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1 Introduction

Many technologically useful materials are polycrystals composed of a myriad
of small monocrystalline grains separated by grain boundaries, see Figs. 1 and
2. Dynamics of grain boundaries play a crucial role in determining the grain
structure and defining materials properties across multiple scales. Experimental
and computational studies give useful insight into the geometric features and the
crystallography of the grain boundary network in polycrystalline microstructures.

In this work, we consider two models for the motion of grain boundaries in
a planar network with dynamic lattice misorientations and with drag of triple
junctions. A classical model for the motion of grain boundaries in polycrystalline
materials is growth by curvature, as a local evolution law for the grain boundaries
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Fig. 1 Experimental
microstructure:
drift-corrected bright-field
image of a 50 nm-thick Pt
film from an instance of the
in-situ grain growth
experiment in the
transmission electron
microscope

Fig. 2 Left figure - microstructure from simulation, model with curvature and finite mobility of
the triple junctions (2): example of a time instance during the simulated evolution of a cellular
network (zoom view). Right figure - microstructure from simulation, model without curvature (3):
example of a time instance during the simulated evolution of a cellular network (zoom view)

due to Mullins and Herring [17, 28, 29], and see work on mean curvature flow, e.g.,
[11, 12, 15, 23, 25]. In addition, to have a well-posed model for the evolution of
the grain boundary network, one has to impose a separate condition at the triple
junctions where three grain boundaries meet [20]. A conventional choice is the
Herring condition which is the natural boundary condition at the triple points for
the grain boundary network at equilibrium [9, 10, 18, 20], and the references therein.
There are several studies about grain boundary motion by mean curvature with the
Herring condition at the triple junctions, see, for instance, [1, 4–8, 16, 20–22, 26, 37].

A standard assumption in the theory and simulations of grain growth is to
address only the evolution of the grain boundaries/interfaces themselves and not
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the dynamics of the triple junctions. However, recent experimental work indicates
that the motion of the triple junctions together with the anisotropy of the grain
interfaces can have a significant effect on the resulting grain growth [7], see work
on molecular dynamics simulation [36, 37], a recent work on dynamics of line
defects [34, 38, 39], and a relevant work on numerical analysis of a vertex model
[35]. The current work is a continuation of our previous work [13, 14], where we
proposed a new model for the evolution of planar grain boundaries, which takes into
account dynamic lattice misorientations (evolving anisotropy of grain boundaries
or “grains rotations”) and the mobility of the triple junctions. In [13, 14], using
the energetic variational approach, we derived a system of geometric differential
equations to describe the motion of such grain boundaries, and we established a
local well-posedness result, as well as large time asymptotic behavior for the model.
In addition, in [13], similar to our previous work on Grain Boundary Character
Distribution, e.g., [4, 5] we conducted some numerical experiments for the 2D grain
boundary network in order to illustrate the effect of time scales, e.g., of the mobility
of triple junctions and of the dynamics of misorientations on how the grain boundary
system decays energy and coarsens with time (note, in [13], we studied numerically
only the model with curved grain boundaries). Our current goal is to conduct
extensive numerical studies of two models, a model with curved grain boundaries
and a model without curvature/”vertex model” of planar grain boundaries network
with the dynamic lattice misorientations and with the drag of triple junctions [13, 14]
and to further understand the effect of relaxation time scales, e.g., of the curvature
of grain boundaries, mobility of triple junctions, and dynamics of misorientations
on how the grain boundary system decays energy and coarsens with time. We also
present and discuss relevant experimental results of grain growth in thin films.

The paper is organized as follows. In Sects. 2 and 3, we discuss and review
important details and properties of the two models for grain boundary motion. In
Sect. 4.1, we present and discuss relevant experimental findings of grain growth
in thin films, and in Sect. 4.2 we conduct extensive numerical studies of the grain
growth models.

2 Review of the Models with Single Triple Junction

In this paper we use recently developed models for the evolution of the planar grain
boundary network with dynamic lattice misorientations and triple junction drag [13,
14] to study the effect of time scales of curvature of grain boundaries, dynamics
of the triple junctions, and dynamics of the misorientations on grain growth. Thus,
in this section for the reader’s convenience, we first review the models which were
originally developed in [13, 14].

Let us first recall the system for a single triple junction which was derived in
[14]. The total grain boundary energy for such model is

3∑

j=1

σ(�(j)α)|�(j)
t |. (1)
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Here, σ : R → R is a given surface tension, α(j) = α(j)(t) : [0,∞) → R is
a time-dependent orientation of the grain θ = �(j)α := α(j−1) − α(j) is a lattice
misorientation of the grain boundary �

(j)
t (difference in the orientation between two

neighboring grains that share the grain boundary), and |�(j)
t | is the length of �

(j)
t .

As a result of applying the maximal dissipation principle, in [14], the following
model was derived,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(j)
n = μσ(�(j)α)κ(j), on �

(j)
t , t > 0, j = 1, 2, 3,

dα(j)

dt
= −γ

(
σθ (�(j+1)α)|�(j+1)

t | − σθ (�(j)α)|�(j)
t |

)
, j = 1, 2, 3,

da

dt
(t) = η

3∑

k=1

σ(�(k)α)
b(k)(0, t)

|b(k)(0, t)| , t > 0,

�
(j)
t : ξ (j)(s, t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3,

a(t) = ξ (1)(0, t) = ξ (2)(0, t) = ξ (3)(0, t), and ξ (j)(1, t) = x(j), j = 1, 2, 3.

