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Preface

While equilibrium statisticalmechanics and thermodynamics belong to awell-settled
area of the physical science, their non-equilibrium counterpart, and especially the
fluctuation kinetics, are still the object of intense research activities and are in rapid
development. Though the theory of small fluctuations out of equilibrium and of
linear response is well established, large fluctuations and, more generally, far-from-
equilibrium non-linear regimes lack a general theory. Moreover, even very basic
concepts of the equilibrium theory, like temperature, entropy, and other thermody-
namic potentials continue to be under debate. The application domain of the non-
equilibrium thermodynamics and fluctuation kinetics permanently grows. It expands
beyond systems and phenomena, traditional for statistical thermodynamics, such as
fluid mechanics, physics of plasma, atmospheric science etc. and engulfs new areas
of science. Granular and active matter, non-linear systems, dusty plasma, high-Q
resonators, networks and even linguistic questions may be mentioned among the
most prominent examples.

Fluctuation-dissipation theorem (FDT) and corresponding fluctuation-dissipation
relations provide a common background to these diverse phenomena. FDT, initially
discovered for equilibrium systems, is associated with such outstanding scientists
as Einstein, Landau, Onsager, Kubo and other. Later FDT has been generalized for
non-equilibrium processes. Professor Vjacheslav (Slava) Belyi greatly contributed
to the theory of non-equilibrium fluctuations, including the application of the Callen-
Welton fluctuation-dissipation theorem to non-equilibrium systems and its general-
ization. Slava Belyi was actively working on the elaboration of a framework of non-
equilibrium thermodynamics, thus providing the basis for the future development of
the field.

This book comprising the collection of articles by leading experts in non-
equilibrium thermodynamics and fluctuation kinetics is dedicated to the memory
of Slava Belyi, who passed away unexpectedly on May 20, 2020. It contains review
papers on hot topics from the field with some personal dedications from Slava’s
colleagues.

The book starts with a short biographic in Chap. 1 describing the main stages
of Slava’s scientific career. The notes of this section have been written by his son,
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vi Preface

Andrey Belyi, and friends with whom Slava collaborated during his life. They reflect
both the scientific and personal life of Slava and may be interesting for a “western”
reader as they enlighten some peculiar aspects of the scientific research.

Chapter 2 of the book is devoted to the general problems of non-equilibrium ther-
modynamics and fluctuation kinetics. It offers to the reader a review of fluctuation-
dissipation relations (FDR), from the first formulations due to Einstein and Onsager,
to the recent developments in the framework of stochastic thermodynamics of non-
equilibrium systems. The general theory is demonstrated in the context of spin
models, granular media and active matter. The nonlinear flux-force relations for
the systems, out of Onsager’s region, that respect the existing thermodynamic theo-
rems for far-from-equilibrium systems are also considered. The reader will, then,
find a discussion about the relationship between deterministic dynamical systems
and their stochastic description when noise is included. The equivalence relation-
ship between the resulting stochastic differential systems and the Fokker-Planck
equations is compared to a recent result establishing an equivalence between the
deterministic descriptions of dynamical systems and urn random processes. Next,
the book explores the dynamics of an automaton on spatial lattices with spins at their
nodes. The interactions between the automaton and the spins modify the latter and
generate a complex trajectory that is equivalent to the functioning of a controller
in a Turing machine. This illustrates an interesting link between non-equilibrium
statistical mechanics and computer science. The most recent theoretical techniques
in the field are also illustrated in this chapter. For instance, the application of the
non-linear eigenvalue problem of an effective Hamiltonian in the complex energy
plane allowing to explore unstable dynamical systems.

Then follows Chap. 3 which addresses the kinetic theory of far-from-equilibrium
processes. Here the very popular theoretical tool of this area—the Boltzmann equa-
tion—is discussed in detail, as well as its application to the ballistic aggrega-
tion phenomena and to transport properties of granular mixtures. The derivation
of Navier–Stokes equations and the corresponding transport coefficients is given.
Different forms of the collision integral of the Boltzmann equations are consid-
ered. These range from the collision integral for granular gases, to that describing
electrostatic interactions in dusty plasma. For the latter systems the characteristics
of large-scale non-equilibrium fluctuations are derived from the first principles. In
this section, non-equilibrium phase transitions occurring in active matter are also
considered. Scaling phenomena and the similarity between the phase transitions in
equilibrium and far-from-equilibrium systems are discussed.

The last Chap. 4 focuses on fluctuations and kinetics in non-linear and non-
equilibrium systems. Here important for applications systems are considered such as
dissipative solitons and frequency comb generation in both scalar and vectorial high-
Q resonators. In particular, those simple devices have revolutionized many fields of
science and technology, such as high-precision spectroscopy,metrology and photonic
analog-to-digital conversion. Then the generalized entropy-production principle and
the FDT relations are analysed in the context of their application to nanomaterials,
such as carbon nanotubes and graphene films. Furthermore, a stochastic equation
that describes the dynamics of optical vortices formation in liquid crystals cells is
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discussed. The statistical properties of the emerging vortices are determined by the
properties of non-equilibrium fluctuations. The reported experimental results are in
fair agreement with the theoretical findings. The thermodynamic instability of the
atmospheric boundary layer is analysed in this chapter in termsof the non-equilibrium
thermodynamics of open systems. This problem is very important for application,
as it is related to earthquakes forecast. Finally, kinetic methods are applied to such
a problem as information spread in co-evolutionary networks. Real networks from
everyday life are addressed and the efficiency of the kinetic method is demonstrated.

We believe that this book would be useful both to the experts in the field and for
newcomers. Moreover, we believe that with this book we express our gratitude for
Slava Belyi’s contribution to the area of science, to which he devotedly served all his
life.

Bruxelles, Belgium
Leicester, UK
Bruxelles, Belgium

Léon Brenig
Nikolai Brilliantov

Mustapha Tlidi
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1 I. Veretennicoff: Towards a Productive Scientific
Collaboration Between Izmiran and the Vrije
Universiteit Brussel (1980–1991)

1.1 Yuri Lvovich Klimontovich and Radu Balescu

When Yuri Lvovich Klimontovich, professor at the Physics Department of Moscow
State University (MSU) meets Radu Balescu professor at the Université Libre de
Bruxelles (ULB) and his group in 1979–1980, Yuri Lvovich Klimontovich was a
highly respected theoretical physicist, not only in the Soviet Union but also abroad.
One of his research topics was related to the transport theory of plasma’s, i.e. ionized
gases such as the ionosphere. One of his young co-workers, Slava Belyi, was working
hard towards a Doctorate in Physics, the highest title that could be obtained at a
Russian University. Klimontovich had met Radu Balescu on several occasions and
they had become friends. Radu Balescu belonged to Ilya Prigogine’s research group
and was esteemed both for the results of his research and his kind and efficient
communication skills. It was Radu Balescu who invited Klimontovich to pay a visit
to his group, who counted new doctoral and post-doctoral students (like me!) and
new topics to explore. All the co-workers were invited to present “their” topic to
Klimontovich and have a serious discussion with him. And so I met him for the first
time in person: quite an impressive encounter! He obviously was interested in our
results. And some months later—bureaucracy is always slow—I received an official
invitation to come and visit the Academy of Science of the USSR, deliver a talk
and discover Moscow. As I was the mother of two young girls, the wife of a busy
researcher himself and a full-time academic member of staff, the only possible week
available for me was starting at the end of October 1980, the week where the children
had a holiday!

1.2 My Own Roots Are to Be Found in St. Petersburg, Russia

My name could have been Irina Vladimirovna Veretennicova. But I was born in
Antwerp in 1944 during WWII and it was not allowed to give a newborn baby a
name belonging to the enemy. And so officially I became Irène Veretennicoff. My
father wanted me to become an authentic Belgian citizen, not a refugee. I learned to
speak French, Dutch and English, no Russian! However, once in a while, nostalgia
suddenly was invading Vladimir. Together with his friends he would empty a bottle
(or two ...) of real Russian vodka, grasp his guitar and sing romantic songs from
before the Soviet Revolution. A typical Russian soul, Slava’s type! Vladimir was
born in St. Petersburg, 1901. His mother, born Vera von Ratch, was a descendent of
the Serbian teacherwho educated Peter theGreat inmartial arts. The Tsar appreciated
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it so much that he ennobled him, gave him the title of Prince and made him rich. My
grandmother was a real princess!

My grandfather Alexis was educated as a military civil engineer and was the chief
of staff (Chef d’Etat Major) on the top of the Tsaristic Army, before and during
WWI. Vera and Alexis had five children together, the youngest one was my father
Vladimir. They settled in Belgium after a long and dangerous journey. They had lost
all their belongings and privileges.Alexis found a job as inspector for the construction
of houses devoted to the working class in “Small Russia”, situated in Zelzate near
Ghent. Both my grandparents lived, suffered and passed away there ....

Vladimir was more fortunate: he got one of the fellowships attributed by Cardinal
Mercier to study engineering at the University of Leuven, together with a lot of
other young (and not so young!) Russian immigrants. At the end of his studies,
Vladimir was immediately engaged to work as a mechanical engineer for the brand-
new General Motors Continental factory in Antwerp. He stayed loyal to this firm
until he retired, as managing director of the reliability and quality control in the
1960s.

1.3 My Arrival in Moscow

I arrived by plane in the capital of the USSR on October 20, 1980. The contrast
with Brussels airport was impressive. Impressive were the officers at the border with
their impressive uniforms and unfriendly way to welcome the travelers. Smiling and
joking were not allowed! We had to queue and be patient. Then I identified the long
row of people expecting the travelers. I looked for Professor Klimontovich. Without
success. He was not there. However, I spotted a man in his 30-ties carrying some
flowers and waving at me. It was Slava. What a relief!

I discovered that the guests of the Academy of Sciences were treated according
to the rules of the Russian hospitality: we had a car and a chauffeur at our disposal
for the time of my stay. My room had been booked in the hotel for the guests of the
USSR Academy of Sciences. Slava had brought everything necessary to provide me
with not only a comfortable but also a festive welcome. As restaurants and shops
were rare and mostly not so attractive, we picked-nicked on the spot and made plans
for the week.

The knowledge of Slava’s French and English was sufficient to understand one
another. We visited the most touristic places in and around the town and visited
Zagorsk, a place where future orthodox priests got their education. I was impressed
by their stature and the religious beauty of the environment. We went to a ballet
performance and an opera. All of this was wonderful and I still vividly remember
the atmosphere existing in the Moscow in the late Soviet times.

But what impressed me the most was the kindness of all the people that I met
during that week. The director of IZMIRAN, ProfessorMiguline invited us for lunch.
His appreciation for Slava’s work and personality was obvious. He seemed happy to
have me as a guest together with Slava. According to the terms of his invitation, a
talk was planned during my stay.



6 I. Veretennicoff et al.

In those times—the very early 1980—most of themodern equipment for presenta-
tions consisted in transparent slides and a retro-projector to project them. I remember
arriving well on time to check the equipment and found out that it was out of order! I
also noticed that the conference room was fully occupied by men and women, young
and old, with profiles that were not necessarily matching those of scientists. Given
the circumstances, I proposed to deliver the talk on the blackboard, a suggestion that
seemed to please the organizers and the audience. I could take the necessary time for
my presentation. I did my best.

Then the chairman thanked me—in Russian—for the “interesting seminar” and
asked the audience whether there were any questions or remarks. To my surprise
nobody reacted! I concluded that I did not properly do my job.... Fortunately, Slava
told me not to worry: the problem was that the vast majority of the audience did not
understand English! In the times of the Soviet Union orders were orders; there was
no escape when a visitor was giving a talk, whatever the subject and the language.
Even today I still feel very sorry for this misunderstanding.

1.4 Collaboration

Slava and I had an excellent scientific collaboration between 1980 and 1990 despite
the distance between our institutions and our heavy agendas. We became very good
friends. Together we produced 15 original papers largely devoted to the anomalous
transport and fluctuations in strongly inhomogeneous systems. Some of them have
been published in well-known international journals such as the “Physics of Fluids”.
In 1991,Klimontovich,Veretennicoff andBelyi received the very first and prestigious
Russian State Price. Those were the times when Slava developed an impressive
international network of friends and colleges that continued to expand until he sadly
passed away, a victim of the Coronavirus on May 20, 2020.

As to us, we lost the common scientific track in 1991. The year when Michael
Gorbachov was replaced by Boris Yeltsin. At the VUB, I had been promoted to full
professor and director of the Department of Applied Physics and Photonics not only
with a lot of interesting science but also a lot of administration and a growing number
of (foreign) students.AndSlavabecamemore andmore interested in questions related
to the fluctuations in economics and social sciences inspired by Ilya Prigogine. For
instance, he was invited to join Prigogine in talks and conferences with Gorbatchev
or workshops in his field. And he became a friend of the family!

1.5 Traveling with Slava

Slava could have embraced many professions! Among those was the organization
for his friends and colleagues on short trips to the ex Soviet Republics. I will never
forget our visits to Armenia, Crimea, Georgia, Uzbekistan and so many exotic oth-
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ers. Warmhearted, intelligent, generous and also worried scientists, all were Slava’s
friends. Despite all his work and social connections, Slava was a devoted member
of the Belyi clan. The most striking example for me is the way how he supported
his son Andrei during the many difficult years leading to a doctorate obtained at the
ULB and a professorship at the University of Tallin.

He was a man of all seasons; he loved his family and friends. He loved science
and arts, traveling, cooking, singing and dancing. We have been fortunate to count
him among our friends. We shall always remember him.

2 L. Brenig

It is through Radu Balescu and Irina Veretennicoff that I met the first time Slava Belyi
at the beginning of the year 1980. RaduBalescu,my former Ph.D. director at Brussels
Free University (ULB), was a renowned expert in Plasma Statistical Physics and a
friend of Yuri L. Klimontovitch, a well-knownRussian physicist working in the same
field. As it happens, Slava Belyi had been a Ph.D. student of Y. L. Klimontovitch.
Irina Veretennicoff, who also made her Ph.D. thesis under the direction of Radu
Balescu, met Slava Belyi in Moscow where she had been invited by Klimontovitch.
In return, Slava Belyi was invited for a stay in our Department at the ULB. This is
how the Universe conspired to make me meet Slava.

Though we frequently discussed about scientific questions, I did not properly
collaboratewith Slava.Our research focuseswere slightly different. However,we had
common interests in non-equilibrium phenomena and, more generally, in statistical
physics. We also had vivid conversations about the political and social situation in
the Soviet Union and elsewhere in the world. Slava was not a fan of the Soviet regime
but he was realistic and managed to adapt to this situation, though, at the cost of a
perpetual and exhausting effort for keeping a decent life for his family.

Slava Belyi was a multi-gifted person. Apart from being an outstanding scientist,
he had a natural talent for singing Russian nostalgic or joyful songs that would create
an isba-in-the-taiga atmosphere. Everybody present in the assembly would soon cry
or laugh.

Slava also had a social rallying gift. Each time he was expected to come for a
visit, here in Belgium or anywhere else, there would be a sudden buzz among his
local friends. People who did not see each other for months would suddenly contact
each other and organize a welcome party for his arrival.

One of our frequent conversation topics concerned the Jewish history and culture.
Slava’s interest in this domain came from his childhood in Tashkent. He had been
living there with his parents near the Jewish quarter and, though he was from a
Russian non-Jewish family, he spent a lot of time playing with the Jewish children
of the neighborhood. He liked to say that they considered him as one of them. Along
his life, he kept many contacts and good friends from the Jewish background.

Slava was a mixture of an enthusiastic and a fatalistic person. He spoke fluently
French and his main motto was “A quoi bon?”, an expression which could translate
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Fig. 1 Viacheslav (Slava) Belyi and Nadine Galland. Photo taken in Belgium in September 1994

Fig. 2 Viacheslav (Slava) Belyi. Photo taken at Moscow University in January 2017

into English as “What’s the point?”. However, as soon as he pronounced these words
he started laughing, thereby negating the first pessimistic impression (Figs. 1 and 2).

“A quoi bon?” certainly does not apply to his life. By his creativity and his great
humanity and sense of friendship, Slava illuminated the life of many of us and will
stay in our memories forever.
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3 L. Bindler, Formerly at Belgonucleaire, Brussels, Belgium

I met Slava Belyi in May 1992 via a friend of mine, a scientist Georges Severne
from the Vrije Universiteit Brussel (VUB). We found a common ground when I
assisted his son, Andrei, still a student, in getting to Belgium via Rotary Exchange
programme. We also collaborated professionally. In the past, I worked at Belgonu-
cleair, a national nuclear fuel producer from Dessel in Belgium. Belgonucleaire was
famous for techniques it had developed in the 1970s for obtaining civil nuclear fuel
from plutonium. In 1972, the first mixed oxide fuel (MOX), using both uranium and
plutonium, was used industrially.1 In 1984, Belgonucleaire, together with its French
partners, participated in the generation of a new type of MOX which could be used
for converting military-grade plutonium for civil purposes. In the early 1990s, in
the aftermath of the collapse of the Soviet Union, Belconucleaire’s interest turned
to Russia because the company was able to introduce techniques to convert Soviet
weapon-graded plutonium into energy for civil use. I introduced Slava to represen-
tatives of Belgonucleaire, who had begun its activities in Russia. At that time, my
colleagues needed a contact in Moscow who could introduce them to local industry
representatives, and who had a broad understanding of the nuclear industry. Slava
was the right person for that. In due time, the innovative MOX nuclear fuel was
introduced in Russian nuclear power plants, and a couple of years later, Russia even
generated MOX fuel itself and became an important international player in the civil
nuclear industry. We have kept a close friendship and had common personal and
professional contacts such as Andre Jaumotte, a former rector of the Free University
of Brussels (ULB) who was also acting head of the Solvay Institutes from 2003 to
2004. In turn, Slava’s collaboration with the Solvay Institutes commenced with his
close friendship with Ilya Prigogine, who had directed the Solvay Institutes for four
decades till his death in 2003. Slava Belyi was a remarkable person because of his
ability to maintain a wide range of contacts and relationships. He also helped me to
find my cousin in Moscow. My father was originally from Russia and happened to
live in Antwerp during the Bolshevik revolution. He stayed there through the after-
math whilst his brother (my uncle) lived in Moscow. The two brothers broke contact
in the 1930s because having a foreign relative could threaten the life of anyone who
lived in the Soviet Union. I grew up knowing about the existence of a female cousin I
had in Soviet Russia but had not had an opportunity to contact her. Slava just decided
to help me to find my Russian cousin, conducting a brief investigation in Moscow.
I met my cousin, Galina Bindler, thanks to Slava’s efforts. After all, I keep bright
memories about Slava as a dynamic, competent, jovial and seducing personality.

1 J-VVilet, A.Michel, L. Bindler ‘Belgonucleaire 1990–2005’ in Histoire du nucléaire en Belgique,
1990–2005, p. 185.
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4 J. P. Boon

When Slava first came to Brussels to visit Prigogine’s group in the 1980s, I didn’t get
to know him very well. But some years later, in 2001, I invited him to participate in
a summer school that I organized at the Institute des Etudes Scientifiques in Cargese
(Corsica).When Slava arrived in Cargese and discovered the landscape and beautiful
beach, he expressed how delighted he was, saying, with his characteristic “slavish”
accent “Comme Crimee, comme Crimee!”, and as a present, he offered me a bottle
of J. P. B.’s Vodka with a picture of mine on the label. I still have the bottle which
I intended to open and share on the occasion of Slava’s next visit. The bottle is still
unopened on the shelve in my office ...

5 C. De Mol

I met Slava Belyi during one of his research visits in Belgium (I think the first one)
in the group of Professor Ilya Prigogine at the ‘Université libre de Bruxelles’ (ULB).
At the time, he mainly collaborated with Irina Veretennicoff.

We had over the yearsmany interesting conversations about several aspects of life,
but rarely about physics since our research fields were essentially disjoint. There was
one exception: when Slava learned that I had become interested in economics, he
tried to convince me to work on some problems in econophysics that were related
to his expertise in statistical mechanics. I then bought and started studying the book
by Stanley and Mantegna “An Introduction to Econophysics”. I regret that these
exchanges never got concretized into some real work and collaboration.

Our conversations, which were also a good opportunity to practice the Russian
language I had learned at evening courses, developed into a genuine friendship. I
must say that Slava had a real cult for friendship. He introduced me during festive
events to some of his friends in Belgium, and he had many. He liked to gather them
around memorable uzbek plovs (lamb and rice pilaf) he cooked with enthusiasm,
using special mysterious flavouring berries which he called “berberis” and brought
along with him from Russia, until he discovered that hedges in Belgium were full of
them!

In January1991, Slavaorganized formeaprofessional visit to his research institute
“IZMIRAN” in Troitsk, south of Moscow. I discovered what a real Russian winter
was like and also experienced the lifestyle in times of “deficit” of basic goods,
including food! At the occasion of this visit, I could meet his family and I enjoyed
very much their hospitality in his home in Troitsk, as well as in Andrei Slavnov’s (his
brother-in-law) in Moscow. Slava was very proud of his family and enjoyed talking
with me about their kayaking holidays in Siberia and their stays in his datcha. One of
the greatest satisfactions of his life was that he managed to arrange that his beloved
son, Andrei, could complete his studies and then a Ph.D. in political science at ULB.
We had the great pleasure to see him more often during that period.
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During the pandemic of 2020, we regularly talked by Skype. Slava was very
worried about the growing number of Covid contaminations in Russia. Rightly so,
helas! Our last contact was by SMS during the beginning of his stay at the hospital
where he passed away.

We miss him deeply.

6 R. Gerold

Slava Belyi was a charming person, an excellent scientist and communicator and a
real friend of me for more than 20 years. He was a recognized physicist specialized
in plasma physics working at IZMIRAN, a prestigious centre for space and geo-
physics. Already during the Cold War period, he had established his first contacts
with fellow scientists in Belgium. With the collapse of the Soviet Union, restrictions
on international cooperation in research were lifted and Slava became a regular and
highly estimated scientific guest in Brussels. In order to give his son Andrei who had
finished high school in Russia an international education, he looked for families who
would host Andrei for an initial period. This waywemet both in 1994 and agreed that
Andrei would stay with us for a certain time. We made friends and Andrei became
a member of our family.

At the time I was working at the Directorate General for Science, Research and
Development of the European Commission and was in charge of international coop-
eration. It was a particularly thrilling time because after the fall of the Berlin wall I
had the task to promote and manage the opening of the European Research Frame-
work Programme to Eastern European countries and the Baltic States. Our aim was
to boost scientific cooperation with these countries in view of their later membership
in the European Union.

Strengthening scientific cooperation with Russia and the other “Newly Indepen-
dent States of the Former Soviet Union” was also among the objectives pursued
by the EU at the time. This included the highly political undertaking aiming at the
conversion of military to civil research managed by the International Science and
Technology Center, an intergovernmental organization including Russia, the United
States, Japan, the EU and other countries. A more modest initiative was the setting
up of INTAS, the “International Association for the promotion of cooperation with
scientists from the independent states of the former Soviet Union”. Its aimwas to pro-
mote fundamental research based on a bottom-up approach. The financing came from
the Research Framework Programme of the European Union and contributions from
its associated countries. In the practical implementation of this cooperation Slava
was of great support. He familiarized me with the structure of the Russian research
system, which was dominated by the illustrious Academy of Sciences. Slava also
helped us to establish contact with the newly establishedRussian Foundation of Basic
Research which became a major partner of INTAS. Slava’s role can be described as
one of honorary ambassadors.
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I recall in particular a mission in 1995 to St. Petersburg where I carried out some
onsite visits to cooperation projects co-financed by INTAS. Slava arranged ameeting
with Ludvig Faddeev, the president of the Academy of Sciences in St. Petersburg and
a visit to the prestigious Joffe Institute. We also paid a visit to a university institute
which kept historic records of dialects spoken in Siberia a century ago engraved in
wax cylinders which started to deteriorate. Thanks to the funding of INTAS, these
historic records were digitalized and preserved for future generations.

The friendship with Slava continued and every time he came to Brussels to meet
his scientific partners, he also came to our home with Andrei. Many times he took
over the kitchen to prepare his legendary dish “riz pilav” and my wife and family
still remember his charming and heart-warming presence.

In 2015, we were Slava’s guests in Moscow. He put us up in his new flat and
together with his wife Ludmilla, his family and his friends we celebrated Slava’s
70th birthday. We spent a delightful day at his datcha. A particular highlight was a
very generous invitation by Andrei to a cruise of several days on the Wolga river
together with Slava. We retain unforgettable impressions of the vast countryside and
of the very friendly Russian families traveling with us on the boat.

Our lastmeetingwithSlavawas in 2017whenhe spent aweekwith us in our datcha
in Brandenburg together with his grandson. Despite suffering from health problems
that he played down as usual, Slava was in a good mood and still very engaged in
a dispute about a scientific publication. The corona pandemic interrupted all further
personal contacts, butwe remained in touch via the internet and occasionally received
humorousWhatsAppmessages often addressingpolitical issues.Wewere completely
shaken up when we heard in May 2020 about his Coronavirus infection and very
soon thereafter his passing away.

Our family will keep Slava in lasting memory as an extraordinary and charming
personality who became a close friend whom we sincerely miss.

Rainer Gerold, November 2021.

7 J. Wallenborn

More than a collaboration
Slava was not only a colleague, above all he was a friend.
I became acquainted with his family in the small apartment they inhabited in

Troitsk, a small town near Moscow where is also situated IZMIRAN, the research
institute at which he was affiliated. His wife Lucia was very welcoming and made
efforts tomakemy stay pleasant despite the often difficult situation and the difficulties
in finding food at that time. Their children, Nusha and Andrei were still at school.
Also, I had the opportunity to meet Slava’s parents who lived in Troitsk too. Later
on, I went during weekends to the datcha he had just acquired, a piece of ground
on which he build a traditional wooden house. He drove his family there, first in
the gigantic Volga, after in the relatively small Golf, cars he bought in Belgium and
Lucia cultivated a pleasant vegetable garden.



In Memoriam Professor Viacheslav (Slava) Belyi (1945–2020) 13

Thefirst time I came toTroitskwas,withLéonBrenig, in 1989.At this occasionwe
visited Izmiran—of course—but Slava guided us to Moscow: Kremlin, Red Square,
Moskwa and Arbat street, where the number of people was impressive due to the
perestroika that was in full swing. There was an unexpected wind of freedom. In
contrast, we went silently sightseeing in the surrounding country between Troitsk
andMoscow, thanks to a car provided by the Academy of Sciences: Slava mistrusted
the driver and was afraid of the words that Léon and I might say.

Slava was a very good guide. He was still a better travel agent. Several times, he
took advantage of one of my work stays to organize a nice trip through the USSR.
We were in St. Petersburg twice, including once with my wife and Nusha, Slava’s
daughter. Another time, wewent to Kiev by train for a scientificmeeting on statistical
physics. The welcome music on our arrival at the destination station was impressive.
But there I saw the difference in treatment between Soviet citizens and foreigners:
at the hotel, Slava received a small room in the attic while I received a comfortable
one.

The most extraordinary travel led us to Uzbekistan. We went by train—two days
and three nights—with my wife and the young Andrei. In Samarcand we were
received by the vice-rector of the university and his wife in traditional dress served
us. After breakfast, startingwith fruits and endingwithmeat and soup, the vice-rector
went to cotton fields where students were working and his wife, no more servant,
dressed herself accidentally to guide us to the university where she was a professor.

In Bukhara, the rector himself welcomed us. After a visit to the university, he said
he wanted to invite the rector of the Brussels university to which I belong. When he
learned out that this rector was a woman, he said, “Too bad, but it doesn’t matter.
She will be invited”. Then we were the honored guests of a wedding. My wife was
the only woman at the men’s table; even the just married girl was confined to the
women’s room.We have given many toasts to the Uzbek-Belgian friendship. Finally,
as we were a little late for the train, the rector drove us to the station platform with
a sound of the horn to chase away the teeming travelers.

Slava repeatedly toldme that I hadnothing to prepare, so inTashkent I gavewithout
preparation a seminar on the transport properties of gases. Fortunately, the audience
was not interested, because according to Slava, I said some nonsense. As Slava was
born in Tashkent, we had the opportunity to stay with friends of his parents. In the
garden were growing vegetables and good grapes were ripening. It was the sweetness
of life, very different from the academic hotels inMoscowwhere the babushkas were
afraid because our scientific discussions were a little too noisy, especially when we
were collaborating with Yuri Kukharenko.

The Slava’s knowledge of Uzbekistan was well appreciated in Belgium. He had
become a specialist in plof, a typicallyUzbek dish,made frommutton, onions, yellow
carrots, rice and spices. On several occasions during the many parties organized by
his Belgian friends and colleagues, he cooked this delicious dish, especially at my
home. These meetings were very joyful. Slava, who was timid and quiet when he
came for the first time toBelgium, became the principal animator of these assemblies.
All participants enjoyed his bass voice and his loud laugh, and of course his jokes.
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The scientific collaboration with Slava was therefore very pleasant, thanks to its
ancillary activities. They are very pleasant memories.

8 M. Mareschal

There are several aspects which give my encounter and later friendship with Slava
a particular flavour, a flavour made of a mixture of nostalgia for a time which has
gone and for the extraordinary period we have lived in. And it is with those feelings,
sadness for the loss of a friend and proudness of what we have lived and achieved
that I write these lines.

I met Slava in 1982 when he came to visit our Department in Brussels. He was
invited by Radu Balescu who had established contacts with Yuri Klimontovich.
Klimontovich was a student of Bogoliubov, one of the founders of non-equilibrium
statisticalmechanics.While the names ofKlimontovich andBogoliubovwere known
to many of us, personally I was not familiar with books and articles coming from
the Soviet Union (with the notable exception of the physics course of Landau and
Lifshitz). Visits by Russian scientists were still exceptional at the time and the lan-
guage barrier was a real obstacle. We have to be thankful to people like Balescu and
Prigogine to have created those links which allowed a whole community to benefit
from the results obtained by the important Russian School of Statistical Physics and
Mathematics.

During my thesis in Prigogine’s group, I had addressed a problem suggested by
Alkis Grecos, my thesis advisor: can we compute how the sound modes are affected
in a collisional plasma by the existence of the plasma oscillations? Alkis had found a
simple model, a superposition of the Vlassov self-consistent field with an elementary
collision operator. Themodel was elementary but it allowed a full treatment, showing
indeed the predominance of the plasma frequency oscillations in the hydrodynamic
regime. Slava had read the article and liked it so that we spent a few days discussing
themeaning and importance of the result. Slavawas very quick, both in understanding
the physics and in learning the French language (including familiar expressions!).

This was the time when I shifted my interests to numerical simulations. Slava was
curious about those techniques, but he remained faithful to the analytical approaches
to kinetic theories so that we never really published together but remained closely
related in discussing scientific problems concerning non-equilibrium systems. I later
organized several workshops and conferences, in Brussels as well as in Lyon where
I became director of a European center dedicated to atomic and molecular model-
ing (CECAM 1). I had the opportunity to invite Slava on many occasions, and he
always took advantage of those possibilities to interact with the community of non-
equilibrium molecular dynamics. It was amazing to witness how easily Slava could
interact with a group, even when the techniques used were very much different.

Later, in Zaragoza, in 2012, I organized the 27th Rarefied Gas Dynamics con-
ference. An important Russian community was attending the conference with many
scientists using the Boltzmann equation, analytically or computationally. Slava par-
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ticipated and could present a paper to the conference. He was as much at ease with
either group, helping many potential connections to be realized.

Slava was a giver. He would set no limits on spending time and energy with his
friends. I remember once how he helped me in Moscow on a trip I was making
to Novosibirsk, to attend a conference of the European Liquids group. That was
back in the summer 1989. The whole trip was complicated to organize (I was also
attending before that a conference in Poland). The Belgian travel agent had made
reservations for me: I had a plane ticket for a flight from Prague to Sheremetyevo,
the international Moscow airport, then a telegram was sent to the travel agent and
confirmed the reservation for a flight from the other airport (Domodedovo), with
national flights connecting to Novosibirsk. Slava told me that he would be there
to help me in going from one airport to the other, and it would be difficult for me
otherwise!

Slava was there when I came out of USSR entrance controls. We then went to
taxis and there was a (rather hard) negotiation to fix a price to go to Domodedovo.
That was my first visit to USSR and I was quite surprised to see the rather poor state
of roads and taxis. The atmosphere at the other airport was also a bit special: people
camping everywhere in the airport, waiting possibly a few days to get a seat for their
flight.

I could see no signs in English. Slava was asking around and the only thing I
could understand was intourist. At some point, we understood that we had to go to
small construction reserved for foreigners. The easiest way was to go out and walk
on the field for about 200 m and get to the construction. Slava convinced someone in
change to let us go to the field and walk to the intourist building. Which we did. With
planes moving around, we walked to the intourist building where they were quite
surprised to see us coming from the field’s side. The policemen in charge had a long
discussion with Slava, after which he accepted that I could enter provided I would go
through security screening. They also gave me a seat number. In all this negotiation,
Slava remained calm, arguing and strong, finally getting the policemen in charge to
solve the problem. I was impressed and very thankful to him. I will never forget!

Slava was a very generous person, and the critical views he could have would
never lead him to aggressive statements. Rather he would use his (great) sense of
humor and remain calm and strong in his views. He was an idealistic person in his
thoughts, with a rather realistic view of humanity. A great personality, a friend, ...a
man of value!

9 A. G. Zagorodny

The sad news of Slava Belyi’s death was unexpected and extremely bitter for me.
I have lost my old friend and colleague after over 40 years of friendship, warm
meetings and numerous discussions of scientific problems, in particular those of
our common research interests. We got acquainted with Slava in the early 1980s
due to our common teacher, world-known scientist, a specialist in statistical physics
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and kinetic theory of many-particle systems professor of Moscow University Yurii
Klimontovich. The acquaintance turned out to be highly fruitful not only because
Slava was an amiable man and talented theorist but also because both of us dealt
with the studies of large-scale fluctuations in non-equilibrium systems and hence
could compare our experience that has laid a strong foundation to our friendly com-
munications. Our contribution in this book concerns just this field of research. Slava
has visited Kyiv many times, and he had talks both at the international conferences
and seminars held in our institute—Bogolyubov Institute for Theoretical Physics.
He had presented his doctorate in our institute and I tried my best to help him with
various technical formalities. Slava, in turn, was most helpful for my report in the
Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation on the
materials of the doctoral thesis to be successful and to obtain positive recommenda-
tions. We have met during various conferences in Moscow, Lviv, Tbilisi, Kiel etc.
The meetings have always been warm and friendly. Slava has told me for many times
that his family had been of Ukrainian descent. He loved Ukraine and supported our
independence. He was aware of the Maidan events and delighted about our success.
So it is nothing strange that his letters of that time ended with the slogan “Slava
Ukraini (Glory to Ukraine)”. A good scientist and friend of Ukraine have passed
away. May his memory live forever.

10 N. Brilliantov

I met Slava Belyi for the first time when I was a Ph.D. student, while he was already a
recognized scientist, an expert in kinetic theory. My Ph.D. supervisor recommended
Slava as the external examiner for my thesis. Preparing a report on the thesis Slava
gave me a lot of valuable comments about my work, which later developed into
a few lines of research. We also discussed kinetic theory in general and the life of
scientists. Slava had numerous scientific contacts in the SovietUnion and abroad. The
respective stories about the lives immersed in science, which he narrated, sounded
very attractive; this provided me with a strong motivation to remain in science after
the viva. Hence, the meeting of a Ph.D. student and his thesis Referee resulted in a
friendship that continued for decades till Slava’s death. As an older friend andmature
scientist, he supported me in my scientific career—sometimes giving good advice,
or being a Referee for my Ph.D. students, sometimes inviting me as a speaker at an
important conference, and sometimes directly, helping to get a job in an academic
institute.

We have had multiple discussions about the Boltzmann equation in its various
forms, about the fluctuation-dissipation theorem, both for equilibrium and non-
equilibrium systems. The discussions were deep on the boundary of science and
philosophy. Sometimes we addressed technical issues and Slava showed me nice
theoretical tricks. I admired his skills and the ability to apply sophisticated mathe-
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matical constructions to physical problems. At the same time, he could clearly and
simply explain complicated things. All such meetings were really enjoyable. After
Slava has passed I feel a big gap in my scientific and human surroundings; however,
disseminating his achievements would be good to honor his memory.



Biographic Note

Andrei Belyi

In this chapter, I will briefly describe Viacheslav (Slava) Belyi’s biography. Being in
a position of his son, I witnessed a large part of his scientific pathway, his profound
curiosity about scientists’ contributions to the real world. My father was convinced
that scientific knowledge could help people understand the world around them in a
broader sense, and could enable them to be successful in both politics and business.
Hewas lucky enough to have frequently visited the families of the business leaders of
the European industrial past, such as Schlumberger and Solvay. Both names connote
successful people who wholeheartedly wanted to promote all aspects of science.
Manywitnessed his pleasant socialmanners and a remarkable ability to communicate
with people from different cultures and his persistent attempt to bridge Moscow and
Brussels in his personal life. His acquaintances were from different circles ranging
from scholars to ambassadors and business leaders.

Belyi was a genuine academic who had a deep faith in scientific communities.
He often helped his junior colleagues and friends in performing scientific results and
he usually combined academic cooperation with a sense of friendship. He often told
me: give to others more than you can receive from them! He was greatly inspired by
Ilya Prigogine, the Nobel prize laureate of 1977, and was well-acquainted with his
school of thought. In these lines of research, he achieved important results for the
fluctuation–dissipation theorem in Plasma.
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1 Early Life

SlavaBelyi grewup inTashkent, the capital of theUzbekSoviet SocialistRepublic.At
age of seventeen, in 1962, hemoved toMoscow to study at the faculty of Physics of the
Moscow State University (MSU). During Slava’s studies at the university, courses on
statistical mechanics were taught by Yuri Klimontovich, a relatively young professor
at the university. Klimontovich specialized in the statistical mechanics of ionized
gases and quickly gained an academic recognition with his book published in 1967.1

Klimontovich liked both the conceptual approach and the differentiated formulas
elaborated proposed by Slava and proposed him to arrange the findings into an article
which they published together. Further, Klimontovich invited Belyi to continue with
postgraduate studies to obtain a title of a ‘candidate of science’ (remotely equivalent
to a doctoral title in the west). Scientific cooperation with Klimontovich continued
throughout 1970s, as they visited together important academic symposiums from the
West-Siberia to Lithuania’s Baltic coast.

Once obtained a postgraduate degree in 1971, he was offered a job at the Soviet
Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (abbre-
viated in Russian as IZMIRAN). By that time, IZMIRANhad become internationally
recognized for scientific space physics and geophysics. This Institute was established
in 1944 on the basis of a geomagnetic observatory planned back in 1939 on the eve of
WorldWar 2, next to a village called Troitskoe inMoscow’s neighborhood. Later, this
location was transformed into a town dedicated to researchers, a so-called Akadem-
gorodok [literal translation: academic town]. A decade later, the Institute gained an
international renommé, as it had become one of the world’s largest centers for data
collection on geomagnetic trends around the world. In 1958, IZMIRAN was among
the co-organizers of an international symposium on geophysics. Research areas also
included the ionosphere. Studies on the ionosphere’s density have been important
in defining the necessary conditions for radio wave propagation on which modern
communication systems are based. This includes communication systems for avia-
tion, shipping transport, and—later on—for the development of a global navigation
system.2 Belyiwas involved in the topic of statisticalmechanics of plasma throughout
all his academic career.

2 Scientific Exchanges with Belgium

By the time Belyi joined IZMIRAN, the Institute was directed by Vladimir Migulin,
a former Deputy to the Director General of the International Atomic Energy Agency
(1955–1957). Twelve years later, in 1969, Migulin was nominated as IZMIRAN’s
director and on the same year as an agreement was struck between the Soviet

1 Klimontovich [1].
2 Klimenko et al. [2].
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Union and the Union Belgium-Luxembourg on Scientific and Technical Coopera-
tion. A supervisory board composed of representatives of the signatory countries was
created, with annual meetings in Brussels and Moscow. This board was responsible
for providing grounds for scientific exchange betweenmembers of scientific commu-
nities in the countries involved. Vladimir Migulin’s political weight and reputation
were critical to the inclusion of IZMIRAN in the scientific exchanges.

The very foreign first visitor to IZMIRAN was Irina Veretennikoff from the Free
University of Brussels. Her former thesis supervisor, Radu Balescu, had met Yuri
Klimontovich back in 1965 at a symposium on plasma studies organized near a
Siberian city of Novosibirsk.3 Contact with the Belgian scholar became significantly
valuable forKlimontovich partly becauseBalescu published a seminalwork on statis-
tical mechanics with a focus on non-equilibrium theories, which were not studied
in standard textbooks of that time.4 Klimontovich took advantage of his connection
to Balescu and visited him in Brussels in the mid-1970s, when the Belgo-Soviet
agreement was in force. It is here that Balescu introduced Irina Veretennikoff to his
Russian colleague. She visited IZMIRAN in 1980 and Slava Belyi was in charge
of her visit to Moscow. In 1982 it was Slava Belyi’s turn to go to Brussels to be
hosted by Irina for the next round of the scientific exchange. The three-month visit
was filled with memorable moments with his Belgian colleagues. Being a very open-
minded person, he established durable friendships. In 1983, Balescu planned a new
visit to Moscow—this time he was to accompany Ilya Prigogine, already a globally
renowned scientist by then, affiliated with both Belgium and the US. Quite naturally,
Migulin asked Slava Belyi to host the Nobel Prize laureate, which conferred a lot of
responsibility and personal honor.

Prigogine preferred to combine his academic visit with some personal activi-
ties. He brought his son, Pascal, (a curious 14-year-old teenager keen to discover
the world) on his visit. He apparently wanted to see some of his distant relatives
in Moscow and invited one of them—a woman—to a sight-seeing tour. A mini-
bus was arranged for transport, but the consequences of this tour were dire. Belyi
was summoned by the Soviet intelligence services and interrogated about inviting
Prigogine’s relative to the tour when she wasn’t registered in the visit protocol. Slava
Belyi had to respondwith awritten explanation of his allegedmisbehavior, addressed
directly to IZMIRAN’s director. Slava had to explain that if he had not allowed the
lady into the mini-bus, the important guest might have simply left the Soviet Union
to go home. Slava Belyi was certainly right from a human viewpoint, but the author-
ities thought otherwise because formalities matter more for them. Belyi was banned
from leaving the country and being in contact with foreign scientists. However, with
the end of the Cold War, the travel bans were subsequently lifted. The Nobel prize
laureate deeply appreciated the humanity of Slava’s behavior—his choices weren’t
forgotten and a remarkable friendship commenced.

3 Balescu [3].
4 Weyssow et al. [4].
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3 Doctor of Science and ‘a Prize Laureate

Slava Belyi needed to pass the second stage of his Russian academic career: the
‘doctor of science’, equivalent to a habilitation thesis. This process required a thesis
defense in front of a panel of experts in the field. At that time there were two major
national research institutes for the theoretical research of plasma: one inMoscow and
another in Kiev. An influential scholar specialized in plasma, Nikolai Bogolubov—
actually a former thesis supervisor of Yuri Klimontovich—was a Ukrainian, keen to
reinforce Kiev’s position in the field. He already knew Slava Belyi and was happy
to invite him for his thesis defense, which took place in the capital of Ukraine at the
Institute of Theoretical Physics (which now holds Bogolubov’s name). The venue
was meaningful to Slava—Ukraine, the country of the Belyi family’s ancestors, had
always remained a country close to his heart. At the end, in the fall of 1988, Slava
Belyi’s thesis defense took place on the subject of ‘Carryover effect and kinetic
fluctuations in non-equilibrium systems’.

Obtaining the title of ‘doctor of science’ was an important step toward gaining
higher visibility in the national scientific community.Belyi’s academic achievements,
coupled with his collaboration with Irina Veretennikoff, attracted the attention from
Russia’s academic leaders. Of note, by the end of the Cold War in the late 1980s,
many in Moscow positively viewed Russian scholars who collaborated with West-
erners. At the right time, then, Slava and Irina produced new articles, including one
published by Cambridge University Press,5 and attracted the attention from many
contemporaries. At some point, they received a recommendation from the Academy
of Science for a national scientific Prize which was awarded by the end of 1991 to
Belyi, Klimontovich, and Veretennikoff for their work in plasma physics.

4 New Sets of Collaboration

In the early 1990s, in the aftermath of the collapse of the SovietUnion, thework atmo-
sphere at IZMIRAN changed. Migulin retired already in 1989 and his successor did
not match his influence over scientific policies, nor his international reputation. In the
aftermath of the collapse of the Soviet Union, economic transition to a market-based
economy was accompanied by drastic budget cuts for research institutes, IZMIRAN
included. The Institute lacked funds to finance existing laboratories and attract new
researchers. Researchers oftentimes joked that a state simulates the salaries while
researchers simulate their work. As an illustrative example of the lack of scientific
funding, one of Slava Belyi’s colleagues used IZMIRAN’s office facilities to start
his business, which had nothing to do with science at all. Slava Belyi started losing
collaborative networks around him and often felt isolated in the institute. IZMIRAN’s
inability to attract new scientists certainly impacted Belyi’s ability to create a proper
school of thought, driven by younger scholars. The only remaining collaborator was

5 Belyi and Veretennikoff [5].
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Yuri Kukharenko, not even based at IZMIRAN, who collaborated with Belyi on
statistical mechanics.

Slava was, however, able to maintain and strengthen a collaboration with his
Belgian colleagues. His main co-author Irina Veretennikoff was promoted to head
of a research unit at the Flemish-speaking VUB and she subsequently changed her
research priorities. She introduced Slava to Jean Wallenborn, a researcher from the
French-speaking ULB, in order to keep him close to Balescu’s group of researchers.
Belyi created a virtual bridge between Jean Wallenborn and Yuri Kukharenko. This
trilateral academic union was eased by Slava’s ability to bridge between two worlds
and make the best results out of it. Overall, eight papers were produced by the
three scientists. Perhaps their main result was an article on Pair correlation function
and non-linear kinetic equation for a spatially uniform polarizable non-ideal plasma
published in Physical Review Letters.6

5 The Solvay Institutes and Prigogine’s Influence

Contacts with Prigogine played a significant role in Slava’s professional life. By the
time SlavaBelyiwas introduced toBelgium, theNobel Prize laureate had directed the
International Solvay Institutes for Physics and Chemistry, an independent scientific
body founded by Ernest Solvay in 1911 following his communication with Wilhelm
Ostwald in the early twentieth century. The Solvay Institutes of Physics and Chem-
istry that operated in keeping with Ostwald’s worldviews to signify the symbiosis
between science and industry. The first scientific council took place in 1911, where
the most renowned scientists of that time (such as Albert Einstein, Marie Curie, and
Max Planck) were all members of the scientific council. In 1970s his great-grandson,
Jacques Solvay, managed to agree with the University of Brussels—with both ULB
and VUB at once—on an academic affiliation. Prigogine was indeed the very first
scientific director of the newly created institution. Some decades later, at the dawn of
his scientific career, Slava Belyi became involved in The Solvay Institutes activities
as well.

The administrative live at the Solvay Institutes was predominantly shaped by
Ioannis Antoniou, a Greek scholar, who assumed a role of the deputy director since
1994. In tandem with the Institutes’ director, Antoniou obtained European funds to
initiate a so-called Euro-Russian collaboration on complexity. Belyi wasn’t initially
included into work packages of the project as he was not specifically focused on
complexity studies. However, his ability to understand the two worlds—the East and
the West—were indeed noticed by the Institutes management. Both Prigogine and
Antoniou appreciated Slava’s ability to build intercultural bridges and engaged him
as an expert in non-linear physics and Euro-Russian relations.

6 E.g. Belyi et al. [6].
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Even though their collaboration never resulted in co-authorship, Belyi was very
much influenced by the Nobel Prize laureate’s approach to uncertainty and non-
equilibrium.These contacts gave hima strong sense of criticismof scientificmeasure-
ment systems and models. The Nobel Prize laureate had argued that the world is not
outside the scientist’s view, but an integral part of it! He argued that one of the
basic objectives of scientific study is to explain the general limitations introduced
by any measurement processes. Partly, therefore, Belyi often deplored that scientific
methods, like probability models, tend to outstrip theories and conceptions. After
Prigogine’s death in 2003 Belyi’s contacts with the Solvay Institutes diminished, but
the memory of Prigogine remained deep in his heart. For Prigogine’s 100th anniver-
sary, in 2017, Slava wrote an article dedicated to the Nobel Prize laureate with a
very warm preface: ‘Professor Ilya Prigogine’s legacy in science is enduring and
indisputable. He was an outstanding philosopher, mathematician, chemist, physicist,
and biologist, and he had an in-depth understanding of history, archaeology, and the
arts. Ilya Prigogine had a great heart, was open to everyone, and his altruism has
vividly contributed to many in our international scientific community. He believed in
the human mission to achieve solidarity and progress. His scientific discoveries are
actually inherent to these ideas which he defended throughout his life. Undoubtedly,
the name of Prigogine remains among the greatest of this world’.7 Through Slava
Belyi’s efforts in perpetuating Prigogine’s memory, many viewed him as a genuine
disciple of the Nobel prize laureate.

6 Major Results and Recognition

Slava Belyi was already a renowned scholar who had seen the evolution of his disci-
pline through two renowned schools of statistical physics, one of Bogolubov and
Klimontovich and the other of Balescu. One of his major single-authored outputs
was an article in the PhysicalReviewsLetter,8 on the fluctuation–dissipation theorem,
a long-debated theoretical subject since Albert Einstein’s discoveries. In his article,
Belyi produced an illustrative chart demonstrating different dynamics of electrons
and of electrostatic fields during a fluctuation process produced by an external distur-
bance. He showed that results of fluctuation differ in non-homogeneous plasma,
hence a non-ideal state of plasma needs to be considered differently. The article in
Physical Reviews Letters almost coincided with Klimontovich’s death. So, Belyi
decided to write a new text devoted to one of the most significant achievements
of his supervisor—the Klimontovich-Langevin approach to the fluctuation–dissipa-
tion processes.9 In the newer text, Belyi emphasized that fluctuations determine the
sensibility of a plasma, hence measuring fluctuations become a necessary tool in
diagnostics of plasma processes.

7 Belyi [7].
8 Belyi [8].
9 Belyi [9].
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Even towards retirement age, Belyi closely followed scientific debates and care-
fully read scholarly literature on the topic of plasmadiagnostics. In 2016 he noticed an
article published in Nature addressing Thomson scattering of laser light for general
observations in plasma physics.10 After having assessed the text in depth, Belyi
thought that authors attempted to take a specific experimental observation to a more
general trend in plasma physics, and didn’t sufficiently analyzed the earlier works
on fluctuations, including the Klimontovich-Langevin approach. In response he
published a refutation article where he argued that this specific interpretation should
not violate the fluctuation–dissipation theorem.11 Together with his own publication,
the authors of the article published their response to Slava Belyi’s text. In a very
respectful terms, the authors highlighted his achievements in the field and agreed
that his approach is certainly more general than their observation. After having high-
lighted some more specific objectives of their article, the authors concluded that the
debate he launched would fuel further scholarly attention.12

Belyi was happy of launching an important conceptual debate on the subject. He
wanted to produce this result for quite a while, he said. His field of study—plasma
physics—was gaining renewed interest since the world’s policy communities had
expressed hope in finding alternative fuel sources to hydrocarbons. Among others,
thermonuclear energy extracted from ionized gases—plasma—has been tested at
the international center in ITER in France.13 Once he even told me then that in the
past he had worked on some conceptual models for energy extraction from plasma.
He probably should have taken the unpublished manuscript on energy sources out
of storage. Slava Belyi passed away on 20 May 2020 in the city of Troitsk, near
Moscow, where he spent most of his life.
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Abstract In this paper, we offer to the reader an essential review of the theory of
Fluctuation-Dissipation Relations (FDR), from the first formulations due to Einstein
and Onsager, to the recent developments in the framework of stochastic thermody-
namics of non-equilibrium system. We focus on two general approaches, somehow
complementary, where out-of-equilibrium contributions to the FDR are expressed
in terms of different quantities, related either to the stationary distribution or to the
transition rates of the system. In particular, we discuss applications of the FDR in
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1 Introduction

The Fluctuation-Dissipation Relation (FDR) is among the few pillars of non-
equilibrium statistical mechanics. The reason for its great relevance is rather trans-
parent: it allows to compute the statistical response of a system to small external
perturbations in terms of correlations of the unperturbed dynamics. In other words,
one can understand how the system reacts to an external disturbance just looking at
the statistical features in the absence of any perturbation: in such a way it is pos-
sible to determine perturbed properties (response) in terms of unperturbed features
(correlations).

The FDR has been widely investigated in the context of turbulence (and more
generally statistical fluid mechanics): for instance, it plays a key role for the closure
problem in the Kraichnan’s approach [98]. Moreover, there is a wide interest in
the scientific community active in geophysical systems, in particular, for climate
dynamics, where it is very important to understand the features of the system under
perturbations (such as a volcanic eruption, or a change of CO2 concentration) in terms
of the knowledge based on time series. Another very relevant fieldwhere the FDRhas
been used and investigated is the general theory of stochastic thermodynamics, with
particular focus on models for colloidal systems, granular media and active matter.
Finally, FDRs play a central role in the study of the non-equilibrium dynamics of
slow relaxing systems, such as Ising models or spin glasses.

Since response and dissipation are intimately related (this intuitive fact is made
more formal later in this section), in this paper, we use “Fluctuation-Response” and
“Fluctuation-Dissipation” in an interchangeable way. Historically, one of the first
examples of Fluctuation-Response relation is given by the formula expressing the
fluctuations of energy in an equilibrium system at temperature T with a (constant
volume) heat capacity Cv, that reads

〈E2〉 − 〈E〉2 = kBT
2Cv. (1)

On the left-hand side of the formula, one has the fluctuations in an unperturbed
system, while on the right-hand side, there is a quantity representing a response (the
heat capacity), and the factor of proportionality between the two is the temperature
(kB is the Boltzmann constant). Einstein derived an analogous formula connecting
the diffusivity D to the mobility μ for a Brownian particle dispersed in a solvent
fluid at thermodynamic equilibrium:

D = kBTμ, (2)

where again the unperturbed fluctuations (diffusivity) are proportional to response
(mobility) through a factor of proportionality represented by the bath temperature T .

The two previous examples are instances of the larger class of so-called “static”
equilibrium FDR, as they do not involve time-dependent quantities. In the first half of
the twentieth century, a series of experimental and theoretical worksmade longer and
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longer the list of such kind of relations, always tying in the same way spontaneous
fluctuations, response and temperature [101, 120]. A noticeable example from this
list is the expression given by Nyquist in 1938, relating the fluctuations of voltage in
a conducting wire where no potential differences or currents are externally applied
(the so-called Johnson noise) to the resistance of the conductor and the temperature.
The resistance is the analogous of themobility and of the heat capacity in the previous
equations, i.e. it represents a response. In this case, it is also particularly simple to
appreciate the equivalence between response and dissipation.

Afirst step towards the generalization to a time-dependent—or dynamic—relation
is represented by the regression hypothesis made by Onsager in 1931 [130, 131],
which states that—for small perturbations from equilibrium—the system returns to
equilibrium at the same rate as a fluctuation does at equilibrium. This fact is already
contained in the Einstein relation above. By recalling the general connection between
diffusivity and the velocity autocorrelation, i.e. that

D =
∫ ∞

0
dt〈v(t)v(0)〉, (3)

we can transform Eq. (2) into

〈v(t)v(0)〉 = kBT RvF (t), (4)

with the identification

μ =
∫ ∞

0
dt RvF (t). (5)

In the r.h.s. of Eq. (5), we define the so-called response function, RvF (t), which
connects the mean variation of the particle’s velocity at time t with a perturbation of
the external force applied at time 0.

In order to discuss in full generality the FDR, we need to give a general definition
of response function, which is the central object of linear response theory.We restrict
the discussion to the linear perturbationof stationary states, i.e. states that are invariant
under translations of time, so that time-dependent correlation functions and response
functions only depend on differences of times. Generalizations to non-steady states
are mentioned in Sect. 2.

The response function ROF (t) of the observable O(t) to a time-dependent per-
turbation of a parameter or degree of freedom δF(t) is implicitly defined in the
following relation

�O(t) =
∫ t

−∞
dt ′ROF (t − t ′)δF(t ′), (6)

where �O(t) = O(t) − 〈O(t)〉0 represents the average deviation, at time t , of the
observableO with respect to its average value in the unperturbed stationary system.
Here f (t) denotes an average of the observable f at time t over many realizations
of the same perturbation, while 〈 f 〉0 denotes the average of f in the stationary
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unperturbed state, which is not time-dependent. It is clear that, taking an impulsive
shape for the external perturbation, i.e. δF(t) = �Fδ(t) (with δ(t) the Dirac delta
distribution), one has

�O(t)|imp

�F = ROF (t), (7)

which is also an operational definition of the response function. Here we stress
that �F has the dimensions of a time-integral of F(t). When (for instance) the
perturbation has the shape of a Heaviside unit step function, i.e. δF(t) = δF0�(t),
then

�O(t)|step
δF0

=
∫ t

0
dt ′ROF (t ′). (8)

If O(t) is the tracer’s velocity along one axis and F(t) is the external force applied
from time 0 to time ∞ to the tracer (parallel to that axis), the final velocity reached
by the tracer is exactly δF0

∫ ∞
0 dt ′RvF (t ′), which explains the connection with the

identification made in Eq. (5).
The FDR for systems with Hamiltonian H at equilibrium with a thermostat at

temperature T—historically attributed to Callen and Welton and immediately after
generalized by Kubo [100]—reads:

ROF (t) = 1

kBT
〈O(t) Ȧ(0)〉0 = − 1

kBT
〈Ȯ(t)A(0)〉0, (9)

where A is the observable (or degree of freedom) which is coupled to F(t) in the
Hamiltonian to produce the perturbation, i.e.H(t) = H0 − F(t)A. It is easy to ver-
ify that if O is the tracer’s velocity and F(t) is an external force applied to its x
coordinate, Eq. (9) becomes Eq. (4). In conclusion the “dynamical” Einstein relation
is a particular case of equilibrium FDR. From Eq. (9) one may get several possible
variants, which are useful in different physical situations. A large amount of remark-
able results concern, for instance, the time-Fourier transform of Eq. (9), as well as
the relation connecting currents/flows and transport coefficients in spatially extended
systems (the so-called Green-Kubo relations, see below) [101, 120].

