino acid sequences and for
amino acid k, we select a rotamer from the candidate list Vk, k = 1, 2, . . . ,m.
For rotamer i ∈ Vk let ek

i be the contribution of i to the stability measure which
consists of the sum of the interaction stability measure of candidate rotamer i with
its associated amino acid k and the internal stability measure of rotamer i. For each
i ∈ Vk and j ∈ Vt , let ekt

ir be the stability measure due to the interaction between
rotamer i ∈ Vk and j ∈ Vt . This value depends on the nature of the rotamers
involved, the nature of the amino acids they attach to, and the proximity level of
i and j . Since the backbone is already known, the proximity level is also known.
The values e0, ek

i , and ekt
ir are estimated either by experiments or by theoretical

considerations. For our modeling purpose, it is not highly relevant the way these
values are obtained or their magnitudes. The side-chain positioning problem is to
select an ik from Vk for each k = 1, 2, . . .m such that

e0 +
m∑

k=1

ek
ik
+ 1

2

m∑

k=1

m∑

t=1

ekt
ik it

is maximized. Let us now formulate this problem as QUBO.
Let V = ∪m

k=1Vk . Without loss of generality, assume V = {1, 2, . . . , n}.
Construct the complete m-partite undirected graph G = (V ,E) where (i, j) ∈ E if
i ∈ Vk, j ∈ Vt , t �= k. Note that we need to select precisely one element for each Vk

for k = 1, 2 . . . , m. For each i ∈ V consider the binary decision variable xi where
xi = 1 if rotamer i is selected and, 0 otherwise. Define the n×n cost matrix Q with

28 A. P. Punnen

its (i, j)th element qij as

qij =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = j

−M if i �= jand i, j ∈ Vk for some k,

1
2ekt

rs if (i, j) ∈ E,

where M is a large positive number and the n vector cT = (c1, c2, . . . , cn) where
ci = ek

j if i ∈ V k and i = j . Now an optimal solution to the QUBO instance
(Q, c, max) gives an optimal solution to the side chain positioning problem. Note
that, no two elements from the same set Vk will be selected in an optimal solution
for any k because of the penalty value and since the objective function is of
maximization type, ci ≥ 0 for all i and ekt

rs ≥ 0 for all k, t, r, s at least one elements
from each Vk will be selected, establishing the validity of the model.

1.6.4 QUBO and Machine Scheduling

We now discuss a general framework of a special case of QUBO, which can be used
to model several important machine scheduling problems. A matrix Q is called a
half product matrix if it is upper triangular with diagonal elements zero and there
exist vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) such that qij = aibj for
i = 1, 2, . . . , n and j > i. A half-product QUBO is a special case of QUBO where
Q is a half-product matrix. Thus, a QUBO with a half-product matrix can be written
as

Maximize
∑

1≤i<j≤n

aibjxixj +
n∑

j=1
cjxj

Subject to
x ∈ {0, 1}n

The half-product QUBO was introduced by Badics and Boros [2] and independently
by Kubiak [52]. Despite the apparently simple special structure, the half-product
QUBO is still NP-hard since the subset sum problem is a special case of it [2].

Various single machine scheduling problems can be formulated as a half-product
QUBO. This includes, the single-machine variance minimization problem [2, 52],
Single machine scheduling to minimize total weighted earliness and tardiness[43]
and scheduling with controllable processing times [41]. The Ising version of the
half-product QUBO was considered by Kubiak [52], Amit [1], and Mattis [58].
Scheduling jobs on two machines to minimize makespan [43] as well as scheduling
on two machines to minimize total weighted completion time [43] can also be
formulated as a half-product QUBO. Let us discuss one such formulations using
the example of single machine scheduling with controllable processing times
(SCPT) [41].

1 Introduction to QUBO 29

There are n jobs to be processed on a single machine where the processing time
of jobs are variables. For job j , let the processing time pj ∈ [0, αj], j = 1, 2, . . . , n.
To schedule the jobs, one needs to identify the optimal values of the processing times
pj and then order the jobs so that the sum of the total weighted completion time∑n

j=1 wjCj and the total weighted processing time compression
∑n

j=1 vj (uj−pj)

is minimized. Here, Cj denote the completion time of job j . This scheduling
problem, denoted by SCPT, was first studied by Vickson [78, 79] and the half-
product QUBO formulation discussed here is from [41]. Vickson [78] showed that
there exists an optimal processing time vector p = (p1, p2, . . . , pn) such that
pj = 0 or αj . Combining this observation with the well-known weighted shortest
processing time rule (SWPT) [76], we can see that there exists an optimal solution to
SCPT such that jobs processing times pj = αj are sequenced in the non-decreasing
order of the ratios

αj

wj
[41]. With this observation, define the decision variables

xj =
{

0 if pj = 0

1 if pj = αj

and the problem SCPT is well defined when the vectors w = (w1, w2, . . . , wn), α =
(α1, α2, . . . , αn, and v = (v1, v2, . . . , vn) are given. Then, the objective function of
SCPT is to minimize f (x), where

f (x) =
n∑

j=1

wjxj

j∑

i=1

αixi +
n∑

j=1

vjαj (1− xj)

=
∑

1≤i<j≤n

αiwjxixj −
n∑

j=1

αj (vj − wj)xj +
n∑

j=1

vjαj

Note that
∑n

j=1 vjαj is a constant and can be discarded. Choosing, ai = αi, bi =
−wi and ci = αi(vi − wi), we can see that minimization of f (x) can be
accomplished by solving the half-product QUBO.

1.7 Mixed Integer Programming Formulations

Various mixed integer linear programming (MILP) formulations of QUBO are
discussed in detail in other chapters of this book. Most of the basic formulations
are based on writing the product of two variables (not necessarily both are of
binary type) as a new variable and force the definition of the underlying product
by imposing additional constraints, that may or may not exploit the sign of the
qij values. Early research work on these types of reductions goes back to 1960s
[13, 20, 29, 80, 81] where product of two binary variables are ‘linearized’. Later,
Glover [25, 26] and Glover and Woolsey [27] considered linearization of the

30 A. P. Punnen

product of a binary variable and a continuous variable. Most of these linearization
techniques can be presented under a general approximation framework introduced
by McCormick [59, 60].

Consider the bounded variables

l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2.

Then,

(x1 − l1)(u2 − x2) ≥ 0, (u1 − x1)(x2 − l2) ≥ 0

(x1 − l1)(x2 − l2) ≥ 0, and (u1 − x1)(u2 − x2) ≥ 0.

Expanding and rearranging the terms, we have

x1x2 ≤ l1x2 + u2x1 − l1u2

x1x2 ≤ l2x1 + u1x2 − l2u1

x1x2 ≥ l1x2 + l2x1 − l1l2

x1x2 ≥ u2x1 + u2x2 − u1u2

Now, let us replace the term x1x2 by a new variable w in the above inequalities and
we get

w ≤ l1x2 + u2x1 − l1u2 (1.21)

w ≤ l2x1 + u1x2 − l2u1 (1.22)

w ≥ l1x2 + l2x1 − l1l2 (1.23)

w ≥ u2x1 + u2x2 − u1u2 (1.24)

The inequalities (1.21) and (1.22) are called lower McCormick envelops and (1.23),
and (1.24) are called upper McCormick envelops [59, 60]. The variable w along
with the McCormick envelop inequalities provide an approximation to the product
x1x2. This approximation becomes exact when one of the variables x1 or x2 is
binary and it becomes the linearizations proposed by Glover [25, 26] and Glover
and Woolsey [27]. To see the validity of the linearization, without loss of generality,
assume x2 is binary. Then l2 = 0 and u2 = 1. When x2 = 0, the inequalities
(1.22) and (1.23) guarantees that w = 0. Likewise, when x2 = 1, inequalities
(1.21) and (1.24) guarantees that w = x1. The special case of McCormick envelop
inequalities involving binary variables leads to a natural MILP formulation of
QUBO which is the well-known Glover’s linearization Glover [25, 26]. When both
variables involved in a product are binary, McCormick envelop inequalities reduces
to Glover-Woolsey linearization [27]. We also want to highlight that the linearization
of product of two binary variables are reported in literature either explicitly or

1 Introduction to QUBO 31

implicitly, even prior to [27]. For example, Goldman [29] pointed out the works
of Fortet [20, 21] and Dantzig [13] in this context.

Replace the product xixj with a new variable wij in the objective function
of QUBO and force the equality xixj = wij by introducing the McCormick
envelop inequalities. The resulting MILP formulation, known as Glover-Woolsey
linearization or the standard linearization, is given below.

GW: Maximize
n∑

i=1

n∑

j=1

qijwij +
n∑

i=1

cixi

Subject to: wij − xi ≤ 0 for i, j ∈ {1, 2, . . . , n} (1.25)

wij − xj ≤ 0 for i, j ∈ {1, 2, . . . , n} (1.26)

xi + xj −wij ≤ 1 for i, j ∈ {1, 2, . . . , n} (1.27)

wij ≥ 0 for i, j ∈ {1, 2, . . . , n} (1.28)

xi ∈ {0, 1} for i = 1, 2 . . . , n. (1.29)

Recall the definition of the sets P and N introduced in Sect. 1.4.3. For (i, j) ∈ P

constraints (1.27) and (1.28) can be removed and for (i, j) ∈ N constraints
(1.25) and (1.26) can be removed. Thus GW becomes the reduced Glover-Woolsey
linearization

RGW: Maximize
n∑

i=1

n∑

j=1

qijwij +
n∑

i=1

cixi

Subject to: wij − xi ≤ 0 for (i, j) ∈ P (1.30)

wij − xj ≤ 0 for (i, j) ∈ P (1.31)

xi + xj −wij ≤ 1 for (i, j) ∈ N (1.32)

wij ≥ 0 for (i, j) ∈ N (1.33)

xi ∈ {0, 1} for i = 1, 2, . . . , n. (1.34)

The convex hull of solutions of GW is called the Boolean quadric polytope[64]
which is discussed in detail in Chap. 4. Various other MILP formulations of QUBO
are known in literature and most of them uses Glover-Woolsey linearization or
Glover’s linearization in one form or another. For a through discussion of this, we
refer to Chap. 6 and the recent papers [67, 68].

The continuous relaxation of GW (and RGW) is denoted by CGW (CRGW) and
it is obtained by replacing constraint (1.29) (constraint (1.34)) by xi ∈ [0, 1] for i =
1, 2 . . . , n. CGW and CRGW are linear programs and hence can be solved using
general purpose linear programming solvers. However, their special structure also

32 A. P. Punnen

brings us additional structural properties and efficient algorithms. Some of these
connections and linkages with roof duality is discussed in Chap. 5.

The polytope defined by the constraints of CGW is called the fractional Boolean
quadric polytope. Let us first present a useful necessary condition for a solution
(x, w) to be an extreme point of the fractional Boolean quadric polytope.

Lemma 1.5 If (x, w) is an extreme point of the fractional Boolean quadric polytope
then wij ∈ {0, min{xi, xj }, xi + xj − 1} for all i, j .
Proof Suppose (x, w) is an extreme point of the fractional Boolean quadric
polytope. Then, choose a cost matrix Q and a cost vector c such that (x, w) is
an optimal solution to CGW. Without loss of generality assume that qij �= 0 for
i �= j and ci �= 0 for all i. Clearly, by feasibility 0 ≤ wij ≤ min{xi, xj } for
every i, j, i �= j . If possible let 0 < whk < min{xh, xk} for some h, k, h �= k and
xh + xk − 1 �= whk . Define the solution (x, ŵ) where

ŵij =
{

wij + ε if (i, j) = (h, k)

wij Otherwise,

where ε �= 0. If qhk > 0 then (x, ŵ) is a feasible solution to CGW for sufficiently
small ε > 0 which is better that (x, w), contradicting the optimality of (x, w).
Similarly, if qhk < 0 then (x, ŵ) is a feasible solution to CGW for sufficiently
large ε < 0 which is better than (x, w), contradicting the optimality of (x, w). This
completes the proof. ��

We now prove the half integrality property of extreme points of the fractional
Boolean quadric polytope [64].

Theorem 1.3 If (x, w) is an extreme point of the fractional Boolean quadric
polytope the xi ∈ {0, 1, 1

2 } for all i and wij ∈ {0, 1, 1
2 } for all (i, j) ∈ P ∪N .

Proof Let F denote the fractional Boolean quadric polytope and (x, w) be an
extreme point. Let

E1 = {i : 0 < xi <
1

2
} and E2 = {i : 1

2
< xi < 1}.

If E1 ∪ E2 = ∅ then from Lemma 1.5, (x, w) is of the required type. So assume
that E1 ∪ E2 �= ∅. Now construct the solutions (x1, w1) and (x2, w2) as follows:
For ε > 0 let

x1
i =

⎧
⎪⎪⎨

⎪⎪⎩

xi + ε if i ∈ E1

xi − ε if i ∈ E2

xi Otherwise

and x2
i =

⎧
⎪⎪⎨

⎪⎪⎩

xi − ε if i ∈ E1

xi + ε if i ∈ E2

xi Otherwise.

1 Introduction to QUBO 33

From Lemma 1.5, wij ∈ {0, min{xi, xj }, xi + xj − 1}. Define

w1
ij =

⎧
⎪⎪⎨

⎪⎪⎩

min{x1
i , x1

j } if wij = min{xi, xj }
x1
i + x1

j − 1 if wij = xi + xj − 1

0 Otherwise

w2
ij =

⎧
⎪⎪⎨

⎪⎪⎩

min{x2
i , x2

j } if wij = min{xi, xj }
x2
i + x2

j − 1 if wij = xi + xj − 1

0 Otherwise

For sufficiently small ε > 0, (x1, w1) and (x2, w2) are feasible solutions. It can be
verified that (x, w) = 1

2 {(x1, w1)+ (x1, w1)}, contradicting the fact that (x, w) is an
extreme point and the result follows. ��

In Sect. 1.4 we observed that the maximum cut problem and QUBO are
equivalent. In this sense, an integer programming formulation of the maximum
cut problem provides an indirect integer programming representation of QUBO.
Consider a complete graph Kn = (V ,E) and let qij be the weight of edge
(i, j) ∈ E. Then the maximum cut problem in Kn can be written as an MILP

MCUT: Minimize
∑

i≤i<j≤n

qij xij

Subject to: xij + xik + xjk ≤ 2 for 1 ≤ i < j ≤ n

xij − xik − xjk ≤ 0 for 1 ≤ i < j ≤ n, k �= i, j

xij ∈ {0, 1} for 1 ≤ i < j ≤ n.

The convex hull of feasible solutions of MCUT is called the cut polytope. The
relationship between the Boolean quadric polytope and the cut polytope is discussed
in Chap. 4.

1.8 Conclusion

The primary goal of this chapter was to give a brief introduction to QUBO along
with basic definitions and motivating examples. Each of the chapters that follows is
more focussed and is on a specific aspect of QUBO providing a comprehensive and
in-depth analysis of the topic.

Acknowledgments I am thankful to Fred Glover and Navpreet Kaur for their feedback on an
earlier version of this chapter which improved the presentation. This work was partially supported
by an NSERC discovery grant.

34 A. P. Punnen

References

1. D.J. Amit, Modeling Brain Function: The World of Attractor Neural Networks (Cambridge
University Press, Cambridge, 1989)

2. T. Badics, E. Boros, Minimization of half-products. Math. Oper. Res. 23, 649–660 (1998)
3. F. Barahona, M. Grotschel, M. Junger, G. Reinelt, An application of combinatorial optimization

to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988)
4. R. Bar-Yehuda, S. Even, A local-ratio theorem for approximating the weighted vertex cover

problem. Ann. Discrete Math. 25, 27–45 (1985)
5. Z. Bian, F. Chudak, W.G. Macready, G. Rose, The Ising model: teaching an old problem new

tricks. D-Wave systems technical report, Aug 2010
6. E. Boros, P.L. Hammer, A max-flow approach to improved roof-duality in quadratic 0 − 1

minimization. RUTCOR Research Report RRR 15-1989, RUTCOR (1989)
7. E. Boros, P.L. Hammer, The Max-Cut problem and quadratic 0-1 optimization; polyhedral

aspects, relaxations and bounds. Ann. Oper. Res. 33, 151–180 (1991)
8. E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225

(2002)
9. E. Boros, P.L. Hammer, M. Minoux, D.J. Rader Jr., Optimal cell flipping to minimize channel

density in VLSI design and pseudo-Boolean optimization. Discrete Appl. Math. 90, 69–88
(1999)

10. S.G. Brush, History of the Lenz-Ising model. Rev. Mod. Phys. 39, 883–893 (1967)
11. B. Chazelle, C. Kingsford, M. Singh, A semidefinite programming approach to side chain

positioning with new rounding strategies. INFORMS J. Comput. 16, 380–392 (2004)
12. C.K. Cheng, S.Z. Yao, T.C. Hu, The orientation of modules based on graph decomposition.

IEEE Trans. Comput. C-40, 774–780 (1991)
13. G.B. Dantzig, On the significance of solving linear programming problems with some integer

variables. Econometrica 28, 30–44 (1960)
14. G.B. Dantzig, Linear programming. Oper. Res. 50, 42–47 (2002)
15. B. Das, A.K. Mahato, A.K. Khan, Via minimization for multi-layer channel routing in

VLSI design, in Fourth International Conference on Communication Systems and Network
Technologies (2014)

16. C. Desai, D. Ramanan, C.C. Fowlkes, Discriminative models for multi-class object layout. Int.
J. Comput. Vis. 95, 1–12 (2011)

17. P. Erdos, G. Szekeres, A combinatorial problem in geometry. Compos. Math. 2, 463–470
(1935)

18. J.-A. Ferrez, K. Fukuda, Th.M. Liebling, Solving the fixed rank convex quadratic maximization
in binary variables by a parallel zonotope construction algorithm. Eur. J. Oper. Res. 166, 35–50
(2005)

19. L. Festinger, The analysis of sociograms using matrix algebra. Hum. Relat. 2, 153–158 (1949)
20. R. Fortet, Applications de l’algèbre de boole en recherche opérationelle. Rev. Fr. Rech. Opér.

4, 5–36 (1959)
21. R. Fortet, L’algèbre de boole et ses applications en recherche opérationnelle. Cahiers Centre

d’Etudes Rech. Oper. 4, 17–26 (1960)
22. E. Forsyth, L. Katz, A matrix approach to the analysis of sociometric data: preliminary report.

Sociometry 9, 340–347 (1946)
23. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness (W. H. Freeman, San Francisco, 1979)
24. S. Galam, Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena (Springer,

New York, 2012)
25. F. Glover, Improved linear integer programming formulations of nonlinear integer problems.

Manag. Sci. 22, 455–460 (1975)
26. F. Glover, An improved MIP formulation for products of discrete and continuous variables. J.

Inf. Optim. Sci. 5, 469–471 (1984)

1 Introduction to QUBO 35

27. F. Glover, E. Woolsey, Further reduction of zero-one polynomial programming problems to
zero-one linear programming problems. Oper. Res. 21, 141–161 (1973)

28. F. Glover, G. Kochenberger, Y. Du, A tutorial on formulating and using QUBO models.
University of Colorado, Denver, 2019

29. A.J. Goldman, Linearization in 0-1 variables: a clarification. Oper. Res. 31, 946–947 (1983)
30. R.F. Goldstein, Efficient rotamer elimination applied to protein side-chains and related spin

glasses. Biophys. J. 66, 1335–1340 (1994)
31. D. Gusfield, Integer Linear Programming in Computational and Systems Biology: An Entry-

Level Text and Course (Cambridge University Press, Cambridge, 2019)
32. P.L. Hammer, A.A. Rubin, Some remarks on quadratic programming with 0-1 variables.

RAIRO-Oper. Rese. Rech. Opér. 3, 67–79 (1970)
33. P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas

(Springer, Berlin, 1968)
34. P.L. Hammer, I. Rosenberg, S. Rudeanu, On the determination of the minima of pseudo-

Boolean functions. Stud. Cerc. Mat. 14, 359–364 (1963)
35. P.L. Hammer, P. Hansen, B. Simone, Roof duality, complementations, and persistency in

quadratic 0-1 optimization. Math. Program. 28, 121–155 (1984)
36. F. Harary, I.C. Ross, A procedure for clique detection using the group matrix. Sociometry 20,

205–215 (1957)
37. R. Hassin, A. Levin, The minimum generalized vertex cover problem, in European Symposium

on Algorithms (2003), pp. 289–300
38. C. Helmberg, F. Rendl, Solving quadratic (0,1)-problems by semidefinite programs and cutting

planes. Math. Program. 82, 291–315 (1998)
39. D.S. Hochbaum, A. Pathria, Forest harvesting and minimum cuts: a new approach to handling

spatial constraints. For. Sci. 43, 544–554 (1997)
40. T. Ising, R. Folk, R. Kenna, B. Berche, Y. Holovatch, The fate of Ernst Ising and the fate of his

model. J. Phys. Stud. 21(3), 3002, 19 pp. (2017)
41. A. Janiak, M.Y. Kovalyov, W. Kubiak, F. Werner, Positive half-products and scheduling with

controllable processing times. Eur. J. Oper. Res. 165, 416–422 (2005)
42. M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, L.

Wolsey, 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-
the-Art (Springer, Berlin, 2010)

43. B. Jurisch, W. Kubiak, J. Józefowska, Algorithms for minclique scheduling problems. Discret.
Appl. Math. 72, 115–139 (1997)

44. D.R. Karger, C. Stein, A new approach to the minimum cut problem. J. ACM 43, 601–640
(1996)

45. G. Kochenberger, F. Glover, A unified framework for modeling and solving combinatorial
optimization problems: a tutorial, in Multiscale Optimization Methods and Applications, ed.
by W. Hager, S.-J. Huang, P. Pardalos, O. Prokopyev (Springer, Berlin, 2006), pp. 101–124

46. H. Kim, An application algorithm for the via minimization problem in channel routing, in
Proceedings of the 1990 Symposium on Applied Computing (1990)

47. C.L. Kingsford, B. Chazelle, M. Singh, Solving and analyzing side-chain positioning problems
using linear and integer programming. Bioinformatics 21, 1028–1036 (2005)

48. G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lu, H. Wang, Y. Wang, The unconstrained
binary quadratic programming problem: a survey. J. Comb. Optim. 28, 58–81 (2014)

49. G. Kohring, Ising models of social impact: the role of cumulative advantage. J. Phys. I 6, 301–
308 (1996)

50. H. Konno, Maximization of a convex quadratic function under linear constraints. Math.
Program. 11, 117–127 (1976)

51. H. Konno, Maximizing a convex quadratic function over a hypercube. J. Oper. Res. Soc. Jpn.
23, 171–188 (1980)

52. W. Kubiak, New results on the completion time variance minimization. Discrete Appl. Math.
58, 157–168 (1995)

53. R. Lazmy, Mixed integer quadratic programming. Math. Program. Study 22, 332–349 (1982)

36 A. P. Punnen

54. F. Liers, G. Pardella, Partitioning planar graphs: a fast combinatorial approach for max-cut.
Comput. Optim. Appl. 51, 323–344 (2012)

55. R.D. Luce, A.D. Perry, A method of matrix analysis of group structure. Psychometrika 14,
95–116 (1949)

56. H.M. Markowitz, Portfolio selection. J. Financ. 7, 77–91 (1952)
57. H.M. Markowitz, The optimization of a quadratic function subject to linear constraints. Nav.

Res. Logist. Q. 3, 111–133 (156)
58. D.C. Mattis, Solvable spin systems with random interaction. Phys. Lett. 6A, 412 (1976)
59. G.P. McCormick, Converting general nonlinear programming problems to separable nonlinear

programming problems. Report T—267, The George Washington University, 1972
60. G.P. McCormick, Computability of global solutions to factorable nonconvex programs: part I

- Convex underestimating problems. Math. Program. 10, 147–175 (1976)
61. M. Niss, History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative

phenomena. Arch. Hist. Exact Sci. 59, 267–318 (2005)
62. M. Niss, History of the Lenz-Ising model 1950–1965: from irrelevance to relevance. Arch.

Hist. Exact Sci. 63, 243–287 (2009)
63. M. Niss, History of the Lenz-Ising model 1965–1971: the role of a simple model in

understanding critical phenomena. Arch. Hist. Exact Sci. 65, 625–658 (2011)
64. M. Padberg, The Boolean quadric polytope: some characteristics, facets and relatives. Math.

Program. 45, 134–172 (1989)
65. P. Pandey, A.P. Punnen, The generalized vertex cover problem Discret. Optim. 30, 121–143

(2018)
66. S.S. Petrova, A.D. Solov́e, The origin of the method of steepest descent. Hist. Math. 24, 361–

375 (1997)
67. A.P. Punnen, N. Kaur, Revisiting some classical explicit linearizations for the quadratic binary

optimization problem. Research Report, Department of Mathematics, Simon Fraser University,
2021

68. A.P. Punnen, N. Kaur, On compact linearizations of the quadratic binary optimization problem.
Research Report, Department of Mathematics, Simon Fraser University, 2021

69. A.P. Punnen, P. Pandey, M. Friesen, Representations of quadratic combinatorial optimization
problems: a case study using the quadratic set covering problem. Comput. Oper. Res. 112,
104769 (2019)

70. M. Raghavachari, On connections between zero-one integer programming and concave
programming under linear constraints. Oper. Res. 17, 680–684 (1969)

71. M. Raghavachari, Supplement. Oper. Res. 18, 564–565 (1970)
72. J.M.W. Rhys, A selection problem of shared fixed costs and network flows. Manag. Sci. 17,

200–207 (1970)
73. M. Rodriguez, I. Laptev, J. Sivic, J.-Y. Audibert, Density-aware person detection and tracking

in crowds, in 2011 International Conference on Computer Vision, Barcelona (2011), pp. 2423–
2430

74. S. Rujikietgumjorn, R.T. Collins, Optimized pedestrian detection for multiple and occluded
people, in CVPR ’13: Proceedings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition, June 2013, pp. 3690–3697

75. B. Simon, The Statistical Mechanics of Lattice Gases, vol. I (Princeton University Press,
Princeton, 2014)

76. W.E. Smith, Various optimizers for single-stage production. Nav. Res. Logist. Q. 3, 59–66
(1956)

77. D. Sornette, Physics and financial economics (1776–2014): puzzles, Ising and agent-based
models. Rep. Prog. Phys. 77(6), 062001, 28 pp. (2014)

78. R.G. Vickson, Two single machine sequencing problems involving controllable job processing
times. AIIE Trans. 12, 258–262 (1980)

79. R.G. Vickson, Choosing the job sequence and processing times to minimize total processing
plus flow cost on single machines. Oper. Res. 28, 1155–1167 (1980)

1 Introduction to QUBO 37

80. L.J. Watters, Reduction of integer polynomial programming problems to zero-one linear
programming problems. Oper. Res. 15, 1171–1174 (1967)

81. W.I. Zangwill, Media selection by decision programming. J. Advert. Res. 5, 30–36 (1965)

Chapter 2
Applications and Computational
Advances for Solving the QUBO Model

Fred Glover, Gary Kochenberger, and Yu Du

Abstract QUBO models have proven to be remarkable for their ability to function
as an alternative modeling framework for a wide variety of combinatorial optimiza-
tion problems. Many studies have underscored the usefulness of the QUBO model
to serve as an effective approach for modeling and solving important combinatorial
problems. The significance of this unifying nature of the QUBO model is enhanced
by the fact that the model can be shown to be equivalent to the Ising model that
plays a prominent role in physics and is a major focus of the quantum computing
community. Consequently, the broad range of optimization problems approached
as QUBO models from the traditional Operations Research community are joined
by an important domain of problems with connection to the physics community.
Across the board, the QUBO model is used today as an alternative modeling
and solution approach for a growing number of important problems found in
industry and government. We describe important new applications of this model
and sketch fundamental ways to create effective QUBO formulations. We also report
computational experience showing the power of recent algorithmic advances. (The
introduction section draws on material from Glover et al., 4OR 17:335–371, 2019.)

2.1 Introduction

The field of Combinatorial Optimization (CO) is one of the most important areas in
the field of optimization, with practical applications found in every industry, includ-
ing both the private and public sectors. Generally, these problems are concerned with

F. Glover (�)
Meta-Analytics, Boulder, CO, USA

G. Kochenberger
Entanglement, Inc., Westminster, CO, USA
e-mail: gary.kochenberger@ucdenver.edu

Y. Du
Business School, University of Colorado at Denver, Denver, CO, USA
e-mail: yu.du@ucdenver.edu

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_2

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_2&domain=pdf
mailto:gary.kochenberger@ucdenver.edu
mailto:yu.du@ucdenver.edu
https://doi.org/10.1007/978-3-031-04520-2_2

40 F. Glover et al.

making wise choices in settings where a large number of yes/no decisions must be
made and each set of decisions must satisfy certain constraints while optimizing a
corresponding objective function value—like a cost or profit value. Finding good
solutions in these settings is extremely difficult as these problems are typically NP-
hard. The traditional approach is for the analyst to develop a solution algorithm that
is tailored to the mathematical structure of the problem at hand. While this approach
has produced good results in certain problem settings, it has the disadvantage that
the diversity of applications arising in practice requires the creation of a diversity
of solution techniques, each with limited application outside their original intended
use.

Early articles such as those by Hammer and Rudeanu [33], Rosenberg [68],
Hansen et al. [34], and Boros and Hammer [13] suggested the possible use of
what has become known today as the QUBO model. However, only in recent years,
through extensive computational work, has the research community demonstrated
that the QUBO model can in fact be successfully employed to model and solve
an exceptional variety of important CO problems found in industry, science and
government, as documented in studies such as Glover et al. [30], Kochenberger
et al. [39, 45], Lucas [54] and Anthony et al. [5]. Through special reformulation
techniques that are easy to apply, the power of QUBO solvers can be used to
efficiently solve many important problems once they are put into the QUBO
framework. This approach has proven not only to be competitive with traditional
methods, but often superior in performance in terms of both solution time and
quality.

It is interesting to note that in recent years the QUBO model has emerged as
an underpinning of the quantum computing area known as quantum annealing and
Fujitsu’s digital annealing, and has become a subject of study in neuromorphic
computing. Through these connections, QUBO models lie at the heart of exper-
imentation carried out with quantum computers developed by D-Wave Systems
and neuromorphic computers developed by IBM. The consequences of these new
discoveries linking QUBO models to quantum computing are being explored in
initiatives by organizations such as IBM, Google, Amazon, Microsoft, D-Wave and
Lockheed Martin in the commercial realm and Los Alamos National Laboratory,
Oak Ridge National Laboratory, Lawrence Livermore National Laboratory and
NASA’s Ames Research Center in the public sector. Computational experience is
being amassed by both the classical and the quantum computing communities that
highlights not only the potential of the QUBO model but also its effectiveness as an
alternative to traditional modeling and solution methodologies.

In Sect. 2.2 of this chapter, we highlight a diversity of applications that have been
reported using the QUBO model. Different from the discussion of QUBO in other
chapters, we consider the general form of the problem described in Sect. 2.3 to
have a minimization objective, which is equivalent to the maximization objective
treated in other parts of this volume. Then, in Sect. 2.3, we illustrate in the
transformation process enabling a classically formulated model to be recast into the
form of a QUBO model and computational experience showing the power of recent
algorithmic advances. Section 2.4 follows with a summary and some conclusions.

2 Applications and Computational Advances for Solving the QUBO Model 41

2.2 Applications of the QUBO Model

Chapter 1 of this book mentioned several applications including the stable set
problem, the Ising Spin Glass problem, the circuit layout design problem, and an
application regarding detecting and tracking people in a crowded environment.
These applications serve to illustrate the diversity of problems that fall under the
QUBO umbrella.

In recent years, many other applications of the QUBO model have been reported
in the operations research literature. In addition, quantum and quantum inspired
computer companies with their QUBO solvers have encouraged exploration of
applications, leading to many more accounts of important uses of the QUBO model.
All told, the literature in general reports many interesting applications in wide
variety of application settings.

In this section we summarize four applications that showcase the usefulness of
the QUBO model for modeling and solving important combinatorial optimization
problems. Section 2.2 that follows mentions many additional applications recently
reported in the literature. References to these applications are provided to enable
readers to follow up according to their interests.

Application # 1: QUBO and the RNA Folding Problem
Lewis et al. [52], report advances derived from the QUBO model applied to the

RNA folding problem, by extension of the work of Forester and Greenberg [26] on
quadratic binary models in computational biology.

RNA molecules, which play informational, structural and metabolic roles in
all cells, are chains of nucleotides that interact through bases A, C, G, U to
determine cell functionality and structure. The associated optimization problem
seeks to minimize the thermodynamic free energy of a structure by selecting which
bases will be paired provided certain constraints are satisfied. Binary variables
are associated with potential base pairings and constraints are imposed to limit a
variable to one base pair. Additional constraints are included to prohibit selecting
base pairs that cross as well as promoting the formation of long RNA stems.

Lewis et al. [52], approach this problem with a series of QUBO models that
have proved extremely successful in predicting how base pairings determine RNA
secondary structures, and thus facilitating biological functions related to information
flow and metabolism. Extensive testing with standard benchmarks underscores the
effectiveness of the QUBO approach whose results not only compare favorably with
traditional RNA folding programs, but offer an alternative methodology with the
potential to lead to improved predictions of RNA folding.

Application # 2: QUBO and Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is an important combinatorial optimization

problem in which the goal is to find an optimal set of routes for a fleet of vehicles that
deliver goods from an origin (depot) to a set of destinations (customers). The VRP is
a generalization of the Travelling Salesman Problem (TSP) in which a single vehicle
visits all destinations in one continuous path, starting and ending at the depot. Due

42 F. Glover et al.

to their computational challenge, VRPs and TSPs are typically solved by heuristic
methods in practice.

Recently the quantum affiliated research community has investigated solving
vehicle routing problems as well as TSPs using quantum and quantum inspired
technology. For example, Feld et al. [25] report results obtained by formulating the
vehicle routing problem as a QUBO model to be solved by the D-WAVE quantum
annealer. Computational experiments show results comparable to conventional
solvers in reasonable amounts of time.

Building on the work of Feld and co-workers, Borowski et al. [14] report results
obtained from using D-Wave’s Leap framework on well-established benchmark
test cases, including problem instances based on realistic road networks. They also
compared new quantum and hybrid methods with well-known classical algorithms
for solving VRP. The experiments indicate that the hybrid quantum annealing
methods give promising outcomes and are able to find solutions of similar or even
better quality than the classical algorithms.

The application reported by Borowski et al. [14] and the solution procedure
they employ is limited to small instances compared to practical application. This
shortcoming may be overcome by the advances being explored by Wang et al. [86]
in their work on TSP and related problems using the AlphaQUBO [4] solver which
can accommodate QUBO models with up to 1,000,000 variables.

Application # 3: QUBO and Machine Learning
Optimizing Gaussian Process Sampling has great promise for enhancing the

performance of machine learning methods by improving training set selection.
Bottarelli and Farinelli [15] reported a successful use of the QUBO model for
variance reduction in such settings. Building on this work, Sargent et al. [72] at
the University of Toronto are developing machine learning models where training
set selection is made by optimizing a QUBO model formulated to represent the
Gaussian Process posterior function. The overall objective of the research project is
to develop enhanced machine learning models to accelerate material discovery with
a particular focus on predicting the stability of acidic Oxygen Evolution Reaction
electrocatalysts. Early testing based on QUBO solutions obtained from both the
Fujitsu Digital Annealer and the AlphaQUBO [4] solver from Meta-Analytics, Inc.
show very encouraging outcomes. Preliminary results indicate that for a database
containing 4000 metal oxides structures, the energy mean absolute error (MAE)
obtained from the QUBO model was 0.1 eV/atom less than that given by the
conventional method. Further work will address the challenge of developing other
QUBO-enhanced regression models like support vector regression.

Application # 4: QUBO and Large-scale Set Partitioning Problems
The set partitioning problem (SPP) seeks to partition a set of items into subsets

such that each item appears in exactly one subset and the cost of the subsets chosen
is minimized. This problem appears in many application settings including the

2 Applications and Computational Advances for Solving the QUBO Model 43

airline and other industries. The traditional formulation for SPP is given by

Minimize
n∑

j=1

cjxj

Subject to
n∑

j=1

aij xj = 1 for i = 1, . . . ,m

xj ∈ {0, 1}, j = 1, 2, . . . , n.

where xj denotes whether or not subset j is chosen, cj is the cost of subset j , and
the aij coefficients are 0 or 1 denoting whether or not variable xj explicitly appears
in constraint i. Such models are easily re-cast into an equivalent QUBO model,
without adding any new variables, using the standard reformulation procedure given
in Sect. 2.3 of this chapter.

In a recent paper, Du et al. [21] report on a study involving large-scale instances
of SPP ranging in size from 10,000 to 100,000 variables and 2000 to 20,000
constraints. Extensive computational experiments were conducted comparing the
traditional model solved by CPLEX and the equivalent QUBO model solved by a
modern metaheuristic QUBO solver AlphaQUBO [4] developed by Meta-Analytics.
These are some of the largest QUBO models reported on in the literature. (Detailed
computational results from this study are given at the end of Sect. 2.3 in this chapter.)

Both approaches were successful in solving the smaller instances considered.
For larger problems, however, CPLEX was unable to find optimal solutions in an
allotted time frame of 6 hours and typically reported large gaps when terminating
due to the time limit. The QUBO approach on these larger problems, in contrast,
found better solutions than the best results produced by CPLEX, often in a few
minutes and always within one hour. This study confirms earlier successes of the
QUBO model on smaller test problems for SPP reported by Lewis et al. [50].

2.2.1 Additional Applications by Category

The vast amount of work going on today extending the use of the QUBO model is
creating an ever growing list of QUBO applications. Below we list some to the key
applications that have been reported in various categories of problem settings.

Classical Combinatorial Optimization
• Graph Coloring

– Kochenberger et al. [41].
– Wang et al. [83].

44 F. Glover et al.

• Capital Budgeting Problems

– Laughhunn [48].

• Asset Exchange Problems

– Glover et al. [32].

• Task Allocation Problems (distributed computer systems)

– Lewis et al. [49].
– Tomasiewicz et al. [77].

• Warehouse Location and Product Distribution Problems

– Ding et al. [20].

• Multiple Knapsack Problems

– Glover et al. [29].
– Forrester and Hunt-Isaak [27].

• Maximum Independent Set Problems

– Pardalos and Xue [64].
– Kochenberger et al. [43].
– Yarkoni et al. [88].

• Maximum Cut Problems

– Boros and Hammer [12].
– Kochenberger et al. [44].
– Wang et al. [85].
– Dunning et al. [22].

• Maximum Clique Problems

– Pelofske et al. [65].
– Pardalos and Xue [64].
– Chapuis et al. [17]

• Constraint Satisfaction Problems (CSPs)

– Vyskocil and Djidjev [80].

• Number Partitioning Problems

– Alidaee et al. [2].

• Set Packing Problems

– Alidaee et al. [3].

• Linear Ordering Problems

– Lewis et al. [51].

2 Applications and Computational Advances for Solving the QUBO Model 45

• Quadratic Assignment Problems

– Wang et al. [84].

• Clique Partitioning Problems

– Wang et al. [81].
– Kochenberger et al. [42].
– Shaydulin et al. [73].
– Kochenberger et al. [46].

• Satisfiability (SAT) and Max Sat Problems

– Kochenberger et al. [40].
– Bonet et al. [11].
– Santra et al. [71].
– Bian et al. [10].

• Clustering Problems

– Kochenberger et al. [42].
– Mniszewski et al. [58].
– Ushijima-Mwesigwa et al. [78].
– Mniszewski et al. [57]
– Kumar et al. [47]
– Mniszewski et al. [58].
– Bauckhage et al. [8].
– Negre et al. [59].

Financial Services
• Portfolio optimization

– Elsokkary et al. [24].
– Kalra et al. [37].
– Kochenberger et al. [38].
– Cohen et al. [19].

• Arbitrage/currency exchange

– Rosenberg [69].

• Credit risk assessment & scoring

– Milne [56].
– Egger et al. [23].

Transportation
• Route & traffic optimization

– Neukart et al. [60].
– Feld et al. [25].
– Clark et al. [18].

46 F. Glover et al.

– Ohzeki et al. [61].
– Inoue et al. [35].
– Borowski et al. [14].

• Satellite coverage and surveillance

– Bass et al. [7].

Manufacturing
• Product assembly optimization

– Yarkoni et al. [89].

• Autonomous/robotic paths opt.

– Mehta [55].

• Job scheduling

– Alidaee et al. [1].
– Venturelli et al. [79]

• Group technology

– Wang et al. [82].

Pharmaceuticals and Related
• Molecular similarity/composition

– Sahner [70].

• New drugs and materials discovery

– Snelling et al. [76].

• Computational biology

– Lewis et al. [52].

Network and Energy
• Cybersecurity problems

– Berwald et al. [9].
– Reinhardt [66].

• Power system design

– Jones et al. [36].

Machine Learning
• Classical machine learning

– Glover and Kochenberger [28].
– Li et al. [53].
– Willsch et al. [87].

2 Applications and Computational Advances for Solving the QUBO Model 47

• Deep learning

– Sleeman et al. [74].

Miscellaneous
• Smelyanskiy et al. [75]
• Pakin [63].
• O’Malley et al. [62].
• Aramon et al. [6].
• Bottarelli and Farinelli [15].
• Chang et al. [16].
• Rogers and Singleton [67].

Taken together, the applications highlighted above indicate the widespread
diversity of the QUBO model and give a glimpse of what is being reported today
and what is to come in the near term The focus on “quantum readiness” as well as
the growing appreciation for the usefulness of the QUBO model in general will lead
to a continued growth in notable applications in the coming years.

In the next section we provide an overview of the methodology used to convert a
traditionally modeled problem into the unified QUBO framework.

2.3 Creating QUBO Models

While some problems, like the number partitioning problem and the famous Ising
spin glass problem, appear naturally in the form of a QUBO model, by far the largest
number of problems of interest include additional constraints that must be satisfied
as the optimizer searches for good solutions. Such problems can be effectively re-
formulated as a QUBO model by introducing quadratic penalties in the objective
function as an alternative to explicitly imposing constraints in the classical sense.
The penalties are chosen so that the influence of the original constraints on the
solution process can alternatively be achieved by the natural functioning of the
optimizer as it looks for solutions that avoid incurring the penalties. That is, the
penalties are formulated so that they equal zero for feasible solutions and equal some
positive penalty amount for infeasible solutions. For a minimization problem, these
penalties are added to create an augmented objective function to be minimized. If
the penalty terms can be driven to zero, the augmented objective function becomes
the original function to be minimized.

For certain types of constraints, quadratic penalties useful for creating QUBO
models are known in advance and readily available to be used in transforming a
given constrained problem into a QUBO model. To illustrate the main idea, consider
a traditionally constrained problem of the form:

Minimize x0 = f (x)

Subject to x1 + x2 ≤ 1

48 F. Glover et al.

where x1 and x2 are binary variables. Note that this constraint allows either or
neither x variable to be chosen. However, it explicitly precludes both from being
chosen (i.e., both cannot be set to 1).

A quadratic penalty that corresponds to our constraint is

Px1x2

where P is a positive scalar. As can be seen, this penalty function is equal to P when
both x1 and x2 are equal to 1. Otherwise, it is equal to 0. For P chosen sufficiently
large, the unconstrained problem

Minimize x0 = f (x)+ Px1x2

has the same optimal solution as the original constrained problem. If f (x) is linear
or quadratic, then this unconstrained model will be in the form of a QUBO model,
i.e., Minimize x0 = xT Qx.

In this example, any optimizer trying to minimize x0 will tend to avoid solutions
having both x1 and x2 equal to 1, else a large positive amount will be added to the
objective function. This simple constraint (x1 + x2 ≤ 1) arises in many important
QUBO applications where the penalty (Px1x2) is used as an alternative. See, for
instance, the work on the maximum clique and related problems by Pardalos and
Xue [64].

While the example above illustrates the approach of adding penalties to the
objective function to create a QUBO model, simple penalties won’t always be
known in advance and will have to be discovered. The procedure for this is
straightforward as shown below.

2.3.1 Creating QUBO Models: A General Purpose Approach

Consider the general traditionally modeled combinatorial problem

Minimize x0 = xT Cx

Subject to Ax = b, x ∈ {0, 1}n

This model accommodates both quadratic and linear objective functions since
the linear case results when C is a diagonal matrix (observing that x2

j = xj when
xj is a 0-1 variable). Under the assumption that A and b have integer components,
problems with inequality constraints can always be put in this form by including
slack variables and then representing the slack variables by a binary expansion.
(For example, this would introduce a slack variable s to convert the inequality
4x1 + 5x2 − x3 ≤ 6 into 4x1 + 5x2 − x3 + s = 6, and since clearly s ≤ 7 (for
the case where x1 = x2 = 0 and x3 = 1), s could be represented by the binary

2 Applications and Computational Advances for Solving the QUBO Model 49

expansion s1 + 2s2 + 4s3 where s1, s2 and s3 are additional binary variables. If it is
additionally known that not both x1 and x2 can be 0, then s can be at most 3 and can
be represented by the expansion s1 + 2s2. These constrained quadratic optimization
models are converted into equivalent unconstrained QUBO models by converting
the constraints Ax = b (representing slack variables as x variables) into quadratic
penalties to be added to the objective function, following the same re-casting as we
illustrated in the discussion that precedes Sect. 3.1.

Specifically, for a positive scalar P , we add a quadratic penalty P(Ax−b)T (Ax−
b) to the objective function to get

y = xT Cx+ P(Ax − b)T (Ax− b)

= xT Cx+ xT Dx+ c

= xT Qx+ c

where the matrix D and the additive constant c result directly from the matrix mul-
tiplication indicated. Dropping the additive constant, the equivalent unconstrained
version of the constrained problem becomes

Minimize xT Qx, Subject to: x ∈ {0, 1}n

This general transformation procedure can in principle be applied to any 0/1
model with a linear or quadratic objective function subject to linear constraints.

Remarks

1. A suitable choice of the penalty scalar P , as we commented earlier, can always
be chosen so that the optimal solution to QUBO is the optimal solution to the
original constrained problem. Solutions obtained can always be checked for
feasibility to confirm whether or not appropriate penalty choices have been made.
Boros and Hammer [13] give a discussion of this approach which is the basis for
establishing the generality of QUBO.

2. For realistic applications, a program, perhaps in Python, will need to be written
implementing the transformation and producing the Q matrix needed for the
QUBO model. For small problems we can usually proceed manually as we’ll
do in example to follow.

3. Note that the additive constant, c, does not impact the optimization and can
be ignored during the optimization process. Once the QUBO model has been
solved, the constant c can be used to recover the original objective function value.
Alternatively, the original objective function value can always be determined by
using the optimal xj found when QUBO is solved.

This general transformation procedure is illustrated by the following example.
Consider the set partitioning problem

Min x0 = 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6

s.t. x1 + x3 + x6 = 1

50 F. Glover et al.

x2 + x3 + x5 + x6 = 1

x3 + x4 + x5 = 1

x1 + x2 + x4 + x6 = 1

and x = (x1, x2, .., x6) binary. Normally, the general transformation would be
embodied in a supporting computer routine and employed to re-cast this problem
into an equivalent instance of a QUBO model. For this small example, however, we
can proceed manually as follows: The conversion to an equivalent QUBO model
involves forming quadratic penalties and adding them to the original objective
function. In general, the quadratic penalties to be added (for a minimization

problem) are given by P
∑

i

(
n∑

j=1
aij xij − bi

)2

where the outer summation is taken

over all constraints in the system Ax = b.
For our example we have

Minimize x0 = 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6 + P(x1 + x3 + x6 − 1)2+
P(x2+x3 + x5 + x6 − 1)2 + P(x3 + x4 + x5 − 1)2 + P(x1 + x2 + x4 + x6 − 1)2

Arbitrarily taking P to be 10, and recalling that x2
j = xj since our variables are

binary, this becomes

Minimize y = −17x2
1 − 18x2

2 − 29x2
3 − 19x2

4 − 17x2
5 − 28x2

6 + 20x1x2 + 20x1x3+
20x1x4 + 40x1x6 + 20x2x3 + 20x2x4 + 20x2x5 + 40x2x6 + 20x3x4 + 40x3x5+
40x3x6 + 20x4x5 + 20x4x6 + 20x5x6 + 40

Dropping the additive constant 40, we then have our QUBO model

Minimize xT Qx, Subject to: x ∈ {0, 1}n

where the Q matrix is

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−17 10 10 10 0 20
10 −18 10 10 10 20
10 10 −29 10 20 20
10 10 10 −19 10 10
0 10 20 10 −17 10

20 20 20 10 10 −28

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Solving this QUBO formulation gives an optimal solution x1 = x5 = 1 (with all
other variables equal to 0) to yield x0 = 6.

2 Applications and Computational Advances for Solving the QUBO Model 51

As noted in Sect. 2.2 of this chapter, using the QUBO model for solving large-
scale set partitioning problems has proven to be very successful. For detailed
examples of re-casting other traditional models into the form of a QUBO model,
the reader is referred to Glover et al. [19, 31].

2.3.2 Illustrative Computational Experience

As mentioned earlier in this chapter, the QUBO modeling and solution approach
has proven to be successful in representing and solving a wide variety of difficult
combinatorial optimization problems. We commented in section 3.1 and earlier in
section 2, for instance, on the recent study by Du et al. [21] illustrating such success
on large set partitioning problems. The following tables present the main results
of this study undertaken on medium, large and very large test problems. Note that
the results shown for CPLEX were obtained from the standard linear model for
set partitioning while the AlphaQUBO results were obtained from the equivalent
QUBO representation.

The bold values in Tables 2.1, 2.2, and 2.3 are the objective function values for
optimal solutions or best known solutions. As shown in Table 2.1, both CPLEX
and AlphaQUBO found optimal solutions for the first 7 of these modest sized
problems. AlphaQUBO obtained a better solution than CPLEX on the last problem
and outperformed CPLEX on “time to best” by a wide margin on all 8 problems.

Table 2.2 show that AlphaQUBO quickly found best known solutions for all
24 problems. CPLEX was able to find best known solutions for only 11 of the 24
problems. AlphaQUBO had a “time to best” advantage over CPLEX that typically
ranged from 1 to 3 orders of magnitude.

For the very large problems of Table 2.3, CPLEX was unable to find the best
known solution to any of these problems in the time limit of 6 hours. AlphaQUBO
quickly provided best known solutions for all problems, outperforming CPLEX in
terms of solution quality and time. Note that these QUBO models are the largest
reported on in the literature to date.

Table 2.1 Medium sized problems: comparing AlphaQUBO and CPLEX

CPLEX AlphaQUBO

ID Vars Constraints Density % OFV Time(s) OFV Time(s)

SPP01a 6000 1500 25 10,872 7851 10,872 53

SPP01b 6000 1500 50 6975 3180 6975 6

SPP01c 6000 3000 25 22,860 2598 22,860 275

SPP01d 6000 3000 50 14,793 14,115 14,793 12

SPP02a 8000 2000 25 14,959 15,348 14,959 34

SPP02b 8000 2000 50 9621 18,071 9621 74

SPP02c 8000 4000 25 30,425 16,423 30,425 95

SPP02d 8000 4000 50 19,882 10,191 19,816 19

52 F. Glover et al.

Table 2.2 Large sized problems

Cplex AlphaQUBO

ID Vars Constraints Density % OFV Time(s) OFV Time(s)

SPP1 10,000 1000 25% 7292 947 7292 378.2

SPP2 10,000 1000 50 4543 1543 4543 11.6

SPP3 10,000 5000 25 37,968 284 37,968 5.4

SPP4 10,000 5000 50 24,297 8683 24,297 1337

SPP5 15,000 1500 25 10,930 66 10,930 17.5

SPP6 15,000 1500 50 7174 2176 7047 77

SPP7 15,000 7500 25 57,834 993 57,419 706.7

SPP8 15,000 7500 50 37,962 2373 37,671 556.8

SPP9 20,000 2000 25 14,900 9833 14,900 1535.1

SPP10 20,000 2000 50 9412 369 9412 3.6

SPP11 20,000 10, 000 25 77,448 2119 77,198 1729.1

SPP12 20,000 10, 000 50 50,188 4786 50,188 5.7

SPP13 25,000 2500 25 18,517 589 18,498 10

SPP14 25,000 2550 50 12,008 1847 11,923 813.8

SPP15 25,000 12, 500 25 96,690 548 96,445 1474.3

SPP16 25,000 12, 500 50 63,173 18,903 63,156 98

SPP17 30,000 3000 25 22,405 859 22,405 14.1

SPP18 30,000 3000 50 14,457 2507 14,457 1551.7

SPP19 30,000 15, 000 25 115,950 16,031 115,687 410.3

SPP20 30,000 15, 000 50 76,276 17,393 75,684 11.5

SPP21 40,000 4000 25 30,592 2532 30,445 894.1

SPP22 40,000 4000 50 19,815 7184 19,558 11.5

SPP23 40,000 20, 000 25 155,162 19,152 155,069 393.4

SPP24 40,000 20, 000 50 101,835 10,286 101,835 12.9

Table 2.3 Very large instances

Cplex AlphaQUBO

ID Vars Constraints Density % OFV Time(s) OFV Time(s)

SPP50k 50, 000 10,000 25 76,903 18,144 76,402 2315

SPP60k 60, 000 12,000 25 92,293 16,060 91,912 2876

SPP70k 70, 000 14,000 25 109,168 19,084 108,112 272

SPP80k 80, 000 16,000 25 125,139 18,600 123,890 175

SPP90k 90, 000 18,000 25 140,223 15,278 139,269 1804

SPP100k 100, 000 20,000 25 154,694 19,509 154,351 622

2.4 Summary and Conclusion

The remarkable diversity of QUBO applications and the documented successes in
solving them effectively highlight the practical importance of these models. The
relevance of this area to quantum computing and the discovery of new applications

2 Applications and Computational Advances for Solving the QUBO Model 53

in machine learning, biotechnology, supply chains, portfolio analysis and a host of
other realms promises to stimulate further advances in the months ahead. Some
of these will mimic and build upon past QUBO successes while others will be
completely new as the research community continues to devise creative ways to
recast important problems into the QUBO framework.

The applications reported here underscore the success of the QUBO model as a
useful alternative to traditional approaches for solving combinatorial optimization
problems. As the performance of QUBO solution methods continues to advance,
both on the conventional and the quantum side, the practice of employing the QUBO
model may be expected to expand as well.

References

1. B. Alidaee, G. Kochenberger, A. Ahmadian, 0–1 Quadratic programming approach for
optimum solutions of two scheduling problems. Int. J. Syst. Sci. 25, 401–408 (1994)

2. B. Alidaee, F. Glover, G. Kochenberger, C. Rego, A new modeling and solution approach for
the number partitioning problem. J. Appl. Math. Decis. Sci. 9, 135–145 (2005)

3. B. Alidaee, G. Kochenberger, K. Lewis, M. Lewis, H. Wang, A new approach for modeling
and solving set packing problems. Eur. J. Oper. Res. 186, 504–512 (2008)

4. AlphaQUBO (2020). https://ma-website.azurewebsites.net/
5. M. Anthony, E. Boros, Y. Crama, A. Gruber, Quadratic reformulations of nonlinear binary

optimization problems. Math. Program. 162, 115–144 (2017)
6. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, H.G. Katzgraber, Physics-

inspired optimization for quadratic unconstrained problems using a digital annealer. Front.
Phys. 7, 48 (2019)

7. G. Bass, C. Tomlin, V. Kumar, P. Rihaczek, J. Dulny, Heterogeneous quantum computing for
satellite constellation optimization: solving the weighted k-clique problem (2017). https://arxiv.
org/abs/1709.05381

8. C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker, S. Wrobel, A QUBO Formulation of the
k-medoids problem, in LWDA 2019 Proceedings (2019)

9. J.J. Berwald, J.M. Gottlieb, E. Munch, Computing Wasserstein distance for persistence
diagrams on a quantum compute (2018). arXiv:1809.06433

10. Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, S. Varotti, Solving SAT and MaxSAT
with a quantum annealer: foundations and a preliminary report, in Frontiers of Combining
Systems, FroCoS 2017. Lecture Notes in Computer Science, vol. 10483 (Springer, Cham, 2017)

11. M.L. Bonet, J. Levy, F. Manyà, Resolution for Max-SAT. Artif. Intell. 171, 606–618 (2007)
12. E. Boros, P.L. Hammer, The Max-Cut problem and quadratic 0-1 optimization; polyhedral

aspects, relaxations and bounds. Ann. Oper. Res. 33, 151–180 (1991)
13. E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225

(2002)
14. M. Borowski, P. Gora, K. Karnas, M. Blajda, K. Krol, A. Matyjasek, D. Burczyk, M. Szewczyk,

M. Kutwin, New hybrid quantum annealing algorithms for solving vehicle routing problem, in
International Conference on Computer Science, ICCS2020 (2020), pp. 546–561

15. L. Bottarelli, A. Farinelli, A Qubo model for Gaussian process variance reduction (2019).
Preprint, arXiv:1901.10982

16. C.C. Chang, A. Gambhir, T.S. Humble, S. Sota, Quantum annealing for systems of polynomial
equations. Sci. Rep. 9, 10258 (2019)

17. G. Chapuis, H. Djidjev, G. Hahn, G. Rizk, Finding maximum cliques on the D-wave quantum
annealer. J. Signal Process. Syst. 91, 363–377 (2019)

https://ma-website.azurewebsites.net/
https://arxiv.org/abs/1709.05381
https://arxiv.org/abs/1709.05381

54 F. Glover et al.

18. J. Clark, T. West, J. Zammit, X. Guo, L. Mason, D. Russell, Towards real time multi-
robot routing using quantum computing technologies, in HPC Asia 2019, Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region (2019), pp.
111–119

19. J. Cohen, A. Khan, C. Alexander, Portfolio optimization of 60 stocks using classical and
quantum algorithms (2020). Preprint, arXiv:2008.08669

20. Y. Ding, X. Chen, L. Lamata, E. Solano, M. Sanz, Implementation of a hybrid classical-
quantum annealing algorithm for logistic network design. SN Comput. Sci. 2, 68 (2021)

21. Y. Du, G. Kochenberger, F. Glover, H. Wang, R. Hennig, Optimal solutions to the set
partitioning problem: a comparison of alternative models. Working paper, University of
Colorado Denver, 2020

22. I. Dunning, S. Gupta, J. Silberholz, What works best when? A systematic evaluation of
heuristics for max-cut and qubo. INFORMS J. Comput. 30, 608–624 (2018)

23. D.J. Egger, R.G. Gutierrez, J.C. Mestre, S. Woerner, Credit risk analysis using quantum
computers. IEEE Trans. Comput. 70, 2136–2145 (2021)

24. N. Elsokkary, F.S. Khan, T.S. Humble, D.L. Torre, J. Gottlieb, Financial portfolio management
using D-Wave’s quantum optimizer: the case of Abu Dhabi securities exchange, in IEEE High-
performance Extreme Computing Conference (HPEC) (2017)

25. S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, C. Linnhoff-Popien, A
hybrid solution method for the capacitated vehicle routing problem using a quantum annealer.
Front. ICT 6, 13 (2019)

26. R.J. Forrester, H.J. Greenberg, Quadratic binary programming models in computational
biology. Algorithmic Oper. Res. 3, 110–129 (2008)

27. R.J. Forrester, N. Hunt-Isaak, Computational comparison of exact solution methods for 0-
1 quadratic programs: recommendations for practitioners. J. Appl. Math. 2020, Article ID
5974820, 21 pages (2020)

28. F. Glover, G. Kochenberger, New optimization models for data mining. Int. J. Inf. Technol.
Decis. Mak. 5, 605–609 (2006)

29. F. Glover, G. Kochenberger, B. Alidaee, M. Amini, Solving quadratic knapsack problems
by reformulation and tabu search, in Combinatorial and Global Optimization, ed. by P.M.
Pardalos, A. Megados, R. Burkard (World Scientific Publishing, Singapore, 2002), pp. 272–
287

30. F. Glover, G. Kochenberger, Y. Du, Quantum bridge analytics I: a tutorial on formulating and
using QUBO models. 4OR 17, 335–371 (2019)

31. F. Glover, G. Kochenberger, Y. Du, A tutorial on formulating and using QUBO models (2019).
arXiv:1811.11538

32. F. Glover, G. Kochenberger, M. Ma, Y. Du, Quantum bridge analytics II: QUBO-Plus, network
optimization and combinatorial chaining for asset exchange. 4OR 18, 387–417 (2020)

33. P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas
(Springer, Berlin, 1968)

34. P. Hansen, B. Jaumard, V. Mathon, State-of-the-art survey—constrained nonlinear 0–1 pro-
gramming. ORSA J. Comput. 5, 97–119 (1993)

35. D. Inoue, A. Okada, T. Matsumori, K. Aihara, H. Yoshida, Traffic signal optimization on a
square lattice with quantum annealing. Sci. Rep. 11, 3303 (2021)

36. E.B. Jones, E. Kapit, C. Chang, D. Biagioni, D. Vaidhynathan, P. Graf, W. Jones, On the
computational viability of quantum optimization for PMU placement. IEEE Power & Energy
Society General Meeting (PESGM), 2020

37. A. Kalra, F. Qureshi, M. Tisi, Portfolio asset identification using graph algorithms on a quantum
annealer (2018). http://www.henryyuen.net/fall2018/projects/qfinance.pdf

38. G. Kochenberger, M. Ma, Quantum computing applications of QUBO models to portfolio
optimization. White paper, University of Colorado, Denver, Sept 2019

39. G. Kochenberger, F. Glover, B. Alidaee, C. Rego, A unified modeling and solution framework
for combinatorial optimization problems. OR Spectr. 26, 237–250 (2004)

http://www.henryyuen.net/fall2018/projects/qfinance.pdf

2 Applications and Computational Advances for Solving the QUBO Model 55

40. G. Kochenberger, F. Glover, B. Alidaee, K. Lewis, Using the unconstrained quadratic program
to model and solve Max 2-Sat problems. Int. J. OR 1, 89–100 (2005)

41. G. Kochenberger, F. Glover, B. Alidaee, C. Rego, An unconstrained quadratic binary program-
ming approach to the vertex coloring problem. Ann. Oper. Res. 139, 229–241 (2005)

42. G. Kochenberger, F. Glover, B. Alidaee, H. Wang, Clustering of microarray data via clique
partitioning. J. Comb. Optim. 10, 77–92 (2005)

43. G. Kochenberger, B. Alidaee, F. Glover, H. Wang, An effective modeling and solution approach
for the generalized independent set problem. Optim. Lett. 1, 111–117 (2007)

44. G. Kochenberger, J.-K. Hao, S. Lu, H. Wang, F. Glover, Solving large scale max cut problems
via Tabu search. J. Heuristics 19, 565–571 (2013)

45. G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lu, H. Wang, Y. Wang, The unconstrained
binary quadratic programming problem: a survey. J. Comb. Optim. 28, 58–81 (2014)

46. G. Kochenberger, Y. Du, F. Glover, H. Wang, M. Lewis, T. Tsuyuguchi, Solving clique
partitioning problems: a comparison of models and commercial solvers. Working paper (2020)

47. V. Kumar, G. Bass, C. Tomlin, Quantum annealing for combinatorial clustering. Quantum Inf.
Process. 17, Article 39 (2018)

48. D.J. Laughhunn, Quadratic binary programming with applications to capital budgeting prob-
lems. Oper. Res. 18, 454–461 (1970)

49. M. Lewis, B. Alidaee, G. Kochenberger, Using xQx to model and solve the uncapacitated task
allocation problem. Oper. Res. Lett. 33, 176–182 (2005)

50. M. Lewis, G. Kochenberger, B. Alidaee, A new modeling and solution approach for the set
partitioning problem. Comput. Oper. Res. 35, 807–813 (2008)

51. M. Lewis, B. Alidaee, F. Glover, G. Kochenberger, A note on xQx as a modeling and solution
framework for the linear ordering problem. Int. J. OR 5, 152–162 (2009)

52. M. Lewis, A. Verma, T. Eckdahl, Qfold: a new modeling paradigm for the RNA folding
problem. Working paper, 2020

53. R.Y. Li, R. Di Felice, R. Rohs, D.A. Lidar, Quantum annealing versus classical machine
learning applied to a simplified computational biology problem. NPJ Quantum Inf. 4, Article
14 (2018)

54. A. Lucas, Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)
55. A. Mehta, Quantum annealing based optimization of robotic movement in manufacturing.

White paper, 2019
56. A. Milne, Optimal feature selection for credit scoring and classification. White paper, 1Qbit,

2017
57. S. Mniszewski, C.F.A. Negre, H. Ushijima-Mwesigwa, Graph partitioning using the D-Wave

for electronic structure problems. Los Alamos National Lab (LANL), Los Alamos, NM (United
States), LA-UR-16-27873 (2016), pp. 1–21

58. S.M. Mniszewski, C.F.A. Negre, H. Ushijima-Mwesigwa, Graph clustering approaches using
nearterm quantum computing. Argonne Quantum Computing Workshop (2018)

59. C.F.A. Negre, H. Ushijima-Mwesigwa, S.M. Mniszewsk, Detecting multiple communities
using quantum annealing on the D-Wave system. PLoS ONE 15, 1–14 (2020)

60. F. Neukart, G. Compostella, C. Seidel, D. Dollen, S. Yarkoni, B. Parney, Traffic flow
optimization using a quantum annealer. Front. ICT 4, 29 (2017)

61. M. Ohzeki, A. Miki, M.J. Miyama, M. Terabe, Control of automated guided vehicles without
collision by quantum annealer and digital devices. Front. Comput. Sci. 1, 9 (2019)

62. D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix
factorization with a D-Wave quantum annealer. PLoS ONE 13, 12 (2018)

63. S. Pakin, Navigating a maze using a quantum annealer, in Proceedings of the Second
International Workshop on Post Moores Era Supercomputing (2017), pp. 30–36

64. P.M. Pardalos, J. Xue, The maximum clique problem. J. Global Optim. 4, 301–328 (1994)
65. E. Pelofske, G. Hahn, H. Djidjev, Solving large maximum clique problems on a quantum

annealer. First International Workshop, QTOP 2019, Munich, Germany, 18 March 2019
66. S. Reinhardt, Detecting lateral movement with a compute-intense graph kernel (2018). http://

www.clsac.org/uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf

http://www.clsac.org/uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf
http://www.clsac.org/uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf

56 F. Glover et al.

67. M.L. Rogers, R.L. Singleton, Floating-point calculations on a quantum annealer: division and
matrix inversion. Front. Phys. 8, 265 (2020)

68. I. Rosenberg, Reduction of bivalent maximization to the quadratic case. Cahiers Centre
d’Etudes Rech. Oper. 17, 71–74 (1975)

69. G. Rosenberg, Finding optimal arbitrage opportunities using a quantum annealer. White paper,
2016, 1Qbit

70. D. Sahner, A potential role for quantum annealing in the enhancement of patient outcomes?
(2018). https://www.dwavesys.com/sites/default/files/Sahner.2018.pdf

71. S. Santra, G. Quiroz, G.V. Steeg, D.A. Lidar, Max 2-SAT with up to 108 qubits. New J. Phys.
16(4), 045006 (2014)

72. E. Sargent, Y. Chang, H. Choubisa, Personal communication with authors of Chapter 2 (2020)
73. R. Shaydulin, H. Ushijima-Mwesigwa, I. Safro, S. Mniszewski, Y. Alexeev, Community

detection across emerging quantum architectures (2018). Preprint, arXiv:1810.07765
74. J. Sleeman, J. Dorband, M. Halem, A hybrid quantum enabled RBM advantage: convolutional

autoencoders for quantum image compressing and generative learning, in Proceedings Volume
11391, Quantum Information Science, Sensing, and Computation XII; 113910B (2020)

75. V.N. Smelyanskiy, E.G. Rieffel, S.I. Knysh, A near-term quantum computing approach for hard
computational problems in space exploration (2012). arXiv:1204.2821 [quant-ph]

76. D. Snelling, G. Shahane, W.J. Shipman, A. Balaff, M. Pearce, S. Keinan, A quantum-inspired
approach to de-novo drug design. Whitepaper, Fujitsu, 2020

77. D. Tomasiewicz, M. Pawlik, M. Malawski, K. Rycerz, Foundations for workflow application
scheduling on D-wave system, in Computational Science – ICCS 2020: 20th International
Conference, Amsterdam, The Netherlands, Proceedings, Part VI, 12142 3–5 June 2020, pp.
516–530

78. H. Ushijima-Mwesigwa, C.F.A. Negre, S.M. Mniszewsk, Graph partitioning using quantum
annealing on the D-Wave system, in Proceedings of the Second International Workshop on
Post Moores Era Supercomputing (2017), pp. 22–29

79. D. Venturelli, D.J.J. Marchand, G. Rojo, Quantum annealing implementation of job-shop
scheduling (2016). arXiv:1506.08479 [quant-ph]

80. T. Vyskocil, H.N. Djidjev, Constraint embedding for solving optimization problems on quan-
tum annealers, in 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (2019), pp. 635–644

81. H. Wang, B. Alidaee, G. Kochenberger, Evaluating a clique partitioning problem model for
clustering high-dimensional data mining, in AMCIS 2004 Proceedings, paper 234 (2004)

82. H. Wang, B. Alidaee, F. Glover, G. Kochenberger, Solving group technology problems via
clique partitioning. Int. J. Flex. Manuf. Syst. 18, 77–87 (2006)

83. Y. Wang, J.-K. Hao, F. Glover, Z. Lu, Solving the minimum sum coloring problem via binary
quadratic programming (2013). arXiv:1304.5876 [cs.DS]

84. H. Wang, Y. Wang, M. Resende, G. Kochenberger, A QUBO approach to solving QAP
problems. Unpublished manuscript, 2016

85. Z. Wang, S. Hadfield, Z. Jiang, E. G. Rieffel, The quantum approximation optimization
algorithm for MaxCut: a fermionic view. Phys. Rev. A 97, 022304 (2018)

86. H. Wang, Y. Du, R. Hennig, G. Kochenberger, F. Glover, Solutions to the traveling salesman
problem: a comparison of quantum and heuristic solvers. Working Paper, Texas A & M
International University, 2020

87. D. Willsch, M. Willsch, H.D. Raedt, K. Michielsen, Support vector machines on the D-Wave
quantum annealer. Comput. Phys. Commun. 248, 107006 (2020)

88. S. Yarkoni, A. Plaat, T. Back, First results solving arbitrarily structured maximum independent
set problems using quantum annealing, in 2018 IEEE Congress on Evolutionary Computation
(CEC), Rio de Janeiro (2018), pp. 1–6

89. S. Yarkoni, M. Leib, A. Skolik, M. Streif, F. Neukart, D. von Dollen, Volkswagen and quantum
computing: an industrial perspective. Digitale Welt 3, 34–37 (2019)

https://www.dwavesys.com/sites/default/files/Sahner.2018.pdf

Chapter 3
Complexity and Polynomially Solvable
Special Cases of QUBO

Eranda Çela and Abraham P. Punnen

Abstract The quadratic unconstrained binary optimization problem (QUBO) is
equivalent to a number of prominent combinatorial and discrete optimization prob-
lems and generalizes many others. In this chapter we will discuss the computational
complexity aspects of the problem along with tractable special cases. Many of those
results are derived from the related properties of the optimization problems which
are equivalent to or generalized by QUBO.

3.1 Introduction and Notations

In the previous chapters, we have seen that QUBO can be used to model various
applied and theoretical optimization problems. In this chapter, we primarily focus
on the computational complexity of the QUBO model and identify various special
cases of the model that can be solved in polynomial time. Recall that QUBO can be
stated as the mathematical programming problem

Maximize xT Qx+ cT x

Subject to: x ∈ {0, 1}n,

where Q = (qij) is an n × n matrix and cT = (c1, c2, . . . , cn) is an n-vector. When
Q and c are given, an instance of QUBO is well defined and hence we sometimes
represent an instance of QUBO by the ordered pair (Q, c). The size n of the QUBO
model is implicit in the dimensions of Q and c. The QUBO model is also represented
in an equivalent form, called the Ising QUBO, where the variables take values −1

E. Çela (�)
Department of Discrete Mathematics, TU Graz, Graz, Austria
e-mail: cela@opt.math.tu-graz.ac.at

A. P. Punnen
Department of Mathematics, Simon Fraser University, Surrey, BC, Canada
e-mail: apunnen@sfu.ca

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_3&domain=pdf
mailto:cela@opt.math.tu-graz.ac.at
mailto:apunnen@sfu.ca
https://doi.org/10.1007/978-3-031-04520-2_3

58 E. Çela and A. P. Punnen

or 1. The Ising QUBO leads to a natural formulation of the maximum weight cut
problem and hence it is sometimes called as the cut version of the QUBO. The Ising
QUBO can be stated as

Maximize yT Ay+ bT y

Subject to: y ∈ {−1, 1}n,

where A = (aij) is an n× n matrix and bT = (b1, b2, . . . , bn) is an n-vector. When
A and b are given, an instance of the Ising QUBO is well defined and hence such an
instance is represented by the ordered pair (A, b).

In the definition of QUBO, without loss of generality, one may assume that
Q is symmetric or upper triangular and/or the diagonal entries are zeros. Similar
assumptions can be made on A in the definition of the Ising QUBO. See Chap. 1
for more details on the representations of QUBO. In this chapter, we however make
no assumptions on Q or A and whenever such assumptions are required, we will
state them explicitly. For a review of some solvable cases of QUBO, we refer to
the survey paper [61] and the book chapter [66]. More citations on polynomially
solvable special cases will be included when we discuss the corresponding results,
later in this chapter.

It is well known that the problems QUBO and the Ising QUBO are equivalent [6]
and one can be obtained from the other using a linear transformation. Here, the
equivalence is understood as follows: There is a bijection φ between feasible
solutions x of the QUBO with input (Q, c) and the feasible solutions y of the Ising
QUBO with Input (A(q), b(q)), given by

y = φ(x) = 2x− e (3.1)

where e is the all-one vector. Moreover, Aq = 1
4 Q, bq = 1

4 (Qe+QT e+ 2c) and the
objective function value of x and y differ just on a constant K(q) = 1

4 eT Qe+ 1
2 cT e.

Conversely, the bijection φ(−1) given by

x = φ(−1)(y) = 1

2
(y+ e) (3.2)

maps the feasible solutions y of the Ising QUBO instance (A, b) to the feasible
solutions x of the QUBO instance (Q(a), c(a)), where Q(a) = 4A and c(a) = 2(b−
Ae − AT e). Analogously the objective function values of y and x differ just on a
constant K(a) = eT Ae − bT e. See Chaps. 1 and 8 for further discussion on these
transformations and their implications.

Given any symmetric n × n matrix Q, we can associate a graph G = (V ,E)

where V = {1, 2, . . . , n} and E = {(i, j) : qij �= 0}. The graph G is called the
support graph of Q. Whenever we talk about the support graph of Q or A, either
implicitly or explicitly, these matrices are assumed to be symmetric, without loss
of generality. Note that the transformations (3.1) and (3.2) preserve the structure of

3 Complexity and Polynomially Solvable Special Cases of QUBO 59

the support graphs of Q and A. This property is useful in relating the polynomial
time solvability of some special cases of QUBO to that of the Ising QUBO and vice
versa.

Let us now briefly introduce some notational conventions used in this chapter,
keeping consistency with those discussed in Chap. 1. Matrices and vectors are
represented using bold capital letters and their elements by the corresponding small
letters, along with accents, if any, and the location coordinates. The zero vector in
any dimension is represented by 0. The objective function of the instance (Q, c) of
QUBO is denoted by fQ,c. That is, fQ,c(x) = xT Qx + cT x. If the inputs Q and c
are unambiguously clear from the context we will drop the subscripts of fQ,c and
simply denote the objective function by f . Similarly, the objective function of the
Ising QUBO (A, b) is denoted by gA,b. That is gA,b(y) = yT Ay+ bT y. If the inputs
A, b are unambiguously clear from the context we will drop the subscripts of gA,b
and simply denote the objective function by g. For any undirected graph, and edge
joining vertices i and j is represented by {i, j }.

The chapter is organized as follows. In Sect. 3.2, we discuss the computational
complexity of QUBO and show that various special cases of the problem are NP-
hard. Section 3.3 deals with polynomially solvable special cases of the QUBO and
the Ising QUBO identified by exploiting the properties of the cost matrices Q and
A. These include strip matrices and low rank matrices with additional properties,
as well as some special matrices admitting high rank but closely related to low
rank matrices. In Sect. 3.4, we present polynomial time algorithms for QUBO and
the Ising QUBO using the structure of the underlying support graphs of Q and
A. These algorithms exploit connections with polynomially solvable special cases
of the maximum weight cut problem, maximum weight stable set problem, and
the maximum weight clique problem, along with other optimization problems on
graphs. Section 3.5 discusses special cases of QUBO and the Ising QUBO that can
be solved using pseudo-polynomial algorithms, followed by concluding remarks in
Sect. 3.6.

3.2 Computational Complexity

Let us now explore the computational complexity of QUBO and the Ising QUBO.
Before discussing the results on these problems, we briefly discus some of the
closely related graph theoretic optimization problems and their computational
complexity.

The maximum weight cut problem (MWCP) is one of the fundamental com-
binatorial optimization problems studied extensively in literature. The MWCP is
equivalent to QUBO (see Hammer [53]) and the Ising QUBO (see Barahona [6],
Barahona et al. [7]). The input for the MWCP is the pair (G,w), where G = (V ,E)

is an undirected simple graph with vertex set V , edge set E ⊆ {{i, j } : i, j ∈ V, i �=
j }, and the weight function w : E → R. In particular, the weight of the edge {i, j }
is denoted by wij . The MWCP searches for a subset S of V such that the weight

60 E. Çela and A. P. Punnen

w(δG(S)) = ∑
{i,j}∈δ(S) wij of the cut δG(S) = {{i, j } ∈ E : i ∈ S, j �∈ S} is

maximized. If G is unambiguously clear we will write δ(S) instead of δG(S). An
instance of the MWCP on G with weight function w is denoted by the ordered
pair (G,w). If G′ is the graph obtained from G after removing the edges with
weight zero and w′ is the mapping w restricted to the edge set E′ of G′, then the
instances (G,w) and (G′, w′) are equivalent (i.e. w(δG(S)) = w′(δG′(S)) holds for
all S ⊆ V). The cut δ(S) is also denoted by (S, S̄), where S̄ is the complement of S

with respect to V .
The special case of the MWCP where all edge weights fulfill wij = 1 is called

the maximum cardinality cut problem (MCCP). The maximum weight (cardinality)
cut problem is well-known to be strongly NP-hard [42, 43, 79]. In the following
theorem, we summarize various special cases of the MWCP and the MCCP that
remain NP-hard in spite of the specific properties of the input.

Theorem 3.1 The maximum weight cut problem (G,w) is NP-hard under the
following conditions.
1. G is a cubic graph and wij = 1 for all {i, j } ∈ E [91].
2. G is a two-level grid and wij ∈ {−1, 0, 1} for all {i, j } ∈ E [6].
3. G is a unit disk graph and wij = 1 for all {i, j } ∈ E [34]
4. G is a bipartite graph [71]
5. G is a chordal graph, an undirected path graph, a double interval graph, a

tripartite graph, or a co-bipartite graph with wij = 1 for all (i, j) ∈ E [16].

The Euclidean version of the maximum weight cut problem (EMWCP) can be
defined as follows. Given a set P = {x1, x2, . . . , xn} of n points in R

m, find a
partition S, S̄ of {1, 2, . . . , n} such that

∑
i∈S,j∈S̄ ||xi − xj || is maximized. If we

take the square ||xi − xj ||2 of the Euclidean distance instead of ||xi − xj ||, we get
an instance of the squared Euclidean maximum cut problem (SEMWCP).

Theorem 3.2 ([1]) EMWCP and SEMWCP are strongly NP-hard.

Let us now consider the maximum weight stable set problem (MWSSP). The
MWSSP takes as input a pair (G, d), where G = (V ,E) is an undirected graph
with vertex set V , edge set E ⊆ {{i, j } : i, j ∈ V }, and d : V → R is a weight
function on the vertices of G. Thus, the weight of the vertex i ∈ V is di . Then,
the MWSSP searches for a subset of S of the vertex set V such that the weight
d(S) = ∑

i∈S di is maximized and the subgraph of G induced by S is a collection
of isolated vertices. An instance of the MWSSP on the graph G with vertex weight
function d is denoted by by the ordered pair (G, d). Without loss of generality we
assume that the weights di of the vertices are non-negative since vertices of negative
weight would never belong to an optimal solution and hence can be removed from G

together with the edges incident on them. The MWSSP is well-known to be strongly
NP-hard [42]. The theorem below summarizes some special cases of the MWSSP
that remain NP-hard in spite of the specific properties of the input.

3 Complexity and Polynomially Solvable Special Cases of QUBO 61

Theorem 3.3 The maximum weight stable set problem (G,w) is NP-hard under
the following conditions.
1. G is a planar graph with maximum vertex degree 3 and dj = 1 for all j ∈

V [43].
2. G is a triangle free graph and dj = 1 for all j ∈ V [86].
3. G is a 3-regular Hamiltonian graph and dj = 1 for all j ∈ V [39]
4. G is a planar graph with large girth and dj = 1 for all j ∈ V [73].
5. G is an H -free graph [2]

Note that item (4) of Theorem 3.3 is a strengthened version of item (a) of the
theorem.

Another problem closely related to the MWSSP is the maximum weight clique
problem (MWClP). Note that S is a stable set in a graph G if and only if it is a
clique in the complement Ḡ of G. As in the case of the MWSSP, the maximum
weight clique problem (MWClP) also takes as input the pair (G, d) and searches for
a subset S of V such that the subgraph of G induced by S is a complete graph and∑

i∈S di is maximized. For a thorough discussion on the maximum weight clique
problem, we refer to [18]. MWClP is well-known to be strongly NP-hard [42]. The
maximum weight clique problem is NP-hard on the complements of the graphs
indicated in Theorem 3.3. In the theorem below we summarizes some additional
special cases of the MWClP that remain NP-hard in spite of the specific properties
of the input.

Theorem 3.4 The maximum weight clique problem is NP-hard on the following
graphs, even if di = 1 for all i ∈ V .
1. 2-interval and unit 3-track graphs [40]
2. Ray intersection graphs, segment intersection graph (intersection graphs of

segments in plane) [24]
3. String graphs [63, 72]
4. Ball graphs and unit 4-dimensional graphs [19]

It may be noted that the MWSSP is NP-hard on the complements of the graphs
discussed in Theorem 3.4.

Let us now explore the complexity of QUBO. The equivalence between QUBO
and MWCP immediately establishes that QUBO and the Ising QUBO are strongly
NP-hard and also APX hard. Let us examine now the complexity of QUBO and the
Ising QUBO for various special cases.

Theorem 3.5 ([6]) Let A be an n × n symmetric matrix and G = (V ,E) be
the support graph of A with V = {1, 2, . . . , n}. Then, G with the weight function
wij = aij has a cut (S, S̄) of value K if and only if there exists yj ∈ {−1, 1}, j =
1, 2, . . . , n such that

∑n
i=1

∑n
j=1 aij yiyj =∑n

i=1
∑n

j=1 aij − 4K .

62 E. Çela and A. P. Punnen

Proof Suppose that G has a cut (S, S̄) such that
∑

i∈S,j∈S̄ aij = K . Now, define

yi = 1 if i ∈ S and yi = −1 is i ∈ S̄. Then,

n∑

i=1

n∑

j=1

aij yiyj =
∑

i∈S

∑

j∈S

aij yiyj +
∑

i∈S̄

∑

j∈S

aij yiyj + 2
∑

i∈S

∑

j∈S̄

aij yiyj

=
∑

i∈S

∑

j∈S

aij +
∑

i∈S̄

∑

j∈S̄

aij − 2
∑

i∈S

∑

j∈S̄

aij (3.3)

=
n∑

i=1

n∑

j=1

aij − 4K (3.4)

The equality (3.4) follows by adding and subtracting 2
∑

i∈S

∑
j∈S̄ aij to RHS of

Eq. (3.3). Conversely, suppose there exists yj ∈ {−1, 1}, j = 1, 2, . . . , n such that∑n
i=1

∑n
j=1 aij yiyj =∑n

i=1
∑n

j=1 aij − 4K . Now define S = {j : yj = 1}. Then
we have

n∑

i=1

n∑

j=1

aij yiyj =
n∑

i=1

n∑

j=1

aij − 4
∑

i∈S

∑

j∈S̄

aij

and hence
∑

i∈S

∑
j∈S̄ aij = K . ��

From Theorem 3.5 it follows that the Ising QUBO (A, 0) is NP-hard if the
maximum weight cut problem is NP-hard on the support graph G = (V ,E) of
A with weight −aij for {i, j } ∈ E. In particular, we have

Theorem 3.6 The Ising QUBO (A, 0) is NP-hard if aij ∈ {0,−1} and the support
graph of A is a chordal graph, an undirected path graph, a double interval graph,
tripartite graphs, a co-bipartite graph, a tripartite graph, and a cubic graph.

The proof of Theorem 3.6 follows from Theorem 3.1. Further, it also follows that

Theorem 3.7 If aij ∈ {0, 1,−1} then the Ising QUBO (A, 0) is NP-hard if the
support graph of A is a two-level grid.

Corollary 3.1 The QUBO (Q, c) is NP-hard if qij ∈ {0,−1} and the support graph
ofQ is a chordal graph, an undirected path graph, a double interval graph, tripartite
graphs, a co-bipartite graph, a tripartite graph, and a cubic graph. Further, the
QUBO (Q, c) is NP-hard if qij ∈ {0, 1,−1} and the support graph of Q is a two-
level grid.

Proof From Eq. (3.1), it follows that the Ising QUBO (A, 0) is equivalent to the
QUBO (Qa, ca) where e is the all-one vector, Qa = 4A and ca = 2(−eT A− eT AT).
But QUBO (Qa, ca) is equivalent to QUBO (1

4 Qa, 1
4 ca). Further, if aij ∈ {0,−1}

then elements of 1
4 Qa also belongs to {0,−1} and the support graph of 1

4 Qa is
the same as the support graph of A. Now, the first part of the corollary follows from

3 Complexity and Polynomially Solvable Special Cases of QUBO 63

Theorem 3.6. Using similar arguments, the second part of the corollary follows from
Theorem 3.7. ��

Analogous to the Euclidean maximum cut problem, we have the Euclidian
version of the Ising QUBO which is defined as follows. Given a set P =
{x1, x2, . . . , xn} of n points in R

m, find a yj ∈ {−1, 1}, j = 1, 2, . . . , n such
that

∑n
i=1

∑n
j=1 ||xi − xj ||yiyj is minimized. Instead of the Euclidean distance

||xi − xj ||, if we take the square ||xi − xj ||2 of the Euclidean distance, we get an
instance of the squared Euclidean Ising QUBO. Note that the problem is defined
in the minimization form. The maximization version of the problem is trivial since
yj = 1 for all j is an optimal solution. From Theorems 3.5 and 3.2 we have

Theorem 3.8 The Euclidean Ising QUBO and the squared Euclidean Ising QUBO
are strongly NP-hard.

It may be noted that the QUBO with a 0-1 matrix Q (or any non-negative
matrix Q) and non-negative vector c is trivial since xi = 1 for all i is an optimal
solution. When Q is a 0-1 matrix (or any non-negative matrix Q) and c has negative
entries, the associated QUBO can be solved polynomial time as a maximum flow
problem. (See Sect. 3.3 for a more general result of this type.) Interestingly, when
qij ∈ {−1, 0} and ci is non-negative for all i, QUBO is no longer easy.

Theorem 3.9 The QUBO (Q, c) is strongly NP-hard if qij ∈ {0,−1}, ci = 1 for
all i = 1, 2, . . . , n and the maximum cardinality stable set problem is NP-hard on
the support graph of Q.

Proof Let G = (V ,E) be a graph on which the maximum cardinality stable set
problem is NP-hard. Now construct the matrix Q such that qij = −1 if {i, j } ∈ E

and qij = 0 if {i, j } /∈ E. Also, choose c as the all-one vector in R
|V |. The QUBO

instance (Q, c) constructed here satisfies the conditions of the theorem. Let x be
an optimal solution to the QUBO (Q, c). Note that the optimal objective function
value of the QUBO (Q, c) is at least one and at most |V |. We claim that the optimal
objective function value of (Q, c) is precisely the size of a maximum cardinality
stable set in G. First observe that if the edge {i, j } ∈ E then, in an optimal solution
x∗ of the QUBO, at least one of x∗i or x∗j is zero. On contrary, assume that x∗i =
x∗j = 1 in an optimal x∗. Since qij = qji = −1, ci = cj = 1, and other entries of Q

are no more than zero, setting x∗i or x∗j equal to zero results in an improved solution,
violating the optimality of x∗. Thus the set S∗ = {j : x∗j = 1} is a stable set in
G. But any stable set S in G generates a feasible solution to the QUBO by defining
xj = 1 if j ∈ S and xj = 0, otherwise with QUBO objective function value is
precisely |S|. Therefore S∗ must be an optimal solution to the maximum cardinality
stable set problem on G. Since the maximum cardinality stable set problem on G is
assumed to be NP-hard, the result follows. ��

The above proof is based on the QUBO formulation of the maximum cardinality
stable set problem and maximum clique problem given in [81]. In particular,
Theorem 3.9 shows that QUBO (Q, c) is NP-hard even if qij ∈ {0,−1} and the

64 E. Çela and A. P. Punnen

support graph of Q is any of the graphs listed in Theorem 3.3 or complements of the
graphs listed in Theorem 3.4.

Corollary 3.2 The Ising QUBO (A, b) is strongly NP-hard if aij ∈ {0,−1} and the
maximum cardinality stable set problem is NP-hard on the support graph of A.

The proof of this corollary follows from Theorem 3.9 and is similar to that of
Corollary 3.1 except that we will be using Eq. (3.2) to develop the arguments.