(2)
In (2), v

(j)
n , κ(j), and b(j) = ξ

(j)
s are a normal velocity, a curvature, and a tangent

vector of the grain boundary �
(j)
t , respectively. Note that s is not an arc length

parameter of �
(j)
t , namely b(j) is not necessarily a unit tangent vector. The vector

a = a(t) : [0,∞) → R
2 defines a position of the triple junction (triple junctions are

where three grain boundaries meet), x(j) is a position of the end point of the grain
boundary. The three independent relaxation time scales μ, γ, η > 0 (curvature,
misorientation, and triple junction dynamics) are regarded as positive constants.
Further, we assume in (2), α(0) = α(3), α(4) = α(1), and b(4) = b(1), for simplicity.
We also use notation | · | for a standard Euclidean vector norm. The complete details
about model (2) can be found in the earlier work [14, Section 2]. Next, in [14], the
curvature effect was relaxed, by taking the limit μ → ∞, and the reduced model
without curvature was derived,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα(j)

dt
= −γ

(
σθ (�

(j+1)α)|b(j+1)| − σθ (�
(j)α)|b(j)|

)
, j = 1, 2, 3,

da

dt
(t) = η

3∑

j=1

σ(�(j)α)
b(j)

|b(j)| , t > 0,

a(t) + b(j)(t) = x(j), j = 1, 2, 3.

(3)
In (3), we consider b(j)(t) as a grain boundary. Note that, similar to (2), the

system of equations (3) can also be derived from the energetic variational principle
for the total grain boundary energy (1) (with |�(j)

t | replaced by |b(j)|).
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Remark 1

a) As was discussed in [14], the reduced model without curvature effect (3) is
not a standard ODE system. This is the ODE system where each variable is
locally constrained. Moreover, local well-posedness result (e.g., local existence
result) for the original model (2) will not imply local well-posedness result for
the reduced system (3). It is not known if the reduced model (3) is a small
perturbation of (2).

b) The reduced model (3) captures the dynamics of the orientations/misorientations
and the triple junctions. At the same time, it was more accessible for the
mathematical analysis than the model (2). In addition, the system (3) is a
generalization to higher dimension and dynamic misorientations of the model
from [5, 8]. In this paper, we will compare and contrast through extensive
numerical studies the model with the curvature effect (2) and the reduced model
(3).

To establish local well-posedness result for model (3) in [14], the surface tension σ

was assumed to be C3, positive, and minimized at 0, namely

σ(θ) ≥ σ(0) > 0, (4)

for θ ∈ R. In addition, it was assumed convexity of σ(θ), for all θ ∈ R,

σθ (θ)θ ≥ 0, and σθθ (0) > 0, (5)

and

σθ (θ) = 0 if and only if θ = 0. (6)

Let us review some of the important theoretical results established for (3) in
previous work [13, 14]. First, consider the equilibrium state of the system (3),
namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 = −
(
σθ (�

(j+1)α∞)|b(j+1)∞ | − σθ (�
(j)α∞)|b(j)∞ |

)
, j = 1, 2, 3,

0 =
3∑

j=1

σ(�(j)α∞)
b

(j)∞
|b(j)∞ |

,

a∞ = x(1) − b(1)∞ = x(2) − b(2)∞ = x(3) − b(3)∞ .

(7)

As in [13, 14], assume, for each i = 1, 2, 3,

∣∣∣∣∣∣

3∑

j=1,j �=i

x(j) − x(i)

|x(j) − x(i)|

∣∣∣∣∣∣
> 1. (8)
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The assumption (8) implies that fixed points x(1), x(2), and x(3) cannot belong to the
single line. Furthermore, (8) is equivalent to the condition that in the triangle with
vertices x(1)x(2)x(3), all three angles are less than 2π

3 . Next, from the assumptions
(8), (5)–(6), associated equilibrium system (7) becomes,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3∑

j=1

b
(j)∞

|b(j)∞ |
= 0,

a∞ + b
(j)∞ = x(j), j = 1, 2, 3.

(9)

In [14], it was shown that the assumptions (5)–(6) imply α
(1)∞ = α

(3)∞ = α
(3)∞ , hence

�(j)α∞ = 0 for j = 1, 2, 3 for the equilibrium system (7) (note that in this case,
for the purpose of mathematical modeling, one can still assume a “fictitious” grain
boundary with the same orientation on each side of the grain boundary. In addition,
in this work we study the grain boundary system before it reaches a state of constant
orientations, see Sect. 4.)

We also have energy dissipation principle for the system (3),

Proposition 1 (Energy Dissipation [14, Proposition 5.1]) Let (α, a) be a solution
of (3) on 0 ≤ t ≤ T , and let E(t), given by (1), be the total grain boundary energy
of the system. Then, for all 0 < t ≤ T ,

E(t) + 1

γ

∫ t

0

∣∣∣∣
dα

dt
(τ )

∣∣∣∣
2

dτ + 1

η

∫ t

0

∣∣∣∣
da

dt
(τ )

∣∣∣∣
2

dτ = E(0). (10)

Next, define, constant as in [13],

C1 := inf

⎧
⎨

⎩

3∑

j=1

|x(j) − a| : There exists j = 1, 2, 3 such that |a − a∞| ≥ 1

2
|b(j)∞ |

⎫
⎬

⎭ .

