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Preface

While equilibrium statistical mechanics and thermodynamics belong to a well-settled
area of the physical science, their non-equilibrium counterpart, and especially the
fluctuation kinetics, are still the object of intense research activities and are in rapid
development. Though the theory of small fluctuations out of equilibrium and of
linear response is well established, large fluctuations and, more generally, far-from-
equilibrium non-linear regimes lack a general theory. Moreover, even very basic
concepts of the equilibrium theory, like temperature, entropy, and other thermody-
namic potentials continue to be under debate. The application domain of the non-
equilibrium thermodynamics and fluctuation kinetics permanently grows. It expands
beyond systems and phenomena, traditional for statistical thermodynamics, such as
fluid mechanics, physics of plasma, atmospheric science etc. and engulfs new areas
of science. Granular and active matter, non-linear systems, dusty plasma, high-Q
resonators, networks and even linguistic questions may be mentioned among the
most prominent examples.

Fluctuation-dissipation theorem (FDT) and corresponding fluctuation-dissipation
relations provide a common background to these diverse phenomena. FDT, initially
discovered for equilibrium systems, is associated with such outstanding scientists
as Einstein, Landau, Onsager, Kubo and other. Later FDT has been generalized for
non-equilibrium processes. Professor Vjacheslav (Slava) Belyi greatly contributed
to the theory of non-equilibrium fluctuations, including the application of the Callen-
Welton fluctuation-dissipation theorem to non-equilibrium systems and its general-
ization. Slava Belyi was actively working on the elaboration of a framework of non-
equilibrium thermodynamics, thus providing the basis for the future development of
the field.

This book comprising the collection of articles by leading experts in non-
equilibrium thermodynamics and fluctuation kinetics is dedicated to the memory
of Slava Belyi, who passed away unexpectedly on May 20, 2020. It contains review
papers on hot topics from the field with some personal dedications from Slava’s
colleagues.

The book starts with a short biographic in Chap. 1 describing the main stages
of Slava’s scientific career. The notes of this section have been written by his son,
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Andrey Belyi, and friends with whom Slava collaborated during his life. They reflect
both the scientific and personal life of Slava and may be interesting for a “western”
reader as they enlighten some peculiar aspects of the scientific research.

Chapter 2 of the book is devoted to the general problems of non-equilibrium ther-
modynamics and fluctuation kinetics. It offers to the reader a review of fluctuation-
dissipation relations (FDR), from the first formulations due to Einstein and Onsager,
to the recent developments in the framework of stochastic thermodynamics of non-
equilibrium systems. The general theory is demonstrated in the context of spin
models, granular media and active matter. The nonlinear flux-force relations for
the systems, out of Onsager’s region, that respect the existing thermodynamic theo-
rems for far-from-equilibrium systems are also considered. The reader will, then,
find a discussion about the relationship between deterministic dynamical systems
and their stochastic description when noise is included. The equivalence relation-
ship between the resulting stochastic differential systems and the Fokker-Planck
equations is compared to a recent result establishing an equivalence between the
deterministic descriptions of dynamical systems and urn random processes. Next,
the book explores the dynamics of an automaton on spatial lattices with spins at their
nodes. The interactions between the automaton and the spins modify the latter and
generate a complex trajectory that is equivalent to the functioning of a controller
in a Turing machine. This illustrates an interesting link between non-equilibrium
statistical mechanics and computer science. The most recent theoretical techniques
in the field are also illustrated in this chapter. For instance, the application of the
non-linear eigenvalue problem of an effective Hamiltonian in the complex energy
plane allowing to explore unstable dynamical systems.

Then follows Chap. 3 which addresses the kinetic theory of far-from-equilibrium
processes. Here the very popular theoretical tool of this area—the Boltzmann equa-
tion—is discussed in detail, as well as its application to the ballistic aggrega-
tion phenomena and to transport properties of granular mixtures. The derivation
of Navier—Stokes equations and the corresponding transport coefficients is given.
Different forms of the collision integral of the Boltzmann equations are consid-
ered. These range from the collision integral for granular gases, to that describing
electrostatic interactions in dusty plasma. For the latter systems the characteristics
of large-scale non-equilibrium fluctuations are derived from the first principles. In
this section, non-equilibrium phase transitions occurring in active matter are also
considered. Scaling phenomena and the similarity between the phase transitions in
equilibrium and far-from-equilibrium systems are discussed.

The last Chap. 4 focuses on fluctuations and kinetics in non-linear and non-
equilibrium systems. Here important for applications systems are considered such as
dissipative solitons and frequency comb generation in both scalar and vectorial high-
Q resonators. In particular, those simple devices have revolutionized many fields of
science and technology, such as high-precision spectroscopy, metrology and photonic
analog-to-digital conversion. Then the generalized entropy-production principle and
the FDT relations are analysed in the context of their application to nanomaterials,
such as carbon nanotubes and graphene films. Furthermore, a stochastic equation
that describes the dynamics of optical vortices formation in liquid crystals cells is
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discussed. The statistical properties of the emerging vortices are determined by the
properties of non-equilibrium fluctuations. The reported experimental results are in
fair agreement with the theoretical findings. The thermodynamic instability of the
atmospheric boundary layer is analysed in this chapter in terms of the non-equilibrium
thermodynamics of open systems. This problem is very important for application,
as it is related to earthquakes forecast. Finally, kinetic methods are applied to such
a problem as information spread in co-evolutionary networks. Real networks from
everyday life are addressed and the efficiency of the kinetic method is demonstrated.

We believe that this book would be useful both to the experts in the field and for
newcomers. Moreover, we believe that with this book we express our gratitude for
Slava Belyi’s contribution to the area of science, to which he devotedly served all his
life.

Bruxelles, Belgium Léon Brenig
Leicester, UK Nikolai Brilliantov
Bruxelles, Belgium Mustapha Tlidi
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1 1. Veretennicoff: Towards a Productive Scientific
Collaboration Between Izmiran and the Vrije
Universiteit Brussel (1980-1991)

1.1 Yuri Lvovich Klimontovich and Radu Balescu

When Yuri Lvovich Klimontovich, professor at the Physics Department of Moscow
State University (MSU) meets Radu Balescu professor at the Université Libre de
Bruxelles (ULB) and his group in 1979-1980, Yuri Lvovich Klimontovich was a
highly respected theoretical physicist, not only in the Soviet Union but also abroad.
One of his research topics was related to the transport theory of plasma’s, i.e. ionized
gases such as the ionosphere. One of his young co-workers, Slava Belyi, was working
hard towards a Doctorate in Physics, the highest title that could be obtained at a
Russian University. Klimontovich had met Radu Balescu on several occasions and
they had become friends. Radu Balescu belonged to Ilya Prigogine’s research group
and was esteemed both for the results of his research and his kind and efficient
communication skills. It was Radu Balescu who invited Klimontovich to pay a visit
to his group, who counted new doctoral and post-doctoral students (like me!) and
new topics to explore. All the co-workers were invited to present “their” topic to
Klimontovich and have a serious discussion with him. And so I met him for the first
time in person: quite an impressive encounter! He obviously was interested in our
results. And some months later—bureaucracy is always slow—I received an official
invitation to come and visit the Academy of Science of the USSR, deliver a talk
and discover Moscow. As I was the mother of two young girls, the wife of a busy
researcher himself and a full-time academic member of staff, the only possible week
available for me was starting at the end of October 1980, the week where the children
had a holiday!

1.2 My Own Roots Are to Be Found in St. Petersburg, Russia

My name could have been Irina Vladimirovna Veretennicova. But I was born in
Antwerp in 1944 during WWII and it was not allowed to give a newborn baby a
name belonging to the enemy. And so officially I became Iréne Veretennicoff. My
father wanted me to become an authentic Belgian citizen, not a refugee. I learned to
speak French, Dutch and English, no Russian! However, once in a while, nostalgia
suddenly was invading Vladimir. Together with his friends he would empty a bottle
(or two ...) of real Russian vodka, grasp his guitar and sing romantic songs from
before the Soviet Revolution. A typical Russian soul, Slava’s type! Vladimir was
born in St. Petersburg, 1901. His mother, born Vera von Ratch, was a descendent of
the Serbian teacher who educated Peter the Great in martial arts. The Tsar appreciated
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it so much that he ennobled him, gave him the title of Prince and made him rich. My
grandmother was a real princess!

My grandfather Alexis was educated as a military civil engineer and was the chief
of staff (Chef d’Etat Major) on the top of the Tsaristic Army, before and during
WWI. Vera and Alexis had five children together, the youngest one was my father
Vladimir. They settled in Belgium after a long and dangerous journey. They had lost
all their belongings and privileges. Alexis found a job as inspector for the construction
of houses devoted to the working class in “Small Russia”, situated in Zelzate near
Ghent. Both my grandparents lived, suffered and passed away there ....

Vladimir was more fortunate: he got one of the fellowships attributed by Cardinal
Mercier to study engineering at the University of Leuven, together with a lot of
other young (and not so young!) Russian immigrants. At the end of his studies,
Vladimir was immediately engaged to work as a mechanical engineer for the brand-
new General Motors Continental factory in Antwerp. He stayed loyal to this firm
until he retired, as managing director of the reliability and quality control in the
1960s.

1.3 My Arrival in Moscow

I arrived by plane in the capital of the USSR on October 20, 1980. The contrast
with Brussels airport was impressive. Impressive were the officers at the border with
their impressive uniforms and unfriendly way to welcome the travelers. Smiling and
joking were not allowed! We had to queue and be patient. Then I identified the long
row of people expecting the travelers. I looked for Professor Klimontovich. Without
success. He was not there. However, I spotted a man in his 30-ties carrying some
flowers and waving at me. It was Slava. What a relief!

I discovered that the guests of the Academy of Sciences were treated according
to the rules of the Russian hospitality: we had a car and a chauffeur at our disposal
for the time of my stay. My room had been booked in the hotel for the guests of the
USSR Academy of Sciences. Slava had brought everything necessary to provide me
with not only a comfortable but also a festive welcome. As restaurants and shops
were rare and mostly not so attractive, we picked-nicked on the spot and made plans
for the week.

The knowledge of Slava’s French and English was sufficient to understand one
another. We visited the most touristic places in and around the town and visited
Zagorsk, a place where future orthodox priests got their education. I was impressed
by their stature and the religious beauty of the environment. We went to a ballet
performance and an opera. All of this was wonderful and I still vividly remember
the atmosphere existing in the Moscow in the late Soviet times.

But what impressed me the most was the kindness of all the people that I met
during that week. The director of [ZMIRAN, Professor Miguline invited us for lunch.
His appreciation for Slava’s work and personality was obvious. He seemed happy to
have me as a guest together with Slava. According to the terms of his invitation, a
talk was planned during my stay.
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In those times—the very early 1980—most of the modern equipment for presenta-
tions consisted in transparent slides and a retro-projector to project them. I remember
arriving well on time to check the equipment and found out that it was out of order! I
also noticed that the conference room was fully occupied by men and women, young
and old, with profiles that were not necessarily matching those of scientists. Given
the circumstances, I proposed to deliver the talk on the blackboard, a suggestion that
seemed to please the organizers and the audience. I could take the necessary time for
my presentation. I did my best.

Then the chairman thanked me—in Russian—for the “interesting seminar” and
asked the audience whether there were any questions or remarks. To my surprise
nobody reacted! I concluded that I did not properly do my job.... Fortunately, Slava
told me not to worry: the problem was that the vast majority of the audience did not
understand English! In the times of the Soviet Union orders were orders; there was
no escape when a visitor was giving a talk, whatever the subject and the language.
Even today I still feel very sorry for this misunderstanding.

1.4 Collaboration

Slava and I had an excellent scientific collaboration between 1980 and 1990 despite
the distance between our institutions and our heavy agendas. We became very good
friends. Together we produced 15 original papers largely devoted to the anomalous
transport and fluctuations in strongly inhomogeneous systems. Some of them have
been published in well-known international journals such as the “Physics of Fluids”.
In 1991, Klimontovich, Veretennicoff and Belyi received the very first and prestigious
Russian State Price. Those were the times when Slava developed an impressive
international network of friends and colleges that continued to expand until he sadly
passed away, a victim of the Coronavirus on May 20, 2020.

As to us, we lost the common scientific track in 1991. The year when Michael
Gorbachov was replaced by Boris Yeltsin. At the VUB, I had been promoted to full
professor and director of the Department of Applied Physics and Photonics not only
with a lot of interesting science but also a lot of administration and a growing number
of (foreign) students. And Slava became more and more interested in questions related
to the fluctuations in economics and social sciences inspired by Ilya Prigogine. For
instance, he was invited to join Prigogine in talks and conferences with Gorbatchev
or workshops in his field. And he became a friend of the family!

1.5 Traveling with Slava

Slava could have embraced many professions! Among those was the organization
for his friends and colleagues on short trips to the ex Soviet Republics. I will never
forget our visits to Armenia, Crimea, Georgia, Uzbekistan and so many exotic oth-
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ers. Warmhearted, intelligent, generous and also worried scientists, all were Slava’s
friends. Despite all his work and social connections, Slava was a devoted member
of the Belyi clan. The most striking example for me is the way how he supported
his son Andrei during the many difficult years leading to a doctorate obtained at the
ULB and a professorship at the University of Tallin.

He was a man of all seasons; he loved his family and friends. He loved science
and arts, traveling, cooking, singing and dancing. We have been fortunate to count
him among our friends. We shall always remember him.

2 L. Brenig

Itis through Radu Balescu and Irina Veretennicoff that I met the first time Slava Belyi
at the beginning of the year 1980. Radu Balescu, my former Ph.D. director at Brussels
Free University (ULB), was a renowned expert in Plasma Statistical Physics and a
friend of Yuri L. Klimontovitch, a well-known Russian physicist working in the same
field. As it happens, Slava Belyi had been a Ph.D. student of Y. L. Klimontovitch.
Irina Veretennicoff, who also made her Ph.D. thesis under the direction of Radu
Balescu, met Slava Belyi in Moscow where she had been invited by Klimontovitch.
In return, Slava Belyi was invited for a stay in our Department at the ULB. This is
how the Universe conspired to make me meet Slava.

Though we frequently discussed about scientific questions, I did not properly
collaborate with Slava. Our research focuses were slightly different. However, we had
common interests in non-equilibrium phenomena and, more generally, in statistical
physics. We also had vivid conversations about the political and social situation in
the Soviet Union and elsewhere in the world. Slava was not a fan of the Soviet regime
but he was realistic and managed to adapt to this situation, though, at the cost of a
perpetual and exhausting effort for keeping a decent life for his family.

Slava Belyi was a multi-gifted person. Apart from being an outstanding scientist,
he had a natural talent for singing Russian nostalgic or joyful songs that would create
an isba-in-the-taiga atmosphere. Everybody present in the assembly would soon cry
or laugh.

Slava also had a social rallying gift. Each time he was expected to come for a
visit, here in Belgium or anywhere else, there would be a sudden buzz among his
local friends. People who did not see each other for months would suddenly contact
each other and organize a welcome party for his arrival.

One of our frequent conversation topics concerned the Jewish history and culture.
Slava’s interest in this domain came from his childhood in Tashkent. He had been
living there with his parents near the Jewish quarter and, though he was from a
Russian non-Jewish family, he spent a lot of time playing with the Jewish children
of the neighborhood. He liked to say that they considered him as one of them. Along
his life, he kept many contacts and good friends from the Jewish background.

Slava was a mixture of an enthusiastic and a fatalistic person. He spoke fluently
French and his main motto was “A quoi bon?”, an expression which could translate
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Fig. 1 Viacheslav (Slava) Belyi and Nadine Galland. Photo taken in Belgium in September 1994

Fig. 2 Viacheslav (Slava) Belyi. Photo taken at Moscow University in January 2017

into English as “What’s the point?”. However, as soon as he pronounced these words
he started laughing, thereby negating the first pessimistic impression (Figs. 1 and 2).

“A quoi bon?” certainly does not apply to his life. By his creativity and his great
humanity and sense of friendship, Slava illuminated the life of many of us and will
stay in our memories forever.
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3 L. Bindler, Formerly at Belgonucleaire, Brussels, Belgium

I met Slava Belyi in May 1992 via a friend of mine, a scientist Georges Severne
from the Vrije Universiteit Brussel (VUB). We found a common ground when I
assisted his son, Andrei, still a student, in getting to Belgium via Rotary Exchange
programme. We also collaborated professionally. In the past, I worked at Belgonu-
cleair, a national nuclear fuel producer from Dessel in Belgium. Belgonucleaire was
famous for techniques it had developed in the 1970s for obtaining civil nuclear fuel
from plutonium. In 1972, the first mixed oxide fuel (MOX), using both uranium and
plutonium, was used industrially.! In 1984, Belgonucleaire, together with its French
partners, participated in the generation of a new type of MOX which could be used
for converting military-grade plutonium for civil purposes. In the early 1990s, in
the aftermath of the collapse of the Soviet Union, Belconucleaire’s interest turned
to Russia because the company was able to introduce techniques to convert Soviet
weapon-graded plutonium into energy for civil use. I introduced Slava to represen-
tatives of Belgonucleaire, who had begun its activities in Russia. At that time, my
colleagues needed a contact in Moscow who could introduce them to local industry
representatives, and who had a broad understanding of the nuclear industry. Slava
was the right person for that. In due time, the innovative MOX nuclear fuel was
introduced in Russian nuclear power plants, and a couple of years later, Russia even
generated MOX fuel itself and became an important international player in the civil
nuclear industry. We have kept a close friendship and had common personal and
professional contacts such as Andre Jaumotte, a former rector of the Free University
of Brussels (ULB) who was also acting head of the Solvay Institutes from 2003 to
2004. In turn, Slava’s collaboration with the Solvay Institutes commenced with his
close friendship with Ilya Prigogine, who had directed the Solvay Institutes for four
decades till his death in 2003. Slava Belyi was a remarkable person because of his
ability to maintain a wide range of contacts and relationships. He also helped me to
find my cousin in Moscow. My father was originally from Russia and happened to
live in Antwerp during the Bolshevik revolution. He stayed there through the after-
math whilst his brother (my uncle) lived in Moscow. The two brothers broke contact
in the 1930s because having a foreign relative could threaten the life of anyone who
lived in the Soviet Union. I grew up knowing about the existence of a female cousin I
had in Soviet Russia but had not had an opportunity to contact her. Slava just decided
to help me to find my Russian cousin, conducting a brief investigation in Moscow.
I met my cousin, Galina Bindler, thanks to Slava’s efforts. After all, I keep bright
memories about Slava as a dynamic, competent, jovial and seducing personality.

1 1.V Vilet, A. Michel, L. Bindler ‘Belgonucleaire 1990-2005’ in Histoire du nucléaire en Belgique,
1990-2005, p. 185.
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4 J.P.Boon

When Slava first came to Brussels to visit Prigogine’s group in the 1980s, I didn’t get
to know him very well. But some years later, in 2001, I invited him to participate in
a summer school that I organized at the Institute des Etudes Scientifiques in Cargese
(Corsica). When Slava arrived in Cargese and discovered the landscape and beautiful
beach, he expressed how delighted he was, saying, with his characteristic “slavish”
accent “Comme Crimee, comme Crimee!”, and as a present, he offered me a bottle
of J. P. B.’s Vodka with a picture of mine on the label. I still have the bottle which
I intended to open and share on the occasion of Slava’s next visit. The bottle is still
unopened on the shelve in my office ...

5 C.De Mol

I met Slava Belyi during one of his research visits in Belgium (I think the first one)
in the group of Professor Ilya Prigogine at the ‘Université libre de Bruxelles’ (ULB).
At the time, he mainly collaborated with Irina Veretennicoff.

We had over the years many interesting conversations about several aspects of life,
but rarely about physics since our research fields were essentially disjoint. There was
one exception: when Slava learned that I had become interested in economics, he
tried to convince me to work on some problems in econophysics that were related
to his expertise in statistical mechanics. I then bought and started studying the book
by Stanley and Mantegna “An Introduction to Econophysics”. 1 regret that these
exchanges never got concretized into some real work and collaboration.

Our conversations, which were also a good opportunity to practice the Russian
language I had learned at evening courses, developed into a genuine friendship. I
must say that Slava had a real cult for friendship. He introduced me during festive
events to some of his friends in Belgium, and he had many. He liked to gather them
around memorable uzbek plovs (lamb and rice pilaf) he cooked with enthusiasm,
using special mysterious flavouring berries which he called “berberis” and brought
along with him from Russia, until he discovered that hedges in Belgium were full of
them!

InJanuary 1991, Slava organized for me a professional visit to his research institute
“IZMIRAN” in Troitsk, south of Moscow. I discovered what a real Russian winter
was like and also experienced the lifestyle in times of “deficit” of basic goods,
including food! At the occasion of this visit, I could meet his family and I enjoyed
very much their hospitality in his home in Troitsk, as well as in Andrei Slavnov’s (his
brother-in-law) in Moscow. Slava was very proud of his family and enjoyed talking
with me about their kayaking holidays in Siberia and their stays in his datcha. One of
the greatest satisfactions of his life was that he managed to arrange that his beloved
son, Andrei, could complete his studies and then a Ph.D. in political science at ULB.
We had the great pleasure to see him more often during that period.
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During the pandemic of 2020, we regularly talked by Skype. Slava was very
worried about the growing number of Covid contaminations in Russia. Rightly so,
helas! Our last contact was by SMS during the beginning of his stay at the hospital
where he passed away.

We miss him deeply.

6 R. Gerold

Slava Belyi was a charming person, an excellent scientist and communicator and a
real friend of me for more than 20 years. He was a recognized physicist specialized
in plasma physics working at IZMIRAN, a prestigious centre for space and geo-
physics. Already during the Cold War period, he had established his first contacts
with fellow scientists in Belgium. With the collapse of the Soviet Union, restrictions
on international cooperation in research were lifted and Slava became a regular and
highly estimated scientific guest in Brussels. In order to give his son Andrei who had
finished high school in Russia an international education, he looked for families who
would host Andrei for an initial period. This way we met both in 1994 and agreed that
Andrei would stay with us for a certain time. We made friends and Andrei became
a member of our family.

At the time I was working at the Directorate General for Science, Research and
Development of the European Commission and was in charge of international coop-
eration. It was a particularly thrilling time because after the fall of the Berlin wall I
had the task to promote and manage the opening of the European Research Frame-
work Programme to Eastern European countries and the Baltic States. Our aim was
to boost scientific cooperation with these countries in view of their later membership
in the European Union.

Strengthening scientific cooperation with Russia and the other “Newly Indepen-
dent States of the Former Soviet Union” was also among the objectives pursued
by the EU at the time. This included the highly political undertaking aiming at the
conversion of military to civil research managed by the International Science and
Technology Center, an intergovernmental organization including Russia, the United
States, Japan, the EU and other countries. A more modest initiative was the setting
up of INTAS, the “International Association for the promotion of cooperation with
scientists from the independent states of the former Soviet Union”. Its aim was to pro-
mote fundamental research based on a bottom-up approach. The financing came from
the Research Framework Programme of the European Union and contributions from
its associated countries. In the practical implementation of this cooperation Slava
was of great support. He familiarized me with the structure of the Russian research
system, which was dominated by the illustrious Academy of Sciences. Slava also
helped us to establish contact with the newly established Russian Foundation of Basic
Research which became a major partner of INTAS. Slava’s role can be described as
one of honorary ambassadors.
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I recall in particular a mission in 1995 to St. Petersburg where I carried out some
onsite visits to cooperation projects co-financed by INTAS. Slava arranged a meeting
with Ludvig Faddeev, the president of the Academy of Sciences in St. Petersburg and
a visit to the prestigious Joffe Institute. We also paid a visit to a university institute
which kept historic records of dialects spoken in Siberia a century ago engraved in
wax cylinders which started to deteriorate. Thanks to the funding of INTAS, these
historic records were digitalized and preserved for future generations.

The friendship with Slava continued and every time he came to Brussels to meet
his scientific partners, he also came to our home with Andrei. Many times he took
over the kitchen to prepare his legendary dish “riz pilav” and my wife and family
still remember his charming and heart-warming presence.

In 2015, we were Slava’s guests in Moscow. He put us up in his new flat and
together with his wife Ludmilla, his family and his friends we celebrated Slava’s
70th birthday. We spent a delightful day at his datcha. A particular highlight was a
very generous invitation by Andrei to a cruise of several days on the Wolga river
together with Slava. We retain unforgettable impressions of the vast countryside and
of the very friendly Russian families traveling with us on the boat.

Our last meeting with Slava was in 2017 when he spent a week with us in our datcha
in Brandenburg together with his grandson. Despite suffering from health problems
that he played down as usual, Slava was in a good mood and still very engaged in
a dispute about a scientific publication. The corona pandemic interrupted all further
personal contacts, but we remained in touch via the internet and occasionally received
humorous WhatsApp messages often addressing political issues. We were completely
shaken up when we heard in May 2020 about his Coronavirus infection and very
soon thereafter his passing away.

Our family will keep Slava in lasting memory as an extraordinary and charming
personality who became a close friend whom we sincerely miss.

Rainer Gerold, November 2021.

7 J. Wallenborn

More than a collaboration

Slava was not only a colleague, above all he was a friend.

I became acquainted with his family in the small apartment they inhabited in
Troitsk, a small town near Moscow where is also situated IZMIRAN, the research
institute at which he was affiliated. His wife Lucia was very welcoming and made
efforts to make my stay pleasant despite the often difficult situation and the difficulties
in finding food at that time. Their children, Nusha and Andrei were still at school.
Also, I had the opportunity to meet Slava’s parents who lived in Troitsk too. Later
on, I went during weekends to the datcha he had just acquired, a piece of ground
on which he build a traditional wooden house. He drove his family there, first in
the gigantic Volga, after in the relatively small Golf, cars he bought in Belgium and
Lucia cultivated a pleasant vegetable garden.



In Memoriam Professor Viacheslav (Slava) Belyi (1945-2020) 13

The first time [ came to Troitsk was, with Léon Brenig, in 1989. At this occasion we
visited Izmiran—of course—but Slava guided us to Moscow: Kremlin, Red Square,
Moskwa and Arbat street, where the number of people was impressive due to the
perestroika that was in full swing. There was an unexpected wind of freedom. In
contrast, we went silently sightseeing in the surrounding country between Troitsk
and Moscow, thanks to a car provided by the Academy of Sciences: Slava mistrusted
the driver and was afraid of the words that Léon and I might say.

Slava was a very good guide. He was still a better travel agent. Several times, he
took advantage of one of my work stays to organize a nice trip through the USSR.
We were in St. Petersburg twice, including once with my wife and Nusha, Slava’s
daughter. Another time, we went to Kiev by train for a scientific meeting on statistical
physics. The welcome music on our arrival at the destination station was impressive.
But there I saw the difference in treatment between Soviet citizens and foreigners:
at the hotel, Slava received a small room in the attic while I received a comfortable
one.

The most extraordinary travel led us to Uzbekistan. We went by train—two days
and three nights—with my wife and the young Andrei. In Samarcand we were
received by the vice-rector of the university and his wife in traditional dress served
us. After breakfast, starting with fruits and ending with meat and soup, the vice-rector
went to cotton fields where students were working and his wife, no more servant,
dressed herself accidentally to guide us to the university where she was a professor.

In Bukhara, the rector himself welcomed us. After a visit to the university, he said
he wanted to invite the rector of the Brussels university to which I belong. When he
learned out that this rector was a woman, he said, “Too bad, but it doesn’t matter.
She will be invited”. Then we were the honored guests of a wedding. My wife was
the only woman at the men’s table; even the just married girl was confined to the
women’s room. We have given many toasts to the Uzbek-Belgian friendship. Finally,
as we were a little late for the train, the rector drove us to the station platform with
a sound of the horn to chase away the teeming travelers.

Slavarepeatedly told me that T had nothing to prepare, so in Tashkent I gave without
preparation a seminar on the transport properties of gases. Fortunately, the audience
was not interested, because according to Slava, I said some nonsense. As Slava was
born in Tashkent, we had the opportunity to stay with friends of his parents. In the
garden were growing vegetables and good grapes were ripening. It was the sweetness
of life, very different from the academic hotels in Moscow where the babushkas were
afraid because our scientific discussions were a little too noisy, especially when we
were collaborating with Yuri Kukharenko.

The Slava’s knowledge of Uzbekistan was well appreciated in Belgium. He had
become a specialistin plof, a typically Uzbek dish, made from mutton, onions, yellow
carrots, rice and spices. On several occasions during the many parties organized by
his Belgian friends and colleagues, he cooked this delicious dish, especially at my
home. These meetings were very joyful. Slava, who was timid and quiet when he
came for the first time to Belgium, became the principal animator of these assemblies.
All participants enjoyed his bass voice and his loud laugh, and of course his jokes.
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The scientific collaboration with Slava was therefore very pleasant, thanks to its
ancillary activities. They are very pleasant memories.

8 M. Mareschal

There are several aspects which give my encounter and later friendship with Slava
a particular flavour, a flavour made of a mixture of nostalgia for a time which has
gone and for the extraordinary period we have lived in. And it is with those feelings,
sadness for the loss of a friend and proudness of what we have lived and achieved
that I write these lines.

I met Slava in 1982 when he came to visit our Department in Brussels. He was
invited by Radu Balescu who had established contacts with Yuri Klimontovich.
Klimontovich was a student of Bogoliubov, one of the founders of non-equilibrium
statistical mechanics. While the names of Klimontovich and Bogoliubov were known
to many of us, personally I was not familiar with books and articles coming from
the Soviet Union (with the notable exception of the physics course of Landau and
Lifshitz). Visits by Russian scientists were still exceptional at the time and the lan-
guage barrier was a real obstacle. We have to be thankful to people like Balescu and
Prigogine to have created those links which allowed a whole community to benefit
from the results obtained by the important Russian School of Statistical Physics and
Mathematics.

During my thesis in Prigogine’s group, I had addressed a problem suggested by
Alkis Grecos, my thesis advisor: can we compute how the sound modes are affected
in a collisional plasma by the existence of the plasma oscillations? Alkis had found a
simple model, a superposition of the Vlassov self-consistent field with an elementary
collision operator. The model was elementary but it allowed a full treatment, showing
indeed the predominance of the plasma frequency oscillations in the hydrodynamic
regime. Slava had read the article and liked it so that we spent a few days discussing
the meaning and importance of the result. Slava was very quick, both in understanding
the physics and in learning the French language (including familiar expressions!).

This was the time when I shifted my interests to numerical simulations. Slava was
curious about those techniques, but he remained faithful to the analytical approaches
to kinetic theories so that we never really published together but remained closely
related in discussing scientific problems concerning non-equilibrium systems. I later
organized several workshops and conferences, in Brussels as well as in Lyon where
I became director of a European center dedicated to atomic and molecular model-
ing (CECAM 1). I had the opportunity to invite Slava on many occasions, and he
always took advantage of those possibilities to interact with the community of non-
equilibrium molecular dynamics. It was amazing to witness how easily Slava could
interact with a group, even when the techniques used were very much different.

Later, in Zaragoza, in 2012, I organized the 27th Rarefied Gas Dynamics con-
ference. An important Russian community was attending the conference with many
scientists using the Boltzmann equation, analytically or computationally. Slava par-
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ticipated and could present a paper to the conference. He was as much at ease with
either group, helping many potential connections to be realized.

Slava was a giver. He would set no limits on spending time and energy with his
friends. I remember once how he helped me in Moscow on a trip I was making
to Novosibirsk, to attend a conference of the European Liquids group. That was
back in the summer 1989. The whole trip was complicated to organize (I was also
attending before that a conference in Poland). The Belgian travel agent had made
reservations for me: I had a plane ticket for a flight from Prague to Sheremetyevo,
the international Moscow airport, then a telegram was sent to the travel agent and
confirmed the reservation for a flight from the other airport (Domodedovo), with
national flights connecting to Novosibirsk. Slava told me that he would be there
to help me in going from one airport to the other, and it would be difficult for me
otherwise!

Slava was there when I came out of USSR entrance controls. We then went to
taxis and there was a (rather hard) negotiation to fix a price to go to Domodedovo.
That was my first visit to USSR and I was quite surprised to see the rather poor state
of roads and taxis. The atmosphere at the other airport was also a bit special: people
camping everywhere in the airport, waiting possibly a few days to get a seat for their
flight.

I could see no signs in English. Slava was asking around and the only thing I
could understand was intourist. At some point, we understood that we had to go to
small construction reserved for foreigners. The easiest way was to go out and walk
on the field for about 200 m and get to the construction. Slava convinced someone in
change to let us go to the field and walk to the intourist building. Which we did. With
planes moving around, we walked to the intourist building where they were quite
surprised to see us coming from the field’s side. The policemen in charge had a long
discussion with Slava, after which he accepted that I could enter provided I would go
through security screening. They also gave me a seat number. In all this negotiation,
Slava remained calm, arguing and strong, finally getting the policemen in charge to
solve the problem. I was impressed and very thankful to him. I will never forget!

Slava was a very generous person, and the critical views he could have would
never lead him to aggressive statements. Rather he would use his (great) sense of
humor and remain calm and strong in his views. He was an idealistic person in his
thoughts, with a rather realistic view of humanity. A great personality, a friend, ...a
man of value!

9 A. G. Zagorodny

The sad news of Slava Belyi’s death was unexpected and extremely bitter for me.
I have lost my old friend and colleague after over 40 years of friendship, warm
meetings and numerous discussions of scientific problems, in particular those of
our common research interests. We got acquainted with Slava in the early 1980s
due to our common teacher, world-known scientist, a specialist in statistical physics
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and kinetic theory of many-particle systems professor of Moscow University Yurii
Klimontovich. The acquaintance turned out to be highly fruitful not only because
Slava was an amiable man and talented theorist but also because both of us dealt
with the studies of large-scale fluctuations in non-equilibrium systems and hence
could compare our experience that has laid a strong foundation to our friendly com-
munications. Our contribution in this book concerns just this field of research. Slava
has visited Kyiv many times, and he had talks both at the international conferences
and seminars held in our institute—Bogolyubov Institute for Theoretical Physics.
He had presented his doctorate in our institute and I tried my best to help him with
various technical formalities. Slava, in turn, was most helpful for my report in the
Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation on the
materials of the doctoral thesis to be successful and to obtain positive recommenda-
tions. We have met during various conferences in Moscow, Lviv, Thbilisi, Kiel etc.
The meetings have always been warm and friendly. Slava has told me for many times
that his family had been of Ukrainian descent. He loved Ukraine and supported our
independence. He was aware of the Maidan events and delighted about our success.
So it is nothing strange that his letters of that time ended with the slogan “Slava
Ukraini (Glory to Ukraine)”. A good scientist and friend of Ukraine have passed
away. May his memory live forever.

10 N. Brilliantov

I'met Slava Belyi for the first time when I was a Ph.D. student, while he was already a
recognized scientist, an expert in kinetic theory. My Ph.D. supervisor recommended
Slava as the external examiner for my thesis. Preparing a report on the thesis Slava
gave me a lot of valuable comments about my work, which later developed into
a few lines of research. We also discussed kinetic theory in general and the life of
scientists. Slava had numerous scientific contacts in the Soviet Union and abroad. The
respective stories about the lives immersed in science, which he narrated, sounded
very attractive; this provided me with a strong motivation to remain in science after
the viva. Hence, the meeting of a Ph.D. student and his thesis Referee resulted in a
friendship that continued for decades till Slava’s death. As an older friend and mature
scientist, he supported me in my scientific career—sometimes giving good advice,
or being a Referee for my Ph.D. students, sometimes inviting me as a speaker at an
important conference, and sometimes directly, helping to get a job in an academic
institute.

We have had multiple discussions about the Boltzmann equation in its various
forms, about the fluctuation-dissipation theorem, both for equilibrium and non-
equilibrium systems. The discussions were deep on the boundary of science and
philosophy. Sometimes we addressed technical issues and Slava showed me nice
theoretical tricks. I admired his skills and the ability to apply sophisticated mathe-
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matical constructions to physical problems. At the same time, he could clearly and
simply explain complicated things. All such meetings were really enjoyable. After
Slava has passed I feel a big gap in my scientific and human surroundings; however,
disseminating his achievements would be good to honor his memory.
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Check for
updates

Andrei Belyi

In this chapter, I will briefly describe Viacheslav (Slava) Belyi’s biography. Being in
a position of his son, I witnessed a large part of his scientific pathway, his profound
curiosity about scientists’ contributions to the real world. My father was convinced
that scientific knowledge could help people understand the world around them in a
broader sense, and could enable them to be successful in both politics and business.
He was lucky enough to have frequently visited the families of the business leaders of
the European industrial past, such as Schlumberger and Solvay. Both names connote
successful people who wholeheartedly wanted to promote all aspects of science.
Many witnessed his pleasant social manners and a remarkable ability to communicate
with people from different cultures and his persistent attempt to bridge Moscow and
Brussels in his personal life. His acquaintances were from different circles ranging
from scholars to ambassadors and business leaders.

Belyi was a genuine academic who had a deep faith in scientific communities.
He often helped his junior colleagues and friends in performing scientific results and
he usually combined academic cooperation with a sense of friendship. He often told
me: give to others more than you can receive from them! He was greatly inspired by
Ilya Prigogine, the Nobel prize laureate of 1977, and was well-acquainted with his
school of thought. In these lines of research, he achieved important results for the
fluctuation—dissipation theorem in Plasma.

A. Belyi (X)

Centre for Climate Change, Energy and Environmental Law, University of Eastern Finland,
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1 Early Life

SlavaBelyi grew up in Tashkent, the capital of the Uzbek Soviet Socialist Republic. At
age of seventeen, in 1962, he moved to Moscow to study at the faculty of Physics of the
Moscow State University (MSU). During Slava’s studies at the university, courses on
statistical mechanics were taught by Yuri Klimontovich, a relatively young professor
at the university. Klimontovich specialized in the statistical mechanics of ionized
gases and quickly gained an academic recognition with his book published in 1967.!
Klimontovich liked both the conceptual approach and the differentiated formulas
elaborated proposed by Slava and proposed him to arrange the findings into an article
which they published together. Further, Klimontovich invited Belyi to continue with
postgraduate studies to obtain a title of a ‘candidate of science’ (remotely equivalent
to a doctoral title in the west). Scientific cooperation with Klimontovich continued
throughout 1970s, as they visited together important academic symposiums from the
West-Siberia to Lithuania’s Baltic coast.