The equilibrium FDR is valid also in the framework of stochastic processes, when
they describe the dynamics of system fluctuating around thermal equilibrium. The
main differencewith the case considered byKubo is that a stochastic process typically
describes small systems, far from the thermodynamic limit, but the system size is
in fact irrelevant for the purpose of the validity of the FDR. In the case of large
systems (without long-range correlations), however, the averages are easily taken by
means of one or few experiments, while in a stochastic process where noise is large,
one needs to average over many realizations. An illustrative example is the so-called
Klein-Kramers model which describes the dynamics of simple particle systems at
thermal equilibrium [81]. In one dimension, its stochastic differential equations read:
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dx(t)

dt
= v(t) (10a)

m
dv(t)

dt
= −dU (x)

dx
− γ v(t) + √

2γ kBT ξ(t), (10b)

where ξ(t) is a white Gaussian noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′),
γ is the viscous damping, U (x) is an external potential. The model can be easily
generalized to N > 1 interacting particles in any dimensions. In the absence of the
external potential, Eq. (10) coincides with the original Langevin equation proposed
a few years after the theories of Einstein [73] and Smoluchovski [161] to explain
diffusion inBrownianmotion [103]. Its steady probability distribution (achievedwith
the condition γ > 0 and confining potential) is given by P(x, v) ∝ e−H(x,v)/(kBT )

with H(x, v) = mv2/2 +U (x). Linear response theory, when applied to the Klein-
Kramers model in its stationary state, gives exactly the same result as Eq. (9) [120,
147]. The Klein-Kramers process is Markovian with respect to the variables (x, v), a
property which is a rough approximation for the dynamics of a tracer which interacts
with other particles in a fluid. Typically, it has to be generalized to take into account
retarded (hydrodynamic) effects, by the introduction of linear memory terms, e.g. by
writing a Generalized Langevin Equation (GLE) [101]:

m
dv(t)

dt
= −

∫ t

−∞
dt ′�(t − t ′)v(t ′) + η(t), (11)

where �(t) is a memory kernel representing retarded damping, and η(t) is a station-
ary stochastic process with zero average 〈η(t)〉 = 0. The noise time-correlation—to
comply with the requirement of thermodynamic equilibrium (i.e. steady Gibbs distri-
bution and detailed balance)—must satisfy the so—called FDR of the second kind:

�(t) = 1

kBT
〈η(t)η(0)〉. (12)

It is clear that Eq. (12) has the same structure of Eq. (9), and this motivates the
name of the relation. The Markovian case (damping with zero memory) is obtained
when �(t) = 2γ δ(t) (recalling that

∫ t
0 dt

′2γ δ(t ′)v(t ′) = γ v(t)). For a more detailed
discussion of the significance of this condition and its connection to detailed balance,
we invite to read Sect. 4.1 of [144].

This brief review paper is organized as follows. In Sect. 2, we introduce two
different possible approaches to the FDR, which are based either on the knowledge
of the stationary distribution or on the knowledge of the dynamical rules of themodel.
Then, in Sect. 3, we discuss several applications of the FDR, in particular in the field
of non-equilibrium systems, such as granular media and active matter. Finally, in
Sect. 4, some conclusions are drawn.



34 M. Baldovin et al.

2 Two Approaches to Non-equilibrium FDR

The first examples of FDR date back to Einstein’s work on Brownian motion (1905),
and toOnsager’s regression hypothesis (1930s). Since initially the FDRwas obtained
for Hamiltonian systems in thermodynamic equilibrium, somehow there is a certain
confusion on its real validity. Here, we summarize two different generalizations of
FDR which both hold for a broad class of systems, including the non-equilibrium
cases [120].

2.1 An Approach Based upon the Knowledge of the
Stationary Distribution

Let us consider a systemwhose stationary probability density Pst (x) is non-vanishing
everywhere, andwonder about the time behavior of themean response of the variable
xn(t) at time t under a small impulsive perturbation δx(0). We can write

δxn(t) =
〈
xn(t)

〉
p
−

〈
xn(t)

〉

where
〈 〉

p
and

〈 〉
denote the average for the perturbed and the unperturbed systems

respectively. For a Markov system, we can write

〈
xn(t)

〉
p

=
∫

xn Pp(y)W (y → x, t) dxdy ,
〈
xn(t)

〉
=

∫
xn P0(y)W (y → x, t) dxdy ,

where W (y → x, t) is the probability of a transition from y at time 0 to x at time t ,
P0(y) = Pst (y) and Pp(y) is the initial distribution of the perturbed system.

In the case of an impulsive perturbation, the perturbed probability satisfies
Pp(y) = Pst (y − δx(0)), which allow us to derive a compact expression for δxn
when the perturbation is small:

δxn(t) = −
∑
j

〈
xn(t)

∂ ln Pst [x(0)]
∂x j (0)

δx j (0)
〉
, (13)

where the average is performed in the unperturbed system. Let us note that the
assumption of small perturbation is necessary only in the last step of the derivation
of Eq. (13): therefore, such a result can be generalized to the case of non-infinitesimal
δx(0) [31]. As by-product we have that it is possible to avoid the criticism of van
Kampen according to which it is not possible to rely on an expansion for small
perturbations, because chaos makes them grow exponentially [169]. On the contrary,
in the derivation of the above result [76], there are only assumptions about δx(t = 0)
and therefore chaos has no relevance.
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We can say that formula (13) summarizes the main results of the linear theory,
e.g. in Hamiltonian systems and stochastic processes: in addition one understands the
existence of a link between response and a suitable correlation function even in non-
equilibrium systems [120]. For instance in inviscid hydrodynamicswith an ultraviolet
cutoff, in spite of the non-trivial dynamics, since the presence of quadratic invariant,
and a Liouville theorem, one has a Gaussian statistics and therefore a FDR holds
for each of the variables, i.e. self-response functions to infinitesimal perturbations
coincide with the corresponding self-correlation functions. Let us note that although
Pst (x) is Gaussian the dynamics is non-linear and it is not easy to compute the
correlation functions.

Beyond the many conceptual advantages of Eq. (13), there is an obvious practical
limit: the difficulty to determine Pst (x), which is known only in some specific cases.
In the next subsection, we will discuss an approach that does not need the knowledge
of Pst (x).

Let us open a brief parenthesis on chaotic deterministic dissipative systems:
because of the phase space contraction one has that the invariant measure is singular,
typically with a multifractal structure, and therefore, Eq. (13) cannot be applied. A
quite natural temptation is to add a small amount of noise, so that a smoothing of
the invariant probability density allows for the use of the FDR. At a first glance such
an approach can appear unfair. On the contrary, the idea of the beneficial role of the
noise, which seems to date back to Kolmogorov, has strong bases: a small noisy term
in the evolution equations has the role of selecting the natural measure: one can say
that in the numerical experiments the round-off errors of the computer play a positive
role. It is quite natural to expect that the behaviors of the purely deterministic chaotic
system are very close to those obtained by adding a small amount of noise; such a
conjecture is widely confirmed by numerical computations [70].

A similar approachwas extendedbySeifert andSpeck,who established interesting
connections of the FDR with observables in the framework of stochastic thermody-
namics, such as entropy production and housekeeping heat [156, 157, 164] (see also
the next section).

2.2 An Approach Based upon the Knowledge of the
Dynamical Model

When the dynamics of the system under study is defined in terms of transition rates
or Langevin equations, but the stationary probability density function is not known, a
complementary approachwith respect to the one discussed in the previous subsection
can provide a FDR valid also out of equilibrium. These kinds of FDRs have been
derived in several different contexts, following different mathematical schemes (see
discussion below).

The general approach dates back to the 60s of the twentieth century, when Furutsu
and Novikov independently derived, under general conditions, a FDR [80, 125]
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which expresses the response function of a Gaussian process in terms of the equilib-
rium time-correlation between the observed variable and the Gaussian noise itself.
Nowadays, a method based on similar ideas—sometimes termed Malliavin weight
sampling [175]—has been extended to include field theories through the Martin-
Siggia-Rose-Jansen-de Dominicis approach [1, 3, 60] and employed in the context
of particle-based glassy systems to numerically calculate effective temperature and
susceptibility [55, 57, 59]. This allows one to express the response function in terms
of suitable correlation functions of the state variables. We mention here examples
for non-equilibrium Langevin dynamics driven by a time-dependent force both in
overdamped [7–9, 157, 178] and underdamped regimes [6], or even in the presence
of a non-linear Stokes force [149]. The non-equilibrium terms appearing in the gen-
eralized FDR have been interpreted in several ways: some authors focused on the
different roles of entropic and frenetic contributions (for a recent review, see [111]),
outlining their different nature with respect to the symmetry under time-reversal
transformation; other approaches have focused on the connection with entropy pro-
duction and heat [93, 106, 164].

The class of generalized FDR so far mentioned is expressed in terms of the corre-
lation between the observable O and a function of both the state variables and their
time-derivatives. Without loss of generality, the starting point for these relations is
of the form:

ROx j (t, s) = 〈O(t)M j [x(s), ẋ(s)]〉 , (14)

where, as usual, the average in the r.h.s. of Eq. (14) is performed through the unper-
turbed measure. M j is a function uniquely determined by the dynamics of the sys-
tem under consideration that depends both on x and ẋ. Its functional form can be
expressed in terms of known observables: for instance, in the case of continuous first
order dynamics of the kind

ẋ j = f j (x) + √
2Djη j , (15)

where η j is a white noise with zero average and unit variance, one has

M j = 1

2Dj
(ẋ j − f j ). (16)

The above result is general, holding in stationary or transient non-equilibrium
regimes. In some cases, i.e. when the quantity M j can be measured, Eq. (14) may
represent an advantage with respect to Eq. (13) (which depends upon the knowledge
of the steady-state probability).

The explicit dependence on the time-derivative of the state variables, ẋ, in Eq. (14)
may still represent a source of complications. Restricting to the calculation of the
response matrix, Rxi x j (t), i.e. such that O = xi , from Eq. (14) one can derive [42]
a simpler expression for processes with additive Gaussian noises in the stationary
state (the result can be easily generalized to the case of non-diagonal diffusion, not
reported for conciseness):
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Rxi x j (t) = − 1

2Dj

[〈xi (t) f j (0)〉 + 〈 fi (t)x j (0)〉
]

. (17)

Each element of the response matrix is given by the sum of two correlations: (i) the
temporal correlation between the observed variable and the force ruling the dynamics
of the perturbed variable and (ii) the temporal correlation between the force of the
observed variable and the perturbed variable (that for the diagonal elements, Rxi xi (t),
is the same correlation of (i) with swapped times). The two terms are equal only
at equilibrium. On the contrary they differ when detailed balance does not hold.
Note that the generalized FDR (17), differently from the forms (13) or (14), is not
determined by the time-correlation between the observed variable evaluated at t
and another observable at s < t . Moreover, path-integral FDRs require the explicit
knowledge of the microscopic dynamics, at variance with the approach (13) which
only requires a model of the stationary probability in phase space: it must be noticed
that in experimental situations it can be simpler to formulate a model for the steady
state probability rather than for the full dynamics. In both cases, however, one needs
to individuate the relevant variables, an often underestimated aspect [86].

The generalized FDR (17) is particularly fascinating because the diagonal ele-
ments of the response matrix (r.h.s of Eq. (17)) are expressed in terms of the
time-symmetric part of the anticipated/retarded equipartition relations while the
non-diagonal elements represent the time-symmetric part of the anticipated/retarded
Virial equation [42]. Indeed, because of the causality condition, we have Rxi x j (t =
0) = δi j , so that the initial time elements of the response matrix contain the same
information as the generalized equipartition and Virial equations holding out of equi-
librium, namely:

Di = 〈xi fi 〉 , 〈xi f j 〉 = −〈x j fi 〉 . (18)

This physical interpretation has been discussed in detail in [42] and exploited in
well-known examples, such as passive and active colloids both in underdamped and
overdamped regimes, see also Sect. 3.4.

Let us also comment on the interesting case of discrete variables, relevant for
instance for the Ising model or spin glasses, which requires some care. In particular,
for spins σi = ±1, with i = 1, . . . , N , evolving according to aMaster Equation with
unperturbed transition rates from the configuration σ to the configuration σ ′,w(σ →
σ ′), in contact with a reservoir at temperature T , the response of an observableO(σ )

at a magnetic field F switched on at time s on site j takes the following form [109]

ROF (t, s) = 1

2T

{
∂

∂s
〈O(t)σ j (s)〉 − 〈O(t)Bj (s)

〉}
, (19)

where the quantity Bj [σ ] is defined by

Bj [σ(s)] =
∑
σ ′

[σ ′
j − σ j (s)]w[σ(s) → σ ′]. (20)
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The equilibrium FDT (9) is obtained exploiting the property

〈
O(t)

∑
σ ′

[σ ′
j − σ j (s)]w[σ(s) → σ ′]

〉

eq

= − ∂

∂s
〈O(t)σ j (s)〉eq , (21)

valid when the average is taken at equilibrium [107, 109].

3 Applications

In this section, we discuss recent applications of the generalized formulae discussed
above to different problems. We start with two more theoretical cases, namely the
broad class of spin and disordered systems and the search for causality measure-
ments, and we conclude with applications to paradigmatic macroscopic physical
systems, that are granular and active systems, where the dynamics of each particle
is intrinsically out of equilibrium.

3.1 The Interesting Case of Causation Through Response

Among the many practical applications of the generalized FDR (13), its use in the
field of causal inference has a particular conceptual interest. It is well known that,
in order to understand the cause-effect relations holding between different elements
of a system, measuring the degree of correlation of the variables may be, in general,
of little help: two elements can be highly correlated even in the absence of a causal
link, as summarized by the notorious adage “correlation does not imply causation”.
The right way to characterize causal relations is indeed to probe the system under
study, i.e. to perturb it in some way and to observe the effects of this external action,
comparing them to the usual behavior of the system in the absence of perturbation [5,
16]; this is, for instance, the fundamental idea at the basis of Pearls’ formalism of
counterfactual inference [134]. When dealing with physical systems, as discussed
in the Introduction, the effect of an external perturbation is quantified by response
functions, which are therefore natural indicators of causal relations [5, 15]. In this
respect, a surprising consequence of Eq. (13) is that these observables can be esti-
mated by measuring proper correlation functions in an unperturbed dynamics: in
other words, the generalized FDR allows to infer causal relations without operating
any external action on the system, i.e. without actually probing it.

To show the above point, let us consider the example of a linear stochastic dynam-
ics for the three-dimensional vector (xt , yt , zt ) in discrete time, ruled by the following
Markov process:
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Fig. 1 Relation between causation and response. Main plot: response matrix element Rzy(t)
of model (22), as a function of time, for several values of the feedback parameter ε; numerical
simulations in which the system is actually perturbed (points) are compared to the predictions of
the generalized FDR (13) (lines). Inset (a): scheme of the interactions occurring in model (22). Inset
(b): correlations (red squares) and responses (blue circles) integrated over time, as functions of ε;
both quantities are rescaled with their values at ε = 0.04 for graphical convenience. Parameters:
a = 0.5, b = 1. Perturbation for the computation of response: δy0 = 0.01. M = 106 trajectories
have been considered for the averages

xt+1 = axt + εyt + bη(x)
t (22a)

yt+1 = axt + ayt + bη(y)
t (22b)

zt+1 = axt + azt + bη(z)
t (22c)

where a, b, and ε are suitable constants and η
(x)
t , η

(y)
t , η

(z)
t are independent, delta-

correlated Gaussian variables with zero mean and unitary variance. In this model the
dynamics of yt and zt is influenced by xt , which feels in turn the effect of yt because
of the feedback term εyt in the r.h.s. of Eq. (22a). A sketch of the interaction scheme
is shown in the inset (a) of Fig. 1.

The main plot in Fig. 1 shows the time dependence of the response function
between yt and zt . As it is clear from the structure of the dynamics, after one time
step there is no causal influence (an external perturbation of yt does not reflect on
zt+1). At subsequent times the dynamics of zt is altered by the perturbation, and the
value of the response function crucially depends on the feedback parameter ε, as
expected. Due to the linearity of the model, Eq. (13) can be simplified into [120]:
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Rt = CtC
−1
0 (23)

where Ct represents the correlation matrix at time t , i.e. Ci j
t = 〈xi (t)x j (0)〉 (with

x1 = x, x2 = y, x3 = z), and C−1
0 is the inverse of C0. The linearity of Eqs. (22)

implies that Pst is a multi-variate Gaussian and this immediately leads to Eq. (23).
Exploiting this version of the generalized FDR, as shown in Fig. 1, one can estimate
Rzy(t) from a suitable combination of correlation functions: the agreement with the
actual responses, computed from numerical simulations, is excellent.

It is worth noticing that the mere knowledge of C(t) is not at all informative
about the causal links among the elements of the system. For the considered model,
this fact can be qualitatively appreciated by looking at inset (b) of Fig. 1, where we
compare the behavior of R̃zy = ∫ ∞

0 Rzy(t) dt and C̃zy = ∫ ∞
0 Czy(t) dt as functions of

ε: while the former quantity, in the considered ε � 1 regime, is almost proportional
to ε, the latter does not crucially depend on the feedback parameter and it is different
from zero also for ε = 0. This difference is clearly due, in the considered example,
to the common dependence of yt and zt on the variable xt , inducing a “spurious”
correlation between the two (meaning that such a correlation does not unveil any
causal link between the two processes).

Using the generalized FDR is not the only way to get some insight into the causal
structure of a physical system without perturbing its dynamics. A widely employed
method is due to Granger [91] and relies on the computation of the forecasting uncer-
tainty for a given variable of a system, using linear regression models; if it is possible
to improve the prediction’s precision by including in the model a second, different
variable of the system, one may assume a cause-effect relation between the two. A
different approach (which has been shown to be equivalent to Granger’s method in
the case of linear dynamics [16, 22]) is based on the analysis of information transfer
between the variables, a process quantified by the so-called transfer entropy and
by other related observables [32, 148, 155, 166]. Despite the useful information
provided by these approaches, response functions appear to be more accurate in
characterizing causal relations, at least from a physical point of view; indeed they
quantify the (average) consequence of an actual intervention on the system, at vari-
ance with Granger’s method and transfer entropy analysis, which face the problem
from the point of view of predictability and uncertainty [15, 17, 21, 116]. In this
respect, generalized FDRs as Eq. (13) are, to the best of our knowledge, the only
way to deduce the causal structure of a system, in a proper physical sense, by only
observing its spontaneous evolution.

3.2 Spin and Disordered Systems

Here we focus on some applications of the FDR in the contexts of spin models and
disordered systems. As already underlined, the main aim of an FDR is to give a tool
to calculate a response without applying the perturbation. The direct calculation of a
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linear response function, for instance in numerical simulations (but the same can be
true for experiments), is a very time-demanding task: indeed, the signal fluctuations
generally increase when the applied field is small, a condition required for the linear
regime to hold. Therefore, the application of FDRs in numerical computations is
an effective shortcut to get information on the response function from the measure
of the correlations in the unperturbed state. This shortcut has been frequently used
to develop field-free algorithms in the context of spin systems [50, 53, 56, 109,
145], and glasses [27] or active matter [167]. Let us note that, at variance with
previous attempts, specifically designed for a numerical implementations [27, 50,
145], the FDR reported in Eq. (19) involves the quantity B defined in (20), which is
an observable quantity because it only depends on the state of the system at a given
time and therefore can be in principle measured in real experiments.

3.2.1 Non-linear FDRs

The FDRs in the form (19) can be also derived at non-linear orders in the perturbation,
involving multi-point correlation functions. Non-linear response functions play a
central role in the context of glassy systems [28, 30, 65, 163],where usually two-point
correlators remain always short-ranged due to the presence of disorder. In particular,
in a spinglass, the linear susceptibility does not diverge at the critical temperature,
whereas non-linear susceptibilities show a divergence when the low temperature
phase is approached, signaling a growing amorphous order in the system. Therefore,
the relation between non-linear responses and multi-point correlation functions can
be an important tool in the context, as initially proposed in [33]. A general derivation
of non-linear FDRs valid for arbitrary order was presented in [107, 108]. We report
here the form of the second-order response for spin variables perturbed by two fields
F1 and F2 at sites j1 and j2 at times t1 and t2 [107]

R(2)
OF (t, t1, t2) ≡ δ〈O(t)〉F

δF1(t1)δF2(t2)

∣∣∣∣
h=0

= 1

4T 2

{
∂

∂t1

∂

∂t2
〈O(t)σ j1(t1)σ j2(t2)〉 − ∂

∂t1
〈O(t)σ j1(t1)Bj2(t2)〉

− ∂

∂t2
〈O(t)Bj1(t1)σ j2(t2)〉 + 〈O(t)Bj1(t1)Bj2(t2)〉

}
. (24)

Let us note that at equilibrium, exploiting the property (21), Eq. (24) simplifies
to

R(2)
OF (t, t1, t2) = 1

2T 2

{ ∂

∂t1

∂

∂t2
〈O(t)σ j1 (t1)σ j2 (t2)〉 − ∂

∂t2
〈O(t)B j1 (t1)σ j2 (t2)〉

}
, (25)

with t > t1 > t2. Therefore, the presence of the model-dependent quantity B is
not canceled, making the higher order FDRs somehow less general than the linear
one. As suggested in [23] and [94], this observation can provide information on the
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dynamical rules governing the system from the study of the equilibrium non-linear
responses.

Other interesting applications of non-linear FDRs are related to the study of the
thermal response of the system (namely, a perturbation applied to the noise inten-
sity) as discussed in [75], or in the wide field of non-linear optics and quantum
spectroscopy [67, 99].

3.2.2 Effective Temperature

One of the main theoretical applications of the FDRs is the possibility to introduce
an effective temperature, from the ratio between response and correlation. Review
articles on this interesting subjects are [54, 57, 104, 144, 179]. Here we illustrate
such a concept for a spin system, where the linear susceptibility, using the FDR (19),
can be written as

χ(t, tw) ≡
∫ t

tw

dsRσF (t, s) = β

2

∫ t

tw

ds

[
∂

∂s
C(t, s) − 〈σi (t)Bi (s)〉

]
, (26)

where C(t, s) = 〈σi (t)σi (s)〉 and tw is a reference waiting time. Observing that the
quantity

ψ(t, tw) =
∫ t

tw

ds
∂

∂s
C(t, s) = 1 − C(t, tw), (27)

for fixed tw, is a monotonously increasing function of time, one can reparametrize t
in terms of ψ and write χ(ψ, tw).

In equilibrium, there is no dependence on the waiting time tw and one obtains a
linear parametric representation

χ(ψ) = βψ, (28)

yielding

β = dχ(ψ)

dψ
. (29)

Out of equilibrium, a non-linear dependence can arise and an effective temperature
can be introduced generalizing Eq. (29)

βe f f (ψ, tw) = ∂χ(ψ, tw)

∂ψ
, (30)

with βe f f = 1/Tef f . Then one can define a Fluctuation-Dissipation ratio with respect
to the temperature T of the dynamics (after the quench)
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X (ψ, tw) = T

Tef f (ψ, tw)
, (31)

which represents a measure of the deviation from equilibrium. In the limit of large
waiting time, the functional dependence of X on the correlation function can show
different behaviors, shedding light on the relevance of different characteristic time
scales in the system. A detailed discussion of this quantity in the context of aging
and glassy systems can be found in [56]. More recent applications of the FDR to
equilibriumandnon-equilibriumproperties of spin glasses havebeen reported in [10].

The concept of effective temperature has been also applied to systems in the sta-
tionary state, such as driven granular media or active particles (see for instance [110,
158]). In this case, the problem is to understand the meaning and the role played
by the effective temperature. In some situations, usually when the system is gently
driven and the entropy production flux is small, the relevant features of the system
behavior can be successfully interpreted in terms of this parameter, leading to an
equilibrium-like description. In other cases, the effective temperature can represent
an evocative or appealing concept but does not significantly help in the understanding
of the underlying physical mechanisms, see next section.

3.3 Granular Materials

Granular materials appear in our everyday life and in several industrial applications,
posing deep questions to statistical physics and technology [2, 83, 95, 138]. A gran-
ular medium is an ensemble of macroscopic “grains”, which interact (among each
other and with the surroundings) through non-conservative forces. Several orders
of magnitude separate the average energy of internal thermal fluctuations at room
temperature—kBT ∼ 5 · 10−21 J—and the macroscopic energy of a grain (e.g. that
related to the position and motion of center of mass): for instance mgr ∼ 10−5 J for
a steel sphere with r = 2mm, g being the gravity acceleration. Granular media can
display “phase” behaviors: when diluted and under strong shaking a granular “gas”
is realized, but when allowed volume and/or the intensity of shaking are reduced,
the granular system behaves as a dense “liquid” or a slowly deforming “solid” [96].
The slow-dense phase, close to the so-called jamming transition, is difficult to be
analyzed: we refer the reader to different theoretical approaches [18, 24, 52, 71, 72,
113, 123, 126, 129, 146]. We briefly summarize the more clear situation established
for granular gases and liquids.

A granular gas is realizedwhen the packing fraction is small, typically of the order
of 1% or less, such that one can assume instantaneous inelastic binary collisions with
restitution coefficient α ≤ 1 (the value 1 is for elastic collisions). In experiments,
usually done under gravity, it is necessary to shake the container with accelerations
much larger than gravity in order to keep the packing fraction small everywhere
[38, 41, 83, 138]. The three main categories of gas regimes are: (1) cooling granular
gases, non-steady stateswhich are initially prepared as at equilibrium, and leaving the
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total energy dissipate under repeated inelastic collisions [37, 92, 171]; (2) boundary-
driven gases, where at least one wall injects energy into the gas (e.g. vibration in
experiments, thermostats in theory), reaching a non-homogeneous steady state [74,
97, 136]; (3) bulk driven granular gases, where each particle is in repeated contact
with some source of energy, for instance bouncing above a vibrating rough plate [90,
128, 141, 142, 172], reaching a homogeneous steady state.

In granular gases, it is customary to define a kinetic “granular temperature” [11,
87, 102, 127]

kBTg = m〈|v|2〉
d

, (32)

with v the velocity of each particle, d the dimensionality of space and kB is usually
replaced with 1. Such a temperature is not expected to have a wide thermodynamic
meaning, and also in statistical mechanics it has not a role equivalent to that played
for molecular gases, for instance deviations from a Maxwellian are inevitable in
the presence of inelastic collisions, a kurtosis excess (or second Sonine coefficient)
is observed—larger or smaller—in many regimes [168, 171]. In all gas and liquid
regimes, moreover, there is no equipartition of energy among different degrees of
freedom (e.g. in a mixture or under non-isotropic external forces), unless they have
identical properties [20, 78, 85, 118, 119, 122, 133, 176].

Linear response relations have been frequently studied for granular gases and liq-
uids, particularly in steady states [19, 35, 68, 82, 86, 139, 140, 160, 173, 174], while
a few studies also considered cooling regimes [35, 68, 69]. In dilute homogeneously
driven granular gases, the equilibriumFDR is empirically observed, provided that the
canonical temperature is replaced with the tracer granular temperature T0 which—in
general—can be different from Tg [19, 82, 139, 173, 174]. For instance, a granular
tracer under the action of a weak perturbing force in a dilute driven granular sys-
tem satisfies the dynamical Einstein relation, Eq. (4) with T = T0. Such a result is
surprising as, on the basis of the FDR discussed above, Eq. (13) and of the non-
Gaussian distribution of velocities, one would expect a correction to it. Nevertheless,
in many different dilute cases, such corrections are not observed or—in certain solv-
able models—can even be proven to vanish [173]. A possible explanation to such
a general result comes through the molecular chaos which is likely to be valid in
dilute cases and which implies that a particle 1 meets particle 2 only once: any col-
lision rule, if restricted to a single particle (that is, disregarding the fate of particle
2) is equivalent to an elastic collision with effective masses [144]. For a massive
intruder (mass much larger than the other particles), the validity of the Einstein rela-
tion is recovered in the context of the derivation of an effective Langevin equation
model [151]

The liquid (non-dilute) case is perhaps more interesting. The first experiment
focusing on a Brownian-like description of a large intruder in a granular liquid is
discussed in Ref. [64]. Most recent studies, both theoretical [140, 143, 152, 173,
174] and experimental [86], have shown that when the granular is a liquid and not a
gas, deviations from the equilibrium Fluctuation-Dissipation relation are observed.
In granular liquids, as a matter of fact, granular temperature is much less useful than
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Fig. 2 Response function of the tracer’s velocity V under a perturbing force F , RvF (t) and auto-
correlation function C(t) = 〈V (t)V (0)〉/〈V (0)V (0)〉 as a function of time, measured in molecular
dynamics simulations of a system composed of a massive intruder interacting with a driven granular
fluid [152]. In themain plot an elastic casewith restitution coefficientα = 1 (where the two functions
superimpose as in equilibriumFDR) and an inelastic caseα < 1 (where equilibriumFDR is violated)
are shown. In the inset, the ratio between the two curves is shown for the two cases (black is elastic,
blue is inelastic)

in gases, and cannot be replaced by some other temperature for the purpose of an
effective description (Fig. 2).

An interesting example, in theory and in experiments is provided, again, by a
massive intruder M � m [143, 152]. For the purpose of describing, in numerical
simulations, the autocorrelation of the velocity V of the tracer and its linear response,
the following model provides a fair description for packing fractions smaller than
40%:

MV̇ (t) = −�[V (t) −U (t)] + √
2�TtrEv(t) (33a)

M ′U̇ (t) = −�′U (t) − �V (t) + √
2�′TbEU (t), (33b)

whereU (t) is an auxiliary variable representing thememory effect due to the average
velocity field of the particles surrounding the tracer, � and Ttr are the effective drag
coefficient and tracer temperature (both can be derived by kinetic theory in the dilute
limit), �′ and M ′ are parameters to be determined, for instance from the measured
autocorrelation function, and Tb is the value of Tg in the elastic limit (for instance the
external bath temperature [142]). Equations (33) can be mapped into a generalized
Langevin equation, Eq. (11), with exponential memory kernel. In the dilute limit
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(parameters such that U is negligible), the massive tracer evolves according to a
simple Langevin equation. In the elastic limit (Ttr = Tb = Tg), on the other side,
the coupling with U is still important, but the equilibrium Fluctuation-Dissipation
relation is recovered. The numerical simulations have shown that the auxiliary field
U (t) is a local average of the velocities of the particles surrounding the intruder.
When the density increases numerical simulations suggest Ttr → Tg , likely due to
a reduction of effective inelasticity in recolliding particles. The appearance of Tb is
also interesting: the “temperature” associated to the local velocity fieldU is equal to
the bath temperature and this seems a consequence of the conservation of momentum
in collisions, implying that the average velocity of a group of particles is not changed
by collisions among themselves and is only affected by the external bath and a (small)
number of collisions with outside particles. Summarizing, model (33) suggests that
in a granular liquid—at some level of approximation—two temperatures are relevant,
one related to the single particle scale and another one related to many particles, or
collective, scale. Such a conclusion is consistent with a series of recent results about
spatial velocity correlations, typically measured as structure factors of the velocity
field [12, 13, 36, 84, 89, 90, 132, 137, 141, 170, 172].

3.4 Application to Biological Systems and Active Particles

The results of the FDR have been also applied to several biological systems, for
instance in an evolution experiment in bacteria [154] or in the prediction of heart
rate response [51]. Another recent application has been proposed in the context of
brain activity. Indeed, one can wonder whether, at some scale, the evoked activity
in the brain by an external stimulus can be somehow predicted from the observation
of the spontaneous, rest activity. In order to quantitatively address this issue, one
needs an effective model to describe the brain dynamics at the considered scale. In
the work [150], the authors considered the stochastic version of the Wilson-Cowan
model [26], describing at a coarse-grained level the dynamics of populations of
exitatory and inhibitory neurons. In the linearized version, this model consists in
two coupled linear Langevin equations for the two populations. The prediction of
the FDR for this model was compared to experimental Magnetoencephalography
(MEG) data for rest and evoked activity in healthy subjects. Whereas the behavior
of the temporal autocorrelation function of the total rest activity (excitatory plus
inhibitory neurons) showed a double exponential decay characterized by two typical
times, the decay of the response function was described by a single exponential
decay, in qualitative agreement with the prediction of the FDR. These results suggest
that some information of the brain response to external stimuli can be obtained from
the observation of its spontaneous activity.

A different field that is in large part contained in biology and biophysics is that
of self-propelled particles, where non-equilibrium stochastic dynamics has been
employed as a main modeling tool [88, 117]. These systems, known as “active”,
are usually out of equilibrium and store energy from the environment, for instance,
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taking advantage of chemical reactions or mechanical agents (such as bacterial cilia
and flagella), to produce directed motion [25]. The intrinsic non-equilibrium nature
of the class of models proposed to describe active systems makes them the ideal plat-
forms to test any version of the generalized FDR [39, 153]. Since their steady-state
properties are quite rich, involving unexpected spatial correlations in density, veloc-
ity and polarization fields, the use of Eq. (13) can be challenging. For this reason,
this method has been applied only in the limit of small activity [46] when the steady
probability distribution is known perturbatively or using effective equilibrium-like
approaches. This allows one to derive a near-equilibrium expression for the sus-
ceptibility [79] and approximated predictions for the transport coefficients of active
particles, such as their mobility [63]. In addition, the Malliavin weight sampling has
been recently generalized to the more common models used to describe the active
particle dynamics [167]. This technique was particularly useful to explore numer-
ically far from equilibrium regimes, calculating (i) the mobility of an interacting
active system at low density [63] (ii) the response function due to a shear flow [4]
and, finally, (iii) the active effective temperature [58, 105, 124, 135].

In this section, going beyond the approximated approaches explained so far, we
apply the technique reported in Sect. 2.2 to obtain exact expressions for the general-
ized FDR valid in active matter systems [42, 48]. Specifically, we focus on particle
systems in the framework of dry active matter without momentum conservation. In
this context, the evolution of an active particle of mass m is described by a set of
stochastic equations for its position, x, and its velocity, v, given by [47, 115]:

ẋ = v (34a)

mv̇ = −γ v − ∇U + fa + √
2T γ η , (34b)

while, in the more common overdamped version, such that m/γ � 1, reads:

γ ẋ = F + fa + √
2T γ η . (35)

In both the dynamics, fa is a non-gradient force, called “active force” for simplicity,
that models at a coarse-grained level the system-dependent mechanism responsible
for the active dynamics so that its complex physical or biological origin is not explic-
itly considered. This term is chosen as a time-dependent force that provides a certain
degree of persistence to the particle trajectory in agreement with the experimental
observations of active colloids, bacteria, and other biological microswimmers. The
most popular models to account for this persistence in the framework of continuous
stochastic processes are the Active Brownian Particles (ABP) [34, 40, 44, 66, 77,
162, 165] and the Active Ornstein-Uhlenbeck particles (AOUP) [29, 43, 61, 112,
121, 177]. In both cases, the active force is expressed as:

fa = γ v0n , (36)
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where v0 is the swimvelocity induced by the active force andn is a vector representing
the particle orientation that evolves stochastically. In theABPmodel,n is a unit vector
that evolves as

ṅ = √
2Drn × ξ , (37)

while in the AOUP model, n follows an Ornstein-Uhlenbeck process with unitary
variance:

τ ṅ = −n + √
2τξ . (38)

In both equations, ξ is a vector of δ-correlated white noises with zero average.
The coefficient Dr is the rotational diffusion coefficient while τ is simply named
persistence time since it coincides with the autocorrelation time of the active force.
The models reproduce consistent results by choosing (d − 1)Dr = 1/τ where d > 1
is the dimension of the system [77].

In general, the active force pushes the system out of equilibrium, producing
entropy with a rate that growswith τ [45, 49, 62, 114, 159]. Applying Eq. (17) to the
dynamics (34), the elements of the response matrix after perturbing the x component
of the velocity, read [42]:

Rv,v(t) = m

T
〈v(t)v(0)〉 + m

2T γ

(〈v(t)∇xU (0)〉 + 〈∇xU (t)v(0)〉 − 〈
v(t)fa(0)

〉 − 〈
fa(t)v(0)

〉)
(39a)

Rx,v(t) = m

2T
〈x(t)v(0)〉 + m

2T γ
〈x(t)∇xU (0)〉 − m

2T γ
〈x(t)fa(0)〉 − m2

2T γ
〈v(t)v(0)〉 , (39b)

where we have suppressed the spatial indices for simplicity. Equation (39a) is deter-
mined by the generalized retarded kinetic energy and the time-symmetric retarded
power injected by the gradient force and the active force. In Eq. (39b), we can identify
the retarded mechanical pressure (second term), the so-called retarded swim/active
pressure (third term) and, finally, the retarded/anticipated kinetic energy (fourth
term). Applying Eq. (17) to the dynamics (35), the response after perturbing the
coordinate x of the particle position reads [42]:

Rx,x (t) = 1

2T
(〈x(t)∇xU (0)〉 + 〈∇xU (t)x(0)〉) − 1

2T

(〈
x(t)fa(0)

〉 + 〈
fa(t)x(0)

〉)
.

(40)
In the overdamped case, the response is determined by the sum of the time-symmetric
part of the retarded/anticipated mechanical and swim pressures. In overdamped sys-
tems with T = 0, the above formulation of the FDR cannot be directly applied,
because the dynamics is not of the Langevin form. In this athermal case, another ver-
sion of the generalized FDR can be derived using a modified path-integral method
developed in [48] in the case of AOUP (FDR for athermal ABP are still unknown),
obtaining:
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Fig. 3 Comparison between response and FDR for a two-dimensional particle confined in a quartic
potential,U (x) = k|x|4. Panel (a): Rvv(t) (colored points) calculated perturbing the velocity of the
underdamped dynamics, Eq. (34). Panel (b): Rxx (t) (colored points) calculated perturbing the
position of the overdamped dynamics, Eq. (35). The responses are shown for passive, ABP and
AOUP as explained in the legend which is shared by both panels. Solid color lines plot the FDR,
obtained using Eq. (39a) and (40), for panels (a) and (b), respectively. The inset of panel (b) shows
a comparison between Eq. (40) (calculated at T = 10−2) and Eq. (41) (holding for T = 0). The
other parameters of the simulations are k = 3, γ = 1, T = 10−1, v0 = 1, and τ = 1

DaγRx,x (t) =1

2
[〈x(t)∇xU (0)〉 + 〈∇xU (t)x(0)〉]

+ τ 2

2

∑
α

[〈vα(t)∇α∇xU (t)vx(0)〉 + 〈vx (t)∇x∇αU (0)vα(0)〉] ,

(41)

where we have introduced the particle velocity vα = α̇, with α = x, y. According to
our notation, repeated indices are summed,U (s) = U (x(s)). The first line of Eq. (41)
coincides with the equilibrium FDR holding for passive particles where the detailed
balance holds. The second line contains two additional terms, involving the particle
velocity and the second derivative of the potential, that disappear in the equilibrium
limit τ → 0. At variancewith the equilibrium scenario, in thermal active systems, the
generalized FDR is not only determined by a time correlation involving the position
but is affected by the correlations between the other variables, such as the velocity.

To validate the generalized FDR in the case of active particles, we consider both
AOUP and ABP dynamics confining the particle through a non-linear force due
to an external potential. To go beyond the harmonic case that can be solved ana-
lytically [48], we chose a quartic potential, U (x) = k|x|4/4, where the constant k
determines the strength ofU . In Fig. 3,we show the diagonal elements of the response
matrix numerically obtained by their definitions (i.e. perturbing the dynamics) and the
FDR numerically calculated from the unperturbed system. In particular, in panel (a),
we show the results in the underdamped case, reporting the profile of Rvv(t) and
the FDR calculated from Eq. (39a), while, in panel (b), the analog study is reported
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for the overdamped dynamics, comparing Rx,x (t) and the FDR, Eq. (40). In both
cases, the FDRs exactly match with the direct study of the response confirming the
exactness of our theoretical results. Finally, in the inset of panel (b), we compare
Eq. (40) in the limit of small temperature, T , and the athermal relation, Eq. (41). We
reveal that the former converges onto the latter for T → 0.

4 Conclusions

Wehave reviewed two significant approaches to the problemof linear response in gen-
eral systems, when the constraint of thermodynamic equilibrium for the unperturbed
state is removed. We have also sketched some of the interesting recent applications
of such approaches.We cannot avoid to stress, again, the evident fact that— given the
system, the observable of interest and the applied perturbation—the linear response
function is unique and therefore the two approaches lead to the same result, and in fact
an analytical connection can be demonstrated [14]. The difference between the two
schemes relies on the required information: in one case, formula (13), one needs some
knowledge about the probability distribution at initial time (e.g. the steady-state one)
for the relevant degrees of freedom; in the other case, formulas (14), (17) and (19),
one needs knowledge about the system’s dynamical model (e.g. noise distributions,
forces involved, transition rates, etc.). It is not always evident when one approach is
more useful than the other. In lucky cases, where both the dynamical model and its
probability distribution are known, the two formulas can express different informa-
tion and one can be more useful than the other (for instance correlations with state
variables can be more transparent than correlations with noises or time-derivative of
state variables).

In experimental situations, where the underlyingmodel is not known, an empirical
approach to retrieve the main features of the probability distribution of the relevant
degrees of freedom can be simpler than retrieving information about forces and
noises in the system, suggesting the first approach as the more useful. If a dynamical
model is known for the relevant degrees of freedom, while the generated probability
distribution is unknown, then the second approach should be more direct. However,
it is clear that, even when a dynamical model is fully available, the first approachmay
have some advantage: for instance, in a system with many particles and a massive
tracer whose response is investigated, the knowledge of the dynamics of all the
particles can be too detailed and result, when inserted in the second approach, in
quite a complicate formula, or even not very informative and/or transparent ones;
an empirical study of the probability distribution of the relevant degrees of freedom
(e.g. those of the tracer and some coarse-grained observable for the surrounding
fluid) can provide, sometimes, an approximate but more informative route through
the first approach (see for instance the example discussed in Sect. 3.3).

We also recall that an FDR does not give an explicit prediction for the response,
but only an expression of it in terms of unperturbed correlations. Once an FDR is
known, the problem of obtaining (empirically or analytically) the required corre-
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lations remains. An FDR, however, can have already a theoretical meaning, even
without the explicit knowledge of the time-dependence of the involved unperturbed
correlations, i.e. it is already significant to know which correlations are involved, as
well illustrated by the application described in Sect. 3.1 for the problem of causation
and also in the closure problem in the Kraichnan’s approach to turbulence [98].
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Mandelbrot’s Fractal Structure
in Decaying Process of a Matter-field
Interacting System

Tomio Petrosky, Daisuke Kotaka, and Satoshi Tanaka

Abstract A decaying process of an unstable matter-field interacting system is ana-
lyzed by the complex spectral analysis of the Hamiltonian, which is a microscopic
analysis of irreversibility based on the basic laws of physics. By using the iterative
method to solve a nonlinear eigenvalue problem of an effective Hamiltonian in the
complex energy plane, we found a fractal structure described by a Mandelbrot set
associated to the broken time-symmetry for the unstable dynamical system.

1 Introduction

It is our pleasure to contribute to the special issue of a Springer Nature book in
honor of Professor SlavaBelyi onNon-equilibriumThermodynamics andFluctuation
Kinetics. One of the authors (T.P.) especially expresses his thanks to have several
occasions to discuss with Slava on the broken time-symmetry that is the main subject
in non-equilibrium statistical physics. We had a wonderful moment to discuss this
problemwhenever Slava visited the International Institute for Physics and Chemistry
in Brussels, Belgium. We have also spent a wonderful moment to drink an excellent
vodka together. Slava hasmany interesting contributions toNon-Equilibriumphysics.

Due to a remarkable development in the complex spectral analysis of theLiouville-
vonNeumann operator (Liouvillian, in short), as well as Hamiltonian, we now under-
stand that irreversible processes are exact dynamical processes occurring outside the
Hilbert space. This is not coming from some approximation, such as a coarse graining
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procedure of fundamental equations of motions due to human’s limitation to con-
trol informations of complex nature. Indeed, in spite of the fact that Liouvillian and
Hamiltonian in the Hilbert space are Hermitian operators, they may have complex
eigenvalues in an extended Hilbert space outside the Hilbert space, due to the reso-
nance singularity appearing in the solution of the equation of motion. Moreover, we
have shown a set of eigenstates of the Liouvillian or Hamiltonian with the complex
eigenvalue may span bi-complete and bi-orthonormal sets in an extended Hilbert
space outside the Hilbert space [1–3]. We have shown that the imaginary part of a
complex eigenvalue gives a transport coefficient for irreversible processes, such as
a diffusion coefficient, as well as viscosity in a kinetic equation [4–11], or a decay
rate of spontaneous decay process of an excited atom in quantum system [3, 13–18],
and radiation dumping in classical system [19–21].

In this paper, we will consider the Friedrichs model that has been introduced
to analyze a quantum decaying process in a matter-field interacting system where
a discrete spectrum is coupled with a continuous spectrum through the resonance
interaction [3, 12, 22]. The Hamiltonian H of the Friedrichs model consists of an
unperturbed part H0 of the matter and the field without interaction and the interaction
part gV ,

H = H0 + gV, (1)

where gV is a Hermitian operator, and a real number g is a dimensionless coupling
constant. The explicit form of the Hamiltonian is given in (2) and (3).

In this model, if the unperturbed discrete state does not overlap with the unper-
turbed continuous states, one can show that the complete set of the eigenstates of
the full Hamiltonian H consists of a discrete stable state associated to the matter as
well as continuous states associated to the field. In this situation, there is no reso-
nance between the discrete spectrum and the unperturbed continuous states. Then,
the system is stable.

On the other hand, if the resonance occurs, i.e., if the unperturbed discrete state
overlaps with the unperturbed continuous states, the system becomes unstable. In
this case, the discrete state with a real eigenvalue disappears in the complete set
of the eigenstates of the full Hamiltonian. Nevertheless, Friedrichs has shown that
one can solve exactly the Schrödinger equation and shown that the decaying process
that breaks time-symmetry is an exact solution of the Schrödinger equation which is
symmetric in time-inversion. As mentioned above, we have shown for this unstable
case that a set of eigenstates of the full Hamiltonian H with the complex eigenvalue
spans bi-complete and bi-orthonormal set in an extendedHilbert space [3].Moreover,
we have shown the transition from stable case to the unstable case (i.e., the transition
from reversible process to the irreversible process) can be understood as a dynamical
phase transition [15].

As we will see, to find the complex eigenvalue of the full Hamiltonian reduces
to a new nonlinear eigenvalue problem of the effective Hamiltonian which is closely
related to the self-energy part in the dispersion equation associated to the unstable
state. Since the self-energy part is generally a nonlinear function of the eigenvalue of
the full Hamiltonian, it is often difficult to solve the nonlinear eigenvalue problem of
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the effective Hamiltonian. For this case, an iterative method in terms of a nonlinear
map has been often used to obtain an approximate value of the complex eigenvalue.
However, a remarkable feature of the Friedrichs model which we consider in this
paper is that we can algebraically solve this nonlinear equation. Hence, we will first
show the explicit form of the exact complex eigenvalue.

After that, we will analyze the iterative method with a comparison to the exact
solution. We shall see that the nonlinear map for the iterative method shows a strong
nonlinear behavior near the dynamical phase transition from the time-symmetric
regime to the broken time-symmetric regime. More amazingly, we will show that the
inversemap of the iterativemethod used in thismodel exactly reduces to the nonlinear
map that generates Mandelbrot sets [23]. This indicates that a well-analyzed process
of the spontaneous decayprocess of an excitedunstable atomstill shows an interesting
new aspect of the fractal in nonlinear dynamics.

2 Complex Spectral Analysis of Friedrichs’ Hamiltonian

We will use Dirac’s braket notation for the states. Let us consider a simple elec-
tron system with a single discrete state |a〉 with energy εa coupled with a three-
dimensional free-electron band-state |k〉 with a continuous wave vector k where the
Hamiltonian of the system is given by (1) with the unperturbed Hamiltonian,

H0 = εa|a〉〈a| +
∫

dk εk |k〉〈k|, (2)

and the interaction,

gV =
∫

dk gVk
(|a〉〈k| + |k〉〈a|), (3)

where the real number g is a dimensionless coupling constant. We assume that
〈a|a〉 = 1, 〈a|k〉 = 〈k|a〉 = 0, and 〈k|k′〉 = δ(k − k′) with the three-dimensional
delta function, and they satisfy the completeness relation

|a〉〈a| +
∫

dk |k〉〈k| = 1. (4)

Moreover, we assume that the dispersion relation of the free electron is given by

εk = �
2k2

2m
, (5)

with k = |k|, and the interaction is given by

Vk = 1

2
√
2k2c

θ(kc − k), (6)
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where we have introduced the cutoff wavenumber kc to obtain a finite value of the
self-energy by renormalizing the ultraviolet divergence in the self-energy. Indeed,
this choice of interaction gives the cutoff-independent contribution from the upper
bound of the integration over thewavenumber k in the self-energy part. The numerical
factor front of the interaction is for our convenience in the numerical calculation.
Hereafter, we will use the units � = 2m = 1.

In the case εa is a real number, the Hamiltonian H is a Hermitian operator in
the Hilbert space. For this case, one can show that if εa is negative, or greater than
εkc , the eigenvalues of H are real numbers. Then, the system is stable. However,
when the condition εa < εkc with εa > 0 is satisfied, the system becomes unstable
due to the resonance singularity expressed by 1/(εk − εa) in the usual perturbation
analysis. For this unstable case, the discrete eigenstate disappears from the spectrum
of H . In this case, the solution of the Schrödinger equation breaks time-symmetry.
Nevertheless, the Hamiltonian may have complex eigenvalues in an extended Hilbert
space that is spanned by a dual base of a set of eigenstates (see (7) and (8)) [3].

In the complex spectral analysis, we construct the solution to the eigenvalue
problem of the generator of motion (such as Hamiltonian, or Liouvillian, which
is a Hermitian operator in the Hilbert space) outside the Hilbert space. Since the
function space is extended outside the Hilbert space, the symmetric operator may
have complex eigenvalues. For this solution, the left-eigenstate belonging to the same
complex eigenvalue is not a Hermitian conjugate to the left-eigenstate. Hence, we
have to solve a pair of these dual eigenvalue problems,

H |�α〉 = Zα|�α〉, 〈�̃α|H = Zα〈�̃α|, (7)

where the argument α = a, or k. In general, Zα is a complex number. (For the
Friedrichs model that we consider, one can show that Za is a complex number, but
the continuous spectrum Zk = εk is a real number). Hence, from (7), we see that
〈�̃α| �= 〈�α| because of the fact that H is a Hermitian operator H † = H .

These eigenstates span a bi-orthogonal and bi-complete set of an extended Hilbert
space, i.e., 〈�̃a|�a〉 = 1, 〈�̃a|�k〉 = 〈�̃k|�a〉 = 0, and 〈�̃k|�k′ 〉 = δ(k − k′), and

|�a〉〈�̃a| +
∫

C

dk |�k〉〈�̃k| = 1, (8)

where the integration over the wave vector is chosen with a suitable contour C when
it is performed by a contour deformation in the complex plane. (In this paper, we
will not show the explicit form of eigenstate with continuous spectrum, since our
discussion on the Mandelbrot set is only associated to the complex discrete state.
One can find the explicit form and the contour C in [3]).

In order to solve the eigenvalue problem (7), we extend the Brillouin-Wigner type
of the projection-operator method to the extended Hilbert space and introduce the
following projection operator P ,
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P ≡ |a〉〈a|, Q = 1 − P. (9)

They satisfy the relations,

P2 = P, Q2 = Q, PQ = QP = 0. (10)

Then, the right-eigenvalue equation in (7) leads to a set of equations for P and Q
components of the eigenstates,

(PH P + PHQ)|�a〉 = Za P|�a〉, (11)

(QHP + QHQ)|�a〉 = ZaQ|�a〉. (12)

This set of equation leads to a new eigenvalue equation for the P|�a〉 component,

Heff(Za)P|�a〉 = Za P|�a〉. (13)

Here, Heff(z) is the effective Hamiltonian defined by

Heff(z) ≡ PH P + PHQ
1

z − QHQ
QHP, (14)

with a suitable analytic continuation of the denominator 1/(z − QHQ) which is
consistent to the decaying process oriented to our future.

Note that this new eigenvalue equation for the effective Hamiltonian is a nonlinear
equation with respect to the eigenvalue Za . We also note that the second part leads
to the well-known self-energy part as

Σa(z) ≡ 〈a|PHQ
1

z − QHQ
QHP|a〉. (15)

After solving the nonlinear eigenvalue problem (13), one can obtain a right-eigenstate
of the full Hamiltonian H with the use of the set of equation (12) as

|�a〉 = Na

[
P + Q

1

z − QHQ
QHP

]
P|�a〉, (16)

where Na is a normalization constant determined by 〈�̃a|�a〉 = 1 with a similar
expression of the left-eigenstate 〈�̃a| to (16). The explicit forms of the complex
eigenvalues and these dual eigenstates for a general Friedlichs model are presented
in [3].

Before going to themain subject on theMandelbrot set in this paper, let usmention
a remarkable feature of expression on the Liouvillian parallel to the above expression
for the eigenvalue problem of the Hamiltonian. As is well known, the Liouvillian
LH associated to a given Hamiltonian H in the Liouville-von Neumann equation for
the distribution function for a classical system, or the density matrix for a quantum
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system is also a linear operator, just as a Hamiltonian in a suitable vector space.
Indeed, the Liouvillian is defined as the Poisson bracket with the Hamiltonian for the
classical case, and the commutation relation with the Hamiltonian for the quantum
case. Hence, one can construct a similar type of complex eigenstate of the Liouvillian
parallel to the Hamiltonian just constructed as above. Then, the complex eigenvalue
problem of the right-eigenstate of the Liouvillian for example given by

LH |Fβ〉 = Zβ |Fα〉 (17)

is reduced to the nonlinear eigenvalue problem of the effective Liouvillian as

ψ(Zβ)P̂|Fβ〉 = Zβ P̂|Fβ〉. (18)

Here, ψ(z) is defined by

ψ(z) ≡ P̂ LH P̂ + P̂ LH Q̂
1

z − Q̂LH Q̂
Q̂LH P̂, (19)

with a suitable projection operator P̂ and Q̂ associated to a set of the eigenstate
for the unperturbed Liouvillian. Then, the second team of (19) is the self-frequency
part of the Liouvillian. If the reader is familiar to the non-equilibrium statistical
mechanics, the reader may notice that this self-frequency part of the Liouvillian is
just the collision operator which is the central object in non-equilibrium statistical
physics. Indeed for aweakly coupled gas or the lowdensity limit of a gas, the effective
Liouvillian reduces to the Boltzmann collision operator in the molecular dynamics.
In this sense, our complex spectral analysis of the generator of motion, such as
the Hamiltonian, or the Liouvillian, gives a quantitative analysis of the irreversible
process based on the fundamental laws of physics [1, 2].

Let us now come back to ourmain problem. By substituting the dispersion relation
(5) and the explicit form of the interaction (6), one can easily perform the integration
over the wave vector k in the self-energy part (15),

Σa(z) =
∫

dk
g2V 2

k

z − εk
= −πg2

4k4c
(2kc + iπ

√
z). (20)

Because we could obtain the explicit form of the self-energy part as in (20), we
can find the complex eigenvalue of the nonlinear eigenvalue equation by solving the
following equation (see (13)),

z = εa − πg2

4k4c
(2kc + iπ

√
z). (21)

We can easily solve this equation, and we have
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Fig. 1 Imaginary part of the eigenvalue as a function of the unperturbed energy εa for g = 0.1,
kc = 1. The branch point is a transition point from reversible process to irreversible process. Since
the Hamiltonian H is a symmetric operator, we have always complex-conjugate pair of the complex
eigenvalues when their imaginary parts do not vanish. The value of εa at the branch point is indicated
as εB in the figure

z = εa − πg2

2k3c
− 1

2

(π2 g2

4k4c

)2 ± π2 g2

4k4c

√
−εa + πg2

2k3c
+ 1

4

(π2 g2

4k4c

)2
. (22)

The decay rate of the unstable state |a〉 is given by the imaginary part of this
solution of the eigenvalue. In Fig. 1, we show the imaginary part of the eigenvalue as
a function of the unperturbed energy εa for the parameters g = 0.1, kc = 1. Hereafter,
we will always use these values for g and kc. One can see that there is a branch point
at εa = εB with the value,

εB = 0.0158602 . . . (23)

for the special choice of the parameters. Below this value, the imaginary part of the
eigenvalue of the full Hamiltonian is zero, and the perturbed eigenstate is stable. But
above this value, the imaginary part of the eigenvalue of the full Hamiltonian is not
zero, and there appears two branches of the complex eigenvalue, one is the complex
conjugate to the other. The negative branch of the imaginary part is associated with
the decaying process oriented to our future,while the positive branch of the imaginary
part is associated to the decaying process oriented to our past.
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3 Nonlinear Map for Iterative Method

In our example of the Friedrichs model, we could exactly solve the nonlinear eigen-
value equation algebraically. However, it is usually difficult to solve the nonlinear
equation algebraically. Hence, one often uses an iterative method which we will dis-
cuss in this section. To obtain the solution of the nonlinear equation, we consider the
following nonlinear map,

zr+1 = εa − πg2

4k4c
(2kc + iπ

√
zr ), (24)

where r is an integer starting with r = 0. A fixed point of the nonlinear map is a
solution of (21). Indeed, the iterativemethod is often a quite powerfulmethod to solve
nonlinear equations, even in the case one cannot solve the nonlinear equation by using
an algebraic method. Note, however, our nonlinear map contains

√
zr . Therefore,

we should be careful to perform this iterative method to specify the branch of the
Riemann sheet of the analytic continuation of

√
zr .