(11)

Assume also that an initial data (α0, a0) satisfies,

E(0) =
3∑

j=1

σ(�(j)α0)|a0 − x(j)| < σ(0)C1. (12)

Then, one can establish the global existence result for the model (3),

Theorem 1 (Global Existence [13, Theorem 4.1]) Let x(1), x(2), x(3) ∈ R
2, a0 ∈

R
2, and α0 ∈ R

3 be the initial data for the system (3). Assume (8), and let a∞ be a
unique solution of the equilibrium system (9). Further, assume condition (12). Then
there exists a unique global in time solution (α, a) of (3).

We also have the following large time asymptotic behavior results for the solution
of system (3),
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Proposition 2 (Large Time Asymptotic [13, Proposition 5.1]) Let x(1), x(2),
x(3) ∈ R

2, a0 ∈ R
2, and α0 ∈ R

3 be the initial data for the system (3). We assume
that the initial data satisfy (12), and we also impose the same assumptions as in
Theorem 1. Define α∞ as,

α∞ := α
(1)
0 + α

(2)
0 + α

(3)
0

3
. (13)

Let a∞ be a solution of the equilibrium system (9) and (α, a) be a time global
solution of (3). Then,

α(t) → α∞(1, 1, 1), a(t) → a∞, (14)

as t → ∞.

Theorem 2 (Large Time Asymptotic [13, Theorem 5.1]) There is a small con-
stant ε1 > 0 such that, if |α0 − α∞| + |a0 − a∞| < ε1, then the associated global
solution (α, a) of the system (3) satisfies,

|α(t) − α∞| + |a(t) − a∞| ≤ C2e
−λ�t , (15)

for some positive constants C2, λ
� > 0.

Remark 2 The decay order λ� in (15) is explicitly estimated as,

λ� ≥ λ, (16)

where λ depends on γ , η, σθθ (0), σ(0) and on the smallest positive eigenvalues
of the linearized operators for the equations of the orientation α and of the triple
junction a.

Corollary 1 (Large Time Asymptotic [13, Corollary 5.1]) Under the same
assumption as in Theorem 2, the associated grain boundary energy E(t) satisfies,

E(t) − E∞ ≤ C3e
−λ�t , (17)

for some positive constant C3 > 0, where

E∞ := σ(0)

3∑

j=1

|b(j)∞ |.

Proof For the reader’s convenience, we will review the proof from [13]. Since
α

(1)∞ = α
(2)∞ = α

(3)∞ , we obtain
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E(t) − E∞ =
3∑

j=1

(
σ(�(j)α(t))|b(j)(t)| − σ(0)|b(j)∞ |

)

≤
3∑

j=1

(
σ(0)|b(j)(t) − b

(j)∞ | +
(
σ(�(j)α(t)) − σ(0)

)
|b(j)(t)|

)

≤
3∑

j=1

(
σ(0)|a(j)(t) − a∞| +

(
C4|�(j)α(t)|

)
|b(j)(t)|

)

≤
3∑

j=1

(
σ(0)|a(j)(t) − a∞| + 2C4|b(j)(t)||α(t) − α∞|

)
,

(18)
where C4 = sup|θ |<2ε1

|σθ (θ)|. Using the dissipation estimate (10) and the
exponential decay estimate (15), we obtain (17). �	
Remark 3 Note that the obtained exponential decay to equilibrium, see estimates
(15) and (17) was obtained by considering linearized problem, Lemma 5.1 in [13].
Consideration of the model with curvature - with finite μ, (2) and of the nonlinear
problem instead of linearized problem could lead to potential power laws estimates
for the decay rates. See also discussion and numerical studies in Sect. 4.

3 Extension to Grain Boundary Network

In this section, we review the extension of the results to a grain boundary network
{�(j)

t }. As in [13, 14], we define the total grain boundary energy of the network,
like,

E(t) =
∑

j

σ (�(j)α)|�(j)
t |, (19)

where �(j)α is a misorientation, a difference between the lattice orientation of the
two neighboring grains which form the grain boundary �

(j)
t . Then, the energetic

variational principle leads to a full model (network model analog of a single triple
junction system (2)),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(j)
n = μσ(�(j)α)κ(j), on �

(j)
t , t > 0,

dα(k)

dt
= −γ

δE

δα(k)
,

da(l)

dt
= η

∑

a(l)∈�
(j)
t

(
σ(�(j)α)

b(j)

|b(j)|

)
, t > 0.

(20)
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As in [14], we consider the relaxation parameters, μ → ∞, and we further
assume that the energy density σ(θ) is an even function with respect to the
misorientation θ = �(j)α, that is, the misorientation effects are symmetric with
respect to the difference between the lattice orientations. Then, the problem (20)
reduces to (network model analog of a single triple junction system (3)),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(j)
t is a line segment between some a(lj,1) and a(lj,2),

dα(k)

dt
= −γ

∑

grain with α(k′) is the neighbor of the grain with α(k)

�
(j)
t is formed by the two grains with α(k) and α(k′)

|�(j)
t |σθ (α

(k) − α(k′)),

da(l)

dt
= η

∑

a(l)∈�
(j)
t

(
σ(�(j)α)

b(j)

|b(j)|

)
.