Once obtained a postgraduate degree in 1971, he was offered a job at the Soviet
Institute of Terrestrial Magnetism, lonosphere, and Radio Wave Propagation (abbre-
viated in Russian as IZMIRAN). By that time, [ZMIRAN had become internationally
recognized for scientific space physics and geophysics. This Institute was established
in 1944 on the basis of a geomagnetic observatory planned back in 1939 on the eve of
World War 2, next to a village called Troitskoe in Moscow’s neighborhood. Later, this
location was transformed into a town dedicated to researchers, a so-called Akadem-
gorodok [literal translation: academic town]. A decade later, the Institute gained an
international renommé, as it had become one of the world’s largest centers for data
collection on geomagnetic trends around the world. In 1958, [IZMIRAN was among
the co-organizers of an international symposium on geophysics. Research areas also
included the ionosphere. Studies on the ionosphere’s density have been important
in defining the necessary conditions for radio wave propagation on which modern
communication systems are based. This includes communication systems for avia-
tion, shipping transport, and—later on—for the development of a global navigation
system.? Belyi was involved in the topic of statistical mechanics of plasma throughout
all his academic career.

2 Scientific Exchanges with Belgium

By the time Belyi joined IZMIRAN, the Institute was directed by Vladimir Migulin,
a former Deputy to the Director General of the International Atomic Energy Agency
(1955-1957). Twelve years later, in 1969, Migulin was nominated as IZMIRAN’s
director and on the same year as an agreement was struck between the Soviet

! Klimontovich [1].
2 Klimenko et al. [2].
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Union and the Union Belgium-Luxembourg on Scientific and Technical Coopera-
tion. A supervisory board composed of representatives of the signatory countries was
created, with annual meetings in Brussels and Moscow. This board was responsible
for providing grounds for scientific exchange between members of scientific commu-
nities in the countries involved. Vladimir Migulin’s political weight and reputation
were critical to the inclusion of IZMIRAN in the scientific exchanges.

The very foreign first visitor to [ZMIRAN was Irina Veretennikoff from the Free
University of Brussels. Her former thesis supervisor, Radu Balescu, had met Yuri
Klimontovich back in 1965 at a symposium on plasma studies organized near a
Siberian city of Novosibirsk.? Contact with the Belgian scholar became significantly
valuable for Klimontovich partly because Balescu published a seminal work on statis-
tical mechanics with a focus on non-equilibrium theories, which were not studied
in standard textbooks of that time.* Klimontovich took advantage of his connection
to Balescu and visited him in Brussels in the mid-1970s, when the Belgo-Soviet
agreement was in force. It is here that Balescu introduced Irina Veretennikoff to his
Russian colleague. She visited IZMIRAN in 1980 and Slava Belyi was in charge
of her visit to Moscow. In 1982 it was Slava Belyi’s turn to go to Brussels to be
hosted by Irina for the next round of the scientific exchange. The three-month visit
was filled with memorable moments with his Belgian colleagues. Being a very open-
minded person, he established durable friendships. In 1983, Balescu planned a new
visit to Moscow—this time he was to accompany Ilya Prigogine, already a globally
renowned scientist by then, affiliated with both Belgium and the US. Quite naturally,
Migulin asked Slava Belyi to host the Nobel Prize laureate, which conferred a lot of
responsibility and personal honor.

Prigogine preferred to combine his academic visit with some personal activi-
ties. He brought his son, Pascal, (a curious 14-year-old teenager keen to discover
the world) on his visit. He apparently wanted to see some of his distant relatives
in Moscow and invited one of them—a woman—to a sight-seeing tour. A mini-
bus was arranged for transport, but the consequences of this tour were dire. Belyi
was summoned by the Soviet intelligence services and interrogated about inviting
Prigogine’s relative to the tour when she wasn’t registered in the visit protocol. Slava
Belyi had to respond with a written explanation of his alleged misbehavior, addressed
directly to IZMIRAN’s director. Slava had to explain that if he had not allowed the
lady into the mini-bus, the important guest might have simply left the Soviet Union
to go home. Slava Belyi was certainly right from a human viewpoint, but the author-
ities thought otherwise because formalities matter more for them. Belyi was banned
from leaving the country and being in contact with foreign scientists. However, with
the end of the Cold War, the travel bans were subsequently lifted. The Nobel prize
laureate deeply appreciated the humanity of Slava’s behavior—his choices weren’t
forgotten and a remarkable friendship commenced.

3 Balescu [3].
4 Weyssow et al. [4].
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3 Doctor of Science and ‘a Prize Laureate

Slava Belyi needed to pass the second stage of his Russian academic career: the
‘doctor of science’, equivalent to a habilitation thesis. This process required a thesis
defense in front of a panel of experts in the field. At that time there were two major
national research institutes for the theoretical research of plasma: one in Moscow and
another in Kiev. An influential scholar specialized in plasma, Nikolai Bogolubov—
actually a former thesis supervisor of Yuri Klimontovich—was a Ukrainian, keen to
reinforce Kiev’s position in the field. He already knew Slava Belyi and was happy
to invite him for his thesis defense, which took place in the capital of Ukraine at the
Institute of Theoretical Physics (which now holds Bogolubov’s name). The venue
was meaningful to Slava—Ukraine, the country of the Belyi family’s ancestors, had
always remained a country close to his heart. At the end, in the fall of 1988, Slava
Belyi’s thesis defense took place on the subject of ‘Carryover effect and kinetic
fluctuations in non-equilibrium systems’.

Obtaining the title of ‘doctor of science’ was an important step toward gaining
higher visibility in the national scientific community. Belyi’s academic achievements,
coupled with his collaboration with Irina Veretennikoff, attracted the attention from
Russia’s academic leaders. Of note, by the end of the Cold War in the late 1980s,
many in Moscow positively viewed Russian scholars who collaborated with West-
erners. At the right time, then, Slava and Irina produced new articles, including one
published by Cambridge University Press,’ and attracted the attention from many
contemporaries. At some point, they received a recommendation from the Academy
of Science for a national scientific Prize which was awarded by the end of 1991 to
Belyi, Klimontovich, and Veretennikoff for their work in plasma physics.

4 New Sets of Collaboration

In the early 1990s, in the aftermath of the collapse of the Soviet Union, the work atmo-
sphere at IZMIRAN changed. Migulin retired already in 1989 and his successor did
not match his influence over scientific policies, nor his international reputation. In the
aftermath of the collapse of the Soviet Union, economic transition to a market-based
economy was accompanied by drastic budget cuts for research institutes, [ZMIRAN
included. The Institute lacked funds to finance existing laboratories and attract new
researchers. Researchers oftentimes joked that a state simulates the salaries while
researchers simulate their work. As an illustrative example of the lack of scientific
funding, one of Slava Belyi’s colleagues used IZMIRAN’s office facilities to start
his business, which had nothing to do with science at all. Slava Belyi started losing
collaborative networks around him and often felt isolated in the institute. IZMIRAN’s
inability to attract new scientists certainly impacted Belyi’s ability to create a proper
school of thought, driven by younger scholars. The only remaining collaborator was

5 Belyi and Veretennikoff [5].



Biographic Note 23

Yuri Kukharenko, not even based at [ZMIRAN, who collaborated with Belyi on
statistical mechanics.

Slava was, however, able to maintain and strengthen a collaboration with his
Belgian colleagues. His main co-author Irina Veretennikoff was promoted to head
of a research unit at the Flemish-speaking VUB and she subsequently changed her
research priorities. She introduced Slava to Jean Wallenborn, a researcher from the
French-speaking ULB, in order to keep him close to Balescu’s group of researchers.
Belyi created a virtual bridge between Jean Wallenborn and Yuri Kukharenko. This
trilateral academic union was eased by Slava’s ability to bridge between two worlds
and make the best results out of it. Overall, eight papers were produced by the
three scientists. Perhaps their main result was an article on Pair correlation function
and non-linear kinetic equation for a spatially uniform polarizable non-ideal plasma
published in Physical Review Letters.5

5 The Solvay Institutes and Prigogine’s Influence

Contacts with Prigogine played a significant role in Slava’s professional life. By the
time Slava Belyi was introduced to Belgium, the Nobel Prize laureate had directed the
International Solvay Institutes for Physics and Chemistry, an independent scientific
body founded by Ernest Solvay in 1911 following his communication with Wilhelm
Ostwald in the early twentieth century. The Solvay Institutes of Physics and Chem-
istry that operated in keeping with Ostwald’s worldviews to signify the symbiosis
between science and industry. The first scientific council took place in 1911, where
the most renowned scientists of that time (such as Albert Einstein, Marie Curie, and
Max Planck) were all members of the scientific council. In 1970s his great-grandson,
Jacques Solvay, managed to agree with the University of Brussels—with both ULB
and VUB at once—on an academic affiliation. Prigogine was indeed the very first
scientific director of the newly created institution. Some decades later, at the dawn of
his scientific career, Slava Belyi became involved in The Solvay Institutes activities
as well.

The administrative live at the Solvay Institutes was predominantly shaped by
Ioannis Antoniou, a Greek scholar, who assumed a role of the deputy director since
1994. In tandem with the Institutes’ director, Antoniou obtained European funds to
initiate a so-called Euro-Russian collaboration on complexity. Belyi wasn’t initially
included into work packages of the project as he was not specifically focused on
complexity studies. However, his ability to understand the two worlds—the East and
the West—were indeed noticed by the Institutes management. Both Prigogine and
Antoniou appreciated Slava’s ability to build intercultural bridges and engaged him
as an expert in non-linear physics and Euro-Russian relations.

S E.g. Belyi et al. [6].
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Even though their collaboration never resulted in co-authorship, Belyi was very
much influenced by the Nobel Prize laureate’s approach to uncertainty and non-
equilibrium. These contacts gave him a strong sense of criticism of scientific measure-
ment systems and models. The Nobel Prize laureate had argued that the world is not
outside the scientist’s view, but an integral part of it! He argued that one of the
basic objectives of scientific study is to explain the general limitations introduced
by any measurement processes. Partly, therefore, Belyi often deplored that scientific
methods, like probability models, tend to outstrip theories and conceptions. After
Prigogine’s death in 2003 Belyi’s contacts with the Solvay Institutes diminished, but
the memory of Prigogine remained deep in his heart. For Prigogine’s 100th anniver-
sary, in 2017, Slava wrote an article dedicated to the Nobel Prize laureate with a
very warm preface: ‘Professor Ilya Prigogine’s legacy in science is enduring and
indisputable. He was an outstanding philosopher, mathematician, chemist, physicist,
and biologist, and he had an in-depth understanding of history, archaeology, and the
arts. Ilya Prigogine had a great heart, was open to everyone, and his altruism has
vividly contributed to many in our international scientific community. He believed in
the human mission to achieve solidarity and progress. His scientific discoveries are
actually inherent to these ideas which he defended throughout his life. Undoubtedly,
the name of Prigogine remains among the greatest of this world’.” Through Slava
Belyi’s efforts in perpetuating Prigogine’s memory, many viewed him as a genuine
disciple of the Nobel prize laureate.

6 Major Results and Recognition

Slava Belyi was already a renowned scholar who had seen the evolution of his disci-
pline through two renowned schools of statistical physics, one of Bogolubov and
Klimontovich and the other of Balescu. One of his major single-authored outputs
was an article in the Physical Reviews Letter,? on the fluctuation—dissipation theorem,
a long-debated theoretical subject since Albert Einstein’s discoveries. In his article,
Belyi produced an illustrative chart demonstrating different dynamics of electrons
and of electrostatic fields during a fluctuation process produced by an external distur-
bance. He showed that results of fluctuation differ in non-homogeneous plasma,
hence a non-ideal state of plasma needs to be considered differently. The article in
Physical Reviews Letters almost coincided with Klimontovich’s death. So, Belyi
decided to write a new text devoted to one of the most significant achievements
of his supervisor—the Klimontovich-Langevin approach to the fluctuation—dissipa-
tion processes.” In the newer text, Belyi emphasized that fluctuations determine the
sensibility of a plasma, hence measuring fluctuations become a necessary tool in
diagnostics of plasma processes.

7 Belyi [7].
8 Belyi [8].
9 Belyi [9].
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Even towards retirement age, Belyi closely followed scientific debates and care-
fully read scholarly literature on the topic of plasma diagnostics. In2016 he noticed an
article published in Nature addressing Thomson scattering of laser light for general
observations in plasma physics.!” After having assessed the text in depth, Belyi
thought that authors attempted to take a specific experimental observation to a more
general trend in plasma physics, and didn’t sufficiently analyzed the earlier works
on fluctuations, including the Klimontovich-Langevin approach. In response he
published a refutation article where he argued that this specific interpretation should
not violate the fluctuation—dissipation theorem.!! Together with his own publication,
the authors of the article published their response to Slava Belyi’s text. In a very
respectful terms, the authors highlighted his achievements in the field and agreed
that his approach is certainly more general than their observation. After having high-
lighted some more specific objectives of their article, the authors concluded that the
debate he launched would fuel further scholarly attention.'?

Belyi was happy of launching an important conceptual debate on the subject. He
wanted to produce this result for quite a while, he said. His field of study—plasma
physics—was gaining renewed interest since the world’s policy communities had
expressed hope in finding alternative fuel sources to hydrocarbons. Among others,
thermonuclear energy extracted from ionized gases—plasma—has been tested at
the international center in ITER in France.'? Once he even told me then that in the
past he had worked on some conceptual models for energy extraction from plasma.
He probably should have taken the unpublished manuscript on energy sources out
of storage. Slava Belyi passed away on 20 May 2020 in the city of Troitsk, near
Moscow, where he spent most of his life.
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1 Introduction

The Fluctuation-Dissipation Relation (FDR) is among the few pillars of non-
equilibrium statistical mechanics. The reason for its great relevance is rather trans-
parent: it allows to compute the statistical response of a system to small external
perturbations in terms of correlations of the unperturbed dynamics. In other words,
one can understand how the system reacts to an external disturbance just looking at
the statistical features in the absence of any perturbation: in such a way it is pos-
sible to determine perturbed properties (response) in terms of unperturbed features
(correlations).

The FDR has been widely investigated in the context of turbulence (and more
generally statistical fluid mechanics): for instance, it plays a key role for the closure
problem in the Kraichnan’s approach [98]. Moreover, there is a wide interest in
the scientific community active in geophysical systems, in particular, for climate
dynamics, where it is very important to understand the features of the system under
perturbations (such as a volcanic eruption, or a change of CO, concentration) in terms
of the knowledge based on time series. Another very relevant field where the FDR has
been used and investigated is the general theory of stochastic thermodynamics, with
particular focus on models for colloidal systems, granular media and active matter.
Finally, FDRs play a central role in the study of the non-equilibrium dynamics of
slow relaxing systems, such as Ising models or spin glasses.

Since response and dissipation are intimately related (this intuitive fact is made
more formal later in this section), in this paper, we use “Fluctuation-Response” and
“Fluctuation-Dissipation” in an interchangeable way. Historically, one of the first
examples of Fluctuation-Response relation is given by the formula expressing the
fluctuations of energy in an equilibrium system at temperature 7 with a (constant
volume) heat capacity C,, that reads

(E?) — (E)* = kT*C,. (D

On the left-hand side of the formula, one has the fluctuations in an unperturbed
system, while on the right-hand side, there is a quantity representing a response (the
heat capacity), and the factor of proportionality between the two is the temperature
(kg is the Boltzmann constant). Einstein derived an analogous formula connecting
the diffusivity D to the mobility u for a Brownian particle dispersed in a solvent
fluid at thermodynamic equilibrium:

D =kpTpu, )

where again the unperturbed fluctuations (diffusivity) are proportional to response
(mobility) through a factor of proportionality represented by the bath temperature 7 .

The two previous examples are instances of the larger class of so-called “static”
equilibrium FDR, as they do not involve time-dependent quantities. In the first half of
the twentieth century, a series of experimental and theoretical works made longer and
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longer the list of such kind of relations, always tying in the same way spontaneous
fluctuations, response and temperature [101, 120]. A noticeable example from this
list is the expression given by Nyquist in 1938, relating the fluctuations of voltage in
a conducting wire where no potential differences or currents are externally applied
(the so-called Johnson noise) to the resistance of the conductor and the temperature.
The resistance is the analogous of the mobility and of the heat capacity in the previous
equations, i.e. it represents a response. In this case, it is also particularly simple to
appreciate the equivalence between response and dissipation.

A first step towards the generalization to a time-dependent—or dynamic—relation
is represented by the regression hypothesis made by Onsager in 1931 [130, 131],
which states that—for small perturbations from equilibrium—the system returns to
equilibrium at the same rate as a fluctuation does at equilibrium. This fact is already
contained in the Einstein relation above. By recalling the general connection between
diffusivity and the velocity autocorrelation, i.e. that

D= / dt{(v(t)v(0)), 3)
0
we can transform Eq. (2) into
(v(®)v(0)) = kgT Ry (1), 4)
with the identification -
p= [ direr. )
0

In the r.h.s. of Eq. (5), we define the so-called response function, R, (), which
connects the mean variation of the particle’s velocity at time ¢ with a perturbation of
the external force applied at time O.

In order to discuss in full generality the FDR, we need to give a general definition
of response function, which is the central object of linear response theory. We restrict
the discussion to the linear perturbation of stationary states, i.e. states that are invariant
under translations of time, so that time-dependent correlation functions and response
functions only depend on differences of times. Generalizations to non-steady states
are mentioned in Sect. 2.

The response function Rp£(7) of the observable O() to a time-dependent per-
turbation of a parameter or degree of freedom §F(¢) is implicitly defined in the
following relation

t
AO@) = / dt'Ror@t — )8 F (1), (6)

o0

where AO®1) = O@) — (O(1)) represents the average deviation, at time ¢, of the
observable O with respect to its average value in the unperturbed stationary system.
Here f(r) denotes an average of the observable f at time ¢ over many realizations
of the same perturbation, while (), denotes the average of f in the stationary
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unperturbed state, which is not time-dependent. It is clear that, taking an impulsive
shape for the external perturbation, i.e. §F(¢) = AF§(t) (with §(¢) the Dirac delta
distribution), one has

A (9(1t ) |i mp

AF = Ror(), )

which is also an operational definition of the response function. Here we stress
that AF has the dimensions of a time-integral of F(#). When (for instance) the
perturbation has the shape of a Heaviside unit step function, i.e. §F(¢) = § FoO(¢),
then )
—AO;;)O'””’ = /0 dt'Ror(t"). ®)
If O(¢) is the tracer’s velocity along one axis and JF(¢) is the external force applied
from time O to time 0o to the tracer (parallel to that axis), the final velocity reached
by the tracer is exactly §Fg fooo dt'R,r(t"), which explains the connection with the
identification made in Eq. (5).
The FDR for systems with Hamiltonian H at equilibrium with a thermostat at
temperature 7—historically attributed to Callen and Welton and immediately after
generalized by Kubo [100]—reads:

1 . |
Ror(t) = kB—T(O(l)A(O))o = —kB—T(C’)(t)A(O))m €))

where A is the observable (or degree of freedom) which is coupled to F(¢) in the
Hamiltonian to produce the perturbation, i.e. H(t) = Ho — F(t)A. It is easy to ver-
ify that if O is the tracer’s velocity and F(¢) is an external force applied to its x
coordinate, Eq. (9) becomes Eq. (4). In conclusion the “dynamical” Einstein relation
is a particular case of equilibrium FDR. From Eq. (9) one may get several possible
variants, which are useful in different physical situations. A large amount of remark-
able results concern, for instance, the time-Fourier transform of Eq. (9), as well as
the relation connecting currents/flows and transport coefficients in spatially extended
systems (the so-called Green-Kubo relations, see below) [101, 120].

The equilibrium FDR is valid also in the framework of stochastic processes, when
they describe the dynamics of system fluctuating around thermal equilibrium. The
main difference with the case considered by Kubo is that a stochastic process typically
describes small systems, far from the thermodynamic limit, but the system size is
in fact irrelevant for the purpose of the validity of the FDR. In the case of large
systems (without long-range correlations), however, the averages are easily taken by
means of one or few experiments, while in a stochastic process where noise is large,
one needs to average over many realizations. An illustrative example is the so-called
Klein-Kramers model which describes the dynamics of simple particle systems at
thermal equilibrium [81]. In one dimension, its stochastic differential equations read:
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dx(t)
“D - () (10a)
md‘;(tt) = _dl(;)(j) —yv(t) + \/Wf(l)’ (10b)

where £(¢) is a white Gaussian noise with (£(7)) = 0 and (§(1)E(¢')) =8(t — 1),
y is the viscous damping, U (x) is an external potential. The model can be easily
generalized to N > 1 interacting particles in any dimensions. In the absence of the
external potential, Eq. (10) coincides with the original Langevin equation proposed
a few years after the theories of Einstein [73] and Smoluchovski [161] to explain
diffusion in Brownian motion [103]. Its steady probability distribution (achieved with
the condition y > 0 and confining potential) is given by P (x, v) oc ¢t/ ksT)
with H(x, v) = mv?/2 + U (x). Linear response theory, when applied to the Klein-
Kramers model in its stationary state, gives exactly the same result as Eq. (9) [120,
147]. The Klein-Kramers process is Markovian with respect to the variables (x, v), a
property which is a rough approximation for the dynamics of a tracer which interacts
with other particles in a fluid. Typically, it has to be generalized to take into account
retarded (hydrodynamic) effects, by the introduction of linear memory terms, e.g. by
writing a Generalized Langevin Equation (GLE) [101]:

mdz(tt) = —/ dt'’T( — W) +n@), (1D

where I'(¢) is a memory kernel representing retarded damping, and 7 () is a station-
ary stochastic process with zero average (1(¢)) = 0. The noise time-correlation—to
comply with the requirement of thermodynamic equilibrium (i.e. steady Gibbs distri-
bution and detailed balance)—must satisfy the so—called FDR of the second kind:

1
@) = m(n(t)n(0)>. (12)

It is clear that Eq. (12) has the same structure of Eq. (9), and this motivates the
name of the relation. The Markovian case (damping with zero memory) is obtained
when I'(t) = 2y 5(¢) (recalling that fot dt'2y8(t")v(t’) = yv(t)). For amore detailed
discussion of the significance of this condition and its connection to detailed balance,
we invite to read Sect. 4.1 of [144].

This brief review paper is organized as follows. In Sect. 2, we introduce two
different possible approaches to the FDR, which are based either on the knowledge
of the stationary distribution or on the knowledge of the dynamical rules of the model.
Then, in Sect. 3, we discuss several applications of the FDR, in particular in the field
of non-equilibrium systems, such as granular media and active matter. Finally, in
Sect. 4, some conclusions are drawn.
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2 Two Approaches to Non-equilibrium FDR

The first examples of FDR date back to Einstein’s work on Brownian motion (1905),
and to Onsager’s regression hypothesis (1930s). Since initially the FDR was obtained
for Hamiltonian systems in thermodynamic equilibrium, somehow there is a certain
confusion on its real validity. Here, we summarize two different generalizations of
FDR which both hold for a broad class of systems, including the non-equilibrium
cases [120].

2.1 An Approach Based upon the Knowledge of the
Stationary Distribution

Let us consider a system whose stationary probability density Py, (X) is non-vanishing
everywhere, and wonder about the time behavior of the mean response of the variable
X, (t) at time ¢ under a small impulsive perturbation 6x(0). We can write

5, (1) = (xn(n)p ~ (%)

where < > and < > denote the average for the perturbed and the unperturbed systems
p

respectively. For a Markov system, we can write

(1) = [wuPrW = xnaxdy . u0) = [xPomWy - x.axdy |

where W(y — X, 1) is the probability of a transition from y at time O to x at time ¢,
Py(y) = Py (y) and P,(y) is the initial distribution of the perturbed system.

In the case of an impulsive perturbation, the perturbed probability satisfies
P,(y) = Py (y — 6x(0)), which allow us to derive a compact expression for SXn
when the perturbation is small:

e 01n Py[x(0)]
8x,(t) = — 2 (1) —————06x;(0)), 13
% (1) ij(x =0 0) (13)

where the average is performed in the unperturbed system. Let us note that the
assumption of small perturbation is necessary only in the last step of the derivation
of Eq. (13): therefore, such a result can be generalized to the case of non-infinitesimal
5x(0) [31]. As by-product we have that it is possible to avoid the criticism of van
Kampen according to which it is not possible to rely on an expansion for small
perturbations, because chaos makes them grow exponentially [169]. On the contrary,
in the derivation of the above result [76], there are only assumptions about 6x(¢ = 0)
and therefore chaos has no relevance.
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We can say that formula (13) summarizes the main results of the linear theory,
e.g. in Hamiltonian systems and stochastic processes: in addition one understands the
existence of a link between response and a suitable correlation function even in non-
equilibrium systems [ 120]. For instance in inviscid hydrodynamics with an ultraviolet
cutoff, in spite of the non-trivial dynamics, since the presence of quadratic invariant,
and a Liouville theorem, one has a Gaussian statistics and therefore a FDR holds
for each of the variables, i.e. self-response functions to infinitesimal perturbations
coincide with the corresponding self-correlation functions. Let us note that although
Py, (x) is Gaussian the dynamics is non-linear and it is not easy to compute the
correlation functions.

Beyond the many conceptual advantages of Eq. (13), there is an obvious practical
limit: the difficulty to determine Py, (x), which is known only in some specific cases.
In the next subsection, we will discuss an approach that does not need the knowledge
of Py (x).

Let us open a brief parenthesis on chaotic deterministic dissipative systems:
because of the phase space contraction one has that the invariant measure is singular,
typically with a multifractal structure, and therefore, Eq. (13) cannot be applied. A
quite natural temptation is to add a small amount of noise, so that a smoothing of
the invariant probability density allows for the use of the FDR. At a first glance such
an approach can appear unfair. On the contrary, the idea of the beneficial role of the
noise, which seems to date back to Kolmogorov, has strong bases: a small noisy term
in the evolution equations has the role of selecting the natural measure: one can say
that in the numerical experiments the round-off errors of the computer play a positive
role. It is quite natural to expect that the behaviors of the purely deterministic chaotic
system are very close to those obtained by adding a small amount of noise; such a
conjecture is widely confirmed by numerical computations [70].

A similar approach was extended by Seifert and Speck, who established interesting
connections of the FDR with observables in the framework of stochastic thermody-
namics, such as entropy production and housekeeping heat [156, 157, 164] (see also
the next section).

2.2 An Approach Based upon the Knowledge of the
Dynamical Model

When the dynamics of the system under study is defined in terms of transition rates
or Langevin equations, but the stationary probability density function is not known, a
complementary approach with respect to the one discussed in the previous subsection
can provide a FDR valid also out of equilibrium. These kinds of FDRs have been
derived in several different contexts, following different mathematical schemes (see
discussion below).

The general approach dates back to the 60s of the twentieth century, when Furutsu
and Novikov independently derived, under general conditions, a FDR [80, 125]
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which expresses the response function of a Gaussian process in terms of the equilib-
rium time-correlation between the observed variable and the Gaussian noise itself.
Nowadays, a method based on similar ideas—sometimes termed Malliavin weight
sampling [175]—has been extended to include field theories through the Martin-
Siggia-Rose-Jansen-de Dominicis approach [1, 3, 60] and employed in the context
of particle-based glassy systems to numerically calculate effective temperature and
susceptibility [55, 57, 59]. This allows one to express the response function in terms
of suitable correlation functions of the state variables. We mention here examples
for non-equilibrium Langevin dynamics driven by a time-dependent force both in
overdamped [7-9, 157, 178] and underdamped regimes [6], or even in the presence
of a non-linear Stokes force [149]. The non-equilibrium terms appearing in the gen-
eralized FDR have been interpreted in several ways: some authors focused on the
different roles of entropic and frenetic contributions (for a recent review, see [111]),
outlining their different nature with respect to the symmetry under time-reversal
transformation; other approaches have focused on the connection with entropy pro-
duction and heat [93, 106, 164].

The class of generalized FDR so far mentioned is expressed in terms of the corre-
lation between the observable O and a function of both the state variables and their
time-derivatives. Without loss of generality, the starting point for these relations is
of the form:

Rox,; (t,5) = (O M;[x(s), X()]) , (14)

where, as usual, the average in the r.h.s. of Eq. (14) is performed through the unper-
turbed measure. M is a function uniquely determined by the dynamics of the sys-
tem under consideration that depends both on x and x. Its functional form can be
expressed in terms of known observables: for instance, in the case of continuous first
order dynamics of the kind

%= fi(x)++/2Dn;, (15)

where 1n; is a white noise with zero average and unit variance, one has

M= ——

&5 = fi)- (16)
The above result is general, holding in stationary or transient non-equilibrium
regimes. In some cases, i.e. when the quantity M ; can be measured, Eq. (14) may
represent an advantage with respect to Eq. (13) (which depends upon the knowledge
of the steady-state probability).

The explicit dependence on the time-derivative of the state variables, X, in Eq. (14)
may still represent a source of complications. Restricting to the calculation of the
response matrix, Ry, (¢), i.e. such that O = x;, from Eq. (14) one can derive [42]
a simpler expression for processes with additive Gaussian noises in the stationary
state (the result can be easily generalized to the case of non-diagonal diffusion, not
reported for conciseness):
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Ry (1) = - [(xi (1) £7(0)) + (i ()x;(0))] - A7)
2D;
J

Each element of the response matrix is given by the sum of two correlations: (i) the
temporal correlation between the observed variable and the force ruling the dynamics
of the perturbed variable and (ii) the temporal correlation between the force of the
observed variable and the perturbed variable (that for the diagonal elements, Ry, (t),
is the same correlation of (i) with swapped times). The two terms are equal only
at equilibrium. On the contrary they differ when detailed balance does not hold.
Note that the generalized FDR (17), differently from the forms (13) or (14), is not
determined by the time-correlation between the observed variable evaluated at ¢
and another observable at s < ¢. Moreover, path-integral FDRs require the explicit
knowledge of the microscopic dynamics, at variance with the approach (13) which
only requires a model of the stationary probability in phase space: it must be noticed
that in experimental situations it can be simpler to formulate a model for the steady
state probability rather than for the full dynamics. In both cases, however, one needs
to individuate the relevant variables, an often underestimated aspect [86].

The generalized FDR (17) is particularly fascinating because the diagonal ele-
ments of the response matrix (r.h.s of Eq. (17)) are expressed in terms of the
time-symmetric part of the anticipated/retarded equipartition relations while the
non-diagonal elements represent the time-symmetric part of the anticipated/retarded
Virial equation [42]. Indeed, because of the causality condition, we have Ryx; (tr=
0) = §;;, so that the initial time elements of the response matrix contain the same
information as the generalized equipartition and Virial equations holding out of equi-
librium, namely:

D; = (xi fi), (xif;)=—{(x;fi). (18)

This physical interpretation has been discussed in detail in [42] and exploited in
well-known examples, such as passive and active colloids both in underdamped and
overdamped regimes, see also Sect. 3.4.

Let us also comment on the interesting case of discrete variables, relevant for
instance for the Ising model or spin glasses, which requires some care. In particular,
for spins 0; = +1,withi =1, ..., N, evolving according to a Master Equation with
unperturbed transition rates from the configuration o to the configuration o', w(o —
o), in contact with a reservoir at temperature 7', the response of an observable O(c)
at a magnetic field F switched on at time s on site j takes the following form [109]

1 [0
Ror(t,s) = T {5(0(1)0_;@)) - (O(t)Bj(s))} ; 19)

where the quantity B;[o] is defined by

Bjlo(s)] =Y [0} — 0;(s)wlo(s) - o']. (20)

o’
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The equilibrium FDT (9) is obtained exploiting the property

a
<(9(t) Z[U} —0;j(s)wlo(s) — 0/]> = _£<O(t)0—j(s)>eqv 2L

eq

valid when the average is taken at equilibrium [107, 109].

3 Applications

In this section, we discuss recent applications of the generalized formulae discussed
above to different problems. We start with two more theoretical cases, namely the
broad class of spin and disordered systems and the search for causality measure-
ments, and we conclude with applications to paradigmatic macroscopic physical
systems, that are granular and active systems, where the dynamics of each particle
is intrinsically out of equilibrium.

3.1 The Interesting Case of Causation Through Response

Among the many practical applications of the generalized FDR (13), its use in the
field of causal inference has a particular conceptual interest. It is well known that,
in order to understand the cause-effect relations holding between different elements
of a system, measuring the degree of correlation of the variables may be, in general,
of little help: two elements can be highly correlated even in the absence of a causal
link, as summarized by the notorious adage “correlation does not imply causation”.
The right way to characterize causal relations is indeed to probe the system under
study, i.e. to perturb it in some way and to observe the effects of this external action,
comparing them to the usual behavior of the system in the absence of perturbation [5,
16]; this is, for instance, the fundamental idea at the basis of Pearls’ formalism of
counterfactual inference [134]. When dealing with physical systems, as discussed
in the Introduction, the effect of an external perturbation is quantified by response
functions, which are therefore natural indicators of causal relations [5, 15]. In this
respect, a surprising consequence of Eq. (13) is that these observables can be esti-
mated by measuring proper correlation functions in an unperturbed dynamics: in
other words, the generalized FDR allows to infer causal relations without operating
any external action on the system, i.e. without actually probing it.

To show the above point, let us consider the example of a linear stochastic dynam-
ics for the three-dimensional vector (x;, y;, z;) in discrete time, ruled by the following
Markov process:
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Fig. 1 Relation between causation and response. Main plot: response matrix element Ry (f)
of model (22), as a function of time, for several values of the feedback parameter ¢; numerical
simulations in which the system is actually perturbed (points) are compared to the predictions of
the generalized FDR (13) (lines). Inset (a): scheme of the interactions occurring in model (22). Inset
(b): correlations (red squares) and responses (blue circles) integrated over time, as functions of ¢;
both quantities are rescaled with their values at ¢ = 0.04 for graphical convenience. Parameters:
a =0.5, b = 1. Perturbation for the computation of response: 8yg = 0.01. M = 10° trajectories
have been considered for the averages

Xep1 = ax;, + ey, + by (22a)
Vi1 = ax; + ay, + bn? (22b)
Zea1 = ax, + az, + by (22c)

where a, b, and ¢ are suitable constants and nt(x), nl(y), nt(Z) are independent, delta-

correlated Gaussian variables with zero mean and unitary variance. In this model the
dynamics of y, and z, is influenced by x,, which feels in turn the effect of y, because
of the feedback term ¢y, in the r.h.s. of Eq. (22a). A sketch of the interaction scheme
is shown in the inset (a) of Fig. 1.

The main plot in Fig. 1 shows the time dependence of the response function
between y, and z,. As it is clear from the structure of the dynamics, after one time
step there is no causal influence (an external perturbation of y, does not reflect on
Zs+1)- At subsequent times the dynamics of z; is altered by the perturbation, and the
value of the response function crucially depends on the feedback parameter ¢, as
expected. Due to the linearity of the model, Eq. (13) can be simplified into [120]:
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R, = C,Cy! (23)

where C, represents the correlation matrix at time 7, i.e. C;/ = (x;()x;(0)) (with
X]=X,Xp =Yy,x3=72), and CO_1 is the inverse of Cy. The linearity of Egs. (22)
implies that Py, is a multi-variate Gaussian and this immediately leads to Eq. (23).
Exploiting this version of the generalized FDR, as shown in Fig. 1, one can estimate
R, (¢) from a suitable combination of correlation functions: the agreement with the
actual responses, computed from numerical simulations, is excellent.

It is worth noticing that the mere knowledge of C(¢) is not at all informative
about the causal links among the elements of the system. For the considered model,
this fact can be qualitatively appreciated by looking at inset (b) of Fig. 1, where we
compare the behavior of R, = [i° Ry (1) dt and C,y = [;° C,y(t) dt as functions of
¢: while the former quantity, in the considered ¢ < 1 regime, is almost proportional
to &, the latter does not crucially depend on the feedback parameter and it is different
from zero also for ¢ = 0. This difference is clearly due, in the considered example,
to the common dependence of y, and z; on the variable x;, inducing a “spurious”
correlation between the two (meaning that such a correlation does not unveil any
causal link between the two processes).

Using the generalized FDR is not the only way to get some insight into the causal
structure of a physical system without perturbing its dynamics. A widely employed
method is due to Granger [91] and relies on the computation of the forecasting uncer-
tainty for a given variable of a system, using linear regression models; if it is possible
to improve the prediction’s precision by including in the model a second, different
variable of the system, one may assume a cause-effect relation between the two. A
different approach (which has been shown to be equivalent to Granger’s method in
the case of linear dynamics [16, 22]) is based on the analysis of information transfer
between the variables, a process quantified by the so-called transfer entropy and
by other related observables [32, 148, 155, 166]. Despite the useful information
provided by these approaches, response functions appear to be more accurate in
characterizing causal relations, at least from a physical point of view; indeed they
quantify the (average) consequence of an actual intervention on the system, at vari-
ance with Granger’s method and transfer entropy analysis, which face the problem
from the point of view of predictability and uncertainty [15, 17, 21, 116]. In this
respect, generalized FDRs as Eq. (13) are, to the best of our knowledge, the only
way to deduce the causal structure of a system, in a proper physical sense, by only
observing its spontaneous evolution.

3.2 Spin and Disordered Systems

Here we focus on some applications of the FDR in the contexts of spin models and
disordered systems. As already underlined, the main aim of an FDR is to give a tool
to calculate a response without applying the perturbation. The direct calculation of a
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linear response function, for instance in numerical simulations (but the same can be
true for experiments), is a very time-demanding task: indeed, the signal fluctuations
generally increase when the applied field is small, a condition required for the linear
regime to hold. Therefore, the application of FDRs in numerical computations is
an effective shortcut to get information on the response function from the measure
of the correlations in the unperturbed state. This shortcut has been frequently used
to develop field-free algorithms in the context of spin systems [50, 53, 56, 109,
145], and glasses [27] or active matter [167]. Let us note that, at variance with
previous attempts, specifically designed for a numerical implementations [27, 50,
145], the FDR reported in Eq. (19) involves the quantity B defined in (20), which is
an observable quantity because it only depends on the state of the system at a given
time and therefore can be in principle measured in real experiments.

