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Preface

Materials science is an interdisciplinary research field that incorporates the analyti-
cal and experimental techniques of engineering, physics, and chemistry. Its goal is to
develop a comprehensive understanding of material characteristics and properties,
and to gain a deeper insight into the material behavior across several length scales,
from atomistic to macroscopic. Such insight is key to the design and discovery of
new materials, as well as to the development of new technologies. In this context,
Research in Mathematics of Materials Science seeks to provide a rigorous basis
for future technological advances by developing tools for the accurate modeling
of multi-scale phenomena. In the past decades, this field has seen rapid progress
with an impressive level of success. Mathematics and materials science have thus
developed strong ties and formed a partnership of mutual benefit.

This AWM Springer Volume highlights contributions of women mathematicians
in the study of complex materials. The collected papers are both original research
and reviews. The featured topics and methods draw on the fields of calculus of
variations, partial differential equations, functional analysis, differential geometry
and topology, as well as numerical analysis and mathematical modelling. Areas of
applications include foams, fluid-solid interactions, liquid crystals, shape-memory
alloys, magnetic suspensions, failure in solids, plasticity, viscoelasticity, homoge-
nization, crystallization, grain growth, and phase-field models.

We hope that gathering such multifaceted scientific output in a single volume
will facilitate knowledge exchange and help to identify new research problems. A
parallel goal is to give visibility to the results of women researchers, and ultimately
help address the gender gap in mathematics and science.

Tempe, AZ, USA Malena I. Español
Pittsburgh, PA, USA Marta Lewicka
Edinburgh, UK Lucia Scardia
Würzburg, Germany Anja Schlömerkemper
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Interaction Between Oscillations and
Singular Perturbations in a
One-Dimensional Phase-Field Model

Annika Bach, Teresa Esposito, Roberta Marziani, and Caterina Ida Zeppieri

1 Introduction

In this note we study the asymptotic behaviour, via �-convergence, of one-
dimensional integral functionals combining oscillations and singular perturbations
occurring on two possibly different length scales, in the same spirit as [4, 10].
The functionals we consider are of Ambrosio–Tortorelli type and, for ε > 0 and
u, v ∈ W 1,2(a, b), they are defined as

Fε(u, v) =
∫ b

a

(
v2(u′)2 + (1 − v)2

ε
+ εϕ

(x
δ

)
(v′)2

)
dx , (1)

where ϕ ∈ L∞(R) is a 1-periodic function. The scale-parameter δ = δ(ε) > 0 is
infinitesimal as ε → 0 and represents the characteristic length of some underlying
heterogeneities. If

α := infϕ, β := supϕ, with α > 0,

then, up to a multiplicative constant, Fε is bounded both from below and from above
by the Ambrosio–Tortorelli functional [1, 2]; that is, we have
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∫ b

a

v2(u′)2 dx +
∫ b

a

(
(1 − v)2

ε
+ εα(v′)2

)
dx

≤ Fε(u, v) ≤
∫ b

a

v2(u′)2 dx +
∫ b

a

(
(1 − v)2

ε
+ εβ(v′)2

)
dx.

Therefore, as in the Ambrosio–Tortorelli approximation, the parameter ε determines
the length scale of the diffuse approximation of the jump set of the limit variable.
Indeed if (uε, vε) ⊂ W 1,2(a, b)×W 1,2(a, b) is a sequence along which Fε is equi-
bounded, then, necessarily, vε → 1 in L2(a, b), while the first term in (1) favours
those configurations where vε is asymptotically negligible, in the regions where u′ε
blows up. Then, as in the case of the Modica–Mortola functional [14, 15], vε makes
a transition between 0 and 1 in a small layer of width proportional to ε. The cost of
this transition is of order one and is bounded between the two constants 2

√
α and

2
√
β, the 2 appearing for symmetry reasons (cf. Remark 2). Moreover, the �-limit

of Fε (if it exists) shall satisfy

∫ b

a

(u′)2 dx + 2
√
α#S(u) ≤ �- limFε(u) ≤

∫ b

a

(u′)2 dx + 2
√
β#S(u), (2)

where S(u) denotes the set of discontinuity points of u (and the limit variable v is
omitted since it is equal to the constant function 1). The bounds in (2) then imply
that the domain of the �-limit of Fε is the space of piecewise-Sobolev functions
P -W 1,2(a, b). The latter coincides with the space of functions u which can be
written as the sum of a Sobolev function ũ ∈ W 1,2(a, b) and a piecewise-constant
function upc; thus u′ = ũ′ and S(u) = S(upc).

The main result of this note is Theorem 1 which establishes a �-convergence
result for the functionals Fε in every parameter regime; i.e., for every � ∈ [0,+∞],
where

� := lim
ε→0

ε

δ(ε)
.

Specifically, we show that the sequence (Fε) �-converges, with respect to the
L1(a, b)-convergence, to a functional which is always of Mumford–Shah type; i.e.,

F�(u) =
∫ b

a

(u′)2 dx + m�#S(u) , u ∈ P -W 1,2(a, b), (3)

with a (constant) surface energy density m� depending on the combined effect of
the oscillations and the singular perturbation.

More precisely, we show that the lower bound in (2) is optimal when � = 0. That
is, if ε 	 δ, then m0 = 2

√
α and the �-limit of Fε is given by the functional
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F 0(u) =
∫ b

a

(u′)2 dx + 2
√
α#S(u), u ∈ P -W 1,2(a, b). (4)

In this case a scale separation takes place. Indeed, formally, if in (1) we first take
the �-limit in ε and keep δ fixed, we obtain the inhomogeneous free-discontinuity
functionals (see [12])

∫ b

a

(u′)2 dx + 2
∑

(a,b)∩S(u)

√
ϕ
(x
δ

)
, u ∈ P -W 1,2(a, b),

whose �-limit as δ → 0 is exactly given by (4) (see, e.g., [7, Section 9.3]).
For � = +∞, which corresponds to the case δ 	 ε, we also observe a scale

separation. In fact being the oscillation parameter δ smaller than the approximation
parameter ε, in this regime, the �-limit of Fε is the same as that of the homogeneous
functionals

∫ b

a

v2(u′)2 dx +
∫ b

a

(
(1 − v)2

ε
+ ε ϕhom(v

′)2
)
dx,

where ϕhom is the harmonic mean of ϕ in (0, 1); i.e.,

ϕhom :=
(∫ 1

0

1

ϕ(t)
dt

)−1

.

Therefore, passing to the limit as ε → 0 gives

F∞(u) =
∫ b

a

(u′)2 dx + 2
√
ϕhom #S(u), u ∈ P -W 1,2(a, b), (5)

that is, m∞ = 2
√
ϕhom. We notice that, in general, ϕhom ≤ β.

Finally, in the case � ∈ (0,+∞) the parameters ε and δ, being of the same order,
interact with one another producing a surface energy m� which depends on their
interplay according to the following formula

m� = inf
z∈[0,1) inf

{∫
R

(
(1 − v)2 + ϕ(�x)(v′)2

)
dx : v ∈ W

1,2
loc (R) ,

v(z/�) = 0 , lim
t→±∞ v(t) = 1

}
.

(6)
We notice that, in contrast to the typical optimal-profile problem for the Ambrosio–
Tortorelli functional (cf. (26)) which determines both m0 and m∞, the minimisation
problem in (6) involves the (unscaled) Modica–Mortola term in Fε on the whole real
line, instead of (0,+∞). This is due to the presence of the inhomogeneity ϕ, which
breaks the usual symmetry of the problem. Moreover, an additional optimisation on
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the parameter z ∈ [0, 1) is needed to determine the “starting point” of an optimal
transition. This feature makes the present problem different from the corresponding
one for the Modica–Mortola functional considered in [3, 4] (see also [7, Chapter 9]).

Eventually, we conclude the limit analysis of the functionals Fε by proving that
the surface energy density m� is continuous with respect to the parameter �; i.e., we
show that

lim
�→0+

m� = m0 and lim
�→+∞m� = m∞.

We finally observe that the functionals in (1) have also a mechanical interpretation.
Indeed they can be seen as a one-dimensional variational model for damage in
heterogeneous materials, according to, e.g., [11, 13, 16, 17]. We also notice that
due to the presence of the two interacting scales ε and δ, a �-convergence analysis
for the corresponding n-dimensional model makes it necessary to resort to a more
abstract method of proof, as shown in [6]. This method relies, among other, on
the �-convergence analysis for general (scale-dependent, non-periodic) elliptic
functionals recently developed in [5]. In particular, the result established in [5]
shows that the �-limit of the n-dimensional counterpart of (1) is always of brittle
type, this fact being a consequence of a volume-surface decoupling which takes
place in the �-limit. On the other hand, the one-dimensional problem studied in this
note can be solved directly, by hands, taking advantage of the simple form of the
functionals Fε and of the structure of the space of one-dimensional special functions
of bounded variation, SBV 2(a, b), which coincides with the space of piecewise-
Sobolev functions P -W 1,2(a, b). In particular, in the proof of the upper-bound
inequality (in the three different scaling regimes), the structure of P -W 1,2(a, b)

allows us to treat the regular and singular part of the limit variable u separately,
without resorting to the abstract decoupling result established in [5].

2 Setting of the Problem and Statement of the Main Result

In this section we define the phase-field functionals we are going to analyse and we
state our main result.

Let ϕ ∈ L∞(R) be a 1-periodic function and set

α := infϕ, β := supϕ; (7)

we additionally assume that α > 0.
Let ε > 0 and let δε > be such that limε→0 δε = 0. For a, b ∈ R with a < b

we consider the one-dimensional integral functionals Fε : L1(a, b)× L1(a, b) −→
[0,+∞] defined by
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Fε(u, v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ b

a

(
v2(u′)2 + (1 − v)2

ε
+ ε ϕ

( x
δε

)
(v′)2

)
dx u, v ∈ W 1,2(a, b),

0 ≤ v ≤ 1,

+∞ otherwise.
(8)

We notice that thanks to (7) the functionals Fε satisfy

AT α
ε (u, v) ≤ Fε(u, v) ≤ AT β

ε (u, v) , (9)

where, for λ > 0, AT λ
ε is the one-dimensional Ambrosio–Tortorelli functional given

by

AT λ
ε (u, v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ b

a

(
v2(u′)2 + (1 − v)2

ε
+ ελ(v′)2

)
dx u, v ∈ W 1,2(a, b),

0 ≤ v ≤ 1,

+∞ otherwise.
(10)

For later use it is convenient to define the localised functionals

Fε(u, v, I ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
I

(
v2(u′)2 + (1 − v)2

ε
+ ε ϕ

( x
δε

)
(v′)2

)
dx u, v ∈ W 1,2(a, b),

0 ≤ v ≤ 1,

+∞ otherwise,
(11)

where I ⊂ (a, b) is any open interval. Analogously, we define a localised version
of the Modica–Mortola term in Fε by setting

Gε(v, I ) :=

⎧⎪⎨
⎪⎩

∫
I

(
(1 − v)2

ε
+ ε ϕ

( x
δε

)
(v′)2

)
dx v ∈ W 1,2(a, b), 0 ≤ v ≤ 1,

+∞ otherwise.
(12)

As for the Ambrosio–Tortorelli functional, the �-limit of Fε will be defined on
a space of discontinuous functions. Then, to describe the domain of the limit
functional, we need to introduce the space P -W 1,2(a, b). The latter denotes the
space of piecewise W 1,2(a, b)-functions defined on the interval (a, b). That is,
u ∈ P -W 1,2(a, b) if and only if there exists a finite partition of (a, b), a = t0 <

t1 < . . . < tM = b, such that u ∈ W 1,2(ti , ti+1), for every i = 1, . . . ,M − 1. The
discontinuity set of a function u ∈ P -W 1,2 is denoted by S(u) and it coincides with
the minimal of such sets of points.

Let PC(a, b) denote the space of piecewise-constant functions on (a, b); then it
is easy to check that
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P -W 1,2(a, b) = W 1,2(a, b)+ PC(a, b), (13)

that is, u ∈ P -W 1,2(a, b) if and only if

u = ũ+ upc, (14)

with ũ ∈ W 1,2(a, b) and upc ∈ PC(a, b). We also notice that the sum in (13) is not
a direct sum since the constant functions belong to W 1,2(a, b)∩PC(a, b); therefore,
the decomposition in (14) is uniquely determined up to an additive constant.

Thanks to (14), for u ∈ P -W 1,2(a, b) we have

u′ = ũ′ and S(u) = S(upc).

Set

� := lim
ε→0

ε

δε
∈ [0,+∞].

The following �-convergence theorem is the main result of this paper.

Theorem 1 The sequence of functionals (Fε) defined in (8) �(L1 ×L1)-converges
to the functional F� : L1(a, b)× L1(a, b) −→ [0,+∞] defined as

F�(u, v) :=

⎧⎪⎨
⎪⎩

∫ b

a

(u′)2 dx + m�#S(u) u ∈ P -W 1,2(a, b), v = 1 a.e.in (a, b) ,

+∞ otherwise .
(15)

Moreover, the constant m� > 0 is defined as follows:

1. if � = 0 and ϕ is upper semicontinuous, then

m0 := 2
√
α; (16)

2. if � ∈ (0,+∞), then

m� := inf
z∈[0,1)m�

z , (17)

with

m�
z := inf

{∫
R

(
(1 − v)2 + ϕ(�x + z)(v′)2

)
dx : v ∈ W

1,2
loc (R), 0 ≤ v ≤ 1,

v(0) = 0, v(±∞) = 1

}
,

(18)
where v(±∞) := limx→±∞ v(x);
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3. if � = +∞, then

m∞ := 2

(∫ 1

0

1

ϕ(t)
dt

)−1/2

. (19)

Eventually, the constant m� satisfies

lim
�→0+

m� = m0 and lim
�→+∞m� = m∞ , (20)

provided ϕ is upper semicontinuous.

3 Preliminary Results

In this section we state and prove some preliminary results which will be used
in what follows. We start recalling the convergence result for the 1-dimensional
Ambrosio–Tortorelli functionals defined in (10) (see, e.g., [8, Theorem 3.15]).

Theorem 2 For any λ > 0 the functionals AT λ
ε defined in (10) �(L1 × L1)-

converge as ε → 0 to the functional

MSλ(u, v) :=

⎧⎪⎨
⎪⎩

∫ b

a

(u′)2 dx + 2
√
λ#S(u) u ∈ P -W 1,2(a, b), v = 1 a.e.in (a, b) ,

+∞ otherwise .

The next proposition establishes a compactness result for sequences with equi-
bounded energy and a lower bound for the first term in Fε, which is independent of
the parameter regime.

Proposition 1 Let Fε be as in (8) and let (uε, vε) ⊂ W 1,2(a, b) × W 1,2(a, b) be
such that

uε → u in L1(a, b) and sup
ε>0

Fε(uε, vε) < +∞.

Then, there holds

1. vε → 1 in L2(a, b), u ∈ P -W 1,2(a, b) and

lim inf
ε→0

∫ b

a

v2
ε (u

′
ε)

2 dx ≥
∫ b

a

(u′)2 dx ; (21)

2. If S(u) = {t1, . . . , tN } and I1, . . . , IN are pairwise disjoint open subintervals in
(a, b) such that ti ∈ Ii , for every i = 1, . . . , N , then there exist s1

ε , . . . , s
N
ε with

(siε) ⊂ Ii for every ε > 0, such that
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siε → ti and vε(s
i
ε)→ 0 as ε → 0, (22)

for every i = 1, . . . , N .

Proof Thanks to (9), the proof readily follows from the corresponding one for the
Ambrosio–Tortorelli functional (see, e.g., [8, Theorem 3.15]). �
Remark 1 Let (uε, vε) be as in Proposition 1 and I1, . . . , IN , siε as in Proposition 1
(2). Since (1) implies that, up to subsequences, vε → 1 a.e. in (a, b), we can find
ri, r̃ i ∈ Ii with ri < siε < r̃i such that

lim
ε→0

vε(r
i) = lim

ε→0
vε(r̃

i) = 1. (23)

In particular, since vε is continuous, we can apply the Intermediate Value Theorem
to deduce that, for any η ∈ (0, 1/2) fixed, there exist s̃iε, r

i
ε, r̃

i
ε ∈ Ii (depending also

on η) with riε < s̃iε < r̃iε such that

vε(s̃
i
ε) = η , vε(r

i
ε) = vε(r̃

i
ε) = 1 − η and vε ≤ 1 − η in [riε, r̃ iε] . (24)

Set M := supε Fε(uε, vε); since by assumption M < +∞, from (24) we infer

M ≥
∫ r̃ iε

riε

(1 − vε)
2

ε
dx ≥ η2

ε
(r̃ iε− riε) and M ≥ α

∫ r̃ iε

s̃iε

ε(v′ε)2 dx ≥
ε α(1 − 2η)2

r̃ iε − s̃iε
,

where the last estimate follows from Jensen’s Inequality. Therefore, for every ε > 0
we get

α(1 − 2η)2

M
≤ r̃ iε − s̃iε

ε
<

r̃iε − riε

ε
≤ M

η2 (25)

and similarly for s̃iε−riε
ε

.

3.1 The Optimal-Profile Problem

In this subsection we study the minimisation problem defining the constant m�

in (17). The latter represents the minimal cost of a two-sided transition from the
value 0 to the value 1, on the real line, in terms of the unscaled Modica–Mortola
term in Fε. We thus refer to the corresponding minimisation problem as the optimal-
profile problem. The analysis of m� will be useful both to prove the �-convergence
result in the regime δε ∼ ε and to establish (20) in Theorem 1.

We start recalling some properties of the corresponding optimal-profile problem
for the Ambrosio–Tortorelli functionals AT λ

ε defined in (10).
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Remark 2 Let λ > 0; arguing as in, e.g., [7, Chapter 6] it is immediate to check that

√
λ = min

{∫ +∞

0

(
(1 − v)2 + λ (v′)2

)
dx : v ∈ W

1,2
loc (0,+∞),

0 ≤ v ≤ 1, v(0) = 0, v(+∞) = 1

}

= inf
T>0

min

{∫ T

0

(
(1 − v)2 + λ (v′)2

)
dx : v ∈ W 1,2(0, T ),

0 ≤ v ≤ 1, v(0) = 0, v(T ) = 1

}
.

(26)
Let m�

z be as in (18); from (26) using a reflection argument and choosing either
λ = α or λ = β, in view of (7) we get

2
√
α ≤ m�

z ≤ 2
√
β , (27)

for every � ∈ (0,+∞) and every z ∈ [0, 1).

The following lemma shows that the cost of an optimal profile depends continuously
on the value attained by the competitors at zero.

Lemma 1 For � ∈ (0,+∞), z ∈ [0, 1), and t ∈ [0, 1) let

m�
z(t) := inf

{∫
R

(
(1 − v)2 + ϕ(�x + z)(v′)2

)
dx : v ∈ W

1,2
loc (R), 0 ≤ v ≤ 1,

v(0) = t , v(±∞) = 1

}
,

(28)
and set

m�(t) := inf
z∈[0,1)m�

z(t) , (29)

so that, in particular, m�(0) = m�, with m� as in (17). Then limt→0 m�(t) = m�.

Proof Let � ∈ (0,+∞) be fixed; let z ∈ [0, 1) be arbitrary and let v ∈ W
1,2
loc (R) be

admissible for the infimum problem defining m�
z in (18); i.e., in particular, v(0) = 0.

For any t ∈ [0, 1) the function

vt := min{v + t, 1}

is admissible for the infimum problem defining m�
z(t) and satisfies



12 A. Bach et al.

∫
R

(
(1 − vt )

2 + ϕ(�x + z)(v′t )2
)
dx ≤

∫
R

(
(1 − v)2 + ϕ(�x + z)(v′)2

)
dx .

Passing to the infimum in v and z we obtain both

m�(t) ≤ m� for every t ∈ [0, 1) and lim sup
t→0

m�(t) ≤ m�. (30)

Thus, to conclude it remains to show that

lim inf
t→0

m�(t) ≥ m�. (31)

To this end, we fix η ∈ (0, 1/2) and for any t ∈ (0, 1/4) we choose zη,t ∈ [0, 1) and
vη,t ∈ W

1,2
loc (R) with 0 ≤ vη,t ≤ 1, vη,t (0) = t , vη,t (±∞) = 1 such that

∫
R

(
(1 − vη,t )

2 + ϕ(�x + zη,t )(v
′
η,t )

2) dx ≤ m�(t)+ η . (32)

Since vη,t (±∞) = 1 and vε,t is continuous, we can apply the Intermediate Value
Theorem to find T 1

η,t , T
2
η,t with T 1

η,t < 0 < T 2
η,t such that

vη,t (T
1
η,t ) = vηt (T

2
η,t ) = 1 − η and vη,t ≤ 1 − η on [T 1

η,t , T
2
η,t ] . (33)

Notice that the second condition in (33) together with (32) implies that

m�(t)+ η ≥
∫ T 2

η,t

T 1
η,t

(1 − vη,t )
2 dx ≥ η2(T 2

η,t − T 1
η,t
) .

Thus, combining (27) and (30) yields

(T 2
η,t − T 1

η,t ) ≤
2
√
β + η

η2 uniformly in t . (34)

Next we define

wη,t (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (η + t)(x − T 1
η,t + 1) if T 1

η,t − 1 ≤ x < T 1
η,t ,

max{0, vη,t (x)− t} if T 1
η,t ≤ x ≤ T 2

η,t ,

1 + (η + t)(x − T 2
η,t − 1) if T 2

η,t ≤ x < T 2
η,t + 1 ,

1 otherwise in R ,

(see Fig. 1).
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1 −
1
1 − −

1 2

Fig. 1 The function vη,t (in dark grey) and the modification wη,t (in light grey)

The first condition in (33) ensures that wη,t ∈ W
1,2
loc (R). Moreover, we have

wη,t (0) = vη,t (0) − t = 0 and vη,t (±∞) = 1. In particular, wη,t is admissible for
m�
z for any z ∈ [0, 1), so that

m� ≤
∫
R

(
(1 − wη,t )

2 + ϕ(�x + zη,t )(w
′
η,t )

2) dx . (35)

Further, since the map s �→ (1 − s)2 is decreasing on (−∞, 1) we get

∫ T 2
η,t

T 1
η,t

(
(1 − wη,t )

2 + ϕ(�x + zη,t )(w
′
η,t )

2) dx

≤
∫ T 2

η,t

T 1
η,t

(
(1 − vη,t − t)2 + ϕ(�x + zη,t )(v

′
η,t )

2) dx

≤ (1 + η)

∫ T 2
η,t

T 1
η,t

(
(1 − vη,t )

2 + ϕ(�x + zη,t )(v
′
η,t )

2) dx + (1 + 1

η

)
t2(T 2

η,t − T 1
η,t ) ,

(36)
where the second inequality follows by expanding the square (1 − vη,t − t)2 and
applying Young’s Inequality to the term 2

√
η(1−vη,t )

t√
η

. Eventually, by definition
of wη,t , from (7) we infer

∫
R\[T 1

η,t ,T
2
η,t ]
(
(1 − wη,t )

2 + ϕ(�x + zη,t )(w
′
η,t )

2) dx

≤ (η + t)2
(∫ T 1

η,t

T 1
η,t−1

(x − T 1
η,t + 1)2 dx +

∫ T 2
η,t+1

T 2
η,t

(x − T 2
η,t − 1)2 dx + 2β

)

= 2(η + t)2
(1

3
+ β

)
.

(37)
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Thus, inserting (34) in (36) and combining (32) with (35)–(37) we deduce that

m� ≤ (1 + η)
(
m�(t)+ η

)+ (1 + 1

η

)
t2

2
√
β + η

η2 + 2(η + t)2
(1

3
+ β

)
.

Passing in the above inequality first to the liminf in t and then to the limit as η → 0
we finally obtain (31). �
Remark 3 We observe that for � ∈ (0,+∞), in general the strict inequality m0 <

m� holds. To prove it, assume ϕ is continuous with 0 < α = minϕ < maxϕ = β.
Then, the direct methods and a truncation argument provide us with a pair (z̄, v̄) ∈
[0, 1)×W

1,2
loc (R) with 0 ≤ v̄ ≤ 1, v̄(0) = 0, v̄(±∞) = 1, such that

m� =
∫
R

(1 − v̄)2 + ϕ(�x + z̄)(v̄′)2 dx . (38)

Therefore, the Young Inequality yields

m� =
∫
R

(1 − v̄)2 + ϕ(�x + z̄)(v̄′)2 dx

=
∫
R

(
(1 − v̄)2 + α(v̄′)2

)
dx +

∫
R

(ϕ(�x + z̄)− α)(v̄′)2 dx

≥ 2
√
α +

∫
R

(ϕ(�x + z̄)− α)(v̄′)2 dx , (39)

with equality if and only if v̄ satisfies α v̄′ = 1 − v̄; i.e., v̄ = 1 − exp(−|x|/√α).
If this is the case, then |v̄′(x)| > 0 for every x ∈ R \ {0}, which will imply that the
second term on the right-hand side of (39) is strictly positive by the assumptions on
ϕ. Thus, the claim follows.

Remark 4 For later reference it is useful to observe that for every � ∈ (0,+∞)

and z ∈ [0, 1) the constant m�
z in (18) can be equivalently expressed in terms of

a minimisation problem where the test functions are suitably shifted, instead of the
integrand. Indeed, consider the shifted function vz := v( · − z

�
); if v ∈ W

1,2
loc (R), then

vt belongs to W
1,2
loc (R), moreover v(0) = 0, v(±∞) = 1 if and only if vz( z� ) = 0,

vz(±∞) = 1. Therefore, since the change of variables y = x + z
�

gives

∫
R

(
(1 − v)2 + ϕ(�x + z)(v′)2

)
dx =

∫
R

(
(1 − vz)

2 + ϕ(�y)(v′z)2
)
dy ,

passing to the infimum we get
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m�
z = inf

{∫
R

(
(1 − v)2 + ϕ(�x)(v′)2

)
dx : v ∈ W

1,2
loc (R),

0 ≤ v ≤ 1, v( z
�
) = 0 , v(±∞) = 1

}
.

(40)

Finally, in the next proposition we prove an alternative formula for the surface
density of the �-limit in the regime δε ∼ ε (cf. [5, Theorem 8.4]).

Proposition 2 Let � ∈ (0,+∞) and set

m̃� := inf

{∫
R

(
(1−v)2+ϕ(�x)(v′)2) dx : v ∈ W

1,2
loc (R) , 0 ≤ v ≤ 1 , v(±∞) = 1 ,

∃ u ∈ W
1,2
loc (R) with u(−∞) = 0, u(+∞) = 1 and v u′ = 0 a.e. in R

}
.

Then m̃� = m�, where m� is as in (17).

Proof We first prove that m� ≥ m̃�.
To this end, let � ∈ (0,+∞) be fixed and η ∈ (0, 1/2) be arbitrary; using

the expression of m�
z in (40) we choose zη ∈ [0, 1) and vη ∈ W

1,2
loc (R) such that

vη(
zη
�
) = 0, vη(±∞) = 1 and

∫
R

(
(1 − vη)

2 + ϕ(�x)(v′η)2
)
dx ≤ m� + η . (41)

Similarly as in Lemma 1 we can find T 1
η , T

2
η , S

1
η, S

2
η with T 1

η < S1
η <

zη
�
< S2

η < T 2
η

satisfying the following conditions:

vη(T
1
η ) = vη(T

2
η ) = 1 − η and vη ≤ 1 − η on [T 1

η , T
2
η ] (42)

vη(S
1
η) = vη(S

2
η) = η2 and vη ≤ η2 on [S1

η, S
2
η] . (43)

We then define a pair (uη, vη) ∈ W
1,2
loc (R) ×W

1,2
loc (R) with (uη, vη)(−∞) = (0, 1)

and (uη, vη)(+∞) = (1, 1) by setting

uη(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x < S1
η ,

x − S1
η

S2
η − S1

η

if S1
η ≤ x ≤ S2

η ,

1 if x > S2
η ,
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wη(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (η + η2)(x − T 1
η + 1) if T 1

η − 1 ≤ x < T 1
η ,

max{0, vη(x)− η2} if T 1
η ≤ x ≤ T 2

η ,

1 + (η + η2)(x − T 2
η − 1) if T 2

η < x ≤ T 2
η + 1 ,

1 otherwise in R .

Clearly, uη ∈ W
1,2
loc (R), while (42) ensures that also wη ∈ W

1,2
loc (R). Moreover, the

second condition in (43) implies that wη ≡ 0 on [S1
η, S

2
η], hence wη u

′
η = 0 a.e.in R.

In particular, wη is admissible for m̃�. Then it only remains to estimate its energy.
This can be done arguing in a similar way as in Lemma 1. Namely, by repeating the
computation in (36)–(37) now replacing t with η2 leads to

m̃� ≤
∫
R

(
(1 − wη)

2 + ϕ(�x)(w′
η)

2) dx

≤ (1 + η)

∫
R

(
(1 − vη)

2 + ϕ(�x)(v′η)2
)
dx +

(
1 + 1

η

)
η4(T 2

η − T 1
η )

+ 2(η + η2)2
(1

3
+ β

)
.

(44)

Moreover, as in (34), we deduce from (41) and (42) that T 2
η −T 1

η ≤ 2
√
β+η
η2 . Inserting

the latter in (44) and appealing to (41) yield

m̃� ≤ (1 + η)(m� + η)+ 2(η + η2)
(√

β + η + 1

3
+ β

)
,

hence the desired inequality follows by the arbitrariness of η > 0.
We now show that m� ≤ m̃�.
Let v be admissible for m̃�; then there exist u ∈ W

1,2
loc (R) with u(−∞) = 0,

u(+∞) = 1, and v u′ = 0 a.e.in R. Since u ∈ W
1,2
loc (R), the boundary conditions at

±∞ imply that u′ cannot be equal to zero a.e.in R. Since at the same time v u′ = 0
a.e. in R, we can find z̄ ∈ R with v(z̄) = 0. Set z := �z̄ − ��z̄� ∈ [0, 1) and
vz := v(· + (z̄− z

�
)). Then vz( z� ) = 0 and v(±∞) = 1, while the 1-periodicity of ϕ

together with the fact that �z̄− z = ��z̄� ∈ Z implies that

∫
R

(
(1 − v)2 + ϕ(�x)(v′)2

)
dx =

∫
R

(
(1 − vz)

2 + ϕ
(
�
(
x + z̄− z

�

))
(v′z)2

)
dx

=
∫
R

(
(1 − vz)

2 + ϕ(�x)(v′z)2
)
dx .

Thus we conclude by passing to the infimum in v. �
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Remark 5 The proof of Proposition 2 actually shows that

m� = inf
T>0

inf

{∫ T

−T
(
(1 − v)2 + ϕ(�x)(v′)2

)
dx : v ∈ W 1,2(−T , T ) , 0 ≤ v ≤ 1 ,

v(±T ) = 1 , ∃ u ∈ W 1,2(−T , T ) with u(−T ) = 0, u(T ) = 1,

and v u′ = 0 a.e. in (−T , T )
}
.

4 Oscillations on a Larger Scale than the Singular
Perturbation

In this section we analyse the case when the oscillation parameter δε is much larger
than the singular-perturbation parameter ε; i.e., the case � = 0.

Throughout this section the function ϕ is additionally assumed to be upper
semicontinuous.

Proposition 3 Let � = 0 and assume that ϕ is upper semicontinuous; then
the sequence (Fε) defined in (8) �-converges to the functional F 0 : L1(a, b) ×
L1(a, b) −→ [0,+∞] defined as

F 0(u, v) :=

⎧⎪⎨
⎪⎩

∫ b

a

(u′)2 dx + m0#S(u) u ∈ P -W 1,2(a, b) , v = 1 a.e.in (a, b) ,

+∞ otherwise ,
(45)

where m0 := 2
√
α.

Proof Thanks to (9), from Theorem 2 we immediately deduce that

�- lim inf
ε→0

Fε(u, v) ≥ �- lim inf
ε→0

AT α
ε (u, v) =

∫ b

a

(u′)2 dx + 2
√
α#S(u) ,

which by definition of m0 gives the lower-bound inequality. It thus remains to
establish the upper-bound inequality.

Let u ∈ P -W 1,2(a, b); we construct a sequence (uε, vε) ⊂ W 1,2(a, b) ×
W 1,2(a, b) such that (uε, vε)→ (u, 1) in L1(a, b)× L1(a, b) and

lim sup
ε→0

Fε(uε, vε) ≤ m0#S(u) .

Since the construction of the recovery sequence (uε, vε) will be performed locally,
close to a discontinuity point of u, we can assume without loss of generality that
S(u) = {t0}, with t0 ∈ (a, b).
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Let now ũ ∈ W 1,2(a, b) and upc ∈ PC(a, b) be as in (14); without loss of
generality, we choose upc = sχ(a,t0), with s ∈ R.

For η > 0 let yη ∈ (0, 1) satisfy

ϕ(yη) ≤ α + η . (46)

Applying (26) with λ = α we find Tη > 0 and vη ∈ W 1,2(0, Tη) such that 0 ≤ vη ≤
1, vη(0) = 0, vη(Tη) = 1, and

∫ Tη

0

(
(1 − vη)

2 + α (v′η)2
)
dx ≤ √

α + η . (47)

Finally, set

tε0 :=
⌊
t0

δε

⌋
δε , yεη := δεyη , (48)

and let ξε > 0 be such that ξε 	 ε. Then, a recovery sequence for F 0(u, 1) is
defined as (uε, vε) = (ũ + ūε, vε) with (ūε, vε) ⊂ W 1,2(a, b) ×W 1,2(a, b) given
by

ūε(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ tε0 + yεη +
ξε

2
,

2s

ξε

(
x −

(
tε0 + yεη +

ξε

2

))
if tε0 + yεη +

ξε

2
< x < tε0 + yεη + ξε ,

s if x ≥ tε0 + yεη + ξε

and

vε(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |x − tε0 − yεη| ≤ ξε ,

vη

( |x − tε0 − yεη| − ξε

ε

)
if ξε < |x − tε0 − yεη| ≤ ξε + εTη ,

1 if |x − tε0 − yεη| > ξε + εTη ,

(see Fig. 2).
We notice that since tε0 + yεη → t0, then by construction uε := ũ + ūε → u

in L1(a, b), further, vε → 1 in L1(a, b) and a.e. in (a, b). Therefore, it remains to
show that

lim sup
ε→0

Gε(vε, (a, b)) ≤
∫ b

a

(u′)2 dx + m0 . (49)
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Fig. 2 Recovery sequence in the case s = 1

We start noticing that by construction

vεū
′
ε = 0 a.e.in (a, b)

and, therefore,

lim
ε→0

∫ b

a

v2
ε (u

′
ε)

2 dx = lim
ε→0

∫ b

a

v2
ε (ũ

′)2 dx =
∫ b

a

(ũ′)2 dx , (50)

the last equality following by the Dominated Convergence Theorem, since ũ′ ∈
L2(a, b) and 0 ≤ vε ≤ 1.

Moreover, by definition of vε we also have

Gε(vε, (a, b)) ≤ 2
∫ tε0+yεη+ξε+εTη

tε0+yεη+ξε

(
(1 − vε)

2

ε
+εϕ

( x
δε

)
(v′ε)2

)
dx+ 2ξε

ε
. (51)

Since ξε 	 ε, in (51) it only remains to estimate the integral on the right-hand side.
By a change of variables, recalling (48), and using the periodicity of ϕ we readily

obtain

∫ tε0+yεη+ξε+εTη

tε0+yεη+ξε

(
(1 − vε)

2

ε
+ εϕ

( x
δε

)
(v′ε)2

)
dx

=
∫ Tη

0

(
(1 − vη(x))

2 + ϕ
( ε
δε
x + yη + ξε

δε

)
(v′η(x))2

)
dx .

(52)

Since ϕ is upper semicontinuous and ξε 	 ε 	 δε, applying the reverse Fatou
Lemma we infer

lim sup
ε→0

∫ Tη

0
ϕ
( ε
δε
x + yη + ξε

δε

)
(v′η(x))2 dx ≤

∫ Tη

0
ϕ(yη)(v

′
η(x))

2 dx . (53)

Therefore, gathering (51), (52), (53), and recalling the definition of yη and vη we
get
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lim sup
ε→0

Gε(vε, (a, b)) ≤ 2
∫ Tη

0

(
(1 − vη)

2 + ϕ(yη)(v
′
η)

2) dx

≤ 2
∫ Tη

0

(
(1 − vη)

2 + (α + η)(v′η)2
)
dx

≤ 2
(

1 + η

α

)
(
√
α + η) =

(
1 + η

α

)
(m0 + 2η) .

(54)

Eventually, (49) follows by combining (50), (54) and letting η → 0. �
Remark 6 We observe that in the proof of Proposition 3 the upper semicontinuity
of ϕ is only needed to obtain the upper-bound inequality.

5 Oscillations on the Same Scale as the Singular
Perturbation

In this section we analyse the case when the oscillation parameter δε and the
singular-perturbation parameter ε are of the same order; i.e., the case � ∈ (0,+∞).

On account of Lemma 1 and Proposition 2 we prove the following result.

Proposition 4 Let � ∈ (0,+∞); then the sequence (Fε) defined in (8) �-converges
to the functional F� : L1(a, b)× L1(a, b) −→ [0,+∞] defined as

F�(u, v) :=

⎧⎪⎨
⎪⎩

∫ b

a

(u′)2 dx + m�#S(u) u ∈ P -W 1,2(a, b) , v = 1 a.e.in (a, b) ,

+∞ otherwise,

where m� is as in (17).

Proof We prove separately the lower-bound and the upper-bound inequalities.
Step 1: Lower-bound inequality.
Let (u, v) ∈ L1(a, b) × L1(a, b) be arbitrary and let (uε, vε) ⊂ W 1,2(a, b) ×

W 1,2(a, b) be such that

(uε, vε)→ (u, v) in L1(a, b)× L1(a, b) and lim inf
ε→0

Fε(uε, vε) < +∞ .

Then, up to subsequences (not relabelled) we can additionally assume that we have
supε>0 Fε(uε, vε) < +∞; therefore, Proposition 1 immediately yields that u ∈
P -W 1,2(a, b), v = 1 a.e.in (a, b) and

lim inf
ε→0

∫ b

a

v2
ε (u

′
ε)

2 dx ≥
∫ b

a

(u′)2 dx . (55)
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Therefore, to prove the liminf inequality it suffices to show that

lim inf
ε→0

∫ b

a

(
(1 − vε)

2

ε
+ ε ϕ

( x
δε

)
(v′ε)2

)
dx ≥ m�#S(u) ,

with m� as in (17).
To this end we notice that if S(u) = ∅, then there is nothing to prove. Hence, we

may assume that S(u) = {t1, . . . , tN }, with N ≥ 1. Now, let I1, . . . , IN be pairwise
disjoint open intervals with Ii ⊂ (a, b) and ti ∈ Ii , for every i = 1, . . . , N . We
claim that

lim inf
ε→0

Gε(vε, Ii) ≥ m� , (56)

for every i = 1, . . . , N , where Gε is as in (12).
To prove the claim, we let i ∈ {1, . . . , N} be arbitrary, and we invoke

Proposition 1 (2) and Remark 1 to find siε, r
i , r̃ i ∈ Ii with ri < siε < r̃i satisfying

lim
ε→0

vε(s
i
ε) = 0 and lim

ε→0
vε(r

i) = lim
ε→0

vε(r̃
i) = 1 .

Set ziε := siε
δε
−
⌊
siε
δε

⌋
∈ [0, 1); thanks to the 1-periodicity of ϕ, the change of variables

y = x−siε
�δε

yields

Gε(vε, Ii) ≥
∫ r̃ i

ri

(
(1 − vε)

2

ε
+ εϕ

( x
δε

)
(v′ε)2

)
dx

=
∫ r̃ i−siε

�δε

ri−siε
�δε

(
�δε

ε
(1 − wε)

2 + ε

�δε
ϕ(�y + ziε)(w

′
ε)

2
)
dy

≥ γε

∫ r̃ i−siε
�δε

ri−siε
�δε

(
(1 − wε)

2 + ϕ(�y + ziε)(w
′
ε)

2
)
dy ,

(57)

where wε(y) = vε(�δεy + siε) and

γε := min

{
�δε

ε
,
ε

�δε

}
→ 1 as ε → 0 . (58)

Since vε(ri), vε(r̃ i) → 1, using a linear interpolation as in the proof of Lemma 1
we can extend wε to a function wi

ε ∈ W
1,2
loc (R) with 0 ≤ wi

ε ≤ 1 satisfying wi
ε(0) =

vε(s
i
ε), wε(±∞) = 1 and such that
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∫ r̃ i−siε
�δε

ri−siε
�δε

(
(1 − wε)

2 + ϕ(�y + ziε)(w
′
ε)

2
)
dy

=
∫
R

(
(1 − wi

ε)
2 + ϕ(�y + ziε)

(
(wi

ε)
′)2) dy + oε(1) ,

(59)

as ε → 0. Thus, since wi
ε is admissible for m�

ziε
(vε(s

i
ε)) ≥ m�(vε(s

i
ε)) and vε(siε)→

0, gathering (57)–(59), passing to the liminf in ε and applying Lemma 1 yields

lim inf
ε→0

Gε(vε, Ii) ≥ lim
ε→0

γε lim inf
ε→0

m�(vε(s
i
ε)) = m� ,

hence (56). Eventually, summing over i we get

lim inf
ε→0

Gε(vε, (a, b)) ≥
N∑
i=1

lim inf
ε→0

Gε(vε, Ii) ≥ m�N = m�#S(u) ,

which together with (55) gives the lower-bound inequality.
Step 2: Upper-bound inequality
As in the proof of Proposition 3 it suffices to construct a recovery sequence for

u = ũ + upc with ũ ∈ W 1,2(a, b) and upc = sχ(a,t0), with s ∈ R and t0 ∈ (a, b).
To this end, we fix η > 0 and according to Proposition 2 and Remark 5 we choose
Tη > 0 and (uη, vη) ∈ W 1,2(−Tη, Tη)×W 1,2(−Tη, Tη) with 0 ≤ vη ≤ 1 satisfying
(uη, vη)(−Tη) = (0, 1), (uη, vη)(Tη) = (1, 1), and vη u′η = 0 a.e.in (−Tη, Tη) and

∫ Tη

−Tη

(
(1 − vη)

2 + ϕ(�x)(v′η)2
)
dx ≤ m� + η . (60)

We extend (uη, vη) to R by setting (uη, vη) := (χ(0,+∞), 1) in R \ (−Tη, Tη).
Moreover, we set tε0 := ⌊ t0

δε

⌋
δε and define the pairs (uε, vε) := (sūε + ũ, vε) with

(ūε, vε) given by

ūε(x) := uη

(x − tε0

�δε

)
and vε(x) := vη

(x − tε0

�δε

)
.

By construction uε → upc + ũ = u in L1(a, b), while vε → 1 in L1(a, b) and a.e.
in (a, b). It thus remains to estimate Fε(uε, vε). Since vεu

′
ε = 0 a.e. in (a, b), as

in (50) we deduce that

lim
ε→0

∫ b

a

v2
ε (u

′
ε)

2 dx = lim
ε→0

∫ b

a

v2
ε (ũ

′)2 dx =
∫ b

a

(ũ′)2 dx . (61)

Therefore, we are left to estimate Gε(vε, (a, b)). By the choice of tε0 and the 1-
periodicity of ϕ, a change of variables yields
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Gε(vε, (a, b)) =
∫ tε0+�δεTη

tε0−�δεTη

(
(1 − vε)

2

ε
+ ϕ

( x
δε

)
(v′ε)2

)
dx

=
∫ Tη

−Tη

(
�δε

ε
(1 − vη)

2 + ε

�δε
ϕ(�x)(v′η)2

)
dx

≤ γ̃ε

∫ Tη

−Tη

(
(1 − vη)

2 + ϕ(�x)(v′η)2
)
dx ,

(62)

where

γ̃ε := max

{
�δε

ε
,
ε

�δε

}
→ 1 as ε → 0 . (63)

Using (60) and gathering (61)–(63) we readily obtain

lim sup
ε→0

Fε(uε, vε) ≤
∫ b

a

(u′)2 dx + m� + η ,

hence the upper-bound inequality follows by the arbitrariness of η > 0. �

6 Oscillations on a Smaller Scale than the Singular
Perturbation

In this section we analyse the case when the oscillation δε parameter is much smaller
than the singular-perturbation parameter ε; i.e., the case � = +∞.

Proposition 5 Let � = ∞; then the sequence (Fε) defined in (8) �-converges to
the functional F∞ : L1(a, b)× L1(a, b)→ [0,+∞] defined as

F∞(u, v) :=

⎧⎪⎨
⎪⎩

∫ b

a

(u′)2 dx + m∞#S(u) u ∈ P -W 1,2(a, b), v = 1 a.e.in (a, b) ,

+∞ otherwise,
(64)

where

m∞ := 2

(∫ 1

0

1

ϕ(t)
dt

)−1/2

. (65)
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Proof It is convenient to introduce the constant

ϕhom :=
(∫ 1

0

1

ϕ(t)
dt

)−1

,

so that m∞ = 2
√
ϕhom. We now divide the proof into two steps.

Step 1: Lower-bound inequality.
For any (u, v) ∈ L1(a, b)× L1(a, b) let (uε, vε) ⊂ W 1,2(a, b)×W 1,2(a, b) be

such that

(uε, vε)→ (u, v) in L1(a, b)× L1(a, b) and lim inf
ε→0

Fε(uε, vε) < +∞ .

Arguing as in Proposition 4 we assume without loss of generality that we have
supε>0 Fε(uε, vε) < +∞ and we apply Proposition 1 to deduce that u ∈
P -W 1,2(a, b), v = 1 a.e.in (a, b) and

lim inf
ε→0

∫ b

a

v2
ε (u

′
ε)

2 dx ≥
∫ b

a

(u′)2 dx .

We set S(u) = {t1, . . . , tN } with N ≥ 1 (if S(u) = ∅ there is nothing to prove) and
we let I1, . . . , IN be pairwise disjoint open intervals with Ii ⊂ (a, b) and ti ∈ Ii for
i = 1, . . . , N . Then if we show that

lim inf
ε→0

Gε(vε, Ii) ≥ m∞ for every i = 1, . . . , N, (66)

with m∞ as in (65) we are done.
We fix η > 0 and i ∈ {1, . . . , N}. By Proposition 1 and Remark 1 we can find

s̃iε, r
i
ε, r̃

i
ε ∈ Ii with riε < s̃iε < r̃iε such that

vε(s̃
i
ε) = η , vε(r

i
ε) = vε(r̃

i
ε) = 1 − η and vε ≤ 1 − η in [riε, r̃ iε] . (67)

Then (25) implies that

r̃ iε − s̃iε

ε
∈
[
α(1 − 2η)2

M
,
M

η2

]
for every ε > 0 , (68)

where M := supε>0 Fε(uε, vε) < +∞. Thanks to (67) the function ṽε : R→ [0, 1]
given by
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ṽε(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

η if x < s̃iε ,

vε(x) if s̃iε ≤ x ≤ r̃ iε ,

(1 − η)+ η
x − riε

ε
if r̃ iε < x ≤ r̃ iε + ε ,

1 otherwise in R

(69)

belongs to W
1,2
loc (R). Moreover, set t iε :=

⌊
s̃iε
δε

⌋
δε ∈ (s̃iε − δε, s̃

i
ε]; using (7), by the

definition of ṽε we have

Gε(vε, (s̃
i
ε, r̃

i
ε)) ≥ Gε(ṽε, (t

i
ε, r̃

i
ε + ε))−

(
1

3
+ β

)
η2 − (1 − η)2

δε

ε
. (70)

Eventually, by setting wε(x) := ṽε(εx + t iε) and Tη := M
η2 + 2, the periodicity of ϕ,

(68) and a change of variables yield

Gε(ṽε, (t
i
ε, r̃

i
ε + ε)) =

∫ Tη

0

(
(1 − wε)

2 + ϕ
(εx
δε

)
(w′

ε)
2
)
dx

≥ inf

{∫ Tη

0

(
(1 − w)2 + ϕ

( x

δε/ε

)
(w′)2

)
dx : w ∈ W 1,2(0, Tη) ,

w(0) = η , w(Tη) = 1

}
.

(71)
Now, since δε/ε → 0, by classical homogenisation (see, e.g., [7, Theorem 3.1]) we
get

lim
ε→0

inf

{∫ Tη

0

(
(1 − w)2 + ϕ

( x

δε/ε

)
(w′)2

)
dx : w ∈ W 1,2(0, Tη) ,

w(0) = η , w(Tη) = 1

}

= min

{∫ Tη

0

(
(1 − w)2 + ϕhom(w

′)2
)
dx : w ∈ W 1,2(0, Tη) ,

w(0) = η , w(Tη) = 1

}
.

(72)
For any w ∈ W 1,2(0, Tη) satisfying w(0) = η and w(Tη) = 1, an application of the
Modica–Mortola trick together with a change of variables yields
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∫ Tη

0

(
(1 − w)2 + ϕhom(w

′)2
)
dx ≥ 2

√
ϕhom

∫ Tη

0
(1 − w)|w′| dx

= 2
√
ϕhom

∫ 1

η

(1 − s) = (1 − η)2
√
ϕhom ,

hence

min

{∫ Tη

0

(
(1 − w)2 + ϕhom(w

′)2
)
dx : w ∈ W1,2(0, Tη) , w(0) = η , w(Tη) = 1

}

≥ (1 − η)2
√
ϕhom .

(73)

Finally, gathering together (70)–(73) we obtain

lim inf
ε→0

Gε(vε, (s̃
i
ε, r̃

i
ε)) ≥ (1 − η)2

√
ϕhom − η2

(
1

3
+ β

)
. (74)

Analogously it can be shown that

lim inf
ε→0

Gε(vε, (r
i
ε, s̃

i
ε)) ≥ (1 − η)2

√
ϕhom − η2

(
1

3
+ β

)
. (75)

Hence, from (74) and (75) we deduce that

lim inf
ε→0

Gε(vε, Ii) ≥ (1 − η)2m∞ − η2
(

1

3
+ β

)
.

Eventually, by letting η → 0 we obtain (66) and, therefore, the lower bound.
Step 2: Upper-bound inequality.
Let u ∈ P -W 1,2(a, b) be fixed; As in the proof of Proposition 3 we assume

without loss of generality that S(u) = {t0} for some t0 ∈ (a, b) and u = ũ+ upc as
in (14) with ũ ∈ W 1,2(a, b) and upc = sχ(a,t0) for some s ∈ R.

We fix η > 0; applying (26) with λ = ϕhom we find Tη > 0 and vη ∈ W 1,2(0, Tη)
satisfying 0 ≤ vη ≤ 1, vη(0) = 0, vη(Tη) = 1, and

∫ Tη

0
(1 − vη)

2 + ϕhom(v
′
η)

2 dx ≤ √
ϕhom + η . (76)

By invoking the classical homogenisation theorem (see, e.g., [9, Theorem 14.5]),
for any σ ↘ 0 we find a sequence (wσ ) ⊂ W 1,2(0, Tη) such that wσ → vη in
L2(0, Tη) as σ → 0, wσ (0) = 0, wσ (Tη) = 1 and
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lim
σ→0

∫ Tη

0

(
(1 − wσ )

2 + ϕ
( x
σ

)
(w′

σ )
2
)
dx =

∫ Tη

0

(
(1 − vη)

2 + ϕhom(v
′
η)

2
)
dx .

(77)
Now we let tε0 be as in (48), σε := δε/ε and wε := wσε and define the pair (uε, vε) ∈
W 1,2(a, b)×W 1,2(a, b) by setting uε := ũ+ ūε with

ūε(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ tε0 +
δε

2
,

2s

δε

(
x −

(
tε0 +

δε

2

))
if tε0 +

δε

2
< x < tε0 + δε ,

s if x ≥ tε0 + δε ,

and

vε(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |x − tε0 | ≤ δε ,

wε

( |x − tε0 | − δε

ε

)
if δε < |x − tε0 | < δε + ε Tη ,

1 if δε + ε Tη ≤ |x − tε0 | ,

(see Fig. 3).
We claim that (uε, vε) is a recovery sequence for F∞(u, 1). In fact, by

construction uε := ũ + ūε → u in L1(a, b), vε → 1 in L1(a, b) and a.e. in (a, b).
Moreover, observing that

vεū
′
ε = 0 a.e.in (a, b)

we get

lim
ε→0

∫ b

a

v2
ε (u

′
ε)

2 dx = lim
ε→0

∫ b

a

v2
ε (ũ

′)2 dx =
∫ b

a

(ũ′)2 dx =
∫ b

a

(u′)2 dx . (78)

Fig. 3 Recovery sequence in the case s = 1; vε in dark grey is obtained by superposing
oscillations on the rescaled optimal profile
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On the other hand, by a change of variables and the periodicity of ϕ we deduce that

Gε(vε, (a, b)) ≤ 2
∫ tε0+δε+εTη

tε0+δε

(
(1 − vε)

2

ε
+ εϕ

( x
δε

)
(v′ε)2

)
dx + 2δε

ε

= 2
∫ Tη

0

(
(1 − wε)

2 + ϕ

(
x

σε

)
(w′

ε)
2
)
dx + 2δε

ε
.

The latter together with (77) and (76) yield

lim sup
ε→0

Gε(vε, (a, b)) ≤ 2
√
ϕhom + 2η = m∞ + 2η . (79)

Finally, gathering together (78) and (79) we obtain

lim sup
ε→0

∫ b

a

(
v2
ε (u

′
ε)

2 + (1 − vε)
2

ε
+ ϕ

( x
δε

)
(v′ε)2

)
dx ≤

∫ b

a

(u′)2 dx+m∞+ 2η .

Thus, upon replacing vε by 0 ∨ (vε ∧ 1) we conclude by the arbitrariness of η > 0.
�

7 Limit Analysis of m�

We conclude this note by analysing the convergence of the constant m� as � → 0+
and �→+∞. Namely, we prove (20), thus concluding the proof of Theorem 1.

Proposition 6 Let � ∈ (0,+∞) and m� be as in (17). Let moreover m0 and m∞
be as in (16) and (19), respectively. Then

lim
�→+∞m� = m∞ . (80)

If ϕ is upper semicontinuous, it also holds

lim
�→0+

m� = m0 . (81)

Proof The proof of (80) and (81) uses arguments which are similar to those
employed in the proof of Proposition 5 and Proposition 3, respectively. For this
reason, we only sketch this proof.

Step 1: Proof of (80).
We first show that

lim inf
�→+∞ m� ≥ m∞ . (82)
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To this end, we fix η > 0; using a similar argument as in the proof of Lemma 1
we can find Tη > 0 and for every � ∈ (0,+∞) a real number zη,� ∈ [0, 1) and
vη,� ∈ W 1,2(−Tη, Tη) such that 0 ≤ vη,� ≤ 1, vη,�(

zη,�
�
) = 0, vη(±Tη) = 1 and

∫ Tη

−Tη

(
(1 − vη,�)

2 + ϕ(�x)(v′η,�)2
)
dx ≤ m� + η . (83)

Note that Tη can be chosen independently of �. We now define ṽη,� ∈ W 1,2(0, Tη)
by setting

ṽη,� :=
⎧⎨
⎩
vη,� if

zη,�
�
≤ x ≤ Tη ,

0 if 0 ≤ x <
zη,�
�
.

Since zη,� ∈ [0, 1), we readily obtain

∫ Tη

zη,�
�

(
(1 − vη,�)

2 + ϕ(�x)(v′η,�)2
)
dx

≥
∫ Tη

0

(
(1 − ṽη,�)

2 + ϕ(�x)(ṽ′η,�)2
)
dx − 1

�

≥ inf

{∫ Tη

0

(
(1 − v)2 + ϕ(�x)(v′)2

)
dx : v ∈ W 1,2(0, Tη),

v(0) = 0, v(Tη) = 1

}
− 1

�
.

Thus, arguing as in the proof of Proposition 5, applying the classical homogenisation
result together with the Modica–Mortola trick we deduce that

lim inf
�→+∞

∫ Tη

zη,�
�

(
(1 − vη,�)

2 + ϕ(�x)(v′η,�)2
)
dx ≥ m∞

2
.

Since an analogous argument holds on (−Tη, zη,�� ), in view of (83) we get

lim inf
�→+∞ m� ≥ m∞ − η ,

from which we deduce (82) by letting η → 0.
Then, it remains to prove that

lim sup
�→+∞

m� ≤ m∞ .
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We fix η > 0; arguing as in the proof of Proposition 5 Step 2 we use (26) together
with the classical homogenisation result with boundary conditions to find Tη > 0
and a sequence (vη,�)� ⊂ W 1,2(0, Tη) satisfying vη,�(0) = 0, vη,�(Tη) = 1 and

lim
�→+∞

∫ Tη

0

(
(1 − vη,�)

2 + ϕ(�x)(v′η,�)2
)
dx ≤ m∞

2
+ η . (84)

Upon truncation we can additionally assume that 0 ≤ vη,� ≤ 1. Since vη,�(0) =
0, the reflected function ṽη,� defined by setting ṽη,�(x) := vη,�(|x|) belongs
to W 1,2(−Tη, Tη). Moreover, upon extending ṽη,� by 1 it is admissible for m�

0.
Thus, (84) implies that

lim sup
�→+∞

m� ≤ lim sup
�→+∞

m�
0 ≤ lim

�→+∞ 2
∫ Tη

0

(
(1 − vη,�)

2 + ϕ(�x)(v′η,�)2
)
dx ≤ m∞ + 2η ,

which together with (82) gives (80) by the arbitrariness of η > 0.
Step 2: Proof of (81).
By definition of m0, from (27) we immediately deduce that lim inf�→0 m� ≥ m0.

To prove the opposite inequality, we fix η > 0 and choose yη ∈ (0, 1) such that√
ϕ(yη) ≤ √

α + η. Moreover, we set

vη(x) := 1 − exp

(
− |x|√

ϕ(yη)

)
.

Then vη ∈ W
1,2
loc (R), 0 ≤ vη ≤ 1 and vη satisfies vη(0) = 0, vη(±∞) = 1 and

∫
R

(
(1 − vη)

2 + ϕ(yη)(v
′
η)

2
)
dx = 2

√
ϕ(yη) ≤ m0 + 2η . (85)

Since vη is admissible for m�
yη
≥ m�, by the reverse Fatou Lemma and the upper

semicontinuity of ϕ from (85) we deduce that

lim sup
�→0+

m� ≤ lim sup
�→0+

m�
yη
≤ lim sup

�→0+

∫
R

(
(1 − vη)

2 + ϕ(�x + yη)(v
′
η)

2
)
dx

≤
∫
R

(
(1 − vη)

2 + lim sup
�→0+

ϕ(�x + yη)(v
′
η)

2

)
dx ≤ m0 + 2η .

By the arbitrariness of η > 0 this concludes the proof. �
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Grain Growth and the Effect of Different
Time Scales

Katayun Barmak, Anastasia Dunca, Yekaterina Epshteyn, Chun Liu,
and Masashi Mizuno

AMS 74N15; 35R37; 53C44; 49Q20

1 Introduction

Many technologically useful materials are polycrystals composed of a myriad
of small monocrystalline grains separated by grain boundaries, see Figs. 1 and
2. Dynamics of grain boundaries play a crucial role in determining the grain
structure and defining materials properties across multiple scales. Experimental
and computational studies give useful insight into the geometric features and the
crystallography of the grain boundary network in polycrystalline microstructures.

In this work, we consider two models for the motion of grain boundaries in
a planar network with dynamic lattice misorientations and with drag of triple
junctions. A classical model for the motion of grain boundaries in polycrystalline
materials is growth by curvature, as a local evolution law for the grain boundaries
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Fig. 1 Experimental
microstructure:
drift-corrected bright-field
image of a 50 nm-thick Pt
film from an instance of the
in-situ grain growth
experiment in the
transmission electron
microscope

Fig. 2 Left figure - microstructure from simulation, model with curvature and finite mobility of
the triple junctions (2): example of a time instance during the simulated evolution of a cellular
network (zoom view). Right figure - microstructure from simulation, model without curvature (3):
example of a time instance during the simulated evolution of a cellular network (zoom view)

due to Mullins and Herring [17, 28, 29], and see work on mean curvature flow, e.g.,
[11, 12, 15, 23, 25]. In addition, to have a well-posed model for the evolution of
the grain boundary network, one has to impose a separate condition at the triple
junctions where three grain boundaries meet [20]. A conventional choice is the
Herring condition which is the natural boundary condition at the triple points for
the grain boundary network at equilibrium [9, 10, 18, 20], and the references therein.
There are several studies about grain boundary motion by mean curvature with the
Herring condition at the triple junctions, see, for instance, [1, 4–8, 16, 20–22, 26, 37].

A standard assumption in the theory and simulations of grain growth is to
address only the evolution of the grain boundaries/interfaces themselves and not
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the dynamics of the triple junctions. However, recent experimental work indicates
that the motion of the triple junctions together with the anisotropy of the grain
interfaces can have a significant effect on the resulting grain growth [7], see work
on molecular dynamics simulation [36, 37], a recent work on dynamics of line
defects [34, 38, 39], and a relevant work on numerical analysis of a vertex model
[35]. The current work is a continuation of our previous work [13, 14], where we
proposed a new model for the evolution of planar grain boundaries, which takes into
account dynamic lattice misorientations (evolving anisotropy of grain boundaries
or “grains rotations”) and the mobility of the triple junctions. In [13, 14], using
the energetic variational approach, we derived a system of geometric differential
equations to describe the motion of such grain boundaries, and we established a
local well-posedness result, as well as large time asymptotic behavior for the model.
In addition, in [13], similar to our previous work on Grain Boundary Character
Distribution, e.g., [4, 5] we conducted some numerical experiments for the 2D grain
boundary network in order to illustrate the effect of time scales, e.g., of the mobility
of triple junctions and of the dynamics of misorientations on how the grain boundary
system decays energy and coarsens with time (note, in [13], we studied numerically
only the model with curved grain boundaries). Our current goal is to conduct
extensive numerical studies of two models, a model with curved grain boundaries
and a model without curvature/”vertex model” of planar grain boundaries network
with the dynamic lattice misorientations and with the drag of triple junctions [13, 14]
and to further understand the effect of relaxation time scales, e.g., of the curvature
of grain boundaries, mobility of triple junctions, and dynamics of misorientations
on how the grain boundary system decays energy and coarsens with time. We also
present and discuss relevant experimental results of grain growth in thin films.

The paper is organized as follows. In Sects. 2 and 3, we discuss and review
important details and properties of the two models for grain boundary motion. In
Sect. 4.1, we present and discuss relevant experimental findings of grain growth
in thin films, and in Sect. 4.2 we conduct extensive numerical studies of the grain
growth models.

2 Review of the Models with Single Triple Junction

In this paper we use recently developed models for the evolution of the planar grain
boundary network with dynamic lattice misorientations and triple junction drag [13,
14] to study the effect of time scales of curvature of grain boundaries, dynamics
of the triple junctions, and dynamics of the misorientations on grain growth. Thus,
in this section for the reader’s convenience, we first review the models which were
originally developed in [13, 14].

Let us first recall the system for a single triple junction which was derived in
[14]. The total grain boundary energy for such model is

3∑
j=1

σ(�(j)α)|�(j)
t |. (1)
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Here, σ : R → R is a given surface tension, α(j) = α(j)(t) : [0,∞) → R is
a time-dependent orientation of the grain θ = �(j)α := α(j−1) − α(j) is a lattice
misorientation of the grain boundary �(j)

t (difference in the orientation between two
neighboring grains that share the grain boundary), and |�(j)

t | is the length of �(j)
t .

As a result of applying the maximal dissipation principle, in [14], the following
model was derived,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(j)
n = μσ(�(j)α)κ(j), on �

(j)
t , t > 0, j = 1, 2, 3,

dα(j)

dt
= −γ

(
σθ (�

(j+1)α)|�(j+1)
t | − σθ (�

(j)α)|�(j)t |
)
, j = 1, 2, 3,

da

dt
(t) = η

3∑
k=1

σ(�(k)α)
b(k)(0, t)

|b(k)(0, t)| , t > 0,

�
(j)
t : ξ (j)(s, t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3,

a(t) = ξ (1)(0, t) = ξ (2)(0, t) = ξ (3)(0, t), and ξ (j)(1, t) = x(j), j = 1, 2, 3.
(2)

In (2), v(j)n , κ(j), and b(j) = ξ
(j)
s are a normal velocity, a curvature, and a tangent

vector of the grain boundary �
(j)
t , respectively. Note that s is not an arc length

parameter of �(j)
t , namely b(j) is not necessarily a unit tangent vector. The vector

a = a(t) : [0,∞)→ R
2 defines a position of the triple junction (triple junctions are

where three grain boundaries meet), x(j) is a position of the end point of the grain
boundary. The three independent relaxation time scales μ, γ, η > 0 (curvature,
misorientation, and triple junction dynamics) are regarded as positive constants.
Further, we assume in (2), α(0) = α(3), α(4) = α(1), and b(4) = b(1), for simplicity.
We also use notation | · | for a standard Euclidean vector norm. The complete details
about model (2) can be found in the earlier work [14, Section 2]. Next, in [14], the
curvature effect was relaxed, by taking the limit μ → ∞, and the reduced model
without curvature was derived,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα(j)

dt
= −γ

(
σθ (�

(j+1)α)|b(j+1)| − σθ (�
(j)α)|b(j)|

)
, j = 1, 2, 3,

da

dt
(t) = η

3∑
j=1

σ(�(j)α)
b(j)

|b(j)| , t > 0,

a(t)+ b(j)(t) = x(j), j = 1, 2, 3.
(3)

In (3), we consider b(j)(t) as a grain boundary. Note that, similar to (2), the
system of equations (3) can also be derived from the energetic variational principle
for the total grain boundary energy (1) (with |�(j)

t | replaced by |b(j)|).
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Remark 1

a) As was discussed in [14], the reduced model without curvature effect (3) is
not a standard ODE system. This is the ODE system where each variable is
locally constrained. Moreover, local well-posedness result (e.g., local existence
result) for the original model (2) will not imply local well-posedness result for
the reduced system (3). It is not known if the reduced model (3) is a small
perturbation of (2).

b) The reduced model (3) captures the dynamics of the orientations/misorientations
and the triple junctions. At the same time, it was more accessible for the
mathematical analysis than the model (2). In addition, the system (3) is a
generalization to higher dimension and dynamic misorientations of the model
from [5, 8]. In this paper, we will compare and contrast through extensive
numerical studies the model with the curvature effect (2) and the reduced model
(3).

To establish local well-posedness result for model (3) in [14], the surface tension σ

was assumed to be C3, positive, and minimized at 0, namely

σ(θ) ≥ σ(0) > 0, (4)

for θ ∈ R. In addition, it was assumed convexity of σ(θ), for all θ ∈ R,

σθ (θ)θ ≥ 0, and σθθ (0) > 0, (5)

and

σθ (θ) = 0 if and only if θ = 0. (6)

Let us review some of the important theoretical results established for (3) in
previous work [13, 14]. First, consider the equilibrium state of the system (3),
namely

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = −
(
σθ (�

(j+1)α∞)|b(j+1)∞ | − σθ (�
(j)α∞)|b(j)∞ |

)
, j = 1, 2, 3,

0 =
3∑

j=1

σ(�(j)α∞)
b
(j)∞

|b(j)∞ |
,

a∞ = x(1) − b(1)∞ = x(2) − b(2)∞ = x(3) − b(3)∞ .

(7)

As in [13, 14], assume, for each i = 1, 2, 3,

∣∣∣∣∣∣
3∑

j=1,j �=i

x(j) − x(i)

|x(j) − x(i)|

∣∣∣∣∣∣ > 1. (8)
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The assumption (8) implies that fixed points x(1), x(2), and x(3) cannot belong to the
single line. Furthermore, (8) is equivalent to the condition that in the triangle with
vertices x(1)x(2)x(3), all three angles are less than 2π

3 . Next, from the assumptions
(8), (5)–(6), associated equilibrium system (7) becomes,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3∑
j=1

b
(j)∞

|b(j)∞ |
= 0,

a∞ + b
(j)∞ = x(j), j = 1, 2, 3.

(9)

In [14], it was shown that the assumptions (5)–(6) imply α
(1)∞ = α

(3)∞ = α
(3)∞ , hence

�(j)α∞ = 0 for j = 1, 2, 3 for the equilibrium system (7) (note that in this case,
for the purpose of mathematical modeling, one can still assume a “fictitious” grain
boundary with the same orientation on each side of the grain boundary. In addition,
in this work we study the grain boundary system before it reaches a state of constant
orientations, see Sect. 4.)

We also have energy dissipation principle for the system (3),

Proposition 1 (Energy Dissipation [14, Proposition 5.1]) Let (α, a) be a solution
of (3) on 0 ≤ t ≤ T , and let E(t), given by (1), be the total grain boundary energy
of the system. Then, for all 0 < t ≤ T ,

E(t)+ 1

γ

∫ t

0

∣∣∣∣dα

dt
(τ )

∣∣∣∣
2

dτ + 1

η

∫ t

0

∣∣∣∣da

dt
(τ )

∣∣∣∣
2

dτ = E(0). (10)

Next, define, constant as in [13],

C1 := inf

⎧⎨
⎩

3∑
j=1

|x(j) − a| : There exists j = 1, 2, 3 such that |a − a∞| ≥ 1

2
|b(j)∞ |

⎫⎬
⎭ .

(11)

Assume also that an initial data (α0, a0) satisfies,

E(0) =
3∑

j=1

σ(�(j)α0)|a0 − x(j)| < σ(0)C1. (12)

Then, one can establish the global existence result for the model (3),

Theorem 1 (Global Existence [13, Theorem 4.1]) Let x(1), x(2), x(3) ∈ R
2, a0 ∈

R
2, and α0 ∈ R

3 be the initial data for the system (3). Assume (8), and let a∞ be a
unique solution of the equilibrium system (9). Further, assume condition (12). Then
there exists a unique global in time solution (α, a) of (3).

We also have the following large time asymptotic behavior results for the solution
of system (3),
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Proposition 2 (Large Time Asymptotic [13, Proposition 5.1]) Let x(1), x(2),
x(3) ∈ R

2, a0 ∈ R
2, and α0 ∈ R

3 be the initial data for the system (3). We assume
that the initial data satisfy (12), and we also impose the same assumptions as in
Theorem 1. Define α∞ as,

α∞ := α
(1)
0 + α

(2)
0 + α

(3)
0

3
. (13)

Let a∞ be a solution of the equilibrium system (9) and (α, a) be a time global
solution of (3). Then,

α(t)→ α∞(1, 1, 1), a(t)→ a∞, (14)

as t →∞.

Theorem 2 (Large Time Asymptotic [13, Theorem 5.1]) There is a small con-
stant ε1 > 0 such that, if |α0 − α∞| + |a0 − a∞| < ε1, then the associated global
solution (α, a) of the system (3) satisfies,

|α(t)− α∞| + |a(t)− a∞| ≤ C2e
−λ�t , (15)

for some positive constants C2, λ
� > 0.

Remark 2 The decay order λ� in (15) is explicitly estimated as,

λ� ≥ λ, (16)

where λ depends on γ , η, σθθ (0), σ(0) and on the smallest positive eigenvalues
of the linearized operators for the equations of the orientation α and of the triple
junction a.

Corollary 1 (Large Time Asymptotic [13, Corollary 5.1]) Under the same
assumption as in Theorem 2, the associated grain boundary energy E(t) satisfies,

E(t)− E∞ ≤ C3e
−λ�t , (17)

for some positive constant C3 > 0, where

E∞ := σ(0)
3∑

j=1

|b(j)∞ |.

Proof For the reader’s convenience, we will review the proof from [13]. Since
α
(1)∞ = α

(2)∞ = α
(3)∞ , we obtain
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E(t)− E∞ =
3∑

j=1

(
σ(�(j)α(t))|b(j)(t)| − σ(0)|b(j)∞ |

)

≤
3∑

j=1

(
σ(0)|b(j)(t)− b

(j)∞ | +
(
σ(�(j)α(t))− σ(0)

)
|b(j)(t)|

)

≤
3∑

j=1

(
σ(0)|a(j)(t)− a∞| +

(
C4|�(j)α(t)|

)
|b(j)(t)|

)

≤
3∑

j=1

(
σ(0)|a(j)(t)− a∞| + 2C4|b(j)(t)||α(t)− α∞|

)
,

(18)
where C4 = sup|θ |<2ε1

|σθ (θ)|. Using the dissipation estimate (10) and the
exponential decay estimate (15), we obtain (17). �
Remark 3 Note that the obtained exponential decay to equilibrium, see estimates
(15) and (17) was obtained by considering linearized problem, Lemma 5.1 in [13].
Consideration of the model with curvature - with finite μ, (2) and of the nonlinear
problem instead of linearized problem could lead to potential power laws estimates
for the decay rates. See also discussion and numerical studies in Sect. 4.

3 Extension to Grain Boundary Network

In this section, we review the extension of the results to a grain boundary network
{�(j)

t }. As in [13, 14], we define the total grain boundary energy of the network,
like,

E(t) =
∑
j

σ (�(j)α)|�(j)
t |, (19)

where �(j)α is a misorientation, a difference between the lattice orientation of the
two neighboring grains which form the grain boundary �

(j)
t . Then, the energetic

variational principle leads to a full model (network model analog of a single triple
junction system (2)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(j)
n = μσ(�(j)α)κ(j), on �(j)

t , t > 0,

dα(k)

dt
= −γ δE

δα(k)
,

da(l)

dt
= η

∑
a(l)∈�(j)t

(
σ(�(j)α)

b(j)

|b(j)|

)
, t > 0.

(20)
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As in [14], we consider the relaxation parameters, μ → ∞, and we further
assume that the energy density σ(θ) is an even function with respect to the
misorientation θ = �(j)α, that is, the misorientation effects are symmetric with
respect to the difference between the lattice orientations. Then, the problem (20)
reduces to (network model analog of a single triple junction system (3)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(j)
t is a line segment between some a(lj,1) and a(lj,2),

dα(k)

dt
= −γ

∑
grain with α(k

′) is the neighbor of the grain with α(k)

�
(j)
t is formed by the two grains with α(k) and α(k

′)

|�(j)
t |σθ (α(k) − α(k

′)),

da(l)

dt
= η

∑
a(l)∈�(j)t

(
σ(�(j)α)

b(j)

|b(j)|

)
.

(21)
To obtain the global solution of the system (21) in [13], we studied the system
before the critical events, and we first considered an associated energy minimizing
state, (α(k)∞ , a

(l)∞) of (21). The critical events are the disappearance events, e.g.,
disappearance of the grains and/or grain boundaries during coarsening of the system,
facet interchange and splitting of unstable junctions. Then, (α(k)∞ , a

(l)∞) satisfies,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(j)∞ is a line segment between some a

(lj,1)∞ and a
(lj,2)∞ ,

0 = −γ
∑

grain with α(k
′) is the neighbor of the grain with α(k)

�
(j)
t is formed by the two grains with α(k) and α(k

′)

|�(j)∞ |σθ (α(k)∞ − α(k
′)∞ ),

0 = η
∑

a
(l)∞∈�(j)∞

(
σ(�(j)α∞)

b
(j)∞

|b(j)∞ |

)
.

(22)
Hence, the total energy E∞ of the grain boundary network (22) is

E∞ =
∑
j

σ (�(j)α∞)|b(j)∞ | = inf

{∑
j

σ (�(j)α)|b(j)|
}
. (23)

Remark 4 Note, we assumed in (21)–(22) that the total number of grains, grain
boundaries, and triple junctions are the same as in the initial configuration (assump-
tion of no critical events in the network).

Further, if there is a neighborhood U(l) ⊂ R
2 of a

(l)∞ such that

E∞ <
∑
j

|b(j)| (24)
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for all a(l) ∈ U(l), one can obtain a priori estimate for the triple junctions, and,
hence, obtain the time global solution of (21). Note that, the assumption (24) is
related to the boundary condition of the line segments �(j)

t . Further, if the energy
minimizing state is unique, then we can proceed with the same argument as in
Lemma 4.1 in [13] and obtain the global solution (21) near the energy minimizing
state.

Remark 5 Note that, the solution of (22) may not be unique even though the grain
orientations are constant (misorientation is zero) [13].

The asymptotics of the grain boundary networks are rather nontrivial. Our
arguments in [13] were based on the uniqueness of the equilibrium state (9).
However, we do not know the uniqueness of solutions of the equilibrium state for
the grain boundary network (22). Thus, in general we cannot take a full limit for the
large time asymptotic behavior of the solution of the network model (21). But, one
can show, the following result instead,

Corollary 2 ([13, Corollary 6.1]) In a grain boundary network (21), assume that
the initial configuration is sufficiently close to an associated energy minimizing state
(22). Then, there is a global solution (α(k), a(l)) of (21). Furthermore, there exists
a time sequence tn → ∞ such that (α(k)(tn), a(l)(tn)) converges to an associated
equilibrium configuration (22).

4 Experiments and Numerical Simulations

In this section we present results of some experiments in thin films and numerical
study of the grain growth using models of planar grain boundary network from
Sect. 3. The energetics and connectivity of the grain boundary network play a crucial
role in determining the properties of a material across multiple scales, see also Sects.
2 and 3. Therefore, our main focus here is to develop a better understanding of the
energetic properties of the experimental and computational microstructures.

4.1 Experimental Results: Grain Boundary Character
Distribution

To more fully characterize a microstructure, it is necessary to consider the types and
energies of the constituent grain boundaries, in addition to geometric features such
as grain size. Indeed, experiments and simulations over the past 30+ years have led
to the discovery and notion of the Grain Boundary Character Distribution (GBCD)
[2, 3, 19, 30, 32, 33]. The GBCD, denoted by ρ, is an empirical distribution of the
relative area (in 3D) or relative length (in 2D) of interface/grain boundaries with a
given misorientation and boundary normal. The GBCD can be viewed as a leading
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Fig. 3 Experiments: (a-d) Grain boundary character distribution of 100 nm-thick, as-deposited Al
film with a mean grain size of approximately 100 nm for four given misorientations. Misorien-
tations are specified as angle-axis pairs. Pseudosymmetry cleanup of the crystal orientation maps
was used in generating the figures. The scale is multiples of random distribution

statistical descriptor to characterize the texture of the grain boundary network (see,
e.g., [2, 3, 5, 19, 30, 33]).

Figure 3 presents the GBCD for four different misorientations for an as-
deposited aluminum film with near random orientation distribution. The details
of film deposition, sample preparation, and precession electron diffraction crystal
orientation mapping in the transmission electron microscope are given in [31].
However, in contrast to [31], the orientation data were subjected to the same cleanup
procedure as for the grain size distribution, namely the pseudosymmetry cleanup
procedure detailed in [24] with the exception of the 60°|[111] boundaries, which are
clearly abundant and should not be removed. The minimum grain size of the dilation
cleanup step was 20 pixels.

Given that grain boundaries have five crystallographic degrees of freedom -
three to specify the misorientation across the grain boundary, and two to define the
normal to the boundary, the two-dimensional graphical presentation of the GBCD
as in Fig. 3 is achieved in the following manner. To begin, a given misorientation
is selected, for example, 5°|[111]. The rotation axis, here [111], is given by the
Miller indices of the crystallographic direction that is common to both grains on
either side of the boundary. The misorientation angle is usually, but not always,
chosen to be within the fundamental zone of misorientations, which for cubic
crystals has a minimum of zero and a maximum of 62.8°. Common choices of
angles are either those of low angle boundaries, with rotation angles of less than 15
degrees, or those of coincident site lattice (CSL) type. In Fig. 3, the selected rotation
angles about the [111] axis of 27.8°|[111], 38.2°|[111], and 60°|[111] correspond to
CSL designations �13b, �7, and �3, respectively. The numerical value in the �

designation is the reciprocal of the number of atomic sites that are coincident in
the crystallographic plane perpendicular to rotation axis. For face centered cubic
crystals, the Miller indices of this plane are the same as the Miller indices of the
misorientation axis, e.g., the (111) plane for the [111] rotation axis. The letters a or b
in the� designation then indicate different angle-axis pairs with the same number of
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coincident sites. Note that the CSL designation does not specify the grain boundary
plane that is present in the sample; rather it specifies only a given misorientation.

Next, the grain boundary planes present in the experimental sample for the
given misorientation are represented by the crystallographic directions normal to
the planes in standard stereographic projections, such as those in Fig. 3. The use of
stereographic projection rather than other types of projections in single crystal or
bicrystal crystallography of materials has been common practice. Its choice is based
on the fact that it is an angle-preserving projection that does not depend on the size
of the crystal (from nano to macro). For cubic crystals, the standard projection has
the [001] cubic crystal axis pointing out of the page thereby projecting onto the page
as the origin of the plot at the center of the (projected equatorial) circle. In Fig. 3,
the [100] crystallographic axis points to the right, and the [010] crystallographic
axis points up, thereby defining a right-handed axis set.

The stereographic projections of the boundary plane normals such as those of
Fig. 3 then show the abundance of grain boundary plane normals in multiples
of random distribution (MRD) on the thermal scale. The MRD is similar to a
probability density plot, but its integrated value is 2, rather than 1, since every
grain boundary segment is counted twice, once for the grain on the one side of
the boundary and once for the grain on the other side of the boundary. When the
direction normal to the boundary plane and the misorientation axis are the same,
the grain boundary is termed a twist boundary, since the axis of rotation is normal
to the observed boundary plane. In Fig. 3, a high relative intensity is seen at the
position of the [111] twist boundaries for all four selected misorientations. If, on
the other hand, the high intensities were seen as bands along a great circle ninety
degrees away from the chosen misorientation axis, then the boundaries would have
been designated as tilt boundaries, with the misorientation axis in the plane of the
grain boundary. In effect, GBCD plots such as those of Fig. 3 make manifest texture
formation in the grain boundary network, see also numerical experiments Sect. 4.2.

The most striking feature of Fig. 3 is the very high abundance of 60°|[111]
boundaries, which show a population of several hundred times MRD. Given that the
majority of the boundary planes were also found to be (111), this sample is said to
have a large population of coherent �3, or the so-called coherent twin boundaries.
�3 boundaries constitute approximately one quarter of all the boundaries in this
sample. In contrast, for a “bulk” aluminum sample, i.e., in an aluminum sample
with mean grain size of 23 μm, the population of �3 boundaries is more than
ten times lower [31]. The very high population of �3 boundaries in the thin film
sample of Fig. 3 is likely a result of the structure forming processes that take place
during film deposition, rather than a result of normal grain growth. The evolution
of the grain boundary network and the GBCD of this sample towards equilibrium
or steady state will be determined by the dynamics of the grain boundaries and
the relaxation time scales for the boundary curvature, misorientation, and triple
junctions, for which models and simulations are presented in the current work.
We note that in experimental samples where GBCD has reached steady state, the
GBCD averaged over its five crystallographic parameters is inversely related to the
grain boundary energy density similar to the GBCD extracted from grain growth
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models, Sect. 4.2. Laboratory-based experimental quantification of grain boundary
dynamics via in-situ annealing experiments similar to the experiment in Fig. 1,
together with intermittent mapping of crystal orientations for determination of the
evolving GBCD, will be the key to connecting more closely experimental findings
to mathematical and computational models of grain growth. These experiments are
the subject of the ongoing research.

4.2 Numerical Experiments

Here, we present several numerical experiments to illustrate the effects of different
time scales, such as the dynamic orientations/misorientations (grains “rotations”)
and mobility of the triple junctions, as well as we compare the grain growth model
with curvature (20) and model without curvature (21), as described in Sects. 2 and 3.

In particular, the main goal of our numerical experiments is to illustrate the time
scales effect of curvature—through grain boundary mobility μ, mobility of the triple
junctions η, and misorientation parameter γ on how the grain boundary system
decays energy and coarsens with time. For that we will numerically study evolution
of the total grain boundary energy,

E(t) =
∑
j

σ (�(j)α)|�(j)
t |, (25)

whereas before, �(j)α is a misorientation of the grain boundary �
(j)
t , and |�(j)

t | is
the length of the grain boundary. We will also consider the growth of the average
area, defined as,

A(t) = 4

N(t)
, (26)

here 4 is the total area of the sample, and N(t) is the total number of grains at
time t . The growth of the average area is closely related to the coarsening rate
of the grain system that undergoes critical/disappearance events. However, it is
important to note that critical events include not only grain disappearance but also
facet/grain boundary disappearance, facet interchange, and splitting of unstable
junctions, for more details about numerical modeling of critical events in 2D, see,
e.g., [8, 21]. Further, we will investigate the distribution of the grain boundary
character distribution (GBCD) ρ(�(j)α) at a final time of the simulations T∞
(defined below) under a simplified assumption on a grain boundary energy density,
namely that σ(�(j)α) is only a function of the misorientation, see also Sects. 2–3.
The GBCD (in this context) is an empirical statistical measure of the relative length
(in 2D) of the grain boundary interface with a given lattice misorientation,
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ρ(�(j)α, t) = relative length of interface of lattice misorientation �(j)α at time t,

normalized so that
∫
�
�(j)α

ρd�(j)α = 1, (27)

where we consider ��(j)α = [−π
4 ,

π
4 ] in the numerical experiments below (for

planar grain boundary network, it is reasonable to consider such range for the
misorientations). For more details, see, for example, [5, 13]. In all our tests
below, we compare the GBCD at T∞ to the stationary solution of the Fokker–
Planck equation, the Boltzmann distribution for the grain boundary energy density
σ(�(j)α),

ρD(�
(j)α) = 1

ZD

e−
σ(�(j)α)

D ,

with partition function, i.e., normalization factor

ZD =
∫
�
�(j)α

e−
σ(�(j)α)

D d�(j)α,

(28)

[4–6, 8]. We employ the Kullback–Leibler relative entropy test to obtain a unique
“temperature-like” parameter D and to construct the corresponding Boltzmann
distribution for the GBCD at T∞ as it was originally done in [4–6, 8]. Note, as
we also discussed in Sect. 4.1, GBCD is a primary candidate to characterize texture
of the grain boundary network, and is inversely related to the grain boundary energy
density as discovered in experiments and simulations. The reader can consult, for
example, [4–6, 8] for more details about GBCD and the theory of the GBCD. In the
numerical experiments in this paper, we consider two choices for the grain boundary
energy density as plotted in Fig. 4 and given below,

σ(�(j)α) = 1 + 0.25 sin2(2�(j)α) and σ(�(j)α) = 1 + 0.25 sin4(2�(j)α).

We consider simulation of 2D grain boundary network using the algorithm based
on the sharp interface approach [13] with dynamic misorientation and finite mobility
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Fig. 4 Grain boundary energy density function σ(�α): (a) Left plot, σ = 1+0.25 sin2(2�α) and
(b) Right plot, σ = 1 + 0.25 sin4(2�α)
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of the triple junctions which we also extended to a model without curvature (21).
Note that the algorithm [13] is a further extension of the algorithm from [4, 8].
We recall that in the numerical scheme we work with a variational principle. The
cornerstone of the algorithm, which assures its stability, is the discrete dissipation
inequality for the total grain boundary energy that holds when either the discrete
Herring boundary condition (η → ∞) or discrete “dynamic boundary condition”
(finite mobility η of the triple junctions, third equation of (20) or of (21)) is satisfied
at the triple junctions. We also recall that in the numerical algorithm for model (20)
we impose the Mullins’ theory (first equation of (20)) as the local evolution law for
the grain boundaries (and the time scale μ is kept finite). For model (21), μ →∞,
hence the dynamics of the grain boundaries are defined by the evolution of the triple
junctions (the third equation of (21)) and by the grains rotation (the second equation
of (21)). The reader can consult [4, 8, 13] for more details about numerical algorithm
based on the sharp interface approach.

In all the numerical tests below we initialized our system with 104 cells/grains
with normally distributed misorientation angles at initial time t = 0. We also
assume that the final time of the simulations T∞ is the time when approximately
80% of grains disappeared from the system, namely the time when only about
2000 cells/grains remain. The final time is selected based on the system (20) with
no dynamic misorientations (γ = 0) and with the Herring condition at the triple
junctions (η →∞) and, it is selected to ensure that statistically significant number
of grains still remain in the system and that the system reached its statistical steady
state. Therefore, all the numerical results which are presented below are for the grain
boundary system that undergoes critical/disappearance events.

First, we study the effect of dynamics of triple junctions on the dissipation and
coarsening of the system, see Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
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Fig. 5 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
420.9 exp(−22.13t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 422.8 exp(−11.64t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 438.8797(1.0 + 32.9489t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
439.9588(1.0 + 17.1792t)−1 (dashed magenta). Mobility of the triple junctions is η = 10 and the
misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)
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Fig. 6 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 0.6575t2 + 0.004668t + 0.0003745 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
0.2025t2 + 0.001016t + 0.0003844 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of the triple junctions is η = 10 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)
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Fig. 7 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈ 0.0641
(dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞ averaged
over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”-
D ≈ 0.0655 (dashed magenta curve). Mobility of the triple junctions is η = 10 and the
misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)

20, 21, and 22 (we consider different values of misorientation parameter γ for these
tests). We observe that for smaller values of the mobility of the triple junctions η, the
energy decayE(t) is well-approximated by an exponential function for both models,
for the model with curvature (20) and for the model without curvature (21), see Figs.
5 and 8 (left plots). This is consistent with the results of our theory, see Sects. 2 and
3 and [13, 14], even though, the theoretical results are obtained under assumption
of no critical events and μ → ∞ (for grain growth model without curvature). This
result indicates that for lower mobility of the triple junctions η, the dynamics of
triple junctions have a dominant effect on the grain growth, see model (21). This
explains the similarity in the energy decay for grain growth model with curvature
(20) and without curvature (21) when η = 10, Figs. 5 and 8. In comparison, we
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Fig. 8 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
409.8 exp(−21.38t) (dashed red). Total grain boundary energy plot, model without curvature (solid
blue) versus fitted exponential decaying function y(t) = 411.6 exp(−11.3t) (dashed magenta); (b)
Right plot, total grain boundary energy plot, model with curvature (solid black) versus fitted power
function y1(t) = 426.9841(1.0+31.746t)−1 (dashed red). Total grain boundary energy plot, model
without curvature (solid blue) versus fitted power function y1(t) = 428.2145(1.0 + 16.6556t)−1

(dashed magenta). Mobility of the triple junctions is η = 10 and the misorientation parameter
γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 9 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 0.6258t2 + 0.004538t + 0.0003732 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
0.1866t2 + 0.001377t + 0.0003799 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of the triple junctions is η = 10 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)

also present fit to a power law decaying function, see Figs. 5 and 8 (right plots). The
power law function does not seem to give as good approximation in this case.

However, for a larger value of η = 100, Figs. 11, 14, 17, and 20, we obtain
that the total grain boundary energy does not follow exponential decay anymore
for the model with curvature (20), but rather the energy decay is closer to a power
law. Thus, the curvature time scale-the grain boundary evolution has a dominant
effect for large η. However, for the model without curvature (21), the energy decay
is still well approximated by the exponential function which is consistent with the
theory, Sects. 2 and 3. Note also that the numerically observed energy decay rates
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Fig. 10 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs
of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈
0.035 (dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞
averaged over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with
“temperature”- D ≈ 0.035 (dashed magenta curve). Mobility of the triple junctions is η = 10 and
the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 11 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
411 exp(−153t) (dashed red). Total grain boundary energy plot, model without curvature (solid
blue) versus fitted exponential decaying function y(t) = 422.4 exp(−116.3t) (dashed magenta);
(b) Right plot, total grain boundary energy plot, model with curvature (solid black) versus fitted
power function y1(t) = 430.0278(1.0 + 231.6960t)−1 (dashed red). Total grain boundary energy
plot, model without curvature (solid blue) versus fitted power function y1(t) = 439.8212(1.0 +
171.9395t)−1 (dashed magenta). Mobility of the triple junctions is η = 100 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)

increase with the mobility η of the triple junctions which is also consistent with
the developed theory [13]. In addition, we observe that the average area grows
as a quadratic function in time for the finite mobility η of the triple junctions,
Figs. 6, 9, 12, 15, 18, and 21 (left plots) and see also our earlier work [13]. We
also observe that the coarsening rate of grain growth slows down with the smaller
η. In addition, we note that the energy decay in our numerical tests is consistent
with the growth of the average area. Moreover, we observe that neither dynamics
of the triple junctions nor curvature show as much of an effect on the GBCD, see
Figs. 6 (right plot)-7, 9 (right plot), 10, 12 (right plot), 13, 15 (right plot), 16, 18
(right plot), 19 and 21 (right plot), 22. (Note, the “temperature” like parameter D
also accounts for various critical events–grains disappearance, facet/grain boundary



Grain Growth and the Effect of Different Time Scales 51

0 0.002 0.004 0.006 0.008 0.01
Simulation time

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Av
er

ag
e 

ar
ea

10-3

Model with curvature:average area
Fitted quadratic polynomial
Model without curvature:average area
Fitted quadratic polynomial

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Misorientation

0

0.5

1

1.5

2

2.5

G
BC

D

Model with curvature:GBCD
Model without curvature:GBCD

Fig. 12 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 23.47t2 + 0.08748t + 0.0003549 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
19.74t2 + 0.01157t + 0.0003843 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of 2D
trials with 10000 initial grains. Mobility of the triple junctions is η = 100 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)
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Fig. 13 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs
of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈
0.0641 (dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞
averaged over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with
“temperature”- D ≈ 0.0651 (dashed magenta curve). Mobility of the triple junctions is η = 100
and the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin2(2�α)

disappearance, facet interchange, splitting of unstable junctions. It will be part of
our future study to understand how D depends on the critical events).

For the other series of tests, we vary the misorientation parameter γ , second
equation of (20) or of (21) (and we set the mobility of the triple junctions η = 100,
third equation of (20) or of (21)). We do not observe as much of an effect on the
energy decay or average area growth in this case, but we observe the significant
effect on the GBCD and the diffusion coefficient/“temperature”-like parameter D,
see Figs. 5, 6, 7, 8, 9, 10, 11, 12 13, 14, 15, and 16 (with the misorientation
parameter γ = 1) and Figs. 17, 18, 19 20, 21, and 22 (with larger values of
the misorientation parameter γ ). As concluded from our numerical results, larger
values of γ give smaller diffusion coefficient/”temperature”-like parameter D,
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Fig. 14 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
399.7 exp(−147.2t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 412.1 exp(−113.3t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 418.3970(1.0 + 223.2641t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
428.9782(1.0 + 167.5042t)−1 (dashed magenta). Mobility of the triple junctions is η = 100 and
the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 15 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 20.63t2 + 0.09393t + 0.0003472 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
18.31t2 + 0.01553t + 0.0003786 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of 2D
trials with 10000 initial grains. Mobility of the triple junctions is η = 100 and the misorientation
parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)

and hence higher GBCD peak near misorientation 0. This is consistent with our
theory that basically, larger misorientation parameter γ produces direct motion
of misorientations towards equilibrium state of zero misorientations, see Sect. 2
and also [13]. Furthermore, from all of our numerical experiments with dynamic
misorientations and with different triple junction mobilities, we observe that the
GBCD at time T∞ is well-approximated by the Boltzmann distribution for the
grain boundary energy density see Figs. 7, 10, 13, 16, 19, and 22, as well as
consistent with experimental findings as discussed in Sect. 4.1, which is similar
to the work in [4–6, 8], but more detailed analysis needs to be done for a system that
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Fig. 16 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs
of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈
0.037 (dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞
averaged over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with
“temperature”- D ≈ 0.035 (dashed magenta curve). Mobility of the triple junctions is η = 100
and the misorientation parameter γ = 1. Grain boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 17 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
411.2 exp(−154.9t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 422.2 exp(−116.8t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 430.8310(1.0 + 236.0718t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
440.1947(1.0 + 173.8526t)−1 (dashed magenta). Mobility of the triple junctions is η = 100, the
misorientation parameter γ = 250 (curvature model) and γ = 300 (vertex model). Grain boundary
energy density σ = 1 + 0.25 sin2(2�α)

undergoes critical events to understand the relation between GBCD, “temperature”-
like/diffusion parameter D, and different relaxation time scales, as well as the effect
of the time scales on the dissipation mechanism and certain coarsening rates.

Remark 6 Note that, we performed 3 runs for each numerical test presented in this
work. We report results of a single run for the energy decay and growth of the
average area (the results from the other two runs for each test were very similar to
the presented ones), and we illustrate averaged over the 3 runs the GBCD statistics.
The curve-fitting for the energy and the average area plots was done using Matlab
[27] toolbox cftool.
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Fig. 18 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 23.18t2 + 0.08941t + 0.0003532 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
18.56t2 + 0.01824t + 0.000378 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of the triple junctions is η = 100, the misorientation
parameter γ = 250 (curvature model) and γ = 300 (vertex model). Grain boundary energy density
σ = 1 + 0.25 sin2(2�α)
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Fig. 19 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈ 0.0397
(dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞ averaged
over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”-
D ≈ 0.0448 (dashed magenta curve). Mobility of the triple junctions is η = 100, the misorientation
parameter γ = 250 (model with curvature) and γ = 300 (model without curvature). Grain
boundary energy density σ = 1 + 0.25 sin2(2�α)

5 Conclusion

In this work, we conducted extensive numerical studies of the two models developed
in [13, 14]: a model with curved grain boundaries and a model without curva-
ture/”vertex model” of planar grain boundaries network with the dynamic lattice
misorientations and with the drag of triple junctions. The goal of our study was to
further understand the effect of relaxation time scales, e.g., of the curvature of grain
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Fig. 20 One run of 2D trial with 10000 initial grains: (a) Left plot, total grain boundary energy
plot, model with curvature (solid black) versus fitted exponential decaying function y(t) =
397.8 exp(−147.8t) (dashed red). Total grain boundary energy plot, model without curvature
(solid blue) versus fitted exponential decaying function y(t) = 409.5 exp(−113.2t) (dashed
magenta); (b) Right plot, total grain boundary energy plot, model with curvature (solid black)
versus fitted power function y1(t) = 417.4031(1.0 + 226.6032t)−1 (dashed red). Total grain
boundary energy plot, model without curvature (solid blue) versus fitted power function y1(t) =
427.0061(1.0 + 168.5772t)−1 (dashed magenta) Mobility of the triple junctions is η = 100,
the misorientation parameter γ = 1000 (curvature model) and γ = 1500 (vertex model). Grain
boundary energy density σ = 1 + 0.25 sin4(2�α)
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Fig. 21 (a) Left plot, one run of 2D trial with 10000 initial grains: Growth of the average area
of the grains, model with curvature (solid black) versus fitted quadratic polynomial function
y(t) = 19.81t2 + 0.09408t + 0.0003476 (dashed red). Growth of the average area of the
grains, model without curvature (solid blue) versus fitted quadratic polynomial function y(t) =
17.81t2 + 0.01484t + 0.0003807 (dashed magenta); (b) Right plot, GBCD (black curve, model
with curvature) and GBCD (blue curve, model without curvature) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains. Mobility of triple junctions is η = 100, the misorientation
parameter γ = 1000 (curvature model) and γ = 1500 (vertex model). Grain boundary energy
density σ = 1 + 0.25 sin4(2�α)
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Fig. 22 (a) Left plot, model with curvature, GBCD (black curve) at T∞ averaged over 3 runs of
2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D ≈ 0.005
(dashed red curve). (b) Right plot, model without curvature, GBCD (blue curve) at T∞ averaged
over 3 runs of 2D trials with 10000 initial grains versus Boltzmann distribution with “temperature”-
D ≈ 0.005 (dashed magenta curve). Mobility of the triple junctions is η = 100, the misorientation
parameter γ = 1000 (model with curvature) and γ = 1500 (model without curvature). Grain
boundary energy density σ = 1 + 0.25 sin4(2�α)

boundaries, mobility of triple junctions, and dynamics of misorientations on how the
grain boundary system decays energy and coarsens with time. We also presented and
discussed relevant experimental results of grain growth in thin films.
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Regularity of Minimizers for a General
Class of Constrained Energies in
Two-Dimensional Domains with
Applications to Liquid Crystals

Patricia Bauman and Daniel Phillips

1 Introduction.

In this paper we consider minimizers to a singular constrained energy functional of
the form

J (v) =
∫

�

(F (v,Dv)+ f (v))dx, (1)

where � is a bounded C2 domain in R
n and n ≥ 2. We assume that f is defined

and real valued on an open, bounded, convex set K in R
q with q ≥ 1 and that

f (v) → ∞ as v → ∂K for v in K. We extend the definition of f to all of Rq by
setting f (v) = ∞ for v in R

q \K. Thus we assume throughout this paper that

⎧⎪⎨
⎪⎩
f : K→ R, f ∈ C2(K), D2f ≥ −MIq on K,
lim
v→∂K
v∈K

f (v) = ∞, and f (v) = ∞ on R
q \K, (2)

where M ≥ 0. We also assume the following structure conditions on F :
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F(v, P ) = A
αβ
ij (v)p

i
αp

j
β + Bα

i (v)p
i
α for v ∈ K, P ∈ M

q×n,

A
αβ
ij (v)p

i
αp

j
β ≥ λ|P |2 for v ∈ K, P ∈ M

q×n,

where A
αβ
ij , B

α
i ∈ C2(K) and λ > 0.

(3)

We use the convention in this paper that repeated indices are summed. In this case
i and j go from 1 to n and α and β go from 1 to q. Here M

q×n denotes the set of
q × n real-valued matrices. We define

M1 = max[{sup
v∈K|A

αβ
ij (v)|}, {supv∈K|Bα

i (v)|}]

and M2 ≡ max{‖Aαβ
ij ‖C2(K)

, ‖Bα
i ‖C2(K)

}.
The energy functional J is defined for all v in

H 1(�;K) = {v ∈ H 1(�;Rq) : v(x) ∈ K almost everywhere in �}.

By assumption (2) on f , if u ∈ H 1(�;K) and J (u) <∞, then u(x) ∈ K for almost
every x in �.

Given u in H 1(�;K) such that J (u) < ∞, it follows from direct methods in
the calculus of variations (see [7]) that minimizers exist in the space Au = {v ∈
H 1(�;K) : v − u ∈ H 1

0 (�;Rq)}. In this paper we will refer to such minimizers as
finite energy minimizers of J in �.

A question of interest for applications is whether minimizers u of J (·) are smooth
and whether they satisfy u(x) ∈ K for all x in �. One of the difficulties in analyzing
their regularity is to find finite energy variations in H 1(�;K) from which one can
extract useful information about their properties.

Our results are for n = 2. We prove the following main theorem:

Theorem 1 Assume � is a bounded C2 domain in R
n, n = 2,K is an open

bounded, convex set in R
q , q ≥ 1, and (2) and (3) hold. If u ∈ H 1(�;K) is a finite

energy minimizer for J in �, then u is in C2,δ(�) for all 0 < δ < 1, u(�) ⊂ K,
and u satisfies the equilibrium equation

div FP(u,Du)− Fu(u,Du) = fu(u) on �. (4)

Moreover, if �′ is an open set in � such that �′ ⊂⊂ �, then dist (u(�′), ∂K) ≥
c > 0 where c depends only on J (u), �, dist (�′, ∂�),M2,M , and λ.

Minimizers u of (1) were investigated by Evans, Kneuss, and Tran in [5].
Assuming that n ≥ 2, F = F(v,Dv) satisfies certain growth conditions and
is uniformly strictly quasi-convex, and f satisfies (2) with M = 0, they proved
the following partial regularity result: there is an open subset �0 of � such that
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|� \�0| = 0, u ∈ C2(�0), and u(�0) ⊂ K. In particular it follows that u satisfies
the equilibrium equation (4) on �0 in this case.

They also proved in [5] that if, in addition, F = F(Dv), F(·) is convex, and
f (v) is smooth and convex on K, then a finite energy minimizer u is in H 2

loc(�).
We use a similar approach here for part of our analysis. They considered variations
u+ tφk where φk is given by

φk(x;h) = [ζ 2(x)u(x + hek)+ ζ 2(x − hek)u(x − hek)− (ζ 2(x)+ ζ 2(x − hek))u(x)]h−2

= ∇−h
k

(ζ 2∇h
k u) for 1 ≤ k ≤ n,

for ζ ∈ C2
c (�) and ∇h

k w(x) = h−1[w(x + hek)− w(x)] for h �= 0 and sufficiently
small. They showed that for 0 ≤ t < t(h), u(x)+ tφk(x) ∈ K. Using the definition
of φk and the convexity of f they proved that

∫

�

f (u+ tφk)dx ≤
∫

�

f (u)dx for 0 ≤ t < t(h),

and hence

0 ≤ J (u+ tφk)− J (u) ≤
∫

�

(F (D(u+ tφk))− F(Du))dx.

Dividing by t and letting t → 0 gives

0 ≤
∫

�

(FP (Du) : Dφk)dx for 1 ≤ k ≤ n.

For F = F(Dv) this inequality leads to u ∈ H 2
loc(�). (See [5], Thm 4.1.)

Here we have F = F(v,Dv) and f is not convex. However, our assumption (2)
implies that

f0(v) ≡ f (v)+ M

2
|v|2

is a convex function on K and by [5]

∫

�

f0(u+ tφk)dx ≤
∫

�

f0(u)dx for 0 ≤ t < t(h). (5)

Using this we can argue just as above to show that a minimizer u of J satisfies
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0 ≤
∫

�

(FP (u,Du) : Dφk + Fu(u,Du) · φk −Mu · φk)dx. (6)

From this and (3) it follows that

λ

2

∫

�

|∇hDu|2ζ 2 dx ≤ C0

∫

�

|∇hu|2|Du|2ζ 2 dx + C1, (7)

where λ is the constant defined in our assumption (3).
To obtain an H 2

loc estimate, we additionally need that u is continuous and a
second inequality. In Sect. 2, we show that when n = 2, our assumptions (2), (3),
and a result in [4] imply that finite energy minimizers of J are continuous in �. We
then construct additional variations u+ twl in H 1(�;K) so that wl satisfies (5) and
(6), with φk replaced by wl . We use this to prove a second inequality, from which
we obtain the H 2

loc regularity of minimizers. In Sect. 3 we use this result to prove
Theorem 1.

Our formulation of the constrained energy (1) and the assumptions (2) and (3) is
motivated by the constrained Landau-de Gennes Q-tensor energy for nematic liquid
crystals. This energy is given by

ILdG[Q] =
∫

�

[
G(Q,DQ)+�b(Q)]dx, (8)

where

G(Q,DQ) =L1|DQ|2 + L2 ·DxjQij ·DxkQik + L3 ·DxjQik ·DxkQij

+ L4 ·Q�k ·Dx�Qij ·DxkQij + L5 · ε�jk ·Q�i ·DxjQki

≡ L1I1 + L2I2 + L3I3 + L4I4 + L5I5

and�b(Q) = Tfms(Q)−κ|Q|2. The constantsL1, L2, L3, L4, andL5 are material-
dependent elastic constants, T and κ are positive constants, and ε�jk is the Levi-
Civita tensor. The function fms(Q) is a specific function (called the Maier–Saupe
potential) defined on

M = {Q ∈ M
3×3 :Q = Qt, tr Q = 0, and − 1

3
< λ(Q) <

2

3

for all eigenvalues λ(Q) of Q}.

It is defined abstractly using probability densities on a sphere that represent possible
orientations of liquid crystal molecules. (See Sect. 4 for the definition of fms .) The
bulk term �b and the Maier–Saupe potential fms were introduced and investigated
in the papers [3] by Ball and Majumdar and [9] by Katriel, Kventsel, Luckhurst,
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and Sluckin. It is known that fms is convex. Moreover, fms is bounded below and
fms(Q)→∞ for Q in M with Q→ ∂M; hence the same is true for �b(Q). As in
(2), we set �b(Q) = ∞ for Q ∈ S0\M where S0 = {Q ∈ M

3×3 : Q = Qt, tr Q =
0}. Thus �b blows up at ∂M as in (2), with f replaced by �b and K replaced by
M. It follows that finite energy minimizers Q of ILdG satisfy Q(x) ∈ M almost
everywhere in �, so that the eigenvalues of Q(x) are in (− 1

3 ,
2
3 ) almost everywhere

in �. Conditions on L1, · · · , L4 have been identified so that minimizers of ILdG
exist in

AQ0 ≡ {Q ∈ H 1(�;M) : Q−Q0 ∈ H 1
0 (�;M3×3)}

provided that Q0 ∈ H 1(�;M) and that ILdG[Q0] <∞. (See (38) and [10].) It was
stated in [3] that for � in R

3, if Q0(�) ⊂⊂M, minimizers in AQ0 of the energy

∫

�

[
L1|DQ)|2 +�b(Q)]dx

with L1 > 0 are smooth in � and valued in M; thus their eigenvalues are in
(− 1

3 ,
2
3 ) at all points in �. A sketch of a proof of this statement is included in

[1]. (See also [4].) Such minimizers are called “physically realistic.” Additional
features for minimizers, Q̃ of ILdG with � in R

3, were obtained by Geng and Tong
in [8]. In particular, assuming specific conditions on G(Q,DQ) they proved higher
integrability properties for |DQ̃|.

The elastic term with coefficient L4 in ILdG is called the “cubic term.” When
L4 �= 0, the energy density is quasilinear. This makes it difficult to analyze the
behavior of minimizers in this case.

Physicists have computed the elastic coefficients L1, · · · , L4 in terms of the
elastic coefficients K1, · · · ,K4 that account for the elastic energy of splay, twist,
and bend that occur in the well-known Frank energy density, which models liquid
crystals in terms of functions n = n(x) valued in S

2. They found that L4 = 0 if and
only if K1 = K3, which is nonphysical for many applications. Thus it is desirable
to consider the energy ILdG with L4 �= 0. It is interesting to note that when L4 �= 0,
the unconstrained Landau-de Gennes energy given by (8) with �b(Q) replaced by
a polynomial is unbounded from below. Thus minimizers do not exist in general for
boundary value problems with this energy. See [3].

For� in R
2, we proved Hölder continuity of finite energy minimizers in [4] under

general conditions for energy functionals of the form

F(Q) =
∫
�

[Fe(Q(x),DQ(x))+ fb(Q(x))]dx

by using harmonic and elliptic replacements to construct finite energy comparison
functions. In particular we established that finite energy minimizers to the quasilin-
ear constrained energy ILdG in (8) under the coercivity condition (38) are Hölder
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continuous in �. We also proved under the additional assumption L2 = L3 = 0
that finite energy minimizers for (8) satisfy the “physicality condition,” Q(x) ∈ M
for all x ∈ �. Here we establish this property without requiring the additional
assumption.

In Sect. 4 of this paper we describe a connection between the constrained
energies J [u] and ILdG[Q]. Using Theorem 1, we prove in Theorem 2 that under
appropriate coercivity conditions on L1, · · · , L4, finite energy minimizers of ILdG
with all elasticity terms are in C2(�); moreover, they satisfy a strong physicality
condition: if �′ is an open set such that �′ ⊂⊂ �, then Q(�′) ⊂ M and
dist(Q(�′), ∂�) ≥ c > 0. Thus in compact subsets of �, the eigenvalues of
minimizers are contained in closed subintervals of the physical range (− 1

3 ,
2
3 ).

2 Continuity and H 2
loc Estimates for Minimizers in

Two-Dimensional Domains

Assume that � is a bounded C2 domain in R
2. Let � = {x ∈ � : u(x) ∈ ∂K}.

In this section we will show that finite energy minimizers u of J are locally Hölder
continuous in �, C2 in �\�, and globally Hölder continuous in � if their boundary
values are sufficiently smooth. In addition, they are in H 2

loc(�).
Our proof of the first statement is an application of (2), (3), and a result in [4] for

two-dimensional domains. We will ultimately prove (in Sect. 3) that � = ∅.

Proposition 1 Assume that � is a bounded C2 domain in R
2. Assume u = u(x) is

in H 1(�;K) and u is a finite energy minimizer of J in �. Let� = {x ∈ � : u(x) ∈
∂K}.

(a) If �′ is a connected open set with �′ ⊂⊂ �, there exist constants 0 < σ < 1
and c1 > 0 such that ω(d) = c1d

σ is a modulus of continuity for u in �′. The
constants σ and c1 depend only on J (u), �, dist (�′, ∂�), M1, and the constants
M and λ in (2) and (3).

(b) If u0 ∈ H 1(�;K) and J (u0) < ∞ such that u0 ∈ C0,1(∂�;K) and∫
∂�

f (u0)ds < ∞ and if u ∈ H 1(�;K) is a minimizer of J in Au0 = {v ∈
H 1(�;K) : v−u0 ∈ H 1

0 (�;Rq)}, then there exists a constant 0 < β < 1 such that
u ∈ Cβ(�;K). The modulus of continuity, ω(d) = c2d

β , has constants depending
only on J (u), �,M1,M , λ and u0.

(c) The minimizer u is continuous in � and C2,δ in the open set � \ � for all
0 < δ < 1.

Proof In [4] we investigated finite energy minimizers Q̃(x) of a constrained energy
of the form

J̃ (Q) =
∫

�

(Fe(Q,DQ)+ fb(Q))dx
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over all Q ∈ H 1(�;M) such that Q −Q0 ∈ H 1
0 (�; S0) and J̃ (Q0) < ∞, where

M is an open bounded convex subset of S0 = {Q ∈ M
3×3 : Q = Qt and tr Q = 0}

and M
3×3 is the set of 3 × 3 real-valued matrices. Note that S0 is isometrically

isomorphic to R
5. Here fb(Q) = gb(Q)−κ|Q|2+b0 for Q ∈ S0 (and∞ otherwise)

and it is assumed that gb is a smooth convex function defined on M such that
gb(Q) → ∞ as Q → ∂M with Q ∈ M. Since f (v) = f0(v) − M

2 |v|2, our
assumptions (2) and (3) on f (v) and F(v,Dv) correspond to the assumptions (1.2)
and (1.4) on fb(Q) and Fe(Q,DQ) in [4] that were used to prove the same Hölder
continuity on Q̃ = Q̃(x) that we wish to prove here for u = u(x). The change from
energy densities that depend on the variable Q ∈ S0 to those that depend on u ∈ R

q

is a trivial one, and the arguments in the proofs of Theorem 1 and 2 go through to
prove (a) and (b).

To prove (c), we first note that by (a), u is continuous in � and hence u−1(K) =
� \ � is an open set. To verify that u is C2,δ on this set, we argue as in [4],
Corollary 2. Indeed, assume B4r (x0) ⊂⊂ � \�. Note that f is bounded and C2 on
a neighborhood of u(B4r (x0)). We can then take smooth first variations for J about
u supported in B4r (x0) to conclude that u is a weak solution of (4) on B4r (x0). We
can apply the result from [7], Ch. VI, Proposition 1 asserting that in two space
dimensions a continuous weak solution of (3)–(4) with fu(u(x)) bounded is in
W 2,p(B3r (x0)) for some p > 2 and thus its first derivatives are Hölder continuous
on B2r (x0). Now we can apply techniques from linear elliptic theory in [7], Ch. III.
Taking (3) into account these lead to u ∈ C2,δ(Br(x0)). �

Our next objective is to show that u ∈ H 2
loc(�). To define variations u+ twl that

will provide a proof, we will need several properties of the convex potential

f0(v) = f (v)+ M

2
|v|2

in a family of cones C with vertices in the convex set K. For ease of notation, assume
from now on without loss of generality that 0 is in K. Since K is a bounded convex
set in R

q , it is starlike with respect to 0. Let Sq−1 = ∂B1(0) where B1(0) is the open
unit ball in R

q centered at 0. Let g : Sq−1 → R
+ be in C0,1(Sq−1) such that the

map

ν ∈ S
q−1 → g(ν)ν ∈ R

q

is a parametrization of ∂K. Define 0 < m1 < m2 by

m1 = inf {g(ν) : ν ∈ S
q−1} and m2 = sup{g(ν) : ν ∈ S

q−1}. (9)
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Fig. 1 The cones C−
v and C+

v

Define G(x) : B1(0)→ K by

G(x) =
{
g( x

|x| )x if x �= 0

0 if x = 0.
(10)

Thus G is a bi-Lipschitz continuous map from B1(0) onto K. Let Yμ = G(Bμ(0))
for 0 < μ < 1. Then Yμ is an open convex subset of K and Yμ ↑ K as μ ↑ 1. Fix
r0 > 0 and 0 < μ0 < 1 so that Br0(0) ⊂ Yμ0 .

Definition We define a family of cones C as follows: For each v in K \ Br0(0),
we define the cone C−

v to be the closed half-cone with vertex v, axis containing the
ray from v to 0, and aperture α = α(v) in (0, π2 ) determined by sinα = r0|v| . (See

Fig. 1). The cone C+
v is the reflection of C−

v about the point v, i.e.,

C+
v = {w = v + ξ : ξ ∈ R

q and v − ξ ∈ C−
v }.

We define C to be the family of all cones, C−
v and C+

v , with v in K \ Br0(0).

For v as above, the ball Br0(0) is contained in C−
v and is tangent to its boundary.

Thus each ray in C−
v with initial point v intersects ∂Br0(0) at least once. Also r0 <

|v| ≤ m2 and thus there exists α0 ∈ (0, π2 ) such that

1 > sinα ≥ r0

m2
≡ sinα0 > 0 for all v ∈ K \ Br0(0). (11)
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The result below follows from (11) and the symmetry of C−
v and C+

v .

Proposition 2 Assume v ∈ K \ Br0(0), z is a point on the axis of C+
v with z �= v,

and γ satisfies |z− v| ≥ γ > 0. If r > 0 satisfies r ≤ γ sinα0, then

Br(z) ⊂ C+
v . (12)

Proof The hypotheses ensure that

r ≤ γ sinα ≤ |z− v| sinα

for α = α(v). It follows from this and the symmetry of C−
v and C+

v that Br(z) ⊂
C+
v . �

Proposition 3 If v ∈ K \Yμ and μ > μ0, then C+
v ∩K ⊂ K \Yμ.

Proof If not, there exists w ∈ C+
v ∩K such that w /∈ K \ Yμ and hence w ∈ Yμ.

Thus w �= v and w = v + ξ for some ξ �= 0. The ray with initial point v that
passes through v − ξ is in C−

v and hence contains a point y in ∂Br0(0) ∩ C−
v . Since

μ > μ0, ∂Br0(0) ⊂ Yμ. By the convexity of Yμ, the segment yw is contained in
Yμ. But v ∈ yw ⊂ Yμ, which contradicts the fact that v ∈ K \Yμ. �

Define s0 = max{f0(v) : v ∈ ∂Br0(0)}. Since f0 is continuous on K and
f0(v) → ∞ as v → ∂K with v in K, there exists a constant μ1 in (μ0, 1) such
that

f0(v) ≥ 1 + s0 for all v in K \Yμ1 . (13)

From now on, we fix 0, r0, α0,m1,m2, 0 < μ0 < μ1 < 1, and s0 as above. We
then have the following:

Lemma 1 For any v in K \ Yμ1 and w in C+
v ∩ K such that w �= v, we have

∇f0(w) · (w − v) > 0.

Proof If this is false, there exists v in K \ Yμ1 and w ∈ C+
v ∩ K such that w �= v

and ∇f0(w) · (w − v) ≤ 0. By Proposition 3, w ∈ K \Yμ1 . Consider a linear path
given by p(t) = v + t w−v

|w−v| for t ≤ t ≤ t where p(t) ∈ ∂Br0(0) and t = |v − w|.
Setting h(t) = f0(p(t)) we have h′(t) ≤ 0. By definition of m2 (see (9)), we have

0 < t − t = |p(t)− p(t)| = |w − p(t)| ≤ |w| + |p(t)| ≤ 2m2.

Since h(t) is convex, we then have

0 ≥ h′(t) ≥ h(t)− h(t)

t − t
≥ h(t)− h(t)

2m2
.

This is impossible since m2 > 0 and by definition of s0,
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h(t)− h(t) = f0(w)− f0(p(t)) ≥ (1 + s0)− s0 = 1.

�
Corollary 1 If v ∈ K \Yμ1 and l = wv is a ray in C+

v ∩K with initial point w and
final point v, then f0 decreases along l.

We can now prove H 2
loc estimates on minimizers using appropriate variations

u+ tφ and u+ tw.

Lemma 2 Assume that �′ is an open connected set and �′ ⊂⊂ �. If u ∈
H 1
loc(�;K) is a finite energy local minimizer of J in �, then u ∈ H 2(�′) and

‖u‖H 2(�′) ≤ Co,

where Co depends only on J (u), �, dist (�′, ∂�),M2,M and λ.

Proof Let η0 > 0 satisfy 3
√

2η0 <
1
4 dist (�′, ∂�). Define

�′′ = {x ∈ � : dist (x,�′) < 1

2
dist (�′, ∂�)} (14)

and let ω(d) = Cdσ be a modulus of continuity for u on �′′. Given η > 0 with
η < η0, let D0 = {Dm : m ∈ N} be a tiling of R2 by closed squares of side length
η, so that R2 = ∪∞m=1Dm and distinct squares in this tiling have at most one edge in
common. For each m ∈ N let Em be the union of Dm and its eight neighbors. Thus
Em and Dm have the same centers and Em has side length 3η. Set

D1 = {Dm ∈ D0 : Dm ∩�′ �= ∅}.

Then D1 = {Dml
: 1 ≤ l ≤ L}. For ease of notation, let D̃l and Ẽl denote Dml

and
Eml

, respectively, for 1 ≤ l ≤ L. Note that by our definition of η0, Ẽl ⊂ �′′ for
1 ≤ l ≤ L.

We first work through the case q ≥ 2. Letμ ∈ [μ1, 1). Thusμ1 ≤ μ ≤ μ+3
4 < 1.

(Later we will also require that (1 − μ) is sufficiently small.) We partition D1 =
D2 ∪D3 as follows:

D̃l ∈ D2 if u(Ẽl) ∩ (K \Yμ+3
4
) �= ∅,

D̃l ∈ D3 if u(Ẽl) ⊂ Yμ+3
4
.

We first assume D̃l ∈ D2 and show that u ∈ H 2(D̃l). Note that in this case,
u(Ẽl) is not a subset of ∂K because if so, Ẽl ⊂ � (by (1) and (2) since J (u) <∞)
and this would imply that |Ẽl | = 0, a contradiction. From this and the definition of
D2 it follows that there exists y ∈ Ẽl such that u(y) ∈ K \Yμ+3

4
. Thus
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u(y) = μ̃g(ν)ν for ν = u(y)

|u(y)| ∈ Sq−1

and some constant μ̃ depending on y such that μ+3
4 < μ̃ < 1. Set vl = μg(ν)ν.

Recall that μ0 < μ1 ≤ μ <
μ+3

4 ; hence vl is on the segment between 0 and u(y)

and is contained in K by convexity. Also vl ∈ K \Yμ1 ⊂ K \Br0(0). Thus the cone
C+
vl

is in our family of cones C and u(y) is on the axis ofC+
vl

. Sincem2 ≥ g(ν) ≥ m1

and 1 − μ > μ̃ − μ >
μ+3

4 − μ = 3
4 (1 − μ), using the definition of u(y) and vl ,

we have

m2(1 − μ) ≥ g(ν)(μ̃− μ) = |u(y)− vl | (15)

> m1(
μ+ 3

4
− μ) = 3m1

4
(1 − μ) ≡ γ1 > 0.

Next assume further that η satisfies

ω(3
√

2η) <
3m1

4
(1 − μ) sinα0 ≡ r1 = γ1 sinα0. (16)

Since y ∈ Ẽl and the diameter of Ẽl is 3
√

2η, u(Ẽl) ⊂ Br1(u(y)). By (15) and (16),

0 < r1 = γ1 sinα0 < |u(y)− vl | sinα0.

From this and Proposition 2, we have Br1(u(y)) ⊂ C+
vl

. Thus

u(Ẽl) ⊂ Br1(u(y)) ⊂ C+
vl
. (17)

Let ζl ∈ C2
c ((Ẽl)

o) such that ζl = 1 on D̃l and 0 ≤ ζl ≤ 1. Define ζl to be zero
in � \ (Ẽl)

o. (For other values 1 ≤ j ≤ L, we shall assume that the definition of
ζj in Ẽj differs only by a rigid translation that maps Ẽj onto Ẽl). For x ∈ �, and
h �= 0 sufficiently small, define

wl(x) = ζ 2
l (x)(vl − u(x))|∇hu(x)|2 (18)

for 1 ≤ l ≤ L where ∇hu = (∇h
1u,∇h

2u) with ∇h
k u(x) ≡ h−1[u(x + hek)− u(x)]

for k = 1, 2. By (14) and Proposition 1, we can choose t(h) > 0 depending only on
h, J (u), and dist (�′, ∂�) so that

τ ≡ tζ 2(x)|∇hu(x)|2 ≤ 1 for x ∈ � and 0 ≤ t ≤ t(h).

Note that if wl(x) �= 0, then x ∈ Ẽl ⊂ �′′ and by (17), u(x) ∈ K ∩ Br1(u(y)) ⊂
K ∩ C+

vl
. Hence
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u(x)+ twl(x) = u(x)+ τ(vl − u(x)) (19)

= (1 − τ)u(x)+ τvl ∈ K ∩ C+
vl

by convexity, and it is located on the ray from u(x) to vl in K∩C+
vl

. By Corollary 1,
we have

f0(u(x)+ twl(x)) ≤ f0(u(x)) for all x ∈ � and 0 ≤ t ≤ t(h).