(21)
To obtain the global solution of the system (21) in [13], we studied the system
before the critical events, and we first considered an associated energy minimizing
state, (α

(k)∞ , a
(l)∞) of (21). The critical events are the disappearance events, e.g.,

disappearance of the grains and/or grain boundaries during coarsening of the system,
facet interchange and splitting of unstable junctions. Then, (α

(k)∞ , a
(l)∞) satisfies,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(j)∞ is a line segment between some a

(lj,1)∞ and a
(lj,2)∞ ,

0 = −γ
∑

grain with α(k′) is the neighbor of the grain with α(k)

�
(j)
t is formed by the two grains with α(k) and α(k′)

|�(j)∞ |σθ (α
(k)∞ − α(k′)∞ ),

0 = η
∑

a
(l)∞∈�

(j)∞

(
σ(�(j)α∞)

b
(j)∞

|b(j)∞ |

)
.

(22)
Hence, the total energy E∞ of the grain boundary network (22) is

E∞ =
∑

j

σ (�(j)α∞)|b(j)∞ | = inf

{∑

j

σ (�(j)α)|b(j)|
}
. (23)

Remark 4 Note, we assumed in (21)–(22) that the total number of grains, grain
boundaries, and triple junctions are the same as in the initial configuration (assump-
tion of no critical events in the network).

Further, if there is a neighborhood U(l) ⊂ R
2 of a

(l)∞ such that

E∞ <
∑

j

|b(j)| (24)
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for all a(l) ∈ U(l), one can obtain a priori estimate for the triple junctions, and,
hence, obtain the time global solution of (21). Note that, the assumption (24) is
related to the boundary condition of the line segments �

(j)
t . Further, if the energy

minimizing state is unique, then we can proceed with the same argument as in
Lemma 4.1 in [13] and obtain the global solution (21) near the energy minimizing
state.

Remark 5 Note that, the solution of (22) may not be unique even though the grain
orientations are constant (misorientation is zero) [13].

The asymptotics of the grain boundary networks are rather nontrivial. Our
arguments in [13] were based on the uniqueness of the equilibrium state (9).
However, we do not know the uniqueness of solutions of the equilibrium state for
the grain boundary network (22). Thus, in general we cannot take a full limit for the
large time asymptotic behavior of the solution of the network model (21). But, one
can show, the following result instead,

Corollary 2 ([13, Corollary 6.1]) In a grain boundary network (21), assume that
the initial configuration is sufficiently close to an associated energy minimizing state
(22). Then, there is a global solution (α(k), a(l)) of (21). Furthermore, there exists
a time sequence tn → ∞ such that (α(k)(tn), a

(l)(tn)) converges to an associated
equilibrium configuration (22).

4 Experiments and Numerical Simulations

In this section we present results of some experiments in thin films and numerical
study of the grain growth using models of planar grain boundary network from
Sect. 3. The energetics and connectivity of the grain boundary network play a crucial
role in determining the properties of a material across multiple scales, see also Sects.
2 and 3. Therefore, our main focus here is to develop a better understanding of the
energetic properties of the experimental and computational microstructures.

4.1 Experimental Results: Grain Boundary Character
Distribution

To more fully characterize a microstructure, it is necessary to consider the types and
energies of the constituent grain boundaries, in addition to geometric features such
as grain size. Indeed, experiments and simulations over the past 30+ years have led
to the discovery and notion of the Grain Boundary Character Distribution (GBCD)
[2, 3, 19, 30, 32, 33]. The GBCD, denoted by ρ, is an empirical distribution of the
relative area (in 3D) or relative length (in 2D) of interface/grain boundaries with a
given misorientation and boundary normal. The GBCD can be viewed as a leading
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Fig. 3 Experiments: (a-d) Grain boundary character distribution of 100 nm-thick, as-deposited Al
film with a mean grain size of approximately 100 nm for four given misorientations. Misorien-
tations are specified as angle-axis pairs. Pseudosymmetry cleanup of the crystal orientation maps
was used in generating the figures. The scale is multiples of random distribution

statistical descriptor to characterize the texture of the grain boundary network (see,
e.g., [2, 3, 5, 19, 30, 33]).

Figure 3 presents the GBCD for four different misorientations for an as-
deposited aluminum film with near random orientation distribution. The details
of film deposition, sample preparation, and precession electron diffraction crystal
orientation mapping in the transmission electron microscope are given in [31].
However, in contrast to [31], the orientation data were subjected to the same cleanup
procedure as for the grain size distribution, namely the pseudosymmetry cleanup
procedure detailed in [24] with the exception of the 60°|[111] boundaries, which are
clearly abundant and should not be removed. The minimum grain size of the dilation
cleanup step was 20 pixels.