Let us now look at the special case of QUBO when Q is symmetric and of
rank one. If the symmetric matrix Q is of rank one, then, there exist vectors
aT = (a1, a2, . . . , an) and bT = (b1, b2, . . . , bn) such that qij = aibj for
i, j = 1, 2, . . . , n and bi = ai for all i or bi = −ai for all i. Such a representation of
Q can be obtained using the reduced echelon form of Q or by using singular value
decomposition. An instance of QUBO where Q is symmetric and is of rank one is
called symmetric rank-one QUBO. The objective function of a symmetric rank one
QUBO can be written as f (x) = (aTx)(bT x) + cT x where a and b are related as
indicated above.

Theorem 3.10 ([26, 54]) The symmetric rank-one QUBO is NP-hard.

Proof We reduce the SUBSET SUM problem to the symmetric rank-one QUBO. The
SUBSET SUM problem can be stated as follows. Given n numbers α1, α2, . . . , αn and
a constant K , we want to determine if there exist a subset S ⊆ {1, 2, . . . , n} such
that

∑
j∈S αj = K . From an instance of SUBSET SUM, construct an instance of the

symmetric rank-one QUBO as follows. Choose ai = αi , bi = −ai , and ci = 2Kαi .
For x ∈ {0, 1}n, define h(x) = −(aT x − K)2. Then h(x) ≤ 0 for all x ∈ {0, 1}n
and h(x) = 0 precisely when the required partition exists. But maximizing h(x) is
equivalent to maximizing f (x) = −(aT x)2 + 2K(aT x) = (aT x)(bT x)+ cT x and the
result follows. ��

Again, an analogous NP-hardness result for the Ising QUBO can be obtained
when A is a rank-one matrix. Later we will examine the more general problem of
QUBO with rank of Q being fixed or an appropriate function of n.

Let us now examine another related special case called the half product QUBO.
In Chap. 1, applications of the half product QUBO in the context of machine
scheduling are discussed. Recall that a matrix Q is called a half product matrix
if it is upper triangular with diagonal elements zero and there exist vectors a =
(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) such that qij = aibj for i = 1, 2, . . . , n

and j > i. The half-product QUBO is the special case of QUBO where Q is
restricted to a half-product matrix. The half-product QUBO (in minimization form)
was introduced by Badics and Boros [5] and independently by Kubiak [64]. Note
that we consider the half product QUBO in the maximization form.

Theorem 3.11 ([5]) The half product QUBO is NP-hard.

Proof The proof follows by a reduction from the subset sum problem. ��
For more complexity results relating to the approximability of QUBO and the

Ising QUBO, we refer to the Chap. 8 and the references included there.

3 Complexity and Polynomially Solvable Special Cases of QUBO 65

3.3 Polynomially Solvable Matrix Structures

In this section we look at special properties of the matrix Q and the matrix A
to identify polynomially solvable cases of the QUBO and the Ising QUBO. We
distinguish between properties which can be specified in terms of simple linear
equations and inequalities to be fulfilled by the entries of Q and also rank-based
properties.

3.3.1 Linear Restrictions on the Cost Matrices

Sum Matrices A matrix Q is said to be a sum matrix if there exist ai, bi, i =
1, 2, . . . , n such that qij = ai + bj for all i, j = 1, 2, . . . , n.

Theorem 3.12 If Q is a sum matrix then the QUBO (Q, c) can be solved in O(n2)

time.

Proof When Q is a sum matrix,

xT Qx+ cT x =
n∑

i=1

aixi

n∑

j=1

xj +
n∑

j=1

bjxj

n∑

i=1

xi + cT x

=
(

n∑

i=1

(ai + bi)xi

)(
n∑

i=1

xi

)

+ cT x (3.5)

Now, consider the problem

P(λ): Maximize λ

n∑

i=1

(ai + bi)xi + cT x

Subject to:
n∑

i=1

xi = λ, x ∈ {0, 1}n .

for some λ ∈ {0, 1, . . . , n}. Notice that the objective function of P(λ) can be
written as

∑n
i=1[λ(ai + bi) + ci]xi . Now, for λ ∈ {1, . . . , n}, the λth maximum

(lexicographically), say (ω, λ), of the ordered pairs (λ(ai + bi) + ci, i), i =
1, 2, . . . , n can be identified in O(n) time. Let S = {i : (λ(ai+bi)+ci, i) � (ω, λ)},
where � means lexicographically greater than. Choose xj = 1 if j ∈ S and xj = 0
otherwise and this solution will be optimal for P(λ), λ �= 0. For λ = 0 the zero
vector in the optimal solution for P(λ). Let x(λ) be an optimal solution to P(λ) with
corresponding objective function value v(λ) =∑n

i=1(λ(ai + bi)+ ci)x
(λ)
i , for any

λ ∈ {0, 1, . . . , n}. Then x(λ̄) for λ̄ ∈ argmax{v(λ) : λ ∈ {0, 1, . . . , n}} is an optimal
solution to the QUBO given in Eq. (3.5) and the result follows. ��

66 E. Çela and A. P. Punnen

A matrix Q is said to be a weak sum matrix if there exist ai, bi, i = 1, 2, . . . , n

such that qij = ai + bj , for all i, j = 1, 2, . . . , n and i �= j .

Corollary 3.3 If Q is a weak sum matrix then the QUBO (Q, c) can be solved in
O(n2) time.

Proof Define the matrix Q′ where q ′ij = ai + bj for all i, j = 1, 2, . . . , n and the
vector c′ where c′i = ci + qii − ai − bi . Then

xT Qx+ cT x = xT Q′x+ (c′)T x

for x ∈ {0, 1}n. But, Q′ is a sum matrix and hence by Theorem 3.12 the QUBO
(Q′, c′) can be solved in O(n2) time and the result follows. ��

Analogous results can be obtained for the Ising QUBO. It is not surprising that
sum matrices and weak sum matrices lead to polynomially solvable special cases
of the QUBO. Such matrices are also studied in the context of other prominent
combinatorial optimization problems, e.g. the travelling salesman problem, where
they also lead to polynomially solvable special cases.

Product Matrices Another class of specially structured matrices involved in
polynomially solvable special cases of hard combinatorial optimization problems
are the product matrices. For example, a number of results on polynomially
solvable special cases of the well studied quadratic assignment problem (QAP),
see for example [23, 25, 69], are related to product matrices. Results on (pseudo)
polynomially solvable special cases of the QAP involving product matrices carry
over to QUBO as we will explain below.

An n × n matrix A = (aij) is called a product matrix, if there exist the real
numbers α1, . . . , αn, β1, . . . , βn such that

aij = αi βj for 1 ≤ i, j ≤ n. (3.6)

When αi = βi ∈ {0, 1} for all i ∈ {1, 2, . . . , n}, A is called a symmetric 0-1 product
matrix.

The QAP in Koopmans-Beckmann form [62] takes as input two n × n square
matrices A = (aij) and B = (bij) with real entries and searches for a permutation
π that minimizes the objective function

Zπ(A, B) :=
n∑

i=1

n∑

j=1

aπ(i)π(j) bij , (3.7)

where π ranges over the set Sn of all permutations of {1, 2, . . . , n}. We denote
this QAP instance by QAP(A, B). In general, the QAP is extremely difficult to
solve and hard to approximate, but there are some strongly structured polynomially
solvable special cases.

3 Complexity and Polynomially Solvable Special Cases of QUBO 67

In this context a special case is characterized by certain (combinatorial) proper-
ties of the coefficient matrices A and B. To formalize the concept, let us denote by
MP the set of square matrices having a certain property P . P could be for example
“being a sum matrix” or “being a product matrix” as defined above.

Given two properties P1 and P2 the P1-P2 special case of the QAP consists of
the family of instances QAP(A, B) with A ∈MP1 , B ∈MP2 .

Consider now a λ ∈ {1, 2, . . . , n} and let A(λ) = (a
(λ)
ij) be a 0-1 product matrix

given by a
(λ)
ij = xixj , for i, j ∈ {1, 2, . . . n}, where x = (x1, x2, . . . , xn)

T ∈
{0, 1}n with xi = 0, if and only if i ∈ {1, 2, . . . , λ}. For every π ∈ Sn let
xπ := (xπ(1), xπ(2), . . . , xπ(n))

T be the vector obtained by permuting x according
to π . Clearly xπ ∈ {0, 1}n and the sum of its entries equals λ. Conversely, any
vector in {0, 1}n with sum of the entries equal to λ can be written as xπ for
some π ∈ Sn. Then the objective function of QAP(A(λ), B) can be written as
Zπ(A(λ), B) = −fQ,c(xπ), where Q = −B and c = 0. Hence QAP(A(λ), B) is
equivalent to

max
{
fQ,c(x) : x ∈ {0, 1}n,

n∑

i=1

xi = λ
}

,

and QUBO(Q, 0) can be written as max
λ∈{0,1,...,n} min

π∈Sn

Zπ(A(λ),−Q). Thus

QUBO(Q, 0) can be solved by solving QAP(A(λ),−Q) for all λ ∈ {0, 1, . . . , n}.
Consequently every P1-P2 (pseudo) polynomially solvable special case of the QAP,
where P1 is the property of being a symmetric 0-1 product matrix, yields a (pseudo)
polynomially solvable special case of the QUBO(Q, 0).

Lemma 3.1 Let P1 be the property “being a symmetric 0-1 product matrix” and
P2 be some other matrix property such that the P1-P2 special case of the QAP
is (pseudo) polynomially solvable. Then QUBO(Q, 0) is (pseudo) polynomially
solvable over the class of matrices Q such that (−Q) has the property P2.

Pseudo (polynomially) solvable special cases of the QAP involving symmetric
0-1 product matrices have been investigated in [22, 27, 28]. By applying Lemma 3.1
these special cases immediately imply the following results for the QUBO.

Theorem 3.13 The following special cases of the QUBO (Q, 0) are (pseudo)
polynomially solvable.

(i) Block matrices [28].
Let q be a fixed natural number and let P = (pij) be a q × q matrix such that
pii + pjj ≥ 2pij , for any i, j ∈ {1, 2, . . . , q}. Then, QUBO (Q, 0) is solvable
in O(n(q2q!+n log n)) time if Q is a block matrix with block pattern P, i.e. (a)
there exists a partition of the row and column set {1, . . . , n} into q (possibly
empty) intervals I1, . . . , Iq such that for 1 ≤ k ≤ q−1 all elements of interval
Ik are smaller than all elements of interval Ik+1 and (b) for all indices i and j

with 1 ≤ i, j ≤ n and i ∈ Ik and j ∈ I�, we have qij = pk�.

68 E. Çela and A. P. Punnen

(ii) Toeplitz matrices [22].
Let Q be a symmetric n × n Toeplitz matrix with qij = f (|i − j)) for i, j ∈
{1, 2, . . . , n} and f : {0, 1, . . . , n − 1} → R with the properties (a) f (1) ≥
f (i+1) for 1 ≤ i ≤ �n

2 �−1, and (b) f (i) ≥ f (n− i) for all 1 ≤ i ≤ �n
2 �−1.

Then QUBO(Q, 0) is solvable in polynomial time. More precisely, an optimal
solution can be found among the vectors x(λ), for λ ∈ {0, 1, . . . , n}, where
x

(λ)
i = 0 iff i ∈ {0, 1, . . . , �n

2 �} ∪ {n− �n
2 � + 1, . . . , n}.

(iii) Distance matrices of one-dimensional point sets [27].
QUBO(Q, 0) is solvable in pseudo polynomial time if Q is the distance matrix
of a one-dimensional point set.

In the following we give some examples to illustrate the results presented in
Theorem 3.13. For example let P be a 3× 3 matrix as follows

P =
⎛

⎝
d1 a b

a d2 c

b c d3

⎞

⎠ ,

such that d1, d2, d3 are arbitrary reals and the other entries of the matrix fulfill
2a ≤ d1 + d2, 2b ≤ d1 + d3, 2c ≤ d2 + d3. Then, according to Theorem 3.13 (i),
QUBO(Q, 0) is solvable in O(n(54+ n log n) = O(n2 log n) time, if Q is a block
matrix with block pattern P, i.e. if there exist natural numbers n1, n2, n3 ∈ N with
n = n1 + n2 + n3 such that the entries of Q are given as follows:

qij =
⎧
⎨

⎩

d1 if i, j ∈ {1, . . . , n1} ,
d2 if i, j ∈ {n1 + 1, . . . , n1 + n2} ,
d3 if i, j ∈ {n1 + n2 + 1, . . . , n}

qij = qji =
⎧
⎨

⎩

a if i ∈ {1, . . . , n1}, j ∈ {n1 + 1, . . . , n1 + n2} ,
b if i ∈ {1, . . . , n1}, j ∈ {n1 + n2 + 1, . . . , n} ,
c if i ∈ {n1 + 1, . . . , n1 + n2}, j ∈ {n1 + n2 + 1, . . . , n}

.

As an illustrative example for Theorem 3.13 (ii) consider a symmetric 8 × 8
Toeplitz matrix Q generated by f : {0, 1, . . . , 7} → R given by f (0) = 2, f (1) =
5, f (2) = 2, f (3) = 1, f (4) = 0, f (5) = 1, f (6) = 0, f (7) = 3 which obviously
fulfills the conditions specified in (ii). In this case the results of [22] would imply
that an optimal solution of the QUBO (Q, 0) can be found among the the vectors
{x(i) : i ∈ {0, 1, . . . , 7}} given as

(x(0))T = (0, 0, 0, 0, 0, 0, 0, 0), (x(1))T = (0, 1, 1, 1, 1, 1, 1, 1),

(x(2))T = (0, 1, 1, 1, 1, 1, 1, 0), (x(3))T = (0, 0, 1, 1, 1, 1, 1, 0),

(x(4))T = (0, 0, 1, 1, 1, 1, 0, 0), (x(5))T = (0, 0, 0, 1, 1, 1, 0, 0),

3 Complexity and Polynomially Solvable Special Cases of QUBO 69

(x(6))T = (0, 0, 0, 1, 1, 0, 0, 0), (x(7))T = (0, 0, 0, 0, 1, 0, 0, 0),

(x(8))T = (1, 1, 1, 1, 1, 1, 1, 1).

This is due to the fact that x(λ) is an optimal solution to the QAP(Aλ),−Q), for
λ ∈ {0, 1, . . . , 8}.

To illustrate Theorem 3.13 (iii) consider a set of n colinear points Pi in R
k ,

i ∈ {1, 2, . . . , n}, and let Q = (qij) be such that qij = d2(Pi, Pj), for all i, j ∈
{1, 2, . . . , n}, where d2 is the Euclidean distance in R

k . Then QUBO (Q, 0) can be
solved in pseudo-polynomial time by dynamical programming, as implied by the
results in [27].

k-Strip Matrices An n× n matrix is said to be k-strip matrix if all of its non-zero
entries are located in the first k rows and first k columns. A QUBO when Q is a
k-strip matrix is called a k-strip QUBO.

Theorem 3.14 A k-strip QUBO is polynomially solvable when k = O(log n) and
is NP-hard when k = O(t

√
n) for any fixed t > 0.

Proof From the given k-strip matrix, construct the k × n matrix Q′ as

q ′ij =
{

qij if 1 ≤ i, j ≤ k

qij + qji if i = 1, 2, . . . , k, j = k + 1, . . . , n.

Then, QUBO is equivalent to the pseudo-bilinear program [25]

PBL: Maximize
k∑

i=1

k∑

j=1

q ′ij zizj +
k∑

i=1

cizi +
k∑

i=1

n∑

j=k+1

(qij + qji)ziyj+
n∑

j=k+1

cj yj

Subject to: zi ∈ {0, 1} for i = 1, 2 . . . , k

yj ∈ {0, 1} for j = k + 1, . . . , n.

For each zp ∈ {0, 1}k construct the best y
p
j , j = k + 1, . . . , n as

y
p

j =
{

1 if cj +∑k
i=1(qij + qji)z

p
i > 0

0 otherwise.

Now for each zp ∈ {0, 1}k, p = 1, 2, . . . , 2k, construct the solution xp =
(z

p

1 , z
p

2 , . . . z
p

k , y
p

k+1, . . . , y
p
n) for the QUBO. Choose xr ∈ {x1, x2, . . . , x2k } such

that fQ,c(xr) = max{fQ,c(xi) : i = 1, 2, . . . , 2k}. Then xr will be an optimal
solution to the k-strip QUBO. When k = O(log n) the enumeration scheme
discussed above is polynomially bounded. The second part of the theorem can
be proved using arguments similar to those used in the proof of Theorem 10.7 in
Chap. 10. ��

70 E. Çela and A. P. Punnen

A matrix is said to be a permuted k-strip matrix if there exists a permutation of
rows and columns that transforms the matrix to a k-strip matrix. Equivalently, Q is
a permuted k-strip matrix if there exists a set S ⊂ {1, 2, . . . , n} such that |S| = k

and deleting rows and columns of Q corresponding to the indices in S results in a
zero matrix. In view of Theorem 3.14, QUBO can be solved in polynomial time if
the cost matrix Q is a permuted k-strip matrix for a given permutation (or a given
index set S as indicated above). An example of a permuted 3-strip matrix is given
below. The permutation that interchanges row 1 and 6 and column 1 and 6 yields a
3-strip matrix (equivalently choose S = {2, 3, 6}).

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −5 −2 0 0 6
−2 1 0 1 3 2
1 −6 5 2 3 1
0 3 −4 0 0 2
0 5 3 0 0 1
−3 2 3 −1 5 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

However, recognizing a permuted k-strip matrix in general is a difficult problem.

Theorem 3.15 Recognizing a permuted k-strip matrix is strongly NP-hard. When
k is fixed, a permuted k-strip matrix can be recognized in polynomial time and when
k = O(log n) it can be recognized in quasi-polynomial time.

Proof Consider a matrix Q and its associated support graph G. Then, Q is a k-strip
matrix if and only if G has a stable set of size at least n−k. Thus, a polynomial time
algorithm for recognizing a permuted k-strip matrix can be used to test if a graph
contains a stable set of size at least n−k. This proves the strong NP-hardness. Now,
from the graph G, remove k vertices along with their incident edges and check if
the resulting graph is a collection of isolated nodes. If the answer is yes, the matrix
is k-strip and it will also identify the permutation (or the set S). There are

(
n
k

)
ways

to select k nodes and hence the process is polynomially bounded for fixed k and
quasi-polynomial for k = O(log n). ��

Non-negative Off-diagonal Elements Let us now discuss the special case of
QUBO when the off-diagonal elements of Q are non-negative. There are no
restrictions on the diagonal elements or the elements of c. In this case, QUBO can
be written as the 0 − 1 linear program (which follows from the Glover-Woolsey
linearization discussed in Chap. 1 and the references there in)

GWO: Maximize
n∑

i=1

∑

j∈Pi ,j �=i

qij yij +
n∑

i=1

(ci + qii)xi

Subject to: yij − xi ≤ 0 for all j ∈ Pi, i = 1, 2, . . . , n

yij − xj ≤ 0 for all j ∈ Pi, i = 1, 2, . . . , n

xi ∈ {0, 1} for all i = 1, 2, . . . , n,

3 Complexity and Polynomially Solvable Special Cases of QUBO 71

where Pi = {j : qij > 0}. The variable yij is unrestricted but has an implicit upper
bound of 1. Further, in an optimal solution, yij cannot be negative.

Lemma 3.2 The coefficient matrix of the LP relaxation of GWO is totally unimod-
ular.

Proof The coefficient matrix, say C, of the LP relaxation of GWO can be written

as C =
(

B
I

)

where B corresponds to the part of the coefficient matrix for general

constraints and the identity matrix I corresponds to the upper bound constraints
(including the implicit bound on the yij variables). Thus, C is totally unimodular
if B is totaly unimodular and B is totally unimodular if BT is totally unimodular.
But BT has a 1 and a −1 in each column with the remaining entries being zero and
hence it is the node-arc incidence matrix of some directed graph. This shows that
BT is totally unimodular and the result follows. ��
Theorem 3.16 When Q is a square matrix with non-negative off diagonal elements,
then the QUBO (Q, c) can be solved in polynomial time.

Proof The type of QUBO as discussed in the statement of the theorem can be solved
by solving GWO. From Lemma 3.2, GWO can be solved in polynomial time by
simply solving its linear programming relaxation. ��

Theorem 3.16 was proved earlier by many authors [66, 84, 85]. Similarly, when
the off-diagonal elements of the Ising QUBO (A, b) are non-negative the Ising
QUBO can be solved in polynomial time. This follows from the fact that such an
Ising QUBO can be reduced to a QUBO with a cost matrix having non-negative
off-diagonal elements. Interestingly, when the off-diagonal elements of Q are non-
positive, the complexity results from Sect. 3.2 shows that the resulting QUBO is
NP-hard.

Let us now consider a more efficient algorithm to solve GWO, without using a
general purpose linear programming solver. In particular, we show that GWO can
be solved as a maximum flow problem (equivalently a minimum (s, t)-cut problem
with non-negative edge weights).

For i = 1, 2, . . . , n, let ri = ∑n
j=1 qij . Consider the graph G = (V ,E)

associated with the matrix Q, where V = {s, t, 1, 2, . . . , n} and E = {(i, j) : qij �=
0} ∪ {(s, j), (j, t) : j = 1, 2, . . . , n}. Define the weights wij of the edges of G as
follows:

wij =

⎧
⎪⎪⎨

⎪⎪⎩

min{0,−rj − cj } if i = s

min{0, ri + ci} if j = t

−qij otherwise.

An (s, t)-cut in G is a partition (S, T) of the vertex set V such that s ∈ S and t ∈ T .
The capacity of the (s, t)-cut (S, T) is denoted by δ(S, T) and is given as the sum
of the weights of the edges in the cut, i.e. δ(S, T) =∑

i∈S,j∈T wij . There is a one-

72 E. Çela and A. P. Punnen

to-one correspondence between (s, t)-cuts in G and x ∈ {0, 1}n. More precisely,
for any x ∈ {0, 1}n there is an (s, t)-cut (S, T) where S = {s} ∪ {j : xj = 1}
and T = {t} ∪ {j : xj = 0}. Likewise for any (s, t)-cut (S, T) in G, we get an
x ∈ {0, 1}n such that xj = 1 if j ∈ S, j �= s and xj = 0 if j ∈ T , j �= t .

Theorem 3.17 ([84, 85]) Let G be the weighted graph associated with the symmet-
ric matrix Q as defined above. Then,G contains an (s, t)-cut of value δ(S, T) if and
only if there exists an x ∈ {0, 1}n such that xT Qx+ cT x+∑n

j=1 wsj = δ(S, T).

Proof The value δ(S, T) of the (s, t)-cut is given by

δ(S, T) =
n∑

j=1

wsj (1 − xj)+
n∑

i=1

n∑

j=1

wij xi(1 − xj)+
n∑

j=1

wjtxj

=
n∑

j=1

wsj −
n∑

j=1

wsjxj −
n∑

i=1

n∑

j=1

qij xi (1− xj)+
n∑

j=1

wjtxj

=
n∑

j=1

wsj−
n∑

i=1

min{0,−ri − ci}xi + xT Qx−
n∑

i=1

rixi +
n∑

i=1

min{0, ri + ci}xi

=
n∑

j=1

wsj + xT Qx+ cT x.

The converse can be proved using the above equations, by working backwards. ��
To clarify the construction discussed above, consider the instance (Q, c) of

QUBO where

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 2 0 4 5
2 0 1 0 3
0 1 0 2 6
4 3 2 0 4
5 0 6 4 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−8
−8
−12
−7
−15

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Now, the vector of the ri values is given by rT = (11, 6, 9, 13, 15). Then, the QUBO
(Q, c) is equivalent solving the maximum s − t cut problem on the graph G in
Fig. 3.1.

Take any (s, t)-cut, say S = {s, 1, 2}. Then δ(S, T) = −21.
∑5

j=1 wsj = −9.

The incidence vector of S is x = (1, 1, 0, 0, 0). Then xT Qx + cT x +∑5
j=1 wsj =

−21 = δ(S, T).
Thus, the QUBO can be solved by solving the maximum (s, t)-cut problem on

G. But, when the off-diagonal elements of Q are non-negative, the weights wij of
the edges of the graph G constructed above are non-positive. Thus, the maximum
(s, t)-cut on G can be identified by solving the minimum (s, t)-cut problem on G

3 Complexity and Polynomially Solvable Special Cases of QUBO 73

Fig. 3.1 The instance of Maximum (s, t)-cut equivalent to (Q, c)

by taking the negative of the weights on the edges. Thus, the special case of QUBO
where the off-diagonal elements of Q are non-negative can be solved as a minimum
cut problem with non-negative edge weights, which is equivalent to the maximum
flow problem in a directed graph. The corresponding Ising QUBO can also be solved
as a minimum s − t-cut problem.,

In Theorem 3.16 we showed that the QUBO (Q, c) can be solved in polynomial
time, if the off diagonal elements of Q are non-negative. If the off-diagonal elements
are non-positive, QUBO (Q, c) is strongly NP-hard as proved in Sect. 3.2. However,
if additional restrictions are imposed, we obtain a polynomially solvable special
case of QUBO (Q, c) with non-positive off diagonal entries of Q.

Theorem 3.18 If the off diagonal elements of the matrix Q are non-positive and the
support graph of Q is an undirected bipartite graph, then the QUBO (Q, c) can be
solved in polynomial time.

This result was obtained by Billionnet [12] and is proved in Chap. 10 in the
context of BQUBO.

Pseudo k-Strip Matrices and Further Generalizations Let us now generalize
Theorem 3.14 a little bit further. An n × n matrix Q is said to be a pseudo k-strip
matrix if the off-diagonal elements of the matrix obtained from Q by deleting the
first k rows and columns are non-negative. An instance (Q, c) of QUBO is called a
pseudo k-strip QUBO if Q is a pseudo k-strip matrix.

Theorem 3.19 The pseudo k-strip QUBO is solvable in polynomial time if k =
O(log n) and NP-hard if k = O(t

√
n) for any fixed t > 0.

Proof For a given z ∈ {0, 1}k, define the (n − k)-vector dz = (dz
1, dz

2, . . . , dz
n−k)

where dz
j = ck+j + qk+j,k+j +∑k

i=1(qi(k+j) + q(k+j)i)zi , j = 1, 2, . . . , (n − k).
Also, define the (n − k)× (n − k) matrix Q′ such that q ′ij = q(k+i)(k+j) for i, j =
1, 2, . . . , (n − k), i �= j and 0 if i = j . Let yz an optimal solution to the reduced

74 E. Çela and A. P. Punnen

QUBO (Q′, d) of size n− k given by:

QP ′(z): Maximize f (y) = yT Q′y+ dzy

Subject to: y ∈ {0, 1}n−k,

Then, the best solution to the given QUBO (Q, c) subject to the condition that
xi = zi, i = 1, 2, . . . , k is x = (z, yz) with the corresponding objective function
value f (yz)+∑k

i=1
∑k

j=1 qij zizj+∑k
j=1 cj zj . Since Q is a pseudo k-strip matrix,

QP ′(z) is of the type GWO and hence can be solved in polynomial time by linear
programming. Choose all possible values of z ∈ {0, 1}k, compute the corresponding
best solution x = (z, yz) and select the overall best solution so obtained, which is
an optimal solution to the given QUBO (Q, c). When, k = O(log n) this method is
polynomially bounded. The second part of the theorem follows from Theorem 3.14.

��
The above theorem also extends to the Ising QUBO. As in the case of the k-strip

matrix, we can define a permuted pseudo k-strip matrix. Let S ⊆ {1, 2, . . . , n}
be a subset of the index set for rows (columns) of Q with |S| = k. Then, Q
is a permuted pseudo k-strip matrix if the matrix obtained from Q by deleting
rows and columns corresponding to S have off-diagonal elements non-negative. As
established in Theorem 3.15 for k-strip matrices, recognizing a permuted pseudo
k-strip matrix is strongly NP-hard in general but when k is fixed it is polynomially
bounded. The QUBO and the Ising QUBO can be solved in polynomial time when
the associated cost matrix is a permuted pseudo k-strip matrix when k is fixed.

Motivated by the examples of the k-strip matrix, the pseudo k-strip matrix and
their permuted versions, we can define a more general class of matrices Q so that
the corresponding QUBO (Q, c) can be solved in polynomial time. Let P be a
prescribed matrix property. Then, the matrix Q is said to be (P, k)-reducible if there
exists S ⊂ {1, 2, . . . , n} such that |S| = k and the matrix Q′ obtained by deleting
the rows and columns of Q corresponding to S satisfies P. If P is such that the
instance (Q′, d) of the QUBO is solvable in polynomial time for any vector d then
the QUBO (Q, c) can be solved in polynomial time whenever k = O(log n) and
S is given. This observation provides additional enhancements to the polynomially
(pseudo-polynomially) solvable cases of QUBO that we discuss hereafter. These
results also extend to the case of the Ising QUBO.

3.3.2 Low Rank Cost Matrices

From Theorem 3.10, we know that the QUBO (Q, c) is NP-hard even if Q is
symmetric and its rank is equal to one. If the rank of Q is low and Q satisfies some
particular additional properties, we can get polynomially solvable special cases of
the QUBO (Q, c). The matrix Q is of rank r if and only if there exist matrices U, V,

3 Complexity and Polynomially Solvable Special Cases of QUBO 75

each of size r × n such that Q = UT V. Equivalently, Q is of rank r if and only if
qij =∑r

k=1 ukivkj for all i and j . The matrices U and V can be identified from the
reduced echelon form of Q or by using the singular value decomposition. There are
many equivalent representations of QUBO which affect the rank of Q. Through out
the rest of this section, we assume that the rank factorization Q = UT V is given.

There are a number of special cases of QUBO with a given rank factorization of
Q investigated in the literature. In the following discussion we will distinguish the
cases c = 0 and c �= 0.

3.3.2.1 The Special Case c = 0

Here we consider QUBO(Q, 0) where Q has rank r and a rank factorization is
given. First notice that if the symmetric matrix Q has rank one, the problem is
solvable in polynomial time. Indeed, for a symmetric matrix Q = (qij) of rank
one either (a) qij = αiαj for all i, j or (b) qij = −αiαj for all i, j hold,
i, j ∈ {1, 2, . . . , n}, n ∈ N. In Case (a) we have xT Qx = ∑n

i,j=1 αiαj xixj =
(
∑n

i=1 αixi)
2 and max{xT Qx : x ∈ {0, 1}n} is equivalent to max{|∑n

i=1 αixi | : x ∈
{0, 1}n}. Notice that an optimal solution of the later problem can be found among
{x, x̄}, where x = (xi) and x̄ = (x̄i) are given as

xi =
{

1 if αi < 0
0 otherwise

x̄i =
{

1 if αi > 0
0 otherwise

This is due to the inequalities below which trivially hold for any x ∈ {0, 1}n

n∑

i=1

αixi =
∑

i∈I−
αi ≤

n∑

i=1

αixi =
∑

i∈I+
αixi +

∑

i∈I−
αixi ≤

∑

i∈I+
αi =

n∑

i=1

αi x̄i

where I+ := {i ∈ {1, 2, . . . , n} : αi > 0} and I− := {i ∈ {1, 2, . . . , n} : αi < 0}.
The inequalities above imply that

∣
∣
∣
∣
∣

n∑

i=1

αixi

∣
∣
∣
∣
∣
≤ max

{∣
∣
∣
∣
∣

n∑

i=1

αixi

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

n∑

i=1

αi x̄i

∣
∣
∣
∣
∣

}

.

Thus, x = (xi) or x̄ = (x̄i) is the optimal solution of QUBO(Q, 0) in this case.
Case (b) is trivial because xT Qx = −∑n

i,j=1 αiαj xixj = −(
∑n

i=1 αixi)
2 in

this case and max{xT Qx : x ∈ {0, 1}n} = 0 and is obtained for x = 0. If the rank is

larger than 1 the complexity of the problem depends on other factors. For example
the (positive) definiteness of Q. Hammer et al. [54] showed that QUBO(Q, 0)

remains NP-hard even if Q is indefinite and is of rank 2. Hammer et al. [54] gave an
O(n log n) algorithm to solve the continuous relaxation of this problem. Moreover,

76 E. Çela and A. P. Punnen

they characterized the cases where an optimal solution of the continuous relaxation
is binary and thus constitutes an optimal solution of the QUBO.

Allemand et al. [3] considered the case where Q is positive semidefinite and has
a constant rank r . They proposed an O(nr−1) algorithm to solve the problem when
rank of Q is r ≥ 3 and an O(n2) algorithm when r ≤ 2. Thus, in this case the
QUBO (Q, 0) can be solved in polynomial time when the rank of Q is fixed. The
algorithm of Allemand et al. [3] involves the enumeration of the extreme points of
a special polytope called zonotope which will be defined later. Ferrez et al. [38]
proposed an improved method for enumerating the extreme points of the zonotope
which is also relevant for the practical implementation of the method of Allemand
et al. [3].

Let us take a closer look at the approach of Allemand et al. [3]. We assume
that Q = VT V, where V is a given r × n matrix such that its rows v(i)T are the
appropriately scaled eigenvectors of Q. Then the QUBO (Q, 0) can equivalently be
formulated as

max f (x) = xT VT Vx =
r∑

i=1

〈v(i), x〉2 (3.8)

subject to x ∈ {0, 1}n ,

where 〈a, b〉 denotes the scalar product of the vectors a and b. Consider the linear
mapping z = Vx of Rn to R

r . Let Z be the image of the hypercube [0, 1]n under
this mapping. Clearly, Z is a convex polytope which is generally called a zonotope.
Moreover, for every extreme point z̄ of Z there exist an extreme point x̄ of [0, 1]n,
i.e. an x̄ ∈ {0, 1}n, such that z̄ = Vx̄. For the optimal objective function value f ∗ of
the problem (3.8), we get

f ∗ = max
{ r∑

i=1

〈v(i), x〉2 : x ∈ {0, 1}n
}
= max

{ r∑

i=1

〈v(i), x〉2 : x ∈ [0, 1]n
}

= max
{ r∑

i=1

z2
i : z ∈ Z

}
, (3.9)

where the second equality is due to the convexity of the function
∑r

i=1〈vi , x〉2
which holds because Q is assumed to be positive semidefinite. Clearly, the
maximum of the convex function

∑r
i=1 z2

i over the zonotope Z is attained at
some extreme point of Z. Thus, this special case of the QUBO (Q, 0) can be
formulated as an enumeration problem over the extreme points of Z. Since Z is
a polytope in R

r it has O(nr−1) extreme points. Moreover, for every z ∈ Z we have
z = Vx = ∑n

i=1 xiv(i) for some x ∈ [0, 1]n, where v(i), i ∈ {1, 2, . . . , n}, are the
columns of V. Thus Z is the Minkowski sum of the closed line segments [0, v(i)] for
i ∈ {1, 2, . . . , n}. From the duality theory in discrete geometry it is known that the
set S of the extreme points of Z together with the corresponding points x ∈ {0, 1}n

3 Complexity and Polynomially Solvable Special Cases of QUBO 77

with z = Vx for every z ∈ S can be computed in O(nr−1) time for r ≥ 3 and in
O(n2) time for r = 2, see e.g. [35].

3.3.2.2 The General Case: c ∈ R
n

Now we drop the assumption c = 0 and consider QUBO (Q, c), where Q has rank
r and a rank factorization of Q is given.

If Q is a non-negative matrix, we have already shown that QUBO (Q, c) can
be solved in polynomial time, even if no assumptions are made on the rank of Q,
see Theorems 3.17. One way to partially relax the non-negativity assumption on the
elements of Q is identified in Theorem 3.19. Another line of reasoning to achieve
computational advantage is by restricting the rank of Q. If we assume a fixed rank
of Q, the requirements on the non-negativity of the entries of Q can be weakened in
a number of ways and lead to several polynomially solvable special cases of the low
rank QUBO as described below.

Q Has Non-negative Diagonal Entries The second equality in (3.9) shows that
QUBO and its continuous version are equivalent, if Q is positive semidefinite. Thus,
the algorithm of Allemand et al. [3] also solves the continuous version of QUBO in
polynomial time, when the rank of Q is fixed. By extending and generalizing the
work of Allemand et al. [3], Hladík et al. [56] considered the continuous quadratic
optimization problem with bounded variables defined as follows

BQP: Maximize xT Qx+ cT x

subject to: xi ∈ [�i, ui], i = 1, 2, . . . , n,

where �i and ui are rational numbers for i = 1, 2, . . . , n. The bound constraints
allow the flexibility to fix the value of a variable disclosing the possibility of
augmenting Q using c as described below. Consider the (n+ 1)× (n+ 1) matrix

Q′ =
[

Q 1
2 c

1
2 cT 0

]

(3.10)

Define �n+1 = un+1 = 1. Note that if the rank of Q is r , then rank of Q′ ≤ r + 2.
Now, BQP can be written as

BQP1: Maximize xT Q′x

subject to: xi ∈ [�i, ui], i = 1, 2, . . . , n, n + 1.

It is easy to verify that BQP and BQP1 are equivalent. To solve BQP, Hladík et
al. [56] essentially solved BQP1 and obtained the following result.

78 E. Çela and A. P. Punnen

Theorem 3.20 ([56]) BQP can be solved in O(n2r+3ψ(n,L)) time, where r is
the rank of Q and ψ(n,L) is the complexity of solving a linear program with n

variables, n constraints and input size L.

Theorem 3.20 has interesting consequences on the polynomial solvability of
QUBO.

Theorem 3.21 The QUBO (Q, c) can be solved in polynomial time if the diagonal
elements of Q are non-negative and the rank of Q is fixed.

Proof Choose �i = 0 and ui = 1 for i = 1, 2, . . . , n. Since the diagonal elements
of Q are non-negative, and by the choice of �i and ui , there exists an optimal solution
to BQP which is at an extreme point of the hypercube [0, 1]n (see Chap. 8 and the
references there in). Now, solve the continuous optimization problem BQP. If the
resulting solution is binary, we have an optimal solution to the QUBO (Q, c). If
there are fractional components, apply a simple polynomial time rounding algorithm
to convert this to a 0-1 solution without worsening the objective function value. (For
example apply the [0, 1]-rounding algorithm discussed in Chap. 8.) Since the rank
of Q is fixed, the result follows from Theorem 3.20. ��

Note that in Theorem 3.21 we replaced the assumption on positive semidefinite-
ness of Q by a weaker one, namely the non-negativity of the diagonal entries of Q.
These results can be further extended to some special classes of full rank matrices.

A matrix Q is said to be of pseudo rank r if there exists a diagonal matrix D such
that Q + D is of rank r . Matrices with pseudo rank r are precisely those matrices
Q where qij = ∑r

k=1 ukivkj hold for all i, j ∈ {1, 2, . . . , n} with i �= j . Note
that a matrix with pseudo rank r could have rank up to n. Our next corollary shows
that a special case of QUBO(Q, c) with Q having pseudo rank r can be solved in
polynomial time when r is fixed.

Corollary 3.4 If D is a diagonal matrix such that Q + D is of rank r with non-
negative diagonal entries, then the QUBO (Q, c) can be solved in polynomial time
when r is fixed.

Proof The QUBO (Q, c) is equivalent to the QUBO (Q+D, c−diagv(D)), where
diagv(D) is the n-dimensional vector formed by the diagonal entries of D such that
the ith entry of diagv(D) is dii . The result follows by applying Theorem 3.21 to the
QUBO (Q+ D, c− diagv(D)). ��

As an example of a matrix of the type discussed in Corollary 3.4, consider a
matrix Q′ of rank r such that q ′ii ≥ 0 for all i. Let Q be the matrix obtained by
replacing the diagonal elements of Q′ with values αi, i = 1, 2, . . . , n, so that rank
of Q is n. Now consider the QUBO (Q, c). Since the rank of Q is n, Theorem 3.21
does not help to solve the QUBO (Q, c) in polynomial time. However, for fixed r

Corollary 3.4 allows to solve the QUBO (Q, c) in polynomial time by using the
diagonal matrix D with dii = q ′ii − αi , for i ∈ {1, 2, . . . , n}.

The polynomially solvable cases discussed here for QUBO (Q, c) extend to
the case of the Ising QUBO since the transformation between the QUBO and the

3 Complexity and Polynomially Solvable Special Cases of QUBO 79

Ising QUBO preserves the rank of the cost matrix. For the Ising QUBO (A, 0)

(in the minimization form) Ben-Ameur and Neto [11] proposed a polynomial time
algorithm when the rank of A is fixed and the number of positive entries on the
diagonal of A is O(log n). This offers yet another special case of the low rank
QUBO solvable in polynomial time.

Non-negativity Constraints Imposed to the Entries of Q Some other polynomi-
ally solvable special cases of the QUBO (Q, c) with a given rank factorization of Q
and of a fixed rank r arise if more complex non-negativity restrictions are imposed
to the entries of Q, see Çela et al. [26]. The non-negativity restrictions are expressed
by means of graph models or more generally, hypergraph models. In particular, let
H be a family of hypergraphs H with vertex set V (H) = {1, 2, . . . , n}, where n is
the size of Q, and the edge set E(H) fulfilling the following three properties:

(i) The cardinality of all edges F ∈ E(H) is bounded by a constant (independent
on n).

(ii) The cardinality of the largest stable set in H is O(logn).
(iii) The number of maximal stable sets in H is polynomial in n.

Then, the following theorem holds:

Theorem 3.22 (Çela et al. [26]) The QUBO (Q, c), where Q is of rank r with a
given rank factorization, is solvable in polynomial time if there is a hypergraph
H ∈ H such that

∑
i,j∈F qij > 0 for all F ∈ E(H).

Consider now a family G of (loop-free) graphs G with vertex set V (G) =
{1, 2, . . . , n}, where n is the size of Q, and edge set E(G) fulfilling the following
property:

(iv) The number of stable sets in G is polynomial in n.

The following theorem holds:

Theorem 3.23 (Çela et al. [26]) The QUBO(Q, c), where Q is of rank r with a
given rank factorization, is solvable in polynomial time if there is a (loop-free) graph
G ∈ G such that qii + qjj − 2|qij | > 0 for all {i, j } ∈ E(G).

Notice that the condition (iv) is equivalent to the following condition

(iv’) The cliques in the complement Gc of G can be enumerated in polynomial
time.

Several graphs classes fulfilling (iv’) have been investigated in the literature. A
prominent example is the class of graphs with bounded treewidth [90] (including
series-parallel graphs, and also trees as special series-parallel graphs). Also the
planar graphs and more generally, the graphs with bounded thickness, have a
polynomial number of cliques. The thickness of a graph G is defined as the
minimum number of planar graphs whose union yields G. It is known that the
size of a maximum clique in a graph with thickness t is not more than 6t − 2,
see [10]. By considering the complementary classes of the classes mentioned above

80 E. Çela and A. P. Punnen

we get polynomially solvable special cases of the low-rank QUBO in the sense of
Theorem 3.23.

We are not aware of non-trivial classes of (proper) hypergraphs fulfilling the
properties (i)–(iii) above. (Hypergraphs which are not graphs, i.e. which have
at least one edge of cardinality more than 2, are called proper hypergraphs.) A
class of hypergraphs which trivially fulfill properties (i)–(iii) are the complete p-
hypergraphs, i.e. the hypergraphs containing all possible edges of size p for some
constant p ∈ N.

Notice that the proofs of the above theorems are based on a general algorithm
which solves the following equivalent representation of QUBO (Q, c)

min
x∈{0,1}n f (x) = 〈c′x〉 +

d∑

j=1

λj (βj + 〈u(j), x〉)2 . (3.11)

The time complexity analysis reveals that the algorithm runs in polynomial time
in the special case when the conditions of Theorems 3.22 and 3.23 are fulfilled.
Moreover, notice that the representation in (3.11) is not unique and that different
values for c′ and d influence the time complexity of the above mentioned algorithm.
For example, such a representation is obtained by setting d := r , c′ := c, βj := 0
for all j ∈ {1, 2, . . . , r}, λj to be the eigenvalues and u(j) to be the eigenvectors of
Q, for j ∈ {1, 2, . . . , r}. In this setting irrational values in the quantities λj and u(j)

may arise even if Q and c are rational. An alternative approach to avoid irrational
entries would be to compute the LDU-decomposition of Q resulting in Q = LDLT ,
where L is a lower triangular matrix and D is a diagonal matrix of rank r .

Later in Sect. 3.5 we discuss pseudo-polynomial algorithms and related results
for QUBO when rank of Q is fixed. Many of the complexity results discussed
in this section and the section to follow involve terms of the type nr as a factor
along with possibly other polynomial factors. When r is fixed, such algorithms are
polynomially bounded. When r = O(log n),O(log log n) etc., we still get non-
exponential growth with slow growing complexity expressions. In such cases, our
algorithms are not exactly polynomial time but they are quasi-polynomial time.

3.4 Polynomially Solvable Graph Structures

Let us now discuss some polynomially solvable special cases of QUBO by exploit-
ing the properties of the support graph of Q. The support graph offers significant
information of the relative difficulty of the QUBO and the Ising QUBO. In Sect. 3.2
we have seen that even when the support graph is very sparse, the complexity of
QUBO remains unaltered. At the other extreme, if the support graph is diagonal,
QUBO can be solve by a greedy algorithm since in this case the problem reduces
to the optimization of an unconstrained linear function in binary variables. Let us
now explore the linkages between the polynomial solvability of the QUBO and the

3 Complexity and Polynomially Solvable Special Cases of QUBO 81

Ising QUBO on one side and the solvability of some fundamental graph theoretic
optimization problems on the other.

3.4.1 QUBO and the Maximum Cut Problem

Theorem 3.5 implies that the Ising QUBO (A, 0) can be solved in polynomial time
if and only if the maximum weight cut problem on the support graph of A can be
solved in polynomial time. There are many classes of graphs on which the maximum
weight cut problem can be solved in polynomial time. For example,

Theorem 3.24 The maximum weight cut problem is polynomially solvable on the
following classes of graphs.
1. Planar graphs [67, 87]
2. Graphs of bounded bandwidth [65]
3. Graphs of bounded treewidth [16, 32]
4. Graphs of bounded genus [41].

Thus, as an immediate consequence of Theorems 3.24 and 3.5 we have

Corollary 3.5 If the support graph G of A is planer then the Ising QUBO (A, 0)

can be solved in polynomial time. Further, if the bandwidth, the treewidth, or the
genus of G bounded by some fixed k then the Ising QUBO (A, 0) can be solved in
polynomial time.

The special case of QUBO when the support graph has bandwidth k was studied
by various authors when k = 3, 5, 7 and for a fixed value of k [51, 66, 76]. Note that
the Ising QUBO (A, b) is equivalent to the Ising QUBO (A′, 0), where

A′ =
[

A′ 1
2 b

1
2 bT 0

]

(3.12)

Thus, without loss of generality, we can assume that the Ising QUBO is given in
the form (A, 0), where 0 is the zero vector in R

n. Notice that the transformation from
(A, b) to (A′, 0) does impact the structure of the support graph of A′ and the latter
might not inherit all the “nice” properties of the support graph of A. However, if
additional conditions are imposed on the elements of A and b or further restrictions
on the support graph of A are imposed, the “nice” structure of the support graph
of A can be guaranteed for the support graph of A′. For example, if the support
graph of A is outerplanar, then the support graph of A′ will be planar. This is
because, for an outerplanar graph, there exists a planar embedding where all vertices
are on the outer face. Hence, if the support graph of A is outerplanar, the Ising
QUBO (A, b) (and consequently also the corresponding QUBO) can be solved in
polynomial time. Polynomially solvable special cases of the QUBO (Q, c) can be
obtained by applying the transformation between the QUBO and the Ising QUBO

82 E. Çela and A. P. Punnen

discussed earlier in this chapter or from the fact that the QUBO (Q, c) of size n

can be formulated as a maximum weight cut problem on a graph on n + 1 nodes
(see Chap. 1). Thus, if the maximum weight cut problem on that graph is solvable
in polynomial time, the QUBO (Q, c) can be solved polynomial time.

The first polynomial time algorithm for the weighted maximum cut problem on
planar graphs was obtained by Hadlock [53] in the case of non-negative weights.
(See Orlova and Dorfman [75] for a branch and bound type algorithm on that
problem.) Thus, for our purpose of solving QUBO in polynomial time, these
algorithms are not of much use. Shih et al. [87] and Liers and Pardella [67]
proposed O(n3/2 log n) algorithms to solve the weighted maximum cut problem
on planar graphs, where arbitrary weights are allowed. Both of these algorithms can
be adapted to solve the Ising QUBO (A, 0) when the support graph of A is planar.

Let us now discuss very briefly the algorithm of Liers and Pardella [67] to solve
the maximum cut problem on a planar graph. Let G = (V ,E) be a planar graph and
we assume that a planar embedding of G is also given. Moreover the edge weights
wij for each edge {i, j } ∈ E are given and no assumptions on the sign of wij are
made. Let GD be the dual of G with respect to the given planar embedding. The
weight of an edge e in GD is the weight of the edge {i, j } in G that e crosses. First
a pre-processing step is performed so as to ‘balance’ the graph GD . To this end
each node v of GD having degree more than 4 is split into �(d(v) − 1)/2� nodes
connected by new edges of weight zero to form a path Pv . Here, d(v) is the degree
of the dual node v. Now allocate the d(v) edges incident on v to unique nodes in Pv

so that the degree of each node is at most 4. Let GT = (VT ,ET) be the transformed
dual graph. It can be verified that the degree of any node in GT is either 3 or 4
(exceptions can be handled easily).

Now, replace each node v of GT by a K4, the complete graph on 4 nodes
{v1, v2, v3, v4}. Note that degree of node v in GT is 3 or 4. Suppose degree of v is
4 and let {i1, v}, {i2, v}, {i3, v}, {i4, v} be the edges in GT incident on v. Connect ij
to vj by an edge of weight the same as that of {ij , v} for j = 1, 2, 3, 4. Without loss
of generality assume that v1, v2, v3, v4 are labelled such that this operation leaves a
planar embedding. If the degree of v is three, we connect the three nodes adjacent
to v in GT to three nodes of the K4 in an analogous way. Nodes with self loops lead
to multi-arcs in K4. (See [67] for further details and exceptions.) The weights of the
edges of the complete graphs K4 introduced as described above are set to zero. The
resulting expanded planar graph is denoted by GE .

Now, find a maximum weight perfect matching M in GE . Then shrink back
all complete graphs K4 that were created along with all split nodes, if any such
nodes were introduced, while keeping track of the matched edges. Consider the
subgraph induced by the matching edges, after the shrinking operation. This graph
is a maximum weight Eulerian graph in the dual which yields an optimal cut in the
primal.

Theorem 3.25 ([67]) The algorithm discussed above correctly computes a maxi-
mum weight cut in a planar graph G in O(n3/2 log n) time, where n is the number
of edges in G.

3 Complexity and Polynomially Solvable Special Cases of QUBO 83

A graph G is called 1-planar if it can be drawn in the plane in such a way that at
most one crossing occurs per edge [33]. Dahn et al. [33] used the algorithm of Liers
and Pardella [67] to solve the maximum weight cut problem on a 1-planar graph on n

nodes and k edge crossings in O(3k(n3/2 log n) time. Thus, when k = O(log n) this
algorithm is polynomially bounded. Chimani et al. [30] and Kobayashi et al. [60]
generalized this further to graphs that can be drawn in the plane with at most k

crossings, relaxing the assumption of 1-planarity, and proposed an O(2kp(n + k))

algorithm where p is the polynomial running time for solving the maximum weight
cut problem on a planar graph. These algorithms for the maximum weight cut
problem on these special graphs immediately lead to polynomial time algorithms for
QUBO (Q, c) or the Ising QUBO (A, b) if the graphs of the associated equivalent
maximum cut problems have the structure discussed above.

The polynomial time algorithm for solving the maximum weight cut problem
in planar graphs can be used to solve the maximum cut problem on graphs not
contractible to K5 [7]. Note that this class of graphs include planar graphs and hence
is yet another generalization of planar graphs. Barahona [7] presented a description
of the cut polytope along with polynomial time separation algorithms on graphs not
contractible to K5. He also proposed a polynomial time combinatorial algorithm to
solve the maximum weight cut problem on such graphs. This leads to yet another
polynomially solvable special case of the QUBO and the Ising QUBO.

Polynomially solvable special cases of the maximum weight cut problem on
special graphs with additional restrictions on edge weights are also studied in
literature. Some results of this kind are summarized in the following theorem.

Theorem 3.26 The maximum weight cut problem is polynomially solvable on the
following classes of graphs.
1. Weakly bipartite with positive edge weights [48]
2. Graphs having no long odd cycles with positive edge weights [47]
3. Line graphs [52]
4. Cographs [16].

The graph structures identified in Theorems 3.26 also lead to polynomial solvable
special cases of the Ising QUBO (A, b) and QUBO (Q, c) with corresponding
assumptions on the related support graphs and on the elements of A and b or on
the elements of Q and c.

Another family of polynomially solvable special cases of the maximum weight
cut problem (MWCP) was investigated by McCormick et al. [71] who classify easy
and hard instances of the problem based solely on the sign of the edge weights
while making assumptions neither on the magnitude of the edge weights nor on the
structure of the graph. More precisely, for an instance (G,w) of the MWCP, denote
by E− (E+) the set of edges with negative (positive) weights in G, i.e. E− =
{{i, j } ∈ E : wij < 0} and E+ = {{i, j } ∈ E : wij > 0}. The solution of the
MWCP is trivial if E+ = ∅, since the empty cut δ(∅) = δ(V) is optimal in this
case. In this case, even finding a non-trivial cut of maximum weight, i.e. a maximum
weight cut δ(S) for ∅ �= S � V , is polynomially solvable e.g. by the Gomory-Hu

84 E. Çela and A. P. Punnen

algorithm [46]. McCormick et al. [71] identified a borderline between polynomially
solvable and NP-hard special cases of the MWCP and investigated to what extent
the assumption E+ = ∅ can be relaxed while the MWCP remains polynomially
solvable. They consider the subgraph G+

w = (V ,E+) of G, where V is the set of
vertices in G and E+ is as defined above. Then the pair (G,w) is said to be nearly
negative if the cover number c(G+

w) of G+
w fulfills c(G+

w) = O(log |V |k) for some
fixed integer k > 0. Also the matching number m(G+

w) of the subgraph G+
w , i.e. the

largest cardinality of a matching in G+
w , turns out to be an important parameter when

dealing with the complexity of the MWCP, as expressed in the following theorem.

Theorem 3.27 (McCormick et al. [71]) For any fixed integer k > 0, the maximum
weight cut problem with input (G,w) is solvable in polynomial time if one of the
following conditions is fulfilled:

(a) the cover number of G+
w fulfills c(G+

w) = O(log |V |k), where V is the set of
vertices of G,

(b) the matching number of G+
w fulfills m(G+

w) = O(log |V |k), where V is the set
of vertices of G.

Further, MWCP is strongly NP-hard if one of the following conditions is fulfilled:

(c) m(G+
w) = Ω(|V |1/k), for some fixed integer k > 0,

(d) V is partitioned into two subsets U and W such that all edges with both
endpoints in U or in W have non-positive weights, while all other edges have
arbitrary weights.

Notice that the statement (d) above implies that MWCP is NP-hard on bipartite
graphs with arbitrary edge weights, complementing the first statement of Theo-
rem 3.26.

As a straightforward consequence of Theorem 3.27 we obtain the following
corollary.

Corollary 3.6 Let A be a symmetric n × n matrix and let G be the support graph
of A. Moreover, let G+

w = ({1, 2, . . . , n}, E+), where E+ := {{i, j } : aij > 0}.
For any fixed integer k > 0 the Ising QUBO(A, 0) is polynomially solvable if
c(G+

w) = O(log nk) or m(G+
w) = O(log nk), where c(G+

w) and m(G+
w) are the

cover number and the matching number of G+
w , respectively.

The Ising QUBO(A, 0) is strongly NP-hard if (i) m(G+
w) = Ω(n1/k), for some

fixed integer k > 0, or (ii) if there is a partition U ∪̇W = {1, 2, . . . , n} such that
aij ≤ 0 holds for all i �= j with i, j ∈ U or i, j ∈ W .

In particular the above corollary implies that for any fixed positive integer k

the Ising QUBO (A, 0) is polynomially solvable if there exists a subset I ⊂
{1, 2, . . . , n} with |I | = O(log nk), such that aij < 0 holds for all pairs (i, j)

with i �∈ I and j �∈ I . In this case c(G+
w) = O(log nk) would hold.

Some other polynomially solvable special cases of the maximum weight cut
problem (and hence QUBO and the Ising QUBO) include series parallel graphs [8],
gauge graphs [4], and graphs determined by combinatorial circuit of AND, OR,

3 Complexity and Polynomially Solvable Special Cases of QUBO 85

NAND, NOR, and NOT logical gates [29]. Bilu et al. [13], using the notion of
stability of instances, identified polynomially solvable instances of the maximum
weight cut problem which are also relevant to QUBO.

3.4.2 Stable Sets and Cliques

Let us now explore polynomially solvable special cases of the QUBO derived from
polynomially solvable special cases of the maximum weight stable set problem
(MWSSP). Although MWSSP is strongly NP-hard, many special cases of it are
solvable in polynomial time. The next theorem indicates some examples of graphs
where the MWSSP is solvable in polynomial time.

Theorem 3.28 The maximum weight stable set problem is solvable in polynomial
time for the following classes of graphs.
1. Perfect graphs [49]
2. t-perfect graphs [50]
3. Claw-free graphs [37, 74]
4. Outerplanar graphs [15]
5. Graphs of bounded treewidth [17]
6. Planar graphs of bounded diameter [36]

It is well known that any QUBO (Q, c) can be formulated as a maximum
weight stable set problem (MWSSP). (See Chap. 1 and the references given there.)
Thus, if the MWSSP is solvable on the corresponding graph generated from the
equivalent QUBO (Q, c), then the QUBO (Q, c) can be solved in polynomial time.
However the structure of this associated graph is significantly different from the
support graph of Q. Let us now derive conditions on the elements of Q so that the
QUBO (Q, c) can be solved in polynomial time when the MWSSP can be solved in
polynomial time on the support graph of Q. Without loss of generality assume that
Q is symmetric and c is the zero vector.

Theorem 3.29 Let G = (V ,E) be the support graph of Q. If the off-diagonal
elements of Q are non-positive and max{qii, qjj } ≤ |qij + qji | for all i, j ∈
{1, 2, . . . , n}, where n is the size of Q, then an optimal solution to the QUBO (Q, c)
can be recovered from an optimal solution to the MWSSP on G with vertex weights
wi = qii , for all i ∈ {1, 2, . . . , n}.
Proof Let S be an optimal solution to the MWSSP problem on G with optimal
objective function value Z∗. Construct the solution x0 ∈ {0, 1}n such that x0

i = 1
if i ∈ S and x0

i = 0 if i /∈ S. Then Z∗ = ∑
i∈S qii and (x0)T Qx0 = ∑

i∈S qii +∑
i,j∈S,i �=j (qij + qji) =∑

i∈S qii . Note that since S is an independent set in G and
G is the support graph of Q, for i, j ∈ S, qij = qji = 0 and hence

∑
i,j∈S,i �=j (qij +

qji) = 0. Thus, (x0)T Qx0 = Z∗. Now we show that there exists an optimal solution
x∗ of the QUBO (Q, c) such that if qij �= 0, then at least one of x∗i or x∗j is zero.

86 E. Çela and A. P. Punnen

Choose any optimal solution x∗ of the QUBO (Q, c). Assume that x∗i = x∗j = 1 and
qij �= 0. By assumption qij = qji < 0, and max{qii, qjj } ≤ |qij+qij |, and all other
entries of Q are no more than zero. Without loss of generality assume that qii ≤ qjj .
Then by setting x∗i = 0 gives an improved solution, violating the optimality of x∗,
unless qii = qjj = |qij +qji |. In the latter case, setting x∗i = 0 yields an alternative
optimal solution to QUBO but with the number of components of weight one is
reduced by one. Continuing in this way, after at most n steps, we get an optimal
solution to the QUBO which corresponds to a stable set in G. Since x0 corresponds
to the maximum weight stable set in G, x0 must be an optimal solution to the QUBO
(Q, c) and the result follows. ��

Theorem 3.29 allows us to solve QUBO instances satisfying the conditions
imposed on the matrix Q as a maximum weight stable set problem. The theorem
is essentially a restatement of the QUBO formulation of MWSSP given in [81]
with slightly relaxed conditions on the elements of Q. The clique version of
Theorem 3.29 can be stated as follows.

Theorem 3.30 Let G = (V ,E) be the complement of the support graph of Q. If the
off-diagonal elements of Q are non-positive and max{qii, qjj } ≤ |qij + qji | for all
i, j ∈ {1, 2, . . . , n}, where n is the size of Q, then an optimal solution to the QUBO
(Q, c) can be recovered from an optimal solution to the MWClP on the complement
of G with vertex weights wi = qii , for all i ∈ {1, 2, . . . , n}.

The maximum clique problem can be solved in polynomial time on the com-
plements of the graphs listed in Theorem 3.28. The theorem below summarizes
additional classes of graphs on which the maximum weight clique problem can be
solved in polynomial time.

Theorem 3.31 The maximum weight (stable set) maximum clique problem is
solvable polynomial time in the following classes of graphs.

1. Perfect graphs [49]
2. Planar graphs (trivial, since the maximum clique has at most 4 vertices)
3. Circle graphs [44]
4. Unit disk graph (with a known geometric representation) [31]

Note that the complement of a perfect graph is also perfect. Thus, on this class
of graphs both MWSSP and MWClP are solvable in polynomial time.

Let us now briefly consider the linear programming formulation of the maximum
weight stable set problem on some specific graphs. On a bipartite graph G = (V ,E)

and weight function wi for i ∈ V , the maximum weight stable set problem can be
solved as the linear program [50]

Maximize
∑

i∈V

wixi

Subject to: xi + xj ≤ 1 for all {i, j } ∈ E

xi ≥ 0, i ∈ V.

3 Complexity and Polynomially Solvable Special Cases of QUBO 87

On a t-perfect graph the stable set polytope is obtained by just adding the odd
circuit inequalities [50] to the linear program above. Further, the separation problem
associated with the odd circuit inequalities can be solved in polynomial time. Thus
the MWSSP can be solved in polynomial time as the linear program

Maximize
∑

i∈V

wixi

Subject to: xi + xj ≤ 1 for all {i, j } ∈ E

∑

i∈V (C)

xi ≤ 1

2
(|V (C)| − 1) for all C ∈ C

xi ≥ 0, i ∈ V,

whereC is the collection of all odd circuits in G and V (C) is the vertex set of C ∈ C.
Bipartite graphs, nearly bipartite graphs (i.e. there exists a vertex whose removal
yields a bipartite graph), series parallel graphs, etc. are example of t-perfect graphs.

When G is a perfect graph, a linear representation of the stable set polytope is
obtained by replacing the odd circuit inequalities by the clique inequalities [50].
Since the separation problem for the clique inequalities can be solved in polynomial
time, the MWSSP on perfect graphs can be solved in polynomial time as the
following linear program

Maximize
∑

i∈V

wixi

Subject to:
∑

i∈V (L)

xi ≤ 1 for all cliques L of G,

xi ≥ 0, i ∈ V.

In the above linear program the inequalities xi+xj ≤ 1 for {i, j } ∈ E are already
included in the clique inequalities since they arise from cliques of cardinality 2. A
large number of specially structured graphs belong to the family of perfect graphs,
e.g. bipartite graphs and their complements, interval graphs and their complements,
comparability graphs and their complements, among others, see [50]. Thus, linear
programming is one way to solve many special cases of the MWSSP. However, there
are better, more specialized algorithms exploiting specific properties are available,
as discussed earlier.

Graph decomposition is another popular approach in obtaining polynomial time
algorithms for specially structured MWSSP. Let us illustrate this using a specific
decomposition process called clique separation. Let G = (V ,E) be a connected
graph and S ⊆ V . Then S is called a clique separator in G if the subgraph of
G induced by S is a clique and the graph G − S is disconnected. A graph is
called an atom if it does not contain a clique separator. Tarjan [89] showed that

88 E. Çela and A. P. Punnen

any graph on n nodes and m edges, which is not an atom, can be decomposed
into atoms in O(mn) time. Let H be a hereditary class of graphs. Tarjan [89]
showed that if the MWSSP can be solved in O(ξ(n)) time on atoms in H, then
the MWISP can be solved in O(mn + n2ξ(n)) time on any graph in H. This time
complexity was improved by Brandstädt et al. [20] to O(mn + nξ(n)). Exploiting
this divide-and-conquer approach, polynomial time algorithms for the MWSSP have
been developed by many authors for specially structured graphs. These include
(hole, co-chair)-free graphs [21], (hole, paraglider)-free graphs [20], (hole, dart)-
free graphs [9] etc. Obviously, these lead to polynomial time algorithms for QUBO
and the Ising QUBO.

The generalized vertex cover problem [55, 57, 58, 77] is another problem
closely related to the MWSSP and QUBO. Hassin and Levin [55] and Pandey and
Punnen [77] identified polynomially solvable cases of this problem which directly
yield additional polynomially solvable cases for QUBO.

3.5 Pseudopolynomial and Subexponential Algorithms

Since the QUBO and the Ising QUBO are strongly NP-hard, existence of pseu-
dopolynomial time algorithms for the problems are ruled out, unless P=NP. In this
section, we explore pseudopolynomial and subexponential algorithms for special
cases of these problems.

3.5.1 Low Rank Cost Matrices

QUBO (Q, c) with a rational matrix Q of given rank r and a rational vector c can be
solved in pseudo polynomial time, see [26]. In the following we briefly review their
approach.

Let Q be a symmetric rational n×n matrix of rank r . We can assume without loss
of generality that the r leading principal minors of Q are nonzero (otherwise both
rows and columns of Q could be permuted by an appropriately chosen permutation).
Consider the LDU-representation of such a symmetric matrix Q. That is, Q =
LDLT , where D is a rational diagonal n × n matrix with dii = 0 for all i ≥ r + 1
and L is a rational n × n lower triangular matrix with diagonal entries equal to 1
(see e.g. [70]). Denote by �(i) the columns of L, i ∈ {1, 2, . . . , n}. The following
equalities hold

xT Qx = xT LDLT x = yT Dy =
n∑

i=1

diiy
2
i =

r∑

i=1

diiy
2
i ,

3 Complexity and Polynomially Solvable Special Cases of QUBO 89

with y = (y1, y2, . . . , yn)
T = LT x and yi = 〈�(i), x〉. Then the objective function

f of QUBO (Q, c) with a rational input as above is given as follows for x ∈ {0, 1}n
the

f (x) = cT x+
r∑

i=1

dii〈�(i), x〉2. (3.13)

By applying a dynamic programming approach of Papadimitriou [78] the following
lemma is proved in [26].

Lemma 3.3 (Çela et al. [26]) Let K = (kij) be an integral m× n matrix and let b
be an integral m-dimensional vector. The problem of deciding whether there exists
a vector x ∈ {0, 1}n such that Kx = b holds can be solved in Ø(mnm+1κm) time
where κ := max{|kij | : i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}}.

The above lemma implies then the following result.

Theorem 3.32 (Çela et al. [26]) The QUBO(Q, c) with an integer n × n sym-
metric matrix Q of rank r and an integer n-dimensional vector c can be solved

in O(rU2r+2n2r+3) time, where U := 2 max
{
|�(i)

j |, |cj | : j ∈ {1, 2, . . . , n}, i ∈
{1, 2, . . . , r}

}
.

Proof Consider the equivalent formulation of the QUBO (Q, c) as in (3.13).
Clearly, we can assume w.l.o.g. that for i ∈ {1, 2, . . . , r} the vectors �(i) and the
entries dii as well as the vector c are integral (e.g. by scaling with the smallest
common multiple of all rational inputs.) ��

Denote �(0) := c. Then −nU/2 ≤ 〈�(i), x〉 ≤ nU/2 holds for all
i ∈ {0, 1, . . . , n} and x ∈ {0, 1}n. Consider now an integral vector v ∈
[−nU/2, nU/2]r+1 and the following parametric optimization problem associated
with it

min gv(x) := v0 +
r∑

i=1

diiv
2
i (3.14)

subject to

〈�(i), x〉 = vi , i ∈ {0, 1, . . . , r}
xi ∈ {0, 1} , i ∈ {0, 1, . . . , r}

By applying Lemma 3.3 the feasibility problem defined by the constraints
of (3.14) can be solved in O(rnr+2Ur+1) time for each choice of v. The optimal
value of (3.14) is the minimum of v0 +∑r

i=1 diiv
2
i over all vectors v which corre-

spond to a feasible problem. Since there are at most (nU + 1)r+1 = O((nU)r+1)

such vectors the problem in (3.13) can be solved in O(rn2r+3U2r+2) time.

90 E. Çela and A. P. Punnen

The pseudopolynomial algorithm discussed above extends to cases of QUBO
where Q has pseudo rank r . See Sect. 3.3.2.2 for details on the notion of pseudo
rank of a matrix.

3.5.2 The Half-Product QUBO

Some of the machine scheduling problems discussed in literature have a natural
QUBO structure. These applications are mentioned in Chap. 1 and it include mini-
mizing completion time variance on a single machine, minimizing total completion
time on two machines, among others, see [5, 59, 64]. Pseudopolynomial algorithms
to solve these problems indirectly lead to pseudopolynomial time algorithms to
solve the QUBO with a certain special structure. In fact these problems belong to the
class of the half-product QUBO [5, 64] which is shown to be NP-hard in Sect. 3.2.

In a half-product QUBO, the matrix Q is upper triangular with diagonal elements
equal to zero and qij = aibj for 1 ≤ i < j ≤ n, where a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn). Thus, a half-product QUBO can be written as

Maximize
n−1∑

i=1

aixi

⎛

⎝
n∑

j=i+1

bjxj

⎞

⎠+ cT x

Subject to: x ∈ {0, 1}n,

The half product QUBO is related to the fixed rank QUBO but note that the
rank of the matrix Q of size n in a half-product QUBO can be up to n − 1.
A pseudopolynomial dynamic programming algorithm for this problem is given
in [59]. The pseudo-polynomial algorithm discussed in Sect. 3.5.1 for the case of
fixed rank matrices can also be modified to obtain a pseudopolynomial algorithm
for the half-product QUBO.

3.5.3 Subexponential Algorithms

Let us now consider the QUBO (Q, c) where the support graph of Q is η(n)-
separable [14, 68]. A graph G = (V ,E) on n nodes is η(n)-separable if the
following conditions are satisfied.

1. The vertex set V can be partitioned into sets A,B and C such that no vertex in
A is adjacent to any vertex in B.

2. There exist constants α < 1 and β > 0 such that |A| ≤ αn, |B| ≤ αn and
|C| ≤ βη(n).

3. The subgraph of G induced by A is η(n1)-separable and the subgraph of G

induced by B is η(n2)-separable, where n1 = |A| and n2 = |B|.

3 Complexity and Polynomially Solvable Special Cases of QUBO 91

Lipton and Tarjan [68] showed that a planar graph on n nodes is
√

n-separable.
Examples of some other graphs that are

√
n-separable include the grid graph [45, 68]

and the one-tape Turing machine graph [68, 82, 83]. The η(n)-separable property
of graphs offers the possibility of developing divide and conquer type algorithms
for some graph theoretic optimization problems. Exploiting the η(n)-separability
property Pardalos and Jha [80] developed an exponential time algorithm for QUBO
where the exponentiality depends on the parameter η(n). In particular, they showed
that

Theorem 3.33 ([80]) If the support graph G = (V ,E) of the matrix Q is η(n)-
separable then the QUBO (Q, c) can be solved inO

(
log n (p(n)+ t (n)) 2kη(n) logn

)

time, where k > 0 is a constant, p(n) is the complexity of finding an η(n)-separator
of G, t (n) ≤ min{(n− 1)βη(n), |E|}, and β is the constant used in the definition of
the separable graph (as above).

It may be noted that the QUBO (Q, c) is NP-hard even if the support graph of Q
is planar. But for planar graphs, a

√
n-separator can be identified in linear time [68]

and hence p(n) = O(n). Thus, from Theorem 3.33, the QUBO (Q, c) on planar

graphs can be solved in O
(
a
√

n log n2k
√

n log n
)

time, which is sub-exponential

complexity.
The complexity result discussed in Theorem 3.33 also extends to the Ising

QUBO. Earlier, we discussed various polynomial time algorithms for solving the
QUBO and Ising QUBO where the polynomiality depends on a parameter k which
is either fixed or takes values O log n). When k = Onε for ε > 0 these algorithms
becomes subexponential for solving QUBO and the BQUBO.

3.6 Conclusions

In this chapter we presented a review on the computational complexity of the QUBO
and the Ising QUBO and discussed various special cases of the problems that can
be solved in polynomial time, in pseudopolynomial time or in subexponential time.
For some special cases detailed proofs are provided while for other special cases
appropriate references along with partial results are given. Polynomially solvable
cases can also be derived using duality theory and semidefinite programming
formulation of the Ising QUBO and QUBO [66, 88] but this topic is not covered
here. The algorithms for the tractable special cases discussed here exploit properties
of the associated support graphs or properties of the involved cost matrices or both.
We want to point out that there is a significant gap between known tractable special
cases and special cases of the QUBO known to be NP-hard. The development of
general purpose tools to reduce this gap is a challenging and interesting issue for
further research.

92 E. Çela and A. P. Punnen

References

1. A.A. Ageev, A.V. Keĺmanov, A.V. Pyatkin, NP-hardness of the Euclidean max-cut problem.
Dokl. Math. 89, 343–345 (2014)

2. V. Alekseev, The effect of local constraints on the complexity of determination of the graph
independence number. Combin. Algebraic Methods Appl. Math., 3–13 (1982) (in Russian)

3. K. Allemand, K. Fukuda, T. Liebling, E. Steiner, A polynomial case of unconstrained zero-one
quadratic optimization. Math. Program. 91, 49–52 (2001)

4. J.C. Anglés, D’ Auric, M. Preissmann, A, Sebó, Optimal cuts in graphs and statistical
mechanics. Math. Comput. Model. 26, 1–11 (1997)

5. T. Badics, E. Boros, Minimization of half-products. Math. Oper. Res. 23, 649–660 (1998)
6. F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math.

Gen. 15, 3241–3253 (1982)
7. F. Barahona, The max-cut problem in graphs not contractible to K5. Oper. Res. Lett. 2, 107–

111 (1983)
8. F. Barahona, A solvable case of quadratic 0-1 programming. Discrete Appl. Math. 13, 23–26

(1986)
9. M. Basavaraju, L.S. Chandran, T. Karthick, Maximum weight independent sets in hole- and

dart-free graphs. Discrete Appl. Math. 160, 2364–2369 (2012)
10. L.W. Beineke, Biplanar graphs: a survey. Comput. Math. Appl. 34, 1–8 (1997)
11. W. Ben-Ameur, J. Neto, A polynomial-time recursive algorithm for some unconstrained

quadratic optimization problems. Discrete Appl. Math. 159, 1689–1698 (2011)
12. A. Billionnet, Solving a cut problem in bipartite graphs by linear programming: Application to

a forest management problem. Appl. Math. Model. 34, 1042–1050 (2010)
13. Y. Bilu, A. Daniely, N. Linial, M. Saks, On the practically interesting instances of MAXCUT,

in 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)
(2013), pp. 526–537

14. D.K. Blandford, G.E. Blelloch, I.A. Kash, Compact representations of separable graphs,
in SODA ’03: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
algorithms, pp. 679–688 (2003)

15. H.L. Bodlaender, A Partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci. 209, 1–45 (1988)

16. H.L. Bodlaender, K. Jansen, On the complexity of the maximum cut problem. Nordic J.
Comput. 7, 14–31 (2000)

17. H.L. Bodlaender, A.M.C.A. Koster, Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51, 255–269 (2008)

18. I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo, The maximum clique problem, in
Handbook of Combinatorial Optimization, ed. by D.Z. Du, P.M. Pardalos (Kluwer Academic
Publishers, 1999), pp. 1–74

19. M. Bonamy, E. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, EPTAS for max clique on
disks and unit balls, in Proceedings of the 59th IEEE Symposium on Foundations of Computer
Science (FOCS’18) (2018), pp. 568–579

20. A. Brandstädt, C.T. Hoáng, On clique separators, nearly chordal graphs, and the maximum
weight stable set problem. Theor. Comput. Sci. 389, 295–306 (2007)

21. A. Brandstädt, V. Giakoumakis, F. Maffray, Clique separator decomposition of hole-free and
diamond-free graphs and algorithmic consequences. Discrete Appl. Math. 160, 471–478 (2012)

22. R.E. Burkard, E. Çela, G. Rote, G.J. Woeginger, The quadratic assignment problem with a
monotone anti-Monge and a symmetric Toeplitz matrix: Easy and hard cases. Math. Program.
B 82, 125–158 (1998)

23. R.E. Burkard, M. Dell’Amico, S. Martello, Assignment Problems (SIAM, Philadelphia, 2009)
24. S. Cabello, J. Cardinal, S. Langerman, The clique problem in ray intersection graphs. Discrete

Comput. Geom. 50, 771–783 (2013)

3 Complexity and Polynomially Solvable Special Cases of QUBO 93

25. E. Çela, The Quadratic Assignment Problem: Theory and Algorithms (Kluwer Academic
Publishers, Dordrecht, 1998)

26. E. Çela, B. Klinz, C. Meyer, Polynomially solvable cases of the constant rank unconstrained
quadratic 0-1 programming problem. J. Combin. Optim. 12, 187–215 (2006)

27. E. Çela, N.S. Schmuck, S. Wimer, G.J. Woeginger, The Wiener maximum quadratic assign-
ment problem. Discrete Optim. 8, 411–416 (2011)

28. E. Çela, V. Deineko, G.J. Woeginger, Well-solvable cases of the QAP with block-structured
matrices. Discrete Appl. Math. 186, 56–65 (2015)

29. S.T. Chakradhar, M.L. Bushnell, A solvable class of quadratic 0-1 programming. Discrete
Appl. Math. 36, 233–251 (1992)

30. M. Chimani, C. Dahn, M. Juhnke-Kubitzke, N.M. Kriege, P. Mutzel, A. Nover, Maximum cut
parameterized by crossing number. J. Graph Algorithms Appl. 24, 155–170 (2020)

31. B.N. Clark, C.J. Colbourn, D.S. Johnson, Unit disk graphs. Discrete Math. 86, 165–177 (1990)
32. Y. Crama, P. Hansen, B. Jaumard, The basic algorithm for pseudo-Boolean programming

revisited. Discrete Appl. Math. 29, 171–185 (1990)
33. C. Dahn, N.M. Kriege, P. Mutzel, J. Schilling, Fixed-parameter algorithms for the weighted

Max-Cut problem on embedded 1-planar graphs. Theor. Comput. Sci. 852, 172–184 (2021)
34. J. Díaz, M. Kaminski, MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs.

Theor. Comput. Sci. 377, 271–276 (2007)
35. H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, 1987)
36. D. Eppstein, Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–

291 (2000)
37. Y. Faenza, G. Oriolo, G. Stauffer, Solving the weighted stable set problem in claw-Free graphs

via decomposition. J. ACM 61, 1–41 (2014)
38. J.A. Ferrez, K. Fukuda, Th.M. Liebling, Solving the fixed rank convex quadratic maximization

in binary variables by a parallel zonotope construction algorithm. Eur. J. Oper. Res. 166, 35–50
(2005)

39. H. Fleischner, G. Sabidussi, V.I. Sarvanov, Maximum independent sets in 3- and 4-regular
Hamiltonian graphs. Discrete Math. 310, 2742–2749 (2010)

40. M.C. Francis, D. Gonçalves, P. Ochem, The maximum clique problem in multiple interval
graphs. Algorithmica 71, 812–836 (2015)

41. A. Galluccio, M. Loebl, J. Vondrák, Optimization via enumeration: A new algorithm for the
MAX-CUT problem. Math. Program. A 90, 273–290 (2001)

42. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (W. H. Freeman and Co, 1979)

43. M.R. Garey, D.S. Johnson, L. Stockmeyer. Some simplified NP-complete graph problems.
Theor. Comput. Sci. 1, 237–267 (1976)

44. F. Gavril, Algorithms for a maximum clique and a maximum independent set of a circle graph.
Networks 3, 261–273 (1973)

45. J.A. George, Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10,
345–367 (1973)

46. R.E. Gomory, T.C. Hu, Multi-terminal network flow. SIAM J. Appl. Math. 9, 551–570 (1961)
47. M. Grötschel, G.L. Nemhauser, A polynomial algorithm for the max-cut problem on graphs

without long odd cycles. Math. Program. 29, 28–40 (1984)
48. M. Grötschel, W.R. Pulleyblank, Weakly bipartite graphs and the max-cut problem. Oper. Res.

Lett. 1, 23–27 (1981)
49. M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for Perfect Graphs. Annals

Discrete Math. 21, 325-356 (1984)
50. M. Grötschel, L. Lovász, A.J. Schrijver, Geometric Algorithms and Combinatorial Optimiza-

tion (Wiley, New York, 1988)
51. S. Gu, R. Cui, J. Peng, Polynomial time solvable algorithms to a class of unconstrained and

linearly constrained binary quadratic programming problems. Neurocomputing 198, 171–179
(2016)

94 E. Çela and A. P. Punnen

52. V. Guruswami, Maximum cut on line and total graphs. Discrete Appl. Math. 92, 217–221
(1999)

53. F. Hadlock, Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput.
4, 221–225 (1975)

54. P.L. Hammer, P. Hansen, P.M. Pardalos, D.J. Rader Jr, Maximizing the product of two linear
functions in 0-1 Variables. Optimization 51, 511–537 (2002)

55. R. Hassin, A. Levin, The minimum generalized vertex cover problem, in European Symposium
on Algorithms (2003), pp. 289–300

56. M. Hladík, M. Cerný, M. Rada, A new polynomially solvable class of quadratic optimization
problems with box constraints. Optim. Lett. 15, 2331–2341 (2021)

57. D.S. Hochbaum, Solving integer programs over monotone inequalities in three variables: A
frame work for half integrality and good approximations. Eur. J. Oper. Res. 140, 291–321
(2002)

58. D.S. Hochbaum, A. Pathria, Forest harvesting and minimum cuts: A new approach to handling
spatial constraints. Forest Sci. 43, 544–554 (1997)

59. B. Jurisch, W. Kubiak, J. Józefowska, Algorithms for minclique scheduling problems. Discrete
Appl. Math. 72, 115–139 (1997)

60. Y. Kobayashi, Y. Kobayashi, S. Miyazaki, S. Tamaki, An improved fixed-parameter algorithm
for Max-Cut parameterized by crossing number, in Combinatorial Algorithms - 30th Interna-
tional Workshop, IWOCA 2019 (2019), pp. 327–338

61. G. Kochenberger, J.K. Hao, F. Glover, M. Lewis, Z. Lu, H. Wang, Y. Wang, The unconstrained
binary quadratic programming problem: A survey. J. Combin. Optim. 28, 58–81 (2014)

62. T.C. Koopmans, M.J. Beckmann, Assignment problems and the location of economic activities.
Econometrica 25, 53–76 (1957)

63. J. Kratochvíl, J. Nešetřil, Independent set and clique problems in intersection-defined classes
of graphs. Comment. Math. Univ. Carolinae 31, 85–93 (1990)

64. W. Kubiak, New results on the completion time variance minimization. Discrete Appl. Math.
58, 157–168 (1995)

65. M. Laurent, The max-cut problem, in Annotated Bibliographies in Combinatorial Optimiza-
tion, ed. by M. Dell’Amico, F. Maffioli and S. Martello (Wiley, Chichester, 1997)

66. D. Li, X. Sun, S. Gu, J. Gao, C. Liu, Polynomially solvable cases of binary quadratic programs,
in Optimization and Optimal Control, ed. by A. Chinchuluun et al., Springer Optimization and
Its Applications, vol. 39 (2010)

67. F. Liers, G. Pardella, Partitioning planar graphs: a fast combinatorial approach for max-cut.
Comput. Optim. Appl. 51, 323–344 (2012)

68. R.J. Lipton, R.E. Tarjan, A planar separator theorem. SIAM J. Appl. Math. 36, 177–189 (1979)
69. E.M. Loiola, N.M.M. de Abreu, P.O. Boaventura-Netto, P. Hahn, T. Querido, A survey for the

quadratic assignment problem. Eur. J. Oper. Res. 176, 657-690 (2007)
70. T. Lyche, Numerical Linear Algebra and Matrix Factorizations (Springer, 2020)
71. S.T. McCormick, M.R. Rao, G. Rinaldi, Easy and difficult objective functions for max cut.

Math. Program. 94, 459–466 (2003)
72. M. Middendorf, F. Pfeiffer, The max clique problem in classes of string-graphs. Discrete Math.

108, 365–372 (1992)
73. O.J. Murphy, Computing independent sets in graphs with large girth. Discrete Appl. Math. 35,

167–170 (1992)
74. P. Nobil, A. Sassano, An O(n2 log n) algorithm for the weighted stable set problem in claw-

free graphs. Math. Program. 186, 409–437 (2021)
75. G.I. Orlova, Y.G. Dorfman, Finding maximum cut in a graph. Eng. Cybern. 10, 502–506 (1972)
76. P. Pandey, Topics in quadratic binary optimization problems, Ph.D. Thesis, Simon Fraser

University, 2018
77. P. Pandey, A.P. Punnen, The generalized vertex cover problem. Discrete Optim. 30, 121–143

(2018)
78. C.H. Papadimitriou, On the compelxity of integer programming. J. Assoc. Comput. Mach. 28,

765–768 (1981)

3 Complexity and Polynomially Solvable Special Cases of QUBO 95

79. C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes. J.
Comput. Syst. Sci. 43, 425–440 (1991)

80. P.M. Pardalos, S. Jha, Graph separation techniques for quadratic zero-one programming.
Comput. Math. Appl. 21, 107–113 (1991)

81. P.M. Pardalos, J. Xue, The maximum clique problem. J. Glob. Optim. 4, 301–328 (1994)
82. M.S. Paterson, Tape bound for time-bounded Turing machine. J. Comput. Syst. Sci. 6, 116–124

(1972)
83. W.J. Paul, R.E. Tarjan, J.R. Celoni, Space bounds for a game on graphs. Math. Syst. Theory

10, 239–251 (1976)
84. J.C. Picard, M. Queyranne, Selected applications of minimum cuts in networks. INFOR

Inform. Syst. Oper. Res. 20, 394–422 (1982)
85. J.C. Picard, H.D. Ratliff, Minimum cuts and related problems. Networks 5, 357–370 (1975)
86. S. Poljak, A note on stable sets and colorings of graphs. Comment. Math. Univ. Carolinae 15,

307–309 (1974)
87. W.K. Shih, S. Wu, Y.S. Kuo, Unifying maximum cut and minimum cut of a planar graph. IEEE

Trans. Comput. 39, 694–697 (1990)
88. X.L. Sun, C.L. Liu, D. Li, J.J. Gao, On duality gap in binary quadratic programming. J. Glob.

Optim. 53, 255–269 (2012)
89. R.E. Tarjan, Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)
90. S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithms for generating all the

maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)
91. M. Yannakakis, Node and edge deletion NP-complete problems, in Proc. 10th Annual ACM

Sympsium on Theory of Computing (Association for Computing Machinery, New York, 1978),
pp. 253–264

Chapter 4
The Boolean Quadric Polytope

Adam N. Letchford

Abstract When developing an exact algorithm for a combinatorial optimisation
problem, it often helps to have a good understanding of certain polyhedra associated
with that problem. In the case of quadratic unconstrained Boolean optimisation, the
polyhedron in question is called the Boolean quadric polytope. This chapter gives a
brief introduction to polyhedral theory, reviews the literature on the Boolean quadric
polytope and related polyhedra, and explains the algorithmic implications.

4.1 Introduction

It has been known for some time that Quadratic unconstrained Boolean optimi-
sation (QUBO) is equivalent to another well-known combinatorial optimisation
problem, known as the max-cut problem [7, 14, 53]. The max-cut problem has been
proven to be “strongly NP-hard” [26], and therefore the same holds for QUBO.
Rather than explaining strong NP-hardness in detail, let us just say that it makes
it unlikely that an algorithm can be developed which solves all QUBO instances
quickly.

The situation however is far from hopeless. Indeed, for many specific NP-hard
problems, algorithms have been developed that can solve many instances of interest
to proven optimality (or near-optimality) in reasonable computing times. Many of
these algorithms use a method known as branch-and-cut (see, e.g., [10, 51, 54]).
Branch-and-cut is an enumerative scheme, in which a “tree” of subproblems is
explored, and each subproblem is a linear program (LP).

One of the keys to designing a successful branch-and-cut algorithm for a given
problem is to gain an understanding of certain polyhedra associated with that
problem (e.g., [1–3, 12]). In the case of QUBO, the polyhedron in question is called
the Boolean quadric polytope (e.g., [9, 14, 53]).

A. N. Letchford (�)
Department of Management Science, Lancaster University, Lancaster, UK
e-mail: a.n.letchford@lancaster.ac.uk

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_4&domain=pdf
mailto:a.n.letchford@lancaster.ac.uk
https://doi.org/10.1007/978-3-031-04520-2_4

98 A. N. Letchford

This chapter gives a brief introduction to polyhedral theory, a detailed survey of
known results on the Boolean quadric polytope, and a brief discussion of algorithmic
implications. The structure of the chapter is as follows. The basics of polyhedral
theory are recalled in Sect. 4.2. In Sect. 4.3, we define the Boolean quadric polytope
and mention some of its fundamental properties. In Sect. 4.4, we survey some of the
known valid inequalities for the Boolean quadric polytope. In Sect. 4.5, we review
some connections between the Boolean quadric polytope and some other important
polytopes. In Sect. 4.6, we mention some other related convex sets. In Sect. 4.7,
we look at the algorithmic implications. Finally, concluding remarks are made in
Sect. 4.8.

We use the following conventions and notation throughout the chapter. Given
a positive integer n, we sometimes write Vn for {1, . . . , n}. We Kn denote the
complete graph on the vertex set Vn, and let En denote its edge set. Given a vector
v ∈ Rn, we let σ(v) denote

∑n
i=1 vi . All matrices are real. Given two matrices

A, B ∈ Rm×n, we write A • B for the (Frobenius) inner product

m∑

i=1

n∑

j=1

aij bij = Tr(AT B).