3.2.1 Non-linear FDRs

The FDRs in the form (19) can be also derived at non-linear orders in the perturbation,
involving multi-point correlation functions. Non-linear response functions play a
central role in the context of glassy systems [28, 30, 65, 163], where usually two-point
correlators remain always short-ranged due to the presence of disorder. In particular,
in a spinglass, the linear susceptibility does not diverge at the critical temperature,
whereas non-linear susceptibilities show a divergence when the low temperature
phase is approached, signaling a growing amorphous order in the system. Therefore,
the relation between non-linear responses and multi-point correlation functions can
be an important tool in the context, as initially proposed in [33]. A general derivation
of non-linear FDRs valid for arbitrary order was presented in [107, 108]. We report
here the form of the second-order response for spin variables perturbed by two fields
JF1 and F; at sites j; and j, at times #; and 7, [107]

8(OW)F
8F1(t )57:202)

1 d
=17 { (00 (11)0), (1)) — <O(t)0,.(t1)312(t2))

2
ROt 11, 1) =

at; 0f

a_t2<0(t)Bj1 (1o, (12)) + (O(t) B}, (tl)sz(tz»} . (24)

Let us note that at equilibrium, exploiting the property (21), Eq. (24) simplifies
to

210y, )0, (1)) <O(t)B,1 oy ®)).  (25)

() {
R t,1,t
O]:( 1,2)= a1y oty

with ¢ > t; > t,. Therefore, the presence of the model-dependent quantity B is
not canceled, making the higher order FDRs somehow less general than the linear
one. As suggested in [23] and [94], this observation can provide information on the
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dynamical rules governing the system from the study of the equilibrium non-linear
responses.

Other interesting applications of non-linear FDRs are related to the study of the
thermal response of the system (namely, a perturbation applied to the noise inten-
sity) as discussed in [75], or in the wide field of non-linear optics and quantum
spectroscopy [67, 99].

3.2.2 Effective Temperature

One of the main theoretical applications of the FDRs is the possibility to introduce
an effective temperature, from the ratio between response and correlation. Review
articles on this interesting subjects are [54, 57, 104, 144, 179]. Here we illustrate
such a concept for a spin system, where the linear susceptibility, using the FDR (19),
can be written as

t t 8
x(t, 1) E/ dsRy7(1,5) = gf ds [aC(t,S)— (Gi(t)Bi(S))] (26)

where C (¢, s) = (o;(t)o;(s)) and t,, is a reference waiting time. Observing that the
quantity
ta
vt ty) = / dsgcu,s) =1-C(,t,), (27)
te
for fixed #,,, is a monotonously increasing function of time, one can reparametrize ¢
in terms of i and write x (v, t,,).

In equilibrium, there is no dependence on the waiting time #,, and one obtains a
linear parametric representation

x(W) = By, (28)
yielding
_dx W)
B= du (29)

Out of equilibrium, a non-linear dependence can arise and an effective temperature
can be introduced generalizing Eq. (29)

Ix (W, tw)
oy

with 8,7 = 1/T,r. Then one can define a Fluctuation-Dissipation ratio with respect
to the temperature T of the dynamics (after the quench)

Berr(¥, 1) = (30
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which represents a measure of the deviation from equilibrium. In the limit of large
waiting time, the functional dependence of X on the correlation function can show
different behaviors, shedding light on the relevance of different characteristic time
scales in the system. A detailed discussion of this quantity in the context of aging
and glassy systems can be found in [56]. More recent applications of the FDR to
equilibrium and non-equilibrium properties of spin glasses have been reported in [10].

The concept of effective temperature has been also applied to systems in the sta-
tionary state, such as driven granular media or active particles (see for instance [110,
158]). In this case, the problem is to understand the meaning and the role played
by the effective temperature. In some situations, usually when the system is gently
driven and the entropy production flux is small, the relevant features of the system
behavior can be successfully interpreted in terms of this parameter, leading to an
equilibrium-like description. In other cases, the effective temperature can represent
an evocative or appealing concept but does not significantly help in the understanding
of the underlying physical mechanisms, see next section.

3.3 Granular Materials

Granular materials appear in our everyday life and in several industrial applications,
posing deep questions to statistical physics and technology [2, 83, 95, 138]. A gran-
ular medium is an ensemble of macroscopic “grains”, which interact (among each
other and with the surroundings) through non-conservative forces. Several orders
of magnitude separate the average energy of internal thermal fluctuations at room
temperature—kz T ~ 5 - 1072! J—and the macroscopic energy of a grain (e.g. that
related to the position and motion of center of mass): for instance mgr ~ 1073 J for
a steel sphere with r = 2mm, g being the gravity acceleration. Granular media can
display “phase” behaviors: when diluted and under strong shaking a granular “gas”
is realized, but when allowed volume and/or the intensity of shaking are reduced,
the granular system behaves as a dense “liquid” or a slowly deforming “solid” [96].
The slow-dense phase, close to the so-called jamming transition, is difficult to be
analyzed: we refer the reader to different theoretical approaches [18, 24, 52, 71, 72,
113, 123, 126, 129, 146]. We briefly summarize the more clear situation established
for granular gases and liquids.

A granular gas is realized when the packing fraction is small, typically of the order
of 1% or less, such that one can assume instantaneous inelastic binary collisions with
restitution coefficient @ < 1 (the value 1 is for elastic collisions). In experiments,
usually done under gravity, it is necessary to shake the container with accelerations
much larger than gravity in order to keep the packing fraction small everywhere
[38, 41, 83, 138]. The three main categories of gas regimes are: (1) cooling granular
gases, non-steady states which are initially prepared as at equilibrium, and leaving the



44 M. Baldovin et al.

total energy dissipate under repeated inelastic collisions [37, 92, 171]; (2) boundary-
driven gases, where at least one wall injects energy into the gas (e.g. vibration in
experiments, thermostats in theory), reaching a non-homogeneous steady state [74,
97, 136]; (3) bulk driven granular gases, where each particle is in repeated contact
with some source of energy, for instance bouncing above a vibrating rough plate [90,
128, 141, 142, 172], reaching a homogeneous steady state.
In granular gases, it is customary to define a kinetic “granular temperature” [11,
87, 102, 127]
m{|v?)
7

kT, = (32)
with v the velocity of each particle, d the dimensionality of space and kp is usually
replaced with 1. Such a temperature is not expected to have a wide thermodynamic
meaning, and also in statistical mechanics it has not a role equivalent to that played
for molecular gases, for instance deviations from a Maxwellian are inevitable in
the presence of inelastic collisions, a kurtosis excess (or second Sonine coefficient)
is observed—Ilarger or smaller—in many regimes [168, 171]. In all gas and liquid
regimes, moreover, there is no equipartition of energy among different degrees of
freedom (e.g. in a mixture or under non-isotropic external forces), unless they have
identical properties [20, 78, 85, 118, 119, 122, 133, 176].

Linear response relations have been frequently studied for granular gases and lig-
uids, particularly in steady states [19, 35, 68, 82, 86, 139, 140, 160, 173, 174], while
a few studies also considered cooling regimes [35, 68, 69]. In dilute homogeneously
driven granular gases, the equilibrium FDR is empirically observed, provided that the
canonical temperature is replaced with the tracer granular temperature 7y which—in
general—can be different from 7, [19, 82, 139, 173, 174]. For instance, a granular
tracer under the action of a weak perturbing force in a dilute driven granular sys-
tem satisfies the dynamical Einstein relation, Eq. (4) with T = Tj. Such a result is
surprising as, on the basis of the FDR discussed above, Eq. (13) and of the non-
Gaussian distribution of velocities, one would expect a correction to it. Nevertheless,
in many different dilute cases, such corrections are not observed or—in certain solv-
able models—can even be proven to vanish [173]. A possible explanation to such
a general result comes through the molecular chaos which is likely to be valid in
dilute cases and which implies that a particle 1 meets particle 2 only once: any col-
lision rule, if restricted to a single particle (that is, disregarding the fate of particle
2) is equivalent to an elastic collision with effective masses [144]. For a massive
intruder (mass much larger than the other particles), the validity of the Einstein rela-
tion is recovered in the context of the derivation of an effective Langevin equation
model [151]

The liquid (non-dilute) case is perhaps more interesting. The first experiment
focusing on a Brownian-like description of a large intruder in a granular liquid is
discussed in Ref. [64]. Most recent studies, both theoretical [140, 143, 152, 173,
174] and experimental [86], have shown that when the granular is a liquid and not a
gas, deviations from the equilibrium Fluctuation-Dissipation relation are observed.
In granular liquids, as a matter of fact, granular temperature is much less useful than
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Fig. 2 Response function of the tracer’s velocity V under a perturbing force F, R, r(t) and auto-
correlation function C(¢) = (V (t)V (0))/{V(0)V (0)) as a function of time, measured in molecular
dynamics simulations of a system composed of a massive intruder interacting with a driven granular
fluid [152]. In the main plot an elastic case with restitution coefficient @« = 1 (where the two functions
superimpose as in equilibrium FDR) and an inelastic case « < 1 (where equilibrium FDR is violated)
are shown. In the inset, the ratio between the two curves is shown for the two cases (black is elastic,
blue is inelastic)

in gases, and cannot be replaced by some other temperature for the purpose of an
effective description (Fig. 2).

An interesting example, in theory and in experiments is provided, again, by a
massive intruder M >> m [143, 152]. For the purpose of describing, in numerical
simulations, the autocorrelation of the velocity V of the tracer and its linear response,
the following model provides a fair description for packing fractions smaller than
40%:

MV (1) = —=T[V({) — U(t)] + /2T T, & (1) (33a)
MU@) =-T'U@t)—TV(@) + /20 T,E (1), (33b)

where U (t) is an auxiliary variable representing the memory effect due to the average
velocity field of the particles surrounding the tracer, I" and 7, are the effective drag
coefficient and tracer temperature (both can be derived by kinetic theory in the dilute
limit), I and M’ are parameters to be determined, for instance from the measured
autocorrelation function, and 7y is the value of T, in the elastic limit (for instance the
external bath temperature [142]). Equations (33) can be mapped into a generalized
Langevin equation, Eq. (11), with exponential memory kernel. In the dilute limit
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(parameters such that U is negligible), the massive tracer evolves according to a
simple Langevin equation. In the elastic limit (7;, = T, = T,), on the other side,
the coupling with U is still important, but the equilibrium Fluctuation-Dissipation
relation is recovered. The numerical simulations have shown that the auxiliary field
U (t) is a local average of the velocities of the particles surrounding the intruder.
When the density increases numerical simulations suggest T;, — Ty, likely due to
a reduction of effective inelasticity in recolliding particles. The appearance of T}, is
also interesting: the “temperature” associated to the local velocity field U is equal to
the bath temperature and this seems a consequence of the conservation of momentum
in collisions, implying that the average velocity of a group of particles is not changed
by collisions among themselves and is only affected by the external bath and a (small)
number of collisions with outside particles. Summarizing, model (33) suggests that
in a granular liquid—at some level of approximation—two temperatures are relevant,
one related to the single particle scale and another one related to many particles, or
collective, scale. Such a conclusion is consistent with a series of recent results about
spatial velocity correlations, typically measured as structure factors of the velocity
field [12, 13, 36, 84, 89, 90, 132, 137, 141, 170, 172].

3.4 Application to Biological Systems and Active Particles

The results of the FDR have been also applied to several biological systems, for
instance in an evolution experiment in bacteria [154] or in the prediction of heart
rate response [51]. Another recent application has been proposed in the context of
brain activity. Indeed, one can wonder whether, at some scale, the evoked activity
in the brain by an external stimulus can be somehow predicted from the observation
of the spontaneous, rest activity. In order to quantitatively address this issue, one
needs an effective model to describe the brain dynamics at the considered scale. In
the work [150], the authors considered the stochastic version of the Wilson-Cowan
model [26], describing at a coarse-grained level the dynamics of populations of
exitatory and inhibitory neurons. In the linearized version, this model consists in
two coupled linear Langevin equations for the two populations. The prediction of
the FDR for this model was compared to experimental Magnetoencephalography
(MEG) data for rest and evoked activity in healthy subjects. Whereas the behavior
of the temporal autocorrelation function of the total rest activity (excitatory plus
inhibitory neurons) showed a double exponential decay characterized by two typical
times, the decay of the response function was described by a single exponential
decay, in qualitative agreement with the prediction of the FDR. These results suggest
that some information of the brain response to external stimuli can be obtained from
the observation of its spontaneous activity.

A different field that is in large part contained in biology and biophysics is that
of self-propelled particles, where non-equilibrium stochastic dynamics has been
employed as a main modeling tool [88, 117]. These systems, known as “active”,
are usually out of equilibrium and store energy from the environment, for instance,
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taking advantage of chemical reactions or mechanical agents (such as bacterial cilia
and flagella), to produce directed motion [25]. The intrinsic non-equilibrium nature
of the class of models proposed to describe active systems makes them the ideal plat-
forms to test any version of the generalized FDR [39, 153]. Since their steady-state
properties are quite rich, involving unexpected spatial correlations in density, veloc-
ity and polarization fields, the use of Eq. (13) can be challenging. For this reason,
this method has been applied only in the limit of small activity [46] when the steady
probability distribution is known perturbatively or using effective equilibrium-like
approaches. This allows one to derive a near-equilibrium expression for the sus-
ceptibility [79] and approximated predictions for the transport coefficients of active
particles, such as their mobility [63]. In addition, the Malliavin weight sampling has
been recently generalized to the more common models used to describe the active
particle dynamics [167]. This technique was particularly useful to explore numer-
ically far from equilibrium regimes, calculating (i) the mobility of an interacting
active system at low density [63] (ii) the response function due to a shear flow [4]
and, finally, (iii) the active effective temperature [58, 105, 124, 135].

In this section, going beyond the approximated approaches explained so far, we
apply the technique reported in Sect. 2.2 to obtain exact expressions for the general-
ized FDR valid in active matter systems [42, 48]. Specifically, we focus on particle
systems in the framework of dry active matter without momentum conservation. In
this context, the evolution of an active particle of mass m is described by a set of
stochastic equations for its position, x, and its velocity, v, given by [47, 115]:

X=vV (34a)
mv=—yv—VU+£+./2Tyy, (34b)

while, in the more common overdamped version, such that m/y <« 1, reads:
yx=F+f"+4+,2Tyy. (35)

In both the dynamics, f¢ is a non-gradient force, called “active force” for simplicity,
that models at a coarse-grained level the system-dependent mechanism responsible
for the active dynamics so that its complex physical or biological origin is not explic-
itly considered. This term is chosen as a time-dependent force that provides a certain
degree of persistence to the particle trajectory in agreement with the experimental
observations of active colloids, bacteria, and other biological microswimmers. The
most popular models to account for this persistence in the framework of continuous
stochastic processes are the Active Brownian Particles (ABP) [34, 40, 44, 66, 77,
162, 165] and the Active Ornstein-Uhlenbeck particles (AOUP) [29, 43, 61, 112,
121, 177]. In both cases, the active force is expressed as:

f* = yvon, (36)
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where vy is the swim velocity induced by the active force and nis a vector representing
the particle orientation that evolves stochastically. In the ABP model, n is a unit vector
that evolves as

n=+2Dmnx§, (37

while in the AOUP model, n follows an Ornstein-Uhlenbeck process with unitary
variance:

Th = —n + /27§ . (38)

In both equations, & is a vector of §-correlated white noises with zero average.
The coefficient D, is the rotational diffusion coefficient while 7 is simply named
persistence time since it coincides with the autocorrelation time of the active force.
The models reproduce consistent results by choosing (d — 1)D, = 1/t whered > 1
is the dimension of the system [77].

In general, the active force pushes the system out of equilibrium, producing
entropy with a rate that grows with t [45, 49, 62, 114, 159]. Applying Eq. (17) to the
dynamics (34), the elements of the response matrix after perturbing the x component
of the velocity, read [42]:

m m
Ru(0) = 7 WEVO) + 37 (WOVU ) + (VU () = 0 ) = (£ 0w 0))
(39a)

m2

~ary (V). (39b)

(x(Hf*(0))

m m m

Ra() = ﬁ(X(I)V(O)) + E(X(I)VXU(O)) T Ty
where we have suppressed the spatial indices for simplicity. Equation (39a) is deter-
mined by the generalized retarded kinetic energy and the time-symmetric retarded
power injected by the gradient force and the active force. In Eq. (39b), we can identify
the retarded mechanical pressure (second term), the so-called retarded swim/active
pressure (third term) and, finally, the retarded/anticipated kinetic energy (fourth
term). Applying Eq. (17) to the dynamics (35), the response after perturbing the
coordinate x of the particle position reads [42]:

Ryx(t) = % (x(OVLU(0)) + (VU (1)x(0))) — % (xF* ) + (f(1)x(0))) .

(40)
In the overdamped case, the response is determined by the sum of the time-symmetric
part of the retarded/anticipated mechanical and swim pressures. In overdamped sys-
tems with 7 = 0, the above formulation of the FDR cannot be directly applied,
because the dynamics is not of the Langevin form. In this athermal case, another ver-
sion of the generalized FDR can be derived using a modified path-integral method
developed in [48] in the case of AOUP (FDR for athermal ABP are still unknown),
obtaining:
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Fig.3 Comparison between response and FDR for a two-dimensional particle confined in a quartic
potential, U (x) = k|x|4. Panel (a): Ry, () (colored points) calculated perturbing the velocity of the
underdamped dynamics, Eq. (34). Panel (b): R, (¢) (colored points) calculated perturbing the
position of the overdamped dynamics, Eq. (35). The responses are shown for passive, ABP and
AOUP as explained in the legend which is shared by both panels. Solid color lines plot the FDR,
obtained using Eq. (39a) and (40), for panels (a) and (b), respectively. The inset of panel (b) shows
a comparison between Eq. (40) (calculated at T = 1072) and Eq. (41) (holding for T = 0). The
other parameters of the simulationsare k =3,y =1,T = 107, vo=1,and t = 1

Day R x(t) =5 [(x(0)VU(0)) + (V. U (1)x(0))]

N =

2
+ % Xa: [Va (D) Ve VU (@) (0)) + (v (1) Vi Vo U (0)ve (0))]
(41)

where we have introduced the particle velocity v, = &, with @ = x, y. According to
our notation, repeated indices are summed, U (s) = U (x(s)). The first line of Eq. (41)
coincides with the equilibrium FDR holding for passive particles where the detailed
balance holds. The second line contains two additional terms, involving the particle
velocity and the second derivative of the potential, that disappear in the equilibrium
limit t — 0. At variance with the equilibrium scenario, in thermal active systems, the
generalized FDR is not only determined by a time correlation involving the position
but is affected by the correlations between the other variables, such as the velocity.
To validate the generalized FDR in the case of active particles, we consider both
AOUP and ABP dynamics confining the particle through a non-linear force due
to an external potential. To go beyond the harmonic case that can be solved ana-
lytically [48], we chose a quartic potential, U (x) = k|x|*/4, where the constant k
determines the strength of U. In Fig. 3, we show the diagonal elements of the response
matrix numerically obtained by their definitions (i.e. perturbing the dynamics) and the
FDR numerically calculated from the unperturbed system. In particular, in panel (a),
we show the results in the underdamped case, reporting the profile of R,, () and
the FDR calculated from Eq. (39a), while, in panel (b), the analog study is reported



50 M. Baldovin et al.

for the overdamped dynamics, comparing R, ,(¢) and the FDR, Eq. (40). In both
cases, the FDRs exactly match with the direct study of the response confirming the
exactness of our theoretical results. Finally, in the inset of panel (b), we compare
Eq. (40) in the limit of small temperature, 7', and the athermal relation, Eq. (41). We
reveal that the former converges onto the latter for 7 — 0.

4 Conclusions

We have reviewed two significant approaches to the problem of linear response in gen-
eral systems, when the constraint of thermodynamic equilibrium for the unperturbed
state is removed. We have also sketched some of the interesting recent applications
of such approaches. We cannot avoid to stress, again, the evident fact that— given the
system, the observable of interest and the applied perturbation—the linear response
function is unique and therefore the two approaches lead to the same result, and in fact
an analytical connection can be demonstrated [14]. The difference between the two
schemes relies on the required information: in one case, formula (13), one needs some
knowledge about the probability distribution at initial time (e.g. the steady-state one)
for the relevant degrees of freedom; in the other case, formulas (14), (17) and (19),
one needs knowledge about the system’s dynamical model (e.g. noise distributions,
forces involved, transition rates, etc.). It is not always evident when one approach is
more useful than the other. In lucky cases, where both the dynamical model and its
probability distribution are known, the two formulas can express different informa-
tion and one can be more useful than the other (for instance correlations with state
variables can be more transparent than correlations with noises or time-derivative of
state variables).

In experimental situations, where the underlying model is not known, an empirical
approach to retrieve the main features of the probability distribution of the relevant
degrees of freedom can be simpler than retrieving information about forces and
noises in the system, suggesting the first approach as the more useful. If a dynamical
model is known for the relevant degrees of freedom, while the generated probability
distribution is unknown, then the second approach should be more direct. However,
itis clear that, even when a dynamical model is fully available, the first approach may
have some advantage: for instance, in a system with many particles and a massive
tracer whose response is investigated, the knowledge of the dynamics of all the
particles can be too detailed and result, when inserted in the second approach, in
quite a complicate formula, or even not very informative and/or transparent ones;
an empirical study of the probability distribution of the relevant degrees of freedom
(e.g. those of the tracer and some coarse-grained observable for the surrounding
fluid) can provide, sometimes, an approximate but more informative route through
the first approach (see for instance the example discussed in Sect. 3.3).

We also recall that an FDR does not give an explicit prediction for the response,
but only an expression of it in terms of unperturbed correlations. Once an FDR is
known, the problem of obtaining (empirically or analytically) the required corre-
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lations remains. An FDR, however, can have already a theoretical meaning, even
without the explicit knowledge of the time-dependence of the involved unperturbed
correlations, i.e. it is already significant to know which correlations are involved, as
well illustrated by the application described in Sect. 3.1 for the problem of causation
and also in the closure problem in the Kraichnan’s approach to turbulence [98].
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Mandelbrot’s Fractal Structure )
in Decaying Process of a Matter-field oo
Interacting System

Tomio Petrosky, Daisuke Kotaka, and Satoshi Tanaka

Abstract A decaying process of an unstable matter-field interacting system is ana-
lyzed by the complex spectral analysis of the Hamiltonian, which is a microscopic
analysis of irreversibility based on the basic laws of physics. By using the iterative
method to solve a nonlinear eigenvalue problem of an effective Hamiltonian in the
complex energy plane, we found a fractal structure described by a Mandelbrot set
associated to the broken time-symmetry for the unstable dynamical system.

1 Introduction

It is our pleasure to contribute to the special issue of a Springer Nature book in
honor of Professor Slava Belyi on Non-equilibrium Thermodynamics and Fluctuation
Kinetics. One of the authors (T.P.) especially expresses his thanks to have several
occasions to discuss with Slava on the broken time-symmetry that is the main subject
in non-equilibrium statistical physics. We had a wonderful moment to discuss this
problem whenever Slava visited the International Institute for Physics and Chemistry
in Brussels, Belgium. We have also spent a wonderful moment to drink an excellent
vodka together. Slava has many interesting contributions to Non-Equilibrium physics.

Due to aremarkable development in the complex spectral analysis of the Liouville-
von Neumann operator (Liouvillian, in short), as well as Hamiltonian, we now under-
stand that irreversible processes are exact dynamical processes occurring outside the
Hilbert space. This is not coming from some approximation, such as a coarse graining
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procedure of fundamental equations of motions due to human’s limitation to con-
trol informations of complex nature. Indeed, in spite of the fact that Liouvillian and
Hamiltonian in the Hilbert space are Hermitian operators, they may have complex
eigenvalues in an extended Hilbert space outside the Hilbert space, due to the reso-
nance singularity appearing in the solution of the equation of motion. Moreover, we
have shown a set of eigenstates of the Liouvillian or Hamiltonian with the complex
eigenvalue may span bi-complete and bi-orthonormal sets in an extended Hilbert
space outside the Hilbert space [1-3]. We have shown that the imaginary part of a
complex eigenvalue gives a transport coefficient for irreversible processes, such as
a diffusion coefficient, as well as viscosity in a kinetic equation [4—11], or a decay
rate of spontaneous decay process of an excited atom in quantum system [3, 13-18],
and radiation dumping in classical system [19-21].

In this paper, we will consider the Friedrichs model that has been introduced
to analyze a quantum decaying process in a matter-field interacting system where
a discrete spectrum is coupled with a continuous spectrum through the resonance
interaction [3, 12, 22]. The Hamiltonian H of the Friedrichs model consists of an
unperturbed part H of the matter and the field without interaction and the interaction
part gV,

H=Hy+gV, (D

where gV is a Hermitian operator, and a real number g is a dimensionless coupling
constant. The explicit form of the Hamiltonian is given in (2) and (3).

In this model, if the unperturbed discrete state does not overlap with the unper-
turbed continuous states, one can show that the complete set of the eigenstates of
the full Hamiltonian H consists of a discrete stable state associated to the matter as
well as continuous states associated to the field. In this situation, there is no reso-
nance between the discrete spectrum and the unperturbed continuous states. Then,
the system is stable.

On the other hand, if the resonance occurs, i.e., if the unperturbed discrete state
overlaps with the unperturbed continuous states, the system becomes unstable. In
this case, the discrete state with a real eigenvalue disappears in the complete set
of the eigenstates of the full Hamiltonian. Nevertheless, Friedrichs has shown that
one can solve exactly the Schrodinger equation and shown that the decaying process
that breaks time-symmetry is an exact solution of the Schrédinger equation which is
symmetric in time-inversion. As mentioned above, we have shown for this unstable
case that a set of eigenstates of the full Hamiltonian H with the complex eigenvalue
spans bi-complete and bi-orthonormal set in an extended Hilbert space [3]. Moreover,
we have shown the transition from stable case to the unstable case (i.e., the transition
from reversible process to the irreversible process) can be understood as a dynamical
phase transition [15].

As we will see, to find the complex eigenvalue of the full Hamiltonian reduces
to a new nonlinear eigenvalue problem of the effective Hamiltonian which is closely
related to the self-energy part in the dispersion equation associated to the unstable
state. Since the self-energy part is generally a nonlinear function of the eigenvalue of
the full Hamiltonian, it is often difficult to solve the nonlinear eigenvalue problem of
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the effective Hamiltonian. For this case, an iterative method in terms of a nonlinear
map has been often used to obtain an approximate value of the complex eigenvalue.
Howeyver, a remarkable feature of the Friedrichs model which we consider in this
paper is that we can algebraically solve this nonlinear equation. Hence, we will first
show the explicit form of the exact complex eigenvalue.

After that, we will analyze the iterative method with a comparison to the exact
solution. We shall see that the nonlinear map for the iterative method shows a strong
nonlinear behavior near the dynamical phase transition from the time-symmetric
regime to the broken time-symmetric regime. More amazingly, we will show that the
inverse map of the iterative method used in this model exactly reduces to the nonlinear
map that generates Mandelbrot sets [23]. This indicates that a well-analyzed process
of the spontaneous decay process of an excited unstable atom still shows an interesting
new aspect of the fractal in nonlinear dynamics.

2 Complex Spectral Analysis of Friedrichs’ Hamiltonian

We will use Dirac’s braket notation for the states. Let us consider a simple elec-
tron system with a single discrete state |a) with energy €, coupled with a three-
dimensional free-electron band-state |k) with a continuous wave vector k where the
Hamiltonian of the system is given by (1) with the unperturbed Hamiltonian,

Hy = €qla){al + /dk € |k) (k, @)

and the interaction,
gV = [ dkgve(la) ki + Kital). G)
where the real number ¢ is a dimensionless coupling constant. We assume that

{ala) =1, (alk) = (k|la) =0, and (k|k’) = §(k — K’) with the three-dimensional
delta function, and they satisfy the completeness relation

la){al +/dk|k)<k| =1L “4)

Moreover, we assume that the dispersion relation of the free electron is given by

R*k?
= —-——— N 5
€ 2m ®)
with k = |k|, and the interaction is given by
Vi ke — k), (6)

=——6(
24/2k2
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where we have introduced the cutoff wavenumber k. to obtain a finite value of the
self-energy by renormalizing the ultraviolet divergence in the self-energy. Indeed,
this choice of interaction gives the cutoff-independent contribution from the upper
bound of the integration over the wavenumber k in the self-energy part. The numerical
factor front of the interaction is for our convenience in the numerical calculation.
Hereafter, we will use the units & = 2m = 1.

In the case €, is a real number, the Hamiltonian H is a Hermitian operator in
the Hilbert space. For this case, one can show that if €, is negative, or greater than
€k, the eigenvalues of H are real numbers. Then, the system is stable. However,
when the condition €, < €, with €, > 0 is satisfied, the system becomes unstable
due to the resonance singularity expressed by 1/(ex — €,) in the usual perturbation
analysis. For this unstable case, the discrete eigenstate disappears from the spectrum
of H. In this case, the solution of the Schrodinger equation breaks time-symmetry.
Nevertheless, the Hamiltonian may have complex eigenvalues in an extended Hilbert
space that is spanned by a dual base of a set of eigenstates (see (7) and (8)) [3].

In the complex spectral analysis, we construct the solution to the eigenvalue
problem of the generator of motion (such as Hamiltonian, or Liouvillian, which
is a Hermitian operator in the Hilbert space) outside the Hilbert space. Since the
function space is extended outside the Hilbert space, the symmetric operator may
have complex eigenvalues. For this solution, the left-eigenstate belonging to the same
complex eigenvalue is not a Hermitian conjugate to the left-eigenstate. Hence, we
have to solve a pair of these dual eigenvalue problems,

H|Wo) = Zo Vo), (WolH = Z, (W, (7)

where the argument o = a, or k. In general, Z, is a complex number. (For the
Friedrichs model that we consider, one can show that Z, is a complex number, but
the continuous spectrum Zy = ¢; is a real number). Hence, from (7), we see that
(U, | # (W,| because of the fact that H is a Hermitian operator H' = H.

These eigenstates span a bi-orthogonal and bi-complete set of an extended Hilbert
space, i.e., (W, |W,) = 1, (¥, | W) = (U |W,) = 0, and (¥ | W) = 8(k — k'), and

wn@u+/£mwu@u=L ®)
C

where the integration over the wave vector is chosen with a suitable contour C when
it is performed by a contour deformation in the complex plane. (In this paper, we
will not show the explicit form of eigenstate with continuous spectrum, since our
discussion on the Mandelbrot set is only associated to the complex discrete state.
One can find the explicit form and the contour C in [3]).

In order to solve the eigenvalue problem (7), we extend the Brillouin-Wigner type
of the projection-operator method to the extended Hilbert space and introduce the
following projection operator P,
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P =la){al, O=1-P. )

They satisfy the relations,
P’=P, 0*=Q, PQ=QP=0. (10)

Then, the right-eigenvalue equation in (7) leads to a set of equations for P and Q
components of the eigenstates,

(PHP 4+ PHQ)|V,) = Z,P|V,), (11)
(QHP + QHQ)|Va) = Z, Q). (12)

This set of equation leads to a new eigenvalue equation for the P|¥,) component,
Heit (Zo) P|Wy) = Zo P|W,). (13)

Here, H.i(z) is the effective Hamiltonian defined by

1
Heff(Z)=PHP+PHQmQHP, (14)

with a suitable analytic continuation of the denominator 1/(z — QH Q) which is
consistent to the decaying process oriented to our future.

Note that this new eigenvalue equation for the effective Hamiltonian is a nonlinear
equation with respect to the eigenvalue Z,. We also note that the second part leads
to the well-known self-energy part as

1
2.(2) = <0|PHQWQHP|Q>- (15)

After solving the nonlinear eigenvalue problem (13), one can obtain a right-eigenstate
of the full Hamiltonian H with the use of the set of equation (12) as

W) = No[ P+ 0 QHP|PIW,). (16)

o
z—QHQ

where N, is a normalization constant determined by (U,|W,) = 1 with a similar
expression of the left-eigenstate (¥,| to (16). The explicit forms of the complex
eigenvalues and these dual eigenstates for a general Friedlichs model are presented
in [3].

Before going to the main subject on the Mandelbrot set in this paper, let us mention
aremarkable feature of expression on the Liouvillian parallel to the above expression
for the eigenvalue problem of the Hamiltonian. As is well known, the Liouvillian
L j associated to a given Hamiltonian H in the Liouville-von Neumann equation for
the distribution function for a classical system, or the density matrix for a quantum
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system is also a linear operator, just as a Hamiltonian in a suitable vector space.
Indeed, the Liouvillian is defined as the Poisson bracket with the Hamiltonian for the
classical case, and the commutation relation with the Hamiltonian for the quantum
case. Hence, one can construct a similar type of complex eigenstate of the Liouvillian
parallel to the Hamiltonian just constructed as above. Then, the complex eigenvalue
problem of the right-eigenstate of the Liouvillian for example given by

Lyl|Fg) = Zg|Fa) a7)

is reduced to the nonlinear eigenvalue problem of the effective Liouvillian as

W (Zp)P|Fg) = ZpP|Fp). (18)
Here, ¥/ (z) is defined by
~ ~ ~ ~ 1 ~ ~
z—QLyQ

with a suitable projection operator P and Q associated to a set of the eigenstate
for the unperturbed Liouvillian. Then, the second team of (19) is the self-frequency
part of the Liouvillian. If the reader is familiar to the non-equilibrium statistical
mechanics, the reader may notice that this self-frequency part of the Liouvillian is
just the collision operator which is the central object in non-equilibrium statistical
physics. Indeed for a weakly coupled gas or the low density limit of a gas, the effective
Liouvillian reduces to the Boltzmann collision operator in the molecular dynamics.
In this sense, our complex spectral analysis of the generator of motion, such as
the Hamiltonian, or the Liouvillian, gives a quantitative analysis of the irreversible
process based on the fundamental laws of physics [1, 2].

Let us now come back to our main problem. By substituting the dispersion relation
(5) and the explicit form of the interaction (6), one can easily perform the integration
over the wave vector K in the self-energy part (15),

2V2 2
2.(2) = fdkg—k =19 ok, +in2). (20)
7 — €k 4](?

Because we could obtain the explicit form of the self-energy part as in (20), we
can find the complex eigenvalue of the nonlinear eigenvalue equation by solving the
following equation (see (13)),

wg’

T = €4

We can easily solve this equation, and we have
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~0.0005
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eg = 0.01589602. ..

Fig. 1 Imaginary part of the eigenvalue as a function of the unperturbed energy €, for g = 0.1,
ke = 1. The branch point is a transition point from reversible process to irreversible process. Since
the Hamiltonian H is a symmetric operator, we have always complex-conjugate pair of the complex
eigenvalues when their imaginary parts do not vanish. The value of €, at the branch point is indicated
as ep in the figure
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The decay rate of the unstable state |a) is given by the imaginary part of this
solution of the eigenvalue. In Fig. 1, we show the imaginary part of the eigenvalue as
afunction of the unperturbed energy ¢, for the parameters g = 0.1, k., = 1. Hereafter,
we will always use these values for g and k.. One can see that there is a branch point
at ¢, = ep with the value,

ep =0.0158602. .. (23)

for the special choice of the parameters. Below this value, the imaginary part of the
eigenvalue of the full Hamiltonian is zero, and the perturbed eigenstate is stable. But
above this value, the imaginary part of the eigenvalue of the full Hamiltonian is not
zero, and there appears two branches of the complex eigenvalue, one is the complex
conjugate to the other. The negative branch of the imaginary part is associated with
the decaying process oriented to our future, while the positive branch of the imaginary
part is associated to the decaying process oriented to our past.
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3 Nonlinear Map for Iterative Method

In our example of the Friedrichs model, we could exactly solve the nonlinear eigen-
value equation algebraically. However, it is usually difficult to solve the nonlinear
equation algebraically. Hence, one often uses an iterative method which we will dis-
cuss in this section. To obtain the solution of the nonlinear equation, we consider the
following nonlinear map,

7'[92

~ s et im/2r), (24)

Zr41 = €q

where r is an integer starting with » = 0. A fixed point of the nonlinear map is a
solution of (21). Indeed, the iterative method is often a quite powerful method to solve
nonlinear equations, even in the case one cannot solve the nonlinear equation by using
an algebraic method. Note, however, our nonlinear map contains ,/z.. Therefore,
we should be careful to perform this iterative method to specify the branch of the
Riemann sheet of the analytic continuation of ,/z,.

In Fig.2, we show two examples of the result of the iterative procedure for (a)
the unstable case where €, is chosen far from the branch point where the dynamical
phase transitions from reversible process to the irreversible process, while (b) is
chosen near the branch point for g = 0.1, k. = 1. The value of ¢, is indicated in
the figure. In both figures (a) and (b), the large circle is the location of the exact
eigenvalue in the complex Z,-plane obtained by (22). We have chosen the initial
value z of the iteration near some point of the exact location. For case (a) far from
the branch point, we see that the convergence to the exact point is rapid. On the other
hand, for case (b) near the phase transition, the convergence to the exact point is
slow, and there are lots of spiral rotations to approach the exact fixed point.

(a) (b)

Im|Z,] Im|Z,]
2 = 0.0162 o0010f 24 = 0.0158605 e
0.00010|
0.0005} |
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Fig. 2 Trajectories of the iterative procedure for the nonlinear map (24) to obtain the complex
eigenvalue in the complex Z,-plane. The large circles are locations of the eigenvalues. (a) is the
unstable case where €, is chosen far from the branch point, while (b) is chosen near the branch
point for g = 0.1, k. = 1. The values ¢, for these examples are shown in these figures
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Fig. 3 The imaginary part of Z, obtained by the iterative procedure of the nonlinear map (24) as
a function of the iterative number r. (a’) corresponds to (a), and (b’) corresponds to (b) in Fig.2,
respectively, with same choice g = 0.1 and k. = 1. Approach to the fixed point of the map is more
intermittent in (b’) near the branch point than (a’) far from the branch point

In Fig. 3, we show results of the iterative procedure for the imaginary part of the
map for the unstable case, where (a’) corresponds to (a), and (b’) corresponds to
(b) in Fig. 2, respectively. The horizontal axis indicates the iteration number r. The
figure (a’) shows a smooth oscillating convergence to the fixed point for the case far
from the branch point. On the other hand, the figure (b’) shows a strong nonlinear
intermittent behavior to the approach to the fixed point.