Given that grain boundaries have five crystallographic degrees of freedom -
three to specify the misorientation across the grain boundary, and two to define the
normal to the boundary, the two-dimensional graphical presentation of the GBCD
as in Fig. 3 is achieved in the following manner. To begin, a given misorientation
is selected, for example, 5°|[111]. The rotation axis, here [111], is given by the
Miller indices of the crystallographic direction that is common to both grains on
either side of the boundary. The misorientation angle is usually, but not always,
chosen to be within the fundamental zone of misorientations, which for cubic
crystals has a minimum of zero and a maximum of 62.8°. Common choices of
angles are either those of low angle boundaries, with rotation angles of less than 15
degrees, or those of coincident site lattice (CSL) type. In Fig. 3, the selected rotation
angles about the [111] axis of 27.8°|[111], 38.2°|[111], and 60°|[111] correspond to
CSL designations �13b, �7, and �3, respectively. The numerical value in the �

designation is the reciprocal of the number of atomic sites that are coincident in
the crystallographic plane perpendicular to rotation axis. For face centered cubic
crystals, the Miller indices of this plane are the same as the Miller indices of the
misorientation axis, e.g., the (111) plane for the [111] rotation axis. The letters a or b
in the � designation then indicate different angle-axis pairs with the same number of
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coincident sites. Note that the CSL designation does not specify the grain boundary
plane that is present in the sample; rather it specifies only a given misorientation.

Next, the grain boundary planes present in the experimental sample for the
given misorientation are represented by the crystallographic directions normal to
the planes in standard stereographic projections, such as those in Fig. 3. The use of
stereographic projection rather than other types of projections in single crystal or
bicrystal crystallography of materials has been common practice. Its choice is based
on the fact that it is an angle-preserving projection that does not depend on the size
of the crystal (from nano to macro). For cubic crystals, the standard projection has
the [001] cubic crystal axis pointing out of the page thereby projecting onto the page
as the origin of the plot at the center of the (projected equatorial) circle. In Fig. 3,
the [100] crystallographic axis points to the right, and the [010] crystallographic
axis points up, thereby defining a right-handed axis set.

The stereographic projections of the boundary plane normals such as those of
Fig. 3 then show the abundance of grain boundary plane normals in multiples
of random distribution (MRD) on the thermal scale. The MRD is similar to a
probability density plot, but its integrated value is 2, rather than 1, since every
grain boundary segment is counted twice, once for the grain on the one side of
the boundary and once for the grain on the other side of the boundary. When the
direction normal to the boundary plane and the misorientation axis are the same,
the grain boundary is termed a twist boundary, since the axis of rotation is normal
to the observed boundary plane. In Fig. 3, a high relative intensity is seen at the
position of the [111] twist boundaries for all four selected misorientations. If, on
the other hand, the high intensities were seen as bands along a great circle ninety
degrees away from the chosen misorientation axis, then the boundaries would have
been designated as tilt boundaries, with the misorientation axis in the plane of the
grain boundary. In effect, GBCD plots such as those of Fig. 3 make manifest texture
formation in the grain boundary network, see also numerical experiments Sect. 4.2.

The most striking feature of Fig. 3 is the very high abundance of 60°|[111]
boundaries, which show a population of several hundred times MRD. Given that the
majority of the boundary planes were also found to be (111), this sample is said to
have a large population of coherent �3, or the so-called coherent twin boundaries.
�3 boundaries constitute approximately one quarter of all the boundaries in this
sample. In contrast, for a “bulk” aluminum sample, i.e., in an aluminum sample
with mean grain size of 23 μm, the population of �3 boundaries is more than
ten times lower [31]. The very high population of �3 boundaries in the thin film
sample of Fig. 3 is likely a result of the structure forming processes that take place
during film deposition, rather than a result of normal grain growth. The evolution
of the grain boundary network and the GBCD of this sample towards equilibrium
or steady state will be determined by the dynamics of the grain boundaries and
the relaxation time scales for the boundary curvature, misorientation, and triple
junctions, for which models and simulations are presented in the current work.
We note that in experimental samples where GBCD has reached steady state, the
GBCD averaged over its five crystallographic parameters is inversely related to the
grain boundary energy density similar to the GBCD extracted from grain growth
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models, Sect. 4.2. Laboratory-based experimental quantification of grain boundary
dynamics via in-situ annealing experiments similar to the experiment in Fig. 1,
together with intermittent mapping of crystal orientations for determination of the
evolving GBCD, will be the key to connecting more closely experimental findings
to mathematical and computational models of grain growth. These experiments are
the subject of the ongoing research.

4.2 Numerical Experiments

Here, we present several numerical experiments to illustrate the effects of different
time scales, such as the dynamic orientations/misorientations (grains “rotations”)
and mobility of the triple junctions, as well as we compare the grain growth model
with curvature (20) and model without curvature (21), as described in Sects. 2 and 3.