Given a positive integer k, we let Sk+ denote the set of positive semidefinite (psd)
matrices of order k. We recall that a symmetric matrix M of order k is psd if and
only if all of its eigenvalues are non-negative, or, equivalently, vT Mv ≥ 0 for all
vectors v ∈ Rk .

4.2 Elementary Polyhedral Theory

This section draws on material from [31, 52].
Suppose that x1, . . . , xk ∈ Rn are (column) vectors and λ1, . . . , λk are scalars. A

vector of the form λ1x1+· · ·+λkxk is called a linear combination of x1, . . . , xk . It is
called a conical combination if λ1, . . . , λk are non-negative, an affine combination if∑k

i=1 λi = 1, and a convex combination if it is both conical and affine. Given some
non-empty set S ⊂ Rn, the convex hull of S is the set of all convex combinations
of the vectors in S. The linear, affine and conical hulls are defined analogously. We
will let conv(S) denote the convex hull of S.

A set S ⊆ Rn is called convex if λx1+ (1−λ)x2 ∈ S holds for all x1, x2 ∈ S and
all λ ∈ (0, 1). A convex set P is called a polyhedron if there exists a non-negative
integer m, a matrix A ∈ Zmn and a vector b ∈ Zm such that

P = {
x ∈ Rn : Ax ≤ b

}
.

4 The Boolean Quadric Polytope 99

A polyhedron which is bounded (i.e., not of infinite volume) is called a polytope. A
famous theorem of Weyl [68] states that a set P ⊂ Rn is a polytope if and only if it
is the convex hull of a finite number of points.

A point x ∈ P is called an extreme point of P if it is not a convex combination
of other points in P . Every polytope is the convex hull of its extreme points.

A set of vectors is called affinely independent if no member of the set is an affine
combination of the others. The dimension of a polyhedron P , denoted by dim(P),
is the maximum number of affinely independent vectors in P , minus one. Note that
dim(P) ≤ n. If equality holds, P is said to be full-dimensional.

A linear inequality aT x ≤ a0 is valid for a polyhedron P if it is satisfied by every
point in P . The set

F = P ∩ {x ∈ Rn : aT x ≤ a0
}

is called the face of P induced by the given inequality. Note that F is itself a
polyhedron. The face F is called a facet of P if dim(F) = dim(P)− 1.

Example Suppose that S contains the following four points in R3:

x1 =
⎛

⎝
0
0
1

⎞

⎠ , x2 =
⎛

⎝
0
2
1

⎞

⎠ , x3 =
⎛

⎝
2
0
1

⎞

⎠ x4 =
⎛

⎝
1
1
1

⎞

⎠ .

One can check that:

• the linear hull of S is R3 itself;
• the conical hull is

{
x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2x3

}
;

• the affine hull is
{
x ∈ R3 : x3 = 1

}
;

• conv(S) = {
x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2, x3 = 1

}
.

Now let P = conv(S). One can check that (a) P is a polytope, (b) dim(P) = 2, (c)
the extreme points of P are x1, . . . , x3 and (d) P has three facets, induced by the
inequalities x1 ≥ 0, x2 ≥ 0 and x1 + x2 ≤ 2. ��

We now explain the connection between polyhedra and combinatorial optimi-
sation. Suppose we can formulate our optimisation problem as an integer linear
program (ILP) of the form

max
{
cx : Ax ≤ b, x ∈ Zn+

}
. (4.1)

Replacing the condition x ∈ Zn+ with the weaker condition x ∈ Rn+, we obtain
the so-called continuous relaxation of the ILP. The continuous relaxation is an LP,
which is likely to be easy to solve. Let x∗ be a (basic) optimal solution to the
continuous relaxation. If x∗ is integral, we have solved the ILP. Otherwise we have
to do more work, and this is where polyhedra come into play.

100 A. N. Letchford

The feasible region of the continuous relaxation is the polyhedron

P = {
x ∈ Rn+ : Ax ≤ b

}
,

and the set of feasible solutions to the ILP is S = P ∩ Zn+. The convex hull of
S is also a polyhedron, called the integral hull of P . We will denote it by PI . By
definition, we have PI ⊆ P . Also, if x∗ is not integral, then PI is strictly contained
in P , and there must exist a linear inequality that is valid for PI but violated by x∗.
Such an inequality is called a cutting plane.

Example Consider the ILP

max x1 + x2

s.t. 4x1 + 2x2 ≤ 15

2x1 − 2x2 ≤ 5

−2x1 + 2x2 ≤ 3

−6x1 − 10x2 ≤ −15

2x2 ≤ 5

x ∈ R2+.

On the left of Fig. 4.1, we show the polyhedron P . Points with integer coordinates
are represented by small circles. On the right of Fig. 4.1, the points in S are
represented as larger circles. One can check that there are two optimal solutions
to the ILP,

(2
2

)
and

(3
1

)
, each with profit 4. The solution to the continuous relaxation,

on the other hand, is x∗ = (2.5
2.5

)
, giving an upper bound of 5. On the left of Fig. 4.2,

we show the integral hull PI . Finally, on the right of Fig. 4.2, we show both P and
PI , together with a possible cutting plane, represented by a dashed line. ��

Fig. 4.1 Polyhedron P (left) and set S of integer solutions (right)

4 The Boolean Quadric Polytope 101

Fig. 4.2 Polyhedron PI (left) and a possible cutting plane (right)

For simplicity and brevity, we assume from now on that PI (and therefore also P)
is a full-dimensional polytope. Under this assumption, the strongest possible cutting
planes for a given ILP are those that induce facets of PI .

At this point we should mention some negative results from Karp and Papadim-
itriou [39]. They showed that, if a combinatorial optimisation problem is NP-hard,
then, regardless of how it is formulated as an ILP, it is NP-hard to check if a given
linear inequality is valid for the associated polytope PI . They also show that it is
NP-hard to check if a given inequality induces a facet of PI .

Although the above-mentioned results may appear discouraging, there is also
good news: for many important combinatorial optimisation problems (such as the
knapsack problem, the travelling salesman problem, the stable set problem, and
QUBO itself), researchers have discovered several large families of facet-inducing
inequalities (see, e.g., [1–3, 12, 31, 52]). These inequalities can be used as cutting
planes in branch-and-cut algorithms.

4.3 The Boolean Quadric Polytope

Now consider a QUBO instance of the form:

max xT Qx

s.t. x ∈ {0, 1}n,

where, without loss of generality, we assume that Q is symmetric. Glover and
Woolsey [28] proposed to replace each quadratic term xixj with a new binary

102 A. N. Letchford

variable yij . This allows one to formulate QUBO as the following 0-1 LP:

max
∑

i∈Vn
qiixi + 2

∑
{i,j}∈En

qij yij (4.2)

s.t. yij ≤ xi ({i, j } ∈ En) (4.3)

yij ≤ xj ({i, j } ∈ En) (4.4)

xi + xj ≤ yij + 1 ({i, j } ∈ En) (4.5)

x ∈ {0, 1}n (4.6)

y ∈ {0, 1}(n
2). (4.7)

For a given n ≥ 2, the convex hull of pairs (x, y) satisfying (4.3)–(4.7) is called
the Boolean quadric polytope of order n and denoted by BQPn [14, 53]. (Some
authors call it the correlation polytope instead; see, e.g., [21, 55].)

To make this clear, consider the case n = 2. To obtain a feasible solution to the
0-1 LP, we require:

⎛

⎝
x1

x2

y12

⎞

⎠ ∈
⎧
⎨

⎩

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
1
1
1

⎞

⎠

⎫
⎬

⎭
.

One can check that the four points in question are affinely independent. Thus, BQP2
is a tetrahedron, as shown in Fig. 4.3. Its facets are induced by the inequalities y12 ≤
x1, y12 ≤ x2, y12 ≥ x1 + x2 − 1 and y12 ≥ 0.

Padberg [53] proved that BQPn is full-dimensional and that the inequali-
ties (4.3)–(4.5), along with the non-negativity inequalities yij ≥ 0, always induce
facets. He also derived some additional inequalities, which we review in Sect. 4.4.

The Boolean quadric polytope has some remarkable properties. For one thing,
every extreme point of BQPn is adjacent to every other one [60]. Moreover,
BQPn has a high degree of symmetry. In particular, BQPn is invariant under two

Fig. 4.3 The Boolean
quadric polytope of order 2

4 The Boolean Quadric Polytope 103

transformations, called permutation and switching [21, 53, 55]. These are defined as
follows.

Definition 4.1 (Permutation) Let π : Vn �→ Vn be an arbitrary permutation.
Consider the linear transformation φπ : Rn+(n

2) �→ Rn+(n
2) that:

• replaces xi with xπ(i) for all i ∈ Vn,
• replaces yij with yπ(i),π(j) for all {i, j } ∈ En.

By abuse of terminology, we call this transformation itself a “permutation”.

Definition 4.2 (Switching) For an arbitrary set S ⊂ Vn, let ψS : Rn+(n
2) �→ Rn+(n

2)

be the affine transformation that:

• replaces xi with 1− xi for all i ∈ S,
• replaces yij with xi − yij for all i ∈ {1, . . . , n} \ S and all j ∈ S,
• replaces yij with 1− xi − xj + yij for all {i, j } ⊂ S,
• leaves all other xi and yij variables unchanged.

Applying the transformation ψS is called “switching” (on S).

It is fairly easy to show that BQPn is invariant under permutation. (That is, for
any n and any permutation π of {1, . . . , n}, we have φπ (BQPn) = BQPn.) To make
this chapter self-contained, we now show that the same holds for switching:

Proposition 4.1 BQPn is invariant under switching. That is, for any n and any
S ⊂ Vn, ψS

(
BQPn

) = BQPn.

Proof Let (x̄, ȳ) be an extreme point of BQPn. By definition, we have x̄i ∈ {0, 1}
for i ∈ Vn and ȳij = x̄i x̄j for {i, j } ∈ En. Now let (x̃, ỹ) = ψS(x̄, ȳ). From
the definition of switching, we have x̃i ∈ {0, 1} for i ∈ Vn and ỹij = x̃i x̃j for
{i, j } ∈ En. Thus, (x̃, ỹ) is also an extreme point of BQPn. This shows that every
extreme point of ψS

(
BQPn

)
is an extreme point of BQPn. A similar argument shows

that every extreme point of BQPn is an extreme point of ψS
(
BQPn

)
. Now, recall that

BQPn is a polytope. Given that switching is an affine transformation, ψS
(
BQPn

)

must be a polytope as well. Thus, BQPn and ψS
(
BQPn

)
are polytopes with the

same extreme points, and are therefore equal. ��
The permutation and switching transformations are very useful, because they

enable one to convert valid linear inequalities for BQPn into other valid linear
inequalities that induce faces of the same dimension. For example, if we take the
inequality yij ≥ 0 and switch on {i} or {j }, we obtain the inequalities yij ≤ xj

and yij ≤ xi , respectively. If we switch on {i, j } instead, we obtain the inequality
yij ≥ xi + xj − 1.

We remark that switching on S and then switching on T is equivalent to switching
on the set (S ∪ T) \ (S ∩ T). Thus, given any valid (or facet-inducing) inequality
for BQPn, we can obtain up to 2n− 1 other valid (or facet-inducing) inequalities by
switching.

104 A. N. Letchford

4.4 Some More Valid Inequalities

In this section, we review some additional valid inequalities for BQPn.
Padberg [53] derived three additional families of inequalities. The first are the

following triangle inequalities:

xi + xj + xk ≤ yij + yik + yjk + 1
({i, j, k} ⊆ Vn

)
(4.8)

yij + yik ≤ xi + yjk

(
i ∈ Vn, {j, k} ⊆ Vn \ {i}

)
. (4.9)

To see how these might be useful as cutting planes, observe that fractional points
with xi = xj = xk = 1/2 and yij = yik = yjk = 0 satisfy (4.3)–(4.5), but
violate (4.8). Similarly, fractional points with xi = xj = xk = yij = yik = 1/2
and yjk = 0 satisfy (4.3)–(4.5), but violate (4.9). Note that (4.9) can be obtained
from (4.8) by switching on {i}.

Padberg’s second family are called clique inequalities. The easiest way to derive
them is to note that, given any integer s, we have s(s+1) ≥ 0. Thus, for any S ⊆ Vn

and any integer s, we have

(
∑

i∈S

xi − s

)(
∑

i∈S

xi − s − 1

)

≥ 0.

Expanding this and re-arranging yields

(2s + 1)
∑

i∈S

xi −
∑

i∈S

x2
i ≤ 2

∑

{i,j}⊆S

xixj + s(s + 1).

Linearising and dividing by two yields the clique inequalities:

s
∑

i∈S

xi ≤
∑

{i,j}⊆S

yij +
(

s + 1

2

)
(
S ⊆ Vn, s = 0, . . . , |S| − 1

)
. (4.10)

Padberg showed that these induce facets when |S| ≥ 3 and 1 ≤ s ≤ |S| − 2.
Note that the clique inequalities (4.10) reduce to the triangle inequalities (4.8)

when |S| = 3 and s = 1. Moreover, the inequalities (4.5) can be regarded as
“degenerate” clique inequalities with |S| = 2 and s = 1. In a similar way, the non-
negativity inequalities yij ≥ 0 can be regarded as “degenerate” clique inequalities
with |S| = 2 and s = 0.

Padberg’s last family are called cut inequalities. They can be derived from the
fact that, for any disjoint sets S, T ⊂ Vn, we have

(
∑

i∈S

xi −
∑

i∈T

xi

)(
∑

i∈S

xi −
∑

i∈T

xi − 1

)

≥ 0.

4 The Boolean Quadric Polytope 105

They take the form:

∑

i∈S,j∈T

yij ≤
∑

i∈T

xi +
∑

{i,j}⊆S

yij +
∑

{i,j}⊆T

yij

(
S, T ⊆ Vn, S ∩ T = ∅).

(4.11)

They induce facets when |S| ≥ 1 and |T | ≥ 2.
Note that the cut inequalities (4.11) reduce to the triangle inequalities (4.9) when

|S| = 2 and |T | = 1. Moreover, the inequalities (4.3) and (4.4) can be regarded as
“degenerate” cut inequalities with |S| = |T | = 1.

Next, we observe that the arguments for proving the validity of the clique and cut
inequalities can be easily generalised. Indeed, for any disjoint sets S, T ⊂ Vn and
any s ∈ Z, we have

(
∑

i∈S

xi −
∑

i∈T

xi − s

)(
∑

i∈S

xi −
∑

i∈T

xi − s − 1

)

≥ 0.

Expanding and linearising yields

s
∑

i∈S

xi+
∑

i∈S,j∈T

yij ≤ (s+1)
∑

i∈T

xi+
∑

{i,j}⊆S

yij+
∑

{i,j}⊆T

yij+
(
s + 1

2

)

. (4.12)

These inequalities, which include all those mentioned so far, have been rediscovered
many times (e.g., [9, 15, 21, 69]). They define facets when |S| + |T | ≥ 3 and 1 −
|T | ≤ s ≤ |S| − 2. We remark that they can also be derived by taking the clique
inequality (4.10), and switching on T .

An even larger family of valid inequalities was found by Boros and Hammer [9].
Take an arbitrary vector v ∈ Zn and integer s, and consider the quadratic inequality
(vT x− s)(vT x− s − 1) ≥ 0. Expanding and linearising yields:

∑

i∈Vn

vi

(
2s + 1− vi

)
xi ≤ 2

∑

1≤i<j≤n

vivj yij + s(s + 1). (4.13)

Although the Boros-Hammer inequalities are infinite in number, it is known that
they define a polytope [45]. That is, a finite number of them dominate all the others.
At the time of writing, however, a necessary and sufficient condition for a Boros-
Hammer inequality to define a facet of BQPn is not known.

We remark that switching a Boros-Hammer inequality is remarkably easy.
Indeed, to switch on a set S ⊂ Vn, it suffices to change the sign of vi for all i ∈ S.

Still more valid inequalities for BQPn can be derived from a connection between
BQPn and the cut polytope. This is explained in the next section.

106 A. N. Letchford

4.5 Some Related Polytopes

We now review some polytopes that are closely related to the Boolean quadric
polytope. Section 4.5.1 deals with the cut polytope, and Sect. 4.5.2 deals with
polytopes that exploit sparsity in the objective function.

4.5.1 The Cut Polytope

As before, let Kn = (Vn,En) denote the complete graph on n nodes. Given any set
S ⊆ Vn, we let δ(S) denote the set of edges in En that have exactly one end-node in
S. The set δ(S) is called an edge-cutset or simply cut. Given an integer n ≥ 3 and
a weight we ∈ Q for all e ∈ En, the max-cut problem calls for a cut of maximum
total weight.

It is well-known (e.g., [7, 14]) that any QUBO instance with n variables can be
converted into a max-cut instance with n + 1 variables, and vice-versa. This result
turns out to have a polyhedral counterpart. Before explaining this, we first present
the standard 0-1 LP formulation of the max-cut problem.

For all e ∈ En, let ze be a binary variable, taking the value 1 if and only if e

belongs to the cut. The max-cut problem can be formulated as:

max
∑

e∈En
weze (4.14)

s.t. zij + zik + zjk ≤ 2
({i, j, k} ⊆ Vn

)
(4.15)

zij − zik − zjk ≤ 0
({i, j } ∈ En, k ∈ Vn \ {i, j }

)
(4.16)

z ∈ {0, 1}(n
2). (4.17)

The constraints (4.15), (4.16) are (somewhat confusingly) also called triangle
inequalities.

For a given n ≥ 3, the convex hull of vectors z satisfying (4.15)–(4.17) is called
the cut polytope and denoted by CUTn [6]. To make this clear, consider the case
n = 3. There are four cut vectors:

⎛

⎝
z12

z13

z23

⎞

⎠ ∈
⎧
⎨

⎩

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠

⎫
⎬

⎭
.

One can check that these vectors are affinely independent. Thus, CUT3 is a
tetrahedron, as shown in Fig. 4.4.

One can check that the tetrahedron in question is defined by the triangle
inequalities z12 + z13 + z23 ≤ 2, z12 − z13 − z23 ≤ 0, z13 − z13 − z23 ≤ 0

4 The Boolean Quadric Polytope 107

Fig. 4.4 The cut polytope of
order 3

and z23 − z12 − z13 ≤ 0. In other words, for n = 3, the triangle inequalities give a
complete linear description of CUTn.

Now recall that BQP2 was also a tetrahedron. It turns out that BQPn and CUTn+1
are congruent to each other, under a simple (invertible) linear transformation [14, 19,
53]:

Theorem 4.1 Let x∗ ∈ Rn and y∗ ∈ R(n
2) be given. Construct a vector z∗ ∈ R(n+1

2)

as follows:

z∗i,n+1 = x∗i
(
i ∈ Vn

)

z∗ij = x∗i + x∗j − 2y∗ij
({i, j } ∈ En

)
.

Then (x∗, y∗) ∈ BQPn if and only if z ∈ CUTn+1.

The linear transformation in Theorem 4.1 has come to be known as the
covariance map [21]. A consequence of Theorem 4.1 is that the inequality αT z ≤ β

is valid for CUTn+1 if and only if the inequality

∑

i∈Vn

⎛

⎝
∑

j∈Vn+1\{i}
αij

⎞

⎠ xi − 2
∑

e∈En

αeye ≤ β

is valid for BQPn. This enables one to easily convert valid (or facet-defining)
inequalities for the cut polytope into valid (or facet-defining) inequalities for the
Boolean quadric polytope, and vice-versa.

Example If we take the inequalities (4.15) and apply the covariance map, we can
obtain the inequalities (4.5) (if k = n + 1) or (4.8) (if n + 1 /∈ {i, j, k}). Similarly,
if we take the inequalities (4.16) and apply the covariance map, we can obtain the
inequalities (4.3) and (4.4) (if we set i or j to n + 1), the non-negativity inequality
yij ≥ 0 (if we set k to n+ 1), or the inequality (4.9) (if n+ 1 /∈ {i, j, k}). ��

108 A. N. Letchford

Example If we take the clique inequalities (4.10) with |S| odd and s = (|S| −
1)/2, and apply the covariance map, we obtain (with a little work) the following
inequalities for the cut polytope:

∑

{i,j}⊂S

zij ≤
⌊
|S|2/4

⌋ (
S ⊆ Vn : |S| odd

)
. (4.18)

These inequalities were discovered by Barahona and Mahjoub [6]. ��
Example More generally, if we take the Boros-Hammer inequalities (4.13), and
apply the covariance map, we obtain (again with a little work) the following
inequalities for the cut polytope:

∑

{i,j}∈En

vivj zij ≤
⌊

σ(v)2

4

⌋
(
v ∈ Zn : σ(v) odd

)
. (4.19)

These inequalities were discovered by Deza (see [21]). ��
We remark that Laurent and Poljak [44] derived a family of inequalities for

CUTn, called gap inequalities, that are even more general than (4.19). In [24], the
gap inequalities are adapted to BQPn, and then generalised to the case of general
mixed-integer quadratic programs.

One can also define a switching operation for the cut polytope [6, 21].

Proposition 4.2 (Switching for the Cut Polytope) For an arbitrary set S ⊆ Vn,
let πS : R(n

2) �→ R(n
2) be the affine transformation that:

• replaces ze with 1− ze for all e ∈ δ(S),
• leaves ze unchanged for all e ∈ En \ δ(S).

CUTn is invariant under this operation.

This switching operation enables one to take any valid inequality for CUTn

and generate other valid inequalities. For example, if we take the triangle inequal-
ity (4.15) and switch on {k}, we obtain the triangle inequality (4.16).

Many other valid inequalities have been discovered for the cut polytope (see [21]
for a survey). Among them, we mention only the odd bicycle wheel inequalities [6]
and the 2-circulant inequalities [57]. We will see in Sect. 4.7 that those particular
inequalities are “well-behaved” from an algorithmic viewpoint.

For some other polytopes related to BQPn see, e.g., [36, 45, 49, 61, 63]. We close
this subsection with a remark about the strength of the LP relaxation of the 0-1 LP
(4.14)–(4.17). Poljak and Tuza [58] showed that, even if all edge-weights are non-
negative, the upper bound from the relaxation can be as large as twice the optimum.
In other words, the integrality gap can be as large as 100%. For a generalisation of
this result, see [5].

4 The Boolean Quadric Polytope 109

4.5.2 Polytopes Which Exploit Sparsity

A matrix is said to sparse if the majority of its elements are zero. Consider a QUBO
instance whose quadratic cost matrix Q is sparse, and assume w.l.o.g. that Q is
symmetric. For all {i, j } ∈ En such that qij = 0, we can delete the variable yij

from the formulation (4.2)–(4.7), along with the associated constraints. This makes
the formulation much smaller and, if we are lucky, much easier to solve. On the
other hand, we must take care when deriving valid inequalities: we can no longer
use inequalities that involve the variables that have been deleted.

To deal with this from a polyhedral point of view, we need a bit of notation. Let
E = {{i, j } ∈ En : qij �= 0

}
, let m = |E|, and let G = (

Vn,E
)
. We define the

polytope:

BQP(G) = conv
{
(x, y) ∈ {0, 1}n+m : yij = xixj

({i, j } ∈ E
)}

.

Geometrically speaking, BQP(G) is the projection of BQPn into Rn+m.
Unfortunately, projecting a polytope into a subspace is difficult computationally.

This makes it harder to derive valid inequalities for BQP(G) than for BQPn.
Nevertheless, some useful inequalities are known. In particular, Padberg [53]
derived some inequalities called odd cycle inequalities, and proved that they define
facets of BQP(G). We do not go into details, however, since the notation is rather
burdensome.

We can exploit sparsity in the case of the max-cut problem as well. Consider a
max-cut instance defined on a graph G = (

Vn,E
)
. For a given S ⊆ Vn, we let δG(S)

denote the set of edges in E that have exactly one end-node in S. We then define the
polytope:

CUT(G) = conv
{

z ∈ {0, 1}m : ∃S ⊆ Vn : ze = 1 ⇐⇒ e ∈ δG(S)
}
.

As one might expect, CUT(G) is the projection of CUTn into Rm.
Barahona and Mahjoub [6] proved the following. Let C be the set of chordless

simple cycles in G. Then a vector z ∈ {0, 1}m belongs to CUT(G) if and only if it
satisfies the following inequalities:

∑

e∈C\D
ze ≥

∑

e∈D

ze − |D| + 1
(
C ∈ C, D ⊆ C : |D| odd

)
.

These inequalities are called co-circuit inequalities. Their validity follows from
the fact that every cut intersects every cycle an even number of times. Note that
the number of co-circuit inequalities can grow exponentially with n. Note also
that, when G = Kn, every chordless simple cycle is a triangle, and the co-circuit
inequalities reduce to the triangle inequalities (4.15), (4.16).

110 A. N. Letchford

It turns out that Padberg’s odd cycle inequalities for BQP(G) are precisely the
inequalities that can be obtained from the co-circuit inequalities via the covariance
map. We omit the proof, for brevity.

4.6 Some Other Related Convex Sets

In this section, we mention some other important convex sets related to BQPn.
Section 4.6.1 presents a non-polyhedral convex set that contains BQPn, and
Sect. 4.6.2 presents the analogous set for CUTn. Then, Sect. 4.6.3 deals with certain
convex cones.

4.6.1 A Non-polyhedral Convex Set

Our first convex set arises from a certain semidefinite programming (SDP) relaxation
of QUBO. This set turns out to be non-polyhedral, because an infinite number of
linear inequalities are needed to define it. (Informally speaking, it has a “curved”
surface.)

The idea of applying SDP to 0-1 quadratic programs is due to Shor [66], and was
developed in, e.g., [35, 40, 59]. The basic idea is as follows. We define the n × n

symmetric matrix X̂ = xxT , along with the augmented matrix

X̂+ :=
(

1

x

)(
1

x

)T

=
(

1 xT

x X̂

)

.

Since X̂+ is defined as the product of a vector and its transpose, it should be psd.
Moreover, given that xi = x2

i for all i, the main diagonal of X̂ should be equal to x.
This leads immediately to the following SDP relaxation of QUBO:

max
{

Q • X̂ : diag
(
X̂
) = x, X̂+ ∈ Sn+1+

}
.

To someone who is unfamiliar with nonlinear optimisation, this SDP relaxation
may look somewhat mysterious. Fortunately, it can be interpreted in the space of the
x and y variables. Indeed, X̂+ is psd if and only if

(
s

v

)T (
1 xT

x X̂

)(
s

v

)

≥ 0
(
s ∈ R, v ∈ Rn

)
. (4.20)

4 The Boolean Quadric Polytope 111

Moreover, we have x̂ii = xi for all i ∈ Vn, and x̂ij = x̂j i = yij for all {i, j } ∈ En.
Thus, we can write the inequalities (4.20) in the following form:

∑

i∈Vn

vi

(
2s + vi

)
xi + 2

∑

{i,j}∈En

vivj yij + s2 ≥ 0
(
s ∈ R, v ∈ Rn

)
. (4.21)

We will call these psd inequalities. Note that the psd inequalities are infinite in
number.

The psd inequalities include some important inequalities as special cases. For
example, if we set vi to 1, s to 0, and all other components of v to 0 in (4.21),
we obtain the non-negativity inequality xi ≥ 0. If we change s to −1, we obtain
−xi + 1 ≥ 0, which is equivalent to the upper bound xi ≤ 1.

Now consider the following principle submatrix of X̂:

(
x̂ii x̂ij

x̂ij x̂jj

)

.

Given that the SDP relaxation includes the constraints xi = x̂ii and xj = x̂jj , this
submatrix must be equal to

(
xi x̂ij

x̂ij xj

)

.

Moreover, given that X̂ is psd, this submatrix must have non-negative determinant.
Thus, all feasible solutions to the SDP relaxation satisfy x̂

2
ij ≤ xixj . In other words,

the projection into (x, y)-space satisfies y2
ij ≤ xixj . This implies in particular that

yij ≤ 1.
On the other hand, the projection does not satisfy the non-negativity inequalities

of the form yij ≥ 0. Indeed, one can check that, when n = 2, we obtain a feasible
solution to the SDP by setting x1, x2, x̂11 and x̂22 to 1/4, and setting x̂12 to −1/8.
In other words, the SDP relaxation can be strengthened by adding the inequalities
x̂ij ≥ 0 for 1 ≤ i < j ≤ n.

4.6.2 A Convex Set Related to Max-Cut

As one might expect, the results in the previous subsection have an analogue for
the max-cut problem. The SDP relaxation of max-cut was suggested by Schrijver
(unpublished) and analysed in, e.g. [29, 43, 56].

We now show how to derive the SDP relaxation. Recall the definitions of δ(S)

and we from Sect. 4.5.1. For each i ∈ Vn, let μi be a variable that takes the value
1 if i ∈ S, and −1 otherwise. One can formulate max-cut as the following bivalent

112 A. N. Letchford

quadratic program:

max

⎧
⎨

⎩

1

2

∑

{i,j}∈En

wij

(
1− μiμj

) : μ ∈ {−1,+1}n
⎫
⎬

⎭
.

To see that this formulation is valid, note that the quantity 1
2

(
1− μiμj

)
equals 1 if

nodes i and j are on opposite shores of the cut, and 0 if they are on the same shore.
Next, we define the matrix M = μμT . Note that M is psd and has 1s on the

main diagonal (since μ2
i = 1 for all i ∈ Vn). This leads immediately to the SDP

relaxation

max

⎧
⎨

⎩

1

2

∑

{i,j}∈En

wij

(
1−mij

) : mii = 1
(
i ∈ Vn

)
, M ∈ Sn+

⎫
⎬

⎭
.

The feasible region of this SDP is called the elliptope [43].
Note that the matrix M is related to the traditional z variables via the identities

mij = 1 − 2zij for {i, j } ∈ En. Using this fact, Laurent and Poljak [43] projected
the elliptope into z-space. The resulting convex set is defined by the following
inequalities:

∑

{i,j}∈En

vivj zij ≤ σ(v)2/4 (v ∈ Rn). (4.22)

One can check that these inequalities are equivalent to the psd inequalities (4.21),
via the covariance map.

It is not hard to see that the inequalities (4.19) dominate the inequalities (4.22).
This implies in turn that the Boros-Hammer inequalities (4.13) dominate the psd
inequalities (4.21). See [21] for detailed proofs.

4.6.3 Cones

There are also several important convex cones that are related to BQPn. To explain
them properly, we need to define two more families of inequalities:

• When σ(v) = 1, the inequalities (4.19) reduce to

∑

{i,j}∈En

vivj zij ≤ 0
(
v ∈ Zn : σ(v) = 1

)
. (4.23)

These are called hypermetric inequalities [17, 18].

4 The Boolean Quadric Polytope 113

• When σ(v) = 0, the inequalities (4.22) reduce to

∑

{i,j}∈En

vivj zij ≤ 0 (v ∈ Rn : σ(v) = 0). (4.24)

These are called negative-type inequalities [19, 64].

Note that the triangle inequalities (4.16) are hypermetric inequalities. It is also
known that the hypermetric inequalities dominate the negative-type inequalities
[19].

We now define four convex cones:

• The cut cone of order n, which we will call CCn, is the conic hull of the vectors
z that lie in CUTn.

• The metric cone of order n, denoted by METn, is the set of points z satisfying
the triangle inequalities (4.16).

• The hypermetric cone, HYPn, is the cone defined by the hypermetric inequali-
ties (4.23).

• The negative-type cone, NEGn, is the cone defined by the negative-type inequal-
ities (4.24).

From the above considerations, we have CCn ⊂ HYPn ⊂ METn∩ NEGn. By
definition, the cut and metric cones are polyhedral. It has also been shown that
the hypermetric cone is polyhedral [22]. The negative-type cone, however, is not.
All four cones have interesting applications to the theory of metric spaces and the
geometry of numbers; see again [21] for details.

Note that, if we are given a complete linear description of CCn, we can use
switching to get a complete linear description of CUTn. To see this, let z̄ be an
extreme point of CUTn that is not the origin, and let δ(S) be the corresponding cut
in Kn. If we switch on S, z̄ is mapped to the origin, and any facet containing z̄ is
mapped to a facet containing the origin. Reversing this argument, we can obtain any
inequality that defines a facet of CUTn by switching an inequality that defines a
facet of CCn.

Using the covariance map, one can derive analogous inequalities and cones in
(x, y)-space. For the sake of brevity, we do not go into details. We just mention that
the hypermetric inequalities (4.23) map to the following inequalities for BQPn:

∑

i∈Vn

vi

(
1− vi

)
xi ≤ 2

∑

1≤i<j≤n

vivj yij

(
v ∈ Zn

)
. (4.25)

These are called hypermetric correlation inequalities [20]. We remark that they can
be viewed as the special case of the Boros-Hammer inequalities (4.13) in which
s = 0.

114 A. N. Letchford

4.7 Algorithms

Now we turn to the algorithmic implications of the above results. Section 4.7.1
describes a (fairly) simple exact algorithm, called cut-and-branch. Section 4.7.2
concerns subroutines that search for useful cutting planes. Finally, Sect. 4.7.3
describes a more sophisticated algorithmic framework, called branch-and-cut.

4.7.1 Cut-and-Branch

Suppose we wish to solve an ILP of the form (4.1). The continuous relaxation of
the ILP is an LP, which can be solved with, e.g., the simplex method. This yields a
solution, say x∗. If x∗ is integral, we have solved the ILP. If not, the quantity cT x∗
gives an upper bound on the optimal profit.

At this point, we can resort to an old-fashioned solution method, such as
Gomory’s cutting-plane method [30] or branch-and-bound [42]. A more effective
approach, first suggested by Crowder et al. [13], is to add some strong (preferably
facet-defining) valid inequalities to the formulation, and then invoke branch-and-
bound. The resulting algorithm, which has come to be known as “cut-and-branch”,
is outlined in Algorithm 1.

Algorithm 1: Cut-and-branch algorithm
input : positive integers n and m; matrix A; vectors b, c

1 Solve the LP relaxation and let x∗ be the solution;
2 repeat
3 if x∗ is integer then
4 Output x∗ and quit;
5 end
6 Search for strong valid inequalities that are violated by x∗;
7 if at least one inequality has been found then
8 Add one or more inequalities to the LP as cutting planes;
9 Re-optimise the LP and update x∗;

10 end
11 until no more violated inequalities are found;
12 Optional: Delete all cutting planes that have a positive slack;
13 Declare all variables integer;
14 Feed the resulting ILP into a branch-and-bound solver;
15 Let x∗ be the solution;
16 output: Optimal solution x∗

The idea behind cut-and-branch is that the cutting planes typically yield a
significant decrease in the upper bound. This in turn leads to a reduction in the
size of the branch-and-bound tree. The results in [13] indicate that, for many ILPs

4 The Boolean Quadric Polytope 115

arising in practice, the reduction in the size of the tree can be dramatic, and enable
one to solve ILPs that are unsolvable with traditional branch-and-bound.

Cut-and-branch algorithms for QUBO and related problems can be found in, e.g.,
[7, 23, 35, 49].

4.7.2 Separation Algorithms

In Algorithm 1, there is a line that says “Search for strong valid inequalities that are
violated by x∗”. Geometrically speaking, finding such inequalities (cutting planes)
amounts to finding a hyperplane that “separates” the current fractional LP solution
from the feasible integer solutions. For this reason, algorithms that search for cutting
planes are called “separation algorithms” [33]. More precisely:

• An exact separation algorithm for a given family of valid inequalities is an
algorithm that takes a fractional LP solution as input, and outputs one or more
violated inequalities in the given family, if any exist.

• A heuristic separation algorithm for a given family of valid inequalities is an
algorithm that takes a fractional LP solution as input, and outputs either one or
more violated inequalities in the given family, or a failure message.

In the context of QUBO, we can assume that the fractional solution is a pair
(
x∗, y∗

) ∈ [0, 1]n+(n
2).

The separation problem for the triangle inequalities (4.8), (4.9) can be solved in
O
(
n3
)

time by brute-force enumeration. The complexity of the separation problems
for the inequalities (4.10)–(4.13) is unknown, but we suspect that they are all NP-
hard. Greedy separation heuristics for the inequalities (4.10)–(4.12) can be found
in, e.g., [47, 67, 69].

The separation problem for the psd inequalities (4.21) can be solved in poly-
nomial time [33]. The following method works well in practice (e.g., [34, 65]).
Given

(
x∗, y∗

)
, construct the matrix X̂+. Find the minimum eigenvalue of X̂+, to

some desired precision. If the eigenvalue is non-negative, stop. Otherwise, find the
associated eigenvector, again to the desired precision. Write the eigenvector as

(
s∗
v∗
)
.

This eigenvector yields a violated psd inequality. To see why, let λ < 0 be the
eigenvalue, and note that

(
s∗
v∗
)T (

1 xT

x X̂

)(
s∗
v∗
)

=
(

s∗
v∗
)T (

λ

(
s∗
v∗
))

= λ

∥
∥
∥
∥

(
s∗
v∗
)∥
∥
∥
∥

2

2

< 0.

Several polynomial-time separation algorithms are known for the cut polytope.
The separation problem for the triangle inequalities (4.15), (4.16) can be solved in
O
(
n3
)

time by enumeration. Gerards [27] presented an O
(
n5
)

separation algorithm
for the odd bicycle wheel inequalities. There are also O

(
n5
)

separation algorithms
for various generalisations of the 2-circulant inequalities [37, 38, 45]. The separation

116 A. N. Letchford

problems for the inequalities (4.22) and (4.24) can be solved in a similar way to the
psd inequalities (see [21]).

At the time of writing, the complexity of separation is unknown for the remaining
inequalities for the cut polytope. In [35], a greedy separation heuristic is presented
for the inequalities (4.18) and their switchings. Separation heuristics for the
inequalities (4.19) can be found in [16, 25, 34, 35]. A separation heuristic for the
gap inequalities is given in [25].

Letchford and Sørensen [46] showed that the separation problems for the
inequalities (4.13), (4.19), (4.23) and (4.25) are equivalent. That is, either all of
them can be solved in polynomial time, or none of them can. See also Avis [4].

Finally, we mention that there are several exact and heuristic separation algo-
rithms designed for sparse QUBO and max-cut instances (e.g., [6–8, 11, 48]). We
omit details, for brevity.

4.7.3 Branch-and-Cut

Now that we have explained the concept of separation, we return to solution
algorithms. Recall that, in cut-and-branch, we are permitted to add cutting planes
only before running branch-and-bound. A natural extension is to permit the addition
of cutting planes while running branch-and-bound.

To make this more precise, we recall that branch-and-bound is a recursive
algorithm, which solves a series of LP subproblems, arranged in a tree structure.
Suppose that we have just solved the LP that corresponds to one particular branch of
the tree. If the solution is fractional, we can run one or more separation algorithms,
in an attempt to cut it off. If any cutting planes are found, we can add them to the
LP, re-optimise, and repeat. This causes the upper bound at that branch to decrease,
which may allow one to eliminate the branch from consideration.

This approach was discovered by several authors, apparently independently (e.g.,
[32, 50, 54]). It was given the name branch-and-cut by Padberg and Rinaldi [54]. It
works remarkably well, and has been applied to a wide range of problems in integer
programming and combinatorial optimisation [10, 51].

Although branch-and-cut is conceptually simple, it requires considerably more
programming effort than cut-and-branch. The main reason is that the branch-and-
bound solver can no longer be treated as a “black box”. Moreover, some additional
implementation “tricks” are needed to make the approach work efficiently. Several
such tricks are given in [54], such as (a) starting with a subset of the variables and
generating the others dynamically, (b) storing cutting planes in a “cut pool”, (c)
scanning the cut pool before calling the more time-consuming separation routines,
(d) deleting non-binding cutting planes to save memory, and (e) producing heuristic
integer solutions by rounding fractional values to integers.

Oddly, no-one has yet designed and implemented a full branch-and-cut algorithm
for QUBO. Indeed, at present, the most effective exact algorithms for QUBO use

4 The Boolean Quadric Polytope 117

SDP relaxations, with triangle inequalities incorporated via Lagrangian relaxation
(see, e.g., [41, 62]).

4.8 Concluding Remarks

The Boolean quadric and cut polytopes have been studied in depth, and many
families of strong valid linear inequalities are now known. For some of the families,
we also have efficient exact or heuristic separation algorithms.

There remain several interesting directions for possible future research. Among
them, we mention the following:

• Determine whether or not the separation problem for the hypermetric inequali-
ties (4.23) can be solved in polynomial time.

• Design, implement and test a full branch-and-cut algorithm for QUBO and
related problems.

• Understand better the relative advantages and disadvantages of LP-based and
SDP-based approaches to QUBO.

• Provide an open source library of separation algorithms for QUBO and related
problems.

References

1. K. Aardal, C.P.M. Van Hoesel, Polyhedral techniques in combinatorial optimization I: theory.
Stat. Neerlandica 50, 3–26 (1996)

2. K. Aardal, C.P.M. Van Hoesel, Polyhedral techniques in combinatorial optimization II:
applications and computations. Stat. Neerlandica 53, 131–177 (1999)

3. K. Aardal, R. Weismantel, Polyhedral combinatorics, in Annotated Bibliographies in Com-
binatorial Optimization, ed. by M. Dell’Amico, F. Maffioli, S. Martello (Wiley, New York,
1997), pp. 31–44

4. D. Avis, On the complexity of testing hypermetric, negative type, k-gonal and gap inequalities,
in Discrete and Computational Geometry, ed. by J. Akiyama, M. Kanö (Springer, Berlin,
2003), pp. 51–59

5. D. Avis, J. Umemoto, Stronger linear programming relaxations of max-cut. Math. Program.
97, 451–469 (2003)

6. F. Barahona, A. Mahjoub, On the cut polytope. Math. Program. 36, 157–173 (1986)
7. F. Barahona, M. Jünger, G. Reinelt, Experiments in quadratic 0-1 programming. Math.

Program. 44, 127–137 (1989)
8. T. Bonato, M. Jünger, G. Reinelt, G. Rinaldi, Lifting and separation procedures for the cut

polytope. Math. Program. 146, 351–378 (2014)
9. E. Boros, P.L. Hammer, Cut-polytopes, Boolean quadric polytopes and nonnegative quadratic

pseudo-Boolean functions. Math. Oper. Res. 18, 245–253 (1993)
10. A. Caprara, M. Fischetti, Branch-and-cut algorithms, in Annotated Bibliographies in Combina-

torial Optimization, ed. by M. Dell’Amico, F. Maffioli, S. Martello (Wiley, New York, 1997),
pp. 45–64

118 A. N. Letchford

11. E. Cheng, Separating subdivision of bicycle wheel inequalities over cut polytopes. Oper. Res.
Lett. 23, 13–19 (1998)

12. W. Cook, Fifty-plus years of combinatorial integer programming, in 50 Years of Integer
Programming, eds. by M. Juenger et al. (Heidelberg, Springer, 2010), pp. 387–430

13. H. Crowder, E.L. Johnson, M. Padberg, Solving large-scale zero-one linear programming
problems. Oper. Res. 31, 803–834 (1983)

14. C. De Simone, The cut polytope and the Boolean quadric polytope. Discrete Math. 79, 71–75
(1989)

15. C. De Simone, A note on the Boolean quadric polytope. Oper. Res. Lett. 19, 115–116 (1996)
16. C. De Simone, G. Rinaldi, A cutting plane algorithm for the max-cut problem. Optim. Methods

Softw. 3, 195–214 (1994)
17. M. Deza, On the Hamming geometry of unitary cubes. Sov. Phys. Dokl. 5, 940–943 (1961)
18. M. Deza, Realizability of distance matrices in unit cubes (in Russian). Problemy Kibernitiki 7,

31–42 (1962)
19. M. Deza, Matrices de formes quadratiques non négatives pour des arguments binaires. Comptes

Rendus Acad. Sci. Paris 277, 873–875 (1973)
20. M. Deza, V.P. Grishukhin, Voronoi L-decomposition of PSDn and the hypermetric correlation

cone, in Voronoi’s Impact on Modern Science, ed. by P. Engel, H. Syta (Institute of
Mathematics of the National Academy of Science, Kiev, 1998)

21. M. Deza, M. Laurent, Geometry of Cuts and Metrics (Springer, Berlin, 1997)
22. M. Deza, V.P. Grishukhin, M. Laurent, The hypermetric cone is polyhedral. Combinatorica 13,

1–15 (1993)
23. F.D. Fomeni, K. Kaparis, A.N. Letchford, A cut-and-branch algorithm for the quadratic

knapsack problem. Discrete Optim. (2020). https://doi.org/10.1016/j.disopt.2020.100579
24. L. Galli, K. Kaparis, A.N. Letchford, Gap inequalities for non-convex mixed-integer quadratic

programs. Oper. Res. Lett. 39, 297–300 (2011)
25. L. Galli, K. Kaparis, A.N. Letchford, Gap inequalities for the max-cut problem: a cutting-plane

algorithm, in Combinatorial Optimization: 2nd International Symposium, ed. by A.R. Mahjoub
et al. (Springer, Berlin, 2012), pp. 178–188

26. M.R. Garey, D.S. Johnson, L. Stockmeyer. Some simplified NP-complete graph problems.
Theor. Comput. Science 1, 237–267 (1976)

27. A.M.H. Gerards, Testing the odd bicycle wheel inequalities for the bipartite subgraph polytope.
Math. Oper. Res. 10, 359–360 (1985)

28. F. Glover, E. Woolsey, Converting the 0–1 polynomial programming problem to a 0–1 linear
program. Oper. Res. 22, 180–182 (1974)

29. M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

30. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math.
Soc. 64, 275–278 (1958)

31. M. Grötschel, M.W. Padberg, Polyhedral theory, in The Travelling Salesman Problem: A
Guided Tour of Combinatorial Optimization, ed. by E.L. Lawler et al. (Wiley, New York, 1985)

32. M. Grötschel, M. Jünger, G. Reinelt, A cutting plane algorithm for the linear ordering problem.
Oper. Res. 32, 1195–1220 (1984)

33. M. Grötschel, L. Lovász, A.J. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion (Wiley, New York, 1988)

34. G. Gruber, On semidefinite programming and applications in combinatorial optimization. PhD
thesis, Department of Mathematics, University of Klagenfurt, 2000

35. C. Helmberg, F. Rendl, Solving quadratic (0,1)-problems by semidefinite programs and cutting
planes. Math. Program. 82, 291–315 (1998)

36. M. Jünger, V. Kaibel, Box-inequalities for quadratic assignment polytopes. Math. Program. 91,
175–197 (2001)

37. K. Kaparis, A.N. Letchford, A note on the 2-circulant inequalities for the max-cut problem.
Oper. Res. Lett. 46, 443–447 (2018)

https://doi.org/10.1016/j.disopt.2020.100579

4 The Boolean Quadric Polytope 119

38. K. Kaparis, A.N. Letchford, Y. Mourtos, Generalised 2-circulant inequalities for the max-cut
problem, in Working Paper, Department of Management Science, Lancaster University, UK
(2021)

39. R.M. Karp, C.H. Papadimitriou, On linear characterizations of combinatorial optimization
problems. SIAM J. Comput. 11, 620–632 (1982)

40. F. Körner, A tight bound for the Boolean quadratic optimization problem and its use in a branch
and bound algorithm. Optimization 19, 711–721 (1988)

41. N. Krislock, J. Malick, F. Roupin, Improved semidefinite bounding procedure for solving max-
cut problems to optimality. Math. Program. 143, 61–86 (2014)

42. A.H. Land, A.G. Doig, An automatic method of solving discrete programming problems.
Econometrica 28, 497–520 (1960)

43. M. Laurent, S. Poljak, On a positive semidefinite relaxation of the cut polytope. Linear Algebra
Appl. 223/224, 439–461 (1995)

44. M. Laurent, S. Poljak, Gap inequalities for the cut polytope. Eur. J. Combin. 17, 233–254
(1996)

45. A.N. Letchford, M.M. Sørensen, Binary positive semidefinite matrices and associated integer
polytopes. Math. Program. 131, 253–271 (2012)

46. A.N. Letchford, M.M. Sørensen, A new separation algorithm for the Boolean quadric and cut
polytopes. Discrete Optim. 14, 61–71 (2014)

47. E.M. Macambira, C.C. de Souza, The edge-weighted clique problem: Valid inequalities, facets
and polyhedral computations. Eur. J. Oper. Res. 123, 346–371 (2000)

48. G.P. McCormick, Converting general nonlinear programming problems to separable nonlinear
programming problems. Report T—267, The George Washington University (1972)

49. A. Mehrotra, Cardinality constrained Boolean quadratic polytope. Discrete Appl. Math. 79,
137–154 (1997)

50. P. Miliotis, Integer programming approaches to the travelling salesman problem. Math.
Program. 10, 367–378 (1976)

51. J.E. Mitchell, Branch and cut, in Encyclopedia of Operations Research and Management
Science, ed. by J.J. Cochran et al. (Wiley, New York, 2010)

52. G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, New York,
1988)

53. M. Padberg, The Boolean quadric polytope: Some characteristics, facets and relatives. Math.
Program. 45, 134–172 (1989)

54. M.W. Padberg, G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale
symmetric travelling salesman problems. SIAM Rev. 33, 60–100 (1991)

55. I. Pitowsky, Correlation polytopes: their geometry and complexity. Math. Program. 50, 395–
414 (1991)

56. S. Poljak, F. Rendl, Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim.
5, 467–487 (1995)

57. S. Poljak, D. Turzik, Max-cut in circulant graphs. Discrete Math. 108, 379–392 (1992)
58. S. Poljak, Z. Tuza, The expected relative error of the polyhedral approximation of the max-cut

problem. Oper. Res. Lett. 16, 191–198 (1994)
59. S. Poljak, F. Rendl, H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-quadratic

programming. J. Glob. Optim. 7, 51–73 (1995)
60. A.K. Pujari, A.K. Mittal, S.K. Gupta, A convex polytope of diameter one. Discrete Appl. Math.

5, 241–242 (1983)
61. D.J. Rader, Valid inequalities and facets of the quadratic 0-1 knapsack polytope. RUTCOR

Research Report 16-97, Rutgers University (1997)
62. F. Rendl, G. Rinaldi, A. Wiegele, Solving max-cut to optimality by intersecting semidefinite

and polyhedral relaxations. Math. Program. 121, 307–335 (2010)
63. H. Saito, T. Fujie, T. Matsui, S. Matuura, A study of the quadratic semi-assignment polytope.

Discrete Optim. 6, 37–50 (2009)
64. I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44, 522–

536 (1938)

120 A. N. Letchford

65. H.D. Sherali, B.M.P. Fraticelli, Enhancing RLT relaxations via a new class of semidefinite cuts.
J. Glob. Optim. 22, 233–261 (2002)

66. N.Z. Shor, Quadratic optimization problems. Tekhnich. Kibernetika 1, 128–139 (1987)
67. M.M. Sørensen, New facets and a branch-and-cut algorithm for the weighted clique problem.

Eur. J. Oper. Res. 154, 57–70 (2004)
68. H. Weyl, Elementare Theorie der konvexen Polyeder. Comment. Math. Helvet. 7, 290–306

(1935)
69. Y. Yajima and T. Fujie, A polyhedral approach for nonconvex quadratic programming problems

with box constraints. J. Glob. Optim. 13, 151–170 (1998)

Chapter 5
Autarkies and Persistencies for QUBO

Endre Boros

Abstract In many classes of discrete optimization problems, we do not know (yet)
an efficient algorithm that would guarantee an optimal solution for all instances.
However, for some instances we may be able to identify provably optimal values for
some of its variables. Persistency and autarky are properties of partial assignments
that allow us to argue about their optimality. This chapter investigates these and
some related notions from the literature and recalls algorithms for their recognition.
These techniques provide efficient pre-processing for QUBO problems and in some
applications these result in substantial reduction in problem sizes.

5.1 Introduction

In this section we focus on the persistency property of optimization problems, which
in fact can be defined in several ways. Loosely speaking, a continuous relaxation of
a binary optimization problem has the (weak) persistency property if for an arbitrary
optimal solution x ∈ [0, 1]n of it there exists an optimal solution x∗ ∈ {0, 1}n of
the binary problem such that x∗i = xi whenever xi ∈ {0, 1}. If the same hold for all
optimal solutions of the binary problem, then we talk about strong persistency. This
is of course, if we consider optimization problems in their polyhedral form, when
a continuous relaxation maybe much simpler to solve, e.g., by linear programming.
As previous chapters show, many problems can be framed as unconstrained binary
optimization, e.g., QUBO. In that setting persistency is a partial assignment that
can be extended to an optimal solution. In this chapter we consider several notions
of this type, and show their relations. In particular we recall and provide efficient
algorithmic result for QUBO problems.

Let us note that for many optimization problems there may not exists persistency
that could be derived in an efficient way. It turns out however that for particular

E. Boros (�)
RUTCOR and MSIS Department, Rutgers Business School, Rutgers University, New Brunswick,
NJ, USA
e-mail: Endre.Boros@rutgers.edu

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_5

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_5&domain=pdf
mailto:Endre.Boros@rutgers.edu
https://doi.org/10.1007/978-3-031-04520-2_5

122 E. Boros

types of problems arising in certain applications, these techniques could lead to
substantial reduction in the size of the problem. For instance, it turns out the QUBO
formulations are quite natural in computer visions problems, and that family of
problems tend to have persistencies. Efficient algorithms to derive persistencies for
QUBO problems gained prominent application in computer vision, see e.g., [9–
11, 15, 17, 23, 24]. Such important examples motivate our chapter on these notions
and techniques.

5.2 Basic Definitions

To arrive to precise definitions and results, we need to recall some terminology
and corresponding notation. We denote by V = {1, 2, . . . , n} the set of indices, by
x = (xj | j ∈ V) the vector of our variables, and call x̄j = 1 − xj forj ∈ V

complemented variables. The 2n element set L = {xj , x̄j | j ∈ V } is called the set
of literals.

When considering optimization, in this chapter we always consider minimiza-
tion. While generally minimization and maximization are equivalent problems
for several definitions and results, considering minimization will simplify our
presentation.

Let us first note that any real valued mapping f : {0, 1}n �→ R, called a pseudo-
Boolean function (or PBF, in short), has a unique multilinar polynomial form

f (x) =
∑

S⊆V

αS

∏

j∈S

xj , (5.1)

where αS ∈ R for all S ⊆ V (see [12]). The degree of f , denoted by deg(f), is the
largest cardinality |S| with αS �= 0. The unconstrained binary optimization problem
(UBO) is the problem

min
x∈{0,1}n f (x) (5.2)

where we assume that f is given by its unique multilinear polynomial. QUBO is the
special case when deg(f) ≤ 2.

A posiform is a multilinear polynomial in terms of the 2n literals

φ(x) =
∑

P,N⊆V
P∩N=∅

βP,N

∏

j∈P

xj

∏

j∈N

x̄j (5.3)

satisfying βP,N ≥ 0 whenever P ∪ N �= ∅. Note that β∅,∅ < 0 is possible. The
degree of such a posiform, denoted by deg(φ), is the largest cardinality |P ∪ N |
such that βP,N > 0. We say that a posiform φ represents a pseudo-Boolean function
f , if f (x) = φ(x) for all x{0, 1}n. Note that in this case β∅,∅ is a lower bound on the

5 Autarkies and Persistencies for QUBO 123

minimum value of (5.2). It is well-known that every pseudo-Boolean function f can
be represented by posiforms, typically in a non unique way, and deg(f) ≤ deg(φ)

for all such posiforms.

Example 5.1 For instance, let us consider the following example in n = 3 variables:

f (x) = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 quadratic PBF
= −5+ x1 + x2 + x3 + x1x2 + x1x3 + x2x3 a quadratic posiform
= −4+ x3 + x1x2 + x1x3 + x2x3 another quadratic posiform
= −3+ x1x2x3 + x1x2x3 a cubic posiform

As we can see, posiform representations are not unique, and maybe of higher
degree than f . Note that in the above small example, the largest constant term, −3
is in fact the minimum value of this quadratic PBF. It is known and easy to see
that for every PBF f (x) has a posiform representation φ(x) of the form (5.3) such
that its constant term β∅,∅ is the minimum value of f (x). In fact problem (5.2) can
equivalently be viewed as the problem of finding a posiform representation with
the largest constant term. For such a posiform there exists a binary assignment to
the variables that make all nontrivial terms vanish. Even when the constant term of a
posiform representation of a PBF f (x) is not equal to the minimum value of f (x) we
still maybe able to find (partial) assignments that make many of the nontrivial terms
vanish. This dual (equivalent) view of UBO problems and the above observation
about (partial) assignments lead us to another interpretations of what a persistency
is (or could be). We shall see that we can in fact arrive to equivalent notions with
increased algorithmic opportunities.

Remark 5.1 When talking about algorithmic efficiency and computational com-
plexity, one has to be careful switching between these different representations.
Even quadratic pseudo-Boolean functions have posiform representations that are
exponentially larger then their unique multilinear polynomial one, and vice versa.
For instance, the posiform x̄1x̄2 . . . x̄n defines a PBF that has exponentially many
terms in its unique multilinear polynomial form.

The so called partial assignments play an important role in our claims and
analysis. For a subset S ⊆ V a binary vector y ∈ {0, 1}S is called a partial
assignment. For a binary vector x ∈ {0, 1}V and partial assignment y ∈ {0, 1}S
we denote by z = xy the switch of x by y, defined by

zj =
{

yj for j ∈ S,

xj for j ∈ V \ S.

124 E. Boros

5.3 Functional Pesistency

First we consider possible conditions guaranteeing that a partial assignment in a
UBO problem can be extended to an optimal one. The following definition, from
[7] is one of the simplest ways one can achieve that.

Definition 5.1 A partial assignment y ∈ {0, 1}S, S ⊆ V is called a persistency for
a pseudo-Boolean function f if f (xy) ≤ f (x) for all x ∈ {0, 1}V .

Proposition 5.1 If a partial assignment y ∈ {0, 1}S , S ⊆ V is a persistency for a
pseudo-Boolean function f , then problem (5.2) has an optimal solution that agrees
with y in the components belonging to S.

Proof Consider an arbitrary optimal solution x ∈ {0, 1}V of problem (5.2). Then,
by the above persistency property of y, the vector xy is also an optimal solution of
problem (5.2). ��

Next we argue that the family of subsets for which there exists a persistent binary
(partial) assignment is closed under union.

Proposition 5.2 If S1, S2 ⊆ V are two subsets such that we have binary assign-
ments y1 ∈ {0, 1}S1 and y2 ∈ {0, 1}S2 that are both persistencies for a PBF f , then
the (partial) assignment z ∈ {0, 1}S1∪S2 defined by

zj =
{

y1
j for j ∈ S1,

y2
j for j ∈ S2 \ S1

is also a persistency for f .

Proof Since both y1 and y2 ar persistencies for f , we have the following chain of
inequalities for an arbitrary x ∈ {0, 1}V :

f (xz) = f

((
xy2
)y1)

≤ f
(

xy2
)
≤ f (x).

��
Remark 5.2 Every pseudo-Boolean function f has some persistencies. For
instance, for S = V and the optimal solution x∗ of (5.2), the vector x∗ itself is
a persistency for f .

Remark 5.3 While this notion is simple and looks useful, it is computationally
not easy to apply. For instance, given a PBF f (by either its unique multilinear
polynomial, or by one its posiform representations) and given a partial assignment
y ∈ {0, 1}S it is NP-complete to decide if y is a persistency for f , or not.

5 Autarkies and Persistencies for QUBO 125

5.4 Autarkies

The next notion is motivated by the satisfiability literature (see e.g., [18]), and the
form of UBO, in which we minimize a given posiform. In fact we try to characterize
the case when we can achieve the best possible improvement with a subset of the
variables toward the goal of making the terms of the posiform vanish.

Definition 5.2 A partial assignment y ∈ {0, 1}S, S ⊆ V is called an autarky for a
posiform φ given by (5.3) if for every pair of subsets P,N ⊆ V with P ∩ N = ∅,
S ∩ (P ∪N) �= ∅ and βP,N > 0 we have

∏

j∈P∩S

yj

∏

j∈N∩S

ȳj = 0.

Simply saying, y is an autarky for posiform φ, if fixing the variables with indices
in S at the values yj , j ∈ S makes all terms of φ vanish that involves any of
these variables. Clearly, one cannot change the value of a term with a variable that
does not appear in that term, thus this notion of autarky corresponds to the “lucky”
assignments that makes the value of φ as small as it is at all possible.

Proposition 5.3 If a partial assignment y ∈ {0, 1}S for some S ⊆ V is an autarky
for a posiform φ representing the PBF f , then it is also a persistency for f .

Proof To see this claim, let us group the terms of φ given as in (5.3)

φ(x) = β∅,∅ + A(x)+ B(x),

where A(x) is the sum of all those terms that involve a variable (either positively,
or negated) with index in S, and B(x) is the sum of all other terms. Then for an
arbitrary x ∈ {0, 1}V we have both A(x) ≥ 0 and B(x) ≥ 0, since in a posiform
only the constant term can be negative. Furthermore by our grouping, we also have
B(xy) = B(x), since terms in B do not involve any of the variables the value of
which may be switched in xy. Finally, by the autarky property of y we must have
A(xy) = 0. Thus

f (xy) = β∅,∅ + A(xy)+ B(xy) = β∅,∅ + 0+ B(x) ≤ φ(x) = f (x).

��
Remark 5.4 In contrast to the computational difficulty of recognizing the persis-
tency property, one can check easily if a given partial assignment is an autarky for a
given posiform, in time, linear in the size of the posiform.

Thus, in our search for finding some nontrivial persistency for a given PBF, it is
very useful to consider its posiform representations. Unfortunately, not all posiforms
have autarkies. For instance in Example 5.1 the first two quadratic posiforms do not
have any autarkies, while y = (0, 1) ∈ {0, 1}{1,2} is an autarky for the third posiform

126 E. Boros

representation. Thus, we need special algorithmic results to transform a posiform
into an equivalent posiform that may have more autarkies. In fact we can develop
such techniques for quadratic pseudo-Boolean functions.

Let us also note that “persistency” was introduced for quadratic pseudo-Boolean
functions by Hammer et al. [13] via defining a particular type of autarky (without
actually using this term) and using implicitly Proposition 5.3.

Before we describe the application of these notions to QUBO problems, let us
study autarkies in a general setting.

Proposition 5.4 For every posiform φ there exists a unique maximal subset S ⊆ V

such that some (partial) assignment y ∈ {0, 1}S is an autarky for φ.

Proof To prove this statement, assume that S1, S2 ⊆ V are two incomparable
subsets such that we have binary assignments y1 ∈ {0, 1}S1 and y2 ∈ {0, 1}S2 that
are both autarkies for φ. We claim that in this case z ∈ {0, 1}S1∪S2 defined by

zj =
{

y1
j for j ∈ S1,

y2
j for j ∈ S2 \ S1

is also an autarky for φ. To see this claim, partition the nontrivial terms of φ into
three groups:

φ(x) = β∅,∅ + A(x)+ B(x)+ C(x),

where A consist of the sum of all terms of φ that have a variable xj with j ∈
S1 involved (either positively, or negated), B consist of sum of the all terms of
φ that have a variable xj with j ∈ S2 involved but no variable with j ∈ S1 (either
positively, or negated), and C consists the sum of those terms of φ that do not involve
any variables with indices j ∈ S1 ∪S2. Let us consider now an arbitrary assignment
x ∈ {0, 1}V . Then, A(xz) = A(xy1

) = 0 by the autarctic property of y1 and B(xz) =
B(xy2

) = 0 since the terms in B do not involve any variables with indices j ∈ S1∩S2
and y2 is an autarky for φ. Thus we get

φ(xz) = β∅,∅ + A(xz)+ B(xz)+ C(xz)

= β∅,∅ + 0+ 0+ C(xz)

≤ β∅,∅ + A(x)+ B(x)+ C(x)

= φ(x),

since A(x) + B(x) ≥ 0 and C(xz) = C(x) because C does not include any terms
that involves variables xj with j ∈ S1 ∪ S2. ��

Let us denote by S(φ) ⊆ V this unique maximal set for which there exists a
partial assignment y ∈ {0, 1}S(φ) that is an autarky for φ. Note that S(φ) may be the
empty set, as our Example 5.1 shows.

5 Autarkies and Persistencies for QUBO 127

Let us close this section about autarkies with pointing out a few more important
properties of them.

Proposition 5.5 Every persistency of a pseudo-Boolean function f is an autarky of
some its posiform representations.

Proof Assume that y ∈ {0, 1}S for some subset S ⊆ V is a persistency for function
f . To simplify our notation, for this proof, we assume that we view V \ S as the
initial segment of the binary vectors in {0, 1}V , thus in particular we can view every
binary vector as a concatenation x = (α, β), where α ∈ {0, 1}V \S and β ∈ {0, 1}S .
Note that with this convention in mind we have (α, β)y = (α, y) for all vectors. Let
us further introduce

Z = min
x∈{0,1}V

f (x),

and consider the following expression:

φ(x) = Z +
∑

z∈{0,1}V \S
(f (z, y)− Z)

∏

j∈V \S
zj=1

xj

∏

j∈V \S
zj=0

x̄j

+
∑

z∈{0,1}V

(
f (z)− f (zy)

) ∏

j∈V
zj=1

xj

∏

j∈V
zj=0

x̄j

Let us note first that φ defined above is a posiform. Indeed, f (x, y) ≥ Z for all
z ∈ {0, 1}V \S by our choice of Z, and f (z) ≥ f (zy) for all z ∈ {0, 1}V since y is a
persistency for f .

Let us note next that φ is a representation of f , that is φ(x) = f (x) for all
x ∈ {0, 1}V . This is because for a fixed binary vector x ∈ {0, 1}V there are unique
non-vanishing terms in both summation: in the first one it corresponds to the vector
z ∈ {0, 1}V \S for which xy = (z, y); in the second summation it corresponds to
z = x. Thus from the above expression we get

φ(x) = Z + (f (xy)− Z) + (f (x)− f (xy)) = f (x).

Finally we note that only the terms of the second summation involve variables
with indices in S, and whenever f (z)−f (zy) �= 0 we must have an index j ∈ S such
that zj �= yj , implying that the corresponding term vanishes when we substitute
xj = yj . ��
Remark 5.5 Propositions 5.3 and 5.5 together imply that persistencies for a pseudo-
Boolean function are the same as autarkies for its various posiform representations.
The above results also show that an appropriately chosen posiform representation
can serve as an effective proof that a given partial assignment is indeed a persistency
for the PBF under consideration. We use this in an efficient way in the last part of

128 E. Boros

the chapter, when we provide polynomial time algorithms to extract in some sense
extremal persistencies for quadratic pseudo-Boolean functions.

Proposition 5.6 Assume that φ is a given posiform, and x ∈ {0, 1}V . Then there
exists a unique maximal subset S ⊆ V such that the partial assignment y ∈ {0, 1}S
defined by yj = xj for j ∈ S is an autarky for φ, and S can be obtained in time
polynomial in the size of φ.

Proof Since the constant term does not play a role in this claim, we can assume
w.l.o.g. that β∅,∅ = 0.

Note that if φ(x) = 0, then S = V and y = x.
Assume next that φ(x) > 0. By the definition of an autarky, if for a term of φ we

have

βp,N

∏

j∈P

xj

∏

j∈N

x̄j > 0

then we must have S ∩ (P ∪ N) = ∅. Let us then remove all occurrences of xj and
x̄j for all j ∈ P ∪N , remove those terms as well that became empty products, and
denote the obtained posiform by φ′. Note that if S is a subset for which x defines
an autarky for φ, then it is also an autarky for φ′. Thus we can repeat the above
procedure, until we arrive to a posiform that has value zero when we evaluate it at
x. Then defining S as the set of remaining variables completes our proof. ��

5.5 Polyhedral Persistency

The third definition view persistency as a polyhedral property. To formally define
this notion, let us consider the optimization problems associated to a polytope Q ⊆
[0, 1]V and for a real vector w ∈ R

V :

min
x∈Q∩{0,1}V

wT x (IP(Q))

and its continuous relaxation

min
z∈Q

wT z (LP(Q))

To a solution x of (LP(Q)) let us associate two sets Z,O ⊆ V defined by

Z(x) = {j ∈ V | xj = 0} and O(x) = {j ∈ V | xj = 1}.

Definition 5.3 We say that a polytope Q ⊆ [0, 1]V has the persistency property if
for every real vector w ∈ R

V and every optimal solution z∗ of (LP(Q)) there exists
an optimal solution x∗ of (IP(Q)) such that x∗j = z∗j for all j ∈ Z(x∗) ∪O(x∗).

5 Autarkies and Persistencies for QUBO 129

Note that the same notion could be defined for maximization problems, as well,
but a standard transformation, switching from xi to x̄i = 1− xi commutes between
these formulations. We are going to recall results form the literature transformed to
the minimization case, to follow our treatment of posiform minimization.

This notion, without using the word “persistency” was introduced by Nemhauser
and Trotter [20] for the so called stability (or vertex packing) polytope (in the
context of maximization). Given a graph G = (V ,E) and a weight function
w ∈ R

V , we are interested in finding a maximum weight independent set in G,
that is a subset I ⊆ V such that there are no edges inside I , an w(I) = ∑

i∈I wi

is as large as possible. A standard (sometimes called “edge”) formulation of this
problem is to consider the polytope

Qstab(G) = {x ∈ [0, 1]V | xi + xj ≤ 1 for all (i, j) ∈ E}.

Balinski [3] observed that all vertices of Qstab(G) are half integral for an arbitrary
graph G (integral for bipartite graphs), and Nemhauser and Trotter [20] proved that
Qstab has the persistency property. Note that complements of independent set in a
graph are vertex covers (some times called transversals of the edge set) and thus
stability problems are equivalent with vertex cover problems by the transformation
zi = 1− xi for i ∈ V :

Qvc(G) = {z ∈ [0, 1]V | zi + zj ≥ 1 for all (i, j) ∈ E}.

Note that this linear mapping Qstab(G) → Qvc(G) keeps half-integrality, and thus
Balinski’s [3] result implies that Qvc(G) has half-integral vertices, too.

We restate now a result of Nemhauser and Trotter [20] for the vertex cover case,
and for completeness recall a short proof, based on [16].

Theorem 5.1 ([20]) The polytope Qvc(G) has the persistency property for all
graphs G.

Proof Consider an arbitrary weight function, w ∈ R
V and let z∗ be a half-integral

optimal solution of LP(Qvc(G)). Set Z = Z(z∗), O = O(z∗) and H = V \(Z∪O).
Note that if wi ≤ 0 for some i ∈ V , then in any solution of both LP(Qvc(G)) and
I (Qvc(G)) we can switch to zi = 1 without increasing the objective function. Thus,
we can assume w.l.o.g. that wi > 0 for all i ∈ V .

Let us now consider a minimum weight vertex cover S of G. We claim that

O ⊆ S ⊆ V \ Z.

First we show that the right containment implies the left one. For a contradiction,
assume that S ∩ Z = ∅ and the there exists a vertex i ∈ O \ S. Note that i cannot
have a neighbor in Z, since S is a vertex cover. Thus for all edges (i, j) ∈ E we
have z∗j > 0. Consequently, we could decrease z∗i a little and obtain another feasible
solution of LP(Qvc(G)) with a strictly smaller objective value, contradicting the
optimality of z∗.

130 E. Boros

To show the right containment, let us now consider a minimum weight vertex
cover S for which |S ∩ Z| is as small as possible, and assume that the weight of
w(O \S) < w(Z∩S). Note that all neighbors of O \S are in O∪H ∪(Z∩S) since S

is a vertex cover. Thus, for a small ε > 0 we could increase z∗i for i ∈ O \S by ε and
decrease z∗i for i ∈ Z∩S by ε, and obtain another feasible solution of LP(Qvc(G))

with strictly smaller objective value than z∗, contradicting the optimality of z∗. This
contradiction proves that the weight of w(O \ S) ≥ w(Z ∩ S) implying that S′ =
O ∪ S \ Z is another vertex cover with weight not larger than that of S and has
S′ ∩ Z = ∅. ��

This result had numerous applications in approximation algorithms, kerneliza-
tion methods, branching algorithms, etc., see e.g., [1, 4, 14, 16, 19]. The recent paper
[22] shows on the other hand that persistency is not a frequent property of polytopes.
They prove that under some mild technical conditions among all polytopes Q with
Q∩{0, 1}V = Qvc∩{0, 1}V only Qvc and conv(Qvc∩{0, 1}V) have the persistency
property.

Hammer et al. [13] shows that, based on the above result, the standard lin-
earization of QUBO problems also has the persistency property. To a quadratic
pseudo-Boolean function

f (x) = α0 +
∑

i∈V

αixi +
∑

(i,j)∈(V
2)

αij xixj

we can associate its standard linearization (also called Rhys linearization due to
[21]):

min α0 +
∑

i∈V

αixi +
∑

(i,j)∈(V
2)

αij yij

s.t.

yij ≥ xi + xj − 1

yij ≥ 0
for all (i, j) ∈ (V2

)
with αij > 0

yij ≤ xi

yij ≤ xj

for all (i, j) ∈ (V2
)

with αij < 0

xi ≤ 1

xi ≥ 0
for all i ∈ V.

(LP(f))

Theorem 5.2 (Theorem 4.4 in [13]) If (x, y) is an optimal solution of the Rhys
linearization LP(f), then there exists a binary minimum z ∈ {0, 1}V of f such that
zi = xi for all i ∈ Z(x) ∪O(x). ��

5 Autarkies and Persistencies for QUBO 131

In [13] this result is claimed in slightly different form, but their proof gives an
equivalent result, as claimed above. They call this weak-persistency, since the claim
may not hold for all minima of f .

For the case of quadratic pseudo-Boolea functions, we can claim further specific
results, as shown in the next section.

5.6 Persistencies and Autarkies for Quadratic Functions
and Posiforms

While persistencies (or equivalently autarkies) are attractive, since potentially we
could reduce the size of a hard optimization problem by applying them, for general
UBO problems we do not have computationally efficient procedures. For instance,
we do not know how to compute S(φ) for a posiform φ in polynomial time in the size
of φ. Quadratic functions and posiforms are the exception. We already seen that the
standard linearization of QUBO problems have the polyhedral persistency property.
Here we provide (or recall from the literature) a collection of results that lead to
efficient computations of best possible persistencies in some sense, for quadratic
functions and posiforms.

To ease the presentation, we introduce simplified notation for the quadratic case.
For a finite set S we denote by

(
S
2

)
the set of unordered pairs of distinct elements

from S. Recall that V = [n] = {1, 2, . . . , n} is the set of indices of our binary
variables and L = {xi, x̄i | i ∈ V } is the set of 2n literals. In this section we assume
that a quadratic pseudo-Boolean function, in its unique multilinear polynomial form
is given as

f (x) = α0 +
∑

i∈V

αi · xi +
∑

(i,j)∈(V
2)

αij · xi · xj , (5.4)

where αi, αij ∈ R for all i = 0, i ∈ V , and (i, j) ∈ (V2
)
. Furthermore, we assume

that a quadratic posiform is given in the form

ψ(x) = β0 +
∑

u∈L

βu · u +
∑

(u,v)∈(L
2)

βuv · u · v, (5.5)

where β0 ∈ R, and βu, βuv ∈ R+ for all u ∈ L, and (u, v) ∈ (L2
)
. Note that each

literal can be viewed as a function of x ∈ {0, 1}V . Sometimes we emphasize this by
explicitly writing u = u(x), when we talk about the evaluations of these literals at a
particular binary vector. When we talk about multiple quadratic posiforms, we can
also refer to the coefficients of a particular posiform ψ as e.g., β0(ψ), βuv(ψ), etc.

We also assume in the sequel that the quadratic posiforms that we consider are
all simplified in the sense that the identities u + ū = 1 or uv + uv̄ = u cannot be

132 E. Boros

applied any longer. In other words, if βu > 0, then βū = 0, and similarly if βuv > 0
then βūv = βuv̄ = 0.

First we show that a best possible autarky of a quadratic posiform can be
computed in polynomial time.

Proposition 5.7 Given a quadratic posiformψ , one can compute the set S(ψ) ⊆ V

and a partial assignment y ∈ {0, 1}S(ψ) that is an autarky for ψ in time linear in
the size of ψ .

Proof Assume that ψ is given as in (5.5), and define sets U = {u ∈ L | βu > 0}
and T = {(u, v) ∈ (

L
2

) | βuv > 0}. We associate to ψ its so called implication
graph (see e.g., [2]) Gψ = (L,A), the vertices of which are all the literals, and the
directed arcs are defined by

A = {u → ū | u ∈ U} ∪ {u → v̄, v → ū | (u, v) ∈ T }

The meaning of these arcs are related to our desire to make the terms in ψ vanish.
Namely, a term involving literals uv is vanishing only if assigning u = 1 is coupled
with v̄ = 1, and similarly, setting v = 1 makes it necessary to have ū = 1. ��

Note also that Gψ has a strong symmetry, namely (*) there is a directed path
from u to v in Gψ if and only if there exists also a directed path from v̄ to ū.

Let us now consider the strong component decomposition of Gψ , C1, C2, . . . ,
Cp. A strong component is a maximal strongly connected subgraph, and it is known
that every directed graph can be decomposed into its maximal strongly connected
subgraphs. The arcs between these strong components induce an acyclic graph on
vertices Ci , i = 1, . . . , p. By Tarjan [25] such a decomposition can be constructed
in time linear in the number of arcs, which is in our case linear in the size of ψ , in
such a way that if there is an arc from Ci to Cj , then i < j (so called topological
order of the strong components).

Note that by the symmetry (*) if we have {u, ū} ⊆ Ci for a strong component
Ci and literal u, then for all literals v ∈ Ci we must also have v̄ ∈ Ci . We call
such strong component self-complementary. For a non-self-complementary strong
component Ci there exists another strong component Cj such that for all u ∈ Ci we
have ū ∈ Cj . We call Cj the complementary component of Ci , and similarly Ci is
the complementary component of Cj .

Let us next note that if S ⊆ V is a set for which there exists a partial assignment
y ∈ {0, 1}S that is an autarky for ψ then no self-complementary component can
involve xj or x̄j for j ∈ S. To see this claim, assume that Ci is a self-complementary
component, u ∈ Ci and u = xj or u = x̄j for some j ∈ S. Then we also have
ū ∈ Ci . Furthermore if y assigns value 1 to one of u and ū, say to u, then let us
consider a directed path u → v1 → · · · → vk → ū inside Ci . Since the term of φ

corresponding to u → v1 must vanish by the definition of an autarky, y must assign
1 to v1, too. Repeating the same argument for the terms corresponding to the arcs
of this path, one-by-one, we arrive to the conclusion that y must also assign value 1

5 Autarkies and Persistencies for QUBO 133

to ū, which is impossible, since it assigned value 1 to u. This contradiction proves
our claim.

Our main claim is that all other variables, not appearing in self-complementary
components form the unique maximal subset S ⊆ V for which there exists a partial
assignment y ∈ {0, 1}S which is an autarky for ψ . To see this claim, let us first
construct y. Consider the non-self-complementary components in their topological
order: Ci1 , . . . , Ciq , i1 < . . . iq . From right to left we consider these components
one-by-one, and if the considered component does not yet have an assignment,
assign value 1 to all literals in it, and value 0 to all literals in its complementary
component. Notice that every time we assign 1-0 to a pair of complementary
components, the one getting the 0 assigned must be to the left of the one getting
1 assigned.

To complete the proof, we partition the literals into there groups: A consisting of
all those that got value 1 assigned, B consisting of all those that got 0 assigned, and
C containing the left, that is all literals that did not get an assignment in the above
procedure (i.e., the literals belonging to self-complementary components).

We show first that we cannot have a directed path connecting a literal in A to a
literal in B. Assume for a contradiction that there are literals, u ∈ A and v ∈ B such
that there exists a path in Gψ for u to v. Then by the definition of the topological
order, the component containing u must be to the left of the component containing
v (and they are different components, since u and v got different values. Since the
component containing ū must have been assigned 0 it must be further left from the
component of u. Furthermore the component containing v̄ must have been assigned
1, and thus it is further to the right from the component of v. Thus, the path from v̄

to ū (which exists in Gψ by the symmetry (*)) must have some arcs going from a
component to another one which is to the left of the first one. This contradicts that
components are in their topological order, proving our claim.

It follows now that we cannot have a directed path from A to C, or from C to B.
Due to (*), these claims are equivalent, thus we can assume for contradiction that
there is a directed path fro m u to v, where u ∈ A and v ∈ C. By (*) then we also
have a directed path from v̄ to ū. Since u ∈ A we must have ū ∈ B. Furthermore,
since v ∈ C it belongs to a self-complementary component, say Ci , and thus we
must have v̄ ∈ Ci ⊆ C. Consequently, we also have a directed path from v to
v̄ since Ci is a strongly connected graph. Chaining these three paths together we
obtain a directed path from u ∈ A to ū ∈ B, contradicting our previous claim.

We claim finally that y is an autarky for ψ . To see this, assume that uv is a term
with a positive coefficient in ψ , and say u ∈ A (i.e., u(y) = 1). In Gψ we have
an arc corresponding to this term going from u to v̄. By the above arguments, we
cannot have v̄ inside B ∪ C, and thus it must belong to A, implying that v(y) = 0.
Thus the term uv indeed vanishes. Note that if u ∈ B, then u(y) = 0, and hence
the term uv vanishes in this case, too. This shows that y is indeed an autarky for ψ ,
completing the proof of our statement. ��

Given a quadratic pseudo-Boolean function f (as in (5.4)), we denote by P2(f)

the set of quadratic posiforms that represent f . Note that since we assume that

134 E. Boros

all these posiforms are simplified, all coefficients appearing in these posiforms are
bounded, because they all have f as their unique multilinear polynomial.

To a quadratic posiform ψ given by (5.5) we associate the set Q(ψ) ⊆ L of
literals, defined by

Q(ψ) = {u ∈ L | βu > 0}.

Furthermore, to a quadratic pseudo-Boolean function f we associate

C2(f) = maxψ∈P2(f)β0(ψ).

The analogous quantity for the case of maximization was introduced by Hammer et
al. [13], and was called the roof-dual of f . Accordingly, we could call C2(f) the
floor-dual of f . Following [13] let us consider the subset

B(f) = {ψ ∈ P2(f) | β0(ψ) = C2(f)}

of the posiforms representing f , and note that convex combinations of posiforms
from B(f) is also a posiform belonging to B(f). Thus there exists a posiform ψ∗ ∈
B(f) such that

Q(ψ∗) ⊇ Q(ψ) for all ψ ∈ B(f).

Theorem 5.3 (Theorem 4.3 in [13]) Define S∗ ⊆ V as the set of indices j ∈ V

such that xj or x̄j belongs to Q(ψ∗) and define y ∈ {0, 1}S∗ such that u(y) = 0 for
all literals u ∈ Q(ψ∗). Then, y is a (strong) persistency for f .

Proof In fact they prove that this is an autarky for ψ∗, without defining this notion.
Assume for a contradiction that it is not an autarky. Then we must have a non-
vanishing term uv with βuv > 0 in ψ∗ such that it involves a variable xj with
j ∈ S∗. W.l.o.g., u(y) = 1. Since the term uv is not vanishing under the partial
assignment y, we have either v(y) = 1 or v corresponds to a variable xi with
i �∈ S∗.

In the first case, we must have βūū + βv̄v̄ + βuvuv part of ψ∗ with all three
coefficients positive. Then a for small ε > 0 we can write

βūū+ βv̄v̄ + βuvuv = (βū − ε)ū+ (βv̄ − ε)v̄ + (βuv − ε)uv + ε(ū+ v̄ + uv)

= (βū − ε)ū+ (βv̄ − ε)v̄ + (βuv − ε)uv + ε(1+ ūv̄)

and using this identity, we could derive from ψ∗ another posiform ψ∗∗ ∈ P2(f)

with β0(ψ
∗∗) > C2(f), contradicting the definition of C2(f).

5 Autarkies and Persistencies for QUBO 135

In the second case we have βūū + βuvuv is part of ψ∗ with both coefficients
positive, thus for a small ε > 0 we can write

βūū+ βuvuv = (βū − ε)ū+ (βuv − ε)uv + ε(ū+ uv)

= (βū − ε)ū+ (βuv − ε)uv + ε(v + ūv̄)

and using this identity, we could derive again another posiform ψ∗∗∗ ∈ P2(f) from
ψ∗ such that Q(ψ∗∗∗) = Q(ψ∗) ∪ {v}, contradicting the maximality of Q(ψ∗),
since v in this case corresponds to a variable xi with i �∈ S∗.

These contradictions prove that y is indeed an autarky for ψ∗, that is a persistency
of f by Proposition 5.3. Since in ψ∗ all literals u ∈ Q(ψ∗) have a positive
coefficient, we get that for all x ∈ {0, 1}V , such that x �= xy we have f (x) =
ψ∗(x) > ψ∗(xy) = f (xy), proving that y is a strong persistency for f . ��

Let us call a posiform ψ ∈ B(f) a best quadratic posiform of f (i.e., if β0(ψ) =
C2(f)), and call it optimal if Q(ψ) ⊇ Q(ψ ′) for all ψ ′ ∈ B(f). The proof of
the above theorem shows that the linear part of any best quadratic posiform of a
given quadratic pseudo-Boolean function f must vanish in all minima of f . In fact
such a optimal posiform can be obtained in polynomial time in the size of f . In
the paper [13] is shown that an optimal posiform can be obtained from the dual of
the linearization (Rhys linearization) of f . Later in [5, 7, 8] several network flow
based model was shown for the computation of C2(f) and an optimal posiform
representation of a given quadratic pseudo-Boolean function f .

Let us remark that for a ψ ∈ P2(f) we may have a larger autarky then the one
computed above, In fact if ψ ∈ B(f) is an optimal representation of f , then we
still could have |S(ψ)| > |Q(ψ)|. Consider the function f (x1, x2) = x1 − x1x2.
Then C2(f) = 0 and B(f) = {x1x̄2}. Here Q(x1x̄2) = ∅, while S(x1x̄2) = {1, 2},
since e.g. x1 = x2 = 1 is an autarky for x1x̄2. The main reason is that the above
technique, focusing on optimal posiforms, provides only strong persistencies.

Since S(ψ) is also computable in polynomial time by Proposition 5.7, it is natural
to consider the set

S2(f) =
⋃

ψ∈P2(f)

S(ψ).

Note that by Proposition 5.2 there exists a partial assignment y ∈ {0, 1}S2(f) that
is a persistency of f . It is however not known how to compute S2(f) and such
an assignment efficiently. We do not even know if there exists always a posiform
ψ ∈ P2(f) such that S(ψ) = S2(f), or not.

Let us note that the network flow based approach (e.g., [8]) computes efficiently
both strong and weak persistencies for quadratic functions. It maybe the case that it
computes actually S2(f). We just do not have a definitive proof of this, yet.

We close this section with suggesting an efficient heuristics to determine
autarkies for higher degree posiforms, based on the efficiency of computing
S(ψ) for quadratic posiforms by Proposition 5.7. Note that even quadratic

136 E. Boros

pseudo-Boolean functions have higher degree posiform representations, and those
may provide larger autarkies than we can get from quadratic posiforms. However
we do not (yet) know an efficient way of computing S(φ) for a higher degree
posiform φ.

Since the constant term does not play any role in the problem of minimization
and/or autarkies, let us consider a general posiform of the form

φ =
∑

Q⊆L

δQ

∏

u∈Q

u, (5.6)

where δQ ≥ 0 for all Q ⊆ L. Let us also consider a quadratic posiform ψ , as given
in (5.4), and assume further that the coefficients βu, βuv are all zeros or ones and
β0 = 0. Following [6] let us call ψ a quadratic cover of φ if for all Q ⊆ L with δQ >

0, |Q| > 1, and for all literals u ∈ Q there exists another literal v ∈ Q such that
βuv = 1. Furthermore, for all literals u ∈ L, if δ{u} > 0 then βu = 1. The following
claim follows from results in [6]. We include a proof here for completeness, and
since this reference is not easily accessible.

Proposition 5.8 Assume that ψ is a quadratic cover a posiform φ, and let y ∈
{0, 1}S(ψ) be an autarky for ψ . Then y is an autarky for φ, too.

Proof Assume that φ is given as in (5.6). Let us note first that if δQ > 0 and
Q = {u}, then u is a linear term of ψ , and thus either it corresponds to a variable xj

with j �∈ S(ψ), or we must have u(y) = 0 by the definition of an autarky for ψ . Let
us consider next a term of φ with δQ > 0 and |Q| > 1 that involves variables with
indices from S(ψ). Say u ∈ Q is such a literal. If we have u(y) = 0 then this term
is vanishing, and there is nothing to prove. If u(y) = 1 then consider such a literal
v ∈ Q, v �= u for which βuv = 1 in the quadratic cover ψ . By the definition of a
quadratic cover, such a v exists. Since y is an autarky for ψ we must have v(y) = 0
since otherwise the term uv would not vanish in ψ . Thus term Q is vanishing in φ,
completing our proof. ��

This result suggests a simply and fast heuristics for general UBO problems. Let
us view such a problem as the minimization of a posiform representation φ of its
objective function. Generate in linear time in the size of φ a quadratic cover ψ and
compute in linear time in the size of ψ , which is linear in the size of φ, the set
S(ψ). We can e.g., randomize the quadratic cover generation, and repeat the above
many times. If we obtain some nontrivial autarkies, then we can merge those by
Proposition 5.4.