In Fig.4, we show examples of the result of the iterative procedure for an inter-
esting stable case with a real eigenvalue. In these examples, we have chosen as
€, = 0.01572 < ep, where €5 is the value of the branch point indicated at (23) for
our special choice of the parameters as g = 0.1, k. = 1. For this case, the unper-
turbed energy of the discrete spectrum ¢, is positive. Hence, the unperturbed energy
of the continuous spectrum € can overlap with the unperturbed energy of the dis-
crete spectrum. Nevertheless, since we have chosen the value of €, being moderately
close to the branch point, there appears a stable solution on the eigenvalue problem
of the full Hamiltonian H due to our choice of a moderately a strong interaction with
g = 0.1. In these figures, (c) corresponds to (a) and (b) in Fig. 2, and (d) corresponds
to (a’) and (b’) in Fig. 3. These figures show a monotonic convergence to the fixed
point for the stable case with a real eigenvalue. Hence, the nonlinearity is weak as
compared with the cases (a) and (a’). This monotonic convergence is observed for
the negative choice of €, where the resonance singularity does not play a role.

4 Mandelbrot Set

Let us now consider the inverse map of (24). We will show that the inverse map
exactly reduces to the nonlinear map that generate the Mandelbrot set. One can
obtain its inverse map by replacing z,4; by &, and z, by &.4,. Then, we have the
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Fig. 4 The imaginary part of Z, obtained by the iterative procedure of the nonlinear map (24) for
a stable case as a function of the iterative number » with same choice g = 0.1 and k. = 1 as the
above figures. For this case, the imaginary part of the fixed point of the map is 0. The figure shows
the approach to the fixed point is monotonic

inverse map,

4K+ \? wg? 2
§ri1 = — (7’[2 gz> <€r — €+ 2_](?) . (25)
Moreover, we change the variable as
4k} g g
prE_(nzgz> (gi’_ea—i_z—kg)' (26)

Then, we obtain a simple nonlinear map,

Pri1 = PP+ Aleq, 9), (27)

with

4K\ 8k>
a (28)

Aleq, 9) = (7‘[292 e

This is just the nonlinear map for the Mandelbrot set [23].

Itis well known that starting with py = 0 there are two domains of complex values
A(e,, g), one of which gives the convergent value of | p,| in the limit r — oo, while
the other of which gives the diverging value of |p,| in the same limit. In Fig.5, we
show these two domains in the parameter space for complex values of ¢, for g = 0.1,
k. = 1. The domain indicated by white is the domain which gives the convergent
value of | p,| in the limit » — oco. On the other hand, the domain indicated by black
is the domain which gives the diverging value of | p,| in the same limit. In the figure,
we indicate the location of the branch point where the broken time-symmetry starts
in our Friedrichs model.
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Fig. 5 Mandelbrot set obtained by the inverse map (27) of the nonlinear map (24) with the same
choice g = 0.1 and k. =1 as the above figures. This figure is obtained by extending the value €,
into the complex plane. Mandelbrot set is a border line of the convergent and divergent value of | p, |
in the limit » — oo. The domain indicated by white is the converging domain, while the domain
indicated by black is the diverging domain. The location of the branch point where the broken
time-symmetry starts in our Friedrichs model is indicated in the figure

5 Concluding Remarks

We have investigated a decaying process of the Friedrichs model that is a simple
model of unstable matter-field interacting system, by using the complex spectral
analysis of the Hamiltonian. The complex spectral analysis of the generator of motion
for conservative dynamical systems offers a microscopic analysis of irreversibility
based on the basic laws of physics. An advantage of the Friedrichs model is that one
can exactly solve the eigenvalue problem of the Hamiltonian.

In spite of the fact that the Hamiltonian of the Friedrichs mode is a Hermitian
operator in the Hilbert space, this operator may have a complex eigenvalue in the dual
space of the extended Hilbert space which lies outside the Hilbert space. Transport
coefficients, such as the decay rate of the unstable state, in the irreversible process can
be evaluated as an imaginary component of the complex eigenvalue of the generator
of motion. This reveals the fact that irreversibility is not an approximate concept
in dynamics, but it is an exact dynamical property of dynamics coming from the
fundamental microscopic equation of motions, such as the Schrodinger equation or
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the Liouville-von Neumann equation. The authors recommend to read the references
[1-3] for more details on this essential aspect of the complex spectral analysis of the
generator of motion in the fundamental laws of physics.

As has been explained, the eigenvalue problem of the generator of motion, such
as the Hamiltonian or the Liouvillian, reduces to the nonlinear eigenvalue problem
of the effective Hamiltonian or the effective Liouvillian. We have shown that the
nonlinearity of the effective Hamiltonian leads to a surprisingly complicated fractal
structure described by the Mandelbrot set when we solve the nonlinear eigenvalue
problem of the effectively Hamiltonian by the iterative method. The fractal structure
we found here indicates the renormalization scaling in the Brillouin-Wigner type of
the perturbation method in the extended Hilbert space. This shows that there are still
lots of uninvestigated rich problems associated to the nonlinearity in the problem of
broken time-symmetry in well-investigated decaying process in unstable dynamical
systems.
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Thermodynamic Flux-Force Closure )
Relations for Systems out of the Onsager | @i
Region

Giorgio Sonnino

Abstract The first attempts to develop non-equilibrium thermodynamics theory
occurred after the first observations of some coupled phenomena of thermal diffu-
sion and thermoelectric phenomena. However, the big obstacle to overcome is that
the number of unknowns is greater than the number of equations expressing the
conservation laws. So, it is crucial to determine the closure relations to make the
problem solvable. The objective of this work is to determine the nonlinear flux-force
relations for systems out of Onsager’s region that respect the existing thermodynamic
theorems for systems far from equilibrium. To this aim, a thermodynamic theory for
irreversible processes [referred to as the Thermodynamical Field Theory (TFT)] has
been developed. The TFT rests upon the concept of equivalence between thermody-
namic systems. The equivalent character of two alternative descriptions of a thermo-
dynamic system is ensured if, and only if, the two sets of thermodynamic forces are
linked with each other by the so-called Thermodynamic Covariant Transformations
(TCT). The TCT are the most general thermodynamic force transformations which
leave unaltered both the entropy production and the Glansdorff-Prigogine dissipa-
tive quantity. In this work, we describe the Lie group and the group representations
associated with the TCT. The TCT leads to the so-called Thermodynamic Covari-
ance Principle (TCP): The nonlinear closure equations, i.e., the flux-force relations,
must be covariant under TCT. In this chapter, we provide the explicit form of the
nonlinear PDEs, subjected to the appropriate boundary conditions, which have to
be satisfied by transport coefficients when the skew-symmetric piece is absent. The
solution of these equations allows determining the flux-force closure relations for
systems out of the Onsager region. Since the proposed PDEs are obtained without
neglecting any term present in the balance equations (i.e., the mass, momentum,
and energy balance equations), we propose them as a good candidate for describing
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transport in thermodynamic systems also in turbulent regimes. As a special case,
we derive the nonlinear PDEs for transport coefficients when the thermodynamic
system is subjected to two thermodynamic forces. The obtained PDE is, in Ther-
modynamical Field Theory (TFT), analogous to Liouville’s equation in Riemannian
(or pseudo-Riemannian) geometry. A preliminary test is carried out by analysing a
concrete example where Onsager’s relations manifestly disagree with experience:
losses in magnetically confined Tokamak-plasmas. More specifically, we compute
the mass and energy losses in FTU (Frascati Tokamak Upgrade)-plasmas subjected
to two thermodynamic forces. We show a good agreement between the theoretical
(TFT) predictions and the experimental data. The aim is to apply our approach to the
Divertor Tokamak Test facility (DTT), to be built in Italy, and to ITER. Other appli-
cations of the TFT to the thermoelectric effects or to out-of-equilibrium chemical
reactions can be found in the references cited at the end of the chapter.

1 Introduction

When there are more unknowns than equations expressing conservation laws, addi-
tional closure laws are needed to make the problem solvable. Generally, these addi-
tional closure relations are not derivable from one of the physical equations being
solved. Several approaches to getting the closure relations are currently applied.
Among them, we cite the so-called truncation schemes and the Asymptotic schemes.
In truncation schemes, higher order moments are arbitrarily assumed to vanish, or
simply negligible with respect to the terms of lower moments. Truncation schemes
can often provide quick insight into fluid systems, but always involve uncontrolled
approximation. This method is often used in transport processes in Tokamak-plasma
(see, for instance, the book [1]). The asymptotic schemes are based on the rigorous
exploitation of some small parameters. They have the advantage of being systematic,
and providing some estimate of the error involved in the closure. However, as the
title itself suggests, these methods are effective only when small parameters enter,
by playing a crucial role, in the dynamic equations. These schemes are often used for
solving numerically kinetic equations (refer, for instance, to the book [2]). Another
possibility is to obtain the closure relations by formulating a specific theory or ad hoc
models. The most important closure equations are the so-called transport equations
(or the flux-force relations), relating the thermodynamic forces with the conjugate
dissipative fluxes that produce them. The thermodynamic forces are related to the
spatial inhomogeneity and (in general) they are expressed as gradients of the ther-
modynamic quantities. The study of these relations is the object of non-equilibrium
thermodynamics. Morita and Hiroike eased this task for a closure relation by pro-
viding the formally exact closure formula [3]

Jo(X) = @, (X) X" (D
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Here, X* and J, denote the thermodynamic forces and thermodynamic fluxes,
respectively. Coefficients @, (X) are the transport coefficients, where it is clearly
highlighted that the transport coefficients may depend on the thermodynamic forces.
We suppose that all quantities appearing in Eq. (1) are dimensionless. Note that in
this equation, as well as in the sequel, the Einstein summation convention on the
repeated indices is understood. Matrix @, (X) can be decomposed into a sum of
two matrices, one symmetric and the other skew symmetric, which we denote by
g (X) and f,,(X), respectively. The second law of thermodynamics requires that
g,v(X) is a positive-definite matrix. Note that, in general, the dimensionless entropy
production, denoted by o, with o = @, (X) X* X" = g,,(X)X* X", may not be a
simply bilinear expression of the thermodynamic forces (since the transport coeffi-
cients may depend on the thermodynamic forces). For conciseness, in the sequel we
drop the symbol X in g,, as well as in the skew-symmetric piece of the transport
coefficients f),, being implicitly understood that these matrices may depend on the
thermodynamic forces.

In previous works, a macroscopic Thermodynamic Field Theory (TFT) for deriv-
ing the closure relations valid for thermodynamic systems out of Onsager’s region
has been proposed. More specifically, the aim of the TFT in [4—11] is to determine
the nonlinear flux-force relations which are valid for thermodynamic systems out of
the thermodynamic linear region (commonly referred to as the Onsager region) [12,
13]. This task is accomplished by means of three hypotheses: two constraints 1. and
2., and one assumption 3. In order to establish the vocabulary and notations that shall
be used in the sequel of this work, we briefly recall these hypotheses.

1. The thermodynamic laws and the theorems demonstrated for systems far from
equilibrium must be satisfied.

2. The validity of the Thermodynamic Covariance Principle (TCP) must be ensured.
The TCP stems from the concept of equivalent systems from the thermodynamic
point of view. Thermodynamic equivalence was originally introduced by Th. De
Donder and I. Prigogine [14—-16]. However, the De Donder-Prigogine definition
of thermodynamic equivalence, based only on the invariance of the entropy pro-
duction, is not sufficient to guarantee the equivalence character between two sets
of thermodynamic forces and conjugate thermodynamic fluxes. In addition, it is
known that there exists a large class of flux-force transformations such that, even
though they leave unaltered the expression of the entropy production, they may
lead to certain paradoxes [17, 18]. The equivalent character of two alternative
descriptions of a thermodynamic system is ensured if, and only if, the two sets of
thermodynamic forces are linked with each other by the so-called Thermodynamic
Covariant Transformations (TCT). The TCT are the most general thermodynamic
force transformations which leave unaltered both the entropy production ¢ and
the Glansdorff-Prigogine dissipative quantity P [for the definition of P, see the
forthcoming Eq. (12)]. In this work, we also describe the Lie group and the group
representations associated with the TCT. The TCT leads in a natural way to pos-
tulate the validity of the so-called Thermodynamic Covariance Principle (TCP):
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The nonlinear closure equations, i.e., the flux-force relations must be covariant
under the Thermodynamic Covariant Transformations (TCT).

3. Close to the steady states, the nonlinear closure equations can be derived by the
principle of least action.

This theory, based on 1., 2., and 3. is referred to as the Thermodynamical Field
Theory (TFT). The three hypotheses 1., 2., and 3. allow determining the nonlinear
TFT-Partial Differential Equations (PDEs) for transport coefficients w,,,. In this
chapter, we shall limit ourselves to the case in which the transport coefficients possess
only the symmetric piece (i.e., f,,, = 0). We shall show the explicit form of the TFT-
PDEs for g,,. Later, inspired by the theory of Jackiw and Teitelboim [19-24], we
shall also derive the explicit form of the TFT-PDE:s for g,,, for the two-dimensional
case, i.e., when the system is subjected to two independent thermodynamic forces.

The final part of the chapter is devoted to the application of the theory to some
relevant examples of systems out of equilibrium. More precisely, we shall apply
the derived TFT-PDEs to Tokamak-plasmas in a collisional regime. This is a very
interesting example of application since, in this case, the Onsager relations strongly
disagree with experimental data. One of the main issues in Fusion Science is the
computation of energy and mass losses in Tokamak-plasmas. It is well-known that
there is a strong disagreement, of several orders of magnitude, especially for electron
mass and energy losses, between the theoretical predictions of the Onsager theory
(at the basis of the so-called neoclassical theory) and experiments. This discrepancy
is even more pronounced in the case of magnetically confined plasmas in turbulent
regimes. The aim is to compute the electron heat loss in Tokamak-plasmas by consid-
ering the contribution of the nonlinear terms in the flux-force relations derived by the
TFT. In order to test the validity of our results, we have computed the electron heat
loss for Frascati Tokamak Upgrade (FTU)-plasmas in a fully collisional transport
regime. We have compared the theoretical profile obtained by the nonlinear theory
satisfying the TCP with the experimental data for the FTU-plasmas (provided by the
ENEA C.N.R.—EuroFusion in Frascati) and with the theoretical predictions of the
linear theory (the Onsager theory). We found that there is a fairly good agreement
between the TFT and experiments (in contrast with Onsager’s theory). However,
disagreements appear in the region where the dimensionless entropy 6z, is of order
1. In particular, we found that the disagreement appears in the region of the tokamak
where the plasma is in a turbulent regime. Incidentally, this corresponds also to the
region where o) ~ 1. Preliminary calculations and theoretical results in the region
oy ~ 1 have also been performed. We are currently comparing the theoretical pre-
dictions of the TFT with the experimental data for FTU-plasma in a turbulent regime.
Other examples of application of the TFT to unimolecular triangular chemical reac-
tions (i.e., three isomerisations take place) and to materials subjected to temperature
and electric potential gradients, and to chemical reactions out of equilibrium and to
Hall effect can be found in Refs. [4, 8] and in [25-29], respectively.

The chapter is organised as follows. In Sect. 2, we recall the basic concepts of the
Thermodynamical Field Theory (TFT). To this aim, we quickly introduce the defini-
tion of the space of the thermodynamic forces, and we describe the Thermodynamic
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Covariance Principle (TCP) and the TCT-symmetry group. Successively, in Sect. 3
we derive the explicit form of the nonlinear TFT-PDEs for transport coefficients in
the absence of the skew-symmetric part (i.e., when f,, = 0). In Sect. 4, we derive
the nonlinear PDEs for transport coefficients g, when the system is subjected to
two independent thermodynamic forces (i.e., when n = 2). Section 5 provides the
linearised TFT transport equations. The physical meaning of the gauge invariance in
TFT is reported in Sect. 6. The analytic solution of the two-dimensional linearised
homogeneous TFT-PDE is obtained in Sect. 7. The solution of the TFT-PDE for
collisional FTU-plasmas, subjected to two independent thermodynamic forces, can
be found in Sect. 8. In this section, we shall show the good agreement between
the theoretical predictions and the experimental data. Finally, the main results are
concluded in Sect. 9. Here, we also specify the boundary conditions for turbulent
Tokamak-plasmas. The determination of the boundary conditions, which have to be
satisfied by the TFT-PDEs for a general system out of thermodynamic equilibrium,
is obtained in Appendix. In Appendix, we can also find the analytic solutions of the
linearised, two-dimensional, inhomogeneous TFT-PDE.

2 The Thermodynamical Field Theory (TFT)

2.1 The Space of the Thermodynamic Forces

The first task is to define the space where we may perform calculations. To this
aim, it is not enough to specify the nature of the axes, we must also determine two
quantities: the metric tensor and the affine connection (denoted by symbol F;);v)'

— The metric tensor is a central object in the theory; it describes the local geometry
of space. The metric tensor is a symmetric tensor used to raise and lower the
indicative tensors and generate the connections used to construct the PDEs and
the curvature tensor of the space.

— The curvature of a space can be identified by taking a vector at some point and
transporting it parallel along a curve in space-time. An affine connection is a rule
that describes how to legitimately move a vector along a curve on the variety
without changing its direction.

The metric tensor and the affine connection are determined by physics, i.e., by
ensuring the validity of the thermodynamic theorems valid for systems out of equi-
librium (in accordance with the above-mentioned assumption 1). More precisely, we
must take into account the validity of the second law of thermodynamics and the
General Evolution Criterion (GEC) [30, 31]. We adopt the following definitions [4,
11]:

e The space of the thermodynamic forces (or, simply, the thermodynamic space) is
the space spanned by the thermodynamic forces.
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Fig. 1 The
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o The metric tensor is identified with the symmetric piece g, of the transport coef-
ficients.

— Note that this definition takes into account the second law of thermodynamics
as, for the second law of thermodynamics, the square (infinitesimal) distance
ds? = ds - ds is always a non-negative quantity—see Fig. 1.

e The expression of the thermodynamic affine connection F;v is determined by
requiring the validity of the Glansdorff-Prigogine General Evolution Criterion. In
Ref. [11] it is shown that, when f,, = 0, we get

1
Tl :{aﬁ}+ XEX 8oy

(X" X4, 48X X gy, ) 2
2(n~|—1)o(°‘ 8pvn + 05 X" X gavy @

where commas stand for partial derivatives with respect to the thermodynamic forces.
8 denotes the Kronecker delta and
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the Levi-Civita affine connection.

2.2 The De Donder-Prigogine Thermodynamic Invariance

Onsager’s theory is based on three assumptions: (i) The probability distribution func-
tion for the fluctuations of thermodynamic quantities (temperature, pressure, degree
of advancement of a chemical reaction, etc.) is a Maxwellian, (ii) Fluctuation decay
according to a linear law, and (iii) The detailed balance principle (or the microscopic
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reversibility) is satisfied. Onsager showed the equivalence of the assumptions (i),
(ii), and (iii) with the equations [12, 13]

aL,,

Jo=LpX" with S =

and Ly, =L,, 4)

where the coefficients of matrix L, are the Onsager transport coefficients. L, is
a symmetric matrix and the elements are independent of the thermodynamic forces.
The limit of validity of Eq. (4) establishes the limit of validity of the Onsager region.
Assumption (iii) allows deriving the reciprocity relations L,, = L,,. The Onsager
theory of fluctuations starts from the Einstein formula linking the probability of a
fluctuation, W, with the entropy change, A S, associated with the fluctuations from
the state of equilibrium

W = Woexp[AS/Kp] &)

In Eq. (5), K is the Boltzmann constant and W, is a normalisation constant which
ensures that the sum of all probabilities equals one [12, 13]. Prigogine generalised
Eq. (5), which applies to adiabatic or isothermal transformations, by introducing the
entropy production due to fluctuations. Denoting by &; (i = 1 - - - m), the m deviations
of the thermodynamic quantities from their equilibrium value, Prigogine proposed
that the probability distribution of finding a state in which the values §; lie between
& and & + d§; is given by [15]

F d
W = WoexplA;S/Kp] A,S:/ ds ;. 22 E/adv (6)
E Q

Here, dv is the spatial volume element of the system, and the integration is over the
entire space €2 occupied by the system. E and F indicate the equilibrium state and the
state to which a fluctuation has driven the system, respectively. Note that this proba-
bility distribution remains unaltered for flux-force transformations leaving invariant
the entropy production. Concrete examples of chemical reactions, equivalent from
the thermodynamic point of view, have also been analysed in the literature. As an
example, among these, we choose the simplest of all. Let us consider, for example,
the following chemical system in which two isomerisations

(a):A— Band B — C.
take place [15]. Of course, from the macroscopic point of view, the chemical changes
in (a) are equivalent to the two isomerisations

(b): A— Cand B — C.

It can be checked that, under a linear transformation of the thermodynamic forces
(which in this case corresponds to a linear transformation of the chemical affinities),
the entropy productions for the two chemical reactions (a) and (b) are equal. Indeed,
the corresponding affinities of the reactions (a) read: A'=pp — ppand A2 = pg —
e, with AP and p; (i = A, B, C) denoting the chemical affinities and the chemical
potentials, respectively. The change per unit time of the mole numbers is given by
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dny dnpg dnc )
—=—v ; — =V -V ; =v
i 1 i 1 2 2

dt

with v; (i = 1, 2) denoting the chemical reaction rates. In this case, the thermo-
dynamic forces and the thermodynamic fluxes are the chemical affinities (over
temperature) and the chemical reaction rates, respectively, i.e., X* = A*/T and
J,. = v,,.Hence, the corresponding entropy productionreads d; S/dt = (A'/THv, +
(A%/T)v, > 0. The affinities corresponding to reactions (b) are related to the previ-
ous ones by

’

Al=ps—pe=A"+A% ; A?=pup—puc=A> (8)

By taking into account that

dny , dnp / dnc ’ /
- v’y o vy o = + v &)
we get
v =0 5 v=v+v> (10)

where the invariance of the entropy production is manifestly shown. Indeed,

s 1 2 1 ’ &) ’ diS'
7=(A /T)vy + (A7/T)vy = (A" /THv'; + (A /T)vz=7 (11)

or J,X*=1J /;X n (where, as usual, the Einstein summation convention on the
repeated indices is adopted). On the basis of the above observations, Th. De Donder
and L. Prigogine formulated, for the first time, the concept of equivalent systems from
the thermodynamical point of view. For Th. De Donder and I. Prigogine, thermody-
namic systems are thermodynamically equivalent if, under flux-force transformation,
the bilinear form of the entropy production remains unaltered, i.e., 0 = o’ [14-16].

2.3 Remarks on De Donder-Prigogine’s Thermodynamic
Invariance Formulation

The Thermodynamic Invariance Principle formulated by De Donder-Prigogine,
based only on the invariance of the entropy production, is not sufficient to guarantee
the equivalence character of the two descriptions (J,,, X*) and (J ;;’ X'*). Indeed, we
can easily convince ourselves that there exists a large class of transformations such
that, even though they leave unaltered the expression of the entropy production, they
may lead to certain paradoxes to which J. E. Verschaffelt and R. O. Davies have called
attention [17, 18]. This obstacle can be removed if one takes into account one of the
most fundamental and general theorems valid in the thermodynamics of irreversible
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processes: the General Evolution Criterion. Glansdorff and Prigogine have shown
that: For time-independent boundary conditions, a thermodynamic system, even in
strong non-equilibrium conditions, relaxes to a stable stationary state in such a way
that the following General Evolution Criterion is satisfied

oXH
P :f 7.2 4 <0 (12)
o "ot

In addition
axXH
P = JMTdV = 0 at the steady state (13)
Q

Quantity P may be referred to as the Glansdorff-Prigogine dissipative quantity. Let
us check the validity of this theorem by considering two, very simple, examples. Let
us consider, for instance, a closed system containing m components (i = 1---m)
among which chemical reactions are possible. The temperature, 7', and the pressure,
p, are supposed to be constant in time. The chance in the number of moles n;, of
component i, is

it =vtivj (14)

with vij denoting the stoichiometric coefficients. By multiplying both members of
Eq. (14) by the time derivative of the chemical potential of component i, we get
du' dn;  (dp'N  dnidn,  Op :
apani (i) l_”:<i> /00, > 0 (15)
dt dt an,/ (pT) dt dt on,/ (pT)
where the positive sign of the term on the right-hand side is due to the second
law of thermodynamics. By taking into account the De Donder law between the
affinities A/ and the chemical potentials, i.e., A7 = —v/u/, and that the chemical
thermodynamic force (X/) and its chemical conjugate flux (J ;) read X =A//T
and J; = v; respectively, we finally get

P /J =01, —q d<Aj) Q(”) J1<0, <0

= V= _—= vVi—|— )= —— — VIviv;v

o ot " dt Tar\'T T\on/ on ' 77" —
(16)

Hence, the Glansdorff-Prigogine dissipative quantity P is always negative and it
vanishes at the stationary state. As a second example, we analyse the case of heat
conduction in non-expanding solid. In this case, the thermodynamic forces and the
conjugate fluxes are the (three) components of the gradient of the inverse of the
temperature, X* = V(1/T), and the (three) components of the heat flux, J,, = J ()
(with u = 1, 2, 3), respectively. Hence,

oXH
P:/JM—dV:/ T - V(1 T)dv a17)
@ 0t Q
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The heat flux, J ), is linked to the (partial) time derivative of temperature by the
Fourier law (expressing the energy balance equation)

L vy (18)
Cy— =—V_
P o !
with p and ¢, denoting the mass density and the specific heat at volume constant of
the fluid, respectively. By performing the integration by parts, and by assuming that
the heat flux vanishes at the boundary, we easily get

_ pcy (0T \2
P= /QTZ<8t>dV§O (19)

with P = 0 atthe steady state. By summarising, for all thermodynamic systems, with-
out using the Onsager reciprocal relations, and even if the transport coefficients are
dependent on the thermodynamic forces, the dissipative quantity P is always a nega-
tive quantity. This quantity vanishes at the steady state. In the two above-mentioned
examples, the thermodynamic forces are the chemical affinities (over temperature)
and the gradient of the inverse of temperature, respectively. However, we could have
adopted a different choice of thermodynamic forces. If we analyse, for instance,
the case of heat conduction in non-expanding solid, where chemical reactions take
place simultaneously, we can choose as thermodynamic forces a combination of
the (dimensionless) chemical affinities (over temperature) and the (dimensionless)
gradient of the inverse of temperature. Clearly, this representation is thermodynami-
cally equivalent to the previous one (where the thermodynamic forces are simply the
chemical affinities over temperature and the gradient of the inverse of temperature)
only if the negative sign of the dissipative quantity P is preserved. In other words,
the equations providing the stationary states (i.e., Eq. (13)) must admit exactly the
same solutions.

2.4 The Thermodynamic Covariant Transformations (TCT)
and the Thermodynamic Covariance Principle (TCP)

One of the central aspects of the TFT is the concept of invariance of physics’ laws.
This invariance can be described in many ways, for example, in terms of local covari-
ance or covariance of diffeomorphism. A more explicit description can be given
through the use of tensors. The characteristic of the tensors that proves to be cru-
cial is the fact that, once the metric is given, the operation of contracting a tensor
of rank r on all indices r provides a number—an invariant—which is independent
of the coordinates used to perform the contraction. Physically, this means that the
invariant calculated by choosing a specific coordinate system (i.e., in a specific set
of the thermodynamic forces) will have the same value if calculated in another—
thermodynamically equivalent—coordinate system (i.e., in another equivalent set
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of thermodynamic forces). According to the Thermodynamical Field Theory (TFT),
two set of thermodynamic forces are equivalent if the following two conditions are
satisﬁed1 [11]:

(i) The entropy production o must be invariant under transformation of the ther-
modynamic forces {X*} — {X*}.

(i) The Glansdorff-Prigogine dissipative quantity P must also be invariant under
the force transformations {X*#} — {X “}.

Condition (ii) stems from the fact that a stable steady state must be transformed
into the same stable steady-state, with the same degree of stability. In mathematical
terms, this implies

o=JX'=JX"=0"; P=P - J,8X"=J X" and t=1 (20)

Equations (20) are satisfied iff the transformed thermodynamic forces and conjugate
fluxes read as [11, 32, 33]

) € . 0XY
X“:WX = Q1)
Transformations (21) are referred to as the Thermodynamic Covariant Transforma-
tions (TCT) [11]. The thermodynamic equivalence principle leads, naturally, to the
following Thermodynamic Covariance Principle (TCP) [32, 33]:

The nonlinear closure equations, i.e., the flux-force relations, must be covariant
under TCT.

The essence of the TCP is the following. The equivalent character between two
representations is warranted iff the fundamental thermodynamic equations (e.g., the
transport equations) are covariant under the Thermodynamic Covariant Transforma-
tions (TCT).

2.5 The TCT-Symmetry Group

2.5.1 Topological Structure the TCT-Group

The invariance of a system under TCP is intimately related to the existence of a group,
which we refer to as the TCT-group [34, 35]. The TCT-group with its properties can
be identified by analysing the solution of Eq. (21). The solution of Eq. (21) reads

(22)

2 3 n
X/’*:XIF“(X X X )

X T

1 According to the TFT conditions, (i) and (ii) establish the equivalent character between two
different representations (i.e., between two different set of thermodynamic forces.)
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Fig. 2 The projective
space. The projective space
RP"~! is diffeomorphic to
S:’f' made by the upper
hemisphere + half equator
(without the red and yellow
points) + the red point

z = Several axes

Fig. 3 The TCT-group.
The TCT-group G” is the
application F'*, from the
bundle (the projective space
RP"~1) to the fibre (RY)

with F** denoting arbitrary functions. Hence, the ratio { X* / X*~'} are the coordinates
for a different space: the Real Projective Space RP"~', which is defined to be the
quotient of R"” minus the origin by the scaling map X* — o X" with o denoting any
nonzero real number—see Fig. 2. The TCT-group is then the product of diff (RP"~!)
with the multiplicative group of the map from RP"~! — R*—see Fig. 3 [34, 35].

2.5.2 Algebraic Structure of the TCT-Group

In the previous subsection, we have seen that the TCT group, denoted by G”, is a
specific subgroup of the homogeneous diffeomorphisms from diff (R\({0}). In alge-
braic terms, the result of the previous Subsection may be expressed as follows: The
G" results from the application:
diff R\({0}) > X F Y, (X) e dift R\({0}), with Y, € G"iff Y,(AX) = LY, (X) with
reR

It is possible to demonstrate that the TCT-group, G", may be split in a semidirect
product of two subgroups where the first one is a normal, Abelian, subgroup, denoted
by N", and the second one is the reflection subgroup. The demonstration of this
theorem can be found in Ref. [34]. More specifically, let us introduce two subgroups
N" and H" defined as follows. Let N" denote the normal subgroup of G" defined as

N": Yo(X) = Xrg(X) withry(AX) = re(X) >0 (23)
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with A > 0. Here, r,(X) is a positive C*(R\({0})) homogeneous function.
Let H" denote the reflection subgroup of G" defined as

H" 1Y) =1 X 05 Ya(=X) = =Y(X)
with h € H" (24)

In Ref. [34], it is proved that
G'"=N'xH" (25)

The irreducible representations of the group G are then related to the irreducible
representations of the subgroups N" and H".

2.6 The Thermodynamic Action Principle

Constraint 2. and assumption 3., reported in Introduction, lead to the following ther-
modynamic action principle [11]:

e There exists a thermodynamic action 1, scalar under Thermodynamic Covariant
Transformations (TCT), which is stationary with respect to arbitrary variations in
the transport coefficients and the affine connection.

This action, scalar under TCT, must be constructed only by the transport coefficients,
the affine connection, and their first derivatives. In addition, it must be linear in the
second derivatives of the transport coefficients, and it cannot contain second or higher
derivatives of the affine connection. We also require that the action is stationary when
the affine connection takes the following expression [11]:

rh, =T% (26)

Hence, our Lagrangian density £ depends on three sets of dynamical variables:
L=L(guw, fuv F,’}U). The simplest action satisfying these requirements is

I = /c Jed"X = / [B— (%, = T2)S + L(gus fu)] VEA"X  (27)

with B denoting the scalar curvature of the thermodynamic space®:

o ar}m BFﬁv S n A
B = B,.g i B = XY ax~ +0ul — Tl (28)

and the expressions of Sf’s is [11]

2 To avoid misunderstanding with the Riemannian (or Pseudo-Riemannian) geometry, we adopt the
Eisenhart notations [37].
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v va v o 1 af Qv 1 Vo«
S;f = "Ij)ljag + "Ijkozg# - z\pgﬂg ,36)\ - quaﬂg /33;’ (29)
with
lll“ = _Tlmgkk - Tnagk aSM - ! angk oz(s#
) T2+ 1) TR 2+ 1) e
v XrX" v
™ = ;0= gquHX (30)
o

L (guvs> fuv) is aLagrangian density that may depend on the transport coefficients but
not on the affine connection. Note that 7#*" is a second-rank thermodynamic tensor.
The physical meaning of the Lagrangian density stems from its (strict) connection
with the curvature of the thermodynamic space. So, we require that the Lagrangian
density must coincide with the scalar curvature B when the affine connection takes
the expression Fﬁv This is because the scalar B is the simplest curvature scalar, and
the only one that is linear in the curvature of the space. This implies that L£=0and
the final expression of the thermodynamic action reads

I = / [B — (T, — T8 Vgd" X (31)

2.7 The Privileged Thermodynamic Coordinate System

By definition, a thermodynamic coordinate system is a complete set of independent
thermodynamic forces. Once a particular set of thermodynamic coordinates is chosen,
the other sets of coordinates are linked to the first one through a Thermodynamic
Coordinates Transformation (TCT). The simplest way to determine a particular set
of coordinates is to quote the entropy balance equation

aps
RUGRNTS v ) 32
o7 +V-J=o0 (32)

Here, ps is the local total entropy per unit volume (p is the mass density) and J;
is the entropy flux, respectively. Let us consider, as an example, a thermodynamic
system confined in a rectangular box where chemical reactions, diffusion of matter,

macroscopic motion of the volume element (convection), and heat current take place
simultaneously. The entropy flux and the entropy production read [16, 38, 39]
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Js = l(Jq =) Jin)+ ) pivis;
T - -
1 L

1 1 i wiA; 1
G:JqVT_TlZJl[Tv(?)_Fl]+IZT_T;Hljar'vJ20 (33)

where u;, p;s;, and A; are the chemical potential, the local entropy, and the affinity
of species "i", respectively. J, is the heat flux; J; and w; are the diffusion flux and the
chemical reaction rate of species i, respectively. Moreover, I1;; are the components
of the dissipative part of the pressure tensor M;; (M;; = pd;; + I;;; p is the hydro-
static pressure), F; is the external force per unit mass acting on i, and v; denotes
the component of the hydrodynamic velocity [39]. The set of the thermodynamic

coordinates reads

=9 ()i - (v (B)-r): 25 —on) o0

For this particular example, this set may be referred to as the privileged thermody-
namic coordinates system. Other examples of privileged thermodynamic coordinates
systems, related to magnetically confined plasmas, can be found in Refs. [1, 40, 41].

3 Transport Equations

Action (31) is stationary with respect to small, and arbitrary, variations of the dynam-
ical variable g, and F/ﬁv (we set f,, = 0). We recall that action (31) has been
constructed in such a way that it is stationary for I”l*w = F;);.u Indeed, by variational
calculations, we get that the action is stationary with respect to small, independent,
variations of g, and '}, if [11]

1 ST
B ) — LUBZ SAK A
S—

¥ 3g;w - W
=, (35)

Equation (35) is valid for n # 2. Much less easy is to compute the explicit expression
of T,,,. After (quite long) calculations, we get

ST
T, = _S;XJK(S ;);K - (0
g v
1 ‘o 1 _ K K
Eg I/Z(S(;L g ﬁgl/z),ﬂg)\ug,{v — Eg l/z(gl/z(sﬂﬂglcv + Svﬂgkﬂ)) P

1 nh 1 nh
- ZS# (8un.h + 8oy — &niw) — ZSU (8un.n + uhy — i)
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1

1/2
_ 8
_ Eg 12 <g1/21nﬂ531< _ m (r’\’sS,',”( + f"ﬂS;V\)> , 8ru8iv
1
— QT“’gr“SZ‘gm,ﬁgmgw n+ 1 ™ AKS” 8o, p8ru8iv 37)

After a little algebra, we find

12
gfl/z (gl/zrnﬂsy 8

ol G rKﬁS,’,”)) Eiuiv =

B

(qu/ag B + ‘ljnag B ) tnﬁg)nﬂgKU

L
2(n+1)

1 1
= 58 g (8175, 77) = 587 g (820,77 (38)

mw N —

g—1/2 (gl/2 (\Ijgnagrlottkﬂ + \p,’;agnafkﬁ))'ﬂ Siu8ev

where we note that the trace of the last expression of Eq. (38) vanishes. We also have

1 1
- EraﬁtkKSngnt,ﬂgkugku n +1 aﬁ AKSnLgatﬁgkugkv =

—lllayg g ﬁT T)Lngugkv"f‘ qllygnygmﬁfaﬁt)wgkugku (39)

1
n+1

Hence, tensor 7),, can be brought into the form

1 _ I _
T = 58 7(5"8" ") p8uer = Eg 12 (g”z(SZ‘ggm + Sfﬂgw)) ,
1
- ZSZ (8un.n + iy — &nav) — _S” (8un.h + uh.y — &nhpt)
1 172 1/2_nB ¢A 81/2 1B B
- _g_ (g " SnK - (T SZK + ¢ SZ)L)> Eru8iv
2 n+1 B

— W g pT T g + W 8" u gt T Guger  (40)

n—+1

and the trace of tensor 7),, reads

—— 8108 1/2(81/2\Da gkkrnﬂ) 5

n—2 _
T T g Tg l/z(g]/z‘l]fl{g)hk),ﬂ—i_ +1

1
- "I/g aﬂ M(glyg)ucgnt,ﬂ + ?wtygny.caﬁt Sk 8o, B

+ 28 g g — W, T g8y (41)
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Finally, in absence of the skew-symmetric part, we get the differential equations for
the transport coefficients valid for n > 2:

By = Tpo = —— g = W (42)
nv Hv n— 2 glw

ny
with T}, and T given by Eq. (40) and Eq. (41), respectively.
e Property of Tensor W3

Tensor B,,, satisfies the Bianchi identity for symmetric connection which, written in
the linearised form, reads

0B 1, 09By

— =L =0 43
axr 2 axv “43)

The validity of identity (43) may also be checked by direct inspection. Hence, also
tensor Wﬁ) (h) satisfies the same identity

() (S)
A 3Wm _ lLM,\aWM =

aXH 2 axXv “4)

e Observations
By direct inspection, we may check the validity of the following important identities:

-1
U =vh =0 ; SQ“ = _ 5 )\yfkg” (45)

K

3.1 Onsager’s Region

The transport coefficients tend to Onsager’s matrix as the thermodynamic system
approaches thermodynamic equilibrium. The thermodynamic region where the ther-
modynamic forces are linearly connected to the conjugate thermodynamic fluxes is
referred to as the linear region of thermodynamics or Onsager’s region [14, 15].
Hence, as the thermodynamic forces go to zero, the metric g, tends to Onsager
matrix L, (or, equivalently, the perturbation £, of the metric tensor tends to zero):

li v =L,y 46
Jim, s = L “o

Condition (46) is referred to as Onsager’s condition.
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3.2 Near the Onsager Region

Let us compute the first nonlinear contributions of Eq. (42). In this case, since \Ifﬁv
is already of the first order in 4, to obtain equations valid up to the third order,
we should develop quantities g"’, g, o2, T**, etc. up to the second order. Hence, by
setting

Suv = L;w + h;w ; 00X O‘(L)(l + huuf&\;) (47)

with o(z) = Ly, X* X" and 7/} = X" X" /o1, we get

g’ = LM — W+ R Ly + O ()
o 2 ol (1= el + (T + 00

0%~ U(L) (1 + Zhu\}f(L) + (h/LuT(L))2> + O(h’;)

| 2

1—h Ak h Ak 2) 19) h3
o ( e T(L) =+ ( AKT(L>) + Oh”)
1

P (1= 2ty + 30cts)?) + 06

1

1
L(14 L+ 5 (L h30)? = L L hachg) ) + O ()

o9
12

g/ ~L1/2<1+2L)»Kh)m+ (LXKh )2 ZLM‘LKﬁhaKhﬂA)'i‘O(h)

1
g2 L1 LI+ g(LMh,\K) + ZL)LQLKﬂhaKh,3A> +omd  (48)

with L denoting the determinant of Onsager’s matrix.