Thus
∫

�

f0(u+ twl)dx ≤
∫

�

f0(u)dx for 0 ≤ t ≤ t(h)

and since u is a minimizer and f (u) = f0(u)− M
2 |u|2,

0 ≤ J (u+twl)−J (u) ≤
∫

�

((F (u+twl,D(u+twl))−F(u,Du)+M

2
(|u|2−|u+twl |2))dx.

Dividing by t and letting t → 0, we obtain

0 ≤
∫

�

(FP (u,Du) : Dwl + [Fu(u,Du)−Mu] · wl)dx (20)

=
∫

Ẽl

(FP (u,Du) : Dwl + [Fu(u,Du)−Mu] · wl)dx.

We now proceed as in the proof of [7], Ch. II, Thm 1.2. Let Ci denote constants
that are independent of h. Consider D̃l ∈ D2 and ζ ≡ ζl as above. The first step is
to consider the test function φ ≡ φl = φl,k defined by

φl,k(x) = [ζ 2(x)u(x + hek)+ ζ 2(x − hek)u(x − hek)− (ζ 2(x)+ ζ 2(x − hek))u(x)]h−2

= ∇−h
k

(ζ 2∇h
k u) for 1 ≤ k ≤ 2,

where ∇h
k u(x) = h−1[u(x + hek) − u(x)] for h �= 0 sufficiently small so that φ

is compactly supported in (Ẽl)
◦ for k = 1, 2. Recall that Ẽl ⊂ �′′ and u(Ẽl) ⊂

Br1(u(y)) ⊂ K. Thus by (17), u(Ẽl) ⊂ K∩C+
vl

. Since f0(v) is convex on K, it was
proved in [5] that for h sufficiently small and 0 < t < t(h) sufficiently small, we
have

∫
Ẽl

(f0(u+ tφl,k)− f0(u))dx ≤ 0.
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As in (20), since u is a minimizer of J we have

0 ≤
∫

�

(FP (u,Du) : Dφl,k + [Fu(u,Du)−Mu] · φl,k)dx (21)

=
∫

Ẽl

(FP (u,Du) : Dφl,k + [Fu(u,Du)−Mu] · φl,k)dx.

Here
∫

Ẽl

(FP (u,Du) : Dφl,k)dx =
∫

Ẽl

(Fpiα
(u,Du) · ∂

∂xα
(∇−h

k [ζ 2∇h
k u

i])dx

=
∫

Ẽl

[
A
αβ
ij (u)

∂uj

∂xβ
+ Bα

i (u)

]
· ∂

∂xα
(∇−h

k [ζ 2∇h
k u

i])dx

= −
∫

Ẽl

{
∇h
k

[
A
αβ
ij (u)

∂uj

∂xβ
+ Bα

i (u)

]}
· ∂

∂xα
(ζ 2∇h

k u
i)dx

−
∫

Ẽl

{
∇h
k

[
A
αβ
ij (u) ·

∂uj

∂xβ
+ Bα

i (u)

]}
· {ζ 2∇h

k (
∂ui

∂xα
)+ 2ζ

(
∂ζ

∂xα

)
(∇h

k ui)}dx

and
∫

Ẽl

([Fu(u,Du)−Mu] · φl,k)dx

=
∫

Ẽl

[
Du(A

αβ
ij (u)) ·

∂ui

∂xα
· ∂u

j

∂xβ
+Du(B

α
i (u)) ·

∂ui

∂xα
−Mu

]
· [∇−h

k (ζ 2∇h
k u)]dx

= −
∫

Ẽl

∇h
k

{[
Du(A

αβ
ij (u)) ·

∂ui

∂xα
· ∂u

j

∂xβ
+Du(B

α
i (u)) ·

∂ui

∂xα
−Mu

]}
· (ζ 2∇h

k u))dx

for 1 ≤ k ≤ 2. It follows that

λ

2

∫

Ẽl

|∇hDu|2ζ 2 dx ≤ C0

∫

Ẽl

|∇hu|2|Du|2ζ 2 dx + C1 (22)
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for all η sufficiently small, where λ is the constant defined in our assumption (3).
Next we use (20) and our definition of wl to prove a second inequality that will
provide an upper bound on the second derivatives of u in L2(Ẽl).

By (20) and our definition of wl , we have

0 ≤
∫

Ẽl

(FP (u,Du) : Dwl + [Fu(u,Du)−Mu] · wl)dx (23)

=
∫

Ẽl

[
A
αβ
ij
(u) · ∂u

j

∂xβ
+ Bα

i (u)

]
· ∂

∂xα
(ζ 2(vil − ui(x))|∇hu|2)dx

+
∫

Ẽl

[
Du(A

αβ
ij
(u)) · ∂u

i

∂xα
· ∂u

j

∂xβ
+ (Du(B

α
i (u))) ·

∂ui

∂xα
−Mu

]
· ζ 2(vl − u(x))|∇hu|2dx.

Recall that u(Ẽl) ⊂ Br1(u(y)) and by (15) and (16),

|vl − u(x)| ≤ |vl − u(y)| + |u(y)− u(x)| ≤ |vl − u(y)| + r1

≤ m2(1 − μ)+ 3m1

4
sinα0(1 − μ) ≡ C2(1 − μ),

for all x in Ẽl . Using this we see from (23) that

λ

2

∫

Ẽl

|∇hu|2|Du|2ζ 2 dx ≤ C3(1 − μ)

∫

Ẽl

|∇hDu|2ζ 2 dx + C4. (24)

Note that C0 and C3 depend only on λ and M2. Taking (1−μ) sufficiently small

so that C3(1 − μ) ≤ λ2

8C0
, it follows from (22) and (24) that

∫

D̃l

(|∇hDu|2 + |∇hu|2|Du|2)dx ≤ C5. (25)

The constants Cj are uniform in h for |h| ≤ h0. Letting h→ 0 we get

∫

D̃l

(|D2u|2 + |Du|4)dx ≤ C5. (26)

This inequality holds for all D̃l ∈ D2. If D̃l ∈ D3, then fu is bounded on a
neighborhood of the union of all such squares. It follows as in the proof from [7],
Ch. II referred to above that we have (26) (with a possibly larger value of C5) in this
case as well.
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In conclusion, we first fix μ ∈ (μ1, 1) sufficiently close to 1 so that (25) follows
from (22) and (24). We then choose η ∈ (0, η0) sufficiently small so that (16), (22),
and (24) hold. This fixes the covering D1 such that (26) holds for a fixed constant
C5 for all 1 ≤ l ≤ L. Summing on l we have

∫
�′ |D2u|dx <∞.

We now comment on the case q = 1. In this instance K is a bounded interval
(a, b) such that f0(v) is a convex function satisfying lim

v↑bf0(v) = ∞ = lim
v↓af0(v). It

follows that there exists δ > 0 so that f ′0(v) > 0 for b−δ < v < b. In the same way
we have that f ′0(v) < 0 for a < v < a + δ. With this information we can carry out
the argument as above using half lines R−

v (R
+
v ) in place of the cones C−

v (C
+
v ). �

3 Proof of Theorem 1

Recall that u ∈ C2(�0) and �0 ⊂ � \ �. The two facts that u ∈ H 2
loc(�) and u

satisfies Eq. (4) on �0 imply that u is a strong solution to the equilibrium equations
(4) throughout � and that each term appearing in this equation is in L2

loc(�). We
use this to prove Theorem 1.

Proof Suppose that B2R(x0) ⊂⊂ �. Let (ρ, θ) be polar coordinates centered at x0
and consider the field of pure second derivatives D2

υυu(x) where υ = υ(x) = eθ
for x ∈ BR(x0). We have D2

υυu(x) = uρ
ρ
+ uθθ

ρ2 is in L2(BR(x0)). Let ζ = ζ(ρ) ∈
C2
c (BR(x0)) such that ζ = 1 on BR/2(x0). Fix 0 < r ≤ R

2 . Multiplying the Eq. (4)
by ζ 2D2

υυu and integrating over BR(x0) \ Br(x0), we obtain

∫

BR(x0)\Br(x0)

(divFP −Fu) ·ζ 2D2
υυu dx =

∫

BR(x0)\Br(x0)

fu(u) ·ζ 2
(
uρ

ρ
+ uθθ

ρ2

)
dx.

(27)
Since divFP − Fu and the test function D2

υυu are in L2(BR(x0)) we get

∣∣∣∣∣∣∣
∫

BR(x0)\Br(x0)

(divFP − Fu) · ζ 2D2
υυu dx

∣∣∣∣∣∣∣
≤ C1, (28)

where C1 is independent of r for r in (0, R2 ]. By (4), fu is also in L2(BR(x0)).
Consider

∫

BR(x0)\Br(x0)

fu(u) · ζ 2 uθθ

ρ2
dx =

∫ R

r

∫ 2π

0
fu(u) · ζ 2 uθθ

ρ
dθdρ.

Since u is a finite energy minimizer of J in �, f (u) is in L1(�) and for almost
every ρ satisfying r ≤ ρ ≤ R we have
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∫ 2π

0
(|f (u(ρ, θ))| + |fu(u(ρ, θ))|2 + |uθ (ρ, θ)|2)dθ <∞. (29)

For such a value of ρ, if there is an interval (α, β) ⊂ [0, 2π) so that u(ρ, β) ∈ �

and u(ρ, θ) /∈ � for all θ in [α, β), then

∫ θ

α

∂φf (u(ρ, φ))dφ =
∫ θ

α

fu(u(ρ, φ) · uφdφ ≤ C1 <∞.

Thus f (u(ρ, θ))−f (u(ρ, α)) ≤ C1 <∞. However, lim
θ→β

f (u(ρ, θ)) = ∞ and this

is not possible. It follows that for each ρ for which (29) holds, we have ∂Bρ(x0) ∩
� = ∅. Since u ∈ C2(� \�) it follows that the functions u(ρ, ·) and f (u(ρ, ·)) are
smooth. This allows us to integrate by parts and obtain

ζ 2(ρ)

ρ

∫ 2π

0
fu · uθθdθ = −ζ 2(ρ)

ρ

∫ 2π

0
uθ ·D2f · uθ dθ

≤ M

∫

∂Bρ(x0)

|Du|2ds.

We conclude then that
∫

BR(x0)\Br(x0)

fu · uθθ
ρ2

ζ 2dx ≤ M

∫
BR(x0)

|Du|2dx ≤ C2. (30)

Next using the estimate

∫
BR(x0)

(|fu(u(x))|2 + |Du(x)|2)dx <∞

and the same argument as above on almost every line parallel to one of the
coordinate axes it follows that f (u(x)) ∈ W 1,1(BR(x0)) and Df (u) = fu · Du

almost everywhere on BR(x0). With this fact we see that

∫
BR(x0)\Br(x0)

ζ 2fu(u(x)) · uρ
ρ
dx

=
∫ 2π

0

∫ R

r

ζ 2(ρ)(f (u(ρ, θ)))ρdρdθ

= −r−1
∫
∂Br (x0)

f (u)ds −
∫
BR(x0)\BR/2(x0)

f (u)
(ζ 2)ρ

ρ
dx,

where for the last term we used the fact that ζ 2 = 1 on BR/2(x0).
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Thus
∫
BR(x0)\Br(x0)

ζ 2fu · uρ
ρ
dx ≤ −r−1

∫
∂Br (x0)

f ds + C3. (31)

Taking (28), (30), and (31) together with (27) we see that

r−1
∫
∂Br (x0)

f (u)ds ≤ C4 for 0 < r <
R

2
,

where C4 is independent of r . Since u(x) is continuous on � and limu→u0 f (u) =
f (u0) ∈ (−∞,∞] for each u0 ∈ K, we have

2πf (u(x0)) ≤ C4,

where C4 depends on R, J (u), and ‖u‖H 2(BR(x0)
. In particular � = ∅. Furthermore,

applying Lemma 2 we see that dist (u(x0), ∂K) ≥ c > 0 where c depends on
dist (x0, ∂�) and J (u). �

4 Applications to Liquid Crystals

We briefly describe the liquid crystal model that motivates our constrained problem
and state our result as it applies to this case. A more detailed overview of energies
for liquid crystals is given in [2]. Let � ⊂ R

3 be a region filled with rod–like
liquid crystal molecules. For x ∈ � and p ∈ S

2 denote by ρ(x, p) the probability
distribution for the long axes of the molecules near x aligned with the direction p.
We have

ρ(x, p) ≥ 0,
∫

S
2

ρ(x, p)dp = 1. (32)

If the directions are random so that no direction is preferred, then ρ(x, p) = ρ0 =
1
4π and the liquid crystal is in the isotropic state at x. The de Gennes Q tensor is
introduced as a macroscopic order parameter

Q(x) =
∫

S
2

(p ⊗ p − 1

3
I )ρ(x, p)dp (33)

representing the second moments of ρ normalized so that Q = 0 if ρ = ρ0. Set
S0 = {A ∈ M

3×3 : A = At, trA = 0}. Then from (32) and (33) we see that Q takes
on values in the open, bounded, and convex set
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M =
{
A ∈ S0 : −1

3
< λmin(A) ≤ λmax(A) <

2

3

}
, (34)

where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of A,
respectively. This is the set of physically attainable states in S0. A free energy for
constant nematic liquid crystal states identified with Q ∈ M was developed by
Katriel et al. [9] and Ball and Majumdar [3]. Assuming Maier–Saupe molecular
interactions it takes the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψb(Q) = Tfms(Q)− κ|Q|2 for Q ∈M,

= ∞ for Q ∈ S0 \M,

fb(Q) = infρ∈AQ
(
∫
S

2

ρ log ρ dp)
(35)

where

AQ = {ρ ∈ L1(S2) : ρ ≥ 0,
∫

S
2

ρ(p)dp = 1, Q =
∫

S
2

(p ⊗ p − 1

3
I ) ρ(p) dp}

and T , κ > 0. It is shown in [3] that fms is convex on M with lim
Q→∂M

f (Q) =
∞ and it is shown in [6] that f ∈ C∞(M). Ball and Majumdar then used ψb to
define an energy functional to characterize stable spatially varying liquid crystal
configurations. They considered local minimizers Q ∈ H 1(�,M) to

ILdG[Q] =
∫

�

(G(Q,DQ)+ ψb(Q))dx, (36)

where following [10] the elastic energy density takes the form

G(Q,DQ) =
5∑

i=1

LiIi(Q,DQ), (37)

such that

I1 = DxkQijDxkQij I2 = DxjQijDxkQik,

I3 = DxjQikDxkQij I4 = Q�kDx�QijDxkQij ,

I5 = ε�jkQ�iDxjQki .

These are polynomial expressions in terms of Q and DQ that satisfy the principle
of frame indifference and material symmetry. The expressions I1, I2, I3, and I4
satisfy both properties. Analytically this means that I1, · · · , I4 are invariant under
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transformations over O(3) while I5 satisfies only frame indifference and is invariant
under transformations over SO(3). The first four terms are quadratic in DQ while
the fifth is linear and is included in the elastic energy density when modeling chiral
liquid crystals. Here ε�jk is the Levi–Civita tensor.

Let D := {D = [Dijk] 1 ≤ i, j, k ≤ 3 : Dijk = Djik and
3∑

i=1
D��k = 0 for

each i, j , and k}. The elasticity constants are to be chosen so that
4∑

�=1
LkI�(Q,D) ≥

c0|D|2 for some c0 > 0 for all Q ∈ M and D ∈ D. Inequalities that ensure the
coercivity condition are

L′1 +
5

3
L2 + 1

6
L3 > 0, L′1 −

1

2
L3 > 0, L′1 + L3 > 0, (38)

where

L′1 =
{
L1 − 1

3L4 if L4 ≥ 0

L1 + 2
3L4 if L4 ≤ 0.

(See [2]).
The space S0 has dimension five. If we take an orthonormal basis {E1, . . . , E5}

we can parameterize the space with the isometry

Q(v) : R5 → S0, Q(v) =
5∑

j=1

vjEj .

Set K = {v ∈ R
5 : Q(v) ∈ M}, f (v) = ψb(Q(v)) and F(v,Dv) =

G(Q(v),DQ(v)). Then K is an open, bounded, and convex region in R
5, f satisfies

(2) and F satisfies (3). For the case n = 2 we view the liquid crystal body on the
infinite cylinder � × R where � ⊂ R

2 is the cylinder’s cross section and the order
parameter is Q = Q(x1, x2). We can then apply our results from Theorem 1 to
J [v] = ILdG[Q(v)] to obtain:

Theorem 2 Let � ⊂ R
2 and letQ ∈ H 1(�;M) be a finite energy local minimizer

for ILdG[·] satisfying (35)-(38). Then Q ∈ C2(�). If E ⊂⊂ �, then Q(E) ⊂⊂ M
andQ satisfies the equilibrium equation

[divGD(G,DQ)−GQ(Q,DQ)− ψb,Q(Q)]st = 0 in �,

where [A]st is the symmetric and traceless part of A ∈ M
3×3.
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On Some Models in Radiation
Hydrodynamics

Xavier Blanc, Bernard Ducomet, and Šárka Nečasová

1 Introduction

Modeling the radiation hydrodynamics means to find a way to incorporate effects
of radiation in the classical hydrodynamics framework. There exist numerous
applications ranging from combustion and high-temperature hydrodynamics to
models of gaseous stars in astrophysics. The mathematical models have to reflect the
effect of coupling between the macroscopic description of the fluid and the statistical
character of the motion of the massless photons see, e.g., the monograph by
Chandrasekhar [10]. The relativistic version of model of radiation hydrodynamics
has been introduced by Pomraning [45] and Mihalas and Weibel-Mihalas [40] and
investigated more recently in astrophysics and laser applications (in the inviscid
case) by Lowrie, Morel and Hittinger [36] and Buet and Després [9], with a special
attention to asymptotic regimes.

In our paper we follow the studies and modeling by Buet and Després [9],
Golse and Perthame [25]. The motion of the fluid is governed by the standard
field equations of classical continuum fluid mechanics describing the evolution of
the mass density " = "(t, x), the velocity field u = u(t, x), and the absolute
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temperature ϑ = ϑ(t, x) as functions of the time t and the Eulerian spatial
coordinate x ∈ Ω ⊂ R

3. The effect of radiation, represented by its quanta—
massless particles called photons traveling at the speed of light c—is incorporated in
the radiative intensity I = I (t, x,ω, ν), depending on the direction vector ω ∈ S2,
where S2 ⊂ R

3 denotes the unit sphere, and the frequency ν ≥ 0. The collective
effect of radiation is then expressed in terms of integral means with respect to the
variables ω and ν of quantities depending on I . The radiation energy ER is given as

ER(t, x) = 1

c

∫
S2

∫ ∞

0
I (t, x,ω, ν) dω dν. (1.1)

The time evolution of I is described by a transport equation with a source
term depending on the absolute temperature, while the effect of radiation on
the macroscopic motion of the fluid is represented by extra source terms in the
momentum and energy equations evaluated in terms of I .

2 Compressible Viscous Radiation Fluid

Let us first consider the viscous case. The system of equations in (0, T )×Ω describ-
ing the motion of viscous fluid consists of the continuity equation, momentum
equations, energy balance:

∂t" + divx("u) = 0;
∂t ("u)+ divx("u ⊗ u)+ ∇xp(", ϑ) = divxT− SF ;
∂t

(
"
(

1
2 |u|2 + e(", ϑ)

))
+ divx

(
"
(

1
2 |u|2 + e(", ϑ)

)
u
)
+ divx

(
pu + q − Tu

)
= −SE.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)
The radiation is modeled by the radiation transport equation

1

c
∂t I + ω · ∇xI = S in (0, T )×Ω × (0,∞)× S2. (2.2)

The symbol p = p(", ϑ) denotes the thermodynamic pressure and e = e(", ϑ)

is the specific internal energy, interrelated through Maxwell’s equation

∂e

∂"
= 1

"2

(
p(", ϑ)− ϑ

∂p

∂ϑ

)
. (2.3)

Furthermore, T is the viscous stress tensor determined by Newton’s rheological
law

T = μ

(
∇xu +∇ t

xu − 2

3
divxu

)
+ η divxu I, (2.4)
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where the shear viscosity coefficient μ = μ(ϑ) > 0 and the bulk viscosity
coefficient η = η(ϑ) ≥ 0 are effective functions of the absolute temperature.
Similarly, q is the heat flux given by Fourier’s law

q = −κ∇xϑ, (2.5)

with the heat conductivity coefficient κ = κ(ϑ) > 0.
Finally,

S = Sa,e + Ss, (2.6)

where

Sa,e = σa

(
B(ν, ϑ)− I

)
, Ss = σs

(
1

4π

∫
S2

I (·,ω) dω − I

)
, (2.7)

with B(ν, ϑ) = 2hν3c−2
(
e
hν
kϑ − 1

)−1
which define the radiative equilibrium

function, h and k are the Planck and Boltzmann constants and with the absorption
coefficient σa = σa(ν, ϑ) ≥ 0, and the scattering coefficient σs = σs(ν, ϑ) ≥ 0.
Moreover,

SE =
∫
S2

∫ ∞

0
S(·, ν,ω) dν dω, SF = 1

c

∫
S2

∫ ∞

0
ωS(·, ν,ω) dν dω. (2.8)

More restrictions on the structural properties of constitutive relations will be
imposed in subsection below.

System (2.1)–(2.2) is supplemented with the boundary conditions:
No-slip, no-flux:

u|∂Ω = 0, q · n|∂Ω = 0; (2.9)

Transparency:

I (t, x, ν,ω) = 0 for x ∈ ∂Ω, ω · n ≤ 0, (2.10)

where n denotes the outer normal vector to ∂Ω .

Remark 1 Let us mention that recently the existence of weak solutions of the full
system with Dirichlet boundary conditions for the temperature were solved, see
[11]. Moreover, let us point out that instead of transparency condition for radiative
intensity it can be considered the so-called specular reflection, see [15]. Further, the
more general boundary conditions (nonhomogeneous Dirichlet boundary conditions
for the velocity field and temperature, with given density on the input) were
investigated, see [22].
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System (2.1)–(2.10) can be viewed as a simplification of a model arising in
radiation hydrodynamics. The physical descriptions can be found, see [40, 45] in the
framework of special relativity, see also [41, 42] for a list of references and a review
of related computational works in the relativistic framework. See also [9, 12, 34–36].

The existence of local-in-time solutions and sufficient conditions for blow up of
classical solutions in the non-relativistic inviscid case were obtained by Zhong and
Jiang [56], see also papers by Jiang and Wang [29, 30] for a related one-dimensional
“Euler–Boltzmann” type models. Moreover, a simplified version of the system has
been investigated by Golse and Perthame [25], where global existence was proved
by means of the theory of nonlinear semi-groups.

2.1 Hypotheses and Main Results

The hypotheses imposed on constitutive relations are motivated by the general
existence theory for the Navier–Stokes–Fourier system developed in [20, Chapter
3]. See also [43, 44].

2.2 Constitutive Equations

We consider the pressure in the form

p(", ϑ) = ϑ5/2P
( "

ϑ3/2

)
+ a

3
ϑ4, a > 0, (2.11)

where P : [0,∞)→ [0,∞) is a given function with the following properties:

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (2.12)

0 <

5
3P(Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (2.13)

lim
Z→∞

P(Z)

Z5/3 = p∞ > 0. (2.14)

For the physical background of hypotheses (2.11)–(2.14) we refer to [13, 20].
In accordance with Maxwell’s equation (2.3), the specific internal energy e can

be taken in the form

e(", ϑ) = 3

2
ϑ

(
ϑ3/2

"

)
P
( "

ϑ3/2

)
+ a

ϑ4

"
, (2.15)

whereas the associated specific entropy reads
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s(", ϑ) = M
( "

ϑ3/2

)
+ 4a

3

ϑ3

"
, (2.16)

with

M ′(Z) = −3

2

5
3P(Z)− P ′(Z)Z

Z2 < 0.

The transport coefficients μ, η, and κ are continuously differentiable functions
of the absolute temperature such that

0 < c1(1 + ϑ) ≤ μ(ϑ), μ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c(1 + ϑ), (2.17)

0 < c1(1 + ϑ3) ≤ κ(ϑ) ≤ c2(1 + ϑ3) (2.18)

for any ϑ ≥ 0.
Finally, we assume that σa , σs , B are continuous functions of ν, ϑ such that

0 ≤ σa(ν, ϑ), σs(ν, ϑ) ≤ c1, 0 ≤ σa(ν, ϑ)B(ν, ϑ) ≤ c2, (2.19)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞), (2.20)

and

σa(ν, ϑ), σs(ν, ϑ) ≤ cϑ (2.21)

for all ν ≥ 0, ϑ ≥ 0. Relations (2.19–2.21) represent a rather crude “cutoff”
hypotheses neglecting the effect of radiation at large frequencies ν and low values
of the temperature ϑ . Note, however, that relations similar to (2.21) were derived by
Ripoll et al. [47].

Remark 2 A prototype of the above pressure law reads

p(ρ, ϑ) = c1ρ
5
3 + c2ρϑ + a

3
ϑ4,

with the corresponding internal energy and specific entropy of the form

e(ρ, ϑ) = 3

2
c1ρ

2
3 + cvϑ + a

ρ
ϑ4,

s(ρ, ϑ) = cv lnϑ − c2 ln ρ + 4a

3ρ
ϑ3,

where a, c1, c2, cv > 0.
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2.3 Weak Formulation

In the weak formulation of the Navier–Stokes–Fourier system, it is customary
to replace the equation of continuity (2.1) by its (weak) renormalized version
represented by a family of integral identities

∫ T

0

∫
Ω

((
" + b(")

)
∂tϕ +

(
" + b(")

)
u · ∇xϕ +

(
b(")− b′(")"

)
divxuϕ

)
dx dt

(2.22)

= −
∫
Ω

(
"0 + b("0)

)
ϕ(0, ·) dx

satisfied for any ϕ ∈ C∞
c ([0,∞)×Ω), and any b ∈ C∞[0,∞), b′ ∈ C∞

c [0,∞).1

Similarly, the momentum equation (2.12) is replaced by

∫ T

0

∫
Ω

("u · ∂tϕ + "u ⊗ u : ∇xϕ + pdivxϕ) dx dt (2.23)

=
∫ T

0

∫
Ω

T : ∇xϕ + SF · ϕ dx dt −
∫
Ω

("u)0 · ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T )×Ω).2

As a matter of fact, the total energy balance (2.13) is not suitable for the weak
formulation since, at least according to the recent state of the art, the term Su is not
controlled on the (hypothetical) vacuum zones of vanishing density.

Finally, similarly to [13], we consider in the weak formulation by an entropy
inequality, specifically,

∫ T

0

∫
Ω

("s∂tϕ + "u · ∇xϕ + qϑ · ∇xϕ) dx dt ≤ −
∫
Ω

("s)0ϕ(0, ·) dx (2.24)

−
∫ T

0

∫
Ω

1

ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
ϕ dx dt −

∫ T

0

∫
Ω

1

ϑ

(
u · SF − SE

)
ϕ dx dt

for any ϕ ∈ C∞
c ([0, T )×Ω), ϕ ≥ 0.

1 Note that (2.22) implicitly includes the initial condition

"(0, ·) = "0.

2 As the viscous stress contains first derivatives of the velocity u, for (2.23) to make sense, the field
u must belong to a certain Sobolev space with respect to the spatial variable. Here, we require that
u ∈ L2(0, T ;W 1,2

0 (Ω)).
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The system (2.22), (2.23), (2.24) must be supplemented with the total energy
balance

∫
Ω

(
1
2"|u|2 + "e(", ϑ)+ ER

)
(τ, ·) dx

+ ∫ τ0
∫ ∫

∂Ω×S2
, ω·n≥0

∫∞
0 ω · nI (t, x,ω, ν) dν dω dSx dt

=
∫
Ω

(
1

2"0
|("u)0|2 + ("e)0 + ER,0

)
dx, (2.25)

where ER is given by (1.1), and

ER,0 =
∫
S2

∫ ∞

0
I0(·,ω, ν) dω dν.

The transport equation (2.2) can be extended to the whole physical space R
3

provided we set

σa(x, ν, ϑ) = 1Ωσa(ν, ϑ), σs(x, ν, ϑ) = 1Ωσs(ν, ϑ)

and take the initial distribution I0(x,ω, ν) to be zero for x ∈ R
3 \Ω . Accordingly,

for any fixed ω ∈ S2, Eq. (2.2) can be viewed as a linear transport equation defined
in (0, T ) × R

3, with a right-hand side S. With the above mentioned convention,
extending u to be zero outside Ω , we may, therefore, assume that both " and I are
defined on the whole physical space R

3.

Remark 3 It is possible to introduce “weaker” solutions in the sense that we
consider energy inequality rather than energy equality. Although it seems that we
are losing a lot of information our definition of weak solution is still sufficient.
Namely, if the above defined weak solution is smooth enough it will be a strong
one. For a justification of this fact we refer to [46, Section 1.2].

Definition 1 We say that ",u, ϑ, I is a weak solution of problem (2.1)–(2.10) if

" ≥ 0, ϑ > 0 for a.a. (t, x)×Ω, I ≥ 0 a.a. in (0, T )×Ω × S2 × (0,∞),

" ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)),

u ∈ L2(0, T ;W 1,2
0 (Ω)), ϑ ∈ L2(0, T ;W 1,2(Ω)),

I ∈ L∞((0, T )×Ω × S2 × (0,∞)), I (t, ·) ∈ L∞(0, T ;L1(Ω × S2 × (0,∞)),

and if ", u, ϑ , I satisfy the integral identities (2.22), (2.23), (2.24), (2.25), together
with the transport equation (2.2).



86 X. Blanc et al.

2.4 Existence Result

We state the existence result of radiation hydrodynamics.

Theorem 1 Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that the

thermodynamic functions p, e, s satisfy hypotheses (2.11)–(2.16), and that the
transport coefficients μ, λ, κ , σa , and σs comply with (2.17)–(2.21).

Let {"ε,uε, ϑε, Iε}ε>0 be a family of weak solutions to problem (2.1)–(2.10) in
the sense of Definition 2.1 such that

"ε(0, ·) ≡ "ε,0 → "0 in L5/3(Ω), (2.26)

∫
Ω

(
1

2
"ε|uε|2 + "εe("ε, ϑε)+ ER,ε

)
(0, ·) dx (2.27)

≡
∫
Ω

(
1

2"0,ε
|("u)0,ε|2 + ("e)0,ε + ER,0,ε

)
dx ≤ E0,

∫
Ω

"εs("ε, ϑε)(0, ·) dx ≡
∫
Ω

("s)0,ε dx ≥ S0,

and

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(·, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).

Then

"ε → " in Cweak([0, T ];L5/3(Ω)),

uε → u weakly in L2(0, T ;W 1,2
0 (Ω)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

and

Iε → I weakly-(*) in L∞((0, T )×Ω × S2 × (0,∞)),

at least for suitable subsequences, where {",u, ϑ, I } is a weak solution of problem
(2.1)–(2.10).

Remark 4 In comparison with the standard Navier–Stokes–Fourier system studied
in [20], problem (2.1)–(2.10) features a new principal difficulty due to the apparent
discrepancy between the classical (non-relativistic) description of the fluid motion,
and the behavior of photons traveling with the speed of light. In particular, in
contrast with the Second law of thermodynamics, the associated entropy equation
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may contain a negative production term. This problem, related to the fact that, hypo-
thetically, one might have |u| > c, has already been observed by Buet and Després
[9, Section 2.5]. On the other hand, non-negativity of the entropy production rate
plays a crucial role in the approach developed in [13]; whence its adaptation to
the present setting requires new ideas. Instead of introducing the radiation entropy,
we keep the classical form of the entropy balance equation supplemented with the

relevant “radiation” production term proportional to 1
ϑ

(
u · SF − SE

)
. As pointed

out, this term may change sign and, accordingly, we have to establish its “weak
continuity” with respect to ϑ , u, and I contained in SF , SE . Note that this is quite
delicate as the velocity field u may develop uncontrolled time oscillations on the
hypothetical vacuum zones where " vanishes. In order to overcome this difficulty,
we use higher regularity of the ω−averages of the radiative intensity discovered by
Bardos et al. [2] and Golse et al. [26, 27]. For further generalizations and a more
complete list of references, see Bournaveas and Perthame [8].

Sketch of Proof of Theorem 1 (For More Details, See [14]) Uniform (a priori) bounds
follow from the total energy balance, entropy production equation, and other related
physical principles.

From the total energy balance (2.25), combined with hypotheses of Theorem 1,
we obtain

ess sup
t∈(0,T )

‖√"εuε‖L2(Ω) ≤ c, (2.28)

ess sup
t∈(0,T )

‖"εe("ε, ϑε)‖L1(Ω) ≤ c, (2.29)

and

ess sup
t∈(0,T )

‖ER,ε‖L1(Ω) ≤ c. (2.30)

Since the internal energy contains the radiation component proportional to ϑ4,
we deduce from (2.29) that

ess sup
t∈(0,T )

‖ϑε‖L4(Ω) ≤ c, (2.31)

and, by virtue of hypotheses (2.11)–(2.14),

ess sup
t∈(0,T )

‖"ε‖L5/3(Ω) ≤ c. (2.32)

From the transport equation (2.2), using that Iε is non-negative and applying the
“cutoff” hypothesis (2.19), we deduce a uniform bound
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0 ≤ Iε(t, x, ν,ω) ≤ c(T )(1+ sup
x∈Ω, ν≥0,ω∈S2

I0,ε) ≤ c(T )(1+I0) for any t ∈ [0, T ].
(2.33)

Finally, hypothesis (2.20), together with (2.33), yield

‖SE,ε‖L∞((0,T )×Ω) + ‖SF,ε‖L∞((0,T )×Ω) ≤ c, (2.34)

which, combined with hypothesis (2.21), implies

∥∥∥∥ 1

ϑε
SE,ε

∥∥∥∥
L∞((0,T )×Ω)

+
∥∥∥∥ 1

ϑε
SF,ε

∥∥∥∥
L∞((0,T )×Ω)

≤ c. (2.35)

Since the viscosity coefficients satisfy (2.17), we get

∫ T

0

∫
Ω

1

ϑε
Tε : ∇xuε dx dt ≥ c2‖uε‖2

L2(0,T ;W 1,2
0 (Ω))

,

where we have used a variant of the standard Korn’s inequality.
On the other hand, since Ω is a bounded, in accordance with (2.35),

∣∣∣∣
∫ T

0

∫
Ω

1

ϑε
uε · SF,ε dx dt

∣∣∣∣ ≤ c‖uε‖L1((0,T )×Ω);

whence the entropy inequality (2.24) yields the uniform bounds

‖uε‖L2(0,T ;W 1,2
0 (Ω))

≤ c, (2.36)

‖∇xϑε‖L2((0,T )×Ω) ≤ c. (2.37)

Following the same way as in [20, Chapter 3]

∫ T

0

∫
Ω

p("ε, ϑε)"
ω
ε dx dt < c, with c independent of ε, (2.38)

in particular,

{p("ε, ϑε)}ε>0 is bounded in Lp((0, T )×Ω) for a certain p > 1. (2.39)

As a second step and the most important part of the proof is to show the
weak sequential stability. Weak sequential stability of macroscopic thermodynamic
quantities, pointwise convergence of temperature, pointwise convergence of density
are similar to [20, Chapter 3] and in detail is described in [14]. Let us stress the
convergence of the radiation intensities.

Our aim is to establish the convergence of the quantities
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1

ϑε
uε · SF,ε = 1

cϑε
uε ·

∫ ∞

0
σa(ν, ϑε)

(∫
S2

ω (B(ν, ϑε)− Iε) dω

)
dν

+ 1

cϑε
uε ·

∫ ∞

0
σs(ν, ϑε)

(∫
S2

ω

((
1

4π

∫
S2

Iε dω

)
− Iε

)
dω

)
dν

and

1

ϑε
SE,ε = 1

cϑε

∫ ∞

0
σa(ν, ϑε)

(∫
S2

(B(ν, ϑε)− Iε) dω

)
dν.

Since ϑε → ϑ a.a. in (0, T )×Ω , and

uε → u weakly in L2(0, T ;W 1,2
0 (Ω;R3))

the desired result follows from compactness of the velocity averages over the sphere
S2 established by Golse et al. [26, 27], see also Bournevas and Perthame [8], and
hypothesis (2.20). Specifically, we use the following result (see [26]):

Proposition 1 Let I ∈ Lq([0, T ] × R
n+1 × S2), ∂t I + ω · ∇xI ∈ Lq([0, T ] ×

R
n+1 × S2) for a certain q > 1. In addition, let I0 ≡ I (0, ·) ∈ L∞(Rn+1 × S2).

Then

Ĩ ≡
∫
S2

I (·, ν) dω

belongs to the space Ws,q([0, T ] × R
n+1) for any s, 0 < s < inf{1/q, 1 − 1/q},

and

‖Ĩ‖Ws,q ≤ c(I0)(‖I‖Lq + ‖∂t I + ω · ∇I‖Lq ).

As the radiation intensity Iε satisfies the transport equation (2.2), by virtue of the
cutoff hypothesis (2.9)–(2.11) where S is bounded inLq∩L∞([0, T )×Ω×R

1×S2),
a direct application of Proposition 1 yields the desired conclusion

∫
S2

Iε(·, ν) dω →
∫
S2

I (·, ν) dω in L2((0, T )×Ω)

and
∫
S2

ωIε(·, ν) dω →
∫
S2

ωI (·, ν) dω in L2((0, T )×Ω)

for any fixed ν.
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Consequently,

1

ϑε
uε · Fs,ε → 1

ϑ
u · Fs

and, similarly,

1

ϑε
SE,ε → 1

ϑ
SE

as required. Note that strong (a.a. pointwise) convergence of the ω−averages is
needed as uε may fail to converge strongly on hypothetical vacuum zones, meaning
on the part of Ω where the limit density " vanishes.

Remark 5 For steady variant of radiative hydrodynamics we refer to [32].

2.5 Semi-Relativistic Models

We consider a “semi-relativistic” model of radiative viscous compressible Navier–
Stokes–Fourier system coupled to the radiative transfer equation extending the
classical model introduced in the previous subsection. The effect of radiation is still
incorporated in the radiative intensity I = I (t, x,ω, ν), depending on the direction
ω ∈ S2, where S2 ⊂ R

3 denotes the unit sphere, and the frequency ν ≥ 0, but we
take into account their relativistic corrections. The evolution of I is described by a
transport equation with a source term and the fluid-radiation coupling is expressed
through radiative sources in the momentum and energy equations. As usual we
suppose that the radiative source S is splitted into two terms

S = σa

[
B(ν,ω,u, ϑ)− I (t, x, ν,ω)

]
+ σs

(
1

4π

∫
S2 I (t, x, ν,ω′) dω′ − I (t, x, ν,ω)

)
=: Sa,e + Ss.

(2.40)
In the right-hand side the first is the emission-absorption contribution where σa > 0
is the absorption coefficient and B is a perturbation of the equilibrium Planck’s
function given by

B(ν,ω,u, ϑ) = 2h

c2

ν3

e
hν
kϑ

(
1−α ω·u

c

)
− 1

, (2.41)

where h is the Planck’s constant, k is the Boltzmann’s constant, and 0 ≤ α(ϑ) ≤ 1
is a smooth function, to be determined below. One observes that for |u|

c
<< 1 one

recovers the standard equilibrium Planck’s function B(ν, ϑ) = 2h
c2

ν3

e
hν
kϑ −1

.
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Note that the idea of this kind of perturbation is not new and has been extensively
used in recent works on radiative transfer [7, 9, 12, 19], for example, in the M1
Levermore model [37, 38].

We first suppose that the transport coefficients are smooth functions satisfying
σa(ϑ,u) = χ(|u|)σ̃a(ϑ) ≥ 0 and σs(ϑ) ≥ 0 and that both depend neither on
angular variable (2.1 - 2.2) (isotropy of radiation) nor on frequency (the so-called
grey hypothesis).

The function χ appearing in the emission-absorption coefficient is a C∞ cutoff
satisfying

χ(s) =
{

1 if s ≤ c,

0 if s ≥ c + β,

for an arbitrary β > 0. The role of this cutoff is to deal with the singularity of B
and its meaning is the following: in the “over-relativistic” regime (|u| ≥ c) where
special relativity would be violated, we decide to decouple matter and radiation.
Of course this is an arbitrary choice but only a meaningless region with respect to
physics is concerned (recall that in the relativistic setting [9], Lorentz factors of the

type
(

1 − u2

c2

)1/2
become singular for |u| = c).

In comparison with the weak formulation 2.3 the entropy inequality is replaced
by

∫ T

0

∫
Ω

(
["s + sR]∂tϕ + "su · ∇xϕ + [ q

ϑ
+ qR] · ∇xϕ

)
dx dt

≤ −
∫
Ω

("s + sR)0ϕ(0, ·) dx −
∫ T

0

∫
Ω

1

ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
ϕ dx dt

− k

h

∫ T

0

∫
Ω

[∫ ∞

0

∫
S2

1

ν

[
log

n(I)

n(I )+ 1
− log

n(B)

n(B)+ 1

]
σa(B − I ) dωdν

+
∫ ∞

0

∫
S2

1

ν

[
log

n(I)

n(I )+ 1
− log

n(Ĩ )

n(Ĩ )+ 1

]
σs(Ĩ − I ) dωdν

]
ϕ dxdx dt

(2.42)
for any ϕ ∈ C∞

c ([0, T ) × Ω), ϕ ≥ 0, where the sign of all the terms in the right-
hand side may be controlled, where sR is the radiative entropy and qR is the radiative
entropy flux.3

3 Let us recall [1] the formula for the entropy of a photon gas

sR = −2k

c3

∫ ∞

0

∫
S2

ν2 [n log n− (n+ 1) log(n+ 1)
]
dωdν, (2.43)

where n = n(I) = c2I
2hα3ν3 is the occupation number. Defining the radiative entropy flux
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Definition 2 We say that ",u, ϑ, I is a weak solution of problem (2.1)–
(2.10), (2.40), (2.41) if

" ≥ 0, ϑ > 0 for a.a. (t, x)×Ω, I ≥ 0 a.a. in (0, T )×Ω × S2 × (0,∞),

" ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)),

u ∈ L2(0, T ;W 1,2
0 (Ω)), ϑ ∈ L2(0, T ;W 1,2(Ω)),

I ∈ L∞((0, T )×Ω × S2 × (0,∞)), I ∈ L∞(0, T ;L1(Ω × S2 × (0,∞)),

and if ", u, ϑ , I satisfy the integral identities (2.22), (2.23), (2.42), (2.25), together
with the transport equation (2.2).

The existence result reads now

Theorem 2 Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that the

thermodynamic functions p, e, s satisfy hypotheses (2.11)–(2.16), that B satisfies
(2.41) and (2.46), and that the transport coefficients μ, λ, κ , σa , and σs comply
with (2.17)–(2.20). Let {"ε,uε, ϑε, Iε}ε>0 be a family of weak solutions to problem
(2.1)–(2.10) in the sense of Definition 2 such that

"ε(0, ·) ≡ "ε,0 → "0 in L5/3(Ω), (2.47)

∫
Ω

(
1

2
"ε|uε|2+"εe("ε, ϑε)+ER,ε

)
(0, ·) dx ≡

∫
Ω

(
1

2"0,ε
|("u)0,ε|2+("e)0,ε+ER,0,ε

)
dx ≤ E0,

(2.48)
∫
Ω

["εs("ε, ϑε)+ sR(Iε)](0, ·) dx ≡
∫
Ω

("s + sR)0,ε dx ≥ S0,

qR = −2k

c2

∫ ∞

0

∫
S2

ν2 [n log n− (n+ 1) log(n+ 1)
]
ω dωdν, (2.44)

and using the radiative transfer equation, we get the equation

∂t s
R + divxqR = − k

h

∫ ∞

0

∫
S2

1

ν
log

n

n+ 1
S dωdν =: ςR. (2.45)

Moreover, log n(B)
n(B)+1 = − hν

kϑ

(
1 − α ω·u

c

)
and

α = σa + σs

σa + 2σs
, (2.46)

For more details, see [18].
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and

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(·, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).

Then

"ε → " in Cweak([0, T ];L5/3(Ω)),

uε → u weakly in L2(0, T ;W 1,2
0 (Ω)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

and

Iε → I weakly-(*) in L∞((0, T )×Ω × S2 × (0,∞)),

at least for suitable subsequences, where {",u, ϑ, I } is a weak solution of problem
(2.1)–(2.10).

Remark 6 The reason for introducing such type of model is to recover the crucial
positivity property for the production rate of total entropy which is missing
in the previous model. Using such model the singular limits were investigated,
see [18]. Before the singular limits (see [16, 17]) were studied for a simplified
model of radiation hydrodynamics introduced by Teleaga, Seaïd, Gasser, Klar, and
Struckmeier in [52]. The main idea in the modeling is to introduce in the complete
model of [14] a perturbed Planck’s function and a suitable (relativistic) velocity
cutoff (this is the meaning we give to “semi-relativistic” model) allowing to recover
this crucial positivity property for the production rate of total entropy. As the
perturbation will be small (going formally to zero as c → ∞), one can expect
to obtain the correct limit regimes.

3 Inviscid Case

3.1 Euler System with Damping Term

In this part we consider two models which can be seen as target systems of two
singular limits. Precisely, we consider a compressible inviscid radiative flow where
the motion of the fluid is given by the Euler system with damping for the evolution of
the density " = "(t, x), the velocity field u = u(t, x), and the absolute temperature
ϑ = ϑ(t, x) as functions of the time t and the Eulerian spatial coordinate x ∈ R

3.
In the first regime (equilibrium diffusion), the effect of radiation is incorporated

in the state functions p (pressure) and e (internal energy). In the second regime
(non-equilibrium diffusion), the radiation appears through an extra equation of
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parabolic type for the radiative temperature which is a priori different from the
matter temperature.

More specifically, in the equilibrium case, the system of equations to be studied
for the three unknowns (",u, ϑ) reads

∂t" + divx("u) = 0, (3.1)

∂t ("u)+ divx("u ⊗ u)+ ∇x (p + pr)+ νu = 0, (3.2)

∂t ("E + Er)+divx [("E + Er) u + (p + pr)u] = divx (κ∇xϑ)+divx

(
1

3σa
∇xEr

)
,

(3.3)
where E = 1

2 |u|2 + e(", ϑ), Er = aϑ4, and pr = a
3 ϑ4.

In the non-equilibrium case, the system of equations for the four unknowns
(",u, ϑ,Er) is

∂t" + divx("u) = 0, (3.4)

∂t ("u)+ divx("u ⊗ u)+∇x(p + pr)+ νu = 0, (3.5)

∂t ("E)+divx (("E + p)u)+u·∇xpr = divx (κ∇xϑ)−σa

(
aϑ4 − Er

)
, (3.6)

∂tEr + divx (Eru)+ prdivxu = divx

(
1

3σs
∇xEr

)
− σa

(
Er − aϑ4

)
, (3.7)

where E = 1
2 |u|2 + e(", ϑ), Er is the radiative energy related to the temperature of

radiation Tr by Er = aT 4
r , and pr is the radiative pressure given by pr = 1

3aT
4
r =

1
3 Er , with a > 0.

Systems (3.1)–(3.3) and (3.4)–(3.7) can be viewed as singular limits in radiation
hydrodynamics in two limit diffusion regimes. Such systems (when damping is
absent) have been investigated by Lowrie, Morel, and Hittinger [36] and more
recently by Buet and Després [9].

3.1.1 Hypotheses

Hypotheses imposed on constitutive relations and transport coefficients are moti-
vated by the general (local) existence theory for the Euler–Fourier system developed
in [48, 49] (see also [20, Chapter 3] for the Navier–Stokes–Fourier framework) and
reasonable physical assumptions for the radiative part [40, 45]. In our simplified
setting, transport coefficients κ, σa, σs and the Planck’s coefficient are supposed to
be fixed positive numbers. The damping with coefficient ν > 0 of Darcy type can
be interpreted here as a diffusion of a light gas into a heavy one.
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We consider the pressure in the form (2.11) with a = 0

p(", ϑ) = ϑ5/2P
( "

ϑ3/2

)
, (3.8)

where P : [0,∞)→ [0,∞) is a given function with the properties (2.12)–(2.14).
After Maxwell’s relations, the specific internal energy e and the associated

specific entropy have form (2.15)–(2.16) with a = 0 and with

M ′(Z) = −3

2

5
3P(Z)− P ′(Z)Z

Z2 < 0.

Theorem 3 Let
(
", 0, ϑ

)
be a constant state with " > 0, ϑ > 0. Consider d > 7/2.

There exists ε > 0 such that, for any initial state ("0,u0, ϑ0) satisfying

∥∥("0,u0, ϑ0)−
(
", 0, ϑ

)∥∥
Wd,2(R

3
)
≤ ε, (3.9)

there exists a unique global solution (",u, ϑ) to (3.1)–(3.3), such that(
" − ",u, ϑ − ϑ

) ∈ C
([0,+∞);Wd,2(R3)

)
. In addition, this solution satisfies

the following energy inequality:

∥∥("(t)− ", u(t), ϑ(t)− ϑ)
∥∥
Wd,2

(
R

3
) + ∫ t0

(
‖∇x (", u, ϑ) (s)‖2

Wd−1,2
(
R

3
) + ‖∇xϑ(s)‖2

Wd,2
(
R

3
)
)
ds

≤ C
∥∥("0 − ", 0, ϑ0 − ϑ)

∥∥2
Wd,2

(
R

3
) ,

(3.10)
for some constant C > 0 which does not depend on t .

The same result holds in the case of system (3.4)–(3.7):

Theorem 4 Let
(
", 0, ϑ,Er

)
be a constant state with " > 0, ϑ > 0, Er > 0.

Consider d > 7/2. There exists ε > 0 such that, for any initial state
(
"0,u0, ϑ0, E

0
r

)
satisfying

∥∥∥
(
"0,u0, ϑ0, E

0
r

)
− (", 0, ϑ,Er

)∥∥∥
Wd,2(R

3
)
≤ ε, (3.11)

there exists a unique global solution (",u, ϑ,Er) to (3.4)–(3.7), such that(
" − ",u, ϑ − ϑ,Er − Er

) ∈ C
([0,+∞);Wd,2

(
R

3
))
. In addition, this solution

satisfies the following energy inequality:
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∥∥("(t)− ",u(t), ϑ(t)− ϑ,Er(t)− Er)
∥∥
Wd,2

(
R

3
) + ∫ t0 ‖∇x (",u, ϑ,Er ) (s)‖2

Wd−1,2
(
R

3
) ds

+ ∫ t0
(
‖∇xϑ(s)‖2

Wd,2
(
R

3
) + ‖∇xEr (s)‖2

Wd,2
(
R

3
)
)
ds

≤ C
∥∥("0 − ", 0, ϑ0 − ϑ,E0

r − Er

)∥∥2
Wd,2

(
R

3
) ,

(3.12)
for some constant C > 0 which does not depend on t .

Sketch of Proof of Theorems 3 and 4 We will focus on the non-equilibrium problem.
Equation (3.6) rewrites

"Cv (∂tϑ + u · ∇xϑ)+ϑpϑ divxu = −prdivxu+divx (κ∇xϑ)−σa

(
aϑ4 − Er

)
−ν |u|2 .

(3.13)
We linearize the system (3.4)–(3.6) around the constant state (", 0, ϑ,Er) with the

compatibility condition Er = aϑ
4

and putting " = r + ", ϑ = T + ϑ and Er =
er + Er we get

∂t r + " divxu = 0, (3.14)

∂tu +
p"

"
∇xr + pϑ

"
∇xT + 1

3"
∇xer + νu = 0, (3.15)

∂tT + ϑpϑ

"Cv

divxu = divx

(
κ

"Cv

∇xT

)
− σa

"Cv

(
4aϑ

3
T − er

)
, (3.16)

∂t er + 4

3
Erdivxu = divx

(
1

3σs
∇xer

)
− σa

(
er − 4aϑ

3
T
)
, (3.17)

using the vector notation U :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r

u1

u2

u3

T

er

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, the linearized system (3.14)–(3.17) rewrites

∂tU +
3∑

j=1

Aj∂jU = DΔU − BU, (3.18)
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for details, see below. 4,5

Applying the symmetrization and the Kreiss theorem and the Shizuta–
Kawashima condition (SK) we get the existence of the linearized model. Finally the
fixed point argument is applied.

For more details, see [4].

3.2 Non-isentropic Euler–Maxwell’s System Coupled with
Transport of Radiation

We considered a compressible electro-magnetic inviscid radiative flow coupled
where the motion of the fluid is given by the Euler system for the evolution of

4

A1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 " 0 0 0 0
α 0 0 0 β 1

3"

0 0 0 0 0 0
0 0 0 0 0 0
0 γ 0 0 0 0
0 δ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, A2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 " 0 0 0
0 0 0 0 0 0
α 0 0 0 β 1

3"

0 0 0 0 0 0
0 0 γ 0 0 0
0 0 δ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

A3 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 " 0 0
0 0 0 0 0 0
0 0 0 0 0 0
α 0 0 0 β 1

3"

0 0 0 γ 0 0
0 0 0 δ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

and

D :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 μ 0
0 0 0 0 0 ν

⎞
⎟⎟⎟⎟⎟⎟⎠
, B :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 ν 0 0 0 0
0 0 ν 0 0 0
0 0 0 ν 0 0
0 0 0 0 ζ −η
0 0 0 0 −π σa

⎞
⎟⎟⎟⎟⎟⎟⎠
,

5

α = p"

"
, β = pϑ

"
, γ = ϑpϑ

"Cv

, δ = 4

3
Er, μ = κ

"Cv

,

τ = 1

3σs
, ζ = 4aσaϑ

3

"Cv

, η = σa

"Cv

, π = 4aσaϑ
3
.
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the density " = "(t, x), the velocity field u = u(t, x), and the absolute temperature
ϑ = ϑ(t, x), and where radiation is described in the limit by an extra temperature
Tr = Tr(t, x). All of these quantities are functions of the time t and the Eulerian
spatial coordinate x ∈ R

3.
More specifically the system of equations to be studied for the unknowns

(",u, ϑ,Er,B,E) reads

∂t" + divx("u) = 0, (3.19)

∂t ("u)+ divx("u ⊗ u)+∇x(p + pr) = −ρ (E + u × B)− νρu, (3.20)

∂t ("E)+ divx (("E + p)u)+ u · ∇xpr = −σa
(
aϑ4 − Er

)
− ρE · u, (3.21)

∂tEr + divx (Eru)+ prdivxu = −σa
(
Er − aϑ4

)
, (3.22)

∂tB + curlxE = 0, (3.23)

∂tE − curlxB = "u, (3.24)

divxB = 0, (3.25)

divxE = " − ", (3.26)

where E is the electric field and B is the magnetic induction,
We assume that the pressure p(", ϑ) and the internal energy e(", ϑ) are positive

smooth functions of their arguments with

Cv := ∂e

∂ϑ
> 0,

∂p

∂"
> 0,

and we also suppose for simplicity that ν = 1
τ

(where τ > 0 is a momentum-
relaxation time), μ, σa , and a are positive constants.

A simplification appears if one observes that, provided that Eqs. (3.25) and (3.26)
are satisfied at t = 0, they are satisfied for any time t > 0 and consequently they
can be discarded from the analysis below.

Notice that the reduced system (3.19)–(3.22) is the non-equilibrium regime of
radiation hydrodynamics introduced by Lowrie, Morel, and Hittinger [36] and more
recently by Buet and Després [9] and studied mathematically by Blanc, Ducomet,
and Nečasová [4]. Extending this last analysis, our goal in this part is to prove global
existence of solutions for the system (3.19)–(3.26) when data are sufficiently close
to an equilibrium state and study their large time behavior.

We mention for completeness that related non-isentropic Euler–Maxwell systems
have been the object of a number of studies in the recent past. see, [23, 24, 28, 33,
51, 55].
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In the following we show that the ideas used by Y. Ueda, S. Wang, and S.
Kawashima in [53, 54] in the isentropic case can be extended to the (radiative) non-
isentropic system (3.19)–(3.24).

We state the result of this subsection that system (3.19)–(3.26) has a global
smooth solution close to any equilibrium state.

Theorem 5 Let
(
", 0, ϑ,Er,B, 0

)
be a constant state with " > 0, ϑ > 0 and

Er > 0 with compatibility condition Er = aϑ
4
and suppose that d ≥ 3.

There exists ε > 0 such that, for any initial state
(
"0,u0, ϑ0, E

0
r ,B0,E0

)
satisfying

divxE0 = "0 − ", divxB0 = 0,

(
"0 − ",u0, ϑ0 − ϑ,Er0 − Er,B0 − B,E0

)
∈ Wd,2(R3),

and
∥∥∥
(
"0,u0, ϑ0, E

0
r ,B0,E0

)
−
(
", 0, ϑ,Er,B, 0

)∥∥∥
Wd,2(R

3
)
≤ ε, (3.27)

there exists a unique global solution (",u, ϑ,Er,B,E) to (3.19)–(3.26), such that

(
" − ",u, ϑ − ϑ,Er − Er,B − B,E

)
∈ C

(
[0,+∞);Wd,2(R3)

)
∩C1

(
[0,+∞);Wd−1,2(R3)

)
.

In addition, this solution satisfies the following energy inequality:

∥∥∥(" − ",u, ϑ − ϑ,Er − Er,B − B,E)(t)
∥∥∥
Wd,2(R

3
)

+
∫ t

0

(∥∥(" − ",u, ϑ − ϑ,Er − Er

)
(τ )
∥∥2
Wd,2(R

3
)
+ ‖∇xB(τ )‖2

Wd−2,2(R
3
)
+ ‖E(τ )‖2

Wd−1,2(R
3
)

)
dτ

≤ C

∥∥∥
(
"0 − ", 0, ϑ0 − ϑ,E0

r − Er,B0 − B,E0

)∥∥∥2

Wd,2(R
3
)
, (3.28)

for some constant C > 0 which does not depend on t .

The large time behavior of the solution is described as follows

Theorem 6 Let d ≥ 3. The unique global solution (",u, ϑ,Er,B,E) to (3.19)–
(3.26) defined in Theorem 5 converges to the constant state (", 0, ϑ,Er,B, 0)
uniformly in x ∈ R

3 as t →∞. More precisely

∥∥(" − ",u, ϑ − ϑ,Er − Er,E)(t)
∥∥
Wd−2,∞(R

3
)
→ 0 as t →∞. (3.29)
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Moreover if d ≥ 4

∥∥∥(B − B)(t)
∥∥∥
Wd−4,∞(R

3
)
→ 0 as t →∞. (3.30)

Remark 7 Note that, due to lack of dissipation by viscous, thermal, and radiative
fluxes, the Kawashima–Shizuta stability criterion (see [50] and [6]) is not satisfied
for the system under study and techniques of [31] relying on the existence of a
compensating matrix do not apply. However, it was shown that radiative sources
play the role of relaxation terms for temperature and radiative energy and it leads to
global existence for the system.

For more details, see [5].
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Poro-Visco-Elasticity in Biomechanics:
Optimal Control

Lorena Bociu and Sarah Strikwerda

1 Introduction

Poro-visco-elastic models provide a good representation of the mechanical charac-
teristics of biological tissues and consequently have many important applications
in biology, medicine, and bioengineering. Examples include fluid flow inside
cartilages, bones, and engineered tissue scaffolds [17, 23, 24, 31, 37, 40], and
blood flow through tissues in the human body, like the brain, the liver, and the
eye [15, 29, 36, 41]. Moreover, poro-visco-elastic models have been widely used
to analyze in vitro creep and stress relaxation experiments on the tissues under
confined and unconfined compression tests [37]. The models couple the visco-
elastic solid matrix with the interstitial fluid flow through the permeability tensor.

The study presented in this paper is pertinent to the tissue perfusion in the eye
and its relationship to the development of glaucoma [15]. Glaucoma is a group of
eye diseases that leads to damage to the optic nerve (through retinal ganglion cell
loss) and ultimately, vision loss. It is strongly believed that the biomechanics of the
Lamina Cribrosa (LC) inside the optic nerve head plays an important role in the
development and progression of glaucoma [15, 21, 25]. The LC is a thin, porous
tissue at the base of the optic nerve head in the eye, formed by a multilayered
network of collagen fibers that insert into the scleral canal wall. It allows passage
of the central retinal vessels, and the retinal ganglion cell axons, which relay visual
information from the retina to the brain. One of the main functions of the LC is
to stabilize the pressure difference between the intraocular pressure (IOP) in the
intraocular space and the retrolaminar tissue pressure (RLTp) in the optic nerve
canal.
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Many studies have indicated that chronical IOP elevation induces significant
structural changes in the LC [6, 13, 18–20]. To date, elevated IOP is the only
treatable risk factor for glaucoma, but there is significant evidence that other factors
might be involved in the disease. In fact, many individuals with elevated IOP
never develop glaucoma [22], while many patients continue to progress to blindness
despite IOP within target levels [32]. Hence, to further understand the pathogenesis
of glaucoma, improve diagnosis, and enable novel means for preventing or treating
glaucoma, it is of interest to understand the effects of IOP, RLTp, and blood pressure
on the optic nerve head, and, in particular, on the biomechanics-hemodynamics
of the LC. The LC can be modeled as a fluid-solid mixture problem, and it
belongs in the category of fluid flowing through a poro-visco-elastic material.
Most biological tissues are composed by both elastin and collagen, and, therefore,
the deformable matrix through which the fluid flows exhibits both elastic and
visco-elastic behaviors. As material properties and volume fractions of elastic and
collagen vary in age, health and disease, their influence on the physical system is a
crucial part in the investigation of these biological fluid-mixture problems.

Deformable Porous Medium We consider a poro-visco-elastic Biot model which,
under the assumptions of full saturation, negligible inertia, small deformations, and
incompressible mixture components, is described by the following PDE system
holding in �× (0, T ):

∂ζ

∂t
+∇ · v = S, ∇ · T + F = 0, (1a)

ζ = ∇ · u, v = −K∇p, (1b)

T = Te + δTv − pI, Te = 2μeε(u)+ λetr(ε(u))I, Tv = 2μvε(ut )+ λv tr(ε(ut ))I,
(1c)

where ζ is the fluid content, v is the discharge (or Darcy) velocity, p is the Darcy
pressure, u is the solid displacement, T is the total stress tensor, ε(w) = (∇w +
∇wT )/2 is the linearized strain tensor, and S and F are given functions of time and
space [10, 12, 30].

• Equation (1a) express the balance of mass and linear momentum, whereas Eqs.
(1b)–(1c) are the constitutive equations that are necessary to close the system.

• In the general Biot model, the fluid content is given by ζ = c0p+α∇·u, c0 being
the constrained specific storage coefficient and α the Biot-Willis coefficient. In
the case of incompressible mixture components, as often assumed in biological
tissue modeling, we have that c0 = 0 and α = 1 [16], and, therefore, the fluid
content equals the solid dilation, i.e., ζ = ∇ · u, see Eq. (1b).

• The discharge velocity v and the Darcy pressure p are related via the permeability
tensor K = k(x, t)I, representing the fluid and pore properties within the porous
medium, see Eq. (1b). We assume that there exists constants κ∗ and κ∗ such that
0 < κ∗ ≤ k(x, t) ≤ κ∗ <∞ ∀(x, t) ∈ �× [0, T ].
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• In the constitutive equation for the total stress tensor T given in Eq. (1c), the
behavior of the solid component within the medium is characterized by the Lamé
elastic parameters λe and μe and visco-elastic parameters λv and μv as in [10].
The extent to which the model includes visco-elastic effects is represented by the
parameter δ > 0.

• Boundary conditions: We write the boundary of � as � = �D ∪ �N , with �D =
�D,v ∪ �D,p. For g and ψ given functions of space and time, we assume

T n = g and v · n = 0 on �N × (0, T ), (2)

u = 0 and p = 0 on �D,p × (0, T ), u = 0 and v · n = ψ on �D,v × (0, T ),
(3)

where n is the outward unit normal vector to the surface boundary. Note that (i)
�N is assumed to be an impermeable surface where the total stress is prescribed.
In the eye study, we have g = −IOPn on the surface of the LC facing the
intraocular space; and (ii) �D,p and �D,v are permeable clamped surfaces, on
which either the pressure or the normal velocity are prescribed. The intersection
�̄D ∩ �̄N could be potentially non-empty.

• Initial conditions:

u(x, 0) = u0(x), for x ∈ �, with u0(x) given. We also define d0(x) = ∇ · u0(x).
(4)

Well-Posedness Analysis Mathematically, the study of poroelasticity (δ = 0) was
initiated by the 1D work of Terzaghi in the 1920s [42] and the groundbreaking
consolidation theory developed by Biot in the 1940–1950s [7]. Subsequently,
the poroelastic system has inspired many theoretical investigations due to its
applications in geophysics and petroleum engineering, as well as medicine and
bioengineering. Most of the work has been done under the assumption of constant
permeability (K = kI, with k = constant), which yields a linear coupled system
[1, 27, 35, 45]. A monotone, nonlinear permeability depending on pressure is studied
in [39] by means of semigroup theory for implicit evolution [33, 34]. The study
presented in [14] is the first to consider a nonlinear Biot model with permeability
depending nonlinearly on dilation, i.e., k(∇·u). The analysis is performed in the case
of null Dirichlet boundary conditions for both pressure and elastic displacement, and
with compressible constituents (i.e., c0 > 0). The strategy in [14] relies on Rothe’s
method, uses the simplified structure of a pressure-to-dilation operator introduced
in [35], and takes advantage of compressibility and full elliptic regularity for the
solid displacement. In [10] the authors provide the first result for existence of weak
solutions for nonlinear poroelastic (δ = 0) and poro-visco-elastic (δ > 0) models
with incompressible constituents and with permeability depending nonlinearly on
solid dilation, and no simplifying assumptions on the domain boundary (i.e., the
case when �D ∩ �N �= ∅ is included) and the associated boundary conditions (i.e.,
incorporating mixed boundary conditions). This work extends all previous results
on analysis of poroelastic models [14, 27, 35, 39, 45]. The theoretical results in
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[10] are complemented with numerical simulations based on a novel dual mixed
hybridized finite element discretization. When the data are sufficiently regular, the
simulations show that the solutions satisfy the energy estimates predicted by the
theoretical analysis. Interestingly, the simulations also show that, in the purely
elastic case (δ = 0), the Darcy velocity and the related fluid energy might become
unbounded if the data do not enjoy the time regularity required by the theory.
Relevance in the case of the lamina cribrosa (LC): [10] identified the presence of
visco-elasticity in the solid phase as a major determinant in the behavior of the
solutions, suggesting that the lack of visco-elasticity may increase the susceptibility
of the tissue to localized damage as volumetric sources of linear momentum and/or
boundary sources of traction experience sudden changes in time. Sudden changes
in IOP (which acts as a boundary datum in the system) physiologically occur even
with changes between day and night. Therefore, the novel hypothesis in [10] on
the etiology of ischemic damage in the LC tissue is that [even these physiological
changes in IOP might induce pathological changes in the hemodynamics of the LC
tissue if the visco-elasticity provided by the collagen fibers is absent]. The finding
is supported by experimental and clinical evidence showing that loss of visco-
elastic tissue property has been associated with various pathological conditions,
including glaucoma, osteoporosis, atherosclerosis, and Alzheimer’s disease. The
new hypothesis for tissue microstructural damage introduced in [10] was further
investigated in [44]. The response of deformable porous media with incompressible
constituents to external applied loads (either step or trapezoidal pulses) and the
role that the structural viscosity plays in this response were analyzed for the 1D
prototype. The analysis in [44] showed that the fluid velocity within the medium
could increase tremendously, should the external applied load experience sudden
changes in time and the structural visco-elasticity be too small. Moreover, [44]
provided a dimensional analysis of the system and identified some dimensionless
parameters that could be used in the design of structural properties and experimental
conditions in order to maintain the fluid velocity within the medium below a desired
threshold and implicitly prevent potential damage to the tissue. A similar analysis
focused on poro-visco-elastic systems with compressible coefficients is provided in
[9].

Sensitivity Analysis Sensitivity analysis is the first step towards optimization
and control problems associated with these fluid-solid mixture models. Numerical
sensitivity analysis on the 1D poro-visco-elastic models from [44] with respect to
boundary data, which are the main drivers of the system, was performed in [2, 3],
using the complex-step method [4, 5]. The authors compared the results obtained
in the elastic case vs. visco-elastic case, as it is known that structural viscosity of
biological tissues decreases with age and disease. Key observations: (1) Solution
(u, p, v) is more sensitive to boundary traction g in the elastic case (δ = 0) than in
the visco-elastic scenario (δ > 0). This could explain why in the theoretical results
provided in [10], the boundary source was required to have higher time regularity
in order to obtain solution (u, p) ∈ L2(L2) in space and time, and with appropriate
energy estimate in terms of data, in the purely elastic case (δ = 0); (2) Effects of the
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boundary source g are most significant for the discharge velocity v, especially in the
purely elastic case. This agrees with the numerical investigation in [10] which hinted
that the fluid energy (dependent on the discharge velocity) becomes unbounded as
the boundary source of traction loses H 1-smoothness in time, and visco-elasticity
is no longer present; (3) The sensitivity of the solution with respect to the boundary
source ψ was computed as well. Interestingly, the fluid-dynamical variables v and p
appear to be more sensitive to changes in g than to changes in ψ . This suggests that,
in order to control fluid velocity and pressure, it would be much more effective to act
on the boundary conditions for the solid structure, namely the traction g, rather than
on the boundary conditions for the velocity itself, namely ψ ; (4) Solid displacement
u is the least sensitive to changes in g and ψ . This finding shows that small changes
in the solid displacement may actually correspond to big changes in fluid velocity
and pressure, thereby suggesting that monitoring the sole solid displacement might
not be indicative of the fluid-dynamical state inside the medium.

In addition, in [11] the authors performed sensitivity analysis on the 1D dimen-
sionless poroelastic (δ = 0) and poro-visco-elastic (δ > 0) solutions with respect
to the boundary traction and their dependence on the dimensionless parameters
identified in [44]. The results in [11] consistently show that the maximum magnitude
of the sensitivities (for all three variables: solid displacement, fluid pressure, and
fluid velocity) is largest when visco-elasticity is not present and gets smaller
monotonically with respect to the dimensionless parameter η associated with visco-
elasticity (but also dependent on the value of the permeability and the length of the
domain). However, the magnitudes of the sensitivities were not always monotonic
with respect to η. The numerical results in [11] correspond closely with results
typically observed in creep tests for poro-visco-elastic materials. The lag in the solid
displacement due to the inclusion of structural viscosity is indicative of the increase
in time that it takes for the solid to reach an equilibrium after an applied load.

Optimal Control Problems In this paper we address optimal control problems
subject to fluid flows through deformable, porous media described by (1a)–(4), using
the well-posedness and sensitivity analysis results described above. In particular,
we focus on the case of given permeability k(x, t), which translates into a convex
control problem, with both distributed and boundary controls. We focus on investi-
gating the problem of maintaining the solid displacement and Darcy pressure close
to desired values (motivated by the application below) using the sources present in
the system as control variables. The results provided in this paper include existence
and uniqueness of optimal control, as well as the characterization of the optimal
control through the first order necessary optimality conditions, based on the adjoint
system. Relevance to Applications: So far, we know that there are two factors that
contribute to the onset and progression of glaucoma: Intraocular Pressure (IOP) and
LC tissue perfusion. However, up to date, it is not clear whether the biomechanical
pinching of the RGC axons or the hemodynamic deficiencies in the blood vessels
within the LC are the major contributors to the microstructural damage in the LC
leading to the development of glaucoma. Thus our goal in this article is to study the
relation between the IOP and LC tissue perfusion via an optimal control problem
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for the poro-visco-elastic model describing the LC. For the control variables, we
use the interior and boundary data in the system which are the main drivers of the
equations (recall that the Neumann boundary data represents the IOP). Variables of
interest are the structural displacement u within the LC, which is indicative of the
strains experienced by the RGC axons, and the blood flow pressure p in the LC,
which is indicative of tissue perfusion.

The remaining sections of the paper are organized as follows: In Sect. 2, we
discuss the well-posedness analysis of the poro-visco-elastic problem. Section 3
sets up the optimal control problem under consideration and provides the results on
existence and uniqueness of both distributed and boundary controls. In Sect. 4 we
present necessary optimality conditions based on the adjoint system, which is found
using the formal Lagrangian method [43].

2 Poro-Visco-Elasticity: Well-posedness Analysis

As usual, Hs(D) represents the Sobolev space of order s defined on a domain D,
while Hs

0 (D) is the closure of C∞
0 (D) in theHs(D) norm, denoted by ‖·‖Hs(D). We

use Hs(D) to denote (Hs(D))3 and L2(D) to denote (L2(D))3. Unless otherwise
specified, ‖ · ‖ and (·, ·) denote the norm and inner product, respectively, taken in
(L2(D))n where n is clear by the context. Additionally, 〈·, ·〉 will be used to denote
the L2(∂D) inner product on a portion of the boundary which will be denoted in a
subscript, e.g., 〈u,w〉�N .

The primary spaces in our analysis are

V ≡ (H 1
�D
(�))3, V ≡ H 1

�D,p
(�), 𝕍 ≡ V × V,

for displacement u and the pressure p, respectively. Note that the functional spaces

are of the form H 1
�∗(�) = {f ∈ H 1(�) : γ [f ]

∣∣∣
�∗

= 0}. For sake of exposition

we take the Lamé parameters in the elasticity term normalized to unity (the analysis
follows similarly if the Lamé parameters were not normalized to unity), and we
define the bilinear form associated with the elasticity operator by

a(u,w) = (∇ · u,∇ · w)+ (∇u : ∇w)+ (∇u : (∇w)T ), (5)

where ∇u stands for the Jacobian matrix of u and the Frobenius inner product of
two matrices is given by

(A : B) =
∫
�

(AijBij )d�.
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We note that the bilinear form a(·, ·) defines an inner product on V, due to
Assumption 1 on the domain described below. The inner product for V is inherited

from H 1(�), and the norm on 𝕍 is given by ‖(w, w)‖ =
√
‖w‖2

V + ‖w‖2
V .

We define a weak solution as follows:

Definition 1 (Weak Solution) A weak solution to (1)–(4) is represented by the pair
of functions u ∈ H 1(0, T ;V) and p ∈ L2(0, T ;V ) such that:

(a) For any w ∈ L2(0, T ;V) and w ∈ L2(0, T ;V ), the following variational
formulations are satisfied:

∫ T

0
δa(ut ,w)+ a(u,w)− (p,∇ · w) dt =

∫ T

0
〈g,w〉�N + (F,w) dt (6)

∫ T

0
(k(x, t)∇p,∇w)+ (∇ · ut , w) dt = −

∫ T

0
〈ψ,w〉�D,v + (S,w) dt. (7)

(b) For everyw ∈ V , the term (∇·u(t), w) uniquely defines an absolutely continuous
function on [0, T ] and the initial condition (∇·u(0), w) = (∇·u0, w) is satisfied.

Definition 2 (Energy and Data) Energy functionals for solutions and data are
defined as follows:

E(u(t)) ≡1

2
a(u, u) = 1

2

[
||∇ · u(t)||2 + ||∇u||2 + (∇u : ∇uT )

]
,

E(p(t)) ≡(k(x, t)∇p,∇p) ≥ k∗‖∇p‖2,

F(T ) ≡
∫ T

0

[
||g(t)||2L2(�N )

+ ||ψ(t)||2
L2(�D,v)

+ ||S(t)||2
L2(�)

+ ||F(t)||2L2(�)

]
dt.

(8)

Assumption 1 (Assumptions on the Domain) We assume that �D and �D,p are
sets of positive measure. Thus Korn’s Inequality for u ∈ V and Poincaré’s
Inequality for p ∈ V are satisfied:

E(u(t)) ≥ c||u(t)||2H1(�)
, ||p||L2(�) ≤ CP ||∇p||L2(�).

Theorem 1 (Existence and Uniqueness of Weak Solution) Consider (1a)–(4)
with u0 ∈ V and under Assumption 1. Let the data have the following regularity:

F ∈ L2
(

0, T ;L2(�)
)
, S ∈ L2

(
0, T ;L2(�)

)
,

g ∈ L2
(

0, T ;L2(�N)
)
, ψ ∈ L2

(
0, T ;L2(�D,v)

)
. (9)

Then there exists a unique weak solution (u, p) satisfying the following energy
estimate:
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sup
t∈[0,T ]

E(u(t))+
∫ T

0

[
E(p(t))+ E(u(t))+ δE(ut (t))

]
dt ≤ C(T )

[
E(u(0))+ F(T )

]
.

(10)

Proof In [10] one can find a proof for existence of weak solutions in the case of
nonlinear permeability (dependent on solid dilation) under stricter assumptions on
the domain (related to obtaining enough elliptic regularity for the displacement u in
order to use compactness arguments in the passing with the limit in the nonlinear
term). The proof is based on Rothe’s method (discretizations in time and space) and
could be invoked here. However, we provide a simplified, straightforward proof for
existence and uniqueness in the case of given permeability as a function of time
and space, following [8]. Our proof is based on Lax–Milgram theorem and formal
energy estimates.

Solving the Discretized in Time Problem We partition the time interval [0, T ]
into r ≥ 1 subintervals of length �t = T/r . The intervals are given by (ti−1, ti],
where ti = i�t , for 0 ≤ i ≤ r . We define

Fi := 1

�t

∫ ti

ti−1

F(x, t)dt, Si := 1

�t

∫ ti

ti−1

S(x, t)dt, gi := 1

�t

∫ ti

ti−1

g(x, t)dt,

ψi := 1

�t

∫ ti

ti−1

ψ(x, t)dt and ki := 1

�t

∫ ti

ti−1

k(x, t)dt.

We seek solutions (ui , pi) ∈ 𝕍 for 1 ≤ i ≤ r which satisfies the weak
formulation for the semi-discrete problem:

δa(ui ,w)+�ta(ui ,w)−�t(pi,∇ · w) = �t〈gi ,w〉�N +�t(Fi ,w)+ δa(ui−1,w) (11)

[�t]2(ki(x)∇pi,∇w)+�t(∇ · ui , w) = −[�t]2〈ψi,w〉�D,p
+ [�t]2(Si , w)+�t(∇ · ui−1, w)

(12)
for all w ∈ V and w ∈ V . We find a solution inductively, by initially setting u0

equal to the given initial condition u0.
We define the bilinear form F : 𝕍 × 𝕍 → ℝ as follows:

F
(
(ui , pi), (w, w)

)
:=(δ +�t)a(ui ,w)−�t(pi,∇ · w)

+ [�t]2(ki(x)∇pi,∇w)+�t(∇ · ui , w).
(13)

Given data Fi ∈ L2(�), gi ∈ L2(�N), S
i ∈ L2(�), ψi ∈ L2(�D,v), and solution

ui−1 ∈ V at time t i−1, we define the linear functional G : 𝕍 → ℝ as follows:

G(w, w) :=�t〈gi ,w〉�N +�t(Fi ,w)+ δa(ui−1,w)− [�t]2〈ψi,w〉�D,p
+ [�t]2(Si , w)

+�t(∇ · ui−1, w).
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Using these linear operators, we can write (11) and (12) equivalently as: find a
solution (ui , pi) ∈ 𝕍 such that for every (w, w) ∈ 𝕍 , we have

F ((ui , pi), (w, w)) = G(w, w). (14)

The bilinear form F is continuous on 𝕍 . This can be seen by applying Cauchy–
Schwarz inequality and the upper-bound assumption on k(x, t):

F
(
(ui , pi), (w, w)

)

≤ (δ +�t)‖ui‖V‖w‖V +�t‖pi‖V ‖w‖V + [�t]2κ∗‖pi‖V ‖w‖V +�t‖ui‖V‖w‖V

= C�t

(√
‖ui‖2

V‖w‖2
V +

√
‖pi‖2

V
‖w‖2

V +
√
‖pi‖2‖w‖2 +

√
‖ui‖2

V‖w‖2
V

)

≤ 2C�t

(√
‖ui‖2

V‖w‖2
V + ‖pi‖2

V
‖w‖2

V + ‖pi‖2
V
‖w‖2

V
+ ‖ui‖2

V‖w‖2
V

)

= 2C�t
∥∥∥(ui , pi)

∥∥∥
𝕍
‖(w, w)‖𝕍 .

(15)
Additionally, using the lower bound on k(x, t) and Assumption 1, we obtain that

(
F

[
ui

pi

]
,

[
ui

pi

])

= (δ +�t)a(ui ,ui )−�t(pi,∇ · ui )+ [�t]2(ki(x)∇pi,∇pi)+�t(∇ · ui , pi)

≥ C�t(‖ui‖2
V + ‖pi‖2

V ),

(16)
which implies that F is coercive on 𝕍 .

Similarly, we have that G is continuous on 𝕍 (this can be seen using Cauchy–
Schwarz and Trace Theorem). Hence, G ∈ 𝕍 ′. Therefore, application of Lax–
Milgram Theorem provides existence of a unique solution (ui , pi) ∈ 𝕍 to (14),
which consequently satisfies (11) and (12).

Note that the continuity and coercivity coefficients are dependent on �t in
a singular way. Therefore, we only invoke Lax–Milgram Theorem to show the
existence of a semi-discrete solution, for each value of �t , and then we derive a
uniform bound using energy estimates.

Deriving Uniform Bounds on the Discretized Solution (ui , pi) We define

u[r] = ui in (ti−1, ti], i = 1, . . . , r (17)

p[r] = pi in (ti−1, ti], i = 1, . . . , r. (18)

(u[r])�t := ui − ui−1

�t
in (ti−1, ti] i = 1, . . . , r. (19)
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Let ui − ui−1 be the test function in (11) and let pi be the test function in (12).
Adding these two equations together, and summing from i = 1 to l, we have

(δ +�t)

l∑
i=1

a(ui ,ui − ui−1)−�t

l∑
i=1

(pi,∇ · ui −∇ · ui−1)+ [�t]2
l∑

i=1

(ki(x)∇pi,∇pi)

+�t

l∑
i=1

(∇ · ui −∇ · ui−1, pi) = �t

l∑
i=1

〈gi ,ui − ui−1〉�N +�t

l∑
i=1

(Fi ,ui − ui−1)

+ δ

l∑
i=1

a(ui−1,ui − ui−1)− [�t]2
l∑

i=1

〈ψi, pi〉 + [�t]2
l∑

i=1

(Si , pi).

(20)
Using the definition of gi , Cauchy–Schwarz Inequality, Trace Theorem, and
Young’s Inequality, we have the following estimate:

�t

l∑
i=1

〈gi ,ui − ui−1〉�N = �t

l∑
i=1

〈
1

�t

∫ ti

ti−1

g(x, t)dt,ui − ui−1
〉
�N

≤
l∑

i=1

∥∥∥∥
∫ ti

ti−1

g(x, t)

∥∥∥∥
L2(�N )

‖ui − ui−1‖L2(�N )

≤ C[�t]1/2
l∑

i=1

‖g‖L2((ti−1,ti );L2(�N ))
‖ui − ui−1‖V

≤ C

2ε
�t‖g‖2

L2(0,T ;L2(�N ))
+ ε

2

l∑
i=1

‖ui − ui−1‖2
V.

(21)

Similarly, we have

[�t]2
l∑

i=1

(Si, pi) ≤ C[�t]3/2
l∑

i=1

‖S‖L2((ti−1,ti );L2(�))‖pi‖V

≤ C

2ε
�t‖S‖2

L2(0,T ;L2(�))
+ ε

2

l∑
i=1

[�t]2‖pi‖2
V .

(22)

Applying (21), (22), and similar estimates on F and ψ , we obtain
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δ

l∑
i=1

a(ui − ui−1,ui − ui−1)+�t

l∑
i=1

a(ui ,ui − ui−1)+ [�t]2κ∗
l∑

i=1

(∇pi,∇pi)

≤ C�t

2ε

(
‖g‖2

L2(0,T ;L2(�N ))
+ ‖F‖2

L2(0,T ;L2(�))

)
+ C�t

2ε

(
‖S‖2

L2(0,T ;L2(�))

+ ‖ψ‖2
L2(0,T ;L2(�D,v))

)
+ ε

2

l∑
i=1

‖ui − ui−1‖V + ε

2
[�t]2

l∑
i=1

‖∇pi‖2
L2(�)

.

(23)
Using the following identity

a(wi ,wi − wi−1) = 1

2
a(wi ,wi )− 1

2
a(wi−1,wi−1)+ 1

2
a(wi − wi−1,wi − wi−1),

(24)
we obtain that

�t

l∑
i=1

a(ui ,ui−ui−1) = �t

2
a(ul ,ul )−�t

2
a(u0,u0)+�t

l∑
i=1

a(ui−ui−1,ui−ui−1).

(25)
Letting ε < min{δ, κ∗} and applying (25) to (23), we have that

l∑
i=1

‖ui − ui−1‖2
V + �t

2
‖ūl‖2

V +
l∑

i=1

�t

2
‖ui − ui−1‖2

V + [�t]2
l∑

i=1

(∇pi,∇pi)

≤ C(δ, κ∗)�tF(T )+ �t‖ū0‖2
V

2
.

(26)
Letting l = r , and dividing by �t we obtain

�t
1

[�t]2
r∑

i=1

‖ui − ui−1‖2
V ≤ C(δ, κ∗)(F(T )+ ‖u0‖2

V). (27)

Identifying the sum as an integral, we obtain the following estimate:

∫ T

0
‖(u[r])�t‖2

Vdt

≤ C(δ, κ∗)
(∫ T

0
(‖g‖2

L2(�N )
+ ‖F‖2

L2(�)
+ ‖ψ‖2

L2(�D,v)
+ ‖S‖2

L2(�)
)dt + ‖u0‖2

V

)
.

(28)
Similarly, using Poincarè’s inequality in (26), we obtain that
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∫ T

0
‖p[r]‖2

V dt

≤ C(δ, κ∗)
(∫ T

0
(‖g‖2

L2(�N )
+ ‖F‖2

L2(�)
+ ‖ψ‖2

L2(�D,v)
+ ‖S‖2

L2(�)
)dt + ‖u0‖2

V

)
.

(29)
Finally, from (26), we also have that

max
0≤t≤T ‖u[r](t)‖2

V ≤ C(δ, κ∗)(F(T )+ ‖u0‖2
V), (30)

which provides the following estimate:

∫ T

0
‖u[r]‖2

Vdt

≤ C(δ, κ∗, T )
(∫ T

0
(‖g‖2

L2(�N )
+ ‖F‖2

L2(�)
+ ‖ψ‖2

L2(�D,v)
+ ‖S‖2

L2(�)
)dt + ‖u0‖2

V

)
.

(31)

Passing with the Limit From (28), (29), and (31), we have that there exists
weakly convergent subsequences of {(u[r])�t }, {u[r]} in L2(0, T ;V) and of {p[r]}
in L2(0, T ;V ). We denote the weak limits as follows:

lim
r→∞(u

[r])�t ⇀ u*, lim
r→∞ u[r] ⇀ u, lim

r→∞p[r] ⇀ p.

Now following [45], we let f ∈ C∞([0, T ]). We define

f i := f (ti), i = 1, . . . , r, f r+1 := f r = f (T ),

f [r] := f i in (ti−1, ti], (f [r])�t := f i+1 − f i

�t
in (ti−1, ti], i = 1, . . . , r.

By Taylor’s theorem, we have for all f ∈ C∞([0, T ]),

‖f [r] − f ‖L2(0,T ) ≤ C[�t] and ‖(f [r])+�t − f ′‖L2(0,T ) ≤ C[�t]. (32)

Multiplying (11) and (12) by f i and summing from i = 1 to r , we obtain

δ�t

r∑
i=1

a

(
ui − ui−1

�t
,w
)
f i +�t

r∑
i=1

a(ui ,w)f i −�t

r∑
i=1

(pi,∇ · w)f i

= �t

r∑
i=1

〈gi ,w〉�N f i +�t

r∑
i=1

(Fi ,w)f i

(33)
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�t

r∑
i=1

(ki∇pi,w)f i +�t

r∑
i=1

(∇ · ui −∇ · ui−1

�t
,w

)
f i

= −�t
r∑

i=1

〈ψi,w〉�D,p
f i +�t

r∑
i=1

(Si, w)f i.

(34)

We now identify these sums as integrals. Due to the fact that pi and f i are
constant on each interval (ti−1, ti ) for 1 ≤ i ≤ r and using Bochner’s Theorem,
we have that

�t

r∑
i=1

(ki∇pi,∇w)f i =
r∑

i=1

(∫ ti

ti−1

k(x, t)dt∇pi,∇w
)
f i

=
r∑

i=1

(∫ ti

ti−1

k(x, t)∇pidt,∇w
)
f i

=
r∑

i=1

∫ ti

ti−1

(k(x, t)∇pi,∇w)f idt =
∫ T

0
(k(x, t)∇p[r],∇w)f [r]dt.

(35)
The other terms in (33) and (34) can similarly be written as integrals. Therefore, we
have

δ

∫ T

0
a((u[r])�t ,w)f [r]dt +

∫ T

0
a(u[r],w)f [r]dt −

∫ T

0
(p[r],∇ · w)f [r]dt

=
∫ T

0
〈g,w〉�N f [r]dt +

∫ T

0
(F,w)f [r]dt

(36)∫ T

0
(k(x, t)∇p[r],∇w)f [r]dt +

∫ T

0
(∇ · (u[r])�t , w)f [r]dt

= −
∫ T

0
〈ψ,w〉�D,v

f [r]dt +
∫ T

0
(S,w)f [r]dt.

(37)

We will now take the limit as r →∞ of (36) and (37). First we observe that

∫ T

0
a(u[r],w)f [r]dt =

{ ∫ T

0
a(u[r],w)f [r]dt −

∫ T

0
a(u,w)f [r]dt

}

+
{ ∫ T

0
a(u,w)f [r]dt −

∫ T

0
a(u,w)f dt

}
+
∫ T

0
a(u,w)f dt.

(38)
Let H1 : L2(0, T )→ ℝ and H2 : L2(0, T ;V)→ ℝ be defined, respectively, as
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H1(f ) :=
∫ T

0
a(m,w)f dt for fixed m,w ∈ L2(0, T ;V)

H2(v) :=
∫ T

0
a(v,w)f dt for fixed w ∈ L2(0, T ;V), f ∈ L2(0, T ).

Then the continuity of both the linear functionals follows from Cauchy–Schwarz.
Therefore,

lim
r→∞

∫ T

0
a(m[r],w)f [r]dt −

∫ T

0
a(m,w)f [r]dt = 0 and

lim
r→∞

∫ T

0
a(m,w)f [r]dt −

∫ T

0
a(m,w)f dt = 0.

Combined with (38), this implies

lim
r→∞

∫ T

0
a(u[r],w)f [r]dt =

∫ T

0
a(u,w)f dt and (39)

lim
r→∞

∫ T

0
a((u[r])�t ,w)f [r] =

∫ T

0
a(u*,w)f dt. (40)

Similarly, passing the limit as r →∞ on each term in (36) and (37) yields

∫ T

0
δa(u*,w)f + a(u,w)f − (p,∇ · w)f dt =

∫ T

0
〈g,w〉�N f + (F,w)f dt

(41)∫ T

0
(k(x, t)∇p,∇p)f + (∇ · u*, w)f dt =

∫ T

0
−〈ψ,w〉�D,v

f + (S,w)f dt.

(42)
Finally, we show that u* = ut . Let f ∈ C∞([0, T ]). Then using (32), (40), and

(39), we have

∫ T

0
a(u*,w)f dt = lim

r→∞

∫ T

0
a((u[r])�t ,w)f [r]dt = lim

r→∞�t

r∑
i=1

a

(
ui − ui−1

�t
,w

)
f i

= lim
r→∞

⎡
⎣a(ur ,w)f r − a(u0,w)f 1 −

r−1∑
i=1

a(ui ,w)(f i+1 − f i)

⎤
⎦

= a(u(T ),w)f (T )− a(u0,w)f (0)−
∫ T

0
a(u,w)f ′dt.

(43)
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If we further restrict f ∈ C∞
0 (0, T ), then

∫ T
0 a(u*,w)f dt = ∫ T0 a(u,w)f dt is true

for all w ∈ V and f ∈ C∞
0 (0, T ). Since {wf (t)|w ∈ V, f ∈ C∞

0 (0, T )} is dense
in L2(0, T ;V), we have u* = ut ∈ L2(0, T ;V). Therefore, u and p satisfy (6) and
(7).

Recovering the Initial Condition We must show u satisfies the initial condition.
For any w ∈ V, we define

G(t) := δa(u(t),w) (44)

H(t) := −(a(u(t),w)+ (p(t),∇ · w)+ 〈g(t),w〉�N + (F(t),w) (45)

F(t) :=
∫ t

0
H(τ)dτ. (46)

Note that F(t) is absolutely continuous on [0, T ] and satisfies F ′(t) = H(t)

a.e. (0, T ). Since u and p satisfy (7), we have that

δ

∫ T

0
a(ut ,w)f + a(u,w)f − (p,∇ · w)f dt =

∫ T

0
〈g,w〉�N f + (F,w)f dt

(47)
for all f ∈ C∞([0, T ]). Using the above definitions, we rewrite this equation as the
following:

∫ T

0
(G′(t)− F ′(t))f (t)dt = 0 ∀f ∈ C∞

0 (0, T ). (48)

Therefore,

G− F = c. (49)

We now consider f ∈ C∞([0, T ]) such that

f (0) = 1 and f (T ) = 1. (50)

Integrating (47) by parts in time and applying (43), we obtain

− δ

∫ T

0
a(u,w)f ′(t)dt − δa(u0,w)+

∫ T

0
a(u,w)f (t)dt −

∫ T

0
(p,∇ · w)f (t)dt

=
∫ T

0
〈g,w〉�N f (t)dt +

∫ T

0
(F,w)f (t)dt.

(51)
This can be rewritten as
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−
∫ T

0
G(t)f ′(t)− δa(u0,w) =

∫ T

0
H(t)f (t)dt. (52)

Using integration by parts, (49), and (50), we obtain

F(0)+ c +
∫ T

0
F ′(t)f (t)dt −

∫ T

0
H(t)f (t)dt = δa(u0,w). (53)

Recalling that F ′(t) = H(t) a.e., we have that F(0) + c = δa(u0,w). Looking at
the definition of F , it is easy to see that F(0) = 0. Therefore, c = δ(u0,w). From
(49), we then obtain that

δa(u(t),w)+
∫ t

0
(a(u(t),w)+(p(t),∇·w)+〈g(t),w〉�N+(F(t),w)dt = δa(u0,w).

(54)
The time integral vanishes when we set t = 0, and thus we have that

δa(u(0),w) = δa(u0,w). (55)

Since this holds for all w ∈ V, then u(0) = u0.

Uniqueness of Weak Solution Assume (u, p) satisfies Definition 1. Using ut and
p as test functions in (6) and (7), respectively, and integrating from 0 to τ , we have

δ

∫ τ

0
a(ut ,ut )dt +

∫ τ

0
a(u,ut )dt +

∫ τ

0
(k(x, t)∇p,∇p)dt

=
∫ τ

0
〈g,ut 〉�N dt +

∫ τ

0
(F,ut )dt −

∫ τ

0
〈ψ,p〉�D,v

dt +
∫ τ

0
(S, p)dt ⇒

(56)

δ

∫ τ

0
a(ut , ut )dt + 1

2
a(u(τ ),u(τ ))+

∫ τ

0
(k(x, t)∇p,∇p)dt

≤ a(u(0),u(0))+
∫ τ

0
〈g, ut 〉�N dt +

∫ τ

0
(F, ut )dt −

∫ τ

0
〈ψ,p〉�D,v

dt +
∫ τ

0
(S, p)dt.

(57)

Therefore, using the fact that κ∗ ≤ k(x, t) ≤ κ∗, Cauchy–Schwarz, and Young’s
Inequality, we have

δ‖ut‖2
L2(0,τ ;V) + ‖u(τ )‖2

V + κ∗‖p‖2
L2(0,τ ;V ) ≤ C

(
‖u0‖2

V + 1

2ε
‖g‖2

L2(0,τ ;L2(�N ))

+ ε‖ut‖2
L2(0,τ ;L2(�N ))

+ 1

2ε
‖F‖2

L2(0,τ ;L2(�))
+ 1

2ε
‖ψ‖2

L2(0,τ ;L2(�D,v))

+ ε‖p‖2
L2(0,τ ;L2(�D,v))

+ 1

2ε
‖S‖2

L2(0,τ ;L2(�))

)
.

(58)
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Then applying Trace Theorem, setting ε sufficiently small, and letting τ = T , we
obtain

‖ut‖2
L2(0,T ;V) + ‖p‖2

L2(0,T ;V ) ≤ C
(
‖u0‖2

V + F(T )
)
, (59)

where F(T ) is as given in (8). Additionally, by integrating (58) from 0 to T , we see

∫ T

0
‖u(t)‖2

Vdt ≤
∫ T

0
C
(
‖u0‖2

V + F(T )
)
dt (60)

which implies

‖u‖2
L2(0,T ;V) ≤ C(T )

(
‖u0‖2

V + F(T )
)
. (61)

Putting (58) and (61) together shows that any solution that satisfies Definition 1
satisfies (10). If the solution was not unique than the difference of solutions would
satisfy the system with initial condition and sources set to zero. However, in this
case, (10) would imply the difference of the solutions had norm zero. Therefore, the
solution must be unique. �

3 Optimal Control Problems: Well-Posedness

Our goal is to “optimize" the solution of the poro-visco-elastic system (1a)–
(4) represented by the solid displacement u and fluid pressure p using either
distributed or boundary controls. More specifically, we want to find controls so
that their corresponding solid displacement and fluid pressure are the best possible
approximations to desired/target values (dictated by the applications described in
the Introduction), denoted by ud and pd , respectively.

The sources F, S, g, or ψ will be used as controls. For sake of exposition, we
denote the control with a generic q, to represent the different choices of control
variables. The regularity of the control q, dictated by the well-posedness theory
presented in Sect. 2, is given by

Q = L2(0, T ;L2(�)), L2(0, T ;L2(�)), L2(0, T ;L2(�N)), or L2
(

0, T ;L2(�D,v)
)
,

depending on if F, S, g, or ψ is the control, respectively. Notation wise, we denote
the inner product in the control space as (·, ·)Q and the norm in the control space as
‖ · ‖Q.

We denote by u[q] and p[q] the solid displacement and fluid pressure cor-
responding to control q in (1a)–(4). Then the optimal control problem under
consideration is
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min
q∈Qad

J (u[q], p[q], q), (62)

where the cost functional has the following form:

J (u, p, q) = 1

2
‖u − ud‖2

L2(0,T ;L2(�))
+ 1

2
‖p − pd‖2

L2(0,T ;L2(�))
+ λ

2
‖q‖2

Q,

and Qad := {q ∈ Q|ql ≤ q ≤ qu} is the set of admissible controls. Note that ql
could potentially be −∞ and qu could potentially be ∞.

Definition 3 [Control-to-State Operator] Let G : Qad → L2(0, T ;𝕍 ) be the
control-to-state operator that maps q to y = (u, p) where (u, p) is the weak solution
to (1)–(4) with the initial condition, boundary and interior sources all set to zero
except the control.

Using Theorem 1, we have that the control-to-state operator G is linear, continuous,
and injective.

The optimal control problem (62) can now be written equivalently as

min
q∈Qad

J (q), with J (q) = 1

2
‖I ◦G(q)+ y0 − yd‖2

Y +
λ

2
‖q‖2

Q,

where I is the continuous embedding L2(0, T ;𝕍 ) → Y = L2(0, T ;L2(�) ×
L2(�)), yd = (ud , pd), and y0 is the weak solution to (1)–(4) with the control
set to zero and the initial condition, boundary and interior sources set as desired.
For the sake of exposition, we let ỹ = yd − y0 and define (ũ, p̃) = ỹ. Then the
optimal control problem becomes

min
q∈Qad

J (q), with J (q) = 1

2
‖I ◦G(q)− ỹ‖2

Y +
λ

2
‖q‖2

Q. (63)

The main result of this section, along with the proof, is presented below:

Theorem 2 Assume that either [λ > 0] or [λ = 0 and ql �= −∞, and qu �= ∞].
1. There exists a unique optimal distributed control F̄ ∈ L2(0, T ;L2(�))

that solves the minimization problem (63) subject to (1)–(4) with S ∈
L2(0, T ;L2(�)), g ∈ L2(0, T ;L2(�N)), ψ ∈ L2(0, T ;L2(�D,v)), and initial
condition u0 ∈ V.

2. There exists a unique optimal distributed control S̄ ∈ L2(0, T ;L2(�))

that solves the minimization problem (63) subject to (1)–(4) with F ∈
L2(0, T ;L2(�)), g ∈ L2(0, T ;L2(�N)), ψ ∈ L2(0, T ;L2(�D,v)), and initial
condition u0 ∈ V.

3. There exists a unique optimal boundary control ḡ ∈ L2(0, T ;L2(�N))

that solves the minimization problem (63) subject to (1)–(4) with F ∈
L2(0, T ;L2(�)), S ∈ L2(0, T ;L2(�)), ψ ∈ L2(0, T ;L2(�D,v)), and initial
condition u0 ∈ V.
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4. There exists a unique optimal boundary control ψ̄ ∈ L2(0, T ;L2(�D,v))

that solves the minimization problem (63) subject to (1)–(4) with F ∈
L2(0, T ;L2(�)), S ∈ L2(0, T ;L2(�)), g ∈ L2(0, T ;L2(�N)), and initial
condition u0 ∈ V.

Proof Using Theorem 1, we see that the control-to-state operator G is linear,
continuous, and injective. As a consequence, the cost functional J (q) is continuous
and strictly convex, for all choices of controls q. We focus on the case when q = ψ

is the control (Part 4). We omit the proofs for the other parts, as they follow similarly.
If λ = 0, then the cost functional is minimized over a bounded set, as ql �= −∞,

and qu �= ∞. We denote the bounded set by Qb. Note that the OC problem (63) can
be reduced to a minimization problem over a bounded set if λ > 0, as well. We have
the following argument. Let ψ0 ∈ L2(0, T ;L2(�D,v)). If ‖ψ‖2 > 2

λ
J (ψ0), then

J (ψ) = 1

2
‖G(ψ)− ỹ‖2

Y +
λ

2
‖ψ‖2

L2(0,T ;L2(�D,v))
> J (ψ0). (64)

Thus the search for an optimum can be restricted to the bounded set Qb := {ψ ∈
L2(0, T ;L2(�)) | ‖ψ‖2 ≤ 1

λ
‖ỹ‖2

Y } if 0 ∈ Qad and a similar set otherwise.
Now we can show that a solution exists for (63). Since J (q) ≥ 0, there exists

j := inf
q∈Qb

J (q). As a consequence, there exists a sequence {qn}∞n=1 ⊂ Qb such that

J (qn)→ j as n→∞. SinceQ is reflexive, andQb is closed, bounded, and convex,
then Qb is weakly sequentially compact. Therefore, there exists a subsequence of
{qn}∞n=1, which for convenience we still denote by {qn}∞n=1, that converges weakly
to some q̄ ∈ Qb. The cost functional J is weakly lower semicontinuous and thus

lim inf
n→∞ J (qn) ≥ J (q̄)⇒ j ≥ J (q̄).

Using the definition of j , we, therefore, obtain that J (q̄) = j , which means that q̄
is the optimal control.

To prove uniqueness of optimal control, we assume that there are two solutions
q̄ and r̄ for (63). By the strict convexity of J , we have

J (μq̄ + (1 − μ)r̄) < μJ(q̄)+ (1 − μ)J (r̄) = j. (65)

Given the convexity of Qb, μq̄+(1−μ)r̄ ∈ Qb, so (65) implies that q̄ and r̄ are not
optimal controls. This is a contradiction, and thus the optimal control is unique. �
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4 Necessary Optimality Condition

We have that the cost functional J : Qad → ℝ is Frechét differentiable and its
derivative is given by

J ′(q) = G∗(G(q)− ỹ)+ λq,

where G∗ is the adjoint operator of G. Thus we can immediately characterize the
optimal control q̄ as follows:

Lemma 1 Consider the minimization problem (63). Then q̄ ∈ Qad is a solution for
(63) if and only if q̄ satisfies the following inequality:

(G∗(Gq̄ − ỹ), q − q̄)Q + (λq̄, q − q̄)Q ≥ 0 ∀q ∈ Qad. (66)

Since the adjoint operator of G can be difficult to work with computationally, we
will characterize the optimal control using the adjoint system.

4.1 Adjoint System

We define, formally, the Lagrangian function

L(u, p, q, m̂, ĥ) = J (u, p, q)+
∫ T

0
(∇ · T(u, p),m1)dt +

∫ T

0
(F,m1)dt

−
∫ T

0
(∇ · ut , h1)dt +

∫ T

0
(∇ · (k(x, t)∇p), h1)dt +

∫ T

0
(S, h1)dt − (∇ · u(0), h2)

+ (d0, h2)−
∫ T

0
〈T(u, p)n,m2〉�N dt +

∫ T

0
〈g,m2〉�N dt −

∫ T

0
〈u,m3〉�Ddt

−
∫ T

0
〈k(x, t)∇p · n, h3〉�N dt −

∫ T

0
〈p, h4〉�D,p

dt −
∫ T

0
〈k(x, t)∇p · n, h5〉�D,v

dt

−
∫ T

0
〈ψ, h5〉�D,v

dt,

where the Lagrange multipliers m1, h1 are functions defined on � × (0, T ), h2 is
a function defined on �, and m2, m3, h3, h4, h5 are functions defined on parts of
�×(0, T ), and they are expressed in L as the vectors m̂ and ĥ. Moreover, we recall
that the control q will be taken to be one of the sources F, S, g, or ψ . Assuming
sufficient smoothness on m̂ and ĥ and integrating by parts, we obtain the following
equivalent form for the Lagrangian function:
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L(u, p, q, m̂, ĥ) = J (u, p, q)+
∫ T

0
(u,∇ · σ(m1))dt −

∫ T

0
〈σ(m1)n,u〉�dt

− δ

∫ T

0
(u,∇ · σ(m1)t )dt + δ(u(T ),∇ · σ(m1(T )))− δ(u(0),∇ · σ(m1(0)))

+ δ

∫ T

0
〈σ(m1)tn,u〉�dt − δ〈σ(m1)(T )n,u(T )〉� + δ〈σ(m1(0)),u(0)〉�

+
∫ T

0
(p,∇ · m1)dt +

∫ T

0
〈σ(u)n,m1〉�dt − δ

∫ T

0
〈σ(u)n,m1t 〉�dt

+ δ〈σ(u(T ))n,m1(T )〉� − δ〈σ(u(0))n,m1(0)〉� −
∫ T

0
〈p,m1 · n〉�dt

+
∫ T

0
(F,m1)dt −

∫ T

0
(u,∇h1t )dt + (u(T ),∇h1(T ))− (u(0),∇h1(0))

+
∫ T

0
〈u · n, h1t 〉�dt − 〈u(T ) · n, h1(T )〉� + 〈u(0) · n, h1(0)〉�

+
∫ T

0
(p,∇ · (k(x, t)∇h1)dt +

∫ T

0
〈k(x, t)∇p · n, h1〉dt −

∫ T

0
〈p, k(x, t)∇h1 · n〉�dt

+
∫ T

0
(S, h1)dt + (u(0),∇h2)− 〈u(0) · n, h2〉� −

∫ T

0
〈σ(u),m2〉�N dt

+ δ

∫ T

0
〈σ(u),m2t 〉�N dt − δ〈σ(u(T )),m2(T )〉�N + δ〈σ(u(0)),m2(0)〉�N

+
∫ T

0
〈p,m2 · n〉�N dt +

∫ T

0
〈g,m2〉�N dt −

∫ T

0
〈u,m3〉�Ddt

−
∫ T

0
〈k(x, t)∇p · n, h3〉�N dt −

∫ T

0
〈p, h4〉�D,p

dt −
∫ T

0
〈k(x, t)∇p · n, h5〉�D,v

dt

−
∫ T

0
〈ψ, h5〉�D,v

dt.

(67)
By Lagrange principle, the optimal solution (ū, p̄, q̄) and the multipliers m̂ and ĥ

should satisfy the optimality conditions associated with the unconstrained problem
“minL(u, p, q, m̂, ĥ) with q ∈ Qad”.

From (71), we obtain the following formulas for the derivatives of L w.r.t. the
state variables:
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DuL(u, p, q, m̂, ĥ)v =
∫ T

0
(u − ud , v)dt +

∫ T

0
(v,∇ · σ(m1))dt

−
∫ T

0
〈σ(m1)n, v〉�dt − δ

∫ T

0
(v,∇ · σ(m1)t )dt + δ(v(T ),∇ · σ(m1(T )))

− δ(v(0),∇ · σ(m1(0)))+ δ

∫ T

0
〈σ(m1)tn, v〉�dt − δ〈σ(m1)(T )n, v(T )〉�

+ δ〈σ(m1(0)), v(0)〉� +
∫ T

0
〈σ(v)n,m1〉�dt − δ

∫ T

0
〈σ(v)n,m1t 〉�dt

+ δ〈σ(v(T ))n,m1(T )〉� − δ〈σ(v(0))n,m1(0)〉� −
∫ T

0
(v,∇h1t )dt + (v(T ),∇h1(T ))

− (v(0),∇h1(0))+
∫ T

0
〈v · n, h1t 〉�dt − 〈v(T ) · n, h1(T )〉� + 〈v(0) · n, h1(0)〉�

+ (v(0),∇h2)− 〈v(0) · n, h2〉� −
∫ T

0
〈σ(v),m2〉�N dt + δ

∫ T

0
〈σ(v),m2t 〉�N dt

− δ〈σ(v(T )),m2(T )〉�N + δ〈σ(v(0)),m2(0)〉�N −
∫ T

0
〈v,m3〉�Ddt

(68)

DpL(u, p, q, m̂, ĥ)r =
∫ T

0
(p − pd, r)dt +

∫ T

0
(r,∇ · m1)dt −

∫ T

0
〈r,m1 · n〉dt

+
∫ T

0
(r,∇ · (k(x, t)∇h1)dt +

∫ T

0
〈k(x, t)∇r · n, h1〉�dt −

∫ T

0
〈r, k(x, t)∇h1 · n〉�dt

+
∫ T

0
〈r,m2 · n〉�N dt −

∫ T

0
〈k(x, t)∇r · n, h3〉�N dt −

∫ T

0
〈r, h4〉�D,p

dt

−
∫ T

0
〈k(x, t)∇r · n, h5〉�D,v

dt.

(69)
Since the derivative of L with respect to (u, p) should vanish at the optimal point

(ū, p̄, q̄), and if we let

m := m1, h := h1, m2 = m|�N m3 = (−σ(m)+ δσ (m1)t + ht I)n)|�D ,

∇h2 = −δ∇·σ(m1(0))+∇h(0) h3 = h|�N h4 = −k(x, t)∇h·n|�D,p
h5 = h|�D,v

,

we obtain the following adjoint system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ∇ · σ(mt )+∇ · σ(m)− ∇ht = −(ū − ũ) in �× (0, T )

−∇ · m −∇ · (k(x, t)∇h) = p̄ − p̃ in �× (0, T )

−k(x, t)∇h · n = 0 on (�N ∪ �D,v)× (0, T )

(δσ (mt )− σ(m)+ ht I)n = 0 on �N × (0, T )

h = 0 on �D,p × (0, T )

m = 0 on �D × (0, T )

∇h(T )+ δ∇ · σ(m(T )) = 0 in �.

(70)

Remark 1 The proper definition of the Lagrangian function L is given below.
For m ∈ L2(0, T ;V) and h ∈ L2(0, T ;V ), let the Lagrangian function
L (u, p, q,m, h) : H 1(0, T ;V)×L2(0, T ;V )×Q×L2(0, T ;V)×L2(0, T ;V )→
ℝ be given by

L (u, p, q,m, h) = J (u, p, q)−
(
δ

∫ T

0
a(ut ,m) dt +

∫ T

0
a(u,m) dt

−
∫ T

0
(p,∇ · m) dt −

∫ T

0
〈g,m〉�N dt −

∫ T

0
(F,m) dt

)

−
( ∫ T

0
(k(x, t)∇p,∇h) dt +

∫ T

0
(∇ · ut , h) dt +

∫ T

0
〈ψ, h〉�D,v dt −

∫ T

0
(S, h) dt

)
.

(71)

Now we consider the adjoint system (70) with given data as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ∇ · σ(mt )+ ∇ · σ(m)−∇ht = −z1 in �× (0, T )

−∇ · m − ∇ · (k(x, t)∇h) = z2 in �× (0, T )

−k(x, t)∇h · n = 0 on (�N ∪ �D,v)× (0, T )

(δσ (mt )− σ(m)+ ht I)n = 0 on �N × (0, T )

h = 0 on �D,p × (0, T )

m = 0 on �D × (0, T )

∇h(T )+ δ∇ · σ(m(T )) = ∇z3 + δ∇ · σ(z4) in �.

(72)
We define a weak solution for the adjoint system (72) as follows.

Definition 4 [Weak Solution for Adjoint System] A weak solution to (72) is
represented by the pair of functions m ∈ L2(0, T ;V) and h ∈ L2(0, T ;V ) such
that:

(a) For any w ∈ V, w ∈ V , and f ∈ C∞
0 (0, T ) the following variational

formulations are satisfied:
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δ

∫ T

0
a(m,w)f ′(t)+ a(m,w)f (t)+ (h,∇ · w)f ′(t) dt =

∫ T

0
(z1,w)f (t) dt (73)

∫ T

0
(k(x, t)∇h,∇w)f (t)− (∇ · m, w)f (t) dt =

∫ T

0
(z2, w)f (t) dt. (74)

(b) For every w ∈ V, the term (h(t),∇ · w) + δa(m(t),w) uniquely defines an
absolutely continuous function on [0, T ] and the terminal condition (h(T ),∇ ·
w)+ δa(m(T ),w) = (z3,∇ · w)+ δa(z4,w) is satisfied.

The adjoint system (72) is a linear, weakly coupled system. Once reversed in
time,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ∇ · σ(mt )+∇ · σ(m)+ ∇ht = −z1 in �× (0, T )

−∇ · (k(x, t)∇h)−∇ · m = z2 in �× (0, T )

−k(x, t)∇h · n = 0 on (�N ∪ �D,v)× (0, T )

(σ (mt )+ σ + htI )n = 0 on �N × (0, T )

h = 0 on �D,p × (0, T )

m = 0 on �D × (0, T )

∇h(·, 0)+ δ∇ · σ(·, 0) = ∇z3 + δ∇ · σ(z4) in �
(75)

the system is similar to the original poro-visco-elastic system described in (1)–(4).
Existence and uniqueness of weak solution (in the sense of Definition 4) for given
data z1 ∈ L2(0, T ;V′), z2 ∈ L2(0, T ;V ), z3 ∈ V and z4 ∈ V can be obtained using
the strategy presented in [10, 45], namely Rothe’s method.

4.2 First Order Necessary Optimality Conditions

First we provide an identity which is essential in the derivation of the first order
necessary optimality conditions.

Lemma 2 Let (u, p) be the weak solution to the poro-visco-elastic system
(1)–(4) with u0 = 0 and F ∈ L2

(
0, T ;L2(�)

)
, S ∈ L2(0, T ;L2(�)),

g ∈ L2
(
0, T ;L2(�N)

)
, ψ ∈ L2

(
0, T ;L2(�D,v)

)
. Let (m, h) be the weak

solution to the adjoint equation (72) with z1 ∈ L2(0, T ;V′), z2 ∈ L2(0, T ;V ),
z3 = 0 and z4 = 0. Then the following identity holds:

∫ T

0
〈g,m〉�N dt +

∫ T

0
(F,m)dt −

∫ T

0
〈ψ, h〉�D,vdt +

∫ T

0
(S, h)dt

=
∫ T

0
(z1,u)dt +

∫ T

0
(z2, p)dt.
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Proof Let (m, h) be the weak solution to the adjoint equation (70). Since we have
that

(h(t),∇ · w) ≤ ‖h(t)‖L2(�)‖w‖V

then by Riesz Representation Theorem, there exits R(h∇)(t) ∈ V such that for all
w ∈ V

(h(t),∇ · w)L2(�) = (R(h∇)(t),w)V and ‖R(h∇)(t)‖V ≤ ‖h(t)‖L2(�).

Therefore, R(h∇)(t) ∈ L2(0, T ;V).
Furthermore, for any w ∈ V and f ∈ C∞

0 (0, T ), we have

− δ

∫ T

0
a(m(t),w)f ′(t)dt +

∫ T

0
a(m(t),w)f (t)dt −

∫ T

0
(R(h∇)(t),w)Vf ′(t)dt

=
∫ T

0
(z1(t),w)f (t)dt.

Now we define the following linear and bounded functionals Fi(t) : V → ℝ:

F1(t) : w �→ −(z1(t),w)L2(�), F2(t) : w �→ a(m(t),w),

with estimates given by

|F1(t)w| ≤ ‖z1(t)‖(L2(�))3‖w‖(L2(�))3 ≤ ‖z1(t)‖V‖w‖V

|F2(t)w| ≤ 2‖∇m(t)‖(L2(�))9‖∇w‖(L2(�))9 ≤ 2‖m(t)‖V‖w‖V.

This implies that Fi(t) ∈ V′ for every t and there exists some constant C > 0 such
that

‖F1(t)‖V′ + ‖F2(t)‖V′ ≤ C(‖z1(t)‖V + ‖m(t)‖V).

Since z1(t),m(t) ∈ L2(0, T ;V), then we obtain that F(t) = F1(t) + F2(t) ∈
L2(0, T ;V′). Now using Bochner’s Theorem and (73) we have

(∫ T

0
(δm(t)+ R(h∇)(t))f ′(t)dt,w

)
V
=
∫ T

0
(δm(t)+ R(h∇)(t))f ′(t),w)Vdt

=
∫ T

0
(F (t)f (t),w)V′,Vdt =

(∫ T

0
F(t)f (t)dt,w

)
V′,V

.

Hence, we have that in the space of V′,
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∫ T

0
(δm(t)+ R(h∇)(t))f ′(t)dt =

∫ T

0
F(t)f (t)dt, ∀f ∈ C∞

0 (0, T ).

Therefore, by definition of distributional derivatives for vector valued functions,
d
dt
(δm(t)+ R(h∇)(t)) = F(t) ∈ L2(0, T ;V′).
Additionally, (73) can be written as

∫ T

0
a(m,w)f (t)dt −

∫ T

0

(
d

dt
(δm + R(h∇ )) ,w

)
V′,V

f (t)dt =
∫ T

0
(z1,w)f (t)dt.

(76)
However, since {wf (t)|w ∈ V, f ∈ C∞

0 (0, T )} is dense in L2(0, T ;V), we can let
u and p be test functions in (74) and (76) to obtain

∫ T

0
a(m,u)dt −

∫ T

0

(
d

dt
(δm + R(h∇)) ,u

)
V′,V

dt −
∫ T

0
(∇ · m, p)dt

+
∫ T

0
(k∇h,∇p)dt =

∫ T

0
(z1,u)dt +

∫ T

0
(z2, p)dt.

Since u ∈ H 1(0, T ;V), we can integrate the second term by parts.

∫ T

0
a(m,u)dt +

∫ T

0
(δm + R(h∇),ut )Vdt − (δm(T )+ R(h∇)(T ),u(T ))L2(�)

+ (δm(0)+ R(h∇)(0),u(0))L2(�) −
∫ T

0
(∇ · m, p)dt +

∫ T

0
(k∇h,∇p)dt

=
∫ T

0
(z1,u)dt +

∫ T

0
(z2, p)dt.

(77)
Recall that for all w ∈ V, δa(m(T ),w)+ (h(T ),∇ ·w) = δa(z4,w)+ (z3,∇ ·w).
Since z3 = 0 and z4 = 0, (z3,∇ · w) = 0 and δa(z4,w) = 0. Therefore, (δm(T )+
R(h∇)(T ),w)V = δa(m(T ),w)+ (h,∇ ·w) = 0. Hence, δm(T )+R(h∇)(T ) = 0.
Also, we assumed u0 = 0. Therefore, the temporal boundary terms in (77) are equal
to 0, and using the definition of R(h∇), we have

δ

∫ T

0
a(m,ut )dt +

∫ T

0
a(m,u)dt +

∫ T

0
(h,∇ · ut )dt −

∫ T

0
(∇ · m, p)dt

+
∫ T

0
(k∇h,∇p)dt =

∫ T

0
(z1,u)dt +

∫ T

0
(z2, p)dt.

(78)
Let (m, h) be the test functions used in the weak form of the poro-visco-elastic

system. We obtain
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δ

∫ T

0
a(ut ,m)dt +

∫ T

0
a(u,m)dt −

∫ T

0
(p,∇ · m)dt +

∫ T

0
(k∇p,∇h)dt

+
∫ T

0
(∇ · ut , h)dt

=
∫ T

0
〈g,m〉�N dt +

∫ T

0
(F,m)dt −

∫ T

0
〈ψ, h〉�D,vdt +

∫ T

0
(S, h)dt.

(79)
Combining (78) and (79), we obtain the desired equality:

∫ T

0
〈g,m〉�N dt +

∫ T

0
(F,m)dt −

∫ T

0
〈ψ, h〉�D,vdt +

∫ T

0
(S, h)dt

=
∫ T

0
(z1,u)dt +

∫ T

0
(z2, p)dt.

�
Finally, we can state and prove our theorem on first order necessary optimality

conditions.

Theorem 3 If q̄ ∈ Q is the optimal control, then there exists a solution (m, h) to
the adjoint system (70) which satisfies

⎧⎪⎪⎨
⎪⎪⎩

∫ T
0 (q − q̄, h+ λq̄)Q ≥ 0 ∀q ∈ Qad when S is used as the control q∫ T
0 (q − q̄,−h+ λq̄)Q ≥ 0 ∀q ∈ Qad when ψ is used as the control q∫ T
0 (q − q̄,m + λq̄)Q ≥ 0 ∀q ∈ Qad when F or g is used as the control q.

(80)
Conversely, let q̄ ∈ Qad with associated state (ū, p̄). Let (m, h) be the solution to
the adjoint system (70), and if (80) is satisfied, then q̄ is a solution to the optimal
control problem (62).

Proof Let q̄ ∈ Q be the optimal control. Then G(q̄) = (ū, p̄) ∈ H 1(0, T ;V) ×
L2(0, T ;V ). Since q̄ is optimal, (66) yields:

(Gq̄ − ỹ, Gq −Gq̄)Y + (λq̄, q − q̄)Q ≥ 0 ∀q ∈ Qad,

which is equivalent to

∫ T

0
(ū−ũ,u−ū)dt+

∫ T

0
(p̄−p̃, p−p̄)dt+(λq̄, q−q̄)Q ≥ 0 ∀q ∈ Qad. (81)

Recall G(q− q̄) = (u− ū, p− p̄) corresponds to the solution of the poro-visco-
elastic system where all sources and initial conditions are zero except the control
q − q̄. There exists (m, h) satisfying the adjoint system (70). Therefore, applying
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Lemma 2, we obtain

(q − q̄, h)Q =
∫ T

0
(ū − ũ,u − ū)+

∫ T

0
(p̄ − p̃, p − p̄) ∀q ∈ Qad, (82)

if S is used as the control variable,

−(q − q̄, h)Q =
∫ T

0
(ū − ũ,u − ū)+

∫ T

0
(p̄ − p̃, p − p̄) ∀q ∈ Qad, (83)

if ψ is used as the control variable, and

(q − q̄,m)Q =
∫ T

0
(ū − ũ,u − ū)+

∫ T

0
(p̄ − p̃, p − p̄) ∀q ∈ Qad, (84)

if F or g is used as the control variable. Combining (82), (83), and (84) with
inequality (81), we obtain the desired inequality (80).

Conversely, assume that G(q̄) = (ū, p̄) and that there exists a solution (m, h)

to the adjoint system (70) that satisfies (80). Then again using the identity from
Lemma 2 we obtain

(Gq̄ − ỹ, Gq −Gq̄)Y + (λq̄, q − q̄)Q ≥ 0 ∀q ∈ Qad,

which implies that q̄ is the optimal control. �
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Global Gradient Estimate for a
Divergence Problem and Its Application
to the Homogenization of a Magnetic
Suspension

Thuyen Dang, Yuliya Gorb, and Silvia Jiménez Bolaños

1 Introduction

The purpose of this paper is to generalize the results obtained by the authors in [10],
where the rigorous analysis of the homogenization of a particulate flow consisting
of a non-dilute suspension of a viscous Newtonian fluid with magnetizable particles
was developed. Here, the fluid is assumed to be described by the Stokes flow
and the particles are either paramagnetic or diamagnetic. The coefficients of the
corresponding partial differential equations are locally periodic and a one-way
coupling between the fluid domain and the particles is also assumed. Such one-
way coupling has been observed in nature, see [11, Chapter 1]. For details and
information about the applications and literature on the magnetic suspension, we
turn to [10] and the references cited therein; however, the mathematical formulation
of the considered problem is given in Sect. 2.2 below. References on the effective
viscosity of a suspension without the coupling with magnetic field include [5, 6, 12–
16, 18, 21, 23, 25, 31, 33].