References

1. F.N. Abu-Khzam, M.R. Fellows, M.A. Langston, W.H. Suters, Crown structures for vertex
cover kernelization. Theory Comput. Syst. 41, 411–430 (2007)

5 Autarkies and Persistencies for QUBO 137

2. B. Aspvall, M.F. Plass, R.E. Tarjan, A linear time algorithm for testing the truth of certain
quantified Boolean formulas. Inf. Process. Lett. 8, 121–123 (1979)

3. M.L. Balinski, On maximum matching, minimum covering and their connections, in Proceed-
ings of the Princeton Symposium on Mathematical Programming, ed. by H.W. Kuhn (Princeton
University Press, Princeton, 1970), pp. 303–312

4. R. Bar-Yehuda, S. Even, A local-ratio theorem for approximating the weighted vetex cover
problem. Ann. Discrete Math. 25, 27–45 (1985)

5. E. Boros, P.L. Hammer, A max-flow approach to improved roof-duality in quadratic 0 − 1
minimization. RUTCOR Research Report RRR 15-1989, RUTCOR (1989)

6. E. Boros, P.L. Hammer, A generalization of the pure literal rule for satisfiability problems.
RUTCOR Research Report RRR 20-92, RUTCOR (1992). DIMACS Technical Report 92–19

7. E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225
(2002)

8. E. Boros, P.L. Hammer, R. Sun, G. Tavares, A max-flow approach to improved lower bounds
for quadratic unconstrained binary optimization (QUBO). Discrete Optim. 5, 501–529 (2008)

9. J.-M. Bourjolly, P.L. Hammer, W.R. Pulleyblank, B. Simeone, Boolean-combinatorial bound-
ing of maximum 2-satisfiability, in Computer Science and Operations Research (Williamsburg,
VA 1992) (Pergamon, Oxford, 1992), pp. 23–42

10. A. Fix, A. Gruber, E. Boros, R. Zabih, A graph cut algorithm for higher-order Markov random
fields, in Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV)
(2011), pp. 1020–1027

11. A. Fix, A. Gruber, E. Boros, R. Zabih, A hypergraph-based reduction for higher-order Markov
random fields. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1387–1395 (2015)

12. P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas
(Springer, Berlin, 1968)

13. P.L. Hammer, P. Hansen, B. Simone, Roof duality, complementations, and persistency in
quadratic 0-1 optimization. Math. Program. 28, 121–155 (1984)

14. D.S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems.
SIAM J. Comput. 11, 555–556 (1982)

15. H. Ishikawa, Transformation of general binary MRF minimization to the first-order case. IEEE
Trans. Pattern Anal. Mach. Intell. 33, 1234–1249 (2011)

16. S. Khuller, The vertex cover problem. ACM SIGACT News 33, 31–33 (2002)
17. V. Kolmogorov, R. Zabih, What energy functions can be minimized via graph cuts? IEEE

Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)
18. O. Kullmann, Constraint satisfaction problems in clausal form I: autarkies and deficiency.

Fundam. Inf. 109, 27–81 (2011)
19. D. Lokhstanov, N.S. Narayanaswamy, V. Raman, M.S. Ramanujan, S. Saurabh, Faster

parameterized algorithms using linear programming. ACM Trans. Algorithms 11, 1–31 (2014)
20. G.L. Nemhauser, L.E. Trotter, Jr., Vertex packings: structural properties and algorithms, Math.

Program. 8, 232–248 (1975)
21. J.M.W. Rhys, A selection problem of shared fixed costs and network flows. Manag. Sci. 17,

200–207 (1970)
22. E. Rodríguez-Heck, K. Stickler, M. Walter, S. Weltge, Persistency of linear programming

relaxations for the stable set problem. Math. Program. (2021, to apper)
23. C. Rother, V. Kolmogorov, V. Lempitsky, M. Szummer, Optimizing binary MRFs via extended

roof duality, in IEEE Conference on Computer Vision and Pattern Recognition (2007)
24. R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwal, M. Tappen, C.

Rother, A comparative study of energy minimization methods for Markov random fields. IEEE
Trans. Pattern Anal. Mach. Intell. 30, 1068–1080 (2008)

25. R.E. Tarjan, Depth-First search and linear graph algorithms. SIAM J. Comput. 1, 146–160
(1972)

Chapter 6
Mathematical Programming Models and
Exact Algorithms

Abraham P. Punnen and Renata Sotirov

Abstract This chapter focusses on exact solution approaches for QUBO. We
first discuss various mixed integer linear programming formulations, compare
their relative strength in terms of LP relaxations, and resulting upper bounding
strategies. Then, new developments based on semidefinite programming approaches
are discussed in detail. The mathematical programming formulations discussed here
can be used to solve small size problems and the resulting tight upper bounds on the
optimal objective function values can be used in developing specialized enumerative
algorithms. Capabilities of some promising enumerative algorithms and solvers are
also briefly reviewed.

6.1 Introduction

We have seen in Chap. 3 that several special cases of QUBO can be solved in
polynomial time. Let us now focus our attention on solving the general problem.
Since QUBO is strongly NP-hard, many of the available exact algorithms for the
problem are of implicit enumeration type, in one form or other. A straightforward
option to solve QUBO to optimality is by making use of ‘ready made’ general
purpose mixed integer quadratic programming solvers such as CPLEX [27],
Gurobi [52], SCIP [1], among others. Simple changes in the way we represent the
matrix Q, as discussed in Chap. 1, can have some effect on the performance of these
solvers [108]. The equivalence of QUBO with other optimization problems such as
the maximum weight cut problem, the maximum weight stable set problem, bilinear
programs, etc., also provide opportunities for solving QUBO using exact algorithms

A. P. Punnen (�)
Department of Mathematics, Simon Fraser University, Surrey, BC, Canada
e-mail: apunnen@sfu.ca

R. Sotirov
Department of Econometrics & Operations Research, Tilburg School of Economics and
Management, Tilburg University, Tilburg, The Netherlands
e-mail: R.Sotirov@tilburguniversity.edu

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_6

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_6&domain=pdf
mailto:apunnen@sfu.ca
mailto:R.Sotirov@tilburguniversity.edu
https://doi.org/10.1007/978-3-031-04520-2_6

140 A. P. Punnen and R. Sotirov

developed specifically for these problems. Recent advancements in the capability of
semidefinite programming (SDP) solvers [22, 34, 66, 97, 118] provide additional
opportunities for solving QUBO by general purpose SDP based solvers or by SDP
based solvers developed for equivalent problems such as the maximum weight cut
problem [69, 74, 109].

We will start with the discussion of various MILP formulations of QUBO,
including some very recent ones and their properties. We then consider SDP
formulations of QUBO and other equivalent problems. Discussions on enumerative
algorithms that use traditional MILP formulations as well as those based on SDP
formulations are also presented.

Recall that QUBO can be stated as the 0-1 quadratic programming problem

Maximize φ(x) =
n∑

i=1

∑

j∈Ri

qij xixj +
n∑

i=1

cixi

Subject to: xi ∈ {0, 1} for i = 1, 2, . . . , n,

where Q = (qij) is an n × n symmetric matrix with diagonal entries zero, cT =
(c1, c2, . . . , cn) is an n-vector, and Ri = {j : qij �= 0}. When Q, c and n are given,
an instance of QUBO is well defined. Thus, we sometimes use the triplet (Q, c, n) to
represent an instance of QUBO or simply (Q, c) since n is implicit in the dimension
of c.

6.2 MILP Formulations

Let us now look at some well-known mixed integer linear programming (MILP)
formulations of QUBO. Such formulations are useful in a variety of ways. In
particular,

1. MILP formulations can be used to solve smaller size QUBO to optimality using
general purpose MILP solvers.

2. The linear programming relaxations of these MILP formulations provide upper
bounds on the optimal objective function value, which in turn can be used to
design special purpose exact algorithms for QUBO.

3. The MILP formulations can be used as quick heuristic procedures by running the
model on powerful MILP solvers with a time limit restriction and collect the best
solution obtained.

4. MILP formulation can also be used to design effective matheuristics [90] to solve
QUBO.

In addition, there are many different ways to strengthen the MILP formulations
yielding tighter upper bounds and improved problem solving capabilities. These
include adding strong valid inequalities (see Chap. 4), effective reformulations

6 Mathematical Programming Models and Exact Algorithms 141

(see Chap. 7), constructing higher level RLT formulations [112] and using result-
ing strong cutting planes, applying formulations based on disjunctive program-
ming [13], and using SDP based cuts.

Early use of binary variables in translating logical conditions to a set linear
inequalities (in binary and continuous variables) can be traced back to [28, 36,
43, 121, 123]. The product xixj of binary variables xi and xj takes value one, if
xi = xj = 1 and zero, otherwise. The process of replacing the product xixj by
a single 0 − 1 variable, say yij , along with additional linear constraints such that
yij = 1 if and only if xi = xj = 1 is called linearization of the product xixj . The
theorem below summarizes two basic linearization techniques for the product xixj

considered respectively by Watters [121] and Glover and Woolsey [43]. It may be
noted that earlier works of other authors also considered linearization of the product
of binary variables, either implicitly or explicitly. For example, Goldman [47]
mentioned the works of Fortet [36, 37] and Dantzig [28] as earlier examples of
linearizations.

Theorem 6.1 The product xixj of binary variables can be linearized using the
variable yij by introducing any of the following set of constraints.

(a) xi + xj − yij ≤ 1

2yij − xi − xj ≤ 0

yij ∈ {0, 1}.

(b) xi + xj − yij ≤ 1

yij ≤ xi, yij ≤ xj

yij ≥ 0.

It is easy to verify that conditions (a) or (b) guarantee that yij = 1 precisely when
xi = xj = 1. This leads to the following MILP formulations of QUBO.

WT: Maximize
n∑

i=1

∑

j∈Ri

qij yij +
n∑

i=1

cixi

Subject to: xi + xj − yij ≤ 1 for j ∈ Ri, i = 1, 2, . . . , n (6.1)

2yij − xi − xj ≤ 0 for j ∈ Ri, i = 1, 2, . . . , n (6.2)

xi ∈ {0, 1} for i = 1, 2, . . . , n (6.3)

yij ∈ {0, 1} for j ∈ Ri, i = 1, 2, . . . , n. (6.4)

and

GW: Maximize
n∑

i=1

∑

j∈Ri

qij yij +
n∑

i=1

cixi

Subject to: xi + xj − yij ≤ 1 for j ∈ Ri, i = 1, 2, . . . , n (6.5)

yij − xi ≤ 0 for j ∈ Ri, i = 1, 2, . . . , n (6.6)

142 A. P. Punnen and R. Sotirov

yji − xi ≤ 0 for j ∈ Ri, i = 1, 2, . . . , n (6.7)

xi ∈ {0, 1} for i = 1, 2 . . . , n (6.8)

yij ≥ 0 for j ∈ Ri, i = 1, 2, . . . , n. (6.9)

It may be noted that the constraints (6.6) and (6.7) are presented in a slightly
different form than that is given in Theorem 6.1 (b). However, they are equivalent
when considering all the indices i = 1, 2, . . . , n, j ∈ Ri . As indicated in
Chap. 1, GW is normally called the standard linearization or the Glover-Woolsey
linearization. Both WT and GW belong to the class of explicit linearizations [105]
as each of these formulations uses a variable yij to represent the product xixj .
Explicit linearizations are of considerable interest since their liner programming
relaxations (LP relaxations) can be strengthened by directly using facet defining
inequalities of the Boolean quadric polytope [99]. See Chap. 4 for a detailed
discussion of this polytope.

We denote the objective function value of a mathematical programming formu-
lation P by OBJ(P). Also, the LP relaxation of an MILP formulation P is denoted by
P*.

Lemma 6.1 ([105]) OBJ(GW*) ≤ OBJ(WT*). Further, OBJ(WT*) could be
arbitrarily worse than OBJ(GW*).

Proof Note that each constraint from (6.2) is a linear combination of appropriate
constraints from (6.6) and (6.7) of GW. Thus, any feasible solution of GW* is also
a feasible solution to WT* and hence OBJ(GW*) ≤ OBJ(WT*). To prove the second
part of the lemma, consider the following example [105]. Choose

Q =
(

0 α

α 0

)

and c = (−2α, 1), where α > 0.

Now, x1 = y12 = y21 = 0, x2 = 1 is an optimal solution to GW* with OBJ(GW*)
= 1 whereas for WT*, x1 = 0, x2 = 1, y12 = y21 = 0.5 is an optimal solution with
OBJ(WT*)= 1+ 2α. ��

The value OBJ(GW*) is equal to the upper bound value obtained from the best
posiform representation of φ(x) and is also equal to the roof duality bound [2, 58]
(See also, Chaps. 1 and 5). Despite the negative result established in Lemma 6.1 for
WT, it may be noted that by using appropriate coefficients for the variables yij , xi

and xj in (6.2), WT can be strengthened yielding the corresponding LP relaxation
value matches with OBJ(GW*) [105]. Computational results reported in [105] show
that this modified WT model works well in practice. The formulation GW plays a
fundamental role in various MILP formulations of QUBO and the strength of such
formulations is often compared to the value OBJ(GW*).

Let us now discuss ways to simplify the formulations WT and GW. For i =
1, 2, . . . , n, let R+i = {j : qij > 0} and R−i = {j : qij < 0}. Note that the

6 Mathematical Programming Models and Exact Algorithms 143

constraints (6.1) and (6.2) can be stated as [105]

xi + xj − 1 ≤ yij ≤ xi + xj

2
.

Therefore, at optimality, constraint (6.1) is not active if j ∈ R+i and constraint (6.2)
is not active if j ∈ R−i . Thus, WT can be re-stated as

RWT: Maximize
n∑

i=1

∑

j∈Ri

qij yij +
n∑

i=1

cixi

Subject to: xi + xj − yij ≤ 1 for all j ∈ R−i , i = 1, 2, . . . , n

2yij − xi − xj ≤ 0 for all j ∈ R+i , i = 1, 2, . . . , n

xi ∈ {0, 1} for all i = 1, 2, . . . , n

yij ∈ {0, 1} for all j ∈ Ri, i = 1, 2, . . . , n.

The number of general constraints in RWT is reduced by half, compared to that
of WT. It may be noted that, for RWT, the definition yij = xixj is guaranteed
only at optimality, and not necessarily for an arbitrary feasible solution. An MILP
model with such a property is called optimality restricted models [105]. Explicit
MILP models that guarantee yij = xixj for all feasible solutions are called complete
explicit models [105]. GW and WT are complete explicit models whereas RWT is
an optimality restricted model. A complete model sometimes have better heuristic
value in the sense that if we terminate the solver before reaching optimality, the
best solution produced can be taken as a heuristic solution, without additional
calculations. But, for optimality restricted models, if we terminate the solver
prematurely, the objective function value reported by the solver for the best solution
obtained need not match with the QUBO objective function value of the solution
defined by the corresponding x variables. The objective function value of such a
solution could be very different from the value reported by the solver [105] and
therefore it is important to recompute the objective function value using the x
variables and it will require an additional O(n2) time. However, optimality restricted
models are interesting because of the reduced problem size. It may be noted that
OBJ(WT*) = OBJ(RWT*).

For given i and j , the constraints (6.5), (6.6), (6.7), and (6.9) of GW can be stated
as

max{0, xi + xj − 1} ≤ yij ≤ min{xi, xj }.

Thus, constraints (6.5) and (6.9) are redundant at optimality if j ∈ R+i and
constraints (6.6) and (6.7) are redundant at optimality if j ∈ R−i . Removing these
redundant constraints, an optimality restricted version of GW [43, 44, 59] can be

144 A. P. Punnen and R. Sotirov

obtained as given below.

RGW: Maximize
n∑

i=1

∑

j∈Ri

qij yij +
n∑

i=1

cixi

Subject to: xi + xj − yij ≤ 1 for all j ∈ R−i , i = 1, 2, . . . , n

yij − xi ≤ 0 for all j ∈ R+i , i = 1, 2, . . . , n

yji − xi ≤ 0 for all j ∈ R+i , i = 1, 2, . . . , n

xi ∈ {0, 1} for all i = 1, 2, . . . , n

yij ≥ 0 for all j ∈ R−i , i = 1, 2, . . . , n.

Note that OBJ(GW*) = OBJ(RGW*).
Weighted aggregation of selected constraints of WT and GW can generate

alternative MILP formulations of QUBO with various properties [105]. In particular,
this class of explicit formulations have less number of constraints compared to WT
and GW. For θij > 0, consider the inequality

∑

j∈Ri

θij (xj − yij) ≤
⎛

⎝
∑

j∈Ri

θij

⎞

⎠ (1− xi), for i = 1, 2, . . . , n. (6.10)

Let AWT(θ) be the model obtained from WT by replacing constraint (6.1) with
(6.10) and AGW(θ) be the model obtained from GW by replacing constraints (6.5)
with (6.10).

Theorem 6.2 ([105]) AWT(θ) and AGW(θ) are valid MILP models for QUBO.

Proof Since (6.10) is a positively weighted linear combination of some constraints
of WT, every feasible solution of WT is also a feasible solution of AWT. Now,
choose a solution (x, y) of AWT(θ) and let xi be an arbitrary component of x. If
xi = 0 then constraint (6.10) is redundant and in this case (6.1) is clearly satisfied.
If xi = 1, then from (6.10)

∑

j∈Ri

θij (xj − yij) ≤ 0. (6.11)

If xj − yij < 0 for some j ∈ Ri then xj = 0 and yij = 1 and this violates (6.2).
Thus, the only possibility is that xj−yij = 0 establishing that (6.1) is satisfied. This
shows that, if (x, y) is a feasible solution to AWT(θ) then it is also feasible solution
to WT establishing that AWT(θ) and WT have the same set of feasible solutions.
Proving the validity of AGW(θ) is not difficult and the proof is omitted. ��

6 Mathematical Programming Models and Exact Algorithms 145

When θij = 1 for all i and j , the constraint (6.10) becomes

∑

j∈Ri

(xj − yij) ≤ |Ri |(1− xi), for i = 1, 2, . . . , n. (6.12)

This leads to the unit-weight special cases of AWT(θ) and AGW(θ).

Theorem 6.3 ([105]) OBJ(AWT(θ)*) ≥ OBJ(WT*) and OBJ(AGW(θ)*) ≥ OBJ

(GW*). Further, if θij is taken as an optimal dual variable associated with the
corresponding constraint in WT* and GW* then OBJ(AWT(θ)*) = OBJ(WT*) and
OBJ(AGW(θ)*) = OBJ(GW*).

Proof Since every feasible solution of WT* (GW*) is also a feasible solution to
AWT(θ))* (AGW(θ)*), OBJ(AWT(θ)*) ≥ OBJ(WT*) (AGW(θ)*≥OBJ(GW*)). The
second part of the theorem follows from Theorem 6.20 in Appendix. ��

As noted in [105], choosing θij as optimal dual variables in Theorem 6.3 needs
to be made with caution. Some of these dual variables could be zero but the validity
of the model AWT(θ) (AGW(θ)) assumes θij > 0. Thus, if any of the optimal dual
variables that we consider turned out to be zero, we can set its value to a small
positive real number without significantly deteriorating the performance guarantee
offered by Theorem 6.3, in general.

Let us now consider another weighted aggregation model where constraints (6.6)
and (6.7) of GW are aggregated. Let ζij and ηij be positive real numbers. Consider
the inequality

∑

j∈Ri

ζij yij +
∑

j∈Ri

ηij yji ≤
∑

j∈Ri

(
ζij + ηij

)
xi, for i = 1, 2, . . . , n. (6.13)

The MILP model obtained from GW by replacing the class of inequalities (6.6)
and (6.7) with (6.13) and adding the new upper bound constraints yij ≤ 1 for i =
1, 2, . . . , n, j ∈ Ri is denoted by AGW(ζ, η).

Theorem 6.4 ([105]) AGW(ζ, η) is a valid MILP model for QUBO and
OBJ

(
AGW(ζ, η)*

) ≥ OBJ(GW*). Further, when the multipliers ζij and ηij are
selected as optimal dual variables associated with corresponding constraints in
GW*, OBJ

(
AGW(ζ, η)*

) = OBJ(GW*)

Proof Constraint (6.13) guarantees that if xi = 0 for any i, then yij = yji = 0
for j ∈ Ri and if xi = 1, constraint (6.13) is redundant. When xi = 1, constraint
(6.5) together with the upper bound restriction on yij in AGW(ζ, η) we have xj ≤
yij ≤ 1. Thus if xj is also 1, then yij = 1. If xj = 0 then we can use (6.13) and by
choosing this j in place i, we get yij = yji = 0. This completes the proof of the first
part of the theorem. The last part of the theorem can be proved using Theorem 6.20
from Appendix. ��

146 A. P. Punnen and R. Sotirov

When ηij = ζij = 1 constraint (6.13) becomes

∑

j∈Ri

ζij yij +
∑

j∈Ri

ηij yji ≤ 2|Ri |xi, for i = 1, 2, . . . , n. (6.14)

In this case AGW(ζ, η) becomes the Glover-Woolsey aggregation model [44].
Now, consider the model AGW(θ, ζ, η) obtained by weighted aggregations

constraints (6.6) and (6.7) as well as weighted aggregation of (6.5).

Maximize
∑

(i,j)∈S

qij yij +
n∑

i=1

cixi

Subject to:
∑

j∈Ri

θij (xj − yij) ≤
⎛

⎝
∑

j∈Ri

θij

⎞

⎠ (1− xi), for i = 1, 2, . . . , n

∑

j∈Ri

ζij yij +
∑

j∈Si

ηij yji ≤
⎛

⎝
∑

j∈Ri

ζij +
∑

j∈Si

ηij

⎞

⎠ xi , for i = 1, 2, . . . , n

xi ∈ {0, 1} for all i = 1, 2, . . . , n

0 ≤ yij ≤ 1 for all j ∈ Ri, i = 1, 2, . . . , n.

where Si = {j : qji �= 0}. Since we assume that Q is symmetric, Ri = Si for all i.
But we retained the separate notation of Si for clarity.

Theorem 6.5 AGW(θ, ζ, η) is a valid model for QUBO and OBJ
(
AGW(θ, ζ, η)*

)

≥ OBJ(GW*). Further, when the multipliers θij , ζij and ηij are selected as
optimal dual variables associated with the corresponding constraints in GW*,
OBJ

(
AGW(θ, ζ, η)*

) = OBJ(GW*)

For the proof of the above theorem, we refer to [105]. Among all of the complete
and explicit MILP models of QUBO, AGW(θ, ζ, η) have the least number of general
constraints. When θij = ζij = ηij = 1 we have the unit-weight special case of
AGW(θ, ζ, η) which offers a nice and simple constraint set.

Using weighted aggregation in various forms and combinations, many more
explicit MILP formulations of QUBO can be constructed. Despite the interesting
theoretical properties, the computational behaviour of models using aggregation
constraints (6.10) is not very good [105]. On the other hand, some of the other
aggregation models that does not use (6.10) performed better than GW, on average.
In particular, the modified version of WT mentioned earlier in this section is one of
the better MILP formulations of QUBO, along with some other aggregation based
models. For details on the experimental behaviour of various explicit linearization
models, we refer to [35, 59, 105]. Optimality restricted versions also allow weighted
aggregations, but with some level of restrictions [105].

6 Mathematical Programming Models and Exact Algorithms 147

6.2.1 Compact MILP Formulations

The explicit MILP formulations discussed so far have O(n2) variables and O(n) to
O(n2) constraints. In compact formulations, the number variables and constraints is
O(n). Most of the compact formulations reported in the literature use a linearization
technique proposed by Glover [41] in some way or other.

Theorem 6.6 (Glover’s Linearization Theorem) Let x be a binary variable and y

be a real number such that � ≤ y ≤ u. Then, w = xy if

�x ≤ w ≤ ux (6.15)

y − u(1− x) ≤ w ≤ y − �(1− x). (6.16)

Proof Note that w is either 0 or y. When x = 0 condition (6.15) guarantees
that w = 0 and (6.16) is redundant. Similarly, when x = 1 the condition (6.16)
guarantees that w = y and the condition (6.15) is redundant. ��
A more general set of conditions approximating product of two real variables is
presented in [92] and the conditions of Theorem 6.6 follow from it (see Chap. 1). Let
gi(x) =∑

j∈Ri
qij xj . Then, the objective function φ(x) of QUBO can be written as

φ(x) =
n∑

i=1

xigi(x)+
n∑

i=1

cixi . (6.17)

For any x ∈ {0, 1}n, gi(x) is a real number satisfying

�i =
∑

j∈Ri

min{0, qij } ≤ gi(x) ≤ ui =
∑

j∈Ri

max{0, qij }. (6.18)

Applying Glover’s linearization theorem on the product xigi(x) in (6.17), we get the
compact formulation [41]

GL: Maximize
n∑

i=1

wi +
n∑

i=1

cixi

Subject to: wi ≤ uixi, for i = 1, 2, . . . , n (6.19)

wi ≤ �ixi +
∑

j∈Ri

qij xj − �i, for i = 1, 2, . . . , n (6.20)

wi ≥ �ixi, for i = 1, 2, . . . , n (6.21)

wi ≥ uixi +
∑

j∈Ri

qij xj − ui, for i = 1, 2, . . . , n (6.22)

xi ∈ {0, 1} for i = 1, 2, . . . , n. (6.23)

148 A. P. Punnen and R. Sotirov

The MILP formulation GL is known as Glover’s compact linearization and it is a
complete formulation. An optimality restricted version of GL can also be obtained.
Note that the general constraints of GL can be written as

max{uixi +
∑

j∈Ri

qij xj − ui, �ixi } ≤ wi ≤ min{uixi, �ixi +
∑

j∈Ri

qij xj − �i}, i = 1, 2, . . . , n.

(6.24)
Since we have a maximization objective with the coefficient of wi in the objective
function is one for all i, the inequalities (6.21) and (6.22) can be discarded from
GL without affecting optimality [3] (see also inequality (6.24)). This leads to the
optimality restricted version, GLO, of GL considered in [5]:

GLO: Maximize
n∑

i=1

wi +
n∑

i=1

cixi

Subject to: wi ≤ uixi, for i = 1, 2, . . . , n (6.25)

wi ≤ �ixi +
∑

j∈Ri

qij xj − �i, for i = 1, 2, . . . , n (6.26)

xi ∈ {0, 1} for i = 1, 2, . . . , n. (6.27)

The model GLO has 2n general constraints compared to the 4n general con-
straints for GL. Let us now discuss another optimality restricted model, proposed
in [106] which is a variation of the model by Oral and Kettami [98] who developed
it for a minimization problem.

PK: Maximize
n∑

i=1

(ci + ui)xi −
n∑

i=1

zi

Subject to: (ui − �i)xi − zi −
∑

j∈Ri

qij xj ≤ −�i, for i = 1, 2, . . . , n

(6.28)

xi ∈ {0, 1} for i = 1, 2, . . . , n (6.29)

zi ≥ 0 for i = 1, 2, . . . , n. (6.30)

Theorem 6.7 ([106]) PK is a valid optimality restricted MILP model for QUBO.

Proof When xi = 1, we have zi ≥ uixi −∑
j∈Ri

qij xj and since the objective
function value is to be maximized and the coefficient of zi is −1, at optimality
zi = uixi−∑j∈Ri

qij xj . Similarly, when xi = 0, we have zi ≥ −∑j∈Ri
qij xj+�i

and zi ≥ 0. Thus, at optimality, when xi = 0, zi = 0 and the result follows. ��
PK can be derived from GLO by eliminating the unrestricted variables wi, i =

1, 2, . . . , n using inequality (6.25) and the associated slack variable. Adams and

6 Mathematical Programming Models and Exact Algorithms 149

Forrester [3] made a similar comparison for the minimization version of QUBO
and the model of [98]. Note that PK has only n general constraints. Eliminating
wi, i = 1, 2, . . . , n from GLO using inequality (6.26) and the associated slack
variable, another MILP formulation with only n constraints can be obtained [106].

Lemma 6.2 OBJ(GL*) = OBJ(GLO*) = OBJ(PK*) ≥ OBJ(GW*). Further, there
exist QUBO instances such that OBJ(GL*) > OBJ(GW*).

Proof The equality OBJ(GL*) = OBJ(GLO*) follows from the fact that the optimal-
ity restriction argument extends to LP relaxations as well. The equality OBJ(GLO*)
= OBJ(PK*) follows since PK can be obtained by eliminating unrestricted variables
from GLO. Let (x, y) be any feasible solution to GW*. Define wi = ∑

j∈Ri
qij xj .

Then (x, w) is a feasible solution to GL*. Further the objective function value of
(x, y) in GW* is the same as the objective function value of (x, w) in GL*. Thus
OBJ(GL*) ≥ OBJ(GW*).

It is easy to construct examples establishing the strict inequality OBJ(GL*) >
OBJ(GW*). ��

The inequality OBJ(GL*) ≥ OBJ(GW*) is proved in [5]. The compact formu-
lations that we have discussed so far possess weak LP relaxation bounds. Let us
now explore how to obtain compact MILP formulations with the corresponding LP
relaxation bound is at least as good as OBJ(GW*).

Let y and z be real numbers and x ∈ {0, 1}. Then, w = xy + (1 − x)z is
called the sum of complementary products [106]. When x = 0, w = z and when
x = 1, w = y.

Theorem 6.8 ([59, 106]) Let x be a binary variable and y and z be real numbers
such that � ≤ g(y)−h(y) ≤ u. Then,w = xy+ (1−x)z if the following conditions
are satisfied.

�x + z ≤ w ≤ z + ux (6.31)

y − u(1− x) ≤ w ≤ y − �(1− x). (6.32)

Proof Since, w = xy+ (1−x)z we have w−z = x
(
y−z

)
. The result now follows

by applying Glover’s linearization theorem on (w − z) = x
(
y − z

)
. ��

Let us now look at a special representation of the objective function φ(x) of
QUBO. The function φ(x) is said to be in decomposition form [18, 59, 106] if there
exist non-negative linear functions L(x), fi(x), gi(x), i = 1, 2, . . . , n defined over
binary variables such that

φ(x) = Z −
(

L(x)+
n∑

i=1

[
xifi(x)+ (1− xi)gi(x)

]
)

. (6.33)

Theorem 6.9 ([18, 106]) From any dual feasible solution of GW* with dual
objective function value Z, we can construct linear functions L(x), fi(x), gi(x),

150 A. P. Punnen and R. Sotirov

for i = 1, 2, . . . , n that are non-negative over the unit cube in R
n such that

φ(x) = Z −
(

L(x)+
n∑

i=1

[
xifi(x)+ (1− xi)gi(x)

]
)

.

Proof Let u1
ij be the dual variable associated with (i, j)th constraint from (6.5),

u2
ij be the dual variable associated with (i, j)th constraint from (6.6), u3

ij be the

dual variable associated with (i, j)th constraint from (6.7), u4
i be the dual variable

associated with ith constraint xi ≤ 1 in GW*. Also, let Z be the dual objective
function value of GW* corresponding to the dual solution (u1, u2, u3, u4). Further,
let si be the slack variable in the dual constraint of GW* corresponding to the primal
variable xi and sij be the slack variable in the dual constraint corresponding to the
primal variable yij . Then, from Theorem 6.21 in Appendix, for any feasible solution
(x, y) of GW*, we have

F(x, y) =Z −
n∑

i=1

sixi −
n∑

i=1

∑

j∈Ri

sij yij −
n∑

i=1

∑

j∈Ri

u1
ij

(
1− xi − xj + yij

)−

n∑

i=1

∑

j∈Ri

u2
ij

(−yij + xi

)−
n∑

i=1

∑

j∈Ri

u3
ij

(−yji + xi

)−
n∑

i=1

u4
ij (1− xi) .

(6.34)

For any solution x of QUBO, there exists a unique y defined by yij = xixj . Thus,
in view of (6.34), for any x ∈ {0, 1}n,

F(x) =Z −
n∑

i=1

sixi −
n∑

i=1

∑

j∈Ri

sij xixj −
n∑

i=1

∑

j∈Ri

u1
ij (1− xi)

(
1− xj

)−

n∑

i=1

∑

j∈Ri

u2
ij xi

(
1− xj

)−
n∑

i=1

∑

j∈Ri

u3
ij xi (1− xi)−

n∑

i=1

u4
ij (1− xi) .

(6.35)

Choose L(x) = ∑n
i=1 sixi +∑n

i=1 u4
ij (1− xi), gi(x) = ∑

j∈Ri
u3

ij (1 − xj), and

fi(x) =∑
j∈Ri

(
sij xj + u1

ij (1− xj)+ u2
ij (1− xj)

)
, the result follows. ��

Corollary 6.1 If (u1, u2, u3, u4) is an optimal solution to the dual of GW*, then
Z = OBJ(GW *).

If the decomposition form of φ(x) constructed in Theorem 6.9 uses optimal
dual variables (u1, u2, u3, u4), we say that (6.33) is in optimal decomposition
form [18, 59, 106]. In view of Theorem 6.9, for any instance of QUBO, there exists
an equivalent instance where the objective function is in the decomposition form

6 Mathematical Programming Models and Exact Algorithms 151

(optimal decomposition form). The decomposition form discussed above is a best
posiform representation of φ(x).

Applying Theorem 6.8 on φ(x) given in (6.33), we get the following compact
linearization [106] which is a variation of an analogous model given in [18] for the
minimization version of QUBO.

D1: Maximize Z − L(x)−
n∑

i=1

wi

Subject to: wi ≤ gi(x)+ uixi, for i = 1, 2, . . . , n (6.36)

wi ≤ �ixi + fi(x)− �i , for i = 1, 2, . . . , n (6.37)

wi ≥ gi(x)+ �ixi, for i = 1, 2, . . . , n (6.38)

wi ≥ uixi + fi(x)− ui, for i = 1, 2, . . . , n (6.39)

wi ≥ 0, for i = 1, 2, . . . , n (6.40)

xi ∈ {0, 1} for i = 1, 2, . . . , n. (6.41)

D1 have 4n general constraints, n binary variables, and n continuous variables.

Lemma 6.3 ([106]) When φ(x) is in optimal decomposition form, OBJ(D1*) ≤
OBJ(GW*).

Proof When φ(x) is in optimal decomposition form, Z = OBJ(GW *) [2, 18, 58,
59]. Since L(x) and wi are non-negative, OBJ(D1*) ≤ Z and the result follows. ��

In D1, the constraint (6.40) is essentially redundant and can be removed.
However, the resulting model could have an LP relaxation value more than
OBJ(GW*) [59, 106]. The constraint (6.40) in D1 can also be replaced by

n∑

i=1

wi ≥ 0

and it can be verified that the resulting model will have an LP relaxation value
no more than OBJ(GW*) [59, 106]. There are several variations of D1. For a
comprehensive review of them along with computational analysis, an interested
reader is referred to [106]. The model D1 is closely related to a similar model
developed by Hansen and Meyar [59] and also by Adams et al. [7].

Other compact models of interest include [5, 7, 17, 25, 35, 42, 50, 61, 84, 103]
and some of these models are developed for the minimization version of QUBO.
Detailed computational analysis and relationships between these models are dis-
cussed in [106]. An extended MILP model for QUBO using more variables was
proposed in [39] where the corresponding LP-relaxation bound matches OBJ(GW*).

Let us now look at another MILP modelling strategy that is applicable when qij

is an integer for all i, j . Note that, in this case
∑

j∈Ri
qij xj must be an integer. Let

152 A. P. Punnen and R. Sotirov

�i and ui be upper and lower bounds on
∑

j∈Ri
qij xj . Then

∑
j∈Ri

qij xj − li is a
non-negative integer bounded above by ui − �i . Let ti = �log2(ui − �i)�+ 1. Then,∑

j∈Ri
qij xj − li can be written as

∑

j∈Ri

qij xj − li =
ti∑

k=1

2k−1uik

and we have the 0-1 programming formulation of QUBO as

Maximize
n∑

i=1

ti∑

k=1

2k−1uikxi +
n∑

i=1

(ci + li)xi

Subject to:
∑

j∈Ri

qij xj = li +
ti∑

k=1

2k−1uik, for i = 1, 2, . . . , n

xi ∈ {0, 1} for all i = 1, 2, . . . , n

uik ∈ {0, 1} for all i = 1, 2, . . . , n, k = 1, 2, . . . , ti .

Now, we can linearize the product uikxi of binary variables using any of the
strategies discussed in Theorem 6.1 to get another linearization of QUBO. Similar
modelling strategy was used by others for several 0-1 quadratic optimization
problems [4]. For variations of this type of linearization and applications to low-
rank QUBO, we refer to [107, 108].

The linearizations discussed above can be strengthened using different tech-
niques. This include, adding valid inequalities, applying reformulation linearization
techniques of Adams and Sherali [6] and of Boros et al. [19], and disjunctive
programming techniques introduced by Balas [13].

6.3 QUBO and Semidefinite Programming

Semidefinite programming belongs to the class of convex conic programming, in
which the objective is linear and the constraint set is given by the intersection
of an affine space with a cone of positive semidefinite matrices. Moreover, SDP
can be viewed as an extension of linear programming where the vector variables
are replaced by matrix variables and the nonnegativity constraints are replaced by
positive semidefiniteness constraints. Semidefinite programming plays an important
role in combinatorial optimization where it is used to solve convex relaxations of
NP-hard problems. Semidefinite programming problems are solvable in polynomial
time, with fixed precision, by interior point methods. For more details on the
development of semidefinite optimization and recent approaches the interested
reader is refereed to [10, 122].

6 Mathematical Programming Models and Exact Algorithms 153

SDP has been studied since 1940 under different names. One of the first papers
on the theory of semidefinite programming appeared in 1963 by Bellman and
Fan [15]. An explicit use of semidefinite programming in combinatorial optimiza-
tion appeared in the seminal work of Lovász [86] on the ϑ-function, in the late
1970s. The development of semidefinite optimization has grown tremendously after
the extension of interior point methods from linear programming to semidefinite
programming by Nesterov and Nemirovski [96] in the early 1990s. Interior point
methods are the most prominent algorithms for solving semidefinite optimiza-
tion problems. Another important result that contributed to the development of
semidefinite programming is the Goemans-Williamson randomized approximation
algorithm for the maximum cut problem [46]. That paper demonstrates the strength
of semidefinite relaxations in combinatorial optimization.

SDP solvers based on interior point methods exhibit difficulties in terms of
running time as well as memory for solving even medium-size SDP relaxations.
However, SDP is a viable approach in solving problems like QUBO due to recent
developments in efficient SDP algorithms [22, 34, 63, 68, 97, 118]. With this
motivation, let us explore SDP in the context of QUBO, Ising QUBO, and the stable
set problem.

We use the following notation through the section. The set of all n × n real
symmetric matrices is denoted by Sn. We denote by Sn+ the set of positive
semidefinite matrices of order n i.e., Sn+ := {X ∈ Sn : X 0}. A symmetric
matrix X of order n is positive semidefinite if and only if zTXz ≥ 0 for all z ∈ R

n.
We will sometimes also use the notation X 0 instead of X ∈ Sn+, if the order of
the matrix is clear from the context. The space of symmetric matrices is considered
with the trace inner product

〈A, B〉 = tr(AB) =
n∑

i=1

n∑

j=1

aij bij , A, B ∈ Sn,

and its associated norm is the Frobenius norm, denoted by ||A|| = √tr(AA).
For two matrices X, Y ∈ R

n×m, X ≥ Y means xij ≥ yij for all i, j . The ‘diag’
operator maps an n × n matrix to the n-vector given by its diagonal. We denote by
‘Diag’ the adjoint operator of ‘diag’. The rank of matrix X is denoted by rank(X).

We denote by Jn and In the n×n matrix of all ones and the n×n identity matrix,
respectively. Further, we denote by en ∈ R

n the vector of all ones. In case the order
of these matrices is clear, we omit the subscript to simplify notation. We denote the
set {1, . . . , n} by [n].

154 A. P. Punnen and R. Sotirov

6.3.1 The QUBO Formulation and SDP

In this section, we consider the following QUBO:

QB: Maximize xTQx

Subject to: x ∈ {0, 1}n,
where Q ∈ Sn. Recall that one may assume without loss of generality that Q is
symmetric, see Chap. 1. Furthermore, we assume that liner costs are modeled on the
main diagonal of Q since x2

i = xi for i ∈ [n].
In order to derive an SDP relaxation of QB, we proceed as follows. The objective

function can be rewritten as xTQx = 〈Q, xxT〉. To linearize the objective function,
we replace xxT by a matrix variable X ∈ Sn, and relax the nonconvex constraint
X − xxT = 0 to the convex constraint X − xxT 0. The following lemma shows

that the latter constraint can be rewritten as

(
1 xT

x X

)

 0.

Lemma 6.4 (Schur Complement) Let S be a symmetric matrix partitioned in
blocks

S =
(

A B
BT C

)

,

where A ∈ Sm, C ∈ Sn, and B ∈ R
m×n. Assume that A is invertible. Then S 0 if

and only if A 0 and C− BTA−1B 0.

Proof We define the following matrix X :=
(

Im −A−1B
0 In

)

. The result follows

from

XTSX =
(

A 0
0 C− BTA−1B

)

,

and the fact that positive semidefiniteness is invariant under basis transformations.
��

Note that diag(xxT) = x for a binary vector x. For completeness, we prove the
following result.

Lemma 6.5 The optimization problem QB is equivalent to

QB1: Maximize 〈Q, X〉

Subject to: X̃ =
(

1 diag(X)T

diag(X) X

)

 0

rank(X̃) = 1.

6 Mathematical Programming Models and Exact Algorithms 155

Proof Let X̃ be feasible for QB1. We index the first row and first column of that
matrix as row zero and column zero, respectively. Since rank(X̃) = 1 and X̃ 0,
there exists z ∈ R

n such that X̃ = z̃̃zT where z̃ = [1, zT]T . From the positive
semidefiniteness of order two principal submatrices of X̃ it follows that 0 ≤ x̃ii ≤ 1
for i ∈ [n]. From this and x̃ii = zizi for i ∈ [n] it follows that z ∈ {0, 1}n.

The converse inclusion is trivial. Since the objectives of QB and QB1 coincide,
we conclude that the two problems are equivalent. ��

Dropping the rank one constraint in the QUBO formulation from Lemma 6.5,
yields the following SDP relaxation of QB:

Maximize 〈Q, X〉

Subject to:

(
1 diag(X)T

diag(X) X

)

 0.

We say that this is the basic SDP relaxation of QB. In order to strengthen the basic
SDP relaxation of QB, one can add the following facet defining inequalities of the
Boolean quadric polytope:

0 ≤ xij ≤ xii,

xii + xjj ≤ 1+ xij ,

xik + xjk ≤ xkk + xij ,

xii + xjj + xkk ≤ xij + xik + xjk + 1,

(6.42)

for 1 ≤ i, j, k ≤ n, see [99] and Chap. 4 for details.

6.3.2 The Ising QUBO Formulation and SDP

The equivalence of QUBO and the maximum cut problem is explained in Chap. 1.
We present here the basic SDP relaxation for the maximum cut problem and show
how to improve it. The SDP relaxations presented in this section are used in the state
of the art SDP-based solvers for solving the maximum cut problem.

Let G = (V ,E) be an undirected graph on n = |V | vertices and m = |E| edges
with edge weights wij for (i, j) ∈ E. Let A = (aij) ∈ Sn be the weighted adjacency
matrix of G where

aij =
{

wij if (i, j) ∈ E

0 if (i, j) /∈ E.

156 A. P. Punnen and R. Sotirov

We let L denote the Laplacian matrix associated with A, i.e.,

L = Diag(Ae)− A.

For S ⊆ V , the cut is the set of edges (i, j) ∈ E that have one endpoint in S and the
other in V \S. The weight of the cut given by S ⊆ V is

cut(S, V \S) =
∑

i∈S,j∈V \S,(i,j)∈E

wij .

If S = ∅ or S = V, the weight of the cut is defined to be zero. The maximum cut
problem asks to partition the vertex set V into S and V \S in such a way that the
total weight of the cut is maximized. Thus, the maximum cut problem is

max
S⊆V

∑

i∈S,j∈V \S,(i,j)∈E

wij .

For S ⊆ V , we introduce the cut vector y ∈ {−1, 1}n such that yi = 1 for i ∈ S and
yi = −1 for i ∈ V \S. Now, one can verify (see also Chap. 1, Sect. 1.4.2) that the
weight of the cut given by S ⊆ V is

cut(S, V \S) = 1

4
yTLy,

where L is the Laplacian matrix of the graph associated with A. Thus, finding
a maximum cut in a graph is equivalent to solving the following quadratic
optimization problem

MC: Maximize yTLy

Subject to: y ∈ {−1, 1}n,

that corresponds to the Ising QUBO(L, 0), see Chap. 1, Sect. 1.4.2.
Note that the objective function in MC can be rewritten as yTLy = 〈L, yyT〉.

Define Y := yyT and observe that diag(Y) = en since y ∈ {−1, 1}n. This brings us
to the following optimization problem:

MC1: Maximize 〈L, Y〉
Subject to: diag(Y) = e

rank(Y) = 1

Y 0.

Let us relate MC and MC1.

6 Mathematical Programming Models and Exact Algorithms 157

Lemma 6.6 The optimization problems MC and MC1 are equivalent.

Proof Let Y be feasible for MC1. Since rank(Y) = 1 and Y 0, there exists
z ∈ R

n such that Y = zzT. Then from yii = zizi = 1 for i ∈ [n] it follows that
z ∈ {−1, 1}n.

The converse inclusion is trivial. Since the objectives of MC and MC1 coincide,
we conclude that the two problems are equivalent. ��

We present one more equivalent formulation for the maximum cut problem, that
is based on the following result.

Theorem 6.10 ([11]) Let Y be an n× n symmetric matrix. Then

Y 0, Y ∈ {−1, 1}n×n if and only if Y = yyT, for some y ∈ {−1, 1}n.

Proof Observe that Y 0, Y ∈ {−1, 1}n×n implies that diag(Y) = en. Therefore,

Y =
(

1 yT

y Ỹ

)

for some y ∈ {−1, 1}n−1, Ỹ ∈ Sn−1. It follows from the Schur

complement lemma that

Y 0 ⇔ Ỹ− yyT 0.

From Ỹ − yyT 0 and diag(Ỹ − yyT) = 0, it follows that Ỹ = yyT. The converse
inclusion is trivial. ��

The proof of Theorem 6.10 is from [9]. In the view of Theorem 6.10, the
maximum cut problem can be formulated as follows:

MC2: Maximize 〈L, Y〉
Subject to: diag(Y) = e

Y ∈ {−1, 1}n×n

Y 0.

Thus, we can replace the rank one constraint in MC1 by Y ∈ {−1, 1}n×n to obtain
an equivalent formulation of the maximum cut problem MC2. Different problem
formulations might lead to the different solving approaches.

Dropping the rank one constraint in MC1, or the constraint Y ∈ {−1, 1}n×n in
MC2, yields the basic SDP relaxation for the maximum cut problem:

SDPbasic : Maximize 〈L, Y〉
Subject to: diag(Y) = e

Y 0.

158 A. P. Punnen and R. Sotirov

The set

En = {Y ∈ Sn : diag(Y) = e, Y 0}

is called elliptope [81]. The basic SDP relaxation for MC is studied extensively, see
e.g., [11, 29, 65, 81, 122]. It is known that the basic SDP relaxations of QB and MC
are equivalent see [64].

The quality of the basic SDP bound for the maximum cut problem is analyzed by
Goemans and Williamson [46]. They prove the following bound for the integrality
ratio of any graph with nonnegative edge weights:

OBJ(MC)

OBJ(SDPbasic)
≥ α,

where OBJ(MC) is the optimal value of MC, OBJ(SDPbasic) the corresponding
basic SDP bound, and 0.87856 < α < 0.87857. Goemans and Williamson [46]
also present a celebrated randomized algorithm that provides a cut whose expected
weight is at least α · OBJ(SDPbasic).

The basic SDP bound for the maximum cut problem is introduced by Delorme
and Poljak [29] as an eigenvalue bound for the problem. Namely, to derive the bound
for the maximum cut problem Delorme and Poljak exploit the following result:

max
y∈{−1,1}n

yTLy ≤ max
yTy=n

yTLy = nλmax(L),

that is provided by Mohar and Poljak [93]. Here λmax(L) denotes the largest
eigenvalue of L, and the equality follows from the Rayleigh-Ritz theorem. In order
to improve this bound, Delorme and Poljak exploit the fact that yT Diag(u)y = 0
for all y ∈ {−1, 1}n and u ∈ R

n such that eTu = 0. Notice that these diagonal
perturbations when added to the cost matrix L do not change the optimal value of
the maximum cut problem but have an influence on eigenvalues of L. The resulting
eigenvalue bound from [29] is:

MCeig : min
u∈Rn, eTu=0

nλmax(L+ Diag(u)).

This eigenvalue bound is related to the dual problem of SDPbasic, which is the
following optimization problem:

DSDPbasic : Minimize eTz

Subject to: Diag(z)− L 0.

In particular, Poljak and Rendl prove the following result.

Lemma 6.7 ([104]) DSDPbasic and MCeig are equivalent optimization problems.

6 Mathematical Programming Models and Exact Algorithms 159

Proof The eigenvalue problem MCeig can be reformulated as the following SDP
problem

Minimize nλ

Subject to: λIn − (L+ Diag(u)) 0

eTu = 0.

We rewrite λIn−L−Diag(u) = Diag(λen−u)−L = Diag(z)−L where z = λen−u.
Since eTz = λn, the result follows. ��

It is well known that one can strengthen semidefinite programming relaxations
by adding polyhedral information, see e.g., [82]. Generic inequalities for {−1, 1}
problems are known as the hypermetric inequalities [30, 31]. Those inequalities are
based on the fact that for any y ∈ {−1, 1}n, the inequality |bTy| ≥ 1 is valid if bTe
is odd and b integer. In particular, for any b with the mentioned properties we have:

|bTy| ≥ 1 ⇔ bTyyTb ≥ 1 ⇔ 〈bbT, yyT〉 ≥ 1. (6.43)

Thus, any integer vector b for which bTe is odd defines a hypermetric inequality.
The hypermetric inequalities are valid for any symmetric matrix Y from the convex
hull of rank-one matrices yyT where y ∈ {−1, 1}n.

Well known hypermetric inequalities are the triangle inequalities. Each triangle
inequality is generated by b that has three non-zero entries of value −1 or 1. In
particular, the triangle inequalities are as follows:

yij + yik + yjk ≥ −1, (6.44)

yij − yik − yjk ≥ −1, (6.45)

−yij + yik − yjk ≥ −1, (6.46)

−yij − yik + yjk ≥ −1, ∀i < j < k. (6.47)

To derive those inequalities we use that Y is symmetric and diag(Y) = e. We say
that Y ∈ MET if and only if Y satisfies (6.44)–(6.47). The triangle inequalities
impose that for every 3-cycle of vertices one can cut either zero or two of the edges.
The polyhedron defined by these inequalities is called the metric polytope, i.e.,

Mn =
{
Y ∈ Sn : diag(Y) = e, Y ∈ MET

}
.

Several papers investigate quality of the bounds that are obtained after adding
(subsets of) the triangle inequalities to the basic SDP relaxation, see e.g., [34, 65–
67]. The numerical results show that the resulting bounds may improve significantly
over the basic SDP bound. Therefore the following SDP relaxation for the maximum

160 A. P. Punnen and R. Sotirov

cut problem:

SDPmet : Maximize 〈L, Y〉
Subject to: Y ∈ En ∩Mn,

is exploited in the SDP-based exact solvers for solving the maximum cut problem
[54, 65, 69, 75, 109]. Since the SDP program SDPmet has 4

(
n
3

)
triangle inequalities,

only a subset of those valid inequalities is added to SDPbasic in each node
of a branch and bound tree. Various approaches, including an interior point
algorithm [65], bundle method [34], spectral bundle method [66], quasi-Newton
method [74], alternating direction method of multipliers [69], are implemented for
solving SDPmet .

In general, if |b| in (6.43) is a characteristic vector of a clique of odd order k, i.e.,
b has k non-zero entries of value −1 or 1, then the resulting hypermetric inequality
is known as a clique inequality. The numerical results in [65] show that adding
clique inequalities of order k > 3 to SDPmet , in each node of a tree, improves the
performance of a branch and bound algorithm over an algorithm that implements
only SDPmet . In [54, 69], the authors strengthen SDPmet by adding pentagonal and
heptagonal inequalities. In particular, pentagonal (resp., heptagonal) inequalities are
5-clique (resp., 7-clique) inequalities where b has five (resp., seven) non-zero entries
of value−1 or 1.

6.3.3 Linearly Constrained Quadratic Problems
and the Maximum Cut Problem

Lasserre [79] showed how to reformulate a quadratic (or linear) binary program
with linear constraints into a maximum cut problem by exploiting semidefinite
programming. The reformulated problem can be then solved by any of the available
approaches for solving the maximum cut problem. Reformulations of constrained
binary optimization problems into QUBO are also discussed in Chap. 7.

Consider the following quadratic optimization problem with linear constraints

QP: Minimize yTQ̃y+ cTy

subject to: Ay = b

y ∈ {−1, 1}n,

where Q̃ ∈ Sn, c ∈ R
n, A ∈ Z

m×n and b ∈ Z
m. For a penalty parameter σ > 0,

consider the following minimization problem

min
y∈{−1,1}n yTQ̃y+ cTy+ σ ||Ay− b||2.

6 Mathematical Programming Models and Exact Algorithms 161

Let us rewrite the objective function as follows

yTQ̃y+ cTy+ σ ||Ay− b||2 = yT(Q̃+ σATA)y+ (c− 2σATb)Ty+ σbTb

= ỹTQỹ,

where ỹT = (1, yT) ∈ {−1, 1}n+1 and

Q :=
(

σbTb (c− 2σATb)T/2
(c− 2σATb)/2 Q̃+ σATA

)

∈ Sn+1. (6.48)

This leads to the following optimization problem

MCn+1 Minimize yTQy

subject to: y0 = 1, y ∈ {−1, 1}n+1,

where we indexed by zero the first element in the vector of variables. Note that if
(y0, yT)T ∈ {−1, 1}n+1 is an optimal solution for this optimization problem, then
(−y0,−yT)T ∈ {−1, 1}n+1 is also an optimal solution for the same optimization
problem. Therefore, one may w.l.o.g. fix y0 = 1. Thus MCn+1 is the maximum cut
problem on a graph with n+ 1 vertices.

To obtain an equivalent maximum cut formulation MCn+1 of QP one has to
determine an appropriate parameter σ in the definition of Q, see (6.48). Lasserre
[79] defines

σ := 2ρ + 1, (6.49)

where

ρ := max{|ρ1|, |ρ2|} (6.50)

and

ρ1 = min

{

〈Q̃, Y〉 + cTy :
(

1 yT

y Y

)

 0, diag(Y) = en

}

,

ρ2 = max

{

〈Q̃, Y〉 + cTy :
(

1 yT

y Y

)

 0, diag(Y) = en

}

.

Thus, to compute σ one has to solve two semidefinite programming problems that
are derived from the quadratic problem QP. Note that

max{yTQ̃y+ cTy : y ∈ {−1, 1}n} ≤ ρ.

162 A. P. Punnen and R. Sotirov

Theorem 6.11 ([79]) Let q∗ be the optimal value of QP and m∗ the optimal value
of MCn+1. Let σ = 2ρ + 1 where ρ is defined as in (6.50).

If q∗ < +∞, then q∗ = m∗, i.e., q∗ is the optimal value of the maximum cut
problem MCn+1. Moreover q∗ = +∞ if and only if m∗ > ρ.

Proof Let F := {y ∈ {−1, 1}n : Ay = b} �= ∅ be the feasible set of QP, and

f (y) = yTQ̃y+ cTy+ σ ||Ay− b||2.

There are two cases to consider. The first case is

f (y) = yTQ̃y+ cTy ≤ ρ for y ∈ F,

and the second case is

f (y) = yTQ̃y+ cTy+ σ ||Ay− b||2 > ρ for y ∈ {−1, 1}n \ F.

In the latter case we use that ||Ay − b||2 ≥ 1 for all y ∈ {−1, 1}n \ F, because
A ∈ Z

m×n and b ∈ Z
m. Thus,

q∗ = min
y∈{−1,1}n yTQ̃y+ cTy+ σ ||Ay− b||2.

By using (6.48), we have

min
y∈{−1,1}n yTQ̃y+ cTy+ σ ||Ay− b||2 = min

y∈{−1,1}n+1
yTQy = m∗.

It is also clear that m∗ > ρ if and only if F = ∅. ��
Thus, solving the constrained optimization problem QP is equivalent to solv-

ing the maximum cut problem MCn+1. The described approach can also be
applied to quadratic binary optimization problems with linear inequality constraints.
Lasserre [79] also investigates lower bounds obtained from the basic SDP relaxation
of the (reformulated) maximum cut problem. Preliminary tests show that the
resulting bounds are mostly better than the bounds obtained from the standard linear
programming relaxation of the original problem.

The idea from [79] is further exploited in [53, 54] to develop algorithms for
solving binary quadratic problems with linear equality constraints. EXPEDIS [53]
uses BiqMac [109] to solve the (reformulated) maximum cut problems.

6.3.4 The Stable Set Problem

It is well known that QUBO is equivalent to the maximum weight stable set
problem and the maximum clique problem, see also Chap. 1. Nevertheless, there

6 Mathematical Programming Models and Exact Algorithms 163

exist bounding and exact approaches that are developed specifically for each of
the problems. We present here SDP approaches for solving the stable set problem.
Section 6.3.5 presents SDP approaches for solving the maximum k-colorable
subgraph problem, that can be seen as a generalization of the stable set problem.

Let G = (V ,E) be an undirected graph with n = |V | vertices and m = |E|
edges. A stable set S in G is a subset of vertices such that no two vertices in S are
adjacent in G. Note that, S forms a complete subgraph in the complement of G.
The maximum stable set problem is the problem of finding a stable set of maximum
cardinality. If there are weights associated with vertices, then the maximum weight
stable set problem is to find a stable set in G such that the sum of weights of the
vertices in the stable set is maximized. We consider the stable set problem in an
unweighted graph.

Let α(G) denote the stability number of G, that is the maximum cardinality of
a stable set in G. Let ω(G) denote the clique number of G, that is the maximum
cardinality of a clique in G. A clique C in a graph is a subset of vertices such that
every two distinct vertices in C are adjacent. The problem of determining ω(G) is
called the maximum clique problem. Clearly, α(G) = ω(G) where G denotes the
complement of G.

The maximum stable set problem can be modeled as an integer programming
problem. Let x ∈ {0, 1}n be the characteristic vector of a (nonempty) stable set. Then
the stability number of G is the solution of the following optimization problem:

α(G) := Maximize xTx

subject to: xixj = 0 for (i, j) ∈ E

x ∈ {0, 1}n.

There exist several equivalent formulations of the stable set problem. The constraint
xixj = 0 for (i, j) ∈ E, that at most one of the nodes i and j can be in a stable set,
may be replaced by xi + xj ≤ 1 for (i, j) ∈ E. Further, one can replace x ∈ {0, 1}n
by x2

i = xi for all i. Note also that xTx = eTx.
To derive an SDP relaxation for the stable set problem assume again x ∈ {0, 1}n

is the characteristic vector of a (nonempty) stable set, and define

X := 1

xTx
xxT.

Then X is positive semidefinite matrix and xij = 0 for (i, j) ∈ E. Moreover,

tr(X) = 1

xTx
eTx = 1

and

〈J, X〉 = 1

xTx
(eTx)2 = eTx.

164 A. P. Punnen and R. Sotirov

These observations give rise to the well-known SDP relaxation for the stable set
problem:

ϑ(G) := Maximize 〈J, X〉 (6.51)

subject to: xij = 0 for (i, j) ∈ E

tr(X) = 1

X 0.

This relaxation was proposed by Lovász [86]. The graph parameter ϑ(G) is known
as the ϑ-number or Lovász theta number. The Lovász theta number provides
bounds for both the clique number and the chromatic number of a graph. The
chromatic number of G, denoted by χ(G), is the smallest number of colors needed
to (properly) color G. The well known result that establishes the following relation

α(G) ≤ ϑ(G) ≤ χ(G),

or equivalently

ω(G) ≤ ϑ(G) ≤ χ(G),

is called the sandwich theorem [87].
To obtain a stronger upper bound for the stable set problem than ϑ(G), Schrijver

[111] proposed to add non-negativity constraints on the matrix variable. The
resulting relaxation is:

ϑ ′(G) := Maximize 〈J, X〉 (6.52)

subject to: xij = 0 for (i, j) ∈ E

xij ≥ 0 for (i, j) /∈ E

tr(X) = 1

X 0.

The graph parameter ϑ ′(G) is known as the Schrijver’s number. Djukanović
and Rendl [32] further strengthen the above relaxation by adding the following
constraints:

xij ≤ xii (6.53)

xik + xjk ≤ xij + xkk, (6.54)

for all i, j, k ∈ V , see also [88]. The mentioned upper bounds for α(G) are tested
on various highly symmetric graphs in [32]. The numerical results show that ϑ ′(G)

improves upon ϑ(G) however the additional inclusion of constraints (6.53)–(6.54)

6 Mathematical Programming Models and Exact Algorithms 165

often does not improve upon ϑ ′(G). Moreover, adding cutting planes to the SDP
relaxation for the Schrijver’s number significantly increases computational cost.

Another formulation for the ϑ-number is given by Grötschel et al. [48]. Suppose
that x ∈ {0, 1}n is the characteristic vector of a (nonempty) stable set and let X =
xxT. We relax the nonconvex constraint X − xxT = 0 to the convex constraint X −
xxT 0 and observe that diag(X) = x. This leads to the following formulation of
the ϑ-number:

ϑ(G) = Maximize eTx

subject to: xij = 0 for (i, j) ∈ E

diag(X) = x
(

1 xT

x X

)

 0.

This formulation of the ϑ-number can be further strengthened towards α(G)

by adding valid constraints such as constraints of type (6.42) or the odd-cycle
constraints, see e.g., [22, 49]. Galli and Letchford [40] compare quality of bounds
obtained after adding different kind of valid inequalities to both, here presented,
SDP formulations of the ϑ-number. The results show that the equivalence of the
bounds breaks down after adding cuts, and that the Grötschel et al. [48] formulation
yields mostly stronger bounds than the Lovász formulation [86].

Connections between semidefinite programming relaxations of the maximum cut
problem and the stable set problem are studied in detail in [82]. The BiqCrunch
solver [75] exploits the SDP relaxation for the ϑ ′-number that is strengthened with
valid inequalities to find maximum stable sets in graphs.

More intricate approaches for obtaining hierarchies of semidefinite programming
bounds for the stability number one can find in the work of Lovász and Schri-
jver [88], Lasserre [77, 78], and de Klerk and Pasechnik [62]. The hierarchy of
Lasserre is known to converge in α(G) steps and it refines the hierarchy of Lovász
and Schrijver and the hierarchy of de Klerk and Pasechnik, for details see [55, 80].
In general, it is difficult to compute bounds resulting from these hierarchies since
SDP relaxations already in the second level of a hierarchy turn out to be too large
for standard SDP solvers.

6.3.5 The Maximum k-Colorable Subgraph Problem

The maximum k-colorable subgraph (MkCS) problem is to find the largest induced
subgraph in a given graph that can be colored with k colors such that no two
adjacent vertices have the same color. The MkCS problem is also known as the
maximum k-partite induced subgraph problem. The MkCS problem has a number
of applications, such scheduling [16], VLSI design [38], channel assignment in

166 A. P. Punnen and R. Sotirov

spectrum sharing networks [73, 117], genetic research [85]. The maximum k-
colorable subgraph problem reduces to the maximum stable set problem when
k = 1. Moreover, the MkCS problem on a graph can be considered as the stable
set problem on the Cartesian product of the complete graph on k vertices and the
graph under consideration.

Let G = (V ,E) be an undirected graph with n = |V | vertices and m = |E|
edges. A graph G is k-colorable (1 ≤ k ≤ n − 1) if one can assign to each vertex
in G one of the k colors such that adjacent vertices do not have the same color.
An induced subgraph of a graph G = (V ,E) is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E is the set of all edges in E connecting the vertices in V ′.

The maximum k-colorable subgraph problem can be modeled as an integer
programming problem. Let X ∈ {0, 1}n×k be the matrix with one in the entry (i, r)

if vertex i ∈ [n] is colored with color r ∈ [k] and zero otherwise. The number of
vertices in a maximum k-colorable subgraph of G, denoted by αk(G), is the solution
of the MkCS problem:

αk(G) := Maximize
∑

i∈[n], r∈[k]
xir

subject to: xirxjr = 0 for (i, j) ∈ E, r ∈ [k]
∑

r∈[k]
xir ≤ 1 for i ∈ [n]

X ∈ {0, 1}n×k.

Note that for k = 1, we have that α1(G) = α(G) where α(G) denotes the stability
number of G. The first set of constraints in the model ensures that two adjacent
vertices are not colored with the same color, and the second set of constraints takes
care that each vertex is colored with at most one color. There are several equivalent
formulations of the MkCS problem. For example, constraints xirxjr = 0 for (i, j) ∈
E, r ∈ [k] may be replaced by

xir + xjr ≤ 1 for (i, j) ∈ E, r ∈ [k].

The resulting problem formulation was studied in [70].
The MkCS problem on a graph G can be modeled as the stable set problem on

the Cartesian product of the complete graph on k vertices and G. We denote by
Kk = (Vk,Ek) the complete graph on k vertices. The Cartesian product Kk�G of
graphs Kk and G = (V ,E) is the graph with vertex set Vk × V and edge set E�
where two vertices (u, i) and (v, j) are adjacent if u = v and (i, j) ∈ E or i = j

and (u, v) ∈ Ek . The following result relates the MkCS problem on G and the stable
set problem on Kk�G.

Theorem 6.12 ([94]) Let G = (V ,E) be a given graph, and Kk the complete
graph on k vertices. Then αk(G) = α(Kk�G).

6 Mathematical Programming Models and Exact Algorithms 167

Proof Let S1, . . . , Sk be disjoint stable sets in G, then {1} × S1, . . . , {k} × Sk

is a stable set in Kk�G. Assume now that S is a stable set in Kk�G of the
largest cardinality. Then S can be partitioned into S1, . . . , Sk such that S1 =
{1} × Ŝ1, . . . , Sk = {k} × Ŝk , Ŝ1 ⊆ V, . . . , Ŝk ⊆ V . Moreover, Ŝ1, . . . , Ŝk are
disjoint since u ∈ Ŝl ∩ Ŝp for some l, p ∈ [k] with l �= p implies that there is an
edge between (l, u) and (p, u) that is also in the stable set S. Hence Ŝ1, . . . , Ŝk are
disjoint stable sets in G. ��

This short proof is from [76]. Thus, computing αk(G) for a given k and graph G

corresponds to computing the stability number of the larger graph Kk�G. However,
computing the stability number of a medium size graph is already difficult, and thus
computing α(Kk�G) is limited to small k and n. Therefore approaches developed
specifically for the MkCS problem are beneficial for solving the problem [23, 71].

Interestingly, many concepts developed for the maximum stable set problem
extend to the maximum k-colorable subgraph problem. Let ωk(G) denote the size
of a largest induced subgraph of G that can be covered with k cliques. Then
αk(G) = ωk(G) where G denotes the complement of G. The generalized ϑ-number
for a given k, denoted by ϑk(G), is introduced by Narasimhan and Manber [95] as
an eigenvalue bound for αk(G), i.e.,

αk(G) ≤ ϑk(G) := min
A∈Sn

{
k∑

i=1

λi(A) : aij = 1 for (i, j) /∈ E or i = j

}

,

where λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) are eigenvalues of A ∈ Sn. This eigenvalue
bound is reformulated by Alizadeh [8] to the following SDP relaxation:

ϑk(G) = Maximize 〈J, X〉
subject to: xij = 0 for (i, j) ∈ E

tr(X) = k

X 0

I− X 0.

The constraint I − X 0 is redundant when k = 1 since X is positive semidefinite
and its eigenvalues sum up to one. Thus for k = 1 the generalized ϑ-number reduces
to the ϑ-number (6.51).

An in depth analysis of the generalized ϑ-number is given by Sinjorgo and
Sotirov [115]. The authors provide closed form expressions for the generalized ϑ-
number on several classes of graphs including the Kneser graphs, cycle graphs,
strongly regular graphs and orthogonality graphs. The following properties of
ϑk(G), among many others, are proven in [115]:

• ϑk(G) ≤ |V | for all k;
• ϑk(G) ≤ ϑk+1(G) with equality if and only if ϑk(G) = |V |;
• Let Cn be an odd cycle. Then ϑ2(Cn) = 2ϑ(Cn).

168 A. P. Punnen and R. Sotirov

Narasimhan and Manber [95] prove the generalized sandwich theorem:

αk(G) ≤ ϑk(G) ≤ χk(G),

or equivalently

ωk(G) ≤ ϑk(G) ≤ χk(G),

where χk(G) is the minimum number of colors needed for a valid k-multicoloring
of G. The k-multicoloring of a graph is to assign k distinct colors to each vertex in
the graph such that two adjacent vertices are assigned disjoint sets of colors.

The generalized ϑ-number can be strengthened by adding non-negativity con-
straint to the matrix variable. The resulting graph parameter

ϑ ′k(G) := Maximize 〈J, X〉
subject to: xij = 0 for (i, j) ∈ E

xij ≥ 0 for (i, j) /∈ E

tr(X) = k

X 0

I− X 0,

is called the generalized ϑ ′-number [76]. For k = 1, the graph parameter ϑ ′k(G)

reduces to the Schrijver’s number (6.52).
The following result characterises a family of graphs for which ϑk(G) and ϑ ′k(G)

provide tight bounds.

Theorem 6.13 ([76]) For a given k (1 ≤ k ≤ n − 1), let G be a graph such that
αk(G) = kϑ(G). Then

ϑk(G) = ϑ ′k(G) = kα(G) = αk(G).

The set of vertex-transitive graphs contains a number of non-trivial examples for
Theorem 6.13. We say that a graph is vertex-transitive if its automorphism group
acts transitively on vertices, i.e., if for every two vertices there is an automorphism
that maps one to the other one.

Various semidefinite programming relaxations for the MkCS problem, with
increasing complexity are derived in [76]. In order to reduce the sizes of these
SDP relaxations, the authors exploit the fact that the MkCS problem is invariant
under permutations of the colors. They also show how to further reduce the SDP
relaxations for highly symmetric graphs. Currently, the are no specialised SDP-
based exact algorithms for the MkCS problem.

6 Mathematical Programming Models and Exact Algorithms 169

6.4 Upper Bounds by Decomposition

In the previous sections, we have seen various MILP formulations and SDP
formulations of QUBO. Relaxations of these formulations offer upper bounds on the
optimal objective function value of QUBO, at varying levels of strength. Stronger
bounds generally require more computational effort. These upper bounds can be
embedded within effective enumerative algorithms to solve QUBO. Let us now
discuss some additional upper bounding strategies.

We first give a simple Gilmore-Lawler type upper bound for QUBO. Let

ui = ci +
n∑

j∈Ri

max(qij , 0).

Then UB1 =∑n
i=1 max(ui, 0) is an upper bound on the optimal objective function

value of QUBO. A similar lower bound for the minimization QUBO was considered
by Li et al. [83] and Pardalos and Rodgers [101]. The upper bound UB1 could be
arbitrarily bad. Let us now see how to improve this bound.

Consider the bilinear program

BLP(i): Maximize cixi +
n∑

j=1,j �=i

qij xiyj +
n∑

j=1,j �=i

cj yj (6.55)

Subject to: xi ∈ {0, 1} (6.56)

yj ∈ {0, 1} for all j = 1, 2, . . . , n, j �= i. (6.57)

Then, the bound UB1 is precisely
∑n

i=1 OBJ(BLP(i)). This bilinear programming
interpretation of UB1 leads us to an improved upper bounding scheme, where the
bound obtained matches OBJ(GW*).

For each variable xj , introduce its n − 1 copies, say yij , i = 1, 2, . . . , n, j �= i.
Then, QUBO can be written as

Maximize
n∑

i=1

n∑

j=1,j �=i

qij xiyij +
n∑

i=1

cixi

Subject to: xj = yij , i, j = 1, 2, . . . , n, j �= i (6.58)

xiyij = xjyji, i, j = 1, 2, . . . , n, j �= i (6.59)

xi ∈ {0, 1}, yij ∈ {0, 1} for all i, j = 1, 2, . . . , n, , i �= j.

Let λij and μij respectively be the Lagrange multipliers associated with the
constraint corresponding to the pair i, j in equation (6.58) and equation (6.59). Also,
we denote yi = {yij : j = 1, 2, . . . , n, j �= i}. Using these multipliers, construct

170 A. P. Punnen and R. Sotirov

the Lagrangian objective function

L(x, y,λ,μ) =
n∑

i=1

Li(xi, yi,λ,μ)

where Li(xi, yi,λ,μ) is equal to

n∑

i=1

⎛

⎝
(
ci +

n∑

k=1,k �=i

λki

)
xi −

n∑

j=1,j �=i

λij yij +
n∑

j=1,j �=i

(
qij + μij − μji

)
xiyij

⎞

⎠ .

and λ,μ are the matrices formed by the corresponding Lagrange multipliers λij and
μij . For a given λ and μ values, consider the bilinear program

Pi(λ,μ): Maximize Li(xi, yi ,λ,μ)

Subject to: xi ∈ {0, 1} (6.60)

yij ∈ {0, 1} for all j = 1, 2, . . . , n, j �= i. (6.61)

Then,
∑n

i=1 OBJ(Pi(λ,μ)) is an upper bound for QUBO for any given λ and μ.
Compare this bound with UB1. The best such upper bound, denoted by OBJ(LD),
can be obtained by solving the Lagrangian dual problem

LD: Minimize
n∑

i=1

OBJ(Pi(λ,μ)).

This bound was first proposed by Chardaire and Sutter [26] and later for a more
general problem by Elloumi et al. [33]. Let us call it the simple decomposition bound
or the SD bound. Interestingly, the SD bound matches with OBJ(GW*), as shown
below.

Theorem 6.14 ([26, 33]) The SD bound is equal to OBJ(GW*)

Proof Consider the linear program

P: Maximize
n∑

i=1

n∑

j=1,j �=i

qij xiyij +
n∑

i=1

cixi

Subject to: xj = yij , i, j = 1, 2, . . . , n, j �= i (6.62)

wij = wji, i, j = 1, 2, . . . , n, j �= i

wij ≤ xi, i, j = 1, 2, . . . , n, j �= i

wij ≤ yij , i, j = 1, 2, . . . , n, j �= i

6 Mathematical Programming Models and Exact Algorithms 171

xi + yij −wij ≤ 1, i, j = 1, 2, . . . , n, j �= i

wij ≥ 0, i, j = 1, 2, . . . , n, j �= i.

We will now show that OBJ(P) = OBJ(GW*) and also OBJ(P) = SD bound, leading
to the proof of the theorem. Eliminating yij from P using the equality (6.62) and
noting that wij = wji , we can see that OBJ(P)=OBJ(GW*). To establish the second
equality, construct the linearization Pi(λ,μ)* of Pi(λ,μ) as follows:

Maximize
n∑

i=1

⎛

⎝
(
ci +

n∑

k=1,k �=i

λki

)
xi −

n∑

j=1,j �=i

λij yij +
n∑

j=1,j �=i

(
qij + μij − μji

)
xiyij

⎞

⎠

Subject to: wij ≤, xi , j = 1, 2, . . . , n, j �= i

wij ≤ yij , j = 1, 2, . . . , n, j �= i

xi + yij − wij ≤ 1, j = 1, 2, . . . , n, j �= i

wij ≥ 0, j = 1, 2, . . . , n, j �= i

xi ∈ {0, 1}, j = 1, 2, . . . , n, j �= i

yij ∈ {0, 1}, j = 1, 2, . . . , n, j �= i.

By Theorem 6.22 in Appendix, OBJ(Pi(λ,μ)) = OBJ(Pi(λ,μ)*). Thus, LD can be
viewed as the Langrangian dual problem of P when relaxing the first two constraints
from P in the Lagrangian way. Thus, by linear programming duality, OBJ(P) =
OBJ(LD) and this completes the proof. ��

We now discuss a more general decomposition scheme [26, 33, 91] to improve
the SD bound. Here, we partition and decompose QUBO into several pseudo-
bilinear programs [26] using Lagrangian decomposition. Consider the partition
V1, V2, . . . , Vp of N = {1, 2, . . . , n} where Vi ∩ Vj = ∅ for i �= j , ∪p

k=1Vk = N

and denote V̄k = N − Vk. For each k = 1, 2, . . . , p, introduce a copy ykj of the
variable xj for each j ∈ V̄k . Recall that qii = 0 for all i ∈ {1, 2, . . . , n}. Let

Fk(x, y) =
∑

j∈Vk

cj xj +
∑

i∈Vk

∑

j∈Vk

qij xixj +
∑

i∈Vk

∑

j∈V̄k

qij xiykj

and consider the pseudo-bilinear program [26]

PBLP(k): Maximize Fk(x, y)

Subject to: xj ∈ {0, 1}, for j ∈ Vk

ykj ∈ {0, 1} for j ∈ V̄k.

172 A. P. Punnen and R. Sotirov

Then,
∑p

k=1 PBLP(k)∗ is an upper bound for QUBO. When |Vk| is small, PBLP(k)
can be solved by enumerating the values of the x variables and choosing the
corresponding optimal y variables. When |Vk| = 1, this bound is equal to UB1.
To improve this upper bound, we link the variables ykj to xj and use Lagrangian
decomposition. Note that QUBO is equivalent to

EQB: Maximize
p∑

k=1

⎛

⎝
∑

j∈Vk

cj xj +
∑

i∈Vk

∑

j∈Vk

qij xixj +
∑

i∈Vk

∑

j∈V̄k

qij xiykj

⎞

⎠

Subject to: xj = ykj , j = 1, 2, . . . , n, k = 1, 2, . . . , p, j ∈ V̄k (6.63)

xiykj = xjyri, k, r = 1, 2, . . . , p; i ∈ Vk, j ∈ Vr ; k �= r,

(6.64)

xi ∈ {0, 1}, i = 1, 2, . . . , n

ykj ∈ {0, 1} for all k = 1, 2, . . . , p, j ∈ V̄k.

Relaxing constraints (6.63) and (6.64) and taking them into the objective function
using Lagrange multipliers we get p independent subproblems of the type PBLP(k)
(but with different data, which dependents on the value of the Lagrange multipliers).
These subproblems can be solved either exactly or by appropriate LP relaxation
of equivalent linearizations. The resulting Lagrangian dual problem can be solved
using subgradient optimization and the optimal objective function value gives an
upper bound. Different implementations of this general scheme are reported by
Chardaire and Sutter [26], Elloumi et al. [33], and Mauri and Lorena [91].

6.5 Variable Fixing

A priori knowledge of the value of a variable xj in an optimal solution can be
exploited as a useful preprocessing tool for both exact and heuristic algorithms
for QUBO. An important result of this type is the persistency property of GW*

discussed in Chap. 5. For convenience, we restate this here.

Theorem 6.15 ([58, 99]) If a variable xi is zero or one in an optimal solution of
GW*, then there exists an optimal solution to QUBO where xi assumes the same
values.

Let us now look at some simple conditions to fix variables [45, 56, 119]. For more
involved persistency results and logical conditions we refer to Chap. 5. Suppose that
a variable xi is known to be equal to zero in an optimal solution. Without loss of
generality assume that i = n. Then, we can reduce the problem dimension by 1.
Delete row n and column n of Q to obtain an (n − 1) × (n − 1) matrix Q′ and
delete the last component of c to obtain the (n − 1)-vector c′. Then the QUBO

6 Mathematical Programming Models and Exact Algorithms 173

(Q, c, n) can be solved by solving the QUBO (Q′, c′, n − 1). Similarly, assume
without loss of generality that xn = 1 in an optimal solution. Then again we can
reduce the problem size by 1. Recall that the diagonal elements of Q are zeros and
Q is symmetric. Delete row n and column n from Q to obtain the matrix Q′′. Add
twice row n to c and delete the last component of the resulting vector to obtain
c′′. Then the QUBO (Q, c, n) can be solved by solving the QUBO (Q′′, c′′, n − 1)

and the optimal objective function value of QUBO (Q, c, n) is cn plus the optimal
objective function value of QUBO (Q′′, c′′, n− 1).

We now look at some very simple data dependent conditions that permits variable
fixing. These conditions (some are for the minimization version of QUBO) were
obtained independently by many researchers [12, 20, 24, 45, 56–58, 83, 102, 120].
For each i = 1, 2, . . . , n define �i = ci + ∑

j∈Ri
min{0, 2qij } and ui = ci +∑

j∈Ri
max{0, 2qij }.

Theorem 6.16 If �i = 0 then xi = 1 in some optimal solution. If �i > 0 then
xi = 1 in every optimal solution. Likewise, if ui = 0 then xi = 0 in some optimal
solution. If ui < 0 then xi = 0 in every optimal solution.

Proof Without loss of generality assume i = n. Then the objective function of
QUBO can be written as

φ(x) =
⎛

⎝
n−1∑

j=1

cjxj +
n−1∑

i=1

n−1∑

j=1

qij xixj

⎞

⎠+
⎛

⎝xn

(
cn +

n∑

j=1

2qnjxj

)
⎞

⎠ . (6.65)

The first bracket in equation (6.65) is independent of xn. The minimum contribution
from the second bracket is �n and if this is positive, then xn must be at value 1 in
every optimal solution. Likewise, the maximum contribution from the last bracket
is un and if this is negative, then xn must be zero in every optimal solution. ��

It is possible that after fixing a variable at 0 or 1, new candidates for fixing the
value may emerge.

Let us now discuss another very simple variable fixing rule obtained from a
posiform that is particularly useful in branch and bound algorithms. Recall that φ(x)

can be written as φ(x) = ψ0 − ψ(x, x̄) where ψ(x, x̄) = ∑n
j=1(djxj + d̄j x̄j) +

∑t
i=1 αiT i and each Ti is a product of two literals from {x, x̄i, i = 1, 2, . . . , n},

αi ≥ 0 for i = 1, 2, . . . , t and di, d̄i ≥ 0 [60]. The decomposition form of φ(x)

constructed in Theorem 6.9 is an example of such a posiform representation. Note
that ψ0 is an upper bound on the optimal objective function value of QUBO. We
assume that dj d̄j = 0 since if both are positive, we can use the transformation
xi = 1 − x̄i which results in a posiform with a larger constant value. Let x0 be a
given solution.

Lemma 6.8 ([60]) If ψ0 − di ≤ φ(x0) then there exists an optimal solution x with
xi = 0. If ψ0 − d̄i ≤ φ(x0) then there exists an optimal solution x with xi = 1.

174 A. P. Punnen and R. Sotirov

Proof If ψ0 − di ≤ φ(x0) then, no solution with xi = 1 can have a better objective
function value than x0 and hence there exists an optimal solution x with xi = 0. The
proof of the second part follows analogously. ��

Additional rules for fixing variables or establishing logical relationships between
variables are discussed in detail in [45, 56].

6.6 Algorithms and Solvers

The MILP formulations discussed in the previous sections or the natural quadratic
0-1 formulation of QUBO can be used to solve the problem with the aid of general
purpose solvers such as Gurobi [52], CPLEX [27], SCIP [1] etc. There are several
algorithms available to solve non-linear 0-1 programming problems with linear or
quadratic constraints (for example, [89, 114, 116]) and these algorithms can also
be used to solve QUBO. Further, algorithms to solve the maximization problem of
convex quadratic functions in continuous bounded variables can be used to solve
QUBO. SDP based algorithms for the maximum cut problem or QUBO offer yet
another class of viable alternatives to solve QUBO. Exact algorithms specifically
designed for QUBO are mostly of enumerative type. Let us now discuss some of the
simple special purpose algorithms to solve QUBO that can be implemented easily,
followed by a brief summary of other available algorithms.

Gulati et al. [51] developed a branch and search algorithm that enumerates
promising local optima with respect to the flip neighborhood for the minimization
version of QUBO. Let us discuss the algorithm in the context of the maximization
version of QUBO with some minor modifications. The flip neighborhood of an
x ∈ {0, 1}n, denoted by F(x), is the collection of all solutions obtained by
replacing one component of x, say xk by its complement 1 − xk (flipping xk). Let
xk = (xk

1 , xk
2 , . . . , xk

n) be the solution obtained from x by flipping xk. Then, xk
i = xi

if i �= k and xk
k = 1 − xk . A solution x is locally optimal with respect to the flip

neighborhood if and only is φ(x) ≥ φ(xk) for all k = 1, 2, . . . , n.

Theorem 6.17 The QUBO solution x ∈ {0, 1}n is a local optimum with respect
to the flip neighborhood if and only if ck + ∑

j∈Rk
2qkjxj ≥ 0 if xk = 1 and

ck +∑j∈Rk
2qkjxj ≤ 0 if xk = 0 for all k = 1, 2, . . . , n.

Proof The objective function φ(x) can be written as

φ(x) =
⎛

⎝
n∑

j=1,j �=k

cj xj +
n∑

i=1,i �=k

n∑

j=1,j �=k

qij xixj

⎞

⎠+ xk

(
ck +

n∑

j=1,j �=k

2qkjxj

)
.

(6.66)
Note that the first bracket is independent of xk . Thus, the condition of the theorem
is not satisfied for any k, by flipping xk we can find an improved solution and if the

6 Mathematical Programming Models and Exact Algorithms 175

condition is satisfied, the solution obtained by flipping any component of x leads to
a worse (or at best an equivalent) solution. ��

Let S0, S1, Sf be a partition of {1, 2, . . . , n} where xi = 1 for i ∈ S1, xi = 0
for i ∈ S0, and xi is a free variable for any i ∈ Sf . This partition generates a partial
solution x where xi = 1 for i ∈ S1 and xi = 0 for i ∈ S0. The values xi for
i ∈ Sf is not yet fixed. A solution obtained from the partial solution x by assigning
0−1 values to the free variables is called a completion of x. Given a partial solution
x, does there exist a completion of x which is a local optimum with respect to the
flip neighborhood? We now discuss some sufficient conditions for non-existence of
completions which are local optima.

Theorem 6.18 Let x be a partial solution defined by the partition (S0, S1, Sf). If

ck +
∑

j∈S1

2qkj +
∑

j∈Sf ,j �=k

max{0, qkj } < 0 (6.67)

then a completion with xk = 1 will not lead to a local optimum with respect to the
flip neighborhood. Similarly, if

ck +
∑

j∈S1

2qkj +
∑

j∈Sf ,j �=k

min{0, qkj } > 0 (6.68)

then a completion with xk = 0 will not lead to a local optimum with respect to the
flip neighborhood.

Proof Suppose inequality (6.67) holds for some k ∈ Sf and let x be a completion
with xk = 1 for some k ∈ Sf . Then

ck +
∑

j∈Rk

2qkjxj ≤ ck +
∑

j∈S1

2qkj +
∑

j∈Sf ,j �=k

max{0, qkj } < 0,

and hence by Theorem 6.17, x cannot be a local optimum with respect to the flip
neighborhood. The proof of the second part of the theorem follows analogously. ��

Note that the conditions of Theorem 6.18 is precisely the variable fixing rule of
Theorem 6.16 restricted to the free variables.

The local optima enumeration algorithm maintains a binary search tree. Each
node represents a variable xk and the two outgoing branches represent a branching
decision whether xk = 1 or xk = 0. The unique path from xk to the root node
defines a partial solution. Theorem 6.18 can be used to possibly fix values of more
free variables at the node xk . Let QUBO(S0, S1, Sf) be the reduced QUBO obtained
after fixing variables in S0 and S1 at their corresponding values. Apply a local search
algorithm with flip neighborhood on QUBO(S0, S1, Sf) to identify a local optimum
and extend it using the fixed variables to a solution x of QUBO. Then, x may or
may not be local optimum with respect to the flip neighborhood. If it is, record this

176 A. P. Punnen and R. Sotirov

local optimum. If all free variables are fixed, prune node xk. Otherwise a branching
operation is performed. The algorithm terminates when no free variables are left at
any of the nodes and also produce a global optimum.

The algorithm can be enhanced by making use of the objective function values
of the local optima (and other solutions) identified, along with simple upper bound
values that can be calculated efficiently. Pardalos and Rodgers [102] used the simple
upper bound

UB(S0, S1, Sf) =
∑

i∈U1

⎛

⎝ci +
∑

j∈U1

qij

⎞

⎠+
∑

i∈Uf

max{0, ci +
∑

j∈Uf

max{0, qij }}

in their branch and bound algorithm, which also maintains a binary tree. At any
node of the search tree, if the best solution obtained have an objective function
value greater than or qual to the upper bound at the node, the node is pruned.

Combining the ideas discussed above, a simple branch and bound algorithm can
easily be developed to solve QUBO (for example, [51, 102]). The performance of the
algorithm can likely be improved by using strong heuristics and/or metaheuristics
(see Chap. 9) in place of the flip based local search and stronger upper bounding
mechanisms, particularly at the root node. The effects of all these possibilities
need to be accessed using experimental analysis. Let us briefly summarize some
additional exact algorithms developed specifically for QUBO.

Kalantari and Bagchi [72] developed a branch and bound algorithm to solve the
minimization version of QUBO by viewing it as a continuous optimization problem,
with the assumption that Q is positive semidefinite. As discussed in Chap. 1, such an
assumption can be made without loss of generality. Since our version of QUBO is
of maximization type, the algorithm of Kalantari and Bagchi [72] can be modified,
assuming Q is negative semidefinite. We can also use the algorithm of [72] directly
to solve the maximization problem by negating the objective function.

Li et al. [83] developed a branch and bound algorithm to solve the minimization
version of QUBO, exploiting geometrical properties. Their algorithm can be
modified to solve the maximization version of QUBO, or by converting QUBO
into an equivalent minimization version and directly use the algorithm. They also
proposed some variable fixing rules and upper bound calculations.

Barahona et al. [14] developed a branch and cut algorithm for the minimization
version of QUBO. They first convert the problem into a maximum cut problem (see
Chap. 1) and then use partial description of the cut polytope (see Chap. 4) to generate
an LP relaxation and additional cutting planes. The algorithm also uses variable
fixing strategies and when no cutting plane is identified, the algorithm performs a
branching operation and new cutting planes are explored from a selected node.

Hansen et al. [60] developed a branch and bound algorithm to solve the
minimization version of QUBO, using roof dual upper bound (see Chap. 1), which is
equivalent to the LP relaxation of GW [2]. They work with a posiform representation
and the roof dual bound is calculated using maximum flow computations. Variable

6 Mathematical Programming Models and Exact Algorithms 177

fixing strategies generated by persistency properties (see Chap. 5) and those given
in Theorem 6.16 are also used.