4 Two-Dimensional Transport Equations

In two dimensions, the curvature tensor B, has only one component, since all
nonzero components may be obtained from Byo;. Equivalently, the curvature tensor
may be written in terms of the scalar B

1
BMU«V = EB (g)ucg;w - gkuguk) (49)

So, B alone completely characterises the local geometry. From Eq. (49), we find the
expressions for By, = Bj g™ and B = By, 8™ g"". We get

1

B, — Eng =0 (50)
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Hence, Eq. (42) is meaningless in two dimensions (see also Refs. [22, 23]). Itis easy
to convince ourselves that, in analogy with the works for 1 4 1 gravity [19, 24], also
in our case the only non-trivial version of Eq. (42) for n = 2 has to read

B=-T 51
with

T = ZSKﬂg ﬂg)uc
— W TP g’y — WL TP T e g5 g

1 _
+ g8 (g P W g™ ) 4

3
1
+ gly;ygny‘[aﬂt)mgkkgmﬂ
1
Fgﬂ = {aﬂ} + _XMX 8ap.n

1
- = (55X”Xﬂgﬁu,,, n 5gx“X"gw,n) (52)
It is useful to recall the well-known result from differential geometry; all two-
dimensional manifolds are conformally flat. Hence, the transport coefficients out
of Onsager’s region can always be brought into the form

guv = Lyy exp ¢ (X) (33)

with ¢ denoting a scalar field depending on the thermodynamic forces. By plugging
Eq. (53) into Egs. (51) and (52), we get the PDE which has to be solved for the
conformal field ¢. In this case, the Onsager condition requires ¢ (0) = 0.

Concerning the action, we adopt the expression proposed in literature [20]. This
action reads

1= / N(B+T) g X (54)

where A is an auxiliary scalar field (analogous to the dilaton field [21]), which plays
the role of a Lagrangian multiplier. Notice that in this formalism, the dynamical
fields present in the action (54) are the dilatation field and the transport coefficients.
In this case, the affine connection does not play the role of an independent field (it
is a dynamical variable only when n > 2) and it intervenes in the dynamics through
the second expression of Eq. (52). By varying this action with respect to N/ we get
Eq. (51), while variation with respect to the transport coefficients yields the PDE
for V. The PDE for the transport coefficients is decoupled from that for the dilaton
field. However, as we will see in the next work, this will not be the case when the
skew-symmetric part of the transport coefficients is different from zero.
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Let us now determine the nonlinear partial differential equation satisfied by a
conformal factor A of the metric g,,. A conformal manifold is a manifold equipped
with an equivalence class of metric tensors, in which two metrics g,, and g,, are
equivalent if and only if

8uv = A(X)g;w (55

where A(x) is a real-valued smooth function defined on the manifold referred to
as conformal factor. An equivalence class of such metrics is known as a conformal
metric or conformal class. Thus, a conformal metric may be regarded as a metric
that is only defined up to scale. A conformal metric is conformally flat if there is a
metric representing it that is flat, i.e.,

v = A(X)L;w (56)

Often conformal metrics are treated by selecting a metric in the conformal class,
and applying only conformally invariant constructions to the chosen metric. From
Eq. (56), we get

1
g =L g=A"L; LowX'=A"X,; L"X, = Ax"

| A

A A 2 A X

F/w =ox (A’V(gﬂ + A8 — A’KLZU) + 2 L XA
A X"

For the two-dimensional case, we have

2 A 2 Ayk Ayk
T = grohaX 4 o Ao XX+ s A A XX
B Ap LM AGA LY 2AXN 2A,  XMXK
A? A3 3Ao 3A0
S5A A XM XF (58)
9A%0

where Egs. (28), (41), and (57) have been taken into account. From Eq. (51), we get
B+T =00 (AN 0 — A AP —

4 4
<§AAM - A,,LA,V)XMXV — 5AALX" =0 (59)

Now, by setting A (X) = exp(¢ (X)), Eq. (59) reads [36]
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02 4 02 4 a
L™ ¢ — XXy ¢ — x* ¢ +
0XHoXV 90'(L) IXHoXV 90(L) dXH
5 3o\’
<X" ¢> =0 (60)
90'(L) dXH

Equation (60) has to be solved for the conformal factor ¢. By introducing the differ-
ential operators, invariant under TCT [11],

B 92
P=L"—— (61)

XH
axm’ oXHaXY

Equation (60) can be cast into a manifestly TCT-covariant form
(90, —40%) ¢ + 5 (0g)* =0 (62)
Let us now perform the following coordinate transformation?:
X" = AXX*, with A suchthat AYL* AP =% (63)

with 1%¢ denoting the Identity matrix. Notice that, since the matrix L, is a positive-
definite matrix, there exists always a matrix A%, which satisfies condition (63).
Finally, we get

(907,02~ 402) ¢/ +5(0'¢)* =0 with
2
= (64)

P 152 o _
o =X +X7, U = Ty

Equation (62) (or, equivalently, Eq. (64)) is, in Thermodynamical Field Theory

(TFT), analogous to Liouville’s equation in Riemannian (or pseudo-Riemannian)
geometry [36].

5 Linearised Transport Equations

When the transport coefficients are close to Onsager’s matrix, we may set
8 = L/w + h;w (65)

with £, considered as a small perturbation of the transport matrix coefficients. We
also introduce a small parameter ¢ of the order of o ~! (considered as a small quantity).

3 Note that linear transformations of coordinates are allowed because this class of transformations
belongs to the TCT-group [11].
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The linearised Transport Equations are obtained by discarding systematically in the
following calculations:

(i) All the terms of order hh, hhh, ...

(i) All the terms of order &2, of order o =2 or of higher order.

5.1 Linearised Transport Equations for n > 2

At the dominant order in /4, we get for n > 2
Bu,=T,, 1L,w (waL“Jr;wﬁvL ”LM(L)> =W (66)
2 n+1D(n-2) Y

where

A
Ty, arfw

By >~ XY axh hence
1/ 5. e 02hi e 02Ty e 2Ry
By >~ - (L +L —L —L
2 IXA XK IXHXV IxX XV IXIXH
3 e dhuw | ) 19, 5. 0hue

ﬁ(f 8X") n+18Xﬂ(T 8X)“) n+13xv(T E)X)“)) (67)

or

By, = B+ B{)  with

v

RO _ l([f" 92 U L 92 hk e aZhKM _ %hey )
v
w 2 X Xxx aXHXV axX* XV X XK
] 1 d e O 1 0 e Oy

1 oh
1) _ (7 Ak 1224 -
Buy = 2( s T axe) n+ 10X (* 5%7) nt+10XY 3%

)) (68)

We also have forn > 2

1 1
B
Ty =— Wl o+ W0 JL* Ly — 3 ((‘PKAuLw + W LM)T(L)) 8

2
1
(qﬂ rf 4 wr *’3> L"™L,, Ly,

T2y et et
1
Mmoo Mun na na 1%
Lo 5 Ty wen = m%)hxn,&? - m%)hmafk
T— 10— ("2 N g g
- [ - 2 iy n41 M )"‘T(L) P

2
B—— (wﬂvw W LI, (L)) (69)
g (it D —2) * 5



Thermodynamic Flux-Force Closure Relations for Systems ... 93

with rxo
‘L'(lz‘; = 5 o= LMVX#XU (70)
o)

After a little algebra, we find that identity (44) (or Eq. (43)) implies

9T HY
aIxv

=0 71)

This conservation law is consistent with the fact that our PDE (and the Lagrangian)
are invariant under the TCT. Hence, for the Noether theorem, this invariance is
associated to a conserved current and, so, a conserved source tensor [34].

As mentioned above, one way to get the approximate solution of Eq. (66) is to
introduce a parameter ¢ of the order of o !, which we consider to be a small quantity.
By setting

huy >~ hS) +ehl) with e~ 0@ (72)

the linearised Transport Equations for n > 2 read
©) 7,0y _
B,)(h"7) =0
1
BO(h) = T, (h®) = BR(H®) = 3L, (W) )

1
L (w;; (h<°>)L*KLanr(”f))

T+ Dhn—2 Wi (%) (73)

L

5=

Note that W3 (h®) — 0as h© — 0.

5.2 Examples of Simplification of the Linearised Transport
Equations

It is worth mentioning that in several cases, the second PDE of system (73) simplifies
significantly. Indeed, we have already noticed that tensor W3 satisfies the identity

(S) )
WOWE 1,0

=0 (74)
axe 27 Taxv

Now, let us suppose to have solved the following Poisson PDE:

32hM
L 2o =w with Al |ge=0 (75)

XX~ ke
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with dQ denoting the boundary.* From Eqs. (74) and (75), we get

2
L“M =0 with R,(x)= le\ah_’” _ L‘“‘%

= 76
aX*9Xx 2 XV aXH (76)

Hence, if it happens, for example, that R, (x) |3q= 0 + O(s?) we alsohave R, (x) =
0 + O(&?) throughout the space. In other words, if it happens, for example, that the
derivative of the perturbation A}) vanishes at the boundary

M
ohy,
9X* Q2

=0 (77)

the second PDE of system (73) reduces to a Poisson PDE and the Transport Equations
to be solved reduce to

0) 7,0y —
BY)(hY) =0
2.7,(1
L 07eh ) (X)

o = Wia (X0 (78)

There is another important case where the second PDE of system (73) reduces to a
Poisson PDE. This happens when the perturbation takes the form

hyu(X) = Lyyh(X) (79)
with h(X) indicating a scalar field. As we shall see in Sect. 7, this is exactly what

happens for the two-dimensional case (see Eq. (53)). PDEs (78) should be solved
with the boundary conditions specified in the Annex.

5.3 Linearised Transport Equation for n = 2

As seen in Sect. 4, for n = 2 the PDE to be solved is
B=-T (80)
Hence, the linearised Transport Equation reads

B=0 for the homogeneous case

B = —T(, for the inhomogeneous case (81)

4 Note that the boundary conditions have already been satisfied at zero order, and for this reason,
Efj3 should vanish at the boundary.
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with 1
Ty = §LnaLAK <‘I’fKT<ﬂLﬁ>) 5 (82)

We have already mentioned that for n = 2, the solution of Eq. (81) can always be
brought into the form (see Eq. (53) in Sect. 4)

guv = Ly f(x) (83)

By setting
huy =~ hQ) + ehll) with &~ O(c™") (84)

we get the linearised Transport Equations for n = 2 as

B(O)(h(o)) — B(O)Lll-v(h(())) =0
nv
BO(ehV) = B L (eh) = =Bl LM (h®) = Ty (h®) = W (x) (85)

The analytic solution of system (85) (or system (81)) can be found in Sect. 7.

6 TFT Gauge Invariance

In field theories, different configurations of the unobservable fields can result in
identical observable quantities. A transformation from one such field configuration
to another is called a gauge transformation; the lack of change in the measurable
quantities, despite the field being transformed, is a property called gauge invariance.
In this section, we shall clarify the physical meaning of the gauge invariance in the
Thermodynamical Field Theory. To carry out this task, we need first to recall some
fundamental theorems concerning the solution of the differential equations (73).
After this, in Sect. 6.2 we provide the physical interpretation of the gauge invariance
in the TFT.

6.1 Basic Theorems for the PDEs B,(g,) (h) = W,([,g,)

Let us consider the PDE B (h) = W\3) where the source W\3) may be either dif-
ferent from zero or absent. By direct inspection, we find that if /,,,(X) is a solution
of BY)(h) = W3, then so will be

ou,(X) n ou,, (X)
oXH 0Xv

T (X) = hyy(X) + (86)
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where u,,(X) are n small but otherwise arbitrary functions of X*. Hence, tensor
B fﬂ} (h) is unaffected by gauge transformations (86). Thanks to this gauge invariance,
we have the following theorem [42].

Theorem 1 If one knows a specific solution h wv to the linearised equations (73)
for a given T,,, one can obtain another solution that describes precisely the same
physical situation by the change of gauge (86), in which u,, are arbitrary but small
functions.

So, if we are able to find a particular solution of Eq. (73), say & uv (X)), all the other
solutions 7 uv(X) can be found by adding to the particular solution £,,,(X) the tensor

G?,X(f) + d';“X(X) In addition, h,w (X) and h,, (X) possess the same physical meaning.

We also have the following.

Theorem 2 [fone knows a specific solution h wv to the second equation of system (73)
fora given W,,,, it is always possible to choose u,, such that the new solution h ,, (X)
satisfies the gauge

1 . oh; EW
e T p e TR i

2 XV X~
~ 5 du,(X)  du,(X)
B (X) = o (X) + =550 4+

(87)

Indeed, il\;w (X) manifestly satisfies the second equation of system (73), and the gauge
condition [i.e., the first equation of Eq. (87)] is satisfied by choosing u, such that

WP X) 1 (X)) ha(X)
L ==L L
aX*ax« 2 axv x>

(88)

Note that, thanks to Eq. (88), iz\,w (X) satisfies the second PDE of system (73) because
it satisfies simultaneously the gauge condition (87) and the following Poisson’s PDE:

e 70 (X)

=w®x 89
AX*dX¥ w (X) (89)

In conclusion, if we know a specific solution h wv(X), thanks to Eqgs. (87)—(88), we
shall also able to get the expression for ;z\,w(X ) satisfying simultaneously the gauge
condition and Poisson’s PDE (89).

Incidentally, we also have the following theorem [42].

Theorem 3 By performing the following change of variables X* — X"
X" = X"+ L"u,(X) (90)

where u, is the solution of Eq. (88), the transformed tensor of the unknown h,,, (X)
is a solution of Poisson’s PDE (89).
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Indeed, by direct inspection, we can check that we find exactly the same PDE for

the transformed tensor /;,,(X"), obtained by %,,, after the coordinate transformation

X" — X'*_The only precaution to be taken is to remain within the limits of validity
of the weak-field approximation and, therefore, nonlinear terms of the type hh, hu,
uu, and of higher order must be neglected.

6.2 A Note on the Physical Meaning of the Gauge Invariance

Let us consider a group of transformations of the field variables that leaves unchanged
the basic physical observable. This group of transformations is called gauge transfor-
mations, and a theory where all the basic observables are unchanged under a gauge
transformation of the field variables is referred to as a gauge-invariant theory. In
Electrodynamics, for example, the Lorentz transformation and the Coulomb trans-
formation are both gauge transformations since they do not affect the values of the
electrodynamic observables, i.e., the values of the electric and the magnetic fields.
In other words, the experimentalist is not able to detect the gauge-transformation
choice, with any kind of system, and he is unable to notice any difference between
two different gauge choices.

Another example is the theory of the General Relativity (GRT) since transforma-
tions (86) leave unchanged the physical observables, i.e., the Ricci tensor, the Einstein
tensor, and the Riemannian curvature tensor. Hence, in GRT, transformations (86)
may be regarded as the gauge transformations.

Thus, the concept of gauge invariance is intimately related to one of unchanged
physical observables. This means that, before starting calculations, we should firstly
identify all the physical observables linked to these transformations and, successively,
check whether the values of these observables may be affected by a field-variables
transformation.

The following example will make clear the concept. Let us suppose (absurdly,
of course) that, in classical Electrodynamics, the physical observables are not only
the electric field E and the magnetic field B, but also the scalar potential ¢ and the
vector potential A. Thus, we suppose that an experimentalist is able to measure, with
his instruments, also the numerical values of these two variables (in addition to the
electromagnetic fields E and B). The electromagnetic fields E and B will still remain
unaffected under Lorentz’s or Coulomb’s transformations. However, the question
is: May we still consider this New Electrodynamics as a gauge-invariant theory?
The answer is No. The only thing that has been changed is the fact that, in this new
Electrodynamics, the experimentalist is now able to measure the scalar potential ¢
and the potential vector A (in addition to the electric and the magnetic fields). What
happens then? If we perform calculations by using the Lorentz transformation, as to
the electric field and the magnetic field, the experimentalist will confirm the good
agreement between the theoretical predictions and the experimental data. However,
in general, he will find a discrepancy between the experimental data and the values
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of the scalar potential ¢; and of the potential vector A established by the Lorentz
transformation. For the experimentalist, the only way to overcome this impasse is to
know the mathematical expression linking the scalar potential ¢, and the potential
vector A, with the scalar potential ¢, and the potential vector A g, measured in
a laboratory. In this case, the new Electrodynamics loses its status of gauge-invariant
theory.

Let us now consider another comparison. Let us compare the Thermodynamical
Field Theory (TFT) with the General Relativity Theory (GRT). Here, there is a clear
divergence between the TFT and the GRT. Indeed, as mentioned above, the physical
observables in the GRT are the Ricci tensor, the Einstein tensor, and the Riemannian
curvature tensor. Transformations (86) leave unchanged these physical observables.
Hence in GRT, without loss of generality, we may suppose that there exists a specific
solution of the PDE B ;3} (h®) = 0. Note that it does matter if, in reality, we do not
know the mathematical expression of this solution; the proof of its existence is just
sufficient. For Theorem 2, we may imagine to perform transformation (86), with
u, satisfying Eq. (88), such that the new unknown reduces to the PDE (89) (and it
satisfies, at the same time, the gauge condition). All of this is consistent with the
General Covariance Principle (GCP), which allows choosing the coordinate system
as we like such as the coordinate transformation (90) with u,, satisfying the PDE (88),
where the second PDE of system (73) reduces to Eq. (89) (ref. to Theorem 3 and [42,
43]). In conclusion, in GRT we do not need to know the mathematical expression of a
specific solution of the second equation of system (73), and we may start calculations
by solving directly Eq. (89).

The case of TFT is utterly different. Firstly, we cannot evoke the validity of the
General Covariance Principle and, even more importantly, the physical observables
are the unknown £, (indeed, the £,,, are the transport coefficients). Hence, in analogy
with what we said concerning the case of the new Electrodynamics, if we want
to communicate with experimentalists we are compelled to find, firstly, a specific
solution of Eq. (73) (either analytically or numerically) and, successively, obtain the
general solution by applying Eq. (86). In conclusion, the TFT does not possess the
status of gauge-invariant theory even though Theorem 1 and Theorem 2 remain
valid and are very useful for performing calculations.

7 Solution of the Linearised Equations

As seen in Sect. 6.1, to get a concrete expression of a solution of Eq. (73), firstly we
have to be able to find a specific solution for this PDE. Successively, according to
Theorem 1, all the other solutions can be obtained by Eq. (86). Theorem 2 allows
getting the solution satisfying Eq. (89) by solving Eq. (88).

e Solution of the Transport Equations for the Two-Dimensional Case
For the two-dimensional case, the PDE to be solved reads
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B(O)(h(())) =0
B(O)(éh(])) — _B(l)(h(o)) _ T(L)(h(o)) — W(S)(h(o)) 1)

We start by solving the homogeneous differential equation B©® (h?) = 0. Since our
task is to find a specific solution, we look for a solution of the form (83) [4].

RO (x) = Lywh® (x) (92)
We have
32h©
B(O) h(O) v L ; Ak
=) SV G
32h© 32h” 32h©
L*Lyy—— — L™*L——— — L* L., —— ) =0 (93
+ M axnXY "X XY BX'\X#) ©3)

By noticing that the sum of the last three contributions on the r.h.s. of Eq. (93)
vanishes identically, we finally get

BO GO — [« 3%h© o o)
X X*x

The second PDE of system (91) reduces to a Poisson PDE. Indeed, also in this case,
we look for a special solution of the form

hD(X) = L,k (X) (95)

L

By inserting Eq. (95) to the second PDE of system (91), we get

3%eh® 2, 1
L = (3 T h) — L LW gﬁ) =wOn)  (96)
v

since the contribution

PRV ahD . 0%h®
e —L*Leyy—— —L*Lyy——=0 o7
dXHXV aX XV oX XK

Ak

vanishes identically. In conclusion, for n = 2 the PDEs to be solved are

W IR0
IX dX~
2ehM(X) 1

o % © o J—

L axraxe _6(4 wha = Lnal ¥, T<L>) =wOx) 98

By performing the following orthogonal coordinate transformation
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X" = Akx* (99)
Equation (98) reads
AZL* AP 2Fl,(o)(X/) _
L oXv9X'p
AWM?% = (i (g/fh(m - éL LW ST (L)) ) (100)

Note that linear transformations of coordinates are allowed because this class of
transformations belongs to the group TCT [11]. Since the tensor L*" is a symmetric
positive-definite matrix, it is always possible to determine A? such that

AYLMAP =19 (101)

with 1% denoting the components of the identity matrix. As a consequence, Eq. (100)
reads

5070 O(X")

——— =0
X *9X'P
PehV(X) (2. 1 ,
af _ af ) _ «_'nB . (S) /v
Tox9x P (3 (L)h 6L oL*® ‘I’LQ (L)) , =WwW>(X") 102)

Tensors hfji (x) (with i =0, 1) are obtained by tensors A (‘)(X’ ) by means of the
coordinate transformation (99), with A% determined by Eq (101). We conclude this
part of our analysis by noticing that the conformal field ¢, defined in Eq. (53), is

determined by #® (with i = 0, 1) through the expression
¢ =In(1+ 7% + (V). ) =~ h” + (ehV) (103)

since 1" are non-negative scalar fields. Note that, by setting

¢~ ¢o+e¢r. with &~ O0(o7) (104)
we get
D¢y =0 (105)
TRegn) = —— Oy (106)
901

which can be derived also by Eq. (102). Equation (102), subject to the appropri-
ate boundary conditions, admits solutions that can be obtained analytically. Let us
consider the first equation of system (102). This is a Laplacian PDE. According to
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the arguments illustrated in Appendix, we have to solve the Laplacian equations in
the first quadrant by imposing that the solutions vanish on the axes, and they are
constant on the arc of the circle of radius R. Successively, the entire solution, valid
for all quadrants, is obtained by applying, the Schwartz principle [44]. In Appendix,
we report the solution of the Laplacian equation subjected to appropriate boundary
conditions, for the case of two independent thermodynamic forces. We have [4]

(107)

v

T 2 4R2 | X1 X?
h(o)(X ! X2) =—L, arctan|: 0| | i|
b4

R — (X' 4+ X2%)2

where the new variables {X*} (with i = 1, 2) are linked to the old ones {X*} by
the (constant) 2 x 2 matrix A%, which satisfies the relation

X*=ArX"  with  AYLMAP =1 (108)

The value of constant x and the expression of the radius R, are determined by
the thermodynamic system under consideration and by the specific problem to be
solved. An example of calculation can be found in [36]. It is worth mentioning
that the method illustrated in Appendix applies also for obtaining the solution for n
independent thermodynamic forces.

Let us now find the solution of the inhomogeneous problem. In this case, the
second PDE of system (73) reduces to a Poisson PDE. Appendix reports the analytic
solution of Poisson’s PDE for a two-dimensional thermodynamic space. In polar
coordinates p, 6, we have

> rsin2(n — 1)6 p
D (p.0) = — L, R2 Z[ ( 2(,171)</ S AT _,\”>
€ wv (/O ) " On:] 4(71—1) 1Y 0 n () (04

p A
_ p—Z(n—l)/ tZ”_IWn(S)(t)dt>] (109)
0

with

1
@, = / (2 — YW, S)dr  and
0

., 1,
W)=~ | WS (p,6)sin2(n — 1)0)do

T Jr

where p and @ are linked to the new variables {X*} by the usual relations p =
X1+ X212 and 6 = arctan(X %/ X'"). Figure 4 illustrates solution R (p,0)
in polar coordinates p and 6 in case of W'(S)(X’) ~ eh' @ (x) and x = 1.
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Fig. 5 The Shafranov shift. In tokamak-plasmas, the plasma pressure leads to an outward shift
A of the centre of the magnetic flux surfaces. J indicates the direction of the electric current that
flows inside the plasma. Note that the poloidal magnetic field increases and the magnetic pressure
can, then, balance the outward force [34]

8 Testing the Validity of the PDE (64)—Computation of
Heat Loss in L-mode, Collisional FTU-Plasma

The aim of this section is to test the validity of the PDE (64). For this purpose,
we compare the theoretical predictions with the experimental data provided by the
EUROfusion Consortium in Frascati (Rome-Italy) for FTU-plasmas.’ We started by
comparing the theoretical predictions of Eq. (64) subjected to the correct bound-
ary conditions, with the experimental data for FTU-plasmas, in a fully collisional
regime. So, in the first phase, experiments have been performed in a zone of the
Tokamak where the turbulent effects are almost frozen. In our calculations, we have
also taken into account the Shafranov-shift (which is not negligible in FTU-plasmas).
The physical explanation of the Shafranov-shift is briefly sketched in Fig. 5.
As to the boundary conditions, these have been obtained in the following way:

(a) First of all, we have to satisfy the Onsager condition. Hence, the solution should
vanish at the origin of the axes, i.e., ¢ (0) = 0;

5 Here, we shall not enter in describing technical details [45], since all this is out of scope of
the present work. Our aim is to show the good agreement between the proposed approach and
experiments. The interested reader can find a detailed description of the comparison between theory
and the experimental data in FTU-plasmas in our article submitted for publication in a review
specialised in the field of thermonuclear fusion.
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Collisional Regime

Fig. 6 Boundary conditions for ¢ for collisional FTU-plasmas. The validity of Onsager’s rela-
tions is ensured by imposing that ¢ vanishes along the axes. In addition, we have to impose that
there are no privileged directions for very large values of the thermodynamic forces. This condition
is satisfied by imposing, in the first quadrant, ¢ (r = Ro,6) =co # 0

(b) Experimental evidence shows that, in the pure collisional regime, the pure effects
(such as Fourier’s law and Fick’s law) are very robust laws. So, we have to impose
dX'=0,X>) =X, X>=0)=0;

(¢) There are no privileged directions when the thermodynamic forces tend to
infinity (or for very large values of the thermodynamic forces). In other words,
¢(r = Ry, 0) = const. = cy # 0 on the arc of a circle of radius Ry (with Ry
very large). Here, (r, #) denotes the polar coordinates: r = (X 12 + X22)1/ 2
0 = arctan(X?/X").

The boundary conditions, in the case of FTU-plasmas in a fully collisional regime,
are depicted in Fig. 6.

Now, we are able to solve the PDE (64) in the first quadrant. After having obtained
the solution in the first quadrant, successively we shall be able to reconstruct the
entire solution which is valid for the whole circle by using the Schwartz principle
[44]. Parameters Ry and ¢y have been determined as follows.

The scaling parameter Ry is determined such that
(i) a solution of the TFT equation exists everywhere in the physical system, hence it
cannot be too small;

(ii) the solution area is maximised in the space of the thermodynamic forces, i.e., Ry
defines the minimal circle enclosing the solution area—see Fig. 7.

The Dirichlet boundary condition ¢y is determined such that the thermodynamic
forces X! and X2, solutions of the system, maximise the electron heat loss. It is
numerically found to be approximately equal to cp >~ —4.5.

Figure 8 shows a comparison between experimental data for fully collisional
FTU-plasmas and the theoretical predictions of Eq. (64), subjected to the boundary
conditions illustrated in Fig. 6. On the vertical axis, we have the (surface magnetic-
averaged) radial electron heat flux, and on the horizontal axis the minor radius of
the tokamak. The lowest dashed profile corresponds to the Onsager theory (i.e., the
neoclassical theory) and the bold line to the Thermodynamical Field Theory (TFT)

and
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Fig. 7 Determination of the value Ry. R( defines the minimal circle enclosing the solution area.
Here, the solution area is maximised in the thermodynamic forces space, spanned by X! and X>

EL. En. Flux (W/enf)

Fig. 8 Electron heat loss in FTU-plasmas versus the minor radius of the Tokamak. The
highest dashed line is the experimental profile. These data have been provided by Marinucci from
the ENEA C.R.-EUROfusion in Frascati [46]. The bold line is the theoretical profile obtained by
the nonlinear theory satisfying the TCP (TFT) and the lowest dashed profile corresponds to the
theoretical prediction obtained by Onsager’s theory (i.e., by the neoclassical theory)

satisfying the TCP, respectively. The highest profile is the experimental data provided
by the ENEA C.R.-EUROfusion. As we can see, the TCP principle is well satisfied
in the core of the plasma where plasma is in the fully collisional transport regime.
Towards the edge of the tokamak, transport is dominated by turbulence.

9 Conclusions

A non-Riemannian geometry has been constructed out of the components of the
affine connection which has been determined by imposing the validity of the Gen-
eral Evolution Criterion for non-equilibrium systems relaxing towards a steady state.
Relaxation expresses an intrinsic physical property of a thermodynamic system. The
affine connection, on the other hand, is an intrinsic property of geometry allowing
to perform derivatives and determine the equation for the shortest path. It is sponta-
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neous to argue that a correct thermodynamical-geometrical theory should correlate
these two properties: relaxation of a system with the affine connection. It is impor-
tant to recall that the General Evolution Criterion is valid for systems, even far, from
equilibrium and even in turbulent regimes. More specifically, this theorem has been
derived only from the balance equations for mass, energy, and momentum without
assuming the validity of the Onsager reciprocity relations and without neglecting
any terms, including the terms leading to turbulence in hydrodynamic systems. Suc-
cessively, Glansdorff and Prigogine showed the validity of this theorem also for
plasmas governed by the plasma-dynamic PDEs. Incidentally, if we assume that the
transport coefficients are a small perturbation of the Onsager matrix and in the limit
o >> 1, all terms leading to turbulence disappear and the General Evolution Crite-
rion is trivially satisfied. In this limit case, we obtain the closure relations reported
in ref. [11].

Action (31) (or action (27)), takes into account all the terms of the balance equa-
tions, including those leading to turbulence, and its validity range coincides with
that of the General Evolution Criterion. The action principle leads, for n > 2, to the
PDEs (42) and, for n = 2, to Eq. (64), respectively. To get these equations, we did
not neglect any terms and we did not require that the transport coefficients are close
to the Onsager matrix. Moreover, we have noted that for FTU-plasmas, turbulence
appears in a region of the Tokamak where the values of the dimensionless entropy
production are of order O(1). Hence, in this work, we did not assume that o >> 1.
Successively, we have applied Eq. (64) to FTU-plasmas in a collisional regime. This
regime requires that the pure Onsager laws (i.e., the Fourier law and the Fick law)
are very robust laws and for this, we are bound to impose as boundary conditions
that along the thermodynamic axes the transport coefficients must coincide with the
Onsager ones. It is worth noticing that variable ¢ is not a perturbation. It is our
opinion that it is a great success that in the collision regime the theoretical predic-
tions, resulting from a PDEs so different from the standard equations that we are
used to seeing in the literature, are in very good agreement with the experimental
data. Since the PDE (64) has been derived without neglecting any term present in the
dynamic equations (i.e., the energy, mass, and momentum balance equations), it is
quite natural to propose Eq. (64) as a good candidate also for describing transport in
two-dimensional turbulent systems. So in our opinion, we may analyse the electron
heat loss for FTU-plasmas even in the turbulent zone if we specify the appropriate
boundary conditions. In the turbulent zone, the system is (very) far from thermody-
namic equilibrium. Thus, in this zone we have to release the very strict condition
that along the (thermodynamic) axes the solution must coincide with the Onsager
relations. Indeed, in a turbulent regime the Onsager regression hypothesis for micro-
scopic fluctuations of small non-equilibrium disturbances is violated [12]. However,
we have to maintain the hypothesis that for large values of the thermodynamic forces,
the space tends to flatten towards a constant metric (that no longer coincides with
Onsager’s metric). The boundary conditions, in the case of Tokamak-plasmas in the
collisional regime (first circle) with the ones in the turbulent regime (i.e., in the annu-
lus) are depicted in Fig. 9. We are currently analysing the stability of the constant
solution of Eq. (64) in the annulus region. Concretely, we have to determine the con-
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Collisiogal Regime

Fig. 9 Boundary conditions for ¢ for FTU-plasmas in collisional and turbulent regimes. In the
turbulent zone, plasmas are far from equilibrium. So, in the annulus the Onsager relations are no
longer valid. Of course, we have always to impose that there are no privileged directions for very
large values (say for » = Rj) of the thermodynamic forces. This condition is satisfied by imposing,
in the first quadrant, ¢ (r = Ry, 6) = ¢ # 0. By combining these boundary conditions with those
specified for FTU-plasmas in the collision regime, we are finally able to find the solution of Eq. (64),
valid in the collision zone as well as in the turbulent one

ditions where the constant solution of Eq. (64) loses its stability towards a chaotic
one. This task may be accomplished by applying, for example, the mathematical
methods reported in Ref. [47]. The ultimate aim of our work is to apply our approach
to the Divertor Tokamak Test facility (DTT) to be built in Italy and to ITER.

We conclude with some comments about the validity of Eq. (1). It is known that
the most general flux-force transport relations take the form

J,(r, 1) =/dr’/ dr'G X ()X @ =¥, 1 —1) (110)
Q 0

with € denoting the volume occupied by the system. The space-time-dependent
coefficients G,,,, are called nonlocal transport coefficients: they should not be con-
fused with coefficients @, (they do not have the same dimension). The nonlocal
and non-Markovian Eq. (110) expresses the fact that the flux at a given point (r, t)
could be influenced by the values of the forces in its spatial environment and by its
history. Whenever the spatial and temporal ranges of influence are sufficiently small,
the delocalisation and the retardation of the forces can be neglected under the integral

Gl X, X" —1' 1t —1)
= 2zzr,w[X(r, NHIX (@, )@ —r)s(t —1t) (111)

with § denoting Dirac’s delta function. In this case, the transport equations reduce to
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Ju(r, 1) = @, [ X (r, )]X"(r, 1) (112)

In the vast majority of cases studied at present in transport theory, it is assumed that the
transport equations are of the form of Eq. (112). However, equations of the form (110)
may be met when we deal with anomalous transport processes such as transport in
turbulent tokamak plasmas—see, for example, Ref. [40]. Hence, Eq. (111) estab-
lishes, in some sort, the limit of validity of Eq. (1) and, in this case, the fluxes should
be evaluated by using Eq. (110). Nonetheless, we would like to stress the following.
Hydrodynamic turbulence is normally studied through the Navier-Stokes equations,
supported by the conservation equations for the mass and energy (the so-called mass-
energy balance equations). The set of hydrodynamic equations are closed through
relations of the form (112) where, for Newtonian fluids, 7, depends only on the
thermodynamical quantities, and not on their gradients. The experimental data are
in excellent agreement with the numerical simulations—see, for example, Ref. [48].
For non-Newtonian fluids, turbulence is still analysed by closing the balance equa-
tions with equations of the form (112) where the viscosity coefficients depend not
only on the thermodynamic quantities but also on their gradients—see, for example,
Ref. [49]. Also in this case, the experimental data are in excellent agreement with
the numerical simulations. Even transport phenomena in Tokamak-plasmas in the
weak-collisional regime are analysed by closing the balance equations with equa-
tions of the type (112)—see, for example, Ref. [1]. This is for saying that Eq. (112)
are very robust equations and their validity goes well beyond the collisional, or the
weak-collisional, regime. This case is very similar to what happens for the Onsager
reciprocity relations: even if, according to the non-equilibrium statistical physics and
the kinetic theory, these relations should have been valid only in the vicinity of the
thermodynamic equilibrium in reality their validity goes well beyond the thermody-
namic equilibrium, up to be valid even in turbulent hydrodynamic regimes.

In conclusion, before further complicating the mathematical formalism, it is the
author’s opinion that it is still worth analysing the turbulence in Tokamak-plasmas by
closing the balance equations with local equations of the type (112) and comparing
a posteriori the theoretical predictions with the experimental data.

By passing, there is another important point which is worthwhile mentioning. In
this manuscript, the thermodynamic quantities (number density, temperature, pres-
sure, etc.) are evaluated at the local equilibrium state. This is not inconsistent with
the fact that the arbitrary state of a thermodynamic system is close to, but not in
a state of local equilibrium. Indeed, as known, it is always possible to construct a
representation in such a way that the thermodynamic quantities evaluated with a
distribution function close to a Maxwellian do coincide exactly with those evaluated
at the local equilibrium state—see, for example, the textbook [50].