In Fig. 2, we show two examples of the result of the iterative procedure for (a)
the unstable case where εa is chosen far from the branch point where the dynamical
phase transitions from reversible process to the irreversible process, while (b) is
chosen near the branch point for g = 0.1, kc = 1. The value of εa is indicated in
the figure. In both figures (a) and (b), the large circle is the location of the exact
eigenvalue in the complex Za-plane obtained by (22). We have chosen the initial
value z0 of the iteration near some point of the exact location. For case (a) far from
the branch point, we see that the convergence to the exact point is rapid. On the other
hand, for case (b) near the phase transition, the convergence to the exact point is
slow, and there are lots of spiral rotations to approach the exact fixed point.

Fig. 2 Trajectories of the iterative procedure for the nonlinear map (24) to obtain the complex
eigenvalue in the complex Za-plane. The large circles are locations of the eigenvalues. (a) is the
unstable case where εa is chosen far from the branch point, while (b) is chosen near the branch
point for g = 0.1, kc = 1. The values εa for these examples are shown in these figures
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Fig. 3 The imaginary part of Za obtained by the iterative procedure of the nonlinear map (24) as
a function of the iterative number r . (a’) corresponds to (a), and (b’) corresponds to (b) in Fig. 2,
respectively, with same choice g = 0.1 and kc = 1. Approach to the fixed point of the map is more
intermittent in (b’) near the branch point than (a’) far from the branch point

In Fig. 3, we show results of the iterative procedure for the imaginary part of the
map for the unstable case, where (a’) corresponds to (a), and (b’) corresponds to
(b) in Fig. 2, respectively. The horizontal axis indicates the iteration number r . The
figure (a’) shows a smooth oscillating convergence to the fixed point for the case far
from the branch point. On the other hand, the figure (b’) shows a strong nonlinear
intermittent behavior to the approach to the fixed point.

In Fig. 4, we show examples of the result of the iterative procedure for an inter-
esting stable case with a real eigenvalue. In these examples, we have chosen as
εa = 0.01572 < εB , where εB is the value of the branch point indicated at (23) for
our special choice of the parameters as g = 0.1, kc = 1. For this case, the unper-
turbed energy of the discrete spectrum εa is positive. Hence, the unperturbed energy
of the continuous spectrum εk can overlap with the unperturbed energy of the dis-
crete spectrum. Nevertheless, since we have chosen the value of εa being moderately
close to the branch point, there appears a stable solution on the eigenvalue problem
of the full Hamiltonian H due to our choice of a moderately a strong interaction with
g = 0.1. In these figures, (c) corresponds to (a) and (b) in Fig. 2, and (d) corresponds
to (a’) and (b’) in Fig. 3. These figures show a monotonic convergence to the fixed
point for the stable case with a real eigenvalue. Hence, the nonlinearity is weak as
compared with the cases (a) and (a’). This monotonic convergence is observed for
the negative choice of εa where the resonance singularity does not play a role.

4 Mandelbrot Set

Let us now consider the inverse map of (24). We will show that the inverse map
exactly reduces to the nonlinear map that generate the Mandelbrot set. One can
obtain its inverse map by replacing zr+1 by ξr , and zr by ξr+1. Then, we have the
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Fig. 4 The imaginary part of Za obtained by the iterative procedure of the nonlinear map (24) for
a stable case as a function of the iterative number r with same choice g = 0.1 and kc = 1 as the
above figures. For this case, the imaginary part of the fixed point of the map is 0. The figure shows
the approach to the fixed point is monotonic

inverse map,

ξr+1 = −
(

4k4c
π2 g2

)2 (
ξr − εa + πg2

2k3c

)2

. (25)

Moreover, we change the variable as

pr ≡ −
(

4k4c
π2 g2

)2 (
ξr − εa + πg2

2k3c

)
. (26)

Then, we obtain a simple nonlinear map,

pr+1 = p2r + A(εa, g), (27)

with

A(εa, g) ≡
(

4k4c
π2 g2

)2

εa − 8k5c
π3 g2

. (28)

This is just the nonlinear map for the Mandelbrot set [23].
It is well known that startingwith p0 = 0 there are two domains of complex values

A(εa, g), one of which gives the convergent value of |pr | in the limit r → ∞, while
the other of which gives the diverging value of |pr | in the same limit. In Fig. 5, we
show these two domains in the parameter space for complex values of εa for g = 0.1,
kc = 1. The domain indicated by white is the domain which gives the convergent
value of |pr | in the limit r → ∞. On the other hand, the domain indicated by black
is the domain which gives the diverging value of |pr | in the same limit. In the figure,
we indicate the location of the branch point where the broken time-symmetry starts
in our Friedrichs model.
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Fig. 5 Mandelbrot set obtained by the inverse map (27) of the nonlinear map (24) with the same
choice g = 0.1 and kc = 1 as the above figures. This figure is obtained by extending the value εa
into the complex plane. Mandelbrot set is a border line of the convergent and divergent value of |pr |
in the limit r → ∞. The domain indicated by white is the converging domain, while the domain
indicated by black is the diverging domain. The location of the branch point where the broken
time-symmetry starts in our Friedrichs model is indicated in the figure

5 Concluding Remarks

We have investigated a decaying process of the Friedrichs model that is a simple
model of unstable matter-field interacting system, by using the complex spectral
analysis of theHamiltonian. The complex spectral analysis of the generator ofmotion
for conservative dynamical systems offers a microscopic analysis of irreversibility
based on the basic laws of physics. An advantage of the Friedrichs model is that one
can exactly solve the eigenvalue problem of the Hamiltonian.

In spite of the fact that the Hamiltonian of the Friedrichs mode is a Hermitian
operator in the Hilbert space, this operator may have a complex eigenvalue in the dual
space of the extended Hilbert space which lies outside the Hilbert space. Transport
coefficients, such as the decay rate of the unstable state, in the irreversible process can
be evaluated as an imaginary component of the complex eigenvalue of the generator
of motion. This reveals the fact that irreversibility is not an approximate concept
in dynamics, but it is an exact dynamical property of dynamics coming from the
fundamental microscopic equation of motions, such as the Schrödinger equation or
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the Liouville-von Neumann equation. The authors recommend to read the references
[1–3] for more details on this essential aspect of the complex spectral analysis of the
generator of motion in the fundamental laws of physics.

As has been explained, the eigenvalue problem of the generator of motion, such
as the Hamiltonian or the Liouvillian, reduces to the nonlinear eigenvalue problem
of the effective Hamiltonian or the effective Liouvillian. We have shown that the
nonlinearity of the effective Hamiltonian leads to a surprisingly complicated fractal
structure described by the Mandelbrot set when we solve the nonlinear eigenvalue
problem of the effectively Hamiltonian by the iterative method. The fractal structure
we found here indicates the renormalization scaling in the Brillouin-Wigner type of
the perturbation method in the extended Hilbert space. This shows that there are still
lots of uninvestigated rich problems associated to the nonlinearity in the problem of
broken time-symmetry in well-investigated decaying process in unstable dynamical
systems.
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Thermodynamic Flux-Force Closure
Relations for Systems out of the Onsager
Region

Giorgio Sonnino

Abstract The first attempts to develop non-equilibrium thermodynamics theory
occurred after the first observations of some coupled phenomena of thermal diffu-
sion and thermoelectric phenomena. However, the big obstacle to overcome is that
the number of unknowns is greater than the number of equations expressing the
conservation laws. So, it is crucial to determine the closure relations to make the
problem solvable. The objective of this work is to determine the nonlinear flux-force
relations for systems out of Onsager’s region that respect the existing thermodynamic
theorems for systems far from equilibrium. To this aim, a thermodynamic theory for
irreversible processes [referred to as the Thermodynamical Field Theory (TFT)] has
been developed. The TFT rests upon the concept of equivalence between thermody-
namic systems. The equivalent character of two alternative descriptions of a thermo-
dynamic system is ensured if, and only if, the two sets of thermodynamic forces are
linked with each other by the so-called Thermodynamic Covariant Transformations
(TCT). The TCT are the most general thermodynamic force transformations which
leave unaltered both the entropy production and the Glansdorff-Prigogine dissipa-
tive quantity. In this work, we describe the Lie group and the group representations
associated with the TCT. The TCT leads to the so-called Thermodynamic Covari-
ance Principle (TCP): The nonlinear closure equations, i.e., the flux-force relations,
must be covariant under TCT. In this chapter, we provide the explicit form of the
nonlinear PDEs, subjected to the appropriate boundary conditions, which have to
be satisfied by transport coefficients when the skew-symmetric piece is absent. The
solution of these equations allows determining the flux-force closure relations for
systems out of the Onsager region. Since the proposed PDEs are obtained without
neglecting any term present in the balance equations (i.e., the mass, momentum,
and energy balance equations), we propose them as a good candidate for describing
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transport in thermodynamic systems also in turbulent regimes. As a special case,
we derive the nonlinear PDEs for transport coefficients when the thermodynamic
system is subjected to two thermodynamic forces. The obtained PDE is, in Ther-
modynamical Field Theory (TFT), analogous to Liouville’s equation in Riemannian
(or pseudo-Riemannian) geometry. A preliminary test is carried out by analysing a
concrete example where Onsager’s relations manifestly disagree with experience:
losses in magnetically confined Tokamak-plasmas. More specifically, we compute
the mass and energy losses in FTU (Frascati Tokamak Upgrade)-plasmas subjected
to two thermodynamic forces. We show a good agreement between the theoretical
(TFT) predictions and the experimental data. The aim is to apply our approach to the
Divertor Tokamak Test facility (DTT), to be built in Italy, and to ITER. Other appli-
cations of the TFT to the thermoelectric effects or to out-of-equilibrium chemical
reactions can be found in the references cited at the end of the chapter.

1 Introduction

When there are more unknowns than equations expressing conservation laws, addi-
tional closure laws are needed to make the problem solvable. Generally, these addi-
tional closure relations are not derivable from one of the physical equations being
solved. Several approaches to getting the closure relations are currently applied.
Among them, we cite the so-called truncation schemes and the Asymptotic schemes.
In truncation schemes, higher order moments are arbitrarily assumed to vanish, or
simply negligible with respect to the terms of lower moments. Truncation schemes
can often provide quick insight into fluid systems, but always involve uncontrolled
approximation. This method is often used in transport processes in Tokamak-plasma
(see, for instance, the book [1]). The asymptotic schemes are based on the rigorous
exploitation of some small parameters. They have the advantage of being systematic,
and providing some estimate of the error involved in the closure. However, as the
title itself suggests, these methods are effective only when small parameters enter,
by playing a crucial role, in the dynamic equations. These schemes are often used for
solving numerically kinetic equations (refer, for instance, to the book [2]). Another
possibility is to obtain the closure relations by formulating a specific theory or ad hoc
models. The most important closure equations are the so-called transport equations
(or the flux-force relations), relating the thermodynamic forces with the conjugate
dissipative fluxes that produce them. The thermodynamic forces are related to the
spatial inhomogeneity and (in general) they are expressed as gradients of the ther-
modynamic quantities. The study of these relations is the object of non-equilibrium
thermodynamics. Morita and Hiroike eased this task for a closure relation by pro-
viding the formally exact closure formula [3]

Jν(X) = �μν(X)Xμ (1)
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Here, Xμ and Jμ denote the thermodynamic forces and thermodynamic fluxes,
respectively. Coefficients �μν(X) are the transport coefficients, where it is clearly
highlighted that the transport coefficients may depend on the thermodynamic forces.
We suppose that all quantities appearing in Eq. (1) are dimensionless. Note that in
this equation, as well as in the sequel, the Einstein summation convention on the
repeated indices is understood. Matrix �μν(X) can be decomposed into a sum of
two matrices, one symmetric and the other skew symmetric, which we denote by
gμν(X) and fμν(X), respectively. The second law of thermodynamics requires that
gμν(X) is a positive-definite matrix. Note that, in general, the dimensionless entropy
production, denoted by σ , with σ = �μν(X)XμX ν = gμν(X)XμX ν , may not be a
simply bilinear expression of the thermodynamic forces (since the transport coeffi-
cients may depend on the thermodynamic forces). For conciseness, in the sequel we
drop the symbol X in gμν as well as in the skew-symmetric piece of the transport
coefficients fμν being implicitly understood that these matrices may depend on the
thermodynamic forces.

In previous works, a macroscopic Thermodynamic Field Theory (TFT) for deriv-
ing the closure relations valid for thermodynamic systems out of Onsager’s region
has been proposed. More specifically, the aim of the TFT in [4–11] is to determine
the nonlinear flux-force relations which are valid for thermodynamic systems out of
the thermodynamic linear region (commonly referred to as the Onsager region) [12,
13]. This task is accomplished by means of three hypotheses: two constraints 1. and
2., and one assumption 3. In order to establish the vocabulary and notations that shall
be used in the sequel of this work, we briefly recall these hypotheses.

1. The thermodynamic laws and the theorems demonstrated for systems far from
equilibrium must be satisfied.

2. The validity of the Thermodynamic Covariance Principle (TCP) must be ensured.
The TCP stems from the concept of equivalent systems from the thermodynamic
point of view. Thermodynamic equivalence was originally introduced by Th. De
Donder and I. Prigogine [14–16]. However, the De Donder-Prigogine definition
of thermodynamic equivalence, based only on the invariance of the entropy pro-
duction, is not sufficient to guarantee the equivalence character between two sets
of thermodynamic forces and conjugate thermodynamic fluxes. In addition, it is
known that there exists a large class of flux-force transformations such that, even
though they leave unaltered the expression of the entropy production, they may
lead to certain paradoxes [17, 18]. The equivalent character of two alternative
descriptions of a thermodynamic system is ensured if, and only if, the two sets of
thermodynamic forces are linkedwith each other by the so-calledThermodynamic
Covariant Transformations (TCT). The TCT are themost general thermodynamic
force transformations which leave unaltered both the entropy production σ and
the Glansdorff-Prigogine dissipative quantity P [for the definition of P , see the
forthcoming Eq. (12)]. In this work, we also describe the Lie group and the group
representations associated with the TCT. The TCT leads in a natural way to pos-
tulate the validity of the so-called Thermodynamic Covariance Principle (TCP):
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The nonlinear closure equations, i.e., the flux-force relations must be covariant
under the Thermodynamic Covariant Transformations (TCT).

3. Close to the steady states, the nonlinear closure equations can be derived by the
principle of least action.

This theory, based on 1., 2., and 3. is referred to as the Thermodynamical Field
Theory (TFT). The three hypotheses 1., 2., and 3. allow determining the nonlinear
TFT-Partial Differential Equations (PDEs) for transport coefficients �μν . In this
chapter, we shall limit ourselves to the case inwhich the transport coefficients possess
only the symmetric piece (i.e., fμν = 0). We shall show the explicit form of the TFT-
PDEs for gμν . Later, inspired by the theory of Jackiw and Teitelboim [19–24], we
shall also derive the explicit form of the TFT-PDEs for gμν for the two-dimensional
case, i.e., when the system is subjected to two independent thermodynamic forces.

The final part of the chapter is devoted to the application of the theory to some
relevant examples of systems out of equilibrium. More precisely, we shall apply
the derived TFT-PDEs to Tokamak-plasmas in a collisional regime. This is a very
interesting example of application since, in this case, the Onsager relations strongly
disagree with experimental data. One of the main issues in Fusion Science is the
computation of energy and mass losses in Tokamak-plasmas. It is well-known that
there is a strong disagreement, of several orders of magnitude, especially for electron
mass and energy losses, between the theoretical predictions of the Onsager theory
(at the basis of the so-called neoclassical theory) and experiments. This discrepancy
is even more pronounced in the case of magnetically confined plasmas in turbulent
regimes. The aim is to compute the electron heat loss in Tokamak-plasmas by consid-
ering the contribution of the nonlinear terms in the flux-force relations derived by the
TFT. In order to test the validity of our results, we have computed the electron heat
loss for Frascati Tokamak Upgrade (FTU)-plasmas in a fully collisional transport
regime. We have compared the theoretical profile obtained by the nonlinear theory
satisfying the TCP with the experimental data for the FTU-plasmas (provided by the
ENEA C.N.R.—EuroFusion in Frascati) and with the theoretical predictions of the
linear theory (the Onsager theory). We found that there is a fairly good agreement
between the TFT and experiments (in contrast with Onsager’s theory). However,
disagreements appear in the region where the dimensionless entropy σ̃(L) is of order
1. In particular, we found that the disagreement appears in the region of the tokamak
where the plasma is in a turbulent regime. Incidentally, this corresponds also to the
region where σ̃(L) ∼ 1. Preliminary calculations and theoretical results in the region
σ̃(L) ∼ 1 have also been performed. We are currently comparing the theoretical pre-
dictions of the TFTwith the experimental data for FTU-plasma in a turbulent regime.
Other examples of application of the TFT to unimolecular triangular chemical reac-
tions (i.e., three isomerisations take place) and to materials subjected to temperature
and electric potential gradients, and to chemical reactions out of equilibrium and to
Hall effect can be found in Refs. [4, 8] and in [25–29], respectively.

The chapter is organised as follows. In Sect. 2, we recall the basic concepts of the
Thermodynamical Field Theory (TFT). To this aim, we quickly introduce the defini-
tion of the space of the thermodynamic forces, and we describe the Thermodynamic
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Covariance Principle (TCP) and the TCT-symmetry group. Successively, in Sect. 3
we derive the explicit form of the nonlinear TFT-PDEs for transport coefficients in
the absence of the skew-symmetric part (i.e., when fμν = 0). In Sect. 4, we derive
the nonlinear PDEs for transport coefficients gμν when the system is subjected to
two independent thermodynamic forces (i.e., when n = 2). Section 5 provides the
linearised TFT transport equations. The physical meaning of the gauge invariance in
TFT is reported in Sect. 6. The analytic solution of the two-dimensional linearised
homogeneous TFT-PDE is obtained in Sect. 7. The solution of the TFT-PDE for
collisional FTU-plasmas, subjected to two independent thermodynamic forces, can
be found in Sect. 8. In this section, we shall show the good agreement between
the theoretical predictions and the experimental data. Finally, the main results are
concluded in Sect. 9. Here, we also specify the boundary conditions for turbulent
Tokamak-plasmas. The determination of the boundary conditions, which have to be
satisfied by the TFT-PDEs for a general system out of thermodynamic equilibrium,
is obtained in Appendix. In Appendix, we can also find the analytic solutions of the
linearised, two-dimensional, inhomogeneous TFT-PDE.

2 The Thermodynamical Field Theory (TFT)

2.1 The Space of the Thermodynamic Forces

The first task is to define the space where we may perform calculations. To this
aim, it is not enough to specify the nature of the axes, we must also determine two
quantities: the metric tensor and the affine connection (denoted by symbol �λ

μν).

– The metric tensor is a central object in the theory; it describes the local geometry
of space. The metric tensor is a symmetric tensor used to raise and lower the
indicative tensors and generate the connections used to construct the PDEs and
the curvature tensor of the space.

– The curvature of a space can be identified by taking a vector at some point and
transporting it parallel along a curve in space-time. An affine connection is a rule
that describes how to legitimately move a vector along a curve on the variety
without changing its direction.

The metric tensor and the affine connection are determined by physics, i.e., by
ensuring the validity of the thermodynamic theorems valid for systems out of equi-
librium (in accordance with the above-mentioned assumption 1). More precisely, we
must take into account the validity of the second law of thermodynamics and the
General Evolution Criterion (GEC) [30, 31]. We adopt the following definitions [4,
11]:

• The space of the thermodynamic forces (or, simply, the thermodynamic space) is
the space spanned by the thermodynamic forces.
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Fig. 1 The
thermodynamic space. The
space is spanned by the
thermodynamic forces, the
metric tensor is identified
with the symmetric piece of
the transport coefficients,
and the expression of the
affine connection is
determined by the General
Evolution Criterion

• The metric tensor is identified with the symmetric piece gμν of the transport coef-
ficients.

– Note that this definition takes into account the second law of thermodynamics
as, for the second law of thermodynamics, the square (infinitesimal) distance
ds2 = ds · ds is always a non-negative quantity—see Fig. 1.

• The expression of the thermodynamic affine connection ˜�κ
μν is determined by

requiring the validity of the Glansdorff-Prigogine General Evolution Criterion. In
Ref. [11] it is shown that, when fμν = 0, we get

˜�
μ
αβ ≡

{

μ

αβ

}

+ 1

2σ
XμXηgαβ,η

− 1

2(n + 1)σ

(

δμ
α X

νXηgβν,η + δ
μ
β X

νXηgαν,η

)

(2)

where commas stand for partial derivativeswith respect to the thermodynamic forces.
δ
j
i denotes the Kronecker delta and

{

μ

αβ

}

= 1

2
gμλ

(∂gλα

∂Xβ
+ ∂gλβ

∂Xα
− ∂gαβ

∂Xλ

)

(3)

the Levi-Civita affine connection.

2.2 The De Donder-Prigogine Thermodynamic Invariance

Onsager’s theory is based on three assumptions: (i) The probability distribution func-
tion for the fluctuations of thermodynamic quantities (temperature, pressure, degree
of advancement of a chemical reaction, etc.) is a Maxwellian, (ii) Fluctuation decay
according to a linear law, and (iii) The detailed balance principle (or the microscopic
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reversibility) is satisfied. Onsager showed the equivalence of the assumptions (i),
(ii), and (iii) with the equations [12, 13]

Jν = LμνX
μ with

∂Lμν

∂Xλ
= 0 and Lμν = Lνμ (4)

where the coefficients of matrix Lμν are the Onsager transport coefficients. Lμν is
a symmetric matrix and the elements are independent of the thermodynamic forces.
The limit of validity of Eq. (4) establishes the limit of validity of theOnsager region.
Assumption (iii) allows deriving the reciprocity relations Lμν = Lνμ. The Onsager
theory of fluctuations starts from the Einstein formula linking the probability of a
fluctuation, W , with the entropy change, S, associated with the fluctuations from
the state of equilibrium

W = W0 exp[S/KB] (5)

In Eq. (5), KB is the Boltzmann constant and W0 is a normalisation constant which
ensures that the sum of all probabilities equals one [12, 13]. Prigogine generalised
Eq. (5), which applies to adiabatic or isothermal transformations, by introducing the
entropy production due to fluctuations. Denoting by ξi (i = 1 · · ·m), them deviations
of the thermodynamic quantities from their equilibrium value, Prigogine proposed
that the probability distribution of finding a state in which the values ξi lie between
ξi and ξi + dξi is given by [15]

W = W0 exp[I S/KB] I S =
∫ F

E
dI s ; dI s

dt
≡

∫

�

σdv (6)

Here, dv is the spatial volume element of the system, and the integration is over the
entire space� occupied by the system. E and F indicate the equilibrium state and the
state to which a fluctuation has driven the system, respectively. Note that this proba-
bility distribution remains unaltered for flux-force transformations leaving invariant
the entropy production. Concrete examples of chemical reactions, equivalent from
the thermodynamic point of view, have also been analysed in the literature. As an
example, among these, we choose the simplest of all. Let us consider, for example,
the following chemical system in which two isomerisations

(a): A → B and B → C .
take place [15]. Of course, from the macroscopic point of view, the chemical changes
in (a) are equivalent to the two isomerisations

(b): A → C and B → C .
It can be checked that, under a linear transformation of the thermodynamic forces

(which in this case corresponds to a linear transformation of the chemical affinities),
the entropy productions for the two chemical reactions (a) and (b) are equal. Indeed,
the corresponding affinities of the reactions (a) read: A1 = μA − μB and A2 = μB −
μC , with Ai and μi (i = A, B,C) denoting the chemical affinities and the chemical
potentials, respectively. The change per unit time of the mole numbers is given by
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dnA

dt
= −v1 ; dnB

dt
= v1 − v2 ; dnC

dt
= v2 (7)

with vi (i = 1, 2) denoting the chemical reaction rates. In this case, the thermo-
dynamic forces and the thermodynamic fluxes are the chemical affinities (over
temperature) and the chemical reaction rates, respectively, i.e., Xμ = Aμ/T and
Jμ = vμ. Hence, the corresponding entropy production reads dI S/dt = (A1/T )ν1 +
(A2/T )ν2 ≥ 0. The affinities corresponding to reactions (b) are related to the previ-
ous ones by

A
′1 = μA − μC = A1 + A2 ; A

′2 = μB − μC = A2 (8)

By taking into account that

dnA

dt
= −v′

1 ; dnB

dt
= −v′

2 ; dnC
dt

= v′
1 + v′

2 (9)

we get
v1 = v′

1 ; v2 = v′
1 + v′

2 (10)

where the invariance of the entropy production is manifestly shown. Indeed,

dI S

dt
= (A1/T )v1 + (A2/T )v2 = (A

′1/T )v′
1 + (A

′2/T )v′
2 = dI S′

dt
(11)

or JμXμ = J
′
μX

′μ (where, as usual, the Einstein summation convention on the
repeated indices is adopted). On the basis of the above observations, Th. De Donder
and I. Prigogine formulated, for the first time, the concept of equivalent systems from
the thermodynamical point of view. For Th. De Donder and I. Prigogine, thermody-
namic systems are thermodynamically equivalent if, under flux-force transformation,
the bilinear form of the entropy production remains unaltered, i.e., σ = σ ′ [14–16].

2.3 Remarks on De Donder-Prigogine’s Thermodynamic
Invariance Formulation

The Thermodynamic Invariance Principle formulated by De Donder-Prigogine,
based only on the invariance of the entropy production, is not sufficient to guarantee
the equivalence character of the two descriptions (Jμ, Xμ) and (J

′
μ, X

′μ). Indeed, we
can easily convince ourselves that there exists a large class of transformations such
that, even though they leave unaltered the expression of the entropy production, they
may lead to certain paradoxes towhich J. E. Verschaffelt andR.O.Davies have called
attention [17, 18]. This obstacle can be removed if one takes into account one of the
most fundamental and general theorems valid in the thermodynamics of irreversible
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processes: the General Evolution Criterion. Glansdorff and Prigogine have shown
that: For time-independent boundary conditions, a thermodynamic system, even in
strong non-equilibrium conditions, relaxes to a stable stationary state in such a way
that the following General Evolution Criterion is satisfied

P =
∫

�

Jμ

∂Xμ

∂t
dv ≤ 0 (12)

In addition

P =
∫

�

Jμ

∂Xμ

∂t
dv = 0 at the steady state (13)

Quantity P may be referred to as the Glansdorff-Prigogine dissipative quantity. Let
us check the validity of this theorem by considering two, very simple, examples. Let
us consider, for instance, a closed system containing m components (i = 1 · · ·m)
among which chemical reactions are possible. The temperature, T , and the pressure,
p, are supposed to be constant in time. The chance in the number of moles ni , of
component i , is

dni
dt

= ν
j
i v j (14)

with ν
j
i denoting the stoichiometric coefficients. By multiplying both members of

Eq. (14) by the time derivative of the chemical potential of component i , we get

dμi

dt

dni
dt

=
(∂μi

∂nι

)

(pT )

dni
dt

dnι

dt
=

(∂μi

∂nι

)

(pT )
ν
j
i ν

κ
ι v jvκ ≥ 0 (15)

where the positive sign of the term on the right-hand side is due to the second
law of thermodynamics. By taking into account the De Donder law between the
affinities A j and the chemical potentials, i.e., A j = −ν

j
i μ

i , and that the chemical
thermodynamic force (X j ) and its chemical conjugate flux (Jj ) read Xi = A j/T
and Ji = v j respectively, we finally get

P=
∫

�

Jμ

∂Xμ

∂t
dv= �Jμ

dXμ

dt
= �v j

d

dt

( A j

T

)

= −�

T

(∂μi

∂nι

)

(pT )
ν
j
i ν

κ
ι v jvκ ≤ 0

(16)
Hence, the Glansdorff-Prigogine dissipative quantity P is always negative and it
vanishes at the stationary state. As a second example, we analyse the case of heat
conduction in non-expanding solid. In this case, the thermodynamic forces and the
conjugate fluxes are the (three) components of the gradient of the inverse of the
temperature, Xμ = ∇(1/T ), and the (three) components of the heat flux, Jμ = J (q)

(with μ = 1, 2, 3), respectively. Hence,

P =
∫

�

Jμ

∂Xμ

∂t
dv =

∫

�

J (q) · ∇(1/T )dv (17)
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The heat flux, J (q), is linked to the (partial) time derivative of temperature by the
Fourier law (expressing the energy balance equation)

ρcv

∂T

∂t
= −∇ · Jq (18)

with ρ and cv denoting the mass density and the specific heat at volume constant of
the fluid, respectively. By performing the integration by parts, and by assuming that
the heat flux vanishes at the boundary, we easily get

P = −
∫

�

ρcv

T 2

(∂T

∂t

)2
dv ≤ 0 (19)

with P = 0 at the steady state. By summarising, for all thermodynamic systems, with-
out using the Onsager reciprocal relations, and even if the transport coefficients are
dependent on the thermodynamic forces, the dissipative quantity P is always a nega-
tive quantity. This quantity vanishes at the steady state. In the two above-mentioned
examples, the thermodynamic forces are the chemical affinities (over temperature)
and the gradient of the inverse of temperature, respectively. However, we could have
adopted a different choice of thermodynamic forces. If we analyse, for instance,
the case of heat conduction in non-expanding solid, where chemical reactions take
place simultaneously, we can choose as thermodynamic forces a combination of
the (dimensionless) chemical affinities (over temperature) and the (dimensionless)
gradient of the inverse of temperature. Clearly, this representation is thermodynami-
cally equivalent to the previous one (where the thermodynamic forces are simply the
chemical affinities over temperature and the gradient of the inverse of temperature)
only if the negative sign of the dissipative quantity P is preserved. In other words,
the equations providing the stationary states (i.e., Eq. (13)) must admit exactly the
same solutions.

2.4 The Thermodynamic Covariant Transformations (TCT)
and the Thermodynamic Covariance Principle (TCP)

One of the central aspects of the TFT is the concept of invariance of physics’ laws.
This invariance can be described in many ways, for example, in terms of local covari-
ance or covariance of diffeomorphism. A more explicit description can be given
through the use of tensors. The characteristic of the tensors that proves to be cru-
cial is the fact that, once the metric is given, the operation of contracting a tensor
of rank r on all indices r provides a number—an invariant—which is independent
of the coordinates used to perform the contraction. Physically, this means that the
invariant calculated by choosing a specific coordinate system (i.e., in a specific set
of the thermodynamic forces) will have the same value if calculated in another—
thermodynamically equivalent—coordinate system (i.e., in another equivalent set
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of thermodynamic forces). According to the Thermodynamical Field Theory (TFT),
two set of thermodynamic forces are equivalent if the following two conditions are
satisfied1 [11]:

(i) The entropy production σ must be invariant under transformation of the ther-
modynamic forces {Xμ} → {X ′μ}.

(ii) The Glansdorff-Prigogine dissipative quantity P must also be invariant under
the force transformations {Xμ} → {X ′μ}.

Condition (ii) stems from the fact that a stable steady state must be transformed
into the same stable steady-state, with the same degree of stability. In mathematical
terms, this implies

σ = JμX
μ = J ′

μX
′μ = σ ′ ; P = P ′ → JμδXμ = J ′

μδX
′μ and t = t ′ (20)

Equations (20) are satisfied iff the transformed thermodynamic forces and conjugate
fluxes read as [11, 32, 33]

X
′μ = ∂X

′μ

∂X ν
X ν , J ′

μ = ∂X ν

∂X ′μ Jν (21)

Transformations (21) are referred to as the Thermodynamic Covariant Transforma-
tions (TCT) [11]. The thermodynamic equivalence principle leads, naturally, to the
following Thermodynamic Covariance Principle (TCP) [32, 33]:

The nonlinear closure equations, i.e., the flux-force relations, must be covariant
under TCT.

The essence of the TCP is the following. The equivalent character between two
representations is warranted iff the fundamental thermodynamic equations (e.g., the
transport equations) are covariant under the Thermodynamic Covariant Transforma-
tions (TCT).

2.5 The TCT-Symmetry Group

2.5.1 Topological Structure the TCT-Group

The invariance of a system under TCP is intimately related to the existence of a group,
which we refer to as the TCT-group [34, 35]. The TCT-group with its properties can
be identified by analysing the solution of Eq. (21). The solution of Eq. (21) reads

X
′μ = X1Fμ

(

X2

X1
,
X3

X2
, · · · Xn

Xn−1

)

(22)

1 According to the TFT conditions, (i) and (ii) establish the equivalent character between two
different representations (i.e., between two different set of thermodynamic forces.)
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Fig. 2 The projective
space. The projective space
RP

n−1 is diffeomorphic to
Sn−1+ made by the upper
hemisphere + half equator
(without the red and yellow
points) + the red point

Fig. 3 The TCT-group.
The TCT-group Gn is the
application Fμ, from the
bundle (the projective space
RP

n−1) to the fibre (Rx )

with Fμ denoting arbitrary functions.Hence, the ratio {Xμ/Xμ−1} are the coordinates
for a different space: the Real Projective Space RPn−1, which is defined to be the
quotient of Rn minus the origin by the scaling map Xμ → αXμ with α denoting any
nonzero real number—see Fig. 2. The TCT-group is then the product of diff(RP

n−1)

with the multiplicative group of the map from RP
n−1 → R

×—see Fig. 3 [34, 35].

2.5.2 Algebraic Structure of the TCT-Group

In the previous subsection, we have seen that the TCT group, denoted by Gn , is a
specific subgroup of the homogeneous diffeomorphisms from diff(R\({0}). In alge-
braic terms, the result of the previous Subsection may be expressed as follows: The
Gn results from the application:
diff(R\({0}) � X 	 Yg(X) ∈ diff(R\({0}),with Yg ∈ Gn iff Yg(λX) = λYg(X)with
λ ∈ R.

It is possible to demonstrate that the TCT-group, Gn , may be split in a semidirect
product of two subgroups where the first one is a normal, Abelian, subgroup, denoted
by Nn , and the second one is the reflection subgroup. The demonstration of this
theorem can be found in Ref. [34]. More specifically, let us introduce two subgroups
Nn and Hn defined as follows. Let Nn denote the normal subgroup of Gn defined as

Nn : Yg(X) = Xrg(X) with rg(λX) = rg(X) > 0 (23)
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with λ > 0. Here, rg(X) is a positive C
∞(R\({0})) homogeneous function.

Let Hn denote the reflection subgroup of Gn defined as

Hn : ‖ Yh(X) ‖=‖ X ‖ ; Yh(−X) = −Yh(X)

with h ∈ Hn (24)

In Ref. [34], it is proved that
Gn = Nn

� Hn (25)

The irreducible representations of the group G are then related to the irreducible
representations of the subgroups Nn and Hn .

2.6 The Thermodynamic Action Principle

Constraint 2. and assumption 3., reported in Introduction, lead to the following ther-
modynamic action principle [11]:

• There exists a thermodynamic action I , scalar under Thermodynamic Covariant
Transformations (TCT), which is stationary with respect to arbitrary variations in
the transport coefficients and the affine connection.

This action, scalar under TCT, must be constructed only by the transport coefficients,
the affine connection, and their first derivatives. In addition, it must be linear in the
second derivatives of the transport coefficients, and it cannot contain second or higher
derivatives of the affine connection.We also require that the action is stationary when
the affine connection takes the following expression [11]:

�λ
μν = ˜�λ

μν (26)

Hence, our Lagrangian density L depends on three sets of dynamical variables:
L = L(gμν, fμν, �λ

μν). The simplest action satisfying these requirements is

I =
∫

L √
gdn X =

∫

[

B − (�λ
μν − ˜�λ

αβ)Sμν
λ + ˜L(gμν, fμν)

] √
gdn X (27)

with B denoting the scalar curvature of the thermodynamic space2:

B = Bμνg
μν ; Bμν = ∂�λ

μλ

∂X ν
− ∂�λ

μν

∂Xλ
+ �

η

μλ�
λ
ην − �η

μν�
λ
ηλ (28)

and the expressions of Sαβ

λ is [11]

2 To avoid misunderstanding with the Riemannian (or Pseudo-Riemannian) geometry, we adopt the
Eisenhart notations [37].
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Sμν
λ = �

μ
λαg

να + �ν
λαg

μα − 1

2
�

μ
αβg

αβδν
λ − 1

2
�ν

αβg
αβδ

μ
λ (29)

with

�
μ
λκ = 1

2
τμηgλκ,η − 1

2(n + 1)
τ ηαgλη,αδμ

κ − 1

2(n + 1)
τ ηαgκη,αδ

μ
λ

τμν = XμX ν

σ
; σ = gμνX

μX ν (30)

˜L(gμν, fμν) is a Lagrangian density that may depend on the transport coefficients but
not on the affine connection. Note that τμν is a second-rank thermodynamic tensor.
The physical meaning of the Lagrangian density stems from its (strict) connection
with the curvature of the thermodynamic space. So, we require that the Lagrangian
density must coincide with the scalar curvature B when the affine connection takes
the expression˜�λ

μν . This is because the scalar B is the simplest curvature scalar, and
the only one that is linear in the curvature of the space. This implies that ˜L ≡ 0 and
the final expression of the thermodynamic action reads

I =
∫

[

B − (�λ
μν − ˜�λ

μν)S
μν
λ

] √
gdn X (31)

2.7 The Privileged Thermodynamic Coordinate System

By definition, a thermodynamic coordinate system is a complete set of independent
thermodynamic forces. Once a particular set of thermodynamic coordinates is chosen,
the other sets of coordinates are linked to the first one through a Thermodynamic
Coordinates Transformation (TCT). The simplest way to determine a particular set
of coordinates is to quote the entropy balance equation

∂ρs

∂t
+ ∇ · Js = σ (32)

Here, ρs is the local total entropy per unit volume (ρ is the mass density) and Js
is the entropy flux, respectively. Let us consider, as an example, a thermodynamic
system confined in a rectangular box where chemical reactions, diffusion of matter,
macroscopic motion of the volume element (convection), and heat current take place
simultaneously. The entropy flux and the entropy production read [16, 38, 39]
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Js = 1

T
(Jq −

∑

i

Jiμi ) +
∑

i

ρivi si

σ = Jq ·∇ 1

T
− 1

T

∑

i

Ji ·
[

T∇
(μi

T

)

−Fi

]

+
∑

i

wi Ai

T
− 1

T

∑

i j

�i j∂ri v j ≥ 0 (33)

where μi , ρi si , and Ai are the chemical potential, the local entropy, and the affinity
of species "i", respectively. Jq is the heat flux; Ji andwi are the diffusion flux and the
chemical reaction rate of species i , respectively. Moreover, �i j are the components
of the dissipative part of the pressure tensorMi j (Mi j = pδi j + �i j ; p is the hydro-
static pressure), Fi is the external force per unit mass acting on i , and v j denotes
the component of the hydrodynamic velocity [39]. The set of the thermodynamic
coordinates reads

Xμ =
{

∇
(

1

T

)

; − 1

T

(

T∇
(μi

T

)

− Fi

)

; Ai

T
; − 1

T
∂ri v j

}

(34)

For this particular example, this set may be referred to as the privileged thermody-
namic coordinates system. Other examples of privileged thermodynamic coordinates
systems, related to magnetically confined plasmas, can be found in Refs. [1, 40, 41].

3 Transport Equations

Action (31) is stationary with respect to small, and arbitrary, variations of the dynam-
ical variable gμν and �λ

μν (we set fμν = 0). We recall that action (31) has been
constructed in such a way that it is stationary for �λ

μν = ˜�λ
μν . Indeed, by variational

calculations, we get that the action is stationary with respect to small, independent,
variations of gμν and �λ

μν if [11]

Bμν − 1

n − 2
gμνB = −Sλκ

η

δ˜�
η

λκ

δgμν
≡ Tμν

�λ
μν = ˜�λ

μν (35)

Equation (35) is valid for n �= 2.Much less easy is to compute the explicit expression
of Tμν . After (quite long) calculations, we get

Tμν ≡ −Sλκ
η

δ˜�
η

λκ

δgμν
= (36)

1

2
g−1/2(Sλκ

α gαβg1/2),βgλμgκν − 1

2
g−1/2

(

g1/2(Sκβ
μ gκν + Sκβ

ν gκμ)
)

,β

− 1

4
Sηh

μ (gνη,h + gνh,η − gηh,ν) − 1

4
Sηh

ν (gμη,h + gμh,η − gηh,μ)
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− 1

2
g−1/2

(

g1/2τ ηβSλκ
η − g1/2

n + 1

(

τλβSηκ
η + τ κβSηλ

η

)

)

,β

gλμgκν

− 1

2
ταβτλκ Sηι

α gηι,βgλμgκν + 1

n + 1
ταβτλκ Sηι

η gαι,βgλμgκν (37)

After a little algebra, we find

− 1

2
g−1/2

(

g1/2τ ηβSλκ
η − g1/2

n + 1

(

τλβSηκ
η + τ κβSηλ

η

)

)

,β

gλμgκν =

− 1

2

(

�λ
ηαg

κα
,β + �κ

ηαg
λα
,β

)

τ ηβgλμgκν

+ 1

2(n + 1)
g−1/2

(

g1/2
(

�λ
ηαg

ηατ κβ + �κ
ηαg

ηατ λβ
))

,β
gλμgκν

− 1

2
g−1/2gκμ

(

g1/2�κ
ηντ

ηβ
)

,β
− 1

2
g−1/2gκν

(

g1/2�κ
ημτηβ

)

,β
(38)

where we note that the trace of the last expression of Eq. (38) vanishes. We also have

− 1

2
ταβτλκ Sηι

α gηι,βgλμgκν + 1

n + 1
ταβτλκ Sηι

η gαι,βgλμgκν =

− �η
αγ g

ιγ gηι,βτ αβτ λκgλμgκν + 1

n + 1
�ι

ηγ g
ηγ gαι,βτ αβτ λκgλμgκν (39)

Hence, tensor Tμν can be brought into the form

Tμν = 1

2
g−1/2(Sλκ

α gαβg1/2),βgλμgκν − 1

2
g−1/2

(

g1/2(Sκβ
μ gκν + Sκβ

ν gκμ)
)

,β

− 1

4
Sηh

μ (gνη,h + gνh,η − gηh,ν) − 1

4
Sηh

ν (gμη,h + gμh,η − gηh,μ)

− 1

2
g−1/2

(

g1/2τ ηβSλκ
η − g1/2

n + 1

(

τλβSηκ
η + τ κβSηλ

η

)

)

,β

gλμgκν

− �η
αγ g

ιγ gηι,βτ αβτ λκgλμgκν + 1

n + 1
�ι

ηγ g
ηγ gαι,βτ αβτ λκgλμgκν (40)

and the trace of tensor Tμν reads

T ≡ Tμνg
μν = n − 2

2
g−1/2(g1/2�β

λκg
λκ),β + 1

n + 1
gηαg

−1/2(g1/2�α
λκg

λκτ ηβ),β

− �η
αγ ταβτλκgιγ gλκgηι,β + 1

n + 1
�ι

ηγ g
ηγ τ αβτ λκgλκgαι,β

+ 2Sκβ
η gηλ

,β gλκ − �κ
αητ

αβgλκg
λη

,β (41)
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Finally, in absence of the skew-symmetric part, we get the differential equations for
the transport coefficients valid for n > 2:

Bμν = Tμν − 1

n − 2
gμνT = W (S)

μν (42)

with Tμν and T given by Eq. (40) and Eq. (41), respectively.
• Property of Tensor W (S)

μν

Tensor Bμν satisfies the Bianchi identity for symmetric connection which, written in
the linearised form, reads

Lμλ ∂Bλν

∂Xμ
− 1

2
Lμλ ∂Bμλ

∂X ν
≡ 0 (43)

The validity of identity (43) may also be checked by direct inspection. Hence, also
tensor W (S)

μν (h) satisfies the same identity

Lμλ ∂W (S)
λν

∂Xμ
− 1

2
Lμλ

∂W (S)
μλ

∂X ν
≡ 0 (44)

• Observations
By direct inspection, wemay check the validity of the following important identities:

�λ
λκ = �λ

κλ = 0 ; Sλμ
λ = − (n − 1)

2
�

μ
λκg

λκ (45)

3.1 Onsager’s Region

The transport coefficients tend to Onsager’s matrix as the thermodynamic system
approaches thermodynamic equilibrium. The thermodynamic region where the ther-
modynamic forces are linearly connected to the conjugate thermodynamic fluxes is
referred to as the linear region of thermodynamics or Onsager’s region [14, 15].
Hence, as the thermodynamic forces go to zero, the metric gμν tends to Onsager
matrix Lμν (or, equivalently, the perturbation hμν of the metric tensor tends to zero):

lim
Xλ→0

gμν = Lμν (46)

Condition (46) is referred to as Onsager’s condition.
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3.2 Near the Onsager Region

Let us compute the first nonlinear contributions of Eq. (42). In this case, since �λ
μν

is already of the first order in hμν , to obtain equations valid up to the third order,
we should develop quantities gμν , g, σ 2, τλκ , etc. up to the second order. Hence, by
setting

gμν � Lμν + hμν ; σ � σ(L)(1 + hμντ
μν

(L)) (47)

with σ(L) ≡ LμνXμXν and τ
μν

(L) ≡ XμXν/σ(L), we get

gμν � Lμν − hμν + hμλhνκ Lλκ + O(h3)

τμν � τ
μν

(L)

(

1 − hλκτλκ
(L) + (hλκτλκ

(L))
2
)

+ O(h3)

σ 2 � σ(L )
(

1 + 2hμντ
μν

(L) + (hμντ
μν

(L))
2
)

+ O(h3)

1

σ
� 1

σ(L)

(

1 − hλκτλκ
(L) + (hλκτλκ

(L))
2
)

+ O(h3)

1

σ 2 � 1

σ 2
(L)

(

1 − 2hλκτλκ
(L) + 3(hλκτλκ

(L))
2
)

+ O(h3)

g � L
(

1 + Lλκhλκ + 1

2

(

(Lλκhλκ )2 − LλαLκβhακhβλ

)

)

+ O(h3)

g1/2 � L1/2
(

1 + 1

2
Lλκhλκ + 1

8
(Lλκhλκ )2 − 1

4
LλαLκβhακhβλ

)

+ O(h3)

g−1/2 � L−1/2
(

1 − 1

2
Lλκhλκ + 1

8
(Lλκhλκ )2 + 1

4
LλαLκβhακhβλ

)

+ O(h3) (48)

with L denoting the determinant of Onsager’s matrix.

4 Two-Dimensional Transport Equations

In two dimensions, the curvature tensor Bμνλκ has only one component, since all
nonzero components may be obtained from B0101. Equivalently, the curvature tensor
may be written in terms of the scalar B

Bλμκν = 1

2
B

(

gλκgμν − gλνgμκ

)

(49)

So, B alone completely characterises the local geometry. From Eq. (49), we find the
expressions for Bμν ≡ Bλμκνgλκ and B ≡ Bλμκνgλκgμν . We get

Bμν − 1

2
Bgμν ≡ 0 (50)
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Hence, Eq. (42) is meaningless in two dimensions (see also Refs. [22, 23]). It is easy
to convince ourselves that, in analogy with the works for 1 + 1 gravity [19, 24], also
in our case the only non-trivial version of Eq. (42) for n = 2 has to read

B = −T (51)

with

T = 2Sκβ
η gηλ

,β gλκ

− �κ
αητ

αβgλκg
λη

,β − �η
αγ ταβτλκgιγ gλκgηι,β

+ 1

3
gηαg

−1/2(g1/2�α
λκg

λκτ ηβ),β

+ 1

3
�ι

ηγ g
ηγ τ αβτ λκgλκgαι,β

�
μ
αβ =

{

μ

αβ

}

+ 1

2σ
XμXηgαβ,η

− 1

6σ

(

δμ
α X

νXηgβν,η + δ
μ
β X

νXηgαν,η

)

(52)

It is useful to recall the well-known result from differential geometry; all two-
dimensional manifolds are conformally flat. Hence, the transport coefficients out
of Onsager’s region can always be brought into the form

gμν = Lμν expφ(X) (53)

with φ denoting a scalar field depending on the thermodynamic forces. By plugging
Eq. (53) into Eqs. (51) and (52), we get the PDE which has to be solved for the
conformal field φ. In this case, the Onsager condition requires φ(0) = 0.

Concerning the action, we adopt the expression proposed in literature [20]. This
action reads

I =
∫

N (B + T )
√
g d2X (54)

whereN is an auxiliary scalar field (analogous to the dilaton field [21]), which plays
the role of a Lagrangian multiplier. Notice that in this formalism, the dynamical
fields present in the action (54) are the dilatation field and the transport coefficients.
In this case, the affine connection does not play the role of an independent field (it
is a dynamical variable only when n > 2) and it intervenes in the dynamics through
the second expression of Eq. (52). By varying this action with respect to N we get
Eq. (51), while variation with respect to the transport coefficients yields the PDE
for N . The PDE for the transport coefficients is decoupled from that for the dilaton
field. However, as we will see in the next work, this will not be the case when the
skew-symmetric part of the transport coefficients is different from zero.
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Let us now determine the nonlinear partial differential equation satisfied by a
conformal factor � of the metric gμν . A conformal manifold is a manifold equipped
with an equivalence class of metric tensors, in which two metrics gμν and g̃μν are
equivalent if and only if

gμν = �(X)g̃μν (55)

where �(x) is a real-valued smooth function defined on the manifold referred to
as conformal factor. An equivalence class of such metrics is known as a conformal
metric or conformal class. Thus, a conformal metric may be regarded as a metric
that is only defined up to scale. A conformal metric is conformally flat if there is a
metric representing it that is flat, i.e.,

gμν = �(X)Lμν (56)

Often conformal metrics are treated by selecting a metric in the conformal class,
and applying only conformally invariant constructions to the chosen metric. From
Eq. (56), we get

gμν = 1

�
Lμν; g=�n L; LμνX

ν =�−1Xμ; LμνXν = �xμ

�λ
μν = 1

2�

(

�,νδ
λ
μ + �,μδλ

ν − �,κL
κλ
μν

) + Xλ

2σ
LμνX

κ�,κ

− �,κXκ

2(n + 1)�σ

(

Xνδ
λ
μ + Xμδλ

ν

)

(57)

For the two-dimensional case, we have

T = 2

9�σ
�,λX

λ + 2

9�σ
�,λ,κ X

λXκ + 4

9�2σ
�,λ�,κX

λXκ

B = �,λ,κLλκ

�2
− �,λ�,κLλκ

�3
− 2�,λXλ

3�σ
− 2�,λ,κXλXκ

3�σ

+ 5�,λ�,κXλXκ

9�2σ
(58)

where Eqs. (28), (41), and (57) have been taken into account. From Eq. (51), we get

B + T = σ(L)

(

��,μ,ν − �,μ�,ν

)

Lμν −
(4

9
��,μ,ν − �,μ�,ν

)

XμX ν − 4

9
��,μX

μ = 0 (59)

Now, by setting �(X) = exp(φ(X)), Eq. (59) reads [36]
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Lμν ∂2φ

∂Xμ∂X ν
− 4

9σ(L)

XμX ν ∂2φ

∂Xμ∂X ν
− 4

9σ(L)

Xμ ∂φ

∂Xμ
+

5

9σ(L)

(

Xμ ∂φ

∂Xμ

)2

= 0 (60)

Equation (60) has to be solved for the conformal factor φ. By introducing the differ-
ential operators, invariant under TCT [11],

O ≡ Xμ ∂

∂Xμ
, �2 ≡ Lμν ∂2

∂Xμ∂X ν
(61)

Equation (60) can be cast into a manifestly TCT-covariant form

(

9σ(L)�2 − 4O2
)

φ + 5 (Oφ)2 = 0 (62)

Let us now perform the following coordinate transformation3:

X ′λ = Aλ
κX

κ , with Aμ
ν such that Aα

λL
λκ Aβ

κ = Iαβ (63)

with Iαβ denoting the Identity matrix. Notice that, since the matrix Lμν is a positive-
definite matrix, there exists always a matrix Aμ

ν , which satisfies condition (63).
Finally, we get

(

9σ ′
(L)�

′2 − 4O′2
)

φ′ + 5
(O′φ′)2 = 0 with

σ ′
(L) = X

′12 + X
′22, �′2 ≡ ∂2

∂X ′12
+ ∂2

∂X ′22
(64)

Equation (62) (or, equivalently, Eq. (64)) is, in Thermodynamical Field Theory
(TFT), analogous to Liouville’s equation in Riemannian (or pseudo-Riemannian)
geometry [36].

5 Linearised Transport Equations

When the transport coefficients are close to Onsager’s matrix, we may set

gμν � Lμν + hμν (65)

with hμν considered as a small perturbation of the transport matrix coefficients. We
also introduce a small parameter ε of the order ofσ−1 (considered as a small quantity).

3 Note that linear transformations of coordinates are allowed because this class of transformations
belongs to the TCT-group [11].
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The linearised Transport Equations are obtained by discarding systematically in the
following calculations:
(i) All the terms of order hh, hhh, . . .;
(ii) All the terms of order ε2, of order σ−2 or of higher order.

5.1 Linearised Transport Equations for n > 2

At the dominant order in hμν , we get for n > 2

Bμν =Tμν − 1

2
Lμν

(

�
β

λκL
λκ + 2

(n + 1)(n − 2)
�λ

μνL
μνLλκτ

κβ

(L)

)

,β

=W (S)
μν (66)

where

Bμν �
∂�λ

λμ

∂Xν
− ∂�λ

μν

∂Xλ
hence

Bμν � 1

2

(

Lλκ ∂2hμν

∂XλXκ
+ Lλκ ∂2hλκ

∂XμXν
− Lλκ ∂2hκμ

∂XλXν
− Lλκ ∂2hκν

∂XλXμ

− ∂

∂Xλ

(

τλκ ∂hμν

∂Xκ

) + 1

n + 1

∂

∂Xμ

(

τλκ ∂hνκ

∂Xλ

) + 1

n + 1

∂

∂Xν

(

τλκ ∂hμκ

∂Xλ

)

)

(67)

or

Bμν = B(0)
μν + B(1)

μν with

B(0)
μν = 1

2

(

Lλκ ∂2hμν

∂XλXκ
+ Lλκ ∂2hλκ

∂XμXν
− Lλκ ∂2hκμ

∂XλXν
− Lλκ ∂2hκν

∂XλXμ

)

B(1)
μν = 1

2

(

− ∂

∂Xλ

(

τλκ ∂hμν

∂Xκ

) + 1

n + 1

∂

∂Xμ

(

τλκ ∂hνκ

∂Xλ

) + 1

n + 1

∂

∂Xν

(

τλκ ∂hμκ

∂Xλ

)

)

(68)

We also have for n > 2

Tμν = − �
β

μν,β + 1

2
�

β

λκ,βL
λκLμν − 1

2

(

(�λ
κνLλμ + �λ

κμLλν)τ
κβ

(L)

)

,β

+ 1

2(n + 1)

(

�λ
ηατ

κβ

(L) + �κ
ηατ

λβ

(L)

)

,β
LηαLλμLκν

�
μ
λκ = 1

2
τ

μη

(L)hλκ,η − 1

2(n + 1)
τ

ηα

(L)hλη,αδμ
κ − 1

2(n + 1)
τ

ηα

(L)hκη,αδ
μ
λ

T = TμνL
μν =

(

n − 2

2
�β

μνL
μν + 1

n + 1
�λ

μνL
μνLλκτ

κβ

(L)

)

,β

B = −
(

�β
μνL

μν + 2

(n + 1)(n − 2)
�λ

μνL
μνLλκτ

κβ

(L)

)

,β

(69)
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with

τ
μν

(L) = XμX ν

σ(L)

; σ(L) = LμνX
μX ν (70)

After a little algebra, we find that identity (44) (or Eq. (43)) implies

∂T μν

∂X ν
= 0 (71)

This conservation law is consistent with the fact that our PDE (and the Lagrangian)
are invariant under the TCT. Hence, for the Noether theorem, this invariance is
associated to a conserved current and, so, a conserved source tensor [34].

As mentioned above, one way to get the approximate solution of Eq. (66) is to
introduce a parameter ε of the order of σ−1, which we consider to be a small quantity.
By setting

hμν � h(0)
μν + εh(1)

μν with ε ∼ O(σ−1) (72)

the linearised Transport Equations for n > 2 read

B(0)
μν (h(0)) = 0

B(0)
μν (εh(1)) = Tμν(h

(0)) − B(1)
μν (h(0)) − 1

2
Lμν

(

(

�
β

λκ(h
(0))Lλκ

)

,β

− 1

(n + 1)(n − 2)
Lμν

(

�α
λκ(h

(0))LλκLαητ
ηβ

(L)

)

,β
≡ W (S)

μν (h(0)) (73)

Note that W (S)
μν (h(0)) → 0 as h(0) → 0.