In particular, the main goal of our numerical experiments is to illustrate the time
scales effect of curvature—through grain boundary mobility μ, mobility of the triple
junctions η, and misorientation parameter γ on how the grain boundary system
decays energy and coarsens with time. For that we will numerically study evolution
of the total grain boundary energy,

E(t) =
∑

j

σ (�(j)α)|�(j)
t |, (25)

whereas before, �(j)α is a misorientation of the grain boundary �
(j)
t , and |�(j)

t | is
the length of the grain boundary. We will also consider the growth of the average
area, defined as,

A(t) = 4

N(t)
, (26)

here 4 is the total area of the sample, and N(t) is the total number of grains at
time t . The growth of the average area is closely related to the coarsening rate
of the grain system that undergoes critical/disappearance events. However, it is
important to note that critical events include not only grain disappearance but also
facet/grain boundary disappearance, facet interchange, and splitting of unstable
junctions, for more details about numerical modeling of critical events in 2D, see,
e.g., [8, 21]. Further, we will investigate the distribution of the grain boundary
character distribution (GBCD) ρ(�(j)α) at a final time of the simulations T∞
(defined below) under a simplified assumption on a grain boundary energy density,
namely that σ(�(j)α) is only a function of the misorientation, see also Sects. 2–3.
The GBCD (in this context) is an empirical statistical measure of the relative length
(in 2D) of the grain boundary interface with a given lattice misorientation,
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ρ(�(j)α, t) = relative length of interface of lattice misorientation �(j)α at time t,

normalized so that
∫
�

�(j)α
ρd�(j)α = 1, (27)

where we consider ��(j)α = [−π
4 , π

4 ] in the numerical experiments below (for
planar grain boundary network, it is reasonable to consider such range for the
misorientations). For more details, see, for example, [5, 13]. In all our tests
below, we compare the GBCD at T∞ to the stationary solution of the Fokker–
Planck equation, the Boltzmann distribution for the grain boundary energy density
σ(�(j)α),

ρD(�(j)α) = 1

ZD

e− σ(�(j)α)
D ,

with partition function, i.e., normalization factor

ZD =
∫

�
�(j)α

e− σ(�(j)α)
D d�(j)α,

(28)

[4–6, 8]. We employ the Kullback–Leibler relative entropy test to obtain a unique
“temperature-like” parameter D and to construct the corresponding Boltzmann
distribution for the GBCD at T∞ as it was originally done in [4–6, 8]. Note, as
we also discussed in Sect. 4.1, GBCD is a primary candidate to characterize texture
of the grain boundary network, and is inversely related to the grain boundary energy
density as discovered in experiments and simulations. The reader can consult, for
example, [4–6, 8] for more details about GBCD and the theory of the GBCD. In the
numerical experiments in this paper, we consider two choices for the grain boundary
energy density as plotted in Fig. 4 and given below,

σ(�(j)α) = 1 + 0.25 sin2(2�(j)α) and σ(�(j)α) = 1 + 0.25 sin4(2�(j)α).

We consider simulation of 2D grain boundary network using the algorithm based
on the sharp interface approach [13] with dynamic misorientation and finite mobility

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Misorientation

1

1.05

1.1

1.15

1.2

1.25

En
er

gy
 d

en
si

ty

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Misorientation

1

1.05

1.1

1.15

1.2

1.25

En
er

gy
 d

en
si

ty

Fig. 4 Grain boundary energy density function σ(�α): (a) Left plot, σ = 1+0.25 sin2(2�α) and
(b) Right plot, σ = 1 + 0.25 sin4(2�α)
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of the triple junctions which we also extended to a model without curvature (21).
Note that the algorithm [13] is a further extension of the algorithm from [4, 8].
We recall that in the numerical scheme we work with a variational principle. The
cornerstone of the algorithm, which assures its stability, is the discrete dissipation
inequality for the total grain boundary energy that holds when either the discrete
Herring boundary condition (η → ∞) or discrete “dynamic boundary condition”
(finite mobility η of the triple junctions, third equation of (20) or of (21)) is satisfied
at the triple junctions. We also recall that in the numerical algorithm for model (20)
we impose the Mullins’ theory (first equation of (20)) as the local evolution law for
the grain boundaries (and the time scale μ is kept finite). For model (21), μ → ∞,
hence the dynamics of the grain boundaries are defined by the evolution of the triple
junctions (the third equation of (21)) and by the grains rotation (the second equation
of (21)). The reader can consult [4, 8, 13] for more details about numerical algorithm
based on the sharp interface approach.

In all the numerical tests below we initialized our system with 104 cells/grains
with normally distributed misorientation angles at initial time t = 0. We also
assume that the final time of the simulations T∞ is the time when approximately
80% of grains disappeared from the system, namely the time when only about
2000 cells/grains remain. The final time is selected based on the system (20) with
no dynamic misorientations (γ = 0) and with the Herring condition at the triple
junctions (η → ∞) and, it is selected to ensure that statistically significant number
of grains still remain in the system and that the system reached its statistical steady
state. Therefore, all the numerical results which are presented below are for the grain
boundary system that undergoes critical/disappearance events.

First, we study the effect of dynamics of triple junctions on the dissipation and
coarsening of the system, see Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
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Fig. 5 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
420.9 exp(−22.13t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 422.8 exp(−11.64t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 438.8797(1.0 + 32.9489t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
439.9588(1.0 + 17.1792t)−1 (dashed magenta). Mobility of the triple junctions is η = 10 and the
misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)



48 K. Barmak et al.

0 0.02 0.04 0.06 0.08 0.1
Simulation time

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Av
er

ag
e 

ar
ea

10-3

Model with curvature:average area
Fitted quadratic polynomial
Model without curvature:average area
Fitted quadratic polynomial