In [10], a restrictive assumption about the magnetic permeability of the suspen-
sion, denoted by a, was made. Here, the function a(·) is locally periodic and elliptic,
where the latter means that λI ≤ a(x) and ‖a‖L∞ ≤ �, for all x ∈ �, with the
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suspension domain � ⊂ R
d , d = 2, 3, including both the ambient fluid and the

particles, and λ,� > 0 given in (A2)–(A3) below. The assumption on the function
a made in [10] is as follows: for a given s ∈ (4, 6], there exists a small number
δ = δ(�, d,�) > 0, for which the magnetic permeability a satisfies the following
condition:

ess sup a − ess inf a ≤ δ. (1)

As a consequence of (1), in [10] we obtained the following gradient estimate for the
magnetic potential ϕε:

∫
�

∣∣∇ϕε∣∣s dx ≤ C

∫
�

|k|s dx, (2)

where the constant C > 0 is independent of ε, ϕε and k; with 0 < ε 	 1 the scale
of the microstructure, k ∈ H 1(�,Rd) divergence-free, satisfying the compatibility

condition
∫
∂�

k ·n∂� ds = 0, and appearing in the Neumann boundary condition on

∂�, the boundary of the domain �, given by:

(
a∇ϕε) · n∂� = k · n∂�, (3)

where n∂� is the outward-pointing unit normal vector to ∂�. The regularity
result (2) was then used in the derivation of the effective (or homogenized) response
of the given suspension that was rigorously justified in [10].

The main goal of this paper is to relax the assumption (1) on the magnetic
permeability a. To achieve this, we consider the Dirichlet boundary condition given
in (4b) below, rather than one given in (3), and obtain the Lipschitz estimate (5),
instead of (2), for the gradient of the magnetic potential ϕε, see Theorem 1 below.
In this paper, we are able to remove the condition (1) and have a only required to
be piecewise Hölder continuous. Such relaxation will be based on the following
observations:

• The De Giorgi-Nash-Moser estimate [20, Theorem 8.24] states that the solutions
of scalar equations are Hölder continuous.

• If 1 > ε ≥ ε0, for some ε0 > 0, the uniform gradient bound (5) can be obtained
by the result of Li and Vogelius [29]. The case when ε0 > ε > 0 is resolved by
the compactness method, which is discussed below.

• Provided a is also symmetric (this assumption is only necessary for the corrector
results in Theorem 2), the gradients of the solutions of the cell problems are in
L∞(Y ).

The main tools used in the proof of this theorem are (i) the regularity results
of Li and Vogelius [29], and (ii) the celebrated compactness method, which was
first used in homogenization in the seminal works of Avellaneda and Lin [3, 4]. Its
machinery and applications in homogenization are carefully explained in [34]. In
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the context of homogenization, this method utilizes compactness in order to gain
an improved regularity from a limiting equation via a proof by contradiction. This
improvement of regularity is iterated and then used in a blow-up argument. Usually,
the implementation of this method follows three steps, coined by Avellaneda and
Lin [3, 4] as (i) “improvement,” (ii) “iteration,” and (iii) “blowup.”

The main contribution of this improved regularity result is that it will allow us to
significantly widen the range of applicability of the results obtained in [10].

The outline of the paper is as follows. In Sect. 2, the main notations are
introduced and the formulation of the fine-scale problem is discussed. Theorem 1,
which provides an improved gradient estimate for the magnetic potential, is stated
and discussed in Sect. 3. In Sect. 4, we obtain the interior Lipschitz and Hölder
estimates, which provide the foundation for the boundary and corrector estimates
discussed in Sect. 5. With all the results at hand, we then present the proof of our
main theorem, also in Sect. 5. In Sect. 6, the homogenization results are obtained
and summarized in Theorem 2. The conclusions are given in Sect. 7. The classical
Schauder estimate is recalled in Appendix.

2 Formulation

2.1 Notation

For a measurable set A and a measurable function f : A→ R, we define by |A| the

measure of A and −
∫
A

f (x) dx := 1

|A|
∫
A

f (x) dx.

Throughout this paper, the scalar-valued functions, such as the pressure p, are
written in usual typefaces, while vector-valued or tensor-valued functions, such
as the velocity u and the Cauchy stress tensor σ , are written in bold. Sequences
are indexed by numeric superscripts (φi), while elements of vectors or tensors are
indexed by numeric subscripts (xi). Finally, the Einstein summation convention is
used whenever applicable.

2.2 Setup of the Problem

Consider � ⊂ R
d , for d ≥ 2, a simply connected and bounded domain of class

C1,α, 0 < α < 1, and let Y := (0, 1)d be the unit cell in R
d . The unit cell Y is

decomposed into:

Y = Ys ∪ Yf ∪ �,

where Ys , representing the magnetic inclusion, and Yf , representing the fluid
domain, are open sets in R

d , and � is the closed C1,α interface that separates them.
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Let i = (i1, . . . , id ) ∈ Z
d be a vector of indices and {e1, . . . , ed} be the canonical

basis of Rd . For a fixed small ε > 0, we define the dilated sets:

Y ε
i := ε(Y + i), Y ε

i,s := ε(Ys + i), Y ε
i,f := ε(Yf + i), �ε

i := ∂Y ε
i,s .

Typically, in homogenization theory, the positive number ε 	 1 is referred to as
the size of the microstructure. The effective (or homogenized) response of the given
suspension corresponds to the case ε = 0.

We denote by ni , n� , and n∂� the unit normal vectors to �ε
i pointing outward

Y ε
i,s , to � pointing outward Ys , and to ∂� pointing outward, respectively; and also,

we denote by dHd−1 the (d − 1)-dimensional Hausdorff measure. In addition, we
define the sets:

I ε := {i ∈ Z
d : Y ε

i ⊂ �}, �ε
s :=

⋃
i∈I ε

Y ε
i,s , �ε

f := � \�ε
s , �ε :=

⋃
i∈I ε

�ε
i ,

see Fig. 1.
The magnetic permeability a is a d × d matrix satisfying the following condi-

tions:

(A1) Y -periodicity: for all z ∈ R
d , for all m ∈ Z, and for all k ∈ {1, . . . , d} we

have:

Fig. 1 Reference cell Y and domain �
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a(z+mek) = a(z).

(A2) Boundedness and measurability: there exists � > 0 such that:

‖a‖
L∞
(
R

d
) ≤ �.

(A3) Ellipticity: there exists λ > 0 such that for all ξ ∈ R
d , for all x ∈ R

d , we
have:

a(x)ξ · ξ ≥ λ |ξ |2 .

Denote by M(λ,�) the set of matrices that satisfy (A2)–(A3) and Mper(λ,�)

the subset of matrices in M(λ,�) that also satisfy (A1).

3 Statement and Discussion of the Main Result

The main result of this paper is summarized in the following theorem:

Theorem 1 (Global Lipschitz Estimate) Let � be a bounded C1,α domain, g ∈
C1,α′(∂�), and f ∈ L∞(�), where 0 < α′ < α < 1. Suppose that a ∈ Mper(λ,�)

is piecewise Cα-continuous. There exists C = C(α, α′, λ,�, d,�) > 0 such that,
for all ε > 0, the (unique) solution ϕε of:

− div
[
a
(x
ε

)
∇ϕε

]
= f, in � (4a)

ϕε = g, on ∂� (4b)

satisfies:

∥∥∇ϕε∥∥
L∞(�)

≤ C
(
‖g‖

C1,α′ (∂�) + ‖f ‖L∞(�)

)
. (5)

Remark 1 For each ε > 0, let Nε be the number of subdomains inside � such
that in each of them the function a is Cα-continuous. Denote those subdomains by

Dm, 1 ≤ m ≤ Nε. Then, for 0 < α′ < min
{
α, α

(α+1)d

}
, by Li and Vogelius [29,

Corollary 1.3], one has:

∥∥∇ϕε∥∥
L∞(�)

≤ C
(
‖g‖

C1,α′ (∂�) + ‖f ‖L∞(�)

)
, (6)

where C depends on �, d, α, α′, λ,�, ‖a‖
Cα′ (Dm,R

d×d
)
, and the C1,α-modulus of

∪Nε

m=1∂Dm (defined in page 92 [29]). As ε → 0, the number Nε increases, while the
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sizes of the subdomains decrease, which leads to the blowup of the C1,α-modulus.
Therefore, estimate (6) is not uniform in ε.

However, if ε0 ≤ ε ≤ 1 for some constant ε0 > 0, then one can control the
number, size, distance, and C1,α-modulus of the subdomains in �, uniformly with
respect to ε. Note that the upper and lower bounds of those quantities are positive
and independent of ε. Thus, by Li and Vogelius [29, Corollary 1.3], there exists C
independent of ε such that (5) holds when ε0 ≤ ε ≤ 1. Therefore, Theorem 1 will
be proven, if one can specify a constant ε0 > 0 such that (5) holds for 0 < ε < ε0.

Our proof of Theorem 1 follows the classical steps in regularity theory: (i) derive
an interior Lipschitz estimate, (ii) derive a boundary Lipschitz estimate, and finally
(iii) combine the estimates in (i) and (ii) to obtain the global Lipschitz estimate.
Step (i) is obtained via the compactness method. For step (ii), we additionally need
to establish the following preliminary results:

• Interior and boundary Hölder estimates, see Propositions 1–3.
• Estimates for the Green’s function, which are obtained using the Hölder bounds

above, see Proposition 5. The existence of the Green’s function for scalar
uniformly elliptic equations is established in [22, 26, 30].

• Estimates for the Dirichlet boundary corrector, see Proposition 6.

If the coefficient a is not Hölder continuous, then the classical results in [3, 34,
37] cannot be applied directly. Nevertheless, some of their proofs can be adapted
for the case at hand. In those situations, we will explicitly point out what needs
to be modified in their proofs, in order to relax the continuity assumption on the
coefficient matrix a.

4 Interior Estimates

We start with an estimate for homogenized equations, i.e., the equations with
constant coefficients, which are limits of some fine-scale problems.

Lemma 1 Let λ > 0, � > 0, γ > 0 and 0 < μ < 1
2 be fixed. For each constant

matrix b ∈ M(λ,�), h ∈ Ld+γ (B(x0, 1)), with ‖h‖Ld+γ (B(x0,1)) ≤ 1, there exists
θ = θ(γ, μ, λ,�, d) > 0 such that if φ ∈ H 1(B(x0, 1)) satisfies:

− div (b∇φ) = h in B(x0, 1),

then the following estimate holds:

sup
|x−x0|<θ

∣∣∣∣φ(x)− φ(x0)− (x − x0) · −
∫
B(x0,θ)

∇φ(z) dz

∣∣∣∣ < θ1+3μ/4. (7)
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Proof By the classical Schauder estimate for the scalar equation with constant
coefficients (Theorem 3), we have φ ∈ C1,μ (B (x0, 1/4)) and:

‖φ‖C1,μ(B(x0,1/4)) ≤ C(γ,μ, λ,�, d)
(‖h‖Ld+γ (B(x0,3/8)) + ‖φ‖H 1(B(x0,3/8))

)
≤ C(γ,μ, λ,�, d) ‖h‖Ld+γ (B(x0,1))

≤ C(γ,μ, λ,�, d). (8)

For 0 < θ < 1
4 and |x − x0| < θ , there exist zx such that:

∣∣∣∣φ(x)− φ(x0)− (x − x0) · −
∫
B(x0,θ)

∇φ(z) dz

∣∣∣∣

=
∣∣∣∣ x − x0

|B(x0, θ)| ·
∫
B(x0,θ)

(∇φ(zx)− ∇φ(y)) dy

∣∣∣∣
≤ C(γ,μ, λ,�, d) |x − x0|1+μ

≤ C(γ,μ, λ,�, d)θ1+μ.

Choosing θ small enough so that C(γ,μ, λ,�, d)θ1+μ < θ1+3μ/4, we obtain (7).
�

The fact that θ does not depend on the matrix b or the source term h is crucial
for the contradiction argument in Proposition 1 below. We now state the interior
Lipschitz estimate. Note that, here, a is not necessarily Hölder continuous in the
domain �.

Proposition 1 (Interior Lipschitz Estimate I) Suppose that a ∈ Mper(λ,�) and
f ∈ L∞(�). Fix x0 ∈ � and R > 0, so that B(x0, R) ⊂ �. There exist ε0 =
ε0(λ,�,R, d) > 0 and C = C(λ,�,R, d) > 0 such that, for all 0 < ε < ε0 and
for every weak solution ϕε ∈ H 1(B(x0, R)) of the equation − div

[
a
(
x
ε

)∇ϕε] = f

in B(x0, R), the following estimate holds:

∥∥∇ϕε∥∥
L∞(B(x0,R/2)) ≤ C

(∥∥ϕε∥∥
L∞(B(x0,R))

+ ‖f ‖L∞(B(x0,R))

)
. (9)

Proof By dilation, we may assume that R = 1. Fix 0 < μ < 1
2 . We prove, by the

compactness method, that there exists ε0 = ε0(λ,�, d, μ) so that (9) holds for all
0 < ε < ε0. To do this, we only need to show that there exists C > 0, independent
of ε, such that:

max
{∥∥ϕε∥∥

L∞(B(x0,1))
, ‖f ‖L∞(B(x0,1))

}
≤ 1 implies

∥∥∇ϕε∥∥
L∞(B(x0,1/2)) ≤ C.

(10)
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Let ω := (ω1, . . . , ωd), where ωi ∈ H 1
per(Y )/R, 1 ≤ i ≤ d, is the solution of the

cell problem:

− divy
[
a(y)

(
ei +∇yω

i(y)
)]

= 0 in Y. (11)

1. Improvement. In this step, we prove by contradiction that:
For fixed 0 < μ < 1

2 , there exist θ and ε∗, with 0 < θ < 1
4 , 0 < ε∗ < 1,

depending on λ,�, d, and μ, such that if a ∈ Mper(λ, L), f ∈ L∞(B(x0, 1)),
ϕε ∈ H 1(B(x0, 1)) satisfy:

− div
[
a
(x
ε

)
∇ϕε

]
= f in B(x0, 1), (12a)

max
{∥∥ϕε∥∥

L∞(B(x0,1))
, ‖f ‖L∞(B(x0,1))

}
≤ 1, (12b)

then, for all 0 < ε < ε∗, we have:

sup
|x−x0|<θ

∣∣∣∣ϕε(x)− ϕε(x0)−
[
x − x0 + εω

(x
ε

)]
· −
∫
B(x0,θ)

∇ϕε(z) dz

∣∣∣∣ ≤ θ1+μ/2,

(13)

where ω solves (11).
Take θ as in (7) of Lemma 1. By contradiction, suppose there exist sequences:

εn → 0, an ∈ Mper(λ, L), fn ∈ L∞ (B(x0, 1)) , and ϕn ∈ H 1(B(x0, 1))

satisfying:

− div

[
an

(
x

εn

)
∇ϕn

]
= fn in B(x0, 1), (14)

max
{‖ϕn‖L∞(B(x0,1)) , ‖fn‖L∞(B(x0,1))

} ≤ 1, (15)

such that:

sup
|x−x0|<θ

∣∣∣∣ϕn(x)− ϕn(x0)−
[
x − x0 + εnω

(
x

εn

)]
· −
∫
B(x0,θ)

∇ϕn(z) dz

∣∣∣∣ > θ1+μ/2.

(16)

Let An ∈ M(λ,�) denote the effective matrix corresponding to an. By the
Banach–Alaoglu theorem, the Caccioppoli inequality, the Rellich–Kondrachov
theorem, and the Schauder theorem (see, e.g., [19, Theorem 4.4] and [7, Theorem
3.16, 6.4 and 9.16]), there exist functions ϕ0 ∈ L2(B(x0, 1)), f0 ∈ L∞(B(x0, 1))
and a constant matrix a0 ∈ M(λ,�) such that, up to subsequences, we have:
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ϕn ⇀ ϕ0 in L2(B(x0, 1))

fn
∗
⇀ f0 in L∞(B(x0, 1))

ϕn ⇀ ϕ0 in H 1(B(x0, 1/2))

fn → f0 in H−1(B(x0, 1))

An → a0.

By [9, Theorem 13.4 (iii)] or [37, Theorem 2.3.2], we have ϕ0 is the solution of:

− div (a0∇ϕ0) = f0 in B(x0, 1/2). (17)

Fix x ∈ B(x0, 1) and let U ⊂ B(x0, 1) be an open neighborhood of x. By
the De Giorgi-Nash-Moser Theorem [20, Theorem 8.24], there exists 0 < β =
β(d, λ/�) < 1 such that:

‖ϕn‖Cβ(U) ≤ C
(‖ϕn‖L∞(B(x0,1)) + ‖fn‖L∞(B(x0,1))

) ≤ 2C.

By the Arzela–Ascoli Theorem, up to a subsequence, ϕn uniformly converges
to ϕ∗ in C(U) for some ϕ∗. Since ϕn ⇀ ϕ0 in L2(B(x0, 1)), we conclude that
ϕ∗ = ϕ0 a.e. in U . Therefore, limn→∞ ϕn(x) = ϕ0(x) a.e. in B(x0, 1). Letting
n→∞ in (15), the argument above and [7, Theorem 3.13] yield:

max
{‖ϕ0‖L∞(B(x0,1)) , ‖f0‖L∞(B(x0,1))

} ≤ 1,

which, together with (17), implies that (7) still holds for φ = ϕ0 (observe
that, from (8), shrinking the domain from B(x0, 1) to B(x0, 1/2) does not affect
estimates), that is:

sup
|x−x0|<θ

∣∣∣∣ϕ0(x)− ϕ0(x0)− (x − x0) · −
∫
B(x0,θ)

∇ϕ0(z) dz

∣∣∣∣ < θ1+3μ/4. (18)

On the other hand, letting n→∞ in (16) and since ‖ω‖L∞(Y ) <∞, we obtain:

sup
|x−x0|<θ

∣∣∣∣ϕ0(x)− ϕ0(x0)− (x − x0) · −
∫
B(x0,θ)

∇ϕ0(z) dz

∣∣∣∣ ≥ θ1+μ/2,

which contradicts (18), since 0 < θ < 1
4 .

2. Iteration Let 0 < ε < ε∗. Direct evaluation yields that:

P ε(x) := 1

θ1+μ/2

{
ϕε(θx)− ϕε(θx0)
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−
[
θ(x − x0)+ εω

(
θx

ε

)]
· −
∫
B(x0,θ)

∇ϕε(z) dz

}

solves the following equation:

− div

[
a
(
θx

ε

)
∇P ε(x)

]
= f̃ in B(x0, 1), (19)

where f̃ := θ1−μ/2f (θx). Moreover, by (13) and (12b), we have:

∥∥P ε
∥∥
L∞(B(x0,1))

≤ 1 and
∥∥∥f̃
∥∥∥
L∞(B(x0,1))

≤ 1,

so by using (13) again, we obtain:

sup
|x−x0|<θ

∣∣∣∣P ε(x)− P ε(x0)−
[
x − x0 + ε

θ
ω

(
θx

ε

)]
· −
∫
B(x0,θ)

∇P ε

∣∣∣∣ (z) dz ≤ θ1+μ/2.

(20)

From (20) and scaling down, we have:

sup
|x−x0|<θ2

∣∣ϕε(x)− ϕε(x0)− (x − x0) · aε2 + εbε2

∣∣ ≤ θ2(1+μ/2),

where

aε2 := −
∫
B(x0,θ)

∇ϕε(z) dz+ θμ/2 −
∫
B(x0,θ)

∇P ε(z) dz,

bε2(y) := ω (y) ·
(
−
∫
B(x0,θ)

∇ϕε(z) dz+ θμ/2−
∫
B(x0,θ)

∇P ε(z) dz

)
, for y := x

ε
∈ Y.

(21)

By the De Giorgi-Nash-Moser estimate and Caccioppoli inequality [2,
Lemma C.2], there exists a constant C, depending only on λ,�, and d, such
that:

‖ω‖L∞(Y ) ≤ C,

∣∣∣∣−
∫
B(x0,θ)

∇ϕε(z) dz

∣∣∣∣ ≤ C/θ,

∣∣∣∣−
∫
B(x0,θ)

∇P ε(z) dz

∣∣∣∣ ≤ C/θ.

Therefore, (21) implies that:

∣∣aε2
∣∣ ≤ (C/θ)

(
1 + θμ/2

)
,

∥∥bε2
∥∥
L∞(Y )

≤ (C/θ)
(

1 + θμ/2
)
.
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Reiterating this process, we obtain that there exists C = C(γ, λ,�, d, μ) > 0
such that:

∣∣aεk
∣∣ ≤ (C/θ)

(
1 + θμ/2 + · · · + θ(k−1)μ/2

)
,

∥∥bεk
∥∥
L∞(Y )

≤ (C/θ)
(

1 + θμ/2 + · · · + θ(k−1)μ/2
)
,

(22)

and:

sup
|x−x0|<θk

∣∣ϕε(x)− ϕε(x0)− (x − x0) · aεk + εbεk

∣∣ ≤ θk(1+μ/2). (23)

3. Blowup Let ε0 := min
{
ε∗, 1

5
√
d

}
and 0 < ε < ε0.

Choose k such that θk+1 ≤ 4ε
√
d < θk . Then from (23), there exists C =

C(θ, d) > 0 so that:

sup
|x−x0|<4ε

√
d

∣∣ϕε(x)− ϕε(x0)− (x − x0) · aεk + εbεk

∣∣ ≤ Cε1+μ/2, (24)

which, together with (22), leads to:

∥∥ϕε − ϕε(x0)
∥∥
L∞(B(x0,4ε

√
d))

≤ Cε. (25)

Denote by zε0 the center of the cell Y ε
i containing x0, and define:

vε(x) := 1

ε

[
ϕε(εx + zε0)− ϕε(εx0 + zε0)

]
, x ∈ �.

Then, ∇vε(x) = ∇ϕε (εx + zε0

)
and, moreover, vε solves:

− div

[
a
(
x + zε0

ε

)
∇vε(x)

]
= εf (εx + zε0) in B

(
0, 3

√
d
)
. (26)

Observe that:

1

ε

(
B
(
x0, ε

√
d
)
− zε0

)
⊂ B

(
0, 2

√
d
)

⊂ B
(

0, 3
√
d
)
⊂ 1

ε

(
B
(
x0, 4ε

√
d
)
− zε0

)
.

(27)

Applying [29, Theorem 1.1] to (26), we obtain that there exists a constant C > 0,
independent of ε and x0, such that:
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∥∥∇vε∥∥
L∞
(

1
ε

(
B
(
x0,ε

√
d
)
−zε0

))

≤ ∥∥∇vε∥∥
L∞
(
B
(

0,2
√
d
))

≤ C

⎡
⎢⎣∥∥vε∥∥

L∞
(
B
(

0,3
√
d
)) + sup

x∈B
(

0,3
√
d
)
∣∣εf (εx + zε0)

∣∣
⎤
⎥⎦

≤ C

[∥∥vε∥∥
L∞
(

1
ε

(
B
(
x0,4ε

√
d
)
−zε0

)) + ‖f ‖
L∞
(

1
ε

(
B
(
x0,4ε

√
d
)
−zε0

))
]
.

(28)

Scaling down (28) and using (25), we obtain:

∥∥∇ϕε∥∥
L∞
(
B
(
x0,ε

√
d
))

≤ C

[
1

ε

∥∥ϕε − ϕε(x0)
∥∥
L∞
((
B
(
x0,4ε

√
d
))) + ‖f ‖

L∞
(
B
(
x0,4ε

√
d
))
]
≤ C,

where C > 0 is independent of x0 and ε.

Remark 2 Under stronger smoothness assumptions on the coefficient a, similar
estimates to (6) are proved in the literature. In particular, if a is in VMO(Rd),
the real-variable method of L. Caffarelli and I. Peral [8] yields an uniform
W 1,p−estimate; on the other hand, if a is Hölder continuous, then one has the
uniform Lipschitz estimate. Those results hold also for elliptic systems and even
for Neumann boundary condition. We refer the reader to [3, 4, 27, 28, 34–37] and
the references cited therein.

However, in this paper, we focus on the case when a is only piecewise Hölder
continuous. A similar argument as in the papers cited above together with the
regularity theorem of Li and Vogelius [29, Theorem 1.1] yield the interior Lipschitz
estimate as showed in Proposition 1. Moreover, some additional care is needed to
ensure that the constant C in (28) is independent of both ε and x0. In the Blow-up
step of the proof above, one may try to let

sε(x) := 1

ε
ϕε(εx + x0) (29)

so that

− div
[
a (x)∇sε(x)] = εf (εx + x0), (30)

then by applying [29, Theorem 1.1], one obtains

∥∥∇sε∥∥
L∞
(
B
(

0, 1
2ε0

)) ≤ C′
[∥∥sε∥∥

L∞
(
B
(

0, 1
ε0

)) + ‖f ‖
L∞
(
B
(

0, 1
ε0

))
]
.
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Fig. 2 As the center x0 of the ball B
(
x0,

1
ε0

)
slides on the line d to the right, the subdomain DI

shrinks to 0, which makes the C1,α modulus to become unbounded [29, page 93]. Moreover, in
some cases, it is possible that a cusp also appears at some points (point A on the zoomed in figure
above)

However, C′ indeed depends on x0. The reason is that, when one shifts x0 in the
scaling (29), one also changes the C1,α-modulus of the subdomains, where the
latter, in the context of our problem, are generated by taking intersections of the ball
centered at x0 and the heterogenous domain. In short, we do not have the uniform
control of the subdomains when using the scaling (29) for arbitrary x0, see Fig. 2. In
order to circumvent the dependence on x0, we use a different scaling and combine
with a geometric argument, as demonstrated in the proof of Proposition 1.

The following result follows from Proposition 1, the De Giorgi-Nash-Moser
estimate and a change of variable.

Proposition 2 (Interior Lipschitz Estimate II) Suppose that a ∈ Mper(λ,�) and
f ∈ L∞(�). Fix x0 ∈ � and R > 0 so that B(x0, R) ⊂ �. There exist ε0 =
ε0(λ,�, d) > 0 and C = C(λ,�, d) > 0 such that, for all 0 < ε < ε0, the weak
solution ϕε ∈ H 1(B(x0, R)) of the equation − div

[
a
(
x
ε

)∇ϕε] = f in B(x0, R)

satisfies:

∣∣∇ϕε(x0)
∣∣ ≤ C′

[(
−
∫
B(x0,R)

∣∣∇ϕε(z)∣∣2 dz

) 1
2 + R sup

x∈B(x0,R)

|f (x)|
]
. (31)
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Proof Without loss of generality, we assume x0 = 0. By Proposition 1, with R =
1 and considering ϕε − −

∫
B(0,1) ϕ

ε(z) dz, which solves − div
[
a
(
x
ε

)∇ϕε] = f in
B(0, 1), we have that there exist ε0 > 0 and C′ > 0, depending only on λ,�, d,
such that:
∣∣∇ϕε(0)∣∣ ≤ ∥∥∇ϕε∥∥

L∞(B(0,1/4))

≤ C′
(∥∥∥∥ϕε −−

∫
B(0,1)

ϕε(z) dz

∥∥∥∥
L∞(B(0,1/2))

+ ‖f ‖L∞(B(0,1/2))

)

≤ C′
(∥∥∥∥ϕε −−

∫
B(0,1)

ϕε(z) dz

∥∥∥∥
L2(B(0,1))

+ ‖f ‖L∞(B(0,1))

)

≤ C′ (∥∥∇ϕε∥∥
L2(B(0,1)) + ‖f ‖L∞(B(0,1))

)

≤ C′
[(

−
∫
B(0,1)

∣∣∇ϕε(z)∣∣2 dz

) 1
2 + sup

x∈B(0,1)
|f (x)|

]
,

(32)

where we have used the De Giorgi-Nash-Moser estimate and Poincaré’s inequality.
For R > 0 and x ∈ B(0, 1), let vε(x) := R−1ϕε(Rx), then ∇vε(x) = ∇ϕε(Rx)

and:

− div
[
b
(x
ε

)
∇vε(x)

]
= Rf (Rx),

where b(z) := a(Rz). We have b ∈ M(λ,�) is R−1Y−periodic. Note that the
proof of Proposition 1 does not depend on the period, hence, (32) holds for vε in
particular:

∣∣∇ϕε(0)∣∣ = ∣∣∇vε(0)∣∣

≤ C′
[(

−
∫
B(0,1)

∣∣∇vε(x)∣∣2 dx

) 1
2 + R sup

x∈B(0,1)
|f (Rx)|

]

= C′
[(

−
∫
B(0,1)

∣∣∇ϕε(Rx)∣∣2 dx

) 1
2 + R sup

x∈B(0,1)
|f (Rx)|

]
.

(33)

By a change of variable in (33), we obtain (31). �
We recall the interior Hölder estimate, adapted from [34, Proposition 1] (or [3,

Lemma 9]) that will be used to obtain the boundary Hölder estimate in the next
section.

Proposition 3 (Interior Hölder Estimate) Suppose that a ∈ Mper(λ,�) and f ∈
Ld+γ (�), for some γ > 0. Fix x0 ∈ � and R > 0 such that B(x0, R) ⊂ �. Let
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0 < μ := γ
d+γ < 1. There exists C = C(γ, λ,�, p,R, d) > 0 such that, for all

ε > 0, the weak solution ϕε ∈ H 1(B(x0, R)) of the equation − div
[
a
(
x
ε

)∇ϕε] =
f in B(x0, R) satisfies:

[
ϕε
]
C0,μ(B(x0,R/2)) ≤ C

(∥∥ϕε∥∥
L2(B(x0,R))

+ ‖f ‖Ld+γ (B(x0,R))

)
, (34)

where [h]C0,μ(A) := supx �=y∈A
|h(x)−h(y)|
|x−y|μ .

The proof of Proposition 3 is similar to [34, Proposition 1]. Indeed, a closer look
at the proof of [34, Proposition 1] reveals that the Hölder continuity assumption on
a is needed only for the classical Schauder estimate for elliptic systems to hold.
However, this paper is devoted to the scalar case, and we use the De Giorgi-Nash-
Moser Theorem [20, Theorem 8.24], for which the assumption a is bounded is
sufficient.

Remark 3 For the case of elliptic systems, the De Giorgi-Nash-Moser Theorem
does not hold, see counterexamples by De Giorgi, Giusti and Miranda, and others,
cf. [19, Section 9.1], and the references cited therein. Because of that, this paper is
concerned with the scalar case only.

5 Boundary Estimates, Green Functions, Dirichlet
Correctors, and Proof of Main Theorem

The following result is adapted from [3, Section 2.3] and [37, Section 5.2].

Proposition 4 (Boundary Hölder Estimate) Suppose that a ∈ Mper(λ,�), and
� is a C1-domain. Fix x0 ∈ ∂�, 0 < r < diam(�), and 0 < μ < 1.
Let g ∈ C0,1 (B(x0, r) ∩ ∂�) . There exist ε0 = ε0(μ, λ,�, d) > 0 and
C = c(μ, λ,�, d) > 0 such that, for all 0 < ε < ε0, every weak solution
ϕε ∈ H 1(B(x0, r)) of the equation:

− div
[
a
(x
ε

)
∇ϕε

]
= 0 in B(x0, r) ∩�,

ϕε = g on B(x0, r) ∩ ∂�

satisfies:

[
ϕε
]
C0,μ(B(x0,r/2)∩�)

≤ Cr−μ
[(

−
∫
B(x0,r)∩�

∣∣ϕε(z)∣∣2 dz

) 1
2 + |g(x0)| + r ‖g‖C0,1(B(x0,r)∩∂�)

]
.

(35)
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The proof of Proposition 4 follows the proof of [37, Theorem 5.2.1] with minor
modifications. In [37, Theorem 5.2.1], the assumption that a ∈ VMO(Rd) is used
only in two places: (1) when ε ≥ ε0, which is beyond the scope of this particular
theorem, and (2) to obtain the interior Hölder estimate, which we already relaxed in
Proposition 3.

Thanks to Propositions 3 and 4, we can drop the assumption that a ∈ VMO(Rd)

of Theorem 5.4.1–2 and Lemma 5.4.5 in [37]. The results are summarized in the
following proposition.

Proposition 5 (Green’s Functions) Suppose that a ∈ Mper(λ,�) and � is a C1-
domain. Fix 0 < μ, σ, σ1 < 1 and let δ(x) := dist(x, ∂�). Then, there exist ε0 =
ε0(μ, λ,�, d) > 0 and C = C(λ,�, σ, σ1,�) > 0 such that, for all 0 < ε < ε0,
the Green’s functions Gε(x, y) exist and satisfy the following:

∣∣Gε(x, y)
∣∣ ≤

⎧⎨
⎩
C 1
|x−y|d−2 if d ≥ 3,

C
[
1 + ln

(
r0|x−y|
)]

if d = 2.
(36a)

∣∣Gε(x, y)
∣∣ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cδ(x)σ

|x−y|d−2+σ if δ(x) < 1
2 |x − y| ,

Cδ(y)σ1

|x−y|d−2+σ1
if δ(y) < 1

2 |x − y| ,
Cδ(x)σ δ(y)σ1

|x−y|d−2+σ+σ1
if δ(x) < 1

2 |x − y| or δ(y) < 1
2 |x − y| ,

(36b)∫
�

∣∣∇yG
ε(x, y)

∣∣ δ(y)σ−1 dy ≤ Cδ(x)σ , (36c)

where x, y ∈ �, x �= y and r0 := diam(�).

As a consequence, for 0 < c < 1 and g ∈ C0,1(�), there exists C =
C(λ,�, d) > 0 such that, for any x0 ∈ ∂�, for any ε satisfying cε ≤
min{cε0, r} ≤ r < r0 := diam(�), and for any solution ϕε of the Dirichlet problem
− div

[
a
(
x
ε

)∇ϕε] = 0 in �, ϕε = g on ∂�, the following estimate holds:

(
−
∫
B(x0,r)∩�

∣∣∇ϕε∣∣2
) 1

2 ≤ C
[
‖∇g‖L∞(�) + ε−1 ‖g‖L∞(�)

]
. (37)

We now define the boundary Dirichlet corrector: For 1 ≤ i ≤ d, let +i,ε ∈
H 1(�) be the solution of the problem:

− div
[
a
(x
ε

)
∇+i,ε(x)

]
= 0 for x ∈ �,

+i,ε(z) = zi for z ∈ ∂�.

(38)

The following proposition provides a bound on the boundary Dirichlet corrector.
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Proposition 6 Let � be a bounded C1,α-domain. Suppose that a ∈ Mper(λ, L) is
piecewise Cα-continuous. Then, for all ε > 0, the solution +i,ε of (38) satisfies:

∥∥∥∇+i,ε
∥∥∥
L∞(�)

≤ C, (39)

where constant C depends only on λ,� and �.

The proof is similar to [37, Theorem 5.4.4]. One only needs to use three observa-
tions:

• The case cε ≥ min{cε0, r} follows from [29, Theorem 1.2], by the same
argument used in Remark 1.

• Let ω = (ω1, ω2, . . . , ωd) be the solutions of the cell problems (11). Given only
that a is piecewise Cα-continuous, then ∇ω is bounded in L∞(Y,Rd×d), see the
first paragraph in the proof of [17, Theorem 3.2] or [38, Corollary 3.5].

• The interior Lipschitz estimate in Proposition 2 only requires a is piecewise
Hölder continuous.

We now combine Propositions 6, 2, and [29, Theorem 1.2] to obtain a discontinuous
coefficient-version of [37, Theorem 5.5.1].

Proposition 7 (Boundary Lipschitz Estimate) Suppose that a ∈ Mper(λ, L) is
piecewise Cα-continuous and � is a C1,α-domain. Fix x0 ∈ ∂�, 0 < r <

diam(�) and 0 < μ < 1. Let g ∈ C1,α (B(x0, r) ∩ ∂�) . There exist ε0 =
ε0(μ, λ,�, d,�) > 0 andC = C(μ, λ,�, d,�) > 0 such that, for all 0 < ε < ε0,
the weak solution ϕε ∈ H 1(B(x0, r)) of the equation:

− div
[
a
(x
ε

)
∇ϕε

]
= 0 in B(x0, r) ∩�,

ϕε = g on B(x0, r) ∩ ∂�

satisfies:

∥∥∇ϕε∥∥
L∞(B(x0,r/2)∩∂�)

≤ C

[
r−1

(
−
∫
B(x0,r)∩�

∣∣ϕε∣∣2
) 1

2 + rα ‖∇tang‖C0,α(B(x0,r)∩∂�)

+‖∇tang‖L∞(B(x0,r)∩∂�) + r−1 ‖g‖L∞(B(x0,r)∩∂�)

]
.

(40)

The estimate (5) of Theorem 1 is a consequence of Propositions 2 and 7, by an
argument similar to [37, Theorem 5.6.2].
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6 Application to Magnetic Suspensions

In this section, we apply the regularity results obtained above to the rigorous
homogenization procedure discussed in [10]. For that, we first recap the formulation
of the fine-scale problem and the homogenization result itself. We begin by
introducing the definition of two-scale convergence, which will be used below.

Definition 1 A sequence {vε}ε>0 in L2(�) is said to two-scale converge to v =
v(x, y), with v ∈ L2(�× Y ), if and only if:

lim
ε→0

∫
�

vε(x)ψ
(
x,

x

ε

)
dx = 1

|Y |
∫
�

∫
Y

v(x, y)ψ(x, y) dy dx,

for any test function ψ = ψ(x, y), with ψ ∈ D(�,C∞
per(Y )), see [1, 9, 32]. In this

case, we write vε
2−⇀ v.

Let the kinematic viscosity be denoted by ν = η
ρf

, where η > 0 and ρf > 0 are
the fluid viscosity and the fluid density, respectively. The dimensionless quantities
that appear in this problem are the (hydrodynamic) Reynolds number Re = UL/ν ,

the Froude number Fr = U/
√
FL, and the coupling parameter S = B2

ρf �U
2 , where

L,U,B, and F are the characteristic scales corresponding to length, fluid velocity,
magnetic field, and body density force, respectively. Moreover, � > 0 is defined
in (A2).

From now on, we suppose � is C3,α , which is needed for the corrector result
below. Suppose further that g ∈ H 1(�,Rd), k ∈ C1,α(∂�), and f ∈ L∞(�).
Let uε and pε be the fluid velocity and the fluid pressure, respectively. Also, in a
space free of current, the magnetic field strength is given by Hε = ∇ϕε, for some
magnetic potential ϕε(x). Let uε ∈ H 1

0 (�,Rd), pε ∈ L2(�)/R, and ϕε ∈ H 1(�)

be the solution of the following boundary value problem:

− div
[
σ (uε, pε)+ τ (ϕε)

] = 1

F 2
r

g, in �ε
f (41a)

div uε = 0, in �ε
f (41b)

D(uε) = 0, in �ε
s (41c)

− div
[
a
(x
ε

)
∇ϕε

]
= f in �, (41d)

together with the balance equations:

∫
�εi

[
σ (uε, pε)+ τ (ϕε)

]
ni dHd−1 = 0, (42a)
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∫
�εi

([
σ (uε, pε)+ τ (ϕε)

]
ni
)× ni dHd−1 = 0, (42b)

and boundary conditions:

uε = 0, on ∂�, (43a)

ϕε = k, on ∂�, (43b)

where

σ (uε, pε) := 2

Re

D(uε)− pεI, (44a)

D(uε) := ∇uε +∇(uε

2
, (44b)

τ (ϕε) := Sa
(x
ε

)(
∇ϕε ⊗∇ϕε − 1

2

∣∣∇ϕε∣∣2 I
)

(44c)

are the rate of strain, the Cauchy stress, and the Maxwell stress tensors, respectively.
For the detailed derivation and the physical meaning of the equations above, we refer
the readers to [10] and the references therein. Observe that, in the context of this
paper, we consider the Dirichlet boundary condition (43b), instead of a Neumann
boundary condition (3) in [10], to relax the regularity assumption on the magnetic
permeability needed in [10]. Then, the weak formulation for (41d) and (43b) is given
by:

∫
�

a
(x
ε

)
∇ (ϕε − k

) · ∇ξ dx

= −
∫
�

a
(x
ε

)
∇k · ∇ξ dx +

∫
�

f ξ dx, ∀ξ ∈ H 1
0 (�).

(45)

One immediately has that ‖ϕε‖H 1(�) ≤ C
(‖k‖H 1/2(∂�) + ‖f ‖Lq(�)

)
, which

implies that ϕε is two-scale convergent (up to a subsequence). Choosing a test
function as in [10, Lemma 3.7], we obtain the cell problem (46) and the first two
effective equations defined in (50) below.

Moreover, Theorem 1 ensures that ∇ϕε is uniformly bounded in L∞(�,Rd),
with respect to ε ∈ (0, ε0). Therefore, we obtain the existence, uniqueness and a
priori bounds for uε and pε as in [10, Corollary 3.11]. Here, we have relaxed the
restrictive assumption (1) made in [10] and we can use our results in the case when
the constant magnetic permeability is anisotropic, namely when a is a matrix.
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To carry on with the homogenization formulation, for 1 ≤ i, j ≤ d, denote by
Uij the vector defined by Uij

k
:= yj δik . Consider ωi ∈ H 1

per(Y )/R, the solution of:

− divy
[
a(y)

(
ei +∇yω

i(y)
)]

= 0 in Y. (46)

Also, consider χ ij ∈ H 1
per(Y,R

d)/R and qij ∈ L2(Y )/R, solving:

divy
[
Dy

(
Uij − χ ij

)
+ qij I

]
= 0 in Yf ,

divy χ ij = 0 in Y,

Dy

(
Uij − χ ij

)
= 0 in Ys,

∫
�

[
Dy

(
Uij − χ ij

)
− qij I

]
n� dHd−1 = 0,

∫
�

[
Dy

(
Uij − χ ij

)
− qij I

]
n� × n� dHd−1 = 0,

(47)

and consider ξ ij ∈ H 1
per(Y,R

d)/R and rij ∈ L2(Y )/R, solving:

divy
[
Dy

(
ξ ij
)
+ rij I + τ ij

]
= 0 in Yf ,

divy ξ ij = 0 in Y,

Dy

(
ξ ij
)
= 0 in Ys,

∫
�

[
Dy

(
ξ ij
)
+ rij I + τ ij

]
n� dHd−1 = 0,

∫
�

[
Dy

(
ξ ij
)
+ rij I + τ ij

]
n� × n� dHd−1 = 0.

(48)

We also define:

Ajk := 1

|Y |
∫
Y

a(y)(ek + ∇ωk(y)) · (ej + ∇ωj (y)) dy,

N ij
mn := 1

|Y |
∫
Y

Dy(Uij − χ ij ) : Dy(Umn − χmn) dy,

τ
ij

ref := a(y)
[
(ei + ∇yω

i)⊗ (ej + ∇yω
j )− 1

2
(ei + ∇yω

i) · (ej +∇yω
j )I
]
, y ∈ Y,

Bij := 1

|Y |
∫
Y

(
Dy(ξ

ij )+ τ ij
)

dy,

(49)
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where A is the effective magnetic permeability, which is symmetric and elliptic.

The tensor N :=
{
N ij
mn

}
1≤i,j,m,n≤d is the effective viscosity, and it is a fourth rank

tensor. Moreover, N is symmetric, i.e., N ij
mn = Nmn

ij = N j i
mn = N ij

nm, and it satisfies
the Legendre-Hadamard condition (or strong ellipticity condition), i.e., there exist
β > 0 such that, for all ζ, η ∈ R

d , one has N ij
mnζiζmηjηn ≥ β |ζ |2 |η|2. The matrix

τ ref is the Maxwell stress tensor on Y , and B is the effective coupling matrix.
By the same argument as in Theorem 3.5, Lemma 3.9, and Lemma 3.14 of [10],

the following result holds:

Theorem 2 Let (ϕε,uε, pε) ∈ H 1(�) × H 1
0 (�,Rd) × L2

0(�) be the solution
of (41). Then

ϕε ⇀ ϕ0 in H 1(�),

uε ⇀ u0 in H 1
0 (�,Rd),

pε ⇀ π0 in L2
0(�),

where ϕ0,u0, and π0 are solutions of:

− div
(
A∇ϕ0

)
= f in �,

ϕ0 = k on ∂�,

div

[
2

Re

N ij
D

(
u0
)
ij
− π0 + SBij ∂ϕ

0

∂xi

∂ϕ0

∂xj

]
= 1

F 2
r

g in �,

div u0 = 0 in �

u0 = 0 on ∂�,

(50)

withA,N ij , Bij , 1 ≤ i, j ≤ d, defined in (49). Moreover, the first-order correctors
satisfy:

lim
ε→0

∥∥∥∇ϕε(·)−∇ϕ0(·)−∇yϕ
1
(
·, ·
ε

)∥∥∥
L2(�,R

d
)
= 0,

lim
ε→0

∥∥∥D(uε)(·)− D(u0)(·)− Dy(u1)
(
·, ·
ε

)∥∥∥
L2(�,R

d×d
)
= 0,

where

ϕ1(x, y) := ωi(y)
∂ϕ0

∂xi
(x),

u1(x, y) := −D

(
u0(x)

)
ij

χ ij (y)+ S
∂ϕ0

∂xi
(x)

∂ϕ0

∂xj
(x)ξ ij (y).
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7 Conclusions

This paper concerns a homogenized description of a non-dilute suspension of
magnetic particles in a viscous flow. The results demonstrated in this paper
generalize the ones obtained by the authors in [10], where a more restrictive
assumption on the magnetic permeability (1) was used and a Neumann boundary
condition (3) was imposed instead of the Dirichlet condition (4b). Theorem 2
above demonstrates the effective response of a viscous fluid with a locally periodic
array of paramagnetic/diamagnetic particles suspended in it, given by the system
of equations (41). The effective equations are described by (50), with the effective
coefficients given in (49). These effective quantities depend only on the instanta-
neous position of the particles, their geometry, and the magnetic and flow properties
of the original suspension described by (41). Using the tools introduced in [29]
and the compactness method, an improved regularity estimate for the gradient of
the magnetic potential of the original fine-scale problem (41) was obtained, see
Theorem 1. This theorem allows us to drop the restrictive assumption (1) mentioned
above. Comparing to the classical results on regularity of this type, we do require the
coefficient matrix belongs to a VMO-space, see, e.g., [3, 34, 37]. Recently, in [17,
Proposition 3.1], the authors obtained an Lq -bound of the gradient of the solution
of the scalar divergence equation, uniform with respect to ε, for q <∞. Our result,
in Theorem 1, shows that the gradient bound actually holds for the case q = ∞.
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supported by and while serving at the National Science Foundation for the second author Yuliya
Gorb. Any opinion, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect views of the National Science Foundation.

Appendix

Theorem 3 (Interior Schauder Estimates [20, 24]) Let b ∈ M(λ,�) be a
constant matrix and w ∈ H 1(�) be a weak solution of:

bijDiDjw = f +
d∑
i=1

Difi.

For every α ∈ (0, 1), there exists a uniform constant C = C(α, d, λ,�) such that if
�′ ⊂⊂ �, with δ = dist(�′, ∂�), then the following estimates hold:
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(i) If f ∈ Lp(�), fi ∈ Lq(�) and α = 1− d
q
= 2− d

p
∈ (0, 1), then w ∈ Cα(�′)

and:

‖w‖Cα(�′) ≤ Cδ−
d
2+1−α

(
‖f ‖Lp(�) +

d∑
i=1

∥∥fj∥∥Lq(�)
+ ‖w‖H 1(�)

)
.

(ii) If f ∈ Lp(�), α = 1 − d
p
∈ (0, 1) and fi ∈ Cα(�), then ∇w ∈ Cα(�′) and:

‖∇w‖Cα(�′) ≤ Cδ−
d
2−α

(
‖f ‖Lp(�) +

d∑
i=1

‖fi‖Cα(�) + ‖w‖H 1(�)

)
.
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On Static and Evolutionary
Homogenization in Crystal Plasticity for
Stratified Composites

Elisa Davoli and Carolin Kreisbeck

1 Introduction

Motivated by new trends in technology that require materials with nonstandard
properties, the study of artificially engineered composites (metamaterials) has been
the subject of an intense research activity at the triple point between mathematics,
physics, and materials science.

Here, we investigate the effective deformation behavior of a special class of
mechanical metamaterials exhibiting the following two features whose interplay
generates a highly anisotropic material response: (1) the geometry of the het-
erogeneities is characterized by periodically alternating layers of two different
components and (2) the material properties of the two components show strong
differences. To be precise, we assume that one is rigid, while the other one is softer,
allowing for large-strain elastoplastic deformations along prescribed slip directions.

The asymptotic analysis of variational models for such stratified materials with
fully rigid components and complete adhesion between the phases was initiated
by CHRISTOWIAK and KREISBECK in [5], which is the starting point for this
work. More precisely, the subject of [5] is a two-dimensional homogenization
problem in the context of finite elastoplasticity, with geometrically nonlinear but
rigid elasticity, where the softer component can be deformed along a single active
plastic slip system with linear self-hardening. At the core of the homogenization
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result via �-convergence [5, Theorem 1.1] lies the characterization of the weak
closures of the set of admissible deformations via an asymptotic rigidity result. In
[12], these techniques have been carried forward to a model for plastic composites
without linear hardening in the spirit of [8]. This leads to a variational limit problem
on the space of functions of bounded variation. Natural generalizations of these
models to three (and higher) dimensions, where the material heterogeneities are
either layers or fibers, are studied [6] and [15], respectively. Note that these two
references, which are formulated in the context of nonlinear elasticity, use energy
densities with p-growth for 1 < p < +∞, and consider also nontrivial elastic
energies on the stronger components. This allows treating also very stiff (but
not necessarily rigid) reinforcements. As for their mathematical structure, all the
aforementioned papers feature energies of integral form, characterized by linear or
superlinear growth, subject to non-convex differential constraints. For related work
on alternative approaches to layered and fiber-reinforced high-contrast composites
with different choices of scaling relations between the elastic constants, thickness,
and adhesive parameters, see, e.g., [2, 4, 14, 28].

Our goal in this work is twofold. First, we provide an analysis of minimizers
for the effective energy functional derived in [5] as a homogenized �-limit; in
particular, we address the question of uniqueness and identify necessary conditions
for minimizers. Second, for some specific case studies, we complement the static
homogenization of [5] by an evolutionary �-convergence analysis. Generally
speaking, evolutionary �-convergence aims at transferring the concept of limit
passages in parameter-dependent stationary variational problems to time-dependent
settings. For energetic rate-independent systems, such a theory was developed by
MIELKE, ROUBÍČEK, and STEFANELLI in [24]. The main feature of �-convergence
(see, e.g., [3, 10]) is to guarantee convergence of solutions. In other words, (almost)
minimizers of the parameter-dependent functionals converge to minimizers of the
limit functional. Analogously, evolutionary �-convergence for rate-independent
systems implies that energetic solutions again converge to energetic solutions of
the limit system. In cases where energetic solutions do not exist, which is the
situation in this work, one can work instead with solutions to associated approximate
incremental problems. For a comprehensive introduction to the topic, we refer
to [23, Sections 2.3–2.5, Section 3.5.4]; for applications in linearized elastoplastic-
ity, see, e.g., [17, 26] on homogenization or [25] on a rigorous justification through
a rigorous linearization of finite-strain plasticity.

In order to describe our results in more detail, some notation needs to be
introduced. Let � ⊂ R

2 be a bounded Lipschitz domain. Assume that � represents
the reference configuration of a high-contrast material with bilayered microstructure
encoded by the alternation of two horizontal layers, a soft and a rigid one, see Fig. 1.
Without loss of generality, we can assume that

∫
�

x dx = 0, (1)
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Fig. 1 Illustration of the reference configuration � and the stratified microstructure at length-
scale ε

namely that the barycenter of � lies in the origin. To mathematically describe the
geometry of the heterogeneities, consider the periodicity cell Y := [0, 1)2, which
we subdivide into Y = Ysoft ∪ Yrig with Ysoft := [0, 1) × [0, λ) for λ ∈ (0, 1) and
Yrig := Y \ Ysoft. All sets are extended by periodicity to R

2. The (small) parameter
ε > 0 describes the thickness of a pair (one rigid, one softer) of fine layers and
can be viewed as the intrinsic periodicity scale of the microstructure. The collection
of all rigid and soft layers in � corresponds to the sets εYrig ∩ � and εYsoft ∩ �,
respectively.

Regarding the material properties, the body as a whole exhibits an elastoplastic
behavior characterized by finite single-slip crystal plasticity with rigid elasticity
throughout. The deformations on the individual rigid layers instead are restricted
to global rotations or translations. We point out that several different models
of finite elastoplasticity have been proposed and analyzed in the literature, see,
e.g., [18] for a general introduction; recent contributions include an analysis of
the incompatibility tensor [1], a formulation keeping track of frame invariance of
intermediate configurations [16], as well as discussions of different (multiplicative)
decompositions of deformation gradients [11, 13, 29]. Here, we adopt the classical
approach introduced in [19, 21]: the gradient of every deformation u : � → R

2

decomposes into the product of an elastic strain,Fel, and a plastic one, Fpl, satisfying

∇u = FelFpl. (2)

Due to the assumption that the elastic behavior of the body is purely rigid, one has

Fel ∈ SO(2) almost everywhere (a.e.) in �,

where SO(2) denotes the set of rotations in R
2. As for the plastic part, the presence

of a single active slip, with slip direction s ∈ S1 := {s ∈ R
2 : |s| = 1} and

associated slip plane normal m = s⊥, translates into
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Fpl = Id + γ s ⊗m, (3)

where the shear coefficient γ measures the amount of slip. While the material is free
to glide along the slip system in the softer phase, it is required that γ vanishes on
the layers consisting of the rigid material, i.e., γ = 0 in εYrig ∩�.

Collecting these modeling assumptions, we define, for ε > 0, the class A(s)
ε of

admissible deformations as

A(s)
ε := {u ∈ Y : ∇u = Ru(Id + γus ⊗m) a.e. in �,

Ru ∈ L∞(�; SO(2)), γu ∈ L2(�), γu = 0 a.e. in εYrig ∩�},
(4)

where Y = W 1,2(�;R2) ∩ L2
0(�;R2), and L2

0(�;R2) = {u ∈ L2(�;R2) :∫
�
u dx = 0} denotes the space of L2-functions with zero average in �. In light of

the completely rigid behavior of the body in εYrig ∩ � and the plastic deformation
behavior along a single-slip system, for which we assume linear hardening, in
εYsoft ∩�, the stored elastoplastic energy of a deformation u ∈ Y reads as

E(s)
ε (u) =

⎧⎨
⎩

∫
εYsoft∩�

|γu|2 dx if u ∈ A(s)
ε ,

+∞ otherwise.
(5)

Notice that a model for homogeneous materials with the properties of the softer
component above has been studied in [7, 9]. We refer the reader to [8] for a
corresponding analysis in the absence of hardening.

In order to state the homogenization result from [5], let us introduce, for any slip
direction s = (s1, s2) ∈ S1, the following class of deformations:

A(s) := {u ∈ Y : ∇u = Ru(I+ γue1 ⊗ e2),

Ru ∈ SO(2), γu ∈ L2(�), γu ∈ K(s) a.e. in �},
(6)

with

K(e2) := {0}, K(e1) := R, and K(s) :=
⎧⎨
⎩
[0,−2λs1

s2
] if s1s2 < 0,

[−2λs1
s2
, 0] if s1s2 > 0,

for s /∈ {e1, e2}.

(7)

Throughout the chapter, we will often use—without further mention—one of the
following alternative representations of the set in (6) (see [5]), that is,
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A(s) = {u ∈ Y : u(x) = Ru(x + �u(x)e1) for x ∈ �,�u ∈ W 1,2(�) ∩ L2
0(�),

Ru ∈ SO(2), ∂1�u = 0, ∂2�u ∈ K(s) a.e. in �} (8)

= {u ∈ Y : ∇u ∈M(s), γu ∈ K(s) a.e. in �}, (9)

where γu is defined as in (6), and

M(s) := {F ∈ R
2×2 : detF = 1, |Fs| = 1}. (10)

We observe that if u ∈ A(s), then curl∇u = 0 implies ∂1γu = 0. Hence, the set
A(s) is intrinsically one-dimensional.

With this notation in place, we can now formulate [5, Theorem 1.1], which
characterizes the macroscopic material response of the considered stratified high-
contrast composites in terms of �-convergence: the �-limit as ε → 0 of the energies
(E

(s)
ε )ε in the weak W 1,2-topology is given for u ∈ Y by the functional

E(s)(u) :=

⎧⎪⎨
⎪⎩
s1

2

λ

∫
�

γ 2
u dx − 2s1s2

∫
�

γu dx for u ∈ A(s),

+∞ otherwise.
(11)

As �-convergence is invariant under continuous perturbations, the previous result is
not affected by adding external loading to the stored energy functionals E(s)

ε in (5).
If we augment E(s) with a term describing work due to a body force with density
g ∈ L2(�;R2), the functional to study is

I (s)g (u) := E(s)(u)−
∫
�

g · u dx (12)

for u ∈ Y.
The essence of our first main result can then be summarized in simple terms as

follows:

Conclusion (Uniqueness of Rotations and Shear Coefficients) For any slip direc-
tion s ∈ S1 and any applied load g ∈ L2(�;R2), either the rotation or the shear
coefficient associated with minimizers of I (s)g is uniquely determined. �
We refer to Sect. 2 for the precise assumptions, as well as to Lemma 1 and
Proposition 1 for the formulation of the statement and the proof of this result.
Besides this general observation about uniqueness, we also discuss necessary and
sufficient conditions for minimizers under specific conditions on the slip directions
and the applied loads, including criteria for trivial deformation behavior in the form
of rigid-body motions.

In the second part of this chapter (see Sect. 3), we expand the homogenization of
the introduced static model to a quasistatic context by incorporating time-dependent
loadings and dissipation acting on the shear variable. To be precise, we work with
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dissipations D that are given as the difference of the shear coefficients measured in
the L1-norm. Our second main contribution regards the asymptotic analysis of such
extended models in the framework of evolutionary �-convergence for energetic rate-
independent systems (see [23], as well as the beginning of Sect. 3, where we give a
brief outline of this theory adapted to the setting of this chapter). An intuitive, rough
version of our findings reads the following:

Conclusion (Evolutionary 
-Convergence) Suppose that the slip direction is
aligned or orthogonal to the orientation of the material microstructure, meaning
s = e1 or s = e2. Considering a family of rate-independent systems with (suitably
regularized versions of) the stored energies E(s)

ε from (5) and dissipation distance
D, it follows that energetic and dissipative effects decouple in the limit ε → 0.
Moreover, (approximate) solutions (to the associated time-discrete incremental
problems) of the ε-dependent systems converge to energetic solutions of a system
involving the stored energy E(s) from (11) and D.

If s = e1, the limiting system is very restrictive and corresponds to a purely
energetic evolution without any dissipation, so that one can speak of a loss of
dissipation through homogenization. �

The precise formulation of Conclusion 1 for s = e2 and s = e1 can be found
in Theorems 3 and 4, respectively. In both cases, the proof strategy relies on the
well-established scheme in [23, Section 2.3–2.5]. The only delicate point is the
construction of a so-called mutual recovery sequence, for which we utilize tailored
arguments that keep track of the special geometry of the problem.

This chapter is organized as follows: Sect. 2 is entirely devoted to the study of the
static minimization problem, while Sect. 3 deals with evolutionary �-convergence.

1.1 Notation

Throughout the manuscript, | · | denotes the Euclidean norm in R
2, and S1 is the

unit sphere in R
2, i.e., S1 := {s ∈ R

2 : |s| = 1}. For a ∈ R
2 with a �= 0, we use

the shorthand notation ā = a/|a|. We take e1 and e2 as the standard unit vectors in
R

2 and define a⊥ := a1e2 − a2e1 ∈ R
2 for any a = (a1, a2) ∈ R

2. Analogously, for
functions g : �→ R

2, the map g⊥ is given as g⊥(x) = g(x)⊥ for all x ∈ �. Given
v1, v2 ∈ R

2, we denote by (v1|v2) the 2× 2 matrix having these vectors as first and
second columns, respectively. For the trace of a matrix A ∈ R

2×2, we write TrA,
while id : R2 → R

2 denotes the identity map and I its differential. Furthermore,
1U : R2 → {0, 1} is the indicator function for a set U ⊂ R

2, i.e., 1U(x) = 1 if
and only if x ∈ U . Our notation for the dual of a vector space Y is Y′, and the
corresponding duality pairing is denoted by 〈·, ·〉Y′

,Y or simply by 〈·, ·〉. As for
Lp- and Sobolev spaces, we follow the classical notational conventions, indicating
explicitly the target space other than R, we write, e.g., L2(�;R2) and W 1,2(�) =
W 1,2(�;R). Finally, when speaking of the convergence of a family (aε)ε with a



Homogenization in Crystal Plasticity for Stratified Composites 165

continuous parameter ε > 0, we actually mean that each of the sequences (aεj )j
with εj ↘ 0 converges for j →+∞ to the same limit.

2 Minimizers of the Static Homogenized Limit Problem

In this section, we analyze, for every g ∈ L2(�;R2) and s ∈ S1, the variational
problem

minimize I (s)g (u) = E(s)(u)−
∫
�

g · u dx for u ∈ Y. (13)

The existence of solutions to (13) follows from the direct method in the cal-
culus of variations. Indeed, observing that I (s)g is the �-limit resulting from the
homogenization procedure studied in [5], along with the fact that the term u �→
− ∫

�
g · u dx constitutes a continuous perturbation, yields the lower semicontinuity

of the functional I (s)g regarding the weak topology of W 1,2(�;R2). The sequential

weak compactness of the sublevel sets of I (s)g follows from the quadratic growth

of I (s)g with respect to ‖γu‖L2(�) in combination with the special structure of A(s),
which contains only globally rotated shear deformations, see (6).

The aim of this section is to address the issues of uniqueness of solutions to (13)
and their explicit characterization. We start by introducing some auxiliary quantities
for our analysis: given � ∈ L2(�) and g ∈ L2(�;R2), let

�(g, �) := ĝ +
∫
�

�g dx

with

ĝ :=
∫
�

x1g(x)− x2g
⊥(x) dx =

∫
�

Ĝ(x)x dx (14)

and Ĝ(x) := (g(x)| − g⊥(x)) for x ∈ �.
Given this terminology, one obtains for u ∈ A(s) with u = Ru(id+�ue1), cf. (8),

that
∫
�

g · u dx =
∫
�

x1g · Rue1 + x2g · (Rue1)
⊥ + �ug · Rue1 dx = �(g, �u) · Rue1.

(15)

Motivated by this observation, we can set up a variational problem that is
equivalent to solving (13) and involves only the shear variable �. This reformulation
is made precise in the following lemma.
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Lemma 1 Let J (s)g : W 1,2(�) ∩ L2
0(�)→ R∞ := R ∪ {+∞} be given by

J (s)g (�) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1
2

λ

∫
�

(∂2�)
2 dx − 2s1s2

∫
�

∂2� dx − |�(g, �)| if ∂1� = 0,

∂2� ∈ K(s) a.e. in �,

+∞ otherwise.

Then, u ∈ A(s) is a minimizer of I (s)g if and only if �u is a minimizer of J (s)g and

{
Rue1 = �(g, �u) if �(g, �u) �= 0,

Ru ∈ SO(2) if �(g, �u) = 0.
(16)

Moreover, min
u∈Y I

(s)
g (u) = min�∈W 1,2(�)∩L2

0(�)
J
(s)
g (�).

Proof First, we verify via a simple application of the direct method that minimizers
of J (s)g exist. To check for coercivity, we argue in the case s �= e1 that the domain

of J (s)g is a bounded subset of W 1,2(�) and thus precompact in the weak topology

of W 1,2(�). If s = e1, consider a minimizing sequence (�n)n for J (e1)
g such that for

every n ∈ N,

J (e1)
g (�n) ≤ inf

�∈W 1,2(�)∩L2
0(�)

J (e1)
g (�)+ 1

n
,

and hence, ∂1�n = 0 and

1

λ

∫
�

(∂2�n)
2 dx ≤ −|�(g, 0)| + 1

n
+ |̂g| + ‖�n‖L2(�)‖g‖L2(�;R2

)
,

so that (�n)n is bounded in W 1,2(�) by the Poincaré–Wirtinger inequality and
therefore has a weakly converging subsequence in W 1,2(�). Finally, the existence
of a minimizer follows as the functionals J (s)g are all lower semicontinuous with
respect to the weak topology in W 1,2(�).

To prove the statement, we start with the preliminary observation that by (15),

I (s)g (u) = J (s)g (�u)−�(g, �u) · Rue1 + |�(g, �u)| (17)

for every u ∈ A(s) with u = Ru(id + �ue1), see (8).
Now, let u∗ be a minimizer of I

(s)
g in A(s) with u∗ = R∗(id + �∗e1). If

we consider u = R(id + �∗e1) for different R ∈ SO(2), then (16) is a direct
consequence of the optimality of u∗ and of (17). Choosing a competitor u =
R�(id + �e1) with R�e1 = �(g, �) if �(g, �) �= 0 and R� = I otherwise, we
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infer from the minimality of u∗ for I (s)g in combination with (17) that �∗ is minimal

for J (s)g .

Conversely, let �∗ be a minimizer of J (s)g , and let R∗ be such that (16) holds true.

Then, the minimality of the map u∗ = R∗(id + �∗e1) for I (s)g follows once again
from (17). �
Remark 1

(a) Notice that while the values of the energy functionals I (s)g depend quadratically

and linearly on γv , the dependence of J (s)g on its domain involves a combination
of convex and concave terms.

(b) In the case s = e2, the situation is particularly simple. As the class of admissible
functions does not include any shear deformations and is thus very restrictive,
the problem comes down to analyzing rigid-body motion in response to external
loading. In other words, it reduces to discussing the standard model of nonlinear
rigid elasticity. To be precise, since γu = 0 and �u = 0 for any u ∈ A(e2), and
therefore, �(g, �u) = ĝ, we conclude from Lemma 1 that u is a minimizer of
I
(e2)
g if and only if

{
Rue1 = ĝ/|̂g| if ĝ �= 0,

Ru ∈ SO(2) otherwise.

In the case of non-unique rotations for minimizers of I (s)g , we can prove a partial
uniqueness result for the shears �. In combination with Lemma 1, it shows that at
least one of the building blocks of a minimizer, that is, rotation or shear, is uniquely
determined.

Proposition 1 Let u,w ∈ A(s) be two minimizers of I (s)g . If �(g, �w) = 0, then
γu = γw, or equivalently, �u = �w.

Proof For δ ∈ (0, 1), consider the map zδ := (1 − δ)u+ δRuR
T
ww, which satisfies

zδ ∈ A(s) with Rzδ = Ru and γzδ = (1 − δ)γu + δγw, cf. (6). Then,

0 ≤ I (s)g (zδ)− (1 − δ)I (s)g (u)− δI (s)g (w)

= (δ2 − δ)
s2

1

λ

∫
�

(γu − γw)
2 dx − δ

∫
�

g · (RuR
T
ww − w) dx.

We observe that RuR
T
ww − w = (Ru − Rw)(id + �we1), so that

∫
�

g · (RuR
T
w − w) dx =

(∫
�

x1g(x)− x2g
⊥(x)+ �w(x)g(x) dx

)
· (Ru − Rw)e1

= �(g, �w) · (Rue1 − Rwe1) = 0,
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in view of the assumption �(g,�w) = 0. Thus,

0 ≥ s2
1

λ

∫
�

(γu − γw)
2 dx ≥ 0, (18)

which shows that γu = γw. �
In what follows, we specify our discussion to the case of a square-shaped

reference configuration � = (−1, 1)2, which allows for a refined analysis. Indeed,
in this setting, one can decouple the two spatial variables and view �u and γu
for u ∈ A(s) as functions of one variable, i.e., as elements of W 1,2(−1, 1) and
L2(−1, 1), respectively. Moreover,

�(g, �) = ĝ +
∫ 1

−1
�(x2)[g]x1(x2) dx2 and

ĝ =
∫ 1

−1
x1[g]x2(x1) dx1 −

∫ 1

−1
x2[g]⊥x1

(x2) dx2

with [g]x1 :=
∫ 1
−1 g(x1, ·) dx1 and [g]x2 :=

∫ 1
−1 g(·, x2) dx2.

Remark 2 (Examples of ĝ for � = (−1, 1)2)

(a) If g describes linear loading, i.e., g(x) := Ax + b for x ∈ � with given
(nontrivial) A ∈ R

2×2 and b ∈ R
2, a direct calculation shows that

ĝ = 4

3

( TrA
A12 − A21

)
.

If A is symmetric with nonzero trace, then ĝ/|̂g| = e1, whereas ĝ/|̂g| = e2 for
a skew-symmetric A.

(b) When g is constant, then trivially, ĝ = 0. In that case, also �(g, �) = 0 for
any admissible � due to the fact that � ∈ L2

0(−1, 1) has vanishing mean value.
Besides, in light of the property that � has its barycenter in the origin, ĝ = 0 if
g is of the form

g(x) =
N∑
i=1

Ai

(
x
αi
1 x

βi
2

x
γi
1 x

δi
2

)
, x ∈ �,

with Ai ∈ R
2×2 and αi, βi, γi, δi odd integers for i = 1, . . . , N ∈ N.

Under special assumptions on the loads or the slip systems, we can identify
further conditions on minimizers of J (s)g , and hence also of I (s)g , as the next results
illustrate.
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Proposition 2 Let � = (−1, 1)2, and suppose that [g]x1 is constant. If � ∈
W 1,2(−1, 1) ∩ L2

0(−1, 1) is a minimizer of J (s)g , then � = 0. Every minimizer of

I
(s)
g is a rigid-body motion.

Proof The case s = e2 is covered in Remark 1. Assume now that s �= e2. If [g]x1 is
constant, then �(g, �) = ĝ, and thus, �(g, �) is independent of �. The functional
J
(s)
g is then strictly convex with a unique minimizer � satisfying

�′ ∈ argminγ∈L2(−1,1;K(s))

∫ 1

−1

s2
1

λ
γ 2 − 2s1s2γ dx2,

where �′ denotes the weak derivative of �. By Jensen’s inequality, this implies that
�′ is constant with

�′ ∈ argminη∈K(s)

s2
1

λ
η2 − 2s1s2η = {0}; (19)

for the last identity, we make use of the fact that the vertex of the parabola in (19),
that is, η = s2

s1
λ, does not lie in K(s) for s �= e1.

Summing up, we have shown that �′ = 0, and therefore � = 0. The second
statement is then an immediate consequence of Lemma 1. �

For s = e1, we have the following necessary condition for minimizers of J (e1)
g .

Proposition 3 Let� = (−1, 1)2, and let� ∈ W 1,2(−1, 1)∩L2
0(−1, 1) be a critical

point of J (e1)
g .

(a) If �(g, �) = 0, then � = 0.
(b) If �(g, �) �= 0, the differential equation

�′′ = −λ

4
�(g, �) ·

(
[g]x1 −

1

2

∫ 1

−1
[g]x1 dx2

)
(20)

holds in the sense of distributions. In particular, � ∈ W 2,2(−1, 1).

Proof We first prove (a). Let ψ ∈ C∞
c (−1, 1). For any δ ∈ R, we define the

variation

�δ = � + δ�,

where � is the primitive of ψ with vanishing mean value. To obtain optimality
conditions for the minimizer �, we calculate that
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0 = d

dδ |δ=0

J (e1)
g (�δ) = d

dδ |δ=0

2

λ

∫ 1

−1
(�′ + δψ)2 dx2 − |�(g, � + δ�)|

=
∫ 1

−1

4

λ
�′ψ dx2 −

(∫ 1

−1
[g]x1� dx2

)
·�(g, �) =

∫ 1

−1

4

λ
�′ψ dx2.

This implies that �′ = 0 and concludes the proof in view of the fact that � ∈
L2

0(−1, 1).
Next, we prove (b). For any � ∈ C∞

c (−1, 1), consider the variation

�δ = � + δ
(
� − 1

2

∫ 1

−1
� dx2

)
.

The claim then follows from the computation

0 = d

dδ |δ=0

J (e1)
g (�δ)

= d

dδ |δ=0

2

λ

∫ 1

−1
(�′ + δ� ′)2 dx2 −

∣∣∣�
(
g, � + δ

(
� − 1

2

∫ 1

−1
� dx2

))∣∣∣

=
∫ 1

−1

4

λ
�′� ′ dx2 −

(∫ 1

−1
[g]x1 ·

(
� − 1

2

∫ 1

−1
� dx2

)
dx2

)
·�(g, �)

=
∫ 1

−1

4

λ
�′� −�(g, �) ·

(
[g]x1 − 1

2

∫ 1

−1
[g]x1 dx2

)
� dx2.

Remark 3 Note that case (a) can only occur in a scenario where ĝ = 0. If [g]x1

is constant in addition, one concludes from Proposition 3 the necessary condition
�′′ = 0 for critical points of J (e1)

g , which is in agreement with the characterization
of minimizers in Proposition 2.

Remark 4 (Affine Loads) We discuss solutions to (20) in the special case of affine
loads g(x) = Ax + b for x ∈ � = (−1, 1)2 with A ∈ R

2×2 and b ∈ R
2. Then,

[g]x1(x2) = 2x2Ae2 + 2b for x2 ∈ (−1, 1),

[g]x2(x1) = 2x1Ae1 + 2b for x1 ∈ (−1, 1),

so that [g]x1 − 1
2

∫ 1
−1[g]x1 dx2 = 2x2Ae2, ĝ = 4

3 (Ae1 − (Ae2)
⊥), and

�(g, �) = 4

3
(Ae1 − (Ae2)

⊥)+ 2Ae2

∫ 1

−1
x2�(x2) dx2.

In view of (20), any critical point for J (e1)
g is a polynomial of third order, i.e.,
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�(x2) = αx3
2 + βx2

2 + γ x2 + δ with coefficients α, β, γ, δ ∈ R.

From
∫ 1
−1 �(x2) dx2 = 0, we infer that δ = −β

3 . Since the right-hand side of (20)
has null average in (−1, 1), we conclude that β = 0 and thus

�(x2) = αx3
2 + γ x2.

By plugging this structure into the expression of J (e1)
g , the problem of finding mini-

mizers for J (e1)
g reduces to the following two-dimensional optimization problem:

min
(α,γ )∈R2

4

λ

(9

5
α2 + γ 2 + 2αγ

)
− 4

3

∣∣∣Ae1 − (Ae2)
⊥ + Ae2

(3

5
α + γ

)∣∣∣.

3 Homogenization via Evolutionary 
-Convergence

Before stating our findings on evolutionary �-convergence, we introduce the
necessary terminology and recall a few definitions and abstract results from [23, 24],
adjusted to our setting, for a self-contained presentation and the readers’ conve-
nience. Let Q = Y × Z, where Y,Z are reflexive, separable Banach spaces
endowed with the weak topology and T > 0. We write q = (y, z) ∈ Q = Y ×Z.
Furthermore, take an energy functional E : [0, T ] × Q → R∞ := R ∪ {∞} of the
form

E(t, q) := E(q)− 〈l(t), y〉Y′
,Y, (21)

where E : Q → R∞ and l ∈ W 1,1(0, T ;Y′), and let D : Z ×Z → [0,+∞] be a
dissipation distance, i.e., D is definite and satisfies the triangle inequality. A triple
(Q,E,D) of such a state space, energy, and dissipation functional is referred to as
an (energetic) rate-independent system.

A process q : [0, T ] → Q is called an energetic solution of the rate-independent
system (Q,E,D) if the global stability condition, i.e., q(t) ∈ S(t) with

S(t) := {q ∈ Q : E(t, q) < +∞ and E(t, q) ≤ E(t, q̃)+D(z, z̃) for all q̃ = (ỹ, z̃) ∈ Q},
(22)

and the energy balance

E(t, q(t))+ DissD(z; [0, t]) = E(0, q(0))−
∫ t

0
〈l̇(τ ), y(τ )〉 dτ (23)



172 E. Davoli and C. Kreisbeck

hold for all t ∈ [0, T ], see [23, Definition 2.1.2]; here, l̇ denotes the weak derivative
of l with respect to time, and for q = (y, z) ∈ Q,

DissD(z; [0, t]) := sup
{ N∑
i=1

D(z(tj−1), z(tj )) : N ∈ N, 0 = t0 < t1< . . .<tN = t
}
.

Now, consider energy and dissipation functionals Eε , Dε with parameter ε > 0
and E0,D0 as introduced above (the same notations carry over as well, indicated by
subscript ε and 0, respectively). We say that the family (Q,Eε,Dε)ε evolutionary �-
converges (with well-prepared initial conditions) to (Q,E0,D0) as ε → 0, formally

(Q,Eε,Dε)
ev-�−−→ (Q,E0,D0) as ε → 0, (24)

if energetic solutions to (Q,Eε,Dε) exist and if the limits of such solutions for
ε → 0 are energetic solutions to (Q,E0,D0), along with suitable convergences of
the energetic and the dissipated contributions. To be precise, if qε : [0, T ] → Q are
energetic solutions to (Q,Eε,Dε) such that qε(t)→ q(t) in Q for all t ∈ [0, T ] and
Eε(0, qε(0))→ E0(0, q(0)) as ε → 0, then q : [0, T ] → Q is an energetic solution
for (Q,E0,D0), and it holds that

Eε(t, qε(t))→ E0(t, q(t)) for all t ∈ [0, T ],
DissDε

(zε; [0, t])→ DissD0
(z; [0, t]) for all t ∈ [0, T ],

〈l̇ε (t), yε(t)〉 → 〈l̇0(t), y(t)〉 for a.e. t ∈ [0, T ].

If energetic solutions to (Q,Eε,Dε) do not exist, one needs to employ a refined
concept. In fact, we can fall back on the following related approach, based on
approximate incremental problems, which automatically admit solutions. Based
on [24, Section 4] on the relaxation of evolutionary problems, we state a generalized
version suitable for parameter-dependent families of energies and dissipations, as
mentioned also in [23, Section 2.5.1]. In the following, we say that (Q,Eε,Dε)ε
approximately evolutionary �-converges to (Q,E0,D0) and write

(Q,Eε,Dε)
ev-�app−−−−→ (Q,E0,D0) as ε → 0, (25)

if sequences of piecewise constant interpolants of approximate solutions to time-
incremental problems for (Q,Eε,Dε) have subsequences that converge to energetic
solutions of (Q,E0,D0) in a suitable sense. To be precise, for ε > 0, let

Tε = {0 = τ (0)ε < τ (1)ε < . . . < τ (Nε−1)
ε < τ (Nε)

ε = T },

with Nε ∈ N, be a family of partitions of [0, T ] with fineness
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ν(Tε) = max
k=1,...,Nε

τ (k)ε − τ (k−1)
ε → 0 as ε → 0,

and initial conditions q
(0)
ε ∈ Q with q

(0)
ε → q(0) in Q and Eε(0, q(0)ε ) →

E0(0, q(0)) ∈ R as ε → 0. Consider the piecewise constant functions qε : [0, T ] →
Q on the partition Tε with

qε(t) =
Nε∑
k=1

q(k)ε 1[τ (k−1)
ε ,τ kε )

, (26)

where q
(k)
ε ∈ Q for k = 1, . . . , Nε are iteratively determined solutions to the

approximate incremental problem

Eε(τ (k)ε , q(k)ε )+Dε(q
(k−1)
ε , q(k)ε ) ≤ inf

q̃∈Q
[
Eε(τ (k)ε , q̃)+Dε(q

(k−1)
ε , q̃)

]+ ν(Tε)δ
(k)
ε ;

here, δ(k)ε > 0 satisfies supε>0
∑Nε

k=1 δ
(k)
ε < +∞. Then, (25) means that there exist

a subsequence of (qε)ε (not relabeled) and an energetic solution q : [0, T ] → Q for
(Q,E0,D0) such that

zε(t)→ z(t) in Z for all t ∈ [0, T ],
Eε(t, qε(t))→ E0(t, q(t)) for all t ∈ [0, T ],

DissDε
(zε; [0, t])→ DissD0

(z; [0, t]) for all t ∈ [0, T ],
〈l̇ε (t), yε(t)〉 → 〈l̇0(t), y(t)〉 for a.e. t ∈ [0, T ].

Next, we collect a list of conditions on (Q,Eε,Dε)ε and (Q,E0,D0), which have
been shown to provide sufficient criteria for (24) and (25):

(H1) Dε = D for all ε > 0, where D : Z × Z → [0,+∞] is a lower-
semicontinuous quasi-distance, i.e., definite and satisfying the triangle
inequality.

(H2) Eε : Q→ R∞ are lower semicontinuous for all ε > 0.
(H3) Eε(q) ≥ C‖q‖αQ − c for all q ∈ Q, ε > 0 with C, c > 0 and some α > 1,

and lε → l0 in W 1,1(0, T ;Y′).
(H4) (Eε)ε �-converges to E0 with respect to the topology of Q.
(H5) If (tε, qε)ε is a stable sequence, that is, qε ∈ Sε(tε) for all ε > 0 and

supε>0 Eε(tε, qε) < +∞, such that (tε, qε) → (t, q) in [0, T ] × Q, then
q ∈ S0(t).

The above-listed hypotheses are specializations of the more general assumptions
in [23, Sections 2.4.2, 2.5.1], taylored to the setting relevant for this work. In fact,
as a corollary of [23, Theorem 2.4.10], the evolutionary �-convergence (24) follows
if (H1)–(H5) hold and (Q,Eε,Dε) admit energetic solutions.
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The proof is based on a, by now classical, time-discretization strategy. If (H1),
(H3), (H4), and (H5) hold, then (25) can be considered a consequence of [23,
Theorem 2.5.1] or [24, Theorem 4.1]. Strictly speaking, the latter references write
the statement explicitly only for relaxation, so assuming that Eε are all identical for
all ε, but as mentioned there already, the results carry over to general families of
energy functionals after a straightforward modification. Both for (24) and (25), one
obtains that the limit solution q : [0, T ] → Q is measurable.

When it comes to verifying the hypotheses, the critical condition to check is
(H5). A sufficient condition is the existence of a mutual recovery sequence, cf. [23,
(2.4.13), Proposition 2.4.8 (ii), Lemma 2.1.14]:

(H6) For any sequence (tε, qε)ε ⊂ [0, T ] × Q with supε>0 Eε(tε, qε) < +∞ that
converges to (t, q) ∈ [0, T ] × Q and any q̃ ∈ Q, there exists a sequence
(q̃ε)ε ⊂ Q such that q̃ε → q in Q and

lim sup
ε→0

Eε(tε, q̃ε)+Dε(qε, q̃ε)− Eε(tε, qε) ≤ E0(t, q̃)+D0(q, q̃)− E0(t, q).

(27)

Now, after this brief excursion into the theory of evolutionary convergence for
rate-independent systems, we discuss two different scenarios of such results associ-
ated with the plasticity model introduced previously in Sect. 2. The key part of the
proofs is the construction of mutual recovery sequences, where the main difficulty
lies in accommodating the non-convex constraints in order to obtain admissible
states. A full picture of evolutionary �-convergence in our homogenization setting
of crystal plasticity seems currently out of reach. We present in the following a
few first steps by studying specific cases where energetic and dissipative effects
decouple, see Theorems 3 and 4 below.

Let us first introduce the general setting, fix notation and provide some pre-
liminaries. It is assumed in the remainder of this section that � = (−1, 1)2 and
s ∈ {e1, e2}. Let Q = Y×Z with Y = W 1,2(�;R2)∩L2

0(�;R2) and Z = L2(�),
where both spaces are equipped with the corresponding weak topologies. We write
q = (u, γ ) ∈ Q.

In what follows, we consider dissipation distances D : Q×Q→ [0,+∞] given
for every q = (u, γ ), q̃ = (ũ, γ̃ ) ∈ Q by either

D(q, q̃) = D1(q, q̃) := δ

∫
�

|γ − γ̃ | dx = δ‖γ − γ̃ ‖L1(�) (28)

with a dissipation coefficient δ > 0 or by

D(q, q̃) = D≥(q, q̃) :=
{
D1(q, q̃) if γ ≥ γ̃ a.e. in �,

+∞ otherwise;
(29)
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note that the second choice of dissipation incorporates a monotonicity assumption
on the direction of plastic glide, making for a unidirectional process. The underlying
energy functionals Eε : [0, T ] ×Q→ R∞ for ε > 0 associated with our system are

Eε(t, q) := Eε(q)−
∫
�

gε(t) · u dx, (30)

where gε ∈ W 1,1(0, T ;L2(�;R2)) are given body forces and Eε : Q → [0,+∞]
time-independent energy contributions; the latter will be specified below in each
subsection but share the common property that their admissible states are contained
in the sets

B(s)
ε := {q = (u, γ ) ∈ Q : ∇u = R(I+ γ s ⊗m),R ∈ L∞(�; SO(2)), γ = 0 on εYrig}

= {q = (u, γu) ∈ Q : u ∈ A(s)
ε },

(31)

recalling A(s)
ε from (4), i.e.,

A(s)
ε = {u ∈ Y : ∇u = Ru(I+ γus ⊗m),Ru ∈ L∞(�; SO(2)), γu = 0 on εYrig}.

As it was shown in [5], the limits of sequences of B(s)
ε can be characterized via

B(s) := {q ∈ Q : qε → q in Q, qε ∈ B(s)
ε for all ε > 0}

= {(u, γu) ∈ Q : u ∈ A(s)},
(32)

with A(s) as defined in (6).

3.1 The Case s = e2

For ε > 0, consider the energy functional Eε : [0, T ] × Q→ R∞ as in (30) with

Eε(q) :=
⎧⎨
⎩

∫
�

γ 2 dx if q = (u, γ ) ∈ B(e2)
ε ,

+∞ otherwise,
for q ∈ Q, (33)

where B(e2)
ε is given in (31). The next theorem shows that passing to the limit ε → 0

in the dissipative system (Q,Eε,D) yields a purely energetic evolution without any
dissipation, see Remark 5. We point out that the energy functionals Eε are not lower
semicontinuous in light of oscillating rotations and observe that the oscillations in
the shear strains prevent the continuous convergence of the dissipation.
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As a consequence, the existence of energetic solutions to (Q,Eε,D) is not guar-
anteed, which suggests to formulate the result within the framework of approximate
�-convergence. Regarding the proof strategy, note that classical constructions of
mutual recovery sequences such as the “quadratic trick” (see e.g. [23, Section 3.4.5])
cannot be applied here due to the nonlinearity of the problem.

Theorem 3 (Evolutionary 
-Convergence for s = e2) Let Eε for ε > 0 be as
in (30) and (33), and letD be as in (28) or (29). Furthermore, suppose that gε → g0
inW 1,1(0, T ;L2(�;R2)) with g0 ∈ W 1,1(0, T ;L2(�;R2)). Then,

(Q,Eε,D)
ev-�app−−−−→ (Q,E0,D) as ε → 0,

where

E0(t, q) :=
⎧⎨
⎩
−
∫
�

g0(t) · Rx dx for q = (u, 0) ∈ Q with ∇u = R for R ∈ SO(2),

+∞ otherwise.

(34)

Proof The statement follows, once (H1), (H3), (H4), and (H5) are verified. The
first two hypotheses are straightforward to check. Since E0 given by E0(q) = 0 for
q = (0, Rx) with R ∈ SO(2) and E0(q) = +∞ otherwise was characterized as the
�-limit of (Eε)ε in [5] (see also (5)), (H4) is verified. For the remaining condition
(H5), we construct a suitable mutual recovery sequence according to (H6).

To this end, let q̃ ∈ Q, and let (tε, qε)ε ⊂ [0, T ] × Q be a sequence of
uniformly bounded energy for (Q,Eε,D)ε converging to (t, q) ∈ [0, T ] ×Q. Since
supε>0 Eε(tε, qε) < +∞, we have qε = (uε, γε) ∈ B(e2)

ε for all ε, and therefore,
according to (32),

q = (u, γ ) ∈ B(e2), or equivalently, u ∈ A(e2) and γ = γu.

This shows that u is affine with ∇u = R for some R ∈ SO(2) and that γu = 0.
Hence, E0(t, q) < +∞ in view of (34). As we aim to prove the estimate (27) for
Dε = D0 = D, there is no loss of generality in assuming E0(t, q̃) < +∞, i.e.,
q̃ = (ũ, 0) ∈ Q with ũ affine such that ∇ũ = R̃ for R̃ ∈ SO(2).

We set

ũε = R̃RT uε ∈ A(e2)
ε

and q̃ε = (ũε, γε) ∈ B(e2)
ε for any ε. Then, ũε ⇀ ũ in W 1,2(�;R2), and also

q̃ε → q̃ in Q. Via compact Sobolev embedding, it holds (up to the selection of
subsequences) that ũε → ũ in L2(�;R2) and uε → u in L2(�;R2), which implies
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lim sup
ε→0

−
∫
�

gε(tε) · (ũε − uε) dx = −
∫
�

g0(t) · (ũ− u) dx.

In light of Eε(qε) = Eε(q̃ε), D(qε, q̃ε) = 0 due to γ̃ε = γε , and D0(q, q̃) = 0, we
therefore obtain

lim sup
ε→0

Eε(tε, q̃ε)− Eε(tε, qε)+D(qε, q̃ε) = E0(t, q̃)− E0(t, q)+D0(q, q̃).

This yields (27) and shows the existence of a mutual recovery sequence, as desired.
�

Remark 5 Given the system (Q,E0,D), we observe that passing from one admis-
sible state with finite energy to the next does not cause any dissipation. This is
because D is zero when evaluated in finite-energy states, and thus, the set of stable
states for (Q,E0,D) is the same as that of (Q,E0, 0). Hence, one may think of the
limit system (Q,E0,D) as dissipation-free.

We conclude the case s = e2 with a brief discussion of stable states and energetic
solutions for the limit system (Q,E0,D). Using Remark 1 (b), its set of stable states,
denoted for time t ∈ [0, T ] by S0(t), can be determined via minimization of E0(t, ·),
that is,

S0(t) = {q ∈ Q : E0(t, q) ≤ E0(t, q̃) for all q̃ ∈ Q}

=
{
(u, 0) : u(x) = Rx for x ∈ �,R ∈ argminS∈SO(2) −

∫
�

g0(t) · Sx dx
}

=
{
{(Rx, 0) : Re1 = ̂g0(t)/|̂g0(t)|} if ̂g0(t) �= 0,

{(Rx, 0) : R ∈ SO(2)} if ̂g0(t) = 0;

recall (14) for the definition of ̂g0(t). In particular, S0(t) contains only rigid-body
motions, and the energy balance for q(t, ·) = (u(t, ·), 0) ∈ S0(t) with u(t)(x) =
u(t, x) = R(t)x becomes

−R(t)e1 · ̂g0(t) = −R(0)e1 · ̂g0(0)−
∫ t

0
R(τ)e1 · ̂ġ0(τ ) dτ

for t ∈ [0, T ], cf. (23). Under the assumption that ̂g0(t) �= 0 for all t ∈ [0, T ],
we conclude that (Q,E0,D) has a unique energetic solution, which is given by
q(t, ·) = (u(t, ·), 0) with

u(t, x) = (x1̂g0(t)+ x2̂g0(t)
⊥)
/|̂g0(t)|.
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3.2 The Case s = e1

As energy functional Eε : [0, T ] × Q→ R∞ for ε > 0, we choose either

Eε(t, q) = Erig
ε (t, q) :=

⎧⎨
⎩

∫
�

γ 2 dx −
∫
�

gε(t) · u dx if u ∈ A(e1),rig
ε ,

+∞ otherwise
(35)

or

Eε(t, q) = Ereg
ε,τε (t, q) :=

⎧⎪⎨
⎪⎩

∫
�

γ 2 dx −
∫
�

gε(t) · u dx + τε‖∂1γ ‖2
L2(�)

if u ∈ A(e1)
ε ,

+∞, otherwise;

(36)

here,

A(e1),rig
ε := {u ∈ A(e1)

ε : Ru = const.}

with A(e1)
ε as in (4), τε > 0 are given real constants such that τε → +∞ as

ε → 0, gε ∈ W 1,1(0, T ;L2(�;R2)) represent loading terms with gε → g0 in
W 1,1(0, T ;L2(�;R2)) as ε → 0.

We remark that, in the first situation with Erig
ε , the inclusion

A(e1),rig
ε ⊂ A(e1) = {u ∈ Y : ∇u = R(I+ γ e1 ⊗ e2), R ∈ SO(2), γ ∈ L2(�), ∂1γ = 0}

for any ε > 0 leads to an essentially one-dimensional model already at the level of
the ε-dependent functionals.

The additional term in Ereg
ε,τε corresponds to a unidirectional regularization of the

shears on the softer layers. As such, it penalizes oscillations in the x1-direction, but
does not affect those in x2, which are relevant to respect the layered structure. A
common modeling choice for regularizing via higher order derivatives in models
of finite plasticity involves the dislocation tensor G, see, e.g., [22]. Considering the
multiplicative splitting of the deformation gradient into an elastic and a plastic part
in (2), G in the planar case is defined by

G(Fpl) := 1

detFpl
curlFpl.

In the present setting, with slip direction s = e1 and slip plane normal m = e2, it
holds that Fpl = I+ γ e1 ⊗ e2 (see (3)), and therefore,

G(Fpl) = ∂1(Fple2)− ∂2(Fple1) = (∂1γ )e1.
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Hence, the penalization in Ereg
ε,τε can be seen as forcing the L2-norm of the

dislocation tensor to asymptotically become infinitesimal and leads to a limit
model in the context of dislocation-free finite crystal plasticity, as recently studied
in [20, 30].

We present below two (approximate) evolutionary �-convergence results for the
rate-independent systems with the previously introduced energies and dissipations.
It is important to notice that both limit systems show no interaction between energy
and dissipation terms. This effect is enforced by the rigid energy in Erig

ε and the
regularization in Ereg

ε,τε , which suppress oscillations in the rotations and shears,
respectively. On a technical level, these assumptions are designed to make a limit
analysis based on weak–strong convergence arguments feasible. The case of fully
oscillating rotations and shears, which requires characterizing limits of products of
weakly convergent sequences, may become accessible with new arguments from the
theory of compensated compactness (see, e.g., [27, 31]) but is beyond the scope of
this work and currently still open.

Theorem 4 (Evolutionary 
-Convergence for s = e1) With the definitions
in (35), (36), (28), and (29) and

E0(t, q) :=
⎧⎨
⎩

1

λ

∫
�

γ 2 dx −
∫
�

g0(t) · u dx if u ∈ A(e1),

+∞ otherwise,

the following evolutionary �-convergence results hold:

(a) (Q,Erig
ε ,D≥)

ev-�−−→ (Q,E0,D≥) as ε → 0;

(b) (Q,Ereg
ε,τε ,D1)

ev-�app−−−−→ (Q,E0,D1) as ε → 0.

Proof All the basic assumptions of the theory summarized above are satisfied.
While (H1), (H3), as well as (H2) for (a) are immediate to check, (H4) follows
from [5]. It remains to prove the existence of mutual recovery sequences, that is,
(H6).

Consider q, q̃ ∈ Q with u, ũ ∈ A(e1), i.e.,

∇u = R(I+ γ e1 ⊗ e2) and ∇ũ = R̃(I+ γ̃ e1 ⊗ e2)

with R, R̃ ∈ SO(2) and γ, γ̃ ∈ L2(�) such that ∂1γ = ∂1γ̃ = 0. Moreover, let
(tε, qε)ε ⊂ [0, T ] × Q be a bounded energy sequence for (Q,Eε,D)ε with

sup
ε>0

Eε(tε, qε) < +∞, (37)

such that (tε, qε)→ (t, q) in [0, T ] × Q.
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As a consequence of this uniform energy bound, one obtains that uε ∈ A(e1)
ε for

all ε > 0; in the case of Eε = Erig
ε , one even has uε ∈ A(e1),rig

ε . Moreover, we infer
from the Radon–Riesz theorem that

Rε → R in L2(�;R2×2) and γε ⇀ γ in L2(�),

where, for the sake of a simpler notation, we write Rε for Ruε and γε for γuε . The
task is to find a sequence (q̃ε)ε ⊂ Q with q̃ε ⇀ q̃ in Q that satisfies

lim sup
ε→0

Eε(tε, q̃ε)− Eε(tε, qε)+D(qε, q̃ε) ≤ E0(t, q̃)− E0(t, q)+D0(q, q̃),

(38)

with D = D0 = D≥ in (a) and D = D0 = D1 in (b). Observe that necessarily,

ũε ∈ A(e1)
ε for all ε > 0, and additionally, for Eε = Erig

ε , one needs ũε ∈ A(e1),rig
ε .

We now detail the construction of mutual recovery sequences for the two scenarios
described in (a) and (b).

(a) In this case, the problem is essentially (up to global rotations) one-dimensional
with quadratic energy, which allows us to adapt what is frequently referred
to as the “quadratic trick,” cf. [23, Section 3.5.4]. In particular, (Q,Erig

ε ,D≥)
has an energetic solution for each ε > 0. To meet the required constraints for
admissible sequences of Erig

ε , we define ũε ∈ A(e1)
ε by setting

R̃ε := R̃uε = R̃ and γ̃ε := γ̃uε = γε + 1

λ
(γ̃ − γ )1εYsoft

for all ε > 0, recalling that λ ∈ (0, 1) denotes the relative thickness of the soft
layers. Indeed, since ∂1γε = 0 due to uε ∈ A(e1), also ∂1γ̃ε = 0, and hence, the
vector field R̃ε(I+ γ̃εe1⊗e2) is indeed a gradient field, namely for the potential
ũε .

In view of γ̃ε ⇀ γ̃ in L2(�) and ũε ⇀ ũ in W 1,2(�;R2), it follows that

lim sup
ε→0

Erig
ε (tε, q̃ε)− Erig

ε (tε, qε)

= lim sup
ε→0

∫
�∩εYsoft

1

λ2
(γ̃ − γ )2 + 2

λ
(γ̃ − γ )γε dx −

∫
�

gε(tε) · (ũε − uε) dx

=
∫
�

1

λ
(γ̃ − γ )2 + 2

λ
γ̃ γ − 2

λ
γ 2 dx −

∫
�

g0(t) · (ũ− u) dx

=
∫
�

1

λ
γ̃ 2 − 1

λ
γ 2 dx −

∫
�

g0(t) · (ũ− u) dx

= E0(t, q̃)− E0(t, q),

(39)
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using that 1εYsoft

∗
⇀ λ id in L∞(�) by the Riemann-Lebesgue lemma and that

1εYsoftγε = γε for all ε.
Due to the monotonicity constraint in D≥, we may assume that γ ≥ γ̃ ,

which implies that γε ≥ γ̃ε . Then,

lim sup
ε→0

D≥(γε, γ̃ε) = lim sup
ε→0

δ

∫
�

γε − γ̃ε dx = lim sup
ε→0

δ

λ

∫
�

1εYsoft(γ̃ − γ ) dx

= δ

∫
�

γ − γ̃ dx = D≥(γ, γ̃ ).

(40)

Combining (39) and (40) gives (38), as desired.
(b) We start by observing that the uniform energy bound (37) implies

lim
ε→0

∫
�

|∂1γε |2 dx = 0; (41)

indeed, with γε = γuε , we obtain via the Poincaré–Wirtinger inequality that

∫
�

γ 2
ε dx + τε‖∂1γε‖2

L2(�)
≤ sup

ε>0
Eε(tε, qε)+ ‖gε‖W 1,1(0,T ;L2(�))‖uε‖L2(�)

≤ C(1 + ‖∇uε‖L2(�;R2×2
)
) ≤ 4C(1 + ‖γε‖L2(�)),

with a constant C > 0 independent of ε. This shows that (γε)ε is uniformly
bounded in L2(�), as well as ‖∂1γε‖L2(�) → 0, considering that τε →+∞ as
ε tends to zero.

Let us define R̃ε = R̃ and

γ̃ε = 1

2

∫ 1

−1
γε dx1 + 1

λ
(γ̃ − γ )1εYsoft (42)

for ε > 0. By construction, we have again that ∂1γ̃ε = 0. The ansatz in (42) can be
viewed as yet a refined version of the modified “quadratic trick” in (a).

In proving (38), the convergence of the energy terms follows in analogy to (39),
if we account for the fact that 1

2

∫ 1
−1 γε dx1 ⇀ γ in L2(�) and if we use the estimate

∫
�

(1

2

∫ 1

−1
γε dx1

)2 − γ 2
ε dx ≤ 0

by Jensen’s inequality.
Regarding the dissipative terms, we use the one-dimensional Poincaré inequality

with Poincaré constant c > 0 to argue that
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lim sup
ε→0

D1(γε, γ̃ε) ≤ lim sup
ε→0

δ

∫
�

∣∣∣γε − 1

2

∫ 1

−1
γε dx1

∣∣∣ dx + δ

∫
�

1

λ
|γ̃ − γ |1εYsoft dx

≤ δ lim sup
ε→0

c

∫
�

|∂1γε | dx + δ

∫
�

|γ̃ − γ | dx

≤ cδ lim
ε→0

‖∂1γε‖L2(�) +D1(γ, γ̃ ).

The proof of (38) follows then by (41). �

Remark 6 Following the proof of Theorem 4(a), it is immediate to see that we get
the analogous evolutionary �-convergence result if the monotonicity assumption in

the dissipation is dropped, i.e., (Q,Erig
ε ,D1)

ev-�−→ (Q,E0,D1) as ε → 0.
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On the Prescription of Boundary
Conditions for Nonlocal Poisson’s and
Peridynamics Models

Marta D’Elia and Yue Yu

1 Introduction and Motivation

Nonlocal, integral models are valid alternatives to classical partial differential
equations (PDEs) to describe systems where small-scale effects or interactions affect
the global behavior. In particular, nonlocal models are characterized by integral
operators that embed length scales in their definitions, allowing to capture long-
range space interactions. Furthermore, the integral nature of such operators reduces
the regularity requirements on the solutions that are allowed to feature discontinuous
or singular behavior. Applications of interest span a large spectrum of scientific
and engineering fields, including fracture mechanics [33, 47], anomalous subsurface
transport [3, 15, 44, 45], phase transitions [8, 14, 30], image processing [6, 25, 32],
magnetohydrodynamics [43], stochastic processes [7, 18, 35, 39], and turbulence
[12, 40, 41].

Despite their improved accuracy, the usability of nonlocal equations is hindered
by several modeling and computational challenges that are the subject of very active
research. Modeling challenges include the lack of a unified and complete nonlocal
theory [13, 20, 23], the nontrivial treatment of nonlocal interfaces [1, 10, 29, 46,
55, 58], and the non-intuitive prescription of nonlocal boundary conditions [22, 31,
50, 54, 59]. Computational challenges are due to the integral nature of nonlocal
operators that yields discretization matrices that feature a much larger bandwidth
compared to the sparse matrices associated with PDEs. For both variational methods
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[2, 11, 19, 21] and meshfree methods [29, 42, 48, 50, 51, 53–55, 59], a lot of progress
has been made during the last decade, resulting in improved numerical techniques
that facilitate wider adoption, even at the engineering level.

In its simplest form, the action of a nonlocal (spatial) operator on a scalar function
u : Rd → R is defined as

Lu(x) =
∫
Hδ(x)

I (x, y, u) dy,

where Hδ(x) defines a nonlocal neighborhood of size δ surrounding a point
x ∈ R

d , d being the spatial dimension, and δ the so-called horizon or interaction
radius. The latter defines the extent of the nonlocal interactions and embeds the
nonlocal operator with a characteristic length scale. The integrand function I is
application dependent and plays the role of a constitutive law. Its definition is not
straightforward and represents one of the most investigated problems in nonlocal
research [9, 16, 52, 56, 57].

In this work, we focus on the prescription of nonlocal boundary conditions, or
volume constraints, when solving nonlocal equations in bounded domains. The
challenge stems from the presence of nonlocal interactions, for which a point x

in a domain interacts with points outside of the domain that are contained in the
point’s neighborhood Hδ(x). This fact generates an interaction region of nonzero
measure where volume constraints need to be prescribed to guarantee the uniqueness
of a nonlocal solution [27]. However, often times, input data to a problem are not
available (due to measurement cost or physical impediments) in volumetric regions,
whereas they are only available on the surfaces surrounding the domain. In other
words, the only available data are local. Thus, the question arises of how to convert
local boundary information into a nonlocal volume constraint.

In the nonlocal literature, this issue has been addressed in several works, most
of which propose conversion approaches that are either too restrictive (in terms of
geometry or dimensionality constraints), too computationally expensive (requiring
the solution of an optimization problem), or are not prone to wide usability
(requiring a modification of available codes). Among these works, we mention
[17, 24, 31, 54, 59].

The method we propose is inspired by the recent work [22] where the authors
propose to first approximate the nonlocal solution with its local counterpart and
then correct it by solving the nonlocal problem using the local solution to generate
volume constraints. In [22], Neumann local boundary conditions are converted
into Dirichlet or Neumann volume constraints in the context of nonlocal Poisson’s
problems and numerical tests are performed in one dimension. Based on this
work, we propose to convert Dirichlet local boundary conditions into Dirichlet
or Neumann volume constraints in the context of both nonlocal Poisson’s and
peridynamics equations. Furthermore, we show applicability of our strategy in a
two-dimensional setting using nontrivial geometries.

The main idea of the proposed method can be summarized in three simple
steps.
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1. Using available local data, we solve the local counterpart of the nonlocal
problem. This step assumes that the local limit (the limit as δ → 0) of the
nonlocal operator is known,1 that the local data and the domain are smooth
enough to guarantee well-posedness, and that a solver for the corresponding local
equation is available.

2. We use the local solution either to define the nonlocal Dirichlet data in the non-
local interaction domain or to obtain the nonlocal Neumann data by computing
the corresponding nonlocal flux. This step numerically corresponds to a matrix-
vector multiplication and does not require the implementation of a new nonlocal
(flux) operator; in fact, as we will explain later, the nonlocal Neumann operator is
the nonlocal operator itself evaluated at points in the nonlocal interaction domain.

3. Use either the Dirichlet or Neumann data obtained in Step 2 to solve the nonlocal
problem, for which volume constraints are now available.

The choice between converting into a Dirichlet or Neumann condition depends on
the expected behavior close to the boundary. When nonlocal effects are more likely
to happen far from the boundary (because of, e.g., a pre-crack in the middle of
the domain), the Dirichlet approach, characterized by a smooth behavior of the
solution, can be considered appropriate. On the other hand, when nonlocal effects
are expected close to the boundary, the Neumann approach might be preferable, as it
returns a solution that matches the nonlocal flux associated with the local solution,
rather than matching the local solution itself. We summarize the main properties of
the proposed approach below.

• This strategy delivers a nonlocal solution that is physically consistent with
PDEs in the limit of vanishing nonlocality. Numerically, when employing
proper numerical discretization methods, e.g., the optimization-based meshfree
quadrature rule [50, 59], this property guarantees asymptotic compatibility [49],
i.e., the nonlocal numerical solution converges to its local limit as δ and the
discretization size h approach 0.

• This technique has no geometry or dimensionality constraints. It can be utilized
with any domain shape and in all dimensions d = 1, 2, 3.

• The conversion of local data into nonlocal volume constraints is inexpensive.
In fact, it corresponds to a matrix-vector product where the matrix is either a
selection matrix (in the Dirichlet case) or a nonlocal flux matrix (in the Neumann
case).

• This strategy does not require the implementation of new software. In fact,
available local and nonlocal solvers can be used as black boxes.

1 Local limits of nonlocal operators can be obtained by using Taylor’s expansion; both the
nonlocal Poisson’s problem and the peridynamic model considered in this work have well-known
local limits, namely, the (local) Poisson’s equation and the Navier equation of linear elasticity,
respectively.
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Consequently, this strategy has the potential of dramatically increasing the usability
of nonlocal models at the engineering and industry level thanks to its flexibility,
intuitiveness, and ease of implementation.

Paper Outline This chapter is organized as follows. In the following section, we
describe the nonlocal Poisson and linear peridynamic solid (LPS) models. For each
of them, we introduce the strong and weak formulations and discuss conditions
for their well-posedness. In Sect. 3, we illustrate the proposed strategies for the
conversion of a local, Dirichlet boundary condition into a nonlocal Dirichlet (DtD
strategy) or Neumann (DtN strategy) volume constraint. In Sect. 4, we prove that
both approaches deliver nonlocal solutions that are asymptotically compatible with
the corresponding local solution of both Poisson’s and LPS problems. Specifically,
we prove that the nonlocal solution converges to the local one with quadratic rate.
In Sect. 5, we illustrate the properties of our methods with several two-dimensional
numerical tests. In particular, we show that when the solutions are such that local and
nonlocal operators are equivalent, our procedure satisfies the consistency property
(the nonlocal solution coincides with the local one). Furthermore, for both models
and both approaches, we confirm the quadratic convergence rate of the L2-norm
difference between local and nonlocal solutions. Finally, in Sect. 6, we summarize
our achievements.

2 Preliminaries

In this section, we introduce the mathematical models used in this chapter and recall
relevant results. In what follows, scalar fields are indicated by italic symbols and
vector fields by bold symbols. Let � be a bounded open domain in R

d , d = 1, 2, 3,
with Lipschitz-continuous boundary ∂�.

2.1 The Nonlocal Poisson’s Problem

For the function u(x) : Rd → R, we define the nonlocal Laplacian LNL : Rd → R

of u(x) as

LNLu(x) := 2
∫
R

d

(
u(y)− u(x)

)
γ (x, y) dy x ∈ R

d , (1)

where γ (x, y) is a nonnegative symmetric kernel2 such that, for x ∈ �,

2 For more general, sign-changing, and nonsymmetric kernels, we refer the reader to [36] and [18],
respectively.
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Fig. 1 The domain �, the support of γ at a point x ∈ �, Bδ(x), and the induced interaction
domain �I for the nonlocal Poisson’s problem (left) and the LPS model (right)

{
γ (x, y) > 0 ∀ y ∈ Bδ(x)

γ (x, y) = 0 ∀ y ∈ R
d \ Bδ(x),

(2)

where Bδ(x) = {y ∈ R
d : ‖x − y‖ < δ, x ∈ �} and δ is the interaction radius

or horizon. For the Laplacian operator LNL, we define the interaction domain of �
associated with kernels like in (2) as follows:

�I = {y ∈ R
d \� : ‖y − x‖ < δ, for some x ∈ �}, (3)

and set � = � ∪ �I . The domain �I contains all points outside of � that
interact with points inside of �; as such, �I is the volume where nonlocal
boundary conditions, or volume constraints, must be prescribed to guarantee the
well-posedness of the nonlocal equation associated with LNL [27]. We refer to
Fig. 1 (left) for an illustration of a two-dimensional domain, the support of γ , and
the induced interaction domain. Here, the interaction domain is divided into the
nonoverlapping partition �I = �nloc ∪ �loc. In what follows, we assume that
nonlocal data is available on �nloc, whereas only local information is available on
the physical boundary of �loc, i.e., on �loc = ∂�loc ∩ ∂�.

An important property of the Laplacian operator in (1) is its δ-convergence,
i.e., as δ → 0 to the classical, local Laplacian �. In fact, when the kernel γ is
properly scaled and when the fourth-order derivatives of u are bounded, we have
the following pointwise relationship:

Lu(x) = �u(x)+ O(δ2). (4)

With the purpose of prescribing Neumann volume constraints, we introduce the
nonlocal flux operator:

NNDu(x) = −
∫
�

(u(y)− u(x))γ (x, y) dy x ∈ �I .
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To provide an interpretation of the interaction operator, we note that the integral∫
�I

NND(ν) dx generalizes the concept of a local flux
∫
∂�

q · n dA through the
boundary of a domain, with N(ν) being the nonlocal counterpart of the local flux
density q · n. We refer to [27] for additional details regarding the nonlocal vector
calculus and results such as integration by parts and nonlocal Green’s identities.

We introduce the nonlocal energy semi-norm, nonlocal energy space, and
nonlocal volume-constrained energy space

|||v|||2 :=
∫
�

∫
�

(u(y)− u(x))2γ (x, y) dy dx

V (�) :=
{
v ∈ L2(�) : |||v|||

�
<∞

}

V�(�) :=
{
v ∈ V (�) : v = 0 on � ⊂ �I

}
.

(5)

We also define the volume-trace space Ṽ�(�) := {v|� : v ∈ V (�)}, for � ⊂ �I ,

and the dual spaces V ′(�) and V ′
�(�) with respect to L2-duality pairings.

We consider kernels such that the corresponding energy norm satisfies a

Poincaré-like inequality, i.e., ‖v‖
0,�

≤ Cpn|||v||| for all v ∈ V�(�), where
Cpn is the nonlocal Poincaré constant. For such kernels, the paper [37] shows that
Cpn is independent of δ if δ ∈ (0, δ0] for a given δ0. In this paper, we consider a
specific class of kernels, namely, integrable kernels such that there exist positive
constants γ1 and γ2 for which γ1 ≤

∫
�
γ (x, y) dy and

∫
�
γ 2(x, y) dy ≤ γ 2

2 for all

x ∈ �. In this setting, V (�) and V�(�) are equivalent to L2(�) and L2
c(�), and

the operator L is such that L : L2(�)→ L2(�) [26].

Strong Form We introduce the strong form of a nonlocal Poisson’s problem with
Dirichlet or mixed volume constraints. We refer, again, to the configuration in Fig. 1

(left) and recall that �I = �nloc ∪�loc such that �nloc ∩�loc = ∅. For s ∈ V ′(�),
vn ∈ Ṽ�nloc

(�), and wn ∈ Ṽ�loc
(�), we define the Dirichlet Poisson’s problem as

follows: find un ∈ V (�) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−LNLun = s x ∈ �

un = wn x ∈ �loc

un = vn x ∈ �nloc,

(6)

where (6)2 and (6)3 are two distinct Dirichlet volume constraints. Similarly, given

s ∈ V ′(�), vn ∈ Ṽ�nloc
(�), and gn ∈ V ′(�loc), we define the mixed Poisson’s

problem as follows: find un ∈ V (�) such that
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−LNLun = s x ∈ �

−Nun = gn x ∈ �loc

un = vn x ∈ �nloc,

(7)

where (7)2 is the nonlocal counterpart of a flux condition, i.e., a Neumann boundary
condition. As such, we refer to it as Neumann volume constraint.

Weak Form With the purpose of analyzing the δ-convergence of our strategies,
we also introduce the weak form of problems (6) and (7). By multiplying both
equations by a test function and using nonlocal integration by parts [26], we obtain
the following weak formulations.

For s ∈ V ′(�), vn ∈ Ṽ�nloc
(�), and wn ∈ Ṽ�loc

(�), we define the Dirichlet

Poisson’s problem as follows: find un ∈ Vc(�) such that un = wn in �loc, un = vn

in �nloc and, for all z ∈ V (�),

∫
�

∫
�

(un(x)− un(y))(z(x)− z(y))γ (x, y) dy dx =
∫
�

sz dx, (8)

or, equivalently, a(u, z) = F(z), where the bilinear form is given by a(u, z) =
〈u, z〉V�I . It can be shown [26] that for every γ (·, ·) satisfying the Poincaré

inequality, a(·, ·) is coercive and continuous in V�I
(�) × V�I

(�) and that F(·)
is continuous in V�I

(�). Thus, by the Lax–Milgram theorem, problem (8) is well-
posed.

Similarly, given s ∈ V ′(�), vn ∈ Ṽ�nloc
(�), and gn ∈ V ′(�loc), one can define

the mixed Poisson’s problem as follows: find un ∈ V (�) such that un = vn in �nloc

and for all z ∈ V�nloc
(�),

∫
�

∫
�

(un(x)− un(y))(z(x)− z(y))γ (x, y) dy dx =
∫
�loc

gnz dx +
∫
�

sz dx,

(9)
or, equivalently, a(u, z) = Fgn(z). Also in this case, it can be shown that a(·, ·)
is coercive and continuous in V�nloc

(�), provided the kernel induces a Poincaré

inequality. Furthermore, the functional Fgn is continuous on V�nloc
(�). Thus, by

the Lax–Milgram theorem, problem (9) is also well-posed.
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2.2 The Linear Peridynamic Solid Model

For the displacement function u(x) : Rd → R
d , we define the linear peridynamic

solid (LPS) [28] operator3 LLPS : Rd → R
d as

LLPSu(x) := C1

m(δ)

∫
�

(λ− μ) γ (|y − x|) (y − x) (θ(x)+ θ(y)) dy

+ C2

m(δ)

∫
�

μγ (|y − x|) (y − x)⊗ (y − x)

|y − x|2 (u(y)− u(x)) dy,
(10)

where the dilatation θ : Rd → R is defined as

θ(x) := 2

m(δ)

∫
�

γ (|y − x|)(y − x) · (u(y)− u(x)) dy.

Here, for d = 2, C1 = 2 and C2 = 16. The kernel function γ is nonnegative and
radial and satisfies the same assumptions as in (2). Furthermore, we consider kernels
γ such that m, defined as

m(δ) :=
∫
Bδ(x)

γ (|y − x|) |y − x|2 dy,

is bounded. This guarantees well-posedness of the volume-constrained problem
associated with LLPS [38]. The constants μ and λ are the shear and Lamé modulus,
which, under the plane strain assumption [5], are related to the Young’s modulus E
and the Poisson ratio ν of a material, i.e., λ = Eν

(1+ν)(1−2ν) , μ = E
2(1+ν) . It can be

shown [38] that the LPS operator LLPS converges to the Navier operator below:

Llu := −∇ · (λtr(E)I+2μE) = −(λ−μ)∇[tr(E)]−μ∇ · (2E+ tr(E)I), (11)

where E := 1

2
(∇u+ (∇u)T ) and tr(E) = ∇ ·u. In particular, when the fourth-order

derivatives of u are bounded, we have the following pointwise relationship:

LLPSu(x) = Llu(x)+ O(δ2). (12)

For the LPS operator LLPS , we define the interaction domain of � as

�I = {y ∈ R
d \� : ‖y − x‖ < 2δ, x ∈ �} (13)

3 Note that this model holds in the assumption of small displacements [28].
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and set � = �∪�I . Note that in this case, �I is a layer of thickness 2δ surrounding
�; this is due to the presence of a double integral in the definition of the operator. As
before, �I is the volume where nonlocal boundary conditions must be prescribed
to guarantee the well-posedness of the nonlocal equation associated with LLPS . We
refer to Fig. 1 (right) for an illustration of a two-dimensional domain, the support
of γ , and the induced interaction domain. The same division as in Sect. 2.1 into a
nonoverlapping partition is performed.

For the prescription of nonlocal flux conditions, we consider the following
nonlocal flux operator for the LPS model. Let x ∈ � ⊂ �I , and we have

NLPSu(x) := C1

m(δ)

∫
�

(λ− μ) γ (|y − x|) (y − x) (θ(x)+ θ(y)) dy

+ C2

m(δ)

∫
�

μγ (|y − x|) (y − x)⊗ (y − x)

|y − x|2 (u(y)− u(x)) dy,
(14)

where θ and m are defined as above. For more details on nonlocal flux conditions
for nonlocal mechanics problems, we refer the interested reader to [34].

As for the Laplacian operator, we introduce the energy norm and the correspond-
ing spaces [38].

|||u|||2LPS =
1

m(δ)

∫
�

∫
�∩Bδ(x)

γ (|y − x|)
|y − x|2 [(u(y)− u(x)) · (y − x)]2 dy dx,

V LPS(�) :=
{

u ∈ [L2(�)]d : |||u|||LPS <∞
}

V LPS
� (�) :=

{
u ∈ V LPS(�) : u = 0 on � ⊂ �I

}
.

(15)
Note that |||u|||LPS = 0 if and only if u represents an infinitesimally rigid
displacement, i.e.,

u(x) ∈ {Qx + b,Q ∈ R
d×d,QT = −Q,b ∈ R

d}.

We also define the volume-trace space Ṽ LPS
� (�) := {v|� : v ∈ V LPS(�)}, for

� ⊂ �I , and the dual spaces (V LPS)′(�) and (V LPS)′�(�) with respect to L2-
duality pairings. Note that when γ is an integrable function, similarly to the nonlocal

Laplacian operator, the LPS operator acts as a map from [L2(�)]d to [L2(�)]d .

Strong Form We introduce the strong form of the LPS problem with Dirichlet or
mixed volume constraints. We refer, again, to the configuration in Fig. 1 (right). For

s ∈ (V LPS)′(�), vn ∈ Ṽ LPS
�nloc

(�), and wn ∈ Ṽ LPS
�loc

(�), we define the Dirichlet LPS

problem as follows: find un ∈ V LPS(�) such that
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−LLPSun = s x ∈ �

un = wn x ∈ �loc

un = vn x ∈ �nloc,

(16)

where (16)2 and (16)3 are distinct Dirichlet volume constraints. Similarly, given

s ∈ (V LPS)′(�), vn ∈ Ṽ LPS
�nloc

(�), and gn ∈ (V LPS)′(�loc), we define the mixed LPS

problem as follows: find un ∈ V LPS(�) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−LLPSun = s x ∈ �

−NLPSun = gn x ∈ �loc

un = vn x ∈ �nloc.

(17)

Weak Form With the purpose of analyzing the δ-convergence of our strategies,
we also introduce the weak form of problems (16) and (17). For clarity, and to
avoid heavy notation, we present the formulations in the scalar setting. We first

introduce the following integration by parts result [23, 26]: for every u ∈ V LPS(�)

and z ∈ V LPS
�nloc

(�), we have

∫
�

−LLPSu(x)z(x) dx

=C1d (λ− μ)

(m(δ))2

∫
�

[∫
�

γ (|y − x|)(y − x) · (u(y)− u(x)) dy
]
×

[∫
�

γ (|y − x|)(y − x) · (z(y)− z(x)) dy
]
dx

+ C2μ

2m(δ)

∫
�

∫
�

γ (|y − x|)(u(y)− u(x))(z(y)− z(x))dydx

+
∫
�I

NLPSu(x)z(x) dx

:=aLPS(u, z)+
∫
�loc

NLPSu(x)z(x) dx.

(18)

It is important to note that the bilinear form a(·, ·) induces a norm in the space

V LPS
� (�), for all � ⊂ �I , or, in other words, a(u, u) is equivalent to |||u|||2LPS for

all u ∈ V LPS
� (�). Thus, a(·, ·) is continuous and coercive.

By multiplying both Eqs. (16) and (17) by a test function and using nonlocal inte-

gration by parts, we obtain the following weak formulations. For s ∈ (V LPS)′(�),
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vn ∈ Ṽ LPS
�nloc

(�), and wn ∈ Ṽ LPS
�loc

(�), un ∈ V LPS(�) is a weak solution of the
Dirichlet LPS problem if un = wn in �loc, un = vn in �nloc, and

aLPS(u, z) =
∫
�

sz dx, ∀ z ∈ V LPS
�I

(�). (19)

Similarly, given s ∈ (V LPS)′(�), vn ∈ Ṽ LPS
�nloc

(�), and gn ∈ (V LPS)′(�loc), un ∈
V LPS(�) is a weak solution of the mixed LPS problem if un = vn in �nloc and

aLPS(u, z) =
∫
�loc

gnz dx +
∫
�

sz dx, ∀ z ∈ V LPS
�nloc

(�). (20)

The well-posedness of (19) and (20) follows from the fact that aLPS(·, ·) is

continuous and coercive in V LPS(�) and from the continuity of the right-hand sides.
In fact, these properties allow us to apply the Lax–Milgram theorem that guarantees
existence and uniqueness of solutions.

3 Proposed Strategies

In practice, data may only be available on the boundary ∂� and not in �I ; in
particular, the values of the diffusive quantity, for the nonlocal Poisson’s equation,

and of the displacement, for the LPS model, may be available on parts of ∂�, while
nonlocal volume constraints may be available on the remaining part of �I . Thus,
as indicated in Fig. 1, we split the interaction domain into two parts: a “nonlocal
part,” �nloc, where nonlocal volume constraints are available, and a “local part,”
�loc, where only local, boundary data are available. As this is not enough for the
well-posedness of the problem, we now introduce a strategy that, starting from
this incomplete dataset, delivers volume constraints on �loc, hence allowing for
the solution of the nonlocal problems. We present our strategies for the nonlocal
Poisson equation, as the approach is identical for the LPS model (the properties of
the method are analyzed for both models).

Assumption 1 Only the following data are available:

1. wl ∈ H
1
2 (�loc): local Dirichlet boundary data on �loc = ∂�loc ∩ ∂�

2. vn ∈ Ṽ�nloc
(�): nonlocal Dirichlet data in �nloc

3. s ∈ V ′(�): forcing term over �

We design two strategies to automatically convert wl into a nonlocal volume
constraint (either of Dirichlet or of Neumann type) on �loc. As we show in the
following section, the most important property of our strategies is their asymptotic
compatibility, i.e.,
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un → ul as δ → 0 in V (�) and L2(�). (21)

Here, un is the nonlocal solution corresponding to the proposed nonlocal volume
constraints and ul is the solution of the following Poisson’s equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�ul = s x ∈ �

ul = wl x ∈ �loc

ul = vn x ∈ �nloc,

(22)

i.e., the solution of the local problem with boundary data as in Assumption 1 on

�loc and with boundary data vn|�nloc , with �nloc = ∂�nloc ∩ ∂�. Note that, by
prescribing the Dirichlet condition on �nloc, we are assuming that vn|�nloc exists

and is such that vn|�nloc ∈ H
1
2 (�D). We emphasize that we are not assuming vn ∈

H 1(�nloc), but only that vn has a well-defined trace on �nloc.