Some other exact algorithms for QUBO include Pan et al. [100] which uses
continuous optimization methods, Shimizu et al. [113] that solves maximum edge
weighted clique problem by branch and bound.

In early days of development, SDP based algorithms were not widely adopted to
solve QUBO. However, a breakthrough in solving dense QUBO instances is due to
semidefinite programming, in the late 1990s. One of the reasons for not widely using
SDP within exact algorithms is due to the computational effort required to solve
SDP relaxations via interior point methods. Namely, SDP solvers based on interior
point algorithms exhibit problems in terms of both time and memory for solving
even medium-size SDP relaxations. However, recent developments of efficient
algorithms for solving semidefinite programming problems [22, 34, 63, 68, 97, 118]
are changing the trend of designing exact solvers for combinatorial optimization
problems. We list below SDP-based exact solves for QUBO in chronological order.

One of the first results on solving QUBO using semidefinite programming is the
work of Helmberg and Rendl [65]. More specifically, [65] presents a branch and
bound algorithm for solving QUBO that combines semidefinite programming and
polyhedral approaches. To solve semidefinite programming relaxations, the authors
use an interior point algorithm which is the main drawback of the approach. The
computational experiments show that the algorithm from [65] is robust.

In 2007, Billionnet and Elloumi [17] show how to use general-purpose mixed
integer quadratic programming solvers for solving QUBO, see also Chap. 7. The
main idea in [17] is to convexify the objective function of QUBO by using semidef-
inite programming. The resulting convex problem is then handled by CPLEX [27].

A dynamic version of the bundle method that provides an efficient machinery
to solve SDP problems, including SDP relaxations for the maximum cut problem,
with a nearly arbitrary number of inequalities is developed in [34, 110]. Another
efficient approach for solving SDP relaxations of the maximum cut problem is the
spectral bundle method of Helmberg and Rendl [66]. Those bundle approaches
are exploited within a branch and bound framework and resulted in the publicly
usable BiqMac solver by Rendl et al. [109]. The BiqMac solver solves any test
instance up to 100 vertices, and problems of special structure as well as sparse
problems up to 300 vertices. BiqMac was superior to other available methods for
solving the maximum cut problem, at the time it was designed. Another SDP-based
exact solver for binary quadratic optimization problems appeared a few years after
BiqMac. BiqCrunch [74, 75] is a branch and bound solver that uses adjustable
semidefinite programming bounds that are computed by a quasi-Newton method.
The numerical results by Krislock et al. [74] show that BiqCrunch is often faster
and more robust for solving the maximum cut instances than BiqMac. Moreover,
the BiqCrunch solver has been successfully tested on a variety of combinatorial
optimization problems, including the maximum stable set problem. BiqCrunch is
available as a free and open-source software.

BiqBin [54] is a branch and bound solver for binary quadratic problems with
linear constraints. The BiqBin solver exploits the fact that any linearly constrained

178 A. P. Punnen and R. Sotirov

quadratic binary problem can be reformulated into an equivalent maximum cut
problem [79]. The sequential version of BiqBin outperforms BiqCrunch on the
maximum cut instances, while the two solvers perform similarly on general QUBO
instances. Gurobi [52] and SCIP [1] fail to solve the same QUBO test instances in a
reasonable time frame. Numerical experiments also show that Gurobi is competitive
with BiqBin on test instances with linear constraints. The parallel version of BiqBin
solves QUBO instances up to 300 vertices. BiqBin solver is available as a web
application.

Hrga and Povh [69] have recently introduced MADAM, a parallel exact solver
for the maximum cut problem, that is based on the alternating direction method
of multipliers [21]. The numerical results show that the serial version of MADAM
outperforms BiqMac, BiqCrunch, and BiqBin on dense instances up to 100 vertices.
The authors present numerical results computed by the parallel version of MADAM
for graphs with at most 180 vertices.

Appendix: Linear Programming and Duality

In this appendix, we will discuss various results from linear programming that are
used in this chapters.

Consider the linear program

P: Maximize cTx

Subject to: Ax ≤ b,

x ≥ 0,

where the matrix A and vectors b, c and x are of appropriate dimensions and shapes.
Let w∗ be a given non-negative row vector. Now consider the continuous knapsack
problem obtained from P as

CKP(w∗): Maximize cTx

Subject to: w∗Ax ≤ w∗b

x ≥ 0.

Theorem 6.19 If P has an optimal solution with an optimal dual solution w0,
then CKP(w0) also has an optimal solution. Further, the optimal objective function
values of P and CKP(w0) are the same.

6 Mathematical Programming Models and Exact Algorithms 179

Now, consider the linear program

P ∗: Maximize cT x

Subject to: Ax ≤ b,

A1x ≤ b1, A2x ≤ b2, . . . , Apx ≤ bp,

x ≥ 0

where bi ∈ Rmi and Ai is an mi × n matrix, for i = 1, 2, . . . , p. Let wi ∈ Rmi be
given non-negative row vectors in Rmi , for i = 1, 2, . . . , p. Now consider the new
linear program Pw obtained from P ∗ using the weighted aggregation of constraints
Aix ≤ bi , i = 1, 2, . . . , p. Then Pw can be written as

Pw: Maximize cT x

Subject to: Ax ≤ b,

w1A1X ≤ w1b1, w2A2x ≤ w2b2, . . . , wpApx ≤ Wpbp,

x ≥ 0.

Theorem 6.20 When wi is the part of an optimal dual solution w of P ∗ that
is associated with the constraint block Aix ≤ bi , i = 1, 2, . . . , p, the optimal
objective function values of P ∗ and Pw are the same.

For the proof of Theorems 6.19 and 6.20, we refer to [105].

Theorem 6.21 ([18, 106]) Let w0 be a given solution to dual D of P and s0 be the
associated surplus vector in D. Then, cT x = w0b− w0(b− Ax)− (s0)T x.

Note that w0(b − Ax) ≥ 0 and (s0)T x ≥ 0. For the proof of Theorem 6.21, we
refer to [106].

Consider the bilinear program

BLP: Maximize ax +
n∑

j=1

bjxyj +
n∑

j=1

cjyj

Subject to: x ∈ {0, 1} (6.69)

yj ∈ {0, 1} for all j = 1, 2, . . . , n. (6.70)

Let BLP′ be the problem obtained from BLP by relaxing (6.70) to 0 ≤ yj ≤ 1 and
BLP′′ be the problem obtained from BLP′ by relaxing (6.69) to 0 ≤ x ≤ 1. Now

180 A. P. Punnen and R. Sotirov

consider the following LP which is the LP relaxation of the linearization of BLP′

LP: Maximize ax +
n∑

j=1

bjwj +
n∑

j=1

cjyj

Subject to: x + yjwj ≤ 1, for j = 1, 2, . . . , n,

wj ≤ x,

wj ≤ yj , for j = 1, 2, . . . , n,

wj ≥ 0 for j = 1, 2, . . . , n.

Theorem 6.22 The optimal objective function values of BLP, BLP ′ , BLP ′′ , and LP
are the same.

Proof The equivalence of the optimal objective function values of BLP, BLP′ , and
BLP′′ follows from the extreme point optimality property of bilinear programs. Let
us now show that the objective function value of BLP′ is equal to that of LP.

Note that the constraints on LP guarantees that 0 ≤ x ≤ 1. Thus, it is sufficient to
show that there exists an optimal solution to LP where x ∈ {0, 1}. For this, we show
that for any extreme point of LP, x ∈ {0, 1}. Suppose this is not true. Then, there
exists an extreme point feasible solution (x∗, y∗, w∗) to LP such that 0 < x < 1.
Now consider ỹ where ỹi = (y∗i − w∗i)/(1 − x), i = 1, 2, . . . , n and ŷ where
ŷj = w∗j /x, j = 1, 2, . . . , n. Then z̃ = (0, ỹ, 0) and ẑ = (1, ŷ, ŷ) are feasible
solutions of LP and (x, y∗, w∗) = (1−x)z̃+xẑ. Thus, (x, y∗, w∗) is not an extreme
point solution and the result follows. ��

The last equality also follows directly from a necessary and sufficient condition
proved in [69] and follows from a result proved in a more general context in [33].

References

1. T. Achterberg. SCIP: Solving constraint integer programs. Math. Program. Comput. 1, 1–41
(2009)

2. W.P. Adams, P.M. Dearing, On the equivalance between roof duality and Lagrangian duality
for unconstrained 0-1 quadratic programming problems. Discrete Appl. Math. 48, 1–20
(1994)

3. W.P. Adams, R.J. Forrester, A simple recipe for concise mixed 0-1 linearizations. Oper. Res.
Lett. 33, 55–61 (2005)

4. W.P. Adams, S.M. Henry, Base-2 expansions for linearizing products of functions of discrete
variables. Oper. Res. 60, 1477–1490 (2012)

5. W.P. Adams, H.D. Sherali, A tight linearization and an algorithm for 0–1 quadratic program-
ming problems. Manag. Sci. 32, 1274–1290 (1986)

6. W.P. Adams, H.D. Sherali, A hierarchy of relaxations leading to the convex hull representation
for general discrete optimization problems. Annals Oper. Res. 140, 21–47 (2005)

6 Mathematical Programming Models and Exact Algorithms 181

7. W.P. Adams, R. Forrester, F. Glover, Comparisons and enhancement strategies for linearizing
mixed 0-1 quadratic programs. Discrete Optim. 1, 99–120 (2004)

8. F. Alizadeh, Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)

9. M.F. Anjos, New convex relaxations for the maximum cut and VLSI layout problems, PhD
thesis, The University of Waterloo, 2001

10. M.F. Anjos, J. Lasserre (ed.), Handbook of Semidefinnite, Conic and Polynomial Optimiza-
tion: Theory, Algorithms, Software and Applications, volume 166 of International Series in
Operational Research and Management Science (Springer, 2012)

11. M.F. Anjos, H. Wolkowicz, Strengthened semidefinite relaxations via a second lifting for the
Max-Cut problem. Discrete Appl. Math. 119, 79–106 (2002)

12. D. Axehill, A. Hansson, A preprocessing algorithm for MIQP solvers with applications to
MPC, in 43rd IEEE Conference on Decision and Control, December 14–17, 2004, Atlantis
(Paradise Island, Bahamas, 2004)

13. E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimization.
SIAM J. Algebraic Discrete Methods 6, 466–486 (1985)

14. F. Barahona, M. Jünger, G. Reinelt, Experiments in quadratic 0-1 programming. Math.
Program. 44, 127–137 (1989)

15. R. Bellman, K. Fan, On systems of linear inequalities in hermitian matrix variables, in
Proceedings of Symposia in Pure Mathematics, ed. by V.L. Klee (AMS, Providence, 1963),
pp. 1–11

16. M. Bentert, R. van Bevern, R. Niedermeier, Inductive k-independent graphs and c-colorable
subgraphs in scheduling: a review. J. Scheduling 22, 3–20 (2019)

17. A. Billionnet, S. Elloumi, Using mixed integer quadratic programming solver for the
unconstrained quadratic 0-1 problem. Math. Program. A 109, 55–68 (2007)

18. A. Billionnet, S. Elloumi, M.C. Plateau, Quadratic 0-1 programming: Tightening linear or
quadratic convex reformulation by use of relaxations. RAIRO Oper. Res. 42, 103–121 (2008)

19. E. Boros, Y. Crama, P.L. Hammer, Upper bounds for quadratic 0-1 maximization. Oper. Res.
Lett. 9, 73–79 (1990)

20. E. Boros, P.L. Hammer, G. Tavares, Preprocessing of unconstrained quadratic binary opti-
mization. RUTCOR Research Report RRR 10-2006, April 2006, Rutgers University, USA
(2006)

21. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn.
3(1), 1–122 (2011)

22. S. Burer, D. Vandenbussche, Solving lift-and-project relaxations of binary integer programs.
SIAM J. Optim. 16, 726–750 (2006)

23. M. Campêlo, R.C. Corrêa, A combined parallel Lagrangian decomposition and cutting-plane
generation for maximum stable set problems. Electron. Notes Discrete Math. 36, 503–510
(2010)

24. M.W. Carter, The indefinite zero-one quadratic problem. Discrete Appl. Math. 7, 23–44
(1984)

25. W. Chaovalitwongse, P. Pardalos, O.A. Prokopyev, A new linearization technique for multi-
quadratic 0–1 programming problems. Oper. Res. Lett. 32, 517–522 (2004)

26. P. Chardaire, A. Sutter, A decomposition method for quadratic 0-1 programming. Manag. Sci.
41, 704–712 (1995)

27. Cplex II. V12. 1: User’s Manual for CPLEX, International Business Machines Corporation
46(53):157 (2009)

28. G.B. Dantzig, On the significance of solving linear programming problems with some integer
variables. Econometrica 28, 30–44 (1960)

29. C. Delorme, S. Poljak, Laplacian eigenvalues and the maximum cut problem. Math. Program.
62, 557–574 (1993)

30. M. Deza, M. Laurent, Applications of cut polyhedra I. J. Comput. Appl. Math. 55, 191–216
(1994)

182 A. P. Punnen and R. Sotirov

31. M. Deza, M. Laurent, Applications of cut polyhedra II. J. Comput. Appl. Math. 55, 217–247
(1994)

32. I. Dukanović, F. Rendl, Semidefinite programming relaxations for graph coloring and
maximal clique problems. Math. Program. 109, 345–365 (2007)

33. S. Elloumi, A. Faye, E. Soutif, Decomposition and linearization for 0-1 quadratic program-
ming. Ann. Oper. Res. 99, 79–93 (2000)

34. I. Fischer, G. Gruber, F. Rendl, R. Sotirov, Computational experience with a bundle approach
for semidefinite cutting plane relaxations of Max-Cut and equipartition. Math. Program. B
105, 451–469 (2006)

35. R.J. Forrester, N. Hunt-Isaak, Computational comparison of exact solution methods for 0-
1 quadratic programs: Recommendations for practitioners. J. Appl. Math. 2020, Article ID
5974820 (2020)

36. R. Fortet, Applications de l’algèbre de boole en recherche opérationelle. Rev. Francaise
Recherche Opér. 4, 5–36 (1959)

37. R. Fortet, L’algèbre de boole et ses applications en recherche opérationnelle. Cahiers du
Centre d’Etudes de Recherche Opér. 4, 17–26 (1960)

38. P. Fouilhoux, A.R. Mahjoub. Solving VLSI design and DNA sequencing problems using
bipartization of graphs. Comput. Optim. Appl. 51(2), 749–781 (2012)

39. F. Furini, E. Traversi, Extended linear formulation for binary quadratic problems. Optim.
Online (2013)

40. L. Galli, A.N. Letchford. On the Lovász theta function and some variants. Discrete Optim.
25, 159–174 (2017)

41. F. Glover, Improved linear integer programming formulations of nonlinear integer problems.
Manag. Sci. 22, 455–460 (1975)

42. F. Glover, An improved MIP formulation for products of discrete and continuous variables. J.
Inf. Optim. Sci. 5, 469–471 (1984)

43. F. Glover, E. Woolsey, Further reduction of zero-one polynomial programming problems to
zero-one linear programming problems. Oper. Res. 21, 141–161 (1973)

44. F. Glover, E. Woolsey, Converting the 0–1 polynomial programming problem to a 0–1 linear
program. Oper. Res. 22, 180–182 (1974)

45. F. Glover, M. Lewis, G. Kochenberger, Logical inequality implications for reducing the size
and difficulty of quadratic unconstrained binary optimization problems. Eur. J. Oper. Res.
265, 829–842 (2018)

46. M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

47. A. J. Goldman, Linearization in 0-1 variables: a clarification. Oper. Res. 31, 946–947 (1983)
48. M. Grötschel, L. Lovász, A.J. Schrijver, Geometric Algorithms and Combinatorial Optimiza-

tion (Wiley, New York, 1988)
49. G. Gruber, F. Rendl, Computational experience with stable set relaxations. SIAM J. Optim.

13, 1014–1028 (2003)
50. S. Gueye, P. Michelon, A linearization framework for unconstrained quadratic (0-1) problems.

Discrete Appl. Math. 157, 1255–1266 (2009)
51. V.P. Gulati, S.K. Gupta, A.K. Mittal, Unconstrained quadratic bivalent programming problem.

Eur. J. Oper. Res. 15, 121–125 (1984)
52. Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2021
53. N. Gusmeroli, A. Wiegele, EXPEDIS: An exact penalty method over discrete sets. Discrete

Optim. (2021). https://doi.org/10.1016/j.disopt.2021.100622
54. N. Gusmeroli, T. Hrga, B. Lužar, J. Povh, M. Siebenhofer, A. Wiegele, BiqBin: a parallel

branch-and-bound solver for binary quadratic problems with linear constraints. Preprint
(2021). https://arxiv.org/pdf/2009.06240.pdf

55. N. Gvozdenović, M. Laurent, Semidefinite bounds for the stability number of a graph via
sums of squares of polynomials. Math. Program. 110, 145–173 (2007)

56. P.L. Hammer, P. Hansen, Logical relations in quadratic 0-1 programming. Rev. Roumaine
Math. Pures Appl. 26, 421–429 (1981)

https://doi.org/10.1016/j.disopt.2021.100622
https://arxiv.org/pdf/2009.06240.pdf

6 Mathematical Programming Models and Exact Algorithms 183

57. P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas
(Springer, Berlin, 1968)

58. P.L. Hammer, P. Hansen, B. Simone, Roof duality, complementations, and persistency in
quadratic 0-1 optimization. Math. Program. 28, 121–155 (1984)

59. P. Hansen, C. Meyer, Improved compact linearizations for the unconstrained quadratic 0-1
minimization problem. Discrete Appl. Math. 157, 1267–1290 (2009)

60. P. Hansen, B. Jaumard, C. Meyer, A simple enumerative algorithm for unconstrained 0-1
quadratic programming, Cahier du GERAD G-2000-59, GERAD, November (2000)

61. X. He, A. Chen, W.A. Chaovalitwongse, H.X. Liu, An improved linearization technique for a
class of quadratic 0-1 programming problems. Optim. Lett. 6, 31–41 (2012)

62. E. de Klerk, D.V. Pasechnik, Approximating of the stability number of a graph via copositive
programming. SIAM J. Optim. 12(4), 875–892 (2002)

63. F. de Meijer, R. Sotirov. SDP-based bounds for the Quadratic Cycle Cover Problem via cutting
plane augmented Lagrangian methods and reinforcement learning. INFORMS J. Comput.
33(4), 1259–1684 (2021)

64. C. Helmberg, Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl. 21,
952–969 (1996)

65. C. Helmberg, F. Rendl, Solving quadratic (0,1)-problems by semidefinite programs and
cutting planes. Math. Program. 82, 291–315 (1998)

66. C. Helmberg, F. Rendl, A spectral bundle method for semidefinite programming. SIAM J.
Optim. 10(3), 673–696 (2000)

67. C. Helmberg, K.C. Kiwiel, F. Rendl, Incorporating inequality constraints in the spectral
bundle method, in Integer Programming and Combinatorial Optimization, ed. by E.A. Boyd
R.E. Bixby, R.Z. Rios-Mercado, Springer Lecture Notes 1412 (1998), pp. 423–435

68. C. Helmberg, M.L. Overton, F. Rendl, The spectral bundle method with second-order
information. Optim. Methods Softw. 29(4), 855–876 (2014)

69. T. Hrga, J. Povh, MADAM: a parallel exact solver for max-cut based on semidefinite
programming and ADMM. Comput. Optim. Appl. 80(2), 347–375 (2021)

70. T. Januschowski, M.E. Pfetsch, The maximum k-colorable subgraph problem and orbitopes.
Discrete Optim. 8, 478–494 (2011)

71. T. Januschowski, M.E. Pfetsch. Branch-cut-and-propagate for the maximum k-colorable
subgraph problem with symmetry, in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, ed. by T. Achterberg, J. Christopher
Beck (Springer, Berlin Heidelberg, 2011), pp. 99–116

72. B. Kalantari, A. Bagchi, An algorithm for quadratic zero-one programs. Naval Res. Logist.
37, 527–538 (1990)

73. A.M.C.A. Koster, M. Scheffel, A routing and network dimensioning strategy to reduce
wavelength continuity conflicts in all-optical networks, in Proceedings of INOC 2007,
International Network Optimization Conference, Spa, April 22–25 (2007)

74. N. Krislock, J. Malick, F. Roupin, Improved semidefinite bounding procedure for solving
max-cut problems to optimality. Math. Program. A 143, 61–86 (2014)

75. N. Krislock, J. Malick, F. Roupin, BiqCrunch: A semidefinite branch-and-bound method for
solving binary quadratic problems. ACM Trans. Math. Softw. (TOMS) 43(4), 1–23 (2017)

76. O. Kuryatnikova, R. Sotirov, J. Vera, The maximum k-colorable subgraph problem and related
problems. INFORMS J. Comput. 34(1), 656–669 (2021)

77. J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J.
Optim. 11, 796–817 (2001)

78. J.B. Lasserre, An explicit exact SDP relaxation for nonlinear 0–1 programs, in Lecture Notes
in Computer Science, ed. by K. Aardal, A.M.H. Gerards, vol. 2081 (2001), pp. 293–303

79. J.B. Lasserre, A MAX-CUT formulation of 0/1 programs. Oper. Res. Lett. 44(2), 158–164
(2016)

80. M. Laurent, A comparison of the Sherali-Adams, Lovász–Schrijver, and Lasserre relaxations
for 0–1 programming. Math. Oper. Res. 28, 470–496 (2003)

184 A. P. Punnen and R. Sotirov

81. M. Laurent, S. Poljak, On a positive semidefinite relaxation of the cut polytope. Linear
Algebra Appl. 223/224, 439–461 (1995)

82. M. Laurent, S. Poljak, F. Rendl, Connections between semidefinite relaxations of the max-cut
and stable set problems. Math. Program. 77, 225–246 (1997)

83. D. Li, X.L. Sun, C.L. Liu, An exact solution method for the unconstrained quadratic 0-1
programming: a geometric approach. J. Glob. Optim. 52, 797–829 (2012)

84. L. Liberti, Compact linearization for binary quadratic problems. 4OR 5(3), 231–245 (2007)
85. R. Lippert, R. Schwartz, G. Lancia, S. Istrail, Algorithmic strategies for the single nucleotide

polymorphism haplotype assembly problem. Brief. Bioinform. 3(1), 23–31 (2002)
86. L. Lovász, On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)
87. L. Lovász, An Algorithmic Theory of Numbers, Graphs, and Convexity (SIAM, Philadelphia,

1986)
88. L. Lovász, A. Schrijver, Cones of matrices and set-functions and 0-1 optimization. SIAM J.

Optim. 1, 166–190 (1991)
89. S. H. Lu, An improved enumerative algorithm for solving quadratic zero-one programs. Eur.

J. Oper. Res. 15, 110–120 (1984)
90. V. Maniezzo, T. Stützle, S. Voß, Matheuristics - Hybridizing Metaheuristics and Math.

Program., Annals of Information Systems, vol. 10, (Springer, 2010), ISBN 978-1-4419-1305-
0

91. G.R. Mauri, L.A.N. Lorena, Improving a Lagrangian decomposition for the unconstrained
binary quadratic programming problem. Comput. Oper. Res. 39, 1577–1581 (2012)

92. G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I
- Convex underestimating problems. Math. Program. 10, 147–175 (1976)

93. B. Mohar, S. Poljak, Eigenvalues and the max-cut problem. Czechoslovak Math. J. 40, 343–
352 (1990)

94. G. Narasimhan, The maximum k−colorable subgraph problem, PhD thesis, University of
Wisconsin-Madison, 1989

95. G. Narasimhan, R. Manber, A Generalization of Lovász ϑ Function, DIMACS Series in
Discrete Mathematics and Computer Science (1990), pp. 19–27

96. Y. Nesterov, A. Nemirovski, Interior-point Polynomial Algorithms in Convex Programming
(SIAM Studies in Applied Mathematics, Philadelphia, 1994)

97. D.E. Oliveira, H. Wolkowicz, Y. Xu, ADMM for the SDP relaxation of the QAP. Math.
Program. Comput. 10, 631–658 (2018)

98. M. Oral, O. Kettani, A linearization procedure for the quadratic and cubic mixed integer
programs. Oper. Res. 40(supplement-1), S109–S116 (1992)

99. M. Padberg, The Boolean quadric polytope: Some characteristics, facets and relatives. Math.
Program. 45, 134–172 (1989)

100. S. Pan, T. Tan, Y. Jiang, A global continuation algorithm for solving binary quadratic
programming problems. Comput. Optim. Appl. 41, 349–362 (2008)

101. P.M. Pardalos, G.P. Rodgers, Parallel branch and bound algorithms for unconstrained
quadratic zero-one programming, in Impacts of Recent Computer Advances on Operations
Research, ed. by R. Sharda et al. (North-Holland, 1989), pp. 131–143

102. P.M. Pardalos, G.P. Rodgers, Computational aspects of a branch and bound algorithm for
quadratic zero-one programming. Computing 45, 131–144 (1990)

103. P.M. Pardalos, W. Chaovalitwongse, L.D. Iasemidis, J.C. Sackellares, D.S. Shiau, P.R. Carney,
O. A. Prokopyev, V.A. Yatsenko, Seizure warning algorithm based on optimization and
nonlinear dynamics. Math. Program. B 101, 365–385 (2004)

104. S. Poljak, F. Rendl, Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim.
5, 467–487 (1995)

105. A.P. Punnen, N. Kaur, Revisiting some classical explicit linearizations for the quadratic binary
optimization problem, Research Report, Department of Mathematics, Simon Fraser Univerity,
2021

106. A.P. Punnen, N. Kaur, On compact linearizations of the quadratic binary optimization
problem, Research Report, Department of Mathematics, Simon Fraser University, 2021

6 Mathematical Programming Models and Exact Algorithms 185

107. A.P. Punnen, N. Kaur, Low rank quadratic unconstrained binary optimization problem,
Research Report, Department of Mathematics, Simon Fraser University, 2021

108. A.P. Punnen, P. Pandey, M. Friesen, Representations of quadratic combinatorial optimization
problems: A case study using the quadratic set covering problem. Comput. Oper. Res. 112,
104769 (2019)

109. F. Rendl, G. Rinaldi, A. Wiegele, Solving Max-Cut to optimality by intersecting semidefinite
and polyhedral relaxations. Math. Program. 121, 307–335 (2010)

110. F. Rendl, R. Sotirov, Bounds for the quadratic assignment problem using the bundle method.
Math. Program. 109, 505–524 (2007)

111. A. Schrijver, A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory 25(4),
425–429 (1979)

112. H. Sherali, W. Adams, A hierarchy of relaxations between the continuous and convexhull
representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430
(1990)

113. S. Shimizu, K. Yamaguchi, S. Masuda, A maximum edge-weight clique extraction algorithm
based on branch-and-bound. Discrete Optim. 37, 100583 (2020)

114. N.Z. Shor, A.S. Davydov, On a bounding method in quadratic extremal problems with 0-1
variables. Kibernetika 54, 48–50 (1985)

115. L. Sinjorgo, R. Sotirov. On the generalized ϑ-number and related problems for highly
symmetric graphs. Preprint (2021). https://arxiv.org/abs/2104.11910

116. R.A. Stubbs, S. Mehrotra, A branch-and-cut method for 0-1 mixed convex programming.
Math. Program. 86, 515–532 (1999)

117. A.P. Subramanian, H. Gupta, S.R. Das, M.M. Buddhikot, Fast spectrum allocation in coor-
dinated dynamic spectrum access based cellular networks, in 2007 2nd IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks (2007), pp. 320–330

118. D. Sun, K.C. Toh, Y. Yuan, X.Y. Zhao, SDPNAL +: A Matlab software for semidefinite
programming with bound constraints (version 1.0). Optim. Methods Softw. 35, 87–115 (2020)

119. G. Tavares, New algorithms for quadratic unconstrained binary optimization problem
(QUBO) with applications in engineering and social sciences, Ph.D Thesis, Rutgers Uni-
versity, 2008

120. D. Wanga, R. Kleinberg, Analyzing quadratic unconstrained binary optimization problems
via multicommodity flows. Discrete Appl. Math. 157, 3746–3753 (2009)

121. L.J. Watters, Reduction of integer polynomial programming problems to zero-one linear
programming problems. Oper. Res. 15, 1171–1174 (1967)

122. H. Wolkowicz, R. Saigal, L. Vandeberghe (ed.), Handbook on Semidefinite Programming
(Kluwer Academic, Boston, 2000)

123. W.I. Zangwill, Media selection by decision programming. J. Advertising Res. 5, 30–36 (1965)

https://arxiv.org/abs/2104.11910

Chapter 7
The Random QUBO

Karthik Natarajan

Abstract In this chapter, we discuss instances of QUBO where the input data is
random. Such random instances are often analyzed within the topic of “probabilistic
combinatorial optimization” and the goal is to study the behavior of the distribution
of the optimal value and the distribution of the optimal solution. The introduction of
randomness makes the problem more challenging from a computational perspective.
We discuss a probabilistic model with dependent random variables where it is
possible to extend many of the known computational results from deterministic
QUBO to random QUBO. We also review an interesting asymptotic characterization
of the random optimal value under independent and identically distributed random
variables.

7.1 Introduction

Consider the quadratic unconstrained binary optimization (QUBO) problem:

(QUBO) Z(Q, c) = max
x∈{0,1}n

xT Qx+ cT x, (7.1)

where Q ∈ Sn is a n × n real symmetric matrix with zeros along the diagonal and
c ∈ R

n. This representation of QUBO is without loss of generality since x2
i = xi for

xi ∈ {0, 1} and thus the diagonal entries of Q can be absorbed into the vector c. Any
matrix Q not necessarily symmetric can be transformed to a symmetric matrix (Q+
QT)/2 without changing the objective function value. In this chapter, we consider
the random version of QUBO where possibly some or all of the components of
the matrix Q̃ and vector c̃ are random. The expected optimal objective value of the
QUBO problem (7.1) averaged over the possible realizations of the random terms

K. Natarajan (�)
Engineering Systems and Design, Singapore University of Technology and Design, Singapore,
Singapore
e-mail: karthik_natarajan@sutd.edu.sg

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_7

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_7&domain=pdf
mailto:karthik_natarajan@sutd.edu.sg
https://doi.org/10.1007/978-3-031-04520-2_7

188 K. Natarajan

for a continuous distribution is given as:

E
[
Z(Q̃, c̃)

]
=
∫

�

Z(Q, c)f (Q, c)dQdc,

where f (Q, c) is the probability density function of (Q̃, c̃) with support in �. For a
discrete distribution, the expected optimal value is given as:

E
[
Z(Q̃, c̃)

]
=
∑

�

Z(Q, c)p(Q, c),

where p(Q, c) = P(Q̃ = Q, c̃ = c) is the probability mass function of (Q̃, c̃) with
support in �. There are two challenges in computing the expected optimal value:

1. Solving QUBO with a deterministic objective where (Q̃, c̃) = (Q, c) with
probability one is already NP-hard.

2. The randomness in the objective function increases the computational challenge
since we now need to average the optimal value across a set of QUBOs, possibly
exponentially many QUBOs. For example, if Q is fixed and the random vector c̃
has independent entries each taking two possible values, we would need to solve
a set of 2n NP-hard QUBO instances to compute the expected optimal value.

In this chapter, we discuss bounds and numerical approaches to compute the
expected optimal value with dependent random variables. We also discuss an
asymptotic characterization of the expected optimal value under identically and
independently distributed random variables. Before doing so, we discuss three
applications of the analysis of random QUBO:

1. When comparing different algorithms to solve QUBO problems, it is common
practice in numerical experiments to randomly generate instances of QUBO. The
algorithms are applied to these randomly generated instances and then compared
across the instances in terms of the running times and the best integer solutions
generated in a fixed amount of time. Averaging over the instances corresponds to
evaluating the expected optimal value by solving all the QUBO instances.

2. In practical applications, one is often interested in solving multiple instances of
QUBO where the objective function gets modified slightly. By better understand-
ing the distribution of the optimal solution and exploiting information of random
objective, it is possible to solve the random QUBO instances faster as we shall
see later in this chapter.

3. There is a significant stream of research in probabilistic combinatorial opti-
mization which shows that asymptotically the optimal value of many random
combinatorial optimization problems converges to non trivial limits when the
random terms are independent and identically distributed. Examples include the
linear assignment problem (see [1]), the minimum spanning tree problem (see
[9]), the traveling salesperson problem (see [2]) and the quadratic assignment
problem (see [8]). In the case of QUBO, these results have been analyzed in

7 The Random QUBO 189

the context of the Sherrington-Kirkpatrick model [25] with Gaussian random
variables which we review in the last part of the chapter.

7.2 An Upper Bound on the Expected Optimal Value

We start by discussing a bound on the expected optimal value that makes use of
only the marginal distributions of the random coefficients. Assume the marginal
distribution function of the random term Q̃ij is Fij (·) for i < j where Qji = Qij

for every realization where j > i and the marginal distribution function of c̃i is
Fi(·). Let the joint distribution be denoted by θ which lies in the Fréchet class of
distributions � with the given marginal distributions. For example, using mutually
independent random variables with the given marginal distributions provides one
such distribution in the set �. Hence � �= ∅. The exact probability distribution
is incompletely specified. We focus on an upper bound that is generated by
the multivariate joint distribution of the random components that maximizes the
expected maximum objective value of the QUBO over all distributions in the class
�. The problem of interest is defined as:

φ = sup
θ∈�

Eθ

[
Z(Q̃, c̃)

]
. (7.2)

For any x ∈ {0, 1}n, symmetric matrix R ∈ Sn with zeros along the diagonal and
vector d ∈ R

n, we have:

xT Qx+ cT x = xT
Rx+ dT x+ xT (Q− R)x+ (c− d)T x

[adding and subtracting R from Q and d from c]
≤ max

x∈{0,1}n
(

xT
Rx+ dT x

)
+
∑

i �=j

[
Qij − Rij

]+ +
∑

i

[ci − di]+

[taking the maximum over {0, 1}n for the first term and
over individual components for the second term],

where z+ = max(0, z). Since the right hand side of the inequality is a valid upper
bound for all x ∈ {0, 1}n, by taking the maximum on the left hand side over all
feasible solutions x ∈ {0, 1}n and computing expectations, we obtain:

E
[
Z(Q̃, c̃)

]
≤ Z(R, d)+

∑

i �=j

E
[
Q̃ij − Rij

]+ +
∑

i

E
[
c̃i − di

]+
.

By minimizing over the R matrix and vector d, an upper bound on the expected
optimal value is obtained as follows:

min
R∈Sn:diag(R)=0,d∈Rn

⎛

⎝Z(R, d)+
∑

i �=j

E
[
Q̃ij − Rij

]+ +
∑

i

E
[
c̃i − di

]+
⎞

⎠ ,

190 K. Natarajan

where diag(R) denotes the vector formed with the diagonal entries of the matrix R

and 0 is the vector of all zeros.
In fact this upper bound is tight; namely there is a joint distribution of the random

Q̃ and c̃ such that given any set of marginals with well-defined expected values, the
upper bound is attained. Namely:

φ = min
R∈Sn:diag(R)=0,d∈Rn

⎛

⎝Z(R, d)+
∑

i �=j

E
[
Q̃ij − Rij

]+ +
∑

i

E
[
c̃i − di

]+
⎞

⎠ .

We refer the reader to [3, 4, 14, 16, 18, 19, 31] for the proof of results along this line
arising in probabilistic combinatorial optimization. Let us discuss a few properties
of the upper bound φ:

1. The reformulation of φ above can be interpreted as finding a deterministic
estimate R and d of the random matrix Q̃ and random vector c̃ such that the
objective function of the deterministic QUBO problem is balanced with penalty
terms for incorrectly estimating the random terms. An alternative maximization
formulation for the bound φ is given by (see [16, 18]):

φ = max
x,X

∑

i �=j

∫ 1

1−Xij

F−1
ij (t)dt +

∑

i

∫ 1

1−xi

F−1
i (t)dt

s.t. (x, X) ∈ conv
{
(z, zzT) |z ∈ {0, 1}n} ,

where the optimization is over the Boolean quadric polytope. Under the assump-
tion that the random variables are absolutely continuous, the optimal decision
variables x and X are exactly the expectation of the random optimal solution
x(Q̃, c̃) and the quadratic form x(Q̃, c̃)x(Q̃, c̃)T under the distribution θ that
attains the bound φ (see [18] for a detailed proof of this result in general integer
programs).

2. Clearly when Q̃ = Q and c̃ = c, we have:

φ = min
R∈Sn:diag(R)=0,d∈Rn

⎛

⎝Z(R, d)+
∑

i �=j

[
Qij − Rij

]+ +
∑

i

[ci − di]+
⎞

⎠

= Z(Q, c)
[where the optimal solution is R = Q and d = c].

The second equality follows from observing that if Rij < Qij , by increasing Rij

to Qij , the first term Z(R, d) increases at most at a rate of one while the penalty
term [Qij − Rij]+ decreases at a rate of one. If Rij > Qij , by decreasing Rij to
Qij , the first term Z(R, d) does not increase and might possibly decrease while

7 The Random QUBO 191

the penalty term [Qij − Rij]+ stays at zero. A similar observation can be made
for the ci and di terms. Thus in the deterministic case, the bound reduces to the
optimal QUBO value.

3. We can associate a QUBO with an undirected graph as follows: G = (V ,E) is a
graph on the n nodes where |V | = n. For nodes i and j where Q̃ij = Q̃ji = 0
with probability one, there is no edge connecting i and j while for all other pairs
of nodes i and j where Q̃ij = Q̃ji , we add an undirected edge {i, j } to E such
that i < j . When the graph is acyclic or series-parallel, QUBO is known to
be solvable in polynomial time (see [20]). Interestingly, in this case the tightest
upper bound on the expected optimal value is also solvable in polynomial time.
To see this observe that φ is the optimal value to

min
t,R,d

t +
∑

{i,j}∈E

(

E
[
Q̃ij − Rij

]+ + E
[
Q̃ji − Rji

]+)+
∑

i

E
[
c̃i − di

]+

s.t. t ≥ Z(R, d)

R ∈ Sn, diag(R) = 0, Rij = 0 ∀{i, j } /∈ E,

d ∈ R
n,

The key step in solving the separation problem for this convex optimization
problem is:
Separation problem: Given t∗ and symmetric matrix R

∗ with zeros along the
diagonal with R∗ij = 0 for {i, j } /∈ E and vector d∗, decide whether t∗ ≥
Z(R∗, d∗), and if not, find a violated inequality.
For sparse graphs such as acyclic or series-parallel graphs, the optimal value of
the QUBO Z(R∗, d∗) is computable in polynomial time. Let the optimal solution
be x∗ ∈ {0, 1}n. If t∗ < Z(R∗, d∗), the violated inequality is given by t ≥
x∗T Rx∗ + dT x∗. The separation problem is hence solvable in polynomial time.
From the equivalence of separation and optimization (see [12]), the bound φ is
computable in polynomial time for sparse graphs where the deterministic QUBO
is solvable in polynomial time.

7.3 Quadratic Convex Reformulation (QCR)

We next discuss convex reformulations for QUBO. Such formulations are particu-
larly useful at the root node in a branch and bound algorithm to obtain powerful
upper bounds. We consider its application in both deterministic and stochastic
versions.

192 K. Natarajan

7.3.1 QCR Method for Determinsitic QUBO

One useful preprocessing approach to solve QUBO problems and more generally
binary quadratic programs and mixed integer quadratic programs is the Quadratic
Convex Reformulation (QCR) method proposed in [5–7]. Their method is inspired
from the SDP relaxation for discrete optimization problems developed in [15, 24, 26]
among others. We review the key idea of the approach next and then discuss its
applications to random QUBO.

For any u ∈ R
n, consider the optimization problem:

Z(u;Q, c) = max
x∈{0,1}n xT (Q− Diag(u))x+ (c+ u)T x, (7.3)

where Diag(u) denotes a diagonal n × n matrix with the elements of u along the
diagonal. Since x2

i = xi for xi ∈ {0, 1}, we have:

Z(Q, c) = Z(u;Q, c).

The key advantage of reformulation (7.3) is when one chooses a vector u such
that the objective function is concave (this corresponds to Diag(u) − Q 0).
This transforms a nonconvex QUBO to an equivalent convex QUBO (maximization
of a concave quadratic function). It is then possible to use algorithms that solve
convex relaxations at the various steps of a branch and bound method to solve the
problem to optimality. Off-the-shelf mixed integer quadratic programming solvers
such as CPLEX and Gurobi now also allow the user to automatically convexify
such instances. An upper bound on the optimal value of the convex QUBO in (7.3)
is obtained by solving the convex relaxation:

Z̄(u;Q, c) = max
x∈[0,1]n xT (Q− Diag(u))x+ (c+ u)T x, (7.4)

where:

Z(Q, c) = Z(u;Q, c) ≤ Z̄(u;Q, c).

An “optimal" choice of the vector u is one that makes the upper bound (7.4) obtained
from the convex relaxation as small as possible:

uopt = argmin
{
Z̄(u;Q, c)

∣
∣
∣ Diag(u)−Q 0

}
. (7.5)

Using standard duality arguments, it can be shown that (see [5, 7]) uopt is the optimal
vector u of the following SDP:

Z̄(uopt ;Q, c) = min
r∈R,u∈Rn

r

s.t.

[
r (−c− u)T /2

(−c− u)/2 Diag(u)−Q

]

 0,
(7.6)

7 The Random QUBO 193

where the positive semidefiniteness constraint is for a matrix of size (n+1)×(n+1).
The semidefinite program (7.6) is the dual to the classic semidefinite programming
relaxation of the QUBO problem:

Z̄(uopt ;Q, c) = max
x∈Rn,X∈Sn

Q.X+ cT x

s.t. Xii = xi, i = 1, . . . , n,
[

1 xT

x X

]

 0.

(7.7)

where uopt is the optimal dual vector to the first set of constraints in (7.7). For
QUBO, [5] proposed the use of this semidefinite program as a preprocessing phase
to convexify the objective before applying an exact branch and bound method to
solve the QUBO. In the numerical experiments in [5], the relative gap between the
optimum value of the QUBO and the continuous SDP based relaxation is shown to
be about half the relative gap between the optimum value and a simpler relaxation
using eigenvalues of the matrix Q (see [13] and the discussion in the next section
of this chapter). Solving the QUBO with the CPLEX solver was also shown to be
faster using such a SDP based preprocessing step as compared to the eigenvalue
based preprocessing step.

7.3.2 QCR Methods for Random QUBO

In this section, we discuss the application of the QCR method to random QUBO
where the matrix Q is fixed but the vector c̃ is random. Specifically, we are interested
in the random QUBO:

Z(Q, c̃) = max
x∈{0,1}n

xT Qx+ c̃T x, (7.8)

We discuss a variety of preprocessing approaches to tackle this problem. In each
of these approaches, we are interested in finding a preprocessing vector u such that
Diag(u)−Q 0. This helps convexify the objective function and make the optimal
value of the convex relaxation as tight as possible. We then solve the problem using
convex MIQP solution techniques implemented in solvers such as CPLEX. The
convex random QUBO is given as:

Z(u;Q, c̃) = max
x∈{0,1}n

xT (Q− Diag(u))x+ (c̃+ u)T x. (7.9)

Let us discuss four different preprocessing approaches to solve the random
instances of QUBO.

194 K. Natarajan

(a) Eigenvalue Based Method The simplest possible choice of the preprocessing
vector u is to use ueig = λmax(Q)e, where λmax(Q) is the largest eigenvalue of
the matrix Q and e is an n dimensional vector with all entries equal to 1. Clearly
Q− Diag(ueig) is negative semidefinite and the objective function is concave with
respect to the decision variable x. Such an eigenvalue based preprocessing method
was first proposed in [13].

(b) Joint Distribution Based Method For each realization of the vector c̃ = c, the
“optimal” choice of the vector u is obtained by solving (7.5) based on the discussion
on the QCR method. This is equivalent to solving the SDP problem (7.6) for every
c. Namely for any realization c̃ = c, the SDP is given as:

Z̄(uopt (c);Q, c) = min
r∈R,u∈Rn

r

s.t.

[
r (−c− u)T /2

(−c− u)/2 Diag(u)−Q

]

 0,
(7.10)

where uopt (c) is the optimal u decision vector for the SDP viewed as a function of
the realization c. The main challenge in this approach is that for every realization,
we need to solve a SDP before solving the QUBO. Since the number of realizations
of the joint distribution can be very large, even infinite, this is numerically very
challenging to implement in practice.

(c) Mean Based Method In this method, we choose a common preprocessing
vector uμ by simply using the mean of the random vector. Namely, we solve a single
SDP:

Z̄(uμ;Q,μ) = min
r∈R,u∈Rn

r

s.t.

[
r (−μ− u)T /2

(−μ− u)/2 Diag(u)−Q

]

 0,
(7.11)

where uμ is the optimal u vector in (7.11). Here we need to solve a single SDP to
obtain uμ.

(d) Marginal Based Method In this method, we use the formulation for the bound
φ from the earlier section to develop a common preprocessing vector. Consider the
simple case where only the mean and standard deviation of each c̃i is known and
given as μi and σi . Consider the tight upper bound:

φ = sup
θ∈�

Eθ

[
Z(Q, c̃)

]
, (7.12)

7 The Random QUBO 195

where the set of distributions � describes all random vectors c̃ with mean μi and
standard deviation σi for each c̃i . The tightest upper bound is then given as:

φ = min
d∈Rn

{

Z(Q, d)+
∑

i

1

2

(
μi − di +

√
(μi − di)2 + σ 2

i

)
}

,

where we use the fact that the maximum value of E[c̃i − di]+ given only the

mean and standard deviation of c̃i is equal to 1
2 (μi − di +

√
(μi − di)2 + σ 2

i) (this
univariate bound comes from the Cauchy-Schwarz inequality and is tight; see [19]).
Let us now apply the QCR method to the inner QUBO problem. We then have:

φ = min
d∈Rn

{

Z(u;Q, d)+
∑

i

1

2

(
μi − di +

√
(μi − di)2 + σ 2

i

)
}

. (7.13)

An upper bound on φ is then given by:

φ ≤ min
d∈Rn

{

Z̄(u;Q, d)+
∑

i

1

2

(
μi − di +

√
(μi − di)2 + σ 2

i

)
}

,

where Z̄(u;Q, d) is the optimal value using the convex relaxation in (7.4). The
“optimal” choice of the vector u is to then minimize the upper bound obtained from
using the convex relaxation satisfying the constraint Diag(u) − Q 0. Thus we
need to solve:

uμ,σ = argminDiag(u)−Q 0 min
d∈Rn

⎧
⎨

⎩
Z̄(u;Q, d)+

∑

i

1

2

(
μi − di +

√
(μi − di)

2 + σ 2
i

)
⎫
⎬

⎭
,

where σ = (σ1, . . . , σn). Now again using standard conic duality, it is easy to see
that uμ,σ is obtained by solving the SDP:

min
d,r,u

r +
∑

i

1

2

(
μi − di +

√
(μi − di)2 + σ 2

i

)

s.t.

[
r −(d+ u)T /2

−(d+ u)/2 diag(u)−Q

]

 0,

(7.14)

where uμ,σ is the optimal u vector in (7.14). This can be solved as a linear SDP.
The key difference in this formulation is the presence of the penalty function in
the objective function which affects the choice of the optimal vector u unlike the
deterministic QCR formulation.

196 K. Natarajan

7.3.3 Numerical Experiments

In this section, we discuss the application of the different QCR methods in solving
a set of instances of random QUBO. The computational studies were implemented
in Matlab R2012a on an Intel Core 2 Duo CPU (2.8 GHz) laptop with 4 GB of
RAM. The SDP problems were solved with CVX [10, 11] and SDPT3 [29, 30]
and the QUBOs were solved with CPLEX 12.6 using the Matlab interface. In our
computational experiments, we set T = 10 minutes as the maximum time to solve
any instance of QUBO. Define the value obj(Q, c) as follows:

obj(Q, c) =
{

Z(Q, c), if the QUBO is solvable within T minutes,
Best lower bound, otherwise,

where the best lower bound is derived from the best feasible solution found in
T minutes. We define gap(u;Q, c) as the relative difference between the convex
relaxation of the objective function for a given preprocessing vector u and the value
of obj(Q, c):

gap(u;Q, c) = Z̄(u; c, Q)− obj(Q, c)
obj(Q, c)

.

Since the running time of the branch-and-bound method to solve the QUBO depends
on the strength of its convex relaxation, we say that a vector u is preferable to u′ for
the kth instance if gap(u;Q, c) < gap(u′;Q, c).

7.3.3.1 Random Instances

We use the set of randomly generated instances as in [5] and [22]. The parameters
are chosen as follows:

1. The linear coefficients ci are chosen uniformly and independently in the range
[−100, 100].

2. The diagonal entries of Q ∈ Sn are all 0, and the off-diagonal coefficients of the
symmetric matrix Q are in the range [−50, 50].

3. The matrix Q has density d . The density refers to the probability that a nonzero
will occur in any off-diagonal entry.

In the numerical experiments, we use 100 samples from the joint distribution.
We use the sample mean and the sample standard deviation to compute the
preprocessing parameters uμ and uμ,σ by solving the respective SDPs. The results
are listed in Tables 7.1 and 7.2. In the tables, we report the following values for the
four different choices of preprocessing vectors u = ueig, u = uopt(c), u = uμ and
u = uμ,σ :

7 The Random QUBO 197

Table 7.1 Gap and CPU time for different parameters u

u = ueig u = uopt (c)
n d Gap t_u t_01QP Solved Gap t_u t_01QP Solved

50 0.4 13.8 0.02 106.0 100 4.9 45.27 23.0 100

50 0.6 15.1 0.01 109.0 100 6.7 45.39 28.2 100

50 1.0 12.5 0.02 85.9 100 6.6 45.84 30.9 100

60 0.2 17.2 0.01 1022.4 100 5.8 53.90 43.5 100

60 0.4 14.0 0.01 1136.3 100 4.4 51.96 50.8 100

70 0.3 18.5 0.02 1249.4 100 8.2 58.50 280.0 100

80 0.2 18.4 0.03 16569.2(218.0) 76 7.8 70.68 450.9 100

90 0.6 18.3 0.03 13764.3(327.7) 42 9.1 83.60 7040.1 100

100 0.1 16.5 0.02 4761.2(297.6) 16 3.5 100.83 178.2 100

120 0.2 21.1 0.05 ∗∗ 0 10.4 129.52 5770.7(360.7) 16

** denotes the instances were not solvable within the time limit

Table 7.2 Gap and CPU time for different parameters u

u = uμ u = uμ,σ

n d Gap t_u t_01QP Solved Gap t_u t_01QP Solved

50 0.4 8.9 0.48 20.5 100 7.3 1.52 18.0 100

50 0.6 10.0 0.46 24.3 100 9.0 1.55 19.4 100

50 1.0 8.8 0.45 26.0 100 8.5 1.55 24.1 100

60 0.2 10.7 0.63 53.6 100 8.7 1.82 35.8 100

60 0.4 7.1 0.50 42.9 100 6.1 1.78 37.1 100

70 0.3 12.2 0.69 292.5 100 10.9 2.20 261.5 100

80 0.2 12.4 0.67 545.1 100 10.8 2.40 435.3 100

90 0.6 11.4 0.83 7095.1 100 11.0 3.26 6783.9 100

100 0.1 7.9 1.21 317.1 100 5.9 4.05 210.7 100

120 0.2 13.6 1.35 3610.4(361.0) 10 13.0 4.03 5500.0(343.8) 16

1. The average gap over the 100 instances.
2. The CPU time taken to compute the preprocessing parameter u denoted by “t_u".

For the distribution method using the samples, “t_u" is the total CPU time taken
to solve the 100 SDPs. For the mean based and marginal based method (using
only the mean and standard deviation), “t_u" is the CPU time taken to solve a
single SDP each. For the eigenvalue based method, “t_u" is the CPU time taken
to compute the largest eigenvalue of Q which is almost immediate.

3. The total CPU time taken to compute all the convex QUBOs is denoted by
“t_01QP". If we solve every instance within 10 minutes, we report the total CPU
time. If there are m < 100 instances that are solvable within 10 minutes each, we
report the total CPU time to solve these m instances and report the average time
for the m solved instances in the parentheses.

4. The number of instances (out of 100) which are solved within 10 minutes is
denoted by “solved".

198 K. Natarajan

Fig. 7.1 Boxplot of the relative gaps for all the 100 scenarios

In addition to the average gap, we plot the distributions of the relative gaps for
the 100 scenarios using the boxplot in Fig. 7.1. From Tables 7.1 and 7.2, we observe
that the average relative gap of using uμ,σ is always smaller than using ueig and uμ.

In addition to the average value, from Fig. 7.1 we observe that the relative gap of
using uμ,σ has a smaller sample minimum, lower quartile (25th percentile), median,
upper quartile (75th percentile), and sample maximum than using ueig and uμ. The
relative gap using the exact samples from the distribution is the smallest as should
be expected. Hence, in terms of the relative gap between the optimal value of the
QUBO and its convex relaxation, parameter uμ,σ is better than ueig and uμ and closest
to the distribution based method using samples.

We also plot the CPU time taken to solve the QUBO for every scenario c. In
Fig. 7.2, “t_01QP(u)”, denotes the CPU time taken to solve the convex QUBO with
the preprocessing parameter u for scenario c. Since the CPU time taken to solve
the QUBO by using ueig is much larger than the other three methods, we exclude
the eigenvalue based method from consideration. Since uμ and uμ,σ are common
preprocessing vectors for all the 100 sampled instances, and we can compute them
quickly by solving a single SDP problem, the CPU time of getting uμ and uμ,σ turns
out to be negligible in Fig. 7.2. However, to use uopt (c) we must solve an SDP
problem for every instance. Hence in the plot of the CPU time to solve the QUBO,
the time t_uopt taken to compute uopt is added.

From Fig. 7.2, we see that for small size instances (subfigure (a)) and medium
size instances (subfigure (b)), the marginal based method (using mean and standard
deviation) is better than the distribution based method using samples and the mean
based method. The CPU time of using uμ,σ to solve the QUBO have the smallest

7 The Random QUBO 199

Fig. 7.2 Boxplot of the CPU
time: (for the instances which
can not be solved in 10
minutes, we just plot its CPU
time as 600 seconds in the
figure). (a) Small size
instances. (b) Medium size
instances. (c) Hard to solve
instances

200 K. Natarajan

sample minimum, lower quartile (25th percentile), median, upper quartile (75th
percentile), and sample maximum. For the difficult instances (subfigure (c)), the
three methods look more similar in Fig. 7.2. From Tables 7.1 and 7.2, we can
see that using uμ,σ , we need the smallest CPU time to solve all the 100 instances
when n = 90, d = 0.6. For the largest and most difficult set of instances with
n = 120, d = 0.2, very few instances can be solved to optimality in 10 minutes.
By using uμ,σ , we solve 16 instances to optimality which is the same as using the
sample information.

7.3.3.2 Robustness Tests Using Permutations

We test the robustness of the marginal based method using permutation experiments.
The QCR method using the marginals is developed for the Fréchet class of
distributions with fixed marginal mean and variance. However no assumption is
made on the dependency structure between random variables. To test the robustness
of the solutions, we generate other feasible distributions in this set by permuting the
individual components of the randomly generated samples in the following manner.
Given the sample data vectors c(1), . . . , c(100), we compute the sample mean μ

and the sample standard deviation σ . For i = 1, . . . , n, we randomly permute
the ith component sequence of the vectors c

(1)
i , c

(2)
i , . . . , c

(100)
i . By performing this

permutation independently for each i = 1, . . . , n, we generate a new set of samples
{c(k), k = 1, . . . ,K} where K = 100; see [18] for a similar set of experiments
in the context of stochastic knapsack problems. Note that the sample mean μ

and the standard deviation σ will not change after these permutations. Hence the
preprocessing parameter uμ and uμ,σ will not change. However uopt (c) will almost
surely change since the samples have changed. As a control, we also use the average
sample based preprocessing vector defined as uave := ∑100

k=1 uopt (c(k))/100. Since
Q− diag(uopt(c(k)) 0, k = 1, . . . ,K , we have Q− diag(uave) 0.

For the tests, we use two sets of parameters ((n, d) = (50, 0.6) and (n, d) =
(70, 0.3)) and perform numerical tests for the samples after the random permu-
tations. For each set of data, we test the results across 15 permutations. The
preprocessing vectors uave, uμ and uμ,σ are computed only once and hence the CPU
time of computing these preprocessing parameters can be ignored. The numerical
results are shown in Tables 7.3 and 7.4. From Tables 7.3 and 7.4, we see that by using
uμ,σ the average gap is smaller than using uμ and uave. Moreover the total CPU time
taken to solve the QUBO is always the smallest for all the permutations by using
uμ,σ . This seems to indicate that exploiting the marginal distribution information
with the QCR method provides robustness.

7 The Random QUBO 201

T
ab

le
7.

3
G

ap
an

d
C

PU
ti

m
e

w
it

h
15

pe
rm

ut
at

io
ns

:n
=

50
,d
=

0.
6

u o
p
t
(c

(k
)
),

k
=

1,
..

.
,
K

u a
v
e

u μ
u μ

,σ

N
o.

G
ap

t_
u

t_
01

Q
P

So
lv

ed
G

ap
t_

01
Q

P
So

lv
ed

G
a
p

t_
01

Q
P

So
lv

ed
G

ap
t_

01
Q

P
So

lv
ed

1
6.

6
47

.7
8

22
.6

10
0

10
.5

22
.1

10
0

10
.0

19
.7

10
0

8.
9

15
.2

10
0

2
6.

5
55

.7
9

27
.9

10
0

10
.4

25
.3

10
0

9.
9

23
.9

10
0

8.
8

18
.7

10
0

3
6.

7
56

.2
5

29
.6

10
0

10
.6

27
.7

10
0

10
.1

25
.8

10
0

9.
0

19
.8

10
0

4
6.

7
58

.7
3

27
.7

10
0

10
.7

26
.5

10
0

10
.1

24
.5

10
0

9.
0

19
.1

10
0

5
6.

5
53

.9
5

27
.8

10
0

10
.4

26
.3

10
0

9.
9

24
.2

10
0

8.
8

19
.0

10
0

6
6.

5
54

.2
4

27
.3

10
0

10
.4

25
.6

10
0

9.
9

23
.8

10
0

8.
8

18
.8

10
0

7
6.

7
56

.7
8

28
.4

10
0

10
.9

27
.8

10
0

10
.4

25
.7

10
0

9.
1

19
.5

10
0

8
6.

6
54

.6
5

27
.2

10
0

10
.5

26
.0

10
0

9.
9

23
.8

10
0

8.
9

18
.7

10
0

9
6.

5
55

.6
0

26
.7

10
0

10
.4

24
.7

10
0

9.
9

23
.4

10
0

8.
8

18
.3

10
0

10
6.

5
45

.5
4

26
.7

10
0

10
.4

25
.0

10
0

9.
9

23
.1

10
0

8.
8

18
.0

10
0

11
6.

6
52

.4
2

27
.4

10
0

10
.5

26
.6

10
0

10
.0

24
.7

10
0

8.
9

18
.9

10
0

12
6.

5
52

.2
9

27
.4

10
0

10
.4

26
.2

10
0

9.
8

23
.5

10
0

8.
8

18
.8

10
0

13
6.

7
54

.4
8

28
.3

10
0

10
.6

26
.8

10
0

10
.1

24
.9

10
0

9.
0

19
.4

10
0

14
6.

6
53

.3
8

26
.9

10
0

10
.5

25
.0

10
0

10
.0

22
.8

10
0

8.
9

18
.3

10
0

15
6.

4
56

.6
6

24
.5

10
0

10
.3

22
.8

10
0

9.
8

21
.5

10
0

8.
7

17
.0

10
0

202 K. Natarajan

T
ab

le
7.

4
G

ap
an

d
C

PU
ti

m
e

w
it

h
15

pe
rm

ut
at

io
ns

:n
=

70
,d
=

0.
3

u o
p
t(

c(
k
)
),

k
=

1,
..

.
,
K

u a
v
e

u μ
u μ

,σ

N
o.

G
ap

t_
u

t_
01

Q
P

So
lv

ed
G

ap
t_

01
Q

P
So

lv
ed

G
ap

t_
01

Q
P

So
lv

ed
G

ap
t_

01
Q

P
So

lv
ed

1
8.

3
62

.4
2

30
3.

7
10

0
13

.1
50

0.
2

10
0

12
.3

32
2.

9
10

0
11

.0
27

8.
3

10
0

2
8.

3
63

.6
3

27
5.

1
10

0
13

.1
49

8.
1

10
0

12
.2

30
0.

0
10

0
11

.0
26

7.
7

10
0

3
8.

5
62

.9
9

34
0.

7
10

0
13

.4
58

0.
9

10
0

12
.6

36
8.

2
10

0
11

.3
32

8.
8

10
0

4
8.

3
62

.7
5

27
5.

3
10

0
13

.1
48

1.
2

10
0

12
.2

29
3.

1
10

0
11

.0
26

7.
7

10
0

5
8.

2
62

.8
7

29
1.

5
10

0
13

.0
48

9.
0

10
0

12
.2

30
1.

8
10

0
10

.9
26

7.
4

10
0

6
8.

4
63

.0
7

33
9.

4
10

0
13

.1
60

0.
4

10
0

12
.2

35
0.

8
10

0
11

.0
32

1.
6

10
0

7
8.

2
62

.7
1

27
8.

8
10

0
13

.1
45

3.
9

10
0

12
.3

28
8.

4
10

0
11

.0
26

5.
8

10
0

8
8.

2
62

.9
6

27
1.

5
10

0
13

.0
47

1.
8

10
0

12
.2

28
6.

9
10

0
10

.9
25

8.
2

10
0

9
8.

2
62

.9
5

27
4.

4
10

0
13

.1
49

3.
4

10
0

12
.2

30
7.

3
10

0
10

.9
26

4.
0

10
0

10
8.

1
62

.7
6

24
6.

7
10

0
12

.9
42

3.
5

10
0

12
.0

26
4.

0
10

0
10

.8
23

7.
4

10
0

11
8.

3
63

.1
2

27
6.

3
10

0
13

.2
47

1.
6

10
0

12
.4

29
7.

0
10

0
11

.0
26

1.
6

10
0

12
8.

2
63

.0
9

27
9.

6
10

0
13

.1
50

1.
2

10
0

12
.2

30
2.

1
10

0
10

.9
26

6.
1

10
0

13
8.

2
63

.1
5

28
2.

8
10

0
13

.0
48

5.
3

10
0

12
.2

30
2.

2
10

0
10

.9
26

6.
5

10
0

14
8.

5
63

.3
7

33
0.

5
10

0
13

.4
57

9.
2

10
0

12
.6

35
0.

0
10

0
11

.2
31

1.
7

10
0

15
8.

2
66

.0
4

29
3.

7
10

0
13

.0
49

7.
6

10
0

12
.2

31
1.

1
10

0
10

.9
27

4.
0

10
0

7 The Random QUBO 203

7.4 The Sherrington-Kirkpatrick Model

In this section, we discuss the Sherrington-Kirkpatrick model [25], the study of
which was initiated in the statistical physics community for the study of spin glasses
and has recently found applications in the machine learning and computer science
community. Consider an optimization problem of the form:

(SK) ZSK
n (Q) = max

x∈{−1,1}n xT Qx, (7.15)

where Q ∈ R
n×n is a n × n real matrix, not necessarily symmetric. In the

Sherrington-Kirkpatrick model [25], the entries Q̃ij for all i, j of the random matrix
Q̃ are standard normal random variables with mean 0 and variance 1, independently
distributed. A characterization of the asymptotic expected optimal value for this
model was first conjectured in [23] and later proved formally in [27]; see the
books [21, 28] for a detailed exposition on the result, its extensions and proof. This
characterization is given by:

lim
n→∞

1√
2n3/2

E
[
ZSK

n (Q̃)
]
= constant,

where the constant is approximately 0.763166 and obtained through a complicated
expression known as the Parisi formula. The proof of this result requires detailed
mathematical analysis and is beyond the scope of this chapter. We only provide
some brief ideas below.

For any fixed solution x ∈ {−1, 1}n, xT Q̃x is a normal random variable with the
mean and variance given by:

E
[
xT Q̃x

]
= 0 and Variance

[
xT Q̃x

]
= n2,

where for any two solutions x, y ∈ {−1, 1}n, we have:

E
[
(xT Q̃x)(yT Q̃y)

]
=

n∑

i=1

n∑

j=1

xixjyiyj =
(

n∑

i=1

xiyi

)2

.

Intuitively, we would expect many of the pairs x, y ∈ {−1, 1}n in high dimension to
be close to orthogonal and hence the objective value of the solutions will be almost
uncorrelated in many cases with

∑
i xiyi ≈ 0. Given a collection of k independent

and identically distributed Gaussian random variables c̃i with mean 0 and variance
σ 2, from extreme value theory, the expected maximum is known to satisfy:

lim
k→∞

E

[

max
i=1,...,k

c̃i

]

√
2 log(k)

= σ,

204 K. Natarajan

Since ZSK
n (Q̃) is the maximum of 2n Gaussian random variables, many of which

will be close to uncorrelated, plugging in k = 2n and σ 2 = n2, we would

expect E
[
ZSK

n (Q̃)
]

to roughly scale as n3/2. The precise behavior is much more

challenging to characterize. To derive the actual expression of the expected optimal
value, it is useful to study the related partition function which is defined for any
α > 0 as follows:

PSK
n (α, Q) =

∑

x∈{−1,1}n
exp

(
αxT Qx

)
.

It is straightforward to see that:

exp(αZSK
n (Q)) ≤ PSK

n (α, Q) ≤ 2n exp
(
αZSK

n (Q)
)

,

where the first inequality is from choosing only the maximum value in the sum
defining the partition function and the second inequality is from using the maximum
value as an upper bound for each of the 2n terms in the sum defining the partition
function. The expected optimal value and the expected partition function are then
related as follows:

lim
n→∞

1√
2n3/2

E
[
ZSK

n (Q̃)
]
≤ lim

α→∞,n→∞
1√

2αn3/2
E
[
log

(
PSK

n (α, Q̃)
)]

≤ lim
α→∞,n→∞

1√
2αn1/2

+ 1√
2n3/2

E
[
ZSK

n (Q̃)
]

= lim
n→∞

1√
2n3/2

E
[
ZSK

n (Q̃)
]
,

which implies:

lim
n→∞

1√
2n3/2

E
[
ZSK

n (Q̃)
]
= lim

α→∞,n→∞
1√

2αn3/2
E
[
log

(
PSK

n (α, Q̃)
)]

.

Much of the analysis is then to prove that the limit on the right hand side is well
defined and given by Parisi formula [23]. Recent work by Montanari [17] builds on
this observation to show that it is possible to obtain an algorithm that for any ε > 0,
gives a vector x∗ ∈ {−1, 1}n such that x∗T Q̃x∗ is at least (1 − ε) of the optimal
value with probability converging to one as n →∞. Such a results indicates that on
average with appropriate assumptions on the randomness, the optimization problem
might be easier to solve in comparison to the worst-case.

Acknowledgments We would like to thanks Dongjian Shi and Toh Kim Chuan for their significant
contributions to the work discussed in this chapter. This work was done as part of the PhD
thesis titled “Regret models and preprocessing techniques for combinatorial optimization under
uncertainty” by Dongjian Shi at the National University of Singapore. The author of this chapter
and Toh Kim Chuan were his doctoral advisors.

7 The Random QUBO 205

References

1. D. Aldous, The ζ(2) limit in the random assignment problem. Random Struct. Algorithms 18,
381–418 (2001)

2. J.H. Beardwood, J. Halton, J.M. Hammersley, The shortest path through many points. Math.
Proc. Cambridge Philos. Soc. 55, 299–327 (1959)

3. D. Bertsimas, K. Natarajan, C.P. Teo, Probabilistic combinatorial optimization: moments,
semidefinite programming, and asymptotic bounds. SIAM J. Optim. 15, 185–209 (2004)

4. D. Bertsimas, K. Natarajan, C.P. Teo, Persistence in discrete optimization under data uncer-
tainty. Math. Program. 108, 251–274 (2006)

5. A. Billionnet, S. Elloumi, Using mixed integer quadratic programming solver for the uncon-
strained quadratic 0-1 problem. Math. Program. A 109, 55–68 (2007)

6. A. Billionnet, S. Elloumi, A. Lambert, Extending the QCR method to general mixed-integer
programs. Math. Program. 131, 381–401 (2002)

7. A. Billionnet, S. Elloumi, M.-C. Plateau, Improving the performance of standard solvers for
quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl.
Math. 157, 1185–1197 (2009)

8. R.E. Burkard, U. Fincke, Probabilistic analysis of some combinatorial optimization problems.
Discrete Appl. Math. 12, 21–29 (1985)

9. A.M. Frieze, On the value of a random minimum spanning tree problem. Discrete Appl. Math.
10, 47–56 (1985)

10. M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in Recent
Advances in Learning and Control (A Tribute to M. Vidyasagar), ed. by V. Blondel, S. Boyd,
H. Kimura. Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin
(2008)

11. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming, version 2.0.
beta (2013)

12. M. Grötschel, L. Lovász, A.J. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion (Wiley, New York, 1988)

13. P.L. Hammer, A.A. Rubin, Some remarks on quadratic programming with 0-1 variables.
RAIRO-Oper. Research 3, 67–79 (1970)

14. W.K.K. Haneveld, Robustness against dependence in PERT: an application of duality and
distributions with known marginals. Math. Program. Study 27, 153–182 (1986)

15. F. Körner, A tight bound for the Boolean quadratic optimization problem and its use in a branch
and bound algorithm. Optimization 19, 711–721 (1988)

16. I. Meilijson, A. Nadas, Convex majorization with an application to the length of critical path.
J. Appl. Probab. 16, 671–677 (1979)

17. A. Montanari, Optimization of the Sherrington-Kirkpatrick Hamiltonian. SIAM J. Comput.
(2021, to appear)

18. K. Natarajan, M. Song, C.P. Teo, Persistency model and its applications in choice modeling.
Manag. Sci. 55, 453–469 (2009)

19. K. Natarajan, D. Shi, K.C. Toh, Bounds for random binary quadratic programs. SIAM J. Optim.
28, 671–692 (2018)

20. M. Padberg, The Boolean quadric polytope: some characteristics, facets and relatives. Math.
Program. 45, 134–172 (1989)

21. D. Panchenko, The Sherrington-Kirkpatrick Model. Springer Monographs in Mathematics
(Springer, Berlin, 2013)

22. P.M. Pardalos, G.P. Rodgers, Computational aspects of a branch and bound algorithm for
quadratic zero-one programming. Computing 45, 131–144 (1990)

23. G. Parisi, Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756
(1979)

24. S. Poljak, F. Rendl, H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-quadratic
programming. J. Global Optim. 7, 51–73 (1995)

206 K. Natarajan

25. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796
(1975)

26. N.Z. Shor, Class of global minimum bounds of polynomial functions. Cybern. Syst. Anal. 23,
731–734 (1987)

27. M. Talagrand, The Parisi formula. Ann. Math. 163, 221–263 (2006)
28. M. Talagrand, Mean Field Models for Spin Glasses. A Series of Modern Surveys in Mathemat-

ics, vol. 55 (Springer, Berlin, 2011)
29. K.C. Toh, M.J. Todd, R.H. Tutuncu, SDPT3 — a Matlab software package for semidefinite

programming. Optim. Methods Softw. 11, 545–581 (1999)
30. K.C. Toh, M.J. Todd, R.H. Tutuncu, Solving semidefinite-quadratic-linear programs using

SDPT3. Math. Program. 95, 189–217 (2003)
31. G. Weiss, Stochastic bounds on distributions of optimal value functions with applications to

PERT, network flows and reliability. Oper. Res. 34, 595–605 (1986)

Chapter 8
Fast Heuristics and Approximation
Algorithms

Abraham P. Punnen

Abstract This chapter discusses theoretical analysis of approximation algorithms
for QUBO and the Ising QUBO. We point out that the standard performance
measure of relative performance ratio is not suitable for analysing the quality of
approximation algorithms for the general versions of QUBO and the Ising QUBO.
Thus, polynomial time approximation algorithms are considered and analyzed for
the general problems using normalized relative error and domination analysis. More
specifically, we discuss no worse than average performance bounds and how to
improve them. Also, we present polynomial time approximation algorithms for
QUBO and the Ising QUBO with a constant domination ratio. Then, the standard
performance ratio of polynomial time approximation algorithms is considered
for special cases of the Ising QUBO and QUBO. Relationships between ε-
approximation algorithms for QUBO and the Ising QUBO are established when the
associated data is specially structured. Further, a polynomial time 1

2�
-approximation

algorithm and a polynomial time 1
log n

-approximation algorithm, in expectation, are
presented for the Ising QUBO when the cost matrix has all diagonal entries zero and
� is the maximum degree of a node in the associated support graph. Performance
ratio of approximation algorithms for other special cases are briefly discussed.

8.1 Introduction

Recall that the quadratic unconstrained binary optimization problem (QUBO) is the
mathematical programming problem

QP: Maximize φ(x) = xT Qx+ cT x

Subject to: x ∈ {0, 1}n,

A. P. Punnen (�)
Department of Mathematics, Simon Fraser University, Surrey, BC, Canada
e-mail: apunnen@sfu.ca

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_8

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_8&domain=pdf
mailto:apunnen@sfu.ca
https://doi.org/10.1007/978-3-031-04520-2_8

208 A. P. Punnen

Fig. 8.1 QUBO vs Ising QUBO: shifted centre. (a) QUBO: centre (1/2,1/2,1/2). (b) Ising QUBO:
centre (0,0,0)

where Q = (qij) is an n × n symmetric matrix and cT = (c1, c2, . . . , cn) is a row
vector in R

n. Without loss of generality, the diagonal elements of Q are assumed to
be zero and Q is not the zero matrix. Another closely related problem, equivalent to
QUBO (up to optimality), is the Ising QUBO which is to

IQ: Maximize ϕ(x) = xTAx+ bT x

Subject to: x ∈ {−1, 1}n,

where A = (aij) is a symmetric n × n matrix and bT = (b1, b2, . . . , bn) is a row
vector in R

n. An instance of the Ising QUBO is completely defined by the matrix A
and the vector b and hence we sometimes use the ordered pair (A, b) to represent
an instance of the Ising QUBO. Similarly, an instance of QUBO is represented by
the ordered pair (Q, c). Note that the Ising QUBO can be obtained from QUBO
by shifting the centre (1/2, 1/2, . . . , 1/2) of the hypercube [0, 1]n to the centre
0 = (0, 0, ...0) of the hypercube [−1, 1]n (Fig. 8.1).

Both QUBO and the Ising QUBO can be represented in various forms. For a
detailed discussion on this, we refer to Chapter 1. We will sometimes use the graph
theoretic version of QUBO which can be stated as follows. Let V = {1, 2, . . . , n}
and E = {(i, j), (j, i) : qij �= 0}. The directed graph G = (V ,E) is called the
directed support graph of Q and the weight of the edge (i, j) ∈ E is qij . Note that
qij = qji and G has no loops. The weight of the node i ∈ V is ci . Then, the QUBO
is to find a subset S of V such that

∑

(i,j)∈G[S]
qij +

∑

i∈S

ci

is maximized, where G[S] is the subgraph of G induced by S. The graph G can also
be viewed as an undirected graph, where edges (i, j) and (j, i) are replaced by one

8 Fast Heuristics and Approximation Algorithms 209

undirected edge (i, j) of weight 2qij . In this case, we call G the support graph of Q
and the edges of G can be labelled as an ordered pair (i, j) with i < j .

In the directed graph G discussed above when vertex weights are chosen as bi

for i ∈ V and edge weights are chosen as aij for (i, j) ∈ E the Ising QUBO is to
assign positive or negative signs (xi = 1 or−1) to nodes of G such that

∑

(i,j)∈E

aij xixj +
∑

i∈V

bixi

is maximized. We also have the analogous undirected version where the weight of
the edge (i, j) is 2aij and i < j .

The problems QUBO and Ising QUBO are closely related. The Ising QUBO
(A, b) can be converted to an equivalent QUBO (Qa, ca) (here the equivalence is
only up to optimality) using the linear transformation

x = 2x̃− e, (8.1)

where e is the all-one vector. This transformation also generates an additive constant
Ka in the objective function. It can be verified that Qa = 4A, (ca)T = 2(bT −eT A−
eT AT) and Ka = eT Ae− bT e. Thus, for each x ∈ {−1, 1}n there is a corresponding
x̃ = 1

2 (x+ e) ∈ {0, 1}n such that

ϕ(x) = xT Ax+ bT x = x̃T Qa x̃+ (ca)T x̃+Ka = φ(x̃)+Ka (8.2)

Similarly, the instance (Q, c) of a QUBO can be converted into an equivalent (up to
optimality) instance (Aq, bq) of the Ising QUBO using the linear transformation

x = 1

2
(x̂+ e), (8.3)

where Aq = 1
4 Q, (bq)T = 1

4 (eT Q + eT QT + 2cT) along with an additive constant
Kq = 1

4 eT Qe + 1
2 cT e. Thus, for any x ∈ {0, 1}n, there is a corresponding x̂ =

2x− e ∈ {−1, 1}n such that

φ(x) = xT Qx+ cT x = x̂T Aq x̂+ (bq)T x̂+Kq = ϕ(x̂)+Kq (8.4)

Both QUBO and Ising QUBO are strongly NP-hard. In Chap. 3 we have seen
various polynomially solvable special cases of these problems. In this chapter we
focus primarily on approximation algorithms.

Before getting into the technical details, let us discuss briefly some of the
notations used in this chapter. The continuous relaxation of an optimization problem
P is denoted by P* and the optimal objective function value of P (P*) by OPT(P)
(OPT(P*)). The terminology QUBO refers to the quadratic unconstrained binary
optimization problem and QP refers to the specific mathematical programming
representation given at the beginning of this chapter. Similarly, the terminology

210 A. P. Punnen

Ising QUBO refers to the Ising version of the quadratic unconstrained binary
optimization problem and IQ refers to the specific mathematical programming
representation given at the beginning of this chapter for the Ising QUBO. However,
we sometimes use these notations interchangeably. Although φ(x) is defined for
x ∈ {0, 1}n, we extend the notation to x ∈ [0, 1]n as well. Likewise, the notation
ϕ(x) is extended to x ∈ [−1, 1]n. A vector with all components equal to 1 is denoted
by e, all components equal to 1

2 is denoted by h, and with all the components equal
to zero is denoted by 0. The expected value of a random variable x is denoted by
E(x). For all other notations, we follow the convention introduced in Chap. 1.

An algorithm for an optimization problem is said to be a heuristic if the solution
produced by it is not guaranteed to be optimal. Heuristics are also referred to
as approximation algorithms, but sometimes, when talking about approximation
algorithms, a polynomial time complexity is assumed. However, we make no
distinction between heuristics and approximation algorithms and whenever poly-
nomial complexity is required, we explicitly state ‘polynomial time approximation
algorithms’. Zemel [41] analyzed various performance measures of heuristic algo-
rithms for combinatorial optimization problems and suggested desirable properties
of good performance measures. Let us now look at some of the popular theoretical
performance measures of a heuristic algorithm.

Let H be a heuristic algorithm for an optimization problem OP (in maximization
form) which produces a solution with objective function value H(P) for an instance
P . Then, H is said to be a 1

ε
-approximation algorithm if

H(P) ≥ 1

ε
OPT(P) for any instance P of OP

where 0 < 1
ε
≤ 1. A solution produced by a 1

ε
-approximation algorithm is called

a 1
ε

-optimal solution. The quantity 1
ε

is called the relative performance ratio of
H. In this definition, we assume that OPT(P) ≥ 0. For QUBO, since φ(0) = 0,
OPT(P) ≥ 0 and hence a heuristic H with H(P) < 0 is not a 1

ε
-approximation

algorithm for any 0 ≤ 1
ε
≤ 1. As we will see later, when P is an instance of the

Ising QUBO, OPT(P) ≥ 0 when the diagonal elements of A are non-negative and
hence any heuristic algorithm H with H(P) < 0 is not a 1

ε
-approximation algorithm

for such a problem.
Although QUBO is equivalent to the maximum weight cut problem (see

Chap. 1 for the definition), this equivalence is established only at optimality.
A 1

ε
-approximation algorithm for the maximum weight cut problem does not

necessarily give a 1
ε

-approximation algorithm for QUBO. In the same way,
existence of a 1

ε
-approximation algorithm for the Ising QUBO need not imply

the existence of a 1
ε
-approximation algorithm for QUBO, although there is a

one-to-one linear transformation which maps the solution space of QUBO to the
solution space of the Ising QUBO and vice versa. Thus, the QUBO and the Ising
QUBO needs to be analyzed independently when the relative performance ratio is
considered as the measure of quality. However, as we will see later, there are relative

8 Fast Heuristics and Approximation Algorithms 211

performance ratio preserving reductions between QUBO and Ising QUBO when
additional restrictions are imposed on the problem data. Moreover, unless P=NP, no
polynomial time 1

ε
-approximation algorithm exists for the general Ising QUBO, for

any ε > 0 [4]. In fact, testing if the general Ising QUBO has a solution with a non-
negative objective function value is itself NP-hard [4]. However, polynomial time
1
ε
-approximation algorithms are possible for the Ising QUBO when the diagonal

elements of A are zeros [4, 8, 11, 19, 24, 30] for appropriate values of ε.
Another performance measure of a heuristic algorithm is the normalized relative

error [34, 40] which is defined as

κ = inf
P∈I

OPT(P)−H(P)

OPT(P)− β

where β is the average of the objective function values of all solutions of P and
I is the collection of all ‘non-trivial’ instances of P . When κ ≤ 1 for a heuristic
algorithm H , the solution produced by H will have a value of at least β (i.e. the
solution is no worse than average). When κ = 0, H guarantees an optimal solution.
For QUBO, OPT(P) �= β for all non-trivial instances, where trivial instances of
QUBO are those with Q is the zero matrix and c is the zero vector. Palubeckis [34]
considered theoretical analysis of algorithms with normalized relative error while
Tavares [40] examined the measure using experimental analysis.

Yet another performance measure, closely related to κ , is the differential
approximation ratio δ [9] which is defined as

δ = inf
P∈I

H(P)−min(P)

OPT(P)−min(P)
,

where min(P) is the worst objective function value. For details on the analysis
of approximation algorithms using the differential approximation ratio for various
combinatorial optimization problems, we refer to [9]. Nesterov [31] used the
differential approximation ratio as the performance measure for a semidefinite
programming based polynomial time approximation algorithm for a special case
of the Ising QUBO.

Domination analysis of algorithms [12, 15] is another way to measure the
performance of a heuristic algorithm. A solution x of a maximization problem P is
dominated by another solution x′ if OBJ(x) ≤ OBJ(x′), where OBJ(x) is the objective
function value of x. Let x∗ be the solution produced by the heuristic algorithm H

for the maximization problem P which is defined over the finite family F of the
feasible solutions and D(H) = {x ∈ F : OBJ(x) ≤ OBJ(x∗)}. Then, D(H) is the
collection of all solutions of P dominated by x∗. The heuristic H is said to have
domination number δ if |D(H)| ≥ δ for any instance of the problem P [12, 41].
Further, H is said to have domination ratio ρ [12] if

ρ = inf
p∈I

|D(H)|
|F|

212 A. P. Punnen

Note that 0 ≤ ρ ≤ 1 for all instances of P and when ρ = 1, the algorithm
H guarantees an optimal solution. For QUBO and the Ising QUBO, |F| = 2n,
a fixed number that depends only on the problem dimension and is independent
of the other parts of the problem data. The domination ratio has been used in the
analysis of heuristic algorithms for the travelling salesman problem [14, 37]. For a
survey on domination analysis of algorithms for various combinatorial optimization
problems, we refer to [15]. Each of the performance measures discussed above
has its own merits and drawbacks. However, each of these measures also provides
distinct insights into the quality of a heuristic algorithm.

In this chapter, we consider polynomial time heuristic algorithms for QUBO
and the Ising QUBO. Whenever applicable, we discuss appropriate performance
measures in terms of relative performance ratio, differential approximation ratio,
normalized relative error, or domination ratio.

8.2 Rounding Algorithms

Let us first discuss a very simple class of algorithms for QUBO which ‘rounds’ a
solution x ∈ [0, 1]n to obtain a solution x′ ∈ {0, 1}n such that φ(x′) ≥ φ(x). These
types of algorithms for QUBO were considered by many authors [28, 40] in different
contexts.

For any k ∈ {1, 2, . . . , n}, φ(x) can be written as

φ(x) =

⎛

⎜
⎜
⎝

n∑

j=1
j �=k

cj xj +
n∑

i=1
i �=k

n∑

j=1
j �=k

qij xixj

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝xk

(
ck +

n∑

j=1
j �=k

2qkjxj

)

⎞

⎟
⎟
⎠ (8.5)

Since we assumed that the diagonal elements of Q are zeros, the condition j �= k

in the second bracket of Eq. (8.5) is redundant, but we are keeping it to emphasise
that the associated summation is independent of xk. In Eq. (8.5), the first bracket is
independent of xk . Let

q(k) = ck +
n∑

j=1
j �=k

2qij xj .

Now, consider the solution x̂ defined by

x̂j =

⎧
⎪⎪⎨

⎪⎪⎩

xj if j �= k,

1 if j = k and q(k) ≥ 0

0 if j = k and q(k) < 0

(8.6)

8 Fast Heuristics and Approximation Algorithms 213

Then, it is easy to verify that φ(x̂) ≥ φ(x) and the number of fractional components
of x̂ is one less than that of x, whenever xk is fractional. Repeating this rounding
operation by using x̂ in place of x and continuing the process, after at most n

iterations we get a 0−1 solution x0 with φ(x0) ≥ φ(x). These steps are summarized
in the [0, 1]-rounding algorithm below.

Algorithm 1: The [0, 1]-rounding algorithm

1 Let x ∈ [0, 1]n be a given fractional solution and set x0 = x ;
2 S ← {i : xi /∈ {0, 1}};
3 for i ∈ S do q(i) = ci + 2

n∑

j=1
j �=i

qij xj ;

4 while S �= ∅ do
5 choose k ∈ S and update S = S \ {k};
6 if q(k) ≥ 0 then set x0

k = 1;
7 else set x0

k = 0;
8 for i ∈ S do q(i) = q(i)+ 2qik(x

0
k − xk)// updating q(i) for

i ∈ S;
9 end

10 output x0

Theorem 8.1 The [0, 1]-rounding algorithm constructs a solution x0 ∈ {0, 1}n
from a solution x ∈ [0, 1]n such that φ(x0) ≥ φ(x) in O(n2) time.

The proof of this theorem follows from repetend application of Eq. (8.5) and
the rounding scheme (8.6). Formula (8.5) and the validity of the [0, 1]-rounding
algorithm as presented above depends on the fact that the diagonal elements of Q
are zeros.

Since Q is a symmetric, non-zero matrix with diagonal entries zero, tr(Q) = 0
and hence the sum of its eigenvalues is zero. Then, Q has at least one negative
eigenvalue and one positive eigenvalue. (Recall that Q is not a zero matrix.)
Therefore Q is neither positive semidefinite nor negative semidefinite. When Q is
positive semidefinite, φ(x) is convex over [0, 1]n and hence there exists an optimal
solution to QP* which is at an extreme point of the hypercube [0, 1]n. The [0, 1]-
rounding algorithm establishes the extreme point optimality property when the
diagonal elements of Q are zeros and offers a construction scheme to produce
an extreme point optimal solution from an arbitrary optimal solution. Note that
convexity is not a necessary condition for the extreme point optimality property.
When the diagonal elements of Q are non-negative φ(x) is coordinate-wise convex
(convex in each variable) and this is sufficient to establish extreme point optimality
and the [0, 1]-rounding algorithm can easily be amended to handle this case.

Theorem 8.2 The optimal objective function value of QP and QP* are the same
when the diagonal elements of Q are non-negative. Further, there exists an optimal
solution to QP* which is at an extreme point of the hypercube [0, 1]n

214 A. P. Punnen

Proof Let x∗ be an optimal solution to QP*. If x∗ /∈ {0, 1}n, apply the [0, 1]-
rounding algorithm (with appropriate changes to handle non-negative diagonal
elements of Q, if applicable) to compute a solution x0 ∈ {0, 1}n. Then, φ(x0) ≥
φ(x∗). Since x∗ is an optimal solution of QP*, φ(x∗) ≥ φ(x0). Thus, φ(x∗) = φ(x0)

and the result follows.

The [0, 1]-rounding algorithm can be implemented using an incremental con-
struction of a solution to a p × p QP for p = 1, 2, . . . , n converging to a
solution to QP, which is the solution for the n × n QP obtained. The worst case
complexity of this implementation is still O(n2) but could be slightly faster in
computational experiments compared to the implementation discussed in the [0, 1]-
rounding algorithm.

Algorithm 2: The incremental [0, 1]-rounding algorithm

1 Input: x∗ ∈ [0, 1]n;
2 S̄ ← {j : 0 < x∗j < 1} and S ← {j : x∗j ∈ {0, 1}};
3 x0

j ← x∗j for j ∈ S;

4 while S̄ �= ∅ do
5 Choose k ∈ S̄;
6 if ck + 2

∑
j∈S qkj x

∗
j > 0 then x0

k = 1;

7 else x0
k = 0;

8 S̄ ← S̄ \ {k}, S ← S ∪ {k};
9 end

10 output x0

Lemma 8.1 The incremental [0, 1]-rounding algorithm terminates in O(n2) time
with a solution x0 ∈ {0, 1}n such that φ(x0) ≥ φ(x∗).

Let us now discuss our rounding algorithm for the Ising QUBO [8, 11, 24]. It
works almost the same way as the [0, 1]-rounding algorithm above. The algorithm
takes the input solution x∗ ∈ [−1, 1]n and produce the output solution x0 ∈ {−1, 1}n
such that ϕ(x0) ≥ ϕ(x∗).