5.2 Examples of Simplification of the Linearised Transport
Equations

It is worth mentioning that in several cases, the second PDE of system (73) simplifies
significantly. Indeed, we have already noticed that tensor W (S)

μν satisfies the identity

Lμλ ∂W (S)
λν

∂Xμ
− 1

2
Lμλ

∂W (S)
μλ

∂X ν
≡ 0 (74)

Now, let us suppose to have solved the following Poisson PDE:

Lλκ
∂2h(1)

μν

∂Xλ∂Xκ
= W (S)

μν with h(1)
μν |∂�= 0 (75)
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with ∂� denoting the boundary.4 From Eqs. (74) and (75), we get

Lλκ ∂2Rν(x)

∂Xλ∂Xκ
= 0 with Rν(x) ≡ 1

2
Lμλ ∂hμλ

∂X ν
− Lμλ ∂hλν

∂Xμ
(76)

Hence, if it happens, for example, thatRν(x) |∂�= 0 + O(ε2)we also haveRν(x) =
0 + O(ε2) throughout the space. In other words, if it happens, for example, that the
derivative of the perturbation h(1)

μν vanishes at the boundary

∂h(1)
μν

∂Xλ

⏐

⏐

⏐

⏐

∂�

= 0 (77)

the second PDEof system (73) reduces to a Poisson PDE and the Transport Equations
to be solved reduce to

B(0)
μν (h(0)) = 0

Lλκ
∂2εh(1)

μν (X)

∂Xλ∂Xκ
= W (S)

μν (X) (78)

There is another important case where the second PDE of system (73) reduces to a
Poisson PDE. This happens when the perturbation takes the form

hμν(X) = Lμνh(X) (79)

with h(X) indicating a scalar field. As we shall see in Sect. 7, this is exactly what
happens for the two-dimensional case (see Eq. (53)). PDEs (78) should be solved
with the boundary conditions specified in the Annex.

5.3 Linearised Transport Equation for n = 2

As seen in Sect. 4, for n = 2 the PDE to be solved is

B = −T (80)

Hence, the linearised Transport Equation reads

B = 0 for the homogeneous case

B = −T(L) for the inhomogeneous case (81)

4 Note that the boundary conditions have already been satisfied at zero order, and for this reason,
h̄(1)

μν should vanish at the boundary.
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with

T(L) = 1

3
LηαL

λκ
(

�α
λκτ

ηβ

(L)

)

,β
(82)

We have already mentioned that for n = 2, the solution of Eq. (81) can always be
brought into the form (see Eq. (53) in Sect. 4)

gμν = Lμν f (x) (83)

By setting
hμν � h(0)

μν + εh(1)
μν with ε ∼ O(σ−1) (84)

we get the linearised Transport Equations for n = 2 as

B(0)(h(0)) = B(0)
μν L

μν(h(0)) = 0

B(0)(εh(1)) = B(0)
μν L

μν(εh(1)) = −B(1)
μν L

μν(h(0)) − T(L)(h
(0)) = W (S)(x) (85)

The analytic solution of system (85) (or system (81)) can be found in Sect. 7.

6 TFT Gauge Invariance

In field theories, different configurations of the unobservable fields can result in
identical observable quantities. A transformation from one such field configuration
to another is called a gauge transformation; the lack of change in the measurable
quantities, despite the field being transformed, is a property called gauge invariance.
In this section, we shall clarify the physical meaning of the gauge invariance in the
Thermodynamical Field Theory. To carry out this task, we need first to recall some
fundamental theorems concerning the solution of the differential equations (73).
After this, in Sect. 6.2 we provide the physical interpretation of the gauge invariance
in the TFT.

6.1 Basic Theorems for the PDEs B(0)
μν (h) = W (S)

μν

Let us consider the PDE B(0)
μν (h) = W (S)

μν where the source W (S)
μν may be either dif-

ferent from zero or absent. By direct inspection, we find that if hμν(X) is a solution
of B(0)

μν (h) = W (S)
μν , then so will be

̂hμν(X) = hμν(X) + ∂uν(X)

∂Xμ
+ ∂uμ(X)

∂X ν
(86)
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where uμ(X) are n small but otherwise arbitrary functions of Xμ. Hence, tensor
B(0)

μν (h) is unaffected by gauge transformations (86). Thanks to this gauge invariance,
we have the following theorem [42].

Theorem 1 If one knows a specific solution h̄μν to the linearised equations (73)
for a given Tμν , one can obtain another solution that describes precisely the same
physical situation by the change of gauge (86), in which uμ are arbitrary but small
functions.

So, if we are able to find a particular solution of Eq. (73), say h̄μν(X), all the other
solutionŝhμν(X) can be found by adding to the particular solution h̄μν(X) the tensor
∂uν (X)

∂Xμ + ∂uμ(X)

∂X ν . In addition,̂hμν(X) and hμν(X) possess the same physical meaning.
We also have the following.

Theorem 2 If one knows a specific solution h̄μν to the second equation of system (73)
for a given Wμν , it is always possible to choose uμ such that the new solution̂hμν(X)

satisfies the gauge

1

2
Lλκ ∂̂hλκ

∂X ν
= Lλκ ∂̂hλν

∂Xκ
with

̂hμν(X) = h̄μν(X) + ∂uν(X)

∂Xμ
+ ∂uμ(X)

∂X ν
(87)

Indeed,̂hμν(X)manifestly satisfies the second equation of system (73), and the gauge
condition [i.e., the first equation of Eq. (87)] is satisfied by choosing uν such that

Lλκ ∂2uν(X)

∂Xλ∂Xκ
= 1

2
Lλκ h̄λκ(X)

∂X ν
− Lλκ h̄κν(X)

∂Xλ
(88)

Note that, thanks to Eq. (88),̂hμν(X) satisfies the second PDE of system (73) because
it satisfies simultaneously the gauge condition (87) and the following Poisson’s PDE:

Lλκ ∂2
̂hμν(X)

∂Xλ∂Xκ
= W (S)

μν (X) (89)

In conclusion, if we know a specific solution h̄μν(X), thanks to Eqs. (87)–(88), we
shall also able to get the expression for̂hμν(X) satisfying simultaneously the gauge
condition and Poisson’s PDE (89).

Incidentally, we also have the following theorem [42].

Theorem 3 By performing the following change of variables Xμ → X
′μ

X
′μ = Xμ + Lμνuν(X) (90)

where uν is the solution of Eq. (88), the transformed tensor of the unknown hμν(X)

is a solution of Poisson’s PDE (89).
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Indeed, by direct inspection, we can check that we find exactly the same PDE for
the transformed tensor h′

μν(X
′), obtained by hμν after the coordinate transformation

Xμ → X
′μ. The only precaution to be taken is to remain within the limits of validity

of the weak-field approximation and, therefore, nonlinear terms of the type hh, hu,
uu, and of higher order must be neglected.

6.2 A Note on the Physical Meaning of the Gauge Invariance

Let us consider a group of transformations of the field variables that leaves unchanged
the basic physical observable. This group of transformations is called gauge transfor-
mations, and a theory where all the basic observables are unchanged under a gauge
transformation of the field variables is referred to as a gauge-invariant theory. In
Electrodynamics, for example, the Lorentz transformation and the Coulomb trans-
formation are both gauge transformations since they do not affect the values of the
electrodynamic observables, i.e., the values of the electric and the magnetic fields.
In other words, the experimentalist is not able to detect the gauge-transformation
choice, with any kind of system, and he is unable to notice any difference between
two different gauge choices.

Another example is the theory of the General Relativity (GRT) since transforma-
tions (86) leave unchanged the physical observables, i.e., theRicci tensor, theEinstein
tensor, and the Riemannian curvature tensor. Hence, in GRT, transformations (86)
may be regarded as the gauge transformations.

Thus, the concept of gauge invariance is intimately related to one of unchanged
physical observables. This means that, before starting calculations, we should firstly
identify all the physical observables linked to these transformations and, successively,
check whether the values of these observables may be affected by a field-variables
transformation.

The following example will make clear the concept. Let us suppose (absurdly,
of course) that, in classical Electrodynamics, the physical observables are not only
the electric field E and the magnetic field B, but also the scalar potential φ and the
vector potential A. Thus, we suppose that an experimentalist is able to measure, with
his instruments, also the numerical values of these two variables (in addition to the
electromagnetic fields E and B). The electromagnetic fields E and B will still remain
unaffected under Lorentz’s or Coulomb’s transformations. However, the question
is: May we still consider this New Electrodynamics as a gauge-invariant theory?
The answer is No. The only thing that has been changed is the fact that, in this new
Electrodynamics, the experimentalist is now able to measure the scalar potential φ

and the potential vector A (in addition to the electric and the magnetic fields). What
happens then? If we perform calculations by using the Lorentz transformation, as to
the electric field and the magnetic field, the experimentalist will confirm the good
agreement between the theoretical predictions and the experimental data. However,
in general, he will find a discrepancy between the experimental data and the values
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of the scalar potential φL and of the potential vector AL established by the Lorentz
transformation. For the experimentalist, the only way to overcome this impasse is to
know the mathematical expression linking the scalar potential φL and the potential
vector AL with the scalar potential φExp. and the potential vector AExp. measured in
a laboratory. In this case, the new Electrodynamics loses its status of gauge-invariant
theory.

Let us now consider another comparison. Let us compare the Thermodynamical
Field Theory (TFT) with the General Relativity Theory (GRT). Here, there is a clear
divergence between the TFT and the GRT. Indeed, as mentioned above, the physical
observables in the GRT are the Ricci tensor, the Einstein tensor, and the Riemannian
curvature tensor. Transformations (86) leave unchanged these physical observables.
Hence in GRT, without loss of generality, we may suppose that there exists a specific
solution of the PDE B(0)

μν (h(0)) = 0. Note that it does matter if, in reality, we do not
know the mathematical expression of this solution; the proof of its existence is just
sufficient. For Theorem 2, we may imagine to perform transformation (86), with
uν satisfying Eq. (88), such that the new unknown reduces to the PDE (89) (and it
satisfies, at the same time, the gauge condition). All of this is consistent with the
General Covariance Principle (GCP), which allows choosing the coordinate system
as we like such as the coordinate transformation (90) with uν satisfying the PDE (88),
where the second PDE of system (73) reduces to Eq. (89) (ref. toTheorem 3 and [42,
43]). In conclusion, in GRTwe do not need to know the mathematical expression of a
specific solution of the second equation of system (73), and wemay start calculations
by solving directly Eq. (89).

The case of TFT is utterly different. Firstly, we cannot evoke the validity of the
General Covariance Principle and, even more importantly, the physical observables
are the unknownhμν (indeed, thehμν are the transport coefficients).Hence, in analogy
with what we said concerning the case of the new Electrodynamics, if we want
to communicate with experimentalists we are compelled to find, firstly, a specific
solution of Eq. (73) (either analytically or numerically) and, successively, obtain the
general solution by applying Eq. (86). In conclusion, the TFT does not possess the
status of gauge-invariant theory even though Theorem 1 and Theorem 2 remain
valid and are very useful for performing calculations.

7 Solution of the Linearised Equations

As seen in Sect. 6.1, to get a concrete expression of a solution of Eq. (73), firstly we
have to be able to find a specific solution for this PDE. Successively, according to
Theorem 1, all the other solutions can be obtained by Eq. (86). Theorem 2 allows
getting the solution satisfying Eq. (89) by solving Eq. (88).

• Solution of the Transport Equations for the Two-Dimensional Case
For the two-dimensional case, the PDE to be solved reads



Thermodynamic Flux-Force Closure Relations for Systems … 99

B(0)(h(0)) = 0

B(0)(εh(1)) = −B(1)(h(0)) − T(L)(h
(0)) = W (S)(h(0)) (91)

We start by solving the homogeneous differential equation B(0)(h(0)) = 0. Since our
task is to find a specific solution, we look for a solution of the form (83) [4].

h̄(0)
μν (x) = Lμν h̄

0)(x) (92)

We have

B(0)(h̄(0)) = 1

2
Lμν

(

LμνL
λκ ∂2h̄(0)

∂XλXκ

+ LλκLλκ

∂2h̄(0)

∂XμX ν
− LλκLκμ

∂2h̄0)

∂XλX ν
− LλκLκν

∂2h̄(0)

∂XλXμ

)

= 0 (93)

By noticing that the sum of the last three contributions on the r.h.s. of Eq. (93)
vanishes identically, we finally get

B(0)(h̄(0)) = Lλκ ∂2h̄(0)

∂XλXκ
= 0 (94)

The second PDE of system (91) reduces to a Poisson PDE. Indeed, also in this case,
we look for a special solution of the form

h̄(1)
μν (X) = Lμν h̄

(1)(X) (95)

By inserting Eq. (95) to the second PDE of system (91), we get

Lλκ ∂2εh̄(1)

∂xλ∂xκ
=

(

2

3
τ

αβ

(L)h
(0)
,α − 1

6
LηαL

ι��α
ι�τ

ηβ

(L)

)

,β

= W (S)(h(0)) (96)

since the contribution

LλκLλκ

∂2εh̄(1)

∂XμX ν
− LλκLκμ

∂2εh̄1)

∂XλX ν
− LλκLκν

∂2εh̄(1)

∂XλXμ
≡ 0 (97)

vanishes identically. In conclusion, for n = 2 the PDEs to be solved are

Lλκ ∂2h̄(0)(X)

∂Xλ∂Xκ
= 0

Lλκ ∂2εh̄(1)(X)

∂Xλ∂Xκ
= 1

6

(

4ταβ

(L)h̄
(0)
,α − LηαL

ι��α
ι�τ

ηβ

(L)

)

,β
= W (S)(X) (98)

By performing the following orthogonal coordinate transformation
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X ′λ = Aλ
κX

κ (99)

Equation (98) reads

Aα
λL

λκ Aβ
κ

∂2h̄
′(0)(X ′)

∂X ′α∂X ′β = 0

Aα
λL

λκ Aβ
κ

∂2εh̄
′(1)(X ′)

∂X ′α∂X ′β =
(

2

3
τ

′αβ

(L) h̄
′(0)
,α − 1

6
LηαL

ι��
′α
ι� τ

′ηβ
(L)

)

,β

(100)

Note that linear transformations of coordinates are allowed because this class of
transformations belongs to the group TCT [11]. Since the tensor Lμν is a symmetric
positive-definite matrix, it is always possible to determine Aλ

κ such that

Aα
λL

λκ Aβ
κ = Iαβ (101)

with Iαβ denoting the components of the identity matrix. As a consequence, Eq. (100)
reads

Iαβ ∂2h̄
′(0)(X ′)

∂X ′α∂X ′β = 0

Iαβ ∂2εh̄
′(1)(X ′)

∂x ′α∂X ′β =
(

2

3
τ

′αβ

(L) h̄
′(0)
,α − 1

6
LηαL

ι��
′α
ι� τ

′ηβ
(L)

)

,β

= W
′(S)(X ′) (102)

Tensors h̄(i)
μν(x) (with i = 0, 1) are obtained by tensors h̄

′(i)
μν (X ′) by means of the

coordinate transformation (99), with Aμ
ν determined by Eq. (101). We conclude this

part of our analysis by noticing that the conformal field φ, defined in Eq. (53), is
determined by h̄(i) (with i = 0, 1) through the expression

φ = ln
(

1 + h̄0) + (εh̄(1)) · · ·) � h̄0) + (εh̄(1)) (103)

since h̄(i) are non-negative scalar fields. Note that, by setting

φ � φ0 + εφ1, with ε ∼ O(σ−1
(L)) (104)

we get

�2φ0 = 0 (105)

�2(εφ1) = 4

9σ(L)

O2φ0 (106)

which can be derived also by Eq. (102). Equation (102), subject to the appropri-
ate boundary conditions, admits solutions that can be obtained analytically. Let us
consider the first equation of system (102). This is a Laplacian PDE. According to
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the arguments illustrated in Appendix, we have to solve the Laplacian equations in
the first quadrant by imposing that the solutions vanish on the axes, and they are
constant on the arc of the circle of radius R0. Successively, the entire solution, valid
for all quadrants, is obtained by applying, the Schwartz principle [44]. In Appendix,
we report the solution of the Laplacian equation subjected to appropriate boundary
conditions, for the case of two independent thermodynamic forces. We have [4]

h̄
′(0)
μν (X

′1, X
′2) = 2

π
Lμν arctan

[

4R2
0 | X ′1X

′2 |
R4
0 − (X ′12 + X ′22)2

]

(107)

where the new variables {X ′μ} (with μ = 1, 2) are linked to the old ones {Xμ} by
the (constant) 2 × 2 matrix Aλ

η, which satisfies the relation

X
′μ = Aμ

ν X
ν with Aα

λL
λκ Aβ

κ = Iαβ (108)

The value of constant χ and the expression of the radius R0 are determined by
the thermodynamic system under consideration and by the specific problem to be
solved. An example of calculation can be found in [36]. It is worth mentioning
that the method illustrated in Appendix applies also for obtaining the solution for n
independent thermodynamic forces.

Let us now find the solution of the inhomogeneous problem. In this case, the
second PDE of system (73) reduces to a Poisson PDE. Appendix reports the analytic
solution of Poisson’s PDE for a two-dimensional thermodynamic space. In polar
coordinates ρ, θ , we have

εh̄
′(1)
μν (ρ, θ) = − LμνR

2
0

∞
∑

n=1

[ sin 2(n − 1)θ

4(n − 1)

(

ρ2(n−1)
(

∫ ρ

0
t−2n+3

̂W
′(S)
n (t)dt − α̂n

)

− ρ−2(n−1)
∫ ρ

0
t2n−1

̂W
′(S)
n (t)dt

)]

(109)

with

α̂n =
∫ 1

0

(

t−2n+3 − t2n−1
)

̂W
′(S)
n (t)dt and

̂W
′(S)
n (ρ) ≡ 1

π

∫ π

−π

W
′(S)(ρ, θ) sin (2(n − 1)θ) dθ

where ρ and θ are linked to the new variables {X ′μ} by the usual relations ρ =
(X

′12 + X
′22)1/2 and θ = arctan(X

′2/X
′1). Figure 4 illustrates solution h̄

′(1)
11 (ρ, θ)

in polar coordinates ρ and θ in case of W ′(S)(X ′) ∼ εh̄
′(0)(x ′) and χ = 1.
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Fig. 4 h̄
′(1)
11 (ρ, θ) in polar coordinates ρ and θ in case of W

′(S)(X ′) ∼ εh̄
′(0)(X ′) and χ = 1

Fig. 5 The Shafranov shift. In tokamak-plasmas, the plasma pressure leads to an outward shift
 of the centre of the magnetic flux surfaces. J indicates the direction of the electric current that
flows inside the plasma. Note that the poloidal magnetic field increases and the magnetic pressure
can, then, balance the outward force [34]

8 Testing the Validity of the PDE (64)—Computation of
Heat Loss in L-mode, Collisional FTU-Plasma

The aim of this section is to test the validity of the PDE (64). For this purpose,
we compare the theoretical predictions with the experimental data provided by the
EUROfusion Consortium in Frascati (Rome-Italy) for FTU-plasmas.5 We started by
comparing the theoretical predictions of Eq. (64) subjected to the correct bound-
ary conditions, with the experimental data for FTU-plasmas, in a fully collisional
regime. So, in the first phase, experiments have been performed in a zone of the
Tokamak where the turbulent effects are almost frozen. In our calculations, we have
also taken into account the Shafranov-shift (which is not negligible in FTU-plasmas).
The physical explanation of the Shafranov-shift is briefly sketched in Fig. 5.

As to the boundary conditions, these have been obtained in the following way:
(a) First of all, we have to satisfy the Onsager condition. Hence, the solution should
vanish at the origin of the axes, i.e., φ(0) = 0;

5 Here, we shall not enter in describing technical details [45], since all this is out of scope of
the present work. Our aim is to show the good agreement between the proposed approach and
experiments. The interested reader can find a detailed description of the comparison between theory
and the experimental data in FTU-plasmas in our article submitted for publication in a review
specialised in the field of thermonuclear fusion.
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Fig. 6 Boundary conditions for φ for collisional FTU-plasmas. The validity of Onsager’s rela-
tions is ensured by imposing that φ vanishes along the axes. In addition, we have to impose that
there are no privileged directions for very large values of the thermodynamic forces. This condition
is satisfied by imposing, in the first quadrant, φ(r = R0, θ) = c0 �= 0

(b) Experimental evidence shows that, in the pure collisional regime, the pure effects
(such as Fourier’s law and Fick’s law) are very robust laws. So, we have to impose
φ(X1 = 0, X2) = φ(X1, X2 = 0) = 0;
(c) There are no privileged directions when the thermodynamic forces tend to
infinity (or for very large values of the thermodynamic forces). In other words,
φ(r = R0, θ) = const. ≡ c0 �= 0 on the arc of a circle of radius R0 (with R0

very large). Here, (r, θ) denotes the polar coordinates: r = (X12 + X22)1/2 and
θ = arctan(X2/X1).

The boundary conditions, in the case of FTU-plasmas in a fully collisional regime,
are depicted in Fig. 6.

Now, we are able to solve the PDE (64) in the first quadrant. After having obtained
the solution in the first quadrant, successively we shall be able to reconstruct the
entire solution which is valid for the whole circle by using the Schwartz principle
[44]. Parameters R0 and c0 have been determined as follows.

The scaling parameter R0 is determined such that
(i) a solution of the TFT equation exists everywhere in the physical system, hence it
cannot be too small;
(ii) the solution area is maximised in the space of the thermodynamic forces, i.e., R0

defines the minimal circle enclosing the solution area—see Fig. 7.
The Dirichlet boundary condition c0 is determined such that the thermodynamic

forces X1 and X2, solutions of the system, maximise the electron heat loss. It is
numerically found to be approximately equal to c0 � −4.5.

Figure 8 shows a comparison between experimental data for fully collisional
FTU-plasmas and the theoretical predictions of Eq. (64), subjected to the boundary
conditions illustrated in Fig. 6. On the vertical axis, we have the (surface magnetic-
averaged) radial electron heat flux, and on the horizontal axis the minor radius of
the tokamak. The lowest dashed profile corresponds to the Onsager theory (i.e., the
neoclassical theory) and the bold line to the Thermodynamical Field Theory (TFT)
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Fig. 7 Determination of the value R0. R0 defines the minimal circle enclosing the solution area.
Here, the solution area is maximised in the thermodynamic forces space, spanned by X1 and X2

Fig. 8 Electron heat loss in FTU-plasmas versus the minor radius of the Tokamak. The
highest dashed line is the experimental profile. These data have been provided by Marinucci from
the ENEA C.R.-EUROfusion in Frascati [46]. The bold line is the theoretical profile obtained by
the nonlinear theory satisfying the TCP (TFT) and the lowest dashed profile corresponds to the
theoretical prediction obtained by Onsager’s theory (i.e., by the neoclassical theory)

satisfying the TCP, respectively. The highest profile is the experimental data provided
by the ENEA C.R.-EUROfusion. As we can see, the TCP principle is well satisfied
in the core of the plasma where plasma is in the fully collisional transport regime.
Towards the edge of the tokamak, transport is dominated by turbulence.

9 Conclusions

A non-Riemannian geometry has been constructed out of the components of the
affine connection which has been determined by imposing the validity of the Gen-
eral Evolution Criterion for non-equilibrium systems relaxing towards a steady state.
Relaxation expresses an intrinsic physical property of a thermodynamic system. The
affine connection, on the other hand, is an intrinsic property of geometry allowing
to perform derivatives and determine the equation for the shortest path. It is sponta-
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neous to argue that a correct thermodynamical-geometrical theory should correlate
these two properties: relaxation of a system with the affine connection. It is impor-
tant to recall that the General Evolution Criterion is valid for systems, even far, from
equilibrium and even in turbulent regimes. More specifically, this theorem has been
derived only from the balance equations for mass, energy, and momentum without
assuming the validity of the Onsager reciprocity relations and without neglecting
any terms, including the terms leading to turbulence in hydrodynamic systems. Suc-
cessively, Glansdorff and Prigogine showed the validity of this theorem also for
plasmas governed by the plasma-dynamic PDEs. Incidentally, if we assume that the
transport coefficients are a small perturbation of the Onsager matrix and in the limit
σ >> 1, all terms leading to turbulence disappear and the General Evolution Crite-
rion is trivially satisfied. In this limit case, we obtain the closure relations reported
in ref. [11].

Action (31) (or action (27)), takes into account all the terms of the balance equa-
tions, including those leading to turbulence, and its validity range coincides with
that of the General Evolution Criterion. The action principle leads, for n > 2, to the
PDEs (42) and, for n = 2, to Eq. (64), respectively. To get these equations, we did
not neglect any terms and we did not require that the transport coefficients are close
to the Onsager matrix. Moreover, we have noted that for FTU-plasmas, turbulence
appears in a region of the Tokamak where the values of the dimensionless entropy
production are of order O(1). Hence, in this work, we did not assume that σ >> 1.
Successively, we have applied Eq. (64) to FTU-plasmas in a collisional regime. This
regime requires that the pure Onsager laws (i.e., the Fourier law and the Fick law)
are very robust laws and for this, we are bound to impose as boundary conditions
that along the thermodynamic axes the transport coefficients must coincide with the
Onsager ones. It is worth noticing that variable φ is not a perturbation. It is our
opinion that it is a great success that in the collision regime the theoretical predic-
tions, resulting from a PDEs so different from the standard equations that we are
used to seeing in the literature, are in very good agreement with the experimental
data. Since the PDE (64) has been derived without neglecting any term present in the
dynamic equations (i.e., the energy, mass, and momentum balance equations), it is
quite natural to propose Eq. (64) as a good candidate also for describing transport in
two-dimensional turbulent systems. So in our opinion, we may analyse the electron
heat loss for FTU-plasmas even in the turbulent zone if we specify the appropriate
boundary conditions. In the turbulent zone, the system is (very) far from thermody-
namic equilibrium. Thus, in this zone we have to release the very strict condition
that along the (thermodynamic) axes the solution must coincide with the Onsager
relations. Indeed, in a turbulent regime the Onsager regression hypothesis for micro-
scopic fluctuations of small non-equilibrium disturbances is violated [12]. However,
we have tomaintain the hypothesis that for large values of the thermodynamic forces,
the space tends to flatten towards a constant metric (that no longer coincides with
Onsager’s metric). The boundary conditions, in the case of Tokamak-plasmas in the
collisional regime (first circle) with the ones in the turbulent regime (i.e., in the annu-
lus) are depicted in Fig. 9. We are currently analysing the stability of the constant
solution of Eq. (64) in the annulus region. Concretely, we have to determine the con-
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Fig. 9 Boundary conditions for φ for FTU-plasmas in collisional and turbulent regimes. In the
turbulent zone, plasmas are far from equilibrium. So, in the annulus the Onsager relations are no
longer valid. Of course, we have always to impose that there are no privileged directions for very
large values (say for r = R1) of the thermodynamic forces. This condition is satisfied by imposing,
in the first quadrant, φ(r = R1, θ) = c1 �= 0. By combining these boundary conditions with those
specified for FTU-plasmas in the collision regime, we are finally able to find the solution of Eq. (64),
valid in the collision zone as well as in the turbulent one

ditions where the constant solution of Eq. (64) loses its stability towards a chaotic
one. This task may be accomplished by applying, for example, the mathematical
methods reported in Ref. [47]. The ultimate aim of our work is to apply our approach
to the Divertor Tokamak Test facility (DTT) to be built in Italy and to ITER.

We conclude with some comments about the validity of Eq. (1). It is known that
the most general flux-force transport relations take the form

Jμ(r, t) =
∫

�

dr′
∫ t

0
dt ′Gμν[X (r′, t ′)]X ′ν(r − r′, t − t ′) (110)

with � denoting the volume occupied by the system. The space-time-dependent
coefficients Gμν are called nonlocal transport coefficients: they should not be con-
fused with coefficients �μν (they do not have the same dimension). The nonlocal
and non-Markovian Eq. (110) expresses the fact that the flux at a given point (r, t)
could be influenced by the values of the forces in its spatial environment and by its
history. Whenever the spatial and temporal ranges of influence are sufficiently small,
the delocalisation and the retardation of the forces can be neglected under the integral

Gμν[X (r′, t ′)]X ′ν(r − r′, t − t ′)
= 2�μν[X (r, t)]X ν(r, t)δ(r − r′)δ(t − t ′) (111)

with δ denoting Dirac’s delta function. In this case, the transport equations reduce to
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Jμ(r, t) = �μν[X (r, t)]X ν(r, t) (112)

In the vastmajority of cases studied at present in transport theory, it is assumed that the
transport equations are of the formof Eq. (112). However, equations of the form (110)
may be met when we deal with anomalous transport processes such as transport in
turbulent tokamak plasmas—see, for example, Ref. [40]. Hence, Eq. (111) estab-
lishes, in some sort, the limit of validity of Eq. (1) and, in this case, the fluxes should
be evaluated by using Eq. (110). Nonetheless, we would like to stress the following.
Hydrodynamic turbulence is normally studied through the Navier-Stokes equations,
supported by the conservation equations for the mass and energy (the so-calledmass-
energy balance equations). The set of hydrodynamic equations are closed through
relations of the form (112) where, for Newtonian fluids, τμν depends only on the
thermodynamical quantities, and not on their gradients. The experimental data are
in excellent agreement with the numerical simulations—see, for example, Ref. [48].
For non-Newtonian fluids, turbulence is still analysed by closing the balance equa-
tions with equations of the form (112) where the viscosity coefficients depend not
only on the thermodynamic quantities but also on their gradients—see, for example,
Ref. [49]. Also in this case, the experimental data are in excellent agreement with
the numerical simulations. Even transport phenomena in Tokamak-plasmas in the
weak-collisional regime are analysed by closing the balance equations with equa-
tions of the type (112)—see, for example, Ref. [1]. This is for saying that Eq. (112)
are very robust equations and their validity goes well beyond the collisional, or the
weak-collisional, regime. This case is very similar to what happens for the Onsager
reciprocity relations: even if, according to the non-equilibrium statistical physics and
the kinetic theory, these relations should have been valid only in the vicinity of the
thermodynamic equilibrium in reality their validity goes well beyond the thermody-
namic equilibrium, up to be valid even in turbulent hydrodynamic regimes.

In conclusion, before further complicating the mathematical formalism, it is the
author’s opinion that it is still worth analysing the turbulence in Tokamak-plasmas by
closing the balance equations with local equations of the type (112) and comparing
a posteriori the theoretical predictions with the experimental data.

By passing, there is another important point which is worthwhile mentioning. In
this manuscript, the thermodynamic quantities (number density, temperature, pres-
sure, etc.) are evaluated at the local equilibrium state. This is not inconsistent with
the fact that the arbitrary state of a thermodynamic system is close to, but not in
a state of local equilibrium. Indeed, as known, it is always possible to construct a
representation in such a way that the thermodynamic quantities evaluated with a
distribution function close to a Maxwellian do coincide exactly with those evaluated
at the local equilibrium state—see, for example, the textbook [50].
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Appendix

• Specification of the Boundary Conditions
The purpose of this section is to specify the boundary conditions for the first equation
of system (102), i.e., for the Laplace PDE

Iλκ ∂2 f (x)

∂Xλ∂Xκ
= 0 (113)

with Iλκ denoting the components of the Identity matrix. This task will be accom-
plished by taking into account the Onsager theory and experimental evidence. More
specifically, we should require the validity of the following conditions:

(a) The solutionmust coincidewith theOnsagermatrixwhen the system approaches
equilibrium. We refer to this condition as Onsager’s condition;

(b) Experimental evidence shows that the pure effects (such as Fourier’s law and
Fick’s law) are very robust laws. Hence, for the unidimensional case (i.e., for
n = 1), we impose g11 = L11 (or h11 = 0);

(c) There are noprivilegeddirectionswhen the thermodynamic forces tend to infinity
(or for very large values of the thermodynamic forces);

(d) For isotropic substances, the solutionmust be invariant under permutation among
the (dimensionless) thermodynamic forces. Hence, for isotropic materials, the
solution should be invariant with respect to the permutation of the axes Xi ;

(e) The solutionholding throughout the spacemaybeobtainedbyusing theSchwartz
principle [44];

(f) The boundary conditions for the n-dimensional case may be derived from the
knowledge of the solution of Eq. (113) for the (n − 1)-dimensional case.

The analysis of the two-dimensional case will make clear this approach. Once this
case is solved, we shall be able to specify the boundary conditions for a three-
dimensional thermodynamic space and so on.

(i) First of all we have to satisfy the Onsager condition. Hence, the solution should
vanish at the origin of the axes:

f (0) = 0 (114)
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Fig. 10 The
two-dimensional boundary
conditions

As a consequence, in two dimensions, we should have f (r = 0, θ) = 0, with
r = (X12 + X22)1/2 and θ = arctan(X2/X1), respectively.

(ii) From condition (b), we have that the perturbation of the transport coefficients
is zero on the axes X1 = 0 and X2 = 0, and condition (c) requires that the
solution should be a constant different from zero, say with value k �= 0, on the
arc of a circle of radius R0 (with R0 very large). Hence, we should have

f (X)|(θ=0,r) = f (X)|(θ=π/2,r) = 0 and f (X)|(0<θ<π/2,r=R0)
= k �= 0 (115)

(iii) The solution should be invariant with respect to the permutation of the axes X1

and X2;
(iv) After having obtained the solution in the first quadrant, successively we shall

be able to reconstruct the entire solution which is valid for the whole circle by
using the Schwartz principle [44].

Note that, according to the previous boundary condition (b), the first derivatives
of the solution have discontinuity points. However, the C2 smoothness inside the
domain is automatically assured by Weyl’s lemma [51]. Hence, the solutions are of
class C2 inside the circle, except at the boundary where they are at least of class C0.

By taking into account conditions (i)–(iv), it is easy to convince ourselves that,
for n = 2, the correct boundary condition reads [29, 32]

f (R0, θ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k if 0 < θ < π
2−k if π

2 < θ < π

k if − π < θ < −π
2−k if − π

2 < θ < 0

(116)

• Solution of Eq. (113) for the Two-Dimensional Case
The solution of this problem can be found in [29, 32]. Here, we shall solve Eq. (113)
subject to the boundary conditions depicted in Fig. 10.
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As known, the solution of Eq. (113) with boundary conditions (116) can be written
in general as (see, for example [52] or [53]):

f (r, θ) = a0
2

+
∞

∑

n=1

(an cos nθ + bn sin nθ)

(

r

R0

)n

(117)

with

a0 = 2
∫ π

−π

f (R0, θ) dθ

an = 1

π

∫ π

−π

f (R0, θ) cos(nθ) dθ for n ≥ 1

bn = 1

π

∫ π

−π

f (R0, θ) sin(nθ) dθ for n ≥ 1 (118)

Integrals (118) can be computed. We get

an = 0 (n = 0, 1, 2 · · · )
bn = −k

8 cos( nπ
2 ) sin( nπ

4 )2

nπ
(n = 1, 2 · · · ) (119)

Therefore, solution f (r, θ) can be written as

f (r, θ) = −8k

π

∞
∑

n=1

cos( nπ
2 ) sin( nπ

4 )2

n
sin(nθ)

(

r

R0

)n

(120)

Solution (120) can be brought into the form

f (r, θ) = 4k

π

∞
∑

n=1

sin(2(n − 1)θ)

2n − 1

(

r

R0

)n

(121)

The sum in Eq. (121) can be evaluated [54], and we find the compact expression

f (r, θ) = 2k

π
arctan

[

2ρ2 sin(2θ)

1 − ρ4

]

where ρ ≡ r

R0
≤ 1 (122)

or, in coordinates x1 and x2:

f (X1, X2) = 2k

π
arctan

[

4R2
0X

1X2

R4
0 − (X12 + X22)2

]

(123)

Solution (123) is valid only in the quadrants X1X2 > 0. The general solution, valid
in all quadrants, is obtained by using Schwartz’s principle:



Thermodynamic Flux-Force Closure Relations for Systems … 111

Fig. 11 Solution (124)
(with k = 1) in polar
coordinates

f (X1, X2) = 2k

π
arctan

[

4R2
0 | X1X2 |

R4
0 − (X12 + X22)2

]

(124)

In our original problem, we found that constant k = 1 [45]. Solution (124) is illus-
trated in Fig. 11.
• Boundary Conditions for the Three-Dimensional Space
The boundary conditions for a three-dimensional space are derived directly from
the solution of Eq. (113) in two dimensions. Indeed, let us consider the first octant
of the space. In the planes X3 = 0, X2 = 0, and X1 = 0, we should re-obtain the
expressions for the transport coefficients which we have been found by solving the
two-dimensional case. So, on the planes X1 = 0, X2 = 0, and X3 = 0, solution
f (X1, X2, X3) should satisfy the boundary conditions

f (x1 = 0, X2, X3) = f1(X
2, X3) = 2k

π
arctan

[

4R2
0X

2X3

R4
0 − (X22 + X32)2

]

f (X1, X2 = 0, X3) = f2(X
1, X3) = 2k

π
arctan

[

4R2
0X

1X3

R4
0 − (X12 + X32)2

]

f (X1, X2, X3 = 0) = f3(X
1, X2) = 2k

π
arctan

[

4R2
0X

1X2

R4
0 − (X12 + X22)2

]

, (125)

respectively. In addition, the above condition (d) is satisfied by imposing that the
solution f (r, θ, φ) (with r , θ , and φ denoting the radial coordinate, the azimuth, and
the zenith angle, respectively) is constant on the spherical cap of radius R0, centred
at the origin of the axes and located in the first octant:

f (r = R0, θ, φ) = k �= 0 (126)
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In this way, the above conditions (a)–(d) have been satisfied and we have obtained
a well-posed Dirichlet’s problem in the first octant. Now, we are in a position to
solve the Laplace PDE in the first octant, subject to the above-derived Dirichlet’s
boundary conditions, by using standard methods of mathematical physics.6 As for
the two-dimensional case, the solution holding throughout the spacemay be obtained
by using the Schwartz principle. Of course, the above method is not limited to the
three-dimensional case, and it can naturally be extended for getting the boundary
conditions for an n-dimensional space, once the solution of Eq. (113) for a (n − 1)-
dimensional space is obtained.
• Solutions of Poisson’s PDE
In this section, we solve the Poisson PDE subjected to the appropriate boundary
conditions,

Iλκ ∂h(1)(X)

∂Xλ∂Xκ
= W (S)(X) (127)

with source W (S)(X) given by the right-hand side of the second equation in sys-
tem (102). According to the general procedure, we have, firstly, to find a particular
solution of the Poisson PDEwhich should be solved with all homogeneous boundary
conditions. The individual conditions must retain their type (Dirichlet, Neumann, or
Robin type) in this sub-problem. Successively, we have to add any solution of the
homogeneous Laplace equation with the non-homogeneous boundary conditions.
Also in this case, the individual conditions must retain their type (Dirichlet, Neu-
mann, or Robin type) in the sub-problem. The complete solution of the Poisson
equation is the sum of the solution of the two sub-problems: the solution of the Pois-
son sub-problem plus the solution of the Laplace sub-problem. Since the boundary
conditions have already been satisfied when we solved the PDE at the dominant
order (i.e., the equations for h(0)

μν ), the only task that we have to accomplish is to find
the particular solution of the inhomogeneous Poisson PDE subject to homogeneous
boundary conditions. The solution to the homogeneous equation allows us to obtain
a system of basis functions that satisfy the given boundary conditions.

For a two-dimensional space (i.e., in case of two independent thermodynamic
forces), Eq. (121) suggests the following expression for the solution of the Poisson
equation

h(1)(r, θ) =
∞

∑

n=1

an(r) sin (2(n − 1)θ) (128)

Equation (128) satisfies the homogeneous boundary conditions at θ = 0 and θ =
π/2. Now, we substitute Eq. (128) into the Poisson equation (127), written in polar
coordinates, i.e.:

1

r

∂

∂r

(

r
∂h(1)

∂r

)

+ 1

r2
∂2h(1)

∂θ2
= W (S)(r, θ) (129)

6 See, for example, the reference books [53, 55, 56].
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and we solve the equation by using the orthogonality relations for the sine functions.
We have also to take into account that, at equilibrium (i.e., at ρ = 0), we have to
re-obtain the Onsager matrix and we have also to satisfy the homogeneous condition
at ρ = 1. Finally, after simple calculations, we get the following ordinary differential
equation for an(r), subject to the following conditions:

ρ2a′′
n (ρ) + ρa′

n(ρ) − 4(n − 1)2an(ρ) = R2
0ρ

2
̂W (S)
n (ρ)

an(0) = 0 ; an(1) = 0 where

̂W (S)
n (ρ) ≡ 1

π

∫ π

−π

W (S)(ρ, θ) sin (2(n − 1)θ) dθ (130)

with ρ ≡ r/R0 ≤ 1 and the suffix “prime” denoting the derivative with respect to
ρ, respectively. Equation (130) corresponds to a non-homogeneous Euler equation
of the 2ndorder. By using standard methods of integration (see, for example, [57]),
by imposing the Onsager and the homogeneous conditions, after simple calculations
we finally get

an(ρ) = − R2
0

4(n − 1)

(

ρ−2(n−1)
∫ ρ

0
t2n−1

̂W (S)
n (t)dt

− ρ2(n−1)
∫ ρ

0
t−2n+3

̂W (S)
n (t)dt

)

+ αnρ
2(n−1) with

αn = − R2
0

4(n − 1)

∫ 1

0

(

t−2n+3 − t2n−1
)

̂W (S)
n (t)dt (131)

Solution (131) satisfies the Onsager condition since7

lim
ρ→0

ρ−2(n−1)
∫ ρ

0
t2n−1

̂W (S)
n (t)dt = 0 (132)

Hence,

h(1)(ρ, θ) = R2
0

∞
∑

n=1

[ sin 2(n − 1)θ

4(n − 1)

(

ρ2(n−1)
(

∫ ρ

0
t−2n+3

̂W (S)
n (t)dt − α̂n

)

− ρ−2(n−1)
∫ ρ

0
t2n−1

̂W (S)
n (t)dt

)]

with

α̂n =
∫ 1

0

(

t−2n+3 − t2n−1
)

̂W (S)
n (t)dt and

̂W (S)
n (ρ) ≡ 1

π

∫ π

−π

W (S)(ρ, θ) sin (2(n − 1)θ) dθ (133)

7 The indeterminate form can be solved by using Hospital’s rule and limρ→0 ̂W (S)
n (ρ) = 0.
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It is also easy to convince ourselves that such a procedure also applies for solving
the Poisson PDE in case of n independent thermodynamic forces.
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Simulating Deterministic Dynamics
by Drawing Coloured Balls at Random
in Urns

Léon Brenig

Abstract In this work, we illustrate by detailed examples an equivalence relation
established in a previous publication between deterministic nonlinear differential
dynamical systems and random Markovian processes.

This equivalence is shown here to differ from the equivalence relation between
Langevin noisy systems or, more generally, stochastic differential equations and
their associated deterministic Fokker-Planck partial derivative equations (PDEs).
Here, in contrast, we are concerned with a correspondence between random Polya
urn processes and deterministic systems governed by nonlinear ordinary differential
equations (ODEs). More precisely, this relation is an isomorphism between each
random urn process and a corresponding equivalence class of deterministic non-
linear differential systems that transform one into the other under quasi-monomial
transformations.

The object of the article is to illustrate this relation with several examples: 1. The
population dynamics described by Lotka-Volterra equations. 2. The Lorenz system.
3. The asymmetric top with dissipation. 4. The cosmological equations describing
the dynamics of Friedmann-Lemaître universes in the presence of N competitive and
interacting barotropic fluids.

In all these four examples, we find the conditions under which the dynamical
evolution is equivalent to balanced urn processes.

The bridge between the two domains of deterministic dynamical systems and of
stochastic processes allows for transferring results from one field to the other. It also
provides a new tool for simulating deterministic systems using randomurn processes.
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1 Introduction

Since the discovery of the Brownian motion in 1827 by R. Brown and its theoretical
explanation by Einstein [1] and Smoluchowski [2], the random processes and, more
generally, the mathematical probability theory have made their entry in the descrip-
tion of the physical world. They provide an efficient idealization of the effect of
the enormous number of molecules colliding against a small but macroscopic object
immersed in a fluid at thermodynamic equilibrium.

Shortly after the articles of Einstein and Smoluchowski, the idea of describing by
randomvariables the short time-scale action ofmanymicroscopic degrees of freedom
on the large time-scale evolution of macroscopic bodies has been generalized in a
systematic way to other systems. The first to do so is Langevin [3] who introduced
random variables at the level of the mechanical description of macroscopic systems.
He described the action of a multitude of short time-scale collisions of molecules
on a macroscopic body as a random time-dependent external force η(t). Thus, for a
macroscopic particle of massm moving in a fluid with dissipative friction coefficient
μ, P. Langevin modified the Newton equation into

m
dv
dt

= −μv + η(t) (1)

where the random force η(t) is a Gaussian white noise vector, that is, its average is
zero, it is uncorrelated to the random velocity v and its auto-correlations are delta
correlated:

< ηi (t)η j (t
′) >= 2μkBT δi jδ(t − t ′) ; i, j = 1, 2, 3 (2)

inwhich kB is the Boltzmann constant and T is the absolute temperature. Remark that
Eq. (2) represents the simplest form of the so-called fluctuation-dissipation relations
that have been and still are at the focus of intense research in Statistical Physics, and
particularly in the work of V.V. (Slava) Belyi [4].

Very soon, the introduction of random forces made its way into classical mechan-
ics in order to describe other mechanical systems immersed in fluids or in other
environments made of many microscopic degrees of freedom. When these degrees
of freedom interact with the immersed macroscopic system on time scales that are
much smaller than the characteristic time scale of the purelymechanical system, these
interactions can be approximated by Gaussian white noises with similar statistical
properties as given in Eq. (2).

However, noise does not affect only mechanical systems. It also exists in electric
circuits where the unavoidable thermal noise is generated by the random motion
of the electrons in the conductors. This noise affects the potential and appears as a
Gaussian white noise in the differential equations of the circuits. As an example, the
RLC circuit obeys the following differential equation:

L
d2q(t)

dt2
+ R

dq(t)

dt
+ 1

C
q(t) = V + ξ(t) (3)
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where q(t) is the charge at a given point of the circuit, L is the inductance, R is the
resistance and C is the capacitance. V is the potential source and ξ(t) is a Gaussian
white noise.

More generally, noise is introduced in many dynamical systems governed by sys-
tems of ordinary differential equations in other domains of science like atmospheric
dynamics, chemical reactions, population dynamics or economy. Noise of various
origins may affect source terms or coefficients of these ODEs. In all these cases, the
random variable called noise represents an idealization of the effect of a multitude
of deterministic variables interacting with the described system on very short time
scales.Mathematically, the introduction of noise in deterministic differential systems
transforms them into so-called stochastic differential equations [5]. The functions
that are solutions of these equations are themselves random processes. The extension
of a deterministic system of ODEs to a system of stochastic differential equations
(SDEs) is not unique. This is related to the non-differentiability of theGaussianwhite
noise process. Among the infinity of such extensions, two of them are the most used,
the Itô and the Stratonovich forms, and obey their own generalized calculus rules
[5].

The main concern for us at this point is the following fundamental property. To
each system of stochastic differential equations is associated a deterministic par-
tial differential equation, the Fokker-Planck equation. This equation governs the
probability distribution of the random variables that are solutions of the stochastic
differential equations.

More precisely, any N -dimensional deterministic system of ODEs:

dxi (t)

dt
= Fi (x(t)) ; i= 1, . . . ,N (4)

can be randomized into a system of SDEs:

dxi (t) = Fi (x(t))dt +
M∑

j=1

Gi j (x(t))dWj;t (5)

in which M may differ from N , and where the Fi and the Gi j are functions which,
respectively, represent drift and diffusion contributions to the dynamics. The symbols
dWj;t denote the Itô or Stratonovich version of the differential associated to the j-
component of the N -dimensional white noise vector. The dependent variables xi (t)
are random variables and their probability distribution, p(x1, . . . , xN ; t), obeys a
deterministic partial derivative equation, the Fokker-Planck equation (FPE). This
equation takes different form according to the choice of the Itô or the Stratonovich
differential calculus. This choice depends on the physical nature of the modeled
system [5].

In the Itô framework, the Fokker-Planck equation associated to Eq. (5) reads



120 L. Brenig

∂

∂t
p(x; t) = −

N∑

i=1

∂

∂xi
[Fi (x)p(x; t)]+

N∑

i=1

N∑

j=1

∂2

∂xi∂x j
[Di j (x)p(x; t)] (6)

with

Di j (x) = 1

2

M∑

k=1

Gik(x)GT
kj (x)

while in the Stratonovich sense, the Fokker-Planck equation associated to (5) corre-
sponds to

∂

∂t
p(x; t) = −

N∑

i=1

∂

∂xi
[Fi (x)p(x; t)] + 1

2

M∑

k=1

N∑

i=1

∂

∂xi
{Gik (x)

N∑

j=1

∂

∂x j
[GT

kj (x)p(x; t)]} (7)

Let us insist on the deterministic character of the two above partial derivative
equations. Once an initial probability distribution is given, these equations provide
their solution at later times with certainty. The Fokker-Planck equation represents a
deterministic process of drift with diffusion. As a conclusion, the above consider-
ations show the existence of an equivalence relation between the set of Stochastic
Differential Equations (SDE) and the set of Fokker-Planck Equations (FPE). We can
summarize this by the expression SDE ∼= FPE.

The object of this article is to show and illustrate the existence of another kind
of equivalence relation between a random process and a deterministic evolution
than the above-described one. More precisely, as we show in the sequel, there is
an equivalence relation between the so-called urn processes and a set of nonlinear
dynamical systems governed by ODEs, the quasi-polynomial dynamical systems.
Denoting the set of urn processes by Urn Process and the set of quasi-polynomial
systems by QP systems, we can summarize this new equivalence relation by Urn
Process ∼= QP Systems.

In Sect. 2, we introduce the deterministic quasi-polynomial systems and their
canonical forms. Section3 introduces the urn processes. In Sect. 4, the equivalence
Urn Process ∼= QP Systems is established. In Sect. 5, four examples of such equiva-
lence are presented. Conclusions and perspectives are drawn in Sect. 6.

2 The Quasi-polynomial Dynamical Systems and Their
Canonical Forms

The class of quasi-polynomial systems [6] corresponds to all the deterministic ODEs
systems that can be cast in the form
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dxi
dt

= xi

N∑

j=1

Ai j

n∏

k=1

x
Bjk

k for i = 1, . . . , n, (8)

where A is any constant n × N matrix, B is any constant N × n matrix, n and N are
any integers and do not need to be equal.

This class includes all the systemswith right-hand sides involving linear and poly-
nomial functions of the dependent variables x1(t), . . . , xn(t). However, it extends
further to systems with non-polynomial nonlinearities like sums of monomials with
non-integer exponents—this is the origin of the name “quasi-polynomial”. Nonlinear
systems with functions in their right-hand side that are themselves solutions of other
polynomial differential systems belong also to the QP systems class. Practically, this
class contains many systems relevant to the different domains of Physics and, more
generally, to the scientific fields that are usingmathematical modelling. Paradigmatic
systems like the Lorenz or the Rössler models belong to that class.

QP systems of equations are covariant under the group of quasi-monomial trans-
formations:

xi =
n∏

k=1

x̃Cik
k for i = 1, . . . , n (9)

for any invertible matrix C belonging to GL(n, R). These nonlinear transforma-
tions form a group isomorphic to GL(n, R). They amount to linear transformations
between the logarithms of the variables xi and x̃i . Being covariant means that Eq.
(8) keeps the same QP form when rewritten in terms of the new variables x̃i :

˙̃xi = x̃i

N∑

j=1

Ãi j

n∏

k=1

x̃
B̃ jk

k for i = 1, . . . , n (10)

with
Ã = C−1A (11)

and
B̃ = BC. (12)

In the two previous equations, the product is the matrix product. From these
equations, it is clear that

B̃ Ã = BA. (13)

In other words, the N × N matrix M = BA is an invariant of transformations
(9). This means that all the QP systems with matrices A and B such that their
products BA are all equal to a given N × N matrixM belong to the same equivalence
class. Moreover, since the transformations (9) are diffeomorphisms all the systems
belonging to that equivalence class are dynamically equivalent.
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Now, each equivalence class ofQP systems, labelled by a givenmatrixM , contains
two remarkable systems. We called them the canonical forms of the QP systems
belonging to that equivalence class. One of them is the Lotka-Volterra canonical
form. It is obtained by considering all the quasi-monomials

∏n
k=1 x

Bjk

k appearing in
the QP system (8) as new dynamical variables:

u j =
n∏

k=1

x
Bjk

k ; j = 1, . . . , N . (14)

Then, it is easily checked that the ODEs governing these new variables are

du j

dt
= u j

N∑

k=1

Mjkuk; j = 1, . . . , N (15)

with M = BA which, precisely, is the invariant matrix labelling the equivalence
class. System (15) can also be seen as a N -dimensional QP system with A = M
and B = I where I is the N × N identity matrix. In fact, this type of systems is
well known under the name of Lotka-Volterra equations. The nonlinearity of these
equations is the simplest that can exist: quadratic nonlinearity. The Lotka-Volterra
systems are the subject of an extensive literature and all the results reported in it can
apply to all the QP systems belonging to the equivalence class labelled by the matrix
M .

The second canonical form related to the same equivalence class is obtained from
the Lotka-Volterra system (15) by just making a transformation of the form (9) with
C = M :

uk =
N∏

j=1

ũ
Mkj

j ; k = 1, . . . , N . (16)

This transformation implies thatmatrixM is invertible. If this is the case, following
Eqs. (11) and (12), the QP system in the new variables ũ j has the new matrices
Ã = C−1A = M−1M = I and B̃ = BC = I M = M and reads

dũ j

dt
= ũ j

N∏

k=1

ũ
M jk

k ; j = 1, . . . , N . (17)

This is the second canonical form. Though, it is equivalent to the Lotka-Volterra
system by the transformation (16), its fame is not comparable with that of the Lotka-
Volterra equations. Tomy knowledge, it only appears in the context of theQP systems
theory that is reported here, and in the theory of the urn processes as we shall
see below. In absence of well-established name, we called this canonical form, the
Monomial system. This name reflects its peculiarity of having right-hand sides that
are monomials or, more generally, quasi-monomials of the dependent variables.
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Before ending this section, let us remark that the transformation of the general QP
system form (8) into the Lotka-Volterra and the monomial forms is always possible
even if the matrices B and M are not invertible. This is shown in reference [6] and
references therein. Essentially, this comes from the fact that when these matrices are
of non-maximal rank r , the QP system or its Lotka-Volterra canonical form reduces
to a r−dimensional QP system or to a r -dimensional Lotka-Volterra system. The
smaller matrices Bred and Mred of these reduced systems are of maximal rank r and
can be inverted.

3 Urn Processes

A urn process [7] requires four items: a box (the so-called urn), objects (e.g. balls)
differing by only one characteristics (e.g. colour), an infinite reservoir of such objects
and a prescribed set of replacement rules of the objects in the urn. Here, we shall
consider balls with N possible colours. The replacement rules make the composition
of the urn evolve at each discrete step. Each such step consists in

1. Picking a ball at random in the urn, with equal chance for all balls present in
the urn.

2. The colour of the picked ball is noted and the ball is reintroduced in the urn.
3. Depending on the colour of the drawn ball, prescribed numbers of balls of

each colour are taken from the reservoir and transferred to the urn: If the ball drawn
from the urn is of colour i then one has to transfer Mi j balls of colour j from the
reservoir into the urn, with i, j ∈ {1, . . . , N }. These natural numbers Mi j form a
N × N matrix, the replacement matrix M .

Some entries of M can be negative, in which case the balls of the corresponding
colours are transferred from the urn to the reservoir at each step in which these
entries are required. If some of the diagonal entries are negative, conditions must
be imposed in order to avoid blocking the process. The distribution of balls of each
colour in the urn at a given step n forms its composition vector at that step,Un and the
sequence (Un; n ≥ 0) represents the evolution of the urn process, where the initial
composition U0 of the urn is given.

We shall consider urn processes for which the total number of balls transferred at
each step is constant. This implies that

N∑

j=1

Mi j = σ. (18)

The parameterσ is called the balance, and urn processes fulfilling the above condition
are called balanced urn processes. In the sequel, we shall only consider balanced urns.
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4 Equivalence Between Balanced Urn Processes
and the QP Differential systems

As mentioned in the Introduction, there is a link between the Monomial system that
plays the rôle of a canonical form in the QP systems theory on the one hand, and
the balanced urn processes, on the other hand. This result obtained by Ph. Flajolet,
Ph. Dumas and V. Puyhaubert in their seminal paper [8] constitutes the first step in
establishing an equivalence between the two domains of random urn processes and
deterministic dynamical systems.

Let us briefly summarize their finding.
A balanced urn with balls of N colours is considered with a given replacement

matrix M . The initial composition vector of the urn U0 = (u10, . . . , uN0) is given.
Let us define the history of length n of the urn process as a succession of n

replacement steps of the urn’s content starting from the initial composition vector
U0. In other words, this is a trajectory of the urn’s content in the N -dimensional
space of composition vectors. Since the urn process is balanced, the probability of a
history of length n to be realized is uniform. As a result, it is easy to determine the
probability of finding in the urn a composition vector U = (u1, . . . , uN ) at step n
after starting from the initial composition vector U0 . It is, clearly, given by the ratio
of the number of histories of length n starting at U0 and ending at U over the total
number of possible histories of length n starting atU0. This can be stated as follows:

P(Un = U | U0) =
[
xu11 . . . xuN

N zn
]
H(x1, . . . , xN , u10, . . . , uN0, z)

[zn] H(1, . . . , 1, u10, . . . , uN0,z)
, (19)

where the notation [xm] S(x) for a power series S(x) corresponds to the coefficient
of xm in that series and where the counting generating function is defined as

H(x1, . . . , xN , u10, . . . , uN0, z) ≡
∞∑

n:0

∞∑

u1:0
· · ·

∞∑

uN=0

Hn(u10, . . . , uN0, u1, . . . , uN )x
u1
1 . . . x

uN
N

zn

n! ,

(20)

where Hn(u10, . . . , uN0, u1, . . . , uN ) counts the number of histories connecting in
exactly n steps the initial composition vectorU0 = (u10, . . . , uN0) to the given com-
position vector U = (u1, . . . , uN ). One can see that the probability given by (19)
is known once the counting generating function H(x1, . . . , xN , u10, . . . , uN0, z) is
known. Hence, the central goal to be reached is to determine that function. This is
what Flajolet, Dumas and Puyhaubert succeeded to do. They showed that

H(x1, . . . , xN , u10, . . . , uN0, z) = [X1(z)]u10 . . . [XN (z)]uN0 , (21)

where the functions X1(z), . . . , XN (z) are the components of the solution vector at
time t = z of the system of ODEs:
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dXi

dt
= Xi

N∏

j=1

X
Mi j

j (22)

with initial conditions X1(0) = x1, . . . , XN (0) = xN .
Amazingly, this result immediately shows a link with the theory of QP systems

exposed in the previous section. It is quite obvious that the above system of ODEs
is exactly the monomial system that appeared in Sect. 2. There it was shown to be
one of the two canonical systems characterizing an equivalence class of QP systems
with matrices A and B such that BA = M .