3.1 Dirichlet-to-Dirichlet Strategy

The first proposed strategy, referred to as Dirichlet-to-Dirichlet (DtD) strategy,
consists in using the local solution ul of problem (22) as Dirichlet volume constraint
for the nonlocal problem in �loc. We summarize the procedure below:

1. Solve the local problem (22) to obtain ul . Note that ul ∈ Ṽ (�loc).
2. Solve the (well-posed) nonlocal problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−LNLun = s x ∈ �

un = ul x ∈ �loc

un = vn x ∈ �nloc.

(23)

3.2 Dirichlet-to-Neumann Strategy

The second strategy, referred to as Dirichlet-to-Neumann (DtN) strategy, consists in
using the local solution ul of problem (22) to generate a Neumann volume constraint
for the nonlocal problem in �loc. We summarize the procedure below:

1. Solve the local problem (22) to obtain ul . Note that NNLul for x ∈ �loc is well-
defined and belongs to V ′(�loc).
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2. Solve the (well-posed) nonlocal problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−LNLun = s x ∈ �

−NNLun = −NNLul x ∈ �loc

un = vn x ∈ �nloc.

(24)

4 Convergence to the Local Limit

In this section, we study the limiting behavior of the solution as the nonlocal
interactions vanish, i.e., as δ → 0, and we show that (21) holds true with a second-
order convergence rate for both Poisson’s and LPS models.

For both the Dirichlet-to-Dirichlet strategy and Dirichlet-to-Neumann, the fol-
lowing propositions provide bounds for the errors:

eE,NL = |||un − ul |||, eE,LPS = |||un − ul |||LPS,
e0,NL = ‖un − ul‖0,�

, e0,LPS = ‖un − ul‖0,�
.

(25)

Theorem 1 Let δ0 ∈ (0,∞) and Ul := {ul ∈ C4(�) : ul solves (22) for δ ∈
(0, δ0]} be solutions to (22). Then,

eE,NL = O(δ2). (26)

Proof We only prove (26) for the DtD strategy and refer the reader to [22] for
the DtN strategy as the steps of the proof are the same. In fact, for DtN, the only
difference with the approach presented in that paper is step 1 (solution of a local
problem), where, instead of solving a mixed boundary condition Poisson’s problem,
we solve a fully Dirichlet problem.

By definition of un and ul , we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Lun = s = −�ul x ∈ �

un = ul x ∈ �loc

un = vn x ∈ �nloc.

(27)

We introduce a nonlocal auxiliary problem for the local solution ul , keeping in mind
that vn is compatible with the local solution.
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Lul = sl = −
∫
�

(ul(y)− ul(x))γ (x, y) dy x ∈ �

ul = ul x ∈ �loc

ul = vn x ∈ �nloc.

(28)

In order to estimate eE,NL, we first consider the pointwise difference s(x)−sl(x).
Property (4) implies that

|s(x)− sl(x)| =
∣∣∣∣
∫
�

(ul(y)− ul(x))γ (x, y) dy −�ul

∣∣∣∣ = O(δ2). (29)

Next, we consider the weak forms of (27) and (28) and use, in both of them, the test

function z ∈ V�I
(�); we have

∫
�

∫
�

(un(x)− un(y))(z(x)− z(y))γ (x, y) dy dx =
∫
�

s z dx, (30)

∫
�

∫
�

(ul(x)− ul(y))(z(x)− z(y))γ (x, y) dy dx =
∫
�

sl z dx. (31)

Subtraction gives

∫
�

∫
�

(un(x)− ul(x)− un(y)+ ul(y))(z(x)− z(y))γ (x, y) dy dx =
∫
�

(s − sl) z dx.

To prove the error estimate, we then choose z = un − ul ∈ V�I
(�). We have

|||un−ul |||2 ≤
∫
�

(s−sl) (un−ul) dx ≤ ‖s−sl‖0,�‖ũn−ul‖0,� ≤ O(δ2)Cpn|||un−ul |||.

By dividing both sides by |||un − ul |||, the error bound follows. �
Before addressing the error bound for the LPS model, we introduce the local

problem corresponding to the operator Ll introduced in (11), i.e.,

⎧⎪⎪⎨
⎪⎪⎩

−Llul = s x ∈ �

ul = wl x ∈ �loc

ul = vn x ∈ �nloc,

(32)

where wl is the available local Dirichlet data on �loc, and vn is the available
nonlocal Dirichlet volume constraint on �nloc = ∂�nloc ∩ ∂�. As for the local
Poisson’s equation, we assume that the nonlocal Dirichlet data vn has a well-defined
trace on �nloc and is compatible with the local solution. We can now state the
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following theorem, whose proof, based on (12), follows exactly the same steps used
in Theorem 1 and is, hence, omitted.

Theorem 2 Let δ0 ∈ (0,∞) and ULPS
l := {ul ∈ C4(�) : ul solves (32) for δ ∈

(0, δ0]} be solutions to (32). Then,

eE,LPS = O(δ2). (33)

Remark 1 An immediate consequence of Theorem 1 implies that the convergence
rate of e0 is at least quadratic. This result can be obtained by applying the Poincaré
inequality, i.e.

e0,NL = ‖un − ul‖0,�
≤ Cpn|||un − ul ||| = CpneE,NL = O(δ2).

Following the same arguments, we can also show that the same bound holds for the
LPS model. In fact, paper [38] provides a Poincaré-type inequality associated with
the LPS operator LLPS with constant CLPS

pn . Thus, as a consequence of Theorem 2,
we have

e0,LPS = ‖un − ul‖0,�
≤ CLPS

pn |||un − ul ||| = CLPS
pn eE,LPS = O(δ2).

5 Numerical Tests

We report the results of several two-dimensional numerical tests that illustrate our
theoretical results and highlight the efficacy of the proposed methods.

In all tests, we utilize a particle discretization of the strong form of the nonlocal
Poisson’s problem and the LPS model introduced in Sects. 2.1 and 2.2, respectively.
The meshfree discretization method we use is based on an optimization-based
quadrature rule developed and analyzed in [50, 54, 55, 59]. In this approach, we

discretize the union of the domain and interaction domain, �, by a collection of
points

χh = {xi}{i=1,2,··· ,M} ⊂ �

and then solve for the solution u(i) ≈ un(xi ) at xi ∈ χh using a one-point quadrature
rule. Although the method can be applied to more general grids, in all numerical
tests below, we require χh to be a uniform Cartesian grid:

χh := {(k(1)h, · · · , k(d)h)|k = (k(i), · · · , k(d)) ∈ Z
d} ∩�.

Here, h is the spatial grid size. To maintain an easily scalable implementation, in
our δ-convergence studies [4], we assume h to be chosen such that the ratio δ

h
is
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bounded by a constant as δ → 0. This meshfree discretization method based on
optimization-based quadrature rules features simplicity in implementation and is
asymptotically compatible, i.e., it is such that the nonlocal solution converges to
its local counterpart as δ, h → 0. For further implementation details, we refer the
interested reader to [29, 59].

5.1 Consistency Tests for the Nonlocal Poisson’s Equation

Theorem 1 implies that when the data are smooth enough to have LNLul = �ul ,
then un = ul . We use this observation to conduct a consistency test for the proposed
method. Indeed, we consider local solutions ul such that Lul = �ul and expect to
observe that the local and nonlocal solutions coincide (up to discretization error).

We refer to the two-dimensional configuration reported in Fig. 2. Here, � =
(0, 1)2 and �I is a layer of thickness δ surrounding the domain. We use two
different configurations for the DtD and DtN strategy. For the former, we refer to
the configuration on the left of Fig. 2, where �I = �loc, whereas for the latter we
refer to the configuration on the right where �loc only covers the right side of the
interaction domain, i.e., �loc = [1, 1 + δ] × [0, 1]. In all our consistency tests, we
use the constant kernel

γ (x, y) = 4

πδ4
XBδ(x)(y) (34)

and the following set of solutions:

• f (x) = 0, ul(x) = x1 + x2 on ∂�, un(x) = x1 + x2 on �nloc. Note that this
solution corresponds to ul = x1 + x1.

Fig. 2 Two-dimensional configuration utilized in the nonlocal Poisson’s consistency and conver-
gence tests for the DtD strategy (left) and DtN strategy (right)
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• f (x) = −6(x1 + x2), ul(x) = x3
1 + x3

2 on ∂�, un(x) = x3
1 + x3

2 on �nloc. Note
that this solution corresponds to ul = x3

1 + x3
2.

Consistently with our theory, in both cases and for both strategies (i.e., DtD
and DtN), the nonlocal solution coincides with the local solution up to machine
precision. In fact, we observe e0 ≈ O(10−17). Note that this is possible because
our meshfree discretization method can reproduce exactly both linear and cubic
polynomials.

5.2 Convergence Tests for the Nonlocal Poisson’s Equation

We test the convergence of un to the local solution ul as δ → 0. For the same
constant kernel defined in (34) and for the same configurations illustrated in Fig. 2,
we consider the following set of solutions:

• f (x) = −2 sin(x1) cos(x2), ul(x) = sin(x1) cos(x2) for x ∈ ∂�, and
un(x) = sin(x1) cos(x2) for x ∈ �nloc; the corresponding local solution is
ul(x) = sin(x1) cos(x2).

• f (x) = −12(x2
1 + x2

2), ul(x) = x4
1 + x4

2 for x ∈ ∂� and un(x) = x4
1 + x4

2 for
x ∈ �nloc; the corresponding local solution is given by ul = x4

1 + x4
2.

Convergence results are reported in Table 1 for the DtD strategy and in Table 2 for
the DtN strategy. Here, we report, for decreasing values of δ, the L2 norm of the
difference between local and nonlocal solutions, i.e., e0 and the corresponding rate
of convergence. We recall that in our discretization scheme δ and the node spacing
h are related, i.e., their ratio is constant and it is set to 2.5 for the sinusoidal solution
and to 3.1 for the polynomial one. In both cases, the smallest h is set to 0.1 and then
halved at every run. The observed quadratic rates are in alignment with our theory,
see Remark 1. We point out that the faster converge of the DtD strategy is due to the
fact that the nonlocal solution is closer (by construction) to the local one. In fact,
they coincide on the interaction domain.

Table 1 For the nonlocal
Poisson’s equation, L2-norm
errors and convergence rates
for the DtD strategy

Sinusoidal Polynomial

δ e0 Rate δ e0 Rate

0.25 1.837e–4 – 0.31 9.571e–3 –

0.125 4.443e–5 2.0473 0.155 2.198e–3 2.1226

0.0625 1.098e–5 2.0174 0.0775 5.290e–3 2.0547

0.03125 2.730e–6 2.0071 0.0388 1.299e–4 2.0255
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Table 2 For the nonlocal
Poisson’s equation, L2-norm
errors and convergence rates
for the DtN strategy

Sinusoidal Polynomial

δ e0 Rate δ e0 Rate

0.25 2.551e–4 – 0.31 1.094e–2 –

0.125 7.257e–5 1.8136 0.155 2.929e–3 1.9014

0.0625 1.953e–5 1.9455 0.0775 7.720e–4 1.9239

0.03125 5.069e–6 1.8941 0.0388 1.990e–4 1.9561

Fig. 3 Two-dimensional hollow cylinder problem settings

5.3 Numerical Tests for the LPS Model

We consider the LPS model introduced in Sect. 2.2, and we test consistency and
convergence with respect to δ of both strategies. In all our tests, we consider
the deformation of a hollow cylinder as illustrated in Fig. 3 and refer the two-
dimensional configurations reported in Fig. 4 for details on the domain parameters.
Specifically, we set � = B1.5(0) \ B1(0). The interaction domain is then defined as
a layer of thickness 2δ surrounding the disc, both inside and outside. For the DtD
strategy we use the configuration on the left where �loc = �I , i.e., we assume that
only local boundary conditions are available. For the DtN strategy, we consider the
configuration on the right where �loc only corresponds to the inner portion of the
interaction domain, i.e., �loc = B1(0) \ B1−2δ(0).

To test the consistency of both procedures, we consider the linear function
ul = [10x1 + 2x2, 3x1 + 4x2]. This function is such that LLPSul = Llul , where
LLPS and Ll are defined as in (10) and (11), respectively. Thus, as for the nonlocal
Poisson’s model, we expect the nonlocal solution obtained with both the DtD and
DtN procedures to be such that un = ul . Our results indicate, once again, that the
two solutions are identical, up to machine precision, i.e., e0 = O(10−17).

To test the convergence with respect to δ, we consider an analytic solution of
the local Navier equation (32). Under a plane strain assumption and subject to an
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Fig. 4 Two-dimensional configuration utilized in the LPS consistency and convergence tests for
the DtD strategy (left) and DtN strategy (right)

Table 3 For the LPS model,
L2-norm errors and
convergence rates for the DtD
strategy and different values
of Poisson’s ratio

ν = 0.3 ν = 0.49

δ e0 Rate δ e0 Rate

0.3 4.547e–6 – 0.3 3.253e–5 –

0.15 7.698e–7 2.5625 0.15 4.836e–6 2.7498

0.075 1.714e–7 2.1673 0.075 1.002e–6 2.2711

0.0375 4.053e–8 2.0801 0.0375 2.291e–7 2.1291

internal pressure p0 = 0.1, the classical, local displacement solution for the hollow
cylinder is given by

ul =
[
Ax1 + Bx1

x2
1 + x2

2

, Ax2 + Bx2

x2
1 + x2

2

]
,

where

A = (1 + ν)(1 − 2ν)p0R
2
0

K(R2
1 − R2

0)
, B = (1 + ν)p0R

2
0R

2
1

K(R2
1 − R2

0)
.

R0 = 1 and R1 = 1.5 are the interior and exterior radius of the (undeformed) hollow
cylinder. We report the results of our tests in Table 3 for the DtD strategy and in
Table 4 for the DtN strategy. In both cases, we consider two values of Poisson’s
ratio ν = 0.3 and 0.49, respectively. Also, in this case, the ratio between δ and h

is fixed and set to 3.2; the coarser computational domain is such that h = 0.0937.
The node spacing is then halved at each run of the convergence test. The L2-norm
errors show a quadratic convergence rate, confirming our theoretical predictions in
Remark 1.
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Table 4 For the LPS model,
L2-norm errors and
convergence rates for the DtN
strategy and different values
of Poisson’s ratio

ν = 0.3 ν = 0.49

δ e0 Rate δ e0 Rate

0.3 7.651e–6 – 0.3 2.460e–4 –

0.15 2.025e–6 1.9179 0.15 7.133e–5 1.7863

0.075 4.900e–7 2.0470 0.075 1.694e–5 2.0737

0.0375 1.111e–7 2.1412 0.0375 3.824e–6 2.1478

6 Conclusion

In this work, we introduced a technique to automatically convert local boundary
conditions into nonlocal volume constraints. A first approximation to the nonlocal
solution is provided by the computation of the corresponding local solution, for
which local boundary data are available. The local solution is then used to define
either Dirichlet or Neumann nonlocal volume constraints. The latter guarantee that
the nonlocal problem is well-posed and that its corresponding solution is physically
consistent, i.e., it converges quadratically to the local solution as the nonlocality
vanishes. Our conversion method does not have any geometry or dimensionality
constraints and is inexpensive compared to the computational cost incurred in when
solving nonlocal problems. The theoretical quadratic convergence with respect to
the horizon δ is illustrated by several two-dimensional numerical experiments con-
ducted by meshfree discretization. The consistency, convergence, and effectiveness
of our approach are demonstrated for both scalar nonlocal Poisson’s problems and
nonlocal mechanics problems (namely, for the linear peridynamic solid model).

This work sets the groundwork for the deployment of nonlocal models at the
engineering and industry level where the use of such models is often hindered by
the technical difficulties that arise when dealing with the lack of volume constraints
necessary for the well-posedness and numerical solution of nonlocal equations.
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1 Introduction

We study a model for the dynamics of a linearly elastic body immersed in
an incompressible viscous fluid, in a two-dimensional setting. There are several
difficulties in the analysis of systems of this type, like the mixed parabolic–
hyperbolic character of the linearized problem and the fact that it is of free-boundary
type. In the mathematical literature, many different techniques have been developed
for dealing with these issues. We refer to [3, 5, 6, 9, 13, 17, 18] and the references
therein for results on the existence and uniqueness of weak and strong solutions, also
for related models as in the case of elastic shells and compressible fluids. It remains
an essentially open question to characterize the long-time behaviour of solutions to
these systems or prove stability of equilibria. For results in this direction, on related
models, we refer to [1, 8, 12]. Recently, for the first time, for fully coupled non-
damped fluid–linear elasticity systems, in [4, 18], the existence of unique solutions
that conserve regularity over time was shown in a three-dimensional setting. This
gives rise to the hope of finding global strong solutions, even if it is for small data.
Our main findings include the identification of a weaker functional analytic setting,
which only includes norms subject to global a priori estimates.

At the same time, however, our system is simpler in that we interpret the idea of
geometric linearization to mean that the fluid domain �F on which the equations
need to be solved remains constant through time, cf. [11]. More precisely, let � ⊂
R

2 be a bounded C2,1-domain that contains the solid body in the C2,1-domain �S ⊂
� and a viscous fluid in the domain �F such that �S ∪ �F = �. The fluid–solid
interface corresponds to the boundary ∂�S. We consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇+ (u · ∇)u− div(σ (u, p)) = 0 in (0, T )×�F,

div(u) = 0 in (0, T )×�F,

σ (u, p)n = �(ξ)n on (0, T )× ∂�S,

u = ξ̇ on (0, T )× ∂�S,

u = 0 on (0, T )× ∂�,

ξ̈ − div(�(ξ)) = 0 in (0, T )×�S,

u(0) = u0 in �F,

ξ(0) = ξ0 in �S,

ξ̇ (0) = ξ1 in �S.

(1)

The unknowns are the fluid velocity u : (0, T ) × �F → R
2, fluid pressure

p : (0, T )×�F → R
2 and elastic displacement ξ : (0, T )×�S → R

2. We denote
the fluid and solid stress tensors, respectively, by

σ(u, p) := 2νε(u)− pId, �(ξ) := 2λ1ε(ξ)+ λ2 div(ξ)Id,
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with the symmetric gradient

ε(v) := 1

2

(
∇v + (∇v)T

)
,

and viscosity and Lamé constants ν, λ1, λ2 > 0.
Note that compared to the standard model considered, e.g. in [4], system (1) has

no non-linearity in the boundary condition and it is not a free-boundary problem. On
the other hand, the linearized system remains the same and the fluid non-linearity
is still strong due to the substantial coupling to the elasticity equations. We refer to
[14] for the proof of existence of weak solutions to this system.

We prove the existence of a global strong solution in the case that the initial data
are sufficiently small. This smallness assumption in the two-dimensional setting
may correspond to the fact that linear elasticity is a model for small deformations
only. As far as we know, these are the first global results for a model of this kind. It
will be the subject of future work to extend them as far as possible.

The chapter is organized as follows: in Sect. 2, we prove local existence and
uniqueness of solutions to system (1) and recall important preliminary results. In
Sect. 3, we show how, for small data, the solution extends to be global in time. As a
corollary, we obtain the convergence

lim
t→∞‖u(t)‖H1(�F)

= 0.

The Appendix contains the proofs of several auxiliary estimates.

2 Local Existence of Solutions

We first establish the existence of solutions (u, p, ξ) to (1) up to a (possibly small)
time T > 0 in the spaces

XT := L2(H2(�F)) ∩ H1(H1(�F)) ∩ C1(L2(�F)),

YT := L2(H1(�F)),

ZT := C0(H2(�S)) ∩ C1(H1(�S)) ∩ C2(L2(�S)),

respectively, where we omit the time interval (0, T ) for the Sobolev spaces and
[0, T ] for the spaces of continuous functions whenever possible. We also show that
this implies the additional regularity

u ∈ C0(H2(�F)) ∩XT , (2)

p ∈ C0(H1(�F)).
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The equations in (1) are thus all strongly satisfied in C0(L2(�F)) and this corre-
sponds to the requirement that the initial data

u0 ∈ H2(�F), ξ0 ∈ H2(�S), ξ1 ∈ H1(�S) (3)

are such that there are u1, p0 ∈ H1(�F) and ξ2 ∈ L2(�S) that satisfy the
compatibility conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 + (u0 · ∇)u0 − div(σ (u0, p0)) = 0 in �F,

div(u0) = 0 in �F,

div(u1) = 0 in �F,

σ (u0, p0)n = �(ξ0)n on ∂�S,

u0 = ξ1 on ∂�S,

u0 = 0 on ∂�,

u1 = 0 on ∂�,

ξ2 − div(�(ξ0)) = 0 in �S.

(4)

Our local existence result is the following.

Theorem 1 Let the initial data u0, ξ0 and ξ1 be given such that (3) and (4) are
satisfied. Then there exists a time

T = T
(
‖u0‖H1(�F)

, ‖u1‖L2(�F)
, ‖ε(ξ0)‖L2(�S)

, ‖ξ1‖H1(�S)
, ‖ξ2‖L2(�S)

)
> 0

such that the system (1) admits a unique solution

u ∈ C0(H2(�F)) ∩XT , p ∈ C0(H1(�F)) and ξ ∈ ZT .

The proof of Theorem 1 is divided into four steps.

Step 1: Linearization and Preliminary Results
A main ingredient in the proof of Theorem 1 is a recent result of Boulakia, Guerrero
and Takahashi on the existence of solutions to the linearized equations,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇− div(σ (u, p)) = f in (0, T )×�F,

div(u) = 0 in (0, T )×�F,

σ (u, p)n = �(ξ)n on (0, T )× ∂�S,

u = ξ̇ on (0, T )× ∂�S,

u = 0 on (0, T )× ∂�,

ξ̈ − div(�(ξ)) = 0 in (0, T )×�S,

u(0) = u0 in �F,

ξ(0) = ξ0 in �S,

ξ̇ (0) = ξ1 in �S,

(5)

in a more regular setting. This was shown in three spatial dimensions but can be
transferred to the two-dimensional situation.

We define the auxiliary spaces

X̃T := L2(H5/2+1/16(�F)) ∩ H1(H2(�F)) ∩ H2(H1(�F)),

ỸT := L2(H3/2+1/16(�F)) ∩ H1(H1(�F)),

Z̃T := L2(H5/2+1/16(�S)) ∩ C1(H3/2+1/16(�S))

∩C2(H1/2+1/16(�S)) ∩ C3(H−1/2+1/16(�S)).

Then, the following holds.

Theorem 2 ([4, Theorem 1.5]) Let

(u0, u1, p0, ξ0, ξ1, ξ2, f )

∈ H5/2+1/16(�F)× H1(�F)× H3/2+1/16(�F) (6)

×H5/2+1/16(�S)× H3/2+1/16(�S)× H1/2+1/16(�S)

×
(

L2(H1/2+1/16(�F)) ∩ H1(L2(�F))
)

be such that the compatibility conditions in (4) are satisfied, where the non-linear
term (u0 · ∇)u0 is replaced by −f (0). Then, for every T > 0, the linear system (5)
admits a unique solution (u, p, ξ) ∈ X̃T × ỸT × Z̃T .

The proof uses a hidden regularity result for the Lamé system (cf. [15]) and the
following optimal elliptic estimates for the stationary Stokes and Lamé systems
which we will also need throughout this chapter.

Theorem 3 ([10, Theorem 7.5]) Let D ⊂ R
2 be a domain with boundary ∂D =

�0 ∪ �n of class C2,1, and let 0 ≤ s ≤ 1. Consider given f ∈ Hs(D) and g ∈
H1/2+s(�n). If the pair (v, q) ∈ H2(D)× H1(D) solves
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− div(σ (v, q)) = f in D,

div(v) = 0 in D,

v = 0 on �0,

σ (v, q)n = g on �n,

then it satisfies the estimate

‖v‖H2+s (D) + ‖q‖H1+s (D) ≤ C
(
‖f ‖Hs (D) + ‖g‖H1/2+s (�n)

)
.

Theorem 4 Let D ⊂ R
2 be a domain with boundary ∂D of class C2,1, and let

0 ≤ s ≤ 2. Consider given f ∈ Hs(D) and g ∈ H1/2+s(∂D). If η ∈ H1(D) solves

{
− div(�(η)) = f in D,

η = g on ∂D,

then it satisfies the estimate

‖η‖H1+s (D) ≤ C
(
‖f ‖H−1+s (D) + ‖g‖H1/2+s (∂D)

)
.

Step 2: A Priori Estimates and Approximation
A key step in our argument is to reduce the regularity needed in Theorem 2 to
norms with global a priori estimates. First, we do this in the linearized setting, using
an approximation argument.

Lemma 1 Let

(u0, u1, p0, ξ0, ξ1, ξ2, f )

∈ H2(�F)× H1(�F)× H1(�F)× H2(�S)× H1(�S)× L2(�S) (7)

×
(

L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F))
)

be such that the compatibility conditions (4) are satisfied (with (u0 · ∇)u0 replaced
by −f (0)). Then, the linear system (5) admits a unique solution (u, p, ξ) ∈ XT ×
YT × ZT satisfying
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‖u(t)‖2
L2(�F)

+ ‖ξ̇ (t)‖2
L2(�S)

+
∫
�S

�(ξ) : ε(ξ)(t) dy

+
∫ t

0
4ν‖ε(u(s))‖2

L2(�F)
ds (8)

= ‖u0‖2
L2(�F)

+ ‖ξ1‖2
L2(�S)

+
∫
�S

�(ξ0) : ε(ξ0) dy

+2
∫ t

0

∫
�F

f · u dyds

and

‖u̇(t)‖2
L2(�F)

+ ‖ξ̈ (t)‖2
L2(�S)

+
∫
�S

�(ξ̇) : ε(ξ̇ )(t) dy

+
∫ t

0
4ν‖ε(u̇(s))‖2

L2(�F)
ds (9)

= ‖u1‖2
L2(�F)

+ ‖ξ2‖2
L2(�S)

+
∫
�S

�(ξ1) : ε(ξ1) dy

+2
∫ t

0
〈u̇(s), ḟ (s)〉1/2−1/16 ds.

Proof We start by considering the solutions (u, p, ξ) ∈ X̃T × ỸT × Z̃T from
Theorem 2 in the case of regular initial data and right-hand side f satisfying (6)
and (4). Then, we use an approximation argument to come back to less regular data.

First, we multiply the differential equations for the fluid and the elastic part with
u and ξ̇ , respectively, and use integration by parts to obtain the energy equality (8).
To obtain higher order estimates, we use that

(u̇, ṗ) ∈ (L2(H2(�F)) ∩ H1(L2(�F))
)× L2(H1(�F))

solves the linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U̇ − div(σ (U, P )) = ḟ in (0, T )×�F,

div(U) = 0 in (0, T )×�F,

σ (U, P )n = �(ξ̇)n on (0, T )× ∂�S,

U = 0 on (0, T )× ∂�,

U(0) = u1 in �F.
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Testing with u̇ yields

1

2
‖u̇(t)‖2

L2(�F)
+
∫ t

0
2ν‖ε(u̇(s))‖2

L2(�F)
ds

−
∫ t

0

∫
∂�S

σ(u̇, ṗ)(s)n · u̇(s) dS(y)ds (10)

= 1

2
‖u1‖2

L2(�F)
+
∫ t

0

∫
�F

ḟ (s) · u̇(s) dy ds.

For the elastic part, we note that

ξ̇ ∈ C0(H3/2+1/16(�S)) ∩ C1(H1/2+1/16(�S)) ∩ C2(H−1/2+1/16(�S))

satisfies

div(�(ξ̇ )) = ...
ξ in C0(H−1/2+1/16(�F))

and

�(ξ̇)n = σ(u̇, ṗ)n in L2(L2(∂�S)).

Hence we obtain

1

2
‖ξ̈ (t)‖2

L2(�S)
+ 1

2

∫
�S

�(ξ̇) : ε(ξ̇ )(t) dy

+
∫ t

0

∫
∂�S

σ(u̇, ṗ)(s)n · ξ̈ (s) dS(y)ds (11)

= 1

2
‖ξ2‖2

L2(�S)
+ 1

2

∫
�S

�(ξ1) : ε(ξ1) dy.

By using Korn’s second inequality, we obtain that

‖u(t)‖H1(�F)
≤ C

(
‖u(t)‖2

L2(�F)
+ ‖ε(u(t))‖2

L2(�F)

)1/2
(12)

and

‖ξ(t)‖H1(�S)
≤ C

(
‖ξ(t)‖2

L2(�S)
+ ‖ε(ξ(t))‖2

L2(�S)

)1/2
.

Moreover, we observe that
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∫
�S

�(ξ(t)) : ε(ξ(t)) dy = ∫
�S

(2λ1ε(ξ(t))+ λ2 div(ξ(t))Id) : ε(ξ(t)) dy

= 2λ1‖ε(ξ(t))‖2
L2(�S)

+ ∫
�S

λ2 div(ξ(t))2 dy.

Therefore,

c‖ε(ξ(t))‖2
L2(�S)

≤
∫
�S

�(ξ(t)) : ε(ξ(t)) dy ≤ C‖ε(ξ(t))‖2
L2(�S)

, (13)

and

c‖ξ̇ (t)‖2
H1(�S)

≤ ‖ξ̇ (t)‖2
L2(�S)

+
∫
�S

�(ξ̇(t)) : ε(ξ̇ (t)) dy ≤ C‖ξ̇ (t)‖2
H1(�S)

.

(14)
By combining (12), (13), (14) and (8) and using Young’s inequality, it follows that

‖u‖2
H1(H1(�F))∩C1(L2(�F))

+ ‖ε(ξ)‖2
C0(L2(�S))

+ ‖ξ̇‖2
C0(H1(�S))∩C1(L2(�F))

≤ C
(
‖u0‖2

L2(�F)
+ ‖u1‖2

L2(�F)
+ ‖ε(ξ0)‖2

L2(�S)
+ ‖ξ1‖2

H1(�S)
(15)

+‖ξ2‖2
L2(�S)

+ ‖f ‖2
L2(L2(�F))∩H1(H−1/2+1/16(�F))

)
.

Now, let us consider less regular initial data, i.e. let (u0, u1, p0, ξ0, ξ1, ξ2, f )

satisfy (7) and (4). By Lemma 7, there exists a sequence

(
un0, u

n
1, p

n
0 , ξ

n
0 , ξ

n
1 , ξ

n
2 , f

n
)

∈ H5/2+1/16(�F)× H1(�F)× H3/2+1/16(�F)× H5/2+1/16(�S)

×H3/2+1/16(�S)× H1/2+1/16(�S)× C∞(H1/2+1/16(�F))

satisfying the compatibility conditions (4) for all n ∈ N and converging to

(u0, u1, p0, ξ0, ξ1, ξ2, f )

in the norm of

H2(�F)× H1(�F)× H1(�F)× H2(�S)× H1(�S)× L2(�S)

×
(

L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F))
)
.

By Theorem 2, we find solutions (un, pn, ξn) ∈ X̃T × ỸT × Z̃T to the linear
system (5) and data (un0, u

n
1, p

n
0 , ξ

n
0 , ξ

n
1 , ξ

n
2 , f

n). By repeating the calculations
for (15) for the difference (un − um, pn − pm, ξn − ξm) for any n, m ∈ N, we
obtain the estimate
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‖un − um‖2
H1(H1(�F))∩C1(L2(�F))

+ ‖ε(ξn − ξm)‖2
C0(L2(�S))

+‖ξ̇ n − ξ̇m‖2
C0(H1(�S))∩C1(L2(�F))

≤ C

(
‖un0 − um0 ‖2

L2(�F)
+ ‖un1 − um1 ‖2

L2(�F)
+ ‖ε(ξn0 − ξm0 )‖2

L2(�S)
(16)

+‖ξn1 − ξm1 ‖2
H1(�S)

+ ‖ξn2 − ξm2 ‖2
L2(�S)

+‖f n − f m‖2
L2(L2(�F))∩H1(H−1/2+1/16(�F))

)
.

Hence, it follows from the convergence of the data
(
un0, u

n
1, p

n
0 , ξ

n
0 , ξ

n
1 , ξ

n
2 , f

n
)

that (un, ξn) is a Cauchy sequence in

(
H1(H1(�F)) ∩ C1(L2(�F))

)
×
(

C1(H1(�S)) ∩ C2(L2(�S))
)
.

Moreover, by Theorem 3 with s = 0 and a Trace theorem,

‖un − um‖L2(H2(�F))
+ ‖pn − pm‖L2(H1(�F))

≤ C
(
‖u̇n − u̇m‖L2(L2(�F))

+ ‖f n − f m‖L2(L2(�F))

+‖�(ξn − ξm)‖L2(H1/2(∂�S))

)

≤ C
(
T 1/2‖u̇n − u̇m‖C0(L2(�F))

+ ‖f n − f m‖L2(L2(�F))

+T 1/2‖ξn − ξm‖C0(H2(�S))

)
.

Similarly, Theorem 4 with s = 1 implies

‖ξn − ξm‖C0(H2(�S))

≤ C
(
‖ξ̈ n − ξ̈m‖C0(L2(�S))

+ ‖ξn0 − ξm0 ‖H2(�S)
+ T 1/2‖un − um‖L2(H2(�F))

)
.

Combining the last two estimates yields

‖un − um‖L2(H2(�F))
+ ‖pn − pm‖L2(H1(�F))

+ ‖ξn − ξm‖C0(H2(�S))

≤ C
(
T 1/2‖u̇n − u̇m‖C0(L2(�F))

+ ‖f n − f m‖L2(L2(�F))

+(1 + T 1/2)‖ξ̈n − ξ̈m‖C0(L2(�S))
+ (1 + T 1/2)‖ξn0 − ξm0 ‖H2(�S)

+(T 1/2 + T )‖un − um‖L2(H2(�F))

)
.
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Consequently, if we choose T > 0 small enough such that C(T 1/2 + T ) < 1 and
absorb the last term on the right-hand side, we obtain that (un, pn, ξn) is also a
Cauchy sequence in

L2(H2(�F))× L2(H1(�F))× C0(H2(�S))

and therefore in XT × YT ×ZT . Hence, (un, pn, ξn) converges to some (u, p, ξ) ∈
XT ×YT ×ZT , which is by construction a strong solution to the linear system (5) for
the less regular data (u0, u1, p0, ξ0, ξ1, ξ2, f ). The uniqueness of solutions to this
system follows from the energy equality (8). This concludes the proof of Lemma 1.

�
Step 3: Non-Linear Problem
Now, we are in the position to prove the existence and uniqueness of solutions in
Theorem 1 based on a fixed-point argument. We give the proof in some detail as the
choice of norms is special. Consider given data

(u0, u1, p0, ξ0, ξ1, ξ2)

∈ H2(�F)× H1(�F)× H1(�F)× H2(�S)× H1(�S)× L2(�S)

such that the compatibility conditions (4) are satisfied. For some

M = M
(
‖u0‖H1(�F)

, ‖u1‖L2(�F)
, ‖ε(ξ0)‖L2(�S)

, ‖ξ1‖H1(�S)
, ‖ξ2‖L2(�S)

)
> 0,

we set

X
0,M
T :=

{
v ∈ XT : v(0) = u0, v̇(0) = u1, ‖v‖2

H1(H1(�F))∩C1(L2(�F))
≤ M

}
.

Note that it follows from Lemma 1 and the estimate (15) for

f := (u0 · ∇)u0 ∈ L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F))

that X0,M
T �= ∅ if we choose M > 0 large enough. For given ũ ∈ X

0,M
T , Lemma 5

(a) tells us that

f̃ := (ũ · ∇)ũ ∈ L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F)),

so we can apply Lemma 1 to obtain a solution (u, p, ξ) of the linear system (5) with
f = f̃ . We want to show that the map S : ũ → u is a contraction from X

0,M
T to

X
0,M
T and thus admits a unique fixed point. Lemma 1 shows that u ∈ XT attains the

correct initial values. To obtain

‖u‖2
H1(H1(�F))∩C1(L2(�F))

≤ M
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for T > 0 sufficiently small, first we observe that again by Lemma 1,

‖u‖2
H1(H1(�F))∩C1(L2(�F))

+ ‖ε(ξ)‖2
C0(L2(�S))

+ ‖ξ̇‖2
C0(H1(�S))∩C1(L2(�S))

≤ C

(
‖u0‖2

L2(�F)
+ ‖u1‖2

L2(�F)
+ ‖ε(ξ0)‖2

L2(�S)
+ ‖ξ1‖2

H1(�S)
+ ‖ξ2‖2

L2(�S)

+ ∫ T0
∫
�F
(ũ · ∇)ũ · u dyds + ∫ T0

∫
�F

(
( ˙̃u · ∇)ũ+ (ũ · ∇) ˙̃u

)
· u̇ dyds

)
.

Now, using Lemma 6, we estimate

∫ T

0

∫
�F

(ũ · ∇)ũ · u dyds +
∫ T

0

∫
�F

(
( ˙̃u · ∇)ũ+ (ũ · ∇) ˙̃u

)
· u̇ dyds

≤ CT α
(
‖ũ‖H1(H1(�F))

+ ‖u0‖H1(�F)

)

×‖ũ‖H1(H1(�F))∩C1(L2(�F))
‖u‖H1(H1(�F))∩C1(L2(�F))

,

and hence by Young’s inequality,

‖u‖2
H1(H1(�F))∩C1(L2(�F))

+ ‖ε(ξ)‖2
C0(L2(�S))

+ ‖ξ̇‖2
C0(H1(�S))∩C1(L2(�S))

≤ C
(
‖u0‖2

L2(�F)
+ ‖u1‖2

L2(�F)
+ ‖ε(ξ0)‖2

L2(�S)
+ ‖ξ1‖2

H1(�S)
(17)

+‖ξ2‖2
L2(�S)

+ T α
(
M2 + ‖u0‖2

H1(�F)

)
M2
)
.

Thus, for

M = M
(
‖u0‖L2(�F)

, ‖u1‖L2(�F)
, ‖ε(ξ0)‖L2(�S)

, ‖ξ1‖H1(�S)
, ‖ξ2‖L2(�S)

)
> 0

sufficiently large and T = T (M, ‖u0‖H1(�F)
) > 0 sufficiently small, we obtain

‖u‖2
H1(H1(�F))∩C1(L2(�F))

≤ M

and consequently u ∈ X
0,M
T , such that S : X0,M

T → X
0,M
T is well-defined. Now, in

order to prove that S is also a contraction, let (u1, p1, ξ1), (u2, p2, ξ2) ∈ XT×YT×
ZT denote the solutions of (5) corresponding to some ũ1, ũ2 ∈ X

0,M
T , respectively.

By repeating the calculations from (17) for the difference u1 − u2 and using that
ũ1(0)− ũ2(0) = 0, we obtain that



Fluid–Elastic Interaction with Small Data 221

‖u1 − u2‖2
H1(H1(�F))∩C1(L2(�F))

+ ‖ε(ξ1 − ξ2)‖2
C0(L2(�S))

+‖ξ̇1 − ξ̇2‖2
C0(H1(�S))∩C1(L2(�S))

(18)

≤ CT α
(
M2 + ‖u0‖2

H1(�F)

)
‖ũ1 − ũ2‖2

XT
.

Furthermore, using Theorem 3 with s = 0, Theorem 4 with s = 1 and Lemma 5 (b)
yields

‖u1 − u2‖L2(H2(�F))

≤ C
(
‖u̇1 − u̇2‖L2(L2(�F))

+‖ũ1 · ∇(ũ1 − ũ2)‖L2(L2(�F))
+ ‖(ũ1 − ũ2) · ∇ũ2‖L2(L2(�F))

+‖�(ξ1 − ξ2)‖L2(H1/2(∂�S))

)

≤ C
(
T 1/2‖u1 − u2‖C1(L2(�F))

(19)

+T α
(
‖ũ1‖H1(H1(�F))

+ ‖ũ2‖H1(H1(�F))
+ 2‖u0‖H1(�F)

)
‖ũ1 − ũ2‖XT

+‖ξ1 − ξ2‖L2(H2(�S))

)

≤ C
(
T 1/2‖u1 − u2‖C1(L2(�F))

+T α(M + ‖u0‖H1(�F)
)‖ũ1 − ũ2‖XT

+T 1/2‖ξ̇1 − ξ̇2‖C1(L2(�S))
+ T ‖u1 − u2‖L2(H2(�F))

)
.

Combining (18) and (19) for T = T
(
M, ‖u0‖H1(�F)

)
> 0 sufficiently small, we

obtain that

‖u1 − u2‖XT
≤ 1

2
‖ũ1 − ũ2‖XT

,

and hence S : X0,M
T → X

0,M
T is a contraction. Therefore, S admits a unique fixed

point u ∈ XT , which together with the corresponding p ∈ YT and ξ ∈ ZT forms
the unique solution to the non-linear system (1).

Step 4: Additional Regularity
Finally, we remark that (u, p, ξ) ∈ XT × YT × ZT also implies that

u ∈ C0(H2(�F)) and p ∈ C0(H1(�F)). (20)
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By Lemma 5,

(u · ∇)u ∈ L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F)),

so it follows from [16, Theorem 3.1] that (u·∇)u ∈ C0(L2(�F)). Hence, (2) follows
from Theorem 3 with right-hand side f = −u̇ − (u · ∇)u ∈ C0(L2(�F)) and
Neumann boundary data �(ξ)n ∈ C0(H3/2(∂�S)). This concludes the proof of
Theorem 1. �

3 Existence of Global Solutions for Small Data

We want to use the structure of the problem to show that in a setting that guarantees
small deformation, the unique solution exists globally. To this end, we define the
energy

E(t) := ‖u(t)‖2
L2(�F)

+ ‖ξ̇ (t)‖2
L2(�S)

+
∫
�S

�(ξ) : ε(ξ)(t) dy,

associated with system (1), and a corresponding higher order quantity

K(t) := ‖u̇(t)‖2
L2(�F)

+ ‖ξ̈ (t)‖2
L2(�S)

+
∫
�S

�(ξ̇) : ε(ξ̇ )(t) dy.

We show that the lifespan T > 0 of the local solution given in Theorem 1 can be
controlled by E and K and that E and K can be bounded also in the non-linear
setting, if the initial data are sufficiently small. This implies the following result on
global existence.

Theorem 5 There exist constants CE > 0 and CK > 0 such that for initial data

d := (u0, u1, p0, ξ0, ξ1, ξ2)

∈ H2(�F)× H1(�F)× H1(�F)× H2(�S)× H1(�S)× L2(�S)

satisfying the compatibility conditions (4) and the bounds

E(0) ≤ CE, K(0) ≤ CK, (21)

the corresponding unique solution (u, p, ξ) to (1) exists up to any time T > 0.
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Proof From Theorem 1, it follows that (1) admits a unique solution

(u, p, ξ) ∈
(

C0(0, T ;H2(�F)) ∩ H1(0, T ;H1(�F)) ∩ C1(0, T ;L2(�F))
)

×C0(0, T ;H1(�F)) (22)

×
(

C0(0, T ;H2(�S)) ∩ C1(0, T ;H1(�S)) ∩ C2(0, T ;L2(�S))
)

up to some time

T
(
‖u0‖H1(�F)

, ‖u1‖L2(�F)
, ‖ε(ξ0)‖L2(�S)

, ‖ξ1‖H1(�S)
, ‖ξ2‖L2(�S)

)
> 0.

First, we show that if condition (21) is satisfied for suitable CE,CK > 0, then

E(t) ≤ E(0) and K(t) ≤ K(0) for all t ∈ [0, T ).

Note that by Korn’s and Poincaré’s inequalities, there exist constants c1, c2 > 0
such that

c1‖ε(v)‖2
L2(�F)

≤ ‖v‖2
H1(�F)

≤ c2‖ε(v)‖2
L2(�F)

(23)

holds for all v ∈ H1(�F) with partially vanishing trace at the boundary ∂�F. In
particular, this is true for u(t) and u̇(t).

As in Lemma 1, we obtain the energy equality

E(t)+
∫ t

0
4ν‖ε(u(s))‖2

L2(�F)
ds = E(0)− 2

∫ t

0

∫
�F

(u · ∇)u · u dyds. (24)

For the second term on the right-hand side of (24), we use Hölder’s inequality, the
embedding H1/2(�F) ↪→ L4(�F) and interpolation to estimate

2
∫
�F
[(u · ∇)u · u](s) dy ≤ C‖u(s)‖2

L4(�F)
‖∇u(s)‖L2(�F)

≤ C‖u(s)‖2
H1/2(�F)

‖u(s)‖H1(�F)
(25)

≤ C‖u(s)‖L2(�F)
‖u(s)‖2

H1(�F)

≤ ĈE(s)1/2‖ε(u(s))‖2
L2(�F)

for some fixed Ĉ > 0 that depends only on �F. This leads to

E(t)+
∫ t

0
(4ν − ĈE(s)1/2)‖ε(u(s))‖2

L2(�F)
ds ≤ E(0). (26)
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If we choose the initial data small enough such that

4ν − ĈE(0)1/2 > 0, (27)

then we can show that it follows that

E(t) ≤ E(0) for all t ∈ [0, T ) : (28)

Assume to the contrary that there is a time t0 ∈ (0, T ) such that E(t0) > E(0).
Because of (27), there is some Ẽ > E(0), which still satisfies

4ν − ĈẼ1/2 > 0.

As E is continuous in time, we find a time t1 ∈ (0, T ) such that E(t1) > E(0) and

E(t) ≤ Ẽ for all t ≤ t1.

But then

E(t1)+
∫ t1

0

(
4ν − ĈẼ)1/2

)
‖ε(u(s))‖2

L2(�F)
ds

︸ ︷︷ ︸
≥0

≤ E(0)

and hence E(t1) ≤ E(0), which is a contradiction. Moreover, it follows from (26)
and (28) that

∫ t

0
‖ε(u(s))‖L2(�F)

ds ≤ E(0)

4ν − ĈE(0)1/2
. (29)

Next, we want to derive a similar result for the higher order quantity K . By
Lemma 1,

K(t)+
∫ t

0
4ν‖ε(u̇(s))‖2

L2(�F)
ds (30)

= K(0)− 2
∫ t

0

∫
�F

((u̇ · ∇)u+ (u · ∇)u̇) · u̇ dyds.

First, we estimate

2
∫
�F
[(u̇ · ∇)u · u̇](s) dy ≤ C‖u̇(s)‖2

L4(�F)
‖∇u(s)‖L2(�F)

(31)

≤ C‖ε(u(s))‖L2(�F)
‖ε(u̇(s))‖2

L2(�F)
,

and similarly,
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2
∫
�F

[(u · ∇)u̇ · u̇](s) dy ≤ C‖ε(u(s))‖L2(�F)
‖ε(u̇(s))‖2

L2(�F)
. (32)

Moreover, using the differentiated energy equality, (25) and (28), we have

4ν‖ε(u(s))‖2
L2(�F)

= −Ė(s)− 2
∫
�F

[(u · ∇)u · u](s) dy

≤ C (E(s)+K(s))+ ĈE(s)1/2‖ε(u(s))‖2
L2(�F)

≤ C (E(0)+K(s))+ ĈE(0)1/2‖ε(u(s))‖2
L2(�F)

for all s ∈ [0, T ). Because of (27), it follows that

‖ε(u(s))‖2
L2(�F)

≤ C (E(0)+K(s)) . (33)

Combining (31), (32) and (33) leads to

K(t)+
∫ t

0

(
4ν − C̃ (E(0)+K(s))1/2

)
‖ε(u̇(s))‖2

L2(�F)
ds ≤ K(0) (34)

for some fixed C̃ > 0. If we choose the initial data small enough such that

4ν − C̃ (E(0)+K(0))1/2 > 0, (35)

then it follows by a similar argumentation as before that

K(t) ≤ K(0) for all t ∈ [0, T ). (36)

Moreover, by using (34) and (36), we obtain that

∫ t

0
‖ε(u̇)(s)‖L2(�F)

ds ≤ K(0)

4ν − C̃ (E(0)+K(0))1/2
. (37)

Hence, we have obtained bounds for E(t) and K(t) for all t ∈ [0, T ). From (33), it
follows that also ‖u(t)‖H1(�F)

is bounded by

‖u(t)‖H1(�F)
≤ C‖ε(u(t))‖L2(�F)

≤ C (E(0)+K(0))1/2

for all t ∈ [0, T ). This yields a bound

max
{
‖u(t)‖H1(�F)

, ‖u̇(t)‖L2(�F)
, ‖ε(ξ(t))‖L2(�S)

, ‖ξ̇ (t)‖H1(�S)
, ‖ξ̈ (t)‖L2(�S)

}

≤ M
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for all t ∈ [0, T ). Since the lifespan T of the local solution given in Theorem 1
depends decreasingly on the corresponding norms of the initial data, we find a time
T0 up to which the local solution exists if the initial data satisfies

max
{
‖u0‖H1(�F)

, ‖u1‖L2(�F)
, ‖ε(ξ0)‖L2(�F)

, ‖ξ1‖H1(�F)
, ‖ξ2‖L2(�F)

}

≤ M. (38)

Since u ∈ H1(H1(�F)), we can choose t0 ∈ (T0/2, T0) such that u̇(t0) ∈ H1(�F)

and set

d̃ :=
(
ũ0, ũ1, p̃0, ξ̃0, ξ̃1, ξ̃2

)
:= (u(t0), u̇(t0), p(t0), ξ(t0), ξ̇ (t0), ξ̈ (t0)) .

Then, d̃ satisfies the conditions (3) and (4) of Theorem 1 and also (38) such that
we obtain a local solution (ũ, p̃, ξ̃ ) on [0, T0). Due to uniqueness, it follows that
(u(t), p(t), ξ(t)) and (ũ(t − t0), p̃(t − t0), ξ̃ (t − t0)) coincide on [t0, T0), and
hence we can extend (u(t), p(t), ξ(t)) up to [0, T0 + t0). Since E(t0) ≤ E(0) and
K(t0) ≤ K(0), we can repeat the calculations from above for (ũ, p̃, ξ̃ ) to extend the
bounds (28), (29), (36) and (37) up to [0, T0 + t0). Next, we can choose a suitable
t1 ∈ (T0/2 + t0, T0 + t0) and repeat this procedure arbitrarily often to obtain a
global solution which satisfies (28), (29), (36) and (37) for all t > 0. This proves the
existence of a global solution, provided that E(0) and K(0) are sufficiently small
such that (27) and (35) are fulfilled. �
Corollary 1 Consider initial data (u0, u1, p0, ξ0, ξ1, ξ2) satisfying the conditions
of Theorem 5. Then, the corresponding global solution (u, p, ξ) to (1) satisfies

lim
t→∞‖u(t)‖H1(�F)

= 0.

Proof As the global solution (u, p, ξ) satisfies (29) and (37) for all t > 0, it follows
that

∫ ∞

0
‖ε(u(t))‖2

L2(�F)
dt <∞,

∫ ∞

0
‖ε(u̇(t))‖2

L2(�F)
dt <∞. (39)

Now, let δ > 0. Then, (39) implies that we can find a time Tδ > 0 such that

∫ ∞

Tδ

‖ε(u(t))‖2
L2(�F)

dt <
δ

2
,

∫ ∞

Tδ

‖ε(u̇(t))‖2
L2(�F)

dt <
δ

2
. (40)

Moreover, this shows that there exists another time t1δ ≥ Tδ such that

‖ε(u(t1δ ))‖2
L2(�F)

≤ δ. (41)
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Now, for t ≥ t1δ , (23), the fundamental theorem of calculus, Young’s inequality
and (40) and (41) imply that

‖u(t)‖2
H1(�F)

≤ c2‖ε(u(t))‖2
L2(�F)

= c2‖ε(u(t1δ ))‖2
L2(�F)

+ c2

∫ t

t1δ

∫
�F

2ε(u(s)) : ε(u̇(s)) dyds

≤ c2‖ε(u(t1δ ))‖2
L2(�F)

+ c2

∫ t

t1δ

‖ε(u(s))‖2
L2(�F)

ds

+c2

∫ t

t1δ

‖ε(u̇(s))‖2
L2(�F)

ds

≤ 2c2δ.

As δ > 0 was arbitrary, it follows that

lim
t→∞‖u(t)‖H1(�F)

= 0. �
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Appendix

The Appendix contains the proof of several auxiliary estimates and an approxima-
tion argument.

Definition of Spaces and Auxiliary Estimates

Given a Banach space X, T > 0 and 0 < s < 1, for f ∈ L2(0, T ;X), we define

[f ]s,(0,T ),X :=
(∫ T

0

∫ T

0

‖f (t1, ·)− f (t2, ·)‖2
X

|t1 − t2|2s+1
dt1dt2

)1/2

.

We denote by Hs(0, T ;X) the Sobolev–Slobodeckii spaces with norms

‖f ‖Hs (0,T ;X) :=

⎧⎪⎨
⎪⎩

(
‖f ‖2

L2(0,T ;X) + [f ]2
s,(0,T ),X

)1/2
if 0 < s < 1,(

‖f ‖2
H1(0,T ;X) +

[
ḟ
]2
s,(0,T ),X

)1/2
if 1 < s < 2.
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Lemma 2 ([4, Corollary A.3]) Let 1
2 < σ ≤ 1 and 0 < s < σ . Then, there exists

a constant C > 0 independent of T such that

‖f ‖Hs (0,T ;X) ≤ CT σ−s‖f ‖Hσ (0,T ;X)

holds for all f ∈ Hσ (0, T ;X) with f (0, ·) = 0.

For general f ∈ Hσ (0, T ;X), the preceding lemma implies that

‖f ‖Hs (0,T ;X) ≤ ‖f − f (0, ·)‖Hs (0,T ;X) + ‖f (0, ·)‖Hs (0,T ;X)
≤ CT σ−s‖f − f (0, ·)‖Hσ (0,T ;X) + T 1/2‖f (0, ·)‖X (A.1)

≤ CT σ−s‖f ‖Hσ (0,T ;X) +
(
CT 1/2+σ−s + T 1/2

)
‖f (0, ·)‖X.

Lemma 3 ([4, Lemma A.5])

(a) Let 0 ≤ s ≤ 1, σ1, σ2 ≥ 0, and set σ := sσ1 + (1 − s)σ2. Then,

H1(Hσ1(�F)) ∩ L2(Hσ2(�F)) ↪→ Hs(Hσ (�F)),

and there exists a constant C > 0 independent of T such that

‖v‖Hs (Hσ (�F)) ≤ C‖v‖s
H1(Hσ1 (�F))

‖v‖1−s
L2(Hσ2 (�F))

for all v ∈ H1(Hσ1(�F)) ∩ L2(Hσ2(�F)).
(b) Let 1 ≤ s ≤ 2, σ1, σ2 ≥ 0, and set σ := (s − 1)σ1 + (2 − s)σ2. Then,

H2(Hσ1(�F)) ∩ H1(Hσ2(�F)) ↪→ Hs(Hσ (�F)),

and there exists a constant C > 0 independent of T such that

‖v‖Hs (Hσ (�F)) ≤ C‖v‖s
H2(Hσ1 (�F))

‖v‖1−s
H1(Hσ2 (�F))

for all v ∈ H2(Hσ1(�F)) ∩ H1(Hσ2(�F)).

We recall some Sobolev embeddings on the interval (0, T ) to clarify the dependence
of the appearing constants on the interval length T > 0.
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Lemma 4

(a) Let s ∈ (0, 1/2), and set q := 2
1−2s . Then, Hs(0, T ) ↪→ Lq(0, T ), and there

exists a constant C > 0 independent of T such that

‖f ‖Lq (0,T ) ≤ C
(
T −s‖f ‖L2(0,T ) + ‖f ‖Hs (0,T )

)

holds for all f ∈ Hs(0, T ).
(b) Let s ∈ (1/2, 1). Then, Hs(0, T ) ↪→ C0(0, T ), and there exists a constant

C > 0 independent of T such that

‖f ‖C0(0,T ) ≤ C
(
T −1/2‖f ‖L2(0,T ) + T s−1/2‖f ‖Hs (0,T )

)

holds for all f ∈ Hs(0, T ).

Proof After rescaling a given function f ∈ Hs(0, T ) to

f̃ (τ ) := T 1/2f (T τ), τ ∈ (0, 1),

the estimates in (a) and (b) can be shown to follow from the corresponding
embeddings on the interval (0, 1), cf. [7, Theorem 5.4], [7, Theorem 6.7] and [7,
Theorem 8.2]. �
In the sequel, we will often use an estimate obtained by combining (A.1) and
Lemma 4 (a). To avoid repetition and to shorten the following proofs, we will now
once explain this procedure in detail.

Let s ∈ (0, 1/2), σ ∈ (1/2, 1) and f ∈ Hσ (0, T ;X) for some Banach space X.
Then, for q := 2

1−2s , Lemma 4 (a) implies that

‖‖f ‖X‖Lq (0,T ) ≤ C
(
T −s ‖‖f ‖X‖L2(0,T ) + ‖‖f ‖X‖Hs (0,T )

)
.

Now, we apply (A.1) to both terms on the right-hand side to obtain

T −s ‖‖f ‖X‖L2(0,T ) ≤ C
(
T σ−s‖f ‖Hσ (0,T ;X) + (T 1/2+σ−s + T 1/2−s)‖f (0)‖X

)

and

‖‖f ‖X‖Hs (0,T ) ≤ C
(
T σ−s‖f ‖Hσ (0,T ;X) + (T 1/2+σ−s + T 1/2)‖f (0)‖X

)
.

Note that every appearing exponent of T is positive. Consequently, we can choose
α > 0 such that

‖‖f ‖X‖Lq (0,T ) ≤ CT α
(‖f ‖Hσ (0,T ;X) + ‖f (0)‖X

)
. (A.2)
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Estimates on (u ·∇)u

We provide estimates on the non-linear term u · ∇u in some detail as the choice of
norms for our arguments is special and the time dependence of embedding constants
is non-trivial.

Lemma 5 Let u, v ∈ XT .

(a) Then,

(u · ∇)u ∈ L2(H3/4(�F)) ∩ H1(H−1/4(�F)).

(b) There exist some C, α > 0 such that

‖(u · ∇)v‖L2(L2(�F))

≤ CT α min
{(
‖u‖H1(H1(�F))

+ ‖u(0)‖H1(�F)

)

×
(
‖v‖H1(H1(�F))

+ ‖v(0)‖H1(�F)

)1/2 ‖v‖1/2
XT

,

‖u‖1/2
XT

(
‖u‖H1(H1(�F))

+ ‖u(0)‖H1(�F)

)1/2

×
(
‖v‖H1(H1(�F))

+ ‖v(0)‖H1(�F)

) }
.

Proof

(a) To show (u · ∇)u ∈ L2(H3/4(�F)), first we use interpolation to estimate

‖(u · ∇)u‖H3/4(�F)

≤ C‖(u · ∇)u‖3/4
H1(�F)

‖(u · ∇)u‖1/4
L2(�F)

≤ C‖(u · ∇)u‖L2(�F)
+ C‖|∇u||∇u|‖3/4

L2(�F)
‖(u · ∇)u‖1/4

L2(�F)

+C‖|u||∇2u|‖3/4
L2(�F)

‖(u · ∇)u‖1/4
L2(�F)

.

Now, Hölder’s inequality together with the embeddings H1/2(�F) ↪→ L4(�F)

and H9/8(�F) ↪→ L∞(�F) and interpolation yields

‖|∇u||∇u|‖3/4
L2(�F)

‖(u · ∇)u‖1/4
L2(�F)

+ C‖|u||∇2u|‖3/4
L2(�F)

‖(u · ∇)u‖1/4
L2(�F)

≤ C‖∇u‖3/2
L4(�F)

‖u‖1/4
L4(�F)

‖∇u‖1/4
L4(�F)

+C‖u‖3/4
L∞(�F)

‖∇2u‖3/4
L2(�F)

‖u‖1/4
L4(�F)

‖∇u‖1/4
L4(�F)
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≤ C‖u‖7/4
H3/2(�F)

‖u‖1/4
H1/2(�F)

+C‖u‖3/4
H9/8(�F)

‖u‖3/4
H2(�F)

‖u‖1/4
H1/2(�F)

‖u‖1/4
H3/2(�F)

≤ C‖u‖1/8
L2(�F)

‖u‖H1(�F)
‖u‖7/8

H2(�F)
+ C‖u‖1/8

L2(�F)
‖u‖29/32

H1(�F)
‖u‖31/32

H2(�F)

≤ C‖u‖H1(�F)
‖u‖H2(�F)

.

Similarly, we can estimate

‖(u · ∇)u‖L2(�F)
≤ C‖u‖H1(�F)

‖u‖H2(�F)
.

From these estimates follows by applying Hölder’s inequality on (0, T ) and
using the embedding H1(0, T ) ↪→ L∞(0, T ) that

‖(u · ∇)u‖L2(H3/4(�F))
≤ C

∥∥∥‖u‖H1(�F)
‖u‖H2(�F)

∥∥∥
L2(0,T )

≤ C

∥∥∥‖u‖H1(�F)

∥∥∥
L∞(0,T )

∥∥∥‖u‖H2(�F)

∥∥∥
L2(0,T )

≤ C(T )‖u‖2
L2(H2(�F))∩H1(H1(�F))

≤ C(T )‖u‖2
XT

and hence (u · ∇)u ∈ L2(H3/4(�F)). To show (u · ∇)u ∈ H1(H−1/4(�F)), note
that

H−1/4(�F) = (H1/4(�F))
∗

by [19, Theorem 4.8.2], [2, Theorem 1.1]. Now, for v ∈ H1/4(�F), we
use Hölder’s inequality together with the embeddings H1/2(�F) ↪→ L4(�F),
H1/4(�F) ↪→ L8/3(�F) and H3/4(�F) ↪→ L8(�F) to estimate

∫
�F

((u̇ · ∇)u+ (u · ∇)u̇) · v dy

≤ C
(
‖u̇‖L4(�F)

‖∇u‖L8/3(�F)
+ ‖u‖L8(�F)

‖∇u̇‖L2(�F)

)
‖v‖L8/3(�F)

≤ C
(
‖u̇‖H1/2(�F)

‖∇u‖H1/4(�F)
+ ‖u‖H3/4(�F)

‖∇u̇‖L2(�F)

)
‖v‖H1/4(�F)

≤ C
(
‖u̇‖H1/2(�F)

‖u‖H5/4(�F)
+ ‖u‖H3/4(�F)

‖u̇‖H1(�F)

)
‖v‖H1/4(�F)

.

By applying Hölder’s inequality on (0,T) and the embeddings H1/4(0, T ) ↪→
L4(0, T ) and H3/4(0, T ) ↪→ L∞(0, T ) together with Lemma 3, we obtain
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∥∥∥∥
∫
�F

((u̇ · ∇)u+ (u · ∇)u̇) · v dy

∥∥∥∥
L2(0,T )

≤ C
( ∥∥∥‖u̇‖H1/2(�F)

∥∥∥
L4(0,T )

∥∥∥‖u‖H5/4(�F)

∥∥∥
L4(0,T )

+
∥∥∥‖u‖H3/4(�F)

∥∥∥
L∞(0,T )

∥∥∥‖u̇‖H1(�F)

∥∥∥
L2(0,T )

)
‖v‖H1/4(�F)

≤ C(T )
(
‖u‖H5/4(H1/2(�F))

‖u‖H1/4(H5/4(�F))

+‖u‖H3/4(H3/4(�F))
‖u‖H1(H1(�F))

)
‖v‖H1/4(�F)

≤ C(T )‖u‖2
L2(H2(�F))∩H1(H1(�F))

‖v‖H1/4(�F)

≤ C(T )‖u‖2
XT
‖v‖H1/4(�F)

.

Similarly, we can also estimate

∥∥∥∥
∫
�F

(u · ∇)u · v dy

∥∥∥∥
L2(0,T )

≤ C(T )‖u‖2
XT
‖v‖H1/4(�F)

,

so we conclude that (u · ∇)u ∈ H1(H−1/4(�F)).
(b) We use again Hölder’s inequality on �F, the embedding H3/2(�F) ↪→ L∞(�F)

and interpolation to estimate

‖(u · ∇)v‖L2(�F)
≤ C‖u‖L∞(�F)‖∇v‖L2(�F)

≤ C‖u‖H3/2(�F)
‖v‖H1(�F)

≤ C‖u‖1/2
H2(�F)

‖u‖1/2
H1(�F)

‖v‖H1(�F)
.

Now, Hölder’s inequality on (0, T ) together with (A.2) for q = 6, s = 1/3 and
σ = 1 implies

‖(u · ∇)v‖L2(L2(�F))

≤ C

∥∥∥‖u‖1/2
H2(�F)

∥∥∥
L4(0,T )

∥∥∥‖u‖1/2
H1(�F)

‖
∥∥∥

L12(0,T )

∥∥∥‖v‖H1(�F)

∥∥∥
L6(0,T )

≤ C

∥∥∥‖u‖H2(�F)

∥∥∥1/2

L2(0,T )

∥∥∥‖u‖H1(�F)
‖
∥∥∥1/2

L6(0,T )

∥∥∥‖v‖H1(�F)

∥∥∥
L6(0,T )

≤ CT α‖u‖1/2
XT

(
‖u‖H1(H1((�F))

+ ‖u(0)‖H1(�F)
‖
)1/2

×
(
‖v‖H1(H1(�F))

+ ‖v(0)‖H1(�F)

)
.
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Similarly, we obtain together with H1/2(�F) ↪→ L4(�F) that

‖(u · ∇)v‖L2(�F)
≤ C‖u‖L4(�F)

‖∇v‖L4(�F)

≤ C‖u‖H1(�F)
‖v‖1/2

H1(�F)
‖v‖1/2

H2(�F)

and hence

‖(u · ∇)v‖L2(L2(�F))

≤ CT α
(
‖u‖H1(H1((�F))

+ ‖u(0)‖H1(�F)

)

×
(
‖v‖H1(H1(�F))

+ ‖v(0)‖H1(�F)

)1/2 ‖v‖1/2
XT

.

�
Lemma 6 Let u, v, w ∈ XT . Then, there exists some α > 0 such that

∫ t

0

∫
�F

|(u · ∇)v · w| dyds +
∫ t

0

∫
�F

|(u̇ · ∇)v · ẇ| + |(u · ∇)v̇ · ẇ| dyds

≤ CT α
(
‖u‖H1(H1(�F))∩C1(L2(�F))

‖v‖H1(H1(�F))

+‖u(0)‖H1(�F)
‖v‖H1(H1(�F))

+‖v(0)‖H1(�F)
‖u‖H1(H1(�F))∩C1(L2(�F))

)
‖w‖H1(H1(�F))∩C1(L2(�F))

.

Proof For the second term, we use Hölder’s inequality, the embedding
H1/2(�F) ↪→ L4(�F) and interpolation to estimate

∫ t

0

∫
�F

|(u̇ · ∇)v · ẇ| dyds

≤ C

∫ t

0
‖u̇‖L4(�F)

‖∇v‖L2(�F)
‖ẇ‖L4(�F)

ds

≤ C

∫ t

0
‖u̇‖H1/2(�F)

‖∇v‖L2(�F)
‖ẇ‖H1/2(�F)

ds

≤ C

∫ t

0
‖u̇‖1/2

L2(�F)
‖u̇‖1/2

H1(�F)
‖v‖H1(�F)

‖ẇ‖H1(�F)
ds.

Now, we apply again Hölder’s inequality on (0, T ) together with the embedding
C0(0, T ) ↪→ L4(0, T ) and (A.2) for q = 8, s = 3/8 and σ = 1 and obtain
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∫ t

0

∫
�F

|(u̇ · ∇)v · ẇ| dyds

≤ C

∥∥∥‖u̇‖1/2
L2(�F)

∥∥∥
L8(0,T )

∥∥∥‖u̇‖1/2
H1(�F)

∥∥∥
L4(0,T )

∥∥∥‖v‖H1(�F)

∥∥∥
L8(0,T )

‖ẇ‖L2(H1(�F))

≤ C

∥∥∥‖u̇‖L2(�F)

∥∥∥1/2

L4(0,T )

∥∥∥‖u̇‖H1(�F)

∥∥∥1/2

L2(0,T )

∥∥∥‖v‖H1(�F)

∥∥∥
L8(0,T )

‖w‖H1(H1(�F))

≤ CT α‖u‖1/2
C1(L2(�F))

‖u‖1/2
H1(H1(�F))

×
(
‖v‖H1(H1(�F))

+ ‖v(0)‖H1(�F)

)
‖w‖H1(H1(�F))

.

We can estimate the first term similarly. For the last term, we make use of the same
tools to estimate

∫ t

0

∫
�F

|(u · ∇)v̇ · ẇ| dyds

≤ C

∫ t

0
‖u‖L4(�F)

‖∇v̇‖L2(�F)
‖ẇ‖L4(�F)

ds

≤ C

∫ t

0
‖u‖H1(�F)

‖∇v̇‖L2(�F)
‖ẇ‖1/2

H1(�F)
‖ẇ‖1/2

L2(�F)
ds

≤ C

∥∥∥‖u‖H1(�F)

∥∥∥
L8(0,T )

∥∥∥‖∇v̇‖L2(�F)

∥∥∥
L2(0,T )

×
∥∥∥‖ẇ‖1/2

H1(�F)

∥∥∥
L4(0,T )

∥∥∥‖ẇ‖1/2
L2(�F)

∥∥∥
L8(0,T )

≤ CT α
(
‖u‖H1(H1(�F))

+ ‖u(0)‖H1(�F)

)
‖v‖H1(H1(�F))

×‖w‖1/2
H1(H1(�F))

‖w‖1/2
C1(L2(�F))

.

�

Approximation of Data

We define

A := H2(�F)× H1(�F)× H1(�F)× H2(�S)× H1(�S)× L2(�S)

and

Ã := H5/2+1/16(�F)× H1(�F)× H3/2+1/16(�F)

×H5/2+1/16(�S)× H3/2+1/16(�S)× H1/2+1/16(�S).
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Now, we want to show the following approximation result:

Lemma 7 For given

d := (u0, u1, p0, ξ0, ξ1, ξ2, f )

∈ A×
(

L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F))
)

satisfying (4), there exists a sequence

dn := (un0, u
n
1, p

n
0 , ξ

n
0 , ξ

n
1 , ξ

n
2 , f

n) ∈ Ã×
(

C∞(H1/2+1/16(�F))
)
,

which satisfies (4) for all n ∈ N and which converges to d in

A×
(

L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F))
)
.

Proof To construct such a sequence, we proceed in the following steps:

(1) As u1 ∈ H1(�F) with div(u1) = 0 in �F and u1|∂� = 0 is already satisfied, we
set un1 := u1 for all n ∈ N.

(2) Since ξ2 ∈ L2(�S) and C∞
0 (�S) is dense in L2(�S), we can find a sequence

(ξ̂ n2 ) ⊂ C∞
0 (�S) such that limn→∞ ξ̂ n2 = ξ2 in L2(�S). To modify this sequence

such that it satisfies the compatibility condition on ∂�S, we first define the sets

(∂�S)
n :=

{
y ∈ �S : dist(y, ∂�S) <

1

2n

}

for n ∈ N. Then, we can find a sequence (ϕn) ⊂ C∞(�S) such that

ϕn(y) =
{

1 if y ∈ (∂�S)
n+1,

0 if y ∈ �S \ (∂�S)
n.

Now, let uE1 ∈ H1(�) denote an extension of u1 to �, and set

ξn2 := ξ̂ n2 + ϕnuE1 ∈ H1(�S).

Then, ξn2 |∂�S = u1|∂�S and

‖ϕnuE1 ‖L2(�S)
≤ C‖ϕn‖L3(�S)

‖uE1 ‖L6(�S)
≤ C|(∂�S)

n|1/3‖uE1 ‖H1(�S)
→ 0,

so we get that limn→∞ ξn2 = ξ2 in L2(�S).
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(3) Since ξ0|∂�S ∈ H3/2(∂�S), we can choose a sequence (gn) ⊂ H2+1/16(∂�S)

such that limn→∞ gn = ξ0|∂�S in H3/2(∂�S). Because of

div(�(ξ0)) = ξ2,

we can construct a sequence (ξn0 ) ⊂ H5/2+1/16(�S) which satisfies
limn→∞ ξn0 = ξ0 in H2(�S) by solving the Dirichlet problem

{
div(�(ξn0 )) = ξn2 in �S,

ξn0 = gn on ∂�S,

and using Theorem 4 for both s = 3/2 + 1/16 and s = 1.
(4) Since H1/2+1/16(�F) ↪→ H−1/2+1/16(�F) is dense, [16, Theorem 2.1] implies

that we find a sequence (f̃ n) ⊂ C∞(H1/2+1/16(�F)) such that limn→∞ f̃ n = f

in L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F)). Since d solves

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(σ (u0, p0)) = u1 − f (0) in �F,

div(u0) = 0 in �F,

σ (u0, p0)n = �(ξ0)n on ∂�S,

u0 = 0 on ∂�,

integration by parts shows that

∫
�F

f (0) dy −
∫
�F

u1 dy = −
∫
∂�S

σ(u0, p0)N dS(y) =
∫
∂�S

�(ξ0)n dS(y).

Therefore, we can modify (f̃ n) by adding suitable constants to obtain a
sequence (f n) ⊂ C∞(H1/2+1/16(�F)) such that

∫
�F

f n(0) dy =
∫
∂�S

�(ξn0 )n dS(y)+
∫
�F

un1 dy (A.3)

and still limn→∞ f n = f in L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F)).
Moreover, then [16, Theorem 3.1] together with

(
H1/2+1/16(�F),H−1/2+1/16(�F)

)
1/2

↪→ L2(�F)

implies that

‖f − f n‖C0(L2(�F))
≤ C‖f − f n‖L2(H1/2+1/16(�F))∩H1(H−1/2+1/16(�F)

→ 0,
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so in particular limn→∞ f n(0) = f (0) in L2(�F).
(5) Next, we consider the Stokes problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(σ (un0, p
n
0 )) = un1 − f n(0) in �F,

div(un0) = 0 in �F,

σ (un0, p
n
0 )n = �(ξn0 )n on ∂�S,

un0 = 0 on ∂�,

for n ∈ N. Note that f n ∈ C∞(H1/2+1/16(�F)) implies f n(0) ∈
H1/2+1/16(�F). Because of (A.3) together with un1 ∈ H1(�F) and �(ξn0 )n ∈
H1+1/16(∂�S), we find a sequence of solutions (un0, p

n
0 ) ⊂ H5/2+1/16(�F) ×

H3/2+1/16(�F) by using Theorem 3 for s = 1/2 + 1/16. Since

limn→∞ un1 = u1 in L2(�F), limn→∞�(ξn0 )n = �(ξ0)n in H1/2(∂�S)

and limn→∞ f n(0) = f (0) in L2(�F),

for s = 0, Theorem 3 implies limn→∞ un0 = u0 in H2(�F) and limn→∞ pn0 =
p0 in H1(�F).

(6) Finally, we set h := div(�(ξ1)) ∈ H−1(�S)) and consider the elliptic problem

{
div(�(ξ1)) = h in H−1(�S),

ξ1 = u0 on ∂�S.

Now, choose some sequence (hn) ⊂ L2(�S) such that limn→∞ hn = h in
H−1(�S), and consider the elliptic problems

{
div(�(ξn1 )) = hn in �S,

ξn1 = un0 on ∂�S.

Since it follows from step 5 that (un0|∂�S) ⊂ H2+1/16(∂�S) and
limn→∞ un0|∂�S = u0|∂�S in H3/2(∂�S), we can use Theorem 4 for both
s = 1 and s = 0 and obtain a sequence of solutions (ξn1 ) ⊂ H2(�S) such that
limn→∞ ξn1 = ξ1 in H1(�S).

Consequently, we have found a compatible sequence

(dn) := (un0, u
n
1, p

n
0 , ξ

n
0 , ξ

n
1 , ξ

n
2 , f

n)

approximating d in

A×
(

L2(H1/2+1/16(�F)) ∩ H1(H−1/2+1/16(�F))
)
.

�
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Doubly Nonlocal Cahn–Hilliard
Equations

Well-posedness and Asymptotic Behavior

Mikil D. Foss, Petronela Radu, and Laura White

1 Introduction

Over the past two decades, nonlocal theories have brought significant advances in
continuum mechanics [28], biological aggregation [29], thermal diffusion [5], and
image processing [20]. The nonlocality in these integro-differential models is exhib-
ited through integral operators, thus successfully capturing discontinuous behavior
of material structures or predicting singular phenomena (such as dynamic fracture
modeled by peridynamics [28]). Nonlocal models are also suitable candidates for
models with abrupt transitions in the material, such as in phase transitions [3].

In this chapter, we will focus on a doubly nonlocal counterpart of the well-
studied Cahn–Hilliard phase-field model for sharp interface limits that appear in
the separation of two phases [8, 31]. Cahn–Hilliard systems have been heavily
investigated due to their numerous applications in a variety of fields: spinodal
decomposition [7], diblock copolymer [9, 23], image inpainting (the process of
reconstructing lost parts of images) [4], multiphase fluid flows [2], micro-structures
with elastic inhomogeneity [33], tumor growth simulation [21, 32], and topology
optimization [14, 34]. An overview of some of these applications can be found in
[24].

In [19], the authors derived a macroscopic equation for phase segregation
phenomena that gives rise to a nonlocal version of the Cahn–Hilliard equation.
Although numerical solutions to the classical equation show good agreement with
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experiments, in the classical framework the macroscopic model cannot be obtained
from microscopic models for interacting particles, in contrast with the diffusion
equation which can be derived from idealized microscopic models in appropriate
limits [12, 27]. In order to provide a macroscopic equation for phase separation,
the authors of [19] considered long-range interactions which are described by an
integral equation, thus deriving a Cahn–Hilliard equation with a single nonlocality.
This Cahn–Hilliard equation describes a deterministic process in which the particle
transport obeys Fick’s law. However, when considering phase separation in a mul-
tiscale heterogeneous environment, non-Fickian behavior of the chemical potential
is observed. This observation motivates a fully nonlocal formulation where integral
operators replace all differential operators, giving rise to a doubly nonlocal Cahn–
Hilliard equation [6, 16, 17].

In the classical setting, the Cahn–Hilliard equation can be obtained by letting the
chemical potential μ in a binary mixture be given as the variational derivative of the
energy E associated with the relative difference of the two phases u, to obtain

μ = ∂E
∂u

= F ′(u)− ε2�u. (1)

Above, 0 < ε2 	 1 is the coefficient of gradient energy. The potential F is usually
a singular logarithmic function, or the double-well potential F(u) = (u2 − 1)2

defined over [−1, 1], with the values ±1 denoting the pure two phases and the
values in between corresponding to transition phases. Then, using the net flux
J = −M∇μ, with M denoting the mobility parameter (here considered constant),
the conservation law for u yields the second equation of the classical Cahn–Hilliard
system

∂u

∂t
= −∇ ·J = ∇ · (M∇μ) = M�μ.

The boundary value problem associated with the Cahn–Hilliard system for � ⊂
R
N , a bounded domain with sufficiently smooth boundary ∂�, usually assumes a

natural boundary condition for u and a no-flux boundary condition for the chemical
potential μ so that

∇u · n = 0 and J · n = −M∇μ · n = 0 on ∂�,

where n is the outward pointing unit normal vector to ∂�.
Thus, the initial boundary value problem on � (which could be taken as Rn, in

which case no boundary conditions are imposed) becomes

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= M�[F ′(u)− ε2�u], (x, t) ∈ �× R

+,

n · ∇u = n ·M∇[F ′(u)− ε2�u] = 0, (x, t) ∈ ∂�× R
+,

u(x, u) = u0(x), x ∈ �.

(2)
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Two important properties of (2) are the decrease in energy and conservation of mass,
which are shown in the sequel to hold even in the doubly nonlocal setting.

The (singly) nonlocal Cahn–Hilliard system of [19] is given by

∂u

∂t
= ∇ · (M∇μ), in �× (0, T ), (3)

where the chemical potential μ is defined by

μ = u

∫
�

εJε(x − y)dy + 1

ε
F ′(u)− J ∗ u, in �× (0, T ).

Above, Jε(x) = εNJ (ε−1x) and J : RN → R is a convolution kernel such that
J (x) = J (−x). A formal asymptotic analysis shows that the interface evolution
problems associated with (3) as ε → 0 are similar to the ones associated with the
standard Cahn–Hilliard equation. Moreover, the nonlocal equation can be viewed as
the conserved gradient flow of the first variation of the free energy functional

N(u) =
∫
�×�

ε

4
Jε(x − y)|u(x)− u(y)|2dxdy +

∫
�

1

ε
F (u)dx. (4)

Van der Waals noted that E in (1) can be considered a local approximation of (4)
[30]. Therefore, the nonlocal Cahn–Hilliard equation appears to be justified and
more general than the classical one. This work focuses on a doubly nonlocal Cahn–
Hilliard system (see Sect. 3), which replaces all differential operators with integral
operators. The doubly nonlocal system was first introduced and studied in [16, 17]
where well-posedness and regularity of solutions were proved with one of the
interaction kernels chosen to be singular. It is known that in such cases, compact
embedding and regularity results are available, which are lacking for the current
framework with integrable kernels.

Contributions of This Work and Organization of Results
To offer a self-contained presentation, we introduce the nonlocal operator frame-
work in Sect. 2. The analysis of Sect. 3 focuses on the long time behavior of
solutions for the doubly nonlocal linearized system with time-dependent coefficients
for which we derive explicit decay rates for the Lp norms of the solution, for all
p ≥ 1. Section 4 focuses on the steady-state system. First, well-posedness is proved
in the linear setting. We then establish regularity and higher integrability properties
of solutions in a nonlinear setting. The nonlinearities permitted by the arguments
have a general structure but are short of satisfying some of the physically relevant
assumptions. Some open problems and future directions are presented in Sect. 5.
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2 Nonlocal Vector Calculus

In order to present and study the doubly nonlocal formulation of (2), we introduce a
framework of nonlocal operators, together with some identities and other properties.
This setting is based on [13], although some definitions are slightly modified.

The basic idea of nonlocality relies on incorporating values of a function in
a neighborhood around a point through (usually) an integral operator. In some
applications, the interactions are within a finite range, called a horizon, which
mathematically is expressed through the size of a kernel’s support. The nonlocal
operators defined below incorporate a symmetric integrable kernel α : RN ×R

N →
R (i.e., α(x, y) = α(y, x)), which captures the interactions between nearby points
x and y. The nonlocal operators are defined as follows:

Definition 1 Let � ⊂ R
N be an open set (possibly the entire R

n), and let the α-
interaction collar � ⊂ R

N \ � be a “boundary” domain that contains all points of
nonzero interaction, i.e.,

�α := {y ∈ R
n \�| ∃ x ∈ � such that α(x, y) �= 0}. (5)

For α and �α = � thus given, we define the following:

(i) Nonlocal Divergence. Given a vector field ν : RN × R
N → R, the nonlocal

divergence operator is defined as

Dα[ν](x) :=
∫
�∪�

(ν(x, y)− ν(y, x)) α(x, y)dy, for x ∈ �. (6)

(ii) Nonlocal Gradient. Given a scalar function w : RN → R, the nonlocal (two-
point) gradient operator is defined as

Gα[w](x, y) := (w(y)− w(x))α(x, y)dy, for x, y ∈ R
N. (7)

(iii) Nonlocal Laplacian. Given w : � ∪ � → R, the nonlocal Laplacian operator
is defined for x ∈ R

N as

Lα2[w](x) := Dα[Gα[w]](x) = 2
∫
�∪�

(w(y)− w(x))α2(x, y)dy. (8)

(iv) Nonlocal Normal. Given a vector field ν : R
N × R

N → R, the nonlocal
(interaction) operator is defined as

Nα[ν](x) :=
∫
�∪�

(ν(y, x)− ν(x, y)) α(x, y)dy, for x ∈ �. (9)

Equation (8) introduces the nonlocal Laplace operator that was considered in
peridynamic models [28] and nonlocal diffusion [26]. Note that the definitions of
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the nonlocal Laplacian and nonlocal normal are formally the same; however, the
Laplacian is defined for points inside �, while the normal is considered only for
points in the boundary �.

Remark 1 Note that the definitions (6) and (8) need the kernels α and α2 to be
integrable. However, one can extend these definitions by using principal value
operators, thus allowing nonintegrable kernels.

The definitions above form the skeleton of a nonlocal framework in which
nonlocal counterparts for integration by parts and Green’s identities hold, as follows:

Proposition 1 Let u, v : � ∪ � → R and ν : (� ∪ �)2 → R. Then, for α ∈
L2((� ∪ �)2) with α2 symmetric (α2(x, y) = α2(y, x)), the following hold:

(i)

∫
�

vDα[ν] dx +
∫
�∪�

∫
�∪�

ν Gα[v] dxdy =
∫
�

Nα[ν]v dx. (10)

(ii)

∫
�

vLα2 [u] dx +
∫
�∪�

∫
�∪�

Gα[u]Gα[v] dxdy =
∫
�

Nα[Gα[u]]v dx.
(11)

(iii) For a function u such that Nα[Gα[u]] = 0 on �, we have

∫
�

Lα2[u] dx = 0. (12)

The proofs of statements (i) and (ii) are available in [13], while (iii) is a simple
consequence of (ii).

3 Asymptotic Behavior of Solutions to Doubly Nonlocal
Cahn–Hilliard Systems

Consider the Cauchy problem for the doubly nonlocal Cahn–Hilliard system on the
entire space:

⎧⎪⎪⎨
⎪⎪⎩
ut (x, t) = LK [μ](x, t), (x, t) ∈ R

N × (0,∞)

μ(x, t) = −LJ [u](x, t)+ F ′(u(x, t)), (x, t) ∈ R
N × (0,∞)

u(x, 0) = u0(x), x ∈ R
N,

(13)

where L is the nonlocal Laplacian defined in (8) with K(x, y) and J (x, y)

as symmetric kernels. Here, the kernel K encodes physical properties of the
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environment, in which the mass is being transported, while J represents the long-
range Kac (symmetric) potentials.

We begin by showing that in the nonlocal setting, the energy is nonincreasing
and the mass is conserved, as it is the case with the classical system as well.

Proposition 2 Let J be a nonnegative kernel that in addition is

(i) Radial: J (x, y) = J (|x − y|) (with abuse of notation)
(ii) Integrable: J (·) ∈ L1(R)

Then, the energy associated with (13)

E(t) : = 1

2

∫ ∫
|u(y, t)− u(x, t)|2J (|y − x|) dxdy +

∫
F(u(x, t)) dx (14)

= 1

2

∫ ∫
|G√J [u](x, y, t)|2 dxdy +

∫
F(u(x, t)) dx

satisfies
d

dt
E(t) ≤ 0. Moreover, if u is a solution to (2), then the total mass is

constant, i.e.,
d

dt

∫
u dx = 0.

Proof Differentiating the energy and performing an integration by parts (apply
Proposition 1 with � = R

N, � = ∅) gives

d

dt
E(t) =

∫ ∫
G√J [u]G√J [ut ] dxdy +

∫
F ′(u)utdx

=
∫ (−LJ [u] + F ′(u)

)
ut dx

=
∫

μ
∂u

∂t
dx =

∫
μLK [u]dx = −

∫
|G√

K
[μ]|2dx.

To show the conservation of mass, we apply part (iii) of Proposition 1 as follows:

d

dt

∫
udx =

∫
∂u

∂t
dx =

∫
LK [μ]dx = 0.

�
The above theorem verifies physical properties that hold for the two-phase

system. Indeed, as time increases, the two materials become more separated which
in return requires less energy. The theorem holds on bounded domains as well, under
the no-flux boundary condition.
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3.1 Decay Estimates for the Linearized System with
Time-Dependent Coefficients

In this subsection, we produce a fundamental solution to the linear doubly non-
local Cahn–Hilliard equation and establish that this fundamental solution can be
decomposed into a smooth part and a rapidly decaying part. The argument adapted
from [26] leads directly into the study of asymptotic behavior of solutions for this
equation.

Taking F ′(u) = α(t)u and T > 0 fixed, we rewrite (13) as

⎧⎨
⎩
∂u

∂t
= LK(μ) (t, x) ∈ [0, T ] × R

N,

μ = LJ (u)+ α(t)u (t, x) ∈ [0, T ] × R
N.

(15)

Equation (15) is a linearization of (13) and a natural starting point for the
investigations of the fully nonlinear case. For the results of this section, we make
the following assumptions on J and K:

(A1) J,K ∈ C(RN) are nonnegative radial functions with J (0),K(0) > 0 and∫
J (x)dx =

∫
K(x) = 1.

(A2) J and K are smooth and J,K ∈ S(RN), the space of rapidly decreasing
functions.

(A3) Ĵ (ξ) ∼ 1 − ξ2 + |ξ |3 and K̂(ξ) ∼ 1 − ξ2 + |ξ |3, for ξ close to 0.
(A4) Ĵ (ξ), K̂(ξ) ∈ L1(RN),

where F̂ denotes the Fourier transform of the function F .
First, we show that the fundamental solution of (15) can be split into a smooth

part (which will have rational decay) and a rough part that exhibits exponential
decay. This will allow us to establish explicit decay rates for (15) in terms of α.

Lemma 1 For α ∈ L1(0, T ), T > 0, and J and K satisfying (1)–(4) above, the
fundamental solution u satisfying

⎧⎪⎪⎨
⎪⎪⎩
ut = LK [μ] (t, x) ∈ [0, T ] × R

N,

μ = −LJ [u] + α(t)u (t, x) ∈ [0, T ] × R
N,

u(0) = δ0 (t, x) ∈ [0, T ] × R
N

(16)

can be decomposed as

S(t, x) = e−t−
∫ t

0 α(s)dsδ0 +H(t, x), (17)

with H(t, x) a smooth C∞ function. Moreover, if u is the solution with initial
condition u0, then
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u(t, x) = (S ∗ u0)(t, x) =
∫

S(t, x − y)u0(y)dy

= e−t−
∫ t

0 α(s)dsu0 +
∫

H(t, x − y)u0(y)dy.

Proof Applying the Fourier transform to (16), we obtain

{
ût = −μ̂+ μ̂K̂ = −μ̂(1 − K̂)

μ̂ = û− Ĵ û+ α(t )̂u = û(1 − Ĵ + α(t)).

The initial data implies û0 = δ̂0 = 1, and hence

û(t) = e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds

= e−t−
∫ t

0 α(s)ds + e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds − e−t−
∫ t

0 α(s)ds .

Applying the inverse Fourier transform yields the first part of the lemma. In order
to show that

H(t, x) =
∫ (

e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds − e−t−
∫ t

0 α(s)ds
)
eix·ξ dξ

is smooth, define

A(t, ξ) = −
∫ t

0
(1 − Ĵ + α(s))(1 − K̂)ds

and

B(t) = −t −
∫ t

0
α(s)ds.

Thus,

A(t, ξ)− B(t) = K̂t + Ĵ (1 − K̂)t + K̂

∫ t

0
α(s)ds.

Factoring eB(t) and using the analytic expansion around the origin of the exponential
function give

eA(t,ξ) − eB(t) = eB(t)
(
A(t, ξ)− B(t)+ (A(t, ξ)− B(t))2

2
+ (A(t, ξ)− B(t))3

3!
+O(|A(t, ξ)− B(t)|4)

)
.
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By assumption (2), Ĵ , K̂ ∈ S(RN). Thus, Ĵ , K̂ → 0 as ξ →∞, which implies

ξk(A(t, ξ)− B(t))→ 0 as ξ →∞,

for any k nonnegative integer. Hence, H(t, x) is smooth. For the second part,
observe that S ∗ u0 is a solution with initial data u0. �

Next, we will use the fundamental solution given by (17) to derive an explicit
decay rate for the Lp-norm of a positive solution.

Theorem 1 Assume J and K satisfy (1)–(4) and that u ≥ 0 is a solution for (16).
Assume, also, that α ∈ L1(R) and α(t) > 0 for all t . Then, for any p ≥ 1, there
exists a constant c(p, J,K) ≥ 0 such that

H(t, x) =
∫ (

e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds − e−t−
∫ t

0 α(s)ds
)
eix·ξ dξ

satisfies

‖H(t, x)‖
Lp(R

N
)
≤ c(p, J,K)max

{
t−N/4,

(∫ t

0
α(s)ds

)−N/2
}(1− 1

p
)

(18)

for all t > 0 sufficiently large.

Proof The estimate will be obtained by interpolating the estimates obtained for
p = 1 and p = ∞.

Control of p = ∞-Norm By using the Hausdorff–Young inequality, we obtain

‖H(x, t)‖
L∞(R

N
)
≤
∫
|e−

∫ t
0 (1−Ĵ+α(s))(1−K̂)ds − e−t−

∫ t
0 α(s)ds |dξ.

Observe that the symmetry of J and K guarantees that Ĵ and K̂ are real-valued.
Choose R > 0 such that

|Ĵ (ξ)| ≤ 1 − |ξ |2
2

and |K̂(ξ)| ≤ 1 − |ξ |2
2

for all |ξ | ≤ R.
Since Ĵ , K̂ ∈ L1(RN) and R is fixed, there exist δ = δ(J,K), 0 < δ < 1, with

|Ĵ (ξ)| ≤ 1 − δ and |K̂(ξ)| ≤ 1 − δ, for all |ξ | ≥ R.

For any pair of real numbers a and b, the following inequality holds:

|ea − eb| ≤ |a − b|max{ea, eb}.
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We deduce that, for each |ξ | ≥ R,

|e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds − e−t−
∫ t

0 α(s)ds |

≤ max{e−t−
∫ t

0 α(s)ds , e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds}
∣∣∣∣K̂t + Ĵ (1 − K̂)t + K̂

∫ t

0
α(s)ds

∣∣∣∣

≤ e−tδ2−δ ∫ t0 α(s)ds
∣∣∣∣K̂t + Ĵ (1 − K̂)t + K̂

∫ t

0
α(s)ds

∣∣∣∣ .

Consequently, the following integral decays exponentially in time:

|I1(t)| :=
∣∣∣∣
∫
|ξ |≥R

e−
∫ t

0 (1−Ĵ+α(s))(1−K̂ds − e−t−
∫ t

0 α(s)dsdξ

∣∣∣∣

≤ e−tδ2−δ ∫ t0 α(s)ds
∫
|ξ |≥R

∣∣∣∣K̂t + Ĵ (1 − K̂)t + K̂

∫ t

0
α(s)ds

∣∣∣∣ dξ.

It remains to verify that

I2(t) :=
∫
|ξ |≤R

e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)ds − e−t−
∫ t

0 α(s)dsdξ

decays in time. For this, we first have the bound

|I2(t)| ≤
∫
|ξ |≤R

e−
∫ t

0 (1−Ĵ+α(s))(1−K̂)dsdξ + C(R)e−t−
∫ t

0 α(s)ds

≤
∫
|ξ |≤R

e−t
|ξ |4

4 − |ξ |2
2

∫ t
0 α(s)dsdξ + C(R)e−t−

∫ t
0 α(s)ds .

In the sequel, we will use the following exponential inequality, a consequence of
Jensen’s inequality:

e
a+b

2 ≤ ea + eb

2
.

With a = −t |ξ |
4

2
and b = −|ξ |2

∫ t

0
α(s)ds, we obtain

|I2(t)| ≤ 1

2

∫
|ξ |≤R

e−t
|ξ |4

2 dξ + 1

2

∫
|ξ |≤R

e−|ξ |2
∫ t

0 α(s)dsdξ + C(R)e−t−
∫ t

0 α(s)ds

= t−N/4 2−N/4

2

∫
|η|≤R(t/2)1/4

e−|η|4dη
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+
(∫ t

0
α(s)ds

)−N/2 2−N/2

2

∫
|η|≤R

√∫ t
0 α(s)ds

e−|η|2dη + C(R)e−t−
∫ t

0 α(s)ds

≤ C max

{
t−N/4,

(∫ t

0
α(s)ds

)−N/2
}
.

This concludes the proof for the L∞-norm; more precisely, we have that

‖H(x, t)‖
L∞(R

N
)
≤ C max

{
t−N/4,

(∫ t

0
α(s)ds

)−N/2
}
. (19)

Control of the L1-Norm From Proposition 2 with F(u) = α(t)
u2

2
, we have that

the mass of the solution is conserved. Under the additional assumption that the u is
nonnegative, we have that the L1-norm is conserved.

Hence, for any u0 ∈ L1(RN),

∫
|e−t u0(x)+ (H(t, x) ∗ u0)(x)|dx ≤

∫
|u0(x)|dx,

and as a consequence,

∫
|(H(t, x) ∗ u0)(x)|dx ≤ 2

∫
|u0(x)|dx.

Choosing (u0)n ∈ L1(RN) such that (u0)n → δ0 in S′(RN), we obtain, in the limit,
that

‖H(x, t)‖
L1(R

N
)
=
∫
|H(t, x)|dx ≤ 2. (20)

By interpolating the L1 and L∞ decay estimates obtained in (19) and (20) Lp, we
obtain the inequality claimed in (18).

�

4 Steady-State Solutions

This section focuses on the Cahn–Hilliard system on a bounded domain, with
associated boundary data imposed on “twin” layers corresponding to each kernel
K , respectively, J that model the nonlocal interactions. Moreover, we consider the
system as t →∞, i.e., steady-state solutions.
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4.1 Well-posedness of Solutions

We begin by showing well-posedness for the linearized steady-state boundary
problem corresponding to (13). As mentioned above, the formulation involves a
double-layer boundary, each accommodating the nonlocal interactions for kernels
K , respectively, J . For an open bounded set � with smooth boundary, consider

�K := {x ∈ R
n \�|K(x, y) �= 0, for some y ∈ �}. (21)

Surrounding the collar �K , we have the additional layer �J given by

�J := {x ∈ R
n \ (� ∪ �K)|J (x, y) �= 0, for some y ∈ � ∪ �K}. (22)

For simplicity, we assume that K(x, y) = 0 if |x − y| ≥ δ and J (x, y) = 0
if |x − y| ≥ ε. A representation of the domain and its double-collar boundary is
provided in Fig. 1.

The boundary value problem for the doubly nonlocal Cahn–Hilliard system with
homogeneous Dirichlet-type boundary conditions is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LK [μ] = f x ∈ �

μ = 0, x ∈ �K

μ = −LJ [u] + F ′(u) x ∈ � ∪ �K

u = 0 x ∈ �J .

(23)

For the linearized problem, we will consider

Ω

Γ

Γ

Fig. 1 The domain � with the induced nonlocal boundary layers �K (with balls of horizons δ)
and �J with balls of horizons ε centered at points inside the domain � and on the boundary ∂�
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F ′(u) = a(x)u+ b(x). (24)

Theorem 2 Given J,K ∈ L1(Rn) satisfying (A1), and the coefficient functions
from (24) a, b ∈ L2(�), satisfying a ≥ 0, the system (23) has a unique solution.

Proof The system is written as an iteration of two nonlocal problems with domains
and boundaries conveniently chosen. First, the existence and uniqueness of a
solution μ ∈ L2(� ∪ �) for the system

{
LK [μ] = f in �

μ = 0 on �K
(25)

follows easily from well-posedness results established in [1, 15, 22]. Next, consider
the system

{
−LJ [u] + F ′(u) = μ in � ∪ �K

u = 0 on �J ,
(26)

where F ′(u) is given by (24) and �J is the collar of �∪�K . The energy functional
associated with this system satisfies the assumptions of the existence and uniqueness
Theorem 4.2 in [15]. Alternatively, one can easily show continuity and coercivity for
the bilinear form

B(u, v) :=
∫
(�∪�K∪�J )2

(
G√J [u](x, y)G√J [v](x, y)+ a(x)u(x)v(x)

)
dxdy

(27)

for v ∈ V :=
{
v ∈ L2(� ∪ �K) : v = 0 on �J

}
. �

Remark 2 Nonlocal Neumann-type (zero-flux) boundary conditions may be
imposed in systems (25) and (26), which would similarly yield existence and
uniqueness (up to a constant) of solutions.

Remark 3 The assumptions in Theorem 4.2 in [15] can be verified also by nonlinear
convex profiles for the function F . However, physical considerations for the Cahn–
Hilliard system impose that F is a double-well potential.

4.2 Regularity of Steady-State Solutions in the Nonlinear
Settings

We have shown well-posedness of the steady-state solution to the linear doubly
nonlocal Cahn–Hilliard equation. We now turn to the regularity of the solution.
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Theorem 3 (Regularity of Solutions) Let K, J ∈ Ck(R) for k ∈ [1,∞],
satisfying ‖K‖L1(R) = ‖J‖L1(R) = 1 be given. For given f ∈ Ck(R) and

F : R→ R, let μ ∈ L1(R) be a solution of

LK [μ](x) =
∫
R

(μ(y)− μ(x))K(x − y)dy = f (x) (28)

and u ∈ L1(R) be a solution to

−LJ [u] + F ′(u) = μ. (29)

Additionally, assume that

(H1) F is differentiable and F ′ ∈ Ck(R).
(H2) The function v �→ u+ F ′(u) is invertible, so there exists g such that

g(u+ F ′(u)) = u. (30)

Additionally, assume that g ∈ Ck(R).

Then, u ∈ Ck(R).

Proof Note that since μ is a solution to (28), then the convolution structure of the
nonlocal Laplacian gives that μ satisfies

μ ∗K − μ = f,

and hence μ = μ ∗ K + f. Due to the fact that f,K ∈ Ck(R), we find that μ ∈
Ck(R). The equality in (29) implies that

u+ F ′(u) = μ+ u ∗ J,

so u = g(μ + u ∗ J ). The Ck regularity of g in assumption (30) together with the
fact that J ∈ Ck yields the conclusion u ∈ Ck(R). �

An immediate corollary for the above theorem applies to the linear steady-state
Cahn–Hilliard system.

Corollary 1 With f, J,K satisfying the assumptions of the Theorem 3 and F ′(u) =
α(x)u such that

1

1 + α(x)
∈ Ck(R), we have u ∈ Ck(R).

Proof The proof is immediate as F clearly satisfies assumption (H1). �
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4.3 Higher Integrability of Steady-State Solutions

The convolution structure of the nonlocal Laplacian can be employed in a similar
manner to show that solutions to the doubly nonlocal Cahn–Hilliard steady-state
problem enjoy higher integrability as well. This result is an extension of the results
of [15] for doubly nonlocal systems.

Theorem 4 For 1 < q ≤ ∞, let K, J ∈ Lq(R), satisfying ‖K‖L1(R) =
‖J‖L1(R) = 1. For f ∈ Lq(R) and F : R → R, let μ, u ∈ L1(R) be solutions
of (28) and (29). Assume that g given by assumption (H2) from Theorem 3 satisfies

g ◦ v ∈ Lq(R)

for every v ∈ Lq(R). Then, u ∈ Lq(R).

Proof The proof follows the exact steps of Theorem 3 with the only difference
that Young’s inequality is employed for the integrability of the convolution product
(rather than differentiability properties of the convolution). As a particular case, note
that boundedness of solutions may be obtained. �

5 Conclusions and Future Directions

The introduction of the doubly nonlocal system of Cahn–Hilliard equations (8) with
integrable kernels K and J is motivated by the fact that its formulation allows
discontinuous solutions, with possibly only L2 regularity. The system is considered
on the entire space and also on bounded domains where special consideration must
be given to the “layering” of boundary conditions (as seen in [25], it is important to
correctly formulate the distribution of data on the boundary layers in higher order
problems). While here we only considered homogeneous boundary conditions, the
system with nonlocal Neumann-type nonhomogeneous data will bring forward
additional issues (indeed, different nonlocal Neumann-type boundary conditions
have been investigated in many works recently [10, 11, 18]). Well-posedness for
bounded domains was established for the linearized system, and however, for a
nonlinear system, we showed that, under additional assumptions on the interaction
kernel, the solutions enjoy increased integrability and regularity properties. These
results for the steady-state system were obtained by using the convolution structure
of the integral operators. For the evolution system, in the linear setting, we obtained
explicit decay estimate rates using the Fourier transform.

The main directions for the future research can be summarized as follows:

• Establish well-posedness of solutions for the doubly nonlocal Cahn–Hilliard
system, when the nonlinearity is a polynomial, or of a logarithmic type (see
[6], for example), as taken commonly in physical applications. While the
investigations for the steady system may pose less difficulty, the evolution
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problem, with the selection of the layers (as in the system (23)) appears highly
nontrivial.

• Show convergence of solutions for the doubly nonlocal system to its classical
counterpart. This project would require convergence results for boundary value
problems with Neumann-type boundary conditions, in the nonlinear case, which
are not available even for steady-state problems of the second order.

• Study asymptotic behavior (t →∞) of solutions for the doubly nonlocal Cahn–
Hilliard system with nonlinear potentials, on bounded, and unbounded domains.
While a series of results (see the monograph [26]) seems to indicate that nonlocal
evolution problems and classical counterparts seem to enjoy similar behavior at
infinity in the linear setting, less is known for nonlinear problems.

Acknowledgments The first and second authors were supported by the award NSF – DMS
1716790.
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3D Image-Based Stochastic
Micro-structure Modelling of Foams for
Simulating Elasticity
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1 Introduction

3D image data, predominantly generated by computed tomography, have been
analyzed for more than 30 years now. In medical applications, the emphasis has
been on segmentation and visualization. Algorithmic foundations had been settled
in the 1990es, see [37] for a comprehensive overview.

Quantitative analysis of 3D images of micro-structures started in the 1990s,
too, with porous rock samples [6, 59] and trabecular bone [18]. Prediction of
macroscopic, in particular mechanical, properties based on the observed micro-
structure has been a goal right from the beginning [64].

The seminal paper [29] provided Ohser’s algorithm for efficiently estimating
the intrinsic volume densities based on 3D binary images, linking fundamental
characteristics of random closed sets [8, 15, 55] to those observable in image data.

Our contributions to predicting macroscopic materials properties by numerical
simulation in realizations of 3D stochastic geometry models started with acoustic
adsorption [52] and had been concerned with rigid foams early on [17, 48]. After
establishing the mathematical [30] and algorithmic [31] bases for modelling cellular
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Fig. 1 Visualizations of 5003 voxel sub-volumes from reconstructed CT images of rigid foams.
From left to right: open polymer, partially closed ceramic, and closed polymer foams. All CT scans
taken at ITWM with voxel sizes 49 µm for the open polymer foam, 34 µm for the ceramic foam, and
3 µm for the closed polymer foam. Samples provided by Vesuvius (ceramic) and Evonik (closed
polymer foam)

material structures, elastic properties were studied [50]. Here, we will concentrate
on characterization and modelling of rigid foams, too. Some typical examples of
these materials are shown in Fig. 1.

Stochastic modelling allows for detailed studies of structure property relations
[11, 34, 65]. Geometric features closely tied in practice can be modified individually.
The use of stochastic instead of deterministic geometry models naturally captures
microscopic heterogeneity as well as macroscopic homogeneity assuming invari-
ances of the underlying distribution law. Moreover, the size of the representative
volume element (RVE) can be determined statistically [19, 26]. In this work, we
investigate RVE of constant size corresponding to the size of the foam samples
characterized experimentally. Alternatively, more but smaller volume elements in
the sense of stochastic homogenization as devised, e.g., in [1], could be used. In the
case of rigid foams, the size of these volume elements is surely bounded by one foam
cell. The theory of homogeneous random closed sets provides the corresponding
mathematical concept by the typical cell of a tessellation [55]. Exploring this
alternative approach and comparing the two are subject of future research. Fitting
stochastic geometry models to the observed real structure is tedious as analytic
relations are available only for models not suitable for real materials. Starting at
the real micro-structure ensures however that observed trends and correlations have
a practical meaning.

The concept of statistically similar representative volume elements (SSRVEs) [3]
is similar to our approach in the sense of fitting the synthetic structure to the real
one by minimizing the weighted sum of the squared differences of several geometric
characteristics estimated for both real and synthetic structure. It differs however
fundamentally in aiming at deterministic, geometrically significantly simplified
structures right from the beginning. Simple structures consisting, e.g., of just a
couple of spheres are used to generate the SSRVE that is subsequently periodically
continued.
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Here, we focus on numerical computation of effective elastic properties of an
aluminum alloy foam by homogenization. The foam sample’s micro-structure is
observed in 3D image data obtained by micro-computed tomography (µCT). We
use both the segmented image data and a random Laguerre tessellation model fit
to the observed foam structure based on the estimated geometric characteristics.
We provide the basics on random closed sets, their characteristics, in particular the
densities of the intrinsic volumes, and estimating them based on 3D image data in
Sect. 2. The image processing workflow for dividing the pore space of open foams
into individual image objects is described in the same section. Section 3 is dedicated
to random Laguerre tessellations and fitting them to the observed structure.

Simulation of elastic properties in voxel representations of the real foam or of
model realizations is described in Sect. 4. A computational homogenization scheme
[62] is used to transition from the microscopic scale of the foam structure to
the macroscopic scale of the effective properties. A comprehensive overview on
this class of homogenization schemes is given in [12]. A microscopic boundary
value problem is formulated by imposing admissible boundary conditions and
subsequently solved numerically, by a finite element method [10] or a fast Fourier
transform (FFT) based solution of the Lippmann–Schwinger (LS) equations of
elasticity [42]. Efficiency in terms of computational effort and memory use is critical
as the images consist of several hundreds of voxels in each direction. The LS-FFT
homogenization applied here is described in Sect. 4.

Finally, in Sect. 5, we apply the methods from Sects. 2–4 to the real aluminum
foam sample. A random Laguerre tessellation is fit to the foam structure based on
the characteristics estimated from the segmented CT image. Four synthetic foams
are derived from its edge system by applying two cross-sectional shapes of the
struts and relaxing the foam or not. Elastic properties derived by computation in
the segmented µCT image and the structural modulus measured experimentally
are compared in Sect. 5.3. The effective stiffnesses of the synthetic foams are
numerically predicted in, too.

2 3D Image Analysis for Foams

We introduce the general concept of random closed sets, define basic characteristics
for them, and describe how to estimate these characteristics based on 3D volume
images as generated by computed tomography.

2.1 Random Closed Sets and Their Characteristics

Material micro-structures are often macroscopically homogeneous in some sense
but locally heterogeneous. A commonly used mathematical model for such struc-
tures is random closed sets, random variables whose realizations are closed subsets



260 A. Jung et al.

of R3. Schneider and Weil [55] attribute the concept to Matheron [39] and Kendall
[27], with the first detailed description being [40].

Denote by F the system of closed subsets of R
3 and by F the hit-or-miss σ -

algebra generated by the sets {F ∈ F : F ∩ A �= ∅} for all compact A ⊂ R
3.

The pair (F,F) is then a measurable space, and we can define random closed sets
(RACS) as random variables with values in this space. More precisely, let (�,A,P)

be a probability space. A random closed set 0 is a measurable mapping

0 : (�,A,P) �→ (F,F).

We call 0 stationary (or macroscopically homogeneous) and isotropic if its distri-
bution is invariant with respect to translations and rotations, respectively.

Point Processes One class of RACS models is locally finite random closed sets:
Denote by C the system of compact subsets of R3. A set A ⊆ R

3 is locally finite if
#(A ∩ C) < ∞ for any C ∈ C. Here, #B refers to the number of elements of the
set B. A (simple) point process + is a random variable with values in the system of
locally finite sets and can be read as a sequence of random points in R

3 as well as
a random counting measure. The measure � defined by �(B) = E(#(+ ∩ B)) is
called the intensity measure of +. For stationary point processes, it is a multiple of
the Lebesgue measure �(B) = λV (B) with the intensity λ > 0 giving the mean
number of points per unit volume.

The Poisson Point Process The Poisson point process representing complete spatial
randomness plays a particular role as it is analytically tractable and the basis for
constructing other point process as well as a variety of random closed set models. A
Poisson point process + in R

3 with intensity measure � is a point process with the
number of points #(+∩B) in a Borel set B being Poisson distributed with parameter
�(B) and the numbers of points #(+∩B1), . . . , #(+∩Bn) in pairwise disjoint Borel
sets B1, . . . , Bn being independent random variables.

As a consequence, a stationary Poisson point process with intensity λ in a
compact observation window W ⊂ R

3 can easily be simulated by first drawing the
number of points Poisson distributed with parameter λV (W). Then, the points are
placed independently identically uniformly distributed in W . There is no interaction
of the points. This is why the Poisson point process is used as reference for complete
spatial randomness.

The random points can additionally be decorated by marks representing, for
instance, a species, age, or size. Moreover, the definitions of point process and
Poisson point process can directly be transferred any locally compact space with
countable base.

Intrinsic Volumes The intrinsic volumes are basic characteristics of RACS. Let
K denote the system of compact and convex sets (convex bodies) in R

3. Dilating
K ∈ K with a ball of radius r yields the so-called parallel set K ⊕ b(0, r) :=
{x + y : x ∈ K, y ∈ b(0, r)}. Steiner’s formula expresses the volume of this set as
a polynomial in r:
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V (K ⊕ b(0, r)) =
3∑

k=0

κkV3−k(K)rk, r ≥ 0,

where κk is the volume of the k-dimensional unit ball and the coefficients V0, . . . , V3
are the four intrinsic volumes in R

3. These are—up to constant factors—the volume
V = V3, the surface area S = 2V2, the integral of mean curvature M = πV1, and
the Euler number χ = V0, see, e.g., [54, p. 210]. For K ∈ K, the integral of mean
curvature is up to a constant the mean width M = 2πb̄—the distance of two parallel
planes enclosing K , averaged w.r.t. rotation.

The intrinsic volumes form a basis of geometric characteristics in the sense of
Hadwiger’s theorem [55, Theorem 14.4.6]: every rigid motion invariant, additive,
and continuous functional on K is a linear combination of the intrinsic volumes.
Additivity yields a straightforward extension of the intrinsic volumes to finite unions
of convex bodies, so-called polyconvex sets.

Densities of the Intrinsic Volumes The intrinsic volumes can be used to char-
acterize single cells of a foam. For characterizing the complete solid component,
we need another generalization. It applies for RACS 0 whose intersections with
convex, compact observation windows W ∈ K are almost surely polyconvex. In this
case, the intrinsic volumes of 0 ∩W are well defined, too. Denote by EVk(0 ∩W)

the expected k-volumes of this intersection with respect to the distribution of 0.
The densities of the intrinsic volumes are the limits of these expectations for

growing observation window:

VV,k(0) = lim
r→∞

EVk(0 ∩ rW)

V (rW)
, k = 0, . . . , 3. (1)

The limit exists if E2N(0∩[0,1]3) < ∞ [55, Theorem 9.2.1], where N(X) is the
smallest m ∈ N such that X = K1 ∪ . . . ∪Km with K1, . . . , Km ∈ K.

Of particular interest for foams are the (solid) volume fraction VV = VV,3,
with p = 1 − VV being the porosity, and the specific surface area SV = 2VV,2.
Additionally, the density of the Euler characteristic χV = VV,0 is related to the
mean number of nodes of the foam skeleton per unit volume [53].

2.2 Image Analysis

We quickly define the basic concepts image and adjacency system, discuss the
segmentation tasks posed by our problem, and finally describe how to estimate the
characteristics needed for model fitting later on.

Images A typical way of observing a realization X of a suitable RACS 0 is via
discretization in a 3D image. For simplicity, let L = sZ3 be a three-dimensional
cubic lattice with lattice spacing s > 0. Denote by W ⊂ R

3 a cuboidal observation
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window. By an image, we understand a function

f : L ∩W −→ V,

where V is the set of real or complex numbers R, C, or V = {0, . . . , 2n − 1} with
n = 1, 8, 16, or 32.

Black-and-white images f with V = {0, 1} are often called binary image. In this
case, the image foreground can be identified with the intersection X∩L∩W of a set
X ⊂ R

3 observed at the lattice points in the observation window W . The function f
is then the indicator function of X, restricted to the observable points f = IX|L∩W .
That is, f (x) = 1 if x ∈ X ∩ L ∩ W and f (x) = 0 otherwise. Usually, in image
processing, both x ∈ L ∩W and the pair (x, f (x)) are called pixel (or voxel).

Mathematically, we interpret an image as a set of lattice points equipped with
gray values, not as a set of small cubes. We nevertheless address the lattice spacing
s as pixel or voxel size, too.

By construction, the pixels of a 3D image are discrete. To represent concepts such
as the connected components of a RACS in an image, a notion of connectivity of
pixels must be introduced. To define the discrete connectivity in 3D unambiguously,
we follow [45] in using adjacency systems consisting of j -dimensional faces with
j = 0, . . . , 3. The discretization X � F of a compact subset X ⊂ R

3 w.r.t. a given
adjacency system F is defined as the union of the elements F of F whose vertices
F0(F ) are contained in X

X � F =
⋃
{F ∈ F : F0(F ) ⊆ X}.

It can be interpreted as an approximation of X by a polyhedral set built using the
bricks provided by the adjacency system. For background on adjacency systems and
consistent connectivity for foreground and background of an image, see [43–46, 51].

Segmentation Segmentation subsumes a wide variety of methods assigning pixel
values to classes, usually coded by integer values. Here, we have to solve two
segmentation tasks: first, we have to binarize the image f to get hold of the
solid foam structure. Second, we exploit moments of the distributions of cell
characteristics in the model fitting step. Hence, we have to identify foam cells or
pores as image objects. This second segmentation task is much more demanding, as
the cells of an open foam are connected. As a consequence, the background or pore
space has to be divided to “reconstruct” the cell structure.

Binarization Very roughly, computed tomography generates 3D images with voxel
gray values related to the mean X-ray absorption of the small sub-volume they
represent. Solid material structure thus appears brighter than air. For binarizing the
image, we look for a transformation

T (f ) : L ∩W −→ {0, 1}
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such that T (f ) ≡ 1 corresponds to the solid foam material X observed in L∩W as
described above. The simplest way to achieve a binarization is just to use a global
gray value threshold θ ∈ R

T (f )(x) =
{

1 f (x) ≥ θ

0 else.

This simple binarization method can of course be applied only, if the image is free
of global gray value fluctuations. Prior to binarization, we apply a median filter with
a 3 × 3 × 3 filter mask to reduce noise and smooth the foam’s surface slightly.
Subsequently, the global gray value threshold θ can be chosen by Otsu’s method
[47].

Cell Reconstruction Now, we separate the multiply connected pore system of the
foam into individual image objects by a combination of two strong morphological
tools, the Euclidean distance transform and the watershed transform.

Let X ⊆ R
3 be the set under consideration, here the pore space of the foam. The

Euclidean distance transform maps each point in R
3 to its shortest distance to the

complementary set R3 \X,

EDT : R3 �→ [0,∞) : x �→ min{||x − y|| : y ∈ R
3 \X}.

This results in EDT(y) = 0 for all y ∈ R
3 \ X and local maxima in the centers

of spherical regions in X. Inverting the EDT image EDT(X ∩ L ∩ W) turns these
local maxima into minima: f (x) = max{EDT(X ∩ L ∩W)} − EDT(x). The exact
Euclidean distance transforms can be calculated very efficiently, i.e., in linear time,
exploiting the Voronoi paradigm [41].

Now the watershed transform assigns a connected region to each local minimum.
This transform can be interpreted as the flooding of the topographic surface
{(x, f (x)) : x ∈ L ∩W }: water rises uniformly with growing gray value f from all
local minima. Watersheds are formed by all pixels where water basins filled from
different sources meet. Finally, the image is segmented into regions and the system
of watersheds dividing them [66].

In practice, this morphological separation strategy suffers from superfluous local
minima in the inverted EDT (iEDT) image due to discretization, imperfect bina-
rization, and cell shapes deviating from spherical. The watershed transform assigns
each such minimum a region, inevitably resulting in a strong over-segmentation. A
remedy for this is to prevent small regions from arising at all by altering the flooding
accordingly (pre-flooded watershed [63]). The foam structure under consideration
here is rather regular. Predescribing a minimal cell volume is thus easily applicable.
See Fig. 2 for an illustration using 2D sections through the 3D images.
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Fig. 2 Morphological cell reconstruction, illustrated using 2D slices of the 3D image. Left:
Binarized—solid foam structure appearing white pore space black. Center left: inverted Euclidean
distance map on the pore space, small values dark, high white. Center right: pore system generated
by the watershed transform. Right: pore system generated by the pre-flooded watershed transform

It is remarkable that the heavyweights in this segmentation procedure—
watershed transform and EDT—as devised by Vincent and Soille [66] and
Maurer and Raghavan [41] work “as is” in arbitrary dimensions. Often,
image processing methods are mathematically easily formulated for arbi-
trary dimensions and applied to 2D images. Practical application in higher
dimensions is nevertheless often impossible due to computational complexity
or ambiguities, e.g., arising from the existence of two subdimensions or
connectivity issues.

Estimating the Intrinsic Volumes Based on Image Data The intrinsic volumes
and their densities can be estimated based on 3D image data very efficiently by
Ohser’s algorithm [29]. This algorithm codes the 2×2×2 voxel configurations in a
binary image using a convolution with a cubic filter mask assigning weights 2k, k =
0, . . . , 7, to the vertices of the cube. The gray value histogram of the resulting 8-bit
gray value image contains all information needed to derive the intrinsic volumes by
multiplication with a suitable weights vector. See [44] for details.

3 Random Laguerre Tessellations and Fitting Them

Laguerre tessellations are a generalization of the well-known Voronoi tessellation
model. When generated by random sphere packings, they reflect the topology
of rigid foams very well and enable particularly good control over the volume
distribution of the resulting cells. We recall the concept and a fitting strategy.
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3.1 Laguerre Tessellations Generated by Random Sphere
Packings

Let T be a set of bounded convex three-dimensional subsets of R3, the cells of T .
The system T is called a tessellation of R3 if T is space-filling, i.e.,

⋃
C∈T C = R

3,
and if the interiors of different cells do not intersect. Convexity of the cells and T

being space-filling force the cells to be three-dimensional polytopes (3-polytopes)
[55, Lemma 10.1.1].

Write

F(x) =
⋂

C∈T ,x∈C
C, x ∈ R

3

for the intersection of all cells of T containing the point x. Then, F(x) is a non-
empty finite intersection of 3-polytopes and hence a k-polytope, k ∈ {0, . . . , 3}.
The set

�k(T ) := {F(x) : dimF(x) = k, x ∈ R
3}, k = 0, . . . , 3,

is the set of k-faces of the tessellation T . We denote by Fk(C) the set of all k-
faces, k = 0, . . . , 3, of a 3-polytope C. For a set F of convex polytopes, write
Fk(F) =⋃{Fk(F ) : F ∈ F}.

The tessellation T is called face to face if the faces of the tessellation coincide
with the faces of the cells. If additionally exactly four cells meet in a vertex and
three cells meet in an edge, the tessellation is called normal. A random tessellation
is face to face or normal if its realizations almost surely have these properties.

Due to Plateau’s laws, soap froths are normal, too [67]. Normal tessellations
are thus a natural choice for modelling foam structures. The best known and most
used tessellation model is the Voronoi tessellation that can be defined in arbitrary
dimension n based on a locally finite set ϕ ⊂ R

n of generators. The Voronoi
tessellation of ϕ consists of the cells

C
(
x) := {z ∈ R

n : ||x − z|| ≤ ||y − z||, for all y ∈ ϕ}, x ∈ ϕ.

The size of a Voronoi cell thus only depends on the distance of its generator to the
neighboring generators.

To gain more flexibility regarding cell shapes and in particular sizes, we use
Laguerre tessellations. In this weighted generalization of the Voronoi tessellation,
each generating point x ∈ R

n is assigned a positive weight r > 0 that can be
interpreted as radius of a sphere with center x. The Laguerre cell of (x, r) ∈ ϕ is
defined as

C
(
(x, r), ϕ

) := {z ∈ R
3 : ||x − z||2 − r2 ≤ ||y − z||2 − s2, for all (y, s) ∈ ϕ}.
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Fig. 3 Left and middle: realizations of Voronoi tessellations generated by a Poisson point process
and a regular point process. Right: Laguerre tessellation generated by the same point pattern as in
the middle

The Laguerre tessellation L(ϕ) is the set of the non-empty Laguerre cells of ϕ.
The Voronoi tessellation corresponds to the special case of the Laguerre tessellation
generated by a system of spheres of constant radius.

Laguerre tessellations are the most general model satisfying our assumptions:
each normal tessellation of R3 with convex cells is a Laguerre tessellation [2, 32].

In Laguerre tessellations, empty cells as well as cells not containing their
generators can occur. Laguerre tessellations generated by nonoverlapping spheres
are however free of such irregularities, see Fig. 3 for examples in R

2.
Random systems of closely packed spheres like those generated by the force-

biased algorithm [4, 5] are well suited to generate Laguerre tessellations with
prescribed cell volume distribution [49]. The cell shape is however rather restricted.
In particular, the edge length distributions in Laguerre tessellations generated by
dense packings of spheres are known to differ significantly from those observed in
real foams, see [65]. This problem can be alleviated by relaxing the structure using
the Surface Evolver [7].