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Misorientation

0

0.5

1

1.5

2

2.5

G
BC

D

Model with curvature: GBCD
Model without curvature: GBCD

Fig. 6 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 0.6575t2 + 0.004668t + 0.0003745 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
0.2025t2 + 0.001016t + 0.0003844 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of the triple junctions is η = 10 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)
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Fig. 7 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈ 0.0641
(dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞ averaged
over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”-
D ≈ 0.0655 (dashed magenta curve). Mobility of the triple junctions is η = 10 and the
misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)

20, 21, and 22 (we consider different values of misorientation parameter γ for these
tests). We observe that for smaller values of the mobility of the triple junctions η, the
energy decay E(t) is well-approximated by an exponential function for both models,
for the model with curvature (20) and for the model without curvature (21), see Figs.
5 and 8 (left plots). This is consistent with the results of our theory, see Sects. 2 and
3 and [13, 14], even though, the theoretical results are obtained under assumption
of no critical events and μ → ∞ (for grain growth model without curvature). This
result indicates that for lower mobility of the triple junctions η, the dynamics of
triple junctions have a dominant effect on the grain growth, see model (21). This
explains the similarity in the energy decay for grain growth model with curvature
(20) and without curvature (21) when η = 10, Figs. 5 and 8. In comparison, we
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Fig. 8 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
409.8 exp(−21.38t) (dashed red). Total grain boundary energy plot, model without curvature (solid
blue) versus fitted exponential decaying function y(t) = 411.6 exp(−11.3t) (dashed magenta); (b)
Right plot, total grain boundary energy plot, model with curvature (solid black) versus fitted power
function y1(t) = 426.9841(1.0+31.746t)−1 (dashed red). Total grain boundary energy plot, model
without curvature (solid blue) versus fitted power function y1(t) = 428.2145(1.0 + 16.6556t)−1

(dashed magenta). Mobility of the triple junctions is η = 10 and the misorientation parameter
γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 9 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 0.6258t2 + 0.004538t + 0.0003732 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
0.1866t2 + 0.001377t + 0.0003799 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of the triple junctions is η = 10 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)

also present fit to a power law decaying function, see Figs. 5 and 8 (right plots). The
power law function does not seem to give as good approximation in this case.

However, for a larger value of η = 100, Figs. 11, 14, 17, and 20, we obtain
that the total grain boundary energy does not follow exponential decay anymore
for the model with curvature (20), but rather the energy decay is closer to a power
law. Thus, the curvature time scale-the grain boundary evolution has a dominant
effect for large η. However, for the model without curvature (21), the energy decay
is still well approximated by the exponential function which is consistent with the
theory, Sects. 2 and 3. Note also that the numerically observed energy decay rates
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Fig. 10 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs
of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈
0.035 (dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞
averaged over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with
“temperature”- D ≈ 0.035 (dashed magenta curve). Mobility of the triple junctions is η = 10 and
the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 11 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
411 exp(−153t) (dashed red). Total grain boundary energy plot, model without curvature (solid
blue) versus fitted exponential decaying function y(t) = 422.4 exp(−116.3t) (dashed magenta);
(b) Right plot, total grain boundary energy plot, model with curvature (solid black) versus fitted
power function y1(t) = 430.0278(1.0 + 231.6960t)−1 (dashed red). Total grain boundary energy
plot, model without curvature (solid blue) versus fitted power function y1(t) = 439.8212(1.0 +
171.9395t)−1 (dashed magenta). Mobility of the triple junctions is η = 100 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)

increase with the mobility η of the triple junctions which is also consistent with
the developed theory [13]. In addition, we observe that the average area grows
as a quadratic function in time for the finite mobility η of the triple junctions,
Figs. 6, 9, 12, 15, 18, and 21 (left plots) and see also our earlier work [13]. We
also observe that the coarsening rate of grain growth slows down with the smaller
η. In addition, we note that the energy decay in our numerical tests is consistent
with the growth of the average area. Moreover, we observe that neither dynamics
of the triple junctions nor curvature show as much of an effect on the GBCD, see
Figs. 6 (right plot)-7, 9 (right plot), 10, 12 (right plot), 13, 15 (right plot), 16, 18
(right plot), 19 and 21 (right plot), 22. (Note, the “temperature” like parameter D

also accounts for various critical events–grains disappearance, facet/grain boundary
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Fig. 12 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 23.47t2 + 0.08748t + 0.0003549 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
19.74t2 + 0.01157t + 0.0003843 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of 2D
trials with 10000 initial grains. Mobility of the triple junctions is η = 100 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)
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Fig. 13 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs
of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈
0.0641 (dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞
averaged over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with
“temperature”- D ≈ 0.0651 (dashed magenta curve). Mobility of the triple junctions is η = 100
and the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)

disappearance, facet interchange, splitting of unstable junctions. It will be part of
our future study to understand how D depends on the critical events).