Data Availability Statement
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Appendix

e Specification of the Boundary Conditions
The purpose of this section is to specify the boundary conditions for the first equation
of system (102), i.e., for the Laplace PDE

e 32f(x) _

I =
X X~

(113)

with I** denoting the components of the Identity matrix. This task will be accom-
plished by taking into account the Onsager theory and experimental evidence. More
specifically, we should require the validity of the following conditions:

(a) The solution must coincide with the Onsager matrix when the system approaches
equilibrium. We refer to this condition as Onsager’s condition;

(b) Experimental evidence shows that the pure effects (such as Fourier’s law and
Fick’s law) are very robust laws. Hence, for the unidimensional case (i.e., for
n = 1), we impose g1; = Ly (or by = 0);

(c) There are no privileged directions when the thermodynamic forces tend to infinity
(or for very large values of the thermodynamic forces);

(d) Forisotropic substances, the solution must be invariant under permutation among
the (dimensionless) thermodynamic forces. Hence, for isotropic materials, the
solution should be invariant with respect to the permutation of the axes X';

(e) The solution holding throughout the space may be obtained by using the Schwartz
principle [44];

(f) The boundary conditions for the n-dimensional case may be derived from the
knowledge of the solution of Eq. (113) for the (n — 1)-dimensional case.

The analysis of the two-dimensional case will make clear this approach. Once this
case is solved, we shall be able to specify the boundary conditions for a three-
dimensional thermodynamic space and so on.

(i) First of all we have to satisfy the Onsager condition. Hence, the solution should
vanish at the origin of the axes:

f(0)=0 (114)
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Fig. 10 The 24
two-dimensional boundary

X
conditions -k /—— k

As a consequence, in two dimensions, we should have f(r = 0, ) = 0, with
r= (X12 + X22)1/2 and 0 = arctan(Xz/Xl), respectively.

(i) From condition (b), we have that the perturbation of the transport coefficients
is zero on the axes X! = 0 and X? = 0, and condition (c) requires that the
solution should be a constant different from zero, say with value k # 0, on the
arc of a circle of radius Ry (with Ry very large). Hence, we should have

f(X)|(9:0,r) = f(X)|(0:71/2,r) =0 and f(X)|(0<9<71/2.r:R0) =k#0 (115)

(iii) The solution should be invariant with respect to the permutation of the axes X'
and X2;

(iv) After having obtained the solution in the first quadrant, successively we shall
be able to reconstruct the entire solution which is valid for the whole circle by
using the Schwartz principle [44].

Note that, according to the previous boundary condition (b), the first derivatives
of the solution have discontinuity points. However, the C?> smoothness inside the
domain is automatically assured by Weyl’s lemma [51]. Hence, the solutions are of
class C? inside the circle, except at the boundary where they are at least of class CY.

By taking into account conditions (i)—(iv), it is easy to convince ourselves that,
for n = 2, the correct boundary condition reads [29, 32]

k if0<0 <Z

2
f(Ro.0) =1

kiff<0<m
;2 (116)
1f—n<9<—%
—k if—%<9<0

e Solution of Eq. (113) for the Two-Dimensional Case
The solution of this problem can be found in [29, 32]. Here, we shall solve Eq. (113)
subject to the boundary conditions depicted in Fig. 10.
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As known, the solution of Eq. (113) with boundary conditions (116) can be written
in general as (see, for example [52] or [53]):

£(r,0) = “2—0 +3" (@, cosnf + b, sinnf) (é) (117)

n=1

with

T
ap = 2 f(RQ, 9) do
1 pe
a, = — f(Ry, 6)cos(nb) do for n>1
T Jx

1
by=— [ f(Ro, 6)sin(nd)do for n>1 (118)
T

7T
Integrals (118) can be computed. We get
a, =0 n=0,1,2--)
kSCOS(%) sin(%)2

nim

m=12--) (119)

Therefore, solution f (r, #) can be written as

8k . cos(™E) sin(2L)? n
f@r0)=—— M sin(n@)(L) (120)
b el R()
Solution (120) can be brought into the form
4k X sinQ(n — DO) [ r \"
,0) = — | = 121
fe0=20 5 <R0> (121

n=1

The sum in Eq. (121) can be evaluated [54], and we find the compact expression

2%k 2% sin(20
£ 0) = 2K arctan| 2251029 where p=— <1 (122)
T 1— ,04 R()
or, in coordinates x! and x?2:
Lo 2k 4RIX1X?
f(X", X7) = — arctan 5 5 (123)
T Ry — (X7 + X292

Solution (123) is valid only in the quadrants X' X? > 0. The general solution, valid
in all quadrants, is obtained by using Schwartz’s principle:
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Fig. 11 Solution (124) 1.
(with k = 1) in polar . 0
coordinates il S 1
j 0.8
0.6
f(0.6)
0.4
0.2
L owae 2k 4R | X'X? |
f(X', X7) = — arctan 3 3 (124)
T Ry — (X7 4 X27)?

In our original problem, we found that constant k = 1 [45]. Solution (124) is illus-
trated in Fig. 11.

e Boundary Conditions for the Three-Dimensional Space

The boundary conditions for a three-dimensional space are derived directly from
the solution of Eq. (113) in two dimensions. Indeed, let us consider the first octant
of the space. In the planes X* = 0, X?> =0, and X! = 0, we should re-obtain the
expressions for the transport coefficients which we have been found by solving the
two-dimensional case. So, on the planes X 1'=0, X2=0, and X? = 0, solution
f(X', X2, X?) should satisfy the boundary conditions

2k 4R2X2X3 ]
fx'=0,x% X% = fi(X?, X% = = arctan i -

4 LR} — (X% 4 X37)2

1 v2 3 |3y _ 2k 4RIX'X3

fX,X"=0,X")=f£X,X") = arctan 5 5

T LRY — (X% 4 X3%)2 |

2k 4AR2X'X? T
FX', X% x> =0) = f3(X', X?) = = arctan ; 0 — |, (125)

T LR} — (X% 4 X2%)2 |

respectively. In addition, the above condition (d) is satisfied by imposing that the
solution f(r, 6, ¢) (with r, 6, and ¢ denoting the radial coordinate, the azimuth, and
the zenith angle, respectively) is constant on the spherical cap of radius Ry, centred
at the origin of the axes and located in the first octant:

S(r=Rp,0,0) =k #0 (126)
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In this way, the above conditions (a)-(d) have been satisfied and we have obtained
a well-posed Dirichlet’s problem in the first octant. Now, we are in a position to
solve the Laplace PDE in the first octant, subject to the above-derived Dirichlet’s
boundary conditions, by using standard methods of mathematical physics.® As for
the two-dimensional case, the solution holding throughout the space may be obtained
by using the Schwartz principle. Of course, the above method is not limited to the
three-dimensional case, and it can naturally be extended for getting the boundary
conditions for an n-dimensional space, once the solution of Eq. (113) fora (n — 1)-
dimensional space is obtained.

e Solutions of Poisson’s PDE

In this section, we solve the Poisson PDE subjected to the appropriate boundary

conditions,
anM(X)
e —w®
—— = WY (X 127
X X~ X) (127)

with source W® (X) given by the right-hand side of the second equation in sys-
tem (102). According to the general procedure, we have, firstly, to find a particular
solution of the Poisson PDE which should be solved with all homogeneous boundary
conditions. The individual conditions must retain their type (Dirichlet, Neumann, or
Robin type) in this sub-problem. Successively, we have to add any solution of the
homogeneous Laplace equation with the non-homogeneous boundary conditions.
Also in this case, the individual conditions must retain their type (Dirichlet, Neu-
mann, or Robin type) in the sub-problem. The complete solution of the Poisson
equation is the sum of the solution of the two sub-problems: the solution of the Pois-
son sub-problem plus the solution of the Laplace sub-problem. Since the boundary
conditions have already been satisfied when we solved the PDE at the dominant
order (i.e., the equations for hfﬂ}), the only task that we have to accomplish is to find
the particular solution of the inhomogeneous Poisson PDE subject to homogeneous
boundary conditions. The solution to the homogeneous equation allows us to obtain
a system of basis functions that satisfy the given boundary conditions.

For a two-dimensional space (i.e., in case of two independent thermodynamic
forces), Eq. (121) suggests the following expression for the solution of the Poisson
equation

WD, 0) = Za,,(r) sin 2(n — 1)0) (128)

n=1

Equation (128) satisfies the homogeneous boundary conditions at # = 0 and 6 =
/2. Now, we substitute Eq. (128) into the Poisson equation (127), written in polar
coordinates, i.e.:

19 oh®y 192"
-—(r—)+ = =W, 0 129
(r or ) + rz 302 .6 (129)

ror

6 See, for example, the reference books [53, 55, 56].
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and we solve the equation by using the orthogonality relations for the sine functions.
We have also to take into account that, at equilibrium (i.e., at p = 0), we have to
re-obtain the Onsager matrix and we have also to satisfy the homogeneous condition
at p = 1. Finally, after simple calculations, we get the following ordinary differential
equation for a, (r), subject to the following conditions:

p*a)l(p) + pa,(p) — 4(n — 1)’a,(p) = Ry p* W p)
an(O) =0; a,(1)=0  where

WSp) = %/ WS (p, 0)sin 2(n — 1)0) do (130)

with p =r/Ry < 1 and the suffix “prime” denoting the derivative with respect to
p, respectively. Equation (130) corresponds to a non-homogeneous Euler equation
of the 2ndorder. By using standard methods of integration (see, for example, [57]),
by imposing the Onsager and the homogeneous conditions, after simple calculations
we finally get

an(p) = — RS (p—Z(n—l) /p 2 WS )i
" 4(n —1) 0 "
p o~
_ p2(n—1)/ t—2n+3vV’§S)(t)dt) Fa, 02"V with
0
R2 ! ~
ap = ——2— | (7 =) Wt)dt (131)
4n—1)

Solution (131) satisfies the Onsager condition since’

p o~
lim p—2*=D f "' WStydt = 0 (132)
0

p—0

Hence,

hD(p,0) = R2 Z[M(pz(nﬂ) (/Op ,*2"“@5)@)(1; _ b?,l)

_ p—2(n—1)/ tZ”_IV/VéS)(t)df)] with
0
1
Q, = / (t—2n+3 . t2n—l) ers)(t)dt and
0

W) = % WS (p, 6)sin 2(n — 1)0) do (133)

-7

7 The indeterminate form can be solved by using Hospital’s rule and lim,_ ¢ W,Es)(p) =0.
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It is also easy to convince ourselves that such a procedure also applies for solving
the Poisson PDE in case of n independent thermodynamic forces.
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Simulating Deterministic Dynamics )
by Drawing Coloured Balls at Random oo
in Urns

Léon Brenig

Abstract In this work, we illustrate by detailed examples an equivalence relation
established in a previous publication between deterministic nonlinear differential
dynamical systems and random Markovian processes.

This equivalence is shown here to differ from the equivalence relation between
Langevin noisy systems or, more generally, stochastic differential equations and
their associated deterministic Fokker-Planck partial derivative equations (PDEs).
Here, in contrast, we are concerned with a correspondence between random Polya
urn processes and deterministic systems governed by nonlinear ordinary differential
equations (ODEs). More precisely, this relation is an isomorphism between each
random urn process and a corresponding equivalence class of deterministic non-
linear differential systems that transform one into the other under quasi-monomial
transformations.

The object of the article is to illustrate this relation with several examples: 1. The
population dynamics described by Lotka-Volterra equations. 2. The Lorenz system.
3. The asymmetric top with dissipation. 4. The cosmological equations describing
the dynamics of Friedmann-Lemaitre universes in the presence of N competitive and
interacting barotropic fluids.

In all these four examples, we find the conditions under which the dynamical
evolution is equivalent to balanced urn processes.

The bridge between the two domains of deterministic dynamical systems and of
stochastic processes allows for transferring results from one field to the other. It also
provides a new tool for simulating deterministic systems using random urn processes.

To my dear friend Slava who, certainly, would have liked the idea of simulating the Universe
evolution by drawing coloured balls at random from a black box.
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1 Introduction

Since the discovery of the Brownian motion in 1827 by R. Brown and its theoretical
explanation by Einstein [1] and Smoluchowski [2], the random processes and, more
generally, the mathematical probability theory have made their entry in the descrip-
tion of the physical world. They provide an efficient idealization of the effect of
the enormous number of molecules colliding against a small but macroscopic object
immersed in a fluid at thermodynamic equilibrium.

Shortly after the articles of Einstein and Smoluchowski, the idea of describing by
random variables the short time-scale action of many microscopic degrees of freedom
on the large time-scale evolution of macroscopic bodies has been generalized in a
systematic way to other systems. The first to do so is Langevin [3] who introduced
random variables at the level of the mechanical description of macroscopic systems.
He described the action of a multitude of short time-scale collisions of molecules
on a macroscopic body as a random time-dependent external force y(¢). Thus, for a
macroscopic particle of mass m moving in a fluid with dissipative friction coefficient
u, P. Langevin modified the Newton equation into

av + (1) (1)
m— = —puv
i M n
where the random force #(¢) is a Gaussian white noise vector, that is, its average is
zero, it is uncorrelated to the random velocity v and its auto-correlations are delta

correlated:
< r;,-(t)r]j(t/) >=2ukpT5;j6(t — i, j=1,2,3 2)

in which kg is the Boltzmann constant and T is the absolute temperature. Remark that
Eq. (2) represents the simplest form of the so-called fluctuation-dissipation relations
that have been and still are at the focus of intense research in Statistical Physics, and
particularly in the work of V.V. (Slava) Belyi [4].

Very soon, the introduction of random forces made its way into classical mechan-
ics in order to describe other mechanical systems immersed in fluids or in other
environments made of many microscopic degrees of freedom. When these degrees
of freedom interact with the immersed macroscopic system on time scales that are
much smaller than the characteristic time scale of the purely mechanical system, these
interactions can be approximated by Gaussian white noises with similar statistical
properties as given in Eq. (2).

However, noise does not affect only mechanical systems. It also exists in electric
circuits where the unavoidable thermal noise is generated by the random motion
of the electrons in the conductors. This noise affects the potential and appears as a
Gaussian white noise in the differential equations of the circuits. As an example, the
RLC circuit obeys the following differential equation:

2
dq) | pda® éq(;) =V +&@) )

L
dt? dt
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where g (¢) is the charge at a given point of the circuit, L is the inductance, R is the
resistance and C is the capacitance. V is the potential source and &(¢) is a Gaussian
white noise.

More generally, noise is introduced in many dynamical systems governed by sys-
tems of ordinary differential equations in other domains of science like atmospheric
dynamics, chemical reactions, population dynamics or economy. Noise of various
origins may affect source terms or coefficients of these ODEs. In all these cases, the
random variable called noise represents an idealization of the effect of a multitude
of deterministic variables interacting with the described system on very short time
scales. Mathematically, the introduction of noise in deterministic differential systems
transforms them into so-called stochastic differential equations [5]. The functions
that are solutions of these equations are themselves random processes. The extension
of a deterministic system of ODEs to a system of stochastic differential equations
(SDEs) is not unique. This is related to the non-differentiability of the Gaussian white
noise process. Among the infinity of such extensions, two of them are the most used,
the 1t6 and the Stratonovich forms, and obey their own generalized calculus rules
[5].

The main concern for us at this point is the following fundamental property. To
each system of stochastic differential equations is associated a deterministic par-
tial differential equation, the Fokker-Planck equation. This equation governs the
probability distribution of the random variables that are solutions of the stochastic
differential equations.

More precisely, any N-dimensional deterministic system of ODEs:

dx;(t)
dt

=F(x@t);i=1,...,N “)

can be randomized into a system of SDEs:

M
dxi(t) = F(x(0)dt + Y G (x(1))dWj, S

J=1

in which M may differ from N, and where the F; and the G;; are functions which,
respectively, represent drift and diffusion contributions to the dynamics. The symbols
dW ., denote the It6 or Stratonovich version of the differential associated to the j-
component of the N-dimensional white noise vector. The dependent variables x; ()
are random variables and their probability distribution, p(xy, ..., xy; ), obeys a
deterministic partial derivative equation, the Fokker-Planck equation (FPE). This
equation takes different form according to the choice of the Itd or the Stratonovich
differential calculus. This choice depends on the physical nature of the modeled
system [5].
In the It6 framework, the Fokker-Planck equation associated to Eq. (5) reads
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=

a a a2
S PO D) = Zk—”W“0HZXQa [Di;x)p(x; )] (6)

i=1 i=1 j=I1
with

1 M
Dyj(x) = 3 G (®)Gij ()

k=1

while in the Stratonovich sense, the Fokker-Planck equation associated to (5) corre-
sponds to

N
a
5P = —Z—[F 0p(x; D] + = ZZ {Gik () Z —[Gk,o«)p(x o (D)

i=1 klzl’

Let us insist on the deterministic character of the two above partial derivative
equations. Once an initial probability distribution is given, these equations provide
their solution at later times with certainty. The Fokker-Planck equation represents a
deterministic process of drift with diffusion. As a conclusion, the above consider-
ations show the existence of an equivalence relation between the set of Stochastic
Differential Equations (SDE) and the set of Fokker-Planck Equations (FPE). We can
summarize this by the expression SDE = FPE.

The object of this article is to show and illustrate the existence of another kind
of equivalence relation between a random process and a deterministic evolution
than the above-described one. More precisely, as we show in the sequel, there is
an equivalence relation between the so-called urn processes and a set of nonlinear
dynamical systems governed by ODEs, the quasi-polynomial dynamical systems.
Denoting the set of urn processes by Urn Process and the set of quasi-polynomial
systems by QP systems, we can summarize this new equivalence relation by Urn
Process = QP Systems.

In Sect.2, we introduce the deterministic quasi-polynomial systems and their
canonical forms. Section 3 introduces the urn processes. In Sect.4, the equivalence
Urn Process = QP Systems is established. In Sect. 5, four examples of such equiva-
lence are presented. Conclusions and perspectives are drawn in Sect. 6.

2 The Quasi-polynomial Dynamical Systems and Their
Canonical Forms

The class of quasi-polynomial systems [6] corresponds to all the deterministic ODEs
systems that can be cast in the form
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N n
dx; Bjr .
d—tl=xijE:1Aijgxk‘ fori =1,...,n, (®)

where A is any constant n x N matrix, B is any constant N X n matrix, n and N are
any integers and do not need to be equal.

This class includes all the systems with right-hand sides involving linear and poly-
nomial functions of the dependent variables x(¢), ..., x,(¢). However, it extends
further to systems with non-polynomial nonlinearities like sums of monomials with
non-integer exponents—this is the origin of the name “quasi-polynomial”. Nonlinear
systems with functions in their right-hand side that are themselves solutions of other
polynomial differential systems belong also to the QP systems class. Practically, this
class contains many systems relevant to the different domains of Physics and, more
generally, to the scientific fields that are using mathematical modelling. Paradigmatic
systems like the Lorenz or the Rossler models belong to that class.

QP systems of equations are covariant under the group of quasi-monomial trans-
formations:

x,«:l_[ikc‘* fori=1,...,n ©)
k=1

for any invertible matrix C belonging to GL(n, R). These nonlinear transforma-
tions form a group isomorphic to GL(n, R). They amount to linear transformations
between the logarithms of the variables x; and X;. Being covariant means that Eq.
(8) keeps the same QP form when rewritten in terms of the new variables X;:

N n -
Gi=5Y Ay [[&"  fori=1....n (10)
j=1 k=1
with ~
A=C7'A (11)
and _
B = BC. (12)

In the two previous equations, the product is the matrix product. From these
equations, it is clear that
BA = BA. (13)

In other words, the N x N matrix M = BA is an invariant of transformations
(9). This means that all the QP systems with matrices A and B such that their
products BA are all equal toa given N x N matrix M belong to the same equivalence
class. Moreover, since the transformations (9) are diffeomorphisms all the systems
belonging to that equivalence class are dynamically equivalent.
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Now, each equivalence class of QP systems, labelled by a given matrix M, contains
two remarkable systems. We called them the canonical forms of the QP systems
belonging to that equivalence class. One of them is the Lotka- Volterra canonical
form. It is obtained by considering all the quasi-monomials [[}_, xk * appearing in
the QP system (8) as new dynamical variables:

=[x j=1.....N. (14)

with M = BA which, precisely, is the invariant matrix labelling the equivalence
class. System (15) can also be seen as a N-dimensional QP system with A = M
and B = I where [ is the N x N identity matrix. In fact, this type of systems is
well known under the name of Lotka-Volterra equations. The nonlinearity of these
equations is the simplest that can exist: quadratic nonlinearity. The Lotka-Volterra
systems are the subject of an extensive literature and all the results reported in it can
apply to all the QP systems belonging to the equivalence class labelled by the matrix
M.

The second canonical form related to the same equivalence class is obtained from
the Lotka-Volterra system (15) by just making a transformation of the form (9) with
C=M:

N
we=[]a": k=1,....N. (16)
j=1

This transformation implies that matrix M is invertible. If this is the case, following
Eqs (11) and (12), the QP system in the new variables #; has the new matrices
A=C'"A=M"'"M =1and B= BC = IM = M and reads

du’; N
’— ]_[ *i=1,...,N. a7)

This is the second canonical form. Though, it is equivalent to the Lotka-Volterra
system by the transformation (16), its fame is not comparable with that of the Lotka-
Volterra equations. To my knowledge, it only appears in the context of the QP systems
theory that is reported here, and in the theory of the urn processes as we shall
see below. In absence of well-established name, we called this canonical form, the
Monomial system. This name reflects its peculiarity of having right-hand sides that
are monomials or, more generally, quasi-monomials of the dependent variables.
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Before ending this section, let us remark that the transformation of the general QP
system form (8) into the Lotka-Volterra and the monomial forms is always possible
even if the matrices B and M are not invertible. This is shown in reference [6] and
references therein. Essentially, this comes from the fact that when these matrices are
of non-maximal rank r, the QP system or its Lotka-Volterra canonical form reduces
to a r—dimensional QP system or to a r-dimensional Lotka-Volterra system. The
smaller matrices B,.; and M,.4 of these reduced systems are of maximal rank r and
can be inverted.

3 Urn Processes

A urn process [7] requires four items: a box (the so-called urn), objects (e.g. balls)
differing by only one characteristics (e.g. colour), an infinite reservoir of such objects
and a prescribed set of replacement rules of the objects in the urn. Here, we shall
consider balls with N possible colours. The replacement rules make the composition
of the urn evolve at each discrete step. Each such step consists in

1. Picking a ball at random in the urn, with equal chance for all balls present in
the urn.

2. The colour of the picked ball is noted and the ball is reintroduced in the urn.

3. Depending on the colour of the drawn ball, prescribed numbers of balls of
each colour are taken from the reservoir and transferred to the urn: If the ball drawn
from the urn is of colour i then one has to transfer M;; balls of colour j from the
reservoir into the urn, with 7, j € {1, ..., N}. These natural numbers M;; form a
N x N matrix, the replacement matrix M.

Some entries of M can be negative, in which case the balls of the corresponding
colours are transferred from the urn to the reservoir at each step in which these
entries are required. If some of the diagonal entries are negative, conditions must
be imposed in order to avoid blocking the process. The distribution of balls of each
colour in the urn at a given step n forms its composition vector at that step, U, and the
sequence (U,; n > 0) represents the evolution of the urn process, where the initial
composition Uy of the urn is given.

We shall consider urn processes for which the total number of balls transferred at
each step is constant. This implies that

N
Z M;j =o. (18)
j=1

The parameter o is called the balance, and urn processes fulfilling the above condition
are called balanced urn processes. In the sequel, we shall only consider balanced urns.
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4 Equivalence Between Balanced Urn Processes
and the QP Differential systems

As mentioned in the Introduction, there is a link between the Monomial system that
plays the rdle of a canonical form in the QP systems theory on the one hand, and
the balanced urn processes, on the other hand. This result obtained by Ph. Flajolet,
Ph. Dumas and V. Puyhaubert in their seminal paper [8] constitutes the first step in
establishing an equivalence between the two domains of random urn processes and
deterministic dynamical systems.

Let us briefly summarize their finding.

A balanced urn with balls of N colours is considered with a given replacement
matrix M. The initial composition vector of the urn Uy = (uo, ..., Uno) iS given.

Let us define the history of length n of the urn process as a succession of n
replacement steps of the urn’s content starting from the initial composition vector
Uy. In other words, this is a trajectory of the urn’s content in the N-dimensional
space of composition vectors. Since the urn process is balanced, the probability of a
history of length n to be realized is uniform. As a result, it is easy to determine the
probability of finding in the urn a composition vector U = (uy, ..., uy) at step n
after starting from the initial composition vector Uy . It is, clearly, given by the ratio
of the number of histories of length n starting at Uy and ending at U over the total
number of possible histories of length n starting at Uy. This can be stated as follows:
[xf' .. .xff,”z"] H(xy, ... XN, 110, - .-, UNODs 2)

PU,=U|Uy) =
( | Uo) [TH(, ... 1, ut, ... uno.2)

, 19)

where the notation [x”] S(x) for a power series S(x) corresponds to the coefficient
of x™ in that series and where the counting generating function is defined as

o0 00 00 o
H(xy, ..o XN, 4105 -+ -5 UNO» 2) EZZ Z Hn(u](),..A,uNO,u],..‘,u;\/)x']d1 .‘.XK,NH,
n:0u.0  uny=0

(20)
where H, (u9, ..., UNo, U1, - .., Uy) counts the number of histories connecting in
exactly n steps the initial composition vector Uy = (u1, - . . , Uno) to the given com-
position vector U = (uy, ..., uy). One can see that the probability given by (19)
is known once the counting generating function H(xy, ..., Xy, 410, - - ., UN0, Z) 1S

known. Hence, the central goal to be reached is to determine that function. This is
what Flajolet, Dumas and Puyhaubert succeeded to do. They showed that

H(Xi, ..., XN, U10, ..., UN0, 2) = [ X1 (D] ... [Xn(2)]"™, 21

where the functions X (z), ..., Xn(z) are the components of the solution vector at
time ¢ = z of the system of ODEs:
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N
dX; M;;
R I @)
j=1
with initial conditions X;(0) = xq, ..., Xy (0) = xp.

Amazingly, this result immediately shows a link with the theory of QP systems
exposed in the previous section. It is quite obvious that the above system of ODEs
is exactly the monomial system that appeared in Sect.2. There it was shown to be
one of the two canonical systems characterizing an equivalence class of QP systems
with matrices A and B such that BA = M.

Now, considering the properties derived in Sect. 2, if one identifies this matrix M
with the replacement matrix of a balanced urn process, one gets the following result:

A balanced urn process with replacement matrix M is not only equivalent to
a monomial differential system like (22) but, also, to all the QP systems that are
equivalent to it under the quasi-monomial transformations (9).

As announced in the Introduction, this theorem establishes an equivalence relation
between a class of random processes, the balanced urn processes and a class of
deterministic differential systems, the QP systems. More precisely, this equivalence
is an isomorphism between the set of balanced urn processes and the quotient of the
set of QP systems with respect to the group QM of quasi-monomial transformations
(9). This can be expressed shortly as Urn Processes= QP Systems/QM.

This theorem has already been reported in a previous article [9]. In the sequel of
the present article, we illustrate this result with four detailed examples.

5 Examples

5.1 Lotka-Volterra Systems

Lotka-Volterra systems have been first introduced in order to model the evolution of
populations of animal and plant species in interaction in a given territory. They are
of the general form:

dx; .
d—t:kixi+xiZNijxj fori:l,...,n (23)

j=1
where matrix N is the interaction matrix between species. It is also called the com-
munity matrix.

In order to make the connection with the QP systems as given by Eq. 8, one has

to increase the dimension of the above system from #n to n + 1. Since it is a sum of
linear and quadratic terms, we can write it in the QP format:
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d : n+1 n ‘
d—xzxiZAijl_[x,f’k fori=1,...,n (24)
! j=1 k=1
with
Aiijij;i,j:l,...,nandA,-nH:)»,- (25)
Bjk:(Sjk;j,k:1,...,nandBn+1k:O. (26)

Introducing the new variables:

wj=[]x" j=1....n+1 27)

N
du;j .
d_tjzuj EI Mjkblk; j=1...,n+1 (28)
with matrix M given by
Mjr=Nj; jk=1,...,n (29)

Mj, 1 =45 j=1,...,n

My1x=0;k=1,...,n+1

Using the equivalence theorem of Sect.4, one, thus, can say that the population
dynamical equations of form (23) are equivalent with balanced urn processes. How-
ever, the balance constraint imposes conditions on the interaction matrix N:

n+1 n
> My=) Ny+rj=o0:j=1...n+L (30)
=1 =1

For j = n + 1, Eq. (29) impose

n+1

> M =0. (31)
=1

Consequently, one must have
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0=0 (32)

and Eq. (30) becomes
Zszz—Aj;jzl,...,n. (33)

Hence, due to the balance condition, the (n+1)-colour urn process with the above-
described matrix M as replacement matrix is equivalent to the following population
dynamical Lotka-Volterra system:

dx; . )
E:xi;Nij(xj—l) fori=1,...,n. (34)

Remarkably, for n = 3, this system has been shown by A. Arneodo, P. Coullet and
C. Tresser to have a chaotic attractor in a domain of the parameter space [10]. What
are the effects of such a chaotic regime on the urn process? This question remains
open.

Also, another result is that all the QP systems that belong to the equivalence class
characterized by the matrix M given by (29) have a chaotic attractor for parameters
values derived from the parameter values for which Eq. (34) has a strange attractor
(for n = 3).

5.2 The Lorenz System

The Lorenz system:

d

—L=o(n—x) (35)
d.X2
— = pX] — Xp — X1X

di PX] 2 1X3

dX3 ,3 +

— = —fBx X1x

di 3 1X2

is a simplification of the hydrodynamical equations for an incompressible thermal
convection flow in the presence of gravity.

As is well known, it possesses chaotic solutions in a certain domain of the param-
eter space. In other words, for these values of the parameters, the trajectories are
asymptotically attracted towards a strange attractor.

This system can be cast into the QP format (8) for » =3 and N = 5, with the
following matrices A and B:
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c0 0 0—0c

A=[0p—-10 —1 (36)
00 0 1-p8
-1 1 0
1 -1 0

B=|1-11]. 37
1 1 —1
0 0 O

The matrix M of the associated Lotka-Volterra and monomial canonical systems
is
-0 p —10 o—1
o —p 1 O l—0o

M=BA=]| o0 —p 1 1 1-0-81. (38)
o p —1-1—-1-0c+48
0 0 0 O 0

At this point, one should mention the work of Kozlov and Vakulenko [11]. In their
article, they find a 10-dimensional Lotka-Volterra system with linear term of form
(23) that would be dynamically equivalent to the Lorenz system. This means that the
corresponding Lotka-Volterra without linear term is 11 dimensional. In contrast, we
find here a five-dimensional Lotka-Volterra without linear term that is equivalent to
the Lorenz system.

Now, let us come to the equivalence of the Lorenz system with a random urn
process. This equivalence is realized if the matrix M fulfills the following balance

condition:
5

ZM,-jza;izl,...,S. (39)
j=1

However, since the last row of that matrix is zero, o = 0, which leads to

5
Y My=0:i=1,...5 (40)
j=1

These conditions are satisfied by the Lorenz system’s parameters for arbitrary o,
p =2 and B = 1. Notice that unfortunately the same symbol sigma is used for the
balance parameter and the first parameter of the Lorentz system. They are of course
independent.
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5.3 Asymmetric Top with Dissipation

The dynamics of an asymmetric top with dissipation satisfies the following system
of ODE:s:

dX1

— = 41
o 1X1 + oxox3 (41)
2 et B

_— = X X1X

R 2X2 1X3

45 o+

2 = \3x X1x

di 3X3 T Y X1X2

The coefficients «, B, y are the inertiamomenta while A1, A, A3 are the dissipation
coefficients.

Several operations must be performed in order to put this system in the QP form
(8). First, the dependent variables are transformed by u; = e My fori =1,2,3.
Next, a supplementary dependent variable uy = ¢~ is added, and its ODE is added
to system (41). This transforms system (41) into

dus = auusul’ (42)
dt T
du2 w
— = PUIU3U,"
dt ,B 1U3zly
du3 M3
— = yuruu
di Yusruily
dl/t4
— = —u
dt ¢
with the definitions p; = A1 — Ay — A3, o = Ay — Ap — A3, 43 = A3 — A1 — Ao
Now, system (42) can be written in the QP form (8) withn = N = 4 and matrices:

@00 0
080 0
00y 0
000 —1

(43)
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11 1
_ 1 -1 1 12%)

B=| | S| (44)
00 0O

The matrix M of the two canonical forms is obtained as follows:

—a By —u
a =By —2

M = BA = . 45
« B -y -—u3 (45)
0 0 0 O

Finally, in order to be equivalent to a balanced urn process, the parameters must
fulfill the balance condition for the matrix M:

4
Y My=oii=1...4 (46)
j=1

Again, here, due to the last row containing only zeroes, one has o = 0. Hence,
the balance condition is now

5
Y My=0:i=1,...5 (47)

Using these conditions along with the definitions of w1, ©,, 13, one gets
o=—A, B=—A, ¥ =—2s (48)

These conditions are compatible with the physical meaning of inertia momenta
and dissipation coefficients of the parameters. Consequently, with these relations,
the deterministic asymmetric top with dissipation is equivalent to a balanced urn
random process.

5.4 Cosmological Dynamics

In a remarkable article, J. Perez and co-authors [12] showed that a good model for
cosmological expansion is given by a Lotka-Volterra system. More precisely, they
demonstrated that the dynamics of ahomogeneous and isotropic Friedmann-Lemaitre
(FL) expanding universe containing an arbitrary number of interacting cosmological
fluids is well described by a Lotka-Volterra system. Among these fluids filling the
universe, there are the baryonic matter, radiation, dark matter and dark energy. In this
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picture, the fluids are viewed as species that compete for feeding upon their unique
energy resource, curvature, while interacting one with the others.

Let us briefly sketch the general framework. The universe in which these fluids
evolve obeys the Einstein equations with a non-vanishing cosmological constant A.
Among the solutions of the Einstein equation, the FL. metric is chosen. It describes
an expanding homogeneous, isotropic universe. This metric involves the scale factor
a(t) where ¢ is the synchronous time. The fluids filling this universe are assumed to
be barotropic. That is, each fluid of index i obeys an equation of state of the kind
pi = w; p; where p; is the energy density of the fluid, wj; is its barotropic index with
—1 < w; < 1,and p; is the pressure. Instead of using the synchronous time ¢, a better
adapted variable is considered, A = Ina(z). The two variables ¢ and X are related by
d) = H dt where H is the Hubble constant, H = ; ‘[’1“

In terms of these quantities, the system of ODEs describing the evolution in A of
the energy densities associated to the different fields, and also to the dark energy A
and to the curvature, are given by

dxi al .
ﬁ=r,<xi+x,~ZAijxj fori=1,...,N, (49)
j=1
where 87 G
TUP;
;= 50
X 32 (50)
ri = -1 - 30),‘
Aij =1 +3(1)J +€ij
with g;; = —¢;; represents the coupling constant between the two fluids i and j,

while G is the universal constant of gravity. The antisymmetry of the tensor &;;
ensures the condition of energy balance " | ZI].V:, gijxix; = 0.

Now, let us see whether this deterministic dynamical system is equivalent to a
possible random urn process. The N-dimensional system of ODEs (49), clearly, is of
the Lotka-Volterra type with linear term and, thus, is similar to Eq. (23). Following
the same reasoning leading from Egs. (23) to (28), system (49) is reshaped in a
(N + 1)-dimensional Lotka-Volterra system without linear term as in Eq. (28).

N+1
du; .

k=1

The matrix M appearing in this system is given by

Mjy=Au; jok=1,...,N (52)
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MjN+1=rj;j=1,...,N
Myar=0;k=1,...,N+1

As explained in Sect. 2, system (51) is a canonical form for an equivalence class
of QP systems. Its matrix M is also the matrix of the second canonical form, the
Monomial system. According to the equivalence theorem between balanced urn
processes and deterministic QP systems stated at the end of Sect. 4, this matrix is
also the replacement matrix of a balanced urn. However, this is true only if the balance
condition of the urn process is fulfilled. This condition imposes constraints on the
matrix M, as we see now.

Indeed, the balance of the urn imposes

N+1 N
Y My=) Ajp+ri=o:j=1... N+l (53)
I=1 =1

However, for j = N + 1, Eq. (53) along with Eq. (52) gives
o =0. (54)

Inserting the two last equations of (50) in (53) along with o = 0 leads to

N N
Zgl-j:l—N—3 Z wj;i=1,...,N (55)
j=I

J=lij#i

So, with the above conditions, one can say that there exists a balanced urn process,
a random process, that is equivalent to the cosmological evolution described by the
deterministic system (49).

6 Conclusive Remarks and Perspectives

In the Introduction, we have compared two types of equivalence between random
processes and deterministic equations, the equivalence SDE = FPE and the equiva-
lence Urn Processes = QP Systems/QM. One should stress the difference between
the two relations. In the first equivalence, the physical system appears in the ran-
dom side of the equivalence, SDE. While, in the second equivalence, the physics
appears in the deterministic side of the equivalence, QP Systems/QM. Furthermore,



Simulating Deterministic Dynamics by Drawing Coloured Balls at Random in Urns 133

in the first equivalence, the physical model is modified by the introduction of random
external forces, while in the second equivalence the physical system is unchanged.

Let us also remark an important point that did not seem to bother us when we
treated the examples. The entries of the replacement matrix of an urn process must
be integers. This is, of course, due to the discrete nature of balls. However, in the
examples we discussed in Sect. 5, there was no physical reason for having only integer
values of the parameters. In all the considered cases, the population dynamics, the
Lorenz system, the asymmetric top or the cosmological evolution, Physics does not
limit the parameters to integer values. Integer parameters would be non-generic in
these contexts. So, the question is, is it possible to extend the concept of balanced
urn process to real entries in the replacement matrix? The answer is positive and is
developed in many articles among which the following [ 13—15]. The essential point in
what concerns us is that the extension to real values of the entries of the replacement
matrix does not affect the main result: The isomorphism between the class of balanced
urn processes and the quotient of the class of QP differential systems by the group
of quasi-monomial transformations is maintained. This will be the object of a next
publication.