Voronoi or Laguerre tessellations generated by stationary and isotropic (marked)
point processes are also isotropic. In contrast, real foam structures often show
anisotropies as their cells are elongated in particular directions due to the foam
generation process. A simple way of incorporating this anisotropy into the models
is by appropriate scaling of the cell systems.

3.2 Fitting a Tessellation Model

Two strategies of fitting Laguerre tessellation models can be found in the literature.
Laguerre approximation aims at finding a Laguerre tessellation that represents the
observed cell system best in the sense that discrepancy between the observed cells
and the cells of the approximation is minimized [33, 60]. Alternatively, a parametric
tessellation model can be fit. That is, the observed cell system is approximated in a
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stochastic sense. The model is supposed to fit distributions of cell characteristics
such as the volume, surface area, or the number of facets [31, 49]. The former
approach yields an exact representation of the observed structure in the class of
Laguerre tessellations. Here, we concentrate on the latter approach, as it allows for
generating an arbitrary number of model realizations of basically arbitrary size.

The deviation of the model realization from the real observed foam structure is
measured using the relative distance measure

ρ(m̂,m) =
√√√√ n∑

i=1

(mi − m̂i

m̂i

)2
, (2)

where m̂ = (m̂1, . . . , m̂n) and m = (m1, . . . , mn) are moments of the distributions
of geometric characteristics of the cells of the original foam and the model,
respectively. For rigid foams whose structure is observed in 3D images, the means
and standard deviations of the volume V = V3, the surface area S = 2V2, the
mean width b̄ = 1

2V1, and the number of facets FC of the cells have proven to be
particularly well suited [31, 49]. The choice is based on mean value relations for
normal random tessellations, see [8, Section 9.4].

For minimizing the distance measure (2) on the parameter space of a tessellation
model, one would ideally use analytic formulas relating the model parameters
and the required moments of cell characteristics. Unfortunately, only Laguerre
tessellations generated by a homogeneous Poisson process are analytically tractable
[32]. For Laguerre tessellations generated by random sphere packings, model fitting
therefore has to rely on Monte Carlo simulations of model realizations.

The cell volumes in cellular materials are usually assumed to be lognormal or
gamma distributed. Moreover, Laguerre tessellations of dense packings of spheres
with lognormal and gamma distributed volumes are very regular and therefore
well suited to model rigid foams. In [49], model realizations for various packing
fractions κ and coefficients of variation c of the volume distribution were generated.
Subsequently, polynomials in c were fitted to the estimated geometric characteristics
for each value of κ . Using these results, the minimization of ρ(m̂,m) in (2) reduces
to minimizing a polynomial, thus allowing for quick and easy model fit.

4 Numerical Simulation of Elastic Properties

The following subsections outline the simulation of the effective mechanical
stiffness of inhomogeneous micro-structures such as foams. Therefore, the averaged
stresses and strains are defined as volume averages over their microscopic counter-
parts. Furthermore, the fundamentals of the solution of the microscopic boundary
value problem in terms of an LS-FFT are outlined briefly.
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4.1 Effective Properties of Micro-Structured Materials

We apply a computational homogenization scheme to determine the effective
stiffness of the foam numerically. In this scheme, the microscopic geometry of the
structure is captured either by a CT image of the foam or by a realization of a
stochastic geometry model. Furthermore, the mechanical properties of the micro-
constituents, here Young’s modulus and Poisson’s ratio, are required.

The micro-structure is captured in volume element � ⊆ R
3 with volume V (�)

and boundary ∂�. The effective stiffness of this structure C
∗ connects the averaged

stresses 〈σ 〉 and strains 〈ε〉 via

〈σ 〉 = C
∗ : 〈ε〉. (3)

The : in Eq. (3) denotes the double inner product between the fourth-order tensor
C
∗ and the second-order tensor 〈ε〉 and corresponds to the mapping of the strains

to the stresses (compare Hooke’s law in one-dimensional elasticity σ = E ε). The
averaged stresses and strains are defined as volume averages of their microscopic
counterparts as

〈σ 〉 := 1

V (�)

∫

�

σ(x) dx and 〈ε〉 := 1

V (�)

∫

�

ε(x) dx. (4)

For the numerical computation of the effective foam properties, a displacement,
which corresponds to a constant strain in a homogeneous reference material, is
applied to the boundary of the volume element. Due to the possible anisotropy of the
foam, six load cases are computed—three tension, three shear as sketched in Fig. 4.

After solving the six microscopic boundary value problems, we compute the
complete effective stiffness tensor C∗.

4.2 Lippmann–Schwinger Fast Fourier Transform-Based
Solver

In the following, the details on the solution of the boundary value problem are
outlined. Our microscopic simulation is based on the solution of the Lippmann–
Schwinger (LS) equations for elasticity, see [36] and [68]. The required Green’s
operator is explicitly known in the Fourier space. Thus, these equations are solved
efficiently by application of a fast Fourier transform (FFT). This LS-FFT scheme
is implemented in ITWM’s micro-structure solver FeelMath, see [22] and [24],
also available as module ElastoDict [9] in the commercial software GeoDict [13].
The LS-FFT solver enables precise computation of microscopic stresses and strains
directly in µCT images or other voxel-based three-dimensional structures. It is
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Fig. 4 Application of boundary conditions for homogenization. Blue arrows indicate the forces
applied

applicable to porous structures and therefore suitable for the open aluminum foam
considered here.

In the solver, the equilibrium equation of the Cauchy stress σ

div σ(x) = 0, x ∈ �, (5)

is considered in the micro-domain �. The kinematics for the strains ε depending on
the displacements u and the fluctuations v read

ε(u)(x) = 〈ε〉 + ε(v)(x)

ε(v)(x) = 1
2

(
grad v(x)+ gradt v(x)

)
}

x ∈ � (6)

in terms of the applied macroscopic strain ε. At the boundary of the micro-structure
∂� (anti-)periodic boundary conditions are applied via

v(x) #
σ(x) · n(x) −#

}
x ∈ ∂�. (7)

The symbol # refers to periodicity, i.e., the fluctuations at opposite faces of the
boundary are equal, whereas −# denotes antiperiodicity, i.e., the tractions σ · n at
opposite faces point into opposite directions but have the same magnitude. The set
of underlying equations is completed by a constitutive equation for the microscopic
constituents. For the aluminum, we restrict ourselves to the linear elastic case. Thus,
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the microscopic stresses and strains are connected by an elasticity tensor C via

σ(x) = C(x) : ε(x), (8)

which only depends on Young’s modulus E and Poisson’s ratio ν of the aluminum
alloy. In the pores, the stiffness is set to zero. In general, the presented approach
is however suitable to capture more complex material behavior like inelasticity and
rate dependency, see [25, 56, 61].

Next, we focus on reformulating the periodic boundary value problem into an
integral expression of the Lippmann–Schwinger type. To this end, we introduce a
constant homogeneous reference stiffness tensor C0 instead of the stiffnesses of the
aluminum and the pores. This homogeneous stiffness tensor is applied to define the
polarization tensor τ as

τ(x) = σ(x)− C
0 : ε(x). (9)

With the help of Green’s operator �0 associated with the reference stiffness, the
solution of the equilibrium equation (3) reads

ε(x) = 〈ε〉 −
(
�0 ∗ τ

)
(x). (10)

The convolution operator ∗ is defined by

(
�0 ∗ τ

)
(x) =

∫

�

�0(x − y) : τ(y) dy. (11)

Combining the constitutive law (6), the definition of the polarization stress (9), and
the solution (10) yields the LS equation as

ε = ε(x)+ �0(x) ∗
(
(C(x)− C

0) : ε(x)
)
= (I + Bε(x)) ε(x). (12)

Green’s operator �0 does not depend on the fluctuations and thus only depends on
the homogeneous reference stiffness C0, see [28].

The LS equation (12) can be solved iteratively using the Neumann series
expansion or by using the conjugate gradient method. As Green’s operator is
explicitly known in Fourier space, the Fourier transform is applied. A more detailed
description of the algorithm can be found in [61].

Note that the discretization by Fourier polynomials as presented in [42] leads
to convergence problems for porous structures due to the infinite stiffness contrast
of the microscopic constituents. Therefore, we use a finite difference discretization
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based on a staggered grid, which converges also for highly porous materials, see
[57]. A comprehensive overview of FFT-based homogenization methods is given in
[56].

5 Application Example

Now, all methods described above are applied to a real-world open aluminum foam
sample.

5.1 Material

We consider one of the open-cell aluminum alloy foam samples investigated in
[21]. The sample made by CellTec Materials GmbH, Dresden, Germany consists
of AlSi7Mg0.3 and has nominal pore size 10 ppi (pores per inch) and mean density
0.156 g/cm3 corresponding to a porosity of 94.2%.

A cubic sample of edge length 40 mm is spatially imaged by µCT at voxel size
29.44 µm. See Fig. 5 for a volume rendering.

Larger samples of size 40 mm × 40 mm × 80 mm were tested mechanically.
Uniaxial compression and tensile tests were performed, where the samples had to
be infiltrated by a resin to allow for clamping for the tensile tests. The details are
described in [20]. In [21], the foam structure was image analytically separated into
vertices and struts. Mechanical behavior of struts was investigated for five classes
divided according to orientation.

Fig. 5 Left: volume rendering of the reconstructed CT image. The CT image taken at ITWM has
originally a voxel size of 29.9 µm and the sample is contained in a cube of edge length 1500 voxels
corresponding to 4.5 cm. Center: sub-volume of edge length 0.9 cm with blob like production
leftover. Right: system of reconstructed cells



272 A. Jung et al.

Table 1 Estimated mean values and standard deviations of the cell characteristics of the aluminum
foam and the best fit models for lognormally distributed volumes of the generating spheres

Scaled data Isotropic model

Mean Std Mean Deviation Std Deviation

v [mm3] 79.738 21.972 79.739 ±0.00% 26.598 ±21.06%

s [mm2] 104.468 22.241 98.608 −5.61% 19.832 −10.83%

d [mm] 5.811 0.740 5.806 −0.08% 0.568 −23.22%

FC 13.828 2.256 14.06 +1.69% 2.173 −3.71%

5.2 Image Analysis and Model Fit

The CT image of the foam was binarized by a global gray value threshold chosen
according to Otsu’s method. Subsequently, the cells were reconstructed by the
watershed on iEDT approach described in Sect. 2.2. Due to contamination of the
foam structure (see Fig. 5, middle), some cells were erroneously split into two parts.
These errors were corrected manually.

Estimation of the mean cell diameters in the three coordinate directions reveals
that cells are elongated by a factor s = 1.2526 in y-direction. The model fitting
procedure detailed in Sect. 3.2 is formulated for isotropic structures. Hence, the
structure is scaled by 1/s prior to the fitting. The cell characteristics estimated from
the isotropic structure are listed in Table 1. Cells intersecting the boundary of the
image are not observed completely. Hence, they are not included in the statistics. As
larger cells are more likely to intersect the image boundary, ignoring boundary cells
will result in a sampling bias. This is corrected by weighting the cells according to
the inverse of their probability of being observed (Miles–Lantuejoul correction, [58,
pp. 246]). In total, 336 cells with a total volume of 26246.11mm3 were included in
the statistics.

The model fitting procedure returns a packing fraction of κ = 60% and
a coefficient of variation c = 0.414 as optimal parameters when assuming a
lognormal distribution of sphere volumes. Using these parameters, realizations of
the tessellation models containing 820 cells are simulated in the unit cube. After
rescaling the y-axis by the factor s, the tessellation edges are discretized into volume
images. The voxel spacing for the discretization is chosen identical to the CT image,
i.e., 29.44 µm. The images are cropped to a size of 13593 voxels to obtain the
original sample edge length of 40 mm.

Dilation of the edge system of the tessellations finally yields synthetic foam
structures. Strut thickness is chosen such that the volume fraction is close to
the value VV = 5.755% estimated from the binarized CT image of the real
foam. We consider two cross-sectional shapes of the struts—the simplest case of
perfectly circular strut cross sections of constant radius and concave triangular
struts. Additionally, to investigate the effect of relaxation, the tessellations are
relaxed by using the Surface Evolver and also discretized with the two choices of
strut cross-sectional shape. That way, each realization of the Laguerre tessellation
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Fig. 6 Volume renderings of four synthetic foams derived from the same Laguerre tessellation
model realization. From left to right: circular and triangular strut cross sections and their relaxed
versions. Sub-volumes of 6003 voxels

model yields four synthetic foam structures. All four synthetic foams are visualized
in Fig. 6.

5.3 Prediction of Mechanical Properties

We now predict the mechanical properties of the aluminum foam based on the
binarized CT image and on realizations of the four synthetic foams.

Validation of Simulation Before actually predicting, we validate the numerical
computation of the effective quantities with ElastoDict [9] by comparing with
experimental data. To this end, a compression load case with a prescribed strain
is simulated directly on the binarized CT image of the foam. The resulting effective
stresses and the corresponding stiffness in the loading direction are calculated and
compared to those determined by a compression test on the foam as described in
[20].

First, we summarize the solver settings: the considered foam structure is
not periodic. Hence, symmetric boundary conditions with free deformations in
tangential directions are chosen. These symmetric boundary conditions and their
compatibility with the periodic boundary conditions from Sect. 4.2 are described
in detail in [14]. Thanks to the compatibility, this type of boundary condition is
often referred to as periodicity compatible mixed uniform boundary conditions
(PCMUBC). Generating a periodic structure by means of mirroring and effective
implementation of PCMUBC in the context of FFT are connected in [14], too.

We apply composite voxels to reduce computation time as suggested in [23].
In this approach, the image is downsampled and the stiffness of the resulting mixed
voxels or composite voxels is determined with the appropriate material of the rotated
laminate, i.e., not only the local volume fraction is taken into account. Additionally,
this mixing rule incorporates directional information on the material interface.
Applying this strategy, we cut 1314×1335×1285 voxels down to 328×333×321
voxels and consequently reduce CPU time and memory consumption significantly
while keeping the loss of accuracy acceptable.
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Table 2 Experimentally
identified Young’s moduli for
the aluminum alloy [16]

Pore no. Young’s modulus [MPa]

1 4112

2 3832

3 3768

4 4152

5 3978

Fig. 7 Comparison of simulation and experiment in longitudinal direction y in terms of stress–
strain diagram, Young’s modulus of the aluminum EAl = 4000 MPa

Second, we care for the material parameters: We restrict ourselves to the linear
elastic case here. Therefore only Young’s modulus EAl and Poisson’s ratio νAl
of the aluminum at the micro-scale are required. Poisson’s ratio is taken from
literature as νAl = 0.33. Young’s modulus of the aluminum is chosen based on
the experimental data from [16] measured in five different pores. The values are
summarized in Table 2. In the simulations, the average of these moduli (4000 MPa)
and the minimal and maximal values are considered. Attention should be paid to the
fact that these values differ significantly from those usually reported for aluminum
alloys (≈70 · 103 MPa). These deviations are due to micro-porosity of the struts and
inclusions resulting from the manufacturing process [38].

Figure 7 displays the experimental stress–strain curves of the five foam samples
under compression in the linear loading regime, see [20] for the complete loading
and unloading curves and the effective stress–strain curves simulated directly in the
complete binarized CT image. Simulated and experimental data match very well.
Young’s modulus of the aluminum alloy is chosen as the average of the five samples
summarized in Table 2.

Figure 8 shows how the microscopic Young’s modulus of the aluminum alloy
influences the simulation result in terms of the effective modulus, i.e., the slope of
the effective stress–strain curve. As input for the simulation, the minimal, maximal,
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Fig. 8 Comparison of
simulation and experiment in
longitudinal direction y in
terms of structural stiffness
for varying Young’s moduli
of the aluminum alloy

Fig. 9 Comparison of simulation and experiment in transversal direction, Young’s modulus of the
aluminum EAl = 4000 MPa

and average values from Table 2 are considered. These simulation results are
compared to the structural stiffness obtained by the compression experiments.

The structural stiffness corresponds to the slope of the experimental stress–strain
curves in Fig. 7. Clearly, variations of the microscopic Young’s modulus in the
considered range have only minor influence on the effective modulus. Therefore,
we take only the average value of 4000 MPa into account in the following.

Validation of the simulation is completed by a comparison of the effective
stresses simulated in the transversal directions (here x and z) and a compression
experiment in the corresponding directions in Fig. 9. The simulated effective stresses
in x- and z-directions are almost the same and they are much smaller than those in
y-direction. Thus, the foam is much stiffer in the longitudinal y-direction. Figure 9
also shows that simulation and experiment also fit very well in the transversal
directions.

In the next section, the validated simulation is applied to the synthetic foams
derived from realizations of the Laguerre tessellation model fit in Sect. 5.2.
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Effective Mechanical Properties of the Synthetic Foams In order to predict
the properties of the synthetic foams, five realizations of the Laguerre tessellation
model yielding altogether 20 synthetic foams with circular or concave triangular
struts, in relaxed state or not, are considered. All load cases displayed in Fig. 4 are
applied to each synthetic foam and the full effective stiffness tensor is computed.
The effective Young’s modulus in each direction (Ex,Ey and EZ) is approximated
orthotropically, i.e., it is assumed that the inverse effective stiffness tensor reads

C
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Ex

− νyx
Ey

− νzx
Ez

0 0 0

− νxy
Ex

1
Ey

− νzy
Ez

0 0 0

− νxz
Ex

− νyz
Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gzx

0

0 0 0 0 0 1
Gxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

where νxy, νxz, . . . denote Poisson’s ratios and Gxy,Gzx,Gxy the shear moduli in
the corresponding directions.

We compare our simulation results to those obtained by direct simulations in the
CT image. For the longitudinal (y) direction, the variations within one synthetic
foam type do not influence the effective stiffness significantly, see Fig. 10. For the
two synthetic foam models with circular struts, the stiffness is underestimated. On
the other hand, concave triangular struts lead to overestimation of the stiffness. The
true strut cross section observed in the CT image of the real foam is in between
both models—it is clearly triangular, but less concave than the model. The relaxed
version of the synthetic foam with triangular struts is nevertheless able to reproduce
the stiffness behavior in longitudinal direction of the real foam very well as the
relaxation procedure reduces the effective stiffness for both strut geometries.

Analysis of the mechanical properties of the synthetic foams is completed by the
stiffness in the transversal directions (x and z) reported in Fig. 11. The anisotropic
behavior of the real foam is captured by all synthetic foam models. The stiffness
in the transversal directions is smaller than in longitudinal direction, agreeing
with the experimental results as well as with those obtained by direct simulation
in the binarized CT image. Not surprisingly, the two relaxed synthetic foams

Fig. 10 Comparison of
effective stiffness of synthetic
and real foams in longitudinal
direction. CT is the real
foam’s micro-structure as
given by the binarized CT
image. R1–R5 are the five
realizations of the fitted
Laguerre tessellation model
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Fig. 11 Comparison of effective stiffness of synthetic (derived from R1 to R5) and real (CT)
foams in transversal directions

behave less anisotropic than their unrelaxed counterparts. Relaxation increases the
effective stiffness in transversal direction, while it decreases the effective stiffness in
longitudinal direction. The unrelaxed synthetic foam with the circular struts matches
the mechanical behavior of the foam in transversal direction best.

In summary, all four synthetic foam models reproduce the mechanical compres-
sion behavior of the real aluminum foam well, including the anisotropy. Taking into
account all three directions, the effective stiffness of the real foam is best reproduced
by the unrelaxed synthetic foam with circular strut cross sections, although the
stiffness in longitudinal direction is slightly underestimated.

6 Conclusion

In this contribution, we describe completely the well-established nevertheless rarely
fully expanded workflow for simulating mechanical properties of a material based
on stochastic geometry models of its micro-structure. Our use case is an open metal
foam. Consequently, a random tessellation model is fit to it.

Stochastic geometry models do not only capture naturally the microscopic
heterogeneity of materials structures. Additionally, fitting them to the observed
structure allows to generate many realizations as large as needed. Moreover,
the effects of selected micro-structural geometric features can be investigated
independently as demonstrated here for cross-sectional shape of the struts and
relaxation. Model fitting and careful validation of the simulations further open
the opportunity to determine the size of the representative volume and to devise
optimized micro-structures.

Validation or calibration of the simulations by experiments is indispensable as
the respective properties of the bulk material needed as input are hard to get. The
values for the material, e.g., in the struts can differ significantly from tabular values
due to effects of the production process on scales finer than the micro-structure.

The elastic properties of the aluminum foam could be reproduced well by all
four synthetic foams considered here. More sophisticated geometries might be
needed when moving on to plastic properties. For instance, the local thickness
of the struts could be fit [21, 35]. Moreover, real cellular structures can feature
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much more complex anisotropies due to production processes being based on
polymer foams. In the latter, the foaming direction usually stands out. The structure
might however be additionally distorted, e.g., by the movement of a conveyor belt
during foaming. Adequate characterization methods and modelling are subject of
the current research.
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Machine Learning for Failure Analysis:
A Mathematical Modelling Perspective

Judith Pérez-Velázquez, Meltem Gölgeli, and Carlos Alfonso Ruiz Guido

1 Introduction

An object’s usability, affordability, and reliability are very much determined by the
materials and processes employed to create it. The discipline of failure analysis is
heavily rooted in materials science and involves understanding and determining the
cause of a failure. From the mathematical viewpoint, we can roughly separate the
approaches used by those that make diagnosis, i.e., methods that allow to assess
the extent of deviation or degradation from an expected normal operating condition,
for example, by training a neural network with images portraying an ample range
of degradation states of a material such as the profiles of tyres and those aimed
to make prognosis, which possess prediction capabilities. For example, using the
current and past machine condition to predict how much time is left before a failure
occurs.

Failure is usually investigated in terms of failure criteria, which separate “failed”
states from “unfailed” states. There are two ways to define this separation:

Threshold-dependent The definition of failure is simply defined that the failure
occurs when the fault reaches a predetermined level.
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Data-dependent In this case, different definitions of failure can be given: an event
that the machine is operating at an unsatisfactory level; a functional failure when
the machine cannot perform its intended function at all; a breakdown when the
machine stops operating, etc.

Formally, failure is a gradual or sudden loss of the ability to operate. In the
context of material sciences, failure can be accredited to one of four reasons:
Design, when a material is modified to such an extent that it no longer serves its
original designed purpose; Manufacturing, the way certain materials are processed
and pieced together can also generate failure; Service, the interaction with the
environment such as excessive wear, overloading, can lead to failures in service;
Material, material-related problems may lead to failure such as poor micro-structure,
material defects and contamination from foreign particles.

Probability theory has traditionally been used in failure analysis [6, 11]. Standard
approaches used here commonly employ current and past machine condition to
predict how much time is left before a failure occurs. The data era has brought about
approaches that employ data-driven methods to not only detect failure but also make
predictions about the reliability of devices. For example, using neural networks
to evaluate the role of solder material and the joint thickness on the reliability of
electronic devices [16].

These data-driven approaches such as artificial intelligence (AI) and its sub-area
machine learning (ML) are increasingly being used in all aspects of failure analysis,
from predictive maintenance to plant facilities monitoring, including remaining
useful life forecasting, etc.

In this chapter, we present machine learning approaches in failure analysis. From
the mathematical viewpoint, these approaches constitute a wide spectrum of models,
ranging from survival random forests for reliability analysis to convolutional neural
networks for defect classification, including hybrid approaches that allow to include
physical information to describe aging and degradation. As we will see, reliability
in this context describes the ability of a device to function under stated conditions
for a specified period of time, and time-dependent models are used here.

This chapter is intended to serve two purposes. First is a description and
illustration of the assumptions and basic models of ML in failure analysis. Second
is to present a variety of applications in this context. The idea is to give an overview
to mathematicians of the ML approaches used in this sub-area of material science.

This chapter is structured as follows. In Sect. 2, we describe the approach used
in survival analysis, failure prognosis/prediction, also called time-to-event analysis,
in our context, “time to failure.” It consists of a set of statistical analyses that takes
a series of observations and attempts to estimate the time it takes for an event of
interest to occur. Classical tools of survival analysis have been recently powered by
the use of ML. In Sect. 2, we define ML methods, and finally in Sect. 3, we present
some use cases. Note that the overall aim of the chapter is to present the basic
assumptions and definitions of ML and illustrate how these can be applied in failure
analysis. The details of these approaches are covered in many papers and textbooks



Machine Learning for Failure Analysis: A Mathematical Modelling Perspective 285

[2, 4, 7, 10]; therefore, here we restrict our attention to present the fundamentals that
underlie all of these procedures.

2 Survival Analysis

The classical survival analysis in material science consists of dynamic statistical
methods to analyse the time to a certain event. The incomplete observations due
to time limitations or loss of some data points are known as censoring, and
the ability of these methods to include censoring data is the main difference of
survival analysis compared to standard regression methods. As explained in Sect. 1,
undesired changes of a certain state (oxidation, refraction, crash, etc.) of a material
are examples of an event that we call “failure.” Thus, the lifetime distributions are
described by the survival or hazard function. We present the general terminology of
survival analysis based on [15].

Definition 2.1 Let us define the probability density function f (x) of having a failure
at time x:

• The cumulative distribution function P(T ≤ t) =
t∫

0
f (x)dx = F(t) represents

the survival time of a material until time T , where T is a continuous random
variable that refers the time to failure.

• The survival function S(t) = P(T > t) = 1−F(t) demonstrates the probability
of a material surviving beyond a certain time t .

• The hazard function h(t) = f (t)

S(t)
represents the conditional failure rate that

indicates the likelihood of the event occurring at time t given that no event has
occurred before time t .

• The cumulative hazard function H(t) =
∞∫
T

h(x)dx represents the instantaneous

rate of failure at a certain time t .

�
Generally, the modelling approach of the classical survival analysis is classi-

fied into three subgroups: parametric models, non-parametric models, and semi-
parametric models. We present some common examples of these approaches below.

Example 2.2

• Parametric approach:

– The Weibull distribution has a survival function S(t) = exp(−λtα), where
t ≥ 0 and λ > 0 is a scale parameter and α > 0 is a shape parameter and
hazard function h(t) = αλtα−1.

• Non-parametric approach:
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– The Kaplan–Meier estimator is defined by Ŝ(t) =
∏
j :tj≤t

nj − dj

nj
, where dj is

the number of system components that have an event at time tj , where j =
1, . . . , k; mj is the number of system components censored in the interval
[tj , tj + 1); and nj = (mj + dj ) + · · · + (mk + dk) is the number of system
components at risk just prior to tj .

– The Nelson–Aalen estimator is a method to estimate and plot the cumulative

hazard function HNA(t) =
∑
ti≤t

di

ni
, where di is the number of system

components that have an event at time ti and ni is the total components at
risk at time ti .

• Semi-parametric approach:

– Cox regression is expressed by the hazard rate h(t, x) = h0(t) exp(xB),
where h0(t) is a baseline function, z is the variable, and B is the hazard
coefficient for the variable. The hazard ratio between the two groups in a
factor can be estimated by using HR(t, x1, x2) = exp(B(x1 − x2)).

�
Example 2.3 Öztürk et al. presented in [15] an application of survival analysis on
wind turbine reliability taking into account data such as previous failures and the
history of scheduled maintenance. The probability of failure of a wind turbine at a
certain time is defined by the Kaplan–Meier estimator, and the cumulative hazard
function is estimated by a Nelson–Aalen estimator. Then, a comparison for the
survival of separate groups of wind turbines is given by applying statistical tests
such as a log-rank test. As a result, the survival of frequently failing wind turbine
components between the geared-drive and direct-drive wind turbines is compared.�

3 Machine Learning

Machine learning is a set of algorithms that use databases in order to build math-
ematical models and solve tasks such as classification, regression, clusterization,
anomaly detection, etc. Since this text is focused on tasks relevant to failure analysis,
we will only focus on the aforementioned problems; however, we invite the reader
to explore the diverse applications of machine learning algorithms. For the readers
who are interested in knowing more on machine learning and its applications, we
recommend you to read [2, 7, 10, 16].

Historically, there is a difference between discriminative and generative methods
in machine learning; in the former, the prior is the set of characteristics from the
independent variable, and in the latter, the prior uses the dependent variable. In this
text, we will follow this classification in Sects. 3.1 and 3.2, respectively.
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3.1 Discriminative Machine Learning

In this section, we will define and exemplify a discriminative machine learning
problem.

Definition 3.1 A discriminative problem consists of a tuple (d,X, Y, S), where:

• d ∈ N is a positive integer that from now on will be referred to as the dimension
of our problem.

• A set X where our observations live, X = R, {0, 2}d ,Z.
• A set Y where the true labels of our data live, Y = {−1,+1}, {c1, c2, . . . , cK },

R,N.
• S is a family of random variables S1, S2, S3, . . . over the set:Xd×Y , the random

variables with marginal distributions from Si over each coordinate j of Xd will
be named Xi,j and Yi over Y .

Depending on the choice of Y , the problem we aim to solve could be a binary
classification problem, anomaly detection, multi-class classification, regression, or
agnostic clustering.

When we add to the tuple of a machine learning problem a family of functions
F : {f : Xd → Y }, the tuple (d,X, Y, S, F ) will be called in this text a machine
learning model.

Remark It is common in machine learning to assume that the random variables Si
in S are independent and identically distributed, and this is not the most realistic
assumption.

Let us start with some examples of machine learning models from a mathematical
point of view.

Example 3.3 A linear regression model will assume that X = R, Y = R y FLin =
{fβ (x) = 〈β, x〉 + β0 : β ∈ R

d , β0 ∈ R}. For this problem, we will suppose that
the random variables Xi, Yi are such that there exists some β ∈ R

d , β0 ∈ R, and
it is satisfied that 〈β,Xi〉 + β0 + εi = Yi , where εi is a set of Gaussian random
variables, which are independent and identically distributed. �
Remark In the previous section, we talked about a censored regression problem that
in some cases will not provide us with credible information about the variable Y ,
meaning that some of the observations y were not generated by Y ; in this case,
we are talking about a censored survival analysis problem. In the case of survival
analysis à la Cox (see Example 2.2), the family of functions is of the form: h(t, x) =
h0(t) exp(xB).

Example 3.5 A polynomial regression model of degree g is similar to the previously
described problem except that, instead of considering F = FLin, our set of functions
will be the set of polynomials of degree g.

Example 3.6 A linear classification model assumes that X = R, Y = {−1,+1}
and FLinC = {fβ (x) = sign (〈β, x〉 + β0) : β ∈ R

d , β0 ∈ R}. In this case, we
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suppose that the random variables: Xi, Yi are such that there exist β ∈ R
d , β0 ∈ R

and these satisfy:

P ((〈β,Xi〉 + β0) Yi > 0) = 1.

In this case, Yi are Bernoulli random variables. �
Example 3.7 A support vector machine (SVM) model with margin γ will assume
that X = R, Y = {−1,+1} y FLinC = {fβ (x) = sign (〈β, x〉 + β0) : β ∈
R
d , β0 ∈ R}. In this case, we suppose that the random variables Xi, Yi are such

that there exists some β ∈ R
d , β0 ∈ R, and some γ > 0 such that

(〈β,Xi〉 + β0) Yi > 0

and

P (Yi (〈β,Xi〉 + β0) ≥ γ |||Xi ||2 = 1) = 1.

Example 3.8 A binary decision tree model with depth r ≤ d decision trees where
we assume that X = {0, 2}, Y = {−1,+1} and FDS a set of all possible functions
f : {0, 2}d → {−1,+1} that correspond to a binary decision tree whose branches
are labelled with −1,+1. It is also possible to use decision trees for regression
problems when X = Y = R. �
Example 3.9 A neural network model with feed-forward and a single activation
function (see [17] for more details) will assume that F is a family of functions
described as follows:

• Let us fix some acyclic directed graph G = (V ,E).
• A function called weight function over the set of edges: w : E → R.
• A function called the activation function ρ : R → R, for example, the sigmoid

function σ (x) = 1
1+e−x .

• A disjoint partition of V = V1 ∪ . . .∪ VT , where each node in Vt−1 is connected
to some in Vt , and s will be the number of layers in the network.

• V1 is a distinguished set of vertices of size d + 1 and VT is a single node.
• A function in F , f : Xd → Y is a neural network if it can be calculated using

the information below always going from Vt−1 to Vt .

�
Example 3.10 An agnostic clusterization model will assume that X = R, Y = N

and FClus = {f (x) ∈ N}. �
Example 3.11 A clusterization model withK clusters will assume thatX = R, Y =
{c1, c2, . . . , cK } and FClus,K = {f (x) ∈ {c1, c2, . . . , cK }}. For this problem, the
random variables Xi, Yi are such that there exist some f ∈ FClus,K satisfying
P (f (Xi) = Yi) = 1. �
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Example 3.12 A time series model ARMA(p,q) assumes that d = 1, X = N, Y =
R, and FARMA(p,q) is such that for any t ∈ N the random variables Xi, Yi over
N,R satisfy

Yt = φ1Yt−1 + . . .+ φpYt−p + θ1εt−1 + . . .+ θqεt−q + εt , εt ∼ WN
(
μ, σ 2

)
, φj , θj ∈ R.

Example 3.13 A anomaly detection model will assume that X = R, Y = {−1,+1}
and FAnom = {f (x) ∈ {−1,+1}}. �

3.1.1 The Algorithms of Machine Learning

In the previous section, we talked about a machine learning problem from a
mathematical point of view; however, in practice, of course we will not have
access to the stochastic process S; instead, we will have access to a database in
the following sense:

Definition 3.14 Given a stochastic process S over Xd × Y , a supervised dataset
of size N is a set SEmp = {(x1, y1) , (x2, y2) , . . . , (xN , yN)} of experiments of N
random variables S1, S2, . . . , SN inside S. We call yi the label of the example xi ,
and not all datasets are of this type. �

Using these databases, the discriminative machine learning algorithms are trying
to build a function fSemp : X → Y . It is worth mentioning that in practice some
problems will not be supervised, and still it is possible to build a model inside F

from the unsupervised dataset {x1, x2, . . . , xN }.
Definition 3.15 Given a discriminative machine learning model (d,X, Y, S, F ), an
algorithm is a function A such that for all N and any dataset SEmp with size N
generated by S, it assigns a function fSEmp ∈ F . �

In order to give some examples of algorithms, we first need to give some
examples of the so-called loss functions.

Example 3.16 In the context of a linear regression, the loss function of an f ∈ FLin
is the following:

lSemp (f ) =
1

N
�
i≤N (yi − 〈β, xi〉 − β0)

2 .

Example 3.17 An example of a loss function in the case of a classification model is
the following:

lSemp (f ) = |{i : f (xi) �= yi}|/N.

Unfortunately, this function is far from being as smooth as the previous one; this
could be a problem because classical optimization methods might not work. �
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Definition 3.18 Let (d,X, Y, S, F ) a binary classification problem for example as
in Example 3.6 or in Example 3.8. If Semp is a dataset of sizeN whose examples are
indexed by i, for a given loss function l, we define the empirical risk minimization
(family of) algorithm(s) as follows:

AERM

(
Semp

) = argmin
f∈F

(
lSemp (f )

)
.

Remark When the loss function is the one given in Example 3.16, we recover the
classical least square error.

3.1.2 Evaluating a Machine Learning Model

So far we have defined what problem and algorithm are in machine learning, but we
are still missing how an algorithm is evaluated. Notice that in the previous section
we defined the empirical error, which is associated with a single dataset; the so-
called true error of the model should depend on the stochastic process S; for the
connoisseur, this difference is close to the classical split into train and test.

In this section, we will only focus on a linear regression or binary classification
problem. It is worth mentioning that for some of the described cases such as agnostic
clustering or anomaly detection, the evaluation process might be an extremely
difficult problem, see [12].

Definition 3.20 Let (d,X, Y, S, F ) be a discriminative machine learning model
either when we are in Example 3.3 or in Example 3.6.

• If we are in Example 3.3, for each f : Rd → R in FLin and each (x, y) ∈ R
d×R,

we define l (f, (x, y)) = (y − f (x))2.
• Let Si be one of the random variables in S; if f : Rd → R is a function in FLin,

we define the true error of f over Si as LSi (f ) = E [l (f, Si)].
• If we are in Example 3.6), for each f ∈ FLinC and each (x, y) ∈ R

d×{−1,+1},
we define l (f, (x, y)) = 0 if f (x) = y and l (f, (x, y)) = 1 if f (x) �= y.

• Let Si be one of the random variables in S, f ∈ FLinC; we define the true error
of f over Si as follows: LSi (f ) = E [l (f, Si)] .

Remark Notice that the previous definitions are difficult to calculate since they
depend on the random variables S. In practice, there exists several statistics that
could be computed for a dataset and a machine learning model; some notable
examples are:

• R2 for linear regression
• Confusion matrix for classification problems
• Silhouette function for clustering
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3.1.3 Under-fitting and Over-fitting

In this section, we are going to talk about two undesirable mathematical properties
an algorithm might have: over-fitting and under-fitting.

Let us start with the first one; in order to motivate the formal definition, we give
an intuitive definition of one of the most delicate problems in machine learning: the
infamous over-fitting.

Definition 3.22 (Informal Definition of Over-fitting) Given a discriminative
machine learning model, an algorithm A over-fits when it systematically obeys
the noise of the joint distribution (S1, S2, . . .). �

We have not defined what “systematically obeying the noise” means. In order
to give a formal definition of over-fitting, we introduce one possible mathematical
definition of it.

Definition 3.23 Given a discriminative machine learning model (d,X, Y, S, F )
and a supervised dataset Semp, we define a validation set of size N ′ as a set of
experiments of the random variables in S

SV = {(x′1, y′1) , . . . , (x′N ′ , y′N ′
)}

that is statistically independent from the original dataset Semp. �
Definition 3.24 Given a discriminative machine learning model (d,X, Y, S, F )
together with a dataset Semp and a validation set SV , for some function f ∈ F ,
we define:

• The over-fitting measure of f is
(
lSV (f )− lSemp (f )

)
. When this quantity is

large, we will say that the model over-fits.
• The under-fitting measure of f is lSemp . When this quantity is large, we will say

that the model under-fits.

�

3.2 Generative Machine Learning

Unlike discriminative machine learning model where the solutions are functions
f : X → Y , generative machine learning models will assume that the solutions are
distributions over Xd × Y .

Definition 3.25 A generative machine learning model consists of (d,X, Y, S,D),
where:

• d ∈ N is a positive integer that from now on will be referred to as the dimension
of our problem.
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• A set X where our observations live, X = R, {0, 2}d ,Z.
• A set Y where the true labels of our data live, Y = {−1,+1}, {c1, c2, . . . , cK },

R,N.
• S is a family of random variables S1, S2, S3, . . . over the set:Xd×Y , the random

variables with marginal distributions from Si over each coordinate j of Xd will
be named Xi,j and Yi over Y .

• D = {Di : PDi (X × Y )} is a family of distributions over Xd × Y .

Example 3.26 A Naïve Bayes model assumes that X = {0, 2}, Y = {−1,+1}, and
for each distribution PDi

∈ D, the marginal distribution PDi,{0,2}d over {0, 2}d is
equal to the product of its d-marginal distributions, i.e.,

PDi,{0,2}d = 1
j≤dPDi,j .

Example 3.27 A Bayesian network model assumes there is some fixed graph G =
(V ,E) with |V | = d, and the dependencies on the random variables {X1, . . . , Xd}
are modelled with the graph G.

4 Use Cases

In this section, we include some use cases of machine learning models to the
problem of failure analysis. It is worth mentioning that in many of the examples
not only one model has been used.

4.1 Regression Models

Regression models come often into place when estimating the time to failure of a
machine or its remaining useful life (RUL). There are several approaches to achieve
this, namely one can use similarity methods that require run-to-failure data, survival
methods that require lifetime data related to events such as part replacement and
part failure and trend-based methods that require a known failure threshold.

4.1.1 Random Forest Regression

Random forest regression is an ensemble algorithm that makes predictions based
on the average prediction of an ensemble of decision trees. See decision tree in
Definition 3.8.
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Example 4.1 Biswas et al. [3] used a regression approach by estimating the
remaining time to failure of disordered samples from plastic materials. This problem
is difficult because this kind of data exhibits a time correlation that is classically
used to enhance the predictions. �

4.1.2 Survival Analysis

Example 4.2 Zhang et al. [19] predicted RUL employing the NASA data repository.
They proposed a time-dependent survival neural network that additively estimates
a latent failure risk and performs multiple binary classifications to generate
prognostics of RUL-specific probability. �

4.1.3 Random Survival Forests

Random survival forests were introduced in [8]. They constitute survival models for
predicting the probability of failure over time. This is a method for analysing right-
censored survival data. Censored data is often found in survival tests. As compared
to classical random forest, survival splitting rules for growing survival trees are
introduced, as well as a missing data algorithm for dealing with missing (censored)
data.

Example 4.3 Weeraddana et al. [18] employed a random survival forest to predict
the failure likelihood of water main breaking using historical failure records,
descriptors of pipes, and other environmental factors. �

4.1.4 Neural Networks

Example 4.4 Samavatian et al. [16] used a co-relational neural network (NN) for
reliability assessment of solder joints. They computed useful lifetime based on the
materials properties, device configuration, and thermal cycling variations. �

4.2 Classification Models

These models come into place in context such as failure classification, such as
distinguishing between damage or fracture modes.
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4.2.1 Support Vector Machines

Example 4.5 In [14], using multi-class determination by support vector machine
(SVM) of failure modes in a laser-irradiation device, it was shown that SVM could
be successfully used to determine damage/fracture modes. �

4.2.2 Neural Networks

Example 4.6 Günnemann and Pfeffer [5] use convolutional neural networks on
temporal input signals data from tests over combustion engines. The authors
subsequently combined temporal data with additional static features; the results
are very interesting because they deal with success with highly imbalanced data. �

4.3 Anomaly Detection

A general definition of anomaly detection is given in Example 3.13 where xi may
refer to some subset of the data, e.g., an individual data point, a group of data points,
a subsequence of a time series, or a region of an image.

Anomaly detection is a common approach for fault detection. Within the
taxonomy of error, fault, and failure, an anomaly can be considered as a potential
error, where an error is caused by a fault and may in turn cause a failure.

Example 4.7 Jabbar et al. [9] used anomaly detection of manufacturing electronic
cards employing variational autoencoders (VAEs), a deep Bayesian network. See
Sect. 4.4 or Example 3.27. �

4.4 Generative Models

4.4.1 Naïve Bayes

Example 4.8 Addin et al. [1] introduce a Naïve Bayes model that simulates the
damage detection in quasi-isotopic laminated composite materials. �

4.4.2 Bayesian Networks

Example 4.9 Medjaher et al. [13] describe a failure prognostic using Bayesian
models for modelling complex systems with non-homogeneous sources of data and
dealing with uncertainty by estimating the remaining useful life (RUL) before a
failure. �
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5 Conclusions

In this chapter, we presented basic concepts of ML-enabled failure analysis. As
a complement, we presented a selection of examples of the application of these
models. By addressing mathematicians who have previously worked in material
sciences, the chapter aims to create the basis for them to explore further the
capabilities of ML.

A number of recommendations can be made: there are a number of available
datasets that can be used to try specific applications; hybrid approaches that
combine traditional methods with ML can improve model accuracy and enable new
applications; the use of ML methods in failure analysis is likely to increase further,
but this requires tailored methods in terms of efficiency and interpretability, and the
mathematical community can make here a great contribution. As a final remark, we
believe that machine learning has enhanced the set of tools in failure analysis and
will continue to do so. This does, however, not mean that ML will fully replace
other approaches. The use cases presented show that ML can indeed effectively
predict failures or abnormalities in a wide range of applications.
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Invertibility of Orlicz–Sobolev Maps

Giovanni Scilla and Bianca Stroffolini
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1 Introduction

We are interested in the invertibility of maps within the logarithmic scale of Orlicz–
Sobolev spaces in view of the variational models in elasticity. In order to state our
result, we will review the existing literature, focusing on the cavitation and fracture
models.

Let � be a bounded open set of Rn, and consider a map u : �→ R
n. In nonlinear

elasticity, the map u represents the deformation of a body that occupies the set �
in the reference configuration. The first example of stored energy functional for
compressible materials is

E(u) =
∫
�

W(Du(x)) dx , (1)

where W(ξ) = |ξ |p + g(detDξ), p > 1. The function g is assumed to be convex
and accounts for changes in volume, that is, it blows up as detDu → +∞ (expand
the solid) and as detDu → 0+ (compress it). The lower semicontinuity of such
functionals together with suitable coercivity conditions was addressed in the papers
by Ball and Murat [4] and Marcellini [34]. In the general case, namely, when W =
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W(ξ , detDξ , cofDξ) is polyconvex, and under suitable coercivity conditions, the
existence of minimizers is well understood, see [2, 16].

From the physical point of view, the interpenetration of matter prescribes that two
points cannot be mapped in the same one. Mathematically speaking, this problem
can be formulated as the global invertibility of u. A first global invertibility result
was proven by Ball in the Sobolev space W 1.p, p > n such that detDu > 0 and u
coincides on ∂� with an invertible map u0, see [3].

In the case p < n, there are deformations in W 1,p which present singularities
and, in particular, are not continuous. One of such type of singularities is that of
cavitation, that is, the formation of voids in solids. In this respect, Ball considered
the minimization problem of a polyconvex energy among the restricted class of
deformations that are radially symmetric; i.e.,

u(x) = r(|x|)
|x| x

when � is the unit ball of Rn. The prescribed boundary condition was the radial
stretching u(x) = λx. He showed that there is a threshold λc > 1, such that the
linear map is the unique minimizer for 1 ≤ λ ≤ λc, whereas for λ > λc there is
a unique singular radial transformation with r(0) > 0. This means that it would be
energetically favorable for the minimizer of the elastic energy to exhibit a cavitation.

Marcellini [34] revisited this example using the relaxation: the energy cor-
responding to a singular radial deformation must be defined through the lower
semicontinuous envelope taken among all regular transformation uk(0) = 0 and
with respect to the weak convergence. He derived a representation formula for the
relaxed energy with an additional term proportional to the n-dimensional measure
of the cavity, see also [12].

A further model was studied by Müller and Spector [36]. They were analyzing
a counterexample that consists of a sequence of deformations that create more and
more cavities. Consequently, they pointed out that such behavior could be prevented
by including an extra term in the energy that penalizes the creation of new surface.
More precisely, their elastic energy consists of a bulk term plus a constant multiple
of the perimeter of the geometric image of the deformation, see Definition 6. In
proving the weak continuity of the determinants, it is required to know that not
only deformations of the sequence have to be one-to-one almost everywhere but
also their limit. They constructed a counterexample where the weak limit of one-
to-one almost everywhere maps with detDuj > 0 satisfied detDu > 0, but it
was not one-to-one almost everywhere. To overcome this difficulty, they introduced
a new invertibility condition “INV”, formulated in terms of degree for maps in
W 1,p(�,Rn), p > n−1. This condition prevents the possibility of creating cavities
that are subsequently filled with matter from elsewhere, is stable with respect to
weak convergence in W 1,p, p > n−1, and implies invertibility almost everywhere.
Its formulation relies on the topological degree. Later, Conti and De Lellis [15] were
relaxing this condition to maps in W 1,n−1⋂L∞ obtaining some partial results.
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An alternative theory for cavitation, which also includes fracture, was given by
Henao and Mora-Corral. They replaced the perimeter with a surface energy, see
Eq. (19) in Sect. 5, and proved that finite surface energy implies SBV -regularity
of a suitable defined inverse of u. In addition, they specified a notion of surface
created by u and gave a precise meaning to the idea that E(u) measures the area
of this surface �(u). Looking deeply into the above counterexample of Müller and
Spector, they decompose the surface energy into the Hn−1-measure of a visible and
invisible part, this latter created from elsewhere in the body. Henao and Mora-Corral
extensively studied Lusin (N) condition in connection with local invertibility, [21–
24]. A key tool is the use of topological image imT(u,�) of u, see Definition 5,
which is defined as the set of points for which u has nonzero degree, coincide a.e.
with the image of u and the union of cavities created. If u ∈ W 1,p, p > n − 1,
and detDu > 0, the condition INV is satisfied, and the surface energy is finite, they
were able to prove that the set imT(u,�) is open, and in this case, the generalized
inverse belongs to W 1,1(imT(u,�),Rn). In the limit case p = n− 1, instead, their
result states an SBV regularity of the inverse and that the jump set does not intersect
imT(u,�).

Barchiesi et al. [7] were focused in defining a class of orientation-preserving
maps that do not exhibit cavitation. The solely condition of equality between
pointwise determinant and distributional determinant, detDu = DetDu, together
with detDu > 0 was shown not to be sufficient for this requirement. In this case,
the condition INV was not satisfied. In light of the aforementioned results, the
surface energy (being 0) and the topological image were involved. We point out
that the definition of degree is given only on selective “good” open subsets of �.

The theorem states:

Theorem 1 Let p > n − 1, and suppose that u ∈ W 1,p(�,Rn) satisfies detDu ∈
L1
loc(�). The following conditions are equivalent:

• E(u) = 0 and detDu > 0 a.e.
• (adjDu)u ∈ L1

loc(�,Rn), detDu �= 0 for a.e. x ∈ �, DetDu = detDu, and
deg(u, B, ·) ≥ 0 for all balls B for which deg(u, B, ·) is defined.
In addition, they were applying their result to prove an existence theorem for

minimizers of a variational model where the elastic energy has two terms: one
written in Lagrangian coordinates and the mechanical one in Eulerian coordinates.

In a previous paper [25], the second author with Henao proved that many
properties of orientation-preserving maps, such as local invertibility and a.e.
differentiability, can be pushed to a special class of Orlicz–Sobolev spaces, with an
integrability exponent just above the space dimension minus one, in the logarithmic
scale. In addition, they were showing that the maps considered in [7] were only
weakly monotone. An important tool for relaxing the condition about integrability
was the interplay between fine properties of Orlicz–Sobolev maps on manifolds of
dimension n − 1 and the n-absolute continuity introduced by Malý. Indeed, this
condition is satisfied by a function u ∈ W 1,1(�) whenever its weak derivatives
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belong to the Lorentz space Ln,1(�), which in turn is formulated via an Orlicz
integrability condition, see [13]. The theorem reads as follows:

Theorem 2 Let A(t) = tn−1 logα(e + t), α > n − 2, and suppose that
u ∈ W 1,A(�,Rn) satisfies detDu ∈ L1

loc(�). The following conditions are
equivalent:

• E(u) = 0 and detDu > 0 a.e.
• (adjDu)u ∈ L1

loc(�,Rn), detDu �= 0 for a.e. x ∈ �, DetDu = detDu, and
deg(u, B, ·) ≥ 0 for all balls B for which deg(u, B, ·) is defined.
This kind of generalization could have not only a mathematical interest per se but

it is also related to questions of integrability of Jacobian determinants and mappings
of finite distortion (see, e.g., [20, 27, 28, 41]).

The drawback of this generalization is an existence theorem for models of
magnetic elastomers, liquid crystals, and magnetoelasticity, see, e.g., [6, 10, 31].
The existence theorems were proved in the scale of Sobolev spaces with p > n− 1
in [7] and extended to our Sobolev–Orlicz class in [25]. Both the theorems were
provided assuming polyconvexity in the mechanic energy and quadratic growth in
the deformed configuration (nematic).

An existence theorem for the magnetoelastic model without any polyconvexity or
quasiconvexity assumption was proven for the relaxed functional, the quasiconvex
envelope in the same Sobolev–Orlicz class, see [39]. Actually, the quasiconvex
envelope is the sum of the two envelopes: the quasiconvex for the mechanical and
the tangential quasiconvexification for the nematic term (see [35] for the case tp,
p > n− 1).

Our Result With this contribution, we are willing to push the previous result even
further. To this aim, we got inspired by the paper by Henao et al. [26] where a
global invertibility result was presented in the scale of Sobolev spaces. In particular,
they were also revisiting the counterexamples of [36, Section 11], by showing that
the creation of a cavitation or leakage to the boundary does not occur within their
special class of maps: Ap. In our work, we extend the global invertibility result [26]
to a class A of orientation-preserving Orlicz–Sobolev maps with an integrability
just above n− 1, whose traces on the boundary are also Orlicz–Sobolev and which
do not present cavitation in the interior or on the boundary. Namely, we consider
deformations belonging to the Orlicz–Sobolev space W 1,A(�;Rn)∩W 1,A(∂�;Rn),
generated by the N -function A(t) as in Theorem 2. We then apply these results to
prove the existence of minimizers within (a suitable subclass of) A for functionals
often used as models in nonlinear elasticity, of the form

∫
�

W(x,u(x),Du(x)) dx ,

where W is assumed to be polyconvex in the last variable.
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We would like to mention the recent article of Krömer [30] where he raised the
question of whether a continuous deformation is invertible on the boundary. He
was working in the regime of p ≥ n, and he was able to obtain the existence of
homeomorphic minimizers under stronger assumptions. In our case, self-contact at
the boundary is allowed, see [14].

Overview of the Chapter This chapter is organized as follows. In Sect. 2, we fix
the main notation which will be used throughout the chapter. Section 3 collects
some basic definitions and results concerning N -functions and the Orlicz–Sobolev
spaces. In particular, in Sect. 3.1, we define traces of Orlicz–Sobolev functions.
Then, with Sect. 4, we recall the notions of topological degree for Orlicz–Sobolev
maps (Definition 4), of topological image of a set (Definition 5), and the concept
of geometric image (Definition 6). The class of admissible deformations A is
introduced in Sect. 5, where we prove their fine properties (Sect. 5.3), in particular,
boundedness (Proposition 6) and global invertibility (Proposition 4). In the last
section, Sect. 6, we exploit the results of Sect. 5 to prove the existence of minimizers
in A for a class of functionals in nonlinear elasticity.

2 Notation

In this section, we fix the notation and introduce some definitions used in the chapter.
Throughout the paper, we will assume n ≥ 3, because our Orlicz class makes

sense only for n > 2, see Sect. 5. In all the chapter, � will be a non-empty open,
bounded set of Rn, which represents the body in its reference configuration. There,
the coordinates will be denoted by x, while in the deformed configuration by y.
Vector-valued and matrix-valued functions will be written in boldface. The closure
of a setA is denoted by Ā and its topological boundary by ∂A. Given a square matrix
M ∈ R

n×n, its determinant is denoted by det M. The adjugate matrix adj M ∈ R
n×n

satisfies (det M)I = M adj M, where I denotes the identity matrix. The transpose of
adj M is the cofactor cof M. We recall the identity

M adj M = cof MMT = (det M)I . (2)

If M is invertible, its inverse is denoted by M−1. The inner product of vectors and
of matrices will be denoted by · and their associated norms are denoted by ‖·‖.
Given a,b ∈ R

n, the tensor product a ⊗ b is the n × n matrix whose component
(i, j) is ai bj . The set Rn×n+ denotes the subset of matrices in R

n×n with positive
determinant. The set Sn−1 denotes the unit sphere in R

n.
The Lebesgue measure in R

n is denoted by |·| or Ln and the (n−1)-dimensional
Hausdorff measure by Hn−1. The abbreviation a.e. stands for almost everywhere or
almost every; unless otherwise stated, it refers to Ln. For + a Young function, L+

denotes the corresponding Orlicz space and W 1,+,W
1,+
0 the Orlicz–Sobolev spaces

(see Sect. 3 for the precise definitions). The symbols C1
c and C∞

c stand for the spaces
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of C1 and C∞ functions, respectively, with compact support. The derivative of a
Sobolev–Orlicz or a smooth vector-valued function u is written Du.

The strong convergence in L+ or W 1,+ and the a.e. convergence are denoted
by →, while the symbol for the weak convergence is ⇀ and that for the weak∗

convergence in L∞ is
∗
⇀.

3 Orlicz–Sobolev Spaces

We recall here few basic definitions and results concerning N -functions and Orlicz–
Sobolev spaces. We refer the interested reader to [1, 9, 29, 32] for a detailed
treatment of the topic.

An N -function A is a convex function from [0,∞) to [0,∞), which vanishes
only at 0 and such that

lim
s→0+

A(s)

s
= 0 , lim

s→∞
A(s)

s
= ∞.

If A is an N -function, then we denote by A∗ the Young–Fenchel–Yosida dual or
conjugate transform of A, namely, the N -function defined as

A∗(s) := sup{sr − A(r) : 0 < r < +∞}.

In this chapter, we restrict our analysis to functions A whose growth at infinity is
at least such that

∫ ∞

t0

(
t

A(t)

) 1
n−2

dt <∞ (3)

for some t0 ≥ 0. The condition is satisfied, in particular, when A(t) = tp for
p > n− 1 and when A(t) = tn−1 logα(e + t) for every α > n− 2.

An N -function A is said to satisfy the �2-condition near infinity if it is finite-
valued and there exist constants μ > 2 and t0 > 0 such that

A(2t) ≤ μA(t) for t ≥ t0. (4)

If (4) holds for every t > 0, we say that A satisfies the �2-condition globally.

Remark 1 We notice that our function A(t) = tn−1 logα(e+ t) for every α > n− 2
verifies the �2 condition together with its conjugate. We will also be dealing with
the function B(t) = t logβ(e+ t) for a β > 0 (see Sect. 5): this function verifies the
�2-condition globally.
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Let � be a measurable subset of Rn. The Orlicz space LA(�) built upon an N -
function A is the Banach function space of those real-valued measurable functions
u on � for which the Luxemburg norm

‖u‖LA(�) := inf

{
λ > 0 :

∫
�

A

( |u(x)|
λ

)
dx ≤ 1

}

is finite.
Since A is non-decreasing,

∫
�

A(|u(x)|)dx <∞ ⇒ ‖u‖LA(�) ≤ 1. (5)

If A satisfies the �2-condition at infinity, then

u ∈ LA(�) ⇔
∫
�

A(|u(x)|)dx <∞. (6)

Proposition 1 (Generalized Hölder Inequality) Let A be an N -function and A∗
its dual. Then, it holds that

∣∣∣∣
∫
�

u(x)v(x) dx

∣∣∣∣ ≤ 2‖u‖LA(�)‖v‖LA∗ (�),

for every u ∈ LA(�) and v ∈ LA∗(�).

Note that we may introduce another norm on LA(�), the Orlicz norm or dual
norm, defined as

|u|A := sup

{∫
�

u(x)v(x) dx : v ∈ LA∗(�), ‖v‖LA∗ (�) ≤ 1

}
.

The norms ‖ · ‖LA(�) and | · |A are equivalent, since it holds that

‖u‖LA(�) ≤ |u|A ≤ 2‖u‖LA(�), u ∈ LA(�).

The Orlicz space LA(�,Rn) of vector-valued measurable functions on � is
defined as LA(�,Rn) = (LA(�))n and is equipped with the norm ‖u‖LA(�,Rn) =
‖‖u‖ ‖LA(�) for u ∈ LA(�,Rn). The Orlicz space LA(�,Rn×n) of matrix-valued
measurable functions on � can be defined analogously.

We denote by W 1,A(�) the Orlicz–Sobolev space defined by

W 1,A(�) := {u ∈ LA(�) : u is weakly differentiable and Du ∈ LA(�,Rn)}.
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The space W 1,A(�), equipped with the norm

‖u‖W 1,A(�) := ‖u‖LA(�) + ‖Du‖LA(�,Rn),

is a Banach space. The space W 1,A
0 (�) is the closure of C∞

c (�) in the W 1,A norm.
The Orlicz space W 1,A(�,Rn) of vector-valued measurable functions on �

is defined as W 1,A(�,Rn) = (W 1,A(�))n and is equipped with the norm
‖u‖W 1,A(�,Rn) = ‖u‖LA(�,Rn) + ‖Du‖LA(�,Rn×n) for u ∈ W 1,A(�,Rn). The
analogous spaces for matrix-valued functions are defined in the same way.

We now introduce a notion of ordering for Young functions (see, e.g., [32,
Definition 3.5.6]).

Let A and B be Young functions. A is said to dominate B, and we write B ≺ A,
if there exists a positive constant c0 such that

B(t) ≤ A(c0t), for every t > 0. (7)

As customary, if there exists also t0 > 0 such that (7) holds for every t ≥ t0, we say
that A dominates B near infinity. If A ≺ B and B ≺ A, the functions A and B are
said to be equivalent, and we write A ∼ B.

Let p ≥ 1. The Orlicz–Sobolev space generated by the N -function tp logα(e+ t)

is the Zygmund space LpLogαL. The space L1LogαL will be denoted by LLogαL. If

α < 0, the equivalent notation Lp

Log−αL
will be used. Since the conjugate N -function

of tp logα(e+ t), t ≥ 0, p > 1, is equivalent to tp
′
log−α

p′
p (e+ t), where p′ := p

p−1

(see, e.g., [29, Theorem 7.2]), we have that the dual space of Ln−1LogαL, α > n−2,

is the Zygmund space L
n−1
n−2

Log
α

n−2 L
. Furthermore, by virtue of [8, Theorem 9.1], it holds

that

Lq ⊆ L
n−1
n−2

Log
α

n−2 L
, for every q >

n− 1

n− 2
. (8)

We recall that a family of functions F has equi-absolutely continuous integrals if
for every ε > 0 one can find δ > 0 such that for all u ∈ F there holds

∫
E
|u(x)| dx <

ε provided |E| < δ. A general criterion for the equi-absolute continuity of the
integrals of a family of functions in LA(�) is given by the following version of De
la Vallée Poussin’s Theorem (see, e.g., [29, Ch. II, §11.1]):

Theorem 3 Let A be an N -function and F be a family of functions in LA(�). If
there exists C > 0 such that

∫
�

A(|u(x)|) dx ≤ C, u ∈ F,
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then the family F has equi-absolutely continuous integrals.

Let {vj } be a sequence of functions in LA(�,Rn), and let v ∈ LA(�,Rn). If A
is �2 near infinity, then

lim
j→+∞‖vj − v‖LA(�,Rn) = 0 ⇔ lim

j→+∞

∫
�

A(‖vj − v‖) dx = 0.

Note that, if A does not satisfy �2-condition, the implication “⇐” fails. If A ∈ �2
near infinity, instead, we have

lim
j→+∞‖vj − v‖LA(�,Rn) = 0 ⇒ lim

j→+∞

∫
�

A(‖vj‖) dx =
∫
�

A(‖v‖) dx.

3.1 Traces

We define Orlicz–Sobolev functions on the (sufficiently smooth) boundary ∂� of �
following the approach of [32, Section 6].

First, we recall the definition of open set of class Ck,α . Since the minimum
regularity for � will be Lipschitz, we are assuming that k + α ≥ 1.

Definition 1 Let k ≥ 0 be an integer and α ∈ [0, 1] be such that k + α ≥ 1. A
bounded open set � is said to be of class Ck,α if there exist r > 0, b > 0, m ∈ N,
a1, . . . , am ∈ Ck,α([0, r]n−1) and M1, . . . ,Mm proper rigid transformations in R

n

such that, setting

�i : = M−1
i ({(x̂, xn) ∈ (0, r)n−1 × R : xn = ai(x̂)}) ,

U+
i : = M−1

i ({(x̂, xn) ∈ (0, r)n−1 × R : ai(x̂) < xn < ai(x̂)+ b}) ,
U−
i : = M−1

i ({(x̂, xn) ∈ (0, r)n−1 × R : ai(x̂)− b < xn < ai(x̂)}) ,

we have that

∂� =
m⋃
i=1

�i ,

m⋃
i=1

U+
i ⊂ � and

m⋃
i=1

U−
i ⊂ R

n\�̄ .

For each i = 1, . . . , m, the set �i is relatively open in ∂� and the sets U+
i , U

−
i

are open. We denote by Ui the open set given by U+
i ∪ �i ∪ U−

i for every
i = 1, . . . , m. Then, the family {Ui}mi=1 is an open cover of ∂�. Furthermore, we
consider an open set U0 ⊂⊂ � such that �̄ ⊂⋃m

i=0 Ui .
For each i = 1, . . . , m, we define Pi : [0, r]n−1 × [−b, b] → R

n by
Pi (x̂, xn) := (x̂, ai(x̂) + xn), and Ni := M−1

i ◦ Pi . Then, each Ni is injective,
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and we have Ni ((0, r)n−1 × (−b, b)) = Ui , Ni ((0, r)n−1 × (0, b)) = U+
i ,

Ni ((0, r)n−1 × [0, b)) = �i ∪ U+
i , and Ni ((0, r)n−1 × {0}) = �i .

Denoting by π : Rn → R
n−1 the projection onto the first n− 1 coordinates and

by η : Rn−1 → R
n the map η(x̂) = (x̂, 0), for any function u defined on �i , we

consider the map Li(u) := π(N−1
i (�i))→ R defined by Li(u) := u ◦ Ni ◦ η.

We are now in position to give the definition of an Orlicz–Sobolev function
defined on the boundary. Assume that � is a Lipschitz open set.

Definition 2 We denote by W 1,A(∂�) the set of functions u : ∂� → R such that
Li(u) ∈ W 1,A((0, r)n−1) for all i ∈ {1, . . . , m}, equipped with the norm

‖u‖W 1,A(∂�) :=
m∑
i=1

‖Li(u)‖W 1,A((0,r)n−1) .

An analogous definition can be given, with minor modifications, for the space
W 1,A(�i) of Orlicz–Sobolev functions defined on the subset �i . Moreover, it can
be shown that W 1,A(∂�) is a Banach space (see, e.g., [32, Section 6.3.6]), and
this property does not depend on the description of the boundary considered in
Definition 1.

Let u ∈ W 1,A(�). We denote by u|∂� the trace of u on ∂�, which belongs to
LA(∂�). With abuse of notation, we will write u ∈ W 1,A(∂�) when the trace of
u belongs to W 1,A(∂�), following the definition given in 2. We then define the
intersection space

W 1,A(�) ∩W 1,A(∂�) := {u ∈ W 1,A(�) : u|∂� ∈ W 1,A(∂�)} .
It is equipped in a natural way with the norm of an intersection

‖u‖W 1,A(�)∩W 1,A(∂�) := ‖u‖W 1,A(�) + ‖u‖W 1,A(∂�) ,

and it can be easily shown that it is a Banach space. For � a relatively open subset of
∂�, the notation W 1,A(�) and W 1,A(�)∩W 1,A(�) will be used. For vector-valued
functions, the symbol W 1,A(�;Rn) ∩W 1,A(∂�;Rn) will be adopted.

In order to extend an Orlicz–Sobolev function defined on (0, r)n−1 × {0} to
(0, r)n−1 × (0, b), we will extend putting the same value on the vertical fiber.
Namely, first, we will project onto the first n − 1 coordinates, and then we will
compose with the map η that leaves the last coordinate fixed (equal to 0). The proof
can be obtained as in [26, Lemma 4.1] dealing with the W 1,p case.

Lemma 1 Let r, b > 0, and set D := (0, r)n−1 × (0, b) and � := (0, r)n−1 × {0}.
Then, the map E : W 1,A(�)→ W 1,A(D) defined by Eu := u ◦ η ◦ π is linear and
bounded. Furthermore,

∂(Eu)

∂xi
= ∂u

∂xi
◦ η ◦ π , for i = 1, . . . , n− 1 , and

∂(Eu)

∂xn
= 0 . (9)

In addition, (Eu)|� = u.
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Proof Defining ũ := Eu, by Fubini’s theorem, we have

∫
D

A(|̃u(x)|) dx = b

∫
(0,r)n−1

A(|u(x̂, 0)|) dx̂, (10)

which implies ũ ∈ LA(D). Now, choosing a test function ϕ ∈ C1
c (D), for each

i ∈ {1, . . . , n− 1}, a simple integration by parts gives

∫
D

ũ(x)
∂ϕ

∂xi
(x) dx = −

∫
D

∂u

∂xi
(η(π(x)))ϕ(x) dx , (11)

while for i = n

∫
D

ũ(x)
∂ϕ

∂xn
(x) dx =

∫
(0,r)n−1

u(x̂, 0)
∫ b

0

∂ϕ

∂xn
(x̂, xn) dxn dx̂ = 0 . (12)

Thus, (9) holds. Since an analog of (10) holds also for ∂ũ
∂xi

, i = 1, . . . , n − 1, we

conclude that ũ ∈ W 1,A(D) and that the map E is linear and bounded. The last
assertion ũ|� = u follows from the continuity of the trace operator. �

The previous result is a tool for the proof of the following density result of smooth
functions in W 1,A(�) ∩W 1,A(∂�).

Proposition 2 Let k ≥ 0 be an integer and α ∈ [0, 1] be such that k + α ≥ 1.
Let � be an open and bounded set with Ck,α boundary. Then, Ck,α(�̄) is dense in
W 1,A(�) ∩W 1,A(∂�).

Proof The strategy of [26, Proposition 4.2], based on the analogous of Lemma 1
and the result of Fonseca and Malý [19, Lemma 2.4], which allows to modify the
boundary values of a function without increasing significantly its norm, can be
performed in the Orlicz setting with minor modifications. The proof is based on
a gluing lemma for functions defined on disjoint subsets, a partition of unity and
triangle inequality for the norm. �

As a final remark, we notice that u ∈ W 1,A(∂�), for an N -function A complying
with assumption (3) and � of class C1, admits a continuous representative (see [11,
Remark 3.2]) on n − 1 manifolds. If not stated otherwise, we will always assume
that u itself is the continuous representative.

4 Some Definitions and Preliminary Results

This section collects some basic definitions and preliminary results.
Let u : � −→ R

n be a measurable function, and let x0 ∈ �. If u is
approximately differentiable at x0, we denote by ∇u(x0) its approximate differential
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at x0. We denote the set of approximate differentiability points of u by �d . If u is
approximately differentiable a.e., for any E ⊂ R

n and y ∈ R
n, we define

Nu,E(y) := H0({x ∈ �d ∩ E : u(x) = y}). (13)

The number Nu,� will be denoted by Nu.
Now, we recall the definition of almost everywhere (a.e.) invertibility for a vector-

valued function.

Definition 3 A function u : � −→ R
n is said to be one-to-one a.e. in a subset

E ⊂ � if there exists a subset N ⊂ E, with Ln(N) = 0, such that u|E\N is one-to-
one.

Since we are assuming � to be Lipschitz, for Hn−1-a.e. x ∈ ∂� the tangent
space of ∂� at x, denoted by Tx∂�, and the unit exterior normal ν(x) to � at x are
defined.

Let V be an (n−1)-dimensional subspace of Rn, and let L : V → R
n be a linear

map. We denote by �n−1V the space of all alternating (n− 1)-tensors on V and by
�n−1L : �n−1V → R

n the transformation defined by

(�n−1L)(a1 ∧ · · · ∧ an−1) = La1 ∧ · · · ∧ Lan−1 , a1, . . . , an−1 ∈ V ,

where ∧ indicates the exterior product between vectors in R
n. It is well known that

the one-dimensional space �n−1V can be identified in a canonical way with the
subspace generated by v, v being any of the two unit normal vectors to V . Thus, the
linear transformation �n−1L is determined by the value (�n−1L)v, and the identity

(�n−1L)v = (cof L̃)v (14)

holds whenever L̃ : R
n → R

n is any linear map extending L. Let u ∈
W 1,A(∂�;Rn). Then, the tangential derivative Du(x) : Tx∂� → R

n exists for
a.e. x ∈ ∂� and |Du| ∈ LA(∂�). As a consequence, (�n−1Du(x))ν(x) exists for
a.e. x ∈ ∂�, and (�n−1Du)ν ∈ LLog

α
n−1 L(∂�,Rn).

4.1 Degree for Orlicz–Sobolev Maps, Topological Image of a
Set, and Geometric Image of a Set

In order to introduce the concept of topological image (according to Šverák [40]
(see also [36])), we need to recall the notion of topological degree for continuous
functions (see, e.g., [17, 18]).

In the end of Sect. 3.1, we have recalled that every map u ∈ W 1,A(∂�,Rn),
where � is an open set of class C1, and A satisfies (3) and the �2-condition at
infinity, admits a continuous representative ū : ∂� −→ R

n. It can be extended to
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a continuous function ũ : � −→ R
n (see, e.g., [38, Theorem 35.1]), and therefore,

the following definition of degree can be given.

Definition 4 The degree deg(ū,�, ·) : Rn \ ū(∂�) → Z of ū on U is defined as
the degree deg(ũ,�, ·) : Rn \ ū(∂�)→ Z of ũ on �.

We will denote by deg(u,�, ·) the degree of u ∈ W 1,A(∂�,Rn), with a slight abuse
of notation, tacitly referring to the degree of its continuous representative.

We are now in a position to define the concept of topological image.

Definition 5 Let A be an N -function satisfying (3), and let � ⊂⊂ R
n be a non-

empty open set with a C1 boundary. If u ∈ W 1,A(∂�,Rn), we define imT(u,�),
the topological image of � under u, as the set of y ∈ R

n \ u(∂�) such that
deg(u,�, y) �= 0.

The continuity of function deg(u,�, ·) implies that the set imT(u,�) is open
and ∂imT(u,�) ⊂ u(∂�). Furthermore, as deg(u,�, ·) = 0 in the unbounded
component of Rn \ u(∂�) (see, e.g., [17, Sect. 5.1]), it follows that imT(u,�) is
bounded.

The following formula for the distributional derivative of the degree of Orlicz–
Sobolev functions will be widely used (see [25, Proposition 2.12]).

Proposition 3 Let A be an N -function satisfying (3) and the �2-condition at
infinity. Let � ⊂ R

n be an open set of class C1. Assume that u is the continuous
representative of a function inW 1,A(�,Rn). Then, for all g ∈ C1(Rn,Rn),

∫
∂�

g(u(x)) · ((�n−1Du(x))ν(x)) dHn−1(x) =
∫
Rn

div g(y) deg(u,�, y) dy,

where ν is the unit outward normal to �.

The following is the notion of geometric image of a set adapted to the context of
Orlicz spaces (see [25, Section 2.2]).

Definition 6 Let u ∈ W 1,A(�,Rn), and assume that detDu(x) �= 0 for a.e. x ∈ �.
Let �0 be the subset of x ∈ � where the following are satisfied:

(i) u is approximately differentiable at x and det∇u(x) �= 0.
(ii) There exist w ∈ C1(Rn,Rn) and a compact set K ⊂ � of density 1 at x such

that u|K = w|K and ∇u|K = Dw|K .

The geometric image of � under u is defined as

imG(u,�) := u(�0). (15)

It turns out that �0 is a set of full measure in � (see the remarks after [25,
Def. 2.4]).
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5 The Class of Admissible Functions

From now on, we fix as N -function A satisfying (3) and the �2-condition at
infinity (4) the function A(t) := tn−1 logα(e + t) for α > n− 2.

We start introducing the following class A(�).

Definition 7 Let u ∈ W 1,A(�,Rn), and assume that detDu ∈ L1(�). For every
f ∈ C1

c (�× R
n,Rn), we define

Ē�(u, f) :=
∫
�

[cofDu(x) ·Df(x,u(x))+ detDu(x) div f(x,u(x))] dx . (16)

We define A(�) as the set of u ∈ W 1,A(�,Rn) such that detDu ∈ L1(�) and

Ē�(u, f) = 0 for all f ∈ C1
c (�× R

n,Rn) . (17)

Remark 2 We notice that if u ∈ W 1,A(�,Rn), then Du ∈ LA(�,Rn×n), so
cofDu ∈ LLog

α
n−1 L(�,Rn×n). In particular, cofDu ∈ L1

loc(�,Rn×n). This
implies that the energy (16) is finite.

In Eq. (16), Df(x, y) denotes the derivative of f(·, y) evaluated at x, while
div f(x, y) is the divergence of f(x, ·) evaluated at y.

The energy Ē�(u) was introduced in [21] and measures the new surface in
the deformed configuration created by u. For our purposes, we are interested into
deformations u such that Ē�(u) = 0; i.e., that do not exhibit cavitation.

A global version of condition (17) is the following (20), leading to the introduc-
tion of the class A(�).

Definition 8 Given u ∈ W 1,A(�,Rn) ∩W 1,A(∂�,Rn) and f ∈ C1
c (�̄ × R

n,Rn),
we define

F∂�(u, f) :=
∫
∂�

f(x,u(x)) · ((�n−1Du(x))ν(x)) dHn−1(x) .

Then, we define A(�) as the class of u ∈ W 1,A(�,Rn) ∩ W 1,A(∂�,Rn) with
detDu ∈ L1(�) such that

Ē�(u, f) = F∂�(u, f) for all f ∈ C1
c (�̄× R

n,Rn) . (18)

Taking into account the density in C1
c (� × R

n,Rn) of sums of functions of
separate variables (see [33, Corollary 1.6.5]), conditions (17) and (18) can be
rephrased, respectively, as follows:

E�(u, φ, g) :=
∫
�

[
cofDu(x) · (g(u(x))⊗Dφ(x))+ detDu(x)φ(x)divg(u(x))

]
dx = 0 ,

(19)
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for all φ ∈ C1
c (�) and g ∈ C1

c (R
n,Rn), and

Ē�(u, φg) = F∂�(u, φg) for all φ ∈ C1
c (�̄) and g ∈ C1

c (R
n,Rn) , (20)

where φg ∈ C1
c (�̄× R

n,Rn) stands for the function (φg)(x, y) := φ(x)g(y).

5.1 Extension Properties

As a first feature of the class just introduced, we notice that every function in A(�)

can be extended to an open set �̃ ⊃ �̄ by a function in A(�̃).
In fact, we need to assume that � is an extendable domain.

Definition 9 An open set � is said to be extendable if it is bounded and has a
Lipschitz boundary, and there exist a set N , with ∂� ⊂ N ⊂ R

n\�, a δ > 0 and a
bi-Lipschitz homeomorphism w : ∂�× (−δ, 0] → N onto N such that w(x, 0) = x
for all x ∈ ∂�.

It is easy to see that the assumption of piecewise C1,1 implies � extendable. In
addition, the set � ∪N is open (see the remarks below [26, Definition 6.2]).

We start by stating a technical lemma, whose proof can be easily obtained by
Lemma 1 as in [26, Lemma 6.1].

Lemma 2 Let r, b > 0, and set D := (0, r)n−1 × (0, b) and � := (0, r)n−1 × {0}.
Then, the map E : W 1,A(�,Rn) → W 1,A(D,Rn) defined by Eu := u ◦ η ◦ π is
linear and bounded. Moreover, detD(Eu) = 0 and (Eu)|� = u. If, in addition,
(�n−1Du)en ∈ Lq(�,Rn) for some q ≥ 1, then cofD(Eu) ∈ Lq(D;Rn×n) and

‖cofD(Eu)‖Lq(D;Rn×n) = b1/q‖(�n−1Du)en‖Lq(�,Rn) .

The main result of extension is contained in the following proposition.

Proposition 4 Let � be an extendable open set. Then, there exist an open set
�̃ ⊃ �̄ and a linear bounded operator E : W 1,A(�;Rn) ∩ W 1,A(∂�;Rn) →
W 1,A(�̃;Rn) such that Eu = u a.e. in �, detD(Eu) = 0 a.e. in �̃\�, and the
following hold:

(i) If (�n−1Du)ν ∈ Lq(∂�,Rn) for some q ≥ 1, then cofD(Eu) ∈
Lq(�̃\�;Rn×n) and

‖cofD(Eu)‖Lq(�̃\�;Rn×n) ≤ C‖(�n−1Du)ν‖Lq(∂�,Rn)

for some constant C > 0 independent of u.
(ii) u ∈ A(�) if and only if Eu ∈ A(�̃).
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Proof We may follow the argument of [26, Proposition 6.3]. Therefore, we just
provide a sketch of the proof.

Let w and N be as in Definition 9, and recall the notation of Sect. 3.1. We denote
by π̃ : ∂� × (−δ, 0] → ∂� the projection onto ∂�, and we set �̃ := � ∪ N . We
then define the function ũ : �̃→ R

n by

ũ :=
{

u in �,

u|∂� ◦ π̃ ◦ w−1 in N .

The first step is to prove that ũ ∈ W 1,A(N\∂�,Rn). Then, one shows that the map
u → ũ is linear and, since

‖̃u‖W 1,A(N\∂�,R
n
) ≤ c‖u‖W 1,A(∂�,R

n
)

for some constant c > 0, the map u → ũ is bounded from W 1,A(∂�,Rn) to
W 1,A(N\∂�,Rn). Furthermore, from the continuity of the trace operator, the trace
of ũ|N\∂� on ∂� is u|∂� . Thus, ũ ∈ W 1,A(�̃,Rn) and the map E : W 1,A(�;Rn) ∩
W 1,A(∂�;Rn) → W 1,A(�̃;Rn) defined setting Eu := ũ is linear and bounded.
The remaining assertions follow from Lemma 2 and explicit computations that can
be performed as in [26, Proposition 6.3]. A key ingredient therein is the stability of
compositions with bi-Lipschitz homeomorphisms. �

5.2 Regular Functions inA(�)

As remarked in the introduction, a key question in the theory of existence in
nonlinear elasticity is whether the distributional determinant DetDu equals the
pointwise determinant detDu. This can be rewritten equivalently as

1

n
Div[adjDu(x)u(x)] = detDu(x) x ∈ �, (21)

where Div in the left-hand side stands for the distributional divergence and can be
generalized to

Div[adjDu(x)g(u(x))] = divg(u(x))detDu(x) , x ∈ �, (22)

for all g ∈ C1(Rn,Rn) ∩ W 1,∞(Rn,Rn). It is easy to check that both the
identities (21) and (22) hold true for smooth functions, say u ∈ C2(�̄,Rn), as a
consequence of Piola’s identity Div cofDu = 0.

In a weaker setting, by using the definition of distributional divergence, (22) can
be formulated as in (19), and in [25, 39], the class A of those orientation-preserving
Orlicz–Sobolev functions satisfying (19) has been introduced and analyzed. The
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identity (20) underlying the definition of our class A can be obtained from (22)
multiplying by φ ∈ C∞(�̄) and then integrating by parts.

The aim of this section is then to identify the “regular” functions included in the
class A. As a first remark, we note that the same argument as in [26, Lemma 7.1]
gives C1(�̄;Rn) ⊂ A(�). The main result is the following proposition, where
we prove that a suitable subclass of W 1,A(�;Rn) ∩ W 1,A(∂�;Rn) is contained
in A(�). The idea is to combine the extension property of Proposition 4 with the
adaptation to the Orlicz–Sobolev setting of the result by Müller et al. [37].

Proposition 5 Let � be an extendable open set. Let q > n−1
n−2 . Then, the class of

maps u ∈ W 1,A(�;Rn) ∩W 1,A(∂�;Rn) such that

cofDu ∈ Lq(�;Rn×n) , (�n−1Du)ν ∈ Lq(∂�;Rn)

is a subset of A(�).

Proof Let u ∈ W 1,A(�;Rn) ∩W 1,A(∂�;Rn) be such that cofDu ∈ Lq(�;Rn×n)
and (�n−1Du)ν ∈ Lq(∂�;Rn). Then, taking into account (2), (8), and Hölder’s
inequality, cofDu ∈ Lq , with q as above, implies detDu ∈ L1. Since n−1

n−2 ≥ n
n−1

and LA can be embedded into Ln−1, the proof can be deduced by Müller et al. [37,
Theorem 3.2] applied to ũ the extension of u to an open set �̃ ⊃ �̄ obtained with
Proposition 4, which complies with ũ ∈ W 1,A(�̃,Rn) and cofDũ ∈ Lq(�̃;Rn×n).
This gives ũ ∈ A(�̃), whence, with Proposition 4(ii), we infer u ∈ A(�). �

5.3 Some Properties of Orientation-Preserving Functions in
A(�): Boundedness and Global Invertibility

In this section, we preliminarily prove that functions u ∈ A(�) with detDu ≥ 0 a.e.
are bounded, thus proving the “global” counterpart of the local boundedness result
[25, Proposition 4.2].

Proposition 6 If u ∈ A(�) with detDu ≥ 0 a.e., then deg(u,�, ·) = Nu a.e.,
imT(u,�) = imG(u,�) a.e. and u ∈ L∞(�;Rn).

Proof The proof can be obtained as in [26, Proposition 8.4] by using the formula for
the distributional derivative of the degree, Proposition 3. We then omit the details.

�
As a consequence of Proposition 6, we obtain the following global invertibility

result.

Theorem 4 Let u,u0 ∈ A(�) be such that u|∂� = u0|∂�, detDu > 0 a.e.,
detDu0 ≥ 0 a.e. and u0 injective a.e. Then, u is injective a.e. and imG(u,�) =
imG(u0,�) a.e.
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Proof See [26, Theorem 9.1]. �
The a.e. injectivity of u allows to define a.e. its inverse (see [26, Definition 9.2]).

Definition 10 Let u ∈ A(�) be injective a.e. Let �0 be the set of Definition 6,
and �1 ⊂ �0 such that Ln(�\�1) = 0 and u|�1 be injective. The inverse u−1 :
imT(u,�)→ R

n is defined a.e. as u−1(y) = x, for every y ∈ u(�1), where x ∈ �1
satisfies u(x) = y.

The a.e. inverse is a Sobolev function, as ensured by the following result which
represents the global counterpart of [25, Proposition 4.11].

Theorem 5 Let u ∈ A(�) be injective a.e. with detDu > 0 a.e. Then, u−1 ∈
W 1,1(imT(u,�),Rn) and Du−1(y) = Du(u−1(y))−1 for a.e. y ∈ imT(u,�).

Proof [26, Theorem 9.3]. �

6 Existence of Minimizers

In this section, we prove the existence of minimizers for functionals of the form

I (u) =
∫
�

W(x,u(x),Du(x)) dx (23)

on the class A(�), under the assumption that W is polyconvex in the last variable
(see, e.g., [16]).

The following result establishes the compactness in the class A(�).

Proposition 7 Let {uj }j∈N ⊂ A(�) be a bounded sequence in W 1,A(�;Rn) ∩
W 1,A(∂�;Rn) and such that {detDuj }j∈N is equi-integrable. Then, there exist a
subsequence (not relabeled) {uj } and a function u ∈ A(�) such that

uj ⇀ u inW 1,A(�;Rn) ∩W 1,A(∂�;Rn) and detDuj ⇀ detDu in L1(�)

(24)
as j →+∞.

Proof The argument is quite standard, and we adapt the proof of [26, Proposi-
tion 10.2] to our setting.

By assumptions, we can find u ∈ W 1,A(�;Rn), v ∈ W 1,A(∂�;Rn), and w ∈
L1(�) such that, up to a (not relabeled) subsequence, we have

uj ⇀ u in W 1,A(�;Rn) , uj ⇀ v in W 1,A(∂�;Rn) , detDuj ⇀ w in L1(�) .

Up to a further subsequence, we may assume that uj → u a.e., and, taking into
account the embedding result of [25, Proposition 2.6] and the weak continuity
of the cofactors (see, e.g., [16, Theorem 8.20]), we get cofDuj ⇀ cofDu in
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L1(�;Rn×n). The continuity of the traces uj |∂� ⇀ u|∂� in LA(∂�;Rn) implies
v = u|∂� , while (17) and [21, Theorem 3] give w = detDu a.e. The rest of the proof
leading to the identity (18) is based on standard computations and on the weak
continuity result

(�n−1Duj )ν ⇀ (�n−1Du)ν in LLog
α

n−1 L(∂�,Rn),

which can be inferred along the lines of [26, Proposition 10.1]. �
Now, we can prove the existence of minimizers for I on a suitable subclass of

A(�).

Theorem 6 Let u0 ∈ A(�) be injective a.e. and such that detDu0 ≥ 0 a.e. Let
W : �× imT(u0,�)× R

n×n+ → R comply with the following assumptions:

(i) W is measurable.
(ii) W(x, ·, ·) is lower semicontinuous for a.e. x ∈ �.
(iii) W(x, y, ·) is polyconvex for a.e. x ∈ � and for every y ∈ imT(u0,�).
(iiii) There exist a constant c > 0, a function a ∈ L1(�), and a Borel function

h : (0,∞)→ [0,∞) with

lim
t↘0

h(t) = lim
t→∞

h(t)

t
= ∞ (25)

such that

W(x, y,F) ≥ a(x)+ c A(‖F‖)+ h(det F) (26)

for a.e. x ∈ �, every y ∈ imT(u0,�) and F ∈ R
n×n+ .

Define

A := {u ∈ A(�) : detDu > 0 a.e. and u|∂� = u0|∂�
}
,

and assume that A �= ∅ and I �≡ ∞ on A. Then, I admits a minimizer on A, and
any element inA is injective a.e.

Proof Once a compactness result has been proved, the proof of the existence of
minimizers is based on a well-known argument. We follow the scheme in [26,
Theorem 10.3].

Under the coerciveness assumption (26), the lower semicontinuity of the func-
tional I can be inferred from [5, Theorem 5.4]. The a.e. injectivity of each function
in A is a consequence of Theorem 4.

Now, let {uj }j∈N be a minimizing sequence of I in A. Then, by Proposition 6
and Theorem 4, we get

uj (x) ∈ imT(u0,�) for a.e. x ∈ � and all j ∈ N . (27)
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From assumption (iiii) and De la Vallée Poussin’s Theorem (Theorem 3), we infer
that {Duj }j∈N is equibounded in LA(�,Rn×n) and {detDuj }j∈N is equi-integrable.
Furthermore, (27) and the boundedness of topological image imply that {uj }j∈N is
bounded in L∞ and then in W 1,A(�,Rn). The compactness result of Proposition 7
provides a function u ∈ A(�) such that, up to a subsequence,

uj ⇀ u in W 1,A(�;Rn) , detDuj ⇀ detDu in L1(�) .

Now, a simple argument by contradiction based on assumption (iiii) shows that
detDu > 0 a.e. Then, since the boundary condition is preserved in the limit,
u|∂� = u0|∂� , whence u ∈ A. This concludes the proof. �
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Global Existence of Solutions for the
One-Dimensional Response of
Viscoelastic Solids Within the Context of
Strain-Limiting Theory

Yasemin Şengül

1 Introduction

It is now known that using implicit theories the response of materials can be
described much more generally. In explicit constitutive modelling, which can be
seen as a special case of implicit modelling, the stress is given explicitly as a
function of the strain and it is not possible to obtain a nonlinear relationship between
the stress and the linearized strain in this case. On the other hand, in implicit
constitutive modelling, as a result of expressing the strain as a function of the
stress, a nonlinear relation can be achieved after linearization. This idea is due
to Rajagopal [24, 25, 27–30, 32] who introduced a new class of elastic materials
where the response of materials is given by an implicit constitutive relation between
the stress and the deformation gradient. For the strain-limiting elastic materials,
the displacement gradients and the strain remain bounded even if the stress tends
to infinity. The theory of limiting strain provided by such implicit constitutive
relations is able to explain such a phenomena which has actually been observed
experimentally before (see [39] and the references therein) such as the behaviour of
some composite materials (see, e.g., [16]), biological tissues, and fracture of brittle
materials (see, e.g., [11, 12, 35]).

In one-dimensional case, the relationship between the linearized strain ε(x, t)

and the displacement function u(x, t) is clearly given by ε = ux . Following
Rajagopal [24, 25], one can write the strain-limiting model in this case as

ε = h(S),
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where h is a nonlinear function, and S(x, t) is the Cauchy stress. Rajagopal [26]
extended this approach to rate-type viscoelastic materials and proposed an implicit
constitutive equation with an additional term εt corresponding to the time rate of
change of the linearized strain, which is called the strain rate. Erbay and Şengül [8]
studied the strain-limiting rate-type viscoelastic model given as

ε + νεt = h(S), (1)

where ν > 0 is the viscosity constant, and h is a nonlinear function with h(0) =
0. The constitutive relation (1) is a generalization of the Kelvin–Voigt viscoelastic
model. As explained in depth in [37], while such a constitutive relation allows for
creep, a phenomenon exhibited by viscoelastic solids, it is not capable of exhibiting
stress relaxation, a characteristic that it shares in common with the Kelvin–Voigt
model. While this is not a shortcoming in that several viscoelastic bodies creep but
do not exhibit stress relaxation, the model under consideration cannot be used to
describe a large class of polymeric solids that do exhibit stress relaxation.

A very important feature of the constitutive relation (1) is that it is linear in the
linearized measure of the strain. This makes it very useful in describing the small
strain and small strain rate response of a large class of viscoelastic solids (see e.g.,
[19, 21, 33, 34]. However, as mentioned in [39] (see also [32]), this constitutive
relation is a special case of more general models where mixed terms involving
products of the linearized strain and the stress appear.

In [8], using (1) and the equation of motion, Erbay and Şengül obtained the third-
order semilinear equation

Sxx + ν Sxxt = h(S)tt (2)

and studied traveling wave solutions under the assumption of two constant equi-
librium states at infinity. As they stated in [8], due to the fact that the stress S

involves both the elastic and dissipative character, it is not true that the first and the
second terms on the left of (2) represent elastic and dissipative effects, respectively.
Different from classical viscoelastic models, the inertia term is nonlinear as well
as the fact that the equation is posed in terms of the stress S rather than the
displacement or the deformation. In [10], the Cauchy problem defined by (2)
together with some suitable initial conditions is considered and it is proven that
for initial data in appropriate function spaces and appropriate forms of h appearing
in the constitutive relation, the Cauchy problem (2) is locally well-posed in time.

Studies on limiting strain models have attracted a lot of attention recently.
Different from the ones mentioned above, there are many valuable contributions
to this theory in a wide range of contexts (see, e.g., [5–7, 13–15, 17, 18]) including
numerical studies (see, e.g., [20, 22, 23]). In the one-dimensional setting, Şengül
[38] studied Eq. (2) with an arctangent type nonlinearity. Also, Erbay and Şengül
[9] introduced a stress-rate type model and showed that it is thermodynamically
consistent. In multi-dimensional setting, on the other hand, starting with elastic
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models [1, 2], very recently, Bulíček, Patel, Şengül, and Süli [3, 4] proved existence
of weak solutions with both periodic and Dirichlet boundary data.

In the present work, after reviewing the local-in-time existence results in [10],
the existence for the displacement is stated. After that, the energy is investigated
and it is shown that it decreases over time. The proof of the main theorem, which
is the global existence of solutions, relies on this investigation about the energy
and a lemma where a characterization for the blow-up conditions is stated and
proven. Also, smallness assumptions made on the deformation gradient and its time
derivative are shown to hold under additional conditions. As in the local-in-time
existence case, the analysis in this work is done in R. However, this could also be
done for a bounded domain under suitable boundary conditions.

The structure of the paper is as follows. In Sect. 2 we review local existence
results and rigorously show it for u which was not done in [10]. In Sect. 3 we
recall some notation we use throughout the paper, and then, in Sect. 4, we prove
that the local solutions are, in fact, global by using a characterization of the blow-up
condition as well as the decrease of the energy over time. In Sect. 5 we show that
the theory developed is, in fact, compatible with the smallness assumptions of the
strain-limiting theory.

2 Preliminaries

In [10], the authors convert the equation for the stress to obtain an equation in a new
variable defined as the sum of the strain and the strain rate and write it as a time-
dependent heat equation. They use the results related to the variable coefficient heat
equation and the techniques from the theory of elliptic operators. The proof of their
main theorem includes linearization around a given state, definition of a contractive
mapping and the usage of Banach’s fixed point theorem. We will not briefly review
the results about local-in-time existence of solutions.

A new variable ω(x, t) which is the sum of the strain and strain rate is defined
as ω = ε + νεt , and it is assumed that the function h(·) satisfies h′(z) > 0 for any
z ∈ R. As a result (1) is written in the form

S = g(ω), (3)

where g is the inverse function of h satisfying g(0) = 0. As a consequence of the
invertibility g is a sufficiently smooth and g′(z) > 0 for any z ∈ R, which means the
stress S is a smooth function of ω and it is strictly increasing. As it is mentioned
by Rajagopal in [32], it is best not to invert the expression for the linearized
strain ε as a function of T, and that one should solve the equation of motion
and the constitutive relation simultaneously in order to avoid misinterpretation of
the procedure. However, in the current work we are doing the analysis in one-
dimensional space for which it is relatively easier to return to the original variable
and hence avoid misinterpretation.
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In terms of ω, (2) becomes

ωtt = g(ω)xx + νg(ω)xxt . (4)

As mentioned in [10], it is important to note that due to ω involving both the
strain and the strain rate by definition, the first and second terms on the right-
hand side of (4) do not represent purely elastic and purely dissipative effects,
respectively. Moreover, one can write (4) in the divergence form using the function
η(x, t) = ∫ x

−∞ ω(y, t)dy. Substituting these expressions into (4), one obtains the
Cauchy problem

ηtt = g(ηx)x + νg(ηx)xt , x ∈ R, t > 0 (5)

η(x, 0) = η0(x), ηt (x, 0) = η1(x), x ∈ R. (6)

The analysis in [10] is based on the assumptions η0(±∞) = 0 and η1(±∞) = 0.
Letting ηt = φ, (5) can be rewritten as the system

ηt = φx, (7)

φt + A(t)φ = G(t)+ F(t), (8)

where

A(t) = 1 − νDx(g
′(ηx)Dx), G(t) = g(ηx)x, F (t) = ηt . (9)

For the nonlinearity g, the following properties are known, which are also going to
be used for the estimates in the proof of global existence of solutions.

Lemma 1 Let g ∈ C∞(R) with g(0) = 0. If z ∈ Hs(R) ∩ L∞(R), s ≥ 0, then

‖g(z)‖Hs∩L∞ ≤ K1‖z‖Hs∩L∞ ,

where K1 depends only on ‖z‖L∞ .
Lemma 2 Let g ∈ C∞(R). If z1, z2 ∈ Hs(R) ∩ L∞(R), s ≥ 0, then

‖g(z1)− g(z2)‖Hs∩L∞ ≤ K2‖z1 − z2‖Hs∩L∞ ,

where K2 depends on ‖z1‖Hs∩L∞ and ‖z2‖Hs∩L∞ .

In [10], the following result is obtained which is fundamental for the proof of the
global-existence result in this work.

Lemma 3 Let s > 5/2, T > 0. Assume that A is defined as in (9) and that
g′(z) > 0 holds for all z ∈ R. Also assume that G ∈ C1([0, T ];Hs−2) and F ∈
C([0, T ];Hs). Then there exists a solution (φ, η) ∈ (

C([0, T ];Hs), C1([0, T ];
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Hs)
)
to (7) and (8) with η(0) = η0 and φ(0) = φ0 = η1 and satisfying the following

estimates

‖η(t)‖s ≤ ‖η0‖Hs + CT
(
‖η1‖s + ‖G(0)‖s−2

)

+ C T

∫ t

0

(
‖G(τ)‖s−2 + ‖Gτ (τ)‖s−2 + ‖F(τ)‖s

)
dτ (10)

‖ηt (t)‖s ≤ C

(
‖η1‖s + ‖G(0)‖s−2

+
∫ t

0

(
‖G(τ)‖s−2 + ‖Gτ (τ)‖s−2 + ‖F(τ)‖s

)
dτ

)
(11)

for 0 ≤ t ≤ T , where C is a constant.

Finally in [10], a fixed point scheme is constructed in order to prove local well-
posedness for the Cauchy problem (5) and (6) in the Banach space defined by

Xs([0, T ]) =
{
z ∈ C1([0, T ];Hs(R))

∣∣∣z(0) = η0, zt (0) = η1,

‖z(t)‖s ≤ δ̄, ‖zt (t)‖s ≤ M, t ∈ [0, T ]
}

and endowed with the norm

‖z‖Xs([0,T ]) = sup
t∈[0,T ]

(
‖z(t)‖s + ‖zt (t)‖s

)
. (12)

The following two results are proven in [10] giving the local-in-time existence of
solutions for the Cauchy problem (5) and (6).

Theorem 1 Let s > 5/2. Assume g ∈ Cr+1 with r = [s] + 1. Assume also that
η0 ∈ Hs with ‖η0‖s ≤ δ̄

2(1+T0K1(δ))
for some T0 > 0, where ‖ηx‖∞ ≤ δ and K1(δ)

is as in Lemma 1, and δ̄ is as in the definition of Xs([0, T ]). Then, there exists a
sufficiently small time T > 0 with T ≤ T0, such that the Cauchy problem (5) and
(6) admits a unique solution η ∈ Xs([0, T ]).
Note that since Hs ⊂ Ck if s > 1

2 + k, the solutions are classical and by choosing s
large they can be made as smooth as required. Recalling ω = ηx one can also state
a similar result for the local existence of ω, which is not necessary for the purpose
of the current work.
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2.1 Local Existence for the Displacement

From the definitions ε = ux , ω = ε + νεt and ω = ηx , we obtain η = u + νut .
Now, given η we can rewrite this as

ut + 1

ν
u = 1

ν
η,

which can be viewed as an ordinary differential equation in u. Solving it, one obtains

u(x, t) = u(x, 0)e−
t
ν + 1

ν

∫ t

0
e−

1
ν
(t−τ)η(x, τ )dτ. (13)

Since η, ηt ∈ Hs for s > 5/2, we immediately obtain u, ut ∈ Hs for s > 5/2. As a
result Theorem 1 is valid for the displacement u. Moreover,

u(x, t) = u(x, 0)+
∫ t

0
ut (x, τ )dτ. (14)

Together with the definition η = u + νut , this gives the following local existence
result for the displacement.

Theorem 2 Let s > 5/2. Assume h ∈ Cr+1 with r = [s] + 1, and h′(z) > 0 for all
z ∈ R. Assume also that u0, u1 ∈ Hs(R). Then, there exists a sufficiently small time
T > 0 such that the system

utt = Sx,

ε + νεt = h(S),

u(x, 0) = u0(x), ut (x, 0) = u1(x),

(15)

admits a unique solution u ∈ Xs([0, T ]).
Remark 1 Even though system (15) seems to have more than one unknowns, using
g, which is the inverse of h, and the fact that in one space dimension ε = ux , one
can write

utt = g(ux + νuxt )x,

which clearly has the only unknown u.

3 Some Conventions

We use the standard notations for Lebesgue and Sobolev spaces as well as the
spaces of continuous functions. With Ck(R), k = 0, 1, 2, . . . we represent the set
of functions on R that are k-times continuously differentiable. Also C([0, T ];Hs)
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denotes the space of all Hs-valued functions z on the interval [0, T ] of real
numbers such that z is strongly continuous on [0, T ]. Similarly, C1([0, T ];Hs)

denotes the space of all continuously differentiable Hs-valued functions. Here,
Hs = Hs(R) denotes the L2-based Sobolev space of order s on R with the

usual norm ‖z‖s = (∫
R
(1 + ξ2)s |̂z(ξ)|2dξ)1/2

, where the symbol̂ denotes the
Fourier transform. Similarly, we denote the norm in the space L∞ = L∞(R) as
‖z‖L∞ = ess sup

x∈R
|z(x)|. Finally, generic positive constants are denoted by C.

4 Global Existence

In this section, we investigate the energy of the system. We recall that the relation
between the Helmholtz free energy ψ and the Gibbs free energy G is given by
ψ = G− S ∂G

∂S
.

4.1 Energy Decay

In one space dimension, the equation of motion for a homogeneous, viscoelastic,
infinite medium is given by

utt = Sx. (16)

We assume that the density is constant and the stress tends to zero at infinity: S → 0
as x → ±∞. Below we show that the energy decays over time for the strain rate
type model (1).

Proposition 1 For any t ∈ [0, T ), the energy defined as

E(t) =
∫
R

(
1

2
|ut |2 + ψ(S)

)
dx (17)

decreases over time.

Proof Multiplying (16) by ut and integrating over the space variable, we get

1

2

d

dt

∫
R

|ut |2 dx =
∫
R

Sxut dx. (18)

One integration by parts on the right-hand side of this equation yields

1

2

d

dt

∫
R

|ut |2 dx = −
∫
R

Sεt dx. (19)
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Rewriting the equation of motion (16) in the form εtt = Sxx in terms of the strain
and using the constitutive relation (1), one can indeed verify that εt = (h(S))t−νSxx
and consequently Sεt = S(h(S))t − νSSxx . Assuming the existence of a potential
function H(S) with h(S) = −dH(S)/dS we get Sεt = (H − SdH(S)/dS)t −
νSSxx . This can be written as Sεt = ψt − νSSxx in terms of the Helmholtz free
energy ψ(S) if we require that the potential function H(S) is the Gibbs free energy.
Substitution of the above relation obtained for Sεt into (19) yields

d

dt

∫
R

(
1

2
|ut |2 + ψ(S)

)
dx = −ν

∫
R

S2
x dx, (20)

where one integration by parts has been performed on the right-hand side. For ν > 0,
this result shows that the total energy is decreasing over time. �
Remark 2 The right-hand side in relation (20) is a term due to dissipation.
Therefore, it is an energy-dissipation balance and the sum of the kinetic energy
and the elastic energy is a decreasing function of time.

Any solution u ∈ C1([0, T ];Hs) of system (15) can be extended to a maximal
time interval of existence [0, Tmax) where finite Tmax is characterized by the blow-up
condition

lim sup
t→T −max

(‖u(t)‖s + ‖ut (t)‖s
)
<∞. (21)

This means that the solution is global, meaning that T −
max = ∞ if and only if

for all T <∞, we have lim sup
t→T −

(‖u(t)‖s + ‖ut (t)‖s
)
<∞. (22)

Theorem 3 Assume that s > 5/2 and u0, u1 ∈ Hs(R). Then any local-in-time
solution u ∈ C1([0, T ];Hs) to system (15) exists globally if and only if

lim sup
t→T −

(‖ux(t)‖∞ + ‖uxt (t)‖∞
)
<∞. (23)

Proof By the Sobolev embedding theorem, we know that Hs ⊂ L∞ for s > 1/2.
Therefore, since s > 5/2, ‖u(t)‖s <∞ implies ‖ux(t)‖∞ <∞ by

‖ux(t)‖∞ ≤ C‖ux(t)‖s−2 ≤ C‖ux(t)‖s−1 ≤ C‖u(t)‖s .

Similarly for ‖uxt (t)‖∞. This means (23) holds. Conversely, assume that the
solutions exists for t ∈ [0, T ) and (23) holds. Since η = u + νut , (23) implies
that ‖ηx(t)‖∞ is bounded. This means we can use Lemma 1 and Lemma 2 with
K1(M) and K2(M) in the following estimates
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‖η(t)‖s ≤ ‖η0‖s + CT
(
‖η1‖s + ‖G(0)‖s−2

)

+ C T

∫ t

0

(
‖G(τ)‖s−2 + ‖Gτ(τ)‖s−2 + ‖F(τ)‖s

)
dτ

‖ηt (t)‖s ≤ C

(
‖η1‖s + ‖G(0)‖s−2

+
∫ t

0

(
‖G(τ)‖s−2 + ‖Gτ (τ)‖s−2 + ‖F(τ)‖s

)
dτ

)

for 0 ≤ t ≤ T , where C is a constant, which we know by Lemma 3. As a result we
obtain

‖G(t)‖s−2 = ‖g(ηx)x‖s−2 = ‖g(ηx)‖s−1 ≤ K1(M)‖ηx‖s−1 = K1(M)‖η‖s
‖Gt(t)‖s−2 = ‖g′(ηx)ηxt‖s−1 ≤ C

(‖g′(ηx)‖∞‖ηxt‖s−1 + ‖g′(ηx)‖s−1‖ηxt‖∞
)

≤ C
(
K1(M)M‖ηt‖s +K1(M)‖η‖s‖ηxt‖∞

)
.

For ‖ηxt‖∞, since η = u+ νut we have ‖ηxt‖∞ ≤ ‖uxt‖∞+ ν‖uxtt‖∞. Moreover,
by (23), ‖uxt‖∞ and ‖uxtt‖∞ are bounded. Therefore,

‖Gt(t)‖s−2 ≤ CK1(M)M(‖ηt‖s + ‖η‖s).

This implies

‖η(t)‖s + ‖ηt (t)‖s ≤ ‖η0‖s
(
1 + CTK1(M)+ CK1(M)

)
+ ‖η1‖s

(
CT + C

)

+ CT

∫ t

0

(
K1(M)‖η‖s + CK1(M)M(‖η‖s + ‖ηt‖s)+ ‖ηt‖s

)
dτ.

By Grönwall’s lemma we obtain ‖η‖s + ‖ηt‖s is bounded. Then, by (14) we
immediately obtain (22). �

Now, we prove a result based on an assumption on the Helmholtz energy ψ . This
result plays an important role in the proof of the main result, which is Theorem 4.

Lemma 4 Assume that s > 5/2, H(z) ≥ −Cz2 and g(z) ≤ Cz. Then, the
following estimate holds.

−
∫
R

ψ(S)dx ≤ C‖u(t)‖2
s−1 +K,

where K > 0 is a finite constant.
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Proof By the definition of ψ as H(S) + Sh(S), since h′(z) > 0 for any z, we
have that ψ(S) ≥ H(S). From the constitutive relation (1) we know that S =
h−1(ux + νuxt ) = g(ux + νuxt ). Then, also by the assumption H(z) ≥ −Cz2,
we obtain

−
∫
R

ψ(S)dx ≤ −
∫
R

H(S)dx ≤ C‖S‖2
2 = C‖g(ux + νuxt )‖2

2.

By the assumption on the growth of g, we can conclude that

−
∫
R

ψ(S)dx ≤ C‖u+ νut‖2
1 ≤ C‖u+ νut‖2

s−1 ≤ C‖u(t)‖2
s−1 + Cν‖ut (t)‖2

s−1.

However, we know that ut ∈ Hs(R). Since s > 5/2 this implies the required
inequality with K = CνM with M being the bound on ‖ut‖2

s−1. �
We know prove the main theorem of this work by showing that the local-in-time

solutions are global under the assumption that the initial energy is finite.

Theorem 4 Assume that s > 5/2 and u0, u1 ∈ Hs(R). Also assume that the
initial energy E(0) is finite. Then the system (15) has a global solution u ∈
C1([0,∞),H s(R)).

Proof

d

dt
‖ux(t)‖2

s−2 = 2‖ux(t)‖s−2
d

dt
‖ux(t)‖s−2

= 2‖u(t)‖s−1
d

dt
‖u(t)‖s−1

≤ 2‖ux(t)‖s−2‖ut (t)‖s−1

≤ ‖ux(t)‖2
s−2 + ‖ut (t)‖2

s−1

≤ ‖ux(t)‖2
s−2 + ‖ut (t)‖2

2.

Now, by Proposition 24 we can have the estimate

‖ut (t)‖2
2 ≤

(
E(0)−

∫
R

ψ(S)dx

)
.

By Lemma 4 we obtain

d

dt
‖ux(t)‖2

s−2 ≤ ‖ux(t)‖2
s−2 +

(
E(0)−

∫
R

ψ(S)dx

)

≤ ‖ux(t)‖2
s−2 +

(
E(0)+ C‖ux(t)‖2

s−2 +K
)

≤ (E(0)+K)+ (C + 1)‖ux(t)‖2
s−2.
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By Grönwall’s lemma we obtain ‖ux(t)‖s−2 stays bounded in [0, T ). Since, s > 5/2
this implies ‖ux(t)‖∞ is bounded. Moreover, by

‖uxt (t)‖∞ ≤ C‖uxt (t)‖s−2 = C‖ut (t)‖s−1 ≤ C‖ut (t)‖2,

and by Theorem 24 we obtain ‖uxt (t)‖∞ is bounded. By Theorem 3, this implies a
global solution. �

5 Revisiting the Smallness Assumptions

In order for our results to hold within the context of strain-limiting theory, we
should revisit our assumptions on the smallness of the displacement gradient and
its time derivative. In other words, while condition (23) is enough to provide global
existence of solutions, in order for the theory to hold we must have that they are, in
fact, sufficiently small. For this, we revisit the energy equality

d

dt

∫
R

(
1

2
|ut |2 + ψ(S)

)
dx = −ν

∫
R

S2
x dx. (24)

As discussed earlier, this relation tells us that the energy, which is the integral on
the left-hand side, decreases over time. Having the extra assumption on the initial
energy allows us to show that our theory is compatible with the strain-limiting
assumptions.

Proposition 2 Assume that the initial energy satisfies

E(0) < δ, (25)

for δ > 0 sufficiently small, as well as the same being true for ‖u0‖2. Then,
‖ux(t)‖∞ and ‖uxt (t)‖∞ are also sufficiently small.

Proof From (24) we can conclude that the energy is decreasing over time. By the
assumption (25), we can conclude that ‖ut (t)‖2 stays small for all times. However,
for s > 5/2 we know that

‖uxt‖∞ ≤ C‖uxt‖s−2 = C‖ut‖s−1 ≤ C‖ut‖2,

which we know is small. Also, by the smallness assumption on the initial data, (14)
implies ‖u(t)‖2 is sufficiently small. By a similar argument as above, we obtain
‖ux(t)‖∞ is sufficiently small as required. �
Theorem 5 Assume that ψ(z) ≥ Cz, g(z) ≥ Cz2, and E(0) < δ. Then,

lim sup
t→T −

(‖ux(t)‖∞ + ‖uxt (t)‖∞
)
< δ
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implies u ∈ Xs([0,∞)).

Proof From the smallness assumption on the initial energy and the fact that total
energy is decreasing over time, we obtain

∫
R

ψ(S)dx < δ.

By the assumptions we made on ψ and g we obtain ‖ux + νuxt‖2
2 < δ. This gives

‖ux‖2
2 + ν2‖uxt‖2

2 + 2ν
∫
R

d

dt
|ux |2dx < δ.

By Theorem 3 we know that ‖ut‖s is bounded for all times, which is enough for
u to belong to Xs([0,∞)) as long as ‖u‖s stays small. Therefore, without loss of
generality we can assume that ‖ut‖s ≥

√
δ/ν. Then, we obtain

‖ux‖2
2 + ν

d

dt
‖ux‖2dx < δ − ν2‖uxt‖2

2,

so that

d

dt
‖ux‖2dx ≤ −1

ν
‖ux‖2

2,

which, by Grönwall lemma, implies that

‖ux‖2
2 ≤ ‖ux(0, x)‖2

2e
− t

ν .

Since s > 5/2, ‖ux‖2
2 ≥ ‖u‖2

s , and hence we can conclude that as t increases, ‖u‖s
stays small as required. �
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GENERIC for Dissipative Solids with
Bulk–Interface Interaction

Marita Thomas and Martin Heida

1 Introduction

GENERIC, the acronym for General Equation of Non-Equilibrium Reversible–
Irreversible Coupling, is a thermodynamical modeling framework originally intro-
duced by Grmela and Öttinger in [11, 23] for thermodynamically closed systems
with applications in fluid dynamics. In recent years, its versatility has been
proved also for many other applications such as dissipative solids [13, 15, 17],
complex and reactive fluids [21, 25, 33, 34], semiconductors and electro-chemistry
[9, 14, 18], quantum mechanics [19], and thermodynamical multiscale processes
[24]. A GENERIC system is characterized by a quintuple (Q,E,S, J,K) consisting
of a state space Q, the two driving potentials: E the total energy and S the
entropy, and two geometric structures: J a Poisson operator and K an Onsager
operator. Herein, the triple (Q,E, J) forms a Hamiltonian system characterizing
the reversible contributions to the dynamics and the triple (Q,S,K) forms an
Onsager system accounting for the irreversible, dissipative contributions. These
two triples are coupled in a GENERIC system under an additional constraint,
the so-called noninteraction condition NIC, stating that KDE ≡ 0 ≡ JDS. In
thermodynamically closed systems, the NIC automatically ensures conservation of
energy and entropy production. The dynamics of the GENERIC system is then
described by the evolution equation

q̇ = JDE(q)+ KDS(q) ,
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which clearly displays the coupled evolution with reversible and dissipative contri-
butions. The thermodynamical driving forces are the functional derivatives DE(q)
for reversible dynamics and DS(q) for dissipative dynamics. In Sect. 2, we review
the GENERIC framework for thermodynamically closed systems. It is the central
aim of this work to extend the GENERIC framework to systems with bulk–
interface interaction. These are systems composed of two (or more) subsystems
�± ⊂ R

d coupled with each other along a joint interface � ⊂ R
d−1 through

which they exchange quantities like heat, stresses, mass, etc. Along � also additional
processes may take place that are not only modeled by additional state variables
solely defined on � with individual evolution laws on � but also driven by the
interaction with the quantities from the bulk subdomains �±. While the compound
� = int

(
�+ ∪ �−

)
can be assumed to form a thermodynamically closed system,

none of the two individual subsystems �± nor the interface � do so. Each of these
components alone is an open system. A first approach to the GENERIC framework
for thermodynamically open systems was proposed in [22] using driving functionals
and geometric structures for the bulk and the boundary components. Here, we
follow this idea and, based on the definition of functional derivatives for functionals
with bulk and interfacial contributions given in Sect. 3.1, we propose in Sect. 3.3 to
regard the GENERIC formulation for bulk–interface processes in terms of a weak
formulation. We also study the properties of geometric structures for systems with
bulk–interface interaction in Sect. 3.2. It was observed in [15] for closed systems in
dissipative solids that the validity of the NIC can be achieved with the aid of certain
thermodynamic transformation maps. In Sect. 3.4, we show that this approach can
also be applied to systems with bulk–interface interaction, again by exploiting the
definition and structure of the functional derivatives involved in this transformation.
We subsequently demonstrate the versatility of the weak formulation of GENERIC
in Sect. 4 for thermo-viscoelastic materials experiencing delamination processes
along �. It is shown that the weak formulation of GENERIC leads to well-known
bulk equations and naturally provides interfacial coupling conditions along �.

2 The GENERIC Formalism for Closed Systems

Let Q be a Banach space and V a Hilbert space such that Q ↪→ V = V∗ ↪→ Q∗ are
dense. We denote for q ∈ Q and q∗ ∈ Q∗ the duality pairing by 〈q∗, q〉Q and say
that a linear operator A : Q∗ → Q is symmetric, respectively, antisymmetric if for
every q∗1 , q∗2 ∈ Q∗ it holds

〈q∗1 ,Aq∗2 〉Q = 〈q∗2 ,Aq∗1 〉Q , respectively, 〈q∗1 ,Aq∗2 〉Q = −〈q∗2 ,Aq∗1 〉Q .

In most parts of the computations below, the reader may think of the Hilbert case
Q = V. In this case, the above definitions coincide with the classical definitions
A = A

∗, respectively, A = −A
∗. For a functional + : Q→ R, we denote the
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Gâteaux derivative: δ+ : Q→ Q∗, i.e., the first variation, (1a)

Fréchet derivative: D+ : Q→ Q∗ , (1b)

if they exist and we recall that D+(q) = δ+(q) if D+(q) exists. We finally define

δ+(q)[q̃] := 〈δ+(q), q̃〉Q , D+(q)[q̃] := 〈D+(q), q̃〉Q .

2.1 Hamiltonian Systems (Q,E, J)

In the spirit of Hamiltonian mechanics, a general Hamiltonian system accounts for
reversible dynamics, only. The equations of motion are given by

q̇ = JDE(q) ∈ Q . (2)

The driving potential of reversible dynamics is the total energy functional of the
system E : Q → R, which may comprise kinetic, mechanical, chemical, electric,
and thermal energy. The defining property for a Hamiltonian system is that the
associated geometric structure J is a Poisson structure, i.e.,

J : Q∗ → Q is antisymmetric and satisfies Jacobi’s identity. (3)

More precisely, condition (3) ensures that the Poisson bracket {·, ·} defined by
{+1,+2} := 〈D+1, JD+2〉Q for all +j : Q→ R is an

antisymmetric bilinear form and satisfies Jacobi’s identity, i.e., (4)

∀+1,+2,+3 : Q→ R : {+1, {+2,+3}}+{+3, {+1,+2}} + {+2, {+3,+1}}=0 .

Moreover, the Poisson bracket fulfills the Leibniz rule:

{+1+2,+3} = +1{+2,+3} + {+1,+3}+2 for all +1,+2,+3 : Q→ R . (5)

Conditions (4) and (5) are the defining properties of a symplectic structure,
which is the geometric structure underlying Hamiltonian mechanics, see, e.g., [1,
Sect. 1.3]. Let us also mention that the requirement of Jacobi’s identity provides a
generalization of the commutativity of derivatives. Indeed, for Q = Q1 × Q2 and J

in canonical form, i.e.,

J :=
(

0 I2

−I1 0

)
(6)
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with Ij : Q∗j → Q∗j the identity operator and Q∗j = Qk for j �= k ∈ {1, 2}, it can
be checked that fulfilling Jacobi’s identity amounts to the validity of Dq1 Dq2+i =
Dq2 Dq1+i . See, e.g., [6, 20, 34] for further discussion of Jacobi’s identity. The
antisymmetry of J implies 〈q ′, Jq ′〉Q = −〈q ′, Jq ′〉Q = 0 for any q ′ ∈ Q∗ and
conservation of energy along solutions of (2) follows immediately:

d

dt
E(q(t)) = 〈DE(q), q̇〉Q = 〈DE(q), JDE(q)〉Q = 0 . (7)

2.2 Onsager Systems (Q,S,K) (Gradient Systems)

An Onsager system is related to the dynamics of irreversible, dissipative effects. The
evolution equations read

q̇ = K(q)DS(q) ∈ Q . (8)

The driving functional is the total entropy S, and the associated geometric structure
is imposed by the so-called Onsager operator K with the properties:

K is symmetric and positive semidefinite, i.e., 〈ξ,Kξ 〉Q ≥ 0 . (9)

The symmetry of K reflects the Onsager principle, which states that the rate equals
the symmetric, positively semidefinite operator K applied to the thermodynamically
conjugate force. The positive semidefiniteness is a manifestation of the second law
of thermodynamics, i.e., we have an increase of entropy via

d

dt
S(q(t)) = 〈DS(q), q̇〉Q = 〈DS(q),KDS〉Q ≥ 0. (10)

The properties of K are equivalent to the existence of a nonnegative, quadratic
dual entropy-production (or dissipation) potential�∗ = �∗(q; ξ) = 1

2 〈ξ,K(q)ξ 〉Q,
see [16]. The dissipative structure can be generalized to non-quadratic potentials as
follows:

For all q ∈ Q, �∗(q; ·) is nonnegative, convex, and �∗(q; 0) = 0. (11)

In particular, for all q ∈ Q, the potential �∗ is the convex conjugate of a
nonnegative, convex dissipation potential �(q; ·) : Q → [0,∞] with the property
�∗(q; 0) = 0. The convex conjugate is defined by

�∗(q; ξ) := sup
q̃∈Q

(〈ξ, q̃〉Q −�(q; q̃)) for all (q, ξ) ∈ Q× Q∗ . (12)
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In this generalized setting, the evolution reads

q̇ ∈ ∂ξ�
∗(q;DS(q)) in Q

with ∂ξ�∗(q, ξ) the (multivalued) subdifferential of �∗(q, ·) in ξ ∈ Q∗, i.e.,

∂ξ�
∗(q; ξ) = {q̃ ∈ Q, �∗(q; ξ̃ )−�∗(q; ξ) ≥ 〈ξ̃ − ξ, q̃〉Q for all ξ̃ ∈ Q∗} .

(13)
We point to Sect. 3.2, where we discuss further implications of (11). Non-quadratic
dual dissipation potentials arise, e.g., for generalized standard materials with a
rate-independent evolution of the internal variable: here, �∗(q, ·) is positively 1-
homogeneous. For further details, we refer to Sect. 4 as well as to [15].

2.3 GENERIC Systems (Q,E,S, J,K)

A GENERIC system is a quintuple (Q,E,S, J,K), which couples a Hamiltonian
system (Q,E, J) with an Onsager system (Q,S,K). The combined evolution
equations have the form

q̇ = J(q)DE(q)+ K(q)DS(q), (14)

displaying the reversible and the irreversible part of the dynamics. Apart from the
structural relations (3) and (9) of Hamiltonian and Onsager systems, a GENERIC
system additionally has to satisfy the following crucial and nontrivial

noninteraction condition,NIC : KDE ≡ 0 and JDS ≡ 0 . (15)

If K arises from a (subdifferential of a) non-quadratic dual dissipation potential
�∗(q; ·) as introduced in (11), then the NIC KDE = 0 needs to be replaced by

�∗(q; ξ + λDE(q)) = �∗(q; ξ) for all q ∈ Q, ξ ∈ Q∗, and λ ∈ R . (16)

We refer to Sect. 3.2 and to [15, Sec. 2.5] for more details.

Remark 1 (Direct Consequences of NIC) The NIC (15) ensures that the energy
functional does not contribute to dissipative mechanisms and that the entropy
functional does not contribute to reversible dynamics, i.e., every solution q of (14)
satisfies:

d

dt
E(q(t)) = 〈DE(q), q̇〉 = 〈DE(q), JDE+ KDS〉 = 0 + 0 = 0 , (17)
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d

dt
S(q(t)) = 〈DS(q), q̇〉 = 〈DS(q), JDE+ KDS〉 = 0 + 〈DS,KDS〉 ≥ 0 .

(18)

Moreover, the NIC (15) guarantees the validity of the principle of maximum-entropy
production. See, e.g., [11, 15, 23, 34] for more details. �

3 GENERIC Formalism for Bulk–Interface Systems

Our investigations will be based on the following specific geometric setting:

Definition 1 (Geometric Setup and Notation) Let �+,�− ⊂ R
d be the reference

domains of two bodies with �+∩�− = ∅, let ∂�± their boundaries with outer unit
normal n± and joint interface � := ∂�+ ∩ ∂�−. For better clarification, we further
introduce the notation �± := � ∩ ∂�±, B := �+ ∪�−, and � := int(�+ ∪�−).