Now, considering the properties derived in Sect. 2, if one identifies this matrix M
with the replacement matrix of a balanced urn process, one gets the following result:

A balanced urn process with replacement matrix M is not only equivalent to
a monomial differential system like (22) but, also, to all the QP systems that are
equivalent to it under the quasi-monomial transformations (9).

As announced in the Introduction, this theorem establishes an equivalence relation
between a class of random processes, the balanced urn processes and a class of
deterministic differential systems, the QP systems. More precisely, this equivalence
is an isomorphism between the set of balanced urn processes and the quotient of the
set of QP systems with respect to the group QM of quasi-monomial transformations
(9). This can be expressed shortly as Urn Processes∼= QP Systems/QM.

This theorem has already been reported in a previous article [9]. In the sequel of
the present article, we illustrate this result with four detailed examples.

5 Examples

5.1 Lotka-Volterra Systems

Lotka-Volterra systems have been first introduced in order to model the evolution of
populations of animal and plant species in interaction in a given territory. They are
of the general form:

dxi
dt

= λi xi + xi

n∑

j=1

Ni j x j for i = 1, . . . , n (23)

where matrix N is the interaction matrix between species. It is also called the com-
munity matrix.

In order to make the connection with the QP systems as given by Eq.8, one has
to increase the dimension of the above system from n to n + 1. Since it is a sum of
linear and quadratic terms, we can write it in the QP format:
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dxi
dt

= xi

n+1∑

j=1

Ai j

n∏

k=1

x
Bjk

k for i = 1, . . . , n (24)

with
Ai j = Ni j ; i, j = 1, . . . , n and Ai n+1 = λi (25)

Bjk = δ jk ; j, k = 1, . . . , n and Bn+1 k = 0. (26)

Introducing the new variables:

u j =
n∏

k=1

x
Bjk

k ; j = 1, . . . , n + 1 (27)

one gets the (n + 1)-dimensional form of (23):

du j

dt
= u j

N∑

k=1

Mjkuk; j = 1, . . . , n + 1 (28)

with matrix M given by

Mjk = N jk ; j, k = 1, . . . , n (29)

Mj n+1 = λ j ; j = 1, . . . , n

Mn+1 k = 0 ; k = 1, . . . , n + 1

.
Using the equivalence theorem of Sect. 4, one, thus, can say that the population

dynamical equations of form (23) are equivalent with balanced urn processes. How-
ever, the balance constraint imposes conditions on the interaction matrix N :

n+1∑

l=1

Mjl =
n∑

l=1

N jl + λ j = σ ; j = 1, . . . , n + 1. (30)

For j = n + 1, Eq. (29) impose

n+1∑

l=1

Mn+1 l = 0. (31)

Consequently, one must have
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σ = 0 (32)

and Eq. (30) becomes

n∑

l=1

N jl = −λ j ; j = 1, . . . , n. (33)

Hence, due to the balance condition, the (n+1)-colour urn process with the above-
described matrix M as replacement matrix is equivalent to the following population
dynamical Lotka-Volterra system:

dxi
dt

= xi

n∑

j=1

Ni j (x j − 1) for i = 1, . . . , n. (34)

Remarkably, for n = 3, this system has been shown byA. Arneodo, P. Coullet and
C. Tresser to have a chaotic attractor in a domain of the parameter space [10]. What
are the effects of such a chaotic regime on the urn process? This question remains
open.

Also, another result is that all the QP systems that belong to the equivalence class
characterized by the matrix M given by (29) have a chaotic attractor for parameters
values derived from the parameter values for which Eq. (34) has a strange attractor
(for n = 3).

5.2 The Lorenz System

The Lorenz system:
dx1
dt

= σ(x2 − x1) (35)

dx2
dt

= ρx1 − x2 − x1x3

dx3
dt

= −βx3 + x1x2

is a simplification of the hydrodynamical equations for an incompressible thermal
convection flow in the presence of gravity.

As is well known, it possesses chaotic solutions in a certain domain of the param-
eter space. In other words, for these values of the parameters, the trajectories are
asymptotically attracted towards a strange attractor.

This system can be cast into the QP format (8) for n = 3 and N = 5, with the
following matrices A and B:
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A =
⎡

⎣
σ 0 0 0 −σ

0 ρ −1 0 −1
0 0 0 1 −β

⎤

⎦ (36)

B =

⎡

⎢⎢⎢⎢⎣

−1 1 0
1 −1 0
1 −1 1
1 1 −1
0 0 0

⎤

⎥⎥⎥⎥⎦
. (37)

The matrix M of the associated Lotka-Volterra and monomial canonical systems
is

M = BA =

⎛

⎜⎜⎜⎜⎝

−σ ρ −1 0 σ − 1
σ −ρ 1 0 1 − σ

σ −ρ 1 1 1 − σ − β

σ ρ −1 −1 −1 − σ + β

0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
. (38)

At this point, one should mention the work of Kozlov and Vakulenko [11]. In their
article, they find a 10-dimensional Lotka-Volterra system with linear term of form
(23) that would be dynamically equivalent to the Lorenz system. This means that the
corresponding Lotka-Volterra without linear term is 11 dimensional. In contrast, we
find here a five-dimensional Lotka-Volterra without linear term that is equivalent to
the Lorenz system.

Now, let us come to the equivalence of the Lorenz system with a random urn
process. This equivalence is realized if the matrix M fulfills the following balance
condition:

5∑

j=1

Mi j = σ ; i = 1, . . . , 5. (39)

However, since the last row of that matrix is zero, σ = 0, which leads to

5∑

j=1

Mi j = 0 ; i = 1, . . . , 5. (40)

These conditions are satisfied by the Lorenz system’s parameters for arbitrary σ ,
ρ = 2 and β = 1. Notice that unfortunately the same symbol sigma is used for the
balance parameter and the first parameter of the Lorentz system. They are of course
independent.
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5.3 Asymmetric Top with Dissipation

The dynamics of an asymmetric top with dissipation satisfies the following system
of ODEs:

dx1
dt

= λ1x1 + αx2x3 (41)

dx2
dt

= λ2x2 + βx1x3

dx3
dt

= λ3x3 + γ x1x2

.
The coefficientsα, β, γ are the inertiamomentawhileλ1, λ2, λ3 are the dissipation

coefficients.
Several operations must be performed in order to put this system in the QP form

(8). First, the dependent variables are transformed by ui = e−λi t xi for i = 1, 2, 3.
Next, a supplementary dependent variable u4 = e−t is added, and its ODE is added
to system (41). This transforms system (41) into

du1
dt

= αu2u3u
μ1
4 (42)

du2
dt

= βu1u3u
μ2
4

du3
dt

= γ u2u1u
μ3
4

du4
dt

= −u4

with the definitions μ1 = λ1 − λ2 − λ3, μ2 = λ2 − λ1 − λ3, μ3 = λ3 − λ1 − λ2.
Now, system (42) can be written in the QP form (8) with n = N = 4 andmatrices:

A =

⎛

⎜⎜⎝

α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 −1

⎞

⎟⎟⎠ (43)
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B =

⎛

⎜⎜⎝

−1 1 1 μ1

1 −1 1 μ2

1 1 −1 μ3

0 0 0 0

⎞

⎟⎟⎠ . (44)

The matrix M of the two canonical forms is obtained as follows:

M = BA =

⎛

⎜⎜⎝

−α β γ −μ1

α −β γ −μ2

α β −γ −μ3

0 0 0 0

⎞

⎟⎟⎠ . (45)

Finally, in order to be equivalent to a balanced urn process, the parameters must
fulfill the balance condition for the matrix M :

4∑

j=1

Mi j = σ ; i = 1, . . . , 4. (46)

Again, here, due to the last row containing only zeroes, one has σ = 0. Hence,
the balance condition is now

5∑

j=1

Mi j = 0 ; i = 1, . . . , 5. (47)

Using these conditions along with the definitions of μ1, μ2, μ3, one gets

α = −λ1, β = −λ2, γ = −λ3. (48)

These conditions are compatible with the physical meaning of inertia momenta
and dissipation coefficients of the parameters. Consequently, with these relations,
the deterministic asymmetric top with dissipation is equivalent to a balanced urn
random process.

5.4 Cosmological Dynamics

In a remarkable article, J. Perez and co-authors [12] showed that a good model for
cosmological expansion is given by a Lotka-Volterra system. More precisely, they
demonstrated that the dynamics of a homogeneous and isotropicFriedmann-Lemaître
(FL) expanding universe containing an arbitrary number of interacting cosmological
fluids is well described by a Lotka-Volterra system. Among these fluids filling the
universe, there are the baryonic matter, radiation, dark matter and dark energy. In this
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picture, the fluids are viewed as species that compete for feeding upon their unique
energy resource, curvature, while interacting one with the others.

Let us briefly sketch the general framework. The universe in which these fluids
evolve obeys the Einstein equations with a non-vanishing cosmological constant �.
Among the solutions of the Einstein equation, the FL metric is chosen. It describes
an expanding homogeneous, isotropic universe. This metric involves the scale factor
a(t) where t is the synchronous time. The fluids filling this universe are assumed to
be barotropic. That is, each fluid of index i obeys an equation of state of the kind
ρi = ωi pi where ρi is the energy density of the fluid, ωi is its barotropic index with
−1 ≤ ωi ≤ 1 , and pi is the pressure. Instead of using the synchronous time t , a better
adapted variable is considered, λ = lna(t). The two variables t and λ are related by
dλ = H dt where H is the Hubble constant, H = 1

a
da
dt .

In terms of these quantities, the system of ODEs describing the evolution in λ of
the energy densities associated to the different fields, and also to the dark energy �

and to the curvature, are given by

dxi
dλ

= ri xi + xi

N∑

j=1

Ai j x j for i = 1, . . . , N , (49)

where

xi = 8πGρi

3H 2
(50)

ri = −1 − 3ωi

Ai j = 1 + 3ω j + εi j

with ε j i = −εi j represents the coupling constant between the two fluids i and j ,
while G is the universal constant of gravity. The antisymmetry of the tensor εi j

ensures the condition of energy balance
∑N

i=1

∑N
j=1 εi j xi x j = 0.

Now, let us see whether this deterministic dynamical system is equivalent to a
possible random urn process. The N -dimensional system of ODEs (49), clearly, is of
the Lotka-Volterra type with linear term and, thus, is similar to Eq. (23). Following
the same reasoning leading from Eqs. (23) to (28), system (49) is reshaped in a
(N + 1)-dimensional Lotka-Volterra system without linear term as in Eq. (28).

du j

dt
= u j

N+1∑

k=1

Mjkuk; j = 1, . . . , N + 1. (51)

The matrix M appearing in this system is given by

Mjk = A jk ; j, k = 1, . . . , N (52)
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Mj N+1 = r j ; j = 1, . . . , N

MN+1 k = 0 ; k = 1, . . . , N + 1

.
As explained in Sect. 2, system (51) is a canonical form for an equivalence class

of QP systems. Its matrix M is also the matrix of the second canonical form, the
Monomial system. According to the equivalence theorem between balanced urn
processes and deterministic QP systems stated at the end of Sect. 4, this matrix is
also the replacementmatrix of a balanced urn.However, this is true only if the balance
condition of the urn process is fulfilled. This condition imposes constraints on the
matrix M, as we see now.

Indeed, the balance of the urn imposes

N+1∑

l=1

Mjl =
N∑

l=1

A jl + r j = σ ; j = 1, . . . , N + 1. (53)

However, for j = N + 1, Eq. (53) along with Eq. (52) gives

σ = 0. (54)

Inserting the two last equations of (50) in (53) along with σ = 0 leads to

N∑

j=1

εi j = 1 − N − 3
N∑

j=1; j 	=i

ω j ; i = 1, . . . , N (55)

So, with the above conditions, one can say that there exists a balanced urn process,
a random process, that is equivalent to the cosmological evolution described by the
deterministic system (49).

6 Conclusive Remarks and Perspectives

In the Introduction, we have compared two types of equivalence between random
processes and deterministic equations, the equivalence SDE ∼= FPE and the equiva-
lence Urn Processes ∼= QP Systems/QM. One should stress the difference between
the two relations. In the first equivalence, the physical system appears in the ran-
dom side of the equivalence, SDE. While, in the second equivalence, the physics
appears in the deterministic side of the equivalence, QP Systems/QM. Furthermore,
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in the first equivalence, the physical model is modified by the introduction of random
external forces, while in the second equivalence the physical system is unchanged.

Let us also remark an important point that did not seem to bother us when we
treated the examples. The entries of the replacement matrix of an urn process must
be integers. This is, of course, due to the discrete nature of balls. However, in the
exampleswe discussed in Sect. 5, therewas no physical reason for having only integer
values of the parameters. In all the considered cases, the population dynamics, the
Lorenz system, the asymmetric top or the cosmological evolution, Physics does not
limit the parameters to integer values. Integer parameters would be non-generic in
these contexts. So, the question is, is it possible to extend the concept of balanced
urn process to real entries in the replacement matrix? The answer is positive and is
developed inmany articles amongwhich the following [13–15]. The essential point in
what concerns us is that the extension to real values of the entries of the replacement
matrix does not affect themain result: The isomorphismbetween the class of balanced
urn processes and the quotient of the class of QP differential systems by the group
of quasi-monomial transformations is maintained. This will be the object of a next
publication.

Another extension of the balanced urn process is possible. The entries of the
replacement matrix could be themselves random variables with given probabilities.
Hence, the randomness of the urn process is, in some way, increased. Instead of
limiting the randomicity to the act of drawing a ball of a given colour from the urn, in
this generalization the replacement of balls required by the colour of the picked ball
also becomes random. Such an extension has been considered in severalworks. In one
of them, the Flajolet-Dubois-Puyhaubert theorem is extended [16]. This result proves
that the equivalence between urn processes and QP differential systems extends to
urns with random replacement matrices. Work is underway on this subject.

As a practical perspective, the property of equivalence discussed in this article
could be exploited in order to develop a new approach to simulate numerically deter-
ministic dynamical systems. It could, indeed, prove to be faster and easier to draw
virtual coloured balls on computer than runRunge-Kutta or other integration schemes
to solve the differential equations of the deterministic description.

A last reflection should bemade about the equivalence between random processes
such as balanced urn processes, and deterministic differential systems such as the
QP systems. This equivalence is not without philosophical consequences. It is par-
ticularly striking in the example we have considered about the equivalence of the
deterministic cosmological evolution equations with a large urn process. Indeed, this
seems to mean that the evolution of the universe is at the same time deterministic
and random. Se non è vero, è bene trovato!



134 L. Brenig

References

1. A. Einstein, Zur Theorie der Brownschen Bewegung. Annalen der Physik 324, 371–381 (1906)
2. M. Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der

Suspensionen. Annalen der Physik 326, 756–780 (1906)
3. P. Langevin, Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris. 146, 530–533

(1908)
4. V.V. Belyi, Fluctuation-dissipation relation and quality factor for slow processes. Phys. Rev. E

69, 017104 (2004)
5. B. Øksendal, Stochastic Differential Equation: An introduction with Applications. (Springer,

2013)
6. L. Brenig, Reducing nonlinear dynamical systems to canonical forms. Phil. Trans. R. Soc. A

376, 20170384 (2018)
7. H.M. Mahmoud, Pólya Urn Models. (Chapman & Hall/CRC, 2008)
8. Ph. Flajolet, Ph. Dumas, V. Puyhaubert, Some exactly solvable models of urn process theory,

Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics
and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Sci-
ence, AG, pp. 59–118 (DMTCS Proceedings, 2006). HAL Open Science: hal-01184710

9. L. Brenig, I. Gléria, T.M. Rocha Filho, A. Figueiredo, B. Hernàndez-Bermejo, Equivalence
between nonlinear dynamical systems and urn processes. J. Phys. A: Math. Theor. 51, 485101
(2018)

10. A. Arneodo, P. Coullet, C. Tresser, Strange attractors in Volterra equations for species in
competitions. Phys. Lett. 79A, 259–263 (1980)

11. V. Kozlov, S. Vakulenko, On chaos in Lotka-Volterra systems: an analytical approach. Nonlin-
earity 26, 2299–2314 (2013)

12. J. Perez, A. Füzfa, T. Carletti, L. Mélot, L. Guedezounme, The Jungle Universe: coupled
cosmological models in a Lotka–Volterra framework. Gen. Relativ. Gravit. 46, 1753 (2014).
arXiv: 1306.1037v2

13. R. Pemantle, A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)
14. A. Dasgupta, K. Maulik, Strong laws for urn models with balanced replacement matrices.

Electron. J. Probab. 16, 1723–1749 (2011)
15. C. Mailler, J.-F. Marckert, Measure-valued Polya urn processes. Electron. J. Probab. 22, 1–33

(2017)
16. B. Morcrette, H.M. Mahmoud, Exactly solvable balanced tenable urns with random entries

via the analytic methodology. Discrete Mathe. Theor. Comput. Sci. (DMTCS) Proceed. AQ,
219–232 (2012)

http://arxiv.org/abs/1306.1037v2


Langton’s Ant as an Elementary Turing
Machine

Jean Pierre Boon

Abstract The automaton known as ‘Langton’s ant’ describes the step by stepmotion
of an elementary object (the ant) on a square lattice. Yet despite the simplicity of its
rule, the automaton exhibits amazing dynamical behaviour leading to a propagation
phase where the particle (the ant) dynamics produce a regular periodic pattern (called
‘highway’). The dynamical pattern so created by the ant on the highway produces a
recurringmechanism for an elementaryTuringmachine (Boon in J Stat Phys 102:355,
2001 [1]).

1 Introduction

The automaton known as ‘Langton’s ant’ was devised by Langton [2] and its dynam-
ics are illustrated in Fig. 1; it has been a recurring theme in the mathematical and
physical literature [3]. There are two reasons. The first is of physical relevance: the
automaton known as Langton’s ant (which I describe below) offers a paradigm of
complexity out of simplicity. The second reason ismathematical: despite the simplic-
ity of the basic algorithm, the analytical description of the spatio-temporal dynamics
generated by the automaton exhibits propagation dynamics which obeys a general
difference equation and the speed of the ant in the highway (c = √

2/52) follows
exactly from the equation whose continuous limit gives a propagation-dispersion
equation [4].
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2 The Automaton Process

The basic process governing the automaton dynamics follows a simple rule. The
automaton universe is the square lattice with checker board parity, therefore, defining
H sites and V sites. A particle moves from site to site (by one lattice unit length)
in the direction given by an indicator. One may think of the indicator as a ‘spin’
(up or down) defining the state of the site. When the particle arrives at a site with
spin up (down), it is scattered to the right (left) making an angle of +π/2 (−π/2)
with respect to its incoming velocity vector. But the particle modifies the state of the
visited site (up ⇐⇒ down) so that on its next visit, the particle is deflected in the
direction opposite to the scattering direction of its former visit. Thus, the particle
entering from below an H site with spin-up is scattered East, and on its next visit
to that same site (now with spin down), if it arrives from above, it will be scattered
East again, while if it arrives from below, it will be scatteredWest. Similar reasoning
shows how the particle is scattered North or South on V sites.

At the initial time, all sites are in the same state (all spins up or all spins down),
and the position and velocity direction of the particle are fixed, but arbitrary. So if we
paint the sites black or white according to their spin state, we start initially with say an
all white universe. Then as the particle moves, the visited sites turn alternately black
andwhite depending onwhether they are visited an odd or even number of times. This
colour coding offers a way to observe the evolution of the automaton universe. The
particle starts exploring the universe by first creating centrally symmetric transient
patterns (see figures in Ref. [3]), then after about 10 000 time steps (9977 to be
precise), it leaves a seemingly ‘random territory’ to enter a ‘highway’ (see Fig. 1).
Note that this ’disordered phase’ is not what a random walk would produce: the
automaton is deterministic and its rules create correlations between successive states
of the substrate, so also between successive positions of the particle. The power
spectrum computed from the particle position time correlation function measured
over the first 9977 time steps goes like ∼ν−ζ with ζ � 4/3. In the ordered phase
(‘highway’), the power spectrum shows a peak at ν = 1/104 with harmonics. In the
highway, the trajectory shows a periodic pattern where the particle travels with a
constant propagation speed.1 Here, I show analytically that the propagation speed is
c = √

2/52 (in lattice units) as measured in automaton simulations [3].
Because of the complexity of the dynamics on the square lattice, Grosfils et al.

[5] developed a one-dimensional version of the automaton for which they provided
a complete mathematical analysis which is also applicable to the two-dimensional
triangular lattice. One of their main results is the mean-field equation describing the
microscopic dynamics of the particle subject to the more general condition that the
spins at the initial time are randomly distributed on the lattice. The equation reads,
for the one-dimensional lattice

f (r + 1, t) = q f (r, t − 1) + (1 − q) f (r, t − 3) , (1)

1 A theorem by Bunimovich and Troubetzkoy [6] demonstrates that the automaton fulfils the con-
ditions for unboundedness of the trajectory of the particle.
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and, for the two-dimensional triangular lattice

f (r + 1, t) = q(1 − q) f (r, t − 2) + [q2 + (1 − q)2] f (r, t − 8)

+ (1 − q)q f (r, t − 14)

where f (r, t) is the single particle distribution function, i.e. the probability that
the particle visits site r for the first time at time t , and q is the probability that
the immediately previously visited site along the propagation strip (the highway)
has initially spin up, i.e. the probability that the particle be scattered, in the one-
dimensional case, along the direction of its velocity vector when arriving at the
scattering site at r − 1, and in the two-dimensional triangular case, along the direction
forming clockwise an angle of +2π/3 with respect to the incoming velocity vector
of the particle. Equations (1) and (2) express the probability of the first visit to a
site along the propagation strip in terms of the probability of an earlier visit to the
previous site along the strip.2 The equations were shown to yield exact solutions for
propagative behaviour in the two classes of models considered by Grosfils et al. [5].

Equations (1) and (2) are particular cases of the following general equation

n∑

j=0

f (r + ρ, t) =
n∑

j=0

p j (q) f (r, t − τ j ) ; τ j = (1 + α j)m τ , (2)

with
∑n

j=0 p j = 1 (n ≤ r/ρ) and where f (r, t) is the first visit distribution function.
Hereρ denotes the elementary space increment of the dynamics along the propagation
strip; p j is the probability that the particle propagates from r to r + ρ in τ j time steps,
i.e. τ j is the time delay between two successive first visits on the strip (more precisely
on the one-dimensional edge of the strip) for the path with probability p j , and m is
the corresponding minimum number of automaton time steps (τ0 = mτ , where τ is
the automaton time step; τ = 1). The sum is over all possible time delays, weighted
by the probability p j (a polynomial function of q). α denotes the number of lattice
unit lengths in an ‘elementary loop’, i.e. the minimum number of lattice unit lengths
necessary to return to a site.3 Equation (2) implies the assumption that first visits
occur after a finite number of recurrences (n finite in Eq. (2)), i.e. a finite number of
possible paths (not identical loops) between two successive first visits; this defines a
general class of automata which includes the 1-D, 2-D triangular and square lattice
models.

Now from the expectation value of the time delay, computed with (2)

E[τ(q)] =
n∑

j=0

τ j p j (q) = (1 + α 〈 j〉)m τ ; 〈 j〉 =
n∑

j=0

j p j (q) , (3)

2 In the two-dimensional case, the equation describes the one-dimensional propagationmotion along
the edge of the strip.
3 An interesting equation follows from the continuous limit of (2) as discussed in [4].
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one obtains immediately the average propagation speed of the particle: c(q) =
ρ/E[τ(q)].

It is straightforward to verify that Eqs. (1) and (2) are particular cases of the general
equation (2): for 1-D: α = 2, m = 1, ρ = 1, n = 1, with p0 = q, p1 = 1 − q; for
2-D (triangular lattice): α = 3, m = 2, ρ = 1, n = 2, with p0 = q (1 − q), p1 =
q2 + (1 − q)2, p2 = (1 − q) q. The corresponding propagation speeds are then
readily obtained from (3); for the one-dimensional case one finds c(q) = 1/〈τ(q)〉 =
[1 + 2(1 − q)]−1 = 1/(3 − 2q), and for the triangular lattice: 〈τ(q)〉 = [1 + 3(q2 +
(1 − q)2 + 2q(1 − q))] × 2, so that c = 1/8. These results are in exact agreement
with those obtained in [5].

For the 2-D square lattice: α = 4, m = 2 × 4, ρ = 2
√
2. The value of ρ is easily

checked by inspection of the highway path shown in the upper box of Fig. 1: it
is the length of the elementary increment along the edge of the propagation strip.
Correspondingly, m is 2 × 4 (the minimum number of time steps necessary to move
one elementary space increment must be counted on each edge of the strip). For
the square lattice, one does not know the value of n, but from the structure of the
p j ’s for the 1-D and 2-D triangular lattices given above, one can infer that n =
6, with p0 = p6 = q2 (1 − q)2, p1 = p5 = q (1 − q) [q2 + (1 − q)2], p2 = p4 =
p0 + p1, p3 = [q2 + (1 − q)2]2. However, the precise expressions are unimportant
for the automaton describing Langton’s ant, because all sites are initially in the same
spin state; so q = 1, and only one p j is non-zero: p3 = 1. Equation (2) then reads

f (r + 2
√
2, t) = f (r, t − τ3) ; τ3 = (1 + 4 × 3) 2 × 4 = 104 , (4)

which describes the dynamics of the particle in the highway. This result shows that a
displacement of length 2

√
2 along the edge of the strip is performed in 104 automaton

time steps. Consequently the propagation speed of Langton’s ant in the highway is
c = ρ/τ3 = 2

√
2/104 = √

2/52.
Although the initial condition with all spins in the same state may appear as a

particular configuration, it should not be considered as a non-typical one, in the
sense that it produces propagation. In the 1-D and 2-D triangular lattices, propa-
gation always occurs regardless of the initial spin configuration [5]. In the square
lattice, propagation only occurs with all spins initially up or down (or periodically
distributed4) is related to the fact that the scattering angle here is ±π/2, which can
be conjectured as an indication of criticality (at angles smaller than π/2, propagation
is never observed).

4 Propagating patterns with different modes of propagation depending on the periodicity of the spin
distribution are discussed in [7, 8].
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Fig. 1 Langton’s ant
propagation highway: the
lower panel shows the area
of the square lattice covered
by the ant during its first
phase looking apparently as
a randomly covered area
where from it emerges after
9977 steps into a ‘highway’
shown as a blowup in the
upper figure and where it
propagates describing a
regular periodic pattern. The
colour code of the black and
white squares indicates
whether the ‘spin’ is left up
or down (left or right) after
the last passage of the ant

3 Concluding Comments

The origin of particle propagation in 1-D and 2-D triangular lattices was shown
to be a ‘blocking mechanism’ [5], and the question was raised as to whether such a
mechanism also exits in the square lattice. Although the precise blocking mechanism
has yet to be identified, that the same general equation, Eq. (2), describes propagation
in 1-D, 2-D triangular and square lattices suggests that a similar blockingmechanism
is responsible for the construction of Langton’s highway.

Grosfils et al. [5] developed extensively this type of automaton in the case of the
triangular lattice and in their conclusions they discuss an interesting ‘reorganisation
corollary’ stating that All sites located on one edge of the propagation strip are in the
initial state of the sites on the other edge, shifted upstream by one lattice unit length,
a feature clearly illustrated in Fig. 1. The same corollary applies trivially to the spin
states (up and down spins interchanged as 0’s and 1’s) on the edges of the highway of
Langton’s ant. From this observation, it follows that the particle dynamics functions
as a control operator which transcribes and shifts the string of characters (0’s and
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1’s) of the input tape (on one edge) to the output tape (on the other edge), i.e. (i) the
control operator plays the role of the EXCHANGE gate in Feynman’s model of a
quantum computer [9], and (ii) can then be interpreted as the controller of a Turing
machine which shifts the string of characters of the input tape (on one edge) to the
output tape (on the other edge).

Acknowledgements I acknowledge fruitful discussions with Patrick Grosfils and James F. Lutsko.
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Phase Transitions in Active Matter
Systems

Subir K. Das

Abstract This article reviews various aspects of phase transitions in active matter
systems. Scaling phenomena in steady states as well as far-from-steady-states have
been considered. The focus has been on systems where particles align their velocities
along their neighbors. Such dynamic interactions are known to facilitate clustering.
Wherever necessary, results and discussions are provided from relevant passive mat-
ter systems. Comparison between the two should help understand the influence of
activity at a quantitative level.

1 Introduction

Active Matter systems [1–3] consist of self-propelling particles. These constituents
performmotion by continuously drawing energy from the environment. Such systems
are inherently away from equilibrium and pose challenging questions concerning
nonequilibrium statistical physics [1–26].

Fascinating structures and dynamics are commonly observed in active matter
systems. Some pictures in this connection are shown in Fig. 1. These are related
to (Fig. 1a) a flock of birds [27], (Fig. 1b) a school of fish [28], (Fig. 1c) a herd of
sheeps [29], and (Fig. 1d) a colony of bacteria [30]. In the first three systems, inter-
esting structure in the density field is clearly visible. These snapshots also provide
an indication about structure formation in directionalities of particle motion. A more
complex and interesting pattern in the velocity field can be observed in Fig. 1d. This
is related to the movement of bacteria in a colony.

In many active matter systems, interesting patterns form due to the alignment
of velocities of the constituents. In a way, this is similar to pattern formation in
systems of inelastically colliding granular particles [31–34]. In the latter system,
after each collision, the particles move more parallel to each other. Such directional
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Fig. 1 Depiction of pattern formation in various active matter systems: a a flock of birds forming
interesting dynamic pattern (SourceWikipedia); b a school of fish showing clustering and velocity
alignment (Source wikipedia); c a herd of sheeps exhibiting clustering and directionality (Source
Wikipedia); d velocity field in a colony of bacteria forming vortex-like topological defects. Repro-
duced with permission from C. Dombrowski et al., Phys. Rev. Lett. 93, 098103 (2004). https://doi.
org/10.1103/PhysRevLett.93.098103. For details on the sources and permissions for a–c, see text
and cited references there

parallelization gives rise to instabilities in density and velocity fields that lead to
structure and dynamics similar to phase transitions.

Phase transitions in active matters have received much attention recently [5–7,
9–17, 19, 21–24]. In addition to the formation and evolution of the above mentioned
structures [7, 12, 15, 16, 24], belonging to the domain of coarsening phenomena,
there exists serious interest in critical phenomena [5, 6, 9–11, 17] as well. Note that
steady state in the active case is the counterpart of equilibrium in the passive situation.
Critical phenomena in active matter systems are, thus, associated with nonequilib-
rium transitions in the steady state context. An important objective in this domain,
like in the passive case [35–41], has been the identification and understanding of uni-
versality. A brief discussion concerning this is provided in the next section, primarily
in the passive context.

It is important to note that phase transitions in active matter systems are not
only related to the above mentioned alignment interactions. Fascinating structure
and dynamics are observed even when constituents perform movements of different
kinds, e.g., exhibit Brownian motion [23]. However, in this article, our focus will
be on the former. Note, however, that typical active matter systems do not contain

https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
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thermodynamically large number of particles. This way, in reality, it is expected
that there will be rounding off of various anomalies. Nevertheless, it is an important
theoretical challenge to figure out, say, via the application of scaling principles, the
character of the transitions in the infinite size limit of the system.

2 Phase Transition: An Elementary Discussion

In Fig. 2a, we show a schematic phase diagram of a normal chemical system [39].
Along various lines, two different phases coexist with each other, e.g., solid–liquid
coexistence occurs along the broken curve. At the triple point, all the three phases
coexist with each other. The vapor–liquid coexistence curve terminates at a critical
point. Across the coexistence curves, the density changes discontinuously, e.g., when
a system moves from the liquid phase to the vapor phase. This jump tends to vanish
as the state point gets closer to criticality. At and beyond the critical point, the system
can be brought from one phase to the other without encountering a discontinuity in
density.

Fig. 2 a Schematic phase diagram of a normal chemical system in pressure (P) versus temperature
(T ) plane. Various phases, viz., solid, liquid, and vapor, are marked. The coexistence curves, along
which two different phases coexist, being in equilibrium, are shown by lines. The triple point marks
the location of the coexistence of all three phases. The vapor–liquid coexistence curve terminates
at the critical point. b Coexistence curve for a vapor–liquid transition is schematically shown in
temperature versus density plane. The critical point is marked by a cross (×). The left branch of the
curve depicts the variation of density in the vapor phase and the right branch shows the same in the
liquid phase, with the change of temperature
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2.1 Critical Phenomena

The vapor–liquid coexistence curve is shown schematically in Fig. 2b in the temper-
ature versus density plane [39]. The vapor and liquid branches meet each other at the
critical point. Various thermodynamic and transport properties exhibit anomalous
behavior in the critical vicinity. Below we note these for some of the thermodynamic
quantities. The order parameter ψ (= ρl − ρv , ρl and ρv being the densities along the
liquid and vapor branches, respectively), isothermal compressibility (κT ), isochoric
specific heat (Cv), and correlation length (ξ) exhibit the behavior [37, 39, 40]

ψ ∼ εβ, (1)

κT ∼ ε−γ, (2)

Cv ∼ ε−α, (3)

and
ξ ∼ ε−ν . (4)

Here, ε is the deviation of temperature (T ) at the considered state point from the
critical value (Tc) for a temperature-driven phase transition. It is defined as a dimen-
sionless quantity as ε = |T − Tc|/Tc. The two-point space correlation function [37]

C(r) = 〈ψ(�r)ψ(�0)〉 − 〈ψ(�r)〉〈ψ(�0)〉, (5)

follows the functional form [37]

C(r) ∼ r−pe−r/ξ (6)

with
p = d − 2 + η̄. (7)

For an unbiased system, the structure is isotropic and the correlation depends only
on the scalar separation (r ) between two points, not on the vector distance (�r). In
addition, at the critical point, there may exist anomaly in the order parameter with
the variation of the relevant external field. For athermal systems, role analogous to
temperature can be played by density [37, 39, 40].

In the above equations, β, γ, α, ν, and η̄ are critical exponents. Other than that
for the order parameter, the forms remain valid for an approach to Tc from either
side. Typically, the values of the exponents are universal, i.e., they do not depend
upon the type of materials. In fact, the universality is so robust that the values of the
exponents are independent of the type of transition, e.g., for a para- to ferromagnetic
transition across the Curie point or a liquid–liquid transition having a consolute
point one observes the same value of an exponent as in a vapor–liquid transition.
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Such universality applies to certain amplitude ratios as well. However, depending
upon the type of transition, certain definitions may change, e.g., for a magnetic
transition, magnetic susceptibility and for a liquid–liquid transition, concentration
susceptibility, take the role of compressibility in a vapor–liquid transition [40]. Of
course, based on the type of order parameter, e.g., scalar or vector, space dimension,
and range of interaction, character of transition and universality may change. For
scalar order parameter, if the range of interaction is sufficiently short, typical vapor–
liquid transitions, para-to-ferromagnetic transitions, etc., are accurately described by
the nearest-neighbor Ising model in terms of the values of the exponents as well as
certain amplitude ratios [37, 40]. For this model, the above listed exponents in d = 3
are [37, 40]: β � 0.325, γ � 1.239, α � 0.11, ν � 0.629 and η̄ � 0.036.

Coexistence curves similar to that in Fig. 2 have been obtained for active matter
systems as well [3, 5, 6, 9, 19]. In the theoretical and computational literature, stan-
dard techniques are being used to estimate the critical point and exponents of relevant
singularities for such nonequilibrium transitions. With respect to the existence and
characterization of universalities in the active matter domain, however, there exists
doubt and lack of consensus [10, 17]. Here the phase transitions are driven by particle
motion. In the literature, on passive matter, it is known that differences in transport
can alter the universality in dynamics (see below for discussion). In the case of active
matter systems, it may be expected that the phase behavior will be different for dif-
ferent self-propulsion rules. It may not be surprising even if the values of the critical
exponents for quantities analogous to the ones described above get altered, due to
the changes in the self-propulsion rule.

In the equilibrium critical phenomena in passive systems, not only there exists
anomaly in thermodynamic quantities, but the dynamics also become atypical. As
the critical point is approached, i.e., ξ diverges, the slowest relaxation time, τ , of a
system blows up as [38, 40–42]

τ ∼ ξz . (8)

Here, z is a dynamic critical exponent. This is a signature of slow dynamics, a
phenomenon often referred to as the critical slowing down. In the dynamical context,
other interesting quantities are various transport properties of collective type, e.g.,
for a vapor–liquid transition, the thermal diffusivity (DT ), shear viscosity (ηv) and
bulk viscosity (ζv) exhibit the behavior [38, 41, 42]

Dτ ∼ ξ−xD (9)

ηv ∼ ξxη (10)

ζv ∼ ξxζ . (11)

The exponents xD , xη, and xζ are positive quantities. Universality in this sub-domain
is weaker, e.g., while a magnetic, a solid binary mixture, and a fluid system will
give rise to the same static universality class, each of these will belong to different
dynamic classes. Despite critical phenomena finding significant importance in the
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active matter context, this transport-related aspect, as described above, is starting
to receive attention only recently [43]. This lack of understanding is interesting,
particularly because, as stated above, the transitions in these systems are transport
driven.

In addition to the critical phenomena, there exists interest in learning whether
scaling picture, analogous to the passive systems [44–56], holds in approach to the
steady state in the case of active matter system, following quench of a homogeneous
system to a state point inside the miscibility gap. Once again, we provide discussion
on this aspect from the perspective of passive matter.

2.2 Coarsening Phenomena

Evolution dynamics in systems undergoing phase transitions is characterized by
pattern formation in the presence of interesting topological defects [44]. In three-
dimensional geometry, for a scalar order parameter, the defects are two-dimensional
surfaces or domain walls. For order parameters of more complex types, even more
interesting structures arise, e.g., for vector order parameters in d = 2 or 3, interesting
vortex-like topological defects may appear, with the dimension of the object decided
by the competition between space dimension and the number of components in the
order parameter. The defect dimension for a n-component vector field, n being unity
for the scalar case, in d space dimensions, is given by [44] d − n.

In Fig. 3, we have schematically depicted two defect structures, say, related to
magnetic transitions. In Fig. 3a, we show a wall that separates a domain of up spins
from that of down spins. In the context of phase separation in a binary (A + B)

mixture, say, for a liquid–liquid transition [41], the up and down spins may represent
A and B particles. In d = 2, given that the order parameter here is a scalar quantity,
the wall is a line, i.e., one-dimensional object. In Fig. 3b, we have a two-component
vector order parameter in d = 2. This gives rise to a vortex defect [44] originating
from a zero-dimensional object, i.e., a point. Both types of defects can be visualized
in the pictures shown in Fig. 1.

In fluid phase separation, onemay expect that defects ofmultiple types in different
fields can be simultaneously observed—say, one in the density or concentration field
and the other in the flow, i.e., in the velocity field. This picture may be common
in passive as well as in active fluids. In the latter case, this is possible even if the
underlying basic phase is solid.

Structural information is typically obtained via the calculation of two-point equal
time order parameter correlation function [44]:

C(�r , t) = 〈ψ(�r , t)ψ(�0, t)〉 − 〈ψ(�r , t)〉〈ψ(�0, t)〉. (12)

This is similar to the correlation function defined in the critical phenomena con-
text. However, here the order parameter and, thus, the correlation function is a
time-dependent quantity, implying the far-from-equilibrium or far-from-steady-state
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Fig. 3 Schematic diagrams of a few defects in coarsening systems: a a line boundary (see the
dashed line) between domains for scalar order parameter in space dimension d = 2; b a vortex
formed during the ordering of a two-component vector order parameter in d = 2

nature. Furthermore, the discussion on transport phenomena, in the previous sub-
section, in the context of dynamic critical phenomena, also has strong relevance in
the far-from-equilibrium picture that is being described here. Experimentally more
relevant quantity is the structure factor, S(k, t), k being the wave number, which is
the Fourier transform of C(r, t). The space dimension and order-parameter symme-
try is reflected in the behavior of these quantities, e.g., the long wave number tail of
S(k, t) is given by [44]

S(k, t) ∼ k−(d+n), (13)

which is referred to as the Porod tail [44]. This arises from the short distance singu-
larity in C(r), an artifact of scattering from the defects.

These structural quantities exhibit certain scaling properties that arise from self-
similar nature of evolution. For non-fractal structures, it is typically observed that
[44]

C(r, t) ≡ C̃(r/�(t)), (14)

and
S(k, t) ≡ �d S̃(k�(t)), (15)

where C̃ and S̃ are time-independent master functions. In Eqs. (14) and (15), � is the
characteristic length scale of the system, i.e., average size of domains under a defect.
This quantity grows with time as [44]

� ∼ tδ. (16)

The value of the growth exponent δ depends upon space dimension, mechanism of
growth, etc. In simple passive situations, the values of the exponent as well as the full
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functional form of C(r, t) are known with reasonable accuracy [44, 57]. In active
matter systems, the type of activity can certainly influence the overall picture [7, 58].

Another important but relatively less traveled aspect of coarsening dynamics is
the aging phenomena [47, 55, 56]. This is concerning the relaxation of an evolving
system starting from various ages. Typically, in this sub-domain, one studies the
order-parameter autocorrelation function [47]

Cag(t, tw) = 〈ψ(�r , t)ψ(�r , tw)〉 − 〈ψ(�r , t)〉〈ψ(�r , tw)〉. (17)

Here, t is the observation time and tw (< t) is the waiting time or age of a system,
since the instant of a quench. When plotted versus t − tw, Cag(t, tw), in equilib-
rium situation, for different tw, overlap with each other. This signifies time trans-
lation invariance (TTI) that allows one to obtain better statistics by exploiting time
averaging. In the far-from-equilibrium situations, TTI is violated. In the latter case,
nevertheless, typically one observes the scaling behavior [47]

Cag(t, tw) ∼
(

�

�w

)−λ

, (18)

λ being referred to as the aging exponent, and �w is the value of � for t = tw. In the
case of active matter, of course, steady state replaces equilibrium. It is interesting to
ask if similar scaling form is obeyed in this case also, for active matter systems.

3 Flocking Transition in Active Matter Systems: A Basic
Model

In real life, collections of birds or sheeps or fishes are often seen where the motions
of individuals within clusters are along quite the same direction. A minimal model
to describe such phenomenon was proposed by Vicsek et al., to be referred to as the
Vicsek model (VM) [9] in the following. Within this model, the direction of motion
of a constituent particle or object or individual is influenced by the motion of its
neighbors. If θi represents the direction of motion of the i th particle, at an instant of
time t , at the next instant t + �t its direction is updated as

θi (t + �t) = 〈θi (t)〉rn + �θi . (19)

In Eq. (19), 〈θi (t)〉rn is the average direction of velocity of the neighboring particles
lying within a distance rn from the i th particle. Furthermore, �θi is a noise term
value of which lies within [− η

2 ,
η
2 ]. The particles within the VMmove with constant

magnitude of velocity, say v0. The position of a particle, thus, is updated according
to

�ri (t + �t) = �ri (t) + �vi (t)�t, (20)
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�vi (t) being changed by the modified θi values, every next instant of time, keeping
the magnitude of the velocity same.

This simple model, often referred to as the Ising model of active matter, provides
an interesting phase transition via the competition between density (ρ) of particles
and η. The analogy between the two models is not only because of the underlying
simplicity, but there also exists similarity in transitions. Note that the Hamiltonian
for the Ising model is given by [37, 40]

H = −J
∑
〈i j〉

Si S j . (21)

For studies related to ordering in ferromagnets, J is positive and Si or Sj can take
values +1 and −1. The sign of the majority of the surrounding spins influences the
orientation of a spin, if the thermal fluctuation is not very strong. This is similar to the
alignment of velocity in the VM. In this sense, the latter, however, is more similar to
the XY model or Heisenberg model [44, 59]. In the case of Ising model, the spins or
atomic magnetic moments are scalar quantities, as opposed to the continuous cases
of XY and Heisenberg models [40, 44]. Like the sum of spins in the magnetic case,
the sum of velocities or the normalized average velocity [9], i.e.

va = 1

Nv0

∣∣∣
N∑
i=1

�vi
∣∣∣, (22)

N being the total number of particles in the system, is the order parameter for the
transition in the VM. Note that various variants of the VM produce interesting topo-
logical defects in the velocity field, like in the XY and Heisenberg magnets, in addi-
tion to the vapor–liquid phase separation in the density field. The defect in Fig. 3b
has connection with VM or XY model in d = 2.

In Fig. 4 we show representative pictures from computer simulations of the VM
[9]. In Fig. 4a we show a typical initial configuration, random in positions and veloc-
ities. In Fig. 4b we see a late time snapshot that evolved from the initial configuration
in Fig. 4a. The picture certainly gives a sense of velocity ordering as well as vapor–
liquid-like phase separation in the density field. Late time snapshots from two other
sets of system parameters are shown in Fig. 4c, d. Here L is the linear dimension of
a system. For a fixed number of particles, L decides the value of ρ. Figure4 provides
an indication of how phase transition can be encountered with the variation in ρ and
η.
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Fig. 4 Snapshots showing approximate positions, directions of motion (see the arrows), and tra-
jectories over the last 20 steps (see continuous curves attached to the arrows) of 300 particles,
obtained via computer simulations of the Vicsek model starting from the random initial configu-
ration is shown in part a. Late time pictures for a few combinations of density and noise strength
are presented in parts b–d. Reproduced with permission from T. Vicsek et al., Phys. Rev. Lett. 75,
1226 (1995). https://doi.org/10.1103/PhysRevLett.75.1226

4 Phase Behavior and Critical Aspects in the Vicsek Model

In Fig. 5a we show plots of order parameter as a function of η, that were obtained
from the studies of VM [9]. By keeping the value of ρ fixed, results from different
system sizes are presented. The general observation is that, with the increase of η, va
decreases. For larger system sizes, approach of va , at large enough η, to zero is clearer.
This overall picture is analogous to the critical point behavior in temperature-driven
phase transition [9, 37], η playing the role of T , i.e.

va ∼ (ηc − η)β, (23)

where ηc is the critical noise strength.
The differences in data sets from systems with different numbers of particles are

related to finite-size effects. Such effects are well studied for phase transitions in
passive matters [40]. For the latter case, analogous coexistence curves from Monte

https://doi.org/10.1103/PhysRevLett.75.1226


Phase Transitions in Active Matter Systems 153

Fig. 5 a Variation of order parameter, for the Vicsek model, defined in the text, are shown as a
function of noise strength η. The density of particles is kept fixed. Different plots represent results
from different system sizes. These data are from simulations in d = 2. Reproduced with permission
from T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995). https://doi.org/10.1103/PhysRevLett.75.
1226.bAnalogous phase diagrams for a passive binary (A + B)mixturemodel ind = 3.Thesewere
obtained from Monte Carlo simulations in a semi-grand-canonical ensemble. Here, xA represents
the concentration of A particles (xA = NA/N , NA and N being, respectively, the number of A and
total number of particles in the system). These data are borrowed from S. Roy and S.K. Das, J.
Chem. Phys. 139, 064505 (2013)

Carlo simulations of a temperature-driven phase separation in a symmetric binary
(A + B) fluid [41], placed in boxes of different sizes, are shown in Fig. 5b. These
simulations were performed in a semi-grand-canonical ensemble [41] that allows
changes of identities of particles (A → B → A), thereby inducing fluctuations in the
concentration of, say, A species (xA) in the mixture. The distributions of xA, obtained
by exploiting such fluctuations, at various temperatures, provide crucial information
on phase diagram and other critical aspects. The distributions are double-peaked in
the coexistence region and single-peaked above the critical point. Below criticality,
the locations of the peaks provide points on a coexistence curve. The distributions
also allow for the calculations of other quantities, e.g., the susceptibility can be
calculated as [40, 41]

kBTχ = N (〈x2A〉 − 〈xA〉2), (24)

where kB is the Boltzmann constant. For the estimation of the critical point, it is
a standard practice to calculate the well-known Binder parameter, i.e., the fourth
moment ratio [40],

UL(T ) = (xA − 〈xA〉)4
[(xA − 〈xA〉)2]2 . (25)

This dimensionless quantity from different system sizes crosses each other at the
critical point. In the case of a vapor–liquid transition, such fluctuations in the density

https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
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field, leading to the calculations of various experimentally relevant quantities, can
be obtained via simulations in grand-canonical ensemble [40].

Choices of smart ensembles in the passive case become possible because of strong
universality—very different dynamics lead to the same static class of critical phe-
nomena. In active matter systems, for which dynamics dictate the criticality, it is not
possible to choose ensembles at will. Nevertheless, in this case, certain methods can
be useful. For systems with fixed size and particle number, such fluctuations can be
captured by dividing the simulation box into many sub-boxes. Calculations of va in
different sub-boxes [17] can provide the desired distribution, and thus the quantities
of physical relevance.

5 Transitions in Variants of the Vicsek Model

The original Vicsek model has been combined with passive models to suit studies of
various physical pictures. Given that in many biological systems bacteria, typically
of the size of colloids, exist in thematrix of bio-polymers, a generic passivemodel for
mixtures of colloids and polymers, referred to as the Asakura–Oosawa (AO) model
[60, 61], has been used as the backbone for the studies of effects of Vicsek-like
self-propulsion in biologically motivated systems [5, 6].

In theAOmodel, the colloids and polymers are treated as sphereswith radii Rc and
Rp, respectively. In the original passive version of the model, colloid–colloid (CC)
and colloid–polymer (CP) pair interactions are of hard sphere type. There exists,
however, no interaction for the polymer–polymer (PP) pairs. Such a PP interaction
has the following justification. Flexible polymers in good solvent conditions take
random-walk-like configurations. Upon coarse graining, these can be treated as blobs
that can overlap with each other at the free energy cost of kBT .

The above passive model gives rise to phase separation into colloid-rich and
polymer-rich phases. Corresponding coexistence curve has been obtained accurately
via grand canonical Monte Carlo simulations. For molecular dynamics (MD) [62]
studies of this model, however, different interactions [63] were adopted by some
authors. When the particles are located r distance apart, the αβ (= CC or CP) pairs
interact via

uαβ = 4εαβ

[(σαβ

r

)12 −
(σαβ

r

)6 + 1

4

]
. (26)

For PP interactions

uPP = 8εPP

[
1 − 10

(
r

rc,PP

)3

+ 15

(
r

rc,PP

)4

− 6

(
r

rc,PP

)]
(27)

was considered. The choices of the system parameters εCC = εCP = 1, εPP =
0.0625, σCC = 1, σCP = 0.9, σPP = 0.8 and rc,αβ = 21/6σαβ , the latter represent-
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ing cut-off distances in terms of the inter-particle diameters σαβ , produced a phase
behavior close to the original version.

Like in the case of the original AO model, the potentials in Eqs. (26) and (27)
make the model reasonably insensitive to temperature. Density plays the role of
temperature here. For this modified version of the model, the coexistence curve is
presented in Fig. 6 on ηC versus ηP plane. Here, ηC and ηP are the packing fractions
of colloids and polymers [5, 6, 63]

ηC = 0.5484ρC , (28)

ηP = 0.2808ρP , (29)

with

ρα = Nα

V
, (30)

Nα being the number of particles for species α and V is the system volume.
In the VM, there exists no passive inter-particle interaction. The passive limit

of the model, thus, does not exhibit a phase transition. In recent studies [5, 6],
colloids in the above mentioned mixtures have been made active via the introduction
of the Vicsek activity. Given that the passive counterpart exhibits phase separation,
imposition of the self-propulsion is expected to widen the coexistence region. This
can be appreciated [5, 6] from Fig. 6.

With respect to the order of such nonequilibrium transitions, there exist debates.
Even if there exists a critical point, the universality related to such a second order
transition remains highly debated [10].

Vicsek interaction has also been incorporated into single component systems [7]
having passive inter-particle potential. In recent works, certain truncated, shifted, and
force corrected Lennard–Jones (LJ) [41] potential was used as passive interaction.
Note that the standard LJ potential has the form

V = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (31)

where, like above, ε and σ are, respectively, the interaction strength and diameter. A
popular modified version is [41, 64]

u(r) = V (r) − V (rc) − (r − rc)
dV

dr

∣∣∣
r=rc

, (32)

with truncation radius rc = 2.5σ. This model provides temperature driven phase
transition. Like in the case of the modified AO model, the truncation helps faster
computation. Given that the interactions are already of short-range nature, such cuts
do not alter the critical universality in the passive case. For these models, MD sim-
ulations have been performed in the canonical ensemble. To keep the temperature
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Fig. 6 Phase behavior of the (modified) Asakura–Oosawa model in ηC versus ηP plane, ηC and
ηP being the packing fractions of colloids and polymers, respectively. We have shown results for
pure passive case as well as for that obtained by making the colloids active via a Vicsek-like rule.
See text for more details. The plus (+) symbol marks the location of the passive critical point. This
figure is reproduced with due permission from S.K. Das et al., Phys. Rev. Lett. 112, 198301 (2014)
in a modified form

constant, if a Langevin thermostat is used, one needs to solve the dynamical equation
(for the ith particle) [5–7]

m �̈r i = −�∇ui − γm �̇ri + √
�mγkBT �R(t). (33)

Here, m is the mass of a particle, γ is a drag coefficient, and �R is a noise delta-
correlated in space and time as [5–7, 62]

〈RiμR jν〉 = δi jδμνδ(t − t ′), (34)

where μ and ν are related to Cartesian components, while t and t ′ represent two dif-
ferent times. The value of the constant � in Eq. (33) depends on uniform or Gaussian
noise. In recent works [7, 15, 16], at the end of each such MD step the velocities
of the particles were further updated by adding it with the average direction of their
neighbors [7]

�Dn =
∑
j

�v j

∣∣∑
j

�v j

∣∣ , (35)
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with a proportionality factor f A. This was done in such a way that this Vicsek rule
provides only the directional change. The value of fA provides the strength of activity,
influencing the quantitative change in direction ofmotion of a particle. For thismodel
also, to be referred to as LJ-VM, it is observed that phase separation occurs much
above the known critical temperature in the passive limit. In fact, the influence of
Vicsek alignment is so robust in inducing phase separation that even for pure repulsive
interaction in the passive limit, a coexistence region can be observed.

6 Kinetics of Flocking Transition: Structure Formation

Dynamics of evolution to steady states have been studied in the original VM as well
as in variants of the latter. Like in the case of phase behavior, here also the objective is
to find if scaling properties are similar to the passive matter case. Related results we
present for the above mentioned LJ-VM, for f A = 1, with reference to the f A = 0
case, the pure LJ (passive) case, in d = 2. The state points are chosen in such a way
that in each of the cases, there exists short-range crystalline order in the particle
arrangement in the high density region.

In Fig. 7 we show [15] evolution snapshots, including the starting random initial
configuration, that mimic quenches from high temperature phase, in d = 2. The
final temperature lies inside the coexistence region of the model in the passive limit.
Growth is clearly visible in the system. However, the structure appears different from
that of the corresponding passive version of themodel. Representative snapshots from
the latter [65] are shown in Fig. 8 which were obtained via MD simulations with
a hydrodynamic preserving Nosé-Hoover thermostat (NHT). Note that the overall
density in the passive (0.35) and active (0.37) cases differ marginally. From the
comparison between Figs. 7 and 8, it also transpires that the growth is much faster
in the active case, despite the absence of hydrodynamics in the latter case.

The self-similarity in growth, for f A = 1, has been demonstrated in Fig. 9. In
Fig. 9a, we have shown the plots of two-point equal time correlation, versus r , from
a few different times. The slower decay with the increase of time implies growth. In
Fig. 9b, we present the same results, but here the distance axis has been scaled by
the characteristic length scale, that was obtained from the decay of C(r, t) as

C(r = �, t) = h, (36)

by fixing h at a constant number (= 0.25). Note that C(r, t) has been normalized in
such a way that C(0, t) = 1. Clearly, data from different times nicely overlap with
each other, implying self-similarity, despite the presence of fractality of some degree.
Note that such scaling is well known in the literature of passive matter [44].

In Fig. 10, we present scaling plots for the structure factor, for f A = 1. Here also
nice collapse of data is visible. The large wave number data are reasonably consistent
with the Porod law [44]. Note that here d = 2 and n = 1. Thus, for the tail part, one
expects the behavior S(k, t) ∼ k−3. In the small k regime, the data are consistent
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Fig. 7 Snapshots recorded following quench of a homogeneous system (t = 0) containing active
particles with random initial velocities. These results are from the MD simulations of LJ-VM in
d = 2. The quench temperature is set at T = 0.25 in units of ε/kB . The overall density of particles
in the system of linear dimension L = 1024 is 0.37. This figure is reproduced with permission from
S. Chakraborty and S.K. Das, J. Chem. Phys. 153, 044905 (2020) in a modified form

with the behavior
S(k → 0, t) ∼ kx , (37)

x being approximately 1.2. This number will be useful in future discussion.
For the above discussed results, the quench temperature was fixed at T = 0.25

and ρ was rather high, approximately the critical value for the passive transition. It
appears that one gets bicontinuous structure during the evolution with this density.
It is expected that the morphology will consist of disconnected clusters when the
density is low. Below we discuss pictures for such quenches.