Another extension of the balanced urn process is possible. The entries of the
replacement matrix could be themselves random variables with given probabilities.
Hence, the randomness of the urn process is, in some way, increased. Instead of
limiting the randomicity to the act of drawing a ball of a given colour from the urn, in
this generalization the replacement of balls required by the colour of the picked ball
also becomes random. Such an extension has been considered in several works. In one
of them, the Flajolet-Dubois-Puyhaubert theorem is extended [16]. This result proves
that the equivalence between urn processes and QP differential systems extends to
urns with random replacement matrices. Work is underway on this subject.

As a practical perspective, the property of equivalence discussed in this article
could be exploited in order to develop a new approach to simulate numerically deter-
ministic dynamical systems. It could, indeed, prove to be faster and easier to draw
virtual coloured balls on computer than run Runge-Kutta or other integration schemes
to solve the differential equations of the deterministic description.

A last reflection should be made about the equivalence between random processes
such as balanced urn processes, and deterministic differential systems such as the
QP systems. This equivalence is not without philosophical consequences. It is par-
ticularly striking in the example we have considered about the equivalence of the
deterministic cosmological evolution equations with a large urn process. Indeed, this
seems to mean that the evolution of the universe is at the same time deterministic
and random. Se non é vero, é bene trovato!
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Langton’s Ant as an Elementary Turing )
Machine e

Jean Pierre Boon

Abstract The automaton known as ‘Langton’s ant’ describes the step by step motion
of an elementary object (the ant) on a square lattice. Yet despite the simplicity of its
rule, the automaton exhibits amazing dynamical behaviour leading to a propagation
phase where the particle (the ant) dynamics produce a regular periodic pattern (called
‘highway’). The dynamical pattern so created by the ant on the highway produces a
recurring mechanism for an elementary Turing machine (Boon in J Stat Phys 102:355,
2001 [1]).

1 Introduction

The automaton known as ‘Langton’s ant’ was devised by Langton [2] and its dynam-
ics are illustrated in Fig. 1; it has been a recurring theme in the mathematical and
physical literature [3]. There are two reasons. The first is of physical relevance: the
automaton known as Langton’s ant (which I describe below) offers a paradigm of
complexity out of simplicity. The second reason is mathematical: despite the simplic-
ity of the basic algorithm, the analytical description of the spatio-temporal dynamics
generated by the automaton exhibits propagation dynamics which obeys a general
difference equation and the speed of the ant in the highway (¢ = +/2/52) follows
exactly from the equation whose continuous limit gives a propagation-dispersion
equation [4].
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2 The Automaton Process

The basic process governing the automaton dynamics follows a simple rule. The
automaton universe is the square lattice with checker board parity, therefore, defining
H sites and V sites. A particle moves from site to site (by one lattice unit length)
in the direction given by an indicator. One may think of the indicator as a ‘spin’
(up or down) defining the state of the site. When the particle arrives at a site with
spin up (down), it is scattered to the right (left) making an angle of +7/2 (—m/2)
with respect to its incoming velocity vector. But the particle modifies the state of the
visited site (up <> down) so that on its next visit, the particle is deflected in the
direction opposite to the scattering direction of its former visit. Thus, the particle
entering from below an H site with spin-up is scattered East, and on its next visit
to that same site (now with spin down), if it arrives from above, it will be scattered
East again, while if it arrives from below, it will be scattered West. Similar reasoning
shows how the particle is scattered North or South on V sites.

At the initial time, all sites are in the same state (all spins up or all spins down),
and the position and velocity direction of the particle are fixed, but arbitrary. So if we
paint the sites black or white according to their spin state, we start initially with say an
all white universe. Then as the particle moves, the visited sites turn alternately black
and white depending on whether they are visited an odd or even number of times. This
colour coding offers a way to observe the evolution of the automaton universe. The
particle starts exploring the universe by first creating centrally symmetric transient
patterns (see figures in Ref. [3]), then after about 10 000 time steps (9977 to be
precise), it leaves a seemingly ‘random territory’ to enter a ‘highway’ (see Fig. 1).
Note that this ’disordered phase’ is not what a random walk would produce: the
automaton is deterministic and its rules create correlations between successive states
of the substrate, so also between successive positions of the particle. The power
spectrum computed from the particle position time correlation function measured
over the first 9977 time steps goes like ~v™¢ with ¢ >~ 4/3. In the ordered phase
(‘highway’), the power spectrum shows a peak at v = 1/104 with harmonics. In the
highway, the trajectory shows a periodic pattern where the particle travels with a
constant propagation speed.' Here, I show analytically that the propagation speed is
¢ = /2/52 (in lattice units) as measured in automaton simulations [3].

Because of the complexity of the dynamics on the square lattice, Grosfils et al.
[5] developed a one-dimensional version of the automaton for which they provided
a complete mathematical analysis which is also applicable to the two-dimensional
triangular lattice. One of their main results is the mean-field equation describing the
microscopic dynamics of the particle subject to the more general condition that the
spins at the initial time are randomly distributed on the lattice. The equation reads,
for the one-dimensional lattice

Jor+1Lt)=qfrt—1)+ A—-q) f(rt-3), (D

1 A theorem by Bunimovich and Troubetzkoy [6] demonstrates that the automaton fulfils the con-
ditions for unboundedness of the trajectory of the particle.
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and, for the two-dimensional triangular lattice

fr+1,0=q(1-q) f(r,t=2)+1g"+ (1 = q)’] f(r,1 = 8)
+ (A =q)q f(r,t —14)

where f(r,t) is the single particle distribution function, i.e. the probability that
the particle visits site » for the first time at time ¢, and g is the probability that
the immediately previously visited site along the propagation strip (the highway)
has initially spin up, i.e. the probability that the particle be scattered, in the one-
dimensional case, along the direction of its velocity vector when arriving at the
scattering site atr — 1, and in the two-dimensional triangular case, along the direction
forming clockwise an angle of +27/3 with respect to the incoming velocity vector
of the particle. Equations (1) and (2) express the probability of the first visit to a
site along the propagation strip in terms of the probability of an earlier visit to the
previous site along the strip.? The equations were shown to yield exact solutions for
propagative behaviour in the two classes of models considered by Grosfils et al. [5].
Equations (1) and (2) are particular cases of the following general equation

Y fr+p.0 =) pi@ frt—1) ;T =U+ajmr . (2
=0

Jj= j=0

with Z?:o pj =1 <r/p)and where f(r, t) is the first visit distribution function.
Here p denotes the elementary space increment of the dynamics along the propagation
strip; p; is the probability that the particle propagates from r tor + p in 7; time steps,
i.e. 7; is the time delay between two successive first visits on the strip (more precisely
on the one-dimensional edge of the strip) for the path with probability p;, and m is
the corresponding minimum number of automaton time steps (tp = mt, where t is
the automaton time step; T = 1). The sum is over all possible time delays, weighted
by the probability p; (a polynomial function of ¢). & denotes the number of lattice
unit lengths in an ‘elementary loop’, i.e. the minimum number of lattice unit lengths
necessary to return to a site.’ Equation (2) implies the assumption that first visits
occur after a finite number of recurrences (n finite in Eq. (2)), i.e. a finite number of
possible paths (not identical loops) between two successive first visits; this defines a
general class of automata which includes the 1-D, 2-D triangular and square lattice
models.
Now from the expectation value of the time delay, computed with (2)

Elt@] =Y. 1pi@ = A+a(idme s ()= jpi@. O

=0 j=0

2 In the two-dimensional case, the equation describes the one-dimensional propagation motion along
the edge of the strip.

3 An interesting equation follows from the continuous limit of (2) as discussed in [4].
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one obtains immediately the average propagation speed of the particle: c(q) =
p/Elt(q)].

Itis straightforward to verify that Eqs. (1) and (2) are particular cases of the general
equation 2): for I-D:a =2, m=1, p=1,n=1, with po =¢q, p =1 —g; for
2-D (triangular lattice): « =3, m =2, p=1,n =2, with pg=q (1 —¢q), p1 =
q*>+ (1 —¢q)%, p»=(1—¢q)q. The corresponding propagation speeds are then
readily obtained from (3); for the one-dimensional case one finds c(g) = 1/(t(g)) =
[1+21 - q)]’1 = 1/(3 — 2q), and for the triangular lattice: (t(¢)) = [1 + 3(q2 +
(1 —g)* 4+ 2g(1 — g))] x 2, so that ¢ = 1/8. These results are in exact agreement
with those obtained in [5].

For the 2-D square lattice: « = 4, m = 2 x 4, p = 2+/2. The value of p is easily
checked by inspection of the highway path shown in the upper box of Fig.1: it
is the length of the elementary increment along the edge of the propagation strip.
Correspondingly, m is 2 x 4 (the minimum number of time steps necessary to move
one elementary space increment must be counted on each edge of the strip). For
the square lattice, one does not know the value of n, but from the structure of the
pj’s for the 1-D and 2-D triangular lattices given above, one can infer that n =
6, withpy = ps=¢> (1 —q)*, pi=ps=q(U —q)[¢> + (1 —¢)*], pr = pa =
po+ pi1, p3 = [q2 + (1— q)z]z. However, the precise expressions are unimportant
for the automaton describing Langton’s ant, because all sites are initially in the same
spin state; so ¢ = 1, and only one p; is non-zero: p; = 1. Equation (2) then reads

Fr+2v2,0) = fint—1) ; 5 =(0+4x3)2x4 = 104, 4)

which describes the dynamics of the particle in the highway. This result shows that a
displacement of length 2+/2 along the edge of the strip is performed in 104 automaton
time steps. Consequently the propagation speed of Langton’s ant in the highway is
c=p/t3 =2+/2/104 = /2/52.

Although the initial condition with all spins in the same state may appear as a
particular configuration, it should not be considered as a non-typical one, in the
sense that it produces propagation. In the 1-D and 2-D triangular lattices, propa-
gation always occurs regardless of the initial spin configuration [5]. In the square
lattice, propagation only occurs with all spins initially up or down (or periodically
distributed®) is related to the fact that the scattering angle here is & /2, which can
be conjectured as an indication of criticality (at angles smaller than v /2, propagation
is never observed).

4 Propagating patterns with different modes of propagation depending on the periodicity of the spin
distribution are discussed in [7, 8].
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Fig.1 Langton’s ant
propagation highway: the
lower panel shows the area
of the square lattice covered
by the ant during its first
phase looking apparently as
a randomly covered area
where from it emerges after
9977 steps into a ‘highway’
shown as a blowup in the
upper figure and where it
propagates describing a
regular periodic pattern. The
colour code of the black and
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white squares indicates
whether the ‘spin’ is left up
or down (left or right) after
the last passage of the ant

3 Concluding Comments

The origin of particle propagation in 1-D and 2-D triangular lattices was shown
to be a ‘blocking mechanism’ [5], and the question was raised as to whether such a
mechanism also exits in the square lattice. Although the precise blocking mechanism
has yet to be identified, that the same general equation, Eq. (2), describes propagation
in 1-D, 2-D triangular and square lattices suggests that a similar blocking mechanism
is responsible for the construction of Langton’s highway.

Grosfils et al. [5] developed extensively this type of automaton in the case of the
triangular lattice and in their conclusions they discuss an interesting ‘reorganisation
corollary’ stating that All sites located on one edge of the propagation strip are in the
initial state of the sites on the other edge, shifted upstream by one lattice unit length,
a feature clearly illustrated in Fig. 1. The same corollary applies trivially to the spin
states (up and down spins interchanged as 0’s and 1’s) on the edges of the highway of
Langton’s ant. From this observation, it follows that the particle dynamics functions
as a control operator which transcribes and shifts the string of characters (0’s and
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I’s) of the input tape (on one edge) to the output tape (on the other edge), i.e. (i) the
control operator plays the role of the EXCHANGE gate in Feynman’s model of a
quantum computer [9], and (ii) can then be interpreted as the controller of a Turing
machine which shifts the string of characters of the input tape (on one edge) to the
output tape (on the other edge).

Acknowledgements I acknowledge fruitful discussions with Patrick Grosfils and James F. Lutsko.
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Phase Transitions in Active Matter )
Systems oo

Subir K. Das

Abstract This article reviews various aspects of phase transitions in active matter
systems. Scaling phenomena in steady states as well as far-from-steady-states have
been considered. The focus has been on systems where particles align their velocities
along their neighbors. Such dynamic interactions are known to facilitate clustering.
Wherever necessary, results and discussions are provided from relevant passive mat-
ter systems. Comparison between the two should help understand the influence of
activity at a quantitative level.

1 Introduction

Active Matter systems [1-3] consist of self-propelling particles. These constituents
perform motion by continuously drawing energy from the environment. Such systems
are inherently away from equilibrium and pose challenging questions concerning
nonequilibrium statistical physics [1-26].

Fascinating structures and dynamics are commonly observed in active matter
systems. Some pictures in this connection are shown in Fig. 1. These are related
to (Fig. 1a) a flock of birds [27], (Fig. 1b) a school of fish [28], (Fig. 1c) a herd of
sheeps [29], and (Fig. 1d) a colony of bacteria [30]. In the first three systems, inter-
esting structure in the density field is clearly visible. These snapshots also provide
an indication about structure formation in directionalities of particle motion. A more
complex and interesting pattern in the velocity field can be observed in Fig. 1d. This
is related to the movement of bacteria in a colony.

In many active matter systems, interesting patterns form due to the alignment
of velocities of the constituents. In a way, this is similar to pattern formation in
systems of inelastically colliding granular particles [31-34]. In the latter system,
after each collision, the particles move more parallel to each other. Such directional
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Fig. 1 Depiction of pattern formation in various active matter systems: a a flock of birds forming
interesting dynamic pattern (Source Wikipedia); b a school of fish showing clustering and velocity
alignment (Source wikipedia); ¢ a herd of sheeps exhibiting clustering and directionality (Source
Wikipedia); d velocity field in a colony of bacteria forming vortex-like topological defects. Repro-
duced with permission from C. Dombrowski et al., Phys. Rev. Lett. 93, 098103 (2004). https://doi.
org/10.1103/PhysRevLett.93.098103. For details on the sources and permissions for a—c, see text
and cited references there

parallelization gives rise to instabilities in density and velocity fields that lead to
structure and dynamics similar to phase transitions.

Phase transitions in active matters have received much attention recently [5-7,
9-17, 19, 21-24]. In addition to the formation and evolution of the above mentioned
structures [7, 12, 15, 16, 24], belonging to the domain of coarsening phenomena,
there exists serious interest in critical phenomena [5, 6, 9-11, 17] as well. Note that
steady state in the active case is the counterpart of equilibrium in the passive situation.
Critical phenomena in active matter systems are, thus, associated with nonequilib-
rium transitions in the steady state context. An important objective in this domain,
like in the passive case [35—41], has been the identification and understanding of uni-
versality. A brief discussion concerning this is provided in the next section, primarily
in the passive context.

It is important to note that phase transitions in active matter systems are not
only related to the above mentioned alignment interactions. Fascinating structure
and dynamics are observed even when constituents perform movements of different
kinds, e.g., exhibit Brownian motion [23]. However, in this article, our focus will
be on the former. Note, however, that typical active matter systems do not contain
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thermodynamically large number of particles. This way, in reality, it is expected
that there will be rounding off of various anomalies. Nevertheless, it is an important
theoretical challenge to figure out, say, via the application of scaling principles, the
character of the transitions in the infinite size limit of the system.

2 Phase Transition: An Elementary Discussion

In Fig.2a, we show a schematic phase diagram of a normal chemical system [39].
Along various lines, two different phases coexist with each other, e.g., solid-liquid
coexistence occurs along the broken curve. At the triple point, all the three phases
coexist with each other. The vapor-liquid coexistence curve terminates at a critical
point. Across the coexistence curves, the density changes discontinuously, e.g., when
a system moves from the liquid phase to the vapor phase. This jump tends to vanish
as the state point gets closer to criticality. At and beyond the critical point, the system
can be brought from one phase to the other without encountering a discontinuity in
density.

(a) (b)

I ,-
Py I
& | soLm ! Critical
] point =
2
5 ) GAS
& triple

point

Temperature (T)—s P

Fig.2 a Schematic phase diagram of a normal chemical system in pressure (P) versus temperature
(T) plane. Various phases, viz., solid, liquid, and vapor, are marked. The coexistence curves, along
which two different phases coexist, being in equilibrium, are shown by lines. The triple point marks
the location of the coexistence of all three phases. The vapor-liquid coexistence curve terminates
at the critical point. b Coexistence curve for a vapor-liquid transition is schematically shown in
temperature versus density plane. The critical point is marked by a cross (x). The left branch of the
curve depicts the variation of density in the vapor phase and the right branch shows the same in the
liquid phase, with the change of temperature
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2.1 Critical Phenomena

The vapor-liquid coexistence curve is shown schematically in Fig. 2b in the temper-
ature versus density plane [39]. The vapor and liquid branches meet each other at the
critical point. Various thermodynamic and transport properties exhibit anomalous
behavior in the critical vicinity. Below we note these for some of the thermodynamic
quantities. The order parameter ¢ (= p; — py, p; and p, being the densities along the
liquid and vapor branches, respectively), isothermal compressibility (x7), isochoric
specific heat (C,), and correlation length (£) exhibit the behavior [37, 39, 40]

o~ €, (1)
Ky ~ €, 2
C,~ e, 3)
and
E~e. €

Here, ¢ is the deviation of temperature (7') at the considered state point from the
critical value (7,) for a temperature-driven phase transition. It is defined as a dimen-
sionless quantity as € = |T — T,|/T,. The two-point space correlation function [37]

C(r) = (W(HHO0) — (L) (W (0)), (5)
follows the functional form [37]
C(r)~r e/t (6)

with
p=d-—-2+1. (7

For an unbiased system, the structure is isotropic and the correlation depends only
on the scalar separation (r) between two points, not on the vector distance (7). In
addition, at the critical point, there may exist anomaly in the order parameter with
the variation of the relevant external field. For athermal systems, role analogous to
temperature can be played by density [37, 39, 40].

In the above equations, (3, 7, «, v, and i are critical exponents. Other than that
for the order parameter, the forms remain valid for an approach to 7, from either
side. Typically, the values of the exponents are universal, i.e., they do not depend
upon the type of materials. In fact, the universality is so robust that the values of the
exponents are independent of the type of transition, e.g., for a para- to ferromagnetic
transition across the Curie point or a liquid-liquid transition having a consolute
point one observes the same value of an exponent as in a vapor-liquid transition.
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Such universality applies to certain amplitude ratios as well. However, depending
upon the type of transition, certain definitions may change, e.g., for a magnetic
transition, magnetic susceptibility and for a liquid-liquid transition, concentration
susceptibility, take the role of compressibility in a vapor-liquid transition [40]. Of
course, based on the type of order parameter, e.g., scalar or vector, space dimension,
and range of interaction, character of transition and universality may change. For
scalar order parameter, if the range of interaction is sufficiently short, typical vapor—
liquid transitions, para-to-ferromagnetic transitions, etc., are accurately described by
the nearest-neighbor Ising model in terms of the values of the exponents as well as
certain amplitude ratios [37, 40]. For this model, the above listed exponents ind = 3
are [37, 40]: 5 >~ 0.325, v =~ 1.239, o ~ 0.11, v = 0.629 and 7 =~ 0.036.

Coexistence curves similar to that in Fig.2 have been obtained for active matter
systems as well [3, 5, 6, 9, 19]. In the theoretical and computational literature, stan-
dard techniques are being used to estimate the critical point and exponents of relevant
singularities for such nonequilibrium transitions. With respect to the existence and
characterization of universalities in the active matter domain, however, there exists
doubt and lack of consensus [10, 17]. Here the phase transitions are driven by particle
motion. In the literature, on passive matter, it is known that differences in transport
can alter the universality in dynamics (see below for discussion). In the case of active
matter systems, it may be expected that the phase behavior will be different for dif-
ferent self-propulsion rules. It may not be surprising even if the values of the critical
exponents for quantities analogous to the ones described above get altered, due to
the changes in the self-propulsion rule.

In the equilibrium critical phenomena in passive systems, not only there exists
anomaly in thermodynamic quantities, but the dynamics also become atypical. As
the critical point is approached, i.e., £ diverges, the slowest relaxation time, 7, of a
system blows up as [38, 40-42]

T~ & (®)

Here, z is a dynamic critical exponent. This is a signature of slow dynamics, a
phenomenon often referred to as the critical slowing down. In the dynamical context,
other interesting quantities are various transport properties of collective type, e.g.,
for a vapor-liquid transition, the thermal diffusivity (D7), shear viscosity (1,) and
bulk viscosity (¢,) exhibit the behavior [38, 41, 42]

Dy ~ &7 ©)
Ny ~ &7 (10)
G~ &% (11)

The exponents xp, x,, and x¢ are positive quantities. Universality in this sub-domain
is weaker, e.g., while a magnetic, a solid binary mixture, and a fluid system will
give rise to the same static universality class, each of these will belong to different
dynamic classes. Despite critical phenomena finding significant importance in the
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active matter context, this transport-related aspect, as described above, is starting
to receive attention only recently [43]. This lack of understanding is interesting,
particularly because, as stated above, the transitions in these systems are transport
driven.

In addition to the critical phenomena, there exists interest in learning whether
scaling picture, analogous to the passive systems [44—56], holds in approach to the
steady state in the case of active matter system, following quench of a homogeneous
system to a state point inside the miscibility gap. Once again, we provide discussion
on this aspect from the perspective of passive matter.

2.2 Coarsening Phenomena

Evolution dynamics in systems undergoing phase transitions is characterized by
pattern formation in the presence of interesting topological defects [44]. In three-
dimensional geometry, for a scalar order parameter, the defects are two-dimensional
surfaces or domain walls. For order parameters of more complex types, even more
interesting structures arise, e.g., for vector order parameters in d = 2 or 3, interesting
vortex-like topological defects may appear, with the dimension of the object decided
by the competition between space dimension and the number of components in the
order parameter. The defect dimension for a n-component vector field, n being unity
for the scalar case, in d space dimensions, is given by [44] d — n.

In Fig. 3, we have schematically depicted two defect structures, say, related to
magnetic transitions. In Fig. 3a, we show a wall that separates a domain of up spins
from that of down spins. In the context of phase separation in a binary (A + B)
mixture, say, for a liquid-liquid transition [41], the up and down spins may represent
A and B particles. In d = 2, given that the order parameter here is a scalar quantity,
the wall is a line, i.e., one-dimensional object. In Fig. 3b, we have a two-component
vector order parameter in d = 2. This gives rise to a vortex defect [44] originating
from a zero-dimensional object, i.e., a point. Both types of defects can be visualized
in the pictures shown in Fig. 1.

In fluid phase separation, one may expect that defects of multiple types in different
fields can be simultaneously observed—say, one in the density or concentration field
and the other in the flow, i.e., in the velocity field. This picture may be common
in passive as well as in active fluids. In the latter case, this is possible even if the
underlying basic phase is solid.

Structural information is typically obtained via the calculation of two-point equal
time order parameter correlation function [44]:

C(F 1) = WF, YO, D) — ((F, D) (1O, 1)). (12)

This is similar to the correlation function defined in the critical phenomena con-
text. However, here the order parameter and, thus, the correlation function is a
time-dependent quantity, implying the far-from-equilibrium or far-from-steady-state
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Fig. 3 Schematic diagrams of a few defects in coarsening systems: a a line boundary (see the
dashed line) between domains for scalar order parameter in space dimension d = 2; b a vortex
formed during the ordering of a two-component vector order parameter in d = 2

nature. Furthermore, the discussion on transport phenomena, in the previous sub-
section, in the context of dynamic critical phenomena, also has strong relevance in
the far-from-equilibrium picture that is being described here. Experimentally more
relevant quantity is the structure factor, S(k, t), k being the wave number, which is
the Fourier transform of C(r, ¢). The space dimension and order-parameter symme-
try is reflected in the behavior of these quantities, e.g., the long wave number tail of
S(k, t) is given by [44]

Sk, t) ~ k=4tm, (13)

which is referred to as the Porod tail [44]. This arises from the short distance singu-
larity in C(r), an artifact of scattering from the defects.

These structural quantities exhibit certain scaling properties that arise from self-
similar nature of evolution. For non-fractal structures, it is typically observed that
[44]

C(r,t) = C(r/e()), (14)

and
Sk, 1) = LS kL(r)), (15)

where C and § are time-independent master functions. In Eqgs. (14) and (15), £ is the
characteristic length scale of the system, i.e., average size of domains under a defect.
This quantity grows with time as [44]

0~ (16)

The value of the growth exponent § depends upon space dimension, mechanism of
growth, etc. In simple passive situations, the values of the exponent as well as the full
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functional form of C(r, t) are known with reasonable accuracy [44, 57]. In active
matter systems, the type of activity can certainly influence the overall picture [7, 58].

Another important but relatively less traveled aspect of coarsening dynamics is
the aging phenomena [47, 55, 56]. This is concerning the relaxation of an evolving
system starting from various ages. Typically, in this sub-domain, one studies the
order-parameter autocorrelation function [47]

Cag(t, tw) = (YF, YT, 1)) — WF D)WY, 1)) a7

Here, ¢ is the observation time and t,, (< ¢) is the waiting time or age of a system,
since the instant of a quench. When plotted versus t — t,,, Cyg(?, 1), in equilib-
rium situation, for different ¢,,, overlap with each other. This signifies time trans-
lation invariance (TTI) that allows one to obtain better statistics by exploiting time
averaging. In the far-from-equilibrium situations, TTI is violated. In the latter case,
nevertheless, typically one observes the scaling behavior [47]

¢ A
Cag(tv tw) ~ (7) ’ (18)

w

) being referred to as the aging exponent, and ¢,, is the value of £ for t = 7,,. In the
case of active matter, of course, steady state replaces equilibrium. It is interesting to
ask if similar scaling form is obeyed in this case also, for active matter systems.

3 Flocking Transition in Active Matter Systems: A Basic
Model

In real life, collections of birds or sheeps or fishes are often seen where the motions
of individuals within clusters are along quite the same direction. A minimal model
to describe such phenomenon was proposed by Vicsek et al., to be referred to as the
Vicsek model (VM) [9] in the following. Within this model, the direction of motion
of a constituent particle or object or individual is influenced by the motion of its
neighbors. If ; represents the direction of motion of the ith particle, at an instant of
time ¢, at the next instant # + At its direction is updated as

0;(t + Ar) = (0:(1)),, + A0;. (19)

In Eq. (19), (¢ (1)),, is the average direction of velocity of the neighboring particles
lying within a distance r,, from the ith particle. Furthermore, Af; is a noise term
value of which lies within [—7, 7]. The particles within the VM move with constant
magnitude of velocity, say vy. The position of a particle, thus, is updated according
to

it + A =7Fi(t) + 0;() At, (20)
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v; (t) being changed by the modified 6; values, every next instant of time, keeping
the magnitude of the velocity same.

This simple model, often referred to as the Ising model of active matter, provides
an interesting phase transition via the competition between density (p) of particles
and 7. The analogy between the two models is not only because of the underlying
simplicity, but there also exists similarity in transitions. Note that the Hamiltonian
for the Ising model is given by [37, 40]

H=-])"S5,. Q1)
(ij)

For studies related to ordering in ferromagnets, J is positive and S; or S; can take
values 41 and —1. The sign of the majority of the surrounding spins influences the
orientation of a spin, if the thermal fluctuation is not very strong. This is similar to the
alignment of velocity in the VM. In this sense, the latter, however, is more similar to
the XY model or Heisenberg model [44, 59]. In the case of Ising model, the spins or
atomic magnetic moments are scalar quantities, as opposed to the continuous cases
of XY and Heisenberg models [40, 44]. Like the sum of spins in the magnetic case,
the sum of velocities or the normalized average velocity [9], i.e.

i | (22)

N being the total number of particles in the system, is the order parameter for the
transition in the VM. Note that various variants of the VM produce interesting topo-
logical defects in the velocity field, like in the XY and Heisenberg magnets, in addi-
tion to the vapor-liquid phase separation in the density field. The defect in Fig.3b
has connection with VM or XY model ind = 2.

In Fig.4 we show representative pictures from computer simulations of the VM
[9]. In Fig. 4a we show a typical initial configuration, random in positions and veloc-
ities. In Fig. 4b we see a late time snapshot that evolved from the initial configuration
in Fig.4a. The picture certainly gives a sense of velocity ordering as well as vapor—
liquid-like phase separation in the density field. Late time snapshots from two other
sets of system parameters are shown in Fig.4c, d. Here L is the linear dimension of
a system. For a fixed number of particles, L decides the value of p. Figure 4 provides
an indication of how phase transition can be encountered with the variation in p and

n.
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Fig. 4 Snapshots showing approximate positions, directions of motion (see the arrows), and tra-
jectories over the last 20 steps (see continuous curves attached to the arrows) of 300 particles,
obtained via computer simulations of the Vicsek model starting from the random initial configu-
ration is shown in part a. Late time pictures for a few combinations of density and noise strength
are presented in parts b—d. Reproduced with permission from T. Vicsek et al., Phys. Rev. Lett. 75,
1226 (1995). https://doi.org/10.1103/PhysRevLett.75.1226

4 Phase Behavior and Critical Aspects in the Vicsek Model

In Fig. 5a we show plots of order parameter as a function of 7, that were obtained
from the studies of VM [9]. By keeping the value of p fixed, results from different
system sizes are presented. The general observation is that, with the increase of 7, v,
decreases. For larger system sizes, approach of v,, at large enough 7, to zero is clearer.
This overall picture is analogous to the critical point behavior in temperature-driven
phase transition [9, 37], i playing the role of T, i.e.

Vg ~ (e —

where 7, is the critical noise strength.

", (23)

The differences in data sets from systems with different numbers of particles are
related to finite-size effects. Such effects are well studied for phase transitions in
passive matters [40]. For the latter case, analogous coexistence curves from Monte
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Fig. 5 a Variation of order parameter, for the Vicsek model, defined in the text, are shown as a
function of noise strength 7. The density of particles is kept fixed. Different plots represent results
from different system sizes. These data are from simulations in d = 2. Reproduced with permission
from T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995). https://doi.org/10.1103/PhysRevLett.75.
1226.b Analogous phase diagrams for a passive binary (A + B) mixture modelind = 3. These were
obtained from Monte Carlo simulations in a semi-grand-canonical ensemble. Here, x4 represents
the concentration of A particles (x4 = Ns/N, N4 and N being, respectively, the number of A and
total number of particles in the system). These data are borrowed from S. Roy and S.K. Das, J.
Chem. Phys. 139, 064505 (2013)

Carlo simulations of a temperature-driven phase separation in a symmetric binary
(A + B) fluid [41], placed in boxes of different sizes, are shown in Fig.5b. These
simulations were performed in a semi-grand-canonical ensemble [41] that allows
changes of identities of particles (A — B — A), thereby inducing fluctuations in the
concentration of, say, A species (x 4) in the mixture. The distributions of x 4, obtained
by exploiting such fluctuations, at various temperatures, provide crucial information
on phase diagram and other critical aspects. The distributions are double-peaked in
the coexistence region and single-peaked above the critical point. Below criticality,
the locations of the peaks provide points on a coexistence curve. The distributions
also allow for the calculations of other quantities, e.g., the susceptibility can be
calculated as [40, 41]

ksTx = N((x3) — (xa)?), (24)

where kg is the Boltzmann constant. For the estimation of the critical point, it is
a standard practice to calculate the well-known Binder parameter, i.e., the fourth
moment ratio [40],

(xa — (xa)?

Ve = e P

(25)

This dimensionless quantity from different system sizes crosses each other at the
critical point. In the case of a vapor-liquid transition, such fluctuations in the density
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field, leading to the calculations of various experimentally relevant quantities, can
be obtained via simulations in grand-canonical ensemble [40].

Choices of smart ensembles in the passive case become possible because of strong
universality—very different dynamics lead to the same static class of critical phe-
nomena. In active matter systems, for which dynamics dictate the criticality, it is not
possible to choose ensembles at will. Nevertheless, in this case, certain methods can
be useful. For systems with fixed size and particle number, such fluctuations can be
captured by dividing the simulation box into many sub-boxes. Calculations of v, in
different sub-boxes [17] can provide the desired distribution, and thus the quantities
of physical relevance.

5 Transitions in Variants of the Vicsek Model

The original Vicsek model has been combined with passive models to suit studies of
various physical pictures. Given that in many biological systems bacteria, typically
of the size of colloids, exist in the matrix of bio-polymers, a generic passive model for
mixtures of colloids and polymers, referred to as the Asakura—Oosawa (AO) model
[60, 61], has been used as the backbone for the studies of effects of Vicsek-like
self-propulsion in biologically motivated systems [5, 6].

In the AO model, the colloids and polymers are treated as spheres with radii R, and
R, respectively. In the original passive version of the model, colloid—colloid (CC)
and colloid—polymer (CP) pair interactions are of hard sphere type. There exists,
however, no interaction for the polymer—polymer (PP) pairs. Such a PP interaction
has the following justification. Flexible polymers in good solvent conditions take
random-walk-like configurations. Upon coarse graining, these can be treated as blobs
that can overlap with each other at the free energy cost of kpT'.

The above passive model gives rise to phase separation into colloid-rich and
polymer-rich phases. Corresponding coexistence curve has been obtained accurately
via grand canonical Monte Carlo simulations. For molecular dynamics (MD) [62]
studies of this model, however, different interactions [63] were adopted by some
authors. When the particles are located r distance apart, the o (= CC or CP) pairs

interact via " 6 1
0’(! 0-(1
ua/3=4aaa[( 5= (%) +—]. (26)
r r 4

For PP interactions

r 3 r 4 r
Upp = 82pp 1—10(r ) +15<r ) _6<r ) @7)
c,PP c,PP c,PP

was considered. The choices of the system parameters ecc =ecp = 1, €pp =
0.0625, occ =1, 0cp = 0.9, opp = 0.8 and r. 5 = 2!/°0,4, the latter represent-
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ing cut-off distances in terms of the inter-particle diameters 0,43, produced a phase
behavior close to the original version.

Like in the case of the original AO model, the potentials in Egs. (26) and (27)
make the model reasonably insensitive to temperature. Density plays the role of
temperature here. For this modified version of the model, the coexistence curve is
presented in Fig. 6 on 7¢ versus np plane. Here, n¢ and np are the packing fractions
of colloids and polymers [5, 6, 63]

nc = 0.5484p¢, (28)
np = 0.2808pp, (29)

with N
Pa = 7” (30)

N, being the number of particles for species o and V is the system volume.

In the VM, there exists no passive inter-particle interaction. The passive limit
of the model, thus, does not exhibit a phase transition. In recent studies [5, 6],
colloids in the above mentioned mixtures have been made active via the introduction
of the Vicsek activity. Given that the passive counterpart exhibits phase separation,
imposition of the self-propulsion is expected to widen the coexistence region. This
can be appreciated [5, 6] from Fig. 6.

With respect to the order of such nonequilibrium transitions, there exist debates.
Even if there exists a critical point, the universality related to such a second order
transition remains highly debated [10].

Vicsek interaction has also been incorporated into single component systems [7]
having passive inter-particle potential. In recent works, certain truncated, shifted, and
force corrected Lennard—Jones (LJ) [41] potential was used as passive interaction.
Note that the standard LJ potential has the form

v=e(@)"- )]

where, like above, € and o are, respectively, the interaction strength and diameter. A
popular modified version is [41, 64]

u(r) =V) =V — - rc)d—v

dr ’ (32)

r=re

with truncation radius r, = 2.50. This model provides temperature driven phase
transition. Like in the case of the modified AO model, the truncation helps faster
computation. Given that the interactions are already of short-range nature, such cuts
do not alter the critical universality in the passive case. For these models, MD sim-
ulations have been performed in the canonical ensemble. To keep the temperature
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Fig. 6 Phase behavior of the (modified) Asakura—Oosawa model in n¢ versus np plane, nc and
np being the packing fractions of colloids and polymers, respectively. We have shown results for
pure passive case as well as for that obtained by making the colloids active via a Vicsek-like rule.
See text for more details. The plus (+) symbol marks the location of the passive critical point. This
figure is reproduced with due permission from S.K. Das et al., Phys. Rev. Lett. 112, 198301 (2014)
in a modified form
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constant, if a Langevin thermostat is used, one needs to solve the dynamical equation
(for the i™ particle) [5-7]

mt; = —Vu; —ym#; + /tmyk T R(t). (33)

Here, m is the mass of a particle, ~y is a drag coefficient, and R is a noise delta-
correlated in space and time as [5-7, 62]

(Ri/l,RjV> = 5ij5/w5(t - [/), (34)

where 1 and v are related to Cartesian components, while ¢ and ¢’ represent two dif-
ferent times. The value of the constant £ in Eq. (33) depends on uniform or Gaussian
noise. In recent works [7, 15, 16], at the end of each such MD step the velocities
of the particles were further updated by adding it with the average direction of their
neighbors [7]

2

J

1>

J

D, =

(35)
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with a proportionality factor f4. This was done in such a way that this Vicsek rule
provides only the directional change. The value of f,4 provides the strength of activity,
influencing the quantitative change in direction of motion of a particle. For this model
also, to be referred to as LJ-VM, it is observed that phase separation occurs much
above the known critical temperature in the passive limit. In fact, the influence of
Vicsek alignment is so robust in inducing phase separation that even for pure repulsive
interaction in the passive limit, a coexistence region can be observed.

6 Kinetics of Flocking Transition: Structure Formation

Dynamics of evolution to steady states have been studied in the original VM as well
as in variants of the latter. Like in the case of phase behavior, here also the objective is
to find if scaling properties are similar to the passive matter case. Related results we
present for the above mentioned LJ-VM, for f4 = 1, with reference to the f4 =0
case, the pure LJ (passive) case, in d = 2. The state points are chosen in such a way
that in each of the cases, there exists short-range crystalline order in the particle
arrangement in the high density region.

In Fig. 7 we show [15] evolution snapshots, including the starting random initial
configuration, that mimic quenches from high temperature phase, in d = 2. The
final temperature lies inside the coexistence region of the model in the passive limit.
Growth is clearly visible in the system. However, the structure appears different from
that of the corresponding passive version of the model. Representative snapshots from
the latter [65] are shown in Fig.8 which were obtained via MD simulations with
a hydrodynamic preserving Nosé-Hoover thermostat (NHT). Note that the overall
density in the passive (0.35) and active (0.37) cases differ marginally. From the
comparison between Figs.7 and 8, it also transpires that the growth is much faster
in the active case, despite the absence of hydrodynamics in the latter case.