The geometric setup is described by one of the following two scenarios:

1. The two subdomains �+ and �− are connected with each other along � �= ∅.
The domain � := int(�+ ∪�−) is again thermodynamically closed. Hence, the
only exchange that �± has with its surroundings is that with �∓ along �.

2. As a special case of 1., the subdomain �+ is surrounded by �− so that � = ∂�+
and ∂� = ∂�−\�.

For a function φ : �\� → R, we denote by φ± = φ|�± its restriction to �±,
by γ±φ± its trace from �± onto ∂�±, and by [[φ]] := (γ+φ+ − γ−φ−) its jump
across �. Moreover, we use the short-hand notation φγ := (γ+φ+, γ−φ−), and if
no confusion is possible, we abbreviate

γ±φ± = γφ± = φ± and φγ = (φ+, φ−) on � . (19)

A similar notation is adopted for vector- and tensor-valued functions and has to be
understood componentwise.

3.1 Functional Calculus for Bulk–Interface Systems:
Notation, Differentials, and ∗-Multiplication in the Setup
of Definition 1

States and Spaces In the setup of Definition 1, consider the function spaces QB :=
Q+ × Q− and Q = QB × Q� with Q± being a Banach space (e.g., a Sobolev
space) defined on �± and with Q� being a Banach space defined on � with dual
spaces Q∗±,Q∗B, and Q∗�, and the dual pairings by 〈·, ·〉Q± , respectively, 〈·, ·〉QB

,

and 〈·, ·〉Q�
. The states q = (qB, q�) are composed of bulk states qB ∈ QB with
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q± := qB|�± and surface states q� ∈ Q� . Here, a surface state q� is supposed to
have an own evolution equation on � so that its evolution is not solely governed
from the bulk. For shorter notation, we also introduce the vector

q�γ := (γ+q+, γ−q−, q�) ∈ γQB × Q� , (20)

where γQB denotes the trace space corresponding to QB . More precisely, let the
state q = (qB, q�) = (qB1 , . . . , qBl

, q�1 , . . . , q�m) ∈ Q = QB × Q� . If the state
variable qBk|�± has a well-defined trace on �, then the kth component of γ±q±
in (20) is given by the trace γ±qk±. Instead, if the trace of this state variable does
not exist, then we set the kth component of γ±q± equal to zero in q�γ . In this latter
case, γ±Qk± = {0}.
Example 1 (Notation (20)) Consider a system with bulk states qB = (qB1 , qB2) =
(q1+, q2+, q1−, q2−) and with one single interface state q�1. Assume q1±
have well-defined traces on �, whereas q2± do not. Accordingly, q�γ =
(γ+q1+, 0, γ−q1−, 0, q�1), where the entries 0 substitute the (non-existing) traces
of q2±. �

Functionals and Their Derivatives Let+ = +B++� : Q→ R denote an integral
functional with density φ = (φB, φ�), which contains a bulk contribution φB and a
surface contribution φ� on �, i.e., for all states q ∈ Q, it is

+(q) =
∫
�\�

φB(qB,∇qB) dx +
∫
�

φ�(γ+q+, γ−q−, q�) dHd−1 . (21)

Let again q = (qB, q�) = (qB1 , . . . , qBl
, q�1 , . . . , q�m) = (qj )

l+m
j=1 ∈ Q = 1l+m

j=1Qj

and qk the kth component in this vector.

Restricting + to the affine space Qk, with qk ∈ Qk, we use the following notation
for the

first variation wrt. qk : δqk+ : Q→ Q∗k, (22a)

functional derivative wrt. qk : Dqk+ : Q→ Q∗k, (22b)

partial derivative of a density φ = φ(q) wrt. qk : ∂qkφ(q) . (22c)

For + from (21) and a bulk state qk , it is

δqk+(q)[q̃k] =δqk+B(qB)[q̃k] + δqk+�(q)[q̃k]

=
∫
�\�

(
∂qkφB(qB,∇qB)q̃k + ∂∇qkφB(qB,∇qB) · ∇q̃k

)
dx

+
∑

i∈{+,−}

∫
�
∂qki

φ�(γ+q+, γ−q−, q�)γki q̃ki dHd−1 , (22d)
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and Dqk+(q)[q̃k] =Dqk+B(qB)[q̃k] + Dqk+�(q)[q̃k]

=
∫
�\�
(
∂qkφB(qB,∇qB)− div ∂∇qkφB(qB,∇qB)

)
q̃k dx (22e)

+
∑

i∈{+,−}

∫
�

(
∂∇qkφB(qi ,∇qi)·ni+0∂qki φ�(q+, q−, q�)

)
q̃ki dHd−1,

i.e., by integration by parts, we have the equivalencec

δqk+(q)[q̃k] = Dqk+(q)[q̃k] . (22f)

Similarly, for + from (21) and a surface state qk , it is

δqk+(q)[q̃k] =
∫
�

(
∂qkφ�(γ+q+, γ−q−, q�)q̃k + ∂qk−φ�(q+, q−, q�)q̃k−

)
dHd−1

= Dqk+(q)[q̃k] . (22g)

Given a sufficiently smooth function α : �\� → R, we introduce the multiplication
operation ∗ as follows:

α∗Dqk+(q)[q̃k] =
∫
�\�

(
α∂qkφB(qB,∇qB)− div

(
α∂∇qkφB(qB,∇qB)

))
q̃k dx

+
∑

i∈{+,−}

∫
�

(
α∂qki

φ�(q+, q−, q�)+ α∂∇qkφB(qi,∇qi) · ni
)
q̃k+ dHd−1 .

(23)

We will use the above notation for differentials and ∗ multiplication also for
densities φ themselves. Exemplarily, we indicate this here for a bulk state qk:

δqkφ(q)[�] =
[
∂qkφB(qB,∇qB)�+ ∂∇qkφB(qB,∇qB) · ∇�

]
�\�

+
∑

i∈{+,−}

[
∂qki

φ�(q+, q−, q�)�
]
�
, (24a)

Dqkφ(q)[�] =
[(
∂qkφB(qB,∇qB)− div ∂∇qkφB(qB,∇qB)

)
�
]
�\�

+
∑

i∈{+,−}

[(
∂qki

φ�(q+, q−, q�)+ ∂∇qkφB(qi,∇qi) · ni
)
�
]
�
,

(24b)

α ∗ Dqkφ(q)[�] =
[(
α∂qkφB(qB,∇qB)− div

(
α∂∇qkφB(qB,∇qB)

))
�
]
�\�

+
∑

i∈{+,−}

[(
α∂qki

φ�(q+, q−, q�)+ α∂∇qkφB(qi,∇qi) · ni
)
�
]
�
.

(24c)
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In general, there is the following equivalence in a weak sense

α ∗ Dqkφ(q)[q̃k] = αδqkφ(q)[q̃k] . (25)

Dual Dissipation Potentials In the same manner, the notation introduced in (21)–
(24) is also applied for dual dissipation potentials �∗ = �∗

B + �∗
� : Q × Q∗ →

[0,∞] and the dual states ξ := (ξB, ξ�) ∈ Q∗ with ξB ∈ Q∗B and ξ� ∈ Q∗� . In
particular, we will see that the corresponding Onsager operator is thus given by

K(q; ξ) := DξB
�∗

B
(qB; ξB)+ Dξ�

∗
�(q; ξ) . (26)

Geometric Structures Also state-dependent geometric structures J = JB + J� :
Q × Q∗ → Q, and K = KB + K� : Q × Q∗ → Q are composed of bulk and
interfacial contributions with Q = QB × Q� .

3.2 Direct Implications for Geometric Structures

Next, we discuss the defining properties of the geometric structures with bulk–
interface interaction in more detail. In particular, we have the following:

Lemma 1 (Properties of Dual Dissipation Potentials) Let the setup of Defini-
tion 1 and Sect. 3.1 be satisfied. Consider a dual dissipation potential �∗ = �∗

B
+

�∗
� : Q× Q∗ → [0,∞] of the form

�∗(q; ξ) =
∫
�\�

ψ∗
B
(qB; ξB ,∇ξB) dx +

∫
�

ψ∗
�(q�γ ; ξ�γ )dHd−1 . (27)

1. Assume that �∗(q; ·) : Q∗ → [0,∞] is convex for all q ∈ Q. Hence, both
�∗

B
(qB; ·) : Q∗

B
→ [0,∞] and �∗

�(q; ·) : Q∗ → [0,∞] are convex for all
q = (qB , q�) ∈ Q.

2. Assume that �∗(q; ·) : Q∗ → [0,∞] is convex for all q ∈ Q and in addition
also that �∗(q; 0) = 0 for all q ∈ Q. Then, there holds

〈ξ, q̃〉Q ≥ 0 for all (q, ξ) ∈ Q× Q∗ and for all q̃ ∈ ∂ξ�
∗(q; ξ) . (28a)

Moreover, also �∗
B
(qB; ·) and �∗

�(q; ·) satisfy

�∗
B
(qB; 0) = 0 for all qB ∈ QB , �∗

�(q; 0) = 0 for all q ∈ Q (28b)

〈ξB , q̃B〉QB
≥ 0 for all ξB ∈ Q∗

B
, q̃B ∈ ∂ξB

�∗
B
(qB; ξB) , (28c)

〈ξ, q̃〉Q ≥ 0 for all ξ ∈ Q∗, q̃ ∈ ∂ξ�
∗
�(q; ξ) . (28d)



342 M. Thomas and M. Heida

Furthermore, if �∗(q; ·) is Gâteaux-differentiable for all q ∈ Q, then also
�∗

B
(qB; ·) and �∗

�(q; ·) are so, and vice versa.
3. In addition to the prerequisites of 2., assume that for all q ∈ Q, the potential

�∗(q; ·) : Q∗ → [0,∞] is quadratic and Gâteaux-differentiable. Then K(q) =
Dξ�

∗(q; ·) : Q∗ → Q is a linear, symmetric, and positively semidefinite operator
and so are its bulk part KB(qB) = DξB

�∗
B
(qB; ·) and its boundary part K�(q) =

Dξ�
∗
�(q; ·).

Proof
To 1. Convexity of �∗

B
(qB; ·) and �∗

�(q; ·) is equivalent to the convexity of the
densities ψ∗

B
(qB; ·, ·), ψ∗

�(q�γ ; ·). Since these two densities have different supports,
the assertion follows.

To 2. By the definition of the subdifferential for convex potentials (13), we
deduce that �∗(q; 0) − �∗(q; ξ) ≥ 〈q̃,−ξ 〉Q for all ξ ∈ Q∗, q̃ ∈ ∂ξ�

∗(q; ξ).
Using that �∗(q; 0) = 0 and rearranging terms result in (28a). Moreover, since the
densities ψ∗

B
and ψ∗

� have different supports, the first statement of (28c) and (28d)
follows. Furthermore, by 1., both potentials �∗

B
(qB; ·) and �∗

�(q; ·) are convex.
Thus, the second statement of (28c) and (28d) is obtained by repeating the argument
for (28a). Again, since the densities ψ∗

B
and ψ∗

� have different supports, the
Gâteaux-differentiability of �∗(q; ·) is equivalent to the Gâteaux-differentiability
of �∗

B
(qB; ·) and �∗

�(q; ·).
To 3. The potential �∗(q; ·) is quadratic and Gâteaux-differentiable if and only

if �∗
B
(qB; ·) and �∗

�(q; ·) are so. Hence, their derivatives are linear, symmetric
operators. Positive semidefiniteness follows from (28c), respectively, (28d). �

At this point, we also address canonical Poisson structures for bulk–interface
interaction with an immediate statement, cf. (6). With the aid of transformation
maps, this finding will be transferred to the non-canonical case in Sect. 3.4, see
Lemma 4.

Lemma 2 (Properties of Canonical Poisson Structures) Let the setup of Defini-
tion 1 and Sect. 2 be satisfied. Furthermore, let JB : Q∗B → QB and J� : Q∗B ×Q∗� →
QB ×Q� be both in canonical form. Hence, JB and J� are antisymmetric and satisfy
the Leibniz rule as well as Jacobi’s identity. Moreover, also J = JB + J� is in
canonical form, thus antisymmetric, and satisfies the Leibniz rule as well as Jacobi’s
identity.

In addition, also the NIC 15 can be shown to hold true for geometric structures
and functionals with bulk–interface interaction of the type introduced in Sect. 3.1.
This also results in the validity of energy conservation and entropy production and
is consistent with the fact that the coupled bulk–interface system is assumed to be
thermodynamically closed, cf. Definition 1.

Lemma 3 (NIC for GENERIC Bulk–Interface Systems) Under the prerequi-
sites of Lemma 1, consider energy and entropy functionals of the form (21).
Furthermore, assume that �∗ and E satisfy the generalized NIC (16). Then,
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〈DE(q), q̃〉Q = 0 for all q ∈ Q, ξ ∈ Q∗, and all q̃ ∈ ∂ξ�
∗(q; ξ) , (29)

and thus, for solutions q ∈ L2(0, T ;Q) ∩ H 1(0, T ;Q∗) of (14), the energy
conservation and entropy production hold true, i.e.,

d

dt
E(q(t)) = 0 and

d

dt
S(q(t)) ≥ 0 for all t ∈ [0,T]. (30)

Moreover, the generalized NIC (16) as well as properties (30) hold true even
separately for the bulk and boundary contributions of E = EB +E�, S = SB +S�,

and �∗ = �∗
B
+�∗

� .

Proof By the generalized NIC (16), we have for all q ∈ Q, for all ξ ∈ Q∗, for all
q̃ ∈ ∂ξ�

∗(q; ξ), and for all λ ∈ R,

0 = �∗(q; ξ + λDE(q))−�∗(q; ξ) ≥ 〈λDE(q), q̃〉Q .

Choosing λ = 1 and λ = −1 gives (29). Now, energy conservation follows by direct
calculation

d

dt
E(q(t)) = 〈DE(q), q̇〉Q = 〈DE(q), JDE(q)+ q̃〉Q = 0 + 0 = 0

using the chain rule, the antisymmetry of J, cf. (3), and (29). With similar arguments,
also the entropy production of the system is verified:

d

dt
S(q(t)) = 〈DS(q), q̇〉Q = 〈DS(q), JDE(q)+ q̃〉Q ≥ 0 + 0 ,

where the first 0 arises by the antisymmetry of J together with the NIC JDS(q) = 0
and the inequality is due to (28a). This finishes the proof of (30).

Since the densities ψ∗
B

and ψ∗
� as well as EB and E� have different supports,

the generalized NIC (16) has to be satisfied separately for �∗(qB;DBEB(qB) and
�∗
�(q;DqE�(q)) in order to hold true for �∗ and E. Accordingly, also the relations

d
dt EB(qB(t)) = 0 and d

dt E�(q(t)) = 0 as well as d
dtSB(qB(t)) ≥ 0 and d

dtS�(q(t)) ≥
0 are obtained separately for the bulk and boundary contributions. �
Remark 2 (Comparison with [22]) Lemmata 1 and 2 show that with the setup
of Definition 1 and Sect. 3.1, the characteristic properties of GENERIC systems
(Q,E,S, J,K) are satisfied separately by the bulk system (QB ,EB ,SB , JB ,KB) and
by the surface system (Q,E�,S�, J�,K�). This finding essentially rests on our
definition of the derivatives and operations (22)–(25) for functionals with bulk
and boundary contributions, i.e., considering the derivatives as distributions rather
than classical functions. When starting from the abstract definition of variations
and functional derivatives (22a)– (22c) of functionals defined on Banach spaces,
relations (22d)– (25) arise as a natural consequence. We refer to [22], where the
boundary terms arising from the bulk contributions by integration by parts are
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attributed to the boundary part of the system. Consequently, neither the bulk nor
the boundary system satisfies the characteristic properties of a GENERIC system,
but the sum of the two does. We stress that our approach and [22] lead to the same
bulk–interface systems. �

3.3 Weak Form of GENERIC as a Formalism for
Bulk–Interface Systems

Based on the definitions given in Definition 1 and Sect. 3.1, we now introduce a
GENERIC formalism for systems with bulk–interface interaction and open systems
in terms of a weak formulation. In this way, the bulk equations have to hold in a
weak sense and the coupling conditions along � naturally appear also in a weak
sense.

Definition 2 (Weak form of GENERIC for Bulk–Interface Systems) Let
(Q,E,S, J,K) be a system with bulk and surface contributions as described in
Definition 1 and Sect. 3.1, with the mapping properties E = EB + E� : Q → R,

S = SB +S� : Q→ R, J = JB + J� : Q∗ → Q, and K = KB +K� : Q∗ → Q with
Q = QB × Q� . A weak formulation for (Q,E,S, J,K) is given by

〈ξ̃ , q̇〉Q = 〈ξ̃B , q̇B〉QB
+ 〈ξ̃� , q̇� 〉Q

�
= 〈ξ̃ , JDE(q)+ KDS(q)〉Q

= 〈ξ̃B , JB(qB)DqB
EB(qB)+ KB(qB)DqB

SB(qB)〉QB

+ 〈ξ̃�γ , J� (q�γ )Dq�γ E� (q�γ )+ K�(q�γ )Dq�γS�(q�γ )〉Q�γ

(31)

for all ξ̃ = (ξ̃B , ξ̃� ) ∈ Q̃ ⊂ Q∗ for with Q̃ = Q̃B × Q̃� a suitable space of test
functions. Here, q�γ is defined as in (20) and ξ̃�γ = (ξ̃+γ , ξ̃−γ , ξ̃�) ∈ (γQ)∗ ×Q∗� .

In the example of heat conduction, we now illustrate how the weak form of
GENERIC arises from the definition of functional derivatives for functionals with
bulk–interface interaction and how the interfacial coupling naturally emerges from
this weak form.

Example 2 (Heat Transfer for Bulk–Interface and Open Systems) In the following,
we discuss the Onsager structure for heat conduction taking into account different
interfacial Osager operators along �, thus resulting in different coupling conditions.

Heat Conduction in the Bulk �\� = �+ ∪ �− The dual dissipation potential in
the bulk is defined as

�∗
B(θ; ·) : Q∗ → R, �∗

B(θ; ξ) :=
∑

i∈{+,−}

∫
�i

θ2κ(θ)
2

∣∣∇( ξ
DθE

)∣∣2 dx . (32)
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Hence, the first variation in ξ reads

δξ�
∗
B(θ; ξ)[ξ̃ ] : =

∑
i∈{+,−}

∫
�i

θ2κ(θ)∇( ξ
DθE

) · ∇( ξ̃
DθE

)
dx . (33)

We formally distinguish it from the functional derivative Dξ�
∗
B(θ; ξ), which is

obtained from δξ�
∗
B by an integration by parts, i.e.,

Dξ�
∗
B(θ; ξ)[ξ̃ ] =

∑
i∈{+,−}

∫
�i

− div θ2κ(θ)∇( ξ
DθE

)
ξ̃

DθE
dx

+
∑

i∈{+,−}

∫
�i

γi

(
θ2
i κ(θi)∇

(
ξi

DθEi

)) · ni γi
(

ξ̃i
DθEi

)
dHd−1

=:〈KB(θ) ξ, ξ̃ 〉Q ,

and we introduce the Onsager operator

KB(θ) =
∑

i∈{+,−}

[ −1
DθE

div
(
θ2κ(θ)∇( �

DθE

))]
�i

+
[
γi

(
θ2
i κi (θi )

DθEi
∇( �

DθE

)) · ni
]
�i
.

(34)

Ideal Heat Transfer Across the Perfectly Conducting Interface � At the perfectly
conducting interface �, all quantities are continuous, which implies

γ+ξ̃+ = γ−ξ̃− for all ξ̃ ∈ Q∗, (35a)

γ+
(
θ2+κ+(θ+)

DθE+ ∇( ξ+
DθE+

)) · n+ = −γ−
(
θ2−κ−(θ−)

DθE− ∇( ξ−
DθE−

)) · n− . (35b)

Furthermore, KB satisfies properties (9) as well as NIC (15).

Heat Transfer Across the Imperfect Interface � We assume that the heat transfer
through � is regulated by the heat transfer coefficient κ̂�(γ+θ+, γ−θ−). In this
spirit, we introduce the quadratic dual dissipation potential along �, for every
ξγ ∈ dom(��(θγ ; ·)),

�∗
�(θγ ; ξγ ) :=

∫
�

κ̂�(γ+θ+,γ−θ−)
2

∣∣∣γ+( ξ+
DθE+

)− γ−
( ξ−

DθE−
)∣∣∣2 dHd−1, (36)

and we find for all ξγ , ξ̃γ ∈ dom(��(θγ ; ·)) that

Dξγ �
∗
�(θγ ; ξγ )

[
ξ̃γ
] =

∫
�
κ̂�(θ+, θ−)

(( ξ+
DθE+

)− ( ξ−
DθE−

))(( ξ̃+
DθE+

)− ( ξ̃−
DθE−

))
dHd−1

= 〈K�(θγ )ξγ , ξ̃γ 〉dom(��(θγ ;·)) . (37)
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Clearly, K�(θγ ) is symmetric and positively semidefinite provided that κ̂�(θ�) ≥ 0.
Also, NIC (15) holds true since for all ξ̃γ = (ξ̃+, ξ̃−)(, we have

〈K�(θγ )(DθE)�, ξ̃γ 〉dom(��(θγ ;·))

=
∫
�

κ̂�(θ+, θ−)
(

DθE+
DθE+ −

DθE−
DθE−

)(
ξ̃+

DθE+ −
ξ̃−

DθE−

)
dHd−1 = 0 .

(38)

Thus, in view of (34) and (38), the Onsager operator of the full coupled system is

K(θ) = KB(θ)+ K�(θγ ), (39)

and K(θ) is symmetric, positively semidefinite and satisfies the NIC (15).

Now, the evolution equation (8) can be understood in a weak form such that for
a.a. t ∈ (0,T) and for all ξ̃ ∈ Q̃ = H 1(�\�), there holds

〈θ̇ , ξ̃ 〉Q̃ = 〈K(θ)DθS(θ), ξ̃ 〉Q̃
= 〈KB(θ)DθS(θ), ξ̃〉H 1(�\�) + 〈K�(θ�)DθS�(θ), ξ̃�〉H 1/2(�) . (40)

For a closed system, the heat flux through the boundary is 0 pointwise, i.e.,

θ2κ(θ)∇( ξ
DθE

) 1
DθE

· ν∂� = 0 on ∂� .

Hence, choosing test functions ξ̃ = DθE ξ̂ with ξ̂ ∈ Q̃ and using the Gibbs relation,
there holds in a weak sense in Q = Q̃∗

DθE θ̇ = − div
(
θ2κ(θ)∇ 1

θ

)
in �\� (41a)

for a.a. t ∈ (0,T), together with the following transmission conditions along �

γ+
(
θ2+κ+(θ+)

DθE+ ∇( 1
θ+
)) · n+ = −γ−

(
θ2−κ−(θ−)

DθE− ∇( 1
θ−
)) · n− , (41b)

γ+
(
θ2+κ+(θ+)

DθE+ ∇( 1
θ+
)) · n+ = −κ̂�(θγ )

( 1
θ+ − 1

θ−
) = κ̂�(θγ )

θ+θ−
[[
θ
]]
, (41c)

complemented by homogeneous boundary conditions along ∂� and by an initial
condition. We point out that the transmission conditions (41b) and (41c) are also
obtained, e.g., in [8, 30] for interfaces in local equilibrium.

Ideal Heat Transfer Across the External Boundary ∂�+ = � In the setting
of scenario 2 from Definition 1, above considerations help to formulate proper
boundary conditions for non-closed systems. In this case, �+ is a bounded domain
which is connected to a reservoir �−. Evolution equation (41) then has to be
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satisfied only in �+, whereas the part of the system on �− is not of interest. For a
perfectly conducting boundary � and for a given function h, we thus set

− γ−
(
θ2−κ−(θ−)

DθE− ∇( ξ−
DθE−

)) · n− := h. (42)

In other words, the inhomogeneous Neumann boundary condition h is implemented
in the above deduced GENERIC system by appropriately adjusting the functions κ−
on �−, E−(θ−) and by making an appropriate choice for ξ−.

In case of an imperfectly conducting boundary, we are free to choose θ− and the
coefficient functions κ−(θ−), E−(θ−), and κ̂�(θ�) for a given function h such that

− θ2−κ−(θ−)
DθE− ∇( 1

θ−
) · n− = h and κ̂�(θ�)

θ+θ−
[[
θ
]] = h . (43)

Again, the inhomogeneous Neumann boundary condition is implemented in the
above deduced GENERIC system by appropriately adjusting the coefficient func-
tions on �− and � and by making an appropriate choice for ξ−.

In both cases (perfect or imperfect), this neither interferes with the symmetry of
K nor with the validity of NIC (15), but to ensure positive semidefiniteness of K, it
may be necessary to restrict the choices of h. �

We refer to Sect. 4 to see (31) in application for specific examples of bulk–
interface systems related to delamination processes.

3.4 Tools for Dissipative Solids with Bulk–Interface Interaction

In [15, Sec. 2.4] and [34, Sec. 3.4], it was established that the GENERIC structure
of thermodynamically closed systems is preserved under similarity transformations.
In particular, this approach can be used to facilitate the verification of the structural
properties of the system, such as the NIC (15). For this, first consider a thermo-
dynamically closed system described by the states qτ = (w, τ) ∈ Qτ , where τ

represents the thermodynamic variable and w ∈ R
N collects the remaining state

variables. Suitable choices for the thermodynamic variable τ ∈ {θ, U, S,E} are the
temperature θ, the internal energy density U, the entropy density S, or the total
energy density E, which is given by the sum of kinetic and internal energy density.
For an integral functional H : Qτ → R with density H (and H as a placeholder for
E,U, S), we introduce the map

Tτ→H : Qτ → QH , qτ := (w, τ) �→ qH := (w,H) (44)

and its inverse TH→τ = T−1
τ→H . The calculation of the Fréchet derivative of TH→τ

thus gives
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LH := DTH→τ (qH ) = DTτ→H (qτ )
−1 =

(
I 0

δwH(qτ ) ∂τH(qτ )

)−1

(45)

and leads to the relations

LH =
(

I 0
− 1

∂τH
δwH

1
∂τH

)
and L

∗
H =

(
I − �

∂τH
∗ DwH

0 1
∂τH

)
.

More generally, for some linear operator AH : Q∗w → Q∗w with adjoint A∗
H , we set

LH =
(

AH 0

− δwH◦AH

∂τH
1

∂τH

)
and L

∗
H =

(
A
∗
H A

∗
H ◦ (− �

∂τH
∗ DwH)

0 1
∂τH

)
.

(46)
In this way, there clearly holds

L
∗
HDH ≡ L

∗
HDH = (0, 1)(, (47)

and the NIC (15) is ensured by assuming that the Poisson and the Onsager operator
of a GENERIC system in the variables qτ can be composed as

J(qτ ) := LSJ
0
L
∗
S and K(qτ ) := LEK

0
L
∗
E with J

0
(

0
1

)
= 0 = K

0
(

0
1

)
.

(48)

Here, J0 : Q∗S → QS is a Poisson structure and K
0 : Q∗E → QE is an Onsager

operator on the state spaces QS and QE with homogeneous boundary conditions.
We observe now that similar relations can also be established for systems

with bulk–interface interaction: following the notation of Sect. 3.1, we assume
that the bulk energy and entropy densities are given through EB(wB ,∇wB , τB) =
E+(w+,∇w+, τ+) + E−(w−,∇w−, τ−) and SB(wB ,∇wB , τB) = S+(w+,∇w+,
τ+) + S−(w−,∇w−, τ−). For simplicity, we assume that all variables, particularly
τ±, have well-defined traces on �. Since�+ and�− are disjoint, we can follow (48)
and find the bulk operators

JB(qτB
) := LS+J

0+L∗S+ + LS−J
0−L∗S− with J

0±
(

0
1

)
= 0 and (49a)

KB(qτB
) := LE+K

0+L∗E+ + LE−K
0−L∗E− with K

0±
(

0
1

)
= 0 . (49b)

Now, J0± : Q∗S± → QS± is a Poisson structure and K
0± : Q∗E± → QE± is an

Onsager operator on the state spaces Q∗S± → QS± and Q∗E± → QE± that allows
for inhomogeneous boundary conditions along � for the state variables w±. In a
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similar spirit, also, attention has to be paid for the entries of LH± and L
∗
H± : the

operator A
∗
H : Q∗w → Q∗H,w acts on the dual of the state space Qw which can

accommodate inhomogeneous boundary conditions. Elements δw±H±,Dw±H±,
or 1

∂τ±H± ∗ Dw±H± represent functionals from the dual space Q∗w and are thus

characterized by bulk and trace terms by explicitly making use of relations (22e)
and (23). In this way, the bulk operators also generate a trace contribution on �

J±(qτ±) :=
[
LS±J

0±L∗S±
]
�±

+
[
LS±J

0±L∗S±
]
�±
, (50a)

K±(qτ±) :=
[
LE±K

0±L∗E±
]
�±

+
[
LE±K

0±L∗E±
]
�±
. (50b)

On �, the interfacial energy and entropy densities E� and S� depend on the
traces of the bulk states γ±q± := (γ±w±, γ±τ±) as well as on additional surface
states q� := (w�, τ�), collected in q�γ := (q+, q−, q�)(, cf. (20). Here, we wrote
q± = γ±q± according to (19). In analogy to (44)– (48), using the surface density
H� ∈ {E�, S�}, we introduce for i ∈ {+,−, �} with operators Awi

LH�,i =
(

Awi
0

− δwi H�◦Awi

∂τi H�

1
∂τi H�

)
, L

∗
H�,i

=
(
A
∗
wi

A
∗
wi
(− �

∂τi H�
∗ Dwi

H�)

0 1
∂τi H�

)
,

(51)
where we typically choose Awi

= I, with I the identity, and define the following
matrices as a cartesian product:

LH� = diag
(
LH�,+, LH�,−, LH�,�

)
, (52a)

L
∗
H�

= diag
(
L
∗
H�,+, L

∗
H�,−, L

∗
H�,�

)
. (52b)

Similar to (47), this construction provides

L
∗
H�

DH� ≡ L
∗
H�

DH� = (0, 1, 0, 1, 0, 1)( , (53)

so that the NIC (15) for the interfacial geometric operators

J(q�γ ) := LS� J
0
�L

∗
S�

and K(q�γ ) := LE�K
0
�L

∗
E�

(54)

can be ensured for interfacial Poisson and Onsager operators J
0
�,K

0
� : (γQ)∗ ×

Q∗� → (γQ)× Q� with the property

J
0
�(0, 1, 0, 1, 0, 1)( = 0 = K

0
�(0, 1, 0, 1, 0, 1)( . (55)

We further observe that the above strategy can be extended to more general dissipa-
tive mechanisms modelled by (non-quadratic) convex dual dissipation potentials as
discussed in Lemma 1. In this setting, NIC (15) is ensured if
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∂qB
�0∗

B
(qB; (0, 1)() 4 0 and ∂q�γ �

0∗
� (q�γ ; (0, 1, 0, 1, 0, 1)() 4 0 (56)

for some dual dissipation potentials �0∗
B

and �0∗
� with the properties established in

Lemma 1. Moreover, it should be mentioned that also gradients of surface states can
be taken into account in interfacial densities E� and S� . This is addressed in Sect. 4.

In view of [34, Sec. 3.4] and [15] and based on the afore discussion as well as on
the results obtained in Sect. 3.2, the following statements can be concluded.

Lemma 4 (Properties of Geometric Structures Under Transformations) Let
the prerequisites of Lemmata 1 and 2 be satisfied, and consider transformation
operators LH± and LH� of the type (46)– (49) and (52). Then, the following
statements hold true:

1. Let J0 = J
0
B
+ J

0
� be a Poisson operator in canonical form. Then, the transformed

operators JB(qτB
) = LSB

J
0
B
L
∗
SB

and J�(qτ�γ ) = LS� J
0
�L

∗
S�

are also Poisson

operators. If J0
B
and J0

� have properties (49a) and (55), then JB(qτB
) and J�(qτ�γ )

satisfy the NIC (15) for S = SB + S� .
2. Let �0∗ = �0∗

B
+ �0∗

� be a dual dissipation potential with the proper-
ties of L. 1, Items 1 and 2. Then, the transformed potentials �∗

B
(qτB

; ξB) =
�0∗

B
(L∗EB

qτB
;L∗EB

ξB) and �∗
�(LE�qτ�γ ;LE�ξ�γ ) = �0∗

� (L∗E�
qτ�γ ;L∗E�

ξ�γ )

also have properties of L. 1, Items 1&2. If �0∗
B

and �0∗
� have properties (56),

then the transformed �∗
B
(qτB

) and �∗
�(qτ�γ ) satisfy the NIC (15) for E =

EB + E� .

Remark 3 (Gibbs’ Relation) Calculating the products L
∗
SDE and L

∗
EDS, which

appear in the above GENERIC formalism, leads to expressions of the form ∂τE
∂τ S

.
For τ = θ , this is the so-called

Gibbs’ relation:
∂θS
∂θE

= 1

θ
. (57)

Mielke [15] demonstrates the generalization ∂τS
∂τE = 1

θ
, which we will frequently use

in Sect. 4 and see Example 3 below. �

Example 3 (Specific Choice of Driving Functionals in Thermoelasticity) In case of
τ = θ , a specific choice for the bulk and surface functionals matching with Gibbs’
relation (57) is given by

UB(e, θ) = W(e)− φ0(θ)+ θφ′0(θ), SB(e, θ) = φ′0(θ)− B : e,
(58a)

U�(γ+θ+, γ−θ−) = 1
4 (γ+θ

2+ + γ−θ2−), S�(γ+θ+, γ−θ−) = 1
2 (γ+θ+ + γ−θ−),

(58b)
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e.g., with φ′0(θ) = cV ln θ and a matrix B ∈ R
d×d . Clearly, both the bulk functionals

in (58a) and the surface functionals (58b) satisfy Gibbs’ relation (57).
For the transformation Tθ→S , we have for the bulk terms θ̃B = T−1

θ→S(SB) =
(φ′0)−1(SB + B : e) and

ŨB(e, SB) = W(e)− φ0
(
(φ′0)−1(SB + B : e))+ ((φ′0)−1(SB + B : e))(SB + B : e),

which again results in Gibbs’ relation ∂SB
ŨB(e, SB) = (φ′0)−1(SB + B : e) = θ̃B .

We further deduce that γ±θ̃± = 2γ±S± and Ũ�(γ±S+, γ±S−) = S2+ + S2−. This
also provides the interfacial Gibbs’ relation ∂γ±S±U� = 2γ±S± = γ±θ̃±.

Similarly, for the transformation Tθ→U it is θ̂B = T−1
θ→U(UB) = h−1(UB −

W(e)), where we have set h(θB) := −φ0(θ) + θφ′0(θ), and ŜB(e, UB) =
φ′0(h−1(ŨB−W(e))). Direct calculation again gives the Gibbs’ relation for the bulk,
since ∂UB

ŜB(e, UB) = φ′′0 (θ̂B)∂UB
θ̂B and ∂UB

θ̂B = 1/h′ = 1/(θ̂Bφ
′′
0 (θ̂B)). Along �,

we now have γ±θ̂± = 2
√
γ±U± and S�(γ+U+, γ−U−) = √

γ+U+ + √
γ−U−, so

that indeed ∂γ±U±S� + 1/(2
√
γ±U±) = 1/(γ±θ̂±), which confirms the interfacial

Gibbs’ relation also for the choice τ = U . Since E = Ekin + U , the same
calculations also verify Gibbs’ relation for τ = E. �

4 Delamination Processes in Thermo-viscoelastic Materials

We now consider a composite consisting of two thermo-viscoelastic bodies glued
together along the interface � by an elastic adhesive. This adhesive can experience
damage; in other words, delamination may evolve along �. In the spirit of
generalized standard materials [12], this process is modeled with the aid of an
internal variable, the delamination variable z : [0,T]×� → [0, 1] solely defined on
� to account for the degradation state of the glue. In particular, z(t, x) = 1 means
that the glue is fully intact in the interfacial point x ∈ � at time t ∈ [0,T], whereas
z(t, x) = 0 means that the glue is completely ineffective in (t, x) ∈ [0,T] × �. In
this way, the set C(t) := {x ∈ �, z(t, x) = 0} describes the crack set. This meaning
of z is connected to adhesive delamination and brittle fracture processes in the sense
of Griffith [10], see, e.g., also [7], rather than to so-called cohesive zone models in
the sense of Barenblatt [2]. For the latter type of models the internal variable has
a different meaning as it is introduced to keep track of the history of displacement
jumps across �, for example, in the form z(t, x) := maxs∈[0,t][[u(s, x)]] · n. We
refer to [31, 32] for a comparison of these different types of modeling approaches
and to the references therein for an analytical treatment of cohesive zone models in
absence of thermal effects.

The State Vector The vector of bulk state variables is given by qB := (u, p, τ ).
Here, u : �\� → R

d are the displacements, p = "u̇ : �\� → R
d denotes the
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momentum with a given mass density " > 0, and τ : �\� → R, τ ∈ {E, S,U, θ},
is a thermodynamic state variable, where we omit the index B on the individual
variables. Along �, we have the traces u±, p±, and τ± and the surface state
variables, the delamination variable z, and the interfacial thermodynamic variable
τ� . Hence, writing w := (u, p), the vector of interfacial variables is composed by

q�γ = γ qB = (w+, τ+, w−, τ−, z, τ�)( = (u+, p+, τ+, u−, p−, τ−, z, τ�)( .
(59)

Prototypical Driving Functionals This choice of variables is complemented by
an ansatz for the potentials of the form

EB(qB) := 1
2" |p|2 + UB(e(u), τ )− f · u in �\�,

(60a)

UB(e(u), τ ) := U el
B
(e(u))+ U th

B
(τ ) in �\�,

(60b)

SB(qB) := Sth
B
(e(u), τ ) in �\�,

(60c)

E�(γ qB) := 1
2

(
γ+U th

B
(τ )+ γ−U th

B
(τ )
)+ U el

� (z,
[[
u
]]
)+ U th

� (τ�) on � ,

(60d)

S�(γ qB) := 1
2

(
γ+Sth

B
(τ )+ γ−Sth

B
(τ ))+ Sth

� (τ�
)

on � ,

(60e)

where e(u) := 1
2 (∇u + ∇u() is the linearized strain tensor and [[u]] is the

displacement jump as introduced in Definition 1. We assume that Gibbs’ relation
is satisfied both in the bulk and on the interface, i.e.,

∂τEB

∂τ SB

= θB ,
∂τ�E�

∂τ�S�
= θ� and

∂τ±E�

∂τ±S�
= γ±θ± , (61)

see also Example 3 below for a specific choice matching with (61).

Underlying Poisson and Onsager Structures We introduce the bulk Poisson
operator and bulk dual dissipation potential

J
0
B
:=
⎛
⎝ 0 I 0
−I 0 0
0 0 0

⎞
⎠ and �0∗

B
(qB; ξB) := �0∗

V (qB; ξp)+�0∗
H (qB; ξτ ) . (62a)

Here, J0
B

features the reversible contribution to the evolution of the pair (u, p),
whereas the bulk thermodynamic variable τ evolves solely dissipative and thus has
no nonzero entries in J

0
B

. In this way, there clearly holds J
0
B
(0, 0, 1)( = 0, as a
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prerequisite to satisfy NIC according to (49). In turn, the dissipative evolution of τ
is ruled by the dual dissipation potential �∗

H(qB; ξτ ) with density ψ∗
H of the form

�0∗
H (θ; ξτ ) :=

∫
�\�

θ2κ(θ)
2

∣∣∇ξτ ∣∣2 dx , (62b)

resulting in the bulk Onsager operator for heat transport

K
0
HB
(θ)ξτB

=
∑

i∈{+,−}

[
− div

(
θ2κ(θ)∇ξτ

)]
�i

+
[
γi
(
θ2κ(θ)∇ξτ

)
ni
]
�i
. (62c)

This operator satisfies K
0
HB
(θ)1 = 0, a prerequisite to satisfy the NIC (49). In

addition, the bulk dual dissipation potential features Kelvin–Voigt viscosity of the
form

�0∗
V (qB; ξp) :=

∫
�\�

1

2
D(qB)ξp : ξp dx (62d)

with K
0
V(qB)ξp :=

∑
i∈{+,−}

[
D(qB)ξp

]
�i

, (62e)

the viscous Onsager operator. The full bulk Onsager operator is thus given as

K
0
B
(qB) = diag

(
0, K0

V(qB), K
0
HB
(θ)
)
. (62f)

On the interface �, dissipation occurs due to heat exchange between �± and �.
Writing ξγ τ = (ξτ+, ξτ−, ξτ�), the dissipation for imperfect heat transfer has the
general form

�0∗
H�(θγ ; ξγ τ ) :=

∫
�

1
2 ξγ τ · κ̂�(θ+, θ−, θ�) ξγ τ dHd−1 ,

where κ̂� :=
⎛
⎝ κ�,++ κ�,+− κ�,+�
κ�,−+ κ�,−− κ�,−�
κ�,�+ κ�,�− κ�,��

⎞
⎠ fulfills κ̂�

⎛
⎝ 1

1
1

⎞
⎠ = 0 ,

(63)

and κ̂� is positive semidefinite. We additionally account for dissipation due to
processes involving z on the interface by the dual dissipation potential

R∗z(q�, ξz) :=
∫
�

R∗
D(q�, ξz) dHd−1 , (64)

where for fixed q� the function ξz �→ R∗
D(q�, ξz) is convex and lower semicontinu-

ous, see Sect. 4.2 for more details. Writing η(·) := η(q�, ·) = ∂ξzR
∗
D(q�, ·), we find

the following form of K0
� with entries κ�,ij from (63) for i, j ∈ {+,−, �}
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K
0
� :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 κ�,++ 0 κ�,+− 0 κ�,+�
0 0 0 0 0 0
0 κ�,−+ 0 κ�,−− 0 κ�,−�
0 0 0 0 η(�) 0
0 κ�,�+ 0 κ�,�− 0 κ�,��

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (65)

where the first and the third lines collect the entries for ξw± with w = (u, p). Again,
we confirm that K0

�(0, 1, 0, 1, 0, 1)( = 0 as a prerequisite for NIC by (55).

Since the interface functionals in (60) account for a mutual interaction of the
traces of w (i.e., of u), there is a conservative contribution to the evolution along �,
and hence we set

J
0
HD�

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (66)

Noninteraction Conditions (15) In order to ensure the NIC (15), we follow the
approach of Sect. 3.4 to find the Poisson structures JB and J� and the Onsager
operators KB and K� . In particular, we introduce the bulk Poisson structure
according to (50) and (46) in the specific form

JB(qτ ) = LSB
J

0
B
L
∗
SB

, where L
∗
SB

=

⎛
⎜⎜⎝
I 0 − �

∂τ SB
∗ DuSB

0 I − �
∂τ SB

∗ DpSB

0 0 1
∂τ SB

⎞
⎟⎟⎠ (67a)

with δpSB = (0, . . . , 0), andDpSB = (0, . . . , 0)( ∈ R
d

and − �
∂τ SB

∗ DuSB =
∑

i∈{+,−}

[
div
( �
∂τ SB

∂eSB

)]
�i
− [γi( �

∂τ SB
∂eSB

)
ni
]
�i
,

(67b)

so that this entry in L
∗
SB

also generates a nonzero trace contribution on �±. It

can be readily checked that L∗SB
DSB = (0, 0, 1)(, which ensures the NIC (15)

JB(qτB
)DSB = LSB

J
0
B
L
∗
SB

DSB = 0 by the form of J0
B

from (62a).

For the bulk Onsager contribution, we also follow (48) and (46), i.e.,
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KB(qτ ) = LEB
K

0
B
L
∗
EB
, where L

∗
EB

=

⎛
⎜⎜⎝
I 0 − �

∂τEB
∗ DuEB

0 e(�) e ◦
(
− �

∂τEB
∗ DpEB

)
0 0 1

∂τEB

⎞
⎟⎟⎠

(67c)

with δpEB = ∂pE
(
B
= p/",

− �
∂τEB

∗ DuEB =
∑

i∈{+,−}

[
div
( �
∂τEB

∂eEB

)]
�i
− [( �

∂τEB
∂eEB

)
ni
]
�i
,

and e∗(ξp) =
∑

i∈{+,−}

[− div ξp
]
�i
+ [γiξp · ni

]
�i
.

(67d)

Comparing with (46), this means that here AH = e∗. The operators e and e∗ together
with the viscous Onsager operator K

0
V generate the dissipative contributions for

Kelvin–Voigt viscoelasticity.
Similarly, the interfacial geometric structures J� and K� are deduced according

to (49) by transforming K
0
� and J

0
� using the transformation maps LE� and L

∗
E�

as
well as LS� and L

∗
S�

obtained by (52).

Elimination of Surface Thermodynamic Variable τ� by Local Equilibrium We
specify κ̂� from (63) as

κ̂�(θγ ) = κ�(θγ )

⎛
⎜⎝

1+ 1
4ε −1+ 1

4ε − 1
2ε

−1+ 1
4ε 1+ 1

4ε − 1
2ε

− 1
2ε − 1

2ε
1
ε

⎞
⎟⎠ ,

i.e., ξ · κ̂�ξ = κ�(ξτ+ − ξτ−)
2 + ε−1(ξτ� − 1

2 (ξτ+ + ξτ−))2

and consider K� = LS�K
0
�L

∗
S�

with K
0
� from (65). Here, ε > 0 plays the role of

a relaxation parameter. Using Gibbs’ relation ∂τiS�
∂τiE�

= θ−1
i for i ∈ {+,−, �}, we

calculate the entries of K�DS� as follows:

(K�DS�)w+ = (K�DS�)w− = 0 ,

(K�DS�)τ± = κ�
1

∂τ±E�

(
(θ−1± − θ−1∓ )− 1

2ε

(
θ−1
� − 1

2 (θ
−1+ + θ−1− )

))

(K�DS�)z = η
(
∂zS� − θ−1

� ∗ ∂zE�
)

(K�DS�)τ� =− 1
∂τ�E�

η
(
∂zS� − θ−1

� ∗ ∂zE�
)
+ 1

∂τ�E�

κ�

ε

(
θ−1
� − 1

2 (θ
−1+ + θ−1− )

)
.
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Under the assumption that the system is quasi-stationary with respect to τ� , we have
(K�DS�)τ� = 0 and hence in the second row

(K�DS�)τ± = κ�
1

∂τ±E�

(
(θ−1± − θ−1∓ )

)
− 1

2 ∂τ±E�
η
(
∂zS� − θ−1

� ∗ ∂zE�

)
.

The last expression cannot yet be rephrased in terms of a gradient flow. However,
the limit ε → 0 formally enforces that 1

θ�
≈ 1

2 (
1
θ+ + 1

θ− ). Then, we find the new

GENERIC system by eliminating the row for τ� in K
0
� and J

0
� in (65) and (66) and

modifying LE� and L
∗
E�

in the following way:

LE� =

⎛
⎜⎜⎜⎜⎜⎝

Iw+ 0 0 0 0
− 1

∂τ+E�
δw+E�

1
∂τ+E�

0 0 − 1
2 ∂τ+E�

δzE�

0 0 Iw− 0 0
0 0 − 1

∂τ−E�
δw−E�

1
∂τ−E�

− 1
2 ∂τ−E�

δzE�

0 0 0 0 Iz

⎞
⎟⎟⎟⎟⎟⎠

,

(68a)

L
∗
E�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Iw+ − �
∂τ+E�

∗ Dw+E� 0 0 0

0 1
∂τ+E�

0 0 0

0 0 Iw− − �
∂τ−E�

∗ Dw−E� 0

0 0 0 1
∂τ−E�

0

0 − �
2 ∂τ+E�

∗ DzE� 0 − �
2 ∂τ−E�

∗ DzE� Iz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (68b)

and similarly for LS� and L
∗
S�

.

Weak Formulation of the GENERIC System With Bulk–Interface Coupling
Altogether, the weak formulation of the GENERIC evolution system

〈ξ̃ , q̇〉Q = 〈ξ̃ , JB DEB + KB DSB〉QB
+ 〈ξ̃�γ , J�DE� + K�DS�〉Q�

(69)

for all admissible test functions ξ̃ = (ξ̃B , ξ̃z) = (ξ̃u, ξ̃p, ξ̃τ , ξ̃z) ∈ Q∗ and the
interfacial test functions ξ̃�γ = (γ+ξ̃B , γ−ξ̃B , ξ̃z) ∈ Q∗�γ can be written as follows
when collecting terms that use the same test function:

〈ξ̃u, u̇〉Qu
=〈ξ̃u, p/"〉Qu

, (70a)

〈ξ̃p, ṗ〉Qp
=〈ξ̃p, div(∂eW(e(u))+ De(u̇)− ∂τEB

∂τ SB
∂eSB)+ f 〉�\�

+
∑

i∈{+,−}
−〈γi ξ̃p, γi

(
∂eWB(e(u))+De(u̇)− ∂τEB

∂τ SB
∂eSB

)
ni〉�i

+〈γi ξ̃p, ∂γiuU el
� (z, [[u]])〉� , (70b)
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〈ξ̃z, ż〉Qz
=〈ξ̃z, ηz〉Qz

and ηz ∈ ∂ξzR
∗
D

(
q�γ ;− 1

2

( 1
θ+ + 1

θ−
) ∗ DzU

el
� (z, [[u]])

)
,(70c)

〈ξ̃τ , τ̇ 〉Qτ
=〈 ξ̃τ

∂τEB
,− div

(
κ(θ)∇ ∂τ SB

∂τEB

)
− ∂τEB

∂τ SB
∂eSB :e(u̇)+ e(u̇) : De(u̇)〉�\�

+
∑

i∈{+,−}
〈γi
(

ξ̃τ
∂τEB

)
, γi
(
κ(θ)∇ ∂τ SB

∂τEB

)
ni〉�i + 〈γi ξ̃τ ,− 1

2∂γi τ E�
δzU

el
� · ηz〉�

+〈( γ+ ξ̃τ
∂γ+τ E�

− γ− ξ̃τ
∂γ−τ E�

)
, κ�([[u]], z)[[θ ]]〉� , (70d)

where ηz = ż ∈ ∂ξzR
∗
D

(
q�γ ;− 1

2

( 1
θ+ + 1

θ−
) ∗ DzU

el
�

)
by (70c). Using for the test

functions in (70d) the ansatz ξ̃τ = ∂τEB ξ̂τ for any suitable ξ̂τ and exploiting the
Gibbs’ relation, Eq. (70d) can be rewritten as

〈∂τEB ξ̂τ , τ̇ 〉Qτ
= 〈ξ̂τ ,− div

(
κ(θ)∇ 1

θ

)− θ∂eSB :e(u̇)+ e(u̇) : De(u̇)〉�\�
+
∑

i∈{+,−}
〈γi ξ̂τ , γi

(
κ(θ)∇ 1

θ

)
ni〉�i + 〈γi ξ̂τ ,− 1

2δzU
el
� · ż〉� + 〈[[ξ̂τ ]], κ�[[θ]]〉�

for all suitable test functions ξ̂τ . This entails the condition

∑
i∈{+,−}

〈γi ξ̂τ , γi
(
κ(θ)∇ 1

θ

)
ni〉�i + 〈γi ξ̂τ ,− 1

2δzU
el
� · ż〉� + 〈[[ξ̂τ ]], κ�[[θ]]〉� = 0 .

(71)

Derivation of Interfacial Coupling Conditions From this, we are now going to
derive interfacial coupling conditions in strong form. For shorter notation, we here
set J := κ(θ)∇ 1

θ
, and with the relation n− = −n+, we calculate

∑
i∈{+,−}

〈γi ξ̂τ ,γi
(
κ(θ)∇ 1

θ

)
ni〉�i = 〈γ+ξ̂τ , γ+Jn+〉� − 〈γ−ξ̂τ , γ−Jn+〉�

= 〈[[ξ̂τ ]], 1
2 (γ+J + γ−J ) · n+〉� + 〈 1

2 (γ+ξ̂τ + γ−ξ̂τ ),
[[
J
]] · n+〉� .

Comparison with the remaining terms in (71) results in the interfacial coupling
conditions (73g) and (73h) below.

Similar arguments also allow us to deduce interfacial coupling conditions
from the weak momentum balance (70b): noting that 〈γ±ξ̃p, ∂γ+u+U el

� 〉� =
〈−γ±ξ̃p, ∂γ−u−U el

� 〉�, we may rewrite the terms stemming from the interfacial
energy in (70b) as follows:

〈γ+ξ̃p, ∂γ+uU el
� 〉� + 〈γ−ξ̃p, ∂γ−uU el

� 〉� = 〈[[ξ̃p]], ∂[[u]]U el
� 〉� .
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Furthermore, using the abbreviation σ± := [
∂eWB(e(u))+De(u̇)− ∂τEB

∂τ SB
∂eSB

]
�± ,

we now read from (70b) that the terms on � have to satisfy the condition

0 = 〈[[ξ̃p]], γ+σ+n+ + ∂[[u]]U el
� 〉� + 〈γ−ξ̃p, γ+σ+n+ + γ−σ−n−〉� (72)

for all test functions ξ̃p ∈ Q∗p with traces γi ξ̃p, i ∈ {+,−} and jump [[ξ̃p]] across
�. This provides the interfacial coupling conditions (73e) and (73f) below.

Strong form of the GENERIC System with Bulk–Interface Coupling From
above considerations, we conclude that (70) corresponds to the following strong
formulation:

u̇ = p/" in �± , (73a)

ṗ = div(∂eUB + De(u̇)− θ∂eSB)+ f in �± , (73b)

τ̇ = 1
∂τEB

(
div(κ(θ)∇θ)− θ∂eSB : e(u̇)+ e(u̇) : De(u̇)

)
in �± , (73c)

ż ∈ ∂ξzR
∗
D

(
q�γ ;− 1

2 (
1
θ+ + 1

θ− ) ∗ DzU
el
� (z,

[[
u
]]
)
)

on � , (73d)

complemented by the following interfacial coupling conditions along �:

γ+σ+n+ + γ−σ−n− = 0 , (73e)

γ+σ+n+ + ∂[[u]]U el
� (z,

[[
u
]]
) = 0 , (73f)

[[κ(θ)∇ 1
θ
]] · n+ − δzU

el
� · ż = 0 , (73g)

1
2

(
γ+(κ(θ)∇ 1

θ
)+ γ−(κ(θ)∇ 1

θ
)
)·n++κ�([[u]], z)[[θ ]] = 0 , (73h)

and by homogeneous boundary conditions on ∂� and suitable initial conditions.

In the next sections, we introduce typical choices used in mathematical literature
for the dissipation potential for delamination RD and its conjugate R∗

D in (64) and
for the interfacial mechanical energy U el

� from (60d). For these choices, we discuss
the resulting form of the interfacial coupling conditions (73g) and (73h) and thus
reveal the GENERIC structure of the models previously studied in the literature
with analytical methods.

4.1 Typical Choices for Interfacial Mechanical Energies for
Delamination

Interfacial mechanical energies for delamination are typically of the type

U el
� (z,

[[
u
]]
) = W�(z,

[[
u
]]
)+ I[0,1](z)+ IK(

[[
u
]]
) . (74)
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Here, I[0,1] is the indicator function of the set [0, 1] to feature the constraint
z ∈ [0, 1], i.e., I[0,1](z) = 0 if z ∈ [0, 1] and I[0,1](z) = ∞ otherwise.
Moreover, the indicator function IK of the convex cone K := {v, [[v]] · n+ ≥ 0}
ensures non-penetration of the material along the interface. Most importantly, the
term W�(z, [[u]]) takes into account that displacement discontinuities along � are
energetically more costly as long as the glue is effective, i.e., for z(t, x) > 0. If
displacement jumps are only penalized but not excluded, one speaks of adhesive
contact and a typical energy density takes the form

Wk
�(z,

[[
u
]]
) := k

2
z|[[u]]|2 (75a)

with a constant k > 0. In the case of brittle delamination, displacement jumps are
excluded in points where the glue active with the energy density

W∞
� (z,

[[
u
]]
) := ICb(z,

[[
u
]]
) with Cb := {(z̃, [[ũ]]), z̃|[[ũ]]| = 0 a.e. on �}

(75b)
the set accounting for the non-smooth, brittle constraint. In combination with a
unidirectional, rate-independent dissipation potential, cf. (77) below with r = 1,
this provides a model for fracture in the spirit of Griffith [10].

For analytical reasons, some works additionally consider in U el
� (z, [[u]]) a gra-

dient term for the delamination variable. For example, [3–5] consider the gradient
term

G(∇z) := 1
2 |∇z|2, (76)

and [28] uses a Modica–Mortola type gradient termGM(∇z) := 1
2M |∇z|2+M

2 z
2(1−

z)2 to approximate as M → ∞ a model which only accounts for the fully intact
z(t, x) = 1 and the fully broken state z(t, x) = 0. In this limit, the interfacial
gradient term is given by the relative perimeter of the set Z(t) := {x ∈ �, z(t, x) =
1} in �.

4.2 Typical Choices of Dissipation Potentials for Delamination

Delamination in non-living materials is a unidirectional process, i.e., once the glue
has weakened in an interfacial point, it cannot heal and will ultimately break. This
property can be modeled by a dissipation potential of the form

RD(q; v) :=
∫
�

RD(q; v) dHd−1

with RD(q; v) := a(q)Rr(v)+ I(−∞,0](v) and Rr(v) := 1

r
|v|r ,

(77)
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for some strictly positive, state-dependent function a(q) > 0 for all q, the
integrability exponent r ∈ [1,∞), and I(−∞,0] the indicator function of the set
(−∞, 0], i.e., I(−∞,0](v) = 0 if v ∈ (−∞, 0] and I(−∞,0](v) = ∞ otherwise.
Rate-independent delamination corresponds to the case r = 1, see, e.g., [26–29],
while r > 1 describes rate-dependent delamination and is most commonly treated
in the literature with the exponent r = 2, cf., e.g., [4]. When choosing v = ż, we
note that the indicator function I(−∞,0] in (77) entails the constraint ż ≤ 0, which
ensures that delamination cannot heal, as z = 1 is the intact state and z = 0 denotes
the broken state. The dual dissipation potential R∗D, respectively, its density R∗

D, is
the convex conjugate of RD obtained by (12). In the case r = 1, this is

R∗
D(q; ξz) =

{
0 if ξz ∈ [−a(q),∞),

∞ otherwise,
(78a)

i.e., R∗
D(q; ·) = I∂vRD(q;0) is given by the indicator function of the convex set

∂vRD(q; 0). For r ∈ (1,∞), the convex conjugate is given by

R∗
D(q; ξz) =

{
0 if ξz > 0,

a(q)Rr ′
(

ξ
a(q)

)
otherwise,

where 1
r
+ 1

r ′ = 1 . (78b)

We now discuss (formally) equivalent formulations for the flow rule (73d) and
their implication on the coupling conditions (73g)– (73h). For this, let us first assume
that U el

� (z, [[u]]) is smooth and does not feature the gradient ∇z. Then, 1
2

( 1
θ+ + 1

θ−
)∗

DzU
el
� (z, [[u]]) = 1

2

( 1
θ+ + 1

θ−
)
∂zU

el
� (z, [[u]]) in (73d). By convex duality, the flow

rule (73d) is equivalent to the force balance

− 1
2 (

1
θ+ + 1

θ− )∂zU
el
� (z,

[[
u
]]
) ∈ ∂żRD(q�γ ; ż) on � , (79)

and to the Fenchel equality

RD(q�γ ; ż)+R∗
D

(
q�γ ;−1

2 (
1
θ++ 1

θ− )∂zU
el
� (z,

[[
u
]]
)
)=〈− 1

2 (
1
θ++ 1

θ− )∂zU
el
� (z,

[[
u
]]
), ż〉� .

(80)
Comparing (79) with (77), we make the choice

a(q) := 1
2 (

1
θ+ + 1

θ− ), (81)

so that (79) results in the state-independent force balance

− ∂zU
el
� (z,

[[
u
]]
) ∈ ∂ż

(
Rr(ż)+ I(−∞,0](ż)

)
. (82)

This type of force balance featuring a dissipation potential independent of θ is,
e.g., considered in [26, 28] for r = 1 and in [3–5] for r = 2. Of course, the
choice (81) also specifies a(q) = 1

2 (
1
θ+ + 1

θ− ) in (78b). With this ansatz, by formally
dividing (80) by a(q), coupling condition (73g) can be further rewritten as
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[[
κ(θ)∇ 1

θ

]]+ Rr(ż)+ 1
a(q)

R∗
D

(
q;− 1

2 (
1
θ+ + 1

θ− )∂zU
el
� (z,

[[
u
]]
)
) = 0 . (83)

In the rate-independent case r = 1, when taking into account that R∗
D(q;− 1

2 (
1
θ+ +

1
θ− )∂zU

el
� (z, [[u]])) = 0 by (78a) and (73d), we find for (83) in particular

[[
κ(θ)∇ 1

θ

]]+ R1(ż)+ I(−∞,0](ż) = 0 . (84a)

Moreover, in the rate-dependent case r > 1, it is R∗
D

(
q;− 1

2 (
1
θ+ + 1

θ− )∂zU
el
� (z, [[u]])

)
= a(q)Rr ′

(−∂zU
el
� (z, [[u]])

)
by (78b) given that ∂zU el

� (z, [[u]]) ≥ 0, and hence (83)
provides

[[
κ(θ)∇ 1

θ

]]+ Rr(ż)+ I(−∞,0](ż)+ Rr ′
(− ∂zU

el
� (z,

[[
u
]]
)
) = 0 . (84b)

In (74)–(75), it was discussed that mechanical energies for adhesive contact and
brittle delamination for modeling reasons in general feature non-smooth but convex
terms. Thus, ∂zU el

� (z, [[u]]) in (79)–(84) indeed is the subdifferential of a convex
function.

Now, we turn to the case that U el
� from (74) additionally also contains a quadratic

gradient term G as in (76). Then,

a(q)∗Dz

(
U el
� (z,

[[
u
]]
)+G(∇z)

)
= a(q)ζz+div a(q)∇z with ζz ∈ ∂zU

el
� (z,

[[
u
]]
)

(85)
in (73d). Thus, the ansatz (77) and repeating above calculations do not help to
remove a(q) from the divergence term. In order to find for the delamination variable
a force balance that is independent of a(q), one rather has to modify the ansatz used
to ensure the NIC for z in LE� and L

∗
E�
, see (68). More precisely, in the fifth line of

L
∗
E�

, we replace

− �
2∂τ±E�

∗ DzE� by − �
2∂τ±E�

DzE� , (86)

which is

− �
2∂τ±E�

DzE� = − �
2∂τ±E�

(
ζz −��z

)
with ζz ∈ ∂zU

el
� (z,

[[
u
]]
)
)

and where �� denotes the Laplace–Beltrami operator on �. This choice gives (79)
with ∂zU el

� replaced by Dz

(
U el
�+G

)
and thus also results in a force balance alike (82)

0 ∈ Dz

(
U el
� (z,

[[
u
]]
)+G(∇z))+ ∂ż

(
Rr(ż)+ I(−∞,0](ż)

)
. (87)

Moreover, we find for the fifth column in LE� that

− 1
2∂τ±E�

δzE� is replaced by − δzE�

[ �
2∂τ±E�

]
, (88)
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where we have assumed homogeneous Neumann boundary conditions to hold along
∂�, here ∇z · n� = 0 on ∂�. This gives

− δzE�

[
ż

2∂τ±E�

] = −
(
ζz · ż

2∂τ±E�
+∇�z · ∇�

(
ż

2∂τ±E�

))
(89)

to appear in (70d). To further process this expression, we now assume that ∇z ·
∇( ż

2∂τ±E�

)
is formally equivalent to −��z

(
ż

2∂τ±E�

)
thanks to the homogeneous

Neumann boundary conditions. Hence, −δzE�

[
ż

2∂τ±E�

]
is formally replaced by

− 1
2∂τ±E�

DzE� · ż in (70d). By repeating the arguments subsequent to (70d), we

arrive at (73g) with δzE� · ż replaced by DzE� · ż. In this way, we can again arrive
at the interfacial coupling conditions (84) by exploiting the Fenchel equality, which
now reads

RD(q�γ ; ż)+ R∗
D

(
q�γ ;− 1

2 (
1
θ+ + 1

θ− )Dz

(
U el
� (z,

[[
u
]]
)+G(∇z)))

= 〈− 1
2 (

1
θ+ + 1

θ− )Dz

(
U el
� (z,

[[
u
]]
)+G(∇z)), ż〉� .

Remark 4 We have exemplarily shown for delamination processes that the
GENERIC structure of bulk–interface systems can be given in a weak sense based
on thermodynamic functionals and geometric operators with bulk and interfacial
contributions. The interfacial coupling conditions arise naturally from this weak
form of GENERIC. The delamination models studied for their well-posedness,
e.g., in the works [26, 28] with r = 1 and in [4] with r = 2, are obtained
from thermodynamic functionals as discussed in Sects. 4.1 and 4.2. Hence, the
above derivation confirms the GENERIC structure of these models. Yet, it has
to be stressed that coupling conditions (73e)–(73h) and the reformulations made
in Sect. 4.2 to arrive at (84) hold true on a formal level, only, since they require
additional regularity of the terms involved, for example, for the term δzU

el
� , ż

appearing, e.g., in (70d). However, for r = 1, this cannot be guaranteed, since ż

is a Radon measure, only, and to have good duality would thus require δzU
el
� to

be continuous, which clearly is not to be expected. To circumvent this problem,
[26, 28] derive a weak formulation directly based on (84).

Finally, we remark that also sensitivity with respect to the fracture mode can be
added to the model by decomposing the displacement jump [[u]] = [[u]] ·n++[[u]] · t
into its normal and tangential components and by considering the a(q) in (77) not
only to depend on θ± but also on a function α([[u]] ·n+, [[u]] · t). In [27], the analysis
of such a mode-sensitive adhesive contact model with thermal effects requires the
use of higher order gradients of u̇. �
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Phase Separation in Heterogeneous
Media

Riccardo Cristoferi, Irene Fonseca, and Raghavendra Venkatraman

1 Introduction

The study of pattern formation in equilibrium configurations phase separation is
an extremely complex phenomenon that has attracted the interest of many mathe-
maticians. In the case of homogeneous substances, variational models such as the
Modica–Mortola functional (see [28, 31]) and its vectorial (see [4, 24]), anisotropic
(see [5, 23]), and non-isothermal variants (see [11]) have been proven capable
of describing the stable configurations observed in experiments. For composite
materials, it has been realized experimentally (see [6]) that the microscopic scale
heterogeneities can affect the macroscopic equilibrium configurations as well as
the dynamics of interfaces. Therefore, physics requires the mathematical models to
include these microscopic effects.

In this chapter, we consider a variational approach to the study of phase transi-
tions in heterogeneous media in the case where the scale of the heterogeneities is the
same as those at which the phase transitions phenomenon takes place. In particular,
we study a Modica–Mortola-like phase field model where the heterogeneities are
modeled by oscillations in the potential. To be precise, let d,N ≥ 1, fix an open
bounded set � ⊂ R

N with Lipschitz boundary, and, for ε > 0, define the energy
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Fε : H 1(�;Rd)→ [0,∞] as

Fε(u) :=
∫
�

[
1

ε
W
(x
ε
, u(x)

)
+ ε|∇u(x)|2

]
dx . (1)

Here u ∈ H 1(�;Rd) represents the phase field variable. The assumptions that the
double well potential W : RN × R

d → [0,∞) has to satisfy differ according to the
questions addressed, and therefore, we will present them in each section.

We are interested in understanding what is the sharp interface limit as the
parameter ε → 0. Local minimizers of this limit under a mass constraint will
describe equilibrium configurations.

Previous investigations on models related to the one considered in this chapter
have been undertaken by several authors. In particular, in [2] (see also [1]), Ansini,
Braides and Chiadò Piat considered the case where oscillations are in the forcing
term f (∇u) (which generalizes |∇u|2), while in [17] and [18] by Dirr, Lucia and
Novaga investigated the interaction of the fluid with a periodic mean zero external
field. Moreover, in [7], Braides and Zeppieri studied the � expansion of the scalar
one-dimensional case, allowing the zeros of the potential to jump in a specific way.
Finally, the case of higher-order derivatives is examined in [25] by Francfort and
Müller.

2 Phase Field Model

In this section, we present the results obtained in [9, 10, 12, 13].

2.1 Sharp Interface Limit

In order to study the sharp interface limit of the energy (1), we assume that the
double well potential W : RN ×R

d → [0,∞) satisfies the following properties:

(A1) For all p ∈ R
d , x �→ W(x, p) is Q-periodic, where Q := (−1/2, 1/2)N .

(A2) W is a Carathéodory function, i.e.:

(i) For all p ∈ R
d , the function x �→ W(x, p) is measurable.

(ii) For a.e. x ∈ Q, the function p �→ W(x, p) is continuous.

(A3) There exist z1, z2 ∈ R
d such that, for a.e. x ∈ Q, W(x, p) = 0 if and only if

p ∈ {z1, z2}.
(A4) There exists a continuous function W̃ : R

d → [0,∞), vanishing only at
p = z1 and at p = z2, such that W̃ (p) ≤ W(x, p) for a.e. x ∈ Q.

(A5) There exist C > 0 and q ≥ 2 such that
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1

C
|p|q − C ≤ W(x, p) ≤ C(1 + |p|q)

for a.e. x ∈ Q and all p ∈ R
d .

Remark 1 The assumption (A2)(i) above is the strongest we can ask when modeling
periodic inclusions of different materials. Indeed, when each cell Q is composed of
k different inclusions of materials each in a region E1, . . . , Ek ⊂ Q, the potential
W takes the form

W(x, p) :=
k∑

i=1

Wi(p)χEi
(x) ,

where Wi : Rd → [0,∞) are continuous functions with quadratic growth at infinity
and such that Wi(p) = 0 if and only if p ∈ {z1, z2}. Therefore, the function W

in the first variable is, in general, only measurable. Moreover, the continuity of W
in the second variable, as well as the non-degeneracy of the potential (A4) and the
growth at infinity in the second variable (A5), is compatible with what is usually
assumed in the physical literature.

The limiting functional will be an interfacial energy whose energy density is
defined via a cell formula as follows.

Definition 1 For ν ∈ S
N−1, let u0,ν : RN → R

d be the function

u0,ν(x) :=
{
z1 if x · ν ≤ 0 ,
z2 if x · ν > 0 ,

and denote by Qν the family of cubes centered at the origin with unit length sides
and having two faces orthogonal to ν. For T > 0, Qν ∈ Qν , and ρ ∈ C∞

c (B(0, 1))
with

∫
R

N ρ(x)dx = 1, where B(0, 1) is the unit ball in R
N , consider the class of

functions

C(ρ,Qν, T ) :=
{
u ∈ H 1(TQν;Rd) : u = u0,ν ∗ ρ on ∂(TQν)

}
.

We define the function σ : SN−1 → [0,∞) as

σ(ν) := lim
T→∞ g(ν, T ) ,

where, for each ν ∈ S
N−1 and T > 0,

g(ν, T ) := 1

T N−1 inf
{ ∫

TQν

[
W(y, u(y))+ |∇u|2

]
dy : Qν ∈ Qν , u ∈ C(ρ,Qν, T )

}
.
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Remark 2 It was observed by Müller in [29] that, in the case the potential W is
vectorial, in the definition of the cell formula it is not enough to take the minimum
only on a single cell, but to consider the sequence of minima taken on larger and
larger cells TQν . In case the potential W is scalar, it is possible to reduce to a single-
cell problem with W replaced by W ∗∗ (see Lemma 4.1 and the remark after that, in
[29]).

The main properties of the function σ : SN−1 → [0,∞) that are relevant for
our study are collected in the following result. For the proof, see [12, Lemma 4.1,
Remark 4.2, Lemma 4.3, Proposition 4.4].

Lemma 1 The following hold:

(i) For every ν ∈ S
N−1, the quantity σ(ν) is well-defined and finite.

(ii) The value of σ(ν) does not depend on the choice of the mollifier ρ.
(iii) The map ν �→ σ(ν) is upper semi-continuous on SN−1.
(iv) The infimum in the definition of g(ν, T ) may be taken with respect to one fixed

cubeQν ∈ Qν . Namely, given ν ∈ S
N−1, for anyQν ∈ Qν , it holds

σ(ν) = lim
T→∞

1

T N−1 inf
{ ∫

TQν

[
W(y, u(y))+ |∇u|2

]
dy : u ∈ C(ρ,Qν, T )

}
.

We are now in position to introduce the limiting functional.

Definition 2 Define the functional F0 : L1(�;Rd)→ [0,∞] as

F0(u) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
∂∗A

σ(νA(x)) dHN−1(x) if u ∈ BV (�; {z1, z2}),

+∞ else,

(2)

where A := {u = z1} and νA(x) denotes the measure theoretic external unit normal
to the reduced boundary ∂∗A of A at the point x.

Remark 3 Note that by Lemma 1(i), it holds F0(u) < ∞ for all u ∈
BV (�; {z1, z2}), and by Lemma 1(ii), the definition does not depend on the choice
of the mollifier ρ.

Theorem 1 Let {εn}n∈N ⊂ (0, 1) be a sequence such that εn → 0+ as n → ∞.
Assume that (A1), (A2), (A3), (A4), and (A5) hold:

(i) If {un}n∈N ⊂ H 1(�;Rd) is such that

sup
n∈N

Fεn(un) < +∞,

then up to a subsequence (not relabeled), un → u in L1(�;Rd), for some
function u ∈ BV (�; {z1, z2}).
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Fig. 1 The source of anisotropy for the limiting functional. If νA(x) is oriented with a direction
of periodicity of W , the (local) recovery sequence would simply be obtained by using a rescaled
version of the recovery sequence for σ(νA(x)) in each yellow cube and by setting z1 in the green
region, and z2 in the pink one. If, instead, νA(x) is not oriented with a direction of periodicity of
W , the above procedure does not guarantee that we recover the desired energy since the energy of
such functions is not the sum of the energy of each cube

(ii) The functional F0 is the �-limit in the L1 topology of the family of functionals
{Fεn}n∈N.

Remark 4 The most interesting aspect of the above result is the anisotropic
character of the limiting functional. This might come as a surprise since the initial
functional Fε is isotropic, but there is a hidden anisotropy: the possible mismatch
between the directions of periodicity of W and the local orientation of the limiting
interface ∂∗A (see Fig. 1).

We would like to comment on the main ideas behind the proof of Theorem 1.
Compactness follows by using classical arguments (see [24]) since the non-
degeneracy assumption (A4) allows to reduce to the case of a non-oscillating
potential

Fεn(un) ≥
∫
�

[
1

εn
W̃ (un(x))+ εn|∇nu(x)|2

]
dx.

The liminf inequality (see [12, Proposition 6.1]) is based on a standard blow-up
argument (see [22]) at a point x0 ∈ ∂∗A to reduce to the case where the limiting
function is u0,ν and the domain is Qν ∈ Qν , where ν = νA(x0). Then, a technical
lemma (see [12, Lemma 3.1]) in the spirit of De Giorgi’s slicing method (see [15])
allows to modify the given sequence {un}n∈N ⊂ H 1(Qν;Rd) into a new sequence
{vn}n∈N ⊂ H 1(Qν;Rd) with vn → u0,ν in L1, such that

lim inf
n→∞ Fεn(un) ≥ lim sup

n→∞
Fεn(vn),
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and vn = ρn ∗ u0,ν on ∂Qν , where ρn(x) := ε−Nn ρ(x/εn). The required inequality
then follows by using a change of variable, and the definition of σ(ν) together with
Lemma 1(iv).

The main challenges are related to the proof of the limsup inequality (see [12,
Proposition 7.1]) for a function u ∈ BV (�, {a, b}), which requires new geometric
arguments. The idea is first to prove the result for functions u ∈ BV (�; {a, b})
whose outer normals to the reduce boundary have rational coordinates, and then use
the density of this class of functions in BV (�; {a, b}) together with Reshetnyak’s
upper semi-continuity theorem (by Lemma 1(iii) the function ν �→ σ(ν) is upper
semi-continuous on S

N−1) to conclude in the general case. In order to tackle the
first step, we use a general strategy developed by De Giorgi, which can be seen as a
sort of reverse blow-up argument: we consider the localized �-limsup as a map on
Borel sets, and we prove that it is indeed a Radon measure λ. This is done by using a
simplification of the De Giorgi–Letta coincidence criterion for Borel measures (see
[16]) by Dal Maso, Fonseca, and Leoni (see [14, Corollary 5.2]). Next, we show
that λ is absolutely continuous with respect to the measure μ := HN−1 ¬

∂∗A.
The result follows by proving that the density of λ with respect to μ at a point
x0 ∈ ∂∗A is bounded above by σ(νA(x0)). It is in this step that we exploit the fact
that νA(x0) ∈ S

N−1 ∩ Q
N−1: indeed, by using the fact that W is periodic (with

a different period) also as a function on any cube Q whose faces are normal to
directions in S

N−1∩Q
N−1, we can estimate the energy of a configuration similar to

that in Fig. 1 on the left.

Remark 5 The strategy used to prove the above result is robust enough to be easily
adapted to prove the analogous result when a mass constraint is enforced. Moreover,
as a consequence of the �-limit result, we get that the function σ : SN−1 → [0,∞)

is continuous, and its 1-homogeneous extension is convex.

The upshot of the foregoing result is that microscopic heterogeneities during
phase transitions result in anisotropic surface tensions at the macroscopic level.
Natural follow-up questions are:

1. Beyond convexity, what can one say about the effective surface tension σ? What
functions σ are attainable as effective surface tensions of phase transitions in
periodic media?

2. Considering the gradient flow dynamics of an energy as in (1), what are the
ε → 0+ asymptotics? Does one indeed obtain a suitable weak formulation of
anisotropic mean curvature flow, by analogy with the isotropic setting?

In [9], we provide partial answers to the first question above, by relating it to a
geometry problem. In [10], we address dynamics. In the rest of this survey, we will
summarize the results of [9], and a similar review of the results on dynamics will
appear elsewhere [21].

In the sequel, we assume the product form of the potential W :

W(y, ξ) := a(y)(1 − u2)2, y ∈ R
N, u ∈ R. (3)
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Here a : RN → R is Q-periodic and non-degenerate in the sense that

θ � a(y) � 2, y ∈ R
N, (4)

for some 0 < θ < 2 < ∞. Note that assumptions (A1)–(A5) of Sect. 2.1 are
satisfied with z1 = −1, z2 = 1, and W̃ = W . The fact that u is scalar-valued is
crucial for a number of the results proven in [9, 10] since we use arguments based
on the maximum principle. However, this is not true of all the results, and we will
indicate this as appropriate.

2.2 Bounds on the Anisotropic Surface Tension σ

2.2.1 A Geometric Framework

Consider the periodic Riemannian metric on R
N that is conformal to the Euclidean

one, defined as follows: given points x, y ∈ R
N , we set

d√a(x, y) := inf
γ

∫ 1

0

√
a(γ (t))|γ̇ (t)| dt,

where the infimum is taken over Lipschitz continuous curves γ : [0, 1] → R
N

such that γ (0) = x, γ (1) = y. It is easily seen that the formula defining d√a
is independent of the parameterization of the competitor curves γ. Furthermore,
standard arguments via the Hopf–Rinow theorem imply that RN with the metric d√a
is a complete metric space. Equivalently, geodesically complete: given any pair of
points x, y ∈ R

N , there exists a distance-minimizing geodesic joining them, whose
length is equal to d√a(x, y) (see [31] for details). Now fix a direction ν ∈ S

N−1,

and consider the plane �ν through the origin with normal ν,

�ν := {y ∈ R
N : y · ν = 0}.

Next, define the signed distance function in the d√a-metric to the plane �ν , via

hν(y) := sgn(y · ν) inf
z∈�ν

d√a(y, z),

where the signum function is defined as

sgn(t) :=
{

1 t � 0,
−1 t < 0.

It is easily shown (see [9, Lemma 2.2]) that hν is Lipschitz continuous, with



374 R. Cristoferi et al.

|∇hν(y)| =
√
a(y) at a.e. y ∈ R

N. (5)

These observations, together with (4), yield

√
θ(y · ν) � hν(y) �

√
2(y · ν), y · ν � 0,

√
2(y · ν) � hν(y) �

√
θ(y · ν), y · ν < 0.

(6)

In order to explain the relationship that the d√a-metric bears with the anisotropic
surface tension σ, it is useful to revisit the case a ≡ 1, and the celebrated Modica–
Mortola example. In this case,

σ(ν) = lim
T→∞

1

T N−1 inf

{∫
TQν

[
W(u(y))+ |∇u|2

]
: u ∈ C(ρ,Qν, T )

}
.

Elementary algebraic manipulations that effectively boil down to completing
the square yield that the infimum above is asymptotically reached by the one-
dimensional profile satisfying equipartition of energy. This entails, in the model
case of (3), that the optimal cost is achieved by the choice u(y) = q ◦ (y · ν), where
q := tanh . The associated cost is given by

σ(ν) ≡ σ0 :=
∫ ∞

−∞

[
W(q ◦ (y · ν))+ |∇(q ◦ (y · ν))|2

]
d(y · ν) = 2

∫ 1

−1

√
W(s) ds.

To make the connection to the
√
a-metric, we begin by noting that when a ≡ 1,

we have hν(y) ≡ y · ν. Our main motivation, then, is to obtain a similar formula
that is exact when a is non-constant, or at least supplies reasonable bounds for the
non-constant ν �→ σ(ν). We do so by encoding the heterogeneous effects of a into
the geometry of the underlying space, i.e., by working in the

√
a-metric. We turn to

making these comments precise.
Fix ν ∈ S

N−1. Then, the cell formula defining σ(ν), proven in [12, 13] and
specialized to our setting, reads (see Lemma 1 (iv))

σ(ν) = lim
T→∞

1

T N−1 inf
{ ∫

TQν

[
a(y)W(u)+ |∇u|2

]
dy : u ∈ H 1(TQν),

u = ρ ∗ u0,ν on ∂(TQν)
}
.

Here, we recall that u0,ν(y) := sgn(y · ν) and ρ is any standard smooth normalized
mollifier (it is shown in Lemma 1(ii) that σ(ν) is independent of this choice). A
preliminary step is to observe, by De Giorgi’s slicing method (see [9, Lemma A.1]),
that, equivalently,

σ(ν) = lim
T→∞

1

T N−1 inf
{ ∫

TQν

[
a(y)W(u)+ |∇u|2

]
dy : u ∈ H 1(TQν),
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u = q ◦ hν along ∂(TQν)
}
. (7)

For each fixed T 5 1, by the Direct Method of the Calculus of Variations, the
variational problem inside the limit has a minimizer. Such a minimizer is, perhaps,
not unique, but for each T we select one and call it uT .We discuss various properties
of uT below in Sect. 2.2.2. In light of (7), it is clear by energy comparison that

σ(ν) � lim inf
T→∞

1

T N−1

∫
TQν

[a(y)W(q ◦ hν)+ |∇(q ◦ hν)|2] dy.

Toward proving the opposite bound, we introduce the function φ : R→ R by

φ(z) := 2
∫ z

0

√
W(s) ds.

This function plays a fundamental role in the Modica–Mortola analysis correspond-
ing to a ≡ 1. For any T 5 1, using (5) and completing squares, we find

1

T N−1

∫
TQν

[
a(y)W(uT )+ |∇uT |2

]
dy

= 2

T N−1

∫
TQν

∇hν ·
√
W(uT )∇uT dy + 1

T N−1

∫
TQν

∣∣∣∇uT −√W(uT )∇hν
∣∣∣2

≥ 1

T N−1

∫
TQν

∇hν · ∇(φ(uT )) dy

= 1

T N−1

∫
TQν

∇hν · ∇(φ(q ◦ hν)) dy + 1

T N−1

∫
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy

= 1

T N−1

∫
TQν

|∇hν |2φ′(q ◦ hν)q ′(hν) dy

+ 1

T N−1

∫
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy

= 1

T N−1

∫
TQν

2a(y)W(q ◦ hν) dy + 1

T N−1

∫
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy

= 1

T N−1

∫
TQν

[
a(y)W(q ◦ hν)+ |∇(q ◦ hν)|2

]
dy

+ 1

T N−1

∫
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy,
(8)

where in the last line we used the fact that the function q ◦hν achieves equipartition
of energy. Indeed, by the definition of hν , we have

|∇(q ◦ hν)(y)|2 = (q ′(hν(y))2|∇hν(y)|2 = a(y)W(q(hν(y)).
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Defining

λ(ν) := lim sup
T→∞

1

T N−1

∫
TQν

[
a(y)W(q ◦ hν)+ |∇(q ◦ hν)|2

]
dy,

λ(ν) := lim inf
T→∞

1

T N−1

∫
TQν

[
a(y)W(q ◦ hν)+ |∇(q ◦ hν)|2

]
dy,

provided we can control the error term

lim sup
T→∞

∣∣∣∣ 1

T N−1

∫
TQν

∇hν(y) · ∇ (φ(uT )− φ(q ◦ hν)) dy
∣∣∣∣ := λ0(ν),

we observe that the test function q ◦hν gives two-sided bounds on σ(ν). Controlling
the term λ0 is complicated by the fact that it couples a product of weakly converging
sequences (on expanding domains). Indeed, rescaling using y = T x in order to
work in a fixed domain Qν, the two weakly converging factors making up the above
product are:

1. The oscillatory factor: by (5) and (4), the term {∇hν(T ·)}T , which is bounded
in L∞, converges weakly-*.

2. The concentration factor: The terms ∇φ(uT (T ·)) and ∇φ(q ◦ hν(T ·) converge
weakly-* to measures (see Sect. 2.2.2 for precise statements).

In particular, as one of the factors converges to a measure, standard tools such as
compensated compactness, used traditionally to pass to the limit in products of
weakly converging sequences, are unavailable, and we must control this term “by
hand.” In Sect. 2.2.2 below, we obtain fine information on the concentration effects;
in Sect. 2.2.3, we deduce partial results concerning the oscillatory effects. Finally,
we put these together in Sect. 2.2.4 where we obtain bounds on λ0(ν).

2.2.2 Structure of Minimizers of the Cell Formula

For fixed T 5 1, let uT ∈ C2(TQν) (by elliptic regularity) be a minimizer of the
energy

∫
TQν

[
a(y)W(u)+ |∇u|2

]
dy,

among competitors that equal q ◦ hν along the boundary ∂(TQν), and set

vT (x) := uT (T x), x ∈ Qν.

Lemma 2 The functions vT converge in L1 to u0,ν : Qν → {±1}.
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The proof of this lemma (see [9, Lemma 3.1]) is a nice application of the
convexity of the one-homogeneous extension of σ (see Remark 5), using Jensen’s
inequality. The argument, without any changes, holds in the complete generality
of the setting of [12] on the potential (vectorial, coupled, measurable dependence
on the fast variable) and does not rely on the specific structure requested in (3).
Combining Lemma 2 with the results of Caffarelli–Cordoba [8], we find that the
level sets of vT , for T sufficiently large, converge uniformly to �ν ∩Qν .

Restricting ourselves to the scalar setting of (3), an argument using the strong
maximum principle yields that for all T <∞, we have

−1 < uT (y) < 1

(see [9, Lemma 3.2]). In particular, wT := 1√
2

tanh−1 uT is well-defined, finite,
and smooth in TQν. Further, the function wT verifies the elliptic boundary-value
problem

⎧⎪⎨
⎪⎩
�wT = 4√

2
tanhwT

(|∇wT |2 − a(y)
)
, y ∈ TQν,

wT (y) = hν(y) y ∈ ∂(TQν).

Proposition 1 Let wT be as above, and let T 5 1. There exist universal constants
α0 and η0 > 0 such that the following holds:

⎧⎨
⎩
√
2(y · ν)− α0 ≥ wT (y) ≥

√
θ(y · ν)− η0 if wT (y) > 0,

−√θ(y · ν)+ η0 ≥ wT (y) ≥ −√2(y · ν)+ α0 if wT (y) < 0.
(9)

Proposition 1 asserts that, up to universal constants, the function wT satisfies
exactly the same growth rates as the function hν, see (6). To prove Proposition 1,
consider, for instance, the lower bound in the first of the two inequalities in (9). The
main observation is that the function y �→ ζT (y) := y·ν

wT (y)+η0
satisfies an elliptic

PDE that verifies a maximum principle. The remaining inequalities follow from
similar arguments, and we refer the reader to [9, Proposition 3.4] for details.

2.2.3 The Planar Metric Problem

Our results on the distance function hν concern its large-scale behavior. The bounds
on σ that we discuss in Sect. 2.2.4 below depend solely on the large-scale behavior
of the distance functions hν for which one can readily invoke efficient numerical
algorithms, for example, fast marching and sweeping methods [30].

A natural question concerns the large-scale homogenized behavior of hν , i.e.,
characterize the limit
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lim
T→∞

hν(T y)

T
, y ∈ R

N,

in a suitable topology of functions. We fully resolve this question (see also [3]) by
characterizing uniform limits of the function h(T ·)/T .
Theorem 2 Let ν ∈ S

N−1. Then, there exists a real number c(ν) ∈ [√θ,√2], and
for each K ⊆ R

N compact, we have

lim
T→∞ sup

y∈K

∣∣∣∣ 1

T
hν(T y)− c(ν)(y · ν)

∣∣∣∣ = 0.

Moreover, for all compact subsets L of RN \�ν , we have

lim
T→∞ sup

y∈L

∣∣∣∣ 1

T (y · ν)hν(T y)− c(ν)

∣∣∣∣ = 0.

We can interpret Theorem 2 as a homogenization result for the Eikonal equation
in half-spaces. Indeed, it is well known (see for example [27]) that for each fixed
ν ∈ S

N−1, the functions km(y) := T −1
m hν(Tm(y)) and �(y) := c(ν)(y · ν) are the

unique viscosity solutions to

{
|∇km|=√a(Tmy) in {y · ν≥0} ,
km=0 on �ν,

and

{
|∇�|=c(ν) in {y · ν≥0} ,
�=0 on �ν.

(10)

In fact, small modifications of our proofs permit us to prove almost periodic
homogenization theorems for convex Hamiltonians with Bohr almost periodic
dependence on the fast variable and Lipschitz continuous dependence on the slow
variable (see [9, Theorem 1.4] for a precise statement). Theorem 2 shows that
viscosity solutions of the PDEs on the left side of converge locally uniformly to
the viscosity solution of the PDE on the right. A viscous and stochastic version of
these equations (termed the “planar metric problem”) was introduced by Armstrong
and Cardaliaguet [3] and studied by others [19, 20] in the context of stochastic
homogenization of geometric flows.

2.2.4 Bounds on the Anisotropic Surface Tension

As explained in the string of inequalities (8), the function q ◦hν provides tight upper
and lower bounds for the effective anisotropy σ(ν). To be precise:

Theorem 3 Let σ : SN−1 → [0,∞) be the anisotropic surface energy as in (1).
Let q : R→ R be defined by
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q(z) := tanh(z), z ∈ R.

For ν ∈ S
N−1, define

λ(ν) := lim inf
T→∞

1

T N−1

∫
TQν

[
a(y)W(q ◦ hν)+ |∇(q ◦ hν)|2

]
dy,

λ(ν) := lim sup
T→∞

1

T N−1

∫
TQν

[
a(y)W(q ◦ hν)+ |∇(q ◦ hν)|2

]
dy.

There exist �0 > 0 and λ0 : SN−1 → [0,�0] such that

λ(ν)− λ0(ν) � σ(ν) � λ(ν).

We do not expect these to agree when ν ∈ Q
N∩SN−1 owing to finite-size effects:

in such directions, hν is periodic, and the problem is restricted to an infinite strip,
rather than all of space (see [9, Lemma 2.3]). However, generically, i.e., when ν is
an irrational direction, we conjecture that λ0(ν) = 0, so that λ(ν) = λ(ν).

2.3 Open Problems

The studies presented above are a good source of interesting open problems. Here
we list some of them.

2.3.1 Different Scales

For ε, δ > 0, consider the energy

Fε,δ(u) :=
∫
�

[
1

ε
W
(x
δ
, u(x)

)
+ ε|∇u(x)|2

]
dx,

defined for functions u ∈ H 1(�;Rd). Here the parameter ε is related to the phase
transition process, while δ describes the scale of periodicity. In the functional (1),
we considered the case ε = δ, namely when the two phenomena act at the same
scale, but it is interesting to understand what happens when one scale is dominant
with respect to the other. Heuristically, we expect the limiting energy to be the same
in the green and in the blue region (see Fig. 2). In particular, when ε 	 δ, we expect
the limiting functional FP

0 to be the homogenization of a surface energy functional,
while in the other case, namely when δ 	 ε, we expect to obtain the limit FH

0 of a
classical Modica–Mortola functional whose potential is the homogenization of the
original potential W .
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Fig. 2 The situation when phase transitions and homogenization act at possibly different scales

This latter situation was investigated in [26] under the additional assumption that
the positive infinitesimal sequences {εn}n∈N and {δn}n∈N satisfy

lim
n→∞

ε
3/2
n

δn
= +∞, (11)

and by assuming the potential W to be locally Lipschitz in the second variable,
uniformly in the first one. In particular, it was proved that the limiting functional is

FH
0 (u) :=

⎧⎪⎪⎨
⎪⎪⎩
KHP({u = z1};�) if u ∈ BV (�; {z1, z2}),

+∞ otherwise,

where P({u = z1};�) denotes the perimeter of the set {u = z1} in �, and the
constant KH is given by

KH := 2 inf

{∫ 1

0

√
WH(γ (s))|γ ′(s)|ds : γ ∈ C1([0, 1];Rd), γ (0) = z1, γ (1) = z2

}
,

with the homogenized potential WH : R
d → [0,+∞) given by WH(p) :=∫

Q
W(y, p) dy.
Some questions are still open: is this true also when δ 	 ε but without the extra

assumption (11)? And what about the other regime?

2.3.2 Sharpness of Bounds and Inverse Homogenization

Various questions remain open from our discussion in 2.2. Our main contribution
in that section was to relate the anisotropic surface tension σ to a purely geometric
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problem that had no concentration effects. Related to these bounds, we offer two
open questions:

1. Examine the tightness of the bounds in Theorem 3, and closely related.
2. What does the set of effective anisotropies σ look like? In other words, which

σ : SN−1 → (0,∞) with convex one-homogeneous extensions arise as a result
of the homogenization procedure in [9]? Our bounds provide an approach to
approximately solving this inverse homogenization question.
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Some Recent Results on 2D
Crystallization for Sticky Disc Models
and Generalizations for Systems of
Oriented Particles

Lucia De Luca

1 Introduction

The crystallization problem consists in understanding why, in appropriate physical
conditions, systems of interacting particles arrange themselves into periodic lattices
that assume a specific macroscopic shape [5]. Here we focus on this problem in the
simplified setting of two-dimensional models at zero temperature, and we adopt a
variational point of view, namely, we want to see crystallization as a phenomenon
emerging from the minimization of suitable energy functionals. The results stated
in this review are obtained in [11–14] that we refer to for the proofs and the main
technical aspects; here we just present the basic strategy and the main ideas. We
focus on pairwise interaction energies of the form

EV (X) := 1

2

∑
i �=j

V (|xj − xi |) , (1)

where, assuming that the particles are point-like (resp., round-like), X={x1, . . . , xN }
(N ∈ N) is the set representing the positions (resp., the positions of the barycenters)
of the particles and V : [0,+∞) → [0,+∞] is a short-range repulsive/long-
range attractive interaction potential. Typically, V is a one-well potential such
that limr→0+ V (r) = +∞ , thus mimicking the constraint of non-interpenetration
of bodies, and limr→+∞ V (r) = 0 , which expresses the fact that two far away
particles tend to ignore each other (see Fig. 1). Relevant examples of such a kind of
potentials are the so-called Lennard–Jones (p, 2p) potentials defined by
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Fig. 1 The Lennard–Jones (p, 2p) potentials for p = 2 (left), p = 6 (middle), p = 20 (right)

V (p,2p)(r) = r−2p − 2r−p , (p > 0) ,

and, among them, the power p = 6 plays a prominent role for its chemical
interpretation. Here, we have normalized the optimal interparticle distance to 1
and the associated potential energy to −1 . Numerical simulations suggest 2d
crystallization for the potentials V (p,2p) [36]. Nowadays a proof of this fact is still
missing; in [34], a crystallization result in the thermodynamic limit as the number
of particles diverges is obtained for a one-well potential, qualitatively similar to
the Lennard–Jones potential, satisfying suitably convexity/concavity assumptions.
Here, we focus on the “brittle limit” as p → +∞ of the Lennard–Jones (p, 2p)
potentials in which the width of the well of the pair potential is compressed to
zero and bonds immediately break upon increasing the interparticle distance. This
procedure gives back the so-called Heitmann–Radin sticky disc model [23], where
the interaction potential is of the form

VHR(r) =
⎧⎨
⎩
+∞ if r < 1 ,
−1 if r = 1 ,
0 if r > 1 .

(2)

For the above potential, Heitmann and Radin [23] proved that all the minimizers of
the energy (1) are, up to rotation and translation, subsets of the regular triangular
lattice

T := {z1u1 + z2u2 : z1, z2 ∈ Z} , u1 = (1; 0) , u2 = (1/2;√3/2) ,

and they provide an explicit minimizing configuration, which we will refer to as
canonical minimizer, for every number of particles. Roughly speaking, such a
canonical minimizer has the macroscopic shape of a regular hexagon with side
length s if the number of particles is of the form N = 3s2 + 3s + 1 and is given by
an “hexagon plus a partial shell” in the other cases. The regular hexagon, namely,
the Wulff shape for this problem, is actually the limit of any sequence of minimizers
when the number of particles N tends to infinity and the interparticle distance is
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scaled by N1/2 [2]. However, this is only the asymptotic behavior of the ground
states since for a generic N the minimizers are “highly” non-unique. This fact has
been proven by several authors: in [32], it has been proven that the scaling law for the
fluctuation about the asymptotic Wulff shape is CN3/4 for some C > 0, whereas in
[10] the optimal constantC is explicitly provided (see also [30] for analogous results
in the 3d cubic lattice and [8] for an interpretation of such a scaling law in terms of
quantitative isoperimetric inequalities). In Sect. 3.1, we review the Heitmann–Radin
crystallization result adopting the point of view of [12] and [11]. Furthermore, we
determine also all the cardinalities of particles that guarantee, up to rotation and
translation, the uniqueness of the minimizing configurations.

The results above deal with the behavior of minimizers for every fixed number
N of particles. A natural question arising from such results concerns the behavior
of quasi-minimizers, i.e., of configurations that are in the same asymptotic regime
of the minimizers. In Sect. 3.2, we review the result in [13], and we show that
the Heitmann–Radin energy enforces crystallization not only for minimizers, but
also for low-energy configurations. But while for minimizers the orientation of
the underlying lattice is constant, for almost minimizers global orientation can be
disrupted, giving rise to polycrystalline structures. Moreover, we compute the �-
limit of the energy functionals whenever the limiting orientation is constant, i.e., in
the case of a single crystal. Such a result has been generalized in [20] to the very
relevant case of limit polycrystals.

The results in Sect. 3 are obtained adopting a geometric approach that allows to
rewrite the minimization of the sticky disc energy in terms of a suitable isoperimetric
problem on the graphs generated by finite-energy configurations (see formula (3)).
For such a reason in Sect. 2, we introduce the graph notions that will be needed
in our analysis. We will see that the combination of graph tools and variational
techniques successfully exploited in the context of the classical Heitmann–Radin
model is robust enough to deal also with vectorial crystallization problems, namely,
with crystallization for systems of oriented particles. This is the content of Sect. 4. In
such a case, we focus on configurations (X, V ) = ((x1; . . . ; xN), (v1; . . . ; vN)) ∈
(R2)N × (S1)N , where xi and vi represent, respectively, the position and the
orientation of the i-th particle; here and below S

1 is the set of vector of R2 with
unitary length. We consider pairwise interaction energies of the form

EV (X, V ) := 1

2

∑
i �=j

V (xi, xj , vj , vj ) ,

where V is an interaction potential that is given by the sum of two terms, a hard core
interaction depending on the mutual distance between the particles and the other one
on both the mutual distance and orientation. Such a kind of interaction is governed
by threshold criteria depending on a suitable parameter; tuning such a parameter,
different minimal configurations are possible.

The interest toward this kind of model is motivated by the idea of building
up a toy model for animal aggregations, such as fish schooling, bird flocking, or
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Fig. 2 The i-th fish follows the j -th fish

ducklings formation, which have been largely studied in modeling and simulation
issues (see also [31] for the related theory of boids) but lacked of a rigorous
mathematical analysis. The potential we consider encodes in a simple way the main
modeling aspects [7, 15, 16, 26, 31] (Fig. 2) considered in fish schooling; in our
framework, the i-th fish “follows” the j -th fish if they are at a suitable distance and
if both the following conditions are satisfied:

• The j -th fish lies in the cone flap pointed at xi , with axis parallel to vi and angle
amplitude θvisual.

• The i-th fish lies in the cone flap pointed at xj , with axis parallel to −vj and
angle amplitude θwake.

As a further simplification, we assume θvisual = θwake =: θ and θ ∈ [0, π ] .
Therefore, renormalizing the hard core distance to 1 , the model depends only on
the parameter θ . We underline that the toy model described above is able to predict,
rather than assume, alignment of orientations [9, 35]. When θ is small, the optimal
configurations tend to be lines or cycles (for large enough particles) , whereas for θ
close to π , the minimizers tend to coincide with the ones of the Heitmann–Radin
energy. The case θ = π

3 provides the so-called diamond formation that is the one
expected in fish schooling [6, 26, 27, 37] . Summarizing, we have shown that, in
the Heitmann–Radin model, crystallization in the regular triangular lattice occurs
for minimizers (unique global orientation) and for quasi-minimizers (polycrystals
with possible different orientations), whereas considering a sticky disc potential,
depending also on the orientation of particles, different structures (triangular lattice,
diamond formation, one-dimensional configurations) can appear.

We remark that also models depending only on the particle positions can provide
different lattice structures; by incorporating a three-body potential in the model, it
is possible to obtain the honeycomb lattice [28] or the square lattice [29]. The latter
can be obtained also, at least in terms of the energy per particle, by using only a
Lennard–Jones type potential with large well (in order to include next-to-nearest
neighbor interactions) [4]. Finally, all the results we have presented are only in
dimension two. The situation in dimension one is nowadays quite well understood;
indeed, it is immediate to check that the equi-spaced configurations with nearest-
neighboring distance equal to 1 provide all the minimizers of the Heitmann–Radin
energy (2) among the configurations of particles sitting on a straight line. The same
result holds true, in terms of the energy density, also for the Lennard–Jones potential
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V (6,12) [21] (see also [24] for a recent extension of such a result to slightly more
general potentials and [24, 25] for an asymptotic analysis of energy minimizers
at low temperature). However, a complete crystallization result for stable one-well
potentials exhibiting the “right behavior” at 0 and ∞ is still missing also in the
one-dimensional case. As for the three-dimensional case, the situation is much less
clear. The rough idea is that ground states of the Heitmann–Radin model should be
given by a suitable superposition of parallel triangular lattice sheets; however, no
proof of this fact is at disposal. The candidate lattices should then be the FCC lattice
and the HCP lattice. In [17, 18], the authors have proven that the FCC lattice is a
ground state in the limit as the number of particles diverges when adding a suitable
three-body interaction to a Lennard–Jones type potential. It would be interesting
to incorporate in the 2d and 3d models mentioned above a dependence on the
orientation of particles as the one in Sect. 4 in order to study, at least numerically,
how this affects the behavior of ground states. Moreover, our purely variational and
static approach to vectorial crystallization could be compared with richer models [3]
accounting for topological rather than metric distances, fluctuations, and dynamical
aspects [9, 35].

2 Preliminaries on Planar Graphs

Here we collect some notions and notation on planar graphs that will be adopted in
this chapter. We refer to [14, Section 1] for a complete analysis.

Let X be a finite subset of R2, and let Ed be a given subset of E(X) , where

E(X) := {{x, y} ⊂ R
2 : x, y ∈ X , x �= y} .

The pair G = (X,Ed) is called graph; X is called the set of vertices of G, and
Ed is called the set of edges (or bonds) of G .

Given X′ ⊂ X, we denote by GX′ the subgraph (or restriction) of G generated
by X′ , defined by GX′ = (X′,Ed′), where Ed′ := {{x′, y′} ∈ Ed : x′, y′ ∈ X′} .

Definition 1 We say that two points x, z ∈ X are connected, and we write x ∼ z

if there exist M ∈ N and a path x = y0, . . . , yM = z such that {ym−1, ym} ∈
Ed for every m = 1, . . . ,M − 1 . We say that GX1

, . . . ,GXK
with K ∈ N are

the connected components of G if {X1, . . . ,XK} is a partition of X, and for every
k, k′ ∈ {1, . . . , K} with k �= k′, it holds

xk ∼ yk for every xk, yk ∈ Xk ,

xk �∼ xk′ for every xk ∈ Xk , xk′ ∈ Xk′ .

If G has only one connected component, we say that G is connected.
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We say that G is planar if for every pair of (distinct) bonds {x1, x2}, {y1, y2} ∈
Ed, the (open) segments (x1, x2) and (y1, y2) have empty intersection.

From now on, we assume that G = (X,Ed) is planar, so that we can introduce
the notion of face (see also [12]).

By a face f of G, we mean any open, bounded, connected component of R2 \(
X ∪ ⋃{x,y}∈Ed[x, y]

)
, which is also simply connected; here [x, y] is the closed

segment with extreme points x and y. We denote by F(G) , the set of faces of G,
and we set

O(G) :=
⋃

f∈F(G)

clos(f ) .

We define the Euler characteristic of G as

χ(G) = *X− *Ed+ *F(G) ,

and we warn the reader that this may differ from the standard Euler characteristic in
graph theory (see [14, Lemma 1.2 & Remark 1.3]) . We just remark that if χ(G) =
1 , then G is connected.

With a little abuse of language, we will say that an edge {x, y} lies on a set
E ⊂ R

2 if the segment [x, y] is contained in E . We classify the edges in Ed in the
following subclasses:

• Edint is the set of interior edges, i.e., of edges lying on the boundary of two
(distinct) faces.

• Edwire,ext is the set of exterior wire edges, i.e., of edges that do not lie on the
boundary of any face.

• Edwire,int is the set of interior wire edges, i.e., of edges lying on the boundary
of precisely one face but not on the boundary of its closure (or, equivalently, of
O(G)) .

• Ed∂ is the set of boundary edges, i.e., of edges lying on ∂O(G) .

Analogously, for every face f ∈ F(G), one can define the following subclasses of
edges delimiting f :

• Edwire,int(f ) is the set of edges lying on the boundary of f but not on the
boundary of the closure of f .

• Ed∂ (f ) is the set of edges lying on the boundary of the closure of f .

We define the graph perimeter of G as

Pergr(G) := *Ed∂ + 2*Edwire,ext .

Analogously, the graph perimeter of a face f is defined by

Pergr(f ) := *Ed∂ (f )+ 2*Edwire,int(f ).
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3 The Sticky Disc Model: Minimizers and Quasi-minimizers

Here we briefly review the crystallization result in [23] following the approach in
[12]. For every N ∈ N, we denote by AN the set of N -particle configurations with
finite energy, i.e., AN := {X ⊂ R

2 : *X = N , EVHR
(X) < +∞}, and we set

A :=⋃N∈NAN .
For every X ∈ A , we denote by G(X) the graph generated by X , i.e., G(X) =

(X,Ed(X)) , where Ed(X) := {{x, y} : x, y ∈ X , |x − y| = 1}, and we notice that

EVHR
(X) = −*Ed(X) .

Notice that the finiteness of EVHR
(X) , implies that G(X) is a planar graph and

that, denoting by F6(G(X)) the set of the triangular faces of G(X) , the elements
of F6(G(X)) are equilateral triangles with unitary side length.

3.1 Minimizers of the Heitmann–Radin Sticky Disc Model:
Single Crystals

The crystallization result for the Heitmann–Radin model in our notations reads as
follows.

Theorem 1 Let N ∈ N, and let XN be a minimizer of EVHR
inAN . Then G(XN) is

connected and, up to rotation and translation, XN ⊂ T . Moreover, if N ≥ 3 , then
O(G(XN)) has simply closed polygonal boundary, F(G(XN)) = F6(G(XN)) and
*Edwire,ext(G(XN)) = ∅ .
Theorem 1 has been proved by Heitmann and Radin in [23], following an ansatz
on the numerical value of minimal energy previously found by Harborth [22]. In
[12], a slightly different proof of Theorem 1 has been found, based on a geometric
interpretation of the Heitmann–Radin energy rather than on the result in [22]. The
rough idea of the proof in [12] is the following: Using Euler characteristic formula,
one can prove that (see [12, Theorem 3.1]) the energy of any configuration X ∈ A
can be decomposed into the sum of a volume term that is negative and depend only
on the number of particles and a perimeter/defect term that counts the number of
points having the “wrong” number of nearest neighbors; more precisely,

EVHR
(X) = −3*X+ Pergr(G(X))+ Edef

VHR
(X)+ 3χ(G(X)) , (3)

where Edef
VHR

(X) :=∑
f /∈F6

(G(X))
(Pergr(f )− 3) .

With decomposition (3) in hand, noticing immediately that for minimizers X the
graph G(X) should be connected and cannot have wire edges, finding the ground
states of EVHR

in AN (for some N ∈ N) coincides with minimizing the perimeter-
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Fig. 3 The macroscopic shapes of minimizers in the cases of uniqueness. Starting from the left:
N = 3s2+3s+1 , N = 3s2+3s+1+ s , N = 3s2+3s+1+2s+1 , N = 3s2+3s+1+3s+2 ,
N = 3s2 + 3s + 1 + 4s + 3 , N = 3s2 + 3s + 1 + 5s + 4 . The unique minimizer is a regular
hexagon with side length s in the first case, whereas in the other cases is a regular hexagon plus “a
suitable partial shell” around it (the sides of the regular hexagon contained in the Wulff shape are
represented by the dashed lines)

like term

F(X) := Per(O(X))+ Edef
VHR

(X) . (4)

Now, the proof of Theorem 1 is just a consequence of the following elementary
facts:

for every X ∈ A it holds F(X) ≥ F(X \ ∂X)+ 6 where ∂X denotes the set (a)

of the boundary particles of X , i.e., of the particles lying only on boundary

edges;

F(X) = F(X \ ∂X)+ 6 only if the graph generated by X \ ∂X has only (b)

triangular faces.

By adopting an induction procedure and using (a) and (b) (see [12, Section 5]), it
is possible to show that the minimum of F is achieved when Edef

VHR
≡ 0 , i.e., for

subsets of the regular triangular lattice.
Using the procedure described above, in [11], the following result on the

uniqueness of minimizers has been proven (Fig. 3).

Theorem 2 Let N ∈ N . The minimizers of EVHR
in AN are unique, up to rotation

and translation, if and only if either

N = 3s2 + 3s + 1 for some s ∈ N ∪ {0} , (5)

or

N=3s2+3s+1+(s + 1)k+s for some s ∈ N ∪ {0} , k ∈ N ∪ {0} , with 0 ≤ k ≤ 4 .

We remark that the uniqueness in the case (5) was already observed in [32,
Proposition 2.7], using a discrete-to-continuum approach that exploits the results
[19, 33] on the uniqueness of the Wulff shape for crystalline perimeters (see
Sect. 3.2). Our approach is, instead, purely discrete, and it allows to get uniqueness
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also in the case that the macroscopic shape of minimizers is no longer a regular
hexagon, and hence, the associated continuum sets introduced in [32] do not
minimize the corresponding continuum crystalline perimeter.

3.2 Quasi-minimizers of the Heitmann–Radin Model:
Polycrystalline Structures

We aim at determining the asymptotic behavior, as N →+∞ of the configurations
XN ∈ AN in the scaling perimeter regime, i.e., such that

EVHR
(XN)+ 3N ≤ CN1/2 . (6)

To this purpose, to every X ∈ A, we associate the empirical measure μ = μX :=∑
x∈X δx . Moreover, one can easily check that for configurations satisfying the

energy bound (6) , “almost all” the faces are triangles, so that also in the case of
quasi-minimizers, triangles will play a crucial role. For such a reason, we introduce
a notion of orientation of triangles by associating at each triangle f ∈ F(G(X)) the
quantity θ(f ) ∈ (π3 ,

2
3π ] given by the angle between e1 and one of the medians of

f (see [13, Subsection 2.3]).
For every N ∈ N and for every XN ∈ AN , we define the orientation map as

θN(XN) :=
∑

f∈F6
ε (XN )

θ(f )1 f√
N

.

The following result is [13, Theorem 3.1] . We refer to [1] for the definitions of
finite perimeter sets and of Caccioppoli partitions.

Theorem 3 Let {XN }N∈N be a sequence of sets of points such that XN belongs to
AN for every N ∈ N and satisfies (6) for some universal constant C (independent
of N ) . Then, up to a subsequence:

(i) N
√

3
2 μXN

∗
⇀ 1� dx (asN →+∞), for some set� ⊂ R

2 with finite perimeter.
(ii) θN(XN) ⇀ θ in SBVloc(R

2) (as N → +∞), for some θ = ∑
j∈J θj1ωj

in SBV (R2), where J ⊆ N, {ωj }j∈J is a Caccioppoli partition of �, and
{θj }j∈J ⊂ (π3 ,

2
3π ].

Moreover, we computed the effective energy of EVHR
when the number of particles

diverges in the case of a unique limit orientation θ̄ . This is given by the crystalline
perimeter Perϕθ̄ whose ball is the unitary hexagon “oriented according with θ̄” (see
[13, Subsection 2.4] for its precise definition). This is the content of [13, Theorem
3.2] that is stated below.
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Fig. 4 Left: If � is a polygon with side parallel to the Wulff shape associated to ϕθ̄ for some
θ̄ ∈ ( π3 ,

2
3π ] , then the limit orientation is θ̄ , i.e., θN (XN) ⇀ θ̄1�. Right: If � is given by a

small enough intersection of two regular hexagons with different orientations, the limit orientation
is made by at most two grains, giving rise to a polycrystal

Theorem 4 The following �-convergence result holds true:

(i) (�-liminf inequality) Let {XN }N∈N satisfy (i) and (ii) of Theorem 3 with θ =
θ̄1� for some θ̄ ∈ (π3 ,

2
3π ] . Then

lim inf
N→+∞

1

N1/2 (EVHR
(XN)+ 3N) ≥ Perϕθ̄ (�) .

(ii) (�-limsup inequality) For every set� ⊂ R
2 of finite perimeter and for every θ̄ ∈

(π3 ,
2
3π ] , there exists a sequence {XN }N∈N satisfying (i) and (ii) of Theorem 3

with θ = θ̄1� such that:

lim sup
N→+∞

1

N1/2
(EVHR

(XN)+ 3N) ≤ Perϕθ̄ (�) .

In the case of limit polycrystal, [13] do not provide a full result (see Fig. 4).
However, in [13, Subsection 4.2]), it is shown that depending on the shape of �,
single crystals and polycrystals could be preferable when considering the minimum
problem

inf
N

√
3

2 μXN
∗
⇀1� dx

lim inf
N→+∞

1

N1/2
(EVHR

(XN)+ 3N) .

The general case of limit polycrystal has been treated in [20] where the precise
line tension energy at grain boundaries is provided.

4 Vectorial Crystallization and Collective Behavior

Here we discuss a sticky disc type model for collective behavior of oriented
particles, following the approach in [14]. The modeling aspects of such a theory are
described in the introduction; here we focus on qualitative properties of minimizers
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for different values of the angle parameter θ . In order to have notation coherent
with [14], the different behaviors of minimizers in our analysis will depend on the
parameter γ := cos θ

2 .
For every γ ∈ [0, 1] , let V γ : R2 × R

2 × S
1 × S

1 → [0,+∞) be defined as

V γ (y1, y2, w1, w2) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ if |y1 − y2| < 1 ,

−1 if |y1 − y2| = 1 and either 〈y1 − y2, wk〉 ≥ γ for k = 1, 2

or 〈y2 − y1, wk〉 ≥ γ for k = 1, 2 ,

0 elsewhere.

For every N ∈ N, let CN := {(X, V ) : X = (x1, . . . , xN) ∈ (R2)N , V =
(v1, . . . , vN) ∈ (S1)N } and set C := ⋃N∈N CN . We define the energy EV γ : C →
[0,+∞] as

EV γ (X, V ) := 1

2

∑
i �=j

V γ (xi, xj , vi, vj ),

and we aim at establishing qualitative properties of the minimizers of Eγ for
different values of γ . Following the approach in Sect. 3, we introduce a graph
structure on configurations (X, V ) ∈ C, by defining the set

Edγ (X, V ) := {{xi, xj } : xi, xj ∈ X , V γ (xi, xj , vi, vj ) = −1} ,

where X denotes the set of particle positions, i.e., X = {x1, . . . , xN }.
In such a way, we have that configurations (X, V ) having finite energy generate

a planar graph G(X, V ) = (X,Edγ (X, V )) and that EV γ (X, V ) = −*Edγ (X, V ) .
Now we discuss the behavior of minimizers for different values of γ ∈ [0, 1].

We notice that the case γ = 0 is a slight generalization of the Heitmann–Radin
model, being the dependence on the orientations only fictitious. In particular, for
configurations with constant orientation, i.e., with vi ≡ v for some v ∈ S

1 , the
class of minimizers (resp. almost minimizers) of EV 0 coincides with the class of
minimizers (resp. almost minimizers) of EVHR

analyzed in Sect. 3.
Now we focus on the case 0 < γ ≤ 1

2 . In such a range, for suitably chosen
constant orientations, the ground states are the same as in the Heitmann–Radin
model; in particular, they are subsets of the unitary triangular lattice T (see [14,
Subsection 2.1]). However, not all constant orientations do the job as shown in Fig. 5
below.

If 1
2 < γ ≤

√
3

2 , then the maximal number of nearest neighbors passes from 6 to
4 , so that the asymptotic (as N → +∞) energy per particle for minimizers equals
to −2; more precisely,

− 2N ≤ min
(X,V )∈ACN

Eγ (X, V ) ≤ −2N + CN
1
2 , (7)
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Fig. 5 The unique, up to rotation, minimizer X of the Heitmann–Radin energy for N = 19. On
the left: the configuration with constant orientation vi ≡ (1; 0) , for which the bonds coincide with
the ones in the Heitmann–Radin case. On the right: the configuration with constant orientation
vi ≡ (0; 1) that neglects the horizontal bonds in the Heitmann–Radin model

Fig. 6 The graphs G(YN ,WN) of the configurations (YN ,WN) for N = 9, . . . , 16

for some C > 0 independent of N . In order to construct a configuration that
provides the second inequality in (7), it is enough to take vi ≡ (0; 1) and X ⊂ T in
such a way that if N = (l+1)2, then O(X) is a rhombus with side length l , whereas
for other values of N O(X) is a rhombus plus an “incomplete shell” around it. We
will denote such configurations by (YN,WN) (see Fig. 6).

We notice that, for 1
2 < γ <

√
3

2 , small perturbations of the configuration
(YN,WN) constructed above still yield almost minimizers for EV γ satisfying (7).
By construction, such perturbations should map the equilateral triangular lattice into
a suitable monoclinic lattice. Moreover, one can easily see that energy is invariant
also under small perturbations of the orientation field WN .
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The same behavior does not appear in the case γ =
√

3
2 that is actually more rigid.

Indeed, in such a case, a point having the maximal number of nearest neighbors
should lie on 4 bonds forming alternate angles equal to π

3 and 2
3π . In such a case

the orientation associated to this point should be parallel to the bisector of the π
3 -

angles and hence orthogonal to the one of the 2
3π -angles (see [14, Lemma 3.1]).

Using this kind of geometric considerations, it is possible to prove that the
configurations (YN,WN) are not only asymptotic minimizers of E

V

√
3

2
but actually

minimizers in CN for every N ∈ N , i.e., the following result (see [14, Theorem
3.7]).

Theorem 5 For every N ∈ N, it holds

E
V

√
3

2
(YN,WN) = min

(X,V )∈CN

E
V

√
3

2
(X, V ) .

The proof of Theorem 5 uses an approach similar to that of Theorem 1. The starting
point is also in this case an energy decomposition into a negative volume part and a
(positive) surface-like term; such a decomposition is proven in [14, Proposition 3.4]
and reads as

E
V

√
3

2
(X, V ) := −2*X+ 1

2
Pergr(G(X, V ))+ 1

2
Edef

V

√
3

2

((X, V ))+ 2χ(G(X, V )) ,

where the defect energy Edef

V

√
3

2

in this case penalizes the non-rhombic faces.

Moreover, also in such a case, we have that a finite-energy configuration (X, V )

satisfies the bound

1

2
Pergr(G(X, V ))+ 1

2
Edef

V

√
3

2

((X, V )) ≥1

2
Pergr(G(X \ ∂X, V \ ∂V ))

+ 1

2
Edef

V

√
3

2

((X \ ∂X, V \ ∂V ))+ 4 ,

(8)

where G(X \ ∂X, V \ ∂V ) is obtained by (X, V ) once removing the boundary
particles together with the corresponding orientations. Notice that (8) corresponds
to (a) in Sect. 3.1, and this is enough, in order to show Theorem 5 (which is actually
weaker than Theorem 1). In order to get a general rhombic crystallization result, it
would be enough to have also property (b) in our case. Such a property does not
hold in this framework, and actually a general rhombic crystallization result for all
the minimizers of E

V

√
3

2
fails to be true (see [14, Remark 3.8]), as shown by Fig. 7

below. Nevertheless, although at the present, we do not have a proof, we believe
that all minimizing configurations are subsets of the rhombic lattice up to a finite
number of “boundary defects”; more precisely, we think that all faces are rhombic
up to (at most) one pentagonal face touching the boundary, exactly as in Fig. 7.
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Fig. 7 Two minimizers of
E
V

√
3

2
in C17. On the left: the

minimizer (YN ,WN). On the
right: a minimizer having a
non-rhombic face and
non-constant orientation

Fig. 8 On the left: a minimizer for N ≥ Nγ . On the right: a minimizer for N < Nγ

Furthermore, also in this case, it is possible to prove a compactness result in
the spirit of Theorem 3. Indeed, in [14, Theorem 3.9], it has been proved that, in
the limit as the number of particles diverges, all configurations with perimeter-
like energy bound consist of patched configurations of diamond formations with
bounded perimeter.

To conclude, we discuss the case
√

3
2 < γ ≤ 1 . For such a range of parameters,

the maximal number of nearest neighbors appears equal to 2, and the minimizers
satisfy

−N ≤ min
(X,V )∈CN

EV γ (X, V ) ≤ −N + 1,

where the second inequality follows by considering the competitor (X̄, V̄ ) ∈ CN
with X̄ = ((0; 0), (1; 0), . . . , (N; 0)) and V̄ = {(1; 0)}N . For

√
3

2 < γ < 1 , we
notice that setting Nγ := 7 π

arccos γ 8 , the minimal energy is −N for N ≥ Nγ and
−N + 1 for N < Nγ . In the former case, any minimizer is made by a finite union
of simple and closed polygonal curves (with suitable angles), whereas in the latter
the minimizer is an open polygonal curve (see Fig. 8).
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Notice that for γ = 1, the ground states of EV 1 in CN are made of N aligned
points forming a segment with constant tangent orientation, while the corresponding
minimal energy is equal to −N + 1.
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Pattern Formation for Nematic Liquid
Crystals—Modelling, Analysis, and
Applications

Yucen Han and Apala Majumdar

1 Introduction

Liquid crystals are partially ordered materials, intermediate between conventional
solid and liquid phases. They typically combine fluidity with some translational
or orientational order characteristic of a solid. Liquid crystals were accidentally
discovered by Friedrich Reinitzer, an Austrian plant physiologist, when he was
experimenting with cholesteryl benzoate [43]. The unique physical, optical, and
rheological properties of liquid crystals were gradually unveiled with time and
today, and we know that liquid crystals are ubiquitous in daily life, e.g., in some
clays, soap, the human DNA, cell membranes, polymers, elastomers, and the list
keeps growing [26]. Liquid crystals can be classified as: nematic liquid crystals,
cholesteric liquid crystals, and smectic liquid crystals [11]. The simplest phase
is the nematic liquid crystal (NLC) phase, for which the constituent rod-like
molecules exhibit long-range orientational order, with no positional order. In the
cholesteric phase, the molecules naturally twist following a helical pattern, and
one can view the NLC phase as a special cholesteric with no twist. In the smectic
phase, the molecules arrange themselves in layers, there is orientational order within
the layers, and the layers can slide past each other. In this review, we focus on
the mathematical modelling, analysis, and simulations of NLCs in confinement,
illustrating the plethora of exotic possibilities and how mathematics can be used
to predict, tune, and select the properties of confined NLC systems.