For the off-critical quench, we present the snapshots [16] for f A = 1 in Fig. 11a.
As expected, the morphology is made of disconnected clusters. Once again, for the
purpose of comparison, in Fig. 11b, we have shown [16] the snapshots from the
passive limit of the model, i.e., for f A = 0. Here also the pattern consists of well-
separated clusters, but in this case, the clusters are more filamental. Such difference
must have its origin in dynamics that becomes different when the active interaction is
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Fig. 8 Similar to Fig. 7 but here the activity was turned off and hydrodynamics was turned on.
These snapshots correspond to ρ = 0.35. This figure is reproduced with due permission from J.
Midya and S.K. Das, Phys. Rev. E 102, 062119 (2020)

Fig. 9 a Two-point equal time correlation functions, C(r, t), are plotted versus r . Data sets, corre-
sponding to the evolution in Fig. 7, from a few different times are shown. b Same as a but here the
distance axis is scaled by the average size of the domains. This figure is reproduced with permission
from S. Chakraborty and S.K. Das, J. Chem. Phys. 153, 044905 (2020)



160 S. K. Das

Fig. 10 Scaling plots of the structure factor, taking data from various different times, for the active
matter model of Fig. 7. The dashed lines represent various power laws, quantifying the small and
large k behavior. This figure is reproduced with permission from S. Chakraborty and S.K. Das, J.
Chem. Phys. 153, 044905 (2020)

Fig. 11 a Same as Fig. 7 but here the overall density is fixed at a much lower value, viz. 0.05. b
Same as a but here the snapshots are for the passive case, viz., f A = 0. This figure is reproduced
with permission from S. Paul, A. Bera and S.K. Das, Soft Matter 17, 645 (2021)

implemented. In both the parts, the results are for ρ = 0.05 and T = 0.1, in absence
of hydrodynamics.
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7 Growth During Flocking Evolution

Kinetics of phase transition in passive matter systems are broadly divided into two
categories [44], based on the dependence of the total value of the order parameter
on time. Typically, for phase separation in mixtures, during vapor–liquid transition,
etc., the order parameter does not change with time and belongs to the category of
conserved order-parameter dynamics. The cases for which this quantity does not
remain preserved over time, e.g., during ordering in a ferromagnet, belong to the
category of non-conserved dynamics. Here we are focusing on the density field order
parameter that remains preserved for both active and passive cases. Before discussing
recent results from active systems, we first provide a theoretical background in the
passive context.

7.1 Theoretical Background

In the passive conserved category, the growth rate is significantly influenced by the
underlying phase, e.g., whether we are studying phase separation in fluids or in solid
mixtures. In the case of solid mixtures, irrespective of the compositions, the growth
occurs due to diffusive transport of particles via chemical potential (μ) gradient [51].
Thus, one writes the interface velocity v (= d�/dt) as [66]

d�

dt
∼ ∣∣ �∇μ

∣∣. (38)

Given that μ ∼ γs/�, γs being the interfacial tension, and assuming that the gradient
exists over the length scale of the domain, one obtains

d�

dt
∼ γs

�2
. (39)

Solution of Eq. (39) provides δ = 1/3, referred to as the Lifshitz–Slyozov (LS)
growth exponent. In kinetics of phase separation in solid mixtures, this remains true
irrespective of the type of morphology, connected or disconnected.

During phase separation in fluids, it is expected that the solid-like diffusive picture
and, thus, δ = 1/3, will remain true at an early time. Beyond a critical length scale,
depending upon various thermodynamic and transport properties, hydrodynamics
becomes important in fluids and growth becomes much faster, due to advective
transport ofmaterials through tube-like elongated domains in the case of bicontinuous
structure. A balance between the viscous stress and interfacial free energy density in
this case,

6πηv

�
= γs

�
, (40)
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provides [44]
� ∼ t. (41)

However, this growth law does not describe the entire hydrodynamic regime. A
further crossover occurs at much later time. In this case, one expects [44]

� ∼ t2/3, (42)

which can be obtained via a balance between interfacial free energy density and
kinetic energy density. Even though in the considered examples, particles in the high
density regions exhibit crystalline ordering, this discussion will be useful. However,
note that the hydrodynamic picture described above for d = 3 is questionable in
d = 2. The common consensus is though that hydrodynamics enhances the rate of
growth.

In the passive case, for state points close to a branch of the coexistence curve,
clusters of the minority phase can move in a hydrodynamic environment, as opposed
to the non-hydrodynamic situations. It can be anticipated then that the growth in
such a situation will occur via a coalescence mechanism, assuming that the collisions
among the clusters are sticky in nature. For diffusivemotion of the clusters, a proposal
was put forward by Binder and Stauffer [67, 68]. In this case, the droplet density n
follows the equation

dn

dt
= −Cn2, (43)

where C is a constant. Mass conservation demands

n ∝ 1

�d
. (44)

From these latter equations, one obtains the dimension dependent growth exponent

δ = 1

d
. (45)

Even if one has a fluid-like continuum system, if somehow hydrodynamic con-
servations are destroyed the growth should follow the LS value. This should, e.g., be
the case for MD simulations with Anderson or Langevin thermostats [62].

In an hydrodynamic environment where the clusters move in a very low density
background phase, it is possible that the displacements are faster than diffusive. For
ballistic motion of clusters, n may follow the dynamical equation [53, 69]

dn

dt
= −“collision-cross-section” × vrms × n2, (46)

where vrms is the root-mean-squared velocity of the clusters. By inserting an appro-
priate expression for the collision-cross-section (�) in d space dimension, in terms
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of cluster mass M, for fractal clusters of dimension d f , e.g.

� ∼ M
d−1
d f , (47)

and taking
vrms ∼ Mz, (48)

along with

n ∼ 1

M
, (49)

one arrives at the expression for growth exponent y, in M ∼ t y , as [34, 53]

y = d f

1 − d + d f (1 − z)
. (50)

Again, this picture will be valid in a hydrodynamic environment. Here we will show
numerical results only for the disconnected morphologies. Due to certain complexity
in scaling arising due to fractal nature of the clusters, instead of presenting results
for �, we will focus on M for most of the remaining part of the section.

7.2 Computational Results on Growth of Fractal Clusters

In Fig. 11b,we had shown typical evolution snapshots from theMDsimulations of the
passive LJ model with Langevin thermostat in d = 2. It is checked that these clusters
are practically static. The plot of average domain mass for this case is presented [16]
in Fig. 12. The growth is reasonably consistent with the expected LS exponent 1/3.

In the presence of hydrodynamics, the situation is different from what we dis-
cussed now. In Fig. 13, we present the snapshots for this case that again show inter-
esting fractal clusters [53].Note that, in this case, theMDsimulationswere performed
by using the NHT [62] that is known to preserve hydrodynamics well.

In the main frame of Fig. 14, we show [53] the plot of average mass as a function
of time. The growth is much faster, i.e., y � 1.15. In inset-I, we show a plot of mass
versus Rg , the radius of gyration of the fractal clusters. Consistency of the data set
with the power law line provides d f = 1.6. In inset-II, themean squared displacement
(MSD) [70] of a typical cluster as a function of time is shown. This indicates ballistic
motion. Note that at a higher temperature, when the vapor phase is reasonably dense,
themotionmay be closer to diffusive. In this case, the fractalitymay also be different.
Cluster growth for such disconnected morphologies in a hydrodynamic environment
should happen via a coalescence mechanism. Ballistic aggregation is expected for
very low temperature quenches. In inset-III, we show a plot of vrms versus M . This
provides z = −1/2. Thus, the growth exponent quoted in the figure is consistent with
the expected theoretical value [see Eq. (50)]. Note that we are working in d = 2.
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Fig. 12 Plot of average mass (M) of clusters as a function of time for the f A = 0 case of the
LJ-VM. The solid line there is a power law. Corresponding exponent is mentioned inside the figure.
This figure is reproduced with permission from S. Paul, A. Bera, and S.K. Das, Soft Matter 17, 645
(2021)

Next we return to the off-critical LJ-VM with Langevin thermostat and f A = 1.
Snapshots for this case are already discussed above. From Fig.15a, where we show
[16] the MSD of a cluster as a function of time, it is clear that these clusters are not
onlymobile, but they also exhibit ballistic motion, even though hydrodynamics is not
applied. Interestingly, the growth is even faster than [16] the passive hydrodynamic
case,with y � 1.8—seeFig. 15b. For this case, the value ofd f and zwere estimated to
be� 1.7 and� 0, respectively. Thus, we expect y � 2.4. The theory largely explains
the rapid growth. There, of course, exist discrepancy. But we do not discuss it here.
The self propulsion of Vicsek type brings hydrodynamics-like cluster motion. In this
case, we also observe interesting topological defects in the velocity field. Instead of
these, we briefly discuss some results on the aging phenomena below.

8 Aging in Evolving Active Matter System

We switch to the bicontinuous structure for the discussion of aging phenomena.
Snapshots for this case were presented in Fig. 7. In this case, the growth is estimated
[15] to occur with δ = 1, much faster than the passive case.

In Fig. 16a,we show [15] the plots of the order-parameter autocorrelation function,
versus t − tw. As expected, the time translation invariance is violated. In Fig. 16b,
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Fig. 13 Snapshots are shown to depict the evolution in the LJ-VM for f A = 0, i.e., for the pure
LJ model, with ρ = 0.03. In this case, a hydrodynamics preserving Nosé-Hoover thermostat was
used for the molecular dynamics simulations. Only parts of the snapshots are shown. This figure is
reproduced with permission from J. Midya and S.K. Das, Phys. Rev. Lett. 118, 165701 (2017)

we present the same plots versus �/�w. Nice collapse of data, as typically seen in the
passive matter case, is observed. The decay of Cag(t, tw) in the latter plot appears
linear on the log–log scale, in the large �/�w limit. This implies a power law behavior.
The exponent is λ � 2.2. See Eq. (18) for definition of λ. Note that rapid falls are
related to the finite-size effects [7, 15].

In the literature of aging, there exists bounds on λ. From a general consideration,
Yeung, Rao, and Desai arrived at [48]

λ � d + x

2
. (51)

We have previously observed in Fig. 10 that x � 1.2 in this case. Note that x has
been defined in Eq. (37). Thus, this bound is obeyed in the present case.
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Fig. 14 Average cluster mass, corresponding to the evolution in Fig. 13, is shown as a function of
t . Inset-I: A plot of M versus Rg , the radius of gyration of the clusters. Inset-II: Mean-squared-
displacements (MSD) for a typical cluster are shown as a function of shifted time. Inset-III: Root-
mean-squared velocity, vrms , is plotted versus M . Various solid lines represent power laws, and
values of the exponents are mentioned in appropriate places. This figure is reproduced with permis-
sion from J. Midya and S.K. Das, Phys. Rev. Lett. 118, 165701 (2017)

Fig. 15 a Mean-squared-displacements (MSD) are shown versus shifted time for the LJ-VM with
f A = 1 and Langevin thermostat. The solid line represents a power law corresponding to ballistic
motion. b Average cluster mass for the LJ-VM with f A = 1 and Langevin thermostat is plotted
versus time, on a log–log scale. The solid line represents a power law with exponent 1.8. This figure
is reproduced with permission from S. Paul, A. Bera and S.K. Das, Soft Matter 17, 645 (2021)



Phase Transitions in Active Matter Systems 167

Fig. 16 a Plots of the order-parameter autocorrelation function for the high density LJ-VM are
shown versus t − tw . b Same data sets in a are shown versus �/�w , on a log–log scale. The dashed
line here is a power law having exponent 2.2. This figure is reproduced with permission from S.
Chakraborty and S.K. Das, J. Chem. Phys. 153, 044905 (2020)

In the active case, even though inmanyways, the character of transition is different
from the passive situation, it appears that the basic scaling properties remain valid.
However, there exist quantitative differences.

9 Conclusion

We have provided an overview of active matter systems. These systems exhibit
nonequilibrium phase transitions. The focus of this chapter was on the structure and
dynamics associated with such transitions.

Wehave discussed phase behavior in the steady state situation.Critical phenomena
were introduced in this context. The topic of evolution toward the steady states
was covered by considering quenches to state points that provide different kinds of
structure. In each of the cases, the background was set up by sketching the picture
in the passive matter context.

It is seen that in the active matter case, qualitative picture remains the same
with respect to various scaling laws. However, there exists disagreement with the
passive case at the quantitative level. The universality is in general weaker in systems
containing self-propelling particles. In this chapter, we have discussed only systems
with alignment interactions [9]. There exists other interesting cases [10, 17, 71].
These should be explored appropriately to establish an accurate understanding with
respect to universality in phase transition concerning active matters.

In the context of dynamics, the role of hydrodynamics needs to be studied [72].
There exist methods to implement hydrodynamics in such systems. However, large-
scale simulations for studies of phase transitions have not been performed by using
such techniques.
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Another interesting domain is to study active matters under confinement [73–
77]. These systems typically contain finite number of constituents. However, studies
by putting these inside finite boxes with boundaries are gaining momentum only
recently. Existing reports suggest fascinating effects of boundaries on both structure
and dynamics. These aspects should, thus, be explored more.

Some of the results that are presented here were obtained through fruitful collab-
orations with K. Binder, P. Virnau, S.A. Egorov, B. Trefz, J. Midya, S. Chakraborty,
S. Paul, and S. Roy. The author thanks N. Vadakkayil, P. Pathak, A.P. Tripathi, T.
Paul, A. Bera, and K. Das for their helps in the preparation of the manuscript.
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Kinetic Theory of Binary Granular
Suspensions at Low Density. Thermal
Diffusion Segregation

Rubén Gómez González and Vicente Garzó

Abstract Transport properties of granular mixtures surrounded by an interstitial gas
are determined by solving theBoltzmann kinetic equation bymeans of theChapman–
Enskog method. As usual, the influence of the viscous gas on solid particles is
accounted for by an effective external force composed of two terms: a drag force pro-
portional to the particle velocity plus a stochastic Langevin-like term. Before consid-
ering inhomogeneous situations, we study first the homogeneous steady state where
collisional cooling and viscous friction are compensated for by the energy gained by
grains due to their interaction with the interstitial gas. Then, the Chapman–Enskog
method is used to solve the Boltzmann equation and express the Navier–Stokes trans-
port coefficients in terms of the solutions of a set of coupled linear integral equations.
Explicit forms are obtained here in the tracer limit for the diffusion transport coef-
ficients which are explicitly determined by considering the so-called first Sonine
approximation. As an application of the previous results, thermal diffusion segrega-
tion of an intruder immersed in a granular suspension is analyzed and compared with
previous theoretical attempts where the effect of the interstitial gas was neglected.

1 Introduction

Granular matter in nature is generally surrounded by an interstitial fluid, like water
or air. Although in many situations the effect of the surrounding fluid on the dynamic
properties of grains can be neglected, there are also other situations (for instance,
when the stress exerted by the fluid phase on grains is significant) where the influence
of the interstitial fluid must necessarily be taken into account. A typical example of it
refers to the species segregation in granular mixtures [1]. Since a granular suspension
is a multiphase process, in the context of kinetic theory, one could start from a set of
coupled kinetic equations for each one of the velocity distribution functions of the
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phases. However, this approach involves many technical intricacies, especially in the
case of granular mixtures. Thus, to avoid this problem, the effect of the interstitial
fluid on grains is usually taken into account by means of an effective external force
[2]. This fluid–solid force is composed of two terms: (i) a viscous drag force (Stokes’
law) proportional to the particles velocity and (ii) a stochastic force modeled as a
Gaussian white noise. While the first term mimics the friction of grains with the
surrounding gas, the second term accounts for the energy gained by grains due to
their interaction with the particles of the gas phase (thermal reservoir).

An interesting and challenging problem is to assess the impact of gas phase on
the Navier–Stokes transport coefficients of a binary granular mixture modeled as an
ensemble of smooth inelastic hard spheres. This problem is not only relevant from a
fundamental point of view but also from a realistic point of view since granular sus-
pensions are present in nature formed by grains of different masses, sizes, densities,
and coefficients of restitution. However, the determination of the transport coeffi-
cients of bidisperse gas–solid flows is a quite ambitious target due essentially to the
large number of integro-differential equations involved as well as the wide parame-
ter space of the system. For this reason and in order to offer a complete description,
we consider here binary granular suspensions at low-density where the Boltzmann
kinetic equation turns out to be a reliable starting point [3, 4].

As in previous papers [6–8], the Boltzmann equation (BE) is solved by means of
the Chapman–Enskog (CE)method [9] adapted to dissipative dynamics. A subtle and
important point of the expansion method is the choice of the reference distribution in
the perturbation scheme. Although we are interested here in obtaining the transport
coefficients under steady conditions, the presence of the surrounding fluid gives
rise to a local energy unbalance in such a way the zeroth-order distributions f (0)

i
of each species (reference states) are not in general stationary distributions. Thus,
in order to determine the Navier–Stokes transport coefficients, one has to obtain
first the unsteady integral equations defining the above transport coefficients and
solve (approximately) then these equations in steady-state conditions. An important
consequence of this procedure is that the transport properties depend not only on the
steady temperature but also on quantities such as the derivatives of the temperature
ratio on the temperature.

The plan of the paper is as follows. The granular suspension model as well as the
balance equations for the densities of mass, momentum, and energy are derived in
Sect. 2. Then, the steady homogeneous state is studied in Sect. 3 where the tempera-
ture ratio T1/T2 of both species is calculated and compared against the Monte Carlo
simulations. Section4 addresses the application of the CE method up to first order
in the spatial gradients. As expected, transport coefficients are given in terms of the
solutions of a set of coupled linear integral equations. These integral equations are
approximately solved by considering the leading Sonine approximation; this proce-
dure is explicitly displayed here for the diffusion transport coefficients in the special
limit case where one of the components of the mixture is present in tracer concen-
tration. As an application of the previous results, thermal diffusion segregation of an
intruder or tracer particle is analyzed in Sect. 5. The paper is closed in Sect. 6 with a
brief discussion of the results obtained in this work.
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2 Granular Suspension Model

We consider a granular binary mixture of inelastic hard disks (d = 2) or spheres
(d = 3) of masses mi and diameters σi (i = 1, 2). The spheres are assumed to be
completely smooth and so, the inelasticity of collisions is characterized by three
constant (positive) coefficients of normal restitution αi j ≤ 1. The solid particles are
surrounded by amolecular gas of viscosity ηg and temperature Tex. As said before, the
influence of the interstitial gas on grains is modeled via a fluid–solid force constituted
by two terms: a deterministic drag force plus a stochastic force. In the low-density
limit and taking into account the above terms, the one-particle velocity distribution
function of each species verifies the Boltzmann kinetic equation [8]

∂ fi
∂t

+ v · ∇ fi − γi�U · ∂ fi
∂v

− γi
∂

∂v
· V fi − γi Tex

mi

∂2 fi
∂v2

=
2∑

j=1

Ji j [ fi , f j ], (1)

where Ji j [ fi , f j ] is the Boltzmann collision operator [4]. In addition,�U = U − Ug ,
V = v − U is the peculiar velocity,

U = ρ−1
2∑

i=1

∫
dv miv fi (v) (2)

is themeanflowvelocity of the solid particles, andUg is the knownmeanflowvelocity
of the interstitial gas. The friction coefficients γi are proportional to the gas viscosity
ηg and are functions of the partial volume fractions φi = (πd/2/(2d−1d� (d/2))niσd

i ,
where

ni =
∫

dv fi (v) (3)

is the number density of species i . In the dilute limit, every particle is only subjected
to its respective Stokes’ drag [10] so that for hard spheres (d = 3) γi is

γi = γ0Ri , γ0 = 18ηg
ρσ2

12

, Ri = ρσ2
12

ρiσ
2
i

φi . (4)

Here, ρi = mini , ρ = ρ1 + ρ2 is the totalmass density, andσ12 = (σ1 + σ2)/2.Apart
from the partial densities ni and the mean flow velocity U, the other relevant hydro-
dynamic field is the granular temperature T , defined as

T = 1

n

2∑

i=1

∫
dv

mi

d
V 2 fi (v), (5)

where n = n1 + n2 is the total number density.
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The Boltzmann collision operators Ji j [ fi , f j ] conserve the number densities of
each species and the total momentum but the total energy is not conserved:

∫
dv

{
1,

∑

i, j

miv,
∑

i, j

mi V
2
}
Ji j [v| fi , f j ] =

{
0, 0,−dnT ζ

}
, (6)

where ζ is the total cooling rate due to inelastic collisions among all species. The
macroscopic balance equations for the densities of mass, momentum, and energy
can be easily obtained by multiplying both sides of the BE (1) by 1, miv, and miV 2;
integrating over v; and taking into account the properties (6). After some algebra,
one gets

Dtni + ni∇ · U + ∇ · ji
mi

= 0, (7)

DtU + ρ−1∇ · P = −ρ−1�U
2∑

i=1

ρiγi − ρ−1 (γ1 − γ2) j1, (8)

DtT − T

n

2∑

i=1

∇ · ji
mi

+ 2

dn
(∇ · q + P : ∇U) = − 2

dn
�U ·

2∑

i=1

γi ji

+2
2∑

i=1

xiγi (Tex − Ti ) − ζT . (9)

In the above equations, Dt = ∂t + U · ∇ is the material derivative,

ji = mi

∫
dv V fi (v) (j1 = −j2) (10)

is the mass flux for the component i relative to the local flow U,

P =
2∑

i=1

∫
dv miVV fi (v) (11)

is the pressure tensor, and

q =
2∑

i=1

∫
dv

mi

2
V 2V fi (v) (12)

is the heat flux. In addition, the partial kinetic temperature Ti is
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Ti = mi

dni

∫
dv V 2 fi (v). (13)

The partial temperature Ti measures themean kinetic energy of particles of species
i . The relationship between the granular temperature T and the partial temperatures
Ti is simply given by T = ∑

i xi Ti , where xi = ni/n is the concentration of species
i . The breakdown of energy equipartition in granular systems (Ti �= T ) predicted by
kinetic theory [4] has been confirmed in computer simulations [11] as well as in real
experiments [12].

It is quite apparent that the balance equations (7)–(9) become a closed set of
differential equations for n1, n2, U, and T when the fluxes, the cooling rate, and
the partial temperatures are expressed in terms of the hydrodynamic fields and their
gradients. These constitutive equations for ji , P, q, ζ, and Ti may be derived by
solving the BE (1) by the CE expansion up to first order in spatial gradients. This
will be analyzed in Sect. 4.

3 Homogeneous Steady States

As a first step and before studying inhomogeneous situations, we consider homo-
geneous states. In this case, ni and T are spatially uniform, and with a convenient
choice of the reference frame, the mean velocities vanish (U = Ug = 0). For times
longer than the mean free time, it is expected that the suspension achieves a steady
state (∂t fi = 0) where the BE (1) reads

− γi
∂

∂v
· v fi − γi Tex

mi

∂2 fi
∂v2

=
2∑

j=1

Ji j [ fi , f j ]. (14)

The balance equation for the partial temperature Ti can be easily derived by multi-
plying both sides of Eq. (14) by miv

2 and integrating over velocity:

2γi (Tex − Ti ) = ζi Ti , (15)

where the partial cooling rates ζi for the partial temperatures Ti are defined as

ζi = − mi

dni Ti

2∑

j=1

∫
dv v2 Ji j [ fi , f j ], (i = 1, 2). (16)

The relationship between ζ and ζi is

ζ =
2∑

i=1

xiτiζi , (17)



178 R. Gómez González and V. Garzó

Fig. 1 Temperature ratio T1/T2 versus the (common) coefficient of restitution α for d = 3, x1 =
0.5, σ1/σ2 = 1, T ∗

ex = 1, and three different values of themass ratio:m1/m2 = 0.5 (a),m1/m2 = 4
(b), and m1/m2 = 10 (c). Lines are the theoretical results while symbols refer to the Monte Carlo
simulations

where τi = Ti/T is the temperature ratio of the species i . Upon deriving Eq. (17),
use has been made of the relation T = ∑

i xi Ti and Eq. (6).
For elastic collisions (αi j = 1), ζ = ζi = 0, Eq. (15) yields Ti = Tex = T so that

the Maxwellian distribution with a common temperature is a solution of the BE
(14). On the other hand, for inelastic collisions (αi j �= 1), ζi and ζ are different from
zero and to date the solution to Eq. (14) is unknown. Thus, one has to consider
an approximate form for the distributions fi to estimate ζi . Here, we take the sim-
plest approximation for both distributions, namely the Maxwellian distributions fi,M
defined with the partial temperatures Ti :

fi (v) → fi,M(v) = ni

(
mi

2πTi

)d/2

exp
(

− miv
2

2Ti

)
. (18)

The partial cooling rates can be computed from Eq. (16) by replacing fi by fi,M. The
result is [4]

ζ1 =
√
2π(d−1)/2

d�
(
d
2

) n1σ
d−1
1

(
2T1
m1

)1/2 (
1 − α2

11

) + 4π(d−1)/2

d�
(
d
2

) n2σ
d−1
12 μ21

×
(
2T1
m1

+ 2T2
m2

)1/2

(1 + α12)

[
1 − μ21

2
(1 + α12)

(
1 + m1T2

m2T1

)]
, (19)

where μi j = mi/(mi + m j ). The expression for ζ2 can be easily obtained from Eq.
(19) by making the change 1 ↔ 2.

The partial temperatures Ti can be obtained from Eq. (15) (for i = 1, 2) when
the expressions (19) for ζ1 and ζ2 are considered. Figure1 plots the temperature
ratio T1/T2 as a function of the (common) coefficient of restitution α ≡ αi j for
x1 = 0.5, σ1 = σ2, T ∗

ex = 1, and three different values of the mass ratio. Here,
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T ∗
ex = Tex/(mσ2

12γ
2
0) and m = (m1 + m2)/2. Theory is compared against the Monte

Carlo simulations [13]. As expected, energy equipartition is broken for inelastic col-
lisions; the extent of the energy violation is greater when the mass disparity is large.
The excellent agreement found between theory and computer simulations is also
quite apparent, except for quite small values of α (extreme inelasticity) where small
discrepancies appear.

4 Chapman–Enskog Method. First-Order Solution

We assume now that the homogeneous steady state is perturbed by small spatial
gradients. The existence of these gradients gives rise to nonzero contributions to
the fluxes of mass, momentum, and energy. To first order in spatial gradients, the
knowledge of the above fluxes allows one to identify the relevant Navier–Stokes
transport coefficients of the granular suspension. As usual in the CE scheme [9],
for times longer than the mean free time and distances larger than the mean free
path, we suppose that the system achieves a hydrodynamic regime. This means that
(i) the system has completely “forgotten” its initial preparation (initial conditions)
and (ii) only the bulk domain of the system (namely, far away from the boundaries)
is considered. Under these conditions, the BE (1) admits an special solution: the
so-called normal or hydrodynamic solution where all space and time dependence of
the distributions fi (r, v; t) is through a functional dependence on the hydrodynamic
fields. This means that in the hydrodynamic regime, fi (r, v; t) adopts the normal
form

fi (r, v; t) = fi
[
v|n1(t), n2(t), T (t),U(t)

]
. (20)

The notation on the right-hand side of Eq. (20) indicates a functional dependence on
the partial densities, temperature, and flow velocity. For small Knudsen numbers, the
functional dependence (20) can be made local in space by expanding fi in powers
of the spatial gradients

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (21)

where ε is a bookkeeping parameter that denotes an implicit spatial gradient (for
instance, a term of order ε is of first order in gradients). This parameter is taken to
be equal to 1 at the end of the calculations.

An important point in the CE expansion is to characterize the magnitude of the
friction coefficients γi and the term �U with respect to the spatial gradients. On the
one hand, since γi does not create any flux, then it is assumed to be to zeroth order
in ε. On the other hand, because �U = 0 in the absence of gradients, it should be
considered to be at least of first order in spatial gradients (first order in ε).

The implementation of the CE method to solve the BE (1) to first order in spatial
gradients is very large and beyond the scope of the present contribution. We refer
the interested reader to Ref. [8] for specific details. Since we want here to analyze
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thermal diffusion segregation in a granular suspension, in order to showmore clearly
the different competing mechanisms appearing in this phenomenon, we consider a
binary mixture where the concentration of one of the species (let’s say species 1) is
much smaller than that of the other species 2 (tracer limit, x1 → 0). The consideration
of this simple situation allows us to offer a simplified theory where a segregation
criterion can be explicitly obtained.

In the tracer limit, the pressure tensor Pi j , the heat flux q, and the cooling rate
ζ of the binary mixture are the same as that of the excess species. While the fluxes
Pi j and q are of first order in the spatial gradients in the Navier–Stokes description,
the expression of ζ must retain terms up to second order in gradients. Part of these
second-order contributions to ζ have been computed by Brey et al. [5] for dry (dilute)
granular gases, while the complete set of these contributions has been determined by
Brilliantov and Pöschel [14] for granular gases of viscoelastic particles. Nevertheless,
it has been shown [5] that these second-order contributions to ζ are negligible as
compared with its zeroth-order counterparts. We expect that the same occurs for the
case of binary granular suspensions and hence, they can be ignored.

4.1 Tracer Limit. Diffusion Transport Coefficients

In the tracer limit, the first-order contribution j(1)1 to the mass flux is [8]

j(1)1 = −m2
1

ρ
D11∇n1 − m1m2

ρ
D12∇n2 − ρ

T
DT

1 ∇T − DU
1 �U, (22)

where the diffusion transport coefficients are defined as

D11 = − ρ

ρ1d

∫
dvV · B11 (V) , D12 = − 1

d

∫
dvV · B12 (V) , (23)

DT
1 = −m1

ρd

∫
dvV · A1 (V) , DU

1 = −m1

d

∫
dvV · E1 (V) . (24)

The unknowns A1(V), B11 (V), B12 (V), and E1(V) are the solutions of a set of
coupled linear integral equations [8]. In the tracer limit, this set reads

−
(
2γ2θ

−1 + 1

2
ζ(0)

)
A1 − γ1

∂

∂V
· (VA1) −γ1

Tex
m1

∂2A1

∂v2
− J12[A1, f (0)

2 ]

= A1 + J12[ f (0)
1 ,A2], (25)

− γ1
∂

∂V
· (VB11) − γ1

Tex
m1

∂2B11

∂v2
− J12[B11, f (0)

1 ] = B11, (26)
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− γ1
∂

∂V
· (VB12) −γ1

Tex
m1

∂2B12

∂v2
− J12[B12, f (0)

2 ] = B12 + J12[ f (0)
1 ,B21]

+
[
ζ(0) − 2γ2

(
θ−1 − 1

) + 2λ1
∂τ1

∂λ1

]
A1, (27)

− γ1
∂

∂V
· (VE1) − γ1

Tex
m1

∂2E1

∂v2
− J12[E1, f (0)

2 ] = E1. (28)

In the integral equations (25)–(28), ζ(0) is the zeroth-order approximation to the
cooling rate, θ = T/Tex, λ1 = (2T ∗

ex)
−1/2(R1/nσd

12), andA2 and B21 refer to quan-
tities of the excess species 2. These quantities obey certain integral equations; their
explicit forms are not needed for evaluating the diffusion transport coefficients in
the so-called first Sonine approximation. In addition, the expression of the derivative
∂λ1τ1 can be found in Appendix A of Ref. [8] while the inhomogeneous terms A1,
B11, B12, and E1 are given, respectively, by

A1 (V) = −V
∂ f (0)

1

∂T
− p

ρ

∂ f (0)
1

∂V
, B11 (V) = −Vn1

∂ f (0)
1

∂n1
, (29)

B12 (V) = −Vn2
∂ f (0)

1

∂n2
− T

m2

∂ f (0)
1

∂V
, E1(V) = (γ1 − γ2)

∂ f (0)
1

∂V
. (30)

Note that Eqs. (25)–(28) have been obtained under steady-state conditions, namely
when the conditions (15) apply. Furthermore, in order to obtain the above set of
coupled integral equations, we have taken into account that while in the tracer limit
D11 is independent of x1, the coefficients D12, DT

1 , and DU
1 are proportional to

x1. This dependence on x1 will be then self-consistently confirmed. Accordingly,
A1 ∝ x1, B12 ∝ x1, and E1 ∝ x1.

Although the exact formof the zeroth-order distributions f (0)
i is not known, dimen-

sional analysis requires that they have the scaled form f (0)
i (V) = niv

−d
th ϕi (c, γ∗

i , θ).
Here, c = V/vth and γ∗

i = γi/ν0, where ν0 = nσd−1
12 vth is an effective collision fre-

quency, and vth = √
2T/m is the thermal velocity. Thus, one has the property

T
∂ f (0)

i

∂T
= −1

2

∂

∂V
· V f (0)

i + niv
−d
th θ

∂ϕi

∂θ
. (31)

4.2 Leading Sonine Approximation

Equations (25)–(28) are still exact. However, the determination of the diffusion trans-
port coefficients requires to solve the above integral equations as well as to know
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the zeroth-order distributions f (0)
i . The results derived for driven granular mixtures

[15] have shown that non-Gaussian corrections to f (0)
i (which are measured through

the fourth cumulants ci ) are in general very small. Thus, f (0)
i is well represented

by its Maxwellian form (18) and so, a theory incorporating the cumulants ci seems
to be unnecessary in practice for computing the diffusion transport coefficients.
Regarding the functions Ai , Bi j , and E i , as usual we consider the leading terms in
a series expansion of these quantities in Sonine polynomials. In this case, A2 → 0,
B21 → 0, and the quantitiesA1,B11,B12, andE1 corresponding to the tracer species
are approximated by

A1(V) → − f1,MV
ρ

n1T1
DT

1 , B11(V) → − f1,MV
m2

1

ρT1
D11, (32)

B12(V) → − f1,MV
m1

n1T1
D12, E1(V) → − f1,MV

1

n1T1
DU

1 . (33)

Now, we substitute first Eqs. (32) and (33) into the integral equations (25)–(28),
multiply them by m1V, and integrate over v. After some algebra, D11, DT

1 , D12, and
DU

1 can be written, respectively, as

D11 = ρT

m2
1ν0

τ1

ν∗
D + γ∗

1

, DT
1 = nT

ρν0
x1

θ ∂τ1
∂θ

− (μ − τ1)

ν∗
D + γ∗

1 − 2γ∗
2θ

−1 − 1
2ζ

∗
0

, (34)

D12 = x1ρT

m1m2ν0

[
ζ∗
0 − 2γ∗

2

(
θ−1 − 1

) ]
x−1
1 DT∗

1 − μ − 2λ1
∂τ1
∂λ1

ν∗
D + γ∗

1

, (35)

DU
1 = ρ1

γ∗
1 − γ∗

2

γ∗
1 − ν∗

D

. (36)

Here, μ = m1/m2 is the mass ratio, the derivative ∂θτ1 is given in Appendix A of
Ref. [8],

ζ∗
0 = π(d−1)/2

d�
(
d
2

)
( σ2

σ12

)d−1
μ

−1/2
21

(
1 − α2

22

)
, (37)

and the reduced collision frequency ν∗
D is

ν∗
D = 2

√
2π(d−1)/2

d�
(
d
2

) μ
3/2
21

(1 + β

β

)1/2
(1 + α12), (38)

where β = β1/β2 = μ/τ1.
Figure2 shows the dependence of the reduced diffusion transport coefficients

Di j (α)/Di j (1), DT
1 (α)/DT

1 (1), and DU
1 (α)/DU

1 (1) for σ1/σ2 = 1, m1/m2 = 10,
and T ∗

ex = 0.1. Here, Di j (1), DT
1 (1), and DU

1 (1) are the values of these coefficients
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Fig. 2 Plot of the (reduced) transport coefficients D11(α)/D11(1) (a), D12(α)/D12(1) (b),
DT
1 (α)/DT

1 (1) (c), and DU
1 (α)/DU

1 (1) (d) as a function of the common coefficient of restitu-
tion for a binary mixture of hard spheres (d = 3) in the tracer limit (x1 → 0) with σ1/σ2 = 1,
m1/m2 = 10, and T ∗

ex = 0.1

for elastic collisions.We observe that the impact of inelasticity on those coefficients is
in general quite important since they differ clearly from their elastic forms, especially
in the case of the thermal diffusion coefficient DT

1 . Moreover, a comparison with the
results obtained in the dry granular limit (no gas phase) shows important qualitative
differences between both theories (see, for instance, Fig. 6.3 of Ref. [4] for the
diffusion coefficient D11).

5 Thermal Diffusion Segregation of an Intruder
in a Granular Suspension

Anice application of the previous results is the study of thermal diffusion segregation
of an intruder or tracer particle in a granular suspension. Needless to say, segregation
and mixing of dissimilar grains are one of the most interesting problems in granular
mixtures, not only from a fundamental point of view but also from a more practical
perspective. This problem has been widely studied in the past few years for dry
granular mixtures. The objective here is to assess the influence of the interstitial gas
phase on the segregation criterion.

Thermal diffusion is originated by the relative motion of the components of a
mixture due to the presence of a temperature gradient. Due to this motion, concen-
tration gradients appear in the mixture producing ordinary diffusion. A steady state
is finally achieved in which the separating effect emerging from thermal diffusion is
offset by the remixing effect arising from ordinary diffusion [16]. The partial separa-
tion between both components of the mixture is then observed; this effect is usually
referred to as the Soret effect.

The amount of segregation parallel to the thermal gradientmaybe characterized by
the so-called thermal diffusion factor�. This quantity is defined in an inhomogeneous
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non-convecting (U = Ug = 0) steady state with zero mass flux (j(1)1 = 0) as

− �
∂ ln T

∂z
= ∂

∂z
ln

(n1
n2

)
, (39)

where only gradients along the z-axis havebeen assumed for simplicity. Let us assume
that the bottom plate is hotter than the top plate (∂z ln T < 0). If � is supposed to
be constant over the relevant ranges of composition and temperature of the system,
according to Eq. (39), when � > 0, the tracer particle tends to rise with respect to
the gas particles 2, i.e., ∂z ln(n1/n2) > 0 (tracer particles accumulate near the cold
plate). On the other hand, when � < 0, the tracer particle tends to fall with respect
to the gas particles 2, i.e., ∂z ln(n1/n2) < 0 (tracer particles accumulate near the hot
plate).

Let us determine the thermal diffusion factor. The mass flux j (1)1,z is given by Eq.

(22) with �U = 0. Since j (1)1,z = 0 in the steady state and U = Ug = 0, then Eq. (8)
yields ∂z(nT ) = 0 and so,

∂z ln T = −∂z ln n2. (40)

Here, we have taken into account that n � n2 in the tracer limit. The factor � can be
written in terms of the diffusion coefficients when one takes into account Eq. (40)
and that j (1)1,z = 0. Its expression is finally given by

� = x−1
1 DT ∗

1 − D∗
11 − x−1

1 D∗
12

D∗
11

, (41)

where we have introduced the dimensionless transport coefficients

D∗
11 = m2

1ν0

ρT
D11, D∗

12 = m1m2ν0

ρT
D11, DT∗

1 = ρν0

nT
DT

1 . (42)

The explicit dependence of� on the parameters of the granular suspension (mass
and size ratios, the coefficients of restitution α12 and α22, and the dimensionless
external temperature T ∗

ex) can be obtained when one substitutes Eqs. (34) and (35) of
D11, DT

1 , and D12, respectively, into Eq. (41). Since D∗
11 > 0, the condition � = 0

is
x−1
1 DT ∗

1 = D∗
11 + x−1

1 D∗
12. (43)

Equation (43) gives the marginal segregation curve separating intruder segregation
toward the cold wall (� > 0) from intruder segregation toward the hot wall (� <

0). On the other hand, since the number of parameters involved in the segregation
problem is still large, it is not easy to disentangle the influence of each mechanism
(mass and size ratios, inelasticity in collisions, external temperature, . . .) on the
intruder segregation problem. Thus, it is convenient first to consider some simple
situations.
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5.1 Mechanically Equivalent Particles

This is quite trivial case since the system is in fact monodisperse (m1 = m2, σ1 = σ2,
α11 = α22 ≡ α, γ2 = γ1 ≡ γ). In this limit case, τ1 = 1 and according to Eqs. (34)
and (35), x−1

1 DT∗
1 = 0 and D∗

11 = −x−1
1 D∗

12 = (ν∗
D + γ∗)−1. Therefore, Eq. (41)

yields � = 0 for any value of the coefficients of restitution α12 and α22 and the bath
temperature T ∗

ex. This implies that no segregation is possible, as expected.

5.2 Elastic Collisions

For elastic collisions (α22 = α12 = 1), ζ∗
0 = 0, τ1 = θ = 1,β = μ, andEq. (43) leads

to the condition (
ν∗
D + γ∗

1

) ∂τ1

∂θ
= 2γ∗

2 (μ − 1) . (44)

Upon deriving Eq. (44), we have considered the region of parameter space where
ν∗
D + γ∗

1 − 2γ∗
2 �= 0. It is quite apparent that even for elastic collisions, the seg-

regation criterion (� = 0) is not simple and differs from the simple segregation
criterion obtained in the dry case (μ = 1). Figure3 shows a phase diagram in the
{m2/m1,σ2/σ1}-plane at T ∗

ex = 1. For a given value of the mass ratio m2/m1, it
is quite apparent that the region � > 0 (tracer particle falls with respect to excess
granular gas) is dominant when the size of gas particles is much larger than that of
the tracer particle. This tendency increases with increasing the mass ratio m2/m1.

Fig. 3 Plot of the marginal segregation curve (� = 0) for d = 3, α22 = α12 = 1, and T ∗
ex = 1.

Points below (above) the curve correspond to � > 0 (� < 0)
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Fig. 4 The same as in Fig. 3 but for α22 = α12 = 0.9. The solid line corresponds to the segregation
criterion for granular suspensions while the dashed line refers to the one derived for dry granular
mixtures. Points below (above) each curve correspond to � > 0 (� < 0)

5.3 Inelastic Collisions

We consider now the general case whereα22 andα12 are different from 1. In this case,
considering the region of parameter space where ν∗

D + γ∗
1 − 2γ∗

2θ
−1 − 1

2ζ
∗
0 �= 0, Eq.

(43) yields

[
ν∗
D + γ∗

1 − ζ∗
0 + 2γ∗

2

(
θ−1 − 1

) ] (
θ
∂τ1

∂θ
− μ + τ1

)
=

(
τ1 − μ − 2λ1

∂τ1

∂λ1

)

×
(
ν∗
D + γ∗

1 − 2γ∗
2θ

−1 − 1

2
ζ∗
0

)
. (45)

This is quite a complex segregation criterion in comparison with the one derived
in the dry granular case (no gas phase) where � = 0 if μ = τ1 [17, 18]. To illustrate
more clearly the differences between both (with and without gas phase) segregation
criteria, Fig. 4 shows the marginal segregation curve (� = 0) for the (common)
coefficient of restitution 0.9. Figure highlights that the impact of gas phase on tracer
segregation is quite significant since, at a given value of the size ratio, the value of the
mass ratio m2/m1 at which � = 0 is greater in the granular suspension than in the
dry granular system. In addition, we also observe that the main effect of gas phase
on tracer segregation is to increase the size of the region � > 0 as σ2/σ1 increases.
This means that the tracer particle attempts to move toward the cold regions as its
size decreases with respect to that of the excess granular gas.
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6 Concluding Remarks

The primary objective of this short review has been to derive the Navier–Stokes
hydrodynamic equations of a binary granular suspension within the context of the
inelastic version of the Boltzmann kinetic equation. As usual, the effect of the inter-
stitial surrounding gas on grains has beenmodeled through an effective external force
constituted by a deterministic drag force plus an stochastic Langevin-like force. This
way of modeling gas–solid flows is essentially based on the following assumptions
and/or simplifications. First, assuming that the granular mixture is rarefied, one sup-
poses that the state of the surrounding gas is not perturbed by the presence of grains
and so, it can be treated as a thermostat. Second, the impact of gas phase on collision
dynamics is very weak, and consequently, the Boltzmann collision operator is not
affected by the presence of the interstitial gas. As a third simplification, one considers
the friction coefficients appearing in the thermal-drag forces to be scalar quantities.
Finally, as a fourth simplification, one assumes low Reynolds numbers so that only
laminar flows are considered.

The road map for obtaining the Navier–Stokes hydrodynamic equations needs
to characterize first the homogeneous state. This is important because the Navier–
Stokes transport coefficients are obtained from the CE expansion around the above
state. Given that the transport coefficients are given in terms of the solutions to a
set of coupled linear integral equations, these equations are approximately solved by
considering the leading terms in a series expansion of Sonine polynomials. This road
map is large and involves many technical steps. Here, for the sake of simplicity, we
have obtained the mass flux of a binary granular suspension where the concentration
of one of the species is negligible (tracer limit). The tracer limit allows us to provide
expressions that are easy to handle for potential applications. In particular, we have
briefly analyzed here the thermal diffusion segregation of an intruder or tracer particle
in a granular suspension. The segregation criterion obtained here shows significant
discrepancies with respect to the one previously derived for dry granular mixtures
[17, 18]. These differences between both situations (with andwithout interstitial gas)
are clearly illustrated in Figs. 3 and 4 for elastic and inelastic collisions, respectively.

Multicomponent granular suspensions exhibit a wide range of interesting phe-
nomena for which kinetic theory and hydrodynamics (in the broader sense) may be
considered as useful tools for understanding the behavior of such complex materials.
However, due to their complexity, many of their features are not still completely
understood. For this reason, from the theoretical side, one has to introduce new
ingredients in the model for approaching more realistic situations. In this context,
the extension of the results presented in this review to inertial suspensions of inelas-
tic rough hard spheres could be an interesting and challenging problem in the near
future.
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Boltzmann Equation in Aggregation
Kinetics

Nikolai V. Brilliantov, Alexander I. Osinsky, and Thorsten Pöschel

Abstract We consider the application of the Boltzmann equation to aggregation
kinetics,where the transportmechanism is the ballisticmotionof particles. This refers
tomolecular gases, granular gases, and, hypothetically, darkmatter. Two aggregation
models are analyzed—random and impact energy-dependent aggregation. The latter
is associated with different interparticle forces responsible for agglomeration. We
start from the Boltzmann equation governing the evolution of the mass–velocity
distribution functions of different species—the agglomerates of different sizes and
derive generalized Smoluchowski equations. These describe the time dependence
of the agglomerates densities and their mean kinetic energy (partial temperatures).
We obtain exact solutions to these equations for simplified cases and develop a
scaling theory for the asymptotic behavior of the system.We explore numerically, the
agglomeration kinetics and observe a very rich behavior of the system.We reveal new
surprising regimes and construct the according kinetic phase diagram. The scaling
theory is in excellent agreement with the simulation results.

1 Introduction

The celebrated Boltzmann equation [1] derived by Ludwig Boltzmann in 1872
remains one of the main pillars of non-equilibrium statistical mechanics and ther-
modynamics. It is used in many areas of kinetic theory, ranging from classical gas
dynamics and dynamics of granular gases [2–5], to aggregation and fragmentation
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phenomena [6–13], traffic and active matter modeling, e.g., [14, 15]. The aggrega-
tion kinetics described by the Boltzmann equation refers to atmospheric phenomena,
such as coagulation of dust or airborne particles, e.g., [16–19], the behavior of astro-
physical systems—planetary rings and interstellar dust clouds, e.g., [6, 7, 9, 20–24];
modern theories of the evolution of dark matter also exploit the Boltzmann equa-
tion [10–13]. A complete description of aggregation is very complicated. Therefore,
several simplifying assumptions are applied. First, it is assumed that each aggregate
may be completely characterized by its mass, which is determined by the number
of elementary units (monomers) comprising the cluster. Second, in the realm of the
Boltzmann approach, it is assumed that it is also characterized by velocity. Hence,
the shape of an aggregate and its angular motion is ignored; under these assumptions,
one can formulate Boltzmann-like equations for aggregating particles. Nevertheless,
the approach based on the Boltzmann equation is rather flexible and, in principle,
allows further generalizations.

The transport mechanism is crucial for aggregation. The first theory of aggrega-
tion kinetics was developed by Smoluchowski for Brownian coagulation, where the
diffusional transport was assumed [25]. Such aggregation processes underlie poly-
merization and many chemical reactions in solutions [14, 26]. The main quantities
of interests there are nk(t)—the densities of clusters comprised of k monomers (clus-
ters of size k), at time t . The rates of the aggregation processes [i] + [ j] → [i + j]
are determined by the clusters size i and j and properties of the solvent; they do
not alter in the course of time. Another transport mechanism underlying numerous
aggregation phenomena is ballistic transport. Despite of intensive studies [27–38],
ballistic agglomeration (BA) is not well understood yet.

The main difference between BA and diffusion-driven aggregation (DDA) is the
role of the kinetic energy of particles. For DDA, energy is an external parameter, as
the reaction rates are determined by the temperature of the surrounding solvent. In
contrast, the kinetic energy is lost due to agglomeration events ofBA.The decay of the
kinetic energy of particles results in the slowing down of the aggregation process;
that is, it determines the agglomeration rates. Hence, in addition to the mass of
clusters, as for DDA, one needs to account for cluster velocities and consider a joint
mass-velocity distribution function; it obeys Boltzmann–Smoluchowski equations
discussed below [8, 9, 33, 34].

2 Boltzmann–Smoluchowski Equations for Ballistic
Agglomeration

2.1 Boltzmann Equation

To illustrate the main concepts, we start with a simpler example—the Boltzmann
equation (BE) for equal, non-aggregating particles. Here, we will address space-
uniform systems described by the velocity distribution function f (v, t). It gives the
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density of particles with velocity v in the small interval (v, v + dv) at time t . The
BE describes the evolution of this function [2]:

∂

∂t
f (v, t) = I res = I gain − I loss. (1)

Here, I res is the collision integral for restitutive impacts, that is, for impacts without
agglomeration. It may be written as a sum of the loss and gain terms. The loss term
I loss quantifies the rate at which the number of particles (in a unit volume) with
the velocity v ∈ (v, v + dv) decreases due to collisions with other particles with the
velocity v′; such collisions are called direct collisions. I loss reads [2]:

I loss = σ 2
∫

dv′
∫

de�(−�v · e) |�v · e| f (v, t) f (v′, t). (2)

Here, σ is the particle diameter, which determines the collision cross section.
�v = v − v′ gives the relative velocity of the colliding pair, and e is the unit vec-
tor directed along the vector joining the particles’ centers at the collision instant.
Hence (σ 2de|�v · e|) is the volume of the collision cylinder for the particles mov-
ing with the velocities v and v′, whose collision is specified by the unit vector e.
Note that the factor �t in the length of the collision cylinder, (�v�t) is skipped, as
Eq. (2) defines the rate. Correspondingly, f (v′, t)(σ 2de|�v · e|), is the number of
particles with velocity v′ in the collision cylinder, see e.g., [2]. To obtain the total
number of collisions with the set (v, v′, e) in a unit volume, one needs to multiply
f (v′, t)(σ 2de|�v · e|) with f (v, t). The integration in Eq. (2) is to be performed
over all velocities v′ and directions of the unit vector e. The factor�(−�v · e), with
�(x) being the unit step-function [�(x) = 1 for x ≥ 0 and �(x) = 0 for x < 0],
selects approaching particles.

The gain term quantifies, correspondingly, the rate of collisions, which results in
velocity v of one of the colliding particles. That is, if the pre-collision velocities were
v∗ and v′∗, the post-collision velocities would be v and v′. Such collisions are called
inverse collisions. The velocities v∗ and v′∗ of an inverse collision may be expressed
in terms of the precollisional velocities v and v′ and the unit vector e specifying the
impact. Hence, the gain term may be written as [2],

I gain = σ 2
∫

dv′
∫

de�(−�v · e) |�v · e|χ f (v∗, t) f (v′
∗, t), (3)

the meaning of all terms in the above equation is the same as in Eq. (2). The factor χ

accounts for the difference of the volume of the collision cylinders in the direct and
inverse collisions and for the transformation Jacobian from the velocities (v∗, v′∗)
to (v, v′). For elastic collisions, χ = 1. For inelastic collisions, it depends on the
restitution coefficient ε defined as the ratio of the post-collisional normal component
of the impact velocity, (�v′ · e) and the pre-collisional one, (�v · e):
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ε =
∣∣∣∣ (�v′ · e)
(�v · e)

∣∣∣∣ . (4)

Here, the prime denotes post-collisional quantities. If ε does not depend on the impact
velocity, χ = 1/ε2, otherwise a more complicated expression is to be applied [2].

2.2 Boltzmann–Smoluchowski Equations

Now we consider Boltzmann–Smoluchowski equations (BSE). There are two main
differences between BE and BSE. First, the BSE deals with mass–velocity distribu-
tion functions fk(mk, vk, t), which give the densities of aggregates of size k with the
velocity vk from the small interval (vk, vk + dvk) at time t . These aggregates have
the diameter σk = σ1k1/3 and mass mk = m1k.1 Second, apart from the restitutive
collisions, the aggregative collisions play an important role in the evolution of the
system. That is, the BSE read [8, 9]

∂

∂t
f (mk, vk, t) = I aggk + I resk , (5)

where I resk and I aggk describe, respectively, the restitutive and aggregative collisions.
The first collision integral reads

I resk =
∑
i

σ 2
ki

∫
dvi de�(−vki · e ) |vki · e | (χ f ′′

k · f ′′
i − fk fi

)
�(Eki − Wki ) ,

(6)

where we abbreviate fk/ i = fk/ i
(
mk/ i , vk/ i , t

)
and f ′′

k/ i = fk/ i
(
mk/ i , v ′′

k/ i , t
)
, with

vk , vi and v ′′
k , v

′′
i being the velocities in the direct and inverse collision. σi j = (σi +

σ j )/2 is the cross section for the colliding aggregates of size i and j and vi j = vi − v j

is their relative velocity. The last factor �(Eki − Wki ) = �res
ki in the integrand in Eq.

(6) discriminates aggregative and restitutive collisions: If the kinetic energy of the
relative motion of the two aggregates, Ei j = mi jv

2
i j/2 exceeds the binding energy,

Wi j , the aggregates rebound, otherwise they stick. Finally, mi j = mim j/(mi + m j )

is the reduced mass of the pair of colliding particles.
The collision integral for aggregation has a similar form [8, 9]:

I aggk = 1

2

∑
i+ j=k

σ 2
i j

∫
dvi dv j de�

(−vi j · e)∣∣vi j · e∣∣ fi f jδ
(
mkvk − mivi − m jv j

)
�

agg
i j

−
∑
j

σ 2
k j

∫
dv j de�

(−vk j · e) ∣∣vk j · e ∣∣ fk f j �
agg
k j . (7)

1 We assume that the aggregates are spherical and compact; the generalization for fractal aggregates
is straightforward.
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Here,�agg
i j ≡ �(Wi j − Ei j ) selects agglomerating collisions for which the condition

of aggregation, Ei j < Wi j , is fulfilled. The first sum in the right-hand side of Eq.
(7) describes the aggregation of clusters of size i and j with the velocities vi and v j

resulting in a cluster of size k with the velocity vk . The sum is performed over all i and
j , with i + j = k and the factor 1/2 prevents double counting. Here,mk = mi + m j

and mkvk = vimi + m jv j , due to the mass and momentum conservation, which is
reflected by the corresponding factor in the integrand, δ

(
mkvk − mivi − m jv j

)
. All

other factors have the same meaning as before. The second sum accounts for the
aggregative collisions of clusters of size k and velocity vk , with all other aggregates.
Note that in some aggregation models for atomic gases the opposite agglomeration
condition, �agg

i j = �(Ei j − Wi j ), is used.

3 Smoluchowski Equations for Space-Uniform Systems

3.1 Velocity Distribution Function and Its Moments

To illustrate the main concepts, we consider again the Boltzmann equation (1) for a
space-uniform non-aggregating gas of identical particles. The first three moments of
the velocity distribution function define the number density, n, the flux velocity, u,
and the temperature of the gas, T :

n =
∫

dv f (v, t); nu =
∫

dvmv f (v, t); 3nT =
∫

dvmv2 f (v, t), (8)

where m is the particles mass. Here, we consider flux-free systems, u = 0. For
molecular gases, the temperature is measured in units of the Boltzmann constant kB ;
for granular gases, it is measured in units of energy [2]. According a theorem, the
collision integral vanishes, I res = 0, for the stationary velocity distribution function.
It depends in this case only on three first moments and has the Gaussian form [4],

f (v, t) = n(t)

π3/2v3
0(t)

e−v2/v20 , (9)

where v0(t) = √
2T (t)/m is thermal velocity and we take into account that the

average flux velocity vanishes.
In agglomerating systems, there are many different species characterized by the

size of the aggregates. The abundance of aggregates of the same size, i , establishes
a sub-gas, characterized by their partial number densities, ni (t), and partial temper-
atures, Ti (t); additionally, it is convenient to consider the total number density N (t)
and average temperature T (t) [39]. These quantities are defined by
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ni =
∫

dvi f (mi , vi ) ; N =
∑
i

ni ; (10)

3ni Ti =
∫

dvi miv 2
i f (mi , vi ) ; NT =

∑
i

ni Ti .

Correspondingly, the distribution function of the sub-gas, i , may be approximated
by a Gaussian function:

fi ≡ f (mi , vi , t) = ni (t)

π3/2v3
0 i (t)

e−v2i /v
2
0 i , (11)

where v0 i (t) = √
2Ti (t)/mi is the thermal velocity of the particles of size i .

3.2 Smoluchowski Equations. Randomly Aggregative
Collisions

The condition of aggregative collisions used in Eqs. (6) and (7) is based on the
comparison of the binding energy Wi j and the kinetic energy of the relative motion
of the pair Ei j . The microscopical expression for the binding energy is addressed in
the next section. In the current section, we consider a more simple model of random
agglomeration. Namely, we assume that instead of the deterministic factors �

agg
i j ≡

�(Wi j − Ei j ) and �res
i j ≡ �(Ei j − Wi j ), which determine whether a collision is

aggregative or restitutive,weconsider an aggregation as a randomevent,whichoccurs
with the probability q. This probability represents the influence of degrees of freedom
that are not explicitly considered by theBoltzmann equation. For instance, orientation
degrees of freedom may determine the collision outcome when the aggregation can
happen only for a certain mutual orientation of colliding particles. Additionally, we
assume that the restitutive collisions are elastic, that is, ε = 1.