The self-similarity in growth, for f4 = 1, has been demonstrated in Fig.9. In
Fig.9a, we have shown the plots of two-point equal time correlation, versus r, from
a few different times. The slower decay with the increase of time implies growth. In
Fig.9b, we present the same results, but here the distance axis has been scaled by
the characteristic length scale, that was obtained from the decay of C(r, t) as

Cr=2¢,1)=h, (36)

by fixing & at a constant number (= 0.25). Note that C(r, ¢) has been normalized in
such a way that C(0, t) = 1. Clearly, data from different times nicely overlap with
each other, implying self-similarity, despite the presence of fractality of some degree.
Note that such scaling is well known in the literature of passive matter [44].

In Fig. 10, we present scaling plots for the structure factor, for f4 = 1. Here also
nice collapse of data is visible. The large wave number data are reasonably consistent
with the Porod law [44]. Note that here d = 2 and n = 1. Thus, for the tail part, one
expects the behavior S(k, t) ~ k3. In the small k regime, the data are consistent
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»

t = 1000

Fig. 7 Snapshots recorded following quench of a homogeneous system (+ = 0) containing active
particles with random initial velocities. These results are from the MD simulations of LJ-VM in
d = 2. The quench temperature is set at 7 = (.25 in units of €/ kp. The overall density of particles
in the system of linear dimension L = 1024 is 0.37. This figure is reproduced with permission from
S. Chakraborty and S.K. Das, J. Chem. Phys. 153, 044905 (2020) in a modified form

with the behavior
Stk — 0,1) ~ k", (37)

x being approximately 1.2. This number will be useful in future discussion.

For the above discussed results, the quench temperature was fixed at 7 = 0.25
and p was rather high, approximately the critical value for the passive transition. It
appears that one gets bicontinuous structure during the evolution with this density.
It is expected that the morphology will consist of disconnected clusters when the
density is low. Below we discuss pictures for such quenches.

For the off-critical quench, we present the snapshots [16] for f4 = 1 in Fig. 11a.
As expected, the morphology is made of disconnected clusters. Once again, for the
purpose of comparison, in Fig.11b, we have shown [16] the snapshots from the
passive limit of the model, i.e., for f4 = 0. Here also the pattern consists of well-
separated clusters, but in this case, the clusters are more filamental. Such difference
must have its origin in dynamics that becomes different when the active interaction is
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Fig. 8 Similar to Fig.7 but here the activity was turned off and hydrodynamics was turned on.
These snapshots correspond to p = 0.35. This figure is reproduced with due permission from J.
Midya and S.K. Das, Phys. Rev. E 102, 062119 (2020)
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Fig. 9 a Two-point equal time correlation functions, C (r, t), are plotted versus r. Data sets, corre-
sponding to the evolution in Fig. 7, from a few different times are shown. b Same as a but here the
distance axis is scaled by the average size of the domains. This figure is reproduced with permission
from S. Chakraborty and S.K. Das, J. Chem. Phys. 153, 044905 (2020)



160 S. K. Das

10°} ]
=10~
i 3
m10—* 3
103 E
104 % :

i CeemG. m o venmal g .\\......?0 R

101 10° 10’ k{ 10?2

Fig. 10 Scaling plots of the structure factor, taking data from various different times, for the active
matter model of Fig.7. The dashed lines represent various power laws, quantifying the small and
large k behavior. This figure is reproduced with permission from S. Chakraborty and S.K. Das, J.
Chem. Phys. 153, 044905 (2020)

t = 2500 t =102 (b)

Fig. 11 a Same as Fig. 7 but here the overall density is fixed at a much lower value, viz. 0.05. b
Same as a but here the snapshots are for the passive case, viz., f4 = 0. This figure is reproduced
with permission from S. Paul, A. Bera and S.K. Das, Soft Matter 17, 645 (2021)

implemented. In both the parts, the results are for p = 0.05 and 7' = 0.1, in absence
of hydrodynamics.
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7 Growth During Flocking Evolution

Kinetics of phase transition in passive matter systems are broadly divided into two
categories [44], based on the dependence of the total value of the order parameter
on time. Typically, for phase separation in mixtures, during vapor—liquid transition,
etc., the order parameter does not change with time and belongs to the category of
conserved order-parameter dynamics. The cases for which this quantity does not
remain preserved over time, e.g., during ordering in a ferromagnet, belong to the
category of non-conserved dynamics. Here we are focusing on the density field order
parameter that remains preserved for both active and passive cases. Before discussing
recent results from active systems, we first provide a theoretical background in the
passive context.

7.1 Theoretical Background

In the passive conserved category, the growth rate is significantly influenced by the
underlying phase, e.g., whether we are studying phase separation in fluids or in solid
mixtures. In the case of solid mixtures, irrespective of the compositions, the growth
occurs due to diffusive transport of particles via chemical potential (1) gradient [51].
Thus, one writes the interface velocity v (= d€/dt) as [66]

— ~|Vpul. (38)

Given that 1 ~ 7, /¢, 7y, being the interfacial tension, and assuming that the gradient
exists over the length scale of the domain, one obtains

at s
T (39)
Solution of Eq. (39) provides § = 1/3, referred to as the Lifshitz—Slyozov (LS)
growth exponent. In kinetics of phase separation in solid mixtures, this remains true
irrespective of the type of morphology, connected or disconnected.

During phase separation in fluids, it is expected that the solid-like diffusive picture
and, thus, § = 1/3, will remain true at an early time. Beyond a critical length scale,
depending upon various thermodynamic and transport properties, hydrodynamics
becomes important in fluids and growth becomes much faster, due to advective
transport of materials through tube-like elongated domains in the case of bicontinuous
structure. A balance between the viscous stress and interfacial free energy density in

this case,
6 .
L/ (40)
Y4 Y4
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provides [44]
L~ t. (41)

However, this growth law does not describe the entire hydrodynamic regime. A
further crossover occurs at much later time. In this case, one expects [44]

0~ 123, (42)

which can be obtained via a balance between interfacial free energy density and
kinetic energy density. Even though in the considered examples, particles in the high
density regions exhibit crystalline ordering, this discussion will be useful. However,
note that the hydrodynamic picture described above for d = 3 is questionable in
d = 2. The common consensus is though that hydrodynamics enhances the rate of
growth.

In the passive case, for state points close to a branch of the coexistence curve,
clusters of the minority phase can move in a hydrodynamic environment, as opposed
to the non-hydrodynamic situations. It can be anticipated then that the growth in
such a situation will occur via a coalescence mechanism, assuming that the collisions
among the clusters are sticky in nature. For diffusive motion of the clusters, a proposal
was put forward by Binder and Stauffer [67, 68]. In this case, the droplet density n
follows the equation

e, (43)
dt
where C is a constant. Mass conservation demands
no—. 44)
From these latter equations, one obtains the dimension dependent growth exponent

d= 7 (45)

Even if one has a fluid-like continuum system, if somehow hydrodynamic con-

servations are destroyed the growth should follow the LS value. This should, e.g., be
the case for MD simulations with Anderson or Langevin thermostats [62].

In an hydrodynamic environment where the clusters move in a very low density

background phase, it is possible that the displacements are faster than diffusive. For
ballistic motion of clusters, n may follow the dynamical equation [53, 69]

dn . .
N = —“collision-cross-section” X v,,s X n?, (46)

where v, is the root-mean-squared velocity of the clusters. By inserting an appro-
priate expression for the collision-cross-section (&) in d space dimension, in terms
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of cluster mass M, for fractal clusters of dimension d, e.g.

E~M7, (47)
and taking
Vrms ~ M*, (48)
along with X
n~ ” (49)

one arrives at the expression for growth exponent y, in M ~ ¢7, as [34, 53]

_ dy
S l—-d+d;(1-2)

y (50)

Again, this picture will be valid in a hydrodynamic environment. Here we will show
numerical results only for the disconnected morphologies. Due to certain complexity
in scaling arising due to fractal nature of the clusters, instead of presenting results
for €, we will focus on M for most of the remaining part of the section.

7.2 Computational Results on Growth of Fractal Clusters

InFig. 11b, we had shown typical evolution snapshots from the MD simulations of the
passive LJ model with Langevin thermostat in d = 2. It is checked that these clusters
are practically static. The plot of average domain mass for this case is presented [16]
in Fig. 12. The growth is reasonably consistent with the expected LS exponent 1/3.

In the presence of hydrodynamics, the situation is different from what we dis-
cussed now. In Fig. 13, we present the snapshots for this case that again show inter-
esting fractal clusters [53]. Note that, in this case, the MD simulations were performed
by using the NHT [62] that is known to preserve hydrodynamics well.

In the main frame of Fig. 14, we show [53] the plot of average mass as a function
of time. The growth is much faster, i.e., y >~ 1.15. In inset-I, we show a plot of mass
versus Ry, the radius of gyration of the fractal clusters. Consistency of the data set
with the power law line provides d y = 1.6. Ininset-II, the mean squared displacement
(MSD) [70] of a typical cluster as a function of time is shown. This indicates ballistic
motion. Note that at a higher temperature, when the vapor phase is reasonably dense,
the motion may be closer to diffusive. In this case, the fractality may also be different.
Cluster growth for such disconnected morphologies in a hydrodynamic environment
should happen via a coalescence mechanism. Ballistic aggregation is expected for
very low temperature quenches. In inset-III, we show a plot of v,,,; versus M. This
provides z = —1/2. Thus, the growth exponent quoted in the figure is consistent with
the expected theoretical value [see Eq. (50)]. Note that we are working in d = 2.
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Fig. 12 Plot of average mass (M) of clusters as a function of time for the f4 = 0 case of the
LJ-VM. The solid line there is a power law. Corresponding exponent is mentioned inside the figure.
This figure is reproduced with permission from S. Paul, A. Bera, and S.K. Das, Soft Matter 17, 645
(2021)

Next we return to the off-critical LJ-VM with Langevin thermostat and f4 = 1.
Snapshots for this case are already discussed above. From Fig. 15a, where we show
[16] the MSD of a cluster as a function of time, it is clear that these clusters are not
only mobile, but they also exhibit ballistic motion, even though hydrodynamics is not
applied. Interestingly, the growth is even faster than [16] the passive hydrodynamic
case, with y >~ 1.8—see Fig. 15b. For this case, the value of d y and z were estimated to
be ~ 1.7 and >~ 0, respectively. Thus, we expect y =~ 2.4. The theory largely explains
the rapid growth. There, of course, exist discrepancy. But we do not discuss it here.
The self propulsion of Vicsek type brings hydrodynamics-like cluster motion. In this
case, we also observe interesting topological defects in the velocity field. Instead of
these, we briefly discuss some results on the aging phenomena below.

8 Aging in Evolving Active Matter System

We switch to the bicontinuous structure for the discussion of aging phenomena.
Snapshots for this case were presented in Fig. 7. In this case, the growth is estimated
[15] to occur with § = 1, much faster than the passive case.

InFig. 16a, we show [15] the plots of the order-parameter autocorrelation function,
versus ¢t — t,,. As expected, the time translation invariance is violated. In Fig. 16b,



Phase Transitions in Active Matter Systems 165

t=2.5% 103

® 2 %, % ' L]

R S
Pie & o-.:. “. ‘...

S 't.."‘

: P :

o ""*..‘. -'.t?
‘.... o Mg 2
ST e S '." D
i T %, s W i

- o .¥ R
s TS L
v » .- L@
* 9. . 0 '., K 5 _.'-

t=2.5x10"
e,

Fig. 13 Snapshots are shown to depict the evolution in the LJ-VM for f4 = 0, i.e., for the pure
LJ model, with p = 0.03. In this case, a hydrodynamics preserving Nosé-Hoover thermostat was
used for the molecular dynamics simulations. Only parts of the snapshots are shown. This figure is
reproduced with permission from J. Midya and S.K. Das, Phys. Rev. Lett. 118, 165701 (2017)

we present the same plots versus £/£,,. Nice collapse of data, as typically seen in the
passive matter case, is observed. The decay of Cys(?, t,,) in the latter plot appears
linear on the log—log scale, in the large £/¢,, limit. This implies a power law behavior.
The exponent is A >~ 2.2. See Eq. (18) for definition of A. Note that rapid falls are
related to the finite-size effects [7, 15].

In the literature of aging, there exists bounds on A. From a general consideration,
Yeung, Rao, and Desai arrived at [48]

d
A erx. 51

We have previously observed in Fig. 10 that x >~ 1.2 in this case. Note that x has
been defined in Eq. (37). Thus, this bound is obeyed in the present case.
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values of the exponents are mentioned in appropriate places. This figure is reproduced with permis-
sion from J. Midya and S.K. Das, Phys. Rev. Lett. 118, 165701 (2017)
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Fig. 15 a Mean-squared-displacements (MSD) are shown versus shifted time for the LJ-VM with
fa = 1 and Langevin thermostat. The solid line represents a power law corresponding to ballistic
motion. b Average cluster mass for the LJ-VM with f4 = 1 and Langevin thermostat is plotted
versus time, on a log—log scale. The solid line represents a power law with exponent 1.8. This figure
is reproduced with permission from S. Paul, A. Bera and S.K. Das, Soft Matter 17, 645 (2021)
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Fig. 16 a Plots of the order-parameter autocorrelation function for the high density LJ-VM are
shown versus ¢ — £,,. b Same data sets in a are shown versus £/¢,,, on a log—log scale. The dashed
line here is a power law having exponent 2.2. This figure is reproduced with permission from S.
Chakraborty and S.K. Das, J. Chem. Phys. 153, 044905 (2020)

In the active case, even though in many ways, the character of transition is different
from the passive situation, it appears that the basic scaling properties remain valid.
However, there exist quantitative differences.

9 Conclusion

We have provided an overview of active matter systems. These systems exhibit
nonequilibrium phase transitions. The focus of this chapter was on the structure and
dynamics associated with such transitions.

‘We have discussed phase behavior in the steady state situation. Critical phenomena
were introduced in this context. The topic of evolution toward the steady states
was covered by considering quenches to state points that provide different kinds of
structure. In each of the cases, the background was set up by sketching the picture
in the passive matter context.

It is seen that in the active matter case, qualitative picture remains the same
with respect to various scaling laws. However, there exists disagreement with the
passive case at the quantitative level. The universality is in general weaker in systems
containing self-propelling particles. In this chapter, we have discussed only systems
with alignment interactions [9]. There exists other interesting cases [10, 17, 71].
These should be explored appropriately to establish an accurate understanding with
respect to universality in phase transition concerning active matters.

In the context of dynamics, the role of hydrodynamics needs to be studied [72].
There exist methods to implement hydrodynamics in such systems. However, large-
scale simulations for studies of phase transitions have not been performed by using
such techniques.



168 S. K. Das

Another interesting domain is to study active matters under confinement [73—
77]. These systems typically contain finite number of constituents. However, studies
by putting these inside finite boxes with boundaries are gaining momentum only
recently. Existing reports suggest fascinating effects of boundaries on both structure
and dynamics. These aspects should, thus, be explored more.

Some of the results that are presented here were obtained through fruitful collab-
orations with K. Binder, P. Virnau, S.A. Egorov, B. Trefz, J. Midya, S. Chakraborty,
S. Paul, and S. Roy. The author thanks N. Vadakkayil, P. Pathak, A.P. Tripathi, T.
Paul, A. Bera, and K. Das for their helps in the preparation of the manuscript.
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Kinetic Theory of Binary Granular )
Suspensions at Low Density. Thermal L
Diffusion Segregation

Rubén Gémez Gonzalez and Vicente Garzo

Abstract Transport properties of granular mixtures surrounded by an interstitial gas
are determined by solving the Boltzmann kinetic equation by means of the Chapman—
Enskog method. As usual, the influence of the viscous gas on solid particles is
accounted for by an effective external force composed of two terms: a drag force pro-
portional to the particle velocity plus a stochastic Langevin-like term. Before consid-
ering inhomogeneous situations, we study first the homogeneous steady state where
collisional cooling and viscous friction are compensated for by the energy gained by
grains due to their interaction with the interstitial gas. Then, the Chapman—Enskog
method is used to solve the Boltzmann equation and express the Navier—Stokes trans-
port coefficients in terms of the solutions of a set of coupled linear integral equations.
Explicit forms are obtained here in the tracer limit for the diffusion transport coef-
ficients which are explicitly determined by considering the so-called first Sonine
approximation. As an application of the previous results, thermal diffusion segrega-
tion of an intruder immersed in a granular suspension is analyzed and compared with
previous theoretical attempts where the effect of the interstitial gas was neglected.

1 Introduction

Granular matter in nature is generally surrounded by an interstitial fluid, like water
or air. Although in many situations the effect of the surrounding fluid on the dynamic
properties of grains can be neglected, there are also other situations (for instance,
when the stress exerted by the fluid phase on grains is significant) where the influence
of the interstitial fluid must necessarily be taken into account. A typical example of it
refers to the species segregation in granular mixtures [1]. Since a granular suspension
is a multiphase process, in the context of kinetic theory, one could start from a set of
coupled kinetic equations for each one of the velocity distribution functions of the
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phases. However, this approach involves many technical intricacies, especially in the
case of granular mixtures. Thus, to avoid this problem, the effect of the interstitial
fluid on grains is usually taken into account by means of an effective external force
[2]. This fluid—solid force is composed of two terms: (i) a viscous drag force (Stokes’
law) proportional to the particles velocity and (ii) a stochastic force modeled as a
Gaussian white noise. While the first term mimics the friction of grains with the
surrounding gas, the second term accounts for the energy gained by grains due to
their interaction with the particles of the gas phase (thermal reservoir).

An interesting and challenging problem is to assess the impact of gas phase on
the Navier—Stokes transport coefficients of a binary granular mixture modeled as an
ensemble of smooth inelastic hard spheres. This problem is not only relevant from a
fundamental point of view but also from a realistic point of view since granular sus-
pensions are present in nature formed by grains of different masses, sizes, densities,
and coefficients of restitution. However, the determination of the transport coeffi-
cients of bidisperse gas—solid flows is a quite ambitious target due essentially to the
large number of integro-differential equations involved as well as the wide parame-
ter space of the system. For this reason and in order to offer a complete description,
we consider here binary granular suspensions at low-density where the Boltzmann
kinetic equation turns out to be a reliable starting point [3, 4].

As in previous papers [6—8], the Boltzmann equation (BE) is solved by means of
the Chapman—Enskog (CE) method [9] adapted to dissipative dynamics. A subtle and
important point of the expansion method is the choice of the reference distribution in
the perturbation scheme. Although we are interested here in obtaining the transport
coefficients under steady conditions, the presence of the surrounding fluid gives
rise to a local energy unbalance in such a way the zeroth-order distributions fl.(m
of each species (reference states) are not in general stationary distributions. Thus,
in order to determine the Navier—Stokes transport coefficients, one has to obtain
first the unsteady integral equations defining the above transport coefficients and
solve (approximately) then these equations in steady-state conditions. An important
consequence of this procedure is that the transport properties depend not only on the
steady temperature but also on quantities such as the derivatives of the temperature
ratio on the temperature.

The plan of the paper is as follows. The granular suspension model as well as the
balance equations for the densities of mass, momentum, and energy are derived in
Sect.2. Then, the steady homogeneous state is studied in Sect. 3 where the tempera-
ture ratio 77/ T, of both species is calculated and compared against the Monte Carlo
simulations. Section4 addresses the application of the CE method up to first order
in the spatial gradients. As expected, transport coefficients are given in terms of the
solutions of a set of coupled linear integral equations. These integral equations are
approximately solved by considering the leading Sonine approximation; this proce-
dure is explicitly displayed here for the diffusion transport coefficients in the special
limit case where one of the components of the mixture is present in tracer concen-
tration. As an application of the previous results, thermal diffusion segregation of an
intruder or tracer particle is analyzed in Sect. 5. The paper is closed in Sect. 6 with a
brief discussion of the results obtained in this work.
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2 Granular Suspension Model

We consider a granular binary mixture of inelastic hard disks (d = 2) or spheres
(d = 3) of masses m; and diameters o; (i = 1, 2). The spheres are assumed to be
completely smooth and so, the inelasticity of collisions is characterized by three
constant (positive) coefficients of normal restitution «;;; < 1. The solid particles are
surrounded by a molecular gas of viscosity 7, and temperature 7. As said before, the
influence of the interstitial gas on grains is modeled via a fluid—solid force constituted
by two terms: a deterministic drag force plus a stochastic force. In the low-density
limit and taking into account the above terms, the one-particle velocity distribution
function of each species verifies the Boltzmann kinetic equation [8]

of; of: B YiTex P fy 2
A Lt it M N Z

iLfis fil, (D)

where J;;[ fi, f;]is the Boltzmann collision operator [4]. In addition, AU = U — Uy,
V = v — U is the peculiar velocity,

2
U=y [dvmvsw @)
i=1

is the mean flow velocity of the solid particles, and U, is the known mean flow velocity
of the interstitial gas. The friction coefficients ~; are proportional to the gas viscosity
7). and are functions of the partial volume fractions ¢; = (w2 /(241dT (d/2)n; af’ ,
where

=/Wﬁ® 3)

is the number density of species i. In the dilute limit, every particle is only subjected
to its respective Stokes’ drag [10] so that for hard spheres (d = 3) ~; is

18n po?
Yi =Ri, Y= zg, R = —2¢;. “)
PO12 Pi0;

Here, p; = m;n;, p = p; + p» is the total mass density, and o1, = (o] + 02)/2. Apart
from the partial densities n; and the mean flow velocity U, the other relevant hydro-
dynamic field is the granular temperature 7', defined as

1 2 m; o
T = ;E/dV7V fi(v), 5)

where n = n; + n; is the total number density.
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The Boltzmann collision operators J;;[ f;, fj] conserve the number densities of
each species and the total momentum but the total energy is not conserved:

/dv{l, > omiv, 3o miV2 v f1 = {0.0, ~dnTc}, ©)
iJ iJj

where ( is the total cooling rate due to inelastic collisions among all species. The
macroscopic balance equations for the densities of mass, momentum, and energy
can be easily obtained by multiplying both sides of the BE (1) by 1, m;v, and m; V?;
integrating over v; and taking into account the properties (6). After some algebra,
one gets

Vi
D,ni—l—niV-U—{——:O, (7)
m;
2
DU+p 'V-P=—p'AUY pryi—p~" (n — i1, ®)
i=1
TSV-ji 2 2 2
DT ——) —= +— (V- P:VU) =-—AU- i i
t nl;m[ern( q+ )=—— ;H
2
+2) " xi%i (T — Ti) — CT. ©)

i=1

In the above equations, D, = J, + U - V is the material derivative,

i =m / dVVLEY Gi= —i) (10)

is the mass flux for the component i relative to the local flow U,

2
P:Z/ dv mVV f,(v) (11)
i=1
is the pressure tensor, and
2 s
q= ;/dv 7’V2Vf,-(v) (12)

is the heat flux. In addition, the partial kinetic temperature 7; is
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The partial temperature 7; measures the mean kKinetic energy of particles of species
i. The relationship between the granular temperature 7" and the partial temperatures
T; is simply given by T = ), x; T;, where x; = n;/n is the concentration of species
i. The breakdown of energy equipartition in granular systems (7; # T) predicted by
kinetic theory [4] has been confirmed in computer simulations [11] as well as in real
experiments [12].

It is quite apparent that the balance equations (7)—(9) become a closed set of
differential equations for ny, ny, U, and T when the fluxes, the cooling rate, and
the partial temperatures are expressed in terms of the hydrodynamic fields and their
gradients. These constitutive equations for j;, P, q, ¢, and T; may be derived by
solving the BE (1) by the CE expansion up to first order in spatial gradients. This
will be analyzed in Sect.4.

3 Homogeneous Steady States

As a first step and before studying inhomogeneous situations, we consider homo-
geneous states. In this case, n; and T are spatially uniform, and with a convenient
choice of the reference frame, the mean velocities vanish (U = U, = 0). For times
longer than the mean free time, it is expected that the suspension achieves a steady
state (0, f; = 0) where the BE (1) reads

0 1T P o
gy VT e = ; Jiilfis £51. (14)

The balance equation for the partial temperature 7; can be easily derived by multi-
plying both sides of Eq. (14) by m,;v? and integrating over velocity:

2% (Tex — T1) ZCiTia (15)
where the partial cooling rates (; for the partial temperatures 7; are defined as

m

Ci - _dni

2
[T. Z/d" VI f] G =1,2). (16)
i =1
The relationship between ¢ and (; is

2
¢=Y xun, (17)
i=1
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Fig. 1 Temperature ratio 77/ 7> versus the (common) coefficient of restitution @ ford = 3, x| =
0.5,01/02 = 1, T}; = 1, and three different values of the mass ratio: m1 /m, = 0.5 (a),m/my = 4
(b), and m /my = 10 (c). Lines are the theoretical results while symbols refer to the Monte Carlo
simulations

where 7; = T;/ T is the temperature ratio of the species i. Upon deriving Eq. (17),
use has been made of the relation T = Zi x; T; and Eq. (6).

For elastic collisions (a;; = 1), ( = ¢; = 0, Eq. (15) yields T; = Tox = T so that
the Maxwellian distribution with a common temperature is a solution of the BE
(14). On the other hand, for inelastic collisions (c;; # 1), ¢; and ¢ are different from
zero and to date the solution to Eq. (14) is unknown. Thus, one has to consider
an approximate form for the distributions f; to estimate (;. Here, we take the sim-
plest approximation for both distributions, namely the Maxwellian distributions f; m
defined with the partial temperatures T;:

2 2
m; m;v
fi) = fin) = ”"(_m,- ) e (-~ 57) (18)

The partial cooling rates can be computed from Eq. (16) by replacing f; by fi; m. The
result is [4]

_ 172 _
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where p;; = m; /(m; + m;). The expression for ¢, can be easily obtained from Eq.
(19) by making the change 1 < 2.

The partial temperatures 7; can be obtained from Eq. (15) (for i = 1, 2) when
the expressions (19) for (; and (, are considered. Figure 1 plots the temperature
ratio Ty /T, as a function of the (common) coefficient of restitution o = «;; for

x1 =05, 0y =02, T =1, and three different values of the mass ratio. Here,
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T = T /(mol,y3) and m = (m; + m») /2. Theory is compared against the Monte
Carlo simulations [13]. As expected, energy equipartition is broken for inelastic col-
lisions; the extent of the energy violation is greater when the mass disparity is large.
The excellent agreement found between theory and computer simulations is also
quite apparent, except for quite small values of « (extreme inelasticity) where small
discrepancies appear.

4 Chapman-Enskog Method. First-Order Solution

We assume now that the homogeneous steady state is perturbed by small spatial
gradients. The existence of these gradients gives rise to nonzero contributions to
the fluxes of mass, momentum, and energy. To first order in spatial gradients, the
knowledge of the above fluxes allows one to identify the relevant Navier—Stokes
transport coefficients of the granular suspension. As usual in the CE scheme [9],
for times longer than the mean free time and distances larger than the mean free
path, we suppose that the system achieves a hydrodynamic regime. This means that
(i) the system has completely “forgotten” its initial preparation (initial conditions)
and (ii) only the bulk domain of the system (namely, far away from the boundaries)
is considered. Under these conditions, the BE (1) admits an special solution: the
so-called normal or hydrodynamic solution where all space and time dependence of
the distributions f;(r, v; t) is through a functional dependence on the hydrodynamic
fields. This means that in the hydrodynamic regime, f;(r, v; ) adopts the normal
form

fie,vi ) = fi[vimi(0), na(0), T (1), U@)]. (20)

The notation on the right-hand side of Eq. (20) indicates a functional dependence on
the partial densities, temperature, and flow velocity. For small Knudsen numbers, the
functional dependence (20) can be made local in space by expanding f; in powers
of the spatial gradients

f; =fi(0)+6fi(1)+62f;'(2)+"' , (21)

where € is a bookkeeping parameter that denotes an implicit spatial gradient (for
instance, a term of order e is of first order in gradients). This parameter is taken to
be equal to 1 at the end of the calculations.

An important point in the CE expansion is to characterize the magnitude of the
friction coefficients ~; and the term AU with respect to the spatial gradients. On the
one hand, since +; does not create any flux, then it is assumed to be to zeroth order
in €. On the other hand, because AU = 0 in the absence of gradients, it should be
considered to be at least of first order in spatial gradients (first order in €).

The implementation of the CE method to solve the BE (1) to first order in spatial
gradients is very large and beyond the scope of the present contribution. We refer
the interested reader to Ref. [8] for specific details. Since we want here to analyze
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thermal diffusion segregation in a granular suspension, in order to show more clearly
the different competing mechanisms appearing in this phenomenon, we consider a
binary mixture where the concentration of one of the species (let’s say species 1) is
much smaller than that of the other species 2 (tracer limit, x; — 0). The consideration
of this simple situation allows us to offer a simplified theory where a segregation
criterion can be explicitly obtained.

In the tracer limit, the pressure tensor P;;, the heat flux ¢, and the cooling rate
(¢ of the binary mixture are the same as that of the excess species. While the fluxes
P;; and q are of first order in the spatial gradients in the Navier—Stokes description,
the expression of ¢ must retain terms up to second order in gradients. Part of these
second-order contributions to ¢ have been computed by Brey et al. [5] for dry (dilute)
granular gases, while the complete set of these contributions has been determined by
Brilliantov and Poschel [14] for granular gases of viscoelastic particles. Nevertheless,
it has been shown [5] that these second-order contributions to ( are negligible as
compared with its zeroth-order counterparts. We expect that the same occurs for the
case of binary granular suspensions and hence, they can be ignored.

4.1 Tracer Limit. Diffusion Transport Coefficients

In the tracer limit, the first-order contribution jil) to the mass flux is [8]

2
m m

iV =-"pyvn - 22D vn, — %DITVT — DVAU, (22)
p

where the diffusion transport coefficients are defined as

1
o p— /dVV'Bn(V), D12=——fde~Blz(V>, (23)
p1d d

D{:-m—;/de~Al(V), Df’:—%/de-Sl(V). (24)
P

The unknowns A;(V), By (V), B2 (V), and £,(V) are the solutions of a set of
coupled linear integral equations [8]. In the tracer limit, this set reads

1 0 Tex o*A
- <2729_1 + EC(O))AI ~MNgy- (VA) — 50 21 — JnlA, £2]
= A+ Jnlf”, A, (25)
T O°B
~ Mgy -(VBi) — ’Ylm—la—zn — JnlBi, f21=By, (26)
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In the integral equations (25)—(28), (¥’ is the zeroth-order approximation to the
coolingrate, 0 = T/ Tex, A\| = (2Te’;)’1/2(R1/naf2), and A, and B refer to quan-
tities of the excess species 2. These quantities obey certain integral equations; their
explicit forms are not needed for evaluating the diffusion transport coefficients in
the so-called first Sonine approximation. In addition, the expression of the derivative
0y, 71 can be found in Appendix A of Ref. [8] while the inhomogeneous terms A,
Bii, Bi», and E; are given, respectively, by

af(o) ]7 af(o) b 1(0)
A = — B = — 2
1(V) 8T ; v 1 (V) Vn, on, (29)
9 0) T 9 0) 9 0)
B2 (V) = —Vn af T gv , EK(V) = (1 —m) / (30)

Note that Egs. (25)—(28) have been obtained under steady-state conditions, namely
when the conditions (15) apply. Furthermore, in order to obtain the above set of
coupled integral equations, we have taken into account that while in the tracer limit
Dy, is independent of xi, the coefficients D, DIT, and DIU are proportional to
x1. This dependence on x; will be then self-consistently confirmed. Accordingly,
.A1 X X1, Bl2 X X1, and 81 X Xq.

Although the exact form of the zeroth-order distributions fi(o) is notknown, dimen-
sional analysis requires that they have the scaled form fi(O) V) =mn; vt;d wi(e, v, 0).
Here, ¢ = V /vy, and v} = v; /1o, where vy = na’ljz_ v, is an effective collision fre-
quency, and vy, = /27 /m is the thermal velocity. Thus, one has the property

ar” 19

0pi
aT — 20V Vf(0)+ lthe D

00

4.2 Leading Sonine Approximation

Equations (25)—(28) are still exact. However, the determination of the diffusion trans-
port coefficients requires to solve the above integral equations as well as to know
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the zeroth-order distributions fi(o) . The results derived for driven granular mixtures
[15] have shown that non-Gaussian corrections to fi(o) (which are measured through
the fourth cumulants c¢;) are in general very small. Thus, fi(o) is well represented
by its Maxwellian form (18) and so, a theory incorporating the cumulants ¢; seems
to be unnecessary in practice for computing the diffusion transport coefficients.
Regarding the functions \A;, B;;, and &;, as usual we consider the leading terms in
a series expansion of these quantities in Sonine polynomials. In this case, A, — 0,
B, — 0, and the quantities Ay, B11, B2, and € corresponding to the tracer species
are approximated by

2
m
A (V) — _fl,MV_p D!, Bu(V)— —fimV—=Dii, (32)
n1T1 pTI

B (V) = —fi, MV—Dlz, E(Y) = —fi, MV—DU (33)
lTl 1T1

Now, we substitute first Eqs. (32) and (33) into the integral equations (25)—(28),
multiply them by m,V, and integrate over v. After some algebra, D, DlT, D>, and
DlU can be written, respectively, as

07'1

T T nT —(p—m1)
Dy=L——T" pr="Ci— G4
mivy Vp + i pPYo vy +71 — 2750~ _‘Co
—1 Tx o
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I — Vb

Here, ;1 = m/m; is the mass ratio, the derivative dy7; is given in Appendix A of
Ref. [8],

. 7T(d_l)/2 o d—1 i 5
CO - dr (%) (?) H21 (] - a22) ’ (37)

and the reduced collision frequency v7J, is

22702 L 14 By 12
* /2
%= S @ e ( 5 ) +an, (38)

where 5 = 31/, = p/71.

Figure2 shows the dependence of the reduced diffusion transport coefficients
D;j(@)/Dj;(1), DT (a)/ DT (1), and DY ()/DY (1) for o1/c2 = 1, mi/m, = 10,
and T = 0.1. Here, D;;(1), DY (1), and DY (1) are the values of these coefficients
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Fig. 2 Plot of the (reduced) transport coefficients Dij(«)/Dy1(1) (a), Di2(a)/D12(1) (b),
DlT(a) / DIT(I) (c¢), and Df/(a) / Df/(l) (d) as a function of the common coefficient of restitu-
tion for a binary mixture of hard spheres (d = 3) in the tracer limit (x; — 0) with o1/ =1,
my/my =10, and T = 0.1

for elastic collisions. We observe that the impact of inelasticity on those coefficients is
in general quite important since they differ clearly from their elastic forms, especially
in the case of the thermal diffusion coefficient DIT. Moreover, a comparison with the
results obtained in the dry granular limit (no gas phase) shows important qualitative
differences between both theories (see, for instance, Fig. 6.3 of Ref. [4] for the
diffusion coefficient D).

5 Thermal Diffusion Segregation of an Intruder
in a Granular Suspension

A nice application of the previous results is the study of thermal diffusion segregation
of an intruder or tracer particle in a granular suspension. Needless to say, segregation
and mixing of dissimilar grains are one of the most interesting problems in granular
mixtures, not only from a fundamental point of view but also from a more practical
perspective. This problem has been widely studied in the past few years for dry
granular mixtures. The objective here is to assess the influence of the interstitial gas
phase on the segregation criterion.

Thermal diffusion is originated by the relative motion of the components of a
mixture due to the presence of a temperature gradient. Due to this motion, concen-
tration gradients appear in the mixture producing ordinary diffusion. A steady state
is finally achieved in which the separating effect emerging from thermal diffusion is
offset by the remixing effect arising from ordinary diffusion [16]. The partial separa-
tion between both components of the mixture is then observed; this effect is usually
referred to as the Soret effect.

The amount of segregation parallel to the thermal gradient may be characterized by
the so-called thermal diffusion factor A. This quantity is defined in an inhomogeneous
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non-convecting (U = U, = 0) steady state with zero mass flux (jil) =0)as

A61nT . 0 I (nl)

9: 0z \m &

nz

where only gradients along the z-axis have been assumed for simplicity. Let us assume
that the bottom plate is hotter than the top plate (0, In T < 0). If A is supposed to
be constant over the relevant ranges of composition and temperature of the system,
according to Eq. (39), when A > 0, the tracer particle tends to rise with respect to
the gas particles 2, i.e., 0, In(n;/ny) > 0 (tracer particles accumulate near the cold
plate). On the other hand, when A < 0, the tracer particle tends to fall with respect
to the gas particles 2, i.e., 0, In(n; /ny) < 0 (tracer particles accumulate near the hot
plate).

Let us determine the thermal diffusion factor. The mass flux j l(lz) is given by Eq.
(22) with AU = 0. Since j;"’ = 0 in the steady state and U = U, = 0, then Eq. (8)
yields 0,(nT) = 0 and so,

0, InT = =0, Inn,. (40)

Here, we have taken into account that n =~ n, in the tracer limit. The factor A can be
written in terms of the diffusion coefficients when one takes into account Eq. (40)
and that j l(lz) = 0. Its expression is finally given by

—1 T* * —1 %
x; Di — Dy, —x Dy,
9

A= “n
Di;
where we have introduced the dimensionless transport coefficients
2
miv mymjplgy T PV T
Dy, = v Dy, Di,= o7 Dy, Di*=""2DJ. (42)

The explicit dependence of A on the parameters of the granular suspension (mass
and size ratios, the coefficients of restitution «» and ay;, and the dimensionless
external temperature 7_%) can be obtained when one substitutes Eqs. (34) and (35) of
Dy, DIT , and Dy, respectively, into Eq. (41). Since Df, > 0, the condition A = 0
is

x;'DI" = D}, +x7' D}, 43)

Equation (43) gives the marginal segregation curve separating intruder segregation
toward the cold wall (A > 0) from intruder segregation toward the hot wall (A <
0). On the other hand, since the number of parameters involved in the segregation
problem is still large, it is not easy to disentangle the influence of each mechanism
(mass and size ratios, inelasticity in collisions, external temperature, ...) on the
intruder segregation problem. Thus, it is convenient first to consider some simple
situations.
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5.1 Mechanically Equivalent Part