NLCs are the most widely used liquid crystals perhaps because of their relative
simplicity. NLC molecules are typically asymmetric in shape, e.g., rod-shaped,
disc-shaped, banana-shaped, or bent core [13]. These asymmetric NLC molecules
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move freely but tend to align along certain locally preferred directions, referred
to as nematic directors in the literature [13]. Consequently, NLC phases exhibit
long-range orientational order and naturally have direction-dependent responses to
incident light, external electric field or magnetic fields, temperature, and mechanical
stresses. Consequently, NLCs are anisotropic with directional physical properties
such as the NLC dielectric anisotropy, magnetic susceptibility, and the optical
refractive indices [42]. In particular, the anisotropic NLC responses to light and
electric fields have made NLCs the working material of choice for the multi-billion
dollar liquid crystal display (LCDs) industry [1]. NLCs have been widely used
in electric billboards, TVs, laptops, calculators, and watches and a range of opto-
electric devices. In recent years, there has been unprecedented interest in using
NLCs for the design of new meta-materials, bio-materials, composite materials,
all of which render new possibilities for sensors, photonics, actuators, artificial
intelligence, and diagnostics [20, 27].

Mathematics can play a crucial role in predicting, manipulating, and even design-
ing tailor-made NLC systems. NLC systems can be mathematically modelled at
different levels, ranging from fully molecular approaches to mean-field approaches
such as Onsager theory, Maier–Saupe theory [33, 40] to fully continuum approaches
such as the Oseen–Frank theory, the Ericksen–Leslie theory, and the celebrated
Landau–de Gennes (LdG) theory [8, 13, 13, 41]. We focus on continuum approaches
wherein we do not focus on microscopic details or microscopic interactions,
assuming that macroscopic properties of interest vary slowly on microscopic length
scales. In the continuum approach, the NLC state is described by a macroscopic
order parameter that is an averaged measure of the degree of nematic orientational
order. The physically observable states are modelled by local or global minimizers
of an appropriately defined free NLC energy, which typically depends on the NLC
order parameter, its gradient, and various material-dependent and temperature-
dependent phenomenological constants. Mathematically, this naturally raises highly
non-trivial questions in the calculus of variations, singular perturbation theory,
homogenization theory, and algebraic topology. The critical points of the NLC free
energy are solutions (in an appropriately defined sense) of a system of nonlinear,
coupled partial differential equations—the Euler–Lagrange equations, with different
types of boundary conditions—Dirichlet, Neumann, Robin, etc., for the NLC order
parameter. Of particular interest are the multiplicity and regularity of solutions,
and how this depends on the structure of the model, the phenomenological model
parameters, the symmetry of the domain, and the boundary frustration. Given
that the variational problems are typically nonlinear and non-convex, there are
multiple solutions of the Euler–Lagrange solutions and some energy-minimizing
and some non-energy-minimizing solutions [37]. The non-minimizing solutions
play a crucial role in the selection of energy minimizers and switching mechanisms
in NLC systems with multiple energy minimizers. Regarding regularity, NLC
defects are interpreted as a localized region of reduced NLC orientational order,
which could be induced by temperature changes or by discontinuities in the nematic
directors [18, 36, 37]. NLC defects are a fundamental optical signature of NLCs in
confinement [23, 26]. NLC defects play a crucial role in multiplicity of solutions,
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the solution properties, and ultimately, structural transitions often proceed via the
creation and annihilation of defects [25]. There are open mathematical questions
regarding the mathematical definition of a defect and how the defect set depends on
the nature of the partial order, the mathematical model, and the physical variables.
Collectively, liquid crystals are a fascinating playground for mechanics, geometry,
modelling, and analysis to drive a new revolution in mathematics-driven interactive
materials science, for sweeping interdisciplinary and practical advances.

In this review, we focus on multistable two-dimensional NLC systems, driven
by recent advances in new generations of bistable LCDs [21, 47], micropatterned
surfaces [22], and also in 3D printing [12]. Multistable systems can support
multiple stable nematic equilibria without any external applied fields, ideally with
distinct optical and physical properties, offering multiple modes of functionality.
For example, in a bistable LCD, the bright (transparent) state and the dark (opaque)
states are stable without any external electric fields, so that power is only needed
to switch between states or to refresh the image, but not to maintain a static image
[46]. Therefore, bistable LCDs are efficient, low-cost displays with enhanced optical
properties. Some of the results reviewed in this chapter are motivated by the planar
bistable LC device reported in [47]. This planar device comprises a periodic array
of square or rectangular NLC-filled wells, typically on the micron-scale such that
the well height is much smaller than the cross-section dimensions. Hence, it is
reasonable to assume that the NLC structural profile is invariant along the height
of the well, and it suffices to model planar profiles in the well square cross-section.
The well surfaces are treated to induce tangential or planar anchoring, so that the
NLC molecules lie in the plane of the well surfaces and tangent to the well edges.
There is a natural mismatch in the nematic directors at the square vertices, leading
to interesting and multiple possibilities for stable NLC configurations.

Indeed, this relatively simple geometry is actually experimentally reported to be
bistable [47]. There are at least two experimentally reported stable states—the diag-
onal state for the nematic director is roughly along a square diagonal, and the rotated
state for which the nematic director rotates by 180◦ between a pair of opposite
edges [12]. Both states have long-term stability and somewhat contrasting optical
properties, without external electric fields. We use this example of a multistable
system as a benchmark example, and in this review, we address natural questions
such as—what happens if we replace the square with a regular or asymmetric 2D
polygon, what are the effects of material anisotropy on multistability, and crucially,
can we mathematically model solution landscapes in reduced 2D frameworks and
study the connectivity of non-energy-minimizing solutions to energy-minimizing
solutions? The transition pathways between the diagonal and rotated states have
been studied in [25], but a systematic study of the non-energy-minimizing critical
points is largely open.

The review paper is organized as follows. The LdG theory is reviewed in Sect. 2.
In Sect. 3, we review some known results on NLC solution landscapes for square
domains as a benchmark example. In Sect. 4, we summarize the results in [16] to
illustrate multistability for NLCs in 2D polygons and the effects of geometry. In
Sects. 5 and 6, we summarize the results reported in [10] and [18] to elucidate the
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effects of geometrical asymmetry (by taking the rectangle as an example) and the
effects of elastic anisotropy on NLC solution landscapes on square domains. The
last leg of the review concerns unstable saddle points (non-minimizing solutions)
and transition pathways for NLCs, as reported in [19] in Sect. 7. Some conclusions
are discussed in Sect. 8. In the supplement, Sect. 9, we summarize the numerical
methods used for solving the complex system of LdG Euler–Lagrange equations
and for computing the non-trivial NLC solution landscapes.

2 The Landau–de Gennes Theory

The Landau–de Gennes (LdG) theory is perhaps the most powerful continuum
theory for NLCs [13, 30, 48]. In 1991, Pierre-Gilles de Gennes was awarded the
Nobel prize in Physics for discovering that “methods developed for studying order
phenomena in simple systems can be generalized to more complex forms of matter,
in particular to liquid crystals and polymers.” The LdG model describes the NLC
state by a macroscopic order parameter—the LdG Q-tensor, which is a macroscopic
measure of NLC orientational order, i.e., the deviation of the ordered nematic phase
from the isotropic disordered phase. Mathematically, the Q-tensor is a symmetric
traceless 3× 3 matrix. The Q-tensor has five degrees of freedom and can be written
as [39]

Q = λ1n ⊗ n + λ2m ⊗ m + λ3p ⊗ p, (1)

where n, m, and p are eigenvectors of Q that model the nematic directors, and
λi , i = 1, 2, 3, are the corresponding eigenvalues, which measure the degree
of orientational order about these directors. In particular,

∑3
i=1 λi = 0, from

the tracelessness constraint. A Q-tensor is said to be (i) isotropic if Q = 0,
i.e., (λ1, λ2, λ3) = (0, 0, 0), (ii) uniaxial if Q has a pair of degenerate non-zero
eigenvalues, (λ, λ,−2λ), and (iii) biaxial if Q has three distinct eigenvalues [13]. A
uniaxial Q-tensor can be written as

Q = s (n ⊗ n − I/3) (2)

with I being the 3 × 3 identity matrix, s = −3λ is real, and n ∈ S
2, a unit vector.

The vector, n, is the eigenvector with the non-degenerate eigenvalue, known as the
“director” and models the single preferred direction of uniaxial nematic alignment
at every point in space [13, 48]. The scalar, s, is the scalar order parameter, which
measures the degree of orientational order about n. In the biaxial case, there are
primary and secondary nematic directors, with two scalar order parameters.

In the absence of surface energies, the LdG energy is given by

ILdG[Q] :=
∫

fel(Q,∇Q)+ fb (Q) dx, (3)
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where fel and fb are the elastic and thermotropic bulk energy densities, respectively.
The elastic energy density is typically quadratic and convex in ∇Q and penalises
spatial inhomogeneities. In general, the elastic energy density has different con-
tributions from different deformation modes, e.g., splay, twist, and bend [13]. A
commonly used version is

fel(Q) = L1

2
Qij,kQij,k + L2

2
Qij,jQik,k + L3

2
Qik,jQij,k, (4)

where L1, L2, L3 are the material elastic constants, subject to certain constraints to
ensure fel(Q) ≥ 0. Since

Qij,jQik,k −Qik,jQij,k = (QijQik,k),j − (QijQik,j ),k (5)

is a null Lagrangian, we can ignore the L3-term with Dirichlet boundary conditions.
Hence, the elastic energy density in (4) is reduced to a two-term elastic energy
density, as shown below

fel(Q) = L

2

(
|∇Q|2 + L̂2(divQ)2

)
, (6)

where L̂2 ∈ (−1,∞) is the “elastic anisotropy” parameter. The elastic anisotropy
can be strong for polymeric materials [50]. In Sect. 6, we study the effects of elastic
anisotropy on NLC solution landscapes on square domains.

In Sects. 4, 5, and 7, we use the one-constant approximation, for which, L2 =
L3 = 0 in (4), i.e., L̂2 = 0 in (6), so that the elastic energy density simply reduces
to the Dirichlet energy density |∇Q|2. The one-constant approximation assumes
that all deformation modes have comparable energetic penalties, i.e., equal elastic
constants, and this is a good approximation for some characteristic NLC materials
such as MBBA [13, 48], which makes the mathematical analysis more tractable.

The bulk energy density fb is a polynomial of the eigenvalues of order parameter
Q and drives the isotropic–nematic phase transition as a function of the temper-
ature [13, 39]. We work with the simplest form of fb, a quartic polynomial of
eigenvalues of Q-tensor:

fb(Q) := A

2
trQ2 − B

3
trQ3 + C

4
(trQ2)2, (7)

where trQ2 = QijQij = λ2
i , and trQ3 = QijQjkQki = λ3

i , for i, j, k = 1, 2, 3.
The variable A = α (T − T ∗) is a rescaled temperature, α, L, B, C > 0 are
material-dependent constants, and T ∗ is the characteristic nematic supercooling
temperature. The rescaled temperature A has three characteristic values: (i) A = 0,
below which the isotropic phase Q = 0 loses stability, (ii) the nematic–isotropic
transition temperature, A = B2/27C, at which fb is minimized by the isotropic
phase and a continuum of uniaxial states with s = s+ = B/3C and n arbitrary in
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(2), and (iii) the nematic superheating temperature, A = B2/24C, above which the
isotropic state is the unique critical point of fb.

As Proposition 1 in [36], for a given A < 0, the set of minima of the bulk
potential is

N := {Q ∈ S0 : Q = s+ (n ⊗ n − I/3)}, (8)

where

s+ := B +√B2 + 24|A|C
4C

and n ∈ S2 arbitrary. In particular, this set is relevant to our choice of Dirichlet
conditions for boundary-value problems in subsequent sections. The size of defect
cores is typically inversely proportional to s+ for low temperatures A < 0.
Following [51], we use MBBA as a representative NLC material and use its reported
values for B and C to fix B = 0.64 × 104 N/m2 and C = 0.35 × 104 N/m2

throughout this review. We also frequently use the fixed temperature, A = −B2/3C
for numerical simulations, although the qualitative conclusions remain unchanged
for A < 0.

Boundary effects are a crucial consideration for NLCs in confinement and dictate
multistability to some extent. There are multiple mathematical choices for the
boundary conditions. The simplest approach is Dirichlet boundary conditions or
fixed boundary conditions for the LdG Q-tensor order parameter. This fixes the
nematic directors and the scalar order parameters on the boundary. Typically, we
impose tangential or homeotropic boundary condition, which means the nematic
director is tangent or normal to the domain boundary. On domains with sharp
corners, some care is needed to deal with the mismatch in the nematic director at the
corners. This could involve truncating the geometry or imposing a low-order point
at the sharp corners. Dirichlet conditions are mathematically more tractable, but
weak anchoring is more realistic, with surface energies, and the resulting boundary
conditions typically involve the normal derivatives of Q on the boundary. A popular
surface energy, known as the Rapini–Papoular energy, is [48]

Es[Q] =
∫
∂

W tr(Q − Qs)
2dA, (9)

where W is the surface anchoring strength and Qs is the preferred LdG Q-tensor on
the boundary. As W →∞, we qualitatively recover the Dirichlet condition Q = Qs

on the boundary. Interested readers are referred to [32].
We model nematic profiles inside three-dimensional wells

B = �× [0, h] , (10)



Pattern Formation for Nematic Liquid Crystals—Modelling, Analysis, and Applications 405

whose cross-section is a two-dimensional polygon � and h is the well height. The
two-dimensional working domain � is any regular polygon in Sect. 4, a rectangle in
Sect. 5, a square in Sect. 6, and a regular hexagon in Sect. 7. In the thin-film limit,
i.e., h→ 0 limit and imposing surface energies, fs , on the top and bottom surfaces,
which favour planar degenerate boundary conditions or equivalently constrain the
nematic directors to be in the plane of the cross-section without a fixed direction
and require z = (0, 0, 1) to be a fixed eigenvector of the corresponding Q-tensor,
we can rigorously justify the reduction from the three-dimensional domain B to the
two-dimensional domain � [14]. If we impose a Dirichlet boundary condition, Qb,
which has the unit vector, z = (0, 0, 1) as a fixed eigenvector, on the lateral surfaces,
∂� × [0, h], then one can show that in the h

λ
→ 0 limit, where λ2 is a measure of

the cross-section size, minima of the LdG energy (3) converge (weakly in H 1) to
minima of the reduced functional

F0[Q] :=
∫
�

1

2

(∣∣∇x,yQ
∣∣2 + L̂2

(
divx,yQ

)2)+ λ2

L
fb (Q) dA (11)

subject to the boundary condition Q = Qb on ∂� and to the constraint that z is an
eigenvector of Q (x, y) for any (x, y) ∈ �. Using the reasoning above, we restrict
ourselves to Q-tensors with z as a fixed eigenvector and study critical points or
minima of (11) with three degrees of freedom as

Q (x, y) = q1 (x, y)
(
x̂ ⊗ x̂ − ŷ ⊗ ŷ

)+ q2 (x, y)
(
x̂ ⊗ ŷ + ŷ ⊗ x̂

)
+ q3 (x, y)

(
2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ

)
,

(12)

where x̂, ŷ, and ẑ are the unit coordinate vectors in the x, y, and z directions,
respectively. Informally speaking, q1 and q2 measure the degree of “in-plane” order,
q3 measures the “out-of-plane” order, and Q is invariant in the z direction. This
constraint naturally excludes certain solutions such as the stable escaped radial with
ring defect solution in a cylinder with large radius in [15], for which the z-invariance
does not hold or critical points that exhibit “escape into the third dimension” [45],
for which ẑ is not a fixed eigenvector for Q. While we present our results in a 2D
framework in the case studies, these reduced critical points survive for all h > 0
(beyond the thin-film limit) although they may not be physically relevant or energy-
minimizing outside the thin-film limit ([6] and [49]).

3 Benchmark Example

The square domain is a very well-studied domain, and we review some classical
results in this section. In [24] and [6], the authors report the Well Order Recon-
struction Solution (WORS) on a square domain, for all square edge lengths λ > 0,
without elastic anisotropy, for Dirichlet tangent boundary conditions. The WORS
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has a constant set of eigenvectors, x̂, ŷ, and ẑ, which are the coordinate unit vectors.
The WORS is further distinguished by a uniaxial cross, with negative scalar order
parameter, along the square diagonals. Physically, this implies that there is a planar
defect cross along the square diagonals, and the nematic molecules are disordered
along the square diagonals. This defect cross partitions the square domain into four
quadrants, and the nematic director is constant in each quadrant. The defect cross
is an interesting example of a negatively ordered uniaxial interface that separates
distinct polydomains. In [6], the authors analyze this system at a fixed temperature
A = −B2/3C and show that the WORS is a classical solution of the associated
Euler–Lagrange (EL) equations for the LdG free energy, of the form:

QWORS(x, y) = q(x̂ ⊗ x̂ − ŷ ⊗ ŷ)− B

6C
(2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ). (13)

There is a single degree of freedom, q : � → R, which satisfies the Allen–Cahn
equation

�q = λ2

L
(2Cq3 − B2

2C
q) (14)

and exhibits the following symmetry properties:

q = 0 on {y = x} ∪ {y = −x}, (y2 − x2)q(x, y) ≥ 0. (15)

Mathematically speaking, this implies that the QWORS is strictly uniaxial with
negative order parameter along the square diagonals that would manifest as a pair
of orthogonal defect lines in experiments. They also prove that the WORS is
globally stable for λ small enough, i.e., nano-scale domains, and becomes unstable
as λ increases, demonstrating a pitchfork bifurcation in a scalar setting. Numerical
experiments suggest that the WORS acts as a transition state between energy
minimizers for large λ. For large square domains (on micron-scale or larger), there
are two competing stable physically observable states: the largely uniaxial diagonal
states (D), for which the nematic director (in the plane) is aligned along one of
the square diagonals, and the rotated states (R) for which the director rotates by
π radians between a pair of opposite square edges. On a square domain, there are
2 rotationally equivalent D states and 4 rotationally equivalent R states [25, 29].
We note that the D and R states have non-zero q2 in (12), while the WORS has
q2 = 0 everywhere. In other words, the WORS solution has constant eigenvectors
everywhere, whereas the D and R solutions have varying eigenvectors in the plane
of the square domain.

The bifurcation diagram for this model problem has been documented in [44]
(see Fig. 1). For λ < λ∗, there is the unique WORS. For λ = λ∗, the stable WORS

bifurcates into an unstable WORS and two stable D solutions. The WORS exists
for all values of λ. When λ = λ∗∗ > λ∗, the unstable WORS bifurcates into
two unstable BD solutions, which are featured by defect lines localized near a
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Fig. 1 The bifurcation diagram on square without elastic anisotropy. Reproduced from [44] with
permission from Taylor&Francis

pair of opposite square edges. The two BD solution branches are represented by
the dashed lines in Fig. 1. Each unstable BD solution further bifurcates into two
unstable R solutions, which gain stability as λ further increases. The WORS has
the highest energy among the numerically computed solutions, for all λ. For the
numerical results presented in [44], the authors have D∗ ≈ 0.36 and D∗∗ ≈ 0.38 in
Fig. 1, and correspondingly, we have 2Cλ∗2/L ≈ 7 and 2Cλ∗∗2/L ≈ 10.

4 Nematic Equilibria on 2D Polygons

This section reviews results from a recent paper [16], where the authors study
multistability for NLCs in regular 2D polygons, with tangent boundary conditions,
with emphasis on the effects of geometry captured by the polygon edge length, λ.

The working domain, �, is a regular rescaled polygon, EK , with K edges,
centred at the origin with vertices

wk = (cos (2π (k − 1) /K) , sin (2π (k − 1) /K)) , k = 1, . . . , K.

We label the edges counterclockwise as C1, . . . , CK , starting from (1, 0). For
example, E6 is a regular hexagon shown in Fig. 2 and E4 is a square.
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Fig. 2 The regular rescaled
hexagon domain E6.
Reproduced from [16] with
permission from Society for
Industrial and Applied
Mathematics
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As elaborated in Sect. 2, it is reasonable to work with in a reduced LdG
framework, with Q-tensors of the form in (12), on 2D polygons. From [7], for
the special temperature A = −B2/3C, we necessarily have q3 = − B

6C , for all
λ > 0. For arbitrary A < 0, we would have non-constant q3 profiles, and while we
conjecture that some qualitative solution properties are universal for A < 0, a non-
constant q3 profile would introduce new technical difficulties. For A = −B2/3C
and with constant q3, the Q-tensor in (12) reduces to a symmetric, traceless 2 × 2
matrix, P, as given below

P =
(
P11 P12

P12 −P11

)
.

The relation between the LdG order parameter Q-tensor and the reduced P-tensor is

Q =
⎛
⎝P (r)+ B

6C I2
0
0

0 0 −B/3C

⎞
⎠ . (16)

Therefore, the energy in (11) is reduced to

F [P] :=
∫
�

1

2
|∇P|2 + λ2

L

(
−B2

4C
trP2 + C

4

(
trP2

)2
)

dA, (17)

and the corresponding EL equations are

�P11 = 2Cλ2

L

(
P 2

11 + P 2
12 −

B2

4C2

)
P11,

�P12 = 2Cλ2

L

(
P 2

11 + P 2
12 −

B2

4C2

)
P12.

(18)

We can also write P in terms of an order parameter s and an angle γ as shown below

P = 2s

(
n ⊗ n − 1

2
I2

)
; n = (cos γ, sin γ )T , (19)
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where I2 is the 2 × 2 identity matrix, so that P11 = s cos (2γ ) , P12 = s sin (2γ ) .
The nodal set, defined by the zeroes of P, models the planar defects in �, i.e., when
P = 0, s = 0 in (19) so that there is no nematic order in the plane of �, and the
eigenvalues of the corresponding Q are (B/6C,B/6C,−B/3C). In other words,
the nodal set of P defines a uniaxial set of Q with negative order parameter and will
have a distinct optical signature in experiments.

Next, we specify Dirichlet tangent boundary conditions for P on ∂EK , labelled
by Pb. The tangent boundary conditions require n in (19) to be tangent to the edges
of EK , and s = s+ = B/3C. However, there is a necessary mismatch at the vertices,
so that we fix the value of P at the vertex, to be the average of the two constant
values, on the two intersecting edges. On a d 	 1

2 -neighbourhood of the vertices,
we linearly interpolate between the constant values on the edge and the average
value at the vertex. For d sufficiently small, the choice of the interpolation does not
change the qualitative solution profiles. This means that the tangent conditions are
not necessarily respected in the d-neighbourhood of vertices.

In what follows, we study the minima of (17) in two distinguished limits
analytically—the λ → 0 limit is relevant for nano-scale domains and the λ → ∞
limit, which is the macroscopic limit relevant for micron-scale or larger cross-
sections, �. We present rigorous results for limiting problems below, but our
numerical simulations show that the limiting results are valid for non-zero but
sufficiently small λ (or even experimentally accessible nano-scale geometries
depending on parameter values) and sufficiently large but finite λ too. In other
words, these limiting results are of potential practical value too.

In the λ→ 0 limit, using methods from [4] and from Proposition 3.1 of [10], we
can show that minima of (17), subject to the Dirichlet tangent boundary conditions
(for d sufficiently small), converge uniformly to the unique solution of the following
limiting problem for λ = 0,

�P 0
11 = 0, �P 0

12 = 0, on EK,

P 0
11 = P11b, P

0
12 = P12b, on ∂EK.

(20)

The solution of Laplace equation on disc can be explicitly solved. Our strategy to
solve the Dirichlet boundary-value problem (20) on polygon EK is to map it to an
associated Dirichlet boundary-value problem on the unit disc in Fig. 3, by using the
Schwarz–Christoffel mapping [5]. The SC mapping from a unit disc to a regular
polygon EK is

f (z) = C1 (K)

∫ z

0

1(
1 − xK

)2/K dx

with

C1 (K) = � (1 − 1/K)

� (1 + 1/K)� (1 − 2/K)
.
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Fig. 3 Schwarz–Christoffel mapping f from a unit disc to a regular hexagon and inverse mapping
f −1 from a regular hexagon to a unit disc. Reproduced from [16] with permission from Society
for Industrial and Applied Mathematics

Using the symmetries of the boundary condition and the regular polygon, we
can prove the symmetry properties of the limiting solution of (20) accompanied by
rigorous results for the corresponding nodal set, as given below (from [16]).

Proposition 1 Let (P11, P12) be the unique solution of (20), and let

GK := {S ∈ O(2) : SEK ⊆ EK} (21)

be a set of symmetries consisting of K rotations by angles 2πk/K for k = 1, . . . , K

and K reflections about the symmetry axes (φ = πk/K , k = 1, . . . , K) of the
polygon EK . P 2

11 +P 2
12 is invariant under GK . If (P11, P12) �= (0, 0), then (P11,P12)√

P 2
11+P 2

12

undergoes a reflection about the symmetry axes of the polygon and rotates by
4πk/K under rotations of angle 2πk/K for k = 1, . . . , K .

Proposition 2 Let PR = (P11, P12) be the unique solution of the boundary-value
problem (20). Then P11 (0, 0) = 0, P12 (0, 0) = 0 at the centre of all regular
polygons, EK . However, PR (x, y) �= (0, 0) for (x, y) �= (0, 0), for all EK with
K �= 4, i.e., the WORS is a special case of PR on E4 such that PR = (0, 0) on the
square diagonals.

For K �= 4, PR has a unique isotropic point at the origin and is referred to as
the Ring solution, since for K > 4, the director profile (the profile of the leading
eigenvector of PR with the largest positive eigenvalue) exhibits a +1-vortex at the
centre of the polygon. In Fig. 4, we numerically plot the ring configuration for a
triangle, pentagon, hexagon, and a disc (K → ∞) and the WORS for the square.
For K = 3, the isotropic point at the centre of the equilateral triangle resembles a
−1/2 point defect. This is a very interesting example of the effect of geometry on
solutions and their defect sets.

The λ → ∞ limit is analogous to the “Oseen–Frank limit” in [37]. Let Pλ be a
global minimizer of (17), subject to a fixed boundary condition Pb = (P11b, P12b)

on ∂EK . As λ → ∞, the minima, Pλ, are well approximated by P∞, at least
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Fig. 4 Solutions
(
P 0

11, P
0
12

)
of (20) when K = 3, 4, 5, 6 in regular triangle,

square, pentagon, hexagon domain and K → ∞ in disc domain. The vector(
cos
(
arctan

(
P 0

12/P
0
11

)
/2
)
, sin

(
arctan

(
P 0

12/P
0
11

)
/2
))

is represented by white lines, and the

order parameter
(
s0
)2 = (P 0

11

)2 + (P 0
12

)2
is represented by colour from blue to red. Reproduced

from [16] with permission from Society for Industrial and Applied Mathematics

everywhere away from the vertices, where

P∞ = B

2C

(
n∞ ⊗ n∞ − 1

2
I2

)
,

n∞ = (cos γ∞, sin γ∞) and γ∞ is a global minimizer of the energy

I [γ ] :=
∫
EK

|∇γ |2 dA

subject to Dirichlet conditions, γ = γb on ∂EK . The angle γb is determined by the
fixed boundary condition, Pb, where nb = (cos γb, sin γb). We have nb is tangent
to the polygon edges, which constrains the values of γb, and if deg (nb, ∂EK) = 0
(interpreted as the winding number of nb around ∂EK ), then γ∞ is a solution of the
Laplace equation

�γ∞ = 0, on EK (22)

subject to γ = γb on ∂EK [3, 29]. The solution γ∞ may be explicitly computed
for a given γb, but the tangent boundary conditions necessarily imply that γb
is discontinuous at the polygon vertices, and hence, I [γ∞] is infinite. This is
consistent with a vanishingly small interpolation region around the vertices as
described above, i.e., taking the d → 0 limit above, and the structural details of
the equilibria are largely unaffected by how we define the boundary conditions at
the vertices, provided the size of the interpolation region is sufficiently small.

There are multiple choices of γb consistent with the tangent boundary conditions,
which implies that there are multiple local/global minima of (17) for large λ. We
present a simple estimate of the number of stable states if we restrict γb, so that
nb rotates by either 2π/K − π or 2π/K at a vertex (see Fig. 5a, b, referred to as
“splay” and “bend” vertices, respectively). Since we require deg (nb, ∂EK) = 0, we
necessarily have 2 “splay” vertices and (K − 2) “bend” vertices. So we have at least(
K
2

)
minima of (17), for λ sufficiently large.
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(a) (b)

Fig. 5 Two arrangements of nematics in the corner: (a) splay and (b) bend. Reproduced from [16]
with permission from Society for Industrial and Applied Mathematics

Fig. 6
( 6

2=15

)
solutions of (22) subject to boundary condition (23) in hexagon domain. The vector

(cos γ∞, sin γ∞) is represented by white lines. Reproduced from [16] with permission from
Society for Industrial and Applied Mathematics

As an illustrative example, we take the hexagon E6 in Fig. 6. The Dirichlet
boundary conditions are

γb = γk on Ck, k = 1, . . . , K, (23)

where

γ1 = π

K
− π

2
, γk+1 = γk + jumpk, k = 1, 2, .., K − 1.

We need to choose the two splay vertices where γ rotates as in Fig. 5a. If the chosen
corner is between the edges Ck and Ck+1, then jumpk = 2π/K − π ; otherwise
jumpk = 2π/K , k = 1, . . . , K − 1. We have 15 different choices for the two
“splay” vertices, (i) 3 of which correspond to the three pairs of diagonally opposite
vertices, (ii) 6 of which correspond to pairs of vertices that are separated by one
vertex, and (iii) 6 of which correspond to “adjacent” vertices connected by an edge
(see Fig. 6). We refer to (i) as Para states, (ii) as Meta states, and (iii) as Ortho states.

Next, we present two bifurcation diagrams on a hexagon and pentagon as a
function of λ, as illustrative examples of a polygon with an even or odd number
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of edges. We discuss the bifurcation diagram on E6 in Fig. 7a. For λ sufficiently
small, there is a unique Ring-like minimizer. Our numerics show that the Ring-
like solution (with the unique zero at the polygon centre) exists for all λ, but
there is a critical point λ = λ∗, such that the Ring-like solution is unstable for
λ > λ∗ and bifurcates into two kinds of branches: stable Para solution branches
and unstable BD branches. In the BD state, the hexagon is separated into three
regions by two “defective low-order lines” (low |P|2) such that the corresponding
director (eigenvector with largest positive eigenvalue) is approximately constant in
each region. There are at least three different BD states. The unstable BD branches
further bifurcate into unstable Meta solutions at λ = λ∗∗. There is a further
critical point λ = λ∗∗∗ at which the Meta solutions gain stability and continue as
stable solution branches as λ increases. Stable Ortho solutions appear as solution
branches for λ is large enough. For large λ, there are multiple stable solutions: three
Para, six Meta, and six Ortho, in Fig. 6. The Para states have the lowest energy,
and the Ortho states are energetically the most expensive, as can be explained on
the heuristic grounds that bending between neighbouring vertices is energetically
unfavourable. The case of a pentagon is different. In Fig. 7b, there is no analogue of
the Para states, and there are 10 different stable states for large λ—(1) five Meta

states featured by a pair of splay vertices that are separated by a vertex and (2) five
Ortho states featured by a pair of adjacent splay vertices. There are five analogues
of the BD states that are featured by a single line of “low” order along an edge and
an opposite splay vertex.

These examples and the numerical results are not exhaustive, but they do show-
case the beautiful complexity and ordering transitions feasible in two-dimensional
polygonal frameworks. Similar methodologies can also be applied to other non-
regular polygons, convex or concave polygons.

5 Effects of Geometrical Anisotropy

The prototype problem of nematics inside square and other regular polygon domains
has been discussed in Sect. 3 and 4. A natural question is what will happen if we
break the symmetry of geometry? For example, what are the solution landscapes for
NLCs on two-dimensional rectangles, as opposed to squares, and how sensitive is
the landscape to the geometrical anisotropy? Is there the counterpart of WORS on
a rectangle?

We review results from [10]. The working domain is � = [0, a] × [0, 1],
with a > 1, and let ε be a dimensionless parameter that is inversely proportional
to λ2 in the reduced LdG free energy (17) in Sect. 4. We use a combination of
formal calculations and elegant maximum principle arguments to analyze solution
landscapes in the ε →∞ and ε → 0 limits.

In the ε → ∞ limit, i.e., the λ → 0 limit, the limiting problem is a system
of Laplace equations with Dirichlet tangent boundary conditions. Analogous to the
calculations in [29], the unique solution P0 can be calculated explicitly as P 0

12 = 0
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Fig. 7 Bifurcation diagrams for reduced LdG model in regular hexagon (top) and pentagon

(bottom) domains, as a function of λ̄2 = 2Cλ2

L
. Reproduced from [16] with permission from

Society for Industrial and Applied Mathematics

and

P 0
11(x, y) =

∑
k odd

4 sin(kπd/a)

k2π2d/a
sin

(
kπx

a

)
sinh(kπ(1 − y)/a)+ sinh(kπy/a)

sinh(kπ/a)

−
∑
k odd

4 sin(kπd)

k2π2d
sin (kπy)

sinh(kπ(a − x))+ sinh(kπx)

sinh(kπa)
, (24)
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Fig. 8 Left: WORS on square. Right: BD2 on rectangle with a = 1.5. The colour bar represents
the value of s2 = |P|/2 in this and the next figure. Reproduced from [10] with permission from
SAGE Publications

Fig. 9 From left to right: D,
R1, R3 on rectangle with
a = 1.25. Reproduced from
[10] with permission from
SAGE Publications

where d is the size of mismatch region near the rectangular vertices; we linearly
interpolate between the boundary conditions on the two intersecting edges to define
the boundary value at the vertices.

On a square with a = 1, the WORS solution is distinguished by P = 0 on
the square diagonals. In fact, we can use the symmetry of the Laplace equations,
Dirichlet boundary condition, and the geometry, to show that P0(1/2, 1/2) = 0.
However, by constructing multiple auxiliary boundary-value problem on [0, a] ×
[0, a], [0, a] × [0, 1], [0, 1] × [0, 1] with suitable boundary conditions and using
the maximum principle multiple times, one can prove that P 0

11(a/2, 1/2) > 0 on a
rectangle with a > 1. The details are omitted here for conciseness, and readers are
referred to the elegant arguments in Proposition 3.3 in [10]. In the d → 0 limit, the
result P 0

11(a/2, 1/2) > 0 still holds. Hence, we lose the WORS-cross structure for
a �= 1, i.e., as soon as we break the symmetry of the square domain. In Fig. 8, we
show the differences between the WORS on a square and the limiting profile on a
rectangle, labelled as BD2. The BD2 is featured by disentangled line defects near
opposite short edges.

In ε → 0 limit relevant for macroscopic domains or large λ, analogous to the
approach in [29], the energy minimizers of (17) can be studied in terms of Dirichlet
boundary-value problems for the director angle. As with the square, there are two
diagonal D states for which n in (19) is aligned along a diagonal of the rectangle,
the rotated R1 and R2 states for which n rotates by π radians between a pair of
parallel horizontal edges, and the rotated R3, R4 states for which n rotates by π

radians between a pair of parallel vertical edges (Fig. 9). For a > 1, the R3, R4
states have higher energies than the R1, R2 states (see [29, 47] for details), breaking
the energy degeneracy of the rotated solutions on a square. Interested readers are
referred to [10] for bifurcation diagrams on rectangles, for different values of a, that
capture the effects of geometrical anisotropy on NLC solution landscapes.
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6 Effects of Elastic Anisotropy

In this section, we study the effects of elastic anisotropy on the critical points of the
reduced LdG energy (11) on square domains, with tangent boundary conditions. The
elastic anisotropy is captured by a parameter L̂2 in (6). As in previous sections, we
restrict ourselves to Q-tensors with three degrees of freedom q1, q2, and q3 in (12).
In the following paragraphs, we review the modelling details, theoretical analyses,
and numerical results from [18].

Substituting the Q-tensor ansatz (12) into (11), and writing the energy functional
as a function of (q1, q2, q3) ∈ W 1,2(�;R3), we have

J [q1, q2, q3] :=
∫
�
fel(q1, q2, q3)+ λ2

L
fb(q1, q2, q3) dA, (25)

where

fb(q1, q2, q3) :=A(q2
1 + q2

2 + 3q2
3 )+C(q2

1 + q2
2 + 3q2

3 )
2+2Bq3(q

2
1 + q2

2 − q2
3 ), (26)

and

fel(q1, q2, q3) :=
(

1 + L̂2

2

)
|∇q1|2 +

(
1 + L̂2

2

)
|∇q2|2 +

(
3 + L̂2

2

)
|∇q3|2

+L̂2(q1,yq3,y − q1,xq3,x − q2,yq3,x − q2,xq3,y )+ |L̂2|(q2,yq1,x − q1,yq2,x ). (27)

The elastic energy density can be rewritten in the following two ways: if L̂2 ≥ 0,

fel=|∇q1|2+|∇q2|2+3|∇q3|2+ L̂2

2
((q1,x+q2,y − q3,x)

2+(q2,x − q1,y − q3,y)
2),

(28)

and if L̂2 < 0,

fel = (1 + L̂2)(|∇q1|2 + |∇q2|2 + 3|∇q3|2) (29)

− L̂2

2
((−q3,x − q1,x − q2,y)

2 + (q2,x − q1,y + q3,y)
2 + 4|∇q3|2). (30)

To ensure the non-negativity of the elastic energy density, we assume L̂2 ∈
(−1,∞). The corresponding EL equations are

(
1 + L̂2

2

)
�q1+ L̂2

2
(q3,yy − q3,xx)= λ2

L
q1(A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3 )),

(31)
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(
1 + L̂2

2

)
�q2 − L̂2q3,xy= λ2

L
q2(A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3 )), (32)

(
1 + L̂2

6

)
�q3 + L̂2

6
(q1,yy − q1,xx)− L̂2

3
q2,xy= λ2

L
q3(A− Bq3 + 2C(q2

1 + q2
2 + 3q2

3 ))

+ λ2B

3L
(q2

1 + q2
2 ). (33)

The EL equations (31)–(33) do not have the elegant Laplace structure and hence
are not readily amenable to analytic methods. Notably, we do not have an explicit
maximum principle argument for the solutions of (31)–(33), as in the Dirichlet case
with L̂2 = 0.

Analogous to Theorem 2.2 in [2], we can prove the existence of minimizers of J
in (25) in the admissible class

A0 := {(q1, q2, q3) ∈ W 1,2(�;R3) : q1 = qb, q2 = 0, q3 = −s+/6 on ∂�},
(34)

where qb is piecewise of class C1, and q1 is prescribed to ensure that the tangent
boundary conditions are satisfied (at least away from the vertices). For λ small
enough, we can prove that the LdG energy (25) has a unique critical point, but
the proof is more involved than in [28], with additional embedding theorems and
functional inequalities.

We can analytically construct a symmetric critical point for all admissible
values of L̂2 and edge lengths λ, and we quote the relevant proposition from [18]
below. Here, to avoid discussing the mismatch of the boundary conditions at the
square vertices, we assume the domain � to be a truncated square, see Fig. 10.
The proposition is also valid for a non-truncated square, with interpolation-type
boundary condition near the vertices.

Proposition 3 There exists a critical point (qs1, q
s
2, q

s
3) of the energy functional (25)

in the admissible space A0, for all λ > 0, such that qs1 is odd about the square
diagonals and x- and y-axis (see Fig. 10), qs2 has even reflections about the square
diagonals and odd reflection about x- and y-axis, qs3 has even reflections about the
square diagonals and x- and y-axis. Subsequently, q1 : � → R vanishes along the
square diagonals y = x and y = −x, and the function q2 : �→ R vanishes along
y = 0 and x = 0.

Subsequently, we can exploit the structure of the Eqs. (31)–(33) and the boundary
conditions to prove that for A < 0 and L̂2 �= 0, the critical point constructed in
Proposition 3, has non-constant qs2 on �, for all λ > 0. This symmetric critical point
is globally stable for small domains size, i.e., the edge length λ is small enough (see
Fig. 11). When L̂2 = 0, this symmetric critical point is the WORS defined by (13).
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Fig. 10 (Credit [18]). The
reflected solution qs1(x, y) in
Proposition 3

Fig. 11 (Credit [18]). The unique stable solution of the Euler–Lagrange equations (31)–(33), with
λ̄2 = 5, and (from the first to fourth rows) L̂2 = −0.5, 0, 1, and 10, respectively. In the first
column, we plot the (q1, q2) profile. We plot the corresponding q1, q2, and q3 profiles, in the
second to fourth columns, respectively

Notably, q2 = 0 everywhere for the WORS (refer to (12)), which is equivalent
to having a set of constant eigenvectors in the plane of �. When |L̂2| > 0, q2
and q3 are non-constant, which means that we lose the constant eigenvectors and
subsequently the cross structure in WORS. When L̂2 = −0.5, 1, and 10, we have
a central +1-point defect in the profile of (q1, q2), and we label this as the Ring+
solution (Fig. 11).

We investigate the effect of L̂2 on the WORS profile, using asymptotic methods.
The WORS solution is of the form of (12), given by the triplet (q, 0,−B/6C) at the
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Fig. 12 (Credit [18]) A solution branch for the Euler–Lagrange system (31)–(33) with λ̄2 = 500,
and L̂2 = −0.5, 0, 1, and 10, respectively, plotted in the first to fourth rows, respectively. This
solution branch is a symmetric solution branch, as described in Proposition 3. When L̂2 = −0.5,
0, and 1, the plotted solution is unstable. When L̂2 = 10, the plotted solution is stable. The first
column contains plots of (q1, q2). In the second to fourth columns, we plot the corresponding,
q1, q2 and q3, profiles

fixed temperature A = −B2/3C, where q is a solution of the Allen–Cahn equation,
as in [6]. With the leading order approximation given by (q, 0,−B/6C), we expand
q1, q2, q3 in powers of L̂2 as follows:

q1(x, y) = q(x, y)+ L̂2f (x, y)+ . . .

q2(x, y) = L̂2g(x, y)+ . . .

q3(x, y) = − B

6C
+ L̂2h(x, y)+ . . .

(35)

for some functions f, g, h, which vanish on the boundary.
For λ small enough, one can show that the corrections (f, g, h) are unique, g ≡ 0

on �, and f (x, y) = 0 on diagonals. Hence, for λ small enough, the cross structure
of the WORS is lost mainly because of effects of L̂2 on the component, q3.

We work at the fixed temperature A = −B2/3C for all the following numerical
results. We perform a parameter sweep of λ̄2, from 5 to 500, and find one of the
symmetric solution branches constructed in Proposition 3, with various fixed L̂2.
The solutions with λ̄2 = 500 are plotted in Fig. 12. When L̂2 = 0, we recover
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Fig. 13 (Credit [18]) Bifurcation diagrams for the LdG model in square domain with L̂2 = 1, 2.6,
3, and 10 from top to bottom

the familiar WORS for all λ > 0. When −1 < L̂2 < 0, the solution exhibits
a +1 defect at the square centre, and we refer to it as the Ring+ solution. When
L̂2 is positive and moderate in value, we recover the Ring+ solution branch and
q3 > −s+/6 at the square centre. When L̂2 is large enough, we discover a new
symmetric solution that is approximately constant, (q1, q2, q3) = (0, 0, s+/3), away
from the square edges, as shown in the fourth row of Fig. 12 for L̂2 = 10. We refer
to this novel solution as the Constant solution.

As stated in Sect. 3, for large λ and with L̂2 = 0, the D and R states are the
competing energy minimizers in this reduced framework. For large λ, with small or
moderate L̂2, the D and R states still survive. When L̂2 = 0 and for fixed A < 0,
s2 = q2

1 + q2
2 ≈ s2+/4, q3 = −s+/6 almost everywhere on �. As |L̂2| increases,

q3 deviates significantly from the limiting value q∞3 = −s+/6, near the square
vertices; the deviation being more significant near the bend vertices compared to
the splay vertices. From an optical perspective, we expect to observe larger defects
near the square vertices for anisotropic materials with L̂2 5 1. For large λ and large
L̂2, the D, R, and Constant states are three energetically competing states. In [29],
as λ→∞, the authors compute the limiting energies of D and R solutions, and the
energy estimates are linear in L̂2. The Constant solution has transition layers near
the square edges and as in Section 4 of [49], by using the geodesic distance theory,
we can show that there is a critical value L̂∗2, such that for L̂2 > L̂∗2, the limiting
Constant solution has lower energy than the competing D and R solutions.

In what follows, we compute bifurcation diagrams as a function of λ, with
fixed temperature A = −B2/3C, for five different values of L̂2 = 1, 2.6, 3, 10
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in Fig. 13. We numerically discover at least 5 classes of symmetric critical points
constructed in Proposition 1—the WORS, Ring±, Constant , and the pWORS

solutions, of which the WORS, Ring+, and the Constant solutions can be stable.
The bifurcation diagram for L̂2 = 0, the elastically isotropic case, is discussed in
Sect. 3. For L̂2 = 1, the WORS ceases to exist, and the unique solution in the
λ → 0 limit is the stable Ring+ solution. At the first bifurcation point λ = λ∗,
the Ring+ solution bifurcates into an unstable Ring+ and two stable D solutions.
At the second bifurcation point, λ = λ∗∗ > λ∗, the unstable Ring+ bifurcates
into two unstable BD solutions, and for λ = λ∗∗∗ > λ∗∗, the unstable Ring− and
unstable pWORS solution branches appear. In the (q1, q2) plane, the pWORS has
a constant set of eigenvectors away from the diagonals and has multiple ±1/2-point
defects on the two diagonals, so that the pWORS is similar to the WORS away
from the square diagonals. The Ring− and pWORS are always unstable, and the
Ring+ solution has slightly lower energy than the Ring−. The unstable pWORS

has higher energy than the unstable Ring± solutions when λ is large. The solution
landscapes for L̂2 = 1 and L̂2 = 2.6 are qualitatively similar. For L̂2 = 3, the
unique stable solution, for small λ, is the Constant solution, which remains stable
for λ̄2 ≤ 200. The Constant solution approaches (q1, q2, q3) → (0, 0, s+/3), as
λ or L̂2 gets large. The BD and D solution branches are disconnected from the
stable Constant solution branch. For λ = λ∗, the stable Ring+ appears, and for
λ = λ∗∗ > λ∗, the unstable Ring− and pWORS appear. For L̂2 = 10, i.e.,
for very anisotropic materials, the pWORS and Ring± states disappear, and the
Constant solution does not bifurcate to any known states. The Constant solution
has lower energy than the R and D solutions, for large λ. For much larger values of
L̂2, we only numerically observe the Constant solution branch, for the numerically
accessible values of λ.

To summarize, the primary effect of the anisotropy parameter, L̂2, is on the
unique stable solution for small λ. The elastic anisotropy destroys the cross structure
of the WORS and also enhances the stability of the Ring+ and Constant solutions.
In fact, the Constant solution is only observed for large L̂2. A further interesting
feature for large L̂2 is the disconnectedness of the D and R solution branches from
the parent Constant solution branch. This indicates novel hidden solutions for large
L̂2, which may have different structural profiles to the discussed solution branches.

7 NLC Solution Landscapes on a Hexagon

We have studied NLC equilibria on regular polygons, with or without elastic
anisotropy. In this section, we investigate the solution landscape of a thin layer of
NLC on a 2D hexagon, including stable and unstable critical points of the reduced
LdG energy (11). The hexagon is a generic example of a 2D polygon with an
even number of sides: the hexagon supports the generic Ring solution for small
domains, does not support the special symmetric solutions exclusive to a square
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(constructed in Proposition 1), and is better suited to capture generic trends with
respect to geometrical parameters, as illustrated in Sect. 4.

First, we recap the essential concepts of a solution landscape. A Solution Land-
scape is a pathway map of connected solutions of a system of partial differential
equations, in this case the Euler–Lagrange equations of the reduced LdG energy in
(11). The solution landscape starts at a parent state (typically an unstable critical
point of the LdG energy) and connects to stable energy minimizers via intermediate
unstable critical points. More precisely, we can measure the degree of instability of
an unstable critical point by means of its Morse index [38]. The Morse index of a
critical/stationary point of the free energy is the number of negative eigenvalues
of its Hessian matrix [38]. Energy minima or experimentally observable stable
states are index-0 stationary points of the free energy with no unstable directions. A
confined NLC system can switch between different energy minima or stable states,
by means of an external field, thermal fluctuations, and mechanical perturbations.
The switching requires the system to cross an energy barrier separating the two
stable states, typically with an intermediate transition state. The transition state
is an index-1 saddle point, the highest energy state along the transition pathway
connecting the two stable states [54]. There are typically multiple transition
pathways, with distinct transition states, and the optimal transition pathway has
the lowest energy barrier. The reader is referred to [25] for transition pathways
on a square domain with tangent boundary conditions and to [15] for transition
pathways on a cylindrical domain with homeotropic/normal boundary conditions.
Transition states are the simplest kind of saddle points of the free energy. Besides
stable states and transition states, there are high-index saddle points with highly
symmetric profiles and multiple interior defects, all of which offer fundamentally
new scientific prospects.

In Sect. 4, we have reviewed the typical solutions, including Ring, BD,
Para(P ), and Meta(M), and the bifurcation diagram (Fig. 7a) of the critical
points of (11), on a 2D hexagon. In what follows, we review results from [19] for
NLC solution landscapes on regular 2D hexagons, as a function of the hexagon edge
length, λ, at the fixed temperature, A = −B2/3C. When λ2 is sufficiently small,
the Ring solution is the unique stable solution as stated in Sect. 4. For λ̄2 ≈ 10,
the Ring solution transitions from being a zero-index solution to an index-2 saddle
point solution (with two equal negative eigenvalues), and we additionally have
index-1 BD solutions and the index-0 P solutions. The solution landscape for
λ̄2 = 70 is illustrated in Fig. 14, showing the relationships between Ring, BD, and
P solutions. The Ring solution is the parent state, i.e., the highest-index saddle
point solution. Following each unstable eigen-direction of the Ring solution shown
in Fig. 14, the central +1 point defect splits into two defects that relax around a pair
of opposite edges, i.e., the BD solutions. The two BD defects move from opposite
edges to opposite vertices, following the single unstable eigenvector of the BD

solution and converging to the corresponding P solution.
The solution landscape is quite complicated for λ̄2 = 600, as shown in Fig. 15a.

There are three notable numerical findings in this regime: a new stable T solution
with an interior −1/2 defect; new classes of saddle point solutions, H and TD,
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Fig. 14 Solution landscape at λ̄2 = 70. The index-2 Ring is the parent state and connects to three
index-1 BD solutions along its unstable directions. Each BD solution connects to two P minima
along BD’s single unstable direction. Reproduced from [19] with permission from IOP Publishing
and the London Mathematical Society

with high symmetry and high indices; new saddle points with asymmetric defect
locations.

The stable index-0 T solution is our first stable solution with an interior −1/2
defect at the centre of the hexagon, for λ̄2 > 250. The competing stable states, P
and M , have defects pinned to the vertices, and these vertex defects are a natural
consequence of the tangent boundary conditions and topological considerations
(the total topological degree of the boundary condition is zero). The T solution
on a hexagon (for large λ) is strongly reminiscent of the Ring solution on a
regular triangle (Fig. 15c), as reported in Sect. 4, suggesting that we can build new
solutions by tessellating solutions on simpler building block-type polygons, such as
the triangle and the square.

We numerically find a new class of saddle point solutions with high Morse
indices and multiple interior defects, labelled as H class solutions, which have
Morse indices ranging from 8 to 14 (Fig. 16). Notably, the parent state is the index-
14 H∗ saddle point solution connecting to the lowest index-8 saddle point solution,
labelled as H . The saddle point H∗ has no splay-like vertices, whereas H has 6
splay-like vertices. Numerically, we find that an index-m solution in the H class has
(m − 8) bend-like vertices, e.g., the index-8 H solution has no bend-like vertices,
whereas the index-14 H∗ solution has 6 bend-like vertices. Similar remarks apply
to the saddle points in the TD class, i.e., a TD-type saddle point with m bend-like
vertices is index-(m+ 3).

Next, we illustrate a comprehensive network of transition pathways between
stable states including two T , six M , and three P solutions, for λ̄2 = 600 in
Fig. 17. First, we remark that some stable and configurationally close solutions
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Fig. 15 (a) Solution landscape at λ̄2 = 600. (b) The configurations corresponding to (a). (c) The
triangle part of T solution on a hexagonal domain � and stable Ring solution on a triangle domain
with λ̄2 = 450. Reproduced from [19] with permission from IOP Publishing and the London
Mathematical Society

can be connected by a single transition state (index-1 saddle point) in Fig. 17. For
example, the transition state between Tleft and M26 is T04, and the transition state
between M26 and P25 is M162. However, two different M or P solutions cannot be
connected by means of a single index-1 transition state, i.e., the transition pathway
typically involves an intermediate stable P or M state, risking entrapment.

The most complicated transition pathway appears to be the pathway between the
two stable T solutions: Tleft and Tright. In fact, one numerically computed transition
pathway between Tleft and Tright is Tleft–T 04–M26–M162–P25–M115–M15–T 03–
Tright, where T 04,M162,M115, and T 03 are transition states (index-1 saddle points).
This shows that a transition between two energetically close but configurationally far
T solutions may have to overcome four energy barriers and could be easily trapped
by the stable M or P solutions. This is not a reliable way of achieving switching
because of the intermediate stable states.

An alternative approach is to use higher-index saddle points with multiple
unstable directions, to connect configurationally far stable solutions. Figure 18
shows how the different P , M , and T solutions are connected by high-index saddle
points. Two M solutions or two P solutions can be connected by the index-2 BD

solution, and the system will not be trapped by the transient local minima along this
pathway. The Tleft and Tright solutions are configurationally far and can be connected
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Fig. 16 (a) Solution landscape of the H class. (b) The corresponding configurations and plots of
|P − PH |, where P is any solution in the H class, and PH is the index-8 H solution. Reproduced
from [19] with permission from IOP Publishing and the London Mathematical Society

Fig. 17 The transition pathways between stable states including two T , six M , and three P

solutions, for λ̄2 = 600. Reproduced from [19] with permission from IOP Publishing and the
London Mathematical Society
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Fig. 18 Solution landscape starting from the H solution. All local minima such as Tleft, M26,
P36, P25, M35, and Tright are connected by the index-8 H solution. Reproduced from [19] with
permission from IOP Publishing and the London Mathematical Society

by an index-8H solution: Tleft ← T 135left ← H → T 135right → Tright. The index-
8 H saddle point is connected to every stable solution, and we can thus construct
dynamical pathways from the H solution to every individual stable solution.

Our numerical results highlight the differences between transition pathways
mediated by index-1 saddle points and pathways mediated by high-index saddle
points. We deduce that index-1 saddle points are efficient for connecting config-
urationally close stable solutions. For configurationally far stable states, they are
generally connected by multiple transition states and intermediate stable states, or
it may be possible to find a dynamical pathway between these configurationally far
stable states via high-index saddle points. The selection of dynamical pathways is
an open problem of tremendous scientific and practical interest.

Finally, let us compare the solution landscapes on a hexagon with that on a
square domain. This illustrates the effects of geometry on solution landscapes. The
most obvious difference is on the parent state. The Morse index of the WORS

increases with the domain size, λ, and the WORS is always the parent state for
a square domain [53]. Intuitively, this is because the diagonal defect lines become
longer, so that the Morse index of the WORS also increases with increasing edge
length/increasing λ. The Ring solution, which is the analogue of the WORS on a
hexagon, is index-0 for λ small enough and is an index-2 saddle point solution for
larger λ, i.e., the Morse index does not increase with increasing λ. The highest-
index parent saddle point on a hexagon changes from the Ring solution to the
index-3 T 135 and index-14 H∗ (see Fig. 19b), respectively, where T 135 and H∗
solutions emerge through saddle node bifurcations, as λ increases. We believe that
the hexagon is a more generic example of a regular polygon with an even number
of sides than a square, and hence, we expect that the qualitative aspects of our
numerical study on a hexagon will extend to arbitrary polygons with an even number
of sides.
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Fig. 19 Comparison of the parent states of the solution landscapes on the square (a) and the
hexagon (b). On square, the parent state is always WORS, while, on hexagon, the parent
state changes from Ring, T 135, to H∗ state. Reproduced from [19] with permission from IOP
Publishing and the London Mathematical Society

8 Conclusions and Discussions

This review focuses on NLC equilibria in reduced 2D settings, within the reduced
LdG framework (11). We look at regular polygons and the effects of elastic
anisotropy captured by a parameter L̂2, with some preliminary work on the effects
of geometrical anisotropy. The geometrical size is captured by a typical length (e.g.,
edge length of a polygon), denoted by λ. The λ → 0 and λ → ∞ limits are
analytically tractable. In fact, we have a unique globally stable NLC equilibrium
for λ sufficiently small and multistability for λ sufficiently large. The shape of the
geometry plays a crucial role in the structural details. For example, the WORS

with a pair of mutually orthogonal defect lines along the diagonals is exclusive to
a square domain, where we observe the Ring solution with a central +1 defect for
all other polygons, except the equilateral triangle. For a regular triangle, the stable
NLC equilibrium has a central −1/2 defect in the λ → 0 limit. For a K-regular
polygon with K edges, there are at least

[
K
2

]
-classes of stable NLC equilibria for λ

large enough, so that the shape of the polygon has a crucial role in multistability.
The effects of L̂2 have only been reviewed on square domains. Elastic anisotropy

destroys the perfect WORS-cross structure for small λ, enhances the stability of
some symmetric critical points, and very importantly introduces a novel Constant
solution branch for large values of L̂2. The square is special, and we need more
comprehensive studies on generic 2D domains to capture the effects of L̂2 on
solution landscapes.

Of particular interest are the study of saddle points and dynamical pathways
between NLC equilibria on a 2D hexagon, at a fixed temperature below the nematic
supercooling temperature. We review results on high-index saddle points from [19],
focusing on the effects of λ, and numerically illustrate dynamical pathways, with
intermediate index-1 saddle points/transition states versus dynamical pathways with
intermediate high-index saddle points. The high-index saddle points are poorly
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understood in the literature but can play a crucial role in switching, selection of
stable states and transient non-equilibrium dynamics, all of which are relevant to
applications of confined NLC systems.

With regard to future research avenues, the possibilities are tremendous. A
natural question concerns the sensitivity of solution landscapes to shape variations,
i.e., if the geometry is not fixed but can be optimized with regard to prescribed
properties. In other words, can we use shape and topology to tune the Morse
indices of critical points in the LdG framework? Similarly, can we mathematically
analyze new composite materials with multiple order parameters, e.g., a nematic
order parameter and a magnetic order parameter; see [17] for detailed numerical
studies of a prototype model for ferronematics, on 2D polygons with tangent
boundary conditions. Last but not the least, these problems rely on a delicate and
challenging combination of tools from variational analysis, numerical analysis,
simulations, and experiments. In [34] and [35], the authors perform numerical
analyses of some finite-element methods for the reduced LdG model in (11), with a
priori and a posteriori estimates for the discontinuous Galerkin Method and the
Nitsche’s method. Of course, the possibilities are endless, and our vision is to
design and implement generic algorithms for partially ordered materials, which can
select the best mathematical model for the system under consideration, and then do
comprehensive searches of the solution landscapes, yielding deterministic recipes
for NLC-based systems that are predicted, designed, and controlled by mathematical
toolboxes.

9 Supplement: Numerical Methods

We have used various methods to discretize the domain �, in the case studies of
this review. In Sect. 4 and 6, on arbitrary regular polygons, we use standard finite-
element methods to solve the linear systems including the Laplace equation and
the limiting problems in the λ → ∞ limits. All finite-element simulations and
numerical integrals are performed using the open-source package FEniCS [31],
along with the LU solver and the Newton’s method. Newton’s method strongly
depends on the initial condition. We typically use the analytic solutions in the
asymptotic limits—e.g., the λ → 0 or λ → ∞ limit and the L̂2 → 0 limit, or
perturbations of these solutions, as the initial conditions for the numerical solver,
for a range of values of λ. In Sect. 5, on rectangle domain, we use traditional finite
difference schemes for square mesh. In Sect. 7, on hexagon domain, we apply finite
difference schemes over triangular elements to approximate the spatial derivatives,
by analogy with the conventional discretization of a square domain [9].

To compute the bifurcation diagrams consisting of known stable and unstable
solution branches, we perform an increasing λ sweep for the unique solution
branch such as WORS, Ring, Constant for small λ, and decreasing λ sweep
for the distinct Para, Meta, Ortho, D or R solution branches. We distin-
guish between the distinct solution branches by defining two new measures, e.g.,
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∫
�
P12 (1 + x + y) dxdy and

∫
�
P11 (1 + x + y) dxdy, and plot these measures

versus λ2 for the different solutions. Actually, the specific form of measure depends
on the central point and the shape of the domain � and the mathematical model.
We study the stability of the solutions by numerically calculating the smallest real
eigenvalue of the Hessian of the free energy and the corresponding eigenfunction
using the LOBPCG (locally optimal block preconditioned conjugate gradient)
method in [52] (which is an iterative algorithm to find the smallest (largest) k

eigenvalues of a real symmetric matrix). A negative eigenvalue is a signature of
instability, and we have local stability if all eigenvalues are positive.

To investigate unstable solutions of the Euler–Lagrange equations, labelled as
saddle points, in Sect. 7, we use the high-index optimization-based shrinking dimer
(HiOSD) method to compute any-index saddle points [52]. The high-index saddle
dynamics for finding an index-k saddle point can be viewed as a transformed
gradient flow for the state variable x and k direction variables vi . The stability
analysis is performed to show that a linearly stable steady state of this dynamical
system is exactly an index−k saddle point.The HiOSD method is an efficient tool
for the computation of unstable saddle points and (local and global) minimizers,
without good initial guesses. The connectivity of saddle points, including transition
pathways, can be well established via the downward search and upward search
algorithms. By combining the HiOSD method with downward and upward search
algorithms, we can construct the solution landscape systematically. For more details,
the readers are referred to the reference [53]. In general, we track bifurcations by
tracking the indices of solutions; a change in the index is a signature of a bifurcation
and a possible change of stability properties.
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On Applications of Herglotz-Nevanlinna
Functions in Material Sciences, I:
Classical Theory and Applications of
Sum Rules

Annemarie Luger and Miao-Jung Yvonne Ou

1 Introduction

This chapter deals with theory and applications of Herglotz-Nevanlinna functions,
which are functions analytic in the complex upper halfplane and with non-negative
imaginary part. They appear in surprisingly many circumstances and have been
studied and utilized for a long time, which also explains why they do appear
under several names. Here we are going to call them Herglotz-Nevanlinna functions
(or Herglotz for short).

Even if the definition at first sight does not seem to be very restrictive, it
does have strong implications. For more than a century, it is known that the set
of all Herglotz-Nevanlinna functions is described via an integral representation
using three parameters only, two numbers and a positive Borel measure (satisfying
a reasonable growth condition). This explicit parameterization has made them a
very powerful tool that has been used effectively both in pure mathematics and in
applications.

It turns out that with such relatively simple functions, amazingly much informa-
tion can be encoded. For example, Herglotz-Nevanlinna functions are in one-to-one
correspondence with passive (one-port) systems. This means that the corresponding
function “knows everything about the system.” Another example are Sturm–
Liouville differential operators, appearing in mathematical physics. Here for a given
operator, its spectrum can be completely described in terms of the singularities of
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the corresponding Titchmarsh–Weyl coefficient, which is a Herglotz-Nevanlinna
function. And even more, this function can still be used in order to describe the
spectrum when the boundary conditions are changed. But these functions are not
only used when working with a single system or operator, but can also be employed
to deal with a whole class of problems simultaneously, as for instance when finding
common bounds for the performance of all antennas that fit into a given volume
(e.g., a ball of given radius), independently of their particular shape. In the study
of composite materials, a similar situation arises in deriving bounds on effective
properties when only the volume fractions are given; these bounds only depend on
the volume fraction.

In recent years, there has been a series of workshops where mathematicians
working in pure mathematics and in applied mathematics and experts in various
applications have met. All participants have one common interest, Herglotz-
Nevanlinna functions, but with very different perspectives and approaches. This
two-part review article is an attempt to reflect and to present in a systematic and
unified way the various pieces of mathematical theorems underpinning a diverse set
of applications.

The structure of the current paper is as follows. After this introduction, in Sect. 2,
we review the mathematical background for Herglotz-Nevanlinna functions and
provide a common basis for the applications presented in Sect. 3 and in Part II,
which is concluded with possible generalizations of the theory.

Section 2 starts with the well-known integral representation (Sect. 2.2), followed
by various aspects that we consider to be relevant in the chosen applications.
In particular, the behavior of a Herglotz-Nevanlinna function on/toward the real
line (i.e., at the boundary of the domain) is detailed in Sects. 2.3 and 2.7. In
material sciences, often the functions do have more specific properties, which are
discussed in Sect. 2.4; in particular, Stieltjes functions are characterized. Besides
the integral representation, other (equivalent) representations are also presented in
Sect. 2.5. In Sect. 2.6, it is explained how Herglotz-Nevanlinna functions appear in
the mathematical description of passive systems, and in Sect. 2.8, we briefly review
matrix- (and operator-)valued Herglotz-Nevanlinna functions.

Section 3 (as well as Sect. 2 in Part II) is devoted to applications, where
we present a diverse set of applications in material sciences with the underlying
common theme of Herglotz-Nevanlinna functions. The common feature here is that
the use of Herglotz-Nevanlinna functions makes it possible to handle a large class
of problems at once, instead of changing the models according to details such as
the shape of inclusions. In particular, in several situations, physical bounds can be
derived, which provide estimates of, e.g., performance under certain conditions. In
the applications presented here, the independent variable is either the frequency
(in electromagnetics, poroelastics, quasi-static cloaking, as well as time-dispersive,
dissipative systems) or the material contrasts (for composite material).

In Sect. 3.1, we describe how sum rules can be employed for deriving bounds
for electromagnetic structures, and in Sect. 3.2, passive realizations/approximations
of non-passive systems are found via optimization in terms of the corresponding
Herglotz-Nevanlinna functions.
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More applications can be found in Part II. They involve bounds on effective
properties of composite materials, numerical treatment of a costly memory term in
the modeling of poroelastic materials, as well as bounds for quasi-static cloaking
and identifying certain time-dispersive and dissipative systems as restrictions of
Hamiltonian systems.

Even if all these examples demonstrate the effectiveness of Herglotz-Nevanlinna
functions, there are situations in applications that cannot be treated by these methods
but would require more general classes of functions. This applies for instance for
non-passive systems, e.g., appearing in electromagnetics, for which the analytic
function in question might have non-positive imaginary part as well. Another
example are composite materials with more than two phases. Then, even if the
corresponding analytic functions still have positive imaginary part, they are not
covered by the treatment above, since they depend on more than only one complex
variable.

Therefore, in Sect. 3 of Part II, we provide an overview of the mathematics that
is available for different classes of functions that extend the classical Herglotz-
Nevanlinna class, and we expect them to be relevant for applications in material
sciences.

We hope that this two-part review paper can be both helpful for people working
in applications (by providing mathematical references for different aspects of
Herglotz-Nevanlinna functions as well as their generalizations for future work) and
interesting for pure mathematicians (by pointing out some relevant applications of
Herglotz-Nevanlinna functions).

2 Mathematical Background

2.1 Definition and First Examples

In this chapter, the complex upper halfplane is denoted by C
+ := {z ∈ C : Im z >

0} and the right halfplane by C+ := {z ∈ C : Re z > 0}.
Definition 1 A function h : C+ → C is called a Herglotz-Nevanlinna function if it
is analytic in C

+ and satisfies Imh(z) ≥ 0 for all z ∈ C
+.

These functions appear at various places with different names: Herglotz, Nevan-
linna, Pick, R-function (or some combination of these). In pure mathematics,
Nevanlinna seems to be most used, whereas in applications often Herglotz is
preferred.

Example 1 It is easy to check that the following functions belong to this class

f1(z) = − 1

z− 3
f2(z) = i f3(z) = − 1

z+ i
f4(z) = Log z f5(z) = √

z,
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where for the last two functions the branch is chosen such that the functions map
C
+ into the upper halfplane. Other, maybe less obvious, examples are

f6(z) = tan z f7(z) = log
(
�(z+ 1)

)
z log z

,

where �(z) denotes the Gamma function; see [6, 7].

Remark 1 By definition for a Herglotz-Nevanlinna function Im f (z) ≥ 0 for all
z ∈ C

+. However, it follows from a version of the maximum principle that if there
is a point z∗ ∈ C

+ such that Im f (z∗) = 0, then f is a (real) constant function.

Hence, if f and g are non-constant Herglotz-Nevanlinna functions, then the
composition F(z) := f

(
g(z)

)
is a Herglotz-Nevanlinna function as well. In

particular, if f �≡ 0 is Herglotz-Nevanlinna, then both g1(z) := f
( − 1

z

)
and

g2(z) := − 1
f (z)

are Herglotz-Nevanlinna functions.
When considering limits toward real points, then usually only non-tangential

limits z→̂x0 are considered, this means that z tends to x0 ∈ R in some Stolz domain
Dθ := {z ∈ C

+ : θ < Arg(z− x0) < π − θ}, where 0 < θ < π
2 .

Remark 2 Herglotz-Nevanlinna functions can also be characterized via the bound-
ary behavior only, namely an analytic function f : C+ → C is Herglotz-Nevanlinna
if and only if it holds lim sup

z→̂x0

Im f (z) ≥ 0 (as a finite number or +∞) for all

x0 ∈ R ∪ {∞}.

2.2 Integral Representation

The main tool in the work with Herglotz-Nevanlinna functions is the following
explicit representation, which in principle has been known for more than a century;
see e.g., [25] and also [12].

Theorem 1 A function f : C
+ → C is a Herglotz-Nevanlinna function if and

only if there are numbers a ∈ R, b ≥ 0 and a (positive) Borel measure μ with∫
R

1
1+ξ2 dμ(ξ) <∞ such that

f (z) = a + bz+
∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dμ(ξ). (1)

Moreover, a, b, and μ are unique with this property.

Note that the term ξ

1+ξ2 is needed for assuring the convergence of the integral.
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Remark 3 Alternatively, representation (1) can also be written as

f (z) = a + bz+
∫
R

1 + ξz

ξ − z
dσ(ξ) (2)

with the finite measure σ given by dσ(ξ) := dμ(ξ)

1+ξ2 .

Given a Herglotz-Nevanlinna function, the constants a and b can be read off
directly, namely, it holds

a = Re f (i) and b = lim
y→∞

f (iy)

iy
. (3)

Example 2 For the functions in Example 1, we have for instance μ1 = δ3, the
point measure with mass 1 at the point ξ0 = 3, is the representing measure for f1,
for f2 the measure is a multiple of the Lebesgue measure μ2 = 1

π
λR, whereas the

representing measure μ3 of f3 is absolutely continuous with respect to the Lebesgue
measure and has density 1

π(1+ξ2)
, i.e., dμ3(ξ) = 1

π(1+ξ2)
dλR(ξ).

Given the function, its representing measure can be reconstructed via the
following formula, known as the Stieltjes inversion formula; see, e.g., [25].

Proposition 1 Let f be a Herglotz-Nevanlinna function with integral representa-
tion (1). Then for x1 < x2, it holds

μ
(
(x1, x2)

)+ 1

2
μ ({x1})+ 1

2
μ ({x2}) = lim

y→0+
1

π

∫ x2

x1

Im f (x + iy) dx, (4)

or, in a weak formulation, if h is a compactly supported smooth function in C1
0(R),

then
∫
R

h(ξ)dμ(ξ) = lim
y→0+

1

π

∫
R

h(x) Im f (x + iy) dx.

Moreover, point masses are given by

lim
z→̂α

(α − z)f (z) = μ
({α}). (5)

By definition, a Herglotz-Nevanlinna function is defined in the upper halfplane
C
+ only. However, it can be extended naturally also to the lower halfplane C

−,
since the integral in the right-hand side of (1) is well-defined for all z ∈ C \ R. This
extension is symmetric with respect to the real line, i.e.,

f (z) = f (z) z ∈ C \ R, (6)

and is hence called symmetric extension.
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Example 3 For some of the functions from Example 1, the symmetric extensions
are

f1(z) = − 1

z− 3
f2(z) =

{
i Im z > 0

−i Im z < 0
f3(z) =

{− 1
z+i Im z > 0

− 1
z−i Im z < 0

.

2.3 Boundary Behavior

We first note that for a Herglotz-Nevanlinna function f

lim
y→0+ f (x + iy) exists for almost all x ∈ R.

To see this, let ϕ be a Möbius transform that maps the unit disk D onto the open
upper halfplane C

+, e.g. ϕ(w) = i 1+w
1−w . If f is a Herglotz-Nevanlinna function,

then the function h(w) := ϕ−1
(
f (ϕ(w))

)
is a bounded analytic function in D

and hence has boundary values almost everywhere. Therefore, it is also true for
the Herglotz-Nevanlinna function f .

The weak form of the Stieltjes inversion formula also shows that the limit of
the imaginary part always exists in the distributional sense. However, for pointwise
limits, and good properties of the function on the boundary, more assumptions on
the measure have to be imposed.

Let f be given with integral representation (1). If there is an interval (x1, x2)

such that (x1, x2)∩suppμ = ∅, then for every x ∈ (x1, x2), the integral in (1) exists
and is real analytic. Hence, the function can be extended analytically to the lower
halfplane, and this analytic extension coincides with the symmetric extension.

But also in other cases, it can be possible to extend the Herglotz-Nevanlinna
function analytically over (some part of) the real line. But then, in general, the
continuation will not coincide with the symmetric extension. A characterization of
this situation in terms of the measure is given in the following theorem; see [18].

Proposition 2 Let f be a Herglotz-Nevanlinna function with representation (1).
Then f can be continued analytically onto the interval (x1, x2) if and only if the
measure μ is absolutely continuous with respect to the Lebesgue measure λ on this
interval, and the density "(t) is real analytic on (x1, x2). In this case,

f (z) = f (z)+ 2πi"(z),

where "(z) denotes the analytic continuation of the density ".

Example 4 The function f2 in Example 1 can be extended as an entire function,
f2(z) ≡ i, whereas f3 can be extended analytically only to the punctured plane
C \ {−i}.
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Loosely speaking, an analytic density guarantees an analytic boundary function.
However, for the boundary function to be continuous, it is not sufficient to assume
that μ has a continuous density. As a counter example, consider the density

"(ξ) =
⎧⎨
⎩
− 1

ln ξ
, ξ ∈ (0, γ ],

0, ξ ∈ [−γ, 0],
, (7)

which is continuous on the [−γ, γ ] for any γ ∈ (0, 1), but for which the
corresponding Herglotz-Nevanlinna function does not admit a continuous extension
to x = 0.

The appropriate assumption here turns out to be Hölder continuity. A function " :
(x1, x2)→ R is called Hölder continuous with exponent α, that is " ∈ C0,α(x1, x2),
if there exists a constant C > 0 such that

|"(ξ1)− "(ξ2)| ≤ C · |ξ1 − ξ2|α for all ξ1, ξ2 ∈ (x1, x2).

The following theorem relies on some well-known results; a detailed proof for the
current situation is given in [22, Theorem 2.2].

Proposition 3 Let f be a Herglotz-Nevanlinna function with representation (1),
and assume that there is an interval (x1, x2) where the measure μ is absolutely
continuous with respect to the Lebesgue measure λ with Hölder continuous density
". Then for every compact interval I ⊂ (x1, x2), the function f admits a continuous
extension to C+ ∪ I . This continuation is given via the Hilbert transform

f (x) = a + bx + p.v.

∫
R

(
1

ξ − x
− ξ

1 + ξ2

)
dμ(ξ)+ iπ"(x), x ∈ I,

where the integral is taken as a principal value at ξ = x.

2.4 Subclasses

In this section, we focus on how properties of the measure in the integral represen-
tation (1) are related to properties of the function.

We start with the so-called symmetric functions, which are important for instance
in connection with passive systems, cf., Sect. 2.6.

Definition 2 A Herglotz-Nevanlinna function is called symmetric if

f (−z) = −f (z). (8)

Such functions are purely imaginary on the imaginary axes and can be character-
ized in the following way.
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Proposition 4 A Herglotz-Nevanlinna function f with representation (1) is sym-
metric if and only if a = 0 andμ is symmetric with respect to 0, i.e.,μ(B) = μ(−B)
for every Borel set B in R. In this case, the representation can be written as

f (z) = bz+ p.v.

∫
R

1

t − z
dμ(t) for z ∈ C

+,

where p.v. denotes the principle value at∞.

The function behavior at∞ is closely related to the properties of the representing
measure μ and related simplifications of the representation. The following state-
ments can be found in [25]. The first theorem characterizes when the term ξ

1+ξ2 is
needed in the integral.

Theorem 2 Let f be a Herglotz-Nevanlinna function with representation (1). Then
the following are equivalent:

(i)
∫ ∞

1

Im f (iy)

y
dy <∞.

(ii)
∫
R

1

1 + |ξ |dμ(ξ) <∞.

(iii) f (z) = s +
∫
R

1

ξ − z
dμ(ξ) with some s ∈ R.

In this case, s = lim
y→∞ f (iy) = lim

y→∞Re f (iy) = a − ∫
R

ξ

1+ξ2 dμ(ξ).

The next theorem characterizes functions with bounded measure.

Theorem 3 Let f be a Herglotz-Nevanlinna function with representation (1). Then
the following are equivalent:

(i) lim
z→̂∞

f (z)

Im z
= 0 and lim sup

z→̂∞
|z|Im f (z) <∞.

(ii)
∫
R

dμ(ξ) <∞.

Hence also in this case, f (z) = s +
∫
R

1

ξ − z
dμ(ξ), with s ∈ R.

An important subclass of Herglotz-Nevanlinna functions are Stieltjes functions;
see also [25].

Definition 3 A holomorphic function f : C \ [0,+∞) → C is called a Stieltjes
function if:

• Im f (z) ≥ 0 for Im z > 0.
• f (x) ≥ 0 for x ∈ (−∞, 0).

These functions can be characterized in several different ways.
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Theorem 4 Let f be holomorphic in the domain C \ [0,+∞). Then the following
are equivalent:

(a) f is a Stieltjes function.
(b) f can be represented as

f (z) = s +
∫
[0,∞)

1

ξ − z
dμ(ξ)

with s ≥ 0 and
∫
[0,∞)

1
1+ξ dμ(ξ) <∞.

(c) f is a Herglotz-Nevanlinna function (analytically continued onto R
−), which

satisfies
∫∞

1
Im f (iy)

y
dy <∞, and lim

y→∞ f (iy) ≥ 0.

(d) The functions f (z) and h1(z) := zf (z) are Herglotz-Nevanlinna functions.
(e) The functions f (z) and h2(z) := zf (z2) are Herglotz-Nevanlinna functions.

In this case, s = lim
x→−∞ f (x).

Moreover, symmetric Herglotz-Nevanlinna functions can be represented via
Stieltjes functions.

Theorem 5 A function f is a symmetric Herglotz-Nevanlinna function, i.e.,
f (−z) = −f (z), if and only if there exists a Stieltjes function h such that
f (z) = zh(z2).

Note that in some places the notion Stieltjes function means that additionally
all moments of the representing measure exist. Other versions of Stieltjes functions
where the functions are analytic on the other halfline are used in Sect. 2.1.1 of Part II.

Another important subclass is rational Herglotz-Nevanlinna functions. Here, the
term rational might be understood in two different ways. One way is to think about
functions for which there exists a rational function in C such that its restriction to the
upper halfplane coincides with the given function, e.g., f1, f2, and f3 in Example 1,
as well as in connection with electrical circuit networks, cf., Example 9. Note that
these functions might have absolutely continuous measures, such as f2 and f3.

But rational can also be interpreted in a more strict way, namely that the integral
representation gives a rational function in C, or in other words, that the symmetric
extension is rational in C. Among the above named examples, only f1 is rational also
in this sense. Rational functions in this stricter meaning are exact those functions for
which the measure is a finite sum of Dirac measures, as e.g., when deriving bounds
in Sect. 2.1.1 of Part II.

Also, more generally, meromorphic Herglotz-Nevanlinna functions have been
investigated, e.g., in connection with inverse problems. An important property are
the interlacing of zeros and poles on the real line.
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2.5 Other Representations

Besides the integral representation, there also exist other ways to represent Herglotz-
Nevanlinna functions.

2.5.1 Operator Representations

Representations using resolvents have been used in different contexts. The theorem
below follows straightforwardly from Example 5 or can be seen as a special case
of the results in, e.g., [27]. Here, self-adjoint linear relations are used; they can
be viewed as multi-valued operators. For a detailed overview of relations in inner
product spaces, see [14] or [5, Chapter 1].

Theorem 6 A function f is a Herglotz-Nevanlinna function if and only if there exist
a Hilbert space H, a self-adjoint linear relation A in H, a point z0 ∈ C

+, and an
element v ∈ H such that

f (z) = f (z0)+ (z− z0)
(
(I + (z− z0)(A− z)−1)v, v

)
H
. (9)

Moreover, ifH = span{(I + (z− z0)(A− z)−1)v : z ∈ "(A)}, where span denotes
closed linear span and "(A) the resolvent set of A, then the representation is called
minimal. In this case, the representation is unique up to unitary equivalence.

If the representation is minimal, then it can be shown that hol(f ) = "(A),
meaning that the function f (more precisely, its symmetric continuation to the
lower halfplane and to those real points where possible) is analytic exactly in the
resolvent set of the representing relation A. In particular, isolated eigenvalues of A
are poles of f . Non-isolated eigenvalues are then called generalized poles and can
be characterized analytically as well. Since unitarily equivalent relations do have
the same spectral properties, these are intrinsic for the function as well.

There are different (equivalent) ways to construct such an operator representa-
tion.

Example 5 If, for instance, the integral representation (1) is given, then the above
representation can be realized as follows: If in the integral representation b = 0,
then H = L2

μ and A is actually an operator. Namely, A is multiplication by the
independent variable, i.e., g(ξ) �→ ξ · g(ξ). If z0 is fixed, then v ∈ L2

μ might be

chosen as v(ξ) = 1
ξ−z0

.
If b > 0, then the space has an additional one-dimensional component, namely,

H = L2
μ⊕C andA is not an operator but a relation with non-trivial multi-valued part

A(0). The relation A is acting in L2
μ as multiplication by the independent variable

and has the second component as multi-valued part, i.e., A(0) = {0} × C.
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In Theorems 2 and 3, some properties of the function have been related to certain
properties of the measure that lead to simplifications of the integral representation.
In the following theorem, these results are extended to the operator representation.

Theorem 7 Let f be a Herglotz-Nevanlinna function given by representation (9).
Then:

1. lim
y→∞

f (iy)

y
= 0 if and only if the relation A is an operator, i.e., its multi-valued

part is trivial.

2.
∫ ∞

1

Im f (iy)

y
dy <∞ if and only if v ∈ dom((|A| + I )1/2).

3. lim
z→̂∞

f (z)

Im z
= 0 and lim sup

z→̂∞
|z|Im f (z) <∞ if and only if A is an operator and

v ∈ dom(A). In this case,

f (z) = s +
(
(A− z)−1u, u

)
H

with s ∈ R and u := (A− z0)v.

Operator representations appear naturally in connection with spectral problems
for self-adjoint operators. For instance, the spectrum of a Sturm–Liouville operator
can be characterized in terms of the singularities of the corresponding Titchmarsh–
Weyl function, which in many cases is a Herglotz-Nevanlinna function. Then A is
the differential operator, and μ can be interpreted as the spectral measure, see, e.g.,
[16] and references therein or Chapter 6 in [5].

Abstractly speaking, scalar Herglotz-Nevanlinna functions do appear in con-
nection with rank one perturbations of self-adjoint operators, see, e.g., [2], or in
connection with self-adjoint extensions of a symmetric operator with deficiency
indices (1, 1) [1]. Given such a symmetric operator and one fixed self-adjoint
extension, then there exists a Herglotz-Nevanlinna function, the so-called Q-
function (in the sense of Krein) or abstract Weyl function, such that all self-adjoint
extensions can be parameterized via Krein’s resolvent formula. Moreover, also
the spectrum of any (minimal) extension is given in terms of (the singularities of
fractional linear transformations of) this Herglotz-Nevanlinna function.

2.5.2 Exponential Representation

If f is a Herglotz-Nevanlinna function, then the function F(z) := Log(f (z)) is
also Herglotz-Nevanlinna. Since ImF is bounded, it follows that F has an integral
representation with an absolute continuous measure and no linear term, i.e., b = 0.
This observation leads to the following representation.

Proposition 5 A function f is a Herglotz-Nevanlinna function if and only if there
exists a real constant γ and a density ϑ such that
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f (z) = exp

(
γ +

∫
R

(
1

t − z
− t

1 + t2

)
ϑ(t)dλR(t)

)
.

For details, in particular, concerning the relation between μ from (1) and ϑ , see
[3] and [4].

2.6 Passive Systems

Symmetric Herglotz-Nevanlinna functions are also characterized in terms of
Laplace transforms of certain distributions, see, e.g., the classical text [32].

Consider an operator R that acts on distributions D′(R,C) as a convolution
operator, i.e., there exists Y ∈ D′ such that R(ϕ) = Y � ϕ for all ϕ ∈ D′ such
that this action is well-defined.

Definition 4 A convolution operator R = Y� is called (admittance-)passive if for
every test function ϕ ∈ D the output R(ϕ) =: ψ is locally integrable and

Re

[∫ t

−∞
ϕ(τ)ψ(τ)dτ

]
≥ 0, ∀t ∈ R.

It can be shown that every passive operator R is causal (i.e., suppY ⊆ [0,∞)),
and it is of slow growth (i.e., Y ∈ S′, where S′ denotes the set of Schwartz
distributions).

For a convolution operator that is causal and of slow growth, the Laplace
transform W := L(Y ) of its defining distribution is well-defined and holomorphic
in the right halfplane, see, e.g., [32] for details.

Furthermore, a real distribution is a distribution that maps real test functions to
real numbers, and a convolution operator is called real if it maps real distributions
into real distributions. A holomorphic function is called positive real (or for short
PR) if it maps the right halfplane into itself and takes real values on the real line.

Passive operators are in a one-to-one correspondence with the positive real
functions in the sense of the following theorem, which, however, is formulated in
terms of Herglotz-Nevanlinna functions.

Theorem 8 Given a real passive operator R = Y� , the function f (z) := iW(z
i
) is

a symmetric Herglotz-Nevanlinna function (whereW = L(Y )).
Conversely, given a symmetric Herglotz-Nevanlinna function f , the convolution

operator R := L−1(W)� forW(s) := 1
i
f (is) is passive and real.

Remark 4 Here the Laplace transform W is itself a positive real function. In appli-
cations sometimes this transfer function is considered directly; see e.g., Example 10,
or alternatively the Laplace transform is combined with a multiplication of i in the
independent variable and is then called the Fourier–Laplace transform, as in Eq. (38)
of Part II.
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2.7 Asymptotic Behavior

Generally speaking, the growth of the function at a boundary point in R ∪ {∞} is
closely related to the behavior of the measure at this point, e.g., (5). In this section,
we demonstrate how the function’s asymptotic behavior and the moments of the
measure are related; see [29] for an overview and [8] for the proofs.

We start with noting that for every Herglotz-Nevanlinna function f , one has

f (z) = b1z+ o(z) as z→̂∞,

and

f (z) = a−1

z
+ o(

1

z
) as z→̂0,

where b1 = b in the integral representation (1) and a−1 = −μ({0}). Some functions
do even admit expansions of higher order. We first consider expansions at ∞.

Definition 5 A Herglotz-Nevanlinna function f has an asymptotic expansion of
order K at z = ∞ if for K ≥ −1 there exist real numbers b1, b0, b−1, . . . , b−K
such that f can be written as

f (z) = b1z+ b0 + b−1

z
+ . . .+ b−K

zK
+ o
( 1

zK

)
as z→̂∞. (10)

Remark 5 This means that

lim
z→̂∞

zK
(
f (z)− b1z− b0 − b−1

z
− . . .− b−K

zK

)
= 0. (11)

Moreover, the coefficients b−j are given by

b−j = lim
z→̂∞

zj
(
f (z)− b1z− b0 − b−1

z
− . . .− b−(j−1)

zj−1

)
. (12)

The following theorem relates the asymptotic expansion to the moments of the
measure.

Theorem 9 Let f be a Herglotz-Nevanlinna function with representing measure
μ in (1) and N∞ ≥ 0. Then f has an asymptotic expansion of order 2N∞ + 1
at z = ∞ if and only if the measure μ has finite moments up to order 2N∞, i.e.,∫
R
ξ2N∞dμ(ξ) <∞. Moreover, in this case

∫
R

ξkdμ(ξ) = −b−k−1 for 0 < k ≤ N∞. (13)
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Since these moments can be calculated by a modified version of the Stieltjes
inversion formula, this result can be reformulated in the following way, known as
sum rules. See [8] for a rigorous derivation.

Theorem 10 Let f be a Herglotz-Nevanlinna function. Then, for some integer
N∞ ≥ 0, the limit

lim
ε→0+

lim
y→0+

∫
ε<|x|< 1

ε

x2N∞ Im f (x + iy)dx (14)

exists as a finite number if and only if the function f admits at z = ∞ an asymptotic
expansion of order 2N∞ + 1. In this case, the following sum rules hold

lim
ε→0+

lim
y→0+

1

π

∫
ε<|x|< 1

ε

xnIm f (x + iy)dx =
{
a−1 − b−1, n = 0

−b−n−1, 0 < n ≤ 2N∞
.(15)

Example 6 Note that the assumption that the coefficients in expansions (10) are
real is essential. Consider, e.g., the function f (z) = i for z ∈ C

+, which admits
expansions of arbitrary order if non-real coefficients are allowed. However, the
limits (14) do not exist. This example also shows that not every Herglotz-Nevanlinna
function does admit a sum rule.

Expansions at z = 0 are defined analogously. This can either be done explicitly,
as below, or via the expansion at ∞ for the Herglotz-Nevanlinna function f̃ (z) :=
f (−1/z). The above remark applies then accordingly.

Definition 6 A Herglotz-Nevanlinna function f has an asymptotic expansion of
order K at z = 0 if for K ≥ −1 there exist real numbers a−1, a0, a1, . . . , aK such
that f can be written as

f (z) = a−1

z
+ a0 + a1z+ . . .+ aKz

K + o
(
zK
)

as z→̂0. (16)

Theorem 11 Let f be a Herglotz-Nevanlinna function. Then, for some integer
N0 ≥ 1, the limit

lim
ε→0+

lim
y→0+

∫
ε<|x|< 1

ε

Im f (x + iy)

x2N0
dx (17)

exists as a finite number if and only if f admits at z = 0 an asymptotic expansion of
order 2N0 − 1. In this case, the following sum rules hold

lim
ε→0+

lim
y→0+

1

π

∫
ε<|x|< 1

ε

Im f (x + iy)

xp
dx =

{
a1 − b1, p = 2

ap−1, 2 < p ≤ 2N0
. (18)
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Example 7 The Herglotz-Nevanlinna function f (z) = tan(z) has the asymptotic
expansion

tan(z) = z+ z3

3
+ 2z5

15
+ . . . as z→̂0 (19)

and tan(z) = i + o(1) as z→̂∞ (which, however, is not an asymptotic expansion
in the sense of (10)). We thus find that a1 = 1, a3 = 1/3, a5 = 2/15, and b1 = 0
(whereas b0 does not exist), and hence, the following sum rules apply.

lim
ε→0+

lim
y→0+

1

π

∫
ε≤|x|≤1/ε

Im tan(x + iy)

xp
dx =

⎧⎪⎪⎨
⎪⎪⎩

1 p = 2

1/3 p = 4

2/15 p = 6

. (20)

Remark 6 Note that the case of p = 1 is not included in Theorem 11. In order to
guarantee this limit to be finite, it is required that f admits asymptotic expansions
of order 1 at both z = ∞ and z = 0. In this case, the limit equals a0 − b0.

Remark 7 Note that the exponents in (14) and (17) are even. A corresponding
statement for odd exponents, meaning that the existence of the limit is equivalent
to the existence of the expansion, does not hold. A counterexample is given in [8,
p. 9].

Remark 8 The counterpart of Theorem 9 for the operator representation (9) is v ∈
dom(AN∞) if and only if an asymptotic expansion of order 2N∞ + 1 at z = ∞
exists.

For symmetric Herglotz-Nevanlinna functions (8), the non-zero coefficients
of odd and even order in an asymptotic expansion are necessarily real-valued
and purely imaginary, respectively, and hence expansions (16) and (10) stop at
the appearance of the first imaginary term, or the first non-existing term. If the
assumptions in both Theorems 10 and 11 are satisfied, i.e., that both asymptotic
expansions exist up to order 2N0−1 and 2N∞+1, respectively, these together with
Remark 6 can be summarized as

2

π

∫ ∞

0+
Im f (x)]

x2n dx := lim
ε→0+

lim
y→0+

2

π

∫ 1/ε

ε

Imh(x + iy)]
x2n dx = a2n−1 − b2n−1(21)

for n = −N∞, . . . , N0.
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2.8 Matrix- and Operator-Valued Herglotz-Nevanlinna
Functions

So far in this text the values of the functions considered have been complex numbers,
but much of the theory can be extended to matrix- or even operator-valued functions;
see [15] for a detailed overview.

Let H0 be a complex Hilbert space and denote by L(H0) and B(H0) the
spaces of linear and bounded linear operators in H0, respectively. In case of finite-
dimensional H0, say dimH0 = n, these two spaces coincide and are identified with
the space of matrices Cn×n. For T ∈ L(H0), we denote by T ∗ the adjoint operator;
for T ∈ C

n×n, this is the conjugate transpose of the matrix T .

Definition 7 A function F : C+ → B(H0) is called Herglotz-Nevanlinna if it is
analytic and ImF(z) ≥ 0 for z ∈ C

+, where ImF(z) := 1
2i (F (z)− F(z)∗).

Also these functions can be represented via an integral representation as in
Theorem 1.

Theorem 12 A function F : C+ → B(H0) is a Herglotz-Nevanlinna function if
and only if there are operators C = C∗ and D ≥ 0 ∈ B(H0) and a (positive)
B(H0)-valued Borel measure � with

∫
R

1
1+ξ2 d (�(ξ)x, x)B(H0)

< ∞ for all x ∈
H0 such that

F(z) = C +Dz+
∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
d�(ξ). (22)

Moreover, C, D, and � are unique with this property.

Here an operator-valued measure is defined via a non-decreasing operator-valued
(distribution) function; see [15].

Remark 9 As in Theorems 2 and 3, the representation simplifies under certain
growth conditions. More precisely, these theorems hold true even in the operator-
valued case if the growth conditions are considered weakly, e.g., (i) in Theorem 2
becomes

∞∫

0

(ImF(iy)x, x)H0

y
dy ≤ ∞

for all x ∈ H0. Also the results in Sect. 2.3 hold in this weak sense.

Also the operator representations can be extended to this case.

Theorem 13 A function F : C+ → B(H0) is a Herglotz-Nevanlinna function if
and only if there exist a Hilbert space H, a self-adjoint linear relation A, a point
z0 ∈ C

+, and a map � ∈ B(H0,H) such that
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F(z) = F(z0)
∗ + (z− z0)�

∗(I + (z− z0)(A− z)−1)�. (23)

Moreover, if H = span{(I + (z − z0)(A − z)−1)�x : z ∈ "(A) and x ∈ H0}, then
the representation is called minimal. In this case, the representation is unique up to
unitary equivalence.

For scalar functions, i.e., H0 = C, the linear mapping � : C→ H acts as 1 �→ v,
where v is the element in the scalar representation Theorem 6.

Similarly as in Theorems 2 and 3, certain assumptions on the growth of the
function F guarantee simplified representations. As an example, we give one result,
which will be used in Sect. 2.4 of Part II.

Theorem 14 Let F : C
+ → B(H0) be a Herglotz-Nevanlinna function with

representation (23). Then

lim
z→̂∞

‖F(z)‖
Im z

= 0 and lim sup
z→̂∞

|z| · ‖ImF(z)‖ <∞

if and only if A is an operator and ran� ⊂ dom(A). In this case,

F(z) = S + �∗0(A− z)−1�0 (24)

with �0 := (A− z0)� and S = S∗ ∈ B(H0).

In particular, this theorem implies the following corollary.

Corollary 1 For a Herglotz-Nevanlinna function F : C+ → B(H0) the growth
condition lim sup

y→∞
y‖F(iy)‖ <∞ implies that

F(z) = �∗0(A− z)−1�0, (25)

where A is a self-adjoint operator in a Hilbert space H and �0 ∈ B(H0,H).
Moreover, there exists a minimal representation, that is, a representation for which
it holds H = span{(A − z)−1)�0x : z ∈ "(A) and x ∈ H0}, that is unique up to
unitary equivalence.

Example 8 Both the functions

F(z) =
(
z 1
1 − 1

z

)
and F̃ (z) := −F(z)−1 = 1

2
·
(
− 1

z
−1

−1 z

)

are Herglotz-Nevanlinna functions.

The above example illustrates a general phenomenon for matrix (and operator)
functions, namely, the point z = 0 is both a pole and a zero of F ; it is also a pole of
the inverse F−1. In particular, detF(z) ≡ −2, and hence, the poles of F cannot be
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read off from the scalar function detF(z), but the matrix structure has to be taken
into account.

Whereas scalar Herglotz-Nevanlinna functions do appear in connection with
extensions of symmetric operators with deficiency index 1, higher defect leads to
matrix-valued functions (for finite deficiency index) or operator-valued functions
(for infinite deficiency index). As an example, consider differential operators. If
such an operator acts on functions defined on the halfline R

+ (which has only
one boundary point, x = 0), then the minimal operator will in general have
deficiency index 1, and hence, the corresponding Titchmarsh–Weyl function is a
scalar Herglotz-Nevanlinna function. If however, one considers either a compact
interval (with 2 boundary points) or differential operators on finite graphs (with
finitely many boundary points), the corresponding Weyl function is a matrix-valued
Herglotz-Nevanlinna function, where the number of boundary points determines its
size. Partial differential operators defined on some domain in R

n (with boundary that
consists of infinitely many points) give rise to operator-valued Herglotz-Nevanlinna
functions. See, e.g., the recent books [5, 28] and references therein.

Other examples for matrix-valued Herglotz-Nevanlinna functions do appear, e.g.,
in connection with array antennas [24].

3 Applications

In this section, as well as in Part II, we give examples of applications, where
Herglotz-Nevanlinna functions are utilized. They stem from quite different areas,
but in terms of the underlying mathematics, they have a lot in common. Here, we
focus on applications in electromagnetics and techniques that are related to the sum
rules. As is mentioned in the introduction, there are also applications where the
functions depend on the contrast of materials rather than frequency; see Sect. 2.1 of
Part II. Here we want to point out these similarities in an informal way, and more
precise definitions are then given in the respective application below or in Part II.

First of all, the description of most of the problems in some way involves a
convolution operator. This might be related to time invariance (also called time
homogeneity), or it can appear as a memory term or a time-dispersive integral term.

Another common feature is causality, which means that the current state depends
only on the time evolution in the past but not on the future. Mathematically, causality
amounts to the fact that the convolution kernel is supported on one halfline only,
which implies that its Fourier (or Laplace) transform is an analytic function, in the
upper (or right) halfplane. In the applications with contrast, the analyticity arises
from the coercivity of a certain sesquilinear form.

In general, the analytic functions given in this way will not be Herglotz-
Nevanlinna, but an additional assumption is needed. This might be, e.g., passivity or
power dissipation, which imposes a sign restriction on the imaginary (or real) part,
and this is how Herglotz-Nevanlinna functions appear. In many situations, there
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is a one-to-one correspondence between the systems and the Herglotz-Nevanlinna
functions describing them.

In the following sections as well as in Part II, we summarize results from
different areas and try to make their connections to the mathematical background in
Sect. 2 more explicit. We try to use the notations as close as possible to the original
papers in order to make them more accessible to the reader. Unfortunately, this leads
to unavoidable clashes in some notations, which we will point out explicitly if the
context there is not enough to resolve the ambiguity of notation.

3.1 Sum Rules and Physical Bounds in Electromagnetics

In Sect. 2.6, the mathematical definition of passive systems was given, and it was
explained that such systems are in one-to-one correspondence with symmetric
Herglotz-Nevanlinna functions. Here we are going to give a physical motivation
including an example from electromagnetics and demonstrate how the sum rules
are used to derive physical bounds. We are following closely the exposition in [29],
where also additional references can be found.

Physical objects that cannot produce energy are usually considered as passive.
However, whether a system is passive or not (in the mathematical sense) depends
very much on the definition of the input and the output.

More precisely, consider one-port systems. These are systems consisting of one
input and one output parameter, which can be measured at the so-called ports of
these systems. As an example, one might think of an electric circuit with two nodes
to which one can input a signal, e.g., a current, and measure a voltage.

The one-port systems we consider here are assumed to be linear, continuous, and
time-translationally invariant. Hence, the system is in convolution form [32], i.e., if
u(t) denotes the input, then the output v(t) is given by

v(t) = (w � u)(t) :=
∫
R

w(τ)u(t − τ)dτ, (26)

with impulse response w(t). As before, we restrict ourselves to real-valued systems,
i.e., the systems where the impulse response w is real-valued. One way to
define passivity for such systems is the so-called admittance passivity defined in
Definition 4 [31, 32], where

Wadm(T ) := Re
∫ T

−∞
v(t)u(t)dt ≥ 0 (27)

for all T ∈ R and all u ∈ C∞
0 (i.e., smooth functions with compact support).
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Fig. 1 (a) A general electric circuit; (b) A simple circuit example

Here, Wadm(T ) represents all energy the system has absorbed until time T , and
hence, this definition means that the system absorbs more energy than it emits, or in
other words, the system does not produce energy.

It can be shown [32] that the impulse response w of a passive system has the
representation

w(t) = bδ′(t)+H(t)

∫
R

cos(ξ t)dμ(ξ), (28)

where b ≥ 0, δ′ denotes the derivative of the Dirac distribution,H the Heaviside step
function, and μ a Borel measure satisfying the growth condition from Theorem 1.
This implies that the Laplace transform of the impulse response (28), W(s), gives
rise to a symmetric Herglotz-Nevanlinna function, cf., Theorem 8, which has exactly
the parameters b and μ.

Let us have a closer look at a few examples of passive systems in electromagnet-
ics from [29].

Example 9 (Input Impedance of Electrical Circuit Networks) Consider a simple
electric one-port circuit containing passive components, i.e., each resistance R,
inductance L, and capacitance C are positive. The input signal to this system is
the real-valued electric current i(t), and its output signal is the voltage v(t), see
Fig. 1a. As an explicit example, consider the simple circuit in Fig. 1b. In order to
check that this system is passive, we calculate Wadm(T ) from (27).

For a given input current i(t), the output voltage is given by v(t) = L
d i(t)
dt

+Ri(t)
and can be written as v = w�i, where w = Lδ′+Rδ is the impulse response. Hence,
the integral (27) becomes

Wadm(T ) =
∫ T

−∞

(
L
d i(t)

dt
i(t)+ Ri(t)2

)
dt = L

2
i(T )2 + R

∫ T

−∞
i(t)2dt ≥ 0, (29)

and the system is admittance-passive. The transfer function (i.e., here the input
impedance), which by definition is the Laplace transform of the impulse response,
becomes, in this case, the positive real (PR)-function

Zin(s) = sL+ R, (30)
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and hence, f (z) := iZin(−is) is a Herglotz-Nevanlinna function. This simple
example generalizes to circuit networks composed of arbitrary number and com-
binations of passive resistors, capacitances, and inductances resulting in rational
PR functions [19]. Moreover, it is straightforward to include transformers and
transmission lines as well as multiple input and output systems resulting in matrix-
valued PR functions [11].

Given a Herglotz-Nevanlinna function, the integral identities in Theorems 10
and 11 have been applied in order to derive physical bounds on passive systems, see
e.g., [8]. In the engineering and physics literature, these integral identities appear in
various forms and special cases and are also often referred to as sum rules [8, 26].

For Herglotz-Nevanlinna functions, the integral identities are given on the real
axis where z = x is often interpreted as angular frequency ω (in rad/s), wave number
k = ω/c0 (in m−1), or as wavelength λ = 2π/k (in m).

In many practical electromagnetic applications, it is reasonable to assume some
partial knowledge regarding the low- and/or high-frequency asymptotic expansions
of the corresponding Herglotz-Nevanlinna function, such as the static and the optical
responses of a material, or a structure. In these cases, the sum rules can be used
to obtain inequalities by constraining the integration interval to a finite bandwidth
in the frequency (or wavelength) domain and thereby yielding useful physical
limitations in a variety of applications.

As illustration, we treat the following classical example by applying the theory
presented in Sect. 2.7, even though residue calculus could also be used to solve this
problem.

Example 10 (The Resistance-Integral Theorem) Consider a passive circuit consist-
ing of a parallel connection of a capacitance C and an impedance Z1(s) that
does not contain a shunt capacitance (i.e., Z1(0) is finite and Z1(∞) �= 0), see
the figure besides. Then the input impedance of this circuit is given by Z(s) =
1/(sC + 1/Z1(s)), which is a PR function in the Laplace variable s ∈ C+, and
hence, the system is admittance-passive.

The asymptotic expansions are Z(s) = Z1(0) + o(s) as s→̂0 and Z(s) =
1/(sC) + o(s−1) as s→̂∞. Here, the corresponding Herglotz-Nevanlinna function
is h(ω) := iZ(−iω) for ω ∈ C

+. Its low- and high-frequency asymptotics are

h(ω) = o(ω−1) as ω→̂0 and h(ω) = − 1

ωC
+ o(ω−1) as ω→̂∞. (31)
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In terms of (16) and (10), we have a−1 = 0 and b−1 = −1/C, and thus the sum
rule (21) with n = 0 gives

2

π

∫ ∞

0+
Re [Z(−iω)]dω = 2

π

∫ ∞

0+
Im [h(ω)]dω = a−1 − b−1 = 1

C
. (32)

By integrating only over a finite frequency interval� := [ω1, ω2], and estimating
this integral from below, we obtain the bound

�ω inf
ω∈�Re [Z(−iω)] ≤

∫ ∞

0+
Re [Z(−iω)]dω = π

2C
, (33)

where �ω := ω2 − ω1. Consequently, inequality (33) limits the product between
the bandwidth and the minimum resistance over the given frequency interval; see
also [9].

Compositions of Herglotz-Nevanlinna functions can be used to construct new
Herglotz-Nevanlinna functions and, hence, also new sum rules, cf., also Sect. 2.3 in
Part II. Here, we illustrate this for a case where the minimal temporal dispersion
for metamaterials is determined, by first transforming the problem into the question
of determining the minimum amplitude of a Herglotz-Nevanlinna function over a
bandwidth [8, 20].

When a dielectric medium is specified to have inductive properties (i.e., has
negative permittivity) over a given bandwidth, it is regarded as a metamaterial.
A given negative permittivity value at a single frequency is always possible to
achieve. For instance, the plasmonic resonances in small metal particles can be
explained by, e.g., using Drude or Lorentz models. However, when a constant
negative permittivity value is prescribed over a given bandwidth, the passivity of
the material will imply severe bandwidth limitations, see e.g., [20].

To derive these limitations based on Herglotz-Nevanlinna functions, we start by
considering the following general situation: Let h0 be a fixed Herglotz-Nevanlinna
function that can be extended continuously to a neighborhood of the compact
interval � ⊂ R and has the large argument asymptotics h0(z) = b0

1z + o(z) as
z→̂∞. Denote by F(x) := −h0(x) the negative of h0. We are now looking for a
Herglotz-Nevanlinna function h that has the same continuity property on the real
line as h0 and with an asymptotic expansion h(z) = b1z + o(z) as z→̂∞ and lies
as close as possible to the given anti-Herglotz function F . In particular, we aim to
derive a lower bound for the error norm

‖h− F‖L∞(�) := sup
x∈�

|h(x)− F(x)|. (34)

To this end, the following auxiliary Herglotz-Nevanlinna function h�(z), for � > 0,
is used
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h�(z) := 1

π

∫ �

−�
1

ξ − z
dξ = 1

π
Log

z−�

z+�
=
⎧⎨
⎩
i + o(1) as z→̂0
−2�

πz
+ o(z−1) as z→̂∞.

(35)

Note that Imh�(z) ≥ 1
2 for |z| ≤ � and Im z ≥ 0. Next, consider the composite

Herglotz-Nevanlinna function h1(z) := h�
(
h(z) + h0(z)

)
. Since h(z) + h0(z) =

(b1 + b0
1)z+ o(z) as z→̂∞ the new function h� has the asymptotic expansions

h1(z) = o(z−1) as z→̂0 and h1(z) = −2�

π(b1 + b0
1)
z−1 + o(z−1) as z→̂∞. (36)

Then the sum rule (21) with n = 0 becomes

2

π

∫ ∞

0+
Imh1(x)dx = a−1 − b−1 = 2�

π(b1 + b0
1)
. (37)

Choosing � := supx∈� |h(x)+ h0(x)|, the following integral inequalities follow

1

π
|�| ≤ 2

π

∫
�

Imh1(x)︸ ︷︷ ︸
≥ 1

2

dx ≤ 2

π

∫ ∞

0+
Imh1(x)dx = 2 supx∈� |h(x)+ h0(x)|

π(b1 + b0
1)

(38)

or

‖h+ h0‖L∞(�) ≥ (b1 + b0
1)

1

2
|�|, where |�| =

∫
�

dx. (39)

Example 11 (Metamaterials and Temporal Dispersion) Consider now a dielectric
metamaterial with a constant, real-valued, and negative target permittivity εt < 0
to be approximated over an interval �. In this case, the function of interest is
F(z) = zεt, and hence, we have h0(z) = −F(z) with b0

1 = −εt. Let ε(z)
be the permittivity function of the approximating passive dielectric material, and
h(z) = zε(z) the corresponding Herglotz-Nevanlinna function with b1 = ε∞, the
assumed high-frequency permittivity of the material, and the approximation interval
� = ω0[1 − B/2, 1 + B/2], where ω0 is the center frequency and B the relative
bandwidth with 0 < B < 2. The resulting physical bound obtained from (39) is
given by

‖ε(·)− εt‖L∞(�) ≥ (ε∞ − εt)B

2 + B
. (40)

Note that the variable x corresponds here to angular frequency, also commonly
denoted as ω (in rad/s).
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Other applications are related to scattering passive systems, see, e.g., [8, 32] for a
precise definition. Scattering passive systems have transfer functions that map C

+ to
the unit disk. To use (21), one then first constructs a Herglotz-Nevanlinna function
by mapping the unit disk to C

+. This map can be made in many different ways,
and the particular choice depends on the asymptotic expansion and the physical
interpretation of the system. The Cayley transform, logarithm, and addition are most
common in applications. For example, see, e.g., [8].

3.2 Physical Bounds via Convex Optimization

In this section, it is exemplified how Herglotz-Nevanlinna functions can be used
to identify or approximate passive systems with given properties. This approach is
based on convex optimization related to the function integral representation.

To facilitate the computation of a numerical solution using a software such as,
e.g., CVX [17], it is necessary to first impose some a priori constraints on the class
of approximating Herglotz-Nevanlinna functions. In view of Sect. 2.3, we restrict
ourselves here to approximating Herglotz-Nevanlinna functions that are locally
Hölder continuous on some given intervals on the real line.

A passive approximation problem is considered where the target function F is an
arbitrary complex-valued continuous function defined on an approximation domain
� ⊂ R consisting of a finite union of closed and bounded intervals of the real axis.
The norms used, denoted by ‖·‖Lp(w,�), are weighted Lp(�)-norms with a positive
continuous weight function w on �, and where 1 ≤ p ≤ ∞.

Here for any approximating function h, we assume that it is the Hölder
continuous extension (to �) of some Herglotz-Nevanlinna function generated by
an absolutely continuous measure μ having a density μ′ that is Hölder continuous
on the closure U of an arbitrary neighborhood U ⊃ � of the approximation domain.
Then, cf., Proposition 3, both the real and imaginary parts of h are continuous
functions on �. Moreover, it holds that Imh(x) = πμ′(x) on U , and the real part
is given by the associated Hilbert transform. As we consider real systems only, the
approximating Herglotz-Nevanlinna function h can be assumed to be symmetric,
and its real part hence admits the representation

Reh(x) = bx + p.v.

∫
R

μ′(τ )
τ − x

dτ for x ∈ �, (41)

where p.v. denotes the principal values both at ∞ and x.
The continuity of h on � implies that the norm ‖h‖Lp(w,�) is well-defined for

1 ≤ p ≤ ∞.
If approximating the function F by Herglotz-Nevanlinna functions h on �, one

is interested in the greatest lower bound on the approximation error by
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d := inf
h
‖h− F‖Lp(w,�), (42)

where the infinum is taken over all Herglotz-Nevanlinna functions h generated by a
measure having a Hölder continuous density on U .

In general, a best approximation achieving the bound d in (42) does not exist. In
practice, however, the problem is approached by using numerical algorithms such
as CVX, solving finite-dimensional approximation problems using, e.g., B-splines,
with the number of basis functions N fixed during the optimization, cf. [22, 30].
Here, a B-spline of order m ≥ 2 is an m − 2 times continuously differentiable
and compactly supported positive basis spline function consisting of piecewise
polynomial functions of order m − 1, i.e., linear, quadratic, cubic, etc., and which
is defined by m+ 1 breakpoints [13]. For the density Imh(x) of the approximating
symmetric function h, here it is made the ansatz of a finite B-spline expansion

πμ′(x) =
N∑
n=1

ζn (pn(x)+ pn(−x)) (43)

for x ∈ R, where ζn are optimization variables for n = 1, . . . , N , and pn(x) are
B-spline basis functions of fixed order m that are defined on the given partition. The
real part Re h(x) for x ∈ � is then given by (41) and can be expressed as

Re h(x) = bx − ζ0

x
+

N∑
n=1

ζn
(
p̂n(x)− p̂n(−x)

)
, x ∈ �, (44)

where p̂n(x) is the (negative) Hilbert transform of the B-spline function pn(x) and
where a point mass at x = 0 with amplitude c0 has been included. Any other a priori
assumed point masses can be included in a similar way.

Consider now the following convex optimization problem:

minimize ‖h− F‖Lp(w,�)

subject to ζn ≥ 0, for n = 0, . . . N,

b ≥ 0,

(45)

where the optimization is over the variables (ζ0, ζ1, . . . , ζN , b). Note that the
objective function in (45) above is the norm of an affine form in the optimization
variables. Hence, the objective function is a convex function in the variables
(ζ0, ζ1, . . . , ζN , b).

The uniform continuity of all functions involved implies that the solution to (45)
can be approximated within an arbitrary accuracy by discretizing the approximation
domain � (and the computation of the norm) using only a finite number of sample
points. The corresponding numerical problem (45) can now be solved efficiently by
using the CVX Matlab software for disciplined convex programming. The convex
optimization formulation (45) offers a great advantage in the flexibility in which
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additional or alternative convex constraints and formulations can be implemented;
see also [22, 30].

Example 12 A canonical example for convex optimization is passive approximation
of metamaterials; see also [20, 22, 30]. As in Example 11, the variable x corresponds
here to angular frequency, also commonly denoted as ω (in rad/s). A typical
application is with the study of optimal plasmonic resonances in small structures
(or particles) for which the absorption cross section can be approximated by

σabs ≈ kIm γ, (46)

where k = 2π/λ is the wave number, λ is the wavelength and where γ is the electric
polarizability of the particle; see [10]. As, e.g., the polarizability of a dielectric
sphere with radius a is given by γ (x) = 4πa3(ε(x)− 1)/(ε(x)+ 2), where ε(x) is
the permittivity function of the dielectric material inside the sphere.

A surface plasmon resonance is obtained when ε(x) ≈ −2, and, hence, we
specify that the target permittivity of our metamaterial is εt = −2. However, a
metamaterial with a negative real part cannot, in general, be implemented as a
passive material over a given bandwidth, cf. [21]. Based on the theory of Herglotz-
Nevanlinna functions and associated sum rules, the physical bound in (40) can be
derived, where ε∞ is the high-frequency permittivity of the material, εt < ε∞,
� = ω0[1 − B/2, 1 + B/2], ω0 the center frequency, and B the relative bandwidth
with 0 < B < 2, cf. [21]. The convex optimization formulation (45) can be used
to study passive realizations (43) and (44) that satisfy the bound (40) as close as
possible. Here, the approximating Herglotz-Nevanlinna function is h(x) = xε(x),
the target function F(x) = xεt, ζ0 the amplitude of a point mass at x = 0, b = ε∞,
and a weighted norm is used defined by ‖f ‖L∞(w,�) = maxx∈� |f (x)/x| assuming
that 0 /∈ �. For numerical examples of these kinds of approximations as well as
with non-passive systems employing quasi-Herglotz functions (Sect. 3.1 in Part II),
see [22, 23, 29].
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On Applications of Herglotz–Nevanlinna
Functions in Material Sciences, II:
Extended Applications and Generalized
Theory

Miao-Jung Yvonne Ou and Annemarie Luger

1 Introduction

In this part of the review paper, we present a wide class of applications of Herglotz–
Nevanlinna functions in material sciences. We start with the application in the
static theory of two-phase composite materials, where the scalar-valued Herglotz–
Nevanlinna functions correspond to the effective properties of the composite
materials. Following this is an example showing how the matrix-valued Herglotz–
Nevanlinna function theory can be applied to study the permeability tensor of a
porous material. In both applications, the independent variable of the corresponding
Herglotz–Nevanlinna functions is the contrast of material properties. The other
group of applications presented in this chapter demonstrates the power of Herglotz–
Nevanlinna functions in the study of systems of equations where the energy
dissipation and dispersion satisfied causality and passivity, whose mathematical
definition can be clearly specified in terms of the Herglotz–Nevanlinna functions.
After presenting their various applications in material sciences, we conclude this
chapter by introducing several classes of functions that can be considered as various
generalizations of the Herglotz–Nevanlinna functions motivated by some emerging
research field in physics and engineering.

This chapter is organized as follows. Section 2.1 deals with composite materials
and bounds on effective properties. In Sect. 2.2, it is demonstrated how the usage
of Herglotz–Nevanlinna functions can avoid a numerically costly memory term
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in the modeling of materials. Section 2.3 shows how the bounds for quasi-static
cloaking can be derived. In Sect. 2.4, a general representation theorem of Herglotz–
Nevanlinna functions is used in order to identify certain time dispersive and
dissipative systems as restrictions of Hamiltonian systems.

Even if all these examples demonstrate the effectiveness of Herglotz–Nevanlinna
functions, there are situations in applications that cannot be treated by these methods
but would require more general classes of functions. This applies for instance for
non-passive systems, appearing in electromagnetics, for which the analytic function
in question might have non-positive imaginary part as well. Another example are
composite materials with more than two phases. Then, even if the corresponding
analytic functions still have positive imaginary part, they are not covered by the
treatment above since they depend on more than one complex variable.

In Sect. 3, we therefore provide an overview of the mathematics that is available
for different classes of functions that extend the classical Herglotz–Nevanlinna
class, and that we expect to be relevant for applications in material science.

Note that items that are already defined in Part I will not be defined again in this
part.

We hope that this review can be both helpful for people working in applications
(by providing mathematical references for different aspects of Herglotz–Nevanlinna
functions as well as their generalizations for future work) and interesting for pure
mathematicians (by pointing out some relevant applications of Herglotz–Nevanlinna
functions).

2 Applications

This section starts with the applications arising in the study of effective properties
of composite materials, followed by the application in broadband passive quasi-
static cloaking, and is concluded with a delicate application of the operator-valued
Herglotz–Nevanlinna function theory for understanding the Hamiltonian structure
of the time-dispersive and dissipative systems.

2.1 Effective Properties of Two-Phase Composite Materials

2.1.1 Effective Properties of Composite Materials and Bounds by Using
Theory of the Stieltjes Function

Composite materials made of pure homogenous phases are abundant around us, e.g.,
reinforced concrete, plywood, fluid saturated sand, cancellous bones, and sea ice.
Suppose the scale of the microstructure of a bulk composite sample is much smaller
than the size of the sample; it makes sense to use the effective moduli to describe
the properties of composite materials. For example, the effective permittivity of
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a complex fluid or the effective Young’s modulus of a cancellous bone sample.
Intuitively, these effective properties should depend on the properties of the pure
phases as well as how these constituents are arranged, i.e., the microstructure
of the composite. For multi-laminated microstructure, there are exact algebraic
formulas for computing the effective properties as certain averages of the properties
of the constituents; see [71]. However, for most microstructures, there is no exact
“mixing theory formula” that can be used to compute the effective properties even
though the effective properties are well defined by the homogenization theory
[9, 49, 83, 87]. For the history of the development and the limitations of various
formulas for computing the effective dielectric constants for simple microstructures,
see [10] for details. Instead of looking for the exact formulas, many researchers have
looked into the possibility of finding bounds of effective properties from the given
constituent properties and information of the microstructure; see [45–47, 79, 84]
[10–13, 20, 29, 42, 43, 66, 69, 70, 72], just to name a few. From this vast and rich
literature emerges the beautiful bounding method based on the analytic properties
of the effective moduli as a Stieltjes function of the dielectric constants of the pure
phases; it was first described in [10] by David Bergman and further developed
and extended from real-valued bounds to the general complex bounds by Graeme
Milton in [68, 70]. This method provides a way for deriving the bounds without the
use of variational principles. The first rigorous derivation of the Stieltjes function
representation for the effective dielectric parameters of a two-phase composite is
given in 1983 by Kenneth Golden and George Papanicolaou [43] in a random media
setting. To fix ideas, we start with a brief description of the proof in [43].

Let (�,F, P ) be a probability space and the permittivity tensor ε(x, ω) a
stationary random field, where ω is a realization in � and x the spatial coordinates in
R
d with d ∈ N and d ≥ 2. Specifically, there exists a bijective group transformation

τ x from � to �, τ xτ y = τ x+y for all x, y ∈ R
d such that P(τ xA) = P(A) for all

x ∈ R
d and A ∈ F. Suppose the permittivity tensor ε(x, ω) can be represented by a

measurable function ε̃(ω) on � as follows:

ε(x, ω) = ε̃(τ−xω). (1)

It is further assumed to be bounded and satisfies the ellipticity condition, i.e., there
exist two positive numbers α and β so that αξ · ξ ≤ ε(x, ω)ξ · ξ ≤ βξ · ξ for all
x, ξ ∈ R

d . Since all the random fields considered here are stationary, the solutions
of the form in (1) are sought for, i.e.,

E(x, ω) = Ẽ(τ−xω), D(x, ω) = D̃(τ−xω). (2)

Consider the electrostatic Maxwell’s equations for the random stationery electric
field E(x, ω) and the electric induction field D(x, ω)

D(x, ω) = ε(x, ω)E(x, ω), ∇ × E(x, ω) = 0, ∇ · D(x, ω) = 0

and
∫
�

E(x, ω)P (dω) = E (3)
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with a prescribed constant electric field E as its assemble average. Let the constant
vector E be ej , the unit vector in the j -th direction, j = 1, · · · , d, and denote the
corresponding solution as Ej and Dj . The effective permittivity tensor ε∗ is then
defined as

ε∗el :=
∫
�

Dl (x, ω)P (dω) =
∫
�

ε(x, ω)El (x, ω)P (dω), l = 1, · · · d. (4)

It can be shown that these assemble averages of the solution do not depend on x.
The variational formulation plays an important role in the proof; it is described
here. First consider the Hilbert space H := L2(�,F, P ) endowed with the inner
product (f̃ , g̃)H := ∫

�
f̃ (ω)g̃(ω)P (dω). Define the operator Tx acting on f̃ ∈ H

as Txf̃ (ω) := f̃ (τ−xω). Because τ x is measure preserving, Tx forms a unitary

group and has closed densely defined infinitesimal generator Lj := ∂
∂xj

Tx

∣∣∣
x=0

for each j = 1, · · · , d with domain Dj ⊂ H . Then, D := ⋂d
j=1 Dj ⊂ H

is a Hilbert space with the inner product (f̃ , g̃)D := ∫
�
f̃ (ω)g̃(ω)P (dω) +∑d

i=1

∫
�
Lif̃ (ω)Lig̃(ω)P (dω).

Since the problem (3) is equivalent to finding E in a curl-free space, and E =
E + G with a zero-average field G, the following Hilbert space of vector-valued
functions with inner product (·, ·)H := (·, ·)H is considered

H :=
{
f̃j (ω) ∈ H |Lif̃j = Lj f̃i weakly ,

∫
�

f̃j (ω)P (dω) = 0, i, j = 1, · · · , d
}
.