Randomly aggregating systems are described by Eqs. (5)–(7) with

�
agg
i j = q, �res

i j = 1 − q.

Furthermore, we consider first the so-called reaction-controlled limit, when only a
tiny fraction of collisions leads to merging; this corresponds to small q 	 1. In this
case, the system rapidly attains a quasi-stationary state, with ∂ fk/∂t ≈ 0, where all
distribution functions, fk , are close to theGaussian (11). Since, typically, the particles
collide many times before they merge, the energy equipartition holds, that is, Ti = T
for all i ; therefore, we apply here the approximation (11) with equal temperatures.

To obtain the equations for nk , defined in Eq. (10), we integrate Eq. (7) over vk .
On the left-hand side of the equation, we then obtain dnk/dt [see Eq. (10)]. On
the right-hand side, we obtain

∫
dvk I resk = 0, since the restitutive collisions do not

alter the partial number densities (see [9, 34] for the formal proof). For aggregative
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collision, we encounter the integrals:

Bk j = qσ 2
k j

∫
dvkdv j de�(−vk j · e) |vk j · e| fk f j , (12)

with fk , f j given by (11) with Ti = T . Such integrals appear in the second sum in
Eq. (7). The integrals in the first sum of this equations attain essentially the same
form, after integration out the δ-function. Integration over the unit vector e in (12)
may be performed in the spherical coordinates with the OZ -axis directed along the
vector vk j :

∫
de�(−vk j · e) |vk j · e| =

∫ 2π

0
dφ

∫ π

π/2
vk j | cos θ | sin θdθ = πvk j . (13)

To proceed with the computation of Bk j , we make the transformation, (vk, v j ) →
(vk j ,V), to the center of mass velocity V = (mkvk + m jv j )/(mk + m j ) and the
relative velocity vk j = vk − v j . The product of the velocity distribution functions
becomes

fk(vk) f j (v j ) = nkn j

π3v3
0,kv

3
0, j

exp

[
−μk jv

2
k j + MkjV 2

2T

]
, (14)

where μk j = mkm j/(mk + m j ) is the reduced mass and Mkj = mk + m j . Substitut-
ing (14) and (13) into Eq. (12), and using the identity dvkdv j = dVdvk j , we obtain

Bk j = qπσ 2
k j

∫
dvkdv jvk j fk f j (15)

= qπσ 2
k j

nkn j

π3v3
0,kv

3
0, j

∫
dvk jvk j e−μk jv

2
k j/2T

∫
dV e−Mkj V 2/2T ,

which is the product of two Gaussian integrals, that may be straightforwardly com-
puted:

Bi j = √
T q Ki jnin j . (16)

That is, the agglomeration rates are proportional to
√
T . Here, the mass-dependent

factors of the rates read

Ki j = K0(i
1/3 + j1/3)2

√
i−1 + j−1, (17)

where K0 = σ 2
1

√
π/(2m1); see [8, 9, 34] for details of the calculation. Hence, we

obtain the equations for densities nk(t), which are essentially Smoluchowski equa-
tions

dnk
dt

= T 1/2 q

⎡
⎣1

2

∑
i+ j=k

Ki j nin j − nk
∑
i≥1

Kkini

⎤
⎦ . (18)
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Still, in contrast to the standard Smoluchowski equations, which form a closed set
for the densities nk(t), one needs to supplement Eqs. (18) with the equation for
temperature, which evolution depends on the evolution of the densities.

Now, we will obtain the equation for the total kinetic energy, (3/2)NT , as defined
in Eq. (10). In an impact of aggregates of size k and j , which results in merging, the
total energy of the pair is reduced by the energy of their relative motion, μk jv

2
k j/2.

To obtain the rate equation for the decay of the energy (3/2)NT , we multiply the
integrand in Eq. (12) by μk jv

2
k j/2 and integrate over all possible velocities vk and

v j . Here, we again obtain Gaussian integrals, which can be evaluated. Summing up
over k and j , we arrive at the energy equation

d

dt
NT = −2

3
T 3/2 q

∑
i≥1

∑
j≥1

Ki jnin j . (19)

Here, we ignore the energy loss in the restitutive collisions, which are elastic (ε = 1).
The generalization for inelastic collisions, as in granular gases [2], is straightfor-
ward. Equations (18) and (19) form a complete set of temperature-dependent Smolu-
chowski equations for the simplest case of random collisional aggregation.

3.3 Smoluchowski Equations. Impact Energy-Dependent
Aggregation

Now we consider a more general case when aggregation depends on the kinetic
energy of the relative motion of a colliding pair. When two particles come in close
contact at the beginning of a collision, they experience an attraction. The attraction
alters to repulsion, as the centers of the particles move closer. To get separated at the
end of the impact, the moving away particles need to overcome a potential barrier
Wi j . For a pair (i, j), it depends on the size of the particles and the nature of the
attractive forces between them. For instance, the potential barrier of adhesive forces
reads,Wi j = A(σiσ j )

4/3(σi + σ j )
−4/3, where the constant A depends on thematerial

parameters and σi/j are the particles’ diameters [40]. Generally, it may be put into
the form,

Wi j = a

(
i1/3 j1/3

)λ1

(
i1/3 + j1/3

)λ2
, (20)

where the constant a has the dimension of energy. Different exponents λ1 and λ2

allow to describe various interactions forces. Namely, λ1 = λ2 = 4/3 correspond to
the adhesive forces, as has been mentioned above. λ1 = 3, λ2 = 1 characterize grav-
itational or Coulomb interactions when the particles’ charges scale as their masses.
Similarly, λ1 = λ2 = 3 stand for dipole–dipole interactions [41], etc.

Wewill useWi j from Eq. (20) in the factors�
agg
i j and�res

i j ≡ �(Ei j − Wi j )which
define the conditions of aggregative or restitutive collisions, respectively, see Eqs.
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(6) and (7). To account for inelastic collisions with the restitution coefficient ε, we
re-scale Ei j , entering the factors�

agg
i j and�res

i j , as follows, Ei j → ε2Ei j ; this reflects
the decrease of the relative kinetic energy at the end of a collision due to dissipation.
Moreover, since we do not consider explicitly particles’ rotation, we assume that its
impact may be effectively accounted by the factor a in Eq. (20).

To obtain the set of equations for the cluster densities, we again integrate Eq. (5),
with the collision integrals (6) and (7) over vk . As previously, the restitutive collision
integral does not contribute, and we obtain, instead of Eq. (12),

Bk j = σ 2
k j

∫
dvkdv j de�(−vk j · e) |vk j · e| fk f j �

(
Wkj − 1

2
ε2μk jv

2
k j

)
, (21)

withWi j given by Eq. (20). To evaluate the above expression for Bk j we again apply
the Gaussian approximation (9) for the velocity distribution functions fk and f j .
Under this approximation, the integrals in Eq. (21) are Gaussian and hence may be
evaluated. Referring for computation details to [34], we provide here the final result:

dnk
dt

= 1

2

∑
i+ j=k

Ci j nin j − nk
∑
j

Ck jn j , (22)

where
Ci j = 2

√
2π σ 2

i j

√
θi + θ j

(
1 − Fi j

)
Fi j = (

1 + Qi j
)
e−Qi j

Qi j = Wi j

ε2μi j (θi + θ j )

θi = Ti/mi .

(23)

Equation (22) have the form of standard Smoluchowski equations; the rate coef-
ficients, Ci j , depend, however, on the partial temperatures, Ti = θimi . To find the
equations for Ti , we multiply the BE by mkv

2
k/2 and integrate over vk . Using the

definitions (10), we observe that after the integration, the left-hand side of the equa-
tion turns into 3mkd(nkθk)/dt . In the right-hand side of this equation, we obtain the
Gaussian integrals, similar to these in Eq. (21). Computation of these integrals yields
the set of equations for θk = Tk/mk (see [34] for the detail),

d

dt
nkθk = 1

2

∑
i+ j=k

Bi j
nin jθiθ j

θi + θ j
−

∑
j

Dk j
nkn jθkθ j

θk + θ j
. (24)

Here, the new kinetic rates read,
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Bi j =2
√
2πσ 2

i j

√
θi + θ j ×

[
1 − Fi j + 4

3

(θi�i j − θ j� j i )
2

θiθ j
(1 − Gi j )

]

Di j =2
√
2πσ 2

i j

√
θi + θ j ×

[
1 − Fi j + 4

3

θi

θ j
(1 − Gi j ) + 4

3

μi j

miθ j
(θi + θ j )

×(1 + ε)

(
1 − 1

2
(1 + ε)

μi j

miθi
(θi + θ j )

)
Gi j

]

Gi j =e−Qi j

(
1 + Qi j + 1

2
Q2

i j

)
,

(25)

where Qi j has been defined above and �i j = mi/(mi + m j ).
If we assume the energy equipartition, Ti = T for all i , the kinetic rates Ci j will

take the form,
Ci j = √

T Ki j

[
1 −

(
1 + W̃i j/T

)
e−W̃i j /T

]
, (26)

where W̃i j = Wi j/ε
2 and Ki j are defined in Eq. (17). Correspondingly, the temper-

ature equation reads,
d

dt
NT = −

∑
i, j

Pi j nin j , (27)

with

Pi j = 2

3
T 3/2Ki j

(
1 − Gi j + 1

2
(1 − ε2)Gi j

)
(28)

Gi j =
(
1 + W̃i j/T + 1

2
W̃ 2

i j/T
2

)
e−W̃i j /T .

In the limit W̃i j → ∞ (all collisions are aggregative) Eq. (27) coincide, up to the
factor q, with Eq. (19). Equations (22)–(25) comprise a complete set of temperature-
dependent Smoluchowski equations. Correspondingly, Eqs. (22), (26), (27) and (28)
comprise the respective set for the case of temperature equipartition.

3.4 Application to the Hypothetical Evolution of Dark Matter

In recent theories of the evolution of dark matter, it was hypothesized that it could be
described in terms of ballistic agglomeration of dark nuclei from dark nucleons [11–
13]. This leads to the formation of dark nucleiwith verywide spectrumofmasses, that
is, the BSEmay be applied [11–13]. In the framework of our approach, the governing
equations are (18) and (19), with the according replacement d

dt → d
dt + 3H , where

H = H(t) is the Hubble parameter accounting for the expansion of the Universe.
The transformation
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nk = hmk, N = hm, h(t) = exp

[
−3

∫ t

t0

dt ′ H(t ′)
]

(29)

recasts these equations into the form

1

hT 1/2

dmk

dt
= 1

2

∑
i+ j=k

Ki jmim j − mk

∑
i≥1

Kkimi (30)

1

hT 3/2

d mT

dt
= −2

3

∑
i≥1

∑
j≥1

Ki jmim j (31)

that differ from (18)–(19) only by an extra factor h(t). The authors of Ref. [11]
assumed that the dark nuclei were in a contact with a bath of lighter particles, which
determined their temperature. In our model, we do not need the hypothesis of addi-
tional bath of lighter particle; instead, the temperature is determined by the agglom-
eration and Hubble expansion only. The time dependence for the factor h(t) may be
obtained from the basic cosmological equations (see [10]):

h(t) = [1 + 2H0(t − t0)]
−3/2 , (32)

where H0=H(t0)=(8πGρ0/3)
1/2, G is the gravitational constant and ρ is the den-

sity. The initial time t0 is the time, when the agglomeration in the early Universe
becomes a dominating process [10]. The analysis of the Eqs. (29)–(31) with the rates
defined by Eq. (17), along with the implications to the asymptotic mass distribution
of dark nuclei, is given in Ref. [10].

4 Exact and Scaling Solutions

4.1 Exact Solutions

The exact solutions play an important role as the reference result for equations which
may be generally solved only numerically. The accuracy of the numerical schemes
may be tested on the exact solutions. For the standard Smoluchowski equations, of
the form (22), with the time-independent rate coefficientsCi j , the exact solutions are
known only for a limited class of kernels. Namely, for Ci j = a + b(i + j) + c(i j),
where a, b, c are constants [14, 26]. Here, we demonstrate how one can obtain the
exact solutions for the temperature-dependent Smoluchowski equations, using the
available solutions for the standard Smoluchowski equations.
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4.1.1 Systems with Energy Equipartition

We start from the simplest case of random agglomeration, which implies the equipar-
tition Ti = T and consider qKi j = const. = 1.2 Then Eqs. (18) and (19) attain the
form

dnk
dτ

= 1

2

∑
i+ j=k

nin j −
∑
i≥1

nkni (33)

dNT

dτ
= −2

3
T

∑
i, j≥1

nin j = −2

3
T N 2, (34)

where we introduce the new time variable,

τ =
∫ t

0

√
T (t ′)dt ′. (35)

Equation (33) is the standard Smoluchowski equation written for the time variable
τ . For the mono-disperse initial conditions, nk(0) = n0δk,1 the solution reads [26],

nk(τ ) = 4n0τ k−1

(2 + τ)k+1
. (36)

Summing up Eq. (33), we obtain, dN/dτ = −N 2/2, which may be easily solved for
N (τ ). Substituting this into Eq. (34), we find T (τ ) = T0/(1 + τ/2)1/3, where T0 is
the initial temperature T0. Then τ(t) follows from Eq. (35):

τ = 2(1 + t/τ0)
6/7 − 2, (37)

where τ0 = (7/12)n0
√
T0, in the time units, where qKi j = qK11 = 1. Hence, the

time dependence of temperature and total cluster density in the laboratory time reads,

T (t) = T0
(1 + t/τ0)2/7

, N (t) = n0
(1 + t/τ0)6/7

. (38)

For t � 1 and k � 1, the solution (36) attains a scaling form. Using Eq. (37), we
write nk(t) in the laboratory time:

nk(t) = 1

s2(t)
�

(
k

s(t)

)
; s(t) ∼ t6/7; �(x) = e−x . (39)

Here, s(t) is the typical cluster size and�(x) is the scaling distribution function. The
above results, Eqs. (36)–(39), also describe the case of energy-dependent agglom-

2 Note that the constant may be always set to one using the appropriate time units.
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eration for Wi j → ∞, and Ki j = K11 = 1. Similar analysis may be performed for
other kernel, e.g., for qKi j = (i + j).

4.1.2 Systems with Different Partial Temperatures

As it has been mentioned above, for the case of small sticking probability (when
only a tiny fraction of all collisions is aggregative), the temperature equipartition,
Ti = Tj , holds true. Generally, this is not the case, and the partial temperatures
Tj differ. The dependence of the rate coefficients on the partial temperatures is
determined by the nature of agglomeration process and system parameters; it may
not be chosen arbitrarily. Still, the exact solutions are very important for testing the
accuracy of numerical schemes. Hence, it is worth to find exact solutions for specially
tailored rate kernels, even if the physical background for such kernels is lacking. By
carefully choosing the kernels Bi j and Di j and the form of temperature dependence
of the kernel Ci j , one can obtain infinitely many exact solutions, based on the exact
solutions of the standard (temperature-independent) Smoluchowski equations. Here
is one such example:

Ci j = Ti + Tj ; Bi j = (Ti + Tj )
2; Di j = (Ti + Tj + 1)Ti , (40)

for the full system

d

dt
nk = 1

2

∑
i+ j=k

Ci j
(
Ti , Tj

)
nin j −

∑
i≥1

Ckj
(
Tk, Tj

)
nkn j .

d

dt
(nkTk) = 1

2

∑
i+ j=k

Bi j
(
Ti , Tj

)
nin j −

∑
j≥1

Dkj
(
Tk, Tj

)
nkn j .

(41)

After multiplying the first set of equations by Tk , subtracting it from the second one,
and substituting the kernels (40), we arrive at

nk
d

dt
Tk = 1

2

∑
i+ j=k

(
Ti + Tj

) (
Ti + Tj − Tk

)
nin j −

∑
j≥1

Tknkn j .

Let us search for the solution in the form Tk(t) = k f (t). Then the first sum in the
right-hand side vanishes and after substitution we are left with

d

dt
f (t) = − f (t)

∞∑
j=1

n j = − f N . (42)

With this substitution, we also recast the first equation for nk in Eq. (41) into the
form of standard Smoluchowski equation with the linear kernel, Ci j = i + j :
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dnk
dτ

= 1

2

∑
i+ j=k

(i + j) nin j −
∑
j≥1

(k + j) nkn j ,

where we again introduce the new time variable, τ =
t∫
0
f (t)dt . For the linear kernel,

the exact solution is known [14]; for mono-disperse initial condition, it reads

nk (τ ) = kk−1

k! e−τ
(
1 − e−τ

)k−1
exp

(−k
(
1 − e−τ

))
.

Also, N = e−τ . Substituting N into (42) yields, for N (0) = 1 and T1(0) = f (0) = 1,
the solution

Tk(t) = k

t + 1
, τ = ln (t + 1) .

As a result, the number densities for the above rate coefficients are

nk(t) = kk−1

k! (t + 1)

(
t

t + 1

)k−1

e−kt/(t+1). (43)

Other examples of kernels, which allow an exact solution for temperature-dependent
Smoluchowski equations may be found in Ref. [42].

4.2 Scaling Analysis

4.2.1 Scaling Functions and Exponents

Scaling analysis is applicable for the asymptotic behavior of the aggregating system
for t � 1 and k � 1. Here, we present it for the case of energy equipartition, which
is described by the coupled Eqs. (22) and (27):

dnk
dt

= 1

2

∑
i+ j=k

Ci j nin j − nk
∑
j

Ck j n j (44)

d

dt
NT = −

∑
i, j

Pi j ni n j . (45)

Scaling is applicable when the rate coefficient may be represented in the form:

Ci j = cT νc C̃i j ; Pi j = pT νp P̃i j , (46)

where c, p are the dimensional constants, the exponents νc, νp quantify the depen-
dence of the rates on temperature. C̃i j and P̃i j are dimensionless homogeneous func-
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tions of i and j , satisfying for any b > 0 the relation,

C̃bi bj = bμc C̃i j ; P̃bi bj = bμp P̃i j . (47)

Here, μc and μp are, correspondingly, the homogeneity exponents for C̃i j and P̃i j .
Now we assume that the densities nk obey the scaling form, while temperature

obeys a power law:

nk(t) = 1

t2z
�

(
k

t z

)
; T ∼ t−β (48)

Using (48), we can write the left-hand side of Eq. (44) as (see also [43]):

dnk
dt

= − 2z

t2z+1
� − 1

t2z
zk

t z+1
�′ = − z

t2z+1

(
2� + x

d�

dx

)
, (49)

with x = k/t z . Changing from the discrete variables i , j to the continuous ones,
Ci j → C(i, j), one can write the right-hand side of the same Eq. (44) as

dnk
dt

= 1

2
cT νc

∫ k

0
C̃(k − j, j)

1

t2z
�

(
k − j

t z

)
1

t2z
�

(
j

t z

)
d j (50)

− cT νc
1

t2z
�

(
k

t z

) ∫ ∞

0
C̃(k, j)

1

t2z
�

(
j

t z

)
d j

= −cT νc tμcz−3z K(x), (51)

where

K(x) ≡
[∫ ∞

0
C̃(x, y)�(x)�(y)dy − 1

2

∫ x

0
C̃(x − y, y)�(x − y)�(y)dy

]
, (52)

and we take into account that k = xt z , j = yt z and use

C̃(xt z, yt z) = (t z)μc C̃(x, y) (53)

and similar relations for homogeneous kernels. With T ∼ t−β , Eq. (44) transforms
into

z

t2z+1

(
2�(x) + x

d�

dx

)
= ctμcz−3z−βνc K(x). (54)

If we divide both sides of the above equation by z tμcz−3z−βνc (2� + x�′), we observe
that one side of the equation depends only on t , while the other one only on x . Hence,
we conclude [43],

tνcβ+z(1−μc)−1 = w = const , (55)
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where w is the separation constant. This condition yields the relation

νcβ + z(1 − μc) − 1 = 0 . (56)

and the equation for the scaling function:

w
[
x�′ + 2�

] = �(x)
∫ ∞

0
C̃(x, y)�(y)dy − 1

2

∫ x

0
C̃(x − y)�(x − y)�(y)dy .

(57)
Using the scaling solution (48), we write for N = ∑

i ni :

N =
∫ ∞

0
t−2z�(k/t z)dk = Ct−z, C =

∫ ∞

0
�(x)dx . (58)

Then one can recast Eq. (45) into the form,

d

dt
NT ∼ t−z−β−1 = pT νp

∫ ∞

0
dx

∫ ∞

0
dy P̃(xt z, yt z)

1

t2z
�(x)�(y)

∼ t−βνp+z(μp−2), (59)

which yields another scaling relation:

− z − β − 1 = −βνp + z(μp − 2) . (60)

Thus, Eqs. (56) and (60) allow to find the scaling exponents z and β in terms of the
homogeneity exponents μc and μp.

4.2.2 Scaling in Aggregation Regimes

Generally, the kernels Ci j and Pi j , given by Eqs. (26) and (28) are not homogeneous
functions of i and j . However, they posses the scaling properties (46) and (47) in
some limiting cases.
Aggregation with temperature growth. Consider the case when (1 − ε2) 	
(Wi j/T )2 	 1, which corresponds to a molecular gas with ε = 1 or nearly elas-
tic granular gas. The expansion of Ci j and Pi j in terms of small (Wi j/T ) yields

Ci j = cT−3/2(i j)2λ1/3−1/2(i + j)1/2(i1/3 + j1/3)2−2λ2 (61)

Pi j = pT−3/2(i j)λ1−1/2(i + j)1/2(i1/3 + j1/3)2−3λ2 , (62)

with the dimensional constants c and p. Here, we use Eq. (20) for Wi j . The
exponents follow from the above equations: νc = −3/2, νp = −3/2 and μc =
2/3 (2λ1 − λ2) + 1/6, μp = � + 1/6, where � = 2λ1 − λ2. Solving Eqs. (56) and
(60) for z and β with the above exponents, we obtain for this regime
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z = 6

5 − �
; β = − 2�

5 − �
, (63)

The above result indicates, that if � > 0, which is commonly the case, the expo-
nent β is negative. That is, T ∼ t |β|, and the average temperature of an aggregating
gas increases. This surprising effect has been confirmed in numerical simulations [34,
44], see also below. Note, however, that in seemingly close case of (Wi j/T ) 	 1
and (1 − ε2) � (Wi j/T )2 the temperature growth is not observed.

Our simplified scaling analysis presented here is, strictly speaking, valid only
whenμc < 2/3 or, equivalently,� < 3/4 (which corresponds to the Case III kernels
[26]). Moreover, the case of μc > 1 (i.e., � > 5/4) may indicate a gelation [14, 26,
43], or run-away growth [41]; this requires a more subtle analysis. We will return to
this problem in Sect. 5.4.
Cold aggregating gas. In the opposite case of Wi j/T � 1, which corresponds to a
cold gas, all collisions are aggregative and the rate coefficients read,

Ci j = c1T
1/2Ki j ; Pi j = p1T

3/2Ki j , (64)

with Ki j from Eq. (17). Here μc = μp = 1/6 and νc = 1/2, νp = 3/2, yielding
eventually the exponents,

z = 1; β = 1/3. (65)

5 Numerical Methods in Aggregating Kinetics

The ballistic aggregation may be studied by various numerical methods, which dif-
fer by the level of microscopic detail. The molecular dynamic (MD) simulations are
the most microscopic approach, as it provides the trajectories for all particles. The
MD has been successfully applied to study the aggregation kinetics, see e.g., [35–
38]. Still, however, it does not allow to simulate systems, that are large enough to
obtain a reliable statistics for the velocity distribution of different species. An impor-
tant alternative to the MD is the Direct Simulation Monte Carlo (DSMC), specially
designed to directly solve the BE. This numerical technique was first developed for
dilute molecular gas by Bird [45] and later generalized to model dense gases and
dissipative granular gases, see e.g., [46–50]. DSMC allows to simulate much larger
systems as it deals with the collision only and does not trace particles’ trajectories.
Still, the velocities of particles of all species are explicitly treated. The next level of
coarse-graining is the solution of rate equations, which deal with the densities of the
species. The rate equations, in their turn, may be simulated on the microscopic level,
which takes into account fluctuations, or on the “mean-field” level, where fluctuations
are ignored. In the former case, stochastic modeling is applied; in the latter one—
the deterministic solvers for the systems of ordinary differential equations (ODE).
Below, we briefly discuss each of the approaches.
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5.1 Direct Simulation Monte Carlo of the Boltzmann
Equation

Referring to the detailed description of the method in the introductory literature,
e.g., [51, 52], we sketch here the main ideas of the method. We will also emphasize
the detail, where our method [34] deviates from the conventional DSMC. In short,
the DSMC does not model the actual motion of particles, but only probabilistic
collisions. That is, this method operates with the masses and velocities of different
particles which are stored. Each time step a particular pair of particles is randomly
chosen with the probability proportional to the probability of their collision. Then
a random impact vector e, specifying the inter-center direction at a collision instant
is generated. For a given pre-collision set (particles mass, velocities and the impact
vector), the condition of the collision type (merging or bouncing) is checked and
the according after-collision set is computed. The result—mass(es) and velocity(es)
are stored and the next pair of particles is randomly chosen. As one deals with
only collisions, a question arises about how to model the temporal characteristics
of the process. The DSMC algorithm exploits the number of collisions (or collision
frequency) to measure the laboratory time.
Non-aggregating particles.Consider first non-aggregating particles. Let Np particles
in a volume V undergo C�t collisions during the time interval �t . The collision
frequency ν is defined as a number of collisions per particle, per unit time. This
quantity is also given by the kinetic theory in terms of particles number density
np = Np/V , thermal velocity v0 = √

2T/m and packing fraction, ∼σ 2np [2]. That
is,

ν = �C�t

Np�t
= 2

√
2πv0σ

2np, (66)

where we tacitly assume that T and Np are constant. Hence, for given Np and V , the
collision frequencymaybe determined from the current temperature T = 2E/(3Np),
where the kinetic energy of the system reads, E = ∑

i mv2
i /2. Therefore, using

the number of collisions C�t and measuring the energy of the system E , one can
easily compute the time interval �t corresponding to this number of collisions,
�t = C�t/(Npν). In this way, one can determine the laboratory time from the cur-
rent total number of collisions.
Aggregating particles. The number of different species—monomers, dimers, i-mers,
as well as their energy rapidly changes with time in the aggregating systems. The
total number of particles permanently decreases, and after a relatively short time, it
becomes very difficult (if possible) to obtain accurate data due to the poor statistics.
To keep the number of particles approximately constant, we regularly expand the
system. The simulations start with the number of monomers equal Np, but when
the total number of particles decreases due to agglomeration below Np/2, we dupli-
cate all particles. Namely, each particle (monomer, dimer, etc.) is replaced by two
identical particles with the same mass and velocity. This operation corresponds to
the duplicating the size (volume V ) of the system. We define a technical variable
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F = V/V0, where V0 is the initial volume. After the first re-scaling of the system size
F = 2, after the doubling is performed k times F = 2k . All the extensive quantities
are to be re-scaled accordingly, for instance, NMC

p = FNp and CMC
�t = FC�t , where

the variables with the superscript “MC” are the quantities which refer to the current
time corresponding to a certain temperature. In this way, the total number of particles
will always belong to the interval NMC

p ∈ [Np/2 + 1, Np]. The above re-scaling of
the system size yields a reliable statistical data for all simulated processes.
Laboratory time for aggregative systems. In dilute gases, each species may be used
to measure the laboratory time from the collision frequency; the collisions are to be
between particles of the same kind. Still, the accuracy of the measurements sensi-
tively depends on the abundance of such particles: The larger the amount of particles
of a particular type, themore accurate is the laboratory timemeasurement. Therefore,
in the DSMC simulations of agglomerating systems, we determine the time based
on the most abundant at the current moment particles. Initially, the monomers are
the most abundant and are used for time measurement. Then dimers, triplets, and so
on are used for this purpose; again, we apply Eq. (66), see Ref. [34] for more detail.

5.2 Solution of Temperature-Dependent Smoluchowski
Equations by Monte Carlo Method

Consider now another numerical method that also exploits the Monte Carlo tech-
nique. It, however, is applied to the Smoluchowski equations, resulting from the BE,
and not to the BE itself. The detailed discussion is given in Refs. [53, 54]; here,
we give a brief overview. To make our simulations equivalent to the temperature-
dependent Smoluchowski equations, we assume that the velocity distribution of par-
ticles is Gaussian for all species [34]. This implies the application of the kernels Ci j ,
Bi j , and Di j , as defined in Eqs. (23)–(25). We will use these kernels to determine
the collision frequencies and the corresponding temperature variation.

The time step τ between collisions can be determined using Eq. (22). Note that
the factor 1 − Fi j in the kernel Ci j defines the aggregation probability. Therefore,
to determine the time between any (not only aggregative) collisions, we can use
the kernel Ĉi j = Ci j/

(
1 − Fi j

)
. Let us define the system volume as V = Np(t =

0)/N (t = 0), where Np(t) is the total number of agglomerates and N (t) is the total
agglomerate density. It may be shown that the time interval τ , corresponding to the
decreases of the total total number of particles by one (due to aggregation), reads
[53],

τ = 2V∑
i, j

Ĉi j Ni N j

= 2V
(
1 − Fi j

)
∑
i, j

Ci j Ni N j
, (67)
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where Ni is the number of particles of size i . Similarly, we can find τ
agg
i, j —the average

time interval between the events, when a particle of size i merges with a particle of
size j :

τ
agg
i, j = V

Ci j Ni N j
. (68)

The average change of temperatures during the aggregative collision of particles
of size i and j may be expressed in terms of the kernels Bi j and Di j [53]:

�(ni Ti )

τ
agg
i, j

= (Ni − 1) (θi + �θi ) − Niθi

V τ
agg
i, j

≈ −Dagg
i j Ni N j/V

2, (69)

where �
(
n j Tj

)
has the same form with the interchange (i, j) → ( j, i) and where

we use only the part Dagg
i j of the kernel Di j , that determines the temperature variation

in the aggregative collisions. Substitution τ
agg
i, j from Eq. (68) into Eq. (69) yields for

the temperature increments of the species, involved in the aggregation i + j → k:

�θi = θi − Dagg
i j /Ci j

Ni − 1
= − 1

Ni − 1

(
4(1 − Gi j )

3(1 − Fi j )
− 1

)
θ2
i

θi + θ j
(70)

�θk = Bi j/Ci j − θk

Nk + 1
= 1

Nk + 1

θiθ j + 4(1−Gi j )

3(1−Fi j )
· (iθi− jθ j)

2

(i+ j)2

θi + θ j
− θk

Nk + 1
,

where �θ j may be obtained from the above equation for �θi , by changing (i, j) →
( j, i). In the same way one obtains the equations for the temperature increments in
the restitutive collisions i + j → i + j ; here we use Dres

i j = Di j − Dagg
i j , that is, the

other part of the kernel Di j :

�θi =−
D̂res
i j

Ni
, �θ j =−

D̂res
ji

N j
, D̂res

i j = 4Gi j

3Fi j

j (1 + ε)

i + j

(
θi − (1 + ε) j

2 (i + j)

(
θi + θ j

))
.

Exploiting the above procedure, we directly compute the temperature increments,
which is significantly faster than randomly choosing an aggregate velocity from a
Gaussian distribution. In this version of MC, we essentially use virtual particles
which correspond to an ensemble of real particles. Therefore, it is straightforward to
double the system size a desired number of times.

After specifying the main steps of the simulation approach, we consider the most
efficient implementation of these steps. We apply the low-rank approximation of
the coagulation kernel. It significantly outperforms the conventional techniques, like
Gillespie [55] or inverse [56]method.Below,we briefly sketch the idea of themethod.

To approximate the collision frequencies Ĉi j , we use the following low-rank
matrix A:

Ai j = √
π/2

(
i1/3 + j1/3

)2√
θi , (Ai j + A ji )/

√
2 � Ĉi j � Ai j + A ji . (71)
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Equation (71) shows that we can pick the probabilities up from the matrix 2A
instead of Ĉ (A ji = Ai j due to the collision symmetry).Weuse the rejection sampling
for the cases, where we have an overestimate, which happens with the probability
(
√

θi + θ j )(
√

θi + √
θ j )

−1 � 1 − 1/
√
2 < 0.3. This idea is similar to the majorant

kernels approach exploited in Ref. [57]. After the multiplication of the matrix A by
the vectors composed of ni and n j , we still get the sum of rank-1 matrices. Indeed,
let a matrix A be written as a sum of direct products of M-dimensional vectors (M
is the largest aggregate size):

A =
r∑

k=1

u(k)v
T
(k), u(k), v(k) ∈ R

M ,

then Ai jnin j = (
A ◦ nnT

)
i j , where ◦ denotes the element-wise product. It can be

also written as

A ◦ nnT =
r∑

k=1

(
nu(k)

) (
nv(k)

)T

i.e., also in terms of a direct product. This is essentially the basis for fast computations.
In case of ballistic agglomeration (71), we have r = 3:

u(1) (i) = √
π/2i2/3

√
θi , u(2) (i) = 2

√
π/2i1/3

√
θi , u(3) (i) = √

π/2
√

θi ,

v(1) ( j) = 1, v(2) ( j) = j1/3, v(3) ( j) = j2/3.

In order to keep track of the sums and quickly choose the sizes of the colliding
particles, one can construct a segment tree on each of the vectors u(k) and v(k).
Then the update of the full structure requires O(r logM) operations. In particular,
segment trees contain the sums of all elements of u(k) and v(k) and thus we also know
the sums of the u(k)v

T
(k) elements. To choose a pair of colliding particles, we firstly

pick one of the three rank-1 matrices up with the probability, proportional to the
sum of its elements (O(r) operations), then the element of u(k) with the probability,
proportional to its value (O(logM)), and finally, a column of v(k) (another O(logM)

operations). Therefore, the total complexity of ourmethod of one collision computing
is O(r logM). This is significantly smaller than the complexity, O(M), (or even,
O

(
Np

)
) of conventional methods.

5.3 Solution of Temperature-Dependent Smoluchowski ODE
with Low-Rank Methods

This method guarantees an efficient (fast and accurate) solution for very large sys-
tems of ODE corresponding to temperature-dependent Smoluchowski equations.
Initially, this method was developed to solve conventional Smoluchowski equations
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[58, 59], but later was generalized for its temperature-dependent counterpart [44].
The main idea of the method is again the usage of a smart representation of the
quantities (Ci jnin j ), (Bi jnin j ) and (Di jnin j ), comprising the main blocks of the
Smoluchowski equations. These matrices may be represented through the sums of
direct products of appropriately chosen vectors. Numerical operationswith a fewvec-
tors are significantly less time-consuming than with a whole matrix. For instance,
the application of the low-rank technique to the solution of a few thousand equa-
tions accelerates computations by about 50 times. Although the implementation of
the method is straightforward, even its brief description is lengthy; therefore, we
address an interested reader to the special literature [44, 58, 59].

5.4 Phase Diagram for the Temperature-Dependent
Smoluchowski Equations

Using the advanced computational methods discussed in the previous section, we
investigate the behavior of the temperature-dependent Smoluchowski equations in a
wide range of parameters. It occurs to be very rich,with numerous surprising regimes.
Here, we present the kinetic phase diagram in terms of the quantities specifying the
aggregation energyWi j [see Eq. (20)]:� and q = (a/T1(0))(ε22�)−1 (please do not
mix with the aggregation probability q in Sect. 3.2); in simulations we used λ1 = λ2.
The parameter � characterizes the dependence of the rate kernels on the aggregates’
size and q gives the ratio of the potential energy of monomers at contact and their
initial kinetic energy. The phase diagram is depicted in Fig. 1.

All the regimes are described in detail in Ref. [53], where we mention the most
unusual ones—the aggregation with temperature increase and with density sepa-
ration. These are illustrated in Figs. 2 and 3, respectively. The increase in average
temperature may occur when the number of particles decreases due to agglomeration
faster than the total energy of the system. This results in the increasing energy per
particle, that is, in the rise of the system temperature. The effect of density separation
is more subtle: It is related to the quasi-gelation that may initially commence, as the
gelation condition is satisfied. Later on, this condition becomes violated for very
large clusters. Overall, this results in the depletion of densities of middle-size aggre-
gates [53]. Among other regimes, one can mention the conventional aggregation
with temperature decay, the regime of non-monotonous temperature growth, ending
by temperature decay, and the non-aggregating regime of granular gas cooling, in
accordance with Haff’s law.

6 Discussion

We consider the application of the Boltzmann equation to aggregation kinetics. This
includes the aggregation of particles in molecular gases, agglomeration of grains in
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Fig. 1 Phase diagram for the temperature-dependent Smoluchowski equations, Eqs. (22) and (24).
Different kinetic regimes are demarcated by dashed lines, see [54]. The simulations were performed
for ε = 0.99,m1 = 1, andσ1 = 1, formono-disperse initial conditions, initial dimensionless density
(π/6)n1(0)σ 3

1 = 0.05 and initial temperature T1(0) = 1

granular gases, or even hypothetical agglomeration of nuclei of the dark matter. The
main transport mechanism underlying all these processes is the ballistic motion of
particles. We explore two agglomeration models—a random agglomeration model
and the impact energy-dependent one. The former model accounts for collisional
parameters which are not explicitly treated (e.g., orientational and rotational degrees
of freedom of particles). The latter model accounts for the binding energy barrier for
different interparticle interactions—adhesive, gravitational, or electrostatic.

We start from the Boltzmann–Smoluchowski equations for the mass–velocity dis-
tribution functions for aggregates of different sizes and derive temperature-dependent
Smoluchowski equations. These describe the evolution of densities of the aggregates
of different sizes and of their partial temperatures. For the above kinetic equations, we
obtain microscopic expressions for the reaction rate coefficients. For some simplified
models of the rate coefficients, we find exact solutions to the temperature-dependent
Smoluchowski equations and develop a scaling theory which describes the asymp-
totic behavior of the system.We elaborate on a couple of effective numerical methods
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Fig. 2 Regime of aggregation with temperature growth, see Eq. (63), for � = 0.4, q = 1.8. The
theoretical exponent β = −2�/(5 − �) = −4/23 is in an excellent agreement with the simulation
data. The system parameters are the same as for Fig. 1

Fig. 3 The size distribution of the aggregates, nk , as the function of their size k at t = 10, 000. Left
panel: Conventional size distribution (� = 1.4, q = 3.8). Right panel: Distribution of aggregate
size with separation (� = 1.4, q = 1.8); middle-size densities are extremely small. The system
parameters are the same as for Fig. 1

to model the ballistic-driven agglomeration. These include the modification of the
Direct Simulation Monte Carlo for the Boltzmann equation and low-rank methods
for the generalized Smoluchowski equations.

We explore awide range of systemparameters and construct a phase diagram illus-
trating the kinetic regimes. We observe that the behavior of the system is very rich,
including such surprising regimes as aggregationwith temperature growth and aggre-
gation with density separation, where the densities of middle-size clusters practically
vanish. A comparison of the scaling theory with the numerical results demonstrates
an excellent agreement between the theory and simulations.
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Large-Scale Fluctuations in Collisional
Dusty Plasmas with Regard to Grain
Charging Processes

A. G. Zagorodny and A. I. Momot

Abstract The kinetic theory of large-scale electric fluctuations in a collisional
weakly ionized dusty (complex) plasma is formulated with due regard to the grain
charging dynamics. The dependencies of the charging frequencies and effective col-
lision frequencies for electrons and ions on dusty plasma parameters are studied in
detail. In order to describe resonant properties of collective fluctuations, the analysis
of the ion-acoustic wave spectrum in dusty plasmas is presented for a wide range of
ion collisions for both non-isothermal and isothermal plasmas. The electron density
correlation spectra are calculated for various values of the grain density, grain size,
and ion collisionality.

1 Introduction

Electromagnetic fluctuations are important and often provide the only source of
information about the medium’s parameters. They are closely related to electromag-
netic, kinetic, and thermodynamic properties ofmacroscopic systems. Obviously, the
more detailed is the description of fluctuations, the more information can be obtained
from the experimental spectra of fluctuations. Thus, wemay assume that the theory of
fluctuations developed from the first principles (i.e., using the microscopic descrip-
tion) is the most general. Today, however, no general microscopic calculations are
known that would give explicit results for the correlation functions of fluctuations
in non-equilibrium systems with arbitrary correlation times. For example, existing
theories that use assumptions about the Bogolyubov’s hierarchy of characteristic
evolution times [1, 2] make it possible to describe fluctuations with the correlation
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time much shorter than the relaxation time (time needed to approach the local equi-
librium distribution) [3–7]. In order to get rid of such restrictions (i.e., to describe
fluctuations with the correlation times of the order of the relaxation time) one can
employ either the kinetic theory of fluctuations based on the kinetic equations with
appropriate Langevin sources (see, for example [3]), or the description in terms of
microscopic quantities smoothed over the physically infinitesimal time, or spatial
intervals (τcor � τph � τrel here τcor and τrel are the correlation and relaxation times,
respectively) [4, 5, 7]. Such an approach has the advantage that it provides a pos-
sibility to calculate directly the correlation functions of fluctuation sources in the
case of non-equilibrium systems and thus to develop the consistent theory of fluctu-
ations without any additional assumptions. Namely such approach was used to take
into account the contribution of large-scale fluctuations into the collision terms in
the kinetic equations [5, 6], to calculate large-scale fluctuation spectra in weakly
ionized plasmas [7–10], to perform semi-phenomenological description of fluctua-
tions in turbulent plasmas [11–13], and to generalize the theory of fluctuations in
homogeneous plasmas to the non-homogeneous case [14, 15].

It is of interest to note here that the application of the approach in terms of
the microscopic equations smoothed over physically infinitesimal intervals leads to
the fluctuation evolution equations with collision terms generated by microscopic
fluctuations, that is, the Boltzmann-type collision term in the case of a weakly non-
ideal gas, or the Balescu-Lenard collision term in the case of a fully ionized plasma.
Since the solution of evolution equations with such collision integrals cannot be
obtained in the general case, model collision terms are usually used. The Bhatnagar-
Gross-Crook (BGK) collision term is a good example of such a model collision
integral often used in the calculations of fluctuation spectra [3, 7, 8, 11–13].However,
the BGK collision term cannot be used to account for the difference between the bulk
viscosity and shear viscosity of many-particle systems. For this, more sophisticated
collision terms have been proposed [16, 17].

In the present contribution, we propose a theory of large-scale fluctuations in dusty
plasmas, i.e., plasmas with fine dispersed solid objects (dust particles, or grains) that
accumulate and carry large electric charge. Before considering the details of such
theory it should be noted that dusty plasmasmake an example of an open system since
the dust particle charge appears due to the absorption of electrons and ions from the
surrounding plasma whose stationary state is maintained by external plasma sources.
The absolute value of the electron current on the surface of the initially uncharged
grain is greater than the ionic one due to higher thermal velocity of electrons, and
thus the grain is being charged negatively. This leads to the increase in the ion current
and to the decrease in electron current. The negative grain charge grows until the
total charging current becomes equal to zero (absolute values of electron and ion
currents become equal) [18].

There are two reasons for grain charge fluctuations [19, 20]. The first one is the
random and discrete nature of the charging process. Such a type of fluctuations is
important for small grains [20] and for the description of electromagnetic fluctuations
in dusty plasmas [21]. Spatial and temporal variations of plasma parameters that
influence the charging processes are the second reason for grain charge fluctuations
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that are considered in the present contribution. In this case the charging processes are
assumed to be continuous. The grain charge becomes a time-dependent quantity and
one has to treat it as a dynamic variable that is coupled self-consistently with other
dynamical variables in the plasma such as density and potential [22]. Obviously,
the presence of dust particles can considerably influence the eigenfrequencies and
damping rates of waves in dusty plasmas and thus to produce changes in fluctuation
spectra. Besides that, due to charged grains new types of waves, particularly dust-
acoustic waves, can appear. The importance of the charge fluctuations as the source
of oscillation damping was suggested at first for astrophysical dusty plasmas [23,
24]. Later, it was shown that grain charge fluctuations can influence the propagation
of waves in dusty plasmas [22, 25, 26].

The existence of ion-acoustic waves in an isothermal collisionless dusty plasmas
was discussed for the first time in Ref. [27] that later was proved experimentally
[28, 29]. Properties of ion-acoustic waves in dusty plasmas with regard to charg-
ing dynamics preferably were studied using fluid equations [30–34]. The kinetic
approach for the description of ion-acoustic waves was also employed in several
papers [35–38], but only for the case of collisionless plasmas. Thus, the description
of ion-acoustic waves taking into account self-consistent grain charging and particle
collisions is an integral part of the theory of large-scale fluctuations in dusty plasmas.

As mentioned above, the electromagnetic fluctuations are closely related to the
thermodynamic and structural properties of continuous media. Particularly, the cor-
relation functions of particle densities determine both static and dynamic form factors
of the system and thus the spectrum of electromagnetic wave scattering by plasmas
[2, 3, 10]. The kinetic coefficients in the Fokker-Planck equation [3, 10, 39] and
the collision integrals in the kinetic equations are also determined by particle phase
density fluctuations. It is also obvious that fluctuations of the electromagnetic field
play the role of the Langevin sources in the Brownian motion of charged particles in
plasmas [2, 40]. Therefore, the calculation of the electric field fluctuations in a dusty
plasmas [19] is important for describing various specific processes in such plasmas.
For example, the intensity of grain diffusion generated by fluctuations determines,
to a considerable extent, the processes of formation and melting of plasma crystals
[41, 42].

The theory of fluctuations in ordinary collisional plasmas is well developed [4, 7,
13, 43, 44]. The problem of generalization of this theory to the case of dusty plas-
mas has some issues that remain open. To solve the problem under consideration two
approaches are usually used. The first one is based on the description of grain charge
dynamics using the charging equation and the explicit representation of the charging
currents in terms of fluctuations of plasma particle distribution functions and charg-
ing cross sections [26, 45–47]. The disadvantage of this approach is that it requires
a phenomenological description of plasma particle collisions with grains (both elas-
tic and inelastic) and additional calculations of “shadow" and bombardment forces
(generated by scattering and absorption of plasma particles by a grain in the pres-
ence of another grain) to describe consistently the collective grain-grain interaction,
if necessary. In the second approach the grain charge is treated as an independent
dynamic variable and thus the grain distribution function depends not only on the
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coordinate and velocity, but also on the grain charge [18, 21, 48–53]. This approach
provides an opportunity to work out a consistent kinetic theory of fully ionized dusty
plasmas and, in principle, to find collision terms for all particle species. However,
this approach faces serious problems with the generalization to the case of collisional
plasmas. The main problem here is that calculations of the quantities describing the
grain dynamics are expressed in terms of charging cross sections that are known
for collisionless plasmas only. At the same time, phenomenological approximations
for such cross sections (see, for example, [52] and related references cited therein)
have a limited range of applications. Actually, the same problem arises in the first
approach, but in that case, one can use semi-phenomenological approximations for
charging currents [54, 55] that take into account the influence of collisions and, at the
same time, are in a good agreement with the results of experiments and numerical
calculations [56] for arbitrary collision frequencies and other plasma parameters.
This means that we can avoid calculating charging cross sections if the equations of
grain charging dynamics can be formulated in terms of charging currents. Since the
appropriate formulation can be easily done, the first approach looks more suitable
for the generalization of the theory of electromagnetic fluctuations in collisionless
dusty plasmas to the case of collisional plasma background. The above-mentioned
problems with unknown charging cross sections for collisional dusty plasmas are the
reason why the consistent calculations of fluctuation spectra are related to collision-
less [26, 45, 46, 48] or weakly collisional regimes [50–53, 57].

The purpose of the present contribution is to give a consistent linear kinetic
description of electromagnetic processes in a collisionalweakly ionized dusty plasma
with regard to the absorption of electrons and ions by grains and grain charge fluc-
tuations. The main point is that electric field perturbations influence the charging
currents and hence produce the grain charge fluctuations. Such a self-consistent influ-
ence gives an additional contribution to the dielectric response of the dusty plasma
that determines both dispersion and damping of waves and electric field fluctuation
spectra in dusty plasmas [58, 59].

The contribution is organized as follows. We start from the equations for fluctu-
ations of distribution functions (Sect. 2). Then we formulate the equations for grain
charging dynamics (Sect. 3). In Sect. 4 we analyze the dependencies of the stationary
grain charge and charging collision frequencies on plasma parameters. The calcula-
tions of the dielectric response functions and detailed analysis of ion-acoustic waves
in both cases of ordinary and dusty plasmas are presented in Sects. 5 and 6. Corre-
lation functions of the electron density fluctuations are calculated and analyzed in
Sect. 7.

2 Fluctuations of the Distribution Function

The consistent description of fluctuations in a dusty plasma requires considering the
charge density fluctuations related to electrons (α = e) and ions (α = i)
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δρα(r, t) = eαδnα(r, t), α = e, i, (1)

as well as the grain charge density fluctuations that may be divided into two terms.
The first one is due to variations of the grain number density and the second one is
associated with the fluctuations of the grain charge

δρg(r, t) = egδng(r, t) + ngδeg(r, t), (2)

where eg is the stationary grain charge and ng is the mean number density of grains.
It should be noted that such representation is valid for fluctuations that satisfy the
condition ng R3 � 1. Here R is the spatial scale of perturbation.

The number density fluctuations of charged particles have the form

δnα(r, t) = nα

∫
dvδ fα(r, v, t), α = e, i, g, (3)

where δ fα(r, v, t) are the fluctuations of the distribution function of the correspond-
ing particle species. In the case of electrons or ions, these may be found in the same
way as in ordinary plasmas [44], but regarding the collisions of electrons and ions
with grains in addition to collisions with neutrals.

Fluctuations of electron and ion distribution functions satisfy the equation [44]

{
∂

∂t
+ v

∂

∂r

}
δ fα(X, t) + να

{
δ fα(X, t) − f0α(v)

∫
dvδ fα(X, t)

}

= − eα

mα

∂δφ(r, t)
∂r

∂ f0α(v)
∂v

, (4)

where X = (r, v), δφ(r, t) is the fluctuation of the electrostatic potential, f0α(v) is
the unperturbed distribution function (usually it is the Maxwell distribution), and
να = ναn + ναg , where ναn and ναg are the effective collision frequencies between
particles of α species with neutrals and grains.

In the case under consideration, Eq. (4) is justified under following assumptions.
The electrons and ions absorbed by the grain recombine on its surface and form the
neutral gas atoms (molecules) that evaporate into the surrounding plasma and may
be ionized again due to collisions or to external ionization sources. This assumption
makes it possible to use the Bhatnagar-Gross-Krook (BGK) collision integral [60] in
Eq. (4). It should be noted that Eq. (4) follows also from the equations for the micro-
scopic phase densities of electrons and ions smoothed over physically infinitesimal
time τph [21] in the appropriate approximation.

Further, the equation for the grain charge fluctuations is formulated. The averag-
ing (smoothing over physically infinitesimal time τ|text ph) of the equation for the
microscopic phase density of grains yields a kinetic equation with the collision inte-
gral that may be expressed in terms of correlation functions of microscopic quantities
[21]. For the sake of simplicity, we use the BGK collision integral in the manner sim-
ilar to the case of plasma particles. The linearized equation for the fluctuations of the
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grain distribution function reproduces Eq. (4) with α = g, where νg is the effective
collision frequency between grains and other particles. This equation, however, does
not take into account the fluctuations of charging collision frequencies.

The formal solution of Eq. (4) is given by

δ fα(X, t) = δ f (0)
α (X, t) − eα

mα

t∫

−∞
dt ′

∫
dX ′Wα(X, X ′; t − t ′)

∂δφ(r′, t ′)
∂r′

∂ f0α(v′)
∂v′ ,

(5)
where δ f (0)

α (X, t) is the general solution of the homogenous Eq. (4), i.e., it is the
fluctuation of the distribution function in the system without self-consistent inter-
action through the fluctuation electric field. The second term in (5) is the particular
solution of Eq. (4). The function Wα(X, X ′; t − t ′) also satisfies the homogenous
Eq. (4), but with the initial condition Wα(X, X ′; 0) = δ(X − X ′). Hence, it is the
probability density of particle transition from the phase point X ′ to the phase point
X during the time interval t − t ′ for particles of α-species.

As is easy to see, δ f (0)
α (X, t) play the role of Langevin sources of the electric field

fluctuations in the system. Their correlation functions are given by [2, 4, 10]

〈δ f (0)
α (X, t)δ f (0)

α′ (X ′, t ′)〉 = δαα′

nα

{
fα′(X ′, t ′)Wα(X, X ′; t − t ′)θ(t − t ′)

+ fα(X, t)Wα(X ′, X; t ′ − t)θ(t ′ − t)
}
. (6)

3 Equations of the Grain Charge Dynamics

The grain charge is determined by the electron (α = e) and ion (α = i) charging
currents

∂eg(r, t)
∂t

= Ich =
∑
α=e,i

I α
ch

(
nα(r, t), eg(r, t)

)
. (7)

For the sake of simplicity, we assume that charging currents depend only on the
number density nα and temperature of plasma particles, aswell as on the grain charge.
This assumption is justified for the strongly collisional regime. It is not consistently
justified for weakly collisional regime, but we will use it. Its correctness may be
confirmed by the comparison with the results of kinetic calculations.

For small fluctuations of number density nα(r, t) = nα + δnα(r, t) from the aver-
age value nα and small fluctuations of the grain charge eg(r, t) = eg + δeg(r, t) from
its stationary value that is determined by the condition of zero total charging current,
i.e.,

I ech(ne, eg) + I ich(ni , eg) = 0, (8)

one obtains from (7) an equation for δeg(r, t)
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∂δeg(r, t)
∂t

+ νchδeg(r, t) =
∑
α=e,i

∂ I α
ch(nα, eg)

∂nα

δnα(r, t), (9)

where the charging frequency νch is given by

νch =
∑
α=e,i

να
ch, να

ch = −∂ I α
ch(nα, eg)

∂eg
. (10)

Now, the explicit forms of charging currents I α
ch(nα, eg) in a collisional plasma are

needed. Since the mean free path of electrons le is usually about two orders higher
than li in gas discharge plasma, we use the expression

I ech = eene
√
8πa2vTe exp (−α) (11)

that is obtained in the orbit motion limited (OML) approximation, i.e., the collisions
of electrons with neutrals are neglected.

For ionic charging current we use the interpolation formula [54] that reproduces
with high accuracy the results of kinetic calculations [56]

I ich = eini
√
8πa2vT i

IWC I SC

IWC + I SC
, (12)

where
IWC = 1 + ατ + 0.1(ατ)2λD/ li , (13)

I SC = √
2πατ li/a, τ = Te/Ti . (14)

Hereα = eeφs/Te (not to be confusedwith the subscriptα that denotes the plasma
particle species), φs is the surface potential, a is the grain radius, k2D = k2De + k2Di ,
k2Dα = 4πe2αnα/Tα , λD = 1/kD is the Debye length, vTα = √

Tα/mα is the plasma
particle thermal velocity, li = vT i/νi is the ion mean free path, νi is the collision
frequency of ions with other particles. WC stands for weakly collisional and SC is
for strongly collisional.

It is reasonable to assume [56, 61–64] that the electrostatic potential near the grain
is described by the Derjaguin-Landau-Verwey- Overbeek (DLVO) potential

φ(r) = eg
r

exp[−kD(r − a)]
1 + akD

, (15)

then
α = eeeg

aTe(1 + akD)
. (16)

The space-time Fourier transform (FT)
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fkω =
∞∫

−∞
dt

∫
dr f (r, t) exp(iωt − ikr) (17)

of Eq. (2) for the grain charge fluctuations along with (9) gives

δρgkω = egδngkω + ing
ω + iνch

∑
α=e,i

I α
ch

nα

δnαkω. (18)

It was taken into account in (18) that according to (11) and (12)

∂ I α
ch(nα, eg)

∂nα

= I α
ch

nα

. (19)

We substitute Eq. (5) in (3) and after FT obtain

δnαkω = nα

∫
dvδ f (0)

αkω(v) + i
eαnα

mα

∫
dv

∫
dv′Wαkω(v, v′)k

∂ f0α(v′)
∂v′ δφkω

= δn(0)
αkω − k2

4πeα

χα(k, ω)δφkω, α = e, i, g, (20)

where χα(k, ω) is the dielectric susceptibility of the plasma particle subsystem.
Further, we substitute formula (20)withα = g in the first term of (18) and formula

(20) with α = e, i in the second one. Thus we obtain

δρgkω = δρ
(0)
gkω − k2

4π
χg(k, ω)δφkω

+ i

ω + iνch

∑
α=e,i

ναgδρ
(0)
αkω

− k2

4π

i

ω + iνch

∑
α=e,i

ναgχα(k, ω)δφkω, (21)

where

ναg = ng I α
ch

eαnα

(22)

is the frequency of plasma particle collisions with grains.
Equation (21) may be rewritten to be similar to (20):

δρgkω = δρ̃
(0)
gkω − k2

4π
χ̃g(k, ω)δφkω, (23)

where
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δρ̃
(0)
gkω = δρ

(0)
gkω + i

ω + iνch

∑
α=e,i

ναgδρ
(0)
αkω, (24)

χ̃g(k, ω) = χg(k, ω) + i

ω + iνch

∑
α=e,i

ναgχα(k, ω). (25)

Thus,

δφkω = 4πδρ
(0)
kω

k2ε(k, ω)
, (26)

where

δρ
(0)
kω =

∑
α=e,i,g

δρ
(0)
αkω + i

ω + iνch

∑
α=e,i

ναgδρ
(0)
αkω, (27)

ε(k, ω) = 1 +
∑

α=e,i,g

χα(k, ω) + i

ω + iνch

∑
α=e,i

ναgχα(k, ω). (28)

We see that the dielectric permittivity of a dusty plasma in the present description
differs from the dielectric permittivity given by the multi-component model

εmc(k, ω) = 1 +
∑

α=e,i,g

χα(k, ω) (29)

by the presence of the last term in (28) that is the renormalized susceptibility of grains
generated by the charging processes. Furthermore, in calculations of the plasma
particle dielectric response, collisions with grains should be taken into account on
an equal footing with the collisions with neutrals, i.e., να = ναn + ναg .