Algorithm 3: The [−1, 1]-rounding algorithm

1 Input: x∗ ∈ [−1, 1]n;
2 S ← {j : −1 < x∗j < 1};
3 x0 ← x∗;
4 while S �= ∅ do
5 choose k ∈ S;
6 if bk +∑n

j=1,j �=k(akj + ajk)x
0
j ≥ 0 then set x0

k = 1;

7 else x0
k = −1;

8 S ← S \ {k};
9 end

10 output x0

8 Fast Heuristics and Approximation Algorithms 215

Theorem 8.3 The [−1, 1]-rounding algorithm produces a solution x0 of IQ satis-
fying ϕ(x0) ≥ ϕ(x∗) in O(n2) time.

Proof Note that the diagonal elements of A are zeros. Then, for any k ∈
{1, 2, . . . , n}

ϕ(x) =
n∑

j=1
j �=k

bjxj +
n∑

i=1
i �=k

n∑

j=1
j �=k

aij xixj + xk

⎛

⎜
⎜
⎝bk +

n∑

j=1
j �=k

(akj + ajk)xj

⎞

⎟
⎟
⎠

If bk +∑n
j=1
j �=k

(akj + ajk)x
∗
j > 0, we can increase x∗k to 1 to obtain a better solution.

Likewise, if bk +∑n
j=1
j �=k

(akj + ajk)x
∗
j < 0 we can decrease the value of x∗k to −1

to obtain a better solution. This observation establishes the validity of the theorem.
The complexity calculation is straightforward.

By choosing x∗ = 0 and using the [-1,1]-rounding algorithm, we can construct a
solution x0 of IQ such that ϕ(x0) ≥ 0. This shows that the optimal objective function
value of the Ising QUBO is non-negative. Theorem 8.3 has another important
consequence. As in the case of QUBO, for the Ising QUBO, the [−1, 1]-rounding
algorithm can be modified easily to handle the case when the diagonal elements of
A are non-negative.

Corollary 8.1 ([8, 26]) When the diagonal elements of A are non-negative, there
exists an optimal solution x0 ∈ {−1, 1}n to the continuous relaxation IQ* of IQ.

The [−1, 1]-rounding algorithm and the [0, 1]-rounding algorithm can be
repeated multiple times to obtain improved solutions, in practice. The solution
quality of the rounding algorithms depends on two factors:

1. the starting solution x and
2. the order in which variables are selected to round.

By choosing these elements randomly and repeating the algorithm multiple times,
followed by changing the starting solution vector, good solutions can be obtained
which can be further improved using local search or metaheuristic algorithms (see
Chap. 9). In this sense, the rounding algorithms play a major role in search path
diversification of metaheuristic algorithms.

The empirical performance of the rounding algorithms depend on the criteria
applied to select the index k to ‘round’. As mentioned above, making this a random
choice, the algorithm can be repeated multiple times and then we could choose
the overall best solution obtained. We can also select the index k using |q(k)| =
maxi∈S{|q(i)|} for the [-1,1]-rounding algorithm or can develop other specific
selection rules, depending on the nature of the rounding algorithms. Palubeckis [34]
considered the special cases of the [0, 1]-rounding algorithm when the starting
solution is the all-half vector h. The algorithm can also be repeated by selecting

216 A. P. Punnen

different fractional vectors carefully, to achieve improved performance in practice.
For example, later, we will discuss how to generate a ‘good’ x ∈ [−1, 1]n from
an optimal solution to a semidefinite programming (SDP) relaxation of IQ. This
construction depends on choosing a random n-dimensional Gaussian and hence can
be repeated multiple times to produce improved solutions. For experimental analysis
on the rounding algorithms and other simple construction heuristics, and for further
theoretical analysis of these types of algorithms, we refer to [36].

Although our rounding algorithms produced some performance guarantee, we
will see later that by choosing carefully the starting solution, different (and better)
performance guarantees can be obtained for both QUBO and the Ising QUBO.

8.3 The Normalized Relative Error

Let us now consider algorithms for QUBO and the Ising QUBO that produce
solutions with objective function values guaranteed to be no worse than average.
For such algorithms, the normalized relative error κ ≤ 1. Consequently, we mostly
talk about the performance guarantee in terms of the average value of solutions,
rather than κ , but the value of κ will be implicit. A solution is said to be no-worse
than average if its objective function value is greater than or equal to the average of
the objective function values of all solutions.

We first establish a closed form formula to compute the average of the objective
function values of all the solutions of QUBO. Note that the centre of the hypercube
[0, 1]n is the all-half vector h. Considering the symmetry of the hypercube, it is
reasonable to expect that the average of the objective function values of all the
solutions of QUBO is attained at h. Our next theorem shows that this is indeed

true. Let Q =
n∑

i=1

n∑

j=1
j �=i

qij and C =
n∑

i=1

ci .

Theorem 8.4 ([34]) The average of the objective function values of all 2n solutions
of the QUBO (Q, c) isA(Q, c) = 1

4Q+ 1
2C.

Proof Consider n independent random variables x1, x2, . . . , xn taking values 0 or
1, each with probability 1

2 . Then, the expected value E(xi) of xi is 1
2 . For i �= j , xi

and xj are independent and hence E(xixj) = E(xi)E(xj) = 1
4 . Now, consider the

random variable

X =
n∑

i=1

n∑

j=1,j �=i

qij xixj +
n∑

j=1

cjxj .

8 Fast Heuristics and Approximation Algorithms 217

By the linearity property of expectation and using the fact that qii = 0 for all i, the
expected value of X is

E(X) = 1

4

n∑

i=1

n∑

j=1

qij + 1

2

n∑

i=1

ci

and the result follows.

Remark 8.1 When Q is allowed to have non-zero diagonal elements, the average of
the objective function values of all 2n solutions of QUBO is A(Q, c) = 1

4Q+ 1
2C+

1
2 tr(Q), where tr(Q) is the trace of the matrix Q. Note that in the definition of Q, the
diagonal elements are excluded.

Corollary 8.2 A solution to the QUBO (Q, c) with objective function value no
worse thanA(Q, c) can be identified in O(n2) time.

Proof Note that the objective function value of the fractional solution x = h, the
all- 1

2 vector, is A(Q, c). Then, by Theorem 8.1, the solution x∗ produced by the
[0, 1]-rounding algorithm, starting with h, satisfies φ(x∗) ≥ φ(h) = A(Q, c) and
the result follows.

In fact, the [0, 1]-rounding algorithm can be used to guarantee a performance
bound that is better than A(Q, c).

Theorem 8.5 A(Q, c) ≤ ζ(Q, c) = max
{

0,Q+ C,− 3C2

4Q

}
. Further, a solution

with objective function value no worse than ζ(Q, c) can be identified in O(n2) time.

Proof Consider the single variable quadratic function f (y) = Qy2 + Cy for y ∈
[0, 1]. Note that A(Q, c) = f (1/2) and hence A(Q, c) ≤ max {f (y) : y ∈ [0, 1]}.
If Q ≥ 0 then f (y) is a convex function and hence its maximum is attained either
at 0 or at 1. If Q < 0, then f (y) is concave and its maximum is attained either at 0
or at 1 if −C2Q /∈ [0, 1] and at y∗ = −C

2Q if 0 ≤ y∗ ≤ 1. Let x0 be the all-zero solution

and x1 be the all-one solution. If 0 < −C
2Q < 1 then choose the fractional solution

x with xi = − C

2Q for all i and then φ(x) = − 3C2

4Q . Now apply the [0, 1]-rounding
algorithm, starting with this x, and let the resulting solution be x∗. Theorem 8.1

guarantees that φ(x∗) ≥ − 3C2

4Q . Then, the best of x0, x1, x∗ is guaranteed to have an
objective function value no worse than ζ(Q, c) and the result follows.

From Theorem 8.5, it follows that when Q ≥ 0, one of the trivial solutions, the
all-one or all-zero solutions, is no worse than average. This probably raises questions
on the merit of using the performance guarantee A(Q, c). To highlight its relevance,
it may be noted that even powerful local search algorithms could get trapped at a
solution with value less than A(Q, c) [34].

Consider the instance of QUBO where the matrix Q has all elements equal to
one, except the diagonal elements which are zeros. Let ci = − 1

2 (k − 1 + ε) where
ε > 0 is a very small number. Then, A(Q, c) = n

4 (n− k − ε) > 0 for all k < n

218 A. P. Punnen

for an appropriately small ε > 0. Now consider the neighborhood consisting of all
r-flip moves where r ≤ k [33, 34]. Then the all-zero solution is locally optimal with
respect to this neighborhood and this local optimum has value zero which is less than
A(Q, c). These types of neighborhoods are very powerful, even for small values of
k and is the basis for many successful implementations of complex metaheuristics
for QUBO. See Chap. 9 for a detailed discussion on metaheuristic algorithms for
QUBO.

Let us now look at another performance measure related to A(Q, c) introduced
by Palubeckis [34]. Let QP(r) be the optimization problem obtained from QP with
the additional restriction that

∑n
j=1 xj = r and let F(r) be the family of all feasible

solutions of QP(r). Then, |F(r)| = (
n
r

)
and F(r)∩F(s) = ∅ for r �= s. The average

of the objective function values of all solutions of QP(r) is denoted by Ar (Q, c) and
F ∗ = max

0≤r≤n
Ar (Q, c).

Theorem 8.6 F ∗ ≥ A(Q, c)

Proof Since

A(Q, c) =
∑n

r=0 |F(r)|Ar (Q, c)
∑n

r=0 |F(r)| ,

we have A(Q, c) ≤ max0≤r≤nAr (Q, c) = F ∗.

It is not difficult to construct instances (Q, c) of QUBO such that F ∗ > A(Q, c).
Thus, it will be interesting to develop heuristic algorithms for QUBO that guarantee
solutions with objective function values no worse than F ∗. We now discuss one such
algorithm based on the works of Palubeckis [34]. First, let us derive a closed form
formula for Ar (Q, c).

Theorem 8.7 Ar (Q, c) = r(r − 1)

n(n− 1)

n∑

i=1

n∑

j=1

qij + r

n

n∑

i=1

ci

Proof Let x1, x2 . . . , xt be the collection of all solutions of QP(r), where t = (
n
r

)
.

Then,

Ar (Q, c) = 1

t

t∑

k=1

⎛

⎝
n∑

i=1

n∑

j=1

qij x
k
i xk

j +
n∑

i=1

cix
k
i

⎞

⎠

= 1

t

⎛

⎝
n∑

i=1

n∑

j=1

qij

t∑

k=1

xk
i xk

j +
n∑

i=1

ci

t∑

k=1

xk
i

⎞

⎠

For simplicity, we assume that r ≥ 2 but the formula works for all r = 0, 1, . . . , n.
Note that

∑t
k=1 xk

i counts the total number of solutions of QP(r) containing xi = 1

which is
(
n−1
r−1

)
. Likewise,

∑t
k=1 xk

i xk
j counts the total number of solutions of QP(r)

8 Fast Heuristics and Approximation Algorithms 219

containing both xi = xj = 1 and this is
(
n−2
r−2

)
. Thus,

Ar (Q, c) = 1

t

⎛

⎝
(

n− 2

r − 2

) n∑

i=1

n∑

j=1

qij +
(

n− 1

r − 1

) n∑

i=1

ci

⎞

⎠

Substituting t = (
n
r

)
and simplifying, we get the result.

In view of Theorem 8.6, to efficiently construct a solution of QP with objective
function value no worse than F ∗, it is sufficient to find a solution for QP(r) with
objective function value no worse than Ar (Q, c) for r = 0, 1, . . . , n and choose the
best overall solution. So, let us explore this. Besides the connection with generating
a heuristic solution for QUBO with some level of performance guarantee, this
problem is interesting by itself since QP(r) is the cardinality constrained QUBO [27]
which also has various applications. Let Ar (Q, c/xk = 1) be the average value of
all solutions of QP(r) given that xk = 1 for a specified index k, for 1 ≤ k ≤ n.

Lemma 8.2 Ar (Q, c/xk = 1)= r − 1

n− 1

(
r − 2

n− 2
Q+C

)

+ n− r

n− 1
ck+2

n− r

n− 1

r − 1

n− 2

n∑

i=1

qik,

where r �= 0

Proof When xk is fixed at value 1, we can reduce the cost matrix of QP(r) by
deleting row k and column k and adding the sum of row k and column k to the
cost vector c. This also releases a constant term ck . Then, Ar (Q, c/xk = 1) is
ck +Ar−1(Q′, c′) where Q′ and c′, respectively, are the cost matrix and cost vector
obtained for the reduced problem. Note that Q is symmetric and qii = 0 for all i.
Using the formula for Ar (Q, c), we get,

Ar (Q, c/xk = 1) = ck +Ar−1(Q′, c′)

= ck + r − 1

n− 1

(
r − 2

n− 2

[

Q− 2
n∑

i=1

qik

]

+ C− ck + 2
n∑

i=1

qik

)

= r − 1

n− 1

(
r − 2

n− 2
Q+ C

)

+ n− r

n− 1
ck+2

n− r

n− 1

r − 1

n− 2

n∑

i=1

qik,

and this completes the proof.

Now, for r �= 0 choose p such that

Ar (Q, c/xp = 1) = max
1≤k≤n

Ar (Q, c/xk = 1) ≥ Ar (Q, c) (8.7)

In the expression of Ar (Q, c/xk = 1) in Lemma 8.2, r−1
n−1

(
r−2
n−2Q+ C

)
is a constant

independent of k. Thus, to identify p in Eq. (8.7), it is sufficient to compute

g(p) = max
1≤k≤n

g(k), (8.8)

220 A. P. Punnen

where

g(k) = n− r

n− 1
ck+2

n− r

n− 1

r − 1

n− 2

n∑

i=1

qik.

Now, fix xp = 1 and we get a reduced problem of the type QP(r − 1) with data
(Q′, c′) for appropriate Q′ and c′. The process of fixing a selected variable at value
1 as discussed above can be continued recursively, until r variables have been
fixed. Now, set the remaining variables at value zero. By the specific construction
employed and using Eq. (8.7), it can be verified that the solution, say xr , obtained
will have objective function value at least Ar (Q, c). We call this construction
scheme the averaged variable selection algorithm.

Theorem 8.8 The averaged variable selection algorithm produces a solution xr to
QP(r) with φ(xr) ≥ Ar (Q, c) in O(n2) time.

The proof of the theorem follows from the preceding discussions. Let F ∗ =
Ap(Q, c) = max{Ar (Q, c) : r = 0, 1, . . . , n}. Then φ(xp) ≥ F ∗.

Theorem 8.9 (Palubeckis [34]) φ(xp) ≥ F ∗ ≥ A(Q, c). A solution x∗ of QUBO
with φ(x∗) ≥ F ∗ can be identified in O(n3) time.

Proof By construction φ(xp) ≥ max{φ(xr) : r = 0, 1, 2, . . . , n}. The result
follows from Theorems 8.6 and 8.8.

The O(n3) complexity indicated in Theorem 8.8 can be reduced to O(n2) by
identifying and eliminating all but two values of r from consideration and then
solving QP(r) only for these two values of r . Note that for r = 0, 1, . . . , n,

Ar (Q, c) = r(r − 1)

n(n − 1
Q+ p

n
C (8.9)

= r2 Q

n(n− 1)
+ r

(n− 1)C− Q

n(n− 1)
(8.10)

Now, consider the single variable quadratic function

ψ(r) = r2 Q

n(n− 1)
+ r

(n− 1)C− Q

n(n− 1)
for r ∈ [0, n] (8.11)

If Q ≥ 0 then ψ(r) is a convex function and its maximum is achieved at r = 0
or r = n. In this case F ∗ = max{A0(Q, c),An(Q, c)}. If Q < 0 then ψ(r) is a
concave function. Thus its maximum is achieved at r = r0 where r0 = − (n−1)C−Q

2Q .

If r0 /∈ (0, n) then the maximum of ψ(r) for r ∈ [0, n] is achieved at r = 0 or
r = n. If r0 ∈ (0, n) then maximum of ψ(r) for r ∈ [0, n] is achieved at r0. But
r0 need not be an integer. In this case, maximum of ψ(r) for r ∈ {0, 1, 2, . . . , n} is

8 Fast Heuristics and Approximation Algorithms 221

achieved at r1 = �r0� or at r2 = �r0�. Summarizing the foregoing discussion,

F ∗ =
{

max{A0(Q, c),An(Q, c)} if Q ≥ 0, or Q < 0 and r0 /∈ (0, n)

max{Ar1(Q, c),Ar2(Q, c)} if Q < 0 and r0 ∈ (0, n).

Thus, to identify F ∗ and the corresponding solution xp with φ(xp) ≥ F ∗ we need
to consider only two values of r . i.e. r = 0, 1 if Q ≥ 0 or Q < 0 and r0 /∈ (0, n),
and r = r1, r2 if Q < 0 and r0 ∈ (0, n). Since Ar (Q, c) and an associated solution
xr with φ(xr) ≥ A(Q, c) can be identified in O(n2) time for any given r , F ∗ and
the associated solution xp with φ(xp) ≥ F ∗ can be identified in O(n2) time.

When Q is non-negative, we can in fact construct a solution x with φ(x) > F ∗
using our [0, 1]-rounding algorithm. Note that, for non-negative integers r and n

with r ≤ n,
r − 1

n− 1
≤ r

n
. Then,

Ar (Q, c) = r(r − 1)

n(n− 1)
Q+ r

n
C <

(r

n

)2
Q+ r

n
C.

Consider the fractional solution x̄r where x̄r
i = r

n
for all i = 1, 2, . . . , n. Then,

φ(x̄r) = (
r
n

)2
Q + r

n
C. Now, apply the [0, 1]-rounding algorithm discussed earlier

to obtain a binary solution xr with objective function value φ(xr) ≥ (
r
n

)2
Q + r

n
C.

It may be noted that the number of components of xr with value 1 however need not
be equal to r . Now, compute xr for r = 0, 1, 2 . . . , n and choose the overall best
solution, say x∗. Then, φ(x∗) > F ∗. When Q < 0 and r0 ∈ (0, n), and r0 �= r1, r2,
then also we can find a solution xr with φ(xr) > F ∗ by using the [0, 1]-rounding

algorithm and the fractional solution x̄r
i = r0

n
for all i = 1, 2, . . . , n.

If c is the zero vector and the row sum and column sum of Q are zeros, F ∗ =
A(Q, c) = Ar (Q, c) = 0 for r = 0, 1, . . . , n. However, in this case φ(x) = φ(x̄)

where x̄ is the complement of x and hence one of the components of x can be fixed at
0 (see Chap. 1). Now apply the algorithms discussed earlier on the reduced problem
to obtain a better performance guarantee than zero on the objective function value
of the resulting solution.

8.3.1 Average Value of Solutions of the Ising QUBO

Let us now consider some algorithms for the Ising QUBO that produce no worse
than average solutions. In other words, algorithms with the normalized relative
error κ ≤ 1. We first present a closed form formula to compute the average of the
objective function values of all 2n solutions of the Ising QUBO. This can be derived
from the formula for A(Q, c) obtained for QUBO and the transformation between
QUBO and Ising QUBO. However, a direct proof is given below. Let V(A, b) be the

222 A. P. Punnen

average of the objective function values of all solutions of the Ising QUBO instance
(A, b).

Theorem 8.10 V(A, b) = tr(A)

Proof Consider n independent random variables x1, x2, . . . , xn which take values
−1 or 1 with probability 1

2 each. Then, the expected value of xi = 0. For i �= j ,
since xi and xj are independent, E(xixj) = E(xi)E(xj) = 0. Also, E(x2

i) = 1.
Now, consider the random variable X = ∑n

i=1
∑n

j=1 aij xixj +∑n
i=1 bixi . By the

linearity property of expectation, the expected value E(X) of X is tr(A) and hence
V(A, b) = tr(A).

Unless otherwise stated, hereafter, we assume that the diagonal elements of A
are zeros and hence V(A, b) = 0. For QUBO, computing a solution with a non-
negative objective function value is trivial since x = 0 satisfies this. Further, the
problem of extending any partial solution, to a full solution without worsening the
objective function value is also trivial since we can force the remaining variables to
have value zero. However, both these problems are not trivial (though simple) for
the case of the Ising QUBO. Since V(A, b) = 0, we can convert the instance (A, b)

into an equivalent instance of QUBO and compute a solution that is no worse than
average. Now, convert the solution obtained back to that of the Ising QUBO and we
have a solution with a non-negative objective function value.

Let us now discuss a very simple and direct algorithm to compute a solution to the
Ising QUBO with a non-negative objective function value (no worse than average
solution). In fact, this algorithm can be used to compute a no-worse than average
solution for QUBO as well because of the equivalent transformation between QUBO
and the Ising QUBO discussed earlier. The algorithm starts with a partial solution
and extends it to full solution by incrementally fixing a free variable at value 1 or−1.
Let xs be a partial solution to the Ising QUBO defined by the set S ⊆ {1, 2, . . . , n}.
That is, xj for j ∈ S already has an assigned value of −1 or 1. The objective
function value of this partial solution is

ϕs(xs) =
∑

i∈S

∑

j∈S

aij xixj +
∑

j∈S

bjxj (8.12)

Algorithm 4: The partial solution extension algorithm

1 Let {x∗j : j ∈ S} be a given partial solution;

2 S̄ ← {1, 2, . . . , n} \ S;
3 while S̄ �= ∅ do
4 Choose k ∈ S̄ and set x∗k = 1;
5 if bk +∑j∈S(akj + ajk)x

∗
j < 0 then x∗k ← −1;

6 S ← S ∪ {k}, S̄ ← S̄ \ {k};
7 end
8 output x∗

8 Fast Heuristics and Approximation Algorithms 223

Theorem 8.11 The partial solution extension algorithm, starting with a partial
solution xs of the Ising QUBO corresponding to S ⊆ {1, 2, . . . , n}, produces a
solution x∗ of the Ising QUBO such that ϕ(x∗) ≥ ϕs(xs) in O(n(n − |S|)) time.
Further, when S = ∅, ϕ(x∗) ≥ 0.

Proof Without loss of generality, assume that S = {1, 2, . . . , r}. For any solution
x and i = 1, 2, . . . , n, let αi(x) = bi + ∑i−1

j=1(aij + aji)xj . Then ϕ(x) =
∑n

i=1 xiαi(x). Let xk and xk+1 be the partial solutions produced in the iterations k

and k+1 respectively of the algorithm and Sk and Sk+1 be the associated values of S

in these iterations. Then, by construction, ϕsk+1(xk+1) ≥ ϕsk (xk) and this establishes
that ϕ(x∗) ≥ ϕs(xs). Also, the computation in each iteration can be carried out in
O(n) time and this proves the first part. For the second part, since S = ∅ we can
consider that the starting partial solution has its objective function value zero and
from the arguments for the first part of the theorem, the result follows.

The partial solution extension algorithm is described in [19] and it guarantees a
solution to the Ising QUBO with objective function value no worse than V(A, 0)

(which is zero) when the diagonal elements of A are zeros. The same solution will
have value at least tr(A) if diagonal elements are arbitrary. Since b can be assumed
to be zero without loss of generality, we have

Corollary 8.3 A solution to the general Ising QUBO (A, b) with objective function
value no worse thanV(A, b) can be identified in O(n2) time.

8.4 Domination Analysis of Algorithms

Let us now consider the performance measure of domination ratio introduced by
Glover and Punnen [12]. We first consider the Ising QUBO and then discuss how to
extend the results obtained for the Ising QUBO to QUBO.

Let F(0) = {x ∈ {−1, 1}n : ϕ(x) ≤ 0}. To carry out domination analysis of
algorithms that produce no worse than average solutions, we first want to estimate
|F(0)|. Note that |{−1, 1}n| = 2n and we will show that |F(0)|

2n ≥ 1
38 . To establish

this, we closely follow the analysis provided by Alon et al. [3] for the equivalent
maximum cut problem. We first assume that A is an upper triangular non-zero
matrix and the diagonal elements of A are zeros. Further, for simplicity, we first
assume that b = 0. For such an instance (A, 0) of the Ising QUBO, V(A, 0) = 0.

Let x1, x2, . . . , xn be n independent random variables, each distributed uniformly
on {−1, 1} and let X be a random variable defined by

X =
n−1∑

i=1

n∑

j=i+1

aij xixj . (8.13)

224 A. P. Punnen

Since X is defined using an upper triangular matrix with zeros on the diagonal, it
is convenient to associate with X a complete undirected graph Kn having edge set
(e1, e2, . . . , em) where m = n(n − 1)/2 such that each ek maps uniquely to an
ordered pair (i, j), i < j and the weight a(ek) of the edge ek is aij .

Lemma 8.3 ([3]) The random variable X in Eq. (8.13) satisfies the following
properties:

1. E(X) = 0 and E(X2) =
m∑

k=1

a2(ek) > 0.

2.
(

E(X2)
)2 =

m∑

k=1

a4(ek)+ 2
∑

1≤k<�≤m

a2(ek)a
2(e�)

3. E
(
X4
)
≤

m∑

k=1

a4(ek)+ 30

⎛

⎝
∑

1≤k<�≤m

a2(ek)a
2(e�)

⎞

⎠ .

Proof Since the random variable xi takes values 1 or −1, each with probability
1
2 , E(xk

i) = 0 if k is an odd number and 1 if k is an even number. Now, (1) and
(2) follow from the linearity property of expectation. Let us now prove (3). In the

multinomial expansion of X4 =
(∑n−1

i=1
∑n

j=i+1 aij xixj

)4
, any term having an

odd power of xi as a factor contributes nothing to E(X4) since E(xk
i) = 0 for odd

k. Thus, we need to consider only three types of terms.

1. Terms of the form (aij xixj)
4. These terms contribute to the expectation a4

ij and
the corresponding multinomial coefficient is 1. So, the overall contribution of
such terms to E(X4) is

∑n−1
i=1

∑n
j=i+1 a4

ij .

2. Terms of the form (aij xixj)
2(arsxrxs)

2, where (i, j) and (r, s) are distinct edges
of Kn. The multinomial coefficient in this case is 6 and the overall contribution
of the terms of this type to E(X4) is

∑
1≤k<�≤m a(ek)a(e�).

3. Terms of the form (aij xixj)(ak�xkx�)(arsxrxs)(auvxuxv). This makes a non-zero
contribution to the expectation when (i, j), (k, �), (r, s), (u, v) are distinct edges
that form a 4-cycle in Kn. Let C be the collection of all such 4-cycles. Then, the
resulting contribution of any C ∈ C to E(X4) is

∏
(i,j)∈C aij . The multinomial

coefficient in this case is 24. Thus the overall contribution of terms of this type
to E(X4) is 24

∑
C∈C

∏
e∈C ae.

Thus,

E(X4) =
m∑

k=1

a(ek)
4 + 6

∑

1≤k<�≤m

a2(ek)a
2(e�)+ 24

∑

C∈C

∏

e∈C

a(e) (8.14)

Now, for any 4-cycle with edges ei, ej , ek, e� appearing in this order,

a(ei)a(ej)a(ek)a(e�) ≤ 1

2

(
a2(ei)a

2(ek)+ a2(ej)a
2(e�)

)
.

8 Fast Heuristics and Approximation Algorithms 225

Thus, from (8.14),

E(X4) ≤
m∑

k=1

a(ek)
4 + 30

⎛

⎝
∑

1≤k<�≤m

a2(ek)a
2(e�)

⎞

⎠

and this completes the proof.

Lemma 8.4 ([3]) E(X4) ≤ 15
(
E(X2)

)2
.

Proof Let α =∑m
k=1 a(ek)

4 and β =∑
1≤k<�≤m a2(ek)a

2(e�). Then,

E(X4)
(
E(X2)

)2 ≤
α + 30β

α + 2β
≤ 15− 14α

α + 2β
≤ 15

and the result follows.

It may be noted that Lemma 8.4 is a strengthened version of Bonami’s
Lemma [32], which was proved in a more general context, but yielding a weaker
constant for our problem. Let us now state a bound, proved in [3], on the probability
of a random variable with bounded fourth moment being non-negative (non-
positive).

Lemma 8.5 ([3]) Let X be a real valued random variable satisfying E(X) =
0, E(X2) = σ 2 > 0 and E(X4) ≤ bσ 4. Then, Prob (X > 0) ≥ 1

24/3b
and

Prob (X < 0) ≥ 1
24/3b

.

Combining Lemmas 8.4 and 8.5, the probability of X being non-negative (non-
positive) is at least 1

24/315
> 1

38 . Thus we

Lemma 8.6 For the Ising QUBO (A, 0) where A is an upper triangular matrix with
zeros on the diagonal , |F(0)| ≥ 2n

38 .

In other words, for the Ising QUBO (A, 0), where A is an upper triangular matrix
with zeros on the diagonal, any algorithm that guarantees to produce a non-negative
solution has domination ratio of at least 1

38 . In particular, the domination ratio of the
partial solution extension algorithm for the Ising QUBO (A, 0) is at least 1

38 .

Theorem 8.12 For the general Ising QUBO (A, b) any algorithm that produces a
solution with objective function value no worse than tr(A) has domination ratio of
at least 1

38 .

Proof First, assume that A is upper triangular with zeros along the diagonal but b
is arbitrary. Construct the (n+ 1)× (n+ 1) matrix A′ with its (n+ 1)th column as
(b, 0)T and the (n+1)th row as the zero vector 0 in R

n+1. Consider the Ising QUBO
(A′, 0) with variables x′ = (x ′1, x ′2, . . . , x ′n, x ′n+1) ∈ {−1, 1}n+1. Let ϕ′(x) denote
the objective function of the Ising QUBO (A′, 0). Then ϕ′(x′) = ϕ′(−x). Take any
solution x′ of the Ising QUBO (A′, 0) with xn+1 = 1 and let x ∈ {−1, 1}n be the

226 A. P. Punnen

solution obtained from x′ by truncating the (n + 1)th component. Then, ϕ′(x′) =
ϕ(x). Let F ′(0) = {x′ ∈ {−1, 1}n+1 : ϕ(x′) ≤ 0}. By Lemma 8.6, |F

′(0)|
2n+1 ≥ 1

38 . Let
F(0) = {x ∈ {−1, 1}n : (x, 1) ∈ F ′(0)}. Since ϕ(x′) = ϕ(−x′) for all x′ ∈ F ′(0),
|F ′(0)| = 2|F(0)|. Further, F(0) is precisely {x ∈ {−1, 1}n : ϕ(x) ≥ 0}. Thus,

|F(0)|
2n

= 2|F(0)|
2n+1 = |F ′(0)|

2n+1 ≥ 1

38
.

The last inequality follows from Lemma 8.6. This proves the theorem for the Ising
QUBO instance (A, b) when A is upper triangular with zeros on diagonal, but
arbitrary b vector. Including arbitrary elements on the diagonal simply add tr(A)
to the objective function value of all solutions and hence the result is true for this
case as well. Finally, replacing A by 1

2 (A+AT) will not alter the objective function
values and hence the result is true for all symmetric matrices and this concludes the
proof.

Corollary 8.4 The domination ratio of any algorithm for the Ising QUBO that
produces a solution with objective function value no worse thanV(A, b) is at least
1

38 .

In the previous section, we discussed heuristic algorithms for QUBO that
guarantee solutions with objective function value no worse than A(Q, c), but
deferred the discussion of domination analysis. To identify the estimates for the
domination ratio of such algorithms, we want to determine the number of solutions
with objective function value no worse than A(Q, c).

Theorem 8.13 For x ∈ {0, 1}n and x̂ = 2x− e ∈ {−1, 1}n, if φ(x) ≤ A(Q, c) then
ϕ(x̂) ≤ V(Aq, bq)+Kq . Likewise, for x ∈ {−1, 1}n and x̃ = 1

2 (x+ e) ∈ {0, 1}n if
ϕ(x) ≤ V(A, b) then φ(x̃) ≤ A(Qa, ca)+Ka .

Proof Note that A(Q, c) = V(Aq, bq)+Kq and φ(x) = ϕ(x̂)+Kq . Since φ(x) ≤
A(Q, c), we have ϕ(x̂) + Kq ≤ A(Q, c) = V(Aq, bq) + Kq and hence ϕ(x) ≤
V(Aq, bq). The proof of the second part follows analogously.

Let �(Q, c) = {x ∈ {0, 1}n : φ(x) ≤ A(Q, c)} and �(A, b) = {x ∈ {−1, 1}n :
ϕ(x) ≤ V(A, b)}.
Corollary 8.5 �(Q, c) = �(Aq, bq) and �(A, b) = �(Qa, ca).

As a consequence of Theorem 8.13 and Corollaries 8.4 and 8.5, we have

Theorem 8.14 Any algorithm that produces a solution with value no worse than
A(Q, c) for the instance (Q, c) of a QUBO have domination ratio of at least 1

38

A proof of Theorem 8.14 is explored in [35] using a different random variable
than X and the expressions there are too cumbersome. The domination ratio of any
algorithm for QUBO or the Ising QUBO that guarantees no worse than average
solutions (and no other guarantees) cannot be more than 1

4 . Consider the instance
(Q, c) of QUBO where c = (−1, 0, 0, . . . , 0) and q12 = 1 with all other elements

8 Fast Heuristics and Approximation Algorithms 227

of Q are zeros. Here A(Q, c) = − 1
4 . The set of solutions with objective function

value less than or equal to − 1
4 is precisely those solutions with x1 = 1 and x2 = 0.

There are 2n−2 such solutions and so the domination ratio cannot be more than 1
4 .

When G is bipartite, this lower bound is the precise value of the domination ratio of
algorithms that guarantee no worse than average solutions. For a nice proof of this,
see Chap. 10.

Let us now state a non-approximability result for QUBO in terms of domination
ratio.

Theorem 8.15 Let α and β be relatively prime natural numbers bounded above by
a polynomial function of the input length of the associated QUBO such that α > β

and let δ = α
β
. Then, unless P=NP, no polynomial time heuristic algorithm for

QUBO can have domination ratio more than 1− 2� n
δ
�−n.

For an analogues result, along with a validity proof for the case of the bipartite
QUBO, we refer to Chap. 10.

8.5 Relative Performance Ratio and Approximation
Algorithms

As observed earlier in this chapter, the Ising QUBO can be transformed into an
equivalent QUBO and viceversa in such a way that the corresponding optimal
solutions sets are preserved. However, because of the resulting constants Ka and
Kq in the objective function, the relative performance ratio is not preserved under
these transformations. Thus, existence of an ε-approximation algorithm for the Ising
QUBO need not imply directly the existence of an ε-approximation for QUBO and
viceversa. However, for a fairly large class of problem instances, the existence of a
polynomial time ε-approximation algorithm for QUBO implies the existence of a
polynomial time ε-approximation algorithm for the Ising QUBO and viceversa.

We start with a negative result that, the Ising QUBO (A, b), when the diagonal
elements of A are permitted to take at least one negative value, cannot be
approximated by any factor in polynomial time [4]. We now show that

Theorem 8.16 Unless P=NP, no polynomial time algorithm exists to determine if
the optimal objective function value of the Ising QUBO is non-negative or not.

Proof Consider the Ising QUBO (A, 0) where the diagonal elements of A are zeros
and A has integer entries. We call such an Ising QUBO as the zero diagonal integer
Ising QUBO. Suppose that there is a polynomial time algorithmL which determines
if the optimal objective function value of an instance of the Ising QUBO (without
any restrictions on A) is non-negative or not. We will show that using this algorithm,
we can compute precisely the optimal objective function value of the zero diagonal
integer Ising QUBO in polynomial time. Note that the optimal objective function
value of the zero diagonal integer Ising QUBO (A, 0) is non-negative (Lemma 8.10)

228 A. P. Punnen

and belongs to [0, n2amax] where amax = max1≤i,j≤n |aij |. Let A′ be the matrix
obtained from A by assigning a11 = −K for some constant K . Now by applying L
on the Ising QUBO (A′, 0) by choosing K ∈ [0, n2amax] in a binary search fashion,
we can determine the precise optimal objective function value of the zero diagonal
integer Ising QUBO (A, 0) in O(f (L) log(n2amax)) time where O(f (L)) is the
complexity of L. Since the evaluation version of the zero diagonal integer Ising
QUBO is NP-hard, the result follows.

The result of Theorem 8.16 was mentioned in[4] and suggested a reduction from
the maximum cut problem. Despite the negative result established in Theorem 8.16,
when the diagonal elements of A are restricted to be zero, as we will observe later
in this subsection, interesting ε-approximation algorithms can be obtained for the
Ising QUBO. For QUBO, restricting diagonal elements of Q to be zero is not much
of an advantage. Our next theorem shows that obtaining meaningful bounds on the
relative performance ratio for a polynomial time heuristic algorithm for QUBO is
difficult, even in some very restricted form.

Theorem 8.17 Unless NP = ZPP, there does not exist any polynomial time n1−ε-
approximation algorithm for QUBO for any ε > 0, even if the diagonal elements of
Q are zeros, Q contains only two distinct non-zero entries, and all elements of c are
unity.

Proof Let G = (V ,E) be a graph on n nodes with ci = 1 for all i ∈ V and
qij = qji = 0 if (i, j) /∈ E. Choose qij = qji = −(n + 1) for all (i, j) ∈ E.
Now, suppose that there is a n1−ε-approximation algorithm for QP and let S be the
solution produced by such an algorithm for the instance (Q, c) of QP. (Here we use
the graph theoretic form of QP.) Note that OPT(QP) is the size of the maximum
stable set in G and it is at least one. Further, the subgraph G[S] of G induced by
S must be a stable set and the heuristic solution value is precisely the size of this
stable set. Thus, the existence of an n1−ε-approximation algorithm for QP implies
the existence of such an algorithm for the maximum stable set problem. The result
now follows from the fact that no polynomial time n1−ε-approximation algorithm
for the maximum stable set problem can exist unless NP=ZPP [10, 17, 18].

It may be noted that ZPP (zero-error probabilistic polynomial time) is the
complexity class of decision problems where a probabilistic Turing machine exists
which returns a correct YES or NO answer in time polynomial in expectation for
all possible input [6]. For more approximation hardness results for the maximum
stable set problem (maximum clique problem) that translate to approximation
hardness results for QP, we refer to [10, 16, 38, 39]. Despite the negative result
established in Theorem 8.17, it is possible to identify special cases of QUBO
that admit ε-approximation algorithms and even fully polynomial approximation
schemes (FPTAS) [7, 20]. We will come to this later. From Theorem 8.17 we have
the corollary

Corollary 8.6 No polynomial time n1−ε-approximation algorithm exists for the
QUBO (Q, 0) for any ε > 0, unless NP = ZPP, if Q is an arbitrary matrix.

8 Fast Heuristics and Approximation Algorithms 229

Let us now explore the question: under what conditions an ε-approximation
algorithm for the QUBO guarantees an ε-approximation algorithm for the Ising
QUBO and vice versa.

A matrix M is said to be a zero sum matrix if the sum of its elements is zero and
a strong zero sum matrix if the sum of its elements in each row is zero and the sum
of the elements of each column is also zero. There are many special cases of this
class of matrices. For example, the Laplacian matrix of a graph is a strong zero sum
matrix and so is the matrix I −D, where D is a doubly stochastic matrix and I is an
identity matrix. A vector c is said to be a zero sum vector if the sum of its elements
is zero.

Theorem 8.18 If the Ising QUBO (A, 0), where A is a zero sum matrix with diag-
onal entries zero, can be solved by a polynomial time ε-approximation algorithm
then the QUBO (Q, c) where Q is a zero sum matrix with diagonal elements zero
and c is a zero sum vector, can be solved by a polynomial time ε-approximation
algorithm.

Proof Consider the instance (Q, c) of the QUBO where Q is a zero sum matrix and
c is a zero sum vector. Construct the equivalent Ising QUBO instance (Aq, bq) using
the transformation x = 1

2 (x̂+e) (See Eqs. (8.3) and (8.4) for the definition of Aq and
bq). Since Q is a zero sum matrix with zeros on the diagonal, Aq is also a zero sum
matrix with zeros on the diagonal. Further, c is a zero sum vector and therefore the
resulting constant value Kq is also zero. Thus, xT Qx+ cT x = x̂T Aq x̂+ bq x̂ where
x̂ = 2x − e ∈ {−1, 1}. Now, if x̂∗ is an ε-optimal solution for the Ising QUBO
(Aq, bq) then its pre-image, x = 1

2 (x̂ + e) is an ε-optimal solution of (Q, c). Now
consider the matrix

A′ =
[

Aq 1
2 bT

1
2 b 0

]

and the n+1 dimensional vector x̃ ∈ {−1, 1}n+1. For the Ising QUBO (A′, 0), if x̃ is
an ε-optimal solution, then−x̃ is also an ε-optimal solution. Thus, for any ε-optimal
solution to (A′, 0), there exists an ε-optimal solution with the (n+ 1)th component
equal to 1 and the first n components of such a solution will be an ε-optimal solution
to the Ising QUBO (Aq, bq), and the result follows.

We have an analogous result for the Ising QUBO as well. The proof is similar to
that of the above theorem.

Theorem 8.19 If the QUBO (Q, 0), where Q is a strong zero sum matrix with
diagonal entries zero can be solved by a polynomial time ε-approximation algorithm
then the Ising QUBO (A, 0) where A is a strong zero sum matrix with diagonal
elements zero can be solved by a polynomial time ε-approximation algorithm.

Theorem 8.19 is also true if A is a zero sum matrix (not necessarily strong zero
sum matrix) provided the QUBO (Q, c) with Q is a zero sum matrix and c is a
zero sum vector can be solved by a polynomial time ε-approximation algorithm.

230 A. P. Punnen

Theorems 8.18 and 8.19 are valid even with the assumption that diagonal elements
of A and Q are arbitrary and with this assumption, one can always force the strong
zero sum property (see Chap. 1) to A and Q leading to a much more general result,
but with less applicability because of the resulting stronger hypothesis. Note that,
for most usable ε-approximation algorithms for the Ising QUBO and the QUBO,
zero-diagonal assumption is made and the condition is added to the theorem to
highlight this and also to emphasize that the zero-digonality is preserved under the
transformation we used.

8.5.1 ε-Approximation Algorithms for the Ising QUBO

Hereafter, without loss of generality we assume that b = 0. In addition, we
assume that the diagonal elements of A are zeros, which is indeed a restriction (See
Theorem 8.16). Let G′ be the support graph of A with the weight of the edge (i, j)

in G′ being ωij = 2|aij |.
The value ω(M) of any matching M = {(u1, v1), (u2, v2), . . . , (ut , vt)} in G′

is given by
∑t

i=1 ωij = 2
∑t

i=1 |auivi |. We now present a theorem linking the
objective function value of a particular solution to the Ising QUBO and a matching
M in G′ as proved in [19].

Theorem 8.20 If M is a matching in G′ then a solution x∗ of IQ with ϕ(x∗) ≥
ω(M) can be identified in O(n2) time.

Proof Let M = {(u1, v1), (u2, v2), . . . , (ut , vt)} and for 1 ≤ k ≤ t , let Mk =
{(u1, v1), (u2, v2), . . . , (uk, vk)}. Then, obviously Mt = M . We prove the result
using mathematical induction on k. When k = 1, we have M1 = {(u1, v1)} and let
P = {u1, v1} ⊆ {1, 2, . . . , n}. Define the partial solution xp corresponding to the
set P as follows: If au1v1 ≥ 0 assign x

p
u1 = x

p
v1 = 1 else assign x

p
u1 = −x

p
v1 = 1.

Note that ϕp(xp) ≥ ω(M1) (in fact, equality holds here and recall the definition
of the value ϕp(.) of a partial solution from Eq. (8.12)). Now, extend the partial
solution xp corresponding to M1 to a solution x∗ with ϕ(x∗) ≥ ϕp(xp) = ω(M1)

using the partial solution extension algorithm discussed earlier. Thus, the result is
true for k = 1. Now, suppose that there is a partial solution xp defined by the set
P = {u1, u2, . . . , uk, v1, v2, . . . , vk} such that ϕp(xp) ≥ ω(Mk) for some k < t .
Let S = {uk+1, vk+1}. Note that P ∩ S = ∅. Let xs be the partial solution defined
by xs

uk+1
= xs

vk+1
= 1 if auk+1vk+1 ≥ 0 and xs

uk+1
= −xs

vk+1
= 1 if auk+1vk+1 < 0.

Now, consider the partial solutions x̄ = xp∪xs and x̂ = −xp∪xs defined by the set
D = P ∪ S. Note that ϕp(xp)+ ϕs(xs) ≥ ω(Mk+1) and ϕs(xs) ≥ 0, ϕp(xp) ≥ 0.
If ϕd(x̄) ≥ ϕ(xp) + ϕ(xs) then extend the partial solution x̄ to a solution x∗ of IQ
using the partial solution extension algorithm and we have ϕ(x∗) ≥ ϕ(xp)+ ϕ(xs),
which implies ϕ(x∗) ≥ ω(Mk+1). If ϕd(x̄) < ϕ(xp) + ϕ(xs), then the contribution
δ(P, S) of all elements in the cut set (P, S) on the subgraph of G′ induced by P ∪S

8 Fast Heuristics and Approximation Algorithms 231

to ϕd(x̄) is negative. i.e., δ(P, S) < 0. This implies that

ϕd(x̂) = ϕd(xp)+ ϕ(xs)− δ(P, S) > ϕd(xp)+ ϕ(xs).

Thus, as discussed earlier, we can extend the partial solution x̂ to a solution x∗ of
IQ such that ϕ(x∗) ≥ ω(Mk+1). The first part of the theorem now follows from
mathematical induction.

To prove the O(n2) complexity of constructing x∗, we incrementally build
partial solutions corresponding to M1,M2, . . . ,Mt and if necessary, extend the
final partial solution to a solution of IQ without worsening the objective function
value. By careful updating, from a partial solution corresponding to Mk , a partial
solution corresponding to Mk+1 can be obtained in O(n) time and hence the overall
complexity of constructing x∗ is O(n2).

Following [19], we now show that if the matching M is selected using a greedy
algorithm, a 1

2�
-optimal solution can be obtained for the Ising QUBO (A, 0)

whenever the diagonal elements of A are zeros. Consider the following greedy
matching algorithm on G′.

Algorithm 5: The greedy matching algorithm

1 Input: The graph G′ = (V ,E) and edge-weight vector ω. G∗ ← G′ and
E∗ ← E;

2 k ← 0;
3 while E∗ �= ∅ do
4 k ← k + 1;
5 choose an ek = (uk, vk) ∈ G∗ with maximum weight;
6 Ek = {(i, j) : (i, j) ∈ E∗ and either i ∈ {uk, vk} or j ∈ {uk, vk};
7 E∗ ← E∗ − Ek;
8 G∗ ← G∗ − {uk, vk} // remove nodes uk and vk from G∗;
9 end

10 output the matching M∗ = {e1, e2 . . . ek} in G′

Lemma 8.7 ([19]) The matching M∗ produced by the greedy matching algorithm
satisfies ω(M∗) ≥ 1

2�
ω(E), where ω(E) =∑

(i,j)∈E |aij |.
Proof By construction ω(e1) ≥ ω(e2) ≥ · · · ≥ ω(ek). Note that Ei = {e : e

has a common end point with ei} − ∪i−1
j=1Ej and |Ei | ≤ deg(ui)+ deg(vi) ≤ 2�.

Since ei is an edge with maximum weight in Ei ,

ω(ei) ≥ ω(Ei)

|Ei | ≥ ω(Ei)

2�

Since E1, E2, . . . , Ek is a partition of E, we have

ω(M∗) =
k∑

i=1

ω(ei) ≥
k∑

i=1

ω(Ei)

2�
= ω(E)

2�
.

232 A. P. Punnen

Theorem 8.21 ([19]) A 1
2�

-optimal solution to IQ can be identified in O(n2 log n)

time, where � > 1 is the maximum degree of nodes in the support graph G of A.

Proof Let M∗ be the matching produced by the greedy matching algorithm. Note
that the greedy matching algorithm can be implemented in O(n2 log n) time by
sorting the edge-weight vector ω. From Theorem 8.20, we can compute a solution
x∗ of IQ such that φ(x∗) ≥ ω(M∗) in O(n2) time. Let |A| = ∑n

i=1
∑n

j=1 |aij |.
Since OPT(QP) ≤ |A|, from Lemma 8.7

φ(x∗) ≥ 1

2�
ω(E) = 1

2�
|A| ≥ 1

2�
OPT(IQ)

and the result follows.

When the support graph of A is a complete graph Kn, the performance ratio of the
above algorithm becomes 1

2(n−1)
. We now discuss a polynomial time approximation

algorithm for IQ with better performance ratio, in expectation.

8.5.2 Computing ε-Optimal Solutions from SDP Relaxation

Recall that the diagonal elements of A are assumed to be zeros and we are
considering the Ising QUBO (A, 0). Throughout this subsection, we follow the
graph theoretic representation of the Ising QUBO. We are going to use the [−1, 1]-
rounding algorithm again, but the solution x∗ ∈ [−1, 1]n used for rounding
is constructed from an optimal solution of a semidefinite programming (SDP)
relaxation of IQ. Such rounding algorithms are discussed by various authors [4,
8, 11, 24, 26, 30] who established performance guarantees similar to that we discuss
here. Our presentation here follows closely the book [11] which builds on the
discussions given in [24]. Consider the SDP relaxation of the Ising QUBO (see
Chap. 6 for a detailed discussion of SDP relaxation of QUBO and the Ising QUBO):

SDP(max): Maximize ψ(v) =
∑

(i,j)∈E

aij vT

i vj

Subject to: v ∈ Sn−1,

where Sn−1 = {v ∈ R
n : ||v|| ≤ 1}.

Let v1, v2, . . . , vn be an optimal solution of the SDP(max) with optimal objective
function value Pmax. Also, let Pmin be the optimal objective function value of
SDP(min), which is similar to SDP(max) except that we are minimizing the
objective function.

Lemma 8.8 Unless A is the zero matrix, Pmax > 0 and Pmin < 0.

8 Fast Heuristics and Approximation Algorithms 233

The proof of this lemma follows from the fact that V(A, 0) = 0. Let ρ =
(ρ1, ρ2, . . . ρn) ∈ R

n be a random vector such that its components ρi , i =
1, 2, . . . , n are identically and independently distributed (i.i.d) random variables fol-
lowing the standard normal distribution N(0, 1). (i.e. ρ is a random n-dimensional
Gaussian vector.) Let y ′i = ρT vi , i = 1, 2, . . . , n.

Lemma 8.9 ([11]) E[y ′iy ′j] = vT

i vj . Further, E
[∑

(i,j)∈E

aij y
′
iy
′
j

]
= Pmax, where

E(.) denotes the expected value.

Proof Let {e1, e2, . . . , en} be the standard basis of Rn. Then, by definition of ρ,
ρT e1,ρ

T e2, . . . ,ρ
T en are independent standard normal variates with mean zero and

standard deviation one. Thus,

E
[
(ρT ei)(ρ

T ej)
] = 0 for i �= j (8.15)

and

E
[
(ρT ei)

2
]
= 1 for i = 1, 2, . . . , n (8.16)

Now, let vi = (vi1, vi2, . . . , vin) and vj = (vj1, vj2, . . . , vjn). Then,

vi =
n∑

k=1

vikek and vj =
n∑

k=1

vjkek.

Therefore,

y ′i = ρT vi =
n∑

k=1

vikρ
T ek and y ′j = ρT vj =

n∑

k=1

vjkρ
T ek.

Then, from (8.15) and (8.16),

E[y ′iy ′j] = E
(
(ρT vi)(ρ

T vj)
) = E

[(
n∑

k=1

vikρ
T ek

)(
n∑

k=1

vjkρ
T ek

)]

= vT

i vj .

Now, the last part of the lemma follows from the linearity property of expectation
and the optimality of v1, v2, . . . , vn to SDP(max).

Thus, it is easy to construct scalars y ′1, y ′2, . . . , y ′n from an optimal solution to
SDP(max) with expected value equal to the optimal objective function value of
SDP(max) leading us to a potential rounding algorithm. Let y ′max = max1≤i≤n |yi |.
Then,

y ′i
y ′max

∈ [−1, 1] and we can apply our [−1, 1]-rounding algorithm on these

values to obtain a solution x ∈ {−1, 1}n with expected value no worse than Pmax
(y ′max)

2 .

234 A. P. Punnen

We don’t have much control over y ′max and hence have difficulty in establishing
a data independent bound on the solution quality. Since ρ is an n-dimensional
Gaussian, the number of y ′i values falls outside [−T , T]may not be too many for an
appropriate choice of T . Let

yi =
{

y ′i if y ′i ∈ [−T , T],
0 if y ′i /∈ [−T , T].

We will now show that, for T = 3

√

1+ ln
(

R
Pmax

)
, E
[∑

(i,j)∈E aij yiyj

]
≥ 1

2Pmax.

It may be noted that there is nothing special about the constant 3 used in the
definition of T and it is primarily for convenience in handling the related constants
later in our analysis and also to adhere to the calculations from [11] which we are
following. The solution produced by the [−1, 1]-rounding algorithm, starting with
xi = yi

T
guarantees a solution to the Ising QUBO (A, 0) with expected value no

worse than Pmax
2T 2 . Thus, our main task is to establish that E

[∑
(i,j)∈E aij yiyj

]
≥

1
2Pmax.

Let zi = y ′i − yi be the error generated while truncating y ′i . Then, yi = y ′i − zi

and

E
[∑

(i,j)∈E

aij yiyj

]
= E

[∑

(i,j)∈E

aij (y
′
i − zi)(y

′
j − zj)

]

=
∑

(i,j)∈E

aij

(
E[y ′iy ′j] − E[ziy

′
j] − E[y ′izj] + E[zizj]

)

= Pmax − E
[∑

(i,j)∈E

aij (ziy
′
j + y ′izj)

]
+ E

[∑

(i,j)∈E

aij zizj

]
(8.17)

To deal with the expected values on the right hand side of Eq. (8.17), we make
use of the following general probabilistic result proved in detail in [11, 24].

Lemma 8.10 ([11, 24]) Let α1, α2, . . . , αn and β1, β2, . . . , βn be real valued
random variables satisfying E(α2

i) ≤ a and E(β2
i) ≤ b, then

E

⎡

⎣
∑

(i,j)∈E

aij (αiβj + αjβi)

⎤

⎦ ≤ 2R
√

ab,

where R = Pmax − Pmin.

Note that, in the above lemma, no assumption is made on the independence of the
associated random variables. In view of Lemma 8.8, R ≥ Pmax. To make use of
Lemma 8.10 for estimating the expected values given on the RHS of Eq. (8.17), we
need to find upper bounds on E[(y ′i)2] and E[z2

i]. Since y ′i follows N(0, 1), E[(y ′i)2]
is the variance, which is 1. Now, let us find a good upper bound on E[z2

i]. The bound

8 Fast Heuristics and Approximation Algorithms 235

given in the following lemma and its validity proof is from [11]. A somewhat similar
result is available in [8], but in a different form.

Lemma 8.11 E[z2
i] ≤ 1

10

(
Pmax
R

)2

Proof Note that E[z2
i] = 2√

2π

∫∞
T x2e−x2/2dx. For x ∈ [T ,∞), the integrand

x2e−x2/2 ≤ (x2 + 1
x2)e−x2/2. The antiderivative of (x2 + 1

x2)e−x2/2 is −(x +
1
x
)e−x2/2. Therefore,

E[z2
i]≤

2√
2π

∫ ∞

T

(x2 + 1

x2
)e−x2/2dx = 2√

2π

(

T + 1

T

)

e−T 2/2 =
√

2

π

(

T + 1

T

)

e−T 2/2.

Since T = 3

√

1+ ln
(

R
Pmax

)
≥ 3,

√
2
π

(
T + 1

T

)
=
√

2
π

(
T 2+1
T 2

)
T ≤

√
2
π

10
9 T ≤

T , and we have,

E[z2
i] ≤ T e−T 2/2 (8.18)

Since ln(x) ≤ x − 1, we have T ≤ 3
√

R
Pmax

. Then, from (8.18),

E[z2
i] ≤ 3

√
R

Pmax
e
− 9

2 (1+ln(R
Pmax

)) ≤ 3e−9/2

√
R

Pmax

(
Pmax

R

)9/2

<
1

10

(
Pmax

R

)4

≤ 1

10

(
Pmax

R

)2

and this completes the proof.

Now, in Lemma 8.10, choose αi = zi and βi = y ′i , a = 1, b = 1
10

(
Pmax
R

)2
we get

E
[∑

(i,j)∈E

aij (ziy
′
j + zjy

′
i)
]
≤ 2R

√
ab = 2R

1√
10

(
Pmax

R

)

= 2√
10

Pmax.

(8.19)

Also, in Lemma 8.10, choose αi = zi, βi = −zi a = b = 1
10

(
Pmax
R

)2
and we

have

E
[∑

(i,j)∈E

aij (zi(−zj)+ zj (−zi)
]
= −2E

[∑

(i,j)∈E

aij zizj

]

≤ 2R
√

ab = 2R
1

10

(
Pmax

R

)2

≤ 1

5
Pmax

Pmax

R

(8.20)

236 A. P. Punnen

Note that Pmax
R
≤ 1 and hence from inequality (8.20),

E
[∑

(i,j)∈E

aij zizj

]
≥ − 1

10
Pmax (8.21)

Using the inequalities (8.19) and (8.21) in (8.17), we have,

E
[∑

(i,j)∈E

aij yiyj

]
≥ Pmax − 2√

10
Pmax − 1

10
Pmax ≥ 1

4
Pmax. (8.22)

Let us now present our SDP rounding algorithm for the Ising QUBO.

Algorithm 6: The SDP rounding algorithm

1 Input: An optimal solution v1, v2, . . . , vn of SDP.;
2 Pmax is the maximum value of SDP(max) and Pmin is the minimum value of

SDP(min);
3 Generate a random n-dimensional Gaussian ρ;
4 y ′i ← ρT vi , i = 1, 2 . . . , n;

5 R ← Pmax − Pmin and T ← 3

√

1+ ln
(

R
Pmax

)
;

6 for i = 1, 2, . . . , n do
7 yi ← y ′i if |y ′i| ≤ T else yi = 0
8 end
9 xi ← yi/T ;

10 Apply the [−1, 1]-rounding algorithm on x = (x1, x2, . . . , xn) and output
the solution;

In view of inequality (8.22), the expected value of ϕ(x) for x = (x1, x2, . . . xn) ∈
[−1, 1]n constructed in step 9 of the SDP rounding algorithm, i.e. E

[∑
(i,ju)∈E aij

xixj

]
, is at least 1

4
Pmax
T 2 ≥ PmaxK

(
1

1+ln R
Pmax

)

, for some constant K .

Theorem 8.22 ([11]) The SDP rounding algorithm produces a solution to IQ with

objective function value at least OPT(IQ)K

(
1

1+ln R
Pmax

)

in expectation, for some

constant K .

The proof of the theorem follows from the discussion above, Theorem 8.3, and the
fact that Pmax ≥ OPT(IQ).

Lemma 8.12 1
1+ln R

Pmax

≤ K ′
log n

for some constant K ′

Proof Note that Pmin < 0 (unless A is the zero matrix) and hence R
Pmax

= 1 +
|Pmin|
Pmax

. But, |Pmin| ≤ ∑
(i,j)∈E |aij | and from the proof of Theorem 8.21, Pmax ≥

∑
(i,j)∈E |aij |

2n
. Thus, R

Pmax
≤ 3n and the result follows.

8 Fast Heuristics and Approximation Algorithms 237

Thus, Lemma 8.12 provides an O
(

1
log n

)
bound on the performance ratio of the

SDP rounding algorithm, in expectation which was proved by many authors [8, 26,
30]. In fact, a stronger bound is possible since R

Pmax
≤ θ(Ḡ) [4, 11, 24] where θ(.)

is the Lovász theta function. We restrict our discussion strictly to approximation
aspects of QUBO and Ising QUBO only. For very interesting connections of the
SDP rounding algorithm with Grothendieck constant of a graph, we refer to [4].

8.5.3 Other Special Cases

Let us now consider briefly, without details, some other special cases of QUBO
and the Ising QUBO where polynomial time approximation algorithms exist with
guaranteed relative performance ratio.

Let us start with a special case of QUBO. As discussed in Chap. 1, Q is called
a half product matrix if it is upper triangular with diagonal elements zero and
there exist vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) such that
qij = aibj for i = 1, 2, . . . , n and j > i. A half-product QUBO is an
instance of QUBO when Q is a half product matrix and this special case is also
NP-hard [7]. The single-machine variance minimization problem is a special case
of the half-product QUBO [7, 23] along with various other machine scheduling
problems such as scheduling two machines to minimize total weighted completion
time [21], scheduling two machines to minimize makespan [21], scheduling a single
machine to minimize total weighted earliness and tardiness[21] and scheduling with
controllable processing times [20]. The Ising version of the half-product QUBO was
considered by Kubiak [23], Amit [5], and Mattis [25].

Interestingly, the half product QUBO (with minimization objective) can be
solved in pseudo-polynomial time. Also, the problem can be solved by a fully
polynomial approximation scheme (FPTAS) when a, b are non-negative [7]. Janiak
et al. [20] considered a scheduling problem with controllable processing times and
showed that it is equivalent to the half product QUBO. However, this formulation
brings in an additional constant to the objective function, which can be ignored for
optimization. Note that, the performance ratio depends on the constant and hence
cannot be discarded when establishing performance ratio guarantee. The algorithm
of [7] does not handle this constant, but Janiak et al. [20] developed an FPTAS
to solve the resulting half-product QUBO which also takes into consideration this
additional constant.

Following Hermelin et al. [19], we proved in Theorem 8.21 that for the Ising
QUBO (A, 0) with A having diagonal entries zero, a 1

2�
-optimal solution can be

identified in O(n2 log n) time, where � is the maximum degree of a node in G.
Hermelin et al. [19] also considered several other special cases of the Ising QUBO,
and proved guaranteed performance ratios for low complexity polynomial time
algorithms. This includes the special cases when (1) A has diagonal entries zero
and all other entries belongs to {−1, 0, 1}, (2) the support graph G has bounded

238 A. P. Punnen

tree-width, and (3) when the support graph is H -minor free. For details of these
algorithms, we refer to [19].

When A is positive semidefinite, Nesterov [31] established an expected approx-
imation ratio of 2

π
for the Ising QUBO along with a performance guarantee in

terms of the differential approximation ratio. When the support graph G of A is
bipartite, Alon and Naor [1, 2] proposed a polynomial time algorithm with constant
relative performance ratio, in expectation. Other relevant works on QUBO related
to a rank restricted Q matrix and additional assumptions on its elements, we refer
to [13, 22, 29].

8.6 Conclusion

In this chapter we discussed several fast heuristic algorithms for QUBO and the
Ising QUBO and presented theoretical analysis on their performance guarantees
in various forms using different performance measures. These include relative
performance ratio, average based analysis, domination analysis, among others.
We also pointed out the connections between Grothendieck constant and the
approximability of the Ising QUBO. Further refinements on performance guarantees
are possible by exploiting the structure of the support graph or using conditions on
elements of Q and c (A and b) and it would be interesting to explore further in this
direction.

References

1. N. Alon, A. Naor, Approximating the cut-norm via Grothendieck’s inequality, in Proceedings
of the Thirty-sixth Annual ACM Symposium on Theory of Computing, (2004), pp. 72–80

2. N. Alon, A. Naor, Approximating the cut-norm via Grothendieck’s inequality. SIAM J.
Comput. 35, 787–803 (2006)

3. N. Alon, G. Gutin, M. Krivelevich, Algorithms with large domination ratio. J. Algor. 50, 118–
131 (2004)

4. N. Alon, K. Makarychev, Y. Makarychev3, A. Naor, Quadratic forms on graphs. Invent. Math.
163, 499–522 (2006)

5. D.J. Amit, Modeling Brain Function: TheWorld of Attractor Neural Networks (Cambridge
University Press, Cambridge, 1989)

6. S. Arora, B. Barak, Computational Complexity: A Modern Approach (Cambridge University
Press, New York, 2009)

7. T. Badics, E. Boros, Minimization of half-products. Math. Oper. Res. 23, 649–660 (1998)
8. M. Charikar, A. Wirth, Maximizing quadratic programs: Extending Grothendieck’s Inequality,

in 45th Annual IEEE Symposium on Foundations of Computer Science FOCS (2004), pp. 54–
60

9. M. Demange, P. Grisoni, V.Th. Paschos, Differential approximation algorithms for some
combinatorial optimization problems. Theoret. Comput. Sci. 209, 107–122 (1998)

10. L. Engebretsen, J. Holmerin, Clique is hard to approximate within n1−o(1), in Proceedings
of International Colloquium on Automata, Languages and Programming, Geneva (2000), pp.
2–12

8 Fast Heuristics and Approximation Algorithms 239

11. B. Gartner, J. Matoušek, Approximation Algorithms and Semidefinite Programming (Springer,
New York, 2010)

12. F. Glover, A.P. Punnen, The traveling salesman problem: new solvable cases and linkages with
the development of approximation algorithms. J. Oper. Res. Soc. 48, 502–510 (1997)

13. V. Goyal, L. Kaya, R. Ravi, An FPTAS for minimizing the product of two non-negative linear
cost functions. Math. Programm. 126, 401–405 (2011)

14. G. Gutin, A. Yeo, A. Zverovitch, Exponential neighborhoods and domination analysis for TSP,
in ed. by G. Gutin, A.P. Punne, The Travelling Salesman Problem and Its Variations (Kluwer
Academic Publishers, Boston, 2002)

15. G. Gutin, A. Yeo, Domination analysis of combinatorial optimization algorithms and problems,
in ed. by M.C. Golumbic, I.B.A. Hartman, Graph Theory, Combinatorics and Algorithms.
Operations Research/Computer Science Interfaces Series, vol. 34 (Springer, Boston, 2005)

16. M.M. Halldórsson, Approximations of independent sets in graphs, in Proceedings of APPROX
’98 Conference. Springer-Verlag Lecture Notes in Computer Science, vol. 1444 (Springer,
Berlin, 1998), pp. 1–13

17. J. Håstad, Clique is hard to approximate within n(1−ε), in Acta Mathematica (1996), pp. 627–
636

18. J. Håstad, Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
19. D. Hermelin, L. Kellerhals, R. Niedermeier, R. Pugatch, Approximating sparse quadratic

program (2020). arXiv:2007.01252v4 [cs.DS]
20. A. Janiak, M.Y. Kovalyov, W. Kubiak, F. Werner, Positive half-products and scheduling with

controllable processing times. Eur. J. Oper. Res. 165, 416–422 (2005)
21. B. Jurisch, W. Kubiak, J. Józefowska, Algorithms for minclique scheduling problems. Discret.

Appl. Math. 72, 115–139 (1997)
22. W. Kern, G.J. Woeginger, Quadratic programming and combinatorial minimum weight product

problems. Math. Programm. 110, 641–649 (2007)
23. W. Kubiak, New results on the completion time variance minimization. Discret. Appl. Math.

58, 157–168 (1995)
24. K. Makarychev, Quadratic forms on graphs and their applications, Ph.D. Thesis, Princeton

University, 2008
25. D.C. Mattis, Solvable spin systems with random interaction. Phys. Lett. 6A, 412 (1976)
26. A. Megretski, Relaxation of quadratic programs in operator theory and system analysis, in

Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000)
(Birkhäuser, Basel, 2001), pp. 365–392

27. A. Mehrotra, Cardinality constrained Boolean quadratic polytope. Discret. Appl. Math. 79,
137–154 (1997)

28. P. Merz, B. Freislebeng, Greedy and local search heuristics for unconstrained binary quadratic
programming. J. Heuristics 8, 197–213 (2002)

29. S. Mittal, A. Schulz, An FPTAS for optimizing a class of low-rank functions over a polytope.
Math. Programm. 141, 103–120 (2013)

30. A. Nemirovski, C. Roos, T. Terlaky, On Maximization of quadratic form over intersection of
ellipsoids with common center. Math. Programm. 86, 463–473 (1999)

31. Y. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization. Optim. Method
Softw. 9, 141–160 (1998)

32. R. O’Donnell, Analysis of Boolean Functions (Cambridge University Press, Cambridge, 2014)
33. G. Palubeckis, Quadratic 0-1 optimization. Informatica 1, 89–106 (1990)
34. G. Palubeckis, Heuristics with a worst-case bound for unconstrained quadratic 0-1 program-

ming. Informatica 3, 225–240 (1992)
35. P. Pandey, Topics in quadratic binary optimization problems, Ph.D. Thesis, Simon Fraser

University, 2018
36. A.P. Punnen, N. Kaur, Fast heuristics for the quadratic unconstrained binary optimization

problem. Research Report, Department of Mathematics, Simon Fraser University, (2021)
37. A.P. Punnen, F.S. Margot, S.N. Kabadi, TSP heuristics: domination analysis and complexity.

Algorithmica 35, 111–127 (2003)

240 A. P. Punnen

38. A. Samorodnitsky, L. Trevisan, A PCP characterization of NP with optimal amortized query
complexity, in Proceedings of ACM Symposium on Theory of Computing, Portland, OR (2000),
pp. 191–199

39. A. Srinivasan, On the approximability of clique and related maximization problems. J. Comput.
Syst. Sci. 67, 633–651 (2003)

40. G. Tavares, New algorithms for quadratic unconstrained binary optimization problem (QUBO)
with applications in engineering and social sciences, Ph.D Thesis, Rutgers University, 2008

41. E. Zemel, Measuring the quality of approximate solutions to zero-one programming problems.
Math. Oper. Res. 6, 319–332 (1981)

Chapter 9
Metaheuristic Algorithms

Yang Wang and Jin-Kao Hao

Abstract Metaheuristic algorithms are practically used to produce approximate
solutions to large QUBO instances that cannot be solved exactly due to the high
computational complexity. This chapter is dedicated to a review on the general
metaheuristic approach for solving the QUBO. First, we present some basic
components of local search that are widely used in the design of state-of-the-
art metaheuristic algorithms for the problem. Then we overview the metaheuristic
algorithms in the literature by groups of fast solving heuristics, local search based
methods and population based search methods. Finally, we review some of the most
popular and effective metaheuristic algorithms and present experimental results on
different sets of instances.

9.1 Basic Ingredients of Local Search

Most of the heuristic and metaheuristic algorithms proposed for solving the
QUBO employ a local search procedure to improve the solution quality. Given
its importance, we first summarize basic ingredients used in these local search
procedures, including the solution representation of a QUBO instance, the move
operator along with the fast calculation of the move gain, and the neighbor solution
selection strategy.

For a given QUBO instance, its solution x = {x1, x2, . . . , xn} is a boolean vector
of length n. To perform neighborhood search, the most widely used move operator
is 1-flip, which flips a chosen variable xi to be the complementary value 1 − xi .
A total of n neighbor solutions are generated by applying the 1-flip move. Some
algorithms introduce the k-flip move that flips k (2 ≤ k ≤ n) variables of a solution

Y. Wang (�)
School of Management, Northwestern Polytechnical University, Xi’an, China
e-mail: yangw@nwpu.edu.cn

J.-K. Hao
LERIA, Universitë d’Angers, Angers, France
e-mail: jin-kao.hao@univ-angers.fr

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_9

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_9&domain=pdf
mailto:yangw@nwpu.edu.cn
mailto:jin-kao.hao@univ-angers.fr
https://doi.org/10.1007/978-3-031-04520-2_9

242 Y. Wang and J.-K. Hao

simultaneously to the corresponding complementary values, respectively. Compared
to the 1-flip move, applying the k-flip move yields a much larger number of neighbor
solutions up to Ck

n .
The efficiency of local search mostly depends on the evaluation of move gains to

determine the next solution on the search trajectory. The move gain of a neighbor
solution is the objective variation between a solution and the neighbor solution. Let
x and x ′ represent two binary solutions where x ′ is obtained from x by a 1-flip move
applied to a single variable xi . The move gain �i of moving from solution x to the
neighbor solution x ′, recorded as �i = f (x ′)− f (x), is calculated as:

�i = (1− 2xi)(qii + 2
n∑

j=1,j �=i

qij xj) (9.1)

�j =
{
−�i if i = j

�j + 2qij (1− 2xi)(1− 2xj) otherwise
(9.2)

Since the generalized k-flip move can be considered as a sequence of 1-flip
moves, it is straightforward to infer the following equation for the k-flip move.
Formally, let i1, . . . , ik are the k variables to flip, then the move gain �i1,...,ik for
simultaneously flipping these k variables can be computed as follows:

�i1,...,ik = �i1

+ �i2 + 2qi1i2(1− 2xi1)(1− 2xi2)

+ �i3 + 2qi1i3(1− 2xi1)(1− 2xi3)+ 2qi2i3(1− 2xi2)(1− 2xi3)

+ �i4 + 2qi1i4(1− 2xi1)(1− 2xi4)+ 2qi2i4(1− 2xi2)(1− 2xi4)

+ 2qi3i4(1− 2xi3)(1− 2xi4)

...
...

=
k∑

r=1

�ir + 2
k−1∑

r=1

k∑

s=r+1

qir is (1− 2xir)(1− 2xis) (9.3)

The neighbor solution selection strategy decides the neighbor solution that is
used to replace the current solution x during the local search. The first move
improvement and the best move improvement are two strategies often used. The
first move improvement strategy scans the neighborhood of x and chooses the first
neighbor solution that is better than x (i.e., with an improving move gain). The best
move improvement strategy exhaustively explores the neighborhood of x and retains
the neighbor solution with the highest move gain.

9 Metaheuristic Algorithms 243

9.2 Fast Solving Heuristics

Boros et al. [6] developed a Devour Digest Tidy-up procedure (DDT). On the basis
of the posiform representation Z of QUBO, DDT includes the Devour, Digest and
Tidy-up phases. Devour identifies a term T from L (L denotes the set of all the
elements of Z) with the largest coefficient and places it into S. Digest draws logical
conclusions by assigning the disjunctive equation of all the elements in S equaling
to 0 (in terms of minimization). If no logical conclusion can be drawn, then T is
simply removed from L to S, and return to Devour. Otherwise, Tidy-up begins
to substitute the logical conclusions previously drawn into Z. The above DDT
procedure repeats until L becomes an empty set. Experiments indicated that DDT
is especially effective on problem instances of low density.

Consider the case that the DDT method simultaneously sets several variables
with value 1 or 0 would result in worse results than to give inferred assignment
to only one variable, Glover et al. [11] proposed several one-pass heuristics to
guarantee that in each pass only one variable gets the implied assignment. The
difference among the proposed one-pass heuristics lies in the different strategies
of evaluating contributions of variables. Experimental comparisons among the
proposed one-pass heuristics showed that some of them perform quite effectively
for certain problem instances, but no single method dominates on every problem
instance.

Hanafi et al. [12] devised five alternative DDT heuristics based on different repre-
sentations of the QUBO formulation, where DDT1 to DDT4 methods respectively
have standard, posiform, bi-form and negaform representations and DDT5 has a
posiform representation along with a one-pass mechanism. An obviously additional
difference of their DDT alternatives from [6, 11] concerns the use of a r-flip local
search procedure to improve solutions obtained by DDT constructions. Extensive
tests on small, medium and large benchmark instances showed that (1) DDT3 with
the bi-form representation generally produces the best results for medium and large
instances; (2) the proposed r-flip local search brings significant result improvements
with only a slight increase of time consumption.

Merz and Freisleben [20] proposed a greedy construction heuristic to quickly
obtain an improved solution. It starts from a solution with all variables assigned to
be 0.5 (the so called third state). At each construction step, it searches a variable
and a value either 0 or 1 for the variable such that assigning the value to the variable
makes the gain function, i.e., objective function increment of the resulting solution
compared to the previous solution, is maximized. This operation repeats until each
variable of the solution vector changes its initial value from 0.5 to 1 or 0. Since this
greedy construction method always obtains the same solution for a given problem
instance, a randomized greedy variant was proposed to overcome the deterministic
drawback. For one thing, randomly pick a variable and randomly assign a value 0
or 1 to it for the first step of the construction. For another thing, select a variable
with a probability proportional to the gain value instead of picking a variable with
the maximized gain value.

244 Y. Wang and J.-K. Hao

9.3 Local Search Based Methods

9.3.1 Simulated Annealing

Alkhamis et al. [1] presented a simulated annealing based heuristic (SA-AHA)
according to the traditional simulated algorithm framework. It begins with a
randomly generated solution and an initial temperature. At each iteration SA-AHA
generates a random 1-flip move. If this is an improving move, it is performed;
Otherwise, it may still be accepted with a probability e−�/T where � indicates
the objective function difference between the two solutions and T is the current
temperature constant. After the above procedure conducts a certain number of
iterations, the temperature is decreased with reference to a cooling function. The
above procedure is repeated until no solution has been accepted for 10 consecutive
temperatures or when the temperature has fallen below a pre-specified value. Tested
on problem instances with up to 100 variables and comparisons with several
bounding techniques based algorithms indicated that SA-AHA outperforms these
compared methods. Especially, SA-AHA is able to solve hard problem instances
very efficiently while bounding algorithms can not solve them in a reasonable
computation time. Additional experiments indicated that the efficiency of the SA-
AHA algorithm is not affected by matrix density.

Beasley [3] proposed another simulated annealing algorithm (SA-B). The basic
iterative procedure of SA-B is the same as SA-AHA. However, in SA-B each
iteration applies a different temperature value to determine the probability to accept
a worse move. In addition, a local search procedure based on the first improvement
strategy is utilized to perform a post-optimization of the solution from the annealing
process. Experimental results for 45 instances with up to 500 variables indicated that
SA-B converges fast to the best solutions than the reference algorithms but obtains
inferior solution quality for several instances. In addition, the author generated 60
instances with up to 2500 variables available from OR-Library. Results on this new
set of benchmark instances showed that SA-B is especially effective for 10 largest
instances with 2500 variables.

Katayama and Narihisa [14] designed a similar implementation of the simulated
annealing methodology as SA-AHA, called SA-KN. An obvious characteristic of
SA-KN different from SA-AHA and SA-B lies in the fact that it adopts multiple
annealing processes to enhance the search ability. Experimental results for problem
instances with variables ranging from 500 to 2500 indicated that SA-KN achieves
especially competitive performances for the largest OR-Library instances.

9.3.2 Tabu Search

Glover et al. [9] introduced an adaptive memory tabu search (AMTS) algorithm
that uses the 1-flip move and two types of memory structures to record recency

9 Metaheuristic Algorithms 245

and frequency information. Strategic oscillation is employed to alternate between
constructive phases (progressively setting variables to 1) and destructive phases
(progressively setting variables to 0), which are triggered by critical events, i.e.,
when the next move causes the objective value to decrease. The amplitude of the
oscillation is adaptively controlled by a span parameter. Computational results for
instances with up to 500 variables showed that AMTS outperforms the best exact
and heuristic methods previously reported in the literature.

Beasley [3] proposed a 1-flip move based tabu search algorithm (TS-B). It
begins from an initial solution with each variable assigned to be 0 and marked as
non-tabu. During each iteration it conducts a best non-tabu move. This performed
move is then marked as tabu for a specified number of following iterations. If the
current iteration finds a better solution than the best solution found so far, a local
search procedure with first-improvement strategy is launched to further improve this
new solution. TS-B repeats the above procedure until the current iteration reaches
the maximum allowed iteration. Notice that TS-B does not incorporate the fast
evaluation technique and also neglects an aspiration criterion.

Palubeckis [23] examined five multistart tabu search strategies (MSTS) dedicated
to the construction of the initial solution. Each multistart tabu search algorithm
employs a tabu search procedure (TS-P) to enhance solution quality and a multi-
start strategy to produce a new initial solution located in a more promising area.
Notice that TS-P is very similar to TS-B except that TS-P employs a tactic to get
1-flip moves fast evaluated. The first restart strategy produces a new initial solution
in a random way. The second restart strategy identifies a candidate set of variables
that are prone to change their values when moving from the current solution to an
optimal one. Then it applies a steepest ascent algorithm that only considers variables
in the candidate set and keeps the other variables fixed at specific values. The third
one employs a randomized greedy constructive method. The fourth one incorporates
a set of elite solutions and calculates the probability of each variable with value 1
in this set. If the probability for a given variable is larger than 0.5, then this variable
receives value 1 in the resulting new solution; otherwise it receives value 0. The
last restart strategy uses a perturbation scheme of changing the problem instance at
hand, followed by a short run of tabu search on the modified instance. Experiments
evaluated on 25 largest instances from OR-Library and a set of randomly generated
larger and denser instances demonstrated that the algorithm with the second restart
strategy (MST2) is the best among the proposed algorithms.

Palubeckis [24] developed an iterated tabu search algorithm (ITS) that com-
bines a tabu search procedure to improve the solution quality and a perturbation
mechanism to create a new initial solution. The tabu search procedure is exactly
the one used in [23]. The perturbation mechanism is operated as follows. First, it
constructs a candidate list of a specified size which consists of variables with the
largest 1-flip move gains with regard to a local optimal solution. Then it randomly
selects a variable from this set and flips this variable to move toward a new solution.
Finally, it updates the corresponding move gains of variables caused by the move.
The above procedure is repeated until the number of perturbed variables reaches

246 Y. Wang and J.-K. Hao

the specified count. Experimental results indicated that despite its simplicity, ITS is
very competitive compared to other state-of-the-art algorithms.

Lü et al. [19] studied neighborhood union and token-ring search methods to
combine 1-flip (N1) and 2-flip (N2) moves within a tabu search algorithm. The 2-
flip move based tabu search considers a constrained set of 2-flip moves requiring
that flipping each involved variable produces the move gain ranked top 3

√
n

among all the 1-flip moves. In this way, the computational efforts of exploring the
neighborhood N2 can be greatly reduced. The neighborhood union includes the
strong neighborhood union (N1

⊔
N2) that picks each move from both N1 and

N2 and the selective neighborhood union (N1
⋃

N2) that select a move from N1
with probability p and N2 with probability 1−p. The token ring search (N1→N2)
continuously performs moves within a single neighborhood until no improvement is
possible and then switches to the other neighborhood to carry out moves in the same
fashion. Experimental results on random large instances indicated that selective
union is superior to the other two neighborhood combinations.

Liu et al. [15] proposed a hybrid r-flip/1-flip tabu search algorithm (HLS)
which switches among a hybrid local search phase, a destruction phase and a
construction phase. First, the hybrid local search phase that hybrids 1-flip and r-
flip local search is launched. This phase behaves like a basic variable neighborhood
search procedure [13] but excludes useless r-flip moves by several orders according
to a theorem. When no improved move is found, the hybrid local search phase
terminates. Meantime, the destruction phase is followed to carry out the 1-flip move
with the least damage to the current solution. The performed move is marked as
tabu and the destruction phase continues until an improving non-tabu move occurs.
At this point, a construction phase is triggered to perform the best non-tabu move.
If the obtained solution is better than the best solution ever found, the algorithm
returns to the hybrid local search phase. If no variable exists that can make further
improvement, the algorithm then returns to the destruction phase. Tested results
showed the superiority of the proposed hybrid r-flip/1-flip tabu search especially for
solving large instances with high density.

Shylo and Shylo [26] developed a global equilibrium search (GES) algorithm that
performs multiple temperature cycles. Each temperature cycle alternates between an
initial solution generation phase and a tabu search phase. The use of information
from the whole search history helps to determine the probability of a variable
receiving value 1 in the generated solution. The tabu search procedure performs the
best 1-flip move with an additional requirement that this move leads to a solution
far enough from a reference set in terms of hamming distance. Experimental results
showed that GES performs quite well in terms of solution quality and computing
time.

Wang et al. [27] devised GRASP-TS and GRASP-TS/PM algorithms that hybrid
GRASP with tabu search. GRASP-TS uses a basic GRASP algorithm with single
solution search while GRASP-TS/PM launches each tabu search by introducing
a population management strategy based on an elite reference set. Specifically,
GRASP-TS uses an adaptive random greedy function to construct an initial solution
from scratch. GRASP-TS/PM makes use of a restart/recovery strategy to produce a

9 Metaheuristic Algorithms 247

solution, in which partial solution components inherit corresponding elements of an
elite solution fetched from a population and the remaining solution components are
rebuilt as in the GRASP-TS procedure. Experiments indicated that GRASP-TS and
GRASP-TS/PM are very competitive with state-of-the-art algorithms.

9.4 Population Based Search Methods

Amini et al. [2] presented a scatter search approach (SS) that is mainly composed of
a diversification generation method, a solution improvement method, a reference set
update method, a subset generation method and a solution combination method. The
diversification generation method systematically generates a collection of diverse
trial solutions based on a seed solution in a way of setting an incremental parameter
that determines which bits of the seed solution should be flipped. The improvement
method performs a compound move that sequentially cycles among 1-flip, 2-flip and
3-flip candidate moves until no attractive move can be identified. The reference set
update method replaces solutions in the reference set with new candidate solutions
according to the quality measurement. In order to build a new solution, a linear
combination of selected solutions from the reference set is applied. Since some
variables would receive fractional values in the combined solution, a rounding
procedure is followed to make this solution feasible. Experiments showed that
the proposed scatter search method is very robust, especially for large problem
instances.

Lodi et al. [16] introduced an evolutionary heuristic (EH) with the following
features. First, EH uses a preprocessing phase to fix certain variables at their optimal
values and reduce the problem size. This type of fixation belongs to permanent
fixation since for each successive round of local search, these variables are excluded
from consideration. Second, a local search procedure based on the alternation
between construction and destruction phases is employed to get an improved
solution. Finally, EH uses a uniform crossover operator to generate offspring
solutions, where variables with common values in parental solutions are temporarily
fixed in this round of local search. Experimental results showed that EH can match
the best known results for problem instances with up to 500 variables in a very short
computation time. A further analysis demonstrated that the preprocessing phase is
effective for small problem instances but is impossible to reduce the problem size
for large ones.

Merz and Freisleben [21] devised a hybrid genetic algorithm (GLS-MF), in
which a simple local search is incorporated into the traditional genetic algorithm.
The local search procedure uses the 1-flip move and best move improvement
strategy. The crossover operator is a variant of uniform crossover, requiring the
generated offspring solution has the same hamming distance from the parents. Once
the newly generated offspring solution satisfies the updating criterion, it becomes
a member of the population and replaces the worst solution. A diversification
component is launched when the average hamming distance of the population drops

248 Y. Wang and J.-K. Hao

below a threshold d = 10 or the population is not updated for more than 30
consecutive generations. Experimental results showed that the simple evolutionary
algorithm alone is able to find the best known results for problem instances with less
than 200 variables but for larger instances, it is essential to incorporate local search
to attain high quality solutions.

Lü et al. [18] proposed a hybrid metaheuristic approach (HMA) which integrates
a basic tabu search procedure into a genetic search framework. First, HMA
combines a traditional uniform crossover operator with a diversification guided path
relinking operator to guarantee the quality and diversity of an offspring solution.
Second, HMA replaces the Hamming distance by a new distance by reference to
variable’s importance and employs a quality-and-distance criterion to update the
population as in GTA. Finally, a tabu search procedure is responsible for intensified
examination around the offspring solutions. Computational results showed HMA
is among the best performing procedures for solving challenging QUBO problem
instances.

9.5 Selected Metaheuristic Approaches for QUBO

9.5.1 Diversification-Driven Tabu Search

Glover et al. [10] presented a diversification-driven tabu search (D2TS) algorithm
that alternates between a basic tabu search procedure and a memory-based perturba-
tion procedure guided by a long-term memory. The general scheme of D2TS works
as follows. Starting from a random initial solution, D2TS uses tabu search to reach
local optimum. Then, the perturbation operator is applied to displace the solution to
a new region, whereupon a new round of tabu search is launched. To achieve a more
effective diversification, the perturbation operator is guided by information from a
special memory structure for obtaining improved results in this context.

The tabu search procedure employs the 1-flip neighborhood. Each time a move
is carried out, the reverse move is forbidden for the next T abuT enure iterations.
The tabu tenure is set to be T abuT enure(i) = t t + rand(10), where t t is a
selected constant and rand(10) takes a random value from 1 to 10. Once a move
is performed, a subset of move values affected by the move is updated using a
fast incremental evaluation technique. Accompanying this rule, a simple aspiration
criterion is applied that permits a move to be selected in spite of being tabu if it
leads to a solution better than the best solution found so far. The TS procedure stops
when the best solution cannot be improved within a given number of moves.

The perturbation procedure includes assigning a score to each variable, selecting
a certain number of highly-scored variables (critical elements), and perturbing
the solution using the chosen critical elements. The scoring function depends
on the information of several memory structures, including a flipping frequency
vector F lipFreq(i), an elite set of solutions EliteSol and a consistency vector

9 Metaheuristic Algorithms 249

EliteF req(i). F lipFreq(i) records the number of times the a variable xi has been
flipped from the beginning until the current iteration, which is collected in the tabu
search phase. EliteSol stores a set of locally optimal solutions found by tabu search.
Each time a new local optimum is found that has the objective value superior to that
of the worst local solution in EliteSol, the new solution replaces this worst solution.
EliteF req(i) records the total number of times a variable xi is assigned value 1
in the elite solutions currently stored in EliteSol. This memory is used to favor
retaining the value assignments that occur more often in the best solutions found
to date. The scoring function ranks each variable by taking into account its flip
frequency F lipFreq(i) and its elite value frequency EliteF req(i), which takes
the following form:

Score(xi) = EliteF req(i)(r − EliteF req(i))

r2 + β(1− F lipFreq(i)

maxFreq
) (9.4)

The selection step sorts all the variables in non-increasing order according to
their scores and then adaptively selects a specified number of critical variables to be
randomly assigned a value 0 or 1. The higher the score a variable has, the greater the
probability it will be chosen. The perturbation step flips the values of the selected
critical variables. This perturbed solution is then used to initiate a new round of tabu
search.

9.5.2 Memetic Search

Merz and Katayama [22] conducted a landscape analysis and observed that (1)
local optima of the QUBO instances are contained in a small fraction of the search
space; (2) the fitness of local optima and the distance to the optimum are correlated.
Based on this, they designed a memetic algorithm (MA-MK) in which an innovative
variation as the crossover operator is utilized to generate good starting solutions. The
MA-MK algorithm is composed of population initialization, randomized k-opt local
search, crossover and variation, as well as selection and diversification strategies.

The population initialization procedure repeats generating individuals in the
following way until the population size reaches 40. The method to generate an
individual includes two steps. The first step employs a randomized greedy heuristic
introduced in [20] to produce a seeding solution. The second step applies a
randomized k-opt local search to optimize the solution to local optimum.