For the other series of tests, we vary the misorientation parameter γ , second
equation of (20) or of (21) (and we set the mobility of the triple junctions η = 100,
third equation of (20) or of (21)). We do not observe as much of an effect on the
energy decay or average area growth in this case, but we observe the significant
effect on the GBCD and the diffusion coefficient/“temperature”-like parameter D,
see Figs. 5, 6, 7, 8, 9, 10, 11, 12 13, 14, 15, and 16 (with the misorientation
parameter γ = 1) and Figs. 17, 18, 19 20, 21, and 22 (with larger values of
the misorientation parameter γ ). As concluded from our numerical results, larger
values of γ give smaller diffusion coefficient/”temperature”-like parameter D,



52 K. Barmak et al.

0 0.002 0.004 0.006 0.008 0.01
Simulation time

100

150

200

250

300

350

400

450

To
ta

l g
ra

in
 b

ou
nd

ar
y 

en
er

gy

Model with curvature: total grain boundary energy
Fitted exponential function
Model without curvature: total grain boundary energy
Fitted exponential function

0 0.002 0.004 0.006 0.008 0.01
Simulation time

150

200

250

300

350

400

450

To
ta

l g
ra

in
 b

ou
nd

ar
y 

en
er

gy

Model with curvature: total grain boundary energy
Fitted power function
Model without curvature: total grain boundary energy
Fitted power function

Fig. 14 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
399.7 exp(−147.2t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 412.1 exp(−113.3t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 418.3970(1.0 + 223.2641t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
428.9782(1.0 + 167.5042t)−1 (dashed magenta). Mobility of the triple junctions is η = 100 and
the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 15 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 20.63t2 + 0.09393t + 0.0003472 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
18.31t2 + 0.01553t + 0.0003786 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of 2D
trials with 10000 initial grains. Mobility of the triple junctions is η = 100 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)

and hence higher GBCD peak near misorientation 0. This is consistent with our
theory that basically, larger misorientation parameter γ produces direct motion
of misorientations towards equilibrium state of zero misorientations, see Sect. 2
and also [13]. Furthermore, from all of our numerical experiments with dynamic
misorientations and with different triple junction mobilities, we observe that the
GBCD at time T∞ is well-approximated by the Boltzmann distribution for the
grain boundary energy density see Figs. 7, 10, 13, 16, 19, and 22, as well as
consistent with experimental findings as discussed in Sect. 4.1, which is similar
to the work in [4–6, 8], but more detailed analysis needs to be done for a system that
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Fig. 16 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs
of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈
0.037 (dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞
averaged over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with
“temperature”- D ≈ 0.035 (dashed magenta curve). Mobility of the triple junctions is η = 100
and the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 17 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
411.2 exp(−154.9t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 422.2 exp(−116.8t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 430.8310(1.0 + 236.0718t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
440.1947(1.0 + 173.8526t)−1 (dashed magenta). Mobility of the triple junctions is η = 100, the
misorientation parameter γ = 250 (curvature model) and γ = 300 (vertex model). Grain boundary
energy density σ = 1 + 0.25 sin2(2�α)

undergoes critical events to understand the relation between GBCD, “temperature”-
like/diffusion parameter D, and different relaxation time scales, as well as the effect
of the time scales on the dissipation mechanism and certain coarsening rates.

Remark 6 Note that, we performed 3 runs for each numerical test presented in this
work. We report results of a single run for the energy decay and growth of the
average area (the results from the other two runs for each test were very similar to
the presented ones), and we illustrate averaged over the 3 runs the GBCD statistics.
The curve-fitting for the energy and the average area plots was done using Matlab
[27] toolbox cftool.
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Fig. 18 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 23.18t2 + 0.08941t + 0.0003532 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
18.56t2 + 0.01824t + 0.000378 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of the triple junctions is η = 100, the misorientation
parameter γ = 250 (curvature model) and γ = 300 (vertex model). Grain boundary energy density
σ = 1 + 0.25 sin2(2�α)
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Fig. 19 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈ 0.0397
(dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞ averaged
over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”-
D ≈ 0.0448 (dashed magenta curve). Mobility of the triple junctions is η = 100, the misorientation
parameter γ = 250 (model with curvature) and γ = 300 (model without curvature). Grain
boundary energy density σ = 1 + 0.25 sin2(2�α)

5 Conclusion

In this work, we conducted extensive numerical studies of the two models developed
in [13, 14]: a model with curved grain boundaries and a model without curva-
ture/”vertex model” of planar grain boundaries network with the dynamic lattice
misorientations and with the drag of triple junctions. The goal of our study was to
further understand the effect of relaxation time scales, e.g., of the curvature of grain
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Fig. 20 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
397.8 exp(−147.8t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 409.5 exp(−113.2t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 417.4031(1.0 + 226.6032t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
427.0061(1.0 + 168.5772t)−1 (dashed magenta) Mobility of the triple junctions is η = 100,
the misorientation parameter γ = 1000 (curvature model) and γ = 1500 (vertex model). Grain
boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 21 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 19.81t2 + 0.09408t + 0.0003476 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
17.81t2 + 0.01484t + 0.0003807 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of triple junctions is η = 100, the misorientation
parameter γ = 1000 (curvature model) and γ = 1500 (vertex model). Grain boundary energy
density σ = 1 + 0.25 sin4(2�α)
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Fig. 22 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈ 0.005
(dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞ averaged
over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”-
D ≈ 0.005 (dashed magenta curve). Mobility of the triple junctions is η = 100, the misorientation
parameter γ = 1000 (model with curvature) and γ = 1500 (model without curvature). Grain
boundary energy density σ = 1 + 0.25 sin4(2�α)

boundaries, mobility of triple junctions, and dynamics of misorientations on how the
grain boundary system decays energy and coarsens with time. We also presented and
discussed relevant experimental results of grain growth in thin films.
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