The variational formulation of (3), after taking into account (2), is to find G̃l (ω) ∈ H
such that

∫
�

ε̃(ω)(G̃l (ω)+ el )̃f(ω)P (dω) = 0 for all f̃ ∈ H. (5)

Recall that el is the unit vector in the l-th direction, l = 1, · · · , d. This problem
is well-posed because the bilinear form is coercive w.r.t. the H -norm and the Lax–
Milgram lemma can be applied. Letting f̃ = G̃k in (5) and using the definition in (4)
and the fact that ek = Ẽk − G̃k by definition, one obtains the following symmetric
form:

ε∗el · ek = ε∗kl =
∫
�

ε̃(ω)Ẽl (ω)Ẽk(ω)P (dω), k, l = 1, · · · , d. (6)

To specialize to the two-phase case with isotropic constituents, consider ε(x, ω) =
χ1(x, ω)ε1I+χ2(x, ω)ε2I with 0 < ε1 ≤ ε2 <∞ and indicator functions χp, p=1,2
such that χ̃1(ω) + χ̃2(ω) = 1. For example, χ̃1(ω) equals one for all realizations
ω ∈ � for which the origin is occupied by the material with permittivity ε1. Define
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the contrast h := ε2
ε1

. The variational formulation now reads

∫
�

[χ̃1(ω)+ hχ̃2(ω)](G̃l (ω)+ el ) · f̃(ω)P (dω) = 0 for all f̃ ∈ H, (7)

and the effective permittivity ε defined in (4), as a function of h, can be expressed
as follows:

ε∗kl(h) = ε1

[
δkl + (h− 1)

∫
�

(χ̃2(ω)Ẽ
l
k(h, ω)P (dω)

]
, (8)

or equivalently, one can focus on the function

mkl(h) := (ε1)
−1ε∗kl(h) =

[
δkl + (h− 1)

∫
�

(χ̃2(ω)Ẽ
l
k(h, ω)P (dω)

]
. (9)

Note that mkl(1) = δkl by definition. If one replaces the inner product (·, ·)H
with the one for complex-valued functions (by complex conjugating one of the
functions), then the sesquilinear form in (7) is coercive in h ∈ C \ (−∞, 0]. Hence
by Lax–Milgram lemma, there is a unique solution for all ε1, ε2 ∈ C such that
ε2
ε1
∈ C \ (−∞, 0]. This further implies that ε(h) is analytic in h ∈ C \ (−∞, 0] and

so is the effective permittivity ε∗(h).
To obtain the spectral representation, first note that (7) can be written formally in

terms of the Kronecker δ as (by thinking of G̃l
k as the gradient of a function because

it is curl-free, i.e., G̃l
k = Lkψ

l for some scalar function ψl , k = 1, . . . , d)

d∑
k=1

Lk[χ̃1(ω)+ hχ̃2(ω)(G̃
l
k + δkl)] = 0, l = 1, · · · , d.

Rewriting the above expression in the following form:

d∑
k=1

LkG̃
l
k + (h− 1)

d∑
k=1

Lkχ̃2(ω)(G̃
l
k + δkl) = 0, l = 1, · · · , d. (10)

Define 6̃ := ∑d
q=1 L

2
q . Then we see that formally Lj (6̃)−1∑d

k=1 LkG̃
l
k =

Lj (6̃)−16̃ψl = Ljψ
k = G̃l

j . By applying Lj (−6̃−1) to (10), followed by adding
δjl on both sides, the desired expression is achieved

(G̃l
j + δjl)+ (1 − h)

d∑
k=1

Lj (−6̃−1)Lkχ̃2(G̃
l
k + δkl) = δjl, j, l = 1, · · · , d. (11)

Define a new variable s := 1
1−h and the operator B̃jk := Lj (−6̃−1)Lkχ̃2. It can

be shown that B̃ is a self-adjoint bounded linear operator with respect to the inner
product
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< f̃ , g̃ >:=
∫
�

χ̃2(ω)f̃ · g̃, f̃ , g̃ ∈ (L2(�,F, P ))d

‖B̃‖ ≤ 1. Then the integral equation above becomes

Ẽl (h) = G̃l (h)+ el =
(

I + B̃
s

)−1

el , s = 1

1 − h
. (12)

Applying the spectral theory of self-adjoint operators and taking into account the
fact that s ∈ [−1, 0] must be in the resolvent set, the solution is represented in terms
of the projection-valued measure Q(dz) associated with B̃

G̃l
j + δjl = s

∫ 1

0

(Q(dz)el )j
s − z

, l, j = 1, . . . , d for all s ∈ C \ [0, 1]. (13)

Therefore, the effective property in (8) is given by the following integral represen-
tation formula (IRF):

ε∗kl(h) = ε1

[
δkl −

∫ 1

0

μkl(dξ)

s − ξ

]
, where h = 1 − 1

s
(14)

and μkl(dξ) =
∫
�

χ̃2(ω)(Q(dξ)el )kP (dω).

In [43], the function m defined in (9) is used in the main theorem, which shows that
the diagonal terms in the effective permittivity tensor can be represented in terms of
a Stieltjes function with finite positive Borel measures. The main theorem is stated
below.

Theorem 1 ([43]) Let s = 1
1−h and Fkl(s) = δkl − mkl(h). There exist (not

necessarily positive) finite Borel measures μkl(dξ) defined on 0 ≤ ξ ≤ 1 such that
the diagonal elements μkk(dξ) are positive measures satisfying Fkl(s) =

∫ 1
0

μkl(dξ)
s−ξ

for all s ∈ C \ [0, 1].
This theorem has been generalized for a special case of polycrystalline materials

in [73].
Note that s = ∞ or equivalently h = 1 corresponds to the case of ε1 = ε2, i.e.,

homogeneous media. Once the IRF is obtained, the relation between the moments
of the finite measure and the microstructure χ2 can be established by comparing the
coefficients of the Laurent series expansion of the IRF at s = ∞ and the Taylor
series expansion of mik at h = 1, which involves differentiation w.r.t. h of the right-
hand side of (9).

μ
(n−1)
kl :=

∫ 1

0
zn−1μkl(dz) = (−1)n−1

n! m
(n)
kl (1), n = 1, 2, · · · .



Herglotz–Nevanlinna Functions: II 467

To evaluate m
(n)
kl , the derivatives of Ẽl are needed. They can be calculated by

expanding (12) near s = ∞ (h = 1) because the functions are analytic there. By
comparing the Taylor coefficients at h = 1 on the left-hand side with the Laurent
coefficents on the right-hand side, it is clear that

1

n!
dnẼl

dhn

∣∣∣
h=1

= B̃nel , n = 0, 1, 2, . . . , l = 1, . . . d. (15)

This directly implies that the n-th moments are related to the (n + 1)-point
correlation functions of the microstructure. Some explicit relations can be derived.
For example, differentiating both sides of (9) leads to

μ
(0)
kl = m′

kl(1) =
∫
�

(χ̃2(ω)Ẽ
l
k(1, ω)P (dω)+

[
(h− 1)

∫
�

χ̃2(ω)
dẼl

k

dh
P (dω)

] ∣∣∣
h=1

= p2δkl ,

where p2 is the volume fraction of the material with permittivity ε2. If the
microstructure χ2(x, ω) is spatially isotropic, then one can also obtain the exact
expression of μ(1)

kl by differentiating (9) twice, applying (15) and using the kernel
function of (−6)−1 to obtain

μ
(1)
kl = −1

2
m′′
kl(1) = −

∫
�

χ̃2(ω)
dẼl

k

dh
(1, ω)P (dω) = p1p2

d
δkl,

where p1 := 1 − p2.
Instead of in the setting of an unbounded, stationary random media, the Stieltjes

IRF for two-phase composites with isotropic constituents can also be derived in a
bounded and deterministic setting with various types of boundary conditions. For
example, see [86] for the permittivity tensor and [21, 52, 77] for elasticity tensors.

A very nice feature of a Stieltjes IRF like (14) is the separation of influence—the
contrast s is in the integrand, while all the microstructural information is encoded
in the measure. It has been used to formulate the problem of finding bounds on
the diagonal terms εii as a linear optimization problem over the set of all measures
supported in [0, 1] with constraints on the first n moments. Specifically, let PM be
the set of all positive finite Borel measures on [0, 1], and consider m(h) := m11(h),
its IRF, and the set of measures with constraints on the first n moments

1 −m(h;μ) = F(s) =
∫ 1

0

μ(dξ)

s − ξ
, s = 1

1 − h
, s ∈ C \ [0, 1],

M(a0, . . . , an−1) :=
{
μ
∣∣μ ∈ PM, μ(0) = a0, μ

(1) = a1, . . . , μ
(n−1) = an−1

}
,

where aj > 0, j = 0, . . . , n − 1, form a positive definite sequence [3] so they can
be the first n moments of a measure. To study the possible values of the effective
properties by mixing two given materials with contrast h, consider the following set
of possible values
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�(h, a0, . . . , an−1) :=
{
1 − F(s, μ) ∈ C

∣∣μ ∈M(a0, . . . , an−1), s ∈ C \ [0, 1]} .
Note that not all measures correspond to a microstructure, and hence, � contains
values that are not achievable by any microstructure. Nevertheless, it contains all
possible values of ε∗11(h). Clearly, with a fixed value of s ∈ C\ [0, 1], 1−F(s, μ) is
a bounded linear map on M(a0, . . . , an−1), which is a compact and convex subset
of M in the topology of weak convergence. Therefore, �(h, a0, . . . , an−1) is a
compact and convex set in C, and the extreme points of M(a0, . . . , an−1) are weak
limits of measures of the form [53]

dσ(ξ) =
n∑

k=1

αkδ(ξ − ξk), αk ≥ 0, 1 > ξ1 > ξ2 > · · · > ξn ≥ 0

and
n∑

k=1

αkξ
j
k = aj , j = 0, 1, . . . , n− 1. (16)

A crucial step in deriving the bounds is to note the structure of interlacing poles and
zeros of the functions represented by the type of measures in (16). Consider

m(h; dσ) := 1 −
∫ 1

0

n∑
k=1

αkδ(ξ − ξk)

s − ξ
= 1 −

n∑
k=1

αk

s − ξk
,

which is a rational function of s. Let s = ρk , k = 1, . . . , n, ρ1 ≥ ρ2 ≥ · · · ≥ ρn
be the zeros of m(h); they must be of real-valued because of the IRF of m. Then the
following expression is valid:

n∏
k=1

s − ρk

s − ξk
= 1 −

n∑
k=1

αk

s − ξk
⇒ αj = −

∏n
k=1(ξj − ρk)∏
k �=j (ξj − ξk)

.

The fact that αj ≥ 0 for all j = 1, . . . , n and the additional physical constraint
m(0, dσ ) > 0 then lead to the interlacing property

0 ≤ ξn ≤ ρn ≤ · · · ≤ ξ1 ≤ ρ1 ≤ 1.

The bounds on ε∗11 can now be derived as follows. Suppose the volume fraction p2
is given. Then the corresponding bounding function m(h; dσ) (or extreme points of
�(h;p2)) has the following form because of its zero s = ξ1 + p2 ≤ 1

m(h; dσ) = 1 − p2

s − ξ1
, 0 ≤ ξ1 ≤ 1 − p2. (17)

If a real-valued h is considered and h ≥ 1 (s < 0), then the bounds of m(h;μ) are
the well-known geometric bound and the algebraic bound
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1 − p2

s − (1 − p1)
≤ m(h;μ) ≤ 1 − p2

s
⇒ 1

1 − p2 + p2
h

≤ m(h;μ) ≤ 1 − p2 + hp2.

If a complex-valued h is considered, then (17) provides the bounding curve for the
convex hull of �(h;p2) consisting of a cord and an arc on the complex plane.

If the microstructure is assumed to be isotropic, then �(h;p2,
p1p2
d

) is con-
sidered. When h is real and greater than one, the same procedure recovers the
well-known Hashin–Shtrikman bounds

1 + p2
1

h−1 + p1
d

≤ m(h) ≤ h+ p1
1

1−h + p2
dh

.

When h is of complex values, the convex hull of λ(h;p2,
p1p2
d

) is bounded by two
arcs. More details about the bounding curves can be found in [27] and [71].

The bounding curves have been utilized for finding bounds on volume frac-
tions of two-component composites from given complex-valued permittivity data
[27, 67]. The separation of influence also makes this type of IRF very useful in
retrieving microstructural information from given data on the effective parameters
[19, 26, 28, 44, 74, 86]. The process of reconstructing the measure from data of
εii(h) is termed dehomogenization, whose theoretical foundation is established by
E. Cherkaev in [26]. For applications of IRF in the study of transport in fluid, see
[4, 5, 7, 73].

2.1.2 IRF for Permeability Tensors with Positive Matrix-Valued Measures

In Theorem 1, the Stieltjes function IRF is concluded only for diagonal terms of the
effective permittivity tensor ε. A matrix-valued IRF seems to be a more suitable
choice for the study of ε. Moreover, the IRF in Theorem 1 has such a simple
form due to the fact that |sFkk(

√−1s)| < M for all s > 0, i.e., Fkk decays fast
enough along the imaginary axis; this simplifies the IRF for Herglotz–Nevanlinna
function significantly. In this section, an application that corresponds to a matrix-
valued function that is analytic in C

+ ∪ (0,∞) and does not satisfy the fast decay
condition along the imaginary axis is presented. The Herglotz functions that are
analytic on one halfline of the real axis have been studied by Kac and Krein in [51],
where they are referred to as the Stieltjes function of class S and S−1. In different
references of the literature, the definitions of these two classes sometimes appeared
to be interchanged based on whether the singularities are on the left real axis or
the right real axis, but the representation theorems for each class have also been
modified accordingly. Listed below is the definition that best suits the application
to be presented in this section and which is a matrix version of a modification of
Definition 3 in Part I:

Definition 1 ([37, 54])

1. A matrix-valued function F holomorphic in C \ (−∞, 0] is of class S if the
following two criteria are satisfied.
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F(z)−F∗(z)
z−z̄ ≥ 0 if Im(z) �= 0 and F(x) ≥ 0 for x > 0.

2. A matrix-valued function F holomorphic in C \ (−∞, 0] is of class S−1 if the
following two criteria are satisfied.

F(z)−F∗(z)
z−z̄ ≤ 0 if Im(z) �= 0 and F(x) ≥ 0 for x > 0.

Theorem 2

1. F(z) belongs to class S if and only if there exists a monotonically increasing
matrix-valued function σ (t) such that the following IRF holds for z ∈ C \
(−∞, 0]

F(z) = A+ Cz+
∫ ∞

+0

z

z+ t
dσ (t),

where A ≥ 0, C ≥ 0,
∫∞
+0

1
1+t dσ (t) <∞, and A+ C + ∫∞+0

1
1+t dσ (t) > 0.

2. F(z) belongs to class S−1 if and only if there exists a monotonically increasing
matrix-valued function σ (t) such that the following IRF holds for z ∈ C \
(−∞, 0]

F(z) = A+ C

z
+
∫ ∞

+0

1

z+ t
dσ (t),

where A ≥ 0, C ≥ 0,
∫∞
+0

1
1+t dσ (t) <∞, and A+ C + ∫∞+0

1
1+t dσ (t) > 0.

The application considered here is about the transport property of porous
materials in the framework of homogenization of periodic media. The Darcy
permeability tensor K(D) plays the role of quantifying the transport of fluid in porous
media. To study how the microstructure of a porous media influences its Darcy
permeability tensor, K(D) is treated in [16] as the limiting case of the two-fluid
problem where each isotropic fluid is characterized by its viscosity μj , j = 1, 2.The
two-fluid problem is originally formulated in [58] for studying the Stokes equations
of flows mixed with tiny stationery bubbles (inclusions). The mixture is assumed
to occupy a region �, and the tiny inclusions are periodically distributed. The
tininess of the inclusions leads to the assumption that the side of the periodic cell is
0 < ε 	 1, while the diameter of � is O(1). Let Q denote the unit periodic cell
(0, 1)n, n = 2, 3 that contains disjoint parts Q1 and the inclusion Q2 with interface
� = ∂Q1 ∩Q2 = ∂Q2 such that Q = Q1 ∪Q2 ∪ � and � ∩ ∂Q = ∅. We assume
inclusions Q2 can distribute in any possible way in a scaled period cell εQ as long
as they do not touch one another or the periodic cell boundary ∂(εQ). For any given
0 < ε 	 1, the domain � is covered by a periodic extension of εQ, which is
denoted by ε̃Q. Note that ε̃Q = ε̃Q1 ∪ ε̃Q2 ∪ ε̃�.

For any fixed ε, the hosting fluid has constant viscosity μ1 and occupies region
�ε

1 := � ∩ ε̃Q1, while the inclusion has constant viscosity μ2 and occupies region
�ε

2 := � ∩ ε̃Q2. The interface between the hosting fluid and the inclusion fluid is
denoted by �ε , i.e., �ε = �ε

1 ∩�ε
2 and � = �ε

1 ∪�ε
2 ∪ �ε . To make this problem



Herglotz–Nevanlinna Functions: II 471

amenable to the theory of Herglotz–Nevanlinna functions, we assume μ1 > 0 and
μ2 = zμ1 with z ∈ C. In the tensor notation, it is

μ̃ijkl(x; z) = (χ2(x)zμ1 + χ1(x)μ1)
(δikδjl + δilδjk)

2
=: μ(x; z)Iijkl, z ∈ C.

(18)

The two-fluid problem for the unknown fluid velocity uε and fluid pressure pε is
formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

div
(
2μ̃ε(x; z)e(uε))−∇pε = −f in �ε

1 ∪�ε
2

divuε = 0 in �ε
1 ∪�ε

2

uε = 0 on ∂�

�uε� = 0, uε · n = 0 on �ε

�π ε� · n = (�πε · n� · n
)

n on �ε,

(19)

where e(uε) = (∇uε + ∇T uε)/2, f is a square integrable momentum source, �·�
denotes the jump across �ε , n the exterior normal vector of�ε

2, and the stress tensors
π(uε(x; z)) are defined as (will be denoted π(uε) for brevity)

π(uε)ij = 2μ̃ε
ijkle(u

ε(x; z))kl − pε(x; z)δij . (20)

The first jump condition in system (19) describes the continuity of uε across the
interface, while the second jump condition states that only the normal traction can
have a jump across the interface, i.e., the tangential (or shear) traction has to be
continuous across the interface.

Similar to [58], it can be shown by using the Lax–Milgram lemma that for every
fixed 0 < ε 	 1, (19) has a unique solution uε , and pε is unique up to a constant
for all z ∈ C \ (−∞, 0]. To obtain convergence results, pε is properly normalized
to the new pressure p̃ε by a procedure described in [58]. As ε → 0, the solution uε

and p̃ε converge as follows:

uε

ε2 → u0 weakly in L2(�)3, p̃ε → P strongly in L2(�)/C,

where u0 and P satisfy the homogenized system:

{
u0 = −K(∇P − f) in �

div u0 = 0 in �,
(21)
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where the self-permeability K is defined as

Kij (z) :=
∫
Q

uij (x;z)dy =
∫
Q

ui (x;z) · ej dy (22)

by the Q-periodic, divergence-free solution uk to the following cell problem:

⎧⎨
⎩

divy

(
2μ̃(y; z)e(uk)− pkI

)
+ ek = 0 in Q1 ∪Q2

�π� · n = (�π · n� · n
)

n on �,
(23)

where y denotes the coordinates for the unit periodic cell Q, and the viscosity tensor
in Q1 ∪Q2 is

μ̃ijkl(y; z) = (χ2(y)zμ1 + χ1(y)μ1)Iijkl = μ(y; z)Iijkl . (24)

The function space for the cell problem is the Hilbert space

H(Q) :=
{

v : v ∈ H 1(Q1 ∪Q2)
3
∣∣∣∣ divyv = 0, v · n = 0 in H− 1

2 (�),

�v�� = 0, v is Q- periodic
}

(25)

endowed with inner product

(u, v)Q =
∫
Q

2μ1e(u) : e(v)dy, (26)

where the induced norm is denoted by ‖u‖2
Q := (u,u)Q, and the contraction product

of two n × n matrices A = {aij }, B = {bij } is A : B = ∑n
i,j=1 aij bij . Let R(Q)

denote the space of rigid body displacement in Q, i.e., u = Ay + b with constant
skew-symmetric matrix A and constant vector b. Then we have H(Q)∩R(Q) = {0}
because A = 0 due to the Q-periodicity, and u · n = 0 implies b = 0. Hence,
Korn’s inequality can be applied to show that the norm ‖ · ‖Q is equivalent to the
H 1(Q1 ∪Q2)-norm. In this setting, it is proved in [16] by using the Lax–Milgram
lemma that the cell problem has a unique solution u(y, z) ∈ H(Q) and p(y, z) ∈
L2(Q)/C for all z ∈ C \ (−∞, 0]. Also, u(z) is analytic in C \ (−∞, 0] and so is
K(z). Moreover, K in (22) can be expressed as the following quadratic form (note
the (z) used in function μ̃):

Kij (z) =
∫
Q

2μ̃(y; z)e(ui (z)) : e(uj (z))dy, (27)

and its conjugate transpose K∗ := KT is
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(K∗)ij (z) =
∫
Q

2μ̃(y; z)e(uj (z)) : e(ui (z))dy. (28)

We observe the two properties:

1. Because Kij (z)−K∗
ij (z) = 2μ1(z− z)

∫
Q2

e(ui (z)) : e(uj (z))dy, we have

Kij (z)−K∗
ij (z)

z− z
= −2μ1

∫
Q2

e(ui (z)) : e(uj (z))dy = −(uj ,ui )Q2 =: −Aij .

The matrix A is obviously Hermitian. Furthermore, for any ξ ∈ C
3, we have∑n

i,j=1 ξiAij ξj = (
∑n

j=1 ξjuj ,
∑n

i=1 ξiu
i )Q2 ≥ 0. Therefore,

K(z)− K∗(z)
z− z̄

≤ 0 if Im(z) �= 0.

2. For x > 0, recall that Kij (x) = (
(uj ,ui )Q1 + x(uj ,ui )Q2

)
. With a similar

argument as before, we have

K(x) ≥ 0 for x > 0.

With these two properties and the fact that K is holomorphic in C\ (−∞, 0], we see
that K(z) is a Stieltjes function of class S−1. Therefore, by Theorem 2, there exists
a monotonically increasing matrix-valued function σ (t) such that the following
integral representation formula holds for z ∈ C \ (−∞, 0]

K(z) = A+ C

z
+
∫ ∞

+0

1

z+ t
dσ (t),

where A ≥ 0, C ≥ 0,
∫∞
+0

1
1+t dσ (t) < ∞, and A + C + ∫∞+0

1
1+t dσ (t) > 0. It is

proved in [16] that there exist two positive numbers E1, E2 > 1 such that K(z) is
analytic in (−∞,−2E2

1)∪(− 1
2E2

2
, 0); E1 and E2 are the extension constants related

to Q1 and Q2. It is also shown in [16] that K(∞) = K(D), the Darcy permeability
of porous media defined in the appendix of [82] by L. Tartar. Also, K(0) = K(B),
the permeability when the inclusion is bubbles. Therefore, the IRF above can be
simplified to

K(z) = K(D) +
∫ 2E2

1

1
2E2

2

1

z+ t
dσ (t).

This shows an interesting fact that with μ1 ∈ R fixed, the larger the inclusion
viscosity μ1z is, the smaller the permeability. To see how the microstructure
influences K, a new variable s := 1

z−1 is defined. As a function of s, K can be
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shown to be a function of class S and hence can be expressed with a monotonically
increasing matrix-valued function ρ(t) as follows:

K(s) = K(D) +
∫ 2E2

2
1+2E2

2

1
1+2E2

1

s

s + t
dρ(t), (29)

which is valid for all s ∈ C \ [− 2E2
2

1+2E2
2
,− 1

1+2E2
1
]. Finally, the link between the

moments of measure ρ and the microstructure can be established by expansion at
s = ∞. See [16] for details.

2.2 Numerical Treatment of Memory Terms in the Modeling
of Materials

In this section, the Stieltjes function structure of the memory kernel is utilized to
design an efficient numerical scheme for solving the poroelastic wave equations.

In the modeling of wave propagation in poroelastic media such as bones and fluid
saturated rock or viscoelastic materials such as polymeric fluid, the current state
depends on the history of the time evolution of the state from the starting time. As
a result, the governing equations contain a time convolution term whose integrand
consists of the unknown state function and a pre-described time-dependent kernel
function K; this convolution integral is referred to as the memory term. For a time-
domain solver. The presence of memory terms poses the challenges of a proper time-
stepping scheme. In the literature, it has been handled by storing the history of the
solution such as in [65] or a proper design of quadrature rules for approximating the
memory term in the time domain, e.g., [59] and the reference therein. For poroelastic
wave equations, the memory term appears in the equation of the generalized Darcy’s
law, which relates the pore pressure p, the solid velocity v, and q, the fluid velocity
relative to the solid, as follows

−∇p = ρf
∂v
∂t

+
(
ρf

φ

)
α̌ �

∂q
∂t

, t > 0, (30)

where the matrix α̌ is the inverse Fourier–Laplace transform of the α defined in
(31). The physical origin of the memory term is due to the fact that at the micro-
scale (scale of the pore size) in the frequency domain, the boundary layer of the
viscous pore fluid is frequency-dependent, e.g., the viscous skin depth is inversely
proportional to the square root of the frequency. In the seminal papers [17, 18], M.
A. Biot calculated a critical frequency fc that separates the regime of laminar pore
fluid flow from that of turbulent pore fluid flow, and each regime corresponds to a
different expression of α(ω).
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However, the discrepancy between the model prediction and experiment obser-
vation of wave dissipation has prompted the study of high-frequency corrections
that are more general than the one proposed in [18]. In order to describe these
corrections, we need to introduce the physical quantity that encapsulates this com-
plicated viscodynamics, i.e., the dynamic tortuosity tensor α(ω) and the dynamic
permeability tensor K(ω) with ω being the frequency. For ω �= 0, α(ω) and K(ω)

are related as follows:

α(ω) = iηφ

ωρf
K(ω)−1 (31)

with i := √−1. and φ, η, ρf being the volume fraction, the dynamic viscosity, and
the density of the pore fluid, respectively.

To keep the discussion simple, we consider the isotropic case α(ω) = α(ω)I.
One of the most widely used corrections is derived in [50] by Johnson, Koplik

and Dashen (JKD)

α(ω) = α∞ + iηφ

ωK0ρf

(
1 − 4iα2∞K2

0ρf ω

η�2φ2

) 1
2

=: αD(ω), (32)

where K0 is the static permeability, α∞ is the limit of α at infinite frequency, and
� a structure parameter related to the surface-to-volume ratio of the pore space; all
of these parameters can be measured; see [50]. An important ingredient in their
derivation is the causality of K(ω). This is carried out by first considering the
gradient force and the fluid velocity field that are time-harmonic with frequency
ω, i.e., the one-sided Fourier transform, followed by extending K(ω) for complex-
valued ω. A function defined on the complex ω-plane is causal if and only if it is
analytic in the upper halfplane. Another requirement in the JKD derivation is that
a real-valued stimulus ∇pe−iωt + ∇peiωt should result in a real-valued response.
This leads to the symmetry constraint K(−ω) = K(ω). According to [50], the
function in (32) was chosen because it is the simplest form of functions that are
causal and satisfies the aforementioned symmetry constraint. Of course, there is no
reason why it has to be in this form. Indeed, in [25], [88], and [80], it is shown that
when the cross-section of the pore space varies rapidly enough, the JKD formula in
(32) severely underestimates the imaginary part of the measured dynamic tortuosity
for low frequency ω ≤ ω0 := ηφ

K0ρf α∞ .

In [6], the spectrum {εj }∞j=1 of the incompressible Stokes equation with kinetic
viscosity ν, in the pore space, is used to derive the following general integral
representation formula (IRF) for the dynamic permeability

K(ω) = ν

F

∫ 21

0

2dG(2)

1 − iω2
, with G(2) =

∑
2n≤2 b2

n∑∞
n=1 b

2
n

, F :=
(
φ

∞∑
n=1

b2
n

)−1

,(33)
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where 21 := (νε1)
−1 < ∞, dG a positive measure with mass 1, and bn > 0,

n = 1, 2, . . . , ordered in the same order as the non-decreasing eigenvalues, are
defined by the orthogonal spectral system of the Stokes equations. This implies the
dependence of K on the pore space geometry is encoded in the measure dG. Note
that 0 < ε1 ≤ ε2 ≤ · · · , εn →∞ as n→∞.

The integral representation for K in (33) shows that K itself is not a Herglotz–
Nevanlinna function itself. However, as was noted in [76], the permeability in (33)
can be related to a Stieltjes function with the new variables s := −iω, ξ := − 1

s
and

R(ξ) := −s
(
F

ν

)
K(is) =

∫ 21

0

2dG(2)

ξ −2
=:
∫ 21

0

dλ(2)

ξ −2
. (34)

As a result, the tortuosity α can be represented as follows:

α(ω) = ηφ

ρfK0

(
i

ω

)
+
∫ 21

0

dσ(2)

1 − iω2
for ω such that − i

ω
∈ C \ [0,21], (35)

where dσ is a positive Borel measure that has a Dirac mass at 2 = 0 with strength
α∞. It is also shown in [76] that the JKD tortuosity in (32) is indeed a special case
of (35) by finding the corresponding dσ for (32). In the context of JKD permeability
KD(ω), this IRF result implies that the geometry parameter � is related to the
microstructure as follows:

� =
√√√√ 2K0α∞

φ[μ1(dλ
D)

μ2
0(dλ

D)
− 1]

, (36)

where μ0 and μ1 are the zero-th moment and the first moment, respectively, of the
corresponding measure in (34) for the JKD permeability. We note that the commonly

used formula in the engineering literature is � ≈
√

2α∞K0
φ/4 .

According to the theorem proved in [41], the multi-point rational approximation
Pn−1/Qn of every Stieltjes function f (z) = ∫ b

a
dλ(t)
z−t is itself a Stieltjes function∫ b

a
dβ(t)
z−t with a bounded, non-decreasing β(t). Hence, the poles of the rational

approximation of a Stieltjes function are all simple with positive residue and located
in [a, b]. Moreover, it is shown there that the convergence is geometrical with order
2n in any compact set on the complex plane. We state the theorem that is relevant to
the approximation of α here.

Theorem 3 ([41]) Let f be a Stieltjes function of the form
∫ b
a

dλ(t)
z−t , and let γk be

a set of interpolation points, consisting of k1 real points x1, · · · , xk1 ∈ R \ [a, b],
and k2 non-real points z1, · · · , zk2 ∈ C \R. Let Pn−1(z) andQn(z) be polynomials
of degree at most n − 1 and n, respectively, with k1 + k2 + k3 = 2n such that the
following relations are satisfied:
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{
f (z)Qn(z)− Pn−1(z) = A(z)

∏k1
j=1(z− xj )

∏k2
j=1(z− zj )(z− zj )

f (z)Qn(z)− Pn−1(z) = B(z)zn−k3−1,

where A(z), B(z) are analytic in C \ [a, b] and B(z) bounded at ∞. Then for the
multi-point rational approximation, it holds:

1. [n−1/n]f (z) := Pn−1(z)

Qn(z)
= ∫ b

a
dβ(t)
z−t for some bounded, non-decreasing function

β(t).
2. Denote by γk , k = 1, . . . 2n the interpolation points. Fix one interpolation

point v, and denote Gk(z) := ψv(z)−ψv(γk)

1−ψv(z)ψv(γk)
, where ψv(z) =

√
z−b−

√
v−b
v−a

√
z−a

√
z−b+

√
v−b
v−a

√
z−a

a conformal mapping that maps C \ [a, b] onto the interior of the unit circle and
v onto 0.
If a, b are finite numbers, then there exists a constant Kv , dependent on f and v
but not on n, such that for z ∈ C \ [a, b] it holds
∣∣∣∣f (z)− Pn−1(z)

Qn(z)

∣∣∣∣ ≤ Kv

1

max(|z− a|, |z− b|)
1

1 − |ψv(z)| ·1
2n
k=1|Gk(z)|.

Moreover, if for all n the interpolation points γk are at least at a fixed non-zero
distance away from [a, b], then there exists 6F < 1 such that |Gk(z)| ≤ 6F < 1,
and hence,

∣∣∣∣f (z)− Pn−1(z)

Qn(z)

∣∣∣∣ ≤ Kv

1

max(|z− a|, |z− b|)
1

1 − |ψv(z)| (6F )
2n. (37)

Therefore, the approximation converges geometrically in any compact set that does
not intersect with [a, b].

Now, we rewrite (35) in terms of ξ and rearrange terms to obtain

α(ξ)+ ηφ

ρfK0
ξ − α∞ = ξ

∫ 21

+0

dσ(2)

ξ −2
.

Theorem 3 implies that

ξ

∫ 21

+0

dσ(2)

ξ −2
≈ ξ

n∑
k=1

ρk

ξ − πk
, with ρk > 0 and 0 < πk < 21

with error bound
∣∣∣∣∣ξ
∫ 21

+0

dσ(2)

ξ −2
− ξ

n∑
k=1

ρk

ξ − πk

∣∣∣∣∣ ≤
|ξ |

max(|ξ |, |ξ −21|)
Kv

|1 − ψv(ξ)| (6F )
2n.
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Changing the variable back to s, it is clear that there exists rk > 0 and pk > 0 such
that

α(s)≈ ηφ

ρfK0

(
1

s

)
+ α∞ +

n∑
k=1

rk

s − pk
for s ∈ C \ (−∞,− 1

21
].

The rk and pk can be accurately computed from given nodes (sj , α(sj ))nj=1 by using
two-sided residue approximation with arbitrary precision arithmetic; see [78, 85]
for details. Let L be the Fourier–Laplace transform (note that this differs from the
Laplace transform in, e.g., Sect. 2.6 in Part I by a factor-i)

Lf (ω) :=
∫
R
+ f (t)e

iωtdt =: f̂ (ω). (38)

We approximate the transform of the memory term as follows:

L[α̌ �
∂q
∂t
](s) = α(s)(sq̂ − q(0)) ≈

(
α∞ +

n∑
k=1

rk

s − pk
+ a

s

)
(sq̂ − q(0))

= α∞(sq̂ − q(0))+
(
a +

n∑
k=1

rk

)
q̂ +

(
n∑

k=1

rkpk

s − pk

)
q̂

−
(

n∑
k=1

rk

s − pk
+ a

s

)
q(0), where a := ηφ

ρfK0
.

Furthermore, for each of the terms in the sum, since all the singularities pk are
restricted to the left of s = − 1

21
, the inverse Laplace transform can be performed

exactly by integrating along the imaginary axis (Theorem 9.1.1 in [33])

L−1
[

1

s − pk

]
(t) = 1

2πi
lim
R→∞

∫ iR

−iR
1

ζ − pk
eζ tdζ = rke

pkt , t > 0.

This integral is calculated by integrating along [−Ri,Ri] ∪ {s = Reiθ |π/2 < θ <

3π/2} and applying the residue theorem and letting R → ∞. As a result, we have
for t > 0

(
α̌ �

∂q
∂t

)
(x, t) :=

∫ t

0
α̌(τ )

∂q
∂t

(x, t − τ)dτ

≈ α∞
∂q
∂t

+
(
a +

n∑
k=1

rk

)
q −

n∑
k=1

rk(−pk)epkt � q

−
(

n∑
k=1

rke
pkt + aH(t)

)
q(0),
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where H denotes the Heaviside function. Applying a strategy similar to those in the
literature [22], we define the auxiliary variables 2k , k = 1, . . . , n such that

θk(x, t) := (−pk)epkt � q. (39)

It can be easily checked that θk , k = 1, . . . ,M , satisfies the following equation:

∂t θk(x, t) = pkθk(x, t)− pkq(x, t). (40)

Finally, we can approximate the generalized Darcy’s law (30) with the following
system that has no explicit memory terms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t θk(x, t) = pkθk(x, t)− pkq(x, t), k = 1, · · · , n

−∇p = ρf
∂v
∂t

+
(
ρf α∞j

φ

)
∂q
∂t

+
(

η

K0j
+ ρf

φ

n∑
k=1

rk

)
q

−
(
ρf

φ

) n∑
k=1

rkθk − ρf

φ

(
n∑

k=1

rke
pkt + a

)
q(x, 0), t > 0.

(41)

(42)

The generalization to anisotropic tortuosity function α is straightforward and has
been implemented numerically in [85].

2.3 Broadband Passive Quasi-Static Cloaking

The sum rules for Herglotz–Nevanlinna functions can be applied to explain and
quantify the limitations of broadband quasi-static cloaking. In this section, we
summarize the results from the paper by Cassier and Milton [23].

Here the geometry is as follows: � ⊂ R
3 is an open bounded set, which in this

context is thought of as the whole device. Let then O ⊂ � be a bounded simply
connected dielectric inclusion with Lipschitz boundary such that the cloak � \ O is
open and connected.

Consider the Maxwell equations for D (electric induction), B (magnetic induc-
tion), E (electric field), and H (magnetic field)

∂tD −∇ × H = −J, ∂tB + ∇ × E = −JB, ∇ · D = 0, ∇ · B = 0. (43)

Suppose the external electric current J and magnetic current JB are absent; one has
J = JB = 0. Let ε0 and μ0 denote the permittivity constant and the permeability
constant of vacuum, respectively. The Maxwell equations are supplemented with
the constitutive laws
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D = ε0E + P and B = μ0H + M, (44)

where the electric polarization P and the magnetic polarization M are defined by
the time convolution with the real-valued electric susceptibility function χE and the
magnetic susceptibility function χM as follows:

P = ε0χE � E and M = ε0χM � H. (45)

The functions considered are as follows: for each x ∈ �, we have χE(x, ·),
χM(x, · ) ∈ L1(R) and E, E are in H 1(R;L2(�)).

The causality assumption of the material, i.e., E(·, t) and H(·, t) cannot influence
D(·, t ′) and B(·, t ′) for t ′ < t , implies that χE(·, t) and χM(·, t) are supported in
t ≥ 0. Applying the Laplace–Fourier transform (38) to (44) and (45), the following
relations in the frequency domain are obtained:

D̂(ω) = ε0(1 + χ̂E(ω))Ê(ω) =: ε(ω)Ê(ω), (46)

B̂(ω) = μ0(1 + χ̂M(ω))Ê(ω) =: μ(ω)Ê(ω). (47)

For real-valued ω, ε(ω) and μ(ω) are the usual dielectric permittivity and the
magnetic permeability, respectively. The assumption of χE(x, ·), χM(x, ·) ∈ L1(R)

leads to the fact that all the functions involved in (46) and (47) are analytic in C
+ and

continuous in the topological closure cl(C+)= C
+ ∪ R. Moreover, by applying the

Riemann–Lebesgue theorem to χE and χM , one has χ̂E(ω)→ 0 and χ̂M(ω)→ 0 as
|ω| → ∞ in cl(C+). Therefore, ε(ω)→ ε0 and μ(ω)→ μ0 as cl(C+) 4 ω →∞.
The passivity assumption that demands non-negative electric/magnetic energy loss
is formulated as

Ea(t) =
∫ t

−∞

∫
�

∂tD(x, s) · E(x, s)+ ∂tB(x, s) · H(x, s)dxds ≥ 0, t ∈ R. (48)

Then the Plancherel theorem implies that

Ea(∞) = 1

2π
Re

∫
R

∫
�

−iω
(
ε̂(x, ω)|Ê(x, ω)|2 + μ̂(x, ω)|Ĥ(x, ω)|2

)
dxdω ≥ 0.

Since this has to hold for all E and H, it must be true that ωIm (ε(ω)) ≥ 0, and
ωIm (μ(ω)) ≥ 0 for all real-valued ω. These properties of χ̂E , χ̂M , ε(ω), and
μ(ω) prompt the study of functions f : cl(C+) → C that satisfy the following
hypotheses:

• H1: f is analytic in C
+ and continuous in cl(C+). (causality)

• H2: f (z)→ f∞ > 0 as |z| → ∞ in cl(C+).
• H3: f (−z) = f (z), z ∈ cl(C+).
• H4: Im f (z) ≥ 0 for all z ∈ R

+. (passivity)
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Note that f satisfying hypotheses H1–H4 is not a Herglotz–Nevanlinna function;
however, Remark 2 in Part I implies that the function v(ω) := ωf (

√
ω) is, and this

fact will be utilized below.
The problem of passive, quasi-static cloaking for incident plane waves is

formulated in [23] as follows. Suppose the material in O has constant permittivity εI
with ε > ε0 and is non-dispersive (frequency independent) in the frequency range
[ω−, ω+]. The cloak is assumed to have permittivity ε(x, ω) and occupies the space
� \ O surrounding the inclusion O.

Also, it is assumed that the permittivity in R
3 \� is ε0I. In the quasi-static case,

the time derivatives in (43) are negligible, and hence, E = −∇V for some scalar
potential V . Let the incident plane wave be E0, a uniform field in R

3, which will
interact with the device�, and the scattered field with potential Vs will be generated.
The scattered potential Vs is related to the total potential by V (x, t) = −E0 · x +
Vs(x, t). Vs satisfies the equation

{∇ · (ε(x, ω)∇Vs) = ∇ · (ε(x, ω)− εoI)E0 in R
3,

Vs(x, ω) = O(1/|x|) as |x| → ∞.

(49)

Because the cloak occupying � \ O is assumed to be passive, the permittivity
ε(x, ω) satisfies the following conditions for almost all x ∈ � \ O:

• H̃1: ε(x, ·) is analytic on C
+ and continuous on cl(C+).

• H̃2: ε(x, ω)→ ε0I as |ω| → ∞ in cl(C+).
• H̃3: ε(x,−ω) = ε(x, ω) ∀ω ∈ cl(C+).
• H̃4: Im ε(x, ω) ≥ 0∀ω ∈ R

+.
• H̃5: ε(x, ω)T = ε(x, ω), ∀ω ∈ cl(C+) (reciprocity principle).

For the well-posedness of (49), two additional conditions are imposed.

• H̃6: ε(·, ω) ∈ L∞(�\O)∀ω ∈ cl(C+) such that sup
ω∈cl(C+

)
‖ε(·, ω)‖L∞(�\O) ≤

c1 with positive constant c1.
• H̃7a: There exist c2(ω) > 0 and γ (ω) ∈ [0, 2π) such that for all ω ∈ C

+, one has
|Im (eiγ (ω)ε(x, ω)E · E)| ≥ c2(ω)‖E‖2, ∀E ∈ C

3, and for almost all x ∈ � \ O.
• H̃7b: For all ω0 ∈ R, there exist c3(ω0) > 0, δ > 0, and γ (ω0) ∈ [0, 2π)

such that for all ω ∈ B(ω0, δ) ∩ cl(C+), one has |Im (eiγ (ω0)ε(x, ω)E · E)| ≥
c3(ω0)‖E‖2, ∀E ∈ C

3, and for almost all x ∈ � \ O. Here B(ω0, δ) is the disk
of radius δ centered at ω0.

With these assumptions on ε(x, ω), it is shown in [23] that the potential of the total
electric field that satisfies the condition V (x, ω) = −E0 · x+O(1/|x|) as |x| → ∞
is of the form

V (x, ω) = −E0 · x + (α(ω)E0) · x
4πε0|x|3 +O(1/|x|3) (50)
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for all ω ∈ cl(C+) ∪ {∞}, where the complex-valued 3 × 3 polarizability tensor
α(ω) is given by

α(ω)E0 =
∫
�

(ε(x, ω)− ε0I)(E0 −∇Vs(x, ω)) dx. (51)

The key point is that α(ω) describes the leading term of the far-field scattered field.
Hence, the broadband cloaking of the dielectric inclusion O in the frequency interval
[ω−, ω+] is achieved when α(ω) vanishes for all ω ∈ [ω−, ω+]. It is proved in
[23] that if ε(x, ω) satisfies the hypotheses H̃1-H̃7b, then the function f (ω) :=
α(ω)E0 · E0 satisfies hypotheses H1–H4. Consequently,

v(ω) := ωf (
√
ω) = ωα(

√
ω)E0 · E0 (52)

is a Herglotz–Nevanlinna function analytic in C \ R+ and negative in R
−. Note that

v is not a Stieltjes function since it has the “wrong sign” on the negative halfline.
Furthermore, f (∞) = α(∞)E0 · E0 holds, which is positive for any non-zero field
E0. This immediately leads to the conclusion that α(ω) cannot vanish in any interval
[x−, x+] with x−, x+ ∈ R

+ and x− �= x+. Because if it does vanish, so does f ; then
the Schwarz reflection principle and the analytic continuation imply f is identically
zero in C

+, which contradicts the fact f (∞) > 0. Therefore, broadband cloaking is
not possible for a quasi-static passive cloak.

We conclude this section by explaining the main ingredients in the derivation of a
more refined quantification of the fundamental limits of broadband passive cloaking
in quasi-statics presented in [23].

Since the polarizability tensor α(ω) with real-valued ω is of interest in physics,
the Herglotz–Nevanlinna function setting is applied to extract information from
the behavior of α(ω) as a function in cl(C+) to conclude something useful for its
behavior on the positive real line. One important tool for making this connection is
the sum rule, as stated in Theorem 10 in Part I, which is applied to the composition
with an appropriate window function. This same technique is also used in Sect. 3.1
in Part I.

To be able to focus on a finite interval [−6,6] ⊂ R, 6 > 0, the function hm is
defined as

hm(z) :=
∫ 6

−6
dm(ξ)

ξ − z
, (53)

where m belongs to M6, the set of finite positive Borel measure supported in
[−6,6] such that m([−6,6]) = 1. Obviously, hm(z) is a Herglotz–Nevanlinna
function. By using the theorems in [15] and [23], the following asymptotic behavior
can be concluded

hm(z) = −m({0})
z

+ o

(
1

z

)
, as |z|→̂0 and hm(z) = −1

z
+ o

(
1

z

)
, as |z|→̂∞.
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Since for any function f that satisfies H1–H4, the corresponding function v(z) :=
zf (

√
z) is a Herglotz–Nevanlinna function in C \ R

+ and negative in R
−, the

composition vm(z) := hm(v(z)) is again a Herglotz–Nevanlinna function with the
following asymptotic expansion:

vm(z) = −m({0})
f (0)z

+ o

(
1

z

)
, as |z|→̂0 and vm(z) = − 1

f∞z
+ o

(
1

z

)
, as |z|→̂∞.

Theorem 10 in Part I for n = 0 immediately implies that for any given finite interval
[x−, x+] ⊂ R and any m ∈M6, one has

lim
y→0+

1

π

∫ x+

x−
Im vm(x + iy)dx ≤ lim

η→0+
lim
y→0+

1

π

∫
η<|x|<η−1

Im vm(x + iy)dx

= 1

f∞
− m({0})

f (0)
≤ 1

f∞
. (54)

If the cloak is lossy in the finite band [ω−, ω+], i.e., Im ε(x, ω) in (51) is not
negligible in [ω−, ω+], then (52) implies Im v(x) and hence Im vm is not negligible
for x ∈ [ω2−, ω2+] := [x−, x+]. The choice of dm(ξ) = 1[−6,6](ξ)

26 dξ results in

hm(z) = 1
26 log z−6

z+6 for all z ∈ C
+ (branch cut at R+). Consequently, a lower

bound of Imhm(z) can be easily derived to be Imhm(z) ≥ π
46H(6−|z|), where H

is the Heaviside function.
Taking into account the sum rule in (54), one has

lim
y→0+

π

46
∫ x+

x−
H(6− |v(x + iy)|)dx ≤ lim

y→0+

∫ x+

x−
Im vm(x + iy)dx ≤ π

f∞
.

Applying the Lebesgue Dominated Convergence theorem to the left side leads to∫ x+
x− H(6 − |v(x)|)dx ≤ 46

f∞ . Finally, letting 6 = maxx−≤x≤x+ |v(x)| in the

previous inequality leads to the bound 1
4 (x+ − x−)f∞ ≤ maxx∈[x−,x+] |v(x)|. By

identifying x = ω2, the inequality can be directly translated to the following bound
on the polarizability tensor in the frequency band

1

4
(ω2+ − ω2−)α(∞)E0 · E0 ≤ max

ω∈[ω−,ω+]

∣∣∣ω2α(ω)E0 · E0

∣∣∣ .

Suppose the cloak has a transparent window in the band [ω−, ω+], i.e., Im ε(x, ω) =
0 for ω ∈ [ω−, ω+] for almost all x ∈ � \ O. Then the corresponding v(z)

in (52) is real-valued for z ∈ [ω2−, ω2+] := [x−, x+] because of (49) and (51).
In this case, more refined bounds can be derived because first of all, v(z) can
be extended to be an analytic function in D := C \ {[0, x−] ∪ [x+,∞)}. By
letting the measure used in hm be a Dirac measure m = δζ with ζ = v(x0)

for some x0 ∈ (x−, x+) and choosing 6 so that −6 < ξ < 6, one has
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vδζ (z) = 1
v(x0)−v(z) , which is a Herglotz–Nevanlinna function with a real pole at

x0 and hence must be of multiplicity 1. Therefore, v′(x0) �= 0. Moreover, this pole
must be isolated because v(x0) − v(z) is analytic in D. Therefore, there must exist
a small neighborhood N around x0, where vδζ can be expressed as vδζ (z) = g(z)

z−x0

with g(z) analytic in N, g(x0) = − 1
v′(x0)

and real-valued in N∩ [x−, x+] =: (a, b).
The sum rule (54) implies limy→0+

∫ b
a

Im vδζ (x + iy)dx ≤ π
f∞ . On the other

hand, explicit calculation using Sokhotski-Plemeli formula can be performed to get
limy→0+

∫ b
a

Im vδζ (x + iy)dx = −πg(x0) = π
v′(x0)

. So one has 0 < f∞ ≤ v′(x0)

for all x0 ∈ [x−, x+]. This implies f∞ · (x1 − x2) ≤ v(x1) − v(x2) for any
x1, x2 ∈ [x−, x+] such that x2 < x1. Suppose v(x2) = 0, then v(x1) ≥ f∞·x1 for all
x1 > x2. Similarly, if v(x1) = 0, then v(x2) ≤ −f∞ · x1 for all x2 < x1 in [x−, x+].
Therefore, even if α is zero at ω0 ∈ [ω−, ω+], one will have α(ω) ≤ −α(∞)

ω2
0−ω2

ω2

if ω− ≤ ω < ω0 and α(ω) ≥ α(∞)
ω2

0−ω2

ω2 if ω0 < ω ≤ ω+. Thus it is impossible
to achieve the broadband passive quasi-static cloaking (BPQC) in a transparent
window.

In conclusion, for the BPQC problem, the Herglotz–Nevanlinna function struc-
ture of the function v(ω) in (52) and the accompanied sum rules not only lead to
a proof that BPQC is impossible but also give quantitative limitations of BPQC
through providing useful lower bounds.

2.4 Hamiltonian Structure of Time Dispersive and Dissipative
Systems

Wave dissipation and dispersion appear in many materials. For example, the
dynamic tortuosity describes both the dissipation and dispersion mechanisms for
the poroelastic materials. Also, the dispersive nature of the Maxwell’s equations
is revealed by the frequency-dependent permittivity, permeability, and the suscep-
tibility functions in (46) and (47). These are examples of linear time dispersive
and dissipative (TDD) systems. In a series of work, Figotin and Schenker [38–40]
developed a framework for studying the Hamiltonian structure of the linear TDD.
Specifically, they consider problems of the following form in a Hilbert space setting

m∂tv(t) = −iAv(t)−
∫ ∞

0
a(τ )v(t − τ)dτ + f(t), (55)

where m > 0 is a positive mass operator in a Hilbert space H0, A is a self-adjoint
operator in H0, f(t) ∈ H0 is a generalized external force, and a(t) is an operator-
valued retarded friction function that satisfies a(t) = 0 for t < 0. The total work
done by f is W = ∫∞−∞ Re {(v(t), f(t))}dt . The term −iAv(t)−∫∞0 a(τ )v(t−τ)dτ

is interpreted as the force that v exerts on itself at time t with −iAv(t) regarded
as the instantaneous term. The time dispersive integral term

∫∞
0 a(τ )v(t − τ)dτ is
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based on two fundamental requirements of time homogeneity and causality. As a
simple example, in [38], the authors consider a non-magnetic medium by setting
JB = 0, H = B (hence M = 0), ∇ ·J = 0, ∇ ·E = 0 and μ0 = ε0 = 1 in (43)–(45).
The corresponding TDD for this case is

v(x, t) =
(

E(x, t)
B(x, t)

)
∈ H0

H0 := {v ∈ L2(C6)|∇ · E = 0 = ∇ · B}

A =
(

0 i∇×
−i∇× 0

)
, a(t) =

(
∂tχEI3×3 03×3

03×3 03×3

)
, f(t) =

(
J
0

)
.

The difficulty of studying the spectral theory a TDD system can be easily seen by
considering the time-frequency Fourier transform v̂(ω) := ∫∞

−∞ eiωtv(t)dt . Note
that here the Fourier transform is denoted in the same way as the Laplace–Fourier
transform in the preceding sections. Then the TDD system (55) becomes

ωmv̂(ω) = (A − iâ(ω))v̂(ω)+ i f̂(ω) =: Â(ω)v̂(ω)+ i f̂(ω).

The Kramers–Kronig relations imply that Â is non-self-adjoint as long as â �= 0, and
hence, the eigenvectors of the problem ωmeω = (A − iâ(ω))eω are not necessarily
orthogonal for distinct ω and may not form a basis for H0. This challenge can
be addressed by the method of conservative extension of the TDD system [38] by
first noting that Â is not an arbitrary non-self-adjoint operator because the friction
operator â has to satisfy certain characteristic properties of physical laws. Also,
as is pointed out in [38–40], for all DD systems that are physical, the frequency
dependence of â originates from ignoring its coupling with another system, whose
variables are referred to as the hidden degree of freedom of the TDD system.
Hence by finding the coupling system, there will be a Hamiltonian structure of
the extended system, which consists of the original TDD system and the coupling
system.

Based on this idea, a coupled system is introduced

m∂tv(t) = −iAv(t)− i
w(t)+ f(t) (56)

∂tw(t) = −i
†v(t)− i�1w(t),�1 is self-adjoint in H1, (57)

where H1 denotes the Hilbert space of the hidden variables w, and 
 : H1 → H0
the coupling operator between the hidden variable w and the observable variable
v. Following the notation in the papers reviewed here, 
† denotes the adjoint of 
.
This extended system should give the original TDD (55) after eliminating w. Note
that the second equation implies w = −i ∫∞0 e−i�1τ
†v(t − τ)dτ . Using this to
eliminate w in the first equation leads to the necessary condition

a(t) = 
e−i�1t
†, t > 0. (58)
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This spectral representation of the friction function a(t) indicates how the unknowns
(w,�1,H1) of the desired conservative extension can be recovered from the given
a(t). Suppose a(t) has the general form

a(t) = α∞δ(t)+ α(t),

where α∞ = α
†∞ ≥ 0, δ(t) is the Dirac function, and α(t) is for every t ≥ 0 a

bounded non-negative operator in H0 such that

0 ≤ α∞ ≤ CIH0, C <∞, and sup
t≥0

‖α(t)‖B(H0) <∞. (59)

Note that α∞ corresponds to the classic and familiar friction constant. Then (58)
implies that 
 is unbounded if α∞ �= 0 because a(0) = 

† = α∞δ(t). Moreover,
a(t) is extended to t ≤ 0 by

ae(t) = 
e−i�1t
†, −∞ < t <∞. (60)

Note that ae(−t) = a†
e(t). As a result, the following power dissipation condition

must hold

Wf r (v) := −1

2

∫ ∞

−∞

∫ ∞

−∞
(v(t), ae(t−τ)v(τ ))dtdτ

= −1

2

∫ ∞

−∞
‖ei�1t
†v(t)dt‖2 ≤ 0. (61)

This power dissipation condition is also a sufficient condition for the existence of a
conservative extension for a TDD system [38]. The construction of the conservative
extension involves finding the essentially unique triplet (H1,
,�1) from the
extended friction operator ae. Reconstruction in the time domain can be carried out
by using Bochner’s theorem. However, due to the unboundedness of the operator 


for the general case α∞ �= 0, the time-domain reconstruction of the triplet involves
subtle technicalities for dealing with the unbounded operator; see [38]. On the other
hand, as is pointed out also in [38], if one formulates the reconstruction problem
in the complex frequency form, there will be no unbounded operator involved.
The intuition is based on the observation that the Fourier transform of the friction
function a(t) is â(ζ ) = α∞ + α̂(ζ ), which is an analytic operator function. Assume
v(t) = 0 and f(t) = 0 for t ≤ 0. In this setting, the first step is to Laplace-Fourier
transform the TDD problem (55) to obtain the following linear response equation:

(ζm− A + iâ(ζ ))v̂(ζ )=: iA(ζ )−1 = i f̂(ζ ), Im ζ > 0. (62)

The power dissipation condition (61) becomes

Re â(ζ ):= â(ζ )+ â(ζ )†

2
≥ 0 for Im ζ > 0,
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which implies (ζm−[A−iâ(ζ )]) is invertible for Im ζ > 0 because A is self-adjoint.
Define the admittance operator as A(ζ ) := i(ζm − A + iâ(ζ ))−1 for Im ζ > 0.
Note then that both the operator-valued functions iâ(ζ ) and iA(ζ ) are Herglotz–
Nevanlinna functions. The equation above can be written as the admittance equation

v̂(ζ ) = A(ζ )f̂(ζ ), Im ζ > 0.

From the definition of the admittance operator A, it is clear that one can recover
m, A, and â from A as follows:

m−1 = − lim
η→∞ηA(iη), A = − lim

η→∞ImA−1(iη), â(ζ ) = i(ζm− A)+ A−1(ζ ).

To identify the spectral decomposition of â, one applies the same transform to the
conserved system (57) and eliminates ŵ to obtain A(ζ ) = i[ζm − A − 
(ζ IH1 −
�1)

−1
†]−1. A comparison with the admittance operator defined by (62) reveals
that

â(ζ ) = i
(ζ IH1 −�1)
−1
†. (63)

Besides the power dissipation condition Re â(ζ ) ≥ 0 for Im ζ > 0, the condition
(59) implies

â(ζ ) = α∞ + α̂(ζ ), ‖α̂(ζ )‖B(H0) ≤
supt≥0 ‖α(t)‖B(H0)

Im ζ
.

This implies that Theorem 14 in Part I can be applied to show the existence of the
space of the hidden variables and the operators in the spectral decomposition (63).
Below this theorem is formulated as it is in Theorem 3.13 in [38]. Note that �1 and

† here correspond to A and �0, respectively, in Eq. (24) of Part I.

Theorem 4 LetG(ζ) be a B(H0)-valued analytic function in C+ with ImG(ζ) ≥ 0
for ζ ∈ C

+. If G satisfies the growth condition lim supη→+∞ η‖G(iη)‖ < ∞, then
G has the following representation:

G(ζ) = 
(�1 − ζ IH1)
−1
† (64)

with �1 a self-adjoint operator on a Hilbert spaceH1 and 
 : H1 → H0 a bounded
map such that



†v = lim
η→+∞−iηG(iη)v for all v ∈ H0.

If H1 is minimal in the sense that {f (�1)

†v : f ∈ Cc(R), v ∈ H0} is dense in H1,

then {H1,�1,
} is uniquely determined up to an isomorphism.
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By identifying G(ζ) = iâ(ζ ) in the theorem, we see that (63) has a unique
solution up to an isomorphism. Therefore, the conservative extension of (62) exists.
In [38], the extended system for dielectric Maxwell’s equations with a Lorentzian
susceptibility function χ is constructed. The Hamiltonian structure of the TDD can
then be studied via the Hamiltonian structure of the conservative extended system.

3 More General Classes of Functions

As we have seen in the preceding sections, there are a wide range of applications
where Herglotz–Nevanlinna functions are a valuable tool. However, there are
also many situations where Herglotz–Nevanlinna functions do not suffice. If, for
instance, a causal system is not passive, then the corresponding analytic function
will not have positive imaginary part. Or if a composite material does consist of
more than two materials, then the corresponding function will depend on more than
only one variable.

On the mathematical side, the class of Herglotz–Nevanlinna functions has been
generalized in several directions. To give a short overview, we will concentrate
on scalar generalizations only, even if some results do hold for matrix or operator
functions as well.

3.1 Quasi-Herglotz Functions

The class of Herglotz–Nevanlinna functions forms a cone (as it is closed under
linear combinations with non-negative coefficients) but not a vector space (since
multiples with coefficents other than non-negative do not preserve the Herglotz–
Nevanlinna property). As also differences of Herglotz–Nevanlinna functions do
appear in applications, the class of quasi-Herglotz functions has been introduced,
see [48]. For more details concerning this section, see [63].

Definition 2 A function q : C \R→ C is called a quasi-Herglotz function if it can
be written in the form q = h1 − h2 + i(h3 − h4), where hi for 1 = 1, 2, 3, 4 are
Herglotz–Nevanlinna functions (symmetrically extended to the lower halfplane).

Example 1 Every analytic function q : C+ → C with Im q(z) ≥ −c for some
c > 0 is a quasi-Herglotz function, since it can be written in the form q(z) =
(q(z)+ ic)− ic, with both q + ic and ic Herglotz–Nevanlinna functions.

It is obvious from the definition that this class coincides with all linear com-
binations of Herglotz–Nevanlinna functions. Hence, these functions can also be
characterized in terms of an integral representation, however, with complex mea-
sures. Recall that complex measures by definition are finite, see, e.g., [81, Chapter
6], and hence, the representation of the form of Eq. (2) in Part I is used.
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Proposition 1 A function q is a quasi-Herglotz function if and only if there exist
real numbers a and b and a complex measure σ such that

f (z) = a + bz+
∫
R

1 + ξz

ξ − z
dσ(ξ). (65)

Moreover, a, b, and σ are unique with this property.

Note that quasi-Herglotz functions by definition are defined in both the upper
and lower halfplanes. In contrast to Herglotz–Nevanlinna functions, the values in
one halfplane do not determine the values in the other.

Example 2 The functions

q1(z) =
{

i Im z > 0
−i Im z < 0

and q2(z) =
{
i Im z > 0
i Im z < 0

do coincide in the upper halfplane, but not in the lower. Both are quasi-Herglotz
functions as they can be written in the form (65) with (a1, b1, μ1) = (0, 0, 1

π
dλR)

for q1 (as in Example 2 of Part I) and (a2, b2, μ2) = (i, 0, 0) for q2.

Considering the difference of the two functions in the example above shows that
there are non-trivial quasi-Herglotz functions vanishing identically in one halfplane.
All these have been characterized in [63].

Given a function, neither the definition nor the characterization in Proposition 1 is
practical to check whether it is a quasi-Herglotz function or not. But these functions
can also be characterized by their analytic properties.

Theorem 5 Let q : C \ R → C be a holomorphic function. Then q is a quasi-
Herglotz function if and only if the function q satisfies, first, a growth condition,
namely, that there exists a numberM ≥ 0 such that for all z ∈ C \ R

|q(z)| ≤ M
1 + |z|2
|Im z| , (66)

and, second, the regularity condition

sup
y∈(0,1)

∫
R

∣∣q(x + iy)− q(x − iy)
∣∣ dx

1 + x2
<∞. (67)

An important subclass are real quasi-Herglotz functions; these are real linear
combinations of Herglotz–Nevanlinna functions or, equivalently, functions that
admit an integral representation (65) with a signed (i.e., real) measure σ . It can
be shown that these functions are exactly those, which are symmetric with respect
to the real line, i.e., q(z) = q(z).
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It can be noted that quasi-Herglotz functions also appear naturally when dealing
with Herglotz–Nevanlinna functions only, namely as the off-diagonal elements of
matrix-valued Herglotz–Nevanlinna functions.

3.2 Generalized Nevanlinna Functions

In the definition of Herglotz–Nevanlinna functions, the sign of the imaginary part is
required to be positive. However, using the integral representation, it can be shown
that this is equivalent to the requirement that the so-called Nevanlinna kernel

Nf (z,w) := f (z)− f (w)

z− w
(68)

is positive. Recall that a kernel Nf (z,w) is said to be positive definite if for any
choice of N ∈ N and z1, . . . , zN ∈ D, the matrix

(
N(zi, zj )

)
i,j=1,...N

is positive semidefinite.
This view leads to the following generalization by considering kernels with

finitely many negative squares [56]. A kernel is said to have κ negative squares
if every such matrix above has at most κ negative eigenvalues and κ is minimal with
this property.

Definition 3 A function q : D ⊂ C
+ → C is called a generalized Nevanlinna

function if it is meromorphic in C
+ and the Nevanlinna kernel Nq has finitely many

negative squares. If this number is κ , then q ∈ Nκ .

Generalized Nevanlinna functions do also admit an integral representation, but it
is much more involved than Eq. (1) in Part I; see [56, Satz 3.1.].

The operator representation, however, carries over quite naturally. The only
difference compared to Eq. (23) in Part I is that in this case the space is not a Hilbert
space, but a Pontryagin space, that is a vector space equipped with an indefinite
inner product, such that any non-positive subspace is finite-dimensional.

Theorem 6 A function q is a generalized Nevanlinna function if and only if there
exist a Pontryagin space K, a self-adjoint linear relation A, a point z0 ∈ C

+, and
an element v ∈ K such that

q(z) = q(z0)+ (z− z0)
[
(I + (z− z0)(A− z)−1)v, v

]
K . (69)

Moreover, ifK = span{(I+(z−z0)(A−z)−1)v : z ∈ "(A)}, then the representation
is called minimal. In this case, K has κ negative squares if and only if q ∈ Nκ and
the representation is unique up to unitary equivalence.
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The conditions on the function q for simplified representations are literally the
same as before, and Theorem 7 in Part I holds for generalized Nevanlinna functions
as well.

From Theorem 6 and the spectral properties of self-adjoint relations in Pontrya-
gin spaces, it follows directly that a generalized Nevanlinna function q ∈ Nκ has at
most κ poles in the upper halfplane C

+, and there are at most κ real points α ∈ R

(including∞) where it does not hold that limz→̂α(α−z)q(z) exists as a non-negative
number. These exceptional points (non-real and real) are exactly those eigenvalues,
for which the corresponding eigenspace is not a positive subspace. These points
are called generalized poles not of positive type. Generalized zeros not of positive
type of q are by definition the generalized poles not of positive type of the inverse
function q̂(z) := − 1

q(z)
(which belongs to the same class Nκ as q). The importance

of these points becomes visible in the following characterization; see [35] and also
[32].

Theorem 7 A function q is a generalized Nevanlinna function if and only if there
is a rational function r and a Herglotz–Nevanlinna function f such that

q(z) = r(z)f (z)r(z). (70)

In this case, q ∈ Nκ if and only if deg r = κ . Moreover, r is of the form r(z) =∏�
i=1(z− αi)∏m
j=1(z− βj )

, where αi are the generalized zeros not of positive type and βj are

the generalized poles not of positive type of q and κ = max{�,m}.
Generalized Nevanlinna functions with polynomial r appear for instance in

connection with Sturm–Liouville operators with strongly singular potentials or,
more abstractly, with strongly singular perturbations of self-adjoint operators in
Hilbert spaces, see, e.g., [34, 36, 57].

Remark 1 A generalized Nevanlinna function q does satisfy lim
z→̂x0

Im q(z) ≥ 0 (as

a finite number or +∞) for all but finitely many x0 ∈ R ∪ {∞}, cf., Remark 2 in
Part I.

Remark 2 Also matrix- and operator-valued generalized Nevanlinna functions can
be defined via a corresponding kernel condition. The operator representation in
Theorem 13 of Part I carries over with the same changes as for scalar functions.
The factorization, however, becomes a lot more delicate. The first part holds with
rational factors R(z) and R(z)∗, but these are not of a comparably simple form, in
particular, since generalized poles and zeros can be at the same points. For details,
see [60, 61].
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3.3 Pseudo-Nevanlinna Functions

Definition 4 A function g is called pseudo-Nevanlinna if it can be written as
the quotient of two bounded analytic functions (defined in C

+) and satisfies
lim
z→̂x0

Im g(z) ≥ 0 for almost all x0 ∈ R.

Note that every Herglotz–Nevanlinna function belongs to this class since it can
be written as a fractional linear transformation of a function mapping C

+ into the
closed unit disc D. Moreover, by Remark 1, generalized Nevanlinna functions are
also pseudo-Nevanlinna functions.

It has been shown in [30, 31] that pseudo-Nevanlinna functions can also be
characterized via a factorization, extending Theorem 7. To this end, one needs to
introduce the so-called density functions; these are particular pseudo-Nevanlinna
functions, which are non-negative (or ∞) on the real line.

Theorem 8 A function g is a pseudo-Nevanlinna function if and only if there exists
a density function I and a Herglotz–Nevanlinna function g0 such that g(z) =
I (z)g0(z).

To be precise, in [31], Pseudo-Caratheodory functions are studied; these are cor-
responding generalizations of Caratheodory functions, i.e., holomorphic functions
mapping the open unit disk D to the closed right halfplane C+ ∪ iR. However, due
to the topic of this text, here we consider the corresponding version for the upper
halfplane.

The introduction of Pseudo-Caratheodory functions was motivated by problems
arising in digital signal processing and in the theory of circuits and systems.

3.4 Functions in Several Variables

For analytic functions in one variable in the upper halfplane C+, there are two equiv-
alent ways of defining Herglotz–Nevanlinna functions, either by the requirement
that Im f (z) has to be non-negative or that the Nevanlinna kernel Nf (z,w) has to be
positive semidefinite. When considering functions in several variables, however, the
generalizations along these two ways lead into different directions, in one case the
functions are represented by some kind of resolvents, in the other case by integrals.

In the following, we use the notation z = (z1, z2, . . . , zn) and consider analytic
functions H : (C+)n → C, that is H is analytic in each variable zj for j = 1, . . . , n.

3.4.1 Loewner Functions

Definition 5 A function H : (C+)n → C is called a Loewner function if it is
holomorphic and there exist positive semidefinite kernelsA1, . . . , An on (C+)n such
that
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H(z)−H(w) =
n∑

j=1

(zj − wj)Aj (z,w) (71)

for all z,w ∈ (C+)n.

Loewner functions with n = 1 are exactly Herglotz–Nevanlinna functions in one
variable.

For n > 1, these functions have been characterized in different ways, in
particular, as operator monotone functions; see [1]. It has also been shown that
functions in this class admit an operator representation [2]. As an example, we give
one result, corresponding to Theorem 7 in Part I with s = 0, in order to show the
flavor of such representations.

Theorem 9 A function H : (C+)n → C is a Loewner function satisfying

lim inf
y→∞ y|ImH(iy, . . . , iy)| <∞

if and only if there exists a Hilbert spaceH, a self-adjoint operator A inH, positive
contractions Y1, . . . , Yn with Y1 + . . .+ Yn = IH, and an element v ∈ H such that

H(z) =
(
(A− z1Y1 − . . .− znYn)

−1v, v
)
H .

For Loewner functions, transfer function realizations have also been established;
see [8].

3.4.2 Herglotz–Nevanlinna Functions

The other way of considering several variables leads to the following, more general,
definition.

Definition 6 A function F : (C+)n → C is called Herglotz–Nevanlinna function if
it is holomorphic and ImF(z) ≥ 0 for all z ∈ (C+)n.

It can be shown that not only for n = 1 but also for n = 2 the class of Herglotz–
Nevanlinna functions does coincide with the class of Loewner functions. However,
it is known that this is not true for n > 2. If n > 2, then every Loewner function is
a Herglotz–Nevanlinna function, but not conversely.

For the larger class of Herglotz–Nevanlinna functions in several variables, a
characterization via an integral representation has been shown. In order to formulate
this result, we introduce the following notation. For z ∈ (C+)n and t ∈ R

n, define

Kn(z, t) := i

⎛
⎝ 2

(2i)n

n∏
�=1

(
1

t� − z�
− 1

t� + i

)
− 1

(2i)n

n∏
�=1

(
1

t� − i
− 1

t� + i

)⎞
⎠ , (72)

which for n = 1 coincides with the integrand in Eq. (1) of Part I.
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Moreover, we say that a Borel measure μ on R
n satisfies the Nevanlinna

condition if for all z ∈ (C+)n and all indices �1, �2 ∈ {1, 2, . . . , n} with �1 < �2, it
holds

∫
R

n

1

(t�1 − z�1)
2(t�2 − ¯z�2)

2

n∏
j=1

j �=�1,�2

(
1

tj − zj
− 1

tj − z̄j

)
dμ(t) = 0. (73)

Then the following theorem holds; see [62, Theorem 4.1].

Theorem 10 A function F : (C+)n → C is a Herglotz–Nevanlinna function
if and only if there exist a real number a ∈ R, a vector b ∈ [0,∞)n, and
a positive Borel measure μ on R

n satisfying the Nevanlinna condition and with∫
R

n
∏n

�=1
1

1+t2�
dμ(t) <∞ such that

F(z) = a +
n∑

�=1

b�z� + 1

πn

∫
R

n
Kn(z, t)dμ(t). (74)

Furthermore, for a given function F , the triple of representing parameters (a,b, μ)
is unique.

Note that for n = 1 the Nevanlinna condition is satisfied for every measure
(which satisfies the necessary growth condition), and hence, this theorem becomes
Theorem 1 in Part I. However, for n > 1, this condition is rather restrictive, and
measures satisfying it are rather particular. For example, such a measure cannot have
finite total mass and hence, in particular, not compact support. There are also other
geometric restrictions on the support; see [64].

4 Summary

In this two-part survey paper, we start with introducing the various forms of
Herglotz–Nevanlinna functions. These definitions are very simple to describe but
imply many properties that are physically relevant. As can be seen from the
diverse set of applications presented here, the Herglotz–Nevanlinna functions indeed
provide a clear mathematical language for describing important physical properties
such as passivity and causality. From there, a rigorous analysis can be applied to
derive useful properties of these physical systems such as the bounds of effective
properties of materials or to suggest a way to fabricate materials of desired
properties through exploiting the links between some simple forms of Herglotz–
Nevanlinna functions and laminated microstructure structure or their links with
some simple circuits. Numerically, the Herglotz–Nevanlinna function theory points
a way for approximating memory terms that appear very often in a dispersive system
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but whose descriptions are given only in the frequency domain. Also, it can provide
a framework for studying the spectral theory of a TDD system.

Some very interesting results that involve yet another variation of Herglotz
function can be found in the paper by Cassier et al. [24], where the Dirichlet-
to-Neumann (DtN) map for the time-harmonic Maxwell’s equations of a two-
component composite is proved to be a Herglotz–Nevanlinna function of the
variable (ωμ1, ωμ2, ωε1, ωε2) in (C+)4, which represents the electromagnetic
properties of the isotropic constituent materials. To extend the result to the general
case of anisotropic constituents, which can be spatially piecewise-constant or
continuous, the authors define the class of Herglotz–Nevanlinna functions on
an open, connected and convex set of matrices with positive definite imaginary
parts. To preserve the Herglotz function structure, they use the trajectory method
[14], [71, Section 18.6] to define a trajectory s(ω) that maps ω to the matrix-
valued (ωμ1, ωμ2, ωε1, ωε2) and show that the DtN map is a Herglotz–Nevanlinna
function along each trajectory. The implication of this result in electric impedance
tomography is yet to be discovered.

With all the applications where Herglotz–Nevanlinna functions have been suc-
cessfully applied, there are still many open problems that demand further inves-
tigations. For example, the IRF for a three-phase dielectric composite has been
derived in [42] by using the theory of Herglotz–Nevanlinna functions of two
complex variables [55]. Also, for the purpose of separating the influence of contrasts
and microstructure, a two-parameter IRF has been derived for composites of
isotropic elastic materials in [75] using the results in [55]. However, in these
applications, the relations between the moments and the microstructure become
much more complicated. Besides, the characterization of extreme sets of measures
of two variables is no longer just weak limits of sum of Dirac measures. Also,
suppose a set of measurements from a causal and passive system is polluted by
noise; how can one design a filter to recover the “nearest” Herglotz–Nevanlinna
function that best represents the measured data? With the advance of material
sciences, there are materials with negative indices and systems that emit energy;
how should the Herglotz–Nevanlinna function be generalized accordingly? As is
described in Sect. 3, there have been some generalization on the pure mathematics
side. We believe that progress on generalizations can be sped up by collaboration
and communication between mathematicians and researchers in various fields
of materials sciences through the availability of a set of common mathematical
languages and notations.
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Rigidity and Flexibility in the Modelling
of Shape-Memory Alloys

Angkana Rüland

1 Introduction

Shape-memory alloys are materials displaying a striking thermodynamic behaviour
whose modelling gives rise to rich mathematical structures. These materials undergo
a first-order, diffusionless, solid–solid phase transformation in which symmetry is
reduced upon the passage from the high-temperature phase (austenite) to the low-
temperature phase (martensite), see Fig. 1. This loss of symmetry gives rise to
various variants of martensite and leads to striking phenomena such as the shape-
memory effect and the development of rich and complex microstructures [7].

It is the purpose of this short review paper to survey the recent development
of quantitative “wild” convex integration structures and the associated dichotomy
between rigidity and flexibility in the mathematical modelling of shape-memory
alloys and to formulate various related open problems.

1.1 Shape-Memory Alloys: The Phenomenological Theory,
Differential Inclusions, Rigidity, and Flexibility

Following the seminal work [4], in modelling shape-memory alloys, we adopt the
variational, continuum framework of the phenomenological theory and view the
observed states as minimizers of an energy of the form
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∫

�

W(∇u, θ)dx, (1)

possibly with prescribed boundary conditions. Here, � ⊂ R
3 denotes the reference

configuration that is chosen as the austenite at the critical temperature, u : �→ R
3

denotes the deformation describing the material deformation with respect to the
austenite state at the critical temperature, θ : � → [0,∞) represents temperature,
and W : R3×3 × [0,∞) → [0,∞) is the stored energy function. Seeking to model
the physical properties of shape-memory alloys, we assume that:

• The stored energy function is frame-indifferent, i.e., W(QF, θ) = W(F, θ) for
all F ∈ R

3×3, Q ∈ SO(3), where SO(3) denotes the group of 3 × 3 rotation
matrices, θ ∈ [0,∞).

• The stored energy function respects the material symmetries, i.e., W(FH, θ) =
W(F, θ) for all F ∈ R

3×3, H ∈ P, where P denotes the (discrete) point group
of the material, θ ∈ [0,∞).

Furthermore, the minima of W reflect the properties of the phase transformation.
More precisely, we assume that W(F, θ) = 0, iff

F ∈ K(θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(θ)SO(3)Id for θ > θc,

SO(3) ∪
m⋃
j=1

SO(3)Uj (θc) for θ = θc,

m⋃
j=1

SO(3)Uj (θ) for θ < θc.

Here θc ∈ (0,∞) denotes the critical temperature, α : [0,∞) → [0,∞) models
the thermal expansion of the austenite, and the positive-definite, symmetric, matrix-
valued functions Uj(θ) : [0,∞) → R

3×3
sym,+, j ∈ {1, . . . , m}, model the variants

of martensite. They can be obtained from U1(θ) by the action of an element of the
symmetry group, i.e., for each j ∈ {2, . . . , m}, there exists an element Pj ∈ P such
that Uj(θ) = PjU1(θ)P

t
j . The described properties render the variational problem

(1) highly non-quasi-convex and thus lead to the absence of weak lower semi-
continuity. In turn, this gives rise to finely twinned, highly complex microstructures
and the notion of very weak, gradient Young measure-valued solutions [2, 4].

Due to their outlined complexity, in seeking to study minimizers of (1), it is
instructive (and common [37, 42, 55]) to first consider exactly stress-free deforma-
tions, i.e., solutions to the associated differential inclusion at a fixed temperature
θ ∈ (0,∞)

∇u ∈ K(θ) a.e. in � (2)

for u ∈ W 1,∞(�,R3). Already here a striking dichotomy between strong rigidity
and extreme flexibility arises which we discuss in the following for the model case
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cooling

heating

austenite martensite

1

1

b

a

a

b

Fig. 1 Schematic illustration of the thermodynamic behaviour in shape-memory alloys for
the two-dimensional square-to-rectangular transformation. Upon cooling, the typically highly
symmetric high-temperature phase, austenite (in this schematic illustration with a square lattice
for its unit cell), is transformed into the less symmetric low-temperature phase (martensite). The
reduction of symmetry gives rise to various variants of martensite (here the two rectangular lattice
structures for the low-temperature unit cell)

of the two-well problem and which microscopically can be viewed as a square-
to-rectangular phase transformation (see Fig. 1). By a reduction outlined in [38],
various questions on it can be analysed in the two-dimensional setting on which we
will focus in the following for presentation purposes.

Studying solutions to the (two-dimensional) square-to-rectangular transforma-
tion for θ < θc fixed (see Fig. 1) leads to the investigation of the following two-well
problem after normalization (see [38, Section 5]): For � ⊂ R

2 open, bounded,
smooth, classify all deformations u : �→ R

2 such that

∇u ∈ K2 := SO(2)

(
1 0
0 1

)
∪ SO(2)

(
μ 0
0 λ

)
(3)

for some given (material-dependent) parameters 0 < μ < 1 < λ with μλ = 1.
Now, on the one hand, if u is such that additionally to solving (3) it also holds

that ∇u ∈ BV (�,R2), the following rigidity result was proved in [38]:

Theorem 1 ([38, Theorem 1.1]) Let u : � → R
2 be a solution to (3) with ∇u ∈

BV (�,R2). Then, locally, u is a simple laminate; more precisely, there exist two
normals ν1, ν2 ∈ S

1 := {v ∈ R
2 : |v| = 1} such that for some j ∈ {1, 2} fixed (up

to boundary effects), it holds
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U1

U1

U1

QU2

QU2

QU2

Fig. 2 Simple laminate microstructures. These structures display a one-dimensional dependence
with deformation gradients that alternate along bands between two values (in this illustration
between ∇u = U1 and ∇u = QU2). The orientation of the normals is determined by the rank-one
connections between the wells (here between SO(2)U1 and SO(2)U2)

u(x) = h(x · νj ) for x ∈ �,

with h : R→ R
2.

In other words, under the described assumptions, any solution to (3) is rigid
in the sense that (up to boundary effects) simple laminate solutions arise whose
gradients only alternate between two possible values (up to boundary effects),
with only one-dimensional directional dependences (see Fig. 2). Here, the condition
∇u ∈ BV (�,R2) should be read as a mild, analytical form of imposing a natural
“surface energy” constraint for the deformation, ruling out too irregular oscillations
between the two wells.

On the other hand, using the method of convex integration [56] or the Baire
category theorem [29] (see also [43] for a unification of these ideas), if the “surface
energy condition” ∇u ∈ BV (�,R2) is dropped, the rigidity from Theorem 1 is lost
and a plethora of “wild” solutions exist:

Theorem 2 ([56, Corollary 1.4]) For any M ∈ int(Klc
2 ), there exist solutions u ∈

W
1,∞
loc (R2,R2) to (3) with the property that ∇u = M in R2 \�.

Here, Klc
2 denotes the lamination convex hull of the set K2 that is obtained by

convexification along rank-one directions. In general, the lamination convex hull of
a set is substantially smaller than the convex hull (see, for instance, [29, 55] for a
precise definition of this notion and a hierarchy of notions of convexification in the
context of the calculus of variations). In our context, the specific set Klc

2 is known
with an explicit characterization (see [55, Theorem 4.12]). In particular, since the
boundary conditions from the explicitly known set int(Klc

2 ) [62] are in general not
compatible with simple laminates, the solutions from Theorem 2 do not coincide
with those from Theorem 1 and thus do not obey the surface energy constraints
from above. They are expected to be quite fractal and thus of rather low regularity.
Moreover, they are highly non-unique: With respect to the L∞ norm, it is possible to
approximate up to any desired precision any affine function with gradient in int(Klc

2 )
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by a solution to (3) in � with matching boundary conditions. Hence, there exist
a plethora of solutions as in Theorem 2. In what follows, we will refer to these
possibly quite irregular and highly non-unique solutions as “wild” solutions.

We remark that the two-dimensional two-well problem (3) is to be considered
as a model case for the dichotomy between rigidity and flexibility, but that this
dichotomy also arises in various other settings in the modelling of shape-memory
alloys [24, 42, 44, 63]. Similar phenomena are also observed in other problems in
the calculus of variations and PDEs, ranging from elliptic and parabolic systems
[57, 59, 72], origami constructions [21, 32], isometric embeddings [25], and to fluid
mechanics [9, 33, 73].

1.2 Main Questions

The presence of the outlined dichotomy thus gives rise to various natural questions
both for the general setting involving m rotation invariant wells as in (2) and for the
specific example from (3):

(Q1) Physical role of wild solutions: While simple laminates as in Theorem 1
are indeed observed experimentally, the physical role of the wild, non-unique
solutions is less evident. Do they have a physical significance? Or are they “only”
mathematical constructions?

(Q2) Thresholds: Are there sharp (regularity) thresholds between the rigid and
flexible regimes (see Fig. 3)? Can these be identified?

(Q3) Selection mechanisms: Among the solutions from Theorem 2 in which there
is a high degree of non-uniqueness, is there a (physical or mathematical) selection
mechanism for certain classes of “appropriate solutions”?

Seeking to make progress towards understanding these long-term goals, in the
past years, the study of both the rigidity and flexibility properties of the associated
differential inclusions was initiated from a quantitative point of view. Here the

∇u ∈ L∞ ? ∇u ∈ BV

∇u ∈ W sc,θc

threshold

flexibility rigidity

U1

U1

U1

U1

QU2

QU2

QU2

QU2

Fig. 3 The dichotomy between rigidity and flexibility. Theorems 1 and 2 correspond to the
borderline cases. Natural questions thus deal with the intermediate region on Sobolev and Besov
scales. In particular, a key challenge consists in identifying and proving the presence of regularity
thresholds separating these two regimes
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following, more modest questions were considered, which we will review in the
subsequent sections:

(Q4) Persistence of flexibility at positive Sobolev regularity: Does the flexibility
from Theorem 2 persist at higher Sobolev regularities?

(Q5) Bounds on the maximal regularity of wild solutions by scaling: Are there
natural limitations, e.g. in terms of scaling, to the possible regularity of “wild
solutions”?

(Q6) Numerical implementations: What type of structures arise in these con-
structive higher regularity schemes? Can numerical implementations of these
be compared to experimental structures? Can they be related to intermittent
nucleation behaviour?

These questions are also to be viewed in the context of other rigidity and
flexibility results in related systems (see [8, 46, 57, 73]), where similar questions
are studied on the corresponding, problem-specific regularity scales (e.g., in Hölder
spaces for Onsager’s conjecture in fluids). Shape-memory alloys should thus be
regarded as a particular instance of this phenomenon whose understanding would
lead to a further facet of the relevant mechanisms at play, complementing the already
known observations, tools, and results from fluid mechanics and geometry and thus
potentially contributing to inferring a broader perspective on these phenomena.

2 Flexibility

Shape-memory alloys are physical systems for which first important mathematical
results on the qualitative dichotomy between rigidity and flexibility were already
derived in the 1990s with fundamental contributions by Dacorogna and Marcellini
[30], Dolzmann [38], Kirchheim [43], Müller and Šverák [57], and Sychev [58],
building on their fundamental contributions due to Gromov [40]. This study also
partially motivated the investigation of the m-well problem in which the rotation
invariant differential inclusion from (2) is replaced by the inclusion

∇u ∈ {A1, . . . , Am} in � ⊂ R
n (4)

with Aj ∈ R
n×n being pairwise not rank-one connected [3, 70] and which was

fully resolved by Chlebík–Kirchheim [18] and Kirchheim–Preis [43]. In view of the
dichotomy established in Theorems 1 and 2 and similar progress in other continuum
mechanical settings—most prominently in fluids—the quantitative question (Q2)
on the existence of thresholds between the rigid and flexible settings arises naturally.
This in turn consists of two directions: The study of the persistence of flexibility
at higher (Sobolev) regularity, formulated in question (Q3), and the identification
of obstructions to the existence of wild solutions as, for instance, formulated in
question (Q4). In the context of shape-memory alloys, Sobolev or Besov scales pose
natural classes in which to consider the problems. Indeed, since (sharp) interfaces
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between different deformation gradients are expected (see, for instance, Fig. 2) and
are in fact observed in these materials [7], other common function space scales such
as Hölder spaces, for instance, are ruled out.

In what follows, we discuss these two directions individually, focussing on the
persistence of flexibility at higher Sobolev regularity in this section and presenting
first results on obstructions and possible means of identifying thresholds in the next
section.

Returning to the model case of the geometrically nonlinear, two-dimensional
square-to-rectangular phase transformation, in recent work the following persistence
of flexibility result could be proved:

Theorem 3 ([34, Theorem 1.1]) Let � be an open, connected domain that can be
covered by finitely many, up to null-set disjoint triangles. Then there is θ0 > 0 such
that for all s ∈ (0, 1), p ∈ (1,∞), and sp < θ0 and for any M ∈ int(Klc

2 ), there

exists a deformation u ∈ W
1,∞
loc (R2,R2) such that ∇u obeys (3) and ∇u = M in

R
2 \�, and ∇u ∈ W

s,p
loc (R

2,R2).

In particular, the flexibility from Theorem 2 persists also at positive Sobolev
regularity. We remark that in [34] the result is formulated with a slightly different
set K2. This, however, can be transformed into the one from above by affine
transformations and thus implies that the results from [34] hold in the framework
introduced above.

Let us comment on this result: Theorem 3 provides a first example in the literature
on shape-memory alloys of a geometrically nonlinear phase transformation in which
the persistence of higher regularity on Sobolev scales is proved. Moreover, the given
Sobolev regularity threshold is uniform in the boundary data. Similar regularity
results are also proved for the phase indicators for these solutions, i.e., for the
characteristic functions that at each point assign the closest well to the solution.
As a consequence, certain bounds on the box dimension of the interfaces separating
the wells can be obtained [34, Section 7]. Key ingredients in the proof of Theorem 3
are:

(i) A (explicit) quantitative convex integration scheme, i.e., an iterative (gradient)
improvement scheme that simultaneously quantitatively controls the improve-
ment in the distance to the wells measured in the L1 norm and the growth of
the BV norm. In this way, a subsolution (see [73] for an outline on how this fits
into a more general framework à la Tartar) whose gradient attains values in the
substantially larger set Klc

2 is gradually and quantitatively transformed into a
solution of the differential equation. The competition between fast convergence
in L1 and the divergence of the BV norm then, by interpolation, yields the
desired Sobolev scale up to which flexibility of the given construction persists.
This construction makes use of certain building blocks that were introduced
in [20], see also [22], which allow to replace a given constant gradient by a
successively more favourable, finite gradient distribution.

(ii) A good understanding of the lamination convex hull of the two-well problem.
In contrast to earlier results on the quantitative persistence of flexibility from
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[67, 68], Theorem 3 is the first example of a phase transformation in which the
relevant lamination convex hull does not coincide with the (usual) convex hull.
In particular, carefully chosen coordinates have to be considered for which the
two available rank-one connections are exploited and which is inspired by the
seminal work [4].

We remark that the interpolation-based scheme from (i) had already been developed
in the context of other quantitative persistence of flexibility results for the modelling
of shape-memory alloys: In [68], based on [61], a first scheme in which part of
the deformation was “directly pushed into the wells” was analysed quantitatively
for the two-dimensional, geometrically linearized hexagonal-to-rhombic phase
transformation. In this scheme, the gradient distribution of a given subsolution was
transformed in each iteration step in such a way that always at least on a certain
volume fraction of the domain the modified gradient distribution already attained
values within the wells by using Conti-type constructions as in [20]. On this part
of the domain, the gradient was not modified any further; on the complement,
the described procedure was iterated. Strongly using the geometrically linearized
character of the specific hexagonal-to-rhombic phase transformation and the two-
dimensional, infinitesimally volume-preserving structure of the wells, this scheme
could however not directly be applied to more general transformations. To this
end, in [67], a further, more general scheme was developed with a geometric
improvement of the gradient distribution towards the wells but without pushing
directly into the wells. The latter, in particular, provided a framework for construc-
tions within both the geometrically linear and the nonlinear theories of elasticity
and also allowed to treat physically relevant, three-dimensional problems such
as the geometrically linearized cubic-to-orthorhombic phase transformation. An
application to the geometrically nonlinear theory however required the verification
of certain geometric properties for the relevant hulls, which was achieved in [34]
by a careful study of item (ii) outlined above. A major obstruction to applying the
outlined quantitative ideas to other geometrically nonlinear settings such as the geo-
metrically nonlinear, three-dimensional cubic-to-tetragonal phase transformation is
thus exactly an analogue of the analysis from (ii) since the quantitative construction
requires a good understanding of the corresponding lamination convex hulls that are
not known in many physically interesting cases.

A major question that remains open at present is the problem of finding optimal
constructions. While for more flexible systems such as origamis explicit “threshold
constructions” are known in two dimensions [31], in the context of shape-memory
alloys this is only the case in very particular, highly symmetric settings with very
specific boundary conditions. For these, it is possible to prove that (in specific
geometries) flexibility persists up to BV regularity. Some of the most notable
constructions with this property are two-dimensional nucleation mechanisms such
as the “star-type” deformations in the hexagonal-to-rhombic phase transformation
(see [45, 53, 54] for experimental observations and [14, 68] for the geometrically
linearized constructions). In [15, 27], these nucleation constructions were extended
to a related family of highly symmetric, two-dimensional, geometrically nonlinear
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transformations with austenite boundary conditions, connecting shape-memory
alloys and nematic elastomers. We also refer to [36] for a first article treating
these physical systems simultaneously. For generic boundary conditions and phase
transformations, and in particular in three dimensions, however this question
remains open and a key challenge:

(Q7) Optimal constructions. Determine optimal constructions for flexibility. Are
these only possible under very high symmetry conditions?

3 Rigidity

Pushing towards a threshold between rigidity and flexibility, a major question
concerns the presence of obstructions to flexibility. In fluid systems, this is given by
conserved quantities (e.g., the kinetic energy at sufficient regularity); in isometric
immersions, this role is taken by weak notions of curvature [73]. In both settings,
scaling plays a crucial role in proving rigidity and in obtaining candidates of possible
thresholds, see, for example, [19]. Contrary to equations from fluid mechanics, the
differential inclusions (2) do not directly provide thresholds since they are scaling
invariant with respect to the W 1,∞ rescaling; they do not select a particular length
scale.

In order to nevertheless introduce scaling as a mechanism to detect a possible
threshold behaviour, in [66] we adopted a singular perturbation point of view and
added an “artificial viscosity” in the form of surface energy penalization:

Eε(u) :=
∫

�

dist2(∇u,K)dx + ε2
∫

�

|∇2u|2dx. (5)

Here K ⊂ R
n×n
sym,+ denotes a set of the type K(θ) from above for some fixed

θ ∈ (0,∞). Hence, the first contribution in (5) denotes a piecewise quadratic
energy as in (1), and the second contribution penalizes fast and rapid oscillations
between (and within) the different wells. It can be interpreted as a form of a surface
energy (or a “viscous” contribution). Such a penalization point of view represents
a common approach in analysing and predicting length scales for microstructures
in shape-memory alloys (and other phase transforming problems modelled within
the calculus of variations); we refer to [6, 10, 11, 16, 23, 26, 28, 47–52, 55, 64]
and the references therein. We further remark that the particular choice of the
surface energy (diffuse, Ginzburg–Landau energies as in (5) versus, for instance,
sharp interface energies) does not provide major conceptual differences (although,
of course, requiring technical adaptations in many proofs).

Seeking to employ (5) in the investigation of (2) and to detect regularity
thresholds for (2), in particular the scaling behaviour of the minimal energy
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Eε(M) := inf
∇u=M in R

n\�
Eε(u)

becomes relevant. Heuristically, the scaling behaviour of Eε(M) in terms of ε > 0
as ε → 0 is expected to provide upper bounds on the possible regularity of wild
structures. Indeed, consider a given convex integration solution with ∇u of a certain
Hs
loc regularity for some s ∈ (0, 1) and boundary data M . Then, while, due to

its potentially too low regularity, u itself may not be an admissible candidate in
the minimization problem for Eε(M), a regularized version uδ indeed yields a
competitor for (5). Now, the penalization term roughly behaves as

‖∇2uδ‖2
L2(�)

∼ δ2s−2

in the regularization parameter δ. The elastic energy on the other hand converges
towards a solution of the differential inclusion and thus

∫

�

dist2(∇uδ,K)dx � ‖∇uδ − ∇u‖2
L2(�)

� δ2s .

Hence, optimizing (5) in δ, one obtains that for these solutions the energy is expected
to behave as ε2s . This was made rigorous in [66]:

Theorem 4 ([66, Theorem 1]) Let M ∈ R
n×n
sym,+, and let Eε(M) be as above.

Assume that there exists a solution u ∈ H 1+s
loc (Rn,Rn) to

∇u ∈ K in �,

∇u = M in Rn \�.

Then there exists a constant C = C(�,M, n, s) > 0 such that for ε > 0 small
enough

Eε(M) ≤ Cε2s .

As a consequence, if for given boundary data M ∈ R
n×n
sym,+ there are wild

solutions whose gradients are of Hs
loc(R

n,Rn) regularity, this yields an upper bound
on Eε(M). Conversely, if lower bounds in terms of the ε scaling for Eε(M) are
known, then this yields an upper bound on the maximal regularity of wild solutions.
It is this latter interpretation that we view as a possible means of detecting and
identifying thresholds for the regularity of wild solutions that replaces the usual
scaling arguments for other systems. We remark that the specific forms of the surface
energies here do not play a major role; in [66], it is proved that analogous results
also hold for other measures of surface energy penalizations. However, to the best
of the author’s knowledge, none of the currently existing lower scaling bounds for
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models on shape-memory alloys hold in a setting in which there is a dichotomy
between rigidity and flexibility.

Only in very recent work [65, Theorem 1], a rather unusual, slower than any
power scaling bound was obtained for a singular perturbation of the Tartar square.
The Tartar square, also denoted as T4, is a well-known set in matrix space that was
discovered in different contexts (see [1, 12, 60, 69, 74]). It falls into the framework
of (4) with m = 4, i.e., T4 = {A1, . . . , A4} with four specific, pairwise not rank-
one connected matrices A1, . . . , A4 ∈ R

2×2
sym . For the Tartar square, a dichotomy

between rigidity of exact solutions and approximate solutions, which is related to
the dichotomy outlined in Sect. 1.1, is known to exist (see, for instance, the survey
on this in [55]): While exact solutions to ∇u ∈ T4 are rigid in the sense that they
must already have constant gradients, approximate solutions, i.e., sequences for
which dist(∇uk, T4)→ 0 in measure, need not be rigid in the sense that there exist
sequences of approximate solutions (∇uk)k such that no subsequences converge to
one of the constant gradient deformations ∇u ∈ T4. In [56], it was even proved that
any open perturbation of the Tartar square permits wild convex integration solutions.
In addition to these aspects directly related to the Tartar square, the Tartar square
also plays a major, auxiliary role in convex integration constructions [33, 57, 69, 72],
the analysis of Morrey’s conjecture, and the calculus of variations in general [39,
44, 71] and in the study of compensated compactness [74]. Furthermore, siblings
of it, such as certain geometrically linearized T3 structures, were discovered in the
context of the physically relevant cubic-to-monoclinic phase transformation [17].
These consist of three symmetric, pairwise not symmetrized rank-one connected
3 × 3 matrices and enjoy similar properties as the Tartar square. While the scaling
result from [65] thus does not directly fit into the exact framework from [66], it
could provide an important first step into such a direction.

In general, however, the scaling for more general sets in matrix space displaying
a dichotomy between rigidity and flexibility remains an outstanding problem at the
moment.

(Q8) Lower scaling bounds. Determine lower scaling bounds for models for
shape-memory alloys displaying the dichotomy between rigidity and flexibility.

4 Simulations

In order to eventually make progress towards the physically most relevant question
(Q1) from Sect. 1.2 and in order to compare the mathematically constructed
solutions with experiments, in [66] also numerical implementations of the “wild”
convex integration solutions were provided and discussed. These strongly display
fractal behaviour with (up to numerically evaluable scales) power law length
distributions, see Fig. 4 and the discussion in [66, Section 3].

Also various experimental systems display very complex structures upon nucle-
ation. Here observations as in [41] are promising systems of comparison. Moreover,
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Fig. 4 A simulation of a (finite iteration of a) wild microstructure for the geometrically linearized,
two-dimensional hexagonal-to-rhombic phase transformation (within the diamond-shaped domain)
based on the analysis and numerics from [66]. This phase transformation has three variants of
martensite that here are colour-coded as yellow, magenta, and cyan. One clearly observes fractal
behaviour. The greenish colour at the exterior of the diamond corresponds to the chosen boundary
datum that lies in the interior of the lamination convex hull and thus in none of the wells. Colour
versions of the figure are available online

in the context of (self-organized) nucleation dynamics that display strongly inter-
mittent behaviour, convex integration could potentially play a physically relevant
role (see [5, 13, 35, 75] for models on this). The latter models may further be of
intrinsic mathematical interest in understanding “probabilistic (average) variants”
of convex integration algorithms. However, in spite of these first promising initial
experimental and theoretical results, major further analysis and experiments seem
necessary.

Acknowledgments A.R. gratefully acknowledges that part of the research was funded through
SPP 2256 of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—
project ID 441068247. She is also supported by the Heidelberg STRUCTURES Excellence Cluster,
which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy EXC 2181/1 - 390900948.

References

1. R.J. Aumann, S. Hart, Bi-convexity and bi-martingales. Israel J. Math. 54(2), 159–180 (1986)
2. J.M. Ball, A version of the fundamental theorem for young measures, in PDEs and Continuum

Models of Phase Transitions (Springer, 1989), pp. 207–215
3. J.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy, in Analysis and

Continuum Mechanics (Springer, 1989), pp. 647–686
4. J.M. Ball, R.D. James, Proposed experimental tests of a theory of fine microstructure and the

two-well problem. Philos. Trans. R. Soc. Lond. A 338(1650), 389–450 (1992)
5. J.M. Ball, P. Cesana, B. Hambly, A probabilistic model for martensitic avalanches, in MATEC

Web of Conferences, vol. 33 (EDP Sciences, 2015), p. 02008
6. P. Bella, M. Goldman, Nucleation barriers at corners for a cubic-to-tetragonal phase

transformation. Proc. R. Soc. Edinb. A Math. 145(4), 715–724 (2015)
7. K. Bhattacharya, Microstructure of Martensite: Why It Forms and How It Gives Rise to the

Shape-memory Effect Oxford Series on Materials Modeling (Oxford University Press, 2003)
8. T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann.

Math. 189(1), 101–144 (2019)



Rigidity and Flexibility in the Modelling of Shape-Memory Alloys 513

9. T. Buckmaster, V. Vicol, Convex integration and phenomenologies in turbulence. EMS Surv.
Math. Sci. 6(1), 173–263 (2020)

10. A. Capella, F. Otto, A rigidity result for a perturbation of the geometrically linear three-well
problem. Commun. Pure Appl. Math. 62(12), 1632–1669 (2009)

11. A. Capella, F. Otto, A quantitative rigidity result for the cubic-to-tetragonal phase transition
in the geometrically linear theory with interfacial energy. Proc. R. Soc. Edinb. A Math. 142,
273–327 (2012). https://doi.org/10.1017/S0308210510000478

12. E. Casadio-Tarabusi, An algebraic characterization of quasi-convex functions. Ricerche Mat.
42(1), 11–24 (1993)

13. P. Cesana, B. Hambly, A probabilistic model for interfaces in a martensitic phase transition.
arXiv preprint arXiv:1810.04380 (2018)

14. P. Cesana, M. Porta, T. Lookman, Asymptotic analysis of hierarchical martensitic microstruc-
ture. J. Mech. Phys. Solids 72, 174–192 (2014)

15. P. Cesana, F. Della Porta, A. Rüland, C. Zillinger, B. Zwicknagl, Exact constructions in the
(non-linear) planar theory of elasticity: From elastic crystals to nematic elastomers. Arch.
Rational Mech. Anal. 237(1), 383–445 (2020)

16. A. Chan, S. Conti, Energy scaling and domain branching in solid-solid phase transitions, in
Singular Phenomena and Scaling in Mathematical Models (Springer, 2014), pp. 243–260

17. I.V. Chenchiah, A. Schlömerkemper, Non-laminate microstructures in monoclinic-I martensite.
Arch. Rational Mech. Anal. 207(1), 39–74 (2013)

18. M. Chlebík, B. Kirchheim, Rigidity for the four gradient problem. J. Reine Angew. Math. 551,
1–9 (2002)

19. P. Constantin, E.S. Titi, F. Weinan, Onsager’s conjecture on the energy conservation for
solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207 (1994)

20. S. Conti, Quasiconvex functions incorporating volumetric constraints are rank-one convex. J.
Math. Pures Appl. 90(1), 15–30 (2008)

21. S. Conti, F. Maggi, Confining thin elastic sheets and folding paper. Arch. Rational Mech. Anal.
187(1), 1–48 (2008)

22. S. Conti, F. Theil, Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal. 178(1),
125–148 (2005)

23. S. Conti, B. Zwicknagl, Low volume-fraction microstructures in martensites and crystal
plasticity. Math. Models Methods Appl. Sci. 26(07), 1319–1355 (2016)

24. S. Conti, G. Dolzmann, B. Kirchheim, Existence of Lipschitz minimizers for the three-well
problem in solid-solid phase transitions. Ann. Inst. Henri Poincare (C) Non Linear Anal. 24(6),
953–962 (2007)

25. S. Conti, C. De Lellis, L. Székelyhidi, h-principle and rigidity for C1,α isometric embeddings,
in Nonlinear Partial Differential Equations (Springer, 2012), pp. 83–116

26. S. Conti, J. Diermeier, B. Zwicknagl, Deformation concentration for martensitic microstruc-
tures in the limit of low volume fraction. Calc. Variations Partial Differential Equations 56(1),
16 (2017)

27. S. Conti, M. Klar, B. Zwicknagl, Piecewise affine stress-free martensitic inclusions in planar
nonlinear elasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2203), 20170235 (2017)

28. S. Conti, J. Diermeier, D. Melching, B. Zwicknagl, Energy scaling laws for geometrically
linear elasticity models for microstructures in shape memory alloys. ESAIM Control Optim.
Calc. Variations 26, 115 (2020)

29. B. Dacorogna, Direct Methods in the Calculus of Variations, vol. 78 (Springer, 2007)
30. B. Dacorogna, P. Marcellini, Implicit Partial Differential Equations, vol. 37 (Springer Science

& Business Media, 2012)
31. B. Dacorogna, P. Marcellini, E. Paolini, Lipschitz-continuous local isometric immersions: rigid

maps and origami. J. Math. Pures Appl. 90(1), 66–81 (2008)
32. B. Dacorogna, P. Marcellini, E. Paolini, Origami and partial differential equations. Not. AMS

57(5), 598–606 (2010)
33. C. De Lellis, L. Székelyhidi Jr, The Euler equations as a differential inclusion. Ann. Math.,

170(3), 1417–1436 (2009)

https://doi.org/10.1017/S0308210510000478


514 A. Rüland

34. F. Della Porta, A. Rüland, Convex integration solutions for the geometrically nonlinear two-
well problem with higher Sobolev regularity. Math. Models Methods Appl. Sci. 30(03), 611–
651 (2020)

35. F. Della Porta, A. Rüland, J.M. Taylor, C. Zillinger, On a probabilistic model for martensitic
avalanches incorporating mechanical compatibility. Nonlinearity 34(7), 4844–4896 (2021)

36. A. DeSimone, Energetics of fine domain structures. Ferroelectrics 222(1), 275–284 (1999)
37. G. Dolzmann, S. Müller, The influence of surface energy on stress-free microstructures in

shape memory alloys. Meccanica 30, 527–539 (1995). https://doi.org/10.1007/BF01557083
38. G. Dolzmann, S. Müller, Microstructures with finite surface energy: the two-well problem.

Arch. Rational Mech. Anal. 132, 101–141 (1995)
39. D. Faraco, L. Székelyhidi, Tartar’s conjecture and localization of the quasiconvex hull in R

2×2.
Acta Math. 200(2), 279–305 (2008)

40. M.L. Gromov, Convex integration of differential relations. I. Izvestiya Math. 7(2), 329–343
(1973)

41. T. Inamura, Personal communication, manuscript in preparation.
42. B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded

variation. MPI preprint (1998)
43. B. Kirchheim, Rigidity and geometry of microstructures, in MPI-MIS Lecture Notes (2003)
44. B. Kirchheim, S. Müller, V. Šverák, Studying nonlinear PDE by geometry in matrix space, in

Geometric Analysis and Nonlinear Partial Differential Equations (Springer, 2003), pp. 347–
395

45. Y. Kitano, K. Kifune, HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy
39(1–4), 279–286 (1991)

46. S. Klainerman, On Nash’s unique contribution to analysis in just three of his papers. Bull. Am.
Math. Soc. 54(2), 283–305 (2017)

47. H. Knüpfer, R.V. Kohn, Minimal energy for elastic inclusions. Proc. R. Soc. A Math. Phys.
Eng. Sci. 467(2127), 695–717 (2011)

48. H. Knüpfer, F. Otto, Nucleation barriers for the cubic-to-tetragonal phase transformation in
the absence of self-accommodation. ZAMM J. Appl. Math. Mech. [Z. Angew. Math. Mech.]
99(2), e201800179 (2019)

49. H. Knüpfer, R.V. Kohn, F. Otto, Nucleation barriers for the cubic-to-tetragonal phase
transformation. Commun. Pure Appl. Math. 66(6), 867–904 (2013)

50. R.V. Kohn, Energy-driven pattern formation, in International Congress of Mathematicians,
vol. 1 (European Mathematical Society, Zürich, 2007), pp. 359–383

51. R.V. Kohn, S. Müller, Branching of twins near an austenite—twinned-martensite interface.
Philos. Mag. A 66(5), 697–715 (1992)

52. R.V. Kohn, S. Müller, Surface energy and microstructure in coherent phase transitions.
Commun. Pure Appl. Math. 47(4), 405–435 (1994)

53. C. Manolikas, S. Amelinckx, Phase transitions in ferroelastic lead orthovanadate as observed
by means of electron microscopy and electron diffraction. I. Static observations. Physica Status
Solidi (A) 60(2), 607–617 (1980)

54. C. Manolikas, S. Amelinckx, Phase transitions in ferroelastic lead orthovanadate as observed
by means of electron microscopy and electron diffraction. II. Dynamic Observations. Physica
Status Solidi (A) 61(1), 179–188 (1980)

55. S. Müller, Variational models for microstructure and phase transitions, in Calculus of
Variations and Geometric Evolution Problems (Springer, 1999), pp. 85–210

56. S. Müller, V. Šverák, Convex integration with constraints and applications to phase transitions
and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999). https://doi.org/10.
1007/s100970050012

57. S. Müller, V. Šverák, Convex integration for Lipschitz mappings and counterexamples to
regularity. Ann. Math. 157(3), 715–742 (2003)

58. S. Müller, M.A. Sychev, Optimal existence theorems for nonhomogeneous differential
inclusions. J. Funct. Anal. 181(2), 447–475 (2001)

https://doi.org/10.1007/BF01557083
https://doi.org/10.1007/s100970050012
https://doi.org/10.1007/s100970050012


Rigidity and Flexibility in the Modelling of Shape-Memory Alloys 515

59. S. Müller, M.O. Rieger, V. Šverák, Parabolic systems with nowhere smooth solutions. Arch.
Rational Mech. Anal. 177(1), 1–20 (2005)

60. V. Nesi, G.W. Milton, Polycrystalline configurations that maximize electrical resistivity. J.
Mech. Phys. Solids 39(4), 525–542 (1991)

61. F. Otto, Pattern formation and scaling laws in materials science. https://www.ima.umn.edu/
2011-2012/SW6.21-29.12/12380. Lecture at the NSF PIRE Summer School for Graduate
Students: New frontiers in multiscale analysis and computing for materials, Minneapolis
(2012)

62. P. Pedregal, Parametrized Measures and Variational Principles, vol. 30 (Birkhauser, Basel,
1997)

63. A. Rüland, The cubic-to-orthorhombic phase transition: Rigidity and non-rigidity properties
in the linear theory of elasticity. Arch. Rational Mech. Anal. 221(1), 23–106 (2016)

64. A. Rüland, A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition
in the geometrically linear theory of elasticity. J. Elasticity 123(2), 137–177 (2016)

65. A. Rüland, A. Tribuzio, On the energy scaling behaviour of a singularly perturbed Tartar
square. Arch. Ration. Mech. Anal. 243(1), 401-431 (2022)

66. A. Rüland, J.M. Taylor, C. Zillinger, Convex integration arising in the modelling of shape-
memory alloys: some remarks on rigidity, flexibility and some numerical implementations. J.
Nonlinear Sci., 29(5), 2137–2184 (2019)

67. A. Rüland, C. Zillinger, B. Zwicknagl, Higher Sobolev regularity of convex integration
solutions in elasticity: The Dirichlet problem with affine data in int(Klc). SIAM J. Math.
Anal. 50(4), 3791–3841 (2018)

68. A. Rüland, C. Zillinger, B. Zwicknagl, Higher Sobolev regularity of convex integration
solutions in elasticity: The planar geometrically linearized hexagonal-to-rhombic phase trans-
formation. J. Elasticity (2019). https://doi.org/10.1007/s10659-018-09719-3

69. V. Scheffer, Regularity and irregularity of solutions to nonlinear second-order elliptic systems
of partial differential-equations and inequalities. Thesis (Ph.D.)-Princeton University (1974),
116 pp.

70. V. Šverák, New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119(4), 293–
300 (1992)

71. V. Šverák, On Tartar’s conjecture, in Annales de l’IHP Analyse non linéaire, vol. 10 (1993),
pp. 405–412

72. L. Székelyhidi Jr, The regularity of critical points of polyconvex functionals. Arch. Rational
Mech. Anal. 172(1), 133–152 (2004)

73. L. Székelyhidi Jr, From isometric embeddings to turbulence, in HCDTE Lecture Notes. Part
II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, vol. 7, 63 (2012)

74. L. Tartar, Some remarks on separately convex functions, in Microstructure and Phase
Transition (Springer, 1993), pp. 191–204

75. G. Torrents, X. Illa, E. Vives, A. Planes, Geometrical model for martensitic phase transitions:
Understanding criticality and weak universality during microstructure growth. Phys. Rev. E
95(1), 013001 (2017)

https://www.ima.umn.edu/2011-2012/SW6.21-29.12/12380
https://www.ima.umn.edu/2011-2012/SW6.21-29.12/12380
https://doi.org/10.1007/s10659-018-09719-3

	Preface
	Acknowledgements
	Contents
	About the Editors
	Part I Research Papers
	Interaction Between Oscillations and Singular Perturbations in a One-Dimensional Phase-Field Model
	1 Introduction
	2 Setting of the Problem and Statement of the Main Result
	3 Preliminary Results
	3.1 The Optimal-Profile Problem

	4 Oscillations on a Larger Scale than the Singular Perturbation
	5 Oscillations on the Same Scale as the Singular Perturbation
	6 Oscillations on a Smaller Scale than the Singular Perturbation
	7 Limit Analysis of m
	References

	Grain Growth and the Effect of Different Time Scales
	1 Introduction
	2 Review of the Models with Single Triple Junction
	3 Extension to Grain Boundary Network
	4 Experiments and Numerical Simulations
	4.1 Experimental Results: Grain Boundary Character Distribution
	4.2 Numerical Experiments

	5 Conclusion
	References

	Regularity of Minimizers for a General Class of Constrained Energies in Two-Dimensional Domains with Applications to Liquid Crystals
	1 Introduction.
	2 Continuity and H2loc Estimates for Minimizers in Two-Dimensional Domains
	3 Proof of Theorem 1
	4 Applications to Liquid Crystals
	References

	On Some Models in Radiation Hydrodynamics
	1 Introduction
	2 Compressible Viscous Radiation Fluid
	2.1 Hypotheses and Main Results
	2.2 Constitutive Equations
	2.3 Weak Formulation
	2.4 Existence Result
	2.5 Semi-Relativistic Models

	3 Inviscid Case
	3.1 Euler System with Damping Term
	3.1.1 Hypotheses

	3.2 Non-isentropic Euler–Maxwell's System Coupled with Transport of Radiation

	References

	Poro-Visco-Elasticity in Biomechanics: Optimal Control
	1 Introduction
	2 Poro-Visco-Elasticity: Well-posedness Analysis
	3 Optimal Control Problems: Well-Posedness
	4 Necessary Optimality Condition
	4.1 Adjoint System
	4.2 First Order Necessary Optimality Conditions

	References

	Global Gradient Estimate for a Divergence Problem and Its Application to the Homogenization of a Magnetic Suspension
	1 Introduction
	2 Formulation
	2.1 Notation
	2.2 Setup of the Problem

	3 Statement and Discussion of the Main Result
	4 Interior Estimates
	5 Boundary Estimates, Green Functions, Dirichlet Correctors, and Proof of Main Theorem
	6 Application to Magnetic Suspensions
	7 Conclusions
	Appendix
	References

	On Static and Evolutionary Homogenization in Crystal Plasticity for Stratified Composites
	1 Introduction
	1.1 Notation

	2 Minimizers of the Static Homogenized Limit Problem
	3 Homogenization via Evolutionary -Convergence
	3.1 The Case s=e2
	3.2 The Case s=e1

	References

	On the Prescription of Boundary Conditions for Nonlocal Poisson's and Peridynamics Models
	1 Introduction and Motivation
	2 Preliminaries
	2.1 The Nonlocal Poisson's Problem
	2.2 The Linear Peridynamic Solid Model

	3 Proposed Strategies
	3.1 Dirichlet-to-Dirichlet Strategy
	3.2 Dirichlet-to-Neumann Strategy

	4 Convergence to the Local Limit
	5 Numerical Tests
	5.1 Consistency Tests for the Nonlocal Poisson's Equation
	5.2 Convergence Tests for the Nonlocal Poisson's Equation
	5.3 Numerical Tests for the LPS Model

	6 Conclusion
	References

	Existence of Global Solutions for 2D Fluid–Elastic Interaction with Small Data
	List of Definitions
	1 Introduction
	2 Local Existence of Solutions
	3 Existence of Global Solutions for Small Data
	Appendix
	Definition of Spaces and Auxiliary Estimates
	Estimates on (u·) u
	Approximation of Data

	References

	Doubly Nonlocal Cahn–Hilliard Equations
	1 Introduction
	2 Nonlocal Vector Calculus
	3 Asymptotic Behavior of Solutions to Doubly Nonlocal Cahn–Hilliard Systems
	3.1 Decay Estimates for the Linearized System with Time-Dependent Coefficients

	4 Steady-State Solutions
	4.1 Well-posedness of Solutions
	4.2 Regularity of Steady-State Solutions in the Nonlinear Settings
	4.3 Higher Integrability of Steady-State Solutions

	5 Conclusions and Future Directions
	References

	3D Image-Based Stochastic Micro-structure Modelling of Foams for Simulating Elasticity
	1 Introduction
	2 3D Image Analysis for Foams
	2.1 Random Closed Sets and Their Characteristics
	2.2 Image Analysis

	3 Random Laguerre Tessellations and Fitting Them
	3.1 Laguerre Tessellations Generated by Random Sphere Packings
	3.2 Fitting a Tessellation Model

	4 Numerical Simulation of Elastic Properties
	4.1 Effective Properties of Micro-Structured Materials
	4.2 Lippmann–Schwinger Fast Fourier Transform-Based Solver

	5 Application Example
	5.1 Material
	5.2 Image Analysis and Model Fit
	5.3 Prediction of Mechanical Properties

	6 Conclusion
	References

	Machine Learning for Failure Analysis: A Mathematical Modelling Perspective
	1 Introduction
	2 Survival Analysis
	3 Machine Learning
	3.1 Discriminative Machine Learning
	3.1.1 The Algorithms of Machine Learning
	3.1.2 Evaluating a Machine Learning Model 
	3.1.3 Under-fitting and Over-fitting

	3.2 Generative Machine Learning

	4 Use Cases
	4.1 Regression Models
	4.1.1 Random Forest Regression
	4.1.2 Survival Analysis
	4.1.3 Random Survival Forests
	4.1.4 Neural Networks

	4.2 Classification Models
	4.2.1 Support Vector Machines
	4.2.2 Neural Networks

	4.3 Anomaly Detection
	4.4 Generative Models
	4.4.1 Naïve Bayes
	4.4.2 Bayesian Networks


	5 Conclusions
	References

	Invertibility of Orlicz–Sobolev Maps
	1 Introduction
	2 Notation
	3 Orlicz–Sobolev Spaces
	3.1 Traces

	4 Some Definitions and Preliminary Results
	4.1 Degree for Orlicz–Sobolev Maps, Topological Image of a Set, and Geometric Image of a Set

	5 The Class of Admissible Functions
	5.1 Extension Properties
	5.2 Regular Functions in A(Ω)
	5.3 Some Properties of Orientation-Preserving Functions in A(Ω): Boundedness and Global Invertibility

	6 Existence of Minimizers
	References

	Global Existence of Solutions for the One-Dimensional Response of Viscoelastic Solids Within the Context of Strain-Limiting Theory
	1 Introduction
	2 Preliminaries
	2.1 Local Existence for the Displacement

	3 Some Conventions
	4 Global Existence
	4.1 Energy Decay

	5 Revisiting the Smallness Assumptions
	References

	GENERIC for Dissipative Solids with Bulk–Interface Interaction
	1 Introduction
	2 The GENERIC Formalism for Closed Systems
	2.1 Hamiltonian Systems (Q,E,J)
	2.2 Onsager Systems (Q,S,K) (Gradient Systems)
	2.3 GENERIC Systems (Q,E,S,J,K)

	3 GENERIC Formalism for Bulk–Interface Systems
	3.1 Functional Calculus for Bulk–Interface Systems: Notation, Differentials, and *-Multiplication in the Setup of Definition1
	3.2 Direct Implications for Geometric Structures
	3.3 Weak Form of GENERIC as a Formalism for Bulk–Interface Systems
	3.4 Tools for Dissipative Solids with Bulk–Interface Interaction

	4 Delamination Processes in Thermo-viscoelastic Materials
	4.1 Typical Choices for Interfacial Mechanical Energies for Delamination
	4.2 Typical Choices of Dissipation Potentials for Delamination

	References


	Part II Review Papers
	Phase Separation in Heterogeneous Media
	1 Introduction
	2 Phase Field Model
	2.1 Sharp Interface Limit
	2.2 Bounds on the Anisotropic Surface Tension σ
	2.2.1 A Geometric Framework
	2.2.2 Structure of Minimizers of the Cell Formula
	2.2.3 The Planar Metric Problem
	2.2.4 Bounds on the Anisotropic Surface Tension

	2.3 Open Problems
	2.3.1 Different Scales
	2.3.2 Sharpness of Bounds and Inverse Homogenization


	References

	Some Recent Results on 2D Crystallization for Sticky Disc Models and Generalizations for Systems of Oriented Particles
	1 Introduction
	2 Preliminaries on Planar Graphs
	3 The Sticky Disc Model: Minimizers and Quasi-minimizers
	3.1 Minimizers of the Heitmann–Radin Sticky Disc Model: Single Crystals
	3.2 Quasi-minimizers of the Heitmann–Radin Model: Polycrystalline Structures

	4 Vectorial Crystallization and Collective Behavior
	References

	Pattern Formation for Nematic Liquid Crystals—Modelling, Analysis, and Applications
	1 Introduction
	2 The Landau–de Gennes Theory
	3 Benchmark Example
	4 Nematic Equilibria on 2D Polygons
	5 Effects of Geometrical Anisotropy
	6 Effects of Elastic Anisotropy
	7 NLC Solution Landscapes on a Hexagon
	8 Conclusions and Discussions
	9 Supplement: Numerical Methods
	References

	On Applications of Herglotz-Nevanlinna Functions in Material Sciences, I: Classical Theory and Applications of Sum Rules 
	1 Introduction
	2 Mathematical Background
	2.1 Definition and First Examples
	2.2 Integral Representation
	2.3 Boundary Behavior
	2.4 Subclasses
	2.5 Other Representations
	2.5.1 Operator Representations
	2.5.2 Exponential Representation

	2.6 Passive Systems
	2.7 Asymptotic Behavior
	2.8 Matrix- and Operator-Valued Herglotz-Nevanlinna Functions

	3 Applications
	3.1 Sum Rules and Physical Bounds in Electromagnetics
	3.2 Physical Bounds via Convex Optimization

	References

	On Applications of Herglotz–Nevanlinna Functions in Material Sciences, II: Extended Applications and Generalized Theory 
	1 Introduction
	2 Applications
	2.1 Effective Properties of Two-Phase Composite Materials
	2.1.1 Effective Properties of Composite Materials and Bounds by Using Theory of the Stieltjes Function
	2.1.2 IRF for Permeability Tensors with Positive Matrix-Valued Measures

	2.2 Numerical Treatment of Memory Terms in the Modeling of Materials
	2.3 Broadband Passive Quasi-Static Cloaking
	2.4 Hamiltonian Structure of Time Dispersive and Dissipative Systems

	3 More General Classes of Functions
	3.1 Quasi-Herglotz Functions
	3.2 Generalized Nevanlinna Functions
	3.3 Pseudo-Nevanlinna Functions
	3.4 Functions in Several Variables
	3.4.1 Loewner Functions
	3.4.2 Herglotz–Nevanlinna Functions


	4 Summary
	References

	Rigidity and Flexibility in the Modelling of Shape-Memory Alloys
	1 Introduction
	1.1 Shape-Memory Alloys: The Phenomenological Theory, Differential Inclusions, Rigidity, and Flexibility
	1.2 Main Questions

	2 Flexibility
	3 Rigidity
	4 Simulations
	References