The randomized k-opt local search is based on the ideas of Lin and Kernighan
for solving the traveling salesman problem (TSP) and the graph partitioning problem
that searches a small fraction of the k-opt neighborhood efficiently. The randomized
k-opt local search performs the following iterations until performing a k-flip move
can not yield an improving solution. For each k-opt iteration, all the bits of a solution
are sorted in a random order and only the bits of getting the positive move gains
are flipped. The bit with the maximum move gain is subsequently flipped. The

250 Y. Wang and J.-K. Hao

above-mentioned procedure are repeated until all the bits have been flipped. The
best solution is recorded as the resulting solution in this iteration.

The crossover operator introduced the move gain to determine the variation of
the offspring solution in order to prevent rediscovering local optima already visited
to the most extent. Specifically, the common and the non-common bits of the parent
solutions are identified and the initial offspring solution is set to be any parent
solution. The bits in the non-common and common sets are operated alternatively.
For the non-common set, all the non-common bits with the positive 1-flip move
gains are identified and such a bit is randomly selected. For the common set, the
common bit with the maximum associated 1-flip move gain is identified even if the
move gain is negative. If a bit is flipped, it is removed from the corresponding set.
The above-mentioned procedure is repeated for a number of times equal to the size
of the non-common set.

In each generation, a new population needs to be formed after offspring
individuals are generated. Among the old individuals in the previous generation and
the newly generated offspring individuals, those with the highest fitness are selected
to maintain the restricted population size. If no new best individual in the population
was found for more than 30 generations, a diversification restart strategy is triggered.
All the individuals except for the best one in the population are mutated by flipping
randomly chosen n/3 bits for each individual of length n. After that, each individual
is optimized by the randomized k-opt local search to obtain a renewal set of local
optima and the search is started again with the newly diversified population.

9.5.3 Path Relinking

Wang et al. [28] proposed two path relinking algorithms, which is composed of
a reference set initialization method, a solution improvement method, a reference
set update method, a relinking method and a path solution selection method.
The proposed algorithms differ from each other mainly on the way they generate
the path, one employing a greedy strategy and the other employing a random
construction.

The general scheme of the path relinking algorithm works as follows. It starts
with the creation of an initial set of elite solutions RefSet, based on which an index
set of pairwise solutions PairSet is generated. For each index pair (i, j), a relinking
method is applied to generate two paths connecting the elite solutions xi and xj ,
one of which is from xi to xj and the other is from xj to xi . Then, one solution on
each path is selected according to a path solution selection method and refined by a
solution improvement method using the same tabu search procedure as in [18]. The
resulting solution is subject to the RefSet updating procedure. The above-mentioned
procedure is terminated once all the elements in PairSet are examined. If the given
stopping criterion is not satisfied, RefSet and PairSet are rebuilt to continue the
search.

9 Metaheuristic Algorithms 251

The RefSet initialization method is used to construct an elite set of high-
quality solutions, where each solution is obtained in two steps. The first step
generates a randomized solution, where each variable receives value 0 or 1 with
an equal probability of 0.5. The second step employs a tabu search based solution
improvement method to refine the quality of this solution. Afterwards, the RefSet
updating procedure is invoked. The improved solution is permitted to be added
into RefSet if it is distinct from any solution in RefSet and better than the worst
solution. Once this condition is satisfied, the worst solution is replaced by the
improved solution. When PairSet becomes empty, RefSet is recreated. The best
solution previously found becomes a member of the new RefSet and the remaining
solutions are generated in the same way as in constructing RefSet in the first round.

The path relinking method builds a path connecting an initiating solution where
the path starts with and a guiding solution where the path ends at. The path consists
of a sequence of intermediate solutions, each of which is generated by exploring
the neighborhood of the initiating and guiding solutions. To be specific, identify
the set of non-common variables NC where the initiating solution xi = x(0) and
the guiding solution xg have different values. Meanwhile, initialize another vector
where each entry �t denotes the objective difference resulting after flipping the
variable xt ∈ NC from the previous solution x(k − 1) on the path. The path
relinking method performs a total of |NC| − 1 iterations to construct a path. At
each path construction step k, either use a greedy strategy to select the variable
having the maximum �t∈NC value in the algorithm PR1 or use a random strategy
to randomly select a non-common variable in the algorithm PR2. The path solution
x(k) is determined by assigning the same value as the guiding solution xg for the
newly chosen variable and assigning the same values as x(k − 1) for all the other
variables.

Since two consecutive solutions on a relinking path differ only by flipping a
single variable, it is not productive to apply an improvement method to each solution
on the path since many of these solutions would lead to the same local optimum.
Hence, the path solution selection method chooses only a single solution on the path
explored via path relinking. Specifically, it first constructs a candidate solution list
that includes the solutions with a Hamming distance of at least |NC|/3 from both
the initiating and guiding solutions. Then, the candidate solution with the maximum
objective value is picked for further amelioration by the solution improvement
method.

9.5.4 Automatic Grammar-Based Design of Heuristic
Algorithms

de Souza and Ritt [25] designed an automatic algorithm by combining the problem-
specific components of state-of-the-art algorithms from the literature. The designed
automatic algorithm employs a grammar in Backus-Naur form to model the space of
heuristic strategies and their parameters. The grammar is composed of a set of rules,

252 Y. Wang and J.-K. Hao

through which the heuristic algorithms can be instantiated. All heuristic strategies
are categorized into construction methods, search methods and recombination
methods. The construction methods start from an empty solution and apply the
greedy randomized heuristics to iteratively set value 0 or 1 to each variable. The
search methods include local search components, tabu search components and
iterated local search components, which start with an initial solution and perform
1-flip moves to explore the search space. The differences among local search
components lie in the move selection strategies that transfer from the current
solution to its neighbor solution, such as the first improvement strategy, a round-
robin strategy, a best improvement strategy, etc. Two tabu search components are
differentiated, one of which always selects the best move and the other selects
a random move with a small probability. In addition to different local search
strategies, the iterated local search components include perturbation strategies of
random perturbation, least-loss perturbation and frequency based perturbation as
well as different strategies to define the perturbation strength. The recombination
methods employ the path relinking algorithms that evolve a population of elite
solutions.

To perform exploration of the grammar based search space, they used the irace
tool described in [17] to rank different candidates of the algorithms found in the
literature of QUBO and newly generated algorithms. The irace tool implements an
iterated racing procedure that iteratively selects a candidate and an instance from
a set of elite candidates and calls the resulting algorithm. After performing each
iteration, the average difference between the objective value of the found solution
and the best known value is used as a result metric for irace to rank different
candidates. The process is repeated until irace has finished the specified number
of algorithm runs. Experimental results indicate that the automatic approach can
find algorithms that outperform state-of-the-art algorithms.

9.5.5 A Systematic Evaluation of Heuristics

Dunning et al. [7] implemented a total of 37 Max-Cut and QUBO heuristics selected
from the literature and performed a systematic evaluation on a library of 3296
instances. Because no single heuristic outperforms all others across all problem
instances, a regression tree model is built for each of the 37 heuristics to determine
the rank on a given instance. Based on this, key insights into when heuristics perform
well or poorly according to the problem instance characteristics are identified.
Moreover, a random forest model is built for each heuristic to predict the probability
of a heuristic that will perform the best for a given instance. By selecting a set of
heuristics with the highest predicted probability, an algorithm portfolio is finally
constructed to produce the best solution. Unlike many hyper-heuristics found in the
literature, the proposed approach does not construct a new heuristic by selecting
from a set of heuristic components. In addition, it does not include and implement
several advanced algorithms and thus lacks of comparisons with these algorithms.

9 Metaheuristic Algorithms 253

Results indicate that the proposed algorithm portfolio dominates each of the 37
Max-Cut and QUBO heuristics it combines. The open-source implementations of
the heuristics are publicly available1

9.6 Computational Results

9.6.1 Benchmark Instances

Three sets of test problems are often used in the QUBO literature to evaluate
the performance of algorithms. The first set is composed of 10 large instances
from the OR-Library [3, 4].2 They all have a density of 0.1 and are named by
b2500.1,. . .,b2500.10. The second set of benchmarks consists of 21 randomly
generated large problem instances named p3000.1,. . .,p7000.3 with sizes ranging
from n=3000 to 7000 and with densities from 0.5 to 1.0 [23, 24].3 These large
instances are particularly challenging QUBO problems, especially in the case of
instances with more than 5000 variables. The third set of benchmarks includes 54
instances derived from the MaxCut problem, named G1,. . .,G54, with variable sizes
ranging from n=800 to 2000 [5, 8].4 These instances are created by using a machine-
independent graph generator, composed of toroidal, planar and random weighted
graphs with weight values 1, 0 or−1. The small test instances from the OR-Library
whose sizes range from n = 500 to 1000 can be solved relatively easily by many
algorithms.

It is worth noting that a completely fair comparison of algorithms is impossible
since the compared algorithms are implemented by different authors and run under
different conditions. The presented comparisons on the QUBO instances as well as
that on the MaxCut problem are thus presented only for indicative purposes and
should be interpreted with caution.

9.6.2 Computational Results on the QUBO Instances

The PR1 and PR2 algorithms were tested on a PC with Pentium 2.83 GHz CPU and
8 GB RAM. The running CPU time for each run of PR1 and PR2 is set to 60 seconds
for solving the 10 OR-Library instances and set to 5, 10, 20, 30 and 50 minutes
for solving the instances of second set with 3000, 4000, 5000, 6000 and 7000
variables. The time limits are comparable to that used by the Diversification-Driven

1 https://github.com/MQLib/MQLib.
2 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html.
3 http://www.soften.ktu.lt/~gintaras/ubqop_its.html.
4 http://www.stanford.edu/~yyye/yyye/Gset.

https://github.com/MQLib/MQLib
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
http://www.soften.ktu.lt/~gintaras/ubqop_its.html
http://www.stanford.edu/~yyye/yyye/Gset

254 Y. Wang and J.-K. Hao

Table 9.1 Average results comparison on the instances of the first set

Average solution gap (i.e., BKR − favg)

Instance BKR PR1 [28] PR2 [28] ITS [24] MST2 [23] D2TS [10] MA [22]

b2500.1 1515944 0 0 0 0 0 13

b2500.2 1471392 0 58 9 0 0 645

b2500.3 1414192 13 0 11 11 0 173

b2500.4 1507701 0 0 0 0 0 0

b2500.5 1491816 0 0 0 0 0 55

b2500.6 1469162 0 0 0 0 0 190

b2500.7 1479040 0 0 0 0 0 416

b2500.8 1484199 0 0 0 0 0 3

b2500.9 1482413 0 0 0 0 0 321

b2500.10 1483355 0 0 0 0 0 446

Average 1.3 5.8 2 1.1 0 226

Tabu Search (D2TS) [10], Iterated Tabu Search (ITS) [24], MultiStart Tabu Search
(MST2) [23], Memetic Algorithm (MA) [22] and Automatic Algorithm (AACR)
[25] after considering the computing performance of different machines.

Table 9.1 shows the results obtained by the 6 reference algorithms for solving
the 10 bxxx.y instances. Columns 1 and 2 respectively give the instance name and
the best known result BKR reported in the literature. The following columns list
the average solution gap to the best known result BKR − favr . Given that all the
reference algorithms are capable of finding the best known results, we do not report
for each instance the tabulated solution gap 0 between the best solution value found
by each algorithm and the best known result. The last row “Average” indicates the
summary of each algorithm’s average performance over this set of instances.

As shown in Table 9.1, D2TS is able to reach the best known results during each
run for all the 10 instances. PR1 and PR2 perform slightly worse by failing for
1 instance. The average solution gaps to the best known results obtained by PR1,
PR2, ITS and MST2 are 1.3, 5.8, 2 and 1.1, respectively, which are quite small
compared to the solution values. MA performs the worst among all the algorithms
by obtaining an average solution gap of 226 to the best known results.

Tables 9.2 and 9.3 show the best and average solution gaps to the best known
results for solving the 21 pxxx.y instances. We replace the algorithm MA by AACR

since the latter is recently proposed and reports much better results. Table 9.2
indicates that PR1 and PR2 achieve the best known results for all the 21 challenging
instances. AACR and D2TS perform slightly worse since they fail to reach the best
known results for 1 and 2 instances, respectively. ITS and MST2 obtain the worst
gaps of 306.8 and 308.9 on average with respect to the best solution found. Table 9.3
indicates AACR performs the best with an average solution gap of 211.7. PR1 and
PR2 obtain the average solution gaps of 457.1 and 690.4, respectively, which are
slightly worse than AACR . D2TS obtains the worst average solution gap of 2082.9
among all the algorithms.

9 Metaheuristic Algorithms 255

Table 9.2 Best results comparison on the instances of the second set

Best solution gap (i.e., BKR − fbest)

Instance BKR PR1 [28] PR2 [28] ITS [24] MST2 [23] D2TS [10] AACR [25]

p3000.1 3931583 0 0 0 0 0 0

p3000.2 5193073 0 0 0 0 0 0

p3000.3 5111533 0 0 0 0 0 0

p3000.4 5761822 0 0 0 0 0 0

p3000.5 5675625 0 0 0 0 0 0

p4000.1 6181830 0 0 0 0 0 0

p4000.2 7801355 0 0 0 0 0 0

p4000.3 7741685 0 0 0 0 0 0

p4000.4 8711822 0 0 0 0 0 0

p4000.5 8908979 0 0 0 0 0 0

p5000.1 8559680 0 0 700 325 325 0

p5000.2 10836019 0 0 0 582 0 0

p5000.3 10489137 0 0 0 0 0 0

p5000.4 12252318 0 0 934 1643 0 0

p5000.5 12731803 0 0 0 0 0 0

p6000.1 11384976 0 0 0 0 0 0

p6000.2 14333855 0 0 88 0 0 0

p6000.3 16132915 0 0 2729 0 0 0

p7000.1 14478676 0 0 340 1607 0 0

p7000.2 18249948 0 0 1651 2330 104 8

p7000.3 20446407 0 0 0 0 0 0

Average 0 0 306.8 308.9 20.4 0.4

9.6.3 Computational Results on the MaxCut Instances

The maximum cut problem can be naturally transformed into the QUBO model.
Given an undirected graph G = (V ,E) with vertex set V = {1, . . . , n} and edge set
E ⊆ V × V , each edge e(i, j) is associated with a weight wij , the maximum cut
problem (MaxCut) asks for a partition of V into two disjoint subsets such that the
total weight of the cut (edges crossing the two subsets) is maximized. Formally, the
objective function of MaxCut is:

Maximize: f (x) =
n∑

i=1

n∑

j=1

wij xi(1− xj),

subject to: xi ∈ {0, 1}, i = 1, . . . , n.

(9.5)

256 Y. Wang and J.-K. Hao

Table 9.3 Average results comparison on the instances of the second set

Average solution gap (i.e., BKR − favg)

Instance fprev PR1 [28] PR2 [28] ITS [24] MST2 [23] D2TS [10] AACR [25]

p3000.1 3931583 0 80 0 0 0 0

p3000.2 5193073 0 0 97 97 0 0

p3000.3 5111533 36 72 344 287 0 108

p3000.4 5761822 0 0 154 77 0 0

p3000.5 5675625 90 279 501 382 0 49

p4000.1 6181830 0 0 0 0 0 0

p4000.2 7801355 71 314 1285 804 0 323

p4000.3 7741685 0 64 471 1284 0 3

p4000.4 8711822 0 0 438 667 0 0

p4000.5 8908979 491 385 572 717 0 0

p5000.1 8559680 612 918 971 581 656 387

p5000.2 10836019 620 499 1068 978 12533 339

p5000.3 10489137 995 318 1266 1874 12876 77

p5000.4 12252318 1258 1168 1952 2570 1962 554

p5000.5 12731803 51 166 835 1233 239 37

p6000.1 11384976 201 822 57 34 0 18

p6000.2 14333855 221 577 1709 1269 1286 148

p6000.3 16132915 1744 2017 3064 2673 787 672

p7000.1 14478676 935 1523 1139 2515 2138 903

p7000.2 18249948 1942 2986 4301 3814 8712 828

p7000.3 20446407 332 2311 3078 7868 2551 0

Average 457.1 690.4 1109.6 1415.4 2082.9 211.7

The following corresponding relation is apparent in comparison with the formu-
lation of QUBO:

qii =
n∑

j=1,j �=i

wij , qij = −wij , (i �= j) (9.6)

According to Eq. (9.6), a MaxCut problem instance can be reformulated into a
QUBO instance. Thus, the algorithms designed for solving the QUBO problem are
directly applicable to the MaxCut problem.

Table 9.4 reports the computational results on the 54 MaxCut instances. For each
execution of the compared algorithms, the time limit for solving each instance is
set to be 30 minutes. Columns 1 gives the instance name. Columns 2 to 4 list the
best solution values found by PR1, PR2 and D2TS. Columns 5 to 8 list the average
solution values found by PR1, PR2, AACM and AACR . Both AACM and AACR

are proposed in [25], where AACR uses the pxxx.y instances of as training inputs
to irace and AACM is trained on the MaxCut instances. The last row “Matched”
indicates the number of instances where each algorithm obtains the best results

9 Metaheuristic Algorithms 257

Table 9.4 Computational results comparison on the MaxCut instances

fbest favg

Instance PR1 [28] PR2 [28] D2TS [10] PR1 [28] PR2 [28] AACM [25] AACR [25]

G1 11624 11624 11624 11624 11624 11624 11607.8

G2 11620 11620 11620 11620 11620 11620 11606.2

G3 11620 11620 11620 11620 11620 11622 11611.2

G4 11646 11646 11646 11646 11646 11646 11633.2

G5 11631 11631 11631 11631 11631 11631 11620.1

G6 2178 2178 2178 2178 2178 2178 2172.1

G7 2006 2006 2006 2006 2006 2006 1995.8

G8 2005 2005 2005 2005 2005 2005 1998.5

G9 2054 2054 2054 2054 2054 2054 2044.4

G10 2000 2000 2000 2000 1999.8 2000 1989.8

G11 564 564 564 564 564 564 556.4

G12 556 556 556 556 556 556 546

G13 582 582 580 582 582 582 568

G14 3063 3064 3061 3062.1 3062.6 3062.6 3055.9

G15 3050 3050 3050 3049.3 3049.3 3049.9 3035.8

G16 3052 3052 3052 3051.3 3051.4 3051.9 3038.4

G17 3047 3047 3046 3045.5 3046.4 3046.7 3034.3

G18 992 992 991 992 992 992 974.3

G19 906 906 904 906 906 906 886.9

G20 941 941 941 941 941 941 915.1

G21 931 931 931 931 931 931 903.5

G22 13359 13359 13359 13353.5 13354.5 13349.2 13338.4

G23 13342 13342 13342 13333 13331.6 13332.1 13330

G24 13337 13333 13337 13327.3 13325.3 13321.9 13321.1

G25 13338 13339 13332 13328 13328.2 13329.2 13324.9

G26 13324 13326 13328 13313.7 13312.3 13314.8 13311.7

G27 3337 3336 3336 3327.3 3326.9 3328.2 3316.2

G28 3296 3296 3295 3286 3288.9 3287.7 3285.2

G29 3404 3405 3391 3395.2 3391.9 3390.2 3383.4

G30 3412 3411 3403 3404.6 3404.8 3405.5 3397.8

G31 3306 3306 3288 3299.7 3299.5 3300.7 3293.8

G32 1408 1410 1406 1400.9 1404.6 1401.3 1375.4

G33 1382 1382 1378 1373.9 1376.1 1373.3 1352.2

G34 1382 1384 1378 1375.4 1378.2 1376 1352.3

G35 7674 7679 7678 7663.3 7670.8 7668.8 7642.5

G36 7666 7671 7670 7653.1 7658.7 7660 7633.5

G37 7673 7682 7682 7663.3 7667.9 7670 7645

G38 7674 7682 7683 7663.4 7670.4 7671.7 7642.5

G39 2402 2407 2397 2391.3 2391.1 2395.2 2341.5

G40 2394 2399 2390 2381.2 2383.3 2387.8 2324.9

(continued)

258 Y. Wang and J.-K. Hao

Table 9.4 (continued)

fbest favg

Instance PR1 [28] PR2 [28] D2TS [10] PR1 [28] PR2 [28] AACM [25] AACR [25]

G41 2402 2404 2400 2380 2388.9 2393 2329.2

G42 2475 2478 2469 2462.3 2466.2 2467.8 2404.9

G43 6660 6660 6660 6660 6659.9 6660 6649.3

G44 6650 6650 6639 6649.9 6649.9 6650 6641.4

G45 6654 6654 6652 6653.9 6653.9 6654 6647.4

G46 6649 6649 6649 6648.2 6648.8 6649 6641.5

G47 6657 6657 6665 6656.6 6656.8 6656.9 6648

G48 6000 6000 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000 6000 6000

G50 5880 5880 5880 5880 5880 5880 5875

G51 3848 3848 3847 3844.6 3846.4 3846.6 3832.4

G52 3851 3851 3849 3847.6 3848.4 3849.9 3836.1

G53 3849 3850 3848 3846.9 3847.7 3848 3835.2

G54 3852 3851 3851 3848.6 3847.8 3850.1 3836.3

Matched 38 47 29 25 27 44 2

among the compared algorithms. In terms of the best solution values, PR2 matches
the best results for 47 out of 54 instances, performing better than PR1 and D2TS that
match 38 and 29 best results, respectively. In terms of the average solution values,
AACM performs the best by matching the best results for 44 instances, much better
than AACR that only matches 2 best results. This indicates that the behavior of the
automatic approach is closely correlated to the problem structure.

Acknowledgments This work was partially supported by the National Natural Science Foun-
dation of China (No. 71971172), the Natural Science Basic Research Program of Shaanxi (No.
2020JM-089), the Social Science Fund of Shaanxi (No. 2019S051), the Fundamental Research
Funds for the Central Universities (No. D5000210834).

References

1. T.M. Alkhamis, M. Hasan, M.A. Ahmed, Simulated annealing for the unconstrained quadratic
pseudo-boolean function. Eur. J. Oper. Res. 108, 641–652 (1998)

2. M.M. Amini, B. Alidaee, G. Kochenberger, A scatter search approach to unconstrained
quadratic binary programs, in New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F.
Glover (McGraw-Hill, New York, 1999), pp. 317–329

3. J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming
problem. Ph.D. Thesis, The Management School Imperial College, London (1998)

4. J.E. Beasley, Obtaining test problems via Internet. J. Global Optim. 8, 429–433 (1996)
5. S.J. Benson, Y. Ye, X. Zhang, Mixed linear and semidefinite programming for combinatorial

and quadratic Optimization. Optim. Methods Softw. 11, 515–544 (1999)
6. E. Boros, P.L. Hammer, X. Sun, The ddt method for quadratic 0-1 minimization, RRR 39-89,

RUTCOR Research Center (1989)

9 Metaheuristic Algorithms 259

7. I. Dunning, S. Gupta, J. Silberholz, What works best when? A systematic evaluation of
heuristics for max-cut and qubo. INFORMS J. Comput. 30, 608–624 (2018)

8. C. Helmberg, F. Rendl, A spectral bundle method for semidefinite programming. SIAM J.
Optim. 10(3), 673–696 (2000)

9. F. Glover, G.A. Kochenberger, B. Alidaee, Adaptive memory tabu search for binary quadratic
programs. Manag. Sci. 44, 336–345 (1998)

10. F. Glover, Z. Lü, J.K. Hao, Diversification-driven tabu search for unconstrained binary
quadratic problems. 4OR: A Quart. J. Oper. Res. 8, 239–253 (2010)

11. F. Glover, C. Rego, B. Alidaee, G. Kochenberger, One-pass heuristic for large-scale uncon-
strained binary quadratic problems. Eur. J. Oper. Res. 137, 272–287 (2002)

12. S. Hanafi, A.R. Rebai, M. Vasquez, Several versions of the devour digest tidy-up heuristic for
unconstrained binary quadratic problems. J. Heuristics 19, 645–677 (2013)

13. P. Hansen, N. Mladenović, Variable neighborhood search, in Handbook of Metaheuristics,
ed. by F. Glover, G. Kochenberger. International Series in Operations Research Management
Science, vol. 57 (2003), pp. 145–184

14. K. Katayama, H. Narihisa, Performance of simulated annealing-based heuristic for the
unconstrained binary quadratic programming problem. Eur. J. Oper. Res. 134, 103–119 (2001)

15. W. Liu, D. Wilkins, B. Alidaee, A hybrid multi-exchange local search for unconstrained binary
quadratic program. Working Papers Series, Hearin Center For Enterprise Science (2006)

16. A. Lodi, K. Allemand, T.M. Liebling, An evolutionary heuristic for quadratic 0-1 program-
ming. Eur. J. Oper. Res. 119, 662–670 (1999)

17. M. López-Ibán̈ez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari, T. Stützle, The irace package:
iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

18. Z. Lü, F. Glover, J.K. Hao, A hybrid metaheuristic approach to solving the ubqp problem. Eur.
J. Oper. Res. 207, 1254–1262 (2010)

19. Z. Lü, F. Glover, J.K. Hao, Neighborhood combination for unconstrained binary quadratic
problems, in MIC-2009 Post-Conference Book, ed. by M. Caserta, S. Voss (Springer, Berlin,
2012), pp. 49–61

20. P. Merz, B. Freislebeng, Greedy and local search heuristics for unconstrained binary quadratic
programming. J. Heuristics 8, 197–213 (2002)

21. P. Merz, B. Freisleben, Genetic algorithms for binary quadratic programming, in Proceedings
of the 1999 Genetic and Evolutionary Computation Conference, vol. 1 (1999), pp. 417–424

22. P. Merz, K. Katayama, Memetic algorithms for the unconstrained binary quadratic program-
ming problem. Biosystems 78, 99–118 (2004)

23. G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic opti-
mization problem. Ann. Oper. Res. 131, 259–282 (2004)

24. G. Palubeckis, Iterated tabu search for the unconstrained binary quadratic optimization
problem. Informatica 17, 279–296 (2006)

25. M. de Souza, M. Ritt, Automatic grammar-based design of heuristic algorithms for uncon-
strained binary quadratic programming, in EvoCOP 2018, ed. by A. Liefooghe, M. Lopez-
Ibanez. Lecture Notes in Computer Science, vol. 10782 (2018), pp. 67–84

26. V.P. Shylo, O.V. Shylo, Solving unconstrained binary quadratic programming problem by
global equilibrium search. Cybern. Syst. Anal. 47, 889–897 (2011)

27. Y. Wang, Z. Lü, F. Glover, J.K. Hao, Probabilistic GRASP-Tabu search algorithms for the
UBQP problem. Comput. Oper. Res. 40, 3100–3107 (2013)

28. Y. Wang, Z. Lü, F. Glover, J.K. Hao, Path relinking for unconstrained binary quadratic
programming. Eur. J. Oper. Res. 223, 595–604 (2012)

Chapter 10
The Bipartite QUBO

Abraham P. Punnen

Abstract This chapter deals with the bipartite quadratic unconstrained binary
optimization problem (BQUBO) which is closely related QUBO, both as a general-
ization and as a particular case. In this sense many of the results discussed for QUBO
in the previous chapters extend to BQUBO. Here we focus primarily on results that
exploit the special structure of BQUBO. In particular, we consider computational
complexity, polynomially solvable special cases, approximation algorithms, MILP
formulations, and exact and heuristic algorithms.

10.1 Introduction

The bipartite quadratic unconstrained binary optimization problem (BQUBO) is
a variation of the quadratic unconstrained binary optimization problem (QUBO)
with special structural properties. Let Q be an m × n real matrix with its (i, j)th
element as qij , cT = (c1, c2, . . . , cm) ∈ R

m, dT = (d1, d2, . . . , dn) ∈ R
n, yT =

(y1, y2, . . . , yn) ∈ {0, 1}n and xT = (x1, x2, . . . , xm) ∈ {0, 1}m. Then, the BQUBO
can be stated as the mathematical programming problem

Maximize f (x, y) = xTQy+ cT x+ dT y
Subject to

x ∈ {0, 1}m, y ∈ {0, 1}n

An instance of the BQUBO is uniquely defined when Q, c and d are specified.
Therefore, we sometimes denote a BQUBO instance by the triplet (Q, c, d). The
BQUBO is equivalent to the unconstrained bilinear program (UBLP) [43, 44]
obtained by replacing the binary restrictions on the variables x and y with x ∈
[0, 1]m and y ∈ [0, 1]n. There is extensive literature on bilinear programs and some

A. P. Punnen (�)
Department of Mathematics, Simon Fraser University, Surrey, BC, Canada
e-mail: apunnen@sfu.ca

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_10

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_10&domain=pdf
mailto:apunnen@sfu.ca
https://doi.org/10.1007/978-3-031-04520-2_10

262 A. P. Punnen

of these are relevant to the special case of UBLP. Despite the equivalence between
the BQUBO and the UBLP, we represent a BQUBO using binary variables and focus
primarily on the combinatorial properties, unless otherwise stated.

Before getting into further details on the BQUBO, let us now briefly discuss some
of the notations used in this chapter. We follow the same notational convention as
discussed in Chap. 1. That is, All matrices are represented using bold capital letters
and elements of a matrix are represented by the corresponding small letters along
with accents, if any, and the location coordinates. For example the (i, j)th element
of the matrix A is aij , of the matrix B̄ is b̄ij , and of the matrix Dk is dk

ij . Similarly,
vectors are represented by boldface small letters along with appropriate accents, as
applicable, and elements of a vector is represented using the same letter (without
boldface) along with its location coordinate and accents, if any. For example, the
ith element of the vector c is ci , of the vector xk is xk

i , and of the vector ṽ is ṽi .
Exceptions to this rule will be stated explicitly and operators such as transpose etc.
are not considered as accents in the case of vectors. The zero vector in any dimension
is represented by 0. Additional notations will be introduced as need arises. Also we
denote M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}. Throughout this chapter, we
assume that m ≤ n, without loss of generality.

Many well-studied optimization problems can be formulated as a BQUBO. In
Chapter 1, we have seen that when m = n and Q is symmetric and positive
semidefinite, a QUBO can be solved as a BQUBO and vice versa [42, 43]. Further,
any instance (Q, c, d) of a BQUBO can be formulated as the QUBO (Q′, c′) or the
QUBO (Q′′, c′), where

Q′ =
[

Om×m
1
2 Q

1
2 QT On×n

]

, Q′′ =
[

Om×m Q
On×m On×n

]

, c′ = [
c d

]
, and

On×n, Om×m, and On×m are zero matrices. In this sense, BQUBO is a special
case of QUBO and hence the results derived for the QUBO are applicable for the
BQUBO as well.

A graph theoretic interpretation of the BQUBO can be given as follows. Let G =
(V1, V2, E) be a bipartite graph with V1 = {1, 2, . . . ,m} and V2 = {1, 2, . . . , n}.
The edge set E = {(i, j) : qij �= 0} and let qij be the weight of the edge (i, j) in G.
Also, the weight of the node i ∈ V1 is ci and the weight of the node j ∈ V2 is dj .
Then, the BQUBO is to find an S ⊆ V1 ∪ V2 such that the subgraph of G induced
by S have the largest sum of the weights of its edges and nodes [63–65].

In the preceding chapters, we have discussed two primary forms of QUBO, one
with 0-1 variables and the other with variables taking values −1 or 1. The later was
called the Ising QUBO. The corresponding version of the BQUBO, called the Ising
BQUBO, can be stated as the mathematical programming problem

Maximize φ(x, y) = xTAy+ bT x+ pT y

Subject to

x ∈ {−1, 1}m, y ∈ {−1, 1}n.

10 The Bipartite QUBO 263

where bT = (b1, b2, . . . , bm) and pT = (p1, p2, . . . , pn). An instance of the Ising
BQUBO can be represented by the 3-tuple (A, b, p). The BQUBO and the Ising
BQUBO without the linear terms are said to be in homogeneous form.

Theorem 10.1 For any BQUBO there exists an equivalent BQUBO which is in the
homogeneous form. Likewise, for any Ising BQUBO there exists an equivalent Ising
BQUBO which is in the homogeneous form.

Proof We prove the result for the Ising BQUBO and the proof for the case of
BQUBO is similar. Consider the instance (A, b, p) of the Ising BQUBO. Introduce
two new variables, say xm+1 and yn+1. Consider the (m+ 1)× (n+ 1) matrix

Â =
[

A b
pT M

]

, (10.1)

where M is a large number. Since φ(x, y) = φ(−x,−y) for any homogeneous Ising
BQUBO and the entry in am+1,n+1 is M , without loss of generality we can assume
that xm+1 = yn+1 = 1 in an optimal solution to the Ising BQUBO (Â, 0m+1, 0n+1).
This accurately counts the linear terms of the Ising QUBO (A, b, p) for an optimal
solution. However, this adds a constant M to the objective function value of every
optimal solution of (Â, 0m+1, 0n+1) compared to that of the Ising QUBO (A, b, p),
and this does not affect the optimal solution set for either problem. Thus, the Ising
BQUBO (A, b, p) is equivalent to the Ising BQUBO (Â, 0m+1, 0n+1).

The choice of am+1,n+1 = M was crucial in the above proof which guarantees
that xm+1 and yn+1 will have the same sign in an optimal solution. Just the
property that φ(x, y) = φ(−x,−y) is not sufficient to establish this since if
xm+1 = 1, yn+1 = −1, its negation also have different signs and hence the linear
terms may not get counted accurately. For a corresponding result in the case of Ising
QUBO, instead of M we could select 0, as we have seen in Chap. 1. Using M in our
reduction although preserve optimality, it need not preserve ε-optimality and this is
a significant difference from the case of the Ising QUBO.

We can also establish equivalence between the BQUBO and the Ising
BQUBO [64]. Consider the linear transformation

x = 2w− em and y = 2z− en, (10.2)

where em and en are all-one vectors in R
m and R

n, respectively. Under this
transformation, xi = 1 is mapped to wi = 1 and xi = −1 mapped to wi = 0.
Similarly, yj = 1 is mapped to zj = 1 and yj = −1 is mapped to zj = 0. Thus,
using (10.2), the Ising BQUBO can be reduced to the BQUBO

Maximize f (w, z) = wT Qaz+ (ca)T w+ (da)T z

Subject to

w ∈ {0, 1}m, z ∈ {0, 1}n,

264 A. P. Punnen

where Qa = 4A, ca = 2(b − Aen), da = 2(p − AT em) and the constant term
eT
mAen − bT em − pT en is ignored from the objective function. Similarly, using the

linear transformation

x = 1

2
(w+ em) and y = 1

2
(z+ en) (10.3)

a BQUBO can be reduced to the Ising BQUBO

Maximize φ(w, z) = wT Aqz+ (bq)T w+ (pa)T z

Subject to

w ∈ {−1, 1}m, z ∈ {−1, 1}n

where Aq = 1
4 Q, bq = 1

4 (Qen) + 1
2 c, pq = 1

4 QT em + 1
2 d and the constant term

1
4 eT

mQen + 1
2 cT em + 1

2 dT en is ignored from the objective function.

Theorem 10.2 The BQUBO and the Ising BQUBO are strongly NP-hard.

Proof We reduce a QUBO to the BQUBO. Consider the instance (Q, c) of a QUBO.
From this, construct the instance (Q̄, c̄, d̄) of BQUBO, where

Q̄ = Q− 2MI, c̄ = 1

2
c+Me and d̄ = 1

2
c+Me, (10.4)

I is the n× n identity matrix, e ∈ R
n is the all one vector, and M is a large number.

Now, it can be verified that an optimal solution (x, y) to (Q̄, c̄, d̄) satisfies xi = yi

for all i = 1, 2, . . . , n and hence x is an optimal solution to the QUBO (Q, c). Since
the QUBO is strongly NP-hard, BQUBO is also strongly NP-hard. Further, since any
BQUBO can be reduced to the Ising BQUBO using the linear transformation (10.3),
it follows that the Ising BQUBO is also strongly NP-hard.

It is well known that the maximum weight cut problem (MWCP) on a general
graph G is equivalent to QUBO (see Chaps. 1, 3, and the references therein). In
MWCP, if we restrict the graph G to be bipartite, we get an instance of the bipartite
maximum weight cut problem which we denote by B-MaxCut. Indeed, viewing B-
MaxCut as a maximum weight cut problem on a general graph yields an equivalent
QUBO. But the support graph of the resulting QUBO need not be bipartite and hence
the resulting instance need not be that of a BQUBO. When all edge weights are non-
negative, B-MaxCut is a trivial problem. We now show the equivalence between the
BQUBO and the B-MaxCut.

Let G = (V1, V2, E) be a bipartite graph with |V1| = m and |V2| = n. Two
vectors x ∈ {−1, 1}m and y ∈ {−1, 1}n defines a cut (S1 ∪ S2, T1 ∪ T2) in G if
S1 = {i ∈ V1 : xi = 1}, T1 = {i ∈ V1 : xi = −1}, S2 = {j ∈ V1 : yj = 1},
and T2 = {j ∈ V2 : yj = −1}. We call (x, y) the incidence vector of the cut
(S1 ∪ S2, T1 ∪ T2). Let qij be the weight of the edge (i, j) in G. Then, the value of

10 The Bipartite QUBO 265

the cut (S1 ∪ S2, T1 ∪ T2) is given by

∑

i∈S1,j∈T2

qij +
∑

i∈T1,j∈S2

qij =
∑

xi=−yj

qij (10.5)

Theorem 10.3 ([64]) The Ising BQUBO (A, 0, 0) and B-MaxCut are equivalent in
the following sense:
1. For any instance of the Ising BQUBO, it is possible to construct a complete

bipartite graph G such that an optimal solution to the B-MaxCut problem on G

gives an optimal solution to the Ising BQUBO.
2. For any instance of B-MaxCut on a bipartite graph G = (V1, V2, E) with |V1| =

m and |V2| = n, it is possible to construct an instance of the homogeneous Ising
BQUBO with an m× n cost matrix A such that an optimal solution to the Ising
BQUBO (A, 0, 0) gives an optimal solution to the B-MaxCut problem on G.

Proof The objective function φ(x, y) of the Ising BQUBO (A, 0, 0) can be written
as

φ(x, y) =
∑

ij

aij xiyj =
∑

xi=yj

aij −
∑

xi=−yj

aij =
m∑

i=1

n∑

j=1

aij − 2
∑

xi=−yj

aij

Since
∑m

i=1
∑n

j=1 aij is a constant, maximizing φ(x, y) is equivalent to maximizing
−∑x̄i=−ȳj

aij . Thus, by solving the B-MaxCut problem on a complete bipartite
graph Km,n with the weight of the edge (i, j) as −aij solves the Ising BQUB
(A, 0, 0).

To establish the second part of the theorem, we show that the B-MaxCut problem
on the bipartite graph G = (V1, V2, E with edge weights cij for (i, j) ∈ E can be
solved as an Ising BQUBO (A, 0, 0). Let (S1 ∪ S2, T1 ∪ T2) be a cut in G and (x, y)

be the corresponding incidence vector. Let δ(S, T) = ∑
xi=−yj

cij be the value of

the cut (S1 ∪ S2, T1 ∪ T2). Then it can be verified that g(S, T) = 1
2

∑
(i,j)∈E cij −

1
2

∑
(i,j)∈E cij xiyj and, hence, maximizing δ(S, T) is equivalent to solving the Ising

BQUBO (A, 0, 0) where A is an m × n matrix with |V1| = m, |V2| = n and aij =
− 1

2cij if (i, j) ∈ E and aij = 0, otherwise.

Given any m× n matrix Q we define the support bipartite graph as the bipartite
graph G = (V1, V2, E) where V1 = {u1, u2, . . . , um}, V2 = {v1, v2, . . . , vn} and
E = {(ui, vj) : ui ∈ V1, vj ∈ V2, qij �= 0}. From Theorem 10.3, it follows that,

Theorem 10.4 Let A be an m × n matrix and G = (V1, V2, E) be the support
bipartite graph of A with the weight of an edge (ui, vj) is aij . Then G has a cut
(S1 ∪ S2, T1 ∪ T2) with capacity K if and only if there exists x ∈ {−1, 1}m, y ∈
{−1, 1}n such that xT Ay =∑m

i=1
∑n

j=1 aij − 2K.

266 A. P. Punnen

Fig. 10.1 The support bipartite graph of A and the edges of the given cut

To illustrate the result of Theorem 10.4, consider the matrix

A =

⎛

⎜
⎜
⎝

9 −10 −6 8 0
5 3 0 −1 0
0 0 −2 −3 −5
0 0 0 4 7

⎞

⎟
⎟
⎠

The support bipartite graph G = (V1, V2, E), where V1 = {u1, u2, u3, u4},
V2 = {v1, v2, v3, v4, v5}, of A with the weight of the edge (ui, vj) is assigned
as aij is given in Fig. 10.1 along with edges of the cut (S1 ∪ S2, T1 ∪ T2) where
S1 = {u1, u3}, T1 = {u2, u4}, S2 = {v2, v3, v5} and T2 = {v1, v4}.

The incidence vector corresponding to the cut is (x, y) where x = (1,−1, 1,−1)

and y = (−1, 1, 1,−1, 1). Now xT Ay = −39,
∑m

i=1
∑n

j=1 aij = 9 and K = 24.
Note that xT Ay =∑m

i=1
∑n

j=1 aij − 2K is satisfied.
By Theorem 10.4, the Ising BQUBO (A, 0, 0) can be solved by solving the

maximum weight cut problem on the support bipartite graph of A with the weight
of the edge (ui, vj) as −aij . Further, if (S∗1 ∪ S∗2 , T ∗1 ∪ T ∗2) is an optimal solution
to this maximum cut problem with value K∗, then the corresponding incidence
vectors x∗, y∗ will be an optimal solution to the BQUBO (A, 0, 0) with the objective
function value

∑m
i=1

∑n
j=1 aij + 2K∗.

10 The Bipartite QUBO 267

10.2 Applications

In Chaps. 1 and 2, we have seen that many combinatorial optimization problems can
be modelled as a QUBO. Since QUBO is a special case of BQUBO as established
in Theorem 10.2, each of these applications can be modelled as a BQUBO as well.
Let us now look at some specific problems where the BQUBO model fits better.

Consider the bipartite graph G = (V1, V2, E) with a weight wij is defined for
each edge (i, j) ∈ E. Then, the maximum weight biclique problem (MWBP) on the
bipartite graph G [6, 70] is to find a biclique in G such that the sum of the weights
of its edges is maximized. MWBP is a strongly NP-hard [58] even if wij = 1 for all
(i, j) ∈ E. Define

qij =
{

wij if (i, j) ∈ E

−M otherwise ,

where M is a large positive number. Then, it can be verified that the BQUBO
(Q, 0m, 0n) solves the MWBP. The MWBP has applications in various areas.
This include data mining, clustering and bioinformatics [13, 15, 71, 72], anomaly
detection in E-commerce, social recommendation, and advertising [50], and formal
concept analysis [16]. Consequently, these optimization problems can be solved as
a BQUBO. Further, the vertex separator problem on a graph can be formulated as a
BQUBO with cardinality constraints [35].

The BQUBO model also arises in approximating a matrix by a rank-one binary
matrix [24, 45, 46, 49, 67]. For example, let D = (dij) be a given m× n matrix and
we want to find an m × n matrix B = (bij), where bij = uivj , ui ∈ {0, 1}, i =
1, 2, . . . ,m, and vj ∈ {0, 1}, i = 1, 2, . . . , n such that

m∑

i=1

n∑

j=1

(dij − uivj)
2

is minimized. The matrix B is called a rank one approximation of D. Since ui, vj

are binary variables,

m∑

i=1

n∑

j=1

(dij − uivj)
2 =

m∑

i=1

n∑

j=1

(d2
ij − 2dijuivj + u2

i v
2
j)

=
m∑

i=1

n∑

j=1

(d2
ij − 2dijuivj + uivj)

=
m∑

i=1

n∑

j=1

d2
ij +

m∑

i=1

n∑

j=1

(1− 2dij)uivj

268 A. P. Punnen

Therefore, minimizing
∑m

i=1
∑n

j=1(dij − uivj)
2 is achieved by minimizing

∑m
i=1

∑n
j=1(1− 2dij)uivj which is equivalent to maximizing

∑m
i=1

∑n
j=1(2dij −

1)uivj . Thus, given the matrix D, the matrix B can be identified by solving
the BQUBO (Q, 0, 0) where qij = 2dij − 1, for all i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , n}. Binary matrix factorization arises in mining discrete patterns in
binary data [49, 67]. If ui and vj are required to be in {−1, 1} then the resulting rank
one approximation problem can be formulated as a homogeneous Ising BQUBO.

The maximal sum submatrix problem (MSSP) studied by Derval [18] and
Branders [10] is essentially equivalent to the homogeneous BQUBO. Given an
m × n matrix Q with row and column index sets {1, 2, . . . ,m} and {1, 2, . . . , n}
respectively, the MSSP seeks a subset I of {1, 2, . . . ,m} and a subset J of
{1, 2, . . . , n} such that

∑

i∈I

∑

j∈J

qij (10.6)

is maximized. Derval [18] considered different variations and generalizations of
MSSP with applications in data mining, biclustering , frequent itemset mining,
and tiling. Branders [10] considered a penalty parameter in Eq. (10.6) where qij is
replaced by qij−θ . In this case qij values above the threshold θ is favored and those
below θ is penalized. This is again a homogeneous BQUBO and have applications
in the analysis of gene expression data [10].

Another application of BQUBO is to find the cut-norm of a matrix [3, 4]. The
cut-norm of a matrix Q, denoted by ||Q||c, is defined as

||Q||c = max
I⊆M,J⊆N

∣
∣
∣
∣
∣
∣

∑

i∈I

∑

j∈J

qij

∣
∣
∣
∣
∣
∣
.

Thus, the cut-norm ||Q||c is the optimal objective function value of the binary
quadratic program

CN: Maximize
∣
∣xT Qy

∣
∣

Subject to: x ∈ {0, 1}m, y ∈ {0, 1}n.

From this definition, it follows that the cut norm of Q is the largest of the objective
function values of the BQUBO problems (Q, 0m, 0n) and (−Q, 0m, 0n). So, the
cut norm can be identified by solving two BQUBO problems. The cut-norm of a
matrix can be used in developing approximation algorithms for various problems
on matrices and dense graphs [21], solving biclustering problems in computational
molecular biology [71, 72], and finding regular partition of graphs [4, 5]. An Ising
BQUBO formulation for computing the cut norm is given in [4]. This formulation
also leads to computing an efficient approximation of the cut norm of a matrix. Let
us discus this formulation now.

10 The Bipartite QUBO 269

Let OPT(A, 0, 0) be the optimal objective function value of the instance (A, 0, 0)
of the Ising BQUBO. It may be noted that OPT(A, 0, 0) ≥ 0. The lemma below and
its validity proof is from [4].

Lemma 10.1 ([4]) ||A||c ≤ OPT(A, 0, 0) ≤ 4||A||c.
Proof Let (x∗, y∗) be an optimal solution to the Ising BQUBO (A, 0, 0). Since

OPT(A, 0, 0) ≥ 0, we have
∑m

i=1
∑n

j=1 aij x
∗
i y∗j =

∣
∣
∣
∑m

i=1
∑n

j=1 aij x
∗
i y∗j

∣
∣
∣ . Let

X1 = {i : x∗i = 1}, X2 = {i : x∗i = −1}, Y 1 = {i : y∗i = 1}, and
Y 2 = {i : y∗i = −1}. Then,

m∑

i=1

n∑

j=1

aij x
∗
i x∗j =

∣
∣
∣
∣
∣
∣

m∑

i=1

n∑

j=1

aij x
∗
i y∗j

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

i∈X1

∑

j∈Y 1

aij +
∑

i∈X2

∑

j∈Y 2

aij +
∑

i∈X2

∑

j∈Y 1

−aij +
∑

i∈X1

∑

j∈Y 2

−aij

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

i∈X1

∑

j∈Y 1

aij

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

i∈X2

∑

j∈Y 2

aij

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

i∈X2

∑

j∈Y 1

−aij

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

i∈X1

∑

j∈Y 2

−aij

∣
∣
∣
∣
∣
∣

≤ 4||A||c,

since each of the absolute values in the sum on the right hand side is at most ||A||c .
Thus,

m∑

i=1

n∑

j=1

aij x
∗
i x∗j ≤ 4||A||c (10.7)

Also note that ||A||c = ∑
i∈I

∑
j∈J aij or ||A||c = −∑i∈I

∑
j∈J aij for some I ⊆

M, J ⊆ N. Now, suppose that ||A||c = ∑
i∈I

∑
j∈J aij . Define xi = 1 if i ∈ I and

xi = −1 if i /∈ I . Similarly, define yi = 1 if i ∈ J and yi = −1 if i /∈ J . Then,

||A||c =
∑

i∈I

∑

j∈J

aij =
m∑

i=1

n∑

j=1

aij

(
1+ xi

2

)(
1+ yj

2

)

= 1

4

⎛

⎝
m∑

i=1

n∑

j=1

aij +
m∑

i=1

rixi +
n∑

j=1

sj yj +
m∑

i=1

n∑

j=1

aij xiyj

⎞

⎠ (10.8)

where ri = ∑n
j=1 aij and sj = ∑m

i=1 aij . The absolute value of each of the sums
inside the bracket on the right hand side is at most OPT(A, 0, 0) and hence ||A||c ≥
OPT(A, 0, 0). The case when ||A||c = −∑i∈I

∑
j∈J aij can be analyzed in a similar

way and this completes the proof.

270 A. P. Punnen

Lemma 10.2 If the row and column sums of A are zeros, then OPT(A, 0, 0) =
4||A||c.
Proof When each row and column sums of A is equal to zero, in equation (10.8),
ri = 0 for i = 1, 2, . . . ,m, si = 0 for i = 1, 2, . . . , n and

∑m
i=1

∑n
j=1 aij = 0.

Thus, ||A||c ≤ 1
4 OPT(A, 0, 0). The result now follows from Lemma 10.1.

Thus, if the row and column sums of a matrix A are zeros, its cut norm can be
identified by solving a BQUBO.

Theorem 10.5 ([22, 41]) For any matrix B, there exists an associated matrix A
with row and column sums equal to zero such that ||A||c = ||B||c.
Proof Let B be an m × n matrix. Now, construct the (m + 1) × (n + 1) matrix A
such that

A =
[

B −r

−sT b

]

(10.9)

where the ith element of the vector r is ri =∑n
j=1 bij , the j th element of the vector

s is sj = ∑m
i=1 bij and the scalar b = ∑m

i=1
∑n

j=1 bij . Let I ⊆ {1, 2, . . . ,m} and
J ⊆ {1, 2, . . . , n}. Now define I ′ and J ′ where

I ′ =
{

I if m+ 1 /∈ I

{1, 2, . . .m} \ I if m+ 1 ∈ I
and J ′ =

{
J if n+ 1 /∈ J

{1, 2, . . . n} \ J if n+ 1 ∈ J

Then,
∣
∣
∣
∑

i∈I,j∈J aij

∣
∣
∣ =

∣
∣
∣
∑

i∈I ′,j∈J ′ bij

∣
∣
∣ and hence it follows that ||A||c = ||B||c.

In view of Lemma 10.2 and Theorem 10.5, the cut norm of a matrix B can be
identified by solving an Ising BQUBO (A, 0, 0), where A is defined as in the proof
of Theorem 10.5.

10.3 MILP Formulations

In Chap. 6, we have seen various MILP formulations of the QUBO. The reader is
referred to the discussions there and the references provided for details on some of
the terminologies used here. Further, those models can easily be adapted to the case
of BQUBO. Because of this, we will not consider a detailed discussion on integer
programming or semidefinite programming models for BQUBO in this chapter.
Instead, we simply highlight two basic models that are used in other parts of this
chapter and indicate the simplifications achieved by exploiting the special structure
of BQUBO. For each i ∈M, let Ri = {j ∈ N : qij �= 0}.

10 The Bipartite QUBO 271

We use the variable wij to represent the product xiyj . Then, the linearization
theorem from Chap. 6 can be used to introduce additional constraints so that wij

is a 0-1 variable with wij = 1 if and only if xi = yj = 1. For QUBO, we used
the variable yij to represent the product xixj . Thus, yij = yji and this fact was
exploited in some linearizations of QUBO [59]. However, for BQUBO, wij need
not be equal to wji since wji = xjyi �= xiyj . Keeping this in mind, the BQUBO
counterpart of the Glover-Woolsey linearization of QUBO can be stated as

GWB: Maximize
m∑

i=1

∑

j∈Ri

qijwij +
m∑

i=1

cixi +
n∑

j=1

djyj

Subject to: xi + yj −wij ≤ 1 for all j ∈ Ri, i = 1, 2, . . . ,m,

(10.10)

wij − xi ≤ 0 for all j ∈ Ri, i = 1, 2, . . . ,m (10.11)

wij − yj ≤ 0 for all j ∈ Ri, i = 1, 2, . . . ,m (10.12)

xi ∈ {0, 1} for all i = 1, 2 . . . , m, (10.13)

yj ∈ {0, 1} for all j = 1, 2 . . . , n. (10.14)

wij ≥ 0 for all j ∈ Ri, i = 1, 2, . . . ,m. (10.15)

The model GWB was considered earlier by many authors [10, 68, 69]. Exploiting
the structure of BQUBO, we now show that the binary restrictions in GWB are
required only for the x-variables or y-variables or w-variables. Let GWBx be the
version of GWB with constraint (10.14) is relaxed to 0 ≤ yj ≤ 1 and hence we
have binary restrictions only on the x-variables. Similarly, let GWBy be the version
of GWB with constraint (10.13) is relaxed to 0 ≤ xi ≤ 1 and GWBw be the version
of GWB with constraints (10.13) and (10.14) are relaxed respectively to 0 ≤ xi ≤ 1
and 0 ≤ yj ≤ 1 but constraint (10.17) is replaced with wij ∈ {0, 1} for all j ∈
Ri, i = 1, 2, . . . ,m.

Theorem 10.6 ([69]) GWBx, GWBy and GWBw are valid MILP models for the
BQUBO.

Proof Let us first show that GWBx is a valid MILP model for the BQUBO. When
x is fixed at some vector in {0, 1}m, the coefficient matrix corresponding to the
resulting constraints (10.10) and (10.11) is totally unimodualr since it can be viewed
as the transpose of the node arc incidence matrix of some directed graph. This
implies that when x is fixed as a specific vector in {0, 1}m, the coefficient matrix
of GWBx is totally unimodualr and the RHS is also a binary vector. Thus a 0-1
optimal solution exists for GWBx. The case of GWBy can be handled analogously.
Now, let us consider GWBw. Here both constraints (10.14) and (10.13) are relaxed
to respectively to 0 ≤ yj ≤ 1 and 0 ≤ xi ≤ 1 and replace the constraint (10.15)
with wij ∈ {0, 1} in GWB. Thus, if wij is fixed at 0 or 1 for all i and j , the
coefficient matrix corresponding to constraints (10.10) is totally unimodualr since

272 A. P. Punnen

it can be viewed as the transpose of the incidence matrix of an undirected bipartite
graph which is known to be totally unimodualr. Thus, it follows that when wij is
fixed at binary values, the coefficient matrix of the remaining constraints of GWBw
is totally unimodular. Further, in this case the righthand side coefficients are also
integer establishing that GWBw has a 0− 1 optimal solution.

The formulation GWBx shows that the BQUBO can be solved as a sequence of
O(2m) linear programs. Thus, when m = O(log n) the problem can be solved in
polynomial time. A more efficient algorithm for this case will be discussed later.
The formulation GWB can be strengthened by adding additional valid inequalities.
See [69] for various valid inequalities for the bipartite Boolean quadric polytope.

Let R+i = {j ∈ N : qij > 0} and R−i = {j ∈ N : qij < 0}. Then the optimality
restricted version (see Chap. 6) of GWB is

GWBO: Maximize
m∑

i=1

∑

j∈Ri

qijwij +
m∑

i=1

cixi +
n∑

j=1

djyj

Subject to: xi + yj −wij ≤ 1 for all j ∈ R−i , i = 1, 2, . . . ,m,

(10.16)

wij − xi ≤ 0 for all j ∈ R+i , i = 1, 2, . . . ,m (10.17)

wij − yj ≤ 0 for all j ∈ R+i , i = 1, 2, . . . ,m (10.18)

xi ∈ {0, 1} for all i = 1, 2 . . . , m, (10.19)

yj ∈ {0, 1} for all j = 1, 2 . . . , n. (10.20)

wij ≥ 0 for all j ∈ R−i , i = 1, 2, . . . ,m. (10.21)

As discussed in the case of QUBO in Chap. 6, we can aggregate (weighted
or unweighted) blocks of constraints from GWB to obtain valid MILP models
for BQUBO with reduced number of constraints. For example, the constraint
block (10.10) in GWB can be replaced by

∑

j∈Ri

(yj −wij) ≤ |Ri |(1− xi), for i = 1, 2, . . . ,m

to obtain a valid MILP model for BQUBO. A weighted version of the above
constraint is also valid. i.e.

∑

j∈Ri

αij (yj −wij) ≤
⎛

⎝
∑

j∈Ri

αij

⎞

⎠ (1− xi), for i = 1, 2, . . . ,m

were αij > 0 can be used to replace the constraint block (10.10) to obtain a
valid MILP formulation of BQUBO. Aggregation however, can weaken the LP

10 The Bipartite QUBO 273

relaxation. This can be mitigated by choosing the weights αij appropriately. See
Chap. 6 and [59, 60] for further details.

Let Sj = {i ∈ M : qij �= 0}. Weighted aggregation of the constraints in
blocks (10.11) and (10.12) yields

∑

j∈Ri

βijwij ≤
⎛

⎝
∑

j∈Ri

βij

⎞

⎠ xi, i = 1, 2, . . . ,m (10.22)

∑

i∈Sj

γijwij ≤
⎛

⎝
∑

i∈Sj

γij

⎞

⎠ yj , j = 1, 2, . . . , n. (10.23)

where βij > 0, γij > 0. In GWB, we can replace the constraint blocks (10.11) and
(10.12) with (10.22) and (10.23) to obtain yet another valid MILP formulation for
BQUBO. In this case, it is important to add the upper bound constraints wij ≤ 1
for all i and j . Choosing the weights βij > 0 and γij > 0 appropriately, the LP
relaxation of this aggregated model can be made competitive with that of GWB [60]
(see also Chap. 6). Combining all the aggregations discussed above, we get the
following MILP model for BQUBO.

GWBA: Maximize
m∑

i=1

∑

j∈Ri

qijwij +
m∑

i=1

cixi +
n∑

j=1

djyj

Subject to:
∑

j∈Ri

αij (yj −wij) ≤
⎛

⎝
∑

j∈Ri

αij

⎞

⎠ (1− xi), i ∈M

(10.24)

∑

j∈Ri

βijwij ≤
⎛

⎝
∑

j∈Ri

βij

⎞

⎠ xi, i ∈M (10.25)

∑

i∈Sj

γijwij ≤
⎛

⎝
∑

i∈Sj

γij

⎞

⎠ yj , j ∈ N (10.26)

xi ∈ {0, 1}, i ∈M, yj ∈ {0, 1}, j ∈ N (10.27)

0 ≤ wij ≤ 1, j ∈ Ri, i ∈M. (10.28)

10.3.1 Compact Formulations

The compact MILP formulations discussed in Chap. 6 for QUBO can also be
adapted for BQUBO in the natural way. Let hi(y) = ∑

j∈Ri
qij yj . Then, the

274 A. P. Punnen

objective function ψ(x, y) of BQUBO can be written as

ψ(x, y) =
n∑

i=1

xihi(y)+
m∑

i=1

cixi +
n∑

j=1

djyj (10.29)

For any y ∈ {0, 1}n, hi(y) is a real number satisfying

�i =
∑

j∈Ri

min{0, qij } ≤ hi(y) ≤ ui =
∑

j∈Ri

max{0, qij }. (10.30)

Applying Glover’s linearization theorem (see Chap. 6) on the product xihi(y) in
(10.29), we get the compact formulation [26]

GLB: Maximize
n∑

i=1

wi +
m∑

i=1

cixi +
n∑

j=1

djyj

Subject to: wi ≤ uixi, for i = 1, 2, . . . ,m (10.31)

wi ≤ �ixi +
∑

j∈Ri

qij yj − �i, for i = 1, 2, . . . ,m (10.32)

wi ≥ �ixi, for i = 1, 2, . . . ,m (10.33)

wi ≥ uixi +
∑

j∈Ri

qij yj − ui, for i = 1, 2, . . . ,m (10.34)

xi, yj ∈ {0, 1} for i ∈M, j ∈ N. (10.35)

An optimality restricted version of GLB can also be obtained. Note that the
general constraints of GLB can be written as

max{uixi +
∑

j∈Ri

qij yj − ui, �ixi} ≤wi≤ min{uixi, �ixi +
∑

j∈Ri

qij yj − �i}, i = 1, 2, . . . ,m.

(10.36)

Since we have a maximization objective with the coefficient of wi in the objective
function is one for all i, the inequalities (10.33) and (10.34) can be discarded from
GL without affecting optimality [1]. This leads to the optimality restricted version,
GLBO, of GLB:

GLBO: Maximize
m∑

i=1

wi +
m∑

i=1

cixi +
n∑

j=1

djyj

Subject to: wi ≤ uixi, for i = 1, 2, . . . ,m (10.37)

10 The Bipartite QUBO 275

wi ≤ �ixi +
∑

j∈Ri

qij yj − �i , for i = 1, 2, . . . ,m

(10.38)

xi, yj ∈ {0, 1} for i ∈M, j ∈ N. (10.39)

The model GLBO was also given in [18] and [9]. Let zi be the slack variable
in constraint (10.37). Eliminating the unrestricted variable wi using (10.37), we get
the MILP model

GLOB1: Maximize
m∑

i=1

(uixi − zi)+
m∑

i=1

cixi +
n∑

j=1

djyj

Subject to: uixi − zi ≤ �ixi +
∑

j∈Ri

qij yj − �i, for i = 1, 2, . . . ,m

(10.40)

xi, yj ∈ {0, 1} for i ∈M, j ∈ N (10.41)

zi ≥ 0, i ∈M. (10.42)

for the BQUBO [1].
The LP relaxation of these compact formulations are relatively weak. However,

they can be strengthened by adapting methods discussed in Chap. 6. Since these are
relatively straightforward modifications from the corresponding models for QUBO,
the details are omitted.

10.4 Polynomially Solvable Special Cases

In Chap. 3, we have seen various polynomially solvable special cases of the QUBO.
Since the BQUBO can be solved as a QUBO, whenever the transformed QUBO
satisfies conditions of polynomial time solvability of the QUBO, we can solve the
BQUBO in polynomial time. Let us now consider some additional polynomially
solvable cases that exploit the special properties of the BQUBO. Several of the
results in this section are from [65].

Theorem 10.7 ([65]) The BQUBO can be solved in O(mn2m) time. When m =
O(log n) it is solvable in O(n2 log n) time but remains Strongly NP hard if m =
O(k
√

n) for any fixed constant k.

Proof Choose any x′ ∈ {0, 1}m and compute a y′ ∈ {0, 1}n with

y ′j =
{

1 if
∑m

i=1 qij x
′
i + dj > 0

0 otherwise .
(10.43)

276 A. P. Punnen

Then, the solution (x′, y′) is optimal for the restricted BQUBO where x = x′ is
enforced. Now, repeat this process by restricting x = x′ to each of the vectors
x′ in {0, 1}m and compute the best corresponding solution (x′, y′) as discussed in
Eq. (10.43). The overall best solution generated by this process will be an optimal
solution to the BQUBO. For any given x′ ∈ {0, 1}m, the corresponding best solution
(x′, y′) along with its objective function value can be identified in O(mn) time.
Thus, an optimal solution to BQUBO can be obtained in O(mn

∑m
k=0

(
n
k

)
) =

O(mn2m). When m = O(log n), this complexity becomes O(n2 log n).
We now use a self-reduction technique to establish the complexity of the BQUBO

when m = O(k
√

n) for a fixed k. From an instance (Q, c, d) of the BQUBO construct
another instance (Q′, c′, d′) of BQUBO where

Q′ =
[

Q O1

O2 O3

]

, c′ = [
c 0̃

]
, and d′ =

[
d 0̂

]
.

Here, O1, O2 and O3 are zero matrices with dimensions m×nk , (n−m)× (n−m),
and (n−m)× nk respectively, 0̃ is a zero vector of dimension n−m and 0̂ is a zero
vector of dimension nk . It can be verified that the instance (Q′, c′, d′) of BQUBO
constructed above satisfies the hypothesis of the theorem. Further, for every solution
to BQUBO (Q, c, d), there exists a solution to the BQUBO (Q′, c′, d′), such that the
corresponding objective function values coincide and viceversa. Since the BQUBO
is strongly NP-hard, the result follows.

An analogous result for the maximum cut problem was proved in [52]. A
variation of the construction discussed in the proof of the first part of Theorem 10.7
has been discussed in Chap. 6 in the context of decomposition upper bounds [14]
and in Chap. 3 for a corresponding polynomially solvable case of the QUBO.

A matrix Q is said to be a sum matrix, if there exist constants a1, a2, . . . , am and
b1, b2, . . . , bn such that qij = ai+bj for all i, j . A sum BQUBO is the special case
of the BQUBO when Q is a sum matrix. Let us now discuss an algorithm to solve
the sum BQUBO in polynomial time, which was proposed originally by Punnen,
Karapetyan, and Sriprathak [65]. When Q is a sum matrix,

f (x, y) = xT Qy+ cT x+ dT y

=
m∑

i=1

aixi

n∑

j=1

yj +
n∑

j=1

bjyj

m∑

i=1

xi +
m∑

i=1

cixi +
n∑

j=1

djyj .

=
m∑

i=1

(λai + ci)xi +
n∑

j=1

(μbj + dj)yj

10 The Bipartite QUBO 277

where
∑n

j=1 yj = λ and
∑m

i=1 xi = μ. Note that λ ∈ {0, 1, 2, . . . , n} and μ ∈
{0, 1, 2, . . . ,m}. Thus, our BQUBO can be written as

SUM: Maximize
m∑

i=1

(λai + ci)xi +
n∑

j=1

(μbj + dj)yj

Subject to
n∑

j=1

yj = λ,

m∑

i=1

xi = μ

xi ∈ {0, 1}, yj ∈ {0, 1}, i = 1, 2 . . . , m; j = 1, 2, . . . , n

λ ∈ {0, 1, 2, . . . , n}, μ ∈ {0, 1, 2, . . . ,m}.

For a fixed value of λ and μ, the optimization problem SUM decomposes into two
problems,

P1(λ,μ): Maximize
m∑

i=1

(λai + ci)xi

Subject to
m∑

i=1

xi = μ

xi ∈ {0, 1}, i = 1, 2 . . . , m.

and

P2(λ,μ): Maximize
n∑

i=1

(μbj + dj)yj

Subject to
n∑

j=1

yj = λ

yj ∈ {0, 1}, j = 1, 2 . . . , n.

For a fixed λ and μ, let x(λ, μ) be an optimal solution to P1(λ,μ) with optimal
objective function value f1(λ, μ) and f2(λ, μ) be the optimal objective function
value of P2(λ,μ) for an optimal solution y(λ, μ). Choose λ∗, μ∗ such that

f1(λ
∗, μ∗)+ f2(λ

∗, μ∗) = max
λ∈M0

max
μ∈N0

(
f1(λ, μ)+ f2(λ, μ)

)

where M0 = {0, 1, . . . ,m} and N0 = {0, 1, 2, . . . , n}. Then, x(λ∗, μ∗), y(λ∗, μ∗)
will be an optimal solution to the sum BQUBO.

Theorem 10.8 ([65]) The sum BQUBO can be solved in O(mn log n) time.

Proof Based on the discussion above, we need an efficient way to generate the
O(mn) values f1(λ, μ) and f2(λ, μ) for λ ∈ {0, 1, . . . , n}, μ ∈ {0, 1, . . . ,m} and
their associated solutions x(λ, μ) and y(λ, μ). Let π be a permutation of 1, 2, . . . ,m

that generates the descending arrangement

λapi(1) + cπ(1) ≥ λapi(2) + cπ(2) ≥ · · · ≥ λapi(m) + cπ(m)

278 A. P. Punnen

for a fixed λ. Then x = 0 is an optimal solution to P1(λ, 0) with f1(λ, 0) = 0. For
a fixed λ and μ = 1, 2, . . . ,m, an optimal solution to P1(λ,μ) is given by

xπ(i)(λ, μ) =
{

1, for i ≤ μ

0, otherwise

and f1(λ, μ) = f1(λ, μ−1)+(λaπ(μ)+cπ(μ). Thus, for a given λ, we can compute
all of f1(λ, μ), μ = 0, 1, 2, . . . ,m and the associated solutions in O(m) time and
hence f1(λ, μ) for all values of λ and μ can be generated in O(mn) time. For a
given λ, the ordering π can be identified in O(m log m) time and this is repeated n

times. Thus, the overall complexity of generating f1(λ, μ) for all values of λ and μ

is O(mn log m). Likewise, f2(λ, μ) and the associated solution for all values of λ

and μ can be generated in O(mn log n) time. Since m ≤ n, the result follows.

Theorem 10.9 BQUBO can be solved in polynomial time, if qij ≥ 0 for all i, j or
qij ≤ 0 for all i, j .

Proof Consider the MILP formulation GWBO of the BQUBO. If qij ≥ 0 for
all i, j , then the set R−i used in GWBO is empty. Thus, the constraint coefficient
matrix of GWBO is totally unimodular and hence GWBO can be solved as a linear
program. When qij ≤ 0 for i, j , the set R+ = ∅. In this case, the coefficient matrix
of the LP relaxation of GWBO (after adding the redundant constraint wij ≤ 1) will
be of the type

A =
(

B I1

I2 O

)

where I1 is the negative of an identity matrix of size mn × mn, I2 is an identity
matrix of size (m+ n)× (m+ n), O is a zero matrix and BT is the incidence matrix
of an undirected bipartite graph. Note that BT is totally unimodular and hence A is
totally unimodular. Thus GWBO can be solved as a linear program and the result
follows.

It may be noted that the condition qij ≥ 0 yields a polynomial time algorithm for
the general QUBO, as shown in Chap. 3. However, the general QUBO is NP-hard
even if qij ∈ {−1, 0} for all i, j (see Chap. 3) but Theorem 10.9 shows that the
BQUBO is solvable in polynomial time for all instances where qij ≤ 0 for all i, j .
This part of Theorem 10.9 was proved in [8].

The polynomial solvability established in Theorem 10.9 can be extended to a
more general class of matrices where the number of negative elements or the number
of positive elements in Q are small. Let U ⊆M and V ⊆ N. We call the pair (U, V)

a non-negative cover (non-positive cover) of Q if the matrix Q′ obtained from Q
by deleting rows corresponding to U and columns corresponding to V has only
non-negative (non-positive) entries.

10 The Bipartite QUBO 279

Lemma 10.3 For any matrix Q, a non-negative cover (non-positive cover) (U, V)

such that |U ∪ V | is the smallest can be identified in polynomial time.
Proof Construct the bipartite graph G = (M,N, E) where (i, j) ∈ E if and only
if qij < 0. Then a non-negative cover of Q with smallest cardinality is precisely a
minimum vertex cover of G. Since the vertex cover problem on a bipartite graph can
be solved in polynomial time, a non-negative cover of Q with smallest cardinality
can be identified in polynomial time. The proof for the case of non-positive cover is
similar.

Theorem 10.10 ([65]) Let (U, V) be a minimum cardinality non-negative (non-
positive) cover of Q. Then, the BQUBO can be solved in polynomial time if |U ∪V |
is O(log n) and the problem is strongly NP-hard if |U ∪V | is O(k

√
n) for some fixed

k.

Proof Consider an instance (Q, c, d) of the BQUBO. Suppose (U, V) be a non-
negative cover of Q. Now, fix the variables xi for i ∈ U and yj for j ∈ V at
0-1 values results in a BQUBO with the associated cost matrix have non-negative
elements. By Theorem 10.9 such a BQUBO can be solved in polynomial time. Since
there are at most 2|U∪V | ways to fix the variables associated with U and V , the
BQUBO can be solved in polynomial time if |U ∪ V | = O(log n). The case of
non-positive cover can be proved in the same way.

The second part of the theorem can be proved by reducing a general BQUBO
to a BQUBO satisfying the hypothesis of the theorem that preserves objective
function values of the corresponding solutions. This can be achieved by increasing
the number of columns (or rows) of Q to a sufficiently large number, yet polynomial
for fixed k and filling these columns (rows) with entries 0.

It may be noted that Theorem 10.10 allows arbitrary c and d. Now let us
look at the case when the rank of Q is one and we refer to this as rank-one
BQUBO. Note that the matrix Q is of rank one if and only if there exist vectors
aT = (a1, a2, . . . , am) and bT = (b1, b2, . . . , bn) such that qij = aibj for all i, j . In
Chap. 3, it is proved that QUBO is NP-hard if Q is of rank one and c is arbitrary [12].
Unlike QUBO, we now show that BQUBO can be solved in polynomial time when
Q is of rank one and c and d are arbitrary. To establish this, we use parametric linear
programming. This method is successfully applied in solving low rank bilinear
programs [44] and some combinatorial optimization problems with multiplicative
objective functions [62]. Our algorithm for the rank-one BQUBO is closely related
to both of these works. The specific details presented below are from [65].

The rank-one BQUBO can be written as

Maximize (aT x)(bT y)+ cT x+ dT y

Subject to: x ∈ {0, 1}m, y ∈ {0, 1}n,

280 A. P. Punnen

As indicated in Sect. 10.1, we can relax the binary restrictions on the variables and
write the rank-one BQUBO as the bilinear program

BLP: Maximize (aT x)(bT y)+ cT x+ dT y

Subject to: x ∈ [0, 1]m, y ∈ [0, 1]n.

Now, consider the parametric linear program,

BLP(λ) : Maximize λbT y+ cT x+ dT y

Subject to: aT x = λ

x ∈ [0, 1]m, y ∈ [0, 1]n,

where λ ∈ [λ, λ̄] and λ = ∑m
i=1 min{ai, 0} and λ̄ = ∑n

i=1 max{ai, 0}. Solving
BLP(λ) for all values of λ and choosing the overall best solution will solve BLP
(i.e. the rank-one BQUBO). For a fixed value of λ, BLP(λ) decomposes into two
linear programs

L1(λ): Maximize cT x

Subject to: ax = λ, x ∈ [0, 1]m and

L2(λ): Maximize λbT y+ dT y

Subject to y ∈ [0, 1]n.

Thus, for fixed λ, let x(λ) be an optimal solution to L1(λ) and y(λ) be an optimal
solution to L2(λ). It can be verified that

y(λ)j =
{

1 if λbj + dj ≥ 0

0 otherwise .

Let us now show that only O(m) values of λ ∈ [λ, λ̄] are relevant in computing an
optimal solution for BLP. Let f1(λ) and f2(λ) respectively be the optimal objective
function value of L1(λ) and L2(λ), as a function of λ. It is well known that f1(λ)

is a piece-wise linear concave function and f2(λ) is a piece-wise linear convex
function [53]. Thus, f1(λ) + f2(λ) need not be convex or concave but it is piece-
wise linear. Solving BLP amounts to finding the global maximum of f1(λ)+ f2(λ)

for λ ∈ [λ, λ̄]. Let λ = λ1, λ2, . . . , λp = λ̄ be the consecutive breakpoints
of f1(λ). Then, f1(λ) is linear in [λi, λi+1] and f2(λ) is convex in [λi, λi+1],
i = 1, 2, . . . , p− 1. Therefore, f1(λ)+ f2(λ) is a convex function in [λi, λi+1], for
i = 1, . . . , p − 1 and hence the maximum of f1(λ) + f2(λ) over λ ∈ [λi, λi+1] is
attained either at λi or at λi+1. Thus,

max
λ∈[λ,λ̄]

(f1(λ)+ f2(λ)) = max
i∈{1,2,...,p} (

{f1(λi)+ f2(λi))

10 The Bipartite QUBO 281

Fig. 10.2 Rank one QUBO example

Now, we need an efficient way to generate the points λ1, λ2, . . . , λp and compute an
optimal basic feasible solution x(λi) of L1(λ) at each λi , i = 1, 2, . . . , p. This can
be achieved relatively easily as shown in [65], which is discussed below (Fig. 10.2).

Let B =
{

ci

ai

: i = 1, 2, . . . ,m, ai �= 0

}

and
cπ1
aπ1

>
cπ2
aπ2

> · · · >
cπr

aπr
be a

descending arrangement of all distinct elements of B. Let B(k) =
{

i : cπk

aπk

= ci

ai

}

.

Then the breakpoints of f1(λ) are given by

λ1 = λ and λk = λk−1 +
∑

i∈B(k)

|ai | for k = 2, 3, . . . , r.

An optimal basic feasible solution to L1(λ) at λ = λk for k = 1, 2, . . . , r can be
identified recursively as

x1
i =

{
1 if ai = 0 and ci > 0 or ai < 0

0 otherwise,

and

xk
i =

⎧
⎪⎪⎨

⎪⎪⎩

xk−1
i if i /∈ B(k)

1 if i ∈ B(k) and ai > 0

0 otherwise,

282 A. P. Punnen

Given f1(λk) and xk , f1(λk+1) and xk+1 can be identified in O(|B(k + 1)|) time.
The complexity for generating these solutions and the breakpoints are dominated
by that of constructing the descending arrangement which is O(m log m). Note that
f1(λ) has at most m + 1 breakpoints. Given xk a corresponding solution yk can be
computed in O(n) time. This leads to a complexity of O(mn). When m is large,
say not O(log n), we can improve the complexity of the algorithm to O(n log n) by
generating all the breakpoints of f2(λ) as well and recursively compute the solutions
y(λ). For details of this approach we refer to [65].

The basic idea discussed above for solving the BQUBO with a rank-one Q
matrix can be extended to any BQUBO. In this case, instead of using the single
parametric analysis, we use the multi-parametric analysis of linear programs with
bounded variables. Such an algorithm will be polynomially bounded when rank of
Q is fixed [65]. A corresponding result is available for QUBO, with the additional
restriction that the matrix Q is positive semidefinite. (See Chap. 3 for discussions
on relaxing this assumption partially.) A recent algorithm using enumeration of
faces of a zonotope [38] can also be used to solve the continuous version of the
QUBO in polynomial time when the rank of Q is fixed. This algorithm can also be
used to solve the BQUBO (Q, c, d) when the rank of Q is fixed. We first solve the
continuous version and if the resulting solution is not binary, a rounding procedure
can be applied to obtain an optimal solution to the BQUBO. The next section
presents a valid rounding procedure that can be used for this purpose.

10.4.1 Polynomially Solvable Biclique Problems

In Sect. 10.2, we have seen that the maximum weight biclique problem (MWBCP)
can be formulated as a BQUBO. In fact any BQUBO can also be viewed as a
maximum weight biclique problem on a complete bipartite graph. This follows from
the fact that any BQUBO is equivalent to a BQUBO in homogeneous form and we
can allow edges of weight zero in the MWBCP. Thus polynomially solvable special
cases of the MWBCP yield corresponding polynomially solvable special cases of
the BQUBO. Let us now review some results in this direction.

A biclique is said to be maximal in a graph G if it is not a proper subgraph of
any other biclique in G. The number of maximal bicliques in a graph could be of
exponential size in the number of vertices. But there are interesting graph classes
where the number of maximal bicliques is polynomially bounded. This include
chordal bipartite graphs and convex bipartite graphs [54]. Further, in such graphs the
maximal bicliques can be enumerated in polynomial time. Thus, if the cost matrix Q
of the homogeneous BQUBO (Q, 0, 0) is such that there exists an optimal solution
to the BQUBO (Q, 0, 0) that corresponds to a maximal bliclique in an associated
bipartite graph G = (V1, V2, E) then the BQUBO can be solved by enumerating the
maximal bicliques in G. For example, suppose that qij ∈ {0, 1,−nm}. Consider the
complete bipartite graph Km,n corresponding to this BQUBO. An optimal solution

10 The Bipartite QUBO 283

to the BQUBO cannot correspond to an induced subgraph of Km,n containing an
edge of weight −nm. So drop all edges of negative weights from the Km,n. If the
resulting graph contains a spanning subgraph which is convex and include all the
edges of weight one and possibly some edges of weight zero as well, then we can
solve the BQUBO by enumerating the polynomial number of maximal bicliques in
this spanning subgraph. Recall that BQUBO is NP-hard even if qij has only two
distinct entries and hence the example given above is non-trivial. Pandey, Sharma,
and Jain [57] showed that when the edge weights are positive, the MWBCP can be
solved in polynomial time on bipartite permutation graphs. Thus, if the missing
edges have weights are 0 or have a value qij ≤ −mn then the corresponding
BQUBO can also be solved polynomial time.

10.5 Approximation Algorithms

Theoretical analysis of approximation algorithms are carried out using different
performance measures. This include relative performance ratio [75], differential
ratio [17], domination ratio [31, 33, 34, 61], domination number [31, 79], compar-
ison to average value of solutions [56, 61, 73] etc. These measures are defined in
Chap. 8 and hence we use them without formally defining here.

We first prove a non-approximability result for BQUBO in terms of the relative
performance ratio.

Theorem 10.11 Unless NP = ZPP, there does not exist any polynomial time n1−ε-
approximation algorithm for BQUBO for any ε > 0, even if c and d are zero vectors
and Q contains only two distinct non-zero entries.

Proof We reduce the maximum clique problem to BQUBO in such a way that ε-
optimality is preserved for ε > 0. Let G = (V ,E) be a graph on n nodes. Now
construct the n×n matrix Q where qii = 1, qij = qji = 0 if (i, j) ∈ E and−(n+1)

if (i, j) /∈ E. The optimal objective function value of the BQUBO constructed here
is clearly positive. Let (x, y) be any n1−ε-optimal solution to BQUBO. Note that if
xi = yj = 1 then (i, j) must be an edge in G. Let S = {i : xi = yi = 1}. Then the
subgraph of G induced by S in G must be a clique in G and the BQUBO objective
function value f (x, y) of (x, y) is |S|. Further, if (x0, y0) is an optimal solution to
the BQUBO then f (x0, y0) = |S0| where S0 = {i : x0

i = y0
i = 1}. Thus, S must be

an n1−ε -optimal solution for the maximum clique problem on G. The result follows
from the fact that unless NP = ZPP, there does not exist any polynomial time n1−ε-
approximation algorithm for the maximum clique problem [20].

For various non-approximability results on the maximum (weight) biclique
problem we refer to [6, 51, 70] and these results extend in a natural way to BQUBO.

284 A. P. Punnen

10.5.1 Domination Analysis

The discussion in this subsection is based on [63]. Let us now consider algorithms
for BQUBO that are guaranteed to produce solutions with values no worse than
the average value of all solutions. We will also examine the domination ratio of
such algorithms. For more details on domination analysis of algorithms we refer
to Chap. 8 and the papers [31, 34]. Let F be the family of all feasible solutions
of the BQUBO (Q, c, d). i.e. F = {(x, y) : x ∈ {0, 1}m, y ∈ {0, 1}n}. For any
(x, y) ∈ F, there are 2m choices for x and 2n choices for y. Thus |F| = 2m+n. The
average value of all solutions of the BQUBO (Q, c, d) is denoted by A(Q, c, d).
For any two solutions (x, y) and (x′, y′) in F, we say that (x, y) dominates (x′, y′) if
f (x, y) ≥ f (x′, y′). In this case, we also say that (x′, y′) is dominated by (x, y). A
solution to the BQUBO is said to be no worse than average if its objective function
value is at least A(Q, c, d).

Theorem 10.12 ([63]) A(Q, c, d) = 1

4

m∑

i=1

n∑

j=1

qij + 1

2

m∑

i=1

ci + 1

2

n∑

j=1

dj .

Proof Consider m + n independent random variables x1, x2, . . . , xm and
y1, y2, . . . , yn which take values 0 or 1 with probability 1

2 each. Then, the
expected value E(xi) and E(yi) of the variables xi and yi is 1

2 . Since xi and yj

are independent, the expected value E(xiyj) of xiyj is E(xi)E(yj) = 1
4 . Now,

consider the random variable

X =
m∑

i=1

n∑

j=1

qij xixj +
m∑

i=1

cixi +
n∑

j=1

djyj .

By the linearity property of expectation, the expected value E(X) of X is

1

4

m∑

i=1

n∑

j=1

qij + 1

2

m∑

i=1

ci + 1

2

n∑

j=1

dj

and the result follows.

Although we have a closed form formula to calculate the average of the objective
function values of all solutions of the BQUBO, computing the median of the
objective function values of these solutions is hard [63].

Let us now define an equivalence relation among the solutions in F. Two
solutions (x, y) and (x′, y′) are equivalent, denoted by (x, y) ∼ (x′, y′, if either
x′ = em − x or y′ = en − y, where ek is the vector in R

k with all components equal
to 1. It can be verified that the relation ∼ is reflexive, symmetric, and transitive and
hence its is an equivalence relation on F which partitionsF into disjoint equivalence
classes. The equivalence class corresponding to (x, y) is

E(x, y) = {(x, y), (em − x, y), (x, en − y), (em − x, en − y)}.

10 The Bipartite QUBO 285

Also, it is easy to verify that

∑

(x,y)∈E(x,y)

f (x, y) = 4A(Q, c, d). (10.44)

The collection of all solutions in F with objective function value no better than
A(Q, c, d) is denoted by D. i.e. D = {(x, y) ∈ F : f (x, y) ≤ A(Q, c, d)}.
Theorem 10.13 ([63]) For any instance (Q, c, d) of BQUBO, |D| ≥ 2m+n−2.

Proof Let E(xk, yk), k = 1, 2, . . . , t be the family of all equivalence classes on F
defined by the equivalence relation ∼. Note that t = 2m+n−2. By Eq. (10.44)

min
(x,y)∈E(xk,yk)

f (x, y) ≤ A(Q, c, d) for each k = 1, 2, . . . , t.

Since t = 2m+n−2, the result follows.

The lower bound 2m+n−2 established on |D| in Theorem 10.13 is tight and it is
possible to construct examples of BQUBO where |D| = 2m+n−2. Consider the
matrix Q where qnn = −α for α > 0 and all other entries are zeros. Also, c and
d are zero vectors. Then, A(Q, c, d) = −α

4 and the set of solutions (x, y) with
f (x, y) ≤ A(Q, c, d) is precisely D = {(x, y)|xm = yn = 1} and |D| = 2m+n−2.

Computing a solution to the BQUBO with objective function value no worse than
A(Q, c, d) is very easy. First choose a random solution (x, y). Then, by equation
(10.44), the solution with largest objective function value in E(x, y) is no worse than
A(Q, c, d). In particular, the best solution amongst {(em, en), (em, 0n), (0m, en),

(0m, 0n)} have its objective function value no worse than A(Q, c, d) [63]. Despite
this simplicity in computing a solution with the objective function value no worse
than A(Q, c, d), reasonable looking heuristic algorithms may not guarantee a
solution that is no worse than average.

For example, let us examine the alternating algorithm [24, 39, 40, 49] which can
be stated as follows. Given a partial solution x0 ∈ {0, 1}m, find a best y0 ∈ {0, 1}n
using the formula

y0
j =

⎧
⎪⎨

⎪⎩

1 if
m∑

i=1

qij x
0
i + dj > 0,

0 otherwise,

(10.45)

This results in the solution (x0, y0). Now fix y0 and find the best x1 ∈ {0, 1}m using
the following formula

x1
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
n∑

j=1

qij y
0
j + ci > 0,

0 otherwise,

(10.46)

286 A. P. Punnen

This produces the solution (x1, y0).
This process of alternatively fixing x and y can be continued until no improve-

ment is possible by fixing either the x or the y variables. Experimental analysis
shows that this algorithm produces reasonable quality solutions [39, 40]. However,
the worst-case behaviour of the alternating algorithm in comparison to A(Q, c, d)

is poor. We illustrate this using the following example from [63].
Consider the instance of BQUBO where Q is an n × n matrix with q11 = 1 and

qnn = α > 3. All other entries of Q are zeros and c and d are zero vectors. The
starting partial solution x0 is given by x0

1 = 1 and x0
i = 0 for i �= 1. The algorithm

will find the solution y0 where y0
1 = 1 and y0

j = 0 for j �= 1. The solution (x0, y0) is
locally optimal and the algorithm terminates with its objective function value 1. The
optimal objective function value however is α+1 and A(Q, c, d) = α+1

4 . Thus, the
objective function value of the solution produced by the alternating algorithm for
this instance of the BQUBO with the given selection of the starting partial solution,
is worse than A(Q, c, d). Also, as α increases, the quality of the solution produced
by the algorithm deteriorates and becomes an arbitrarily bad solution.

By choosing the starting partial solution appropriately, and using repeated runs
with different starting solutions, the worst case performance of the alternating
algorithm can be improved. More specifically, run the alternating algorithm twice,
once with starting partial solution x0 = em and then repeat the algorithm with
starting solution x0 = 0m. The best solution produced from these two runs will have
an objective function value no worse than A(Q, c, d). In fact, a better domination
number can be established for such an algorithm [63] than the general purpose
domination number established for algorithms producing no worse than average
solutions.

Let us now look at another algorithm, called the rounding algorithm, which
rounds a fractional solution to obtain a 0-1 solution. This is similar to the [0, 1]-
rounding algorithm for QUBO discussed in Chap. 8 with some minor differences.
Let (x, y) be a fractional solution with x ∈ [0, 1]m and y ∈ [0, 1]n and (x∗, y∗)
be the 0-1 solution obtained from the fractional solution (x, y) using the rounding
scheme:

y∗j =

⎧
⎪⎨

⎪⎩

1 if dj +
m∑

i=1

qij xi > 0,

0 otherwise,

(10.47)

x∗i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ci +
n∑

j=1

qij y
∗
j > 0,

0 otherwise.

(10.48)

Theorem 10.14 ([63]) f (x∗, y∗) ≥ f (x, y). Further, when x and y are all-half
vectors, f (x∗, y∗) ≥ A(Q, c, d).

10 The Bipartite QUBO 287

Proof Recall that the objective function f (x, y) of the BQUBO is given by

m∑

i=1

n∑

j=1

qij xiyj +
m∑

i=1

cixi +
n∑

j=1

djyj =
n∑

j=1

(
m∑

i=1

qij xi + dj

)

yj +
m∑

i=1

cixi

≤
n∑

j=1

(
m∑

i=1

qij xi + dj

)

y∗j +
m∑

i=1

cixi =
n∑

j=1

djy
∗
j +

m∑

i=1

⎛

⎝
n∑

j=1

qij y
∗
j + ci

⎞

⎠ xi

≤
n∑

j=1

djy
∗
j +

m∑

i=1

⎛

⎝
n∑

j=1

qij y
∗
j + ci

⎞

⎠ x∗i = f (x∗, y∗).

Corollary 10.1 The rounding algorithm produces a solution to the BQUBO that is
no worse than average in O(mn) time when the starting solution is (x, y) have all
of its components equal to half. Further, in this case, the domination ratio of the
rounding algorithm is 1

4

Proof Note that the objective function value of a solution with all components equal
to half is A(Q, c, d). The result now follows from Theorems 10.13 and 10.14.

It is possible to establish stronger bounds for the BQUBO by using (modifying)
other related algorithms discussed in Chapter 8. The details are omitted.

Let us now establish a non-approximability result for the BQUBO related to the
domination ratio (domination number) of heuristic algorithms. The theorem below
and its validity proof is from [63].

Theorem 10.15 ([63]) Let α > β be relatively prime natural numbers bounded
above by a polynomial function of the input length of BQUBO and δ = α

β
.

Unless P=NP, no polynomial time heuristic algorithm for the BQUBO can have
its domination number more than 2m+n − 2�m+n

δ �.

Proof Suppose that a polynomial time algorithm A for the BQUBO exists with
domination number at least 2m+n − 2�m+n

δ
� + 1. Using this algorithm, we show that

an optimal solution to BQUBO can be identified. Consider any instance (Q, c, d)

of the BQUBO. Now, construct the instance (Q′, c′, d′) where Q′ = (q ′ij) is an
αβm× αβn matrix defined by

q ′ij =
{

qij if 1 ≤ i ≤ m and 1 ≤ j ≤ n,

0 otherwise

and c′ and d′ are respectively vectors in R
αβm and R

αβn such that

c′i =
{

ci if 1 ≤ i ≤ m,

0 otherwise
and d ′j =

{
dj if 1 ≤ j ≤ n,

0 otherwise.

288 A. P. Punnen

By our assumption on α and β, the instance (Q′, c′, d′) of the BQUBO constructed
above have polynomial size in relation to (Q, c, d). Also, if (x′, y′) is an optimal
solution to the BQUBO (Q′, c′, d′) then (x0, y0) will be an optimal solution to
the BQUBO (Q, c, d), where x0 consists of the first m components of x′ and y0

consists of the first n components of y′. There are 2αβ(m+n) feasible solutions for
(Q′, c′, d′) of which at least 2αβ(m+n)−(m+n) are optimal. So the maximum number
of non-optimal solutions is 2αβ(m+n)−2αβ(m+n)−(m+n). Solve the BQUBO instance
(Q′, c′, d′) using A and let (x′, y′) be the solution produced. The objective function

value of (x′, y′) is no worse than that of at least 2αβ(m+n) − 2�
αβ(m+n)

α/b
� + 1 =

2αβ(m+n)−2β2(m+n)+1 solutions. Since α > β, we have 2αβ(m+n)−2β2(m+n)+1 >

2αβ(m+n)−2αβ(m+n)−(m+n). Thus, (x′, y′) must be an optimal solution to (Q′, c′, d′).
As indicated earlier, from (x′, y′), an optimal solution to (Q, c, d) can be recovered.
The result now follows from NP-completeness of the BQUBO.

From Theorem 10.15 we can see that no polynomial time approximation

algorithm exists for the BBQP with domination ratio more than 1−2
1−δ
δ (m+n) for any

fixed rational number δ > 1. A non-approximability result similar to Theorem 10.15
is mentioned in Chap. 8 for the case of QUBO and proved in [61] for the traveling
salesman problem.

10.5.2 Approximation Algorithms for the Ising BQUBO

Recall that a BQUBO can be mapped to an equivalent Ising BQUBO and vice versa.
This transformation adds a constant to the objective function value, which is ignored
for optimization purposes. This constant however affects the relative performance
ratio of an approximation algorithm. That is, the image of an ε-optimal solution for
the BQUBO under the linear transformation (10.3) need not be an ε-optimal solution
for the resulting Ising BQUBO. However, domination ratio and the domination
number of an algorithm are not affected by the transformations that adds a constant
to the objective function value. Thus, the approximation algorithms and their
domination ratio discussed for the BQUBO can be used to obtain corresponding
results for the Ising BQUBO and vice versa. In particular, the non-approximability
result in terms of the domination ratio established for the BQUBO is valid for the
Ising BQUBO as well.

Let us now look at some approximation algorithms for the Ising BQUBO from
the point of view of relative performance ratio. As noted in the introduction, any
Ising BQUBO (A, 0m, 0n) can be formulated as the Ising QUBO (A′, 0) where

A′ =
[

Om×m
1
2 A

1
2 AT On×n

]

and 0 is the zero vector in R
m+n. Note that A′ is symmetric and the diagonal

elements of A′ are zeros. Thus, we can apply the SDP rounding algorithm discussed

10 The Bipartite QUBO 289

in Chap. 8 to obtain an approximation algorithm for BQUBO with guaranteed
relative performance ratio of O(log(m + n)) in expectation. However, exploiting
the bipartite structure, for the similar SDP based randomized rounding idea and
leads to a constant performance ratio, in expectation [4]. Let us look at this result
briefly.

Let U ∈ R
d×m and V ∈ R

d×n be matrices with respective columns
u1, u2, . . . , um, and v1, v2, . . . , vn, such that ||ui || = 1, i = 1, 2, . . . ,m and
||vj ||, j = 1, 2, . . . , n. Then the standard semidefinite programming relaxation of
BQUBO can be written as:

SDPB: Maximize η(U, V) =
m∑

i=1

n∑

j=1

aij 〈ui · vj 〉

Subject to

||ui || = 1, ||vj || = 1, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

where 〈ui · vj 〉 denotes the dot product of the vectors ui and vj . Let U∗, V∗ be an
optimal solution to SDPB and x∗, y∗ be an optimal solution to the BQUBO (A, 0, 0).
These solutions are related by the Grothendieck Inequality which states that

η(U∗, V∗) ≤ Kf (x∗, y∗)

where K is the Grothendieck constant [11, 47]. The precise value of K is not known
but many authors developed upper and lower bounds on K . For example, it is known
that π

2 ≤ K < π

2 log(1+√2)
[11, 47]. This raises the prospect that if we can identify

x ∈ [−1, 1]m, y ∈ [−1, 1]n from U∗, V∗ such that η(U∗, V∗) is not too far from
f (x, y) we can obtain an ε-optimal solution for QUBO by applying our rounding
algorithm on (x, y). Alon and Naor [4] established precisely this using randomized
rounding of the SDP solution.

Theorem 10.16 Let U∗, V∗ be an optimal solution to the SDPB with d = m + n

and x∗, y∗ be an optimal solution to the BQUBO (A, 0, 0). Then it is possible to
identify x ∈ [−1, 1]m, y ∈ [−1, 1]n using U∗, V∗ and randomized rounding such
that

E

⎛

⎝
m∑

i=1

n∑

j=1

aij xixj

⎞

⎠ = 1

K
η(U∗, V∗) ≥ 0.56f (x∗, y∗),

where E(.) is the expected value.

The proof of Theorem 10.16 can be obtained by following analysis similar
to that used in Chap. 8 for a corresponding result for QUBO with appropriate
modifications. An independent proof of this is given [4]. Other algorithms discussed
in Chap. 8 can also be used to obtain guaranteed relative performance ratio for the
Ising BQUBO (A, 0, 0) with some additional simplifications.

290 A. P. Punnen

10.6 Local Search and Metaheuristics

Local search is a powerful and popular heuristic strategy employed in solving a
variety of combinatorial optimization problems. Local search and metaheuristic
algorithms are discussed in Chap. 9 focussing the QUBO model. Let us now discuss
some local search and metaheuristic algorithms for the BQUBO, exploiting the
bipartite (bilinear) structure of the problem. A local search algorithm maintains
a solution (x, y) and an associated neighborhood N(x, y). If the structure of the
neighborhood is simple with small neighborhood size, complete enumeration can
be employed to find an improving solution. For more complex neighborhoods, as
in the case of very large scale neighborhood search (VLSN search) [2], complete
enumeration is not viable and carefully designed neighborhood search algorithms
are employed to find an improving solution.

Starting with a solution (x, y), the local search algorithm tries to find a ‘better’
solution in N(x, y). If no such solution exists in N(x, y), the algorithm terminates
and output the best solution obtained. If an improving solution is identified, then
the algorithm ‘move’ to this solution replacing the current solution (x, y) with the
improved solution and its neighborhood is explored. There are different criteria used
in selecting an improved solution. For example, the first improving criteria selects
the first improved solution found in the neighborhood. In the ‘best improving’
criteria, the entire neighborhood is explored and selects the solution that provides
the largest improvement in the objective function value. An intermediate strategy of
candidate lists is also used in practice, where a list of solutions of a prescribed size
is constructed and a best solution from this list is selected. A local search algorithm
is well defined when the following components are specified.

1. Strategy to select a starting solution.
2. Definition of the neighborhood and the neighborhood search algorithm.
3. Selection criteria for an improving solution.

Local search algorithms are often embedded within more complex metaheuristic
strategies such as tabu search, variable neighbourhood search etc, to achieve
performance enhancements.

10.6.1 Flip Based Neighborhoods

This is perhaps the most natural and well-studied strategy for constructing efficient
neighbourhood structures for 0-1 optimization problems. We have seen in Chap. 9
where various metaheuristic algorithms for QUBO make use of flip-based neigh-
borhoods. Let us now discuss such neighborhoods in the context of the BQUBO
which has additional flexibility. A flip operation changes the value of a variable to its
complement. For example, by flipping the i-th component of xT = (x1, x2, . . . , xm),
we get the solution vector (x′)T = (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xm). We can

10 The Bipartite QUBO 291

apply the flip operation on both x and y variables. The flip neighborhood of (x, y),
denoted by N1,1(x, y), is the collection of all solutions obtained from (x, y) by
precisely one flip operation.

Let us now discuss an implementation of the local search algorithm of Glover
et al. [32] using the N1,1(x, y) neighborhood with the best improving solution as
the move selection criteria. It is important to compute the objective function value
of the candidate solutions in N1,1(x, y) efficiently, after each flip operation. To
accomplish this, we adapt an evaluation technique, widely used for many binary
quadratic optimization problems [27, 28, 48, 76, 77]. Exploiting the structure of the
BQUBO, we maintain two arrays, �(x) and �(y), to store the contribution of each
flip operation to the objective function value.

Let x′ be the solution obtained from x by flipping the ith component. Define
�xi = f (x′, y)− f (x, y) and �(x) = (�x1,�x2, . . . ,�xm). Then,

�xi = (x ′i − xi)

⎛

⎝ci +
n∑

j=1

qij yj

⎞

⎠ . (10.49)

Similarly, let y′ be the solution obtained from y by flipping the j th component.
Define �yi = f (x, y′)− f (x, y) and �(y) = (�y1,�y2, . . . ,�yn). Then,

�yj = (y ′j − yj)

(

dj +
m∑

i=1

qij xi

)

. (10.50)

The vectors �(x) and �(y) can be initialized in O(mn) time using direct appli-
cations of (10.49) and (10.50). For subsequent iterations, these values can be
efficiently updated. A detailed description of the algorithm for updating the �xi

and �yj values in O(m + n) time is given in [32]. Using the vectors �(x) and
�(y), a best improving solution and the corresponding objective function value can
be identified in O(m+ n) time.

10.6.1.1 The Flip and Float Neighborhood

The flip neighborhood discussed earlier is standard for many quadratic optimization
problems. The flip and float neighborhood introduced by Glover et al. [32]
exploits the special structure of the BQUBO. The material presented in this
subsection is drawn from [32] with some modifications. Recall that, for a fixed
x = (x1, x2, . . . , xm), we can find an optimal y = y∗(x) yielding the largest
improvement in the value of f (x, y) [39] as

y∗(x)j =
{

1 if dj +∑m
i=1 qij xi > 0;

0 otherwise.
(10.51)

292 A. P. Punnen

Similarly, the optimal x = x∗(y) for a given yT = (y1, y2, . . . , yn) can be identified
using the equation

x∗(y)i =
{

1 if ci +∑n
j=1 qij yj > 0;

0 otherwise.
(10.52)

A Flip-x-Float-y operation flips a selected component of x and the float y (i.e.
choose the best y with respect to the flipped x). Similarly, the Flip-y-Float-x
operation flips one component of y and then float x with respect to the flipped y.
There are m possible Flip-x-Float-y moves and n possible Flip-y-Float-x moves.

Let N1,n denotes the Flip x -Float y neighborhood and Nm,1 denotes the Flip y -
Float x neighborhood. While N1,n contains only m solutions andNm,1 contains only
n solutions, their extended neighborhoods [55] respectively contains at least m2n

and n2m solutions. Note that each flip operation generates an x′ and y∗(x′) is a better
candidate than 2n possibilities for y. Thus, the best solution in N1,n is no worse than
the m2n solutions in the extended neighborhood of N1,m. Let N1 = N1,n ∪Nm,1.
Then the best solution in N1 is no worse than n2m +m2n alternative solutions. Yet,
we can find the best solution in N1 in polynomial time.

Let us very briefly discuss some implementation aspects of exploring the
neighborhood N1 for an improved solution. Let xi be the solution obtained from
x by flipping its ith component and �xy(i) be the change in the objective function
value caused by flipping the i-th component of x and floating y. Then,

�xy(i) = f (xi , y∗(xi))− f (x, y) (10.53)

Similarly, let yj be the solution obtained from y by flipping the j th component of y
and floating x and �yx(j) be the change in the objective function value caused by
flipping the j -th component of y and floating x. Then,

�yx(j) = f (x∗(yj), y)− f (x, y) (10.54)

For an efficient implementation of a local search algorithm based on the flip and
float neighborhood, we need a fast way to compute the value of �xy(i) and �yx(j).
Following Glover et al. [32], let us now discuss how to determine �xy(i) efficiently.
Let

σ(x, j) = dj +
m∑

i=1

qij xi (10.55)

Then,

f (x, y∗(x)) =
m∑

i=1

cixi +
n∑

j=1

max [0, σ (x, j)]. (10.56)

10 The Bipartite QUBO 293

For simplicity, let us write �i for �x,y∗(x)(i). Then,

�i = f (xi , y∗(xi))−f (x, y∗(x))

=
m∑

k=1

ckx
i
k +

n∑

j=1

max
[
0, σ (xi , j)

]
−

m∑

k=1

cixk −
n∑

j=1

max [0, σ (x, j)]

= ci(x
i
i − xi)+

n∑

j=1

(
max

[
0, σ (xi , j)

]
−max [0, σ (x, j)]

)
(10.57)

We can compute �yx(j) in an analogous way.
To compute the value of �xy(i) as indicated above we need the values σ(x, j).

For this purpose, we maintain a one dimensional array of size n to store σ(x, j)

(j = 1, 2, . . . , n). Initially, we calculate σ(x, j) using Eq. (10.55) and this requires
O(mn) time. Also the value �xy(i) can be identified in O(n) time. Subsequent to
the Flip-x-Float-y(i) move, we can update the array σ(x, j) in O(n) time by simply
adding (x ′i − xi)qij to each of its elements. For further details we refer to [32].

The flip neighborhood and the flip and float neighborhood belongs to a more
general neighborhood structure Nhk considered by Punnen et al. [63]. For any
solution (x, y) of the BQUBO, let Nhk be the set of solutions obtained by flipping
at most h components of x and at most k components of y. Note that |Nh,k| =(∑h

j=0

(
m
j

)) (∑k
i=0

(
n
i

))
. For fixed h and k, the best solution in this neighborhood

can be identified in polynomial time. When exactly one h or k is allowed to take
values m or n, we a get a more powerful neighborhood. Let Nα = Nm,α ∪ Nα,n.
As indicated in [63], |Nα| = 2m

∑α
j=0

(
n
j

) + 2n
∑α

i=0

(
m
i

) −∑α
i=0

(
m
i

)∑α
j=0

(
n
j

)
.

However, a best solution in Nα can be identified in polynomial time for a fixed
α [39, 63]. It may be noted that a solution produced by the alternating algorithm
is locally optimal with respect to the neighborhood N0 = Nm,0 ∪ N0,n. The
flip and float neighborhood is precisely N1, and the flip neighborhood is N1,1.
Computational results with local search and tabu search algorithms using the
neighborhoods N1 and N1,1 provided good quality solutions [32]. Nonetheless, a
locally optimal solution of such a powerful neighbourhood could be bad and the
corresponding objective function value could be less than A(Q, c, d) even if α is a
function of n.

Theorem 10.17 ([63]) A local search algorithm for the BQUBO (Q, c, d) with
respect to the neighborhood Nα could produce a solution with objective function
value less thanA(Q, c, d) for any α ≤ ⌊

n
5

⌋
.

Corollary 10.2 ([63]) For any fixed h and k, the objective function value of a
locally optimal solution with respect to the neighborhoodNhk could be worse than
A(Q, c, d) for sufficiently large m and n.

294 A. P. Punnen

10.6.2 Metaheuristics

Glover et al. [32] developed a tabu search based metaheuristic algorithm enhancing
the flip neighborhood based local search to solve the BQUBO. They also developed
another tabu search algorithm using the flip and float neighbourhood. As noted
in the previous subsection, the flip and float neighborhood is a very large scale
neighborhood (VLSN) and is more powerful but its neighbourhood search algorithm
is slower than that of the flip neighbourhood. Thus, Glover et al. [32] combined
the two search strategies and proposed a hybrid algorithm integrating tabu search
and VLSN search to achieve better overall performance. The algorithm works as
follows. Apply the flip neighbourhood based tabu search first and when a local
optimum is reached, use the flip and float neighbourhood to escape from the
local optimum. This way, the flip and float neighbourhood used as a ‘cutting
neighbourhood’ to get out of the local optimum. If an improvement is obtained using
the flip and float neighbourhood, the algorithm switch back to the flip neighborhood
based tabu search and the process is continued. Otherwise output the best solution
produced. Results of extensive computational experiments reported in [32] suggests
that the hybrid algorithm combining VLSN search [2] and simple tabu search could
result in heuristics with superior performance for the BQUBO.

Duarte et al. [19] proposed an iterated local search heuristic to solve the BQUBO.
The iterated local search first uses a construction heuristic to generate a starting
solution. For this purpose, they used two types of heuristics; a pure greedy heuristic
and the semi-greedy strategy originally proposed by Hart and Shogan [37]. For
the semi-greedy heuristic, they generate a fixed number of solutions and then
choose the overall best solution. The improvement part of the algorithm uses
simple flip operations to explore better solutions. History based intensification,
diversification, and perturbation are also used to enhance the performance of the
algorithm. Extensive computational results using Karapetyan and Punnen data
set [39] disclosed that the algorithms of Duarte et al. [19] and Glover et al. [32]
produced good quality solutions but neither shown superiority over the other.

Karapetyan et al. [40] developed a metaheuristic framework called Conditional
Markov Chain Search (CMCS) and applied it to solve the BQUBO. They developed
different component algorithms such hill-climbers and mutaters etc., and integrated
them into a metaheuristic framework. A distinguishing feature of the algorithm is
the elimination of experimental fine tuning of the parameters and replaced it with
an automated multicomponent fine-tuning procedure. For this purpose the CMCS
framework is used. The automated parameter tuning using acquired intelligence
produced an algorithm for the BQUBO with superior computational performance.

Wu et al. [78] proposed three tabu search based algorithms to solve the BQUBO.
Two of them are based on strategic oscillation while the third incorporates a
path-relinking based strategy to solve the BQUBO. All three algorithms worked
exceptionally well computationally and the path-relinking based algorithm was able
to discover new improved solutions for large benchmark problems. This algorithm
also used the flip neighborhood and the flip and float neighborhood originally

10 The Bipartite QUBO 295

proposed in [32]. Careful integration of various components, including the use
of memory and perturbations, construction and destruction strategies, and path
relinking resulted in enhanced performance.

10.7 Exact Algorithms

Before applying any exact (or complex heuristic) algorithms, a preprocessing
analysis to fix variables will be useful. Such studies are available for QUBO [29, 36]
(see also Chap. 5) and these ideas can be used directly on the BQUBO. We state
two such results for the BQUBO and its validity can be established from the
corresponding results for QUBO.

Theorem 10.18 If a variable xi is zero or one in an optimal solution of the LP
relaxation of GWB, then there exists an optimal solution to BQUBO where xi

assumes the same values.

This is the well known persistency result for QUBO stated in the context of BQUBO.
See Chap. 5 and the reference therein for further details. As in the case of QUBO,
simple conditions, without using LP relaxation of GWB, can also be derived to fix
variables. Let �x

i = ci +∑n
j=1 min{0, qij }, ux

i = ci +∑n
j=1 max{0, qij }, �

y
j =

dj +∑m
i=1 min{0, qij } and u

y
j = dj +∑m

i=1 max{0, qij }.
Theorem 10.19 If �x

i ≥ 0 then xi = 1 in an optimal solution of BQUBO and if
ux

i ≤ 0 then xi = 0 in an optimal solution. Similarly, if �
y
j ≥ 0 then yj = 1 in an

optimal solution of BQUBO and if uy
j ≤ 0 then yj = 0 in an optimal solution.

Proof Without loss of generality assume that i = m. Then,

f (x, y) =
⎛

⎝
m−1∑

i=1

cixi +
n∑

j=1

djyj +
m−1∑

i=1

n∑

j=1

qij xiyj

⎞

⎠+ xm

(
cm +

n∑

j=1

qmjyj

)

(10.58)

The first bracket in Eq. (10.58) is independent of xm. The minimum contribution
from the second bracket is �x

m and if this is positive, then xm must be at value
1 in every optimal solution and if �x

m = 0 then xm = 1 in at least one optimal
solution. Likewise, the maximum contribution from the last bracket is ux

m and if
this is negative, then xm must be zero in every optimal solution and if ux

m = 0 then
xm = 0 in at least one optimal solution. The case for the y variables can be proved
analogously.

The BQUBO can be solved using general purpose solvers such as Gurobi,
CPLEX etc. using their quadratic 0-1 programming problem solver, or by solving
the MILP formulations. Also, any exact algorithm for QUBO can be used to solve
the BQUBO. The various upper bounds, MILP formulations, and valid inequalities

296 A. P. Punnen

discussed earlier for BQUBO can be used to develop branch and cut, branch
and bound, or other implicit enumeration algorithms but there are not many such
exact algorithms published in the literature designed specifically for the BQUBO,
exploiting its special structure. There is however one such work published by Duarte
et al. [19] and let us discuss this briefly here.

The algorithm is of branch and bound type which maintains a binary tree.
Branching is done using the x variables only since for each assignment of x
variables, the best y variables can easily be identified. This is a distinguishing feature
of BQUBO. Each node of the branch-and-bound tree represents a variable xi and a
branching decision is made assigning xi = 1 for one branch and xi = 0 for the
other branch. Also, at each node k of the search tree, the variables corresponding to
the nodes on the unique path from k to the root node are already fixed. Let Ik be
index set of x variables that are fixed at value one and Fk be the index set of free x
variables (variables that not yet fixed at zero or one). Then, an upper bound U(k) at
node k can be identified using the formula

U(k) =
∑

i∈I k

ci +
∑

i∈Fk

max(0, ci)+
n∑

j=1

max

⎛

⎝0,
∑

i∈I k

qij +
∑

i∈Fk

max(0, qij)+ dj

⎞

⎠

Let xk be the solution obtained by setting xk
i = 1 for i ∈ Ik and 0 for i /∈ Ik . By

fixing this xk identify the optimal yk using formulas discussed earlier. Then (xk, yk)

is a candidate solution. Compare this with the best solution produced so far and
update the best solution and its objective function value, if necessary. Let BOBJ be
the best objective function value identified sofar. Prune the node k if U(k) ≤ BOBJ.
The search tree can be explored using a depth-first or breadth-first strategy. A hybrid
approach is also used normally, with breadth-first strategy applied first and when the
tree size reaches a specified limit and then switch to a depth-first strategy. Duarte
et al. [19] reported that this simple branch and bound strategy was competitive with
the general purpose Cplex solver.

Branders [9] used constraint programming and MILP to solve the homogeneous
BQUBO. The literature on MWBCP also talk about special purpose exact and
heuristic algorithms for the problem. Depending on the restrictions involved on
wedge weights, special cases of the BQUBO which are still hard, can be solved
using these algorithms [7, 23, 66].

10.8 Concluding Remarks

In this chapter, we have discussed various properties, algorithms, and applications
of the models BQUBO and the Ising BQUBO. These problems can be viewed as
generalizations as well as special cases of QUBO or the Ising QUBO. Both BQUBO
and the Ising BQUBO are less studied compared to their QUBO counterparts.

10 The Bipartite QUBO 297

In this chapter we have illustrated how some of the results obtained in the
context of QUBO get simplified for the BQUBO. Further research is necessary
to understand the linkages between the QUBO and the BQUBO and to make
algorithmic advancements for the BQUBO.

References

1. W.P. Adams, R.J. Forrester, A simple recipe for concise mixed 0-1 linearizations. Oper. Res.
Lett. 33, 55–61 (2005)

2. R.K. Ahuja, J.B. Orlin, O. Ergon, A.P. Punnen, A survey of very large-scale neighborhood
search techniques. Discr. Appl. Math. 123, 75–102 (2002)

3. N. Alon, A. Naor, Approximating the cut-norm via Grothendieck’s inequality, in Proceedings
of the Thirty-sixth Annual ACM Symposium on Theory of Computing (2004), pp. 72–80

4. N. Alon, A. Naor, Approximating the cut-norm via Grothendieck’s inequality. SIAM J.
Comput. 35, 787–803 (2006)

5. N. Alon, R.A. Duke, H. Lefmann, V. Rödl, R. Yuster, The algorithmic aspects of the Regularity
Lemma. J. Algorithms 16, 80–109 (1994)

6. C. Ambühl, M. Mastrolilli, O. Svensson, Inapproximability results for maximum edge biclique,
minimum linear arrangement, and sparsest cut. SIAM J. Comput. 40, 567–596 (2011)

7. B.P.W. Ames, S.A. Vavasis, Nuclear norm minimization for the planted clique and biclique
problems. Math. Program. Ser. B 129, 69–89 (2011)

8. A. Billionnet, Solving a cut problem in bipartite graphs by linear programming: application to
a forest management problem. Appl. Math. Modell. 34, 1042–1050 (2010)

9. V. Branders, P. Schaus, P. Dupont, Mining a sub-matrix of maximal sum, in Proceedings of the
6th International Workshop on New Frontiers in Mining Complex Patterns in conjunction with
ECML-PKDD, 2017

10. V. Branders, Finding submatrices of maximal sum: applications to the analysis of gene
expression data, PhD thesis. UCL - Université Catholique de Louvain, Louvain-la-Neuve,
Belgium, 2021

11. M. Braverman, K. Makarychev, Y. Makarychev, A. Naor, The Grothendieck constant is
strictly smaller than Krivine’s bound. 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, 2011, pp. 453-462

12. E. Çela, B. Klinz, C. Meyer, Polynomially solvable cases of the constant rank unconstrained
quadratic 0-1 programming problem. J. Combin. Optim. 12, 187–215 (2006)

13. W. C. Chang, S. Vakati, R. Krause, O. Eulenstein, Exploring biological interaction networks
with tailored weighted quasi-bicliques. BMC Bioinform. 13, 1–9 (2012)

14. P. Chardaire, A. Sutter, A decomposition method for quadratic 0-1 programming. Manage. Sci.
41, 704–712 (1995)

15. Y. Cheng, G.M. Church, Biclustering of expression data, in Proceedings of the 8th Interna-
tional Conference on Intelligent Systems for Molecular Biology (2000), pp. 93–100

16. M. Dawande, P. Keskinocak, J.M. Swaminathan, S. Tayur, On bipartite and multipartite clique
problems. J. Algorithms 41, 388–403 (2001)

17. M. Demange, P. Grisoni, V. Th. Paschos, Differential approximation algorithms for some
combinatorial optimization problems. Theor. Comput. Sci. 209, 107–122 (1998)

18. G. Derval, Finding maximum sum submatrices. Ph.D. Thesis, Louvain School of Engineering,
UCL - Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2021

19. A. Duarte, M. Laguna, R. Martí, J. Sánchez-Oro, Optimization procedures for the bipartite
unconstrained 0-1 quadratic programming problem. Comput. Oper. Res. 51, 123–129 (2014)

20. L. Engebretsen, J. Holmerin, Clique is hard to approximate within n1−o(1), in Proceedings
of International Colloquium on Automata, Languages and Programming, Geneva (2000), pp.
2–12

298 A. P. Punnen

21. A. Frieze, R. Kannan, Quick approximation to matrices and applications. Combinatorica 19,
175–220 (1999).

22. B. Gartner and J. Matoušek, Approximation Algorithms and Semidefinite Programming
(Springer, New York, 2010)

23. S. Gaspers, D. Kratsch, and M. Liedloff, On independent sets and bicliques in graphs,
Algorithmica 62, 637–658 (2012)

24. N. Gillis, F. Glineur, Low-rank matrix approximation with weights or missing data is NP-Hard.
SIAM J. Matrix Anal. Appl. 32, 1149–1165(2011)

25. N. Gillis and F. Glineur, A continuous characterization of the maximum-edge biclique problem.
J. Global Optim. 58, 439–464 (2014)

26. F. Glover, Improved linear integer programming formulations of nonlinear integer problems.
Manage. Sci. 22, 455–460 (1975)

27. F. Glover, J.K. Hao, Efficient evaluations for solving large 0-1 unconstrained quadratic
optimisation problems. Int. J. Metaheurist. 1(2010), 3–10

28. F. Glover, G.A. Kochenberger, B. Alidaee, Adaptive memory tabu search for binary quadratic
programs. Manage. Sci. 44, 336–345 (1998)

29. F. Glover, M. Lewis, G. Kochenberger, Logical inequality implications for reducing the size
and difficulty of quadratic unconstrained binary optimization problems. Eur. J. Oper. Res. 265,
829–842 (2018)

30. F. Glover, Z. Lü, J.K. Hao, Diversification-driven tabu search for unconstrained binary
quadratic problems. 4OR: Quart. J. Oper. Res. 8, 239–253 (2010)

31. F. Glover, A.P. Punnen, The traveling salesman problem: new solvable cases and linkages with
the development of approximation algorithms. J. Oper. Res. Soc. 48, 502–510 (1997)

32. F. Glover, T. Ye, A.P. Punnen, G. Kochenberger, Integrating tabu search and VLSN search to
develop enhanced algorithms: a case study using bipartite Boolean quadratic programs. Eur. J.
Oper. Res. 241, 697–707 (2015)

33. G. Gutin, A. Yeo, A. Zverovitch, Exponential neighborhoods and domination analysis for TSP,
in The Travelling Salesman Problem and Its Variations, ed. by G. Gutin, A.P. Punne (Kluwer
Academic Publishers, Boston, 2002)

34. G. Gutin, A. Yeo, Domination analysis of combinatorial optimization algorithms and problems,
in Graph Theory, Combinatorics and Algorithms, Operations Research/Computer Science
Interfaces Series, ed. by M.C. Golumbic, I.B.A. Hartman, vol. 34 (Springer, Boston, MA, 2005)

35. W.W. Hager, J.T. Hungerford, Continuous quadratic programming formulations of optimiza-
tion problems on graphs. Eur. J. Oper. Res. 240, 328–337 (2015)

36. P.L. Hammer, P. Hansen, Logical relations in quadratic 0-1 programming. Revue Roumaine
Math. Pures et Appl. 26, 421–429 (1981)

37. J.P. Hart, A.W. Shogan, Semi-greedy heuristics:an empirical study. Oper. Res. Lett. 6, 107–114
(1987)

38. M. Hladík, M. Cerný, M. Rada, A new polynomially solvable class of quadratic optimization
problems with box constraints. Optim. Lett. 15, 2331–2341 (2021)

39. D. Karapetyan, A.P. Punnen, Heuristic algorithms for the bipartite unconstrained 0-1 quadratic
programming problem (2012). http://arxiv.org/abs/1210.3684

40. D. Karapetyan, A.P. Punnen, A.J. Parkes, Markov chain methods for the bipartite Boolean
quadratic programming problem. Eur. J. Oper. Res. 260, 494–506 (2017)

41. S. Khot, A. Naor, Grothendieck-type inequalities in combinatorial optimization. Commun.
Pure Appl. Math. LXV, 992–1035 (2011)

42. H. Konno, Maximization of a convex quadratic function under linear constraints. Math.
Program. 11, 117–127 (1976)

43. H. Konno, Maximizing a convex quadratic function over a hypercube. J. Oper. Res. Soc. Jpn.
23, 171–188 (198)

44. H. Konno, T. Kuno, Y. Yajima, Parametric simplex algorithms for a class of NP-complete
problems whose average number of steps is polynomial. Comput. optim. Appl. 1, 227–239
(1992)

http://arxiv.org/abs/1210.3684

10 The Bipartite QUBO 299

45. M. Koyuturk, A. Grama, N. Ramakrishnan, Compression, clustering, and pattern discovery in
very high-dimensional discrete-attribute data sets. IEEE Trans. Knowl. Data Eng. 17, 447–461
(2005)

46. M. Koyuturk, A. Grama, N. Ramakrishnan, Nonorthogonal decomposition of binary matrices
for bounded error data compression and analysis. BMC Bioinform. 32, 1–9 (2006)

47. J.-L. Krivine, Sur la constante de Grothendieck. Comptes Rendus de l’Académie des Sciences
Paris Ser. A-B. 284, 445–446 (1977)

48. Z. Lü, F. Glover, J.K. Hao, A hybrid metaheuristic approach to solving the UBQP problem.
Eur. J. Oper. Res. 207, 1254–1262 (2010)

49. H. Lu, J. Vaidya, V. Atluri, H. Shin, L. Jiang, Weighted rank-one binary matrix factorization,
in Proceedings of the 2011 SIAM International Conference on Data Mining (SDM), 2011

50. B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, J. Zhou, Maximum Biclique search at billion scale.
PVLDB 13, 1359–1372 (2020)

51. P. Manurangsi, Inapproximability of maximum edge Biclique, maximum balanced Biclique
and minimum k-cut from the small set expansion hypothesis. Algorithms 11, 12 (2018)

52. S.T. McCormick, M.R. Rao, G. Rinaldi, Easy and difficult objective functions for max cut.
Math. Program. 94, 459–466 (2003)

53. K.G. Murty, Linear Programming (Wiley, New York, 1983)
54. D. Nussbaum, S. Pu, J.R. Sack, T. Uno, H. Zarrabi-Zadeh, Finding maximum edge bicliques

in convex bipartite graphs. Algorithmica 64, 311–325 (2012)
55. J.B. Orlin, D. Sharma, Extended neighborhood: definition and characterization. Math. Pro-

gram. Ser. A 101, 537–559 (2004)
56. G. Palubeckis, Heuristics with a worst-case bound for unconstrained quadratic 0-1 program-

ming. Informatica 3, 225–240 (1992)
57. A. Pandey, G. Sharma, N. Jain, Maximum weighted edge Biclique problem on bipartite graphs,

in Algorithms and Discrete Applied Mathematics, CALDAM 2020. Lecture Notes in Computer
Science, ed. by M. Changat, S. Das, vol. 12016 (Springer, Cham, 2020)

58. R. Peeters, The maximum edge biclique problem is NP-complete. Discr. Appl. Math. 131,
651–654 (2003)

59. A.P. Punnen, N. Kaur, Revisiting some classical explicit linearizations for the quadratic binary
optimization problem. Res. Rep. Department of Mathematics, Simon Fraser Univerity, 2021

60. A.P. Punnen, N. Kaur, Fast heuristics for the quadratic unconstrained binary optimization
problem. Res. Rep.. Department of Mathematics, Simon Fraser University, 2021.

61. A.P. Punnen, F.S. Margot, S.N. Kabadi, TSP heuristics: domination analysis and complexity.
Algorithmica 35, 111–127 (2003)

62. A.P. Punnen, K.P.K. Nair, Linear multiplicative programming. Opsearch 34, 140–154 (1997)
63. A.P. Punnen, P. Sripratak, D. Karapetyan, Average value of solutions for the bipartite Boolean

quadratic programs and rounding algorithms. Theor. Comput. Sci. 565, 77–89 (2015)
64. A.P. Punnen, P. Sripratak, D. Karapetyan, The bipartite unconstrained 0-1 quadratic program-

ming problem: Polynomially solvable cases (2012). arXiv:1212.3736v3
65. A.P. Punnen, P. Sripratak, D. Karapetyan, The bipartite unconstrained 0-1 quadratic program-

ming problem: polynomially solvable cases. Discr. Appl. Math. 193, 1–10 (2015)
66. S. Shahinpour, S. Shirvani, Z. Ertem, S. Butenko, Scale reduction techniques for computing

maximum induced bicliques. Algorithms 10, 113 (2017)
67. B.H. Shen, S. Ji, J. Ye, Mining discrete patterns via binary matrix factorization, in Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, (2009)

68. P. Sripratak, The bipartite Boolean quadratic programming problem. Ph.D. Thesis, Simon
Fraser University (2014)

69. P. Sripratak, A.P. Punnen, T. Stephen, The bipartite Boolean quadric polytope. Discr. Optim.
44(1), 100657 (2022). https://doi.org/10.1016/j.disopt.2021.100657

70. J. Tan, Inapproximability of maximum weighted edge biclique and its applications. In
Proceedings of the 5th International Conference on Theory and Applications of Models of
Computation (TAMC’08), ed. by M. Agrawal, D. Du, Z. Duan, A. Li (eds.) (Springer-Verlag,
Berlin, Heidelberg, 2008), pp. 282–293

https://doi.org/10.1016/j.disopt.2021.100657

300 A. P. Punnen

71. A. Tanay, R. Sharan, M. Kupiec, R. Shamir, Revealing modularity and organization in the
yeast molecular network by integrated analysis of highly heterogeneous genome-wide data.
Proc. Natl. Acad. Sci. U.S.A. 101, 2981–2986 (2004)

72. A. Tanay, R. Sharan, R. Shamir, Discovering statistically significant biclusters in gene
expression data. Bioinformatics 18, 136–144 (2002)

73. G. Tavares, New algorithms for quadratic unconstrained binary optimization problem (QUBO)
with applications in engineering and social sciences. Ph.D Thesis, Rutgers University, 2008

74. D. Urošević, Y.I.Y. Alghoul, Z. Amirgaliyeva, N. Mladenović, Less is more: tabu search
for bipartite quadratic programming problem, in Mathematical Optimization Theory and
Operations Research, MOTOR 2019. Lecture Notes in Computer Science, vol. 11548, ed. by
M. Khachay, Y. Kochetov, P. Pardalos (Springer, New York, 2019)

75. V.V. Vazirani, Approximation Algorithms (Springer, New York, 2010)
76. Y. Wang, Z. Lü, F. Glover, J.K. Hao, Backbone guided tabu search for solving the UBQP

problem. J. Heurist. 19(4), 1–17 (2011)
77. Y. Wang, Z. Lü, F. Glover, J.K. Hao, Path relinking for unconstrained binary quadratic

programming. Eur. J. Oper. Res. 223, 595–604 (2012)
78. Q. Wu, Y. Wang, F. Glover, Advanced tabu search algorithms for bipartite Boolean quadratic

programs guided by strategic oscillation and path relinking. INFORMS J. Comput. 32(1), 74–
89 (2019)

79. E. Zemel, Measuring the quality of approximate solutions to zero-one programming problems.
Math. Oper. Res. 6, 319–332 (1981)

Chapter 11
QUBO Software

Brad D. Woods, Gary Kochenberger, and Abraham P. Punnen

Abstract In this chapter, we compile information regarding various QUBO solvers
available. This includes general purpose MILP solvers, SDP solvers, codes for
heuristics, exact algorithms, and test instances. We include information on solvers
and test instances for problems that are equivalent to QUBO and the equivalent
formulation can be obtained directly without significant effort. This includes the
maximum cut problem, the maximum weight stable set problem, the maximum
clique problem, and bilinear programs.

11.1 Introduction

In the preceding chapters we have discussed various algorithms for solving the
quadratic unconstrained binary optimization (QUBO) problem and other related
problems either by finding a provably optimal solution or by finding a heuristic
solution. When evaluating the performance of heuristic algorithms, two metrics
are most commonly used: solution quality, and computational time to reach the
solution. While these metrics are important, there are other important aspects of
software that must be considered in practice. In addition to cost and licensing
concerns, a practitioner may also be concerned with the specific language that is
used, whether or not a callable library is available, or the complexity of interfacing
with large software packages. Other practitioners may be interested in utilizing
exotic hardware (Quantum Annealers, Coherent Ising Machines, etc.) either now or

B. D. Woods
1Qbit Inc., Vancouver, BC, Canada

G. Kochenberger
Entanglement, Inc., Westminster, CO, USA
e-mail: Gary@entanglement.ei

A. P. Punnen (�)
Department of Mathematics, Simon Fraser University, Surrey, BC, Canada
e-mail: apunnen@sfu.ca

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2_11

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04520-2_11&domain=pdf
mailto:Gary@entanglement.ei
mailto:apunnen@sfu.ca
https://doi.org/10.1007/978-3-031-04520-2_11

302 B. D. Woods et al.

in the future to solve QUBO or related problems, so software packages and services
with these capabilities may be desired. Other software may be provided under the
“Software As A Service” (SaaS) model, where the software is centrally hosted on
cloud infrastructure. Here, we do not attempt to provide a comparative study of
all available software, rather we attempt to provide the reader with a summary of
available codes and present them in an organized manner.

In Chap. 1, we have seen how to write QUBO in other equivalent forms such as
the maximum cut problem, the maximum weight stable set problem, the maximum
weight clique problem, and bilinear programs. Since the transformation from QUBO
to these models are somewhat straightforward, solvers developed for these problems
can also be used to solve QUBO. Consequently, we also include a discussion of
software for solving these equivalent forms. This is not an exhaustive list of all
available software for QUBO, instead we present relevant information on a set
of programs that we either have used or attracted our attention while exploring
powerful solvers for QUBO.

We classify solvers into the following categories: General purpose solvers, Exact
solvers, Heuristic solvers, QUBO Tools, Hardware for QUBO, and Benchmark
Instances along with a list of miscellaneous items. There are many interesting codes
and solvers related to QUBO available as part of the COIN-OR project, particularly
solvers for nonlinear mixed integer programs. We are not listing all of them here but
highlight a couple of relevant programs with a note that other similar programs are
available.

11.2 General Purpose Solvers

1. SCIP: This is a powerful non-commercial suite for solving various mathematical
optimization problems. The current version is 7.0.3, released on 12 August 2021.
The software is available free of cost for academic work under ZIB academic
licence. The licence terms are available at ZIB academic licence. The software
requires an external LP solver and the default LP solver used is SoPlex. A variety
of optimization models can be solved using SCIP directly or with an appropriate
extension. Some specific problem classes that can be handled this way include
mixed integer linear programs, mixed integer non-linear programs, constraint
integer programs, Pseudoboolean optimization, Satisfiability and variations,
multicriteria optimization, and Mixed-integer semidefinite programs. For details
on this powerful and flexible software, we refer to
https://www.scipopt.org/

2. LocalSolver: This is a general-purpose C++ code for solving mathematical
optimization problems. It supports linear, nonlinear, and combinatorial models
involving high-level expressions like set variables, arrays, and external functions
for black-box optimization. Max-Cut is used, among other combinatorial prob-
lems, to illustrate the use of the package.

https://www.scipopt.org/doc/html/LICENSE.php
https://www.scipopt.org/

11 QUBO Software 303

The current release 10.5 has free 30 day trial and free academic licenses, as well
as paid options. The software is available for download at:
https://www.localsolver.com/download.html

3. Couenne: This is a mixed integer non-linear programming solver, developed in
C++ and part of the COIN-OR project. The solver is available under Eclipse
Public License 1.0. For additional details, please visit the COIN-OR website
https://www.coin-or.org/projects/ and for program download, please visit
https://github.com/coin-or/Couenne

4. BONMIN: This is an open-source C++ code for solving Mixed Integer Non-
Linear Programming problems. It is available on COIN-OR under the Common
Public License. For additional details, please visit the COIN-OR page of
the software https://www.coin-or.org/projects/. BOMIN can also be accessed
through NEOS web interface. For additional information on the underlying
algorithm, please consult the technical report [4]. For program download, please
visit
https://coin-or.github.io/Bonmin/

5. SYMPHONY: This is an open-source mixed integer linear program (MILP)
solver and a callable library. It can be used to develop customized MILP
solvers. SYMPHONY is available under Eclipse Public License 1.0. For
additional information, please visit the COIN-OR page of the software
https://www.coin-or.org/projects/. For software download, please visit
https://projects.coin-or.org/SYMPHONY

6. GUROBI: This is a popular general purpose commercial solver, that can solve
linear programs, mixed integer linear programs, quadratic programs, and mixed
integer quadratic programs. In Chap. 6 we have seen various mixed integer
linear programming formulations of QUBO and a comparative analysis on the
effectiveness of Gurobi in solving these and other formulations is given in [26].
Small size QUBO problems can be solved to optimality easily by Gurobi. For
larger size problems, Gurobi can be used as heuristic by providing a time limit
and collecting the best solution produced. Gurobi also has a binary quadratic
program solver which can be used directly to solve QUBO of small size. The
pre-solve processor embedded in Gurobi adds cuts automatically (see Chap. 4
for some valid inequalities and cuts.)
The software is free for academic research, through their academic license
program. For commercial use, a paid version is required. For further information
on the product and services, visit their website:
https://www.gurobi.com/

7. CPLEX: This is another popular general purpose commercial solver with
somewhat similar capabilities as Gurobi. This can also solve linear programs,
mixed integer linear programs, and integer quadratic programs.
The software is free for academic research, through their academic license
program. For commercial use, a paid version is required. For further information
on the product and services, visit their website:
https://www.ibm.com/analytics/cplex-optimizer

https://www.localsolver.com/download.html
https://www.coin-or.org/projects/
https://github.com/coin-or/Couenne
https://www.coin-or.org/projects/
https://coin-or.github.io/Bonmin/
https://www.coin-or.org/projects/
https://projects.coin-or.org/SYMPHONY
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

304 B. D. Woods et al.

8. LINDO: This is a commercial software package capable of solving integer
linear, nonlinear, and stochastic programming problems and also global opti-
mization. Academic users can get the software free of cost. The software is
available for download at:
https://www.lindo.com/

9. BARON: The solver BARON (Branch-And-Reduce Optimization Navigator) is
a commercial software marketed by The Optimization Firm. It computes a global
optimum of mixed integer non-linear programs. It uses the branch and bound
framework and one can use other solves to handle subproblems. It also has many
features, including capability to generate McCormick envelop inequalities (see
Chap. 1). For additional details, please visit
https://www.theoptimizationfirm.com/home.

11.3 Exact Solvers for QUBO

1. Some Max Cut: This is a Python code to solve instances of the QUBO
problem. The code finds the optimal solution by belief propagation on the clique
intersection graph. The code is free to use and distribute for commercial use
under the MIT license. The code repository can be found at:
https://github.com/ongmingyang/some-max-cut

2. BiqCrunch: This is a C code (using a FORTRAN library) for solving binary
quadratic problems. It uses the branch and bound platform BOB [9] and the
nonlinear optimization routine L-BFGS-B [23, 32]. The bounding procedure is
based on an improved semidefinite programming algorithm. The code is released
as a free and open-source software.
The code uses a format similar to the widely used sparse SDPA format, and
contains converters from LP to the BiqCrunch format and from specific problem
classes, such as Max-Cut, QUBO and Max-k-Cluster to the BiqCrunch format.
Users are able to submit problems to an online solver at:
https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch/solver/
The current release can be obtained in tar.gz format (“BiqCrunch2.0.tar.gz”) from
the website:
https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch/repository/solver/

3. Maxcut: This source has two codes, maxcut.MaxCutSDP which interfaces
external solvers (such as SCS or CVXOPT) to solve the SDP formulation of
the Max-Cut problem and maxcut.MaxCutBM which is an implementation of
the Burer-Monteiro algorithm to solve a non-convex formulation of the Max-Cut
problem [8].
https://github.com/pandrey-fr/maxcut

4. BiqBin: This is an exact solver for linearly constrained binary quadratic
problems by converting the problem into a Max-Cut and solves the latter by
a branch-and-bound algorithm. A parallel version is also available. Users can

https://www.lindo.com/
https://www.theoptimizationfirm.com/home
https://github.com/ongmingyang/some-max-cut
https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch/solver/
https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch/repository/solver/
https://github.com/pandrey-fr/maxcut

11 QUBO Software 305

upload their problem data to the software web interface. For additional details,
we refer to:
http://www.biqbin.eu/

5. Biq Mac Solver: This is an implementation of the SDP based branch and bound
algorithm solving QUBO [27], where c is assumed to be the zero vector and
there are no restrictions on the diagonal entries of Q. The input data is the Q
matrix. After uploading data, the job will be queued and a time limit of three
hours is set for the solver. Output will be communicated by email. By submitting
the data, you also agree that the will be stored and could also appear in the Biq
Mac Library. Contact information is biqmac@uni-klu.ac.at. For further details,
visit the website:
http://biqmac.uni-klu.ac.at/

6. MADAM: This is a maximum cut exact solver with parallel capabilities,
applying ADMM to solve the underlying SDP relaxations. It is one of the newest
exact solvers for max cut (and hence QUBO) introduced by Hrga and Povh [18].

11.4 Heuristics for QUBO

1. AlphaQUBO: AlphaQUBO is developed by Fred Glover and Rick Hennig.
It is managed and marketed by Meta-Analytics, Inc. AlphaQUBO is actively
managed and updated frequently. It is a modern metaheuristic solver designed to
solve large-scale QUBO models of the form xT Qx (minimized or maximized)
where Q is a symmetric matrix of constants. The current capacity is up to
one million variables and can handle dense as well as sparse problems. It is a
commercial software but a free version with a limit of up to 2500 variables is
available on AWS Marketplace. The software is extensively tested and widely
used to solve large-scale, real-world problems. Some computational experience
with this software is included in Chap. 2. For additional information, please
contact admin@meta-analytics.com or visit the web site
http://meta-analytics.com/.

2. dwave-tabu: This is a C++ code to compute an approximate solution of QUBO.
It implements the multistart tabu search algorithm developed by Palubeckis [24].
The code is released under the Apache License 2.0.
The current release 0.4.2 has a Python interface that wraps the C++ implementa-
tion as a sampler for either QUBO or Ising QUBO problems. The code repository
can be found at:
https://github.com/dwavesystems/dwave-tabu

3. Qbsolv: This is a C++ code to compute an approximate solution of QUBO. The
code implements a tabu search heuristic which is used as a subroutine on QUBO
subproblems. The algorithm is loosely based off the ideas by Glover [12]. The
code is well-documented and released under the open source Apache License
2.0.

http://www.biqbin.eu/
http://biqmac.uni-klu.ac.at/
http://meta-analytics.com/
https://github.com/dwavesystems/dwave-tabu

306 B. D. Woods et al.

There is also a version of the code which has the ability to use a D-Wave Systems
Quantum computer to solve the QUBO subproblems, which can be obtained from
D-Wave Systems. The open source version is available at:
https://github.com/dwavesystems/qbsolv

4. QCI qbsolv: This a commercial C++ implementation of D-Wave Systems’
qbsolv heuristic algorithm [5].
The software is commercially accessible via a cloud service, and information on
how to purchase access can be found at the website:
https://www.quantumcomputinginc.com/qatalyst-core/

5. OpenJij: This is a C++ library for solving the Ising QUBO and QUBO through
a Python interface. The library is intended to be used to investigate Quantum
Annealing machines, and includes several annealing heuristic algorithms which
can be run on CPU or GPU.
The code is licensed under the Apache 2.0 license, and can be found at:
https://github.com/OpenJij/OpenJij

6. MQLib: This is a open source collection of C++ codes implementing a
variety of QUBO and Max-Cut heuristic algorithms presented in the academic
literature. An experimental analysis of the implemented algorithms is presented
by Dunning, Gupta and Silberholz [11]. Included in the package are scripts to
test some newly developed heuristics, analysis tools and a set of benchmark
instances. The library, released under the MIT license, can be found at:
https://github.com/MQLib/MQLib

7. Azure Quantum: This is a cloud service providing a diverse set of quantum
solutions and technologies. The service provides access to a number of heuristic
QUBO solvers developed and maintained by 1QBit and Microsoft QIO, which
can be run on CPU, GPU or FGPA. Toshiba has partnered to offer the Simulated
Bifurcation Machine (SBM) [15] in Azure Quantum, but at the time of writing,
this has not yet been made available. The code belongs to an open ecosystem and
there is a free 30 day trial without an Azure membership. Details can be found
at:
https://azure.microsoft.com/

8. BQUBO Markov chain algorithm: This is heuristic algorithm to solve the
bipartite quadratic unconstrained binary optimization problem (BQUBO) devel-
oped by Karapetyan, Punnen, and Parks [19]. It is a learning based algorithm.
The source code and executables can be downloaded from:
http://www.cs.nott.ac.uk/ pszdk/bqplib/BbqpCmcs.zip.

11.5 QUBO Tools

1. dwave-ocean-sdk: This is a C++ software development kit (SDK) containing
tools for QUBO relating to the D-Wave Quantum Annealer [20]. Included are
implementations of algorithms for preprocessing [7], finding exact solutions by

https://github.com/dwavesystems/qbsolv
https://www.quantumcomputinginc.com/qatalyst-core/
https://github.com/OpenJij/OpenJij
https://github.com/MQLib/MQLib
https://azure.microsoft.com/
http://www.cs.nott.ac.uk/~pszdk/bqplib/BbqpCmcs.zip

11 QUBO Software 307

enumeration, heuristics [24], and bounding procedures [6] for QUBO and the
Ising QUBO.
The code is released under the Apache 2.0 license, and is available at:
https://github.com/dwavesystems/dwave-ocean-sdk

2. QUBOgen: This is a Python code that converts several types of combinatorial
optimization problems into QUBO problems. It implements the transformations
presented by Glover, Kochenberger and Du [14]. The code repository can be
found at:
https://github.com/tamuhey/qubogen

3. pyQUBO: This is a C++ code that expresses Ising Hamiltonians as QUBO. It
is fully integrated with Ocean SDK. The code is released under the Apache 2.0
license and the repository can be found at:
https://github.com/recruit-communications/pyqubo
Also included is a Python Library for embedding various combinatorial opti-
mization problems into QUBO or Ising QUBO form. For details of this library,
we refer to the article [31].

4. dimod: This is a shared API for samplers written in Python and C++. It can
handle discrete variables, linear inequality and equality constraints and samples
with higher-order polynomial objectives. It is included in the DWave Ocean
SDK.
The code is released under the Apache 2.0 license and can be found at:
https://github.com/dwavesystems/dimod

11.6 Hardware for QUBO

In this section we describe some of the custom built hardware using QUBO that has
been brought to market, or is close to being publicly available.

1. D-Wave Systems Advantage: This is a quantum annealer which solves Ising
problems that can be mapped onto the Pegasus graph structure [10], through the
use of quantum entanglement. The Pegasus graph used in the D-Wave Systems
quantum annealer contains 5640 qubits and 40484 connections. The quantum
annealer can be accessed via the D-Wave Systems cloud service at:
https://www.dwavesys.com/solutions-and-products/cloud-platform/

2. Fujitsu Digital Annealer: This is a custom silicon (ASIC) implementation of
a parallel-trial simulated annealing algorithm that supports up to 8192-bit, full
connectivity, problems [1]. Fujitsu offers access to the device via paid access to
their cloud service. A variety of support services are also offered. Details can be
found at:
https://www.fujitsu.com/ca/en/services/business-services/digital-annealer/
services/index.html

3. Hitachi CMOS Annealer: This is an ASIC implementation which implements
an annealing machine with CMOS semiconductor circuits [30]. Due to the
physical nature of the connections, Ising problems that can be mapped onto the

https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/tamuhey/qubogen
https://github.com/recruit-communications/pyqubo
https://github.com/dwavesystems/dimod
https://www.dwavesys.com/solutions-and-products/cloud-platform/
https://www.fujitsu.com/ca/en/services/business-services/digital-annealer/services/index.html

308 B. D. Woods et al.

384× 384 King’s graph can be solved. A cloud service has been developed and
released for free. Details can be found at:
https://annealing-cloud.com/en/index.html

4. NTT LASOLV: This is a Coherent Ising Machine (CIM) developed by NTT.
This is a network of optical parametric oscillators to compute heuristic solutions
to Ising problems [17, 29]. Access to the machine at time of this publication has
been limited mainly to academic researchers through LCS a cloud computing
cluster maintained and developed by NTT. Information on this system can be
found at:
https://www.rd.ntt/e/research/JN20191127_h.html

11.7 Miscellaneous

1. Systems Optimization Laboratory: Various optimization solvers (linear and
non-linear) can be obtained from the Systems Optimization Laboratory, Stanford
university. This include among others, MINOS: a Fortran package that can be
used for solving linear and non-linear optimization problems, QPOPT: a Fortran
package for solving constrained linear least-squares and quadratic programming
problems. If the quadratic is convex, the solver provides an optimal solution (for
minimization) and when the quadratic is concave (minimization form) it produce
a local optimum. Additional details on the available software can be obtained
from.
http://stanford.edu/group/SOL/download.html

2. CSDP: This is a C Library for solving Semidefinite Programs that implements
a predictor corrector variant of the semidefinite programming algorithm of
Helmberg, Rendl, Vanderbei, and Wolkowicz. For SDP formulation of QUBO
and the Ising QUBO we refer to Chap. 6 for using solutions of SDP relaxation to
develop approximation algorithms, we refer to Chap. 8. This is part of the COIN-
OR project and is available under the Eclipse Public License. The software is
available for download at:
https://github.com/coin-or/csdp

3. SDPA: This is an efficient package for solving SDP based on the primal-dual
interior-point method. It is written in C++ but python and MATLAB interfaces
are also available. The software can be downloaded free of cost from:
http://sdpa.sourceforge.net/

11.8 Benchmark Instances

Experimental analysis of algorithms for QUBO requires representative standard
test problems. Many authors contributed to generating test instances with specified
properties. In this section, we present information test instance generators and
benchmark problems publicly available.

https://annealing-cloud.com/en/index.html
https://www.rd.ntt/e/research/JN20191127_h.html
http://stanford.edu/group/SOL/download.html
https://github.com/coin-or/csdp
http://sdpa.sourceforge.net/

11 QUBO Software 309

1. Biq Mac Library This is a nearly comprehensive source for test problems for
QUBO and the maximum cut problem. The library is maintained by Angelika
Wiegele who can be contacted at angelika.wiegele@aau.at for additional details
or for adding new problem instances. The details on the library and download
links are available at:
http://biqmac.uni-klu.ac.at/biqmaclib.html
The library contains Beasley instances [2] (available through OR Library),
Glover, Kochenberger and Alidaee instances [13] (also available through OR
Library), and Billionnet and Elloumi instances [3]. All these instances are
for QUBO (either maximization or minimization). Additional problems for
maximum cut are also available. This includes Max-Cut instances generated from
applications in statistical physics [21, 22].

2. Verma & Lewis instances: This dataset corresponds to cubic and quadratic
pseudo boolean optimization problems. The name convention used for each file
the set is: data_d_n_m_k.txt , wherein d, n,m, and k represents the degree, the
number of nodes, the number of edges and the instance identifier respectively.
The parameter n = 200 nodes and values of m ∈ [250, 300, 350, 400, 450, 500
, 1000] were used and five instances of each type were generated. In each test
file, the three or four nodes that belong to each term in the optimization problem
are chosen uniformly from the set of available variables. The corresponding
coefficient is also chosen uniformly from the interval [−10, 10]. Experimental
results using this data set is reported in [28].
https://github.com/amitverma1509/QUBO

3. OR Library instances: These data files the Beasley instances. Experimental
results using these instances were reported first in the paper [2] and include some
large instances. The site is maintained by J. E. Beasley. The cite also contains
Glover, Kochenberger and Alidaee instances.
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/bqpinfo.html

4. Instance generators: In [25] Pardalos presented fortran programs for con-
structing test instances for QUBO. It provides additional information on the
difficulty levels and properties of the test problems and includes discussion on
test problems of Gulati, Gupta and Mittal [16].

5. BQUBO Instances: These are test instances for the bipartite quadratic uncon-
strained binary optimization problem reported in Karapetyan, Punnen, and
Park [19]. There are three classes of instances: small instances (56 mb), moderate
instance (11 mb) and large instance (256 mb). The instances can be downloaded
respectively from:
http://www.cs.nott.ac.uk/ pszdk/bqplib/small.rar
http://www.cs.nott.ac.uk/ pszdk/bqplib/moderate.rar
http://www.cs.nott.ac.uk/ pszdk/bqplib/large.rar.

http://biqmac.uni-klu.ac.at/biqmaclib.html
https://github.com/amitverma1509/QUBO
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
http://www.cs.nott.ac.uk/~pszdk/bqplib/small.rar
http://www.cs.nott.ac.uk/~pszdk/bqplib/moderate.rar
http://www.cs.nott.ac.uk/~pszdk/bqplib/large.rar

310 B. D. Woods et al.

References

1. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, H.G. Katzgraber, Physics-
inspired optimization for quadratic unconstrained problems using a digital annealer. Front.
Phys. 7, 48 (2019)

2. J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming
problem. Ph.D. Thesis, The Management School Imperial College, London, 1998

3. A. Billionnet, S. Elloumi, Using mixed integer quadratic programming solver for the uncon-
strained quadratic 0-1 problem. Math. Program. Ser. A 109, 55–68 (2007)

4. P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossmann, C.D. Laird, J. Lee, A.
Lodi, F. Margot, N. Sawaya, A. Waechter, An algorithmic framework for convex mixed integer
nonlinear programs. IBM Res. Rep. RC23771, Oct. 2005

5. M. Booth, J. Berwald, U. Chukwu, J. Dawson, R. Dridi, D. Le, M. Wainger, S.P. Reinhardt, QCI
Qbsolv delivers strong classical performance for quantum-ready formulation (2020). Preprint.
arXiv:2005.11294

6. E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discr. Appl. Math. 123, 155–225 (2002)
7. E. Boros, P.L. Hammer, G. Tavares, Preprocessing of unconstrained quadratic binary optimiza-

tion. RUTCOR Res. Rep. RRR 10-2006, April 2006, Rutgers University, USA
8. N. Boumal, V. Voroninski, A. Bandeira, The non-convex Burer-Monteiro approach works on

smooth semidefinite programs, in proceedings of NIPS 2016 (2016)
9. B.L. Cun, C. Roucairol, Bob: a unified platform for implementing branch-and-bound like

algorithms. Tech. Rep., 95/16, Laboratoire PRiSM, Universite de Versailles-Saint Quentin en
Yvelines, 78035 Versailles Cedex, 1995

10. N. Dattani, S. Szalay, N. Chancellor, Pegasus: the second connectivity graph for large-scale
quantum annealing hardware (2019). Preprint. arXiv:1901.07636

11. I. Dunning, S. Gupta, J. Silberholz, What works best when? A systematic evaluation of
heuristics for max-cut and qubo. INFORMS J. Comput. 30, 608–624 (2018)

12. F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–
166 (1977)

13. F. Glover, G.A. Kochenberger, B. Alidaee, Adaptive memory tabu search for binary quadratic
programs. Manage. Sci. 44, 336–345 (1998)

14. F. Glover, G. Kochenberger, Y. Du., A tutorial on formulating and using qubo models (2018).
Preprint. arXiv:1811.11538

15. H. Goto, K. Tatsumura, A. Dixon, Combinatorial optimization by simulating adiabatic
bifurcations in nonlinear Hamiltonian systems. Sci. Adv. 5(4), eaav2372 (2019)

16. V.P. Gulati, S.K. Gupta, A.K. Mittal, Unconstrained quadratic bivalent programming problem.
Eur. J. Oper. Res. 15, 121–125 (1984)

17. T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama, K. Enbutsu, T.
Umeki, R. Kasahara, K. Kawarabayashi, H. Takesue, 100,000-spin coherent ising machine.
Sci. Adv. 7(40), eabh0952 (2021)

18. T. Hrga, J. Povh, MADAM: a parallel exact solver for for max-cut based on semidefinite
programming and ADMM. Comput. Optim. Appl. 80, 347–375 (2021)

19. D. Karapetyan, A.P. Punnen, A.J. Parkes, Markov chain methods for the bipartite Boolean
quadratic programming problem. Eur. J. Oper. Res. 260, 494–506 (2017)

20. A.D. King, C.C. McGeoch, Algorithm engineering for a quantum annealing platform (2014).
Preprint. arXiv:1410.2628

21. F. Liers, M. Jünger, G. Reinelt, G. Rinaldi, Computing exact ground states of hard ising spin
glass problems by branch-and-cut, in New Optimization Algorithms in Physics, ed. by A.
Hartmann, H. Rieger (Wiley, New York, 2004), pp. 47–68

22. F. Liers, Contributions to Determining Exact Ground-States of Ising Spin-Glasses and to their
Physics. PhD thesis, Department of Mathematics and Computer Science, Universität zu Köln,
2004

11 QUBO Software 311

23. J.L. Morales, J. Nocedal, Remark on algorithm 778: L-BFGS-B: fortran subroutines for large-
scale bound constrained optimization. ACM Trans. Math. Softw. 38, 1–4 (2011)

24. G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic opti-
mization problem. Ann. Oper. Res. 131, 259–282 (2004)

25. P.M. Pardalos, Construction of test problems in quadratic bivalent programming. ACM Trans.
Math. Softw. 17, 74–87 (1991)

26. A.P. Punnen, N. Kaur, Revisiting some classical explicit linearizations for the quadratic binary
optimization problem. Res. Rep.. Department of Mathematics, Simon Fraser Univerity, 2021

27. F. Rendl, G. Rinaldi, A. Wiegele, Solving Max-Cut to optimality by intersecting semidefinite
and polyhedral relaxations. Math. Program. 121, 307–335 (2010)

28. A. Verma, M. Lewis, Optimal quadratic reformulations of fourth degree pseudo-Boolean
functions. Optim. Lett. 14, 1557–1569 (2020)

29. Y. Yamamoto, T. Leleu, S. Ganguli, H. Mabuchi, Coherent ising machines quantum optics and
neural network perspectives. Appl. Phys. Lett. 117, 160501 (2020)

30. M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, H. Mizuno, A 20k-spin ising
chip to solve combinatorial optimization problems with cmos annealing. IEEE J. Solid-State
Circ. 51, 303–309 (2015)

31. M. Zaman, K. Tanahashi, S. Tanaka, PyQUBO: Python library for mapping combinatorial
optimization problems to QUBO form (2021). arXiv:2103.01708

32. C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B: fortran subroutines for large-
scale bound-constrained optimization. ACM Trans. Math. softw. 23, 550–560 (1997)

Index

A
Acyclic graph, 132
Adaptive memory, 245
Affine combination, 98
Affinely independent, 99, 102
AlphaQUBO, 305
AlphaQUBO results, 51
AlphaQUBO solver, 42
Approximability, 4
Approximation algorithm, 210
Arbitrage, 45
Asset exchange, 44
Autarkies, 125, 131, 136
Autarky property, 125
Automatic algorithm, 251
Automorphism, 168
Average objective value, 216
Average value, 219
Average value of solutions, 221
Azure Quantum, 306

B
Ball graph, 61
BARON, 304
Basic optimal solution, 99
Basis transformation, 154
Benchmark instances, 253, 302
Bilinear programming, 169
Bilinear program, 9, 179, 261, 302
Bipartite graphs, 60, 73, 84, 87
BiqBin, 304
BiqBin solver, 178
BiqCrunch, 304
BiqCrunch solver, 177

BiqMac library, 309
BiqMac solver, 177, 305
Bivalent quadratic program, 112
BONMIN, 303
Boolean quadric polytope, 31, 97, 142

fractional, 32
Boros-Hammer inequalities, 105, 112, 113
Bounded bandwidth, 81
Bounded diameter, 85
Bounded genus, 81
Bounded treewidth, 81, 85, 238
Bounds by decomposition, 169
BQUBO Markov chain, 306
Branch and bound, 114, 116, 176
Branch-and-cut, 97, 114, 116

C
Capital budgeting, 44
Characteristic vector, 160, 163
Chemical stability, 27
Chordal graph, 60, 62
Circle graphs, 86
Claw-free graph, 85
Clique inequalities, 87, 104, 160
Clique number, 163
Clique partitioning, 45
Cliques, 3

maximum weight, 3, 17
Cloud infrastructure, 302
Clustering problems, 45
Co-bipartite graph, 60, 62
Co-circuit inequalities, 109
Coefficient matrix, 71
Cographs, 83

© Springer Nature Switzerland AG 2022
A. P. Punnen (ed.), The Quadratic Unconstrained Binary Optimization Problem,
https://doi.org/10.1007/978-3-031-04520-2

313

https://doi.org/10.1007/978-3-031-04520-2

314 Index

COIN-OR, 303
Combinatorial circuit, 85
Compact formulations, 147
Compact linearization, 148, 151
Complemented variables, 122
Complexity, 59
Component, self-complementary, 132
Components, non-self-complementary, 133
Comparability graph, 87
Computational biology, 41, 46
Consistency vector, 248
Constraint satisfaction, 44
Construction phase, 246
Constructive phase, 245
Continuous knapsack problem , 178
Continuous optimization, 4
Continuous relaxation, 76, 99, 209, 215
Convex combination, 98
Convex cones, 112
Convex conic programming, 152
Convex constraint, 154, 165
Convex function, 76
Convex hull, 98
Convexify, 177
Convex polytope, 76
Correlation polytope, 102
Couenne, 303
Covariance map, 107, 112
CPLEX, 43, 51, 174, 303
Credit risk assessment, 45
Crossover operator, 250
CSDP, 308
Cubic graph, 60, 62
Currency exchange, 45
Cut-and-branch, 114
Cut inequalities, 105
Cut polytope, 33, 106
Cutting plane, 100
Cutting planes, 114
Cybersecurity, 46

D
Decomposition form, 149, 151
Deep learning, 47
Destruction phase, 246
Destructive phase, 245
Detector confidence score, 23
Diagonal matrix, 78
Diagonal perturbations, 158
Differential approximation ratio, 211
Dimod, 307
Disaster management, 22
Discrete geometry, 76

Disjunctive programming, 152
Diversification, 215, 247, 250
Domination analysis, 223
Domination ratio, 212, 225, 227
Double interval graph, 60, 62
Drugs discovery, 46
Dual graph, 82
Dual variables, 145, 150
Duality, 178
Duality theory, 76
Dwave-ocean-sdk, 306
D-Wave Systems Advantage, 307
Dwave-tabu, 305
Dynamic programming, 89

E
ε-approximation, 228
ε-approximation algorithms, 230
Eigenvalue bound, 158, 167
Eigenvalue problem, 159
Eigenvalues, 98
Eigenvectors, 76, 115
Elliptope, 112
Equivalence, 61
Equivalent representations, 7
Euclidean Ising QUBO, 63
Euclidean maximum cut problem, 60
Euclidean maximum weight cut, 60
Eulerian graph, 82
Evolutionary heuristic, 247
Exact solvers, 302
Explicit formulations, 144
Explicit linearization, 146
Extreme points, 4, 32, 76, 99, 103, 213

optimal solution, 9

F
Face, 99
Facet, 99
Fixed rank QUBO, 76
Flip move, k-flip, 242
Flip move, 1-flip, 242
Flip neighborhood, 174
Frequency, 249
Frobenius norm, 153
Fujitsu Digital Annealer, 42, 307

G
Gap inequalities, 108
Gauge graphs, 85
Gaussian vector, 233

Index 315

Generalized ϑ-number, 167
Generalized k-flip, 242
Generalized sandwich theorem, 168
General purpose solvers, 302
Genetic algorithm, hybrid, 247
Geometry of numbers, 113
Girth, 60
Global equilibrium search, 246
Grammar based search, 252
Graph coloring, 43
Graph, m-partite, 27
Graphs not contractible to K5, 83
GRASP algorithm, 246
Greedy algorithm, 231
Greedy construction, 243
Greedy heuristic, 249
Greedy matching algorithm, 231
Grothendieck constant, 237
Group behaviour, 22
Group technology, 46
GUROBI, 174, 303

H
Half-integrality, 32, 129
Half-product matrix, 28
Half-product QUBO, 28, 64, 90, 237
Hamming distance, 247, 251
Heptagonal inequalities, 160
Heuristic solvers, 302
H -free graph, 60
Hierarchy of Lovász and Schrijver, 165
Hierarchy of de Klerk and Pasechnik, 165
Hierarchy of Lasserre, 165
Hitachi CMOS Annealer, 307
Homogeneous form, 263
Homogeneous posiform, 18
Hybrid metaheuristic, 248
Hypercube, 208
Hypermetric cone, 113
Hypermetric correlation inequalities, 113
Hypermetric inequalities, 113, 159, 160

I
Implication graph, 132
Incidence vector, 11
Incremental construction, 214
Incremental evaluation, 248
Induced subgraph, 3
Induced subgraph, maximum weight, 8
Inequalities

Boros-Hammer, 105
clique, 104

co-circuit, 109
cut, 104
degenerate clique, 104
degenerate cut, 105
facet-defining, 103, 107
gap, 108
hypermetric, 113
hypermetric correlation, 113
McCormick envelop, 304
negative-type, 113
odd bicycle wheel, 108
odd cycle, 109
psd, 111
triangle, 104, 108
2-circulant, 108
valid, 104

Inner product, Frobenius, 98
Instance generators, 309
Instances

Beasley, 309
Billionnet and Elloumi, 309
Glover, Kochenberger and Alidaee, 309
Karapetyan, Punnen, and Park, 309
OR Library, 309
Verma and Lewis, 309

Integer linear program, 99
Integral hull, 100
Integrality ratio, 158
Interior point algorithm, 177
Irace tool, 252
Ising model, 4, 5
Ising QUBO, 5

J
Job scheduling, 46

K
k-strip matrix, 74
k-strip QUBO, 69
Kernelization methods, 130
Knapsack problem, 101

L
Lagrange multipliers, 169
Lagrangian relaxation , 117
Laplacian matrix, 156, 229
Layout design, 24
LDU-representation , 88
Leap framework, D-WAVE, 42
LINDO, 304
Line graphs, 83

316 Index

Linear combination, 98, 144
Linearity property, 217, 233
Linearization, 30

Rhys, 130
standard, 130

Linearization theorem, 147
Linear ordering, 44
Linear programming, 31, 71, 86, 178
Linear transformation, 58, 209, 263
Local optima, 175
Local search, 241, 247

hybrid, 246
k-opt, 249
randomized k-opt, 249

LocalSolver, 302
Long odd cycles, 83
Lovász formulation, 165
Lovász theta number, 164
LP-relaxation bound, 151
LP relaxations, 142

M
Machine learning, 46
Machine scheduling, 28, 90
MADAM, 305
Matching, 230
Matheuristics, 140
Matrix

Laplacian, 14
negative semidefinite, 8
positive semidefinite, 7, 9, 14
symmetric positive semidefinite, 9
upper triangular, 7

Matrix density, 244
Maxcut, 304
Maximum k-colorable subgraph, 163, 165
Maximum biclique problem, 283
Maximum cardinality cut, 60
Maximum clique, 44
Maximum clique problem, 162, 228
Maximum cut, 3, 11, 25, 33, 44, 210, 252, 255
Maximum cut problem, 155, 157, 160
Maximum flow, 71, 73
Maximum independent Set, 44
Maximum stable set, 177, 228
Maximum stable set problem, 162
Maximum (s, t)-cut, 73
Maximum weight clique, 86
Maximum weight clique problem, 61, 302
Maximum weight cut, 12, 82–84, 106, 139, 266

bipartite, 265
Maximum weight cut problem, 58, 59
Maximum weight independent set, 129

Maximum weight stable set, 85, 302
Maximum weight stable set problem, 60
McCormick envelop inequalities, 304
McCormick envelops, 30
Memetic algorithm, 249
Memory, long-term, 248
Metaheuristic algorithms, 215, 218
MILP formulations, 140
Minimum (s, t)-cut, 71, 73
Minkowski sum, 76
Molecular similarity, 46
MQLib, 306
Multilinar polynomial form, 122
Multilinear polynomial, 134
Multinomial expansion, 224
Multiple knapsack, 44

N
Nearly bipartite graphs, 87
Negative-type cone, 113
Negative-type inequalities, 113
Neighborhood combinations, 246
Neighborhood union, 246
Non-approximability, 227
Nonconvex constraint, 154, 165
Nonlinear optimisation, 110
Normalized relative error, 211, 216
No-worse than average, 216
NTT LASOLV, 308
Number partitioning, 44

O
Occlusions, 22
Odd bicycle wheel inequalities, 108
Odd circuit inequalities, 87
Odd cycle inequalities, 109
Offspring solution, 250
OpenJij, 306
Optimality restricted model, 148
Optimality restricted version, 146, 148
OR-Library, 244, 253
Orthogonality graphs, 167
Outerplanar graph, 81, 85

P
Partial assignment, 124, 127, 132
Partial solution extension algorithm, 222
Path graph, 60
Path relinking, 248, 250
Pedestrian detection systems, 22
Pentagonal inequalities, 160

Index 317

Perfect graphs, 85, 86
Perfect matching, 82
Performance guarantee, 145
Performance ratio, 232
Permutation, 103
Permuted k-strip matrix, 70
Permuted k-strip matrix recognition, 70
Permuted pseudo k-strip matrix, 74
Persistencies, 122

strong, 135
weak, 135

Persistency, 124, 172
nontrivial, 125
polyhedral, 128
property, 121, 129
strong, 135

Person detection, 23
Perturbation mechanism, 245
Perturbation procedure, 248
Pesistency, functional, 124
Planar graphs, 60, 81–83, 86
Polyhedral Persistency, 128
Polyhedral theory, 98
Polyhedron, 98
Polytope, 99
Polytope, full-dimensional, 101
Portfolio optimization, 45
Posiform, 15, 125, 151, 173, 243

best quadratic, 135
convex combinations of, 134
degree, 122
homogeneous, 18
representation, 142

Positive semidefinite, 76, 98, 238
Post-optimization, 244
Power system design, 46
Principal submatrices, 155
Principle submatrix, 111
Probabilistic Turing machine, 228
Product assembly, 46
Product matrix, 66
Projection, 109
Protein backbone, 26
Protein structure, 26
Psd inequalities, 111, 112
Pseudo-Boolean function, 15, 122

quadratic, 128
Pseudo k-strip matrix, 73, 74
Pseudopolynomial time algorithm, 88
Pseudo rank, 78
PyQUBO, 307

Q
Qbsolv, 305
QCI qbsolv, 306
Quadratic assignment, 45
Quadratic assignment problem, 66
Quadratic cover, 136
Quadratic optimization, 156
Quadratic penalties, 47
Quadratic program, box-constrained, 4
Quantum annealer, 42
Quantum annealing, 40

hybrid, 42
Quantum computing, 40
Quantum inspired computing, 5
Quasi-polynomial algorithms, 80
QUBOgen, 307

R
Randomized algorithm, 158
Rank factorization, 77
Rational matrix, 88
Ray intersection graph, 61
Redundant constraints, 143
Reformulation linearization, 152
Reformulations, 140
Relative performance ratio, 210, 227
Relaxation, continuous, 8
Representations, 58
Rhys linearization, 130, 135
RLT formulation, 141
RNA Folding Problem, 41
Robotic paths, 46
Roof, 19
Roof dual, 20
Roof duality bound, 142
Rotamer, 27
Rounding algorithm, 213, 214, 217, 234
Rhys form, 15

S
Satellite surveillance, 46
Satisfiability, 45
Scatter search approach, 247
Scheduling problem, 237
Schrijver’s number, 164, 168
SCIP, 174
Scoring function, 249
SD bound, 170
SDPA, 308
SDP relaxation, 110, 154, 155, 159, 165, 167,

232
SDP rounding algorithm, 236

318 Index

Search trajectory, 242
Segment intersection graph, 61
Self-complementary, 132
Semidefinite optimization, 152
Semidefinite programming, 110, 152, 161, 232
Semidefinite relaxations, 153
Separable graph, 90
Separation algorithm, 115
Separation heuristics, 115

gap inequalities, 116
Separation problem

psd inequalities, 115
triangle inequalities, 115

Series parallel graphs, 85, 87
Set packing, 44
Set partitioning, 42
Set partitioning problem, 49
Side chain, 26
Side-chain positioning problem, 27
Simple decomposition bound, 170
Simplex method, 114
Simulated annealing, 244
Single machine scheduling, 28
Skew-symmetric matrix, 7
Software As A Service, 302
Some Max Cut, 304
SoPlex, 302
Spin glass problem, 41
Spin vector, 5
Squared Euclidean Ising QUBO, 63
Stability number, 163, 167
Stable set, 3, 15

generalized, 18
maximum cardinality, 63
maximum weight, 3, 14, 17

Stable set polytope, 87
Stable set problem, 163, 166
Standard deviation, 233
Standard linearization, 142
Standard normal distribution, 233
Statistical mechanics, 4
Strategic oscillation, 245
String graph, 61
Strongly regular graphs, 167
Strong symmetry, 132
Subexponential algorithms, 88, 90
Subgradient optimization, 172
Subgraph

connected, 132
induced, 3

Submatrix
principal, 2
square, 2

Sum matrix, 65

Sum of complementary products, 149
Sum of squares, 13
Support bipartite graph, 265, 266
Support graph, 3, 21, 59, 209, 237
Switching, 103
Switching operation, 108
Symmetric product matrix, 66
Symmetric rank-one QUBO, 64
SYMPHONY, 303

T
Tabu search, 245, 251

diversification-driven, 248
iterated, 245
multistart, 245, 254
token-ring search, 246

Task allocation, 44
Tetrahedron, 102, 107
3-regular Hamiltonian graph, 60
Toeplitz matrix, 68
Token-ring search, 246
Totally unimodular, 71
t-perfect graph, 85, 87
Traffic optimization, 45
Traveling salesman problem, 249
Travelling salesman problem, 101
Triangle free graph, 60
Triangle inequalities, 104, 108, 109, 113, 159
Triangular matrix, 88
Tripartite graph, 60, 62
2-circulant inequalities, 108
Two-level grid, 60, 62

U
Undirected path graph, 62
Unit 4-dimensional graph, 61
Unit disk graph, 60, 86
Unit 3-track graph, 61
Unit-weight special case, 145

V
Valid inequality, 99
Variable fixing, 172
Variable fixing rule, 175
Variable neighborhood search, 246
Variance minimization, 28
Vehicle routing, 41
Vertex cover, 129
Vertex-transitive graphs, 168
Video surveillance, 22

Index 319

W
Warehouse location, 44
Weak persistencies, 135
Weakly bipartite graph, 83
Weak sum matrix, 66
Weighted aggregation, 144, 146
Weighted completion time, 29
Weighted degree matrix, 14

Weighted incidence matrix, 11

Z
Zero sum matrix, 229
Zero sum representation, 8
Zonotope, 76

	Preface
	Contents
	Contributors
	Acronyms
	1 Introduction to QUBO
	1.1 Introduction
	1.2 The Ising Model
	1.3 Representations of the Q Matrix
	1.4 Some Equivalent Optimization Problems
	1.4.1 QUBO as a Bilinear Program
	1.4.2 The Maximum Cut Problem and QUBO
	1.4.3 Equivalence with the Stable Set Problem
	1.4.4 QUBO and the Generalized Stable Set Problem
	1.4.5 Quadratic Pseudo-Boolean Optimization

	1.5 Roof Duality
	1.6 Model Building Using QUBO
	1.6.1 Person Detection and Tracking in a Crowded Environment
	1.6.2 Module Flipping in Circuit Layout Design
	1.6.3 Side-Chain Positioning in Protein Design
	1.6.4 QUBO and Machine Scheduling

	1.7 Mixed Integer Programming Formulations
	1.8 Conclusion
	References

	2 Applications and Computational Advances for Solving the QUBO Model
	2.1 Introduction
	2.2 Applications of the QUBO Model
	2.2.1 Additional Applications by Category

	2.3 Creating QUBO Models
	2.3.1 Creating QUBO Models: A General Purpose Approach
	2.3.2 Illustrative Computational Experience

	2.4 Summary and Conclusion
	References

	3 Complexity and Polynomially Solvable Special Cases of QUBO
	3.1 Introduction and Notations
	3.2 Computational Complexity
	3.3 Polynomially Solvable Matrix Structures
	3.3.1 Linear Restrictions on the Cost Matrices
	3.3.2 Low Rank Cost Matrices
	3.3.2.1 The Special Case c=0
	3.3.2.2 The General Case: cRn

	3.4 Polynomially Solvable Graph Structures
	3.4.1 QUBO and the Maximum Cut Problem
	3.4.2 Stable Sets and Cliques

	3.5 Pseudopolynomial and Subexponential Algorithms
	3.5.1 Low Rank Cost Matrices
	3.5.2 The Half-Product QUBO
	3.5.3 Subexponential Algorithms

	3.6 Conclusions
	References

	4 The Boolean Quadric Polytope
	4.1 Introduction
	4.2 Elementary Polyhedral Theory
	4.3 The Boolean Quadric Polytope
	4.4 Some More Valid Inequalities
	4.5 Some Related Polytopes
	4.5.1 The Cut Polytope
	4.5.2 Polytopes Which Exploit Sparsity

	4.6 Some Other Related Convex Sets
	4.6.1 A Non-polyhedral Convex Set
	4.6.2 A Convex Set Related to Max-Cut
	4.6.3 Cones

	4.7 Algorithms
	4.7.1 Cut-and-Branch
	4.7.2 Separation Algorithms
	4.7.3 Branch-and-Cut

	4.8 Concluding Remarks
	References

	5 Autarkies and Persistencies for QUBO
	5.1 Introduction
	5.2 Basic Definitions
	5.3 Functional Pesistency
	5.4 Autarkies
	5.5 Polyhedral Persistency
	5.6 Persistencies and Autarkies for Quadratic Functions and Posiforms
	References

	6 Mathematical Programming Models and Exact Algorithms
	6.1 Introduction
	6.2 MILP Formulations
	6.2.1 Compact MILP Formulations

	6.3 QUBO and Semidefinite Programming
	6.3.1 The QUBO Formulation and SDP
	6.3.2 The Ising QUBO Formulation and SDP
	6.3.3 Linearly Constrained Quadratic Problems and the Maximum Cut Problem
	6.3.4 The Stable Set Problem
	6.3.5 The Maximum k-Colorable Subgraph Problem

	6.4 Upper Bounds by Decomposition
	6.5 Variable Fixing
	6.6 Algorithms and Solvers
	Appendix: Linear Programming and Duality
	References

	7 The Random QUBO
	7.1 Introduction
	7.2 An Upper Bound on the Expected Optimal Value
	7.3 Quadratic Convex Reformulation (QCR)
	7.3.1 QCR Method for Determinsitic QUBO
	7.3.2 QCR Methods for Random QUBO
	7.3.3 Numerical Experiments
	7.3.3.1 Random Instances
	7.3.3.2 Robustness Tests Using Permutations

	7.4 The Sherrington-Kirkpatrick Model
	References

	8 Fast Heuristics and Approximation Algorithms
	8.1 Introduction
	8.2 Rounding Algorithms
	8.3 The Normalized Relative Error
	8.3.1 Average Value of Solutions of the Ising QUBO

	8.4 Domination Analysis of Algorithms
	8.5 Relative Performance Ratio and Approximation Algorithms
	8.5.1 ε-Approximation Algorithms for the Ising QUBO
	8.5.2 Computing ε-Optimal Solutions from SDP Relaxation
	8.5.3 Other Special Cases

	8.6 Conclusion
	References

	9 Metaheuristic Algorithms
	9.1 Basic Ingredients of Local Search
	9.2 Fast Solving Heuristics
	9.3 Local Search Based Methods
	9.3.1 Simulated Annealing
	9.3.2 Tabu Search

	9.4 Population Based Search Methods
	9.5 Selected Metaheuristic Approaches for QUBO
	9.5.1 Diversification-Driven Tabu Search
	9.5.2 Memetic Search
	9.5.3 Path Relinking
	9.5.4 Automatic Grammar-Based Design of Heuristic Algorithms
	9.5.5 A Systematic Evaluation of Heuristics

	9.6 Computational Results
	9.6.1 Benchmark Instances
	9.6.2 Computational Results on the QUBO Instances
	9.6.3 Computational Results on the MaxCut Instances

	References

	10 The Bipartite QUBO
	10.1 Introduction
	10.2 Applications
	10.3 MILP Formulations
	10.3.1 Compact Formulations

	10.4 Polynomially Solvable Special Cases
	10.4.1 Polynomially Solvable Biclique Problems

	10.5 Approximation Algorithms
	10.5.1 Domination Analysis
	10.5.2 Approximation Algorithms for the Ising BQUBO

	10.6 Local Search and Metaheuristics
	10.6.1 Flip Based Neighborhoods
	10.6.1.1 The Flip and Float Neighborhood

	10.6.2 Metaheuristics

	10.7 Exact Algorithms
	10.8 Concluding Remarks
	References

	11 QUBO Software
	11.1 Introduction
	11.2 General Purpose Solvers
	11.3 Exact Solvers for QUBO
	11.4 Heuristics for QUBO
	11.5 QUBO Tools
	11.6 Hardware for QUBO
	11.7 Miscellaneous
	11.8 Benchmark Instances
	References

	Index