4 Stationary Grain Charge, Charging and Collision
Frequencies

Stationary grain charge is determined by the condition of zero value of the total
current on the grain surface (8). Using (11) and (12) one obtains equation for α given
by

ne
ni

μ exp(−α) = IWC I SC

IWC + I SC
, (30)

where μ = vTe/vT i = √
τmi/me.

The ratio ne/ni in Eq. (30) is found from the condition of quasineutrality that in
the case of dusty plasmas is given by
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Fig. 1 Dependence of
α = eeφs/Te on the inverse
ion mean free path in a
non-isothermal (τ = 100)
argon plasma. Solid lines:
a/λD = 1, 0.15, 0.01,
P = 0; dashed lines:
a/λD = 0.15, P = 0.5, 0.8;
the dotted line is the solution
of Eq. (34)

eene + eini + egng = 0. (31)

For singly charged ions (ee = −ei )

ne
ni

= 1 − P, P = egng
eeni

, (32)

where P is the Havnes parameter that describes the portion of the electron charge
collected by the dust.

In the weakly collisional regime, the ion current is simplified to

I ich = eini
√
8πa2vT i I

WC, (33)

that yields an equation for α given by

ne
ni

μ exp(−α) = IWC. (34)

It does not depend on a/λD in contrast to Eq. (30).
The dependence of the stationary value of α on the inverse ion mean free path

in a non-isothermal (τ = 100) argon plasma is presented in Fig. 1. For a large mean
free path li and P = 0, α tends to the value ≈ 2.4 that reproduces the value given
by the OML approximation. An increase in the mean free path leads, at first, to a
decrease in α. The dotted line in Fig. 1 is the solution of Eq. (34). It shows that the
applicability of formula (33) for the ion current depends on the ion mean free path
and on the grain size. A further increase in ion collisionality leads to the increase
in α, where, at some point, it starts to depend on the grain size a/λD . An increase
in the Havnes parameter P causes a decrease in α (dashed lines in Fig. 1). Since
λDe = λD

√
1 + τ/(1 − P), then for τ = 100 and P = 0 λDe ≈ 10λD . The curve for
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a/λD = 0.15 (λDe/a ≈ 66.7) matches the corresponding curve in Ref. [54]. When
α is known, we can find the stationary charging currents from (11) and (12).

Let us find the charging frequencies (10) by taking the derivatives of currents (11)
and (12)

νe
ch = I ech

α

eg
, (35)

νi
ch = −I ich

(2IWC − 2 − ατ)I SC + (IWC)2

eg(IWC + I SC)IWC
. (36)

Charging frequencies in the normalized form are given by

νe
ch

ωpi
= μ√

2πτ

kDi

kD

(1 − P) exp(−α)

1 + λD/a
. (37)

νi
ch

ωpi
= − 1√

2πτ

kDi

kD

I SC

1 + λD/a

(2IWC − 2 − ατ)I SC + (IWC)2

α(IWC + I SC)2
, (38)

where kDi/kD = √
τ/

√
1 − P + τ for τ = 100, kDi/kD ≈ 1.

Figure2 shows that charging frequencies are smaller than the ionic plasma fre-
quency να

ch � ωpi for the parameters under consideration and depend nonmono-
tonically on the inverse ion mean free path. The behavior of the electron charging
frequency is explained using formula (37). A decrease in α leads to an increase in the
charging frequency, that is why the frequency maximum coincides approximately
with the minimum of α (see Fig. 1). A decrease in a/λD causes a decrease in α, but
since λD/a is contained in the denominator of (37), a decrease in the grain size leads
to a decrease in charging frequency. Concerning the influence of the Havnes param-
eter on the charging frequency, the dependence of kDi/kD on P may be disregarded
in the strongly non-isothermal plasma and the dependence of α on P is manifested in

Fig. 2 Normalized electron
(dashed lines) and ion (solid
lines) charging frequencies
να
ch/ωpi versus the inverse
ion mean free path in a
non-isothermal (τ = 100)
argon plasma for
a/λD = 1, 0.15, 0.01
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Fig. 3 Normalized electron
(dashed lines) and ion (solid
lines) charging frequencies
να
ch/ωpi versus the inverse
ion mean free path in a
non-isothermal (τ = 100)
argon plasma for
a/λD = 0.15 and P = 0, 0.8

Fig. 4 Electron (dashed
lines) and ion (solid lines)
charging frequencies
να
ch/ωpi versus the
ion-neutral collision
frequency in the isothermal
(τ = 1) argon plasma for
a/λD = 1, 0.15, 0.01

the decrease in the ion charging frequency in the region of its maximum (see Fig. 3).
The decrease in the electron frequency with the increase in P is more pronounced,
since it is proportional to 1 − P (37).

Figure4 shows that the collision frequency is also lower than ωpi .
Using (32) and (16), we obtain an expression given by

ng
k3D

= P

4παkDa(1 + kDa)(1 − P + τ)
. (39)

Thus, the Havnes parameter P together with other plasma parameters determines the
grain number density.

Themean distance between grains� = n−1/3
g varies from≈ 3 to 20Debye lengths

for the parameters under consideration (see Fig. 5). According to (39),� ∼ α1/3 that
is why the dependence of the mean distance between grains on the inverse ion mean
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Fig. 5 Mean distance
between grains versus the
inverse ion mean free path in
a non-isothermal (τ = 100)
argon plasma for
a/λD = 1, 0.15, 0.01,
P = 0.5 (solid lines) and
P = 0.8 (dashed lines)

Fig. 6 Normalized ion
collision frequency νig/ωpi
versus the inverse ion mean
free path in a non-isothermal
(τ = 100) argon plasma for
P = 0.5 (solid lines) and
P = 0.8 (dashed lines),
a/λD = 1, 0.15, 0.01

free path has the minimum that corresponds to the minimum of the dimensionless
surface potential α (see Fig. 1).

Now, let us calculate the frequency of collisions between plasma particles and
grains using formula (22). The simple relation νig = (1 − P)νeg holds in the sta-
tionary state, that is why only ion frequencies are shown in Figs. 6 and 7. Since the
charging currents grow with the growth of the grain size (11) and (12), the charging
frequency has similar behavior. As follows from (39), ng ∼ P in a non-isothermal
plasma, therefore, dashed lines (P = 0.8) are higher than the solid lines (P = 0.5)
in Figs. 6 and 7.
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Fig. 7 Ion collision
frequency νig/ωpi versus the
ion-neutral collision
frequency in an isothermal
(τ = 1) argon plasma for
P = 0.5 (solid lines) and
P = 0.8 (dashed lines),
a/λD = 1, 0.15, 0.01

5 Dielectric Permittivity in the BGK Model

The dispersion and damping rate of longitudinal waves in a dusty plasma may be
studied in terms of the expression for the dielectric permittivity (28) by solving the
dispersion equation

ε(k, ω) = 0. (40)

Obviously, explicit expressions for the dielectric susceptibility in the collisional
plasma are required. We use the results obtained [65] from the kinetic equations
with the Bhatnagar-Gross-Krook (BGK) collision integral [60], i.e.,

χα(k, ω) = k2Dα

k2
(ω + iνα)W (zα)

ω + iναW (zα)
, (41)

where zα = (ω + iνα)/kvTα and W (z) is the plasma dispersion function [2]

W (z) = 1 − ze−z2/2

z∫

0

dyey
2/2 + i

√
π

2
ze−z2/2. (42)

In the normalized form we have

χi (k, ω) = 1

k̃2
(ω̃ + i ν̃i )W (zi )

ω̃ + i ν̃iW (zi )
(43)

and

χe(k, ω) = 1 − P

τ k̃2
(ω̃ + i ν̃e)W (ze)

ω̃ + i ν̃eW (ze)
, (44)
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where

k̃ = k

kDi
, ω̃ = ω

ωpi
, ν̃α = να

ωpα
, zi = ω̃ + i ν̃i

k̃
, ze = ω̃ + i ν̃e

μk̃
. (45)

Thus, the presence of dust in the plasma leads not only to the appearance of new
terms in the expression for the dielectric permittivity (the last term in formula (28)
and χg(k, ω) in the second term) but also to the change of χe(k, ω) associated with
the electron density decrease with respect to the ion density (χe(k, ω) is proportional
to 1 − P).

6 Ion-Acoustic Waves

Since the charging frequency να
ch is of the order of magnitude of the ion plasma

frequency (see Fig. 2), the grain charge fluctuations can influence the propagation of
ion-acoustic waves in dusty plasmas. The study of such an influence is given in what
follows.

It is known [65] that in plasma without dust, ion-acoustic waves exist only in
strongly non-isothermal case τ � 1 and their phase velocity belongs to the range
vT i � ω/k � vTe. The solution of dispersion equation is given by [58]

ω(k) =
√

ω2
pi

1 + k2De/k
2

− ν2
i

4
− i

νi

2
. (46)

For νi = 0 and k � kDe Eq. (46) turns into the well-known spectrum for ion-
acoustic waves in collisionless plasma

ωk = ωpi

kDe
k =

√
τ
ni
ne

vT i k. (47)

The damping of ion-acoustic waves is caused by the resonance interaction of the
wave field with ions [65] (the Landau damping) as well as by the collisions of ions,
whose contribution to the damping rate is approximately equal to �γk = −νi/2
[which coincides with the imaginary part of the formula (46)]. This estimate is
consistent with the results of the numerical solution of the dispersion equation [44,
58].

Now, let us discuss the electron-neutral collision frequency νen , which is present
in formula (44). The simple relation ναn = vTασαnn , where σα is the scattering cross
section, is valid for a weakly ionized plasma. Thus, the electron collision frequency
is related to ion frequency through the following expression νe = νiμ(σe/σi ). The
scattering cross section of Ar+ ions with an energy of 0.1 eV on Ar atoms is about
157 Å2, and it decreaseswith the increase in energy (Ref. [66], table 7). The scattering
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cross section of electrons on argon atoms has theminimum of≈ 0.1Å2 for the energy
of ≈ 0.2 eV, and for ≈ 2.5 eV it is ≈ 3 Å2 (Ref. [67], Fig. 4). Therefore, we can
assume that σe/σi ≈ 0.02 for a non-isothermal plasma, and this value was used in
our computations. Since electron collisions almost do not affect the dispersion and
damping of ion-acoustic waves, the estimate for the ratio of scattering cross sections
can be used without compromising the accuracy of the computations, or the value of
νen can even be taken as zero.

As it was mentioned above, collisions of plasma particles with grains should be
included into the effective collision frequencies along with collisions with neutrals,
i.e., να = ναn + ναg . The inverse ion mean free path in a strongly non-isothermal
plasma is given by

λD

li
= kDi

kD
ν̃in ≈ νin

ωpi
= ν̃in, (48)

and Fig. 6 shows how ν̃ig is commensurate with ν̃in . The main contribution to the
effective frequencies is given by the collisionswith grains for ν̃in � 1. In the opposite
case ν̃in � 1, themain contribution is obviously given by the collisionswith neutrals.

Both spectra and damping of ion-acoustic waves in dusty plasmas with regard to
the grain charge fluctuations (solid lines in Fig. 8a, b) are studied using the numer-
ical solution of the dispersion equation (40) with respect to the complex frequency
ω(k) = ωk + iγk, where the dielectric permittivity is given by expression (28). Since
the plasma frequency of grains is much smaller than the ion plasma frequency,
the motion of grains does not affect the propagation of ion-acoustic waves. Hence,
χg(k, ω) is disregarded in (28).

The possibility of the existence of ion-acoustic waves in isothermal collisionless
dusty plasmas was discussed in Ref. [27]. It follows from (47) that the phase velocity
of ion-acousticwaves is equal toω/k = vT i

√
τni/ne for k � kDe. Thismeans that in

ordinary isothermal plasma phase the velocity is equal to ion thermal velocity (ω/k =
vT i ), and there occurs strongLandaudampingon ions. It decreases in isothermal dusty
plasmas under the condition ne � ni . In the case of a non-isothermal (τ = 100)
collisional plasma that is considered in the present contribution the phase velocity
(the eigenfrequency) also increases. The curve corresponding to P = 0.8 is higher
than the curve for P = 0 in Fig. 8a. This figure shows that the dispersion in dusty
plasmas is also well-described by formula (46) (the dashed line) that is obtained
for ordinary plasmas but with regard to the change in ne/ni . Thus, the grain charge
fluctuations and the increase in νin due to the collisions with grains do not affect the
dispersion of ion-acoustic waves for the parameters under consideration.

Since the phase velocity is much higher than the thermal velocity for τ = 100
and the Landau damping is small for k � kDe, the additional increase in the phase
velocity due to the decrease in ne/ni makes no effect on the wave damping. In
contrast, the grain charge fluctuations and the increase in νin due to the collisions
with grains produce a considerable increase in the absolute value of the damping
rate (per order for k̃ ≈ 0.02) and a decrease in the ωk/|γk| ratio accordantly (see the
insert in Fig. 8a). The dashed line in the insert is given by formula (46).
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Fig. 8 Eigenfrequencies ωk
(a) and absolute values of
damping rates |γk| (b) of
ion-acoustic waves in a
non-isothermal (τ = 100)
argon plasma as the result of
the numerical solution of the
dispersion equation
ε(k, ωk + iγk) = 0 with the
dielectric permittivity (28),
(41) versus the wave number
for νin = 0.02ωpi ,
akD = 0.15,
P = 0, 0.2, 0.5, 0.8 (solid
lines). The dashed lines are
given by formula (46), and
the insert shows the ratio
ωk/|γk|

Figure9 shows that the increase in the wave damping due to collisions between
ions and grains is approximately described by the formula γk = −(νin + νig)/2
(dashed lines) for small P . The values of ν̃ig and (ν̃in + ν̃ig)/2 are presented in
Table1. The same values that correspond to Fig. 8 are presented in Table2.

Let us consider ion-acoustic waves in a dusty plasma with a different ratio of
electron to ion temperatures, namely τ = 10. In this case, the influence of grains
on the wave dispersion and the damping rate (see Fig. 10) is similar to the previous
case τ = 100 (Fig. 8). The increase in eigenfrequency and damping rate absolute
value is observed in the domain of k̃ � 0.2. But there is a considerable difference
between these cases, namely the damping rate in the dusty plasma is lower than in
the ordinary plasma for k̃ � 0.2. As it was mentioned above, damping due to the
resonant interaction of waves with ions is significant for k̃ � 0.2. The increase in the
phase velocity in a dusty plasma leads to the decrease in the resonant damping. The
insert in Fig. 10a shows that the maximum of the ωk/γk ratio shifts toward higher
values of k. The value of the maximum itself slightly grows. It differs from the case
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Fig. 9 Absolute values of
damping rates |γk| of
ion-acoustic waves in a
non-isothermal (τ = 100)
argon plasma as the result of
the numerical solution of the
dispersion equation
ε(k, ωk + iγk) = 0 with the
dielectric permittivity (28),
(41) versus the wave number
for νin = 0.2ωpi , akD = 1,
P = 0, 0.1, 0.2, 0.5, 0.8.
The dashed lines are given
by (ν̃in + ν̃ig)/2

Table 1 Ion collision frequency with grains of radius a = λD for ν̃in = νin/ωpi = 0.2

P ν̃ig (ν̃in + ν̃ig)/2

0.1 0.062 0.131

0.2 0.122 0.161

0.5 0.279 0.240

0.8 0.371 0.286

Table 2 Ion collision frequency with grains of radius a = 0.15λD for ν̃in = νin/ωpi = 0.02

P ν̃ig (ν̃in + ν̃ig)/2

0.2 0.0146 0.0173

0.5 0.0351 0.0276

0.8 0.0521 0.0361

τ = 100 (the insert in Fig. 8a) where the presence of grains produced a considerable
decrease in ωk/γk ratio, though it remains higher than that for τ = 10.

Finally, we consider ion-acoustic waves in an isothermal (τ = 1) dusty plasma.
We see from Fig. 11a that the eigenfrequency of ion-acoustic waves in an isothermal
plasma increaseswith P similarly to the non-isothermal case. Furthermore, the region
of small k where the waves do not exist grows wider. The changes in the behavior of
damping rates that are observed upon the decrease in τ from 100 to 10 become more
pronounced for τ = 1 (see. Fig. 11b), in particular, this concerns the decrease in the
Landau damping. The insert in Fig. 11a shows that the maximum of the ratio ωk/|γk|
shifts to the higher values of k, and the value of the maximum itself considerably
increases though remains lower than that for τ = 10 and 100.
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Fig. 10 Eigenfrequencies
ωk (a) and absolute values of
damping rates |γk| (b) of
ion-acoustic waves in a
non-isothermal (τ = 10)
argon plasma as the result of
the numerical solution of the
dispersion equation
ε(k, ωk + iγk) = 0 with the
dielectric permittivity (28),
(41) versus the wave number
for νin = 0.02ωpi ,
akD = 0.15,
P = 0, 0.2, 0.5, 0.8 (solid
lines). The dashed line is
given by formula (46), and
the insert shows the ratio
ωk/|γk|

7 Fluctuation Spectra

In this section we calculate the electron density correlation function 〈δρ2
e 〉kω. We

start from the electron density fluctuations and it follows from Eqs. (20) and (26)
that

δρekω = δρ
(0)
ekω − χe(k, ω)

ε(k, ω)
δρ

(0)
kω , (49)

using (27) we get

δρekω = δρ
(0)
ekω − χe(k, ω)

ε(k, ω)

[ ∑
α=e,i

(
1 + iναg

ω + iνch

)
δρ

(0)
αkω + δρ

(0)
gkω

]
. (50)

Finally,
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Fig. 11 Eigenfrequencies
ωk (a) and absolute values of
damping rates |γk| (b) of
ion-acoustic waves in
isothermal (τ = 1) argon
plasma as the result of the
numerical solution of the
dispersion equation
ε(k, ωk + iγk) = 0 with the
dielectric permittivity (28),
(41) versus the wave number
for νin = 0.02ωpi ,
akD = 0.15,
P = 0, 0.5, 0.8, 0.9 (solid
lines). The insert shows the
ratio ωk/|γk|

〈δρ2
e 〉kω =

∣∣∣∣1 − χe(k, ω)

ε(k, ω)

(
1 + iνeg

ω + iνch

)∣∣∣∣
2

〈δρ(0)2
e 〉kω

+
∣∣∣∣χe(k, ω)

ε(k, ω)

(
1 + iνig

ω + iνch

)∣∣∣∣
2

〈δρ(0)2
i 〉kω

+
∣∣∣∣χe(k, ω)

ε(k, ω)

∣∣∣∣
2

〈δρ(0)2
g 〉kω (51)

the electron density correlation function is expressed in terms of χα(k, ω) and
〈δρ(0)2

α 〉kω

〈δρ(0)2
α 〉kω = e2αnα

∫
dv

∫
dv′Wαkω(v, v′) f0α(v′) + c.c. (52)

in the equilibrium state [2, 4, 10]
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〈δρ(0)2
α 〉kω = Tαk2

2πω
Imχα(k, ω). (53)

Disregarding the grain charge variations, i.e., putting the frequencies νch and ναg

equal to zero in (51), we obtain

〈δρ2
e 〉kω =

∣∣∣∣1 − χe(k, ω)

εmc(k, ω)

∣∣∣∣
2

〈δρ(0)2
e 〉kω

+
∣∣∣∣ χe(k, ω)

εmc(k, ω)

∣∣∣∣
2

〈δρ(0)2
i 〉kω +

∣∣∣∣ χe(k, ω)

εmc(k, ω)

∣∣∣∣
2

〈δρ(0)2
g 〉kω (54)

the electron density correlation function in the multi-component model, where
εmc(k, ω) is defined by (29).

The ion density correlation function is found in a similar manner.
We performed the calculations for argon dusty plasmas with various values of the

grain size akD , Havnes parameter P , and ion-neutral collision frequency νin for both
isothermal τ = 1 and non-isothermal τ > 1 plasmas. Since the plasma frequency of
grains is much lower than the ion plasma frequency, the motion of grains makes no
effect on the fluctuations in this frequency domain and the last terms in (51) and (54)
are disregarded as well as χg(k, ω) in (28) and (29).

We can highlight the main factors included in our description that influence the
fluctuation spectra of the electron density in dusty plasmas, i.e.,

• The grain charge variations that are described by the last term in (28) and corre-
sponding terms in (51) that contain νch and ναg .

• The plasma particle collisions with neutrals and grains that define the plasma parti-
cle effective collision frequencies να = ναn + ναg that influence the susceptibility
of electrons and ions (41).

• The decrease in the electron to ion density ratio in dusty plasmas that influences
the stationary grain charge α [see Eq. (30)] and the electron susceptibility (44).

In order to clarify the individual input of the second factor we start from consider-
ing the electron density correlation function given by (54) and να = ναn in (41) i.e.,
we start with studying the influence of ion-neutral collisions on the electron density
fluctuations in ordinary plasma. Figure12 shows that the intensity of fluctuations in
a non-isothermal (τ = 100) plasma is sensitive to ion collisions with neutrals. The
fluctuations are considerably suppressed even for small values of νin/ωpi .

Concerning the last factor, it was shown in Sect. 5 that the decrease in the ne/ni
results in the increase in dust ion-acoustic wave eigenfrequency (see Fig. 8) and
therefore the fluctuation maxima are also shifted toward higher frequencies. This
effect is illustrated by Fig. 13 where the fluctuation spectra are obtained using the
expressions for ordinary collisional plasma but with ne/ni = 1 − P . Besides the
fluctuation maximum shift, its decrease is also observed. It can be explained by the
decrease in 〈δρ(0)2

e 〉kω via the decrease in the electron susceptibility (44), since it is
proportional to 1 − P .
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Fig. 12 Normalized
electron density correlation
spectra 〈δn2α〉kωωpi/ni in
ordinary non-isothermal
(τ = 100) argon plasma for
νin/ωpi = 0, 2 · 10−4, 5 ·
10−4, 1 · 10−3, 2 · 10−3,
k/kDi = 0.1

Fig. 13 Normalized
electron density correlation
spectra 〈δn2α〉kωωpi/ni in
ordinary non-isothermal
(τ = 100) argon plasma for
νin/ωpi = 0.02,
k/kDi = 0.1,
P = 0, 0.2, 0.5. The dashed
line corresponds to (54) and
plasma particle susceptibility
(41) including collisions
with grains να = ναn + ναg ,
a/λD = 0.15. Dotted line
corresponds to (51)

In order to see the isolated effect of the dust charge variability (first factor), we,
initially, "turn on" both second and third factors. Namely, the collisions of plasma
particles with grains are included into the effective collision frequency να = ναn +
ναg in (41), but for the electron density correlation function formula (54) is still used
(the dashed line in Fig. 13). For a/λD = 0.15 and P = 0.2, 0.5 the ion-grain collision
frequencies equal to νig/ωpi ≈ 0.015 and 0.035 respectively, thus they are of the
order of the ion-neutral collision frequency νin/ωpi = 0.02. As should be expected,
the increase in the ion collisionality leads to the decrease in fluctuation intensity.
Finally, we include into consideration the grain charge variation (the dotted line in
Fig. 13),whichmeans thatwe calculate the electron density correlation function using
formula (51) with the dielectric permittivity (28). One may conclude that variations
of the grain charge lead to the enhancement of the electron density fluctuations as
compared to the dashed line, but they are considerably suppressed as compared to
the results of the multi-component description (the solid line).

The fluctuation spectra in a strongly non-isothermal (τ = 100) plasma are pre-
sented in Fig. 14 show that both positions and intensities of the maxima depend on
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Fig. 14 Normalized
electron density correlation
spectra 〈δn2α〉kωωpi/ni in a
non-isothermal (τ = 100)
argon plasma for
νin = 0.02ωpi ,
a/λD = 0.15,
k/kDi = 0.05, 0.1, 0.2,
P = 0, 0.2, 0.5,
a/λD = 0.01 (doted line)
and a/λD = 1 (dashed line).
The insert shows the
maximum value of the
normalized electron
correlation function versus
k/kDi

the wave number k/kDi and coincide with the eigenfrequency of ion-acoustic waves
in a collisional dusty plasma (see Fig. 8). The presence of grains leads to the shift
of fluctuation maxima toward higher frequencies and to the decrease in fluctuation
intensity. It was already mentioned that the increase in the eigenfrequency of the
ion-acoustic wave is caused by the decrease in the electron to ion density ratio ne/ni .
This assumption is confirmedby the curves in Fig. 14 corresponding to k/kDi = 0.05,
P = 0.2 and different values of the grain size a/λD = 0.01, 0.15, 1. The values of
collision νig and charging να

ch frequencies for a/λD = 0.01 are much lower than for
a/λD = 1 (see Figs. 4 and 7). As a consequence the fluctuations are less suppressed
in the presence of small grains than of a big one, but the value of the shift depends
almost entirely on the Havnes parameter.

The insert in Fig. 14 shows that the highest intensity of fluctuations occurs for
k/kDi ≈ 0.05 and the increase in the Havnes parameter leads to a decrease in the
fluctuation intensity in all wave number domains under consideration.

The transformation of thefluctuation spectra in an ordinary non-isothermal plasma
(τ = 10) with the increase in the ion collisionality is shown in Fig. 15. With growing
νin/ωpi , the fluctuations decrease, but then the fluctuation maxima grow at ω = 0.
The presence of dust grains also increases the ion effective collision frequency νi =
νin + νig due to collisions between ions and grains. For example, νig/ωpi = 0.028
for P = 0.5, akD = 0.15 and νin/ωpi = 0.02, thus νi/ωpi = 0.048 and fluctuations
are also suppressed. But the maximum value of the electron density correlation in a
dusty plasma is approximately equal to that in an ordinary plasma with νin = 0.1. It
means that the influence of dust on the fluctuation spectra should not be described
only by the increase in the ion collisionality. Also, the maximum is shifted toward
higher frequency. As we have already mentioned, the increase in the fluctuation
frequency is provided by the decrease in ne/ni .

The fluctuation spectra in an isothermal plasma (see Fig. 16) differ from those in
a non-isothermal one: the maxima are broader and located at lower frequencies. The
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Fig. 15 Normalized
electron density correlation
spectra 〈δn2α〉kωωpi/ni in a
non-isothermal (τ = 10)
argon plasma for
k/kDi = 0.1,
νin/ωpi = 0.02, 0.1, 0.5, 2,
P = 0 (solid lines) and
P = 0.5, a/λD = 0.15
(dashed line)

Fig. 16 Normalized
electron density correlation
spectra 〈δn2α〉kωωpi/ni in an
isothermal (τ = 1) argon
plasma for νin = 0.02ωpi ,
a/λD = 0.15,
k/kDi = 0.05, 0.1, 0.2 and
P = 0, 0.2, 0.5

presence of grains suppresses the fluctuations but not so efficiently as in the case of
non-isothermal plasmas. Figure17 illustrates the influence of the grain size on the
fluctuations in an isothermal plasma. Since νig and νch for a/λD = 0.01 are much
lower than for a/λD = 1 (see Figs. 4 and 7), the presence of grains of different sizes
change the fluctuation spectra differently, even if the Havnes parameter is the same.

As it was mentioned above, we have omitted the last term in (51) and χg(k, ω)

in (28) in our calculations. It means that we considered immovable grains. That
is the reason why the maxima corresponding to the collective fluctuations of the
grains (dust-acoustic resonances) are not observed in the region of the grain plasma
frequency ωpg � ωpi in Figs. 15, 16, 17.
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Fig. 17 Normalized
electron density correlation
spectra 〈δn2α〉kωωpi/ni in an
isothermal (τ = 1) argon
plasma for νin = 0.02ωpi ,
k/kDi = 0.1,
P = 0, 0.5, 0.8,
a/λD = 0.01 (dashed lines)
and a/λD = 1 (solid lines)

8 Conclusions

The expression for the dielectric permittivity of a collisional weakly ionized dusty
plasma is obtained within the kinetic description. The account of grain charge fluctu-
ations leads to the renormalization of the grain susceptibility. Both electron and ion
susceptibilities are influenced by the increase in electron and ion collision frequencies
due to their collisions with grains.

The charging and collision frequencies are analyzed in a wide range of ion colli-
sionality. It was found that both frequencies are lower than or about the ion plasma
frequency � ωpi for the gas discharge plasma parameters.

The dispersion of ion-acoustic waves is mostly affected by the decrease in the
electron to ion density ratio ne/ni in dusty plasmas, specifically the eigenfrequency
and the phase velocity grow with the decrease in ne/ni . The growth of the phase
velocity leads to the decrease in the Landau damping that is observed for k/kDi � 0.2
in isothermal and weakly non-isothermal plasma. The collisions between plasma
particles and grains as well as charge fluctuations provide additional mechanisms for
the wave energy dissipation and lead to a considerable growth in the absolute value
of the damping rate.

Electron density correlation spectra are strongly affected by the presence of grains
with variable charges. The main factors of this influence are the decrease in the
electron to ion density ratio, the increase in ion collisionality due to collisions with
grains, and grain charge variations.

In the case of non-isothermal plasmas the positions of the ion-acoustic resonances
and their intensities depend on the grain density (Havnes parameter). The decrease
in the electron to ion density ratio ne/ni in a dusty plasma leads to the shift of the
fluctuation maxima toward higher frequencies and to the decrease in fluctuations
due to the decrease in electron susceptibility. The increase in ion effective collision
frequency additionally suppresses the electron density correlations. The variations
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of the grain charges themselves enhance the electron density fluctuations, but, in
summary, the fluctuations in dusty plasmas are considerably suppressed. This effect
depends on the grain size and ismore pronounced for bigger grains since the ion-grain
collision frequency is proportional to the square of the grain radius.

The presence of grains increases the effective ion collision frequency, but the
resulting influence on the fluctuation spectra is different from that in the ordi-
nary plasma with the same value of ion-neutral collision frequency. Particularly,
the increase in the ion-neutral collisionality in an ordinary plasma can lead to the
suppression of the ion-acoustic resonance and the growth of the maximum near the
zero frequency that is not observed in dusty plasmas. In the case of isothermal plas-
mas the presence of grains results in even more crucial changes. For high densities
(the Havnes parameter exceeds 0.5) of small (a/λD = 0.01) grains the ion-acoustic
maxima become visible.
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Space-Time Dynamics of High-Q Optical
Resonators

F. Tabbert, S. V. Gurevich, K. Panajotov, and M. Tlidi

Abstract We consider high-Q resonators subjected to an optical injection.We focus
on the formation of stationary dissipative periodic and localized structures by using
thewell-knownLugiato-Lefever equation.We construct their bifurcation diagrams in
the case of homogeneous injection in a three-dimensional setting where the transport
process is provided by 2D diffraction and 1D dispersion. After discussing the mech-
anism of formation of an aperiodic but localized state, we investigate the effect of the
inhomogeneity on the formation of localized structures. In the regime of small but
positive inhomogeneity, a significant increase of the single localized peak stability
domain is observed. We have also investigated the case of a negative inhomogeneity
and constructed the bifurcation diagrams.
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1 Introduction

There has been intense research on high-Q optical cavities for applications in fre-
quency comb generation [1–3]. A frequency comb is a broad spectrum composed
of equidistant narrow lines. It should be noted that T. Hänsch and J. Hall [4] have
obtained the Nobel Prize in Physics in 2005 for their pioneering work on optical fre-
quency comb technology. Optical cavities, which allow for light confinement, consti-
tute an important part in laser physics and photonic devices [5]. Based on Fabry-Perot
cavities, edge-emitting, and vertical-cavity surface-emitting lasers are widely used
in the industry. More recent high-Q resonators based on whispering-gallery modes
allowed for light confinement in a small volume and high finesse. Quality factors
reaching 4 × 108 have been realized using toroid microcavities on a chip at 1.550 nm
[6]. In the near-infrared, Q ∼ 108 has been demonstrated in toroidal microresonators
for cavity quantum electrodynamics [7] and in fused-silica microspheres [8]. Optical
frequency combs generated by microresonators have revolutionized many fields of
science and technology, such as high-precision spectroscopy, metrology, and pho-
tonic analog-to-digital conversion [5].Most of these combs, having a 100 dBdynamic
range and a frequency range larger than one octave, are theoretically described with
a very good precision by the Lugiato-Lefever equation (LLE [9]). The LLE is a basic
model for the investigation of the dynamics of microresonator-based optical fre-
quency combs which were experimentally evidenced for the first time in [3]. These
Kerr combs are expected to revolutionize the generation of ultra-stable lightwave
and microwave signals for aerospace engineering, optical communication networks,
and microwave photonic systems. This issue has witnessed a constant increase in the
number of publications with an explosive growth of the localized structures (LSs)
theme, as evidenced by recent review papers [10, 11].

Most of the works on passive cavities employ resonant structures to increase
the local-field intensity and hence the nonlinear optical effects that characterize the
effective material response to intensive optical field. In Kerr media, pattern forma-
tion originates from the third-order nonlinearity via a process called modulational
instability. Frequency combs generated in Kerr microcavity resonators [10, 11] are
the spectral content of the stable localized patterns occurring in a pinning range of the
parameter space where the system exhibits multistability [12]. Localized structures
and localized patterns consist of stable single or more peaks on top of a low-intensity
background [12]. Moreover, LSs appear in other classes of systems such as popula-
tion dynamics, chemistry, nonlinear optics, and laser physics (see overviews on this
issue [13–22]).

In another line of research, it has been shown analytically and experimentally
that a Kerr resonator driven by an inhomogeneous Gaussian pumping beam supports
stable localized structures in a bistable regime [23]. These types of LSs connect the
two homogeneous solutions and become stable, thanks to thewell-knownmechanism
based on front interaction. Front dynamics have been investigated in synchronously
pumped passive all-fiber resonators [24, 25]. These structures occur in a regime
far from any modulational instability assuming that the system operates in a direct
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Fig. 1 Schematic setup of an optical diffractive and dispersive Fabry-Perot cavity filled with a Kerr
medium and coherently driven by an external field Ei . The input-output mirrors M1,2 are separated
by a distance l and are identical. The field output intensity shows isosurface associated with the
formation of three-dimensional localized structures involving six light bullets. Figure reproduced
from [28]

dispersion regime. The trajectory of the position of the LS is derived from the LLE
and its hyperbolic tangent analytical expression perfectly fits the experimental data
[23]. The experimental analysis supported by numerical simulations has indicated
that LSs do not necessarily stabilize at minima or maxima of the injection [26]. A
phase-modulated injection has been also applied to a Kerr resonator [27]. This effect
allows for the stabilization of a single peak LS out of a multistability regime [27].

This chapter is organized as follows.After an introduction, we present in Sect. 2 an
analysis of the homogeneous, periodic stationary solutions in the classical LLE with
homogeneous injection, where we are going to mostly summarize previous results
[28] on diffractive and dispersive Kerr resonators submitted to an optical injection
(see Fig. 1).We discuss in Sect. 3 the conditions under which localized structures and
soliton frequency combs are formed in high-Q resonators. In Sect. 4, we focus on
localized structures and we investigate their homoclinic snaking bifurcation diagram
in the presence of inhomogeneous pumping. We conclude in Sect. 5.

Our aim in this contribution is not to review but to highlight some important
properties of the LLE and its diverse applicability in the fields of photonics and
nonlinear sciences. Therefore, this introduction ismeant for active research physicists
and engineers working in nonlinear science and nonlinear photonics wishing to have
a quick overview of recent developments in terms of the applicability of the LLE
concerning soliton frequency combs.
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2 Space-Time Dynamics of High-Q Resonators

2.1 The Mean-Field Model

High-Q Kerr resonators are widely described by the paradigmatic LLE [9]. This
model is used to investigate the dynamical properties of laser fields confined in non-
linear optical resonators. The LLEmodel was derived using themean-field approach,
and external power can be coupled into the cavity only if the system is close to res-
onance. This implies that both the linear cavity detuning and the nonlinear cavity
phase shift must be much smaller than unity. In addition, we assume that the cavity
is much shorter than the diffraction, dispersion and nonlinearity spatial scales. Fur-
thermore, a single longitudinal mode operation is assumed [9]. In its general form
the LLE reads [29]

∂E

∂t
= i

(
α∇2

⊥ + β
∂2

∂τ 2

)
E − (1 + iθ)E + i |E |2E + Ei . (1)

Here E(x, y, t, τ ) is the normalized slowly varying envelope of the electric field that
circulates within the cavity and Ei is the amplitude of the injected field which is real
and positive in order to fix the origin of the phase. The time variable t corresponds to
the slow evolution of E over successive round-trips. τ accounts for the fast dynamics.
The parameter θ is the cavity detuning with respect to the injected field. β is the chro-
matic dispersion coefficient. The diffraction process acting in the transverse plane
(x, y) is described by the Laplace operator ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2. Diffraction α
and dispersion β coefficients can have the same or opposite signs. The diffraction
coefficient can be negative if the cavity is operating in a self-imaging configuration
or when using a left-handed material. The dispersion coefficient β can be either
positive or negative depending on whether the dispersion is anomalous or normal,
respectively.

The mean-field approximation used to derive the LLE Eq. (1) has been com-
pared with the propagation model supplemented by cavity boundary conditions for
both quadratic [30, 31] and Kerr [32] cavities. This model has also been success-
fully applied to describe all-fiber cavities [33] and resonators filled with left-handed
materials [34]. It has been considered the basicmodel for the study ofmicroresonator-
based optical frequency combs [35] (see also the review by Lugiato et al. [36] and
[37, 38]).

The LLE Eq. (1) possesses homogeneous stationary solutions Ehs , which can be
easily calculated by setting the spatial and temporal derivatives in Eq. 1 to zero. This
yields the input-output characteristics (Fig. 2)

|Ei|2 = |Ehs |2
(
1 + (θ − |Ehs |2)2

)
. (2)

The implicit expression given in Eq. (2) can be split-up in two expressions for the
real and the imaginary parts of the solution, respectively:
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Fig. 2 Input-output characteristics: intracavity field amplitude |Ehs | as a function of the injected
field amplitude Ei without considering spatial and temporal effects, i.e., neglecting the diffractive
and dispersion terms. Dotted lines represent unstable solutions, whereas solid lines depict stable
solutions. The transition from a monostable (θ = 1.5, red line) to a bistable regime (θ = 2.0, green
line) in a cusp bifurcation is clearly visible. For θ = 2.0 there exists a region of parameters where
three different stationary solutions exist, with the middle one being unstable. The blue line depicts
the response curve at the critical value of θ = √

3, i.e., the border between the monostable and the
bistable regime. When spatial modulation is considered, the monostable (red curve) and critical
(blue curve) lose stability in a modulational instability. The bistable curve (green) loses stability

Re(Ehs) = Ei

1 + (|Ehs |2 − θ)2
, (3)

Im(Ehs) = Ei (|Ehs |2 − θ)

1 + (|Ehs |2 − θ)2
. (4)

There exists a critical point marking the onset of a hysteresis loop when both the
first and the second derivatives of Ei with respect to |Ehs |2 vanish. This corresponds
to the inflection point of the intensity response curve corresponding to the critical
detuning for the onset θ = θc = √

3. For θ <
√
3 (θ >

√
3) the transmitted intensity

|Ehs |2 as a function of the input intensity E2
i is monostable (bistable). The transition

from a single solution to three possible solutions is sometimes referred to as a cusp
bifurcation due to the cusp-like shape of the response curve. When neglecting dis-
persion and diffraction terms in Eq. (1), the linear stability analysis shows that two
of these states are stable, which is why this coexistence is often referred to as optical
bistability.
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2.2 Modulational Instability and Pattern Formation

The linear stability analysis of the homogeneous solutions Eq. (2) with respect to
perturbations of the form exp (ı̇q.r + σt) with r = (x, y, τ ) and q = (qx , qy, qτ )

leads to a characteristic equation

σ2 + 2σ + 1 + (Ihs − θ)(Ihs − θ) + [
q2 − 2(2Ihs − θ)

]
q2 = 0, (5)

where Ihs = |Ehs |2. Equation (5) is obtained by assuming the following scaling (x, y)
� √

α(x, y) and τ �
√

βτ . In this section we assume that α and β are both positive.
The homogeneous stationary solution undergoes a symmetry-breaking instability
when the eigenvalue σ vanishes for a finite wavenumber [9]. Above this instability
point, there exist a finite band of unstable Fourier modes q− < q < q+, with

q2
± = 2Is − θ ± √

Is − 1, (6)

which are linearly unstable and trigger the spontaneous evolution of the intracavity
field towards a stationary, periodic solution that occupies the whole space avail-
able in the (x, y, τ ) Euclidean space. The threshold associated with the symme-
try breaking instability is obtained when q− = q+. The critical intracavity field
intensity is Ihsc = |Ehsc|2 = 1 and the corresponding critical injected field inten-
sity at the onset of the instability is Iic = E2

ic. At this bifurcation point, the critical
wavelength of the pattern which emerges from the symmetry-breaking or modula-
tional instability is �c = 2π/qc with qc = √

2 − θ. At the threshold associated with
the modulational instability, the homogeneous stationary solution becomes unstable
with respect to modes satisfying the relation, q2

x + q2
y + q2

τ = 2 − θ. There exists a

finite band of unstable Fourier modes lying on a sphere with radius qc = √
2 − θ.

In the absence of a source of anisotropy such as a birefringence or walk-off, the
Fourier modes are arbitrarily directed in the space (qx , qy, qτ ) and there is no pre-
ferred direction. Although a large number of unstable modes is excited along arbi-
trary directions, a periodic dissipative structure is selected. In the linear regime,
these three-dimensional structures can be approximated by a linear superposition
of p pairs of opposite wave vectors q j lying on the critical sphere of radius qc as
E(r, t) = Es + e

∑p
j=1 A j exp (ı̇qj.r) + c.c., where c.c. denotes the complex con-

jugate and e the eigenvector of the corresponding Jacobian matrix associated with
the zero eigenvalue, i.e., σ = 0. The lamellae and rhombic structures are charac-
terized by p = 1 and p = 2, respectively, and the 3D hexagons or hexagonally
packed cylinders correspond to q = 3 with

∑3
j=1 qj = 0. The face-centered-cubic

(fcc) lattice and the quasiperiodic crystals are obtained for p = 4 and p = 5, respec-
tively. The body-centered-cubic (bcc) lattice corresponds to n = 6. The bcc opti-
cal crystals are characterized by six pairs of wavevectors whose coordinates are
qc(±1,±1, 0)/

√
2, qc(±1, 0,±1)/

√
2, and qc(0,±1,±1)/

√
2. These wavevectors

form a regular octahedron of eight faces in the form of equilateral triangles.
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Fig. 3 (a) 3DBifurcation diagram associatedwith three-dimensional periodic dissipative structures
obtained in the weakly nonlinear regime (θ = 0.7 < 41/30). Broken lines correspond to unstable
solutions, and the continuous line corresponds to stable branches of solutions. The black dots along
the body-centered cubic (bcc) branch denote themaximum amplitude values associated with the bcc
solutions obtained by numerical simulations of the 3D LLE Eq.1. The lamellae and face-centered
cubic crystals, denoted respectively by lam and fcc, are unstable. TheHSS denotes the homogeneous
steady states which are stable for Ei < Eic and unstable for Ei > Eic. (b) Isosurface with the bcc
solutions obtained from numerical simulations, and (c) the Fourier spectrum of the bcc. Parameters
are Ei = 1.05 and θ = 0.7. Figure reproduced from [45]

A weakly nonlinear analysis allows determining the three-dimensional solutions
of amplitude equations. The relative stability analysis has been performed in [29, 39]
showing that the bcc crystals are the most stable solutions over all others. Note that
in two-dimensional settings, hexagonal structures are the most stable structures [40].
The bifurcation diagram displayed in Fig. 3(a) summarizes the results of the weakly
nonlinear analysis and the relative stability analysis. We plot the amplitude of some
of the above-mentioned three-dimensional solutions as a function of the injected field
with respect to the relative distance from themodulational critical threshold.Note that
the analytical solutions shown in the 3D bifurcation diagram Fig. 3(a) had not been
checked numerically [29] until recently. More recently, numerical simulations of the
3D LLE using a fourth-order exponential time differencing Runge-Kutta method
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for the temporal discretization [41, 42] and a Fourier spectral method with periodic
boundary conditions for the spatial discretization of the LLE [43, 44] has been carried
out. The results of this numerical simulation indeed provided an evidence of stable
bcc structures [28, 45].

When the chromatic dispersion is neglected, i.e., β = 0, it has been shown that
the coupling between diffraction and nonlinearity may lead to appearance of stable
periodic patterns such as hexagons that emerge from a modulational instability [46].
The relative stability analysis has shown that rolls and rhombic structures are unstable
with respect to perturbations in the form of hexagonal structures [40]. Secondary
bifurcations leading to self-pulsating hexagonal patterns have been predicted in [47,
48]. Besides periodic patterns, the same mechanism predicts the possible existence
of aperiodic, stationary localized structures. They consist of isolated or randomly
distributed peaks in the transverse plane surrounded by regions in the uniform state
[12, 49]. Self-pulsating localized structures in one and two-dimensional settings
have been investigated [50]. The interaction of self-pulsating localized structures
that emit weakly decaying dispersive waves can allow for the formation of bound
states [51–54].

When diffraction is neglected, i.e., α = 0, polarization properties of periodic
[55–57] and localized structures [58–61, 63, 64] have also been investigated. In
large intensity regimes, complex spatio-temporal dynamics such as spatio-temporal
chaos [65–68], rogue waves [66, 69, 70], and chimera states [71, 72] have been
demonstrated. In regimes devoid of Turing or modulational instability, switching
wave or fronts connecting the homogeneous steady states of LLE have been studied
theoretically and/or experimentally [24, 73, 74]. When diffraction and dispersion
have a comparable influence, the spatio-temporal dynamics of the nonlinear Kerr
cavity can be described by the three-dimensional LLE [29, 75, 76].

3 Localized Solutions of the Lugiato-Lefever Equation:
Homoclinic Snaking Bifurcation

We have shown how different dissipative structures can be excited in high-Q res-
onators using the LLE in a weakly nonlinear regime where the modulational insta-
bility appears supercritically, i.e., θ < 41/30. In this section, we explore the regime
where this bifurcation appears subcritically for θ > 41/30. This inversion of the
bifurcation associated with periodic solutions induces a regimewhere a single homo-
geneous steady state coexists with periodic structures. In this hysteresis loop, we can
generate aperiodic and localized states with appropriate initial conditions [77]. Since
LSs can only occur in a region where a stable homogeneous solution coexists with
stable patterned solutions, we will restrict ourselves to the latter subcritical case.
It is worth noting that the distinction between a super- and subcritical bifurcation
does not coincide with the above-mentioned differentiation between the mono- and
bistable regime, i.e., localized solutions can exist in both regimes. After discussing
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Fig. 4 Left: Real part of the solution profile of a single LS for θ = 1.7, Ei = 1.2. Right: Absolute
value (blue) and real part (red) of the Fourier transform of the LS. The real part consists of a sequence
of equidistant peaks (also called frequency comb). The imaginary part is not depicted for the sake
of better visualization; however, it exhibits the same comb-like structure

both homogeneous and periodic solutions of the LLE, we will now focus on the for-
mation of LSs, and we choose the parameters from the paper by Scroggie et al. [12].
The first theoretical prediction of localized structures has been realized in themonos-
table regime for θ = 1.7 and Ei = 1.2. An example of a single peak LS is shown in
Fig. 4 (Left). The investigation of LSs has recently sparked new interest since a direct
link between LSs of the temporal LLE and Kerr frequency combs (KCs) has been
established [36]. It was shown that the frequency spectrum of a temporal LS created,
e.g., in a microresonator, consists of a sequence of equidistant peaks spanning over
a broad frequency band. An example of a LS together with the corresponding KC
can be found in Fig. 4. In this parameter region, localized solutions do exist. Figure5
shows two examples of LS in this region, one for smaller θ with very pronounced
oscillatory tails and one for larger θ where the oscillatory tails are less pronounced,
yet still present. The presence (or absence) of oscillatory tails is of great importance
for the bifurcation structure of LS since the form of the tails predicts the possibility
of bound states between two or more LSs.

We are now going to analyze the bifurcation structure of LSs in this regime by
employing numerical continuation algorithms provided by the MATLAB package
pde2path. As a measure, we use the averaged L1 norm

L1 =
∫

dξ|Re(E − E)|.

E denotes the mean value of the electric field E(ξ) averaged over the domain size,
i.e., homogeneous solutions possess the norm L1 = 0.

In Fig. 6, the emergence of a single LS (green line) bifurcating from the first
periodic branch with an odd number of peaks (red line) is depicted. The fact that
this solution branches off from the periodic branch close to the Turing point is due
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Fig. 5 Real part of the solution profile of a single LS for θ = 1.5, Ei = 1.114 (left), and θ = 1.7,
Ei = 1.2 (right). The amplitude of oscillatory tails decreases drasticallywith increasing θ. However,
one side-maximum is still present in the case of θ = 1.7 (see inset)

Fig. 6 Left: Emergence of a single LS and odd numbers of bound LSs in homoclinic snaking for
θ = 1.7 with Ei as the continuation parameter and with the L1 norm as a measure. Shortly after the
periodic nine-peak solution (red line) bifurcates from the homogeneous solution (blue line) at the
Turing point, a single LS solution (green line) branches off of the periodic solution. In a sequence
of folds, the solution gains stability and then gains two extra peaks. This pattern continues until the
domain is filled with nine peaks and the branch of LSs reconnects with the periodic branch. The
thin gray lines in the background depict the even branch of LSs which are thoroughly discussed in
Fig. 7. Right: Solution profiles of the LSs at the marked positions illustrating the transition from a
single LS to a domain-filling pattern by addition of peaks
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to a finite size effect [78]. On an infinite domain one would expect both the periodic
branch and the LS branch to bifurcate at the same Turing point. The single LS then
gains stability in a fold. The solution profile of the single LS is depicted on the bottom
right of Fig. 6 as well as the solution profiles of all upper branches. The single LS then
loses stability in another fold but gains two additional peaks, then stabilizes again as
a three-peak solution. This sequence of folds continues until the peaks fill the entire
domain and the branch of LSs reconnects with the first stable periodic branch (in the
case of Fig. 6, the same red branch it bifurcated from originally).

This sequence of consecutive folds is typically referred to as homoclinic snaking
[79–81] (see overviews on this issue [82], in the theme issue [83], and in the very
recent Editorial to homoclinic snaking of 2021 in memory of Patrick Woods [84]). It
has been thoroughly studied in the LLE [49, 73, 85]. Besides the described branch
consisting of odd numbers of LSs, there exists also an even branch of LSs as depicted
in Fig. 7 (gray line in Fig. 6). In this case, a solution consisting of two bound LSs
(green line) bifurcates from the first periodic branch that becomes Turing unstable
(in this case the orange eight-peak branch). In a sequence of folds, the structure
gains additional peaks as in the case of the odd branch until the entire domain is
filled and the structure reconnects with the periodic ten-peak branch (red line). This
ten-peak solution is the first periodic solution with an even number of peaks that
gains stability. The eight-peak solution (orange) becomes Turing unstable before the
ten-peak solution; however, it does not reach stability. The fact that the even branch
connects to a different periodic branch than the odd LS branch can be attributed to
a finite size effect [86]. The even and the odd branch of the homoclinic snaking are
connected by so-called ladders [86], i.e., unstable nonsymmetric solution branches
connecting the two branches. However, since these branches are completely unstable,
they will not be the focus of the following analysis.

With increasing the detuning θ, the Turing bifurcation vanishes by colliding with
the right fold of the cusp-like homogeneous branch at θ = 2.0. Localized structures
still exist and can be directly traced by direct continuation starting from a parameter
regime θ < 2 into the regime θ > 2 [86], i.e., the stable single LS solution below and
above θ = 2 are connected. The same does not hold for bound states of two or more
LSs because the shape of the LSs changes qualitatively around θ ≈ 2. The localized
solution at the maximum possible injection Ei at the fold of the single LS depicted
in Fig. 6 loses its side maximum at θ = 2.08. Therefore, LSs are not able to form
stable bound states but repel each other above this value. The homoclinic snaking as
described above therefore breaks down [86].

In [86], this loss of tail was identified as a Belyakov-Devaney transition by analyz-
ing the system of four first-order ODEs describing the spatial dynamics of temporally
stationary solutions. The linear stability analysis of the homogeneous solution in this
framework shows a Belyakov-Devaney transition at θ = 2.0 at the fold. That is, the
system goes from having complex spatial eigenvalues λ1,2,3,4 = ±q0 ± iq0 to real
eigenvalues λ1,2 = ±q1 and λ3,4 = ±q2. Losing the imaginary part of the spatial
eigenvalues is equivalent to a loss of oscillatory tails in the linearized limit. The fact
that this transition takes place at θ = 2.0, whereas numerically, reminiscences of the
oscillatory tails can be found up to θ = 2.08 is due to nonlinear effects that are not
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Fig. 7 Left: Emergence of even numbers of bound LSs in homoclinic snaking for θ = 1.7 with
Ei as the continuation parameter and with the L1 norm as a measure. A solution of two bound LS
(green line) bifurcates from the eight-peak periodic solution (orange line) which is the first periodic
solution with an even number of peaks to branch off of the homogeneous solution (blue line). In a
sequence of folds, the solution gains stability and then gains two extra peaks. This pattern continues
until the domain is field with ten peaks and the branch of LSs reconnects with the periodic branch
of ten peaks, which is the first periodic branch with an even number of peaks that gains stability.
The thin gray lines in the background depict the odd branch of LSs which are thoroughly discussed
in Fig. 6. Right: Solution profiles of the LSs at the marked positions illustrating the transition from
a single LS to a domain-filling pattern by addition of peaks

considered in the linearized framework of [86]. In contrast to the case of θ < 2, the
single LS does not bifurcate from the periodic branch close to the Turing bifurca-
tion, the single LS branch for θ > 2 is the first solution branch, bifurcating from the
homogeneous solution.

In the same manner, the branch with k = 2�k coarsens to two peaks positioned
at a distance of L/2. The same goes for higher values of k, where a number of peaks
are positioned equidistant on the domain, i.e., a differentiation between a periodic
state and a state consisting of fewer equidistant LSs is not systematically possible.
Bulks of LSs that are closer together can exist for small values of Ei below the
Belyakov-Devaney transition; however, the distance between the LSs diverges in the
vicinity of the Belyakov-Devaney transition connecting these states to the branches
of equidistant LSs [86]. A branch with the peak number n is also connected to the
branchwith the peak number 2n by a ladder-like branch onwhich small peaks grow in
between every pair of existing peaks. This structure is referred to as foliated snaking.
A detailed discussion of this phenomenon is out of the scope of this chapter but can
be found in [86].
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Going to even larger values of the detuning θ > 3, the LSs are destabilized in an
Andronov-Hopf bifurcation leading to breathing LSs and through further instabilities
to spatio-temporal chaos [68]. Since the scope of this chapter are the properties of
stable LSs, it is necessary to determine where this instability sets in, in order to obtain
an overview of the parameter regime where LSs are stable. To that aim, we again
deploy numerical continuation algorithms provided by pde2path. Instead of using
only one continuation parameter while fixing all other parameters, we now use θ as
the continuation parameter and Ei as a free parameter that is determined to fulfill
an additional condition characterizing a fold or Andronov-Hopf bifurcation. In this
manner, it is possible to track the folds and the Andronov-Hopf bifurcation points
that delimit the stability of LSs in parameter space [87, 88].

4 Inhomogeneous High-Q Resonators

4.1 The Lugiato-Lefever Model with Inhomogeneous
Injection

TheLugiato-Lefever equation in its original formpresented in the last section exhibits
localized solutions in a broad parameter range. In this chapter, we are going to expand
the analysis to the case of inhomogeneous injection. In the classical LLE describing
spatial pattern formation, the injected beam is assumed to be a plane wave, i.e.,
Ei is constant along the coordinates (x, y, τ ). The investigation of the effects of
an inhomogeneous injection is important for two reasons: on the one hand, small
spatial inhomogeneities are unavoidable in any experimental setup, yet they break
the translational symmetry, which is typically assumed in theoretical models. This
symmetry-breaking effect can have a strong influence on the formation, position, and
dynamics of LSs and therefore needs to be investigated. On the other hand, it might
prove beneficial to introduce small inhomogeneities artificially. Since the injected
beam is comparatively easy to manipulate, this would provide a simple mechanism
to alter the properties of the system under consideration.

Although the LLE was intensively studied in the past decades, the effects of
inhomogeneous injection have not been as extensively studied and have gotten into
the focus of experimental research only recently [23]. In that work, the LLE with a
Gaussian pulse is applied to a Kerr cavity containing a liquid crystal. Later, the same
idea has been applied to all-fiber cavities [89, 90]. Another example of the study of
inhomogeneous injection can be found in Cole et al. [91], where the results suggest
that a phase-modulated injection can protect single LS generation by preventing the
multistability between different numbers of LSs typically present in the LLE. In
this section, we are limiting ourselves to the case of homogeneous injection with an
additional inhomogeneous portion in the shape of a Gaussian. For this purpose, we
rewrite the LLE in one-dimensional setting as
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∂E(ξ, t)

∂t
= Ei + A exp

(
−ξ2

B

)
+

[
−(1 + iθ) + i|E(ξ, t)|2 + i

∂2

∂ξ2

]
E(ξ, t).

(7)
Here, the coordinate ξ can be seen as either one of the transverse spatial coordinates
x or y or the fast time τ in the reference frame moving with the group velocity of
the light within the cavity while t is the slow time proportional to the round-trip
time. In contrast to Hendry et al. [90], who studied purely Gaussian injection, we
are going to mainly discuss the effects of small additional inhomogeneities, i.e.,
Ei is comparably large as in the homogeneous case, whereas the amplitude of the
Gaussian typically is A < 1. The width of the Gaussian is fixed to a moderate width
of B = 4.0 comparable to the typical length-scale of the system. Altering this width
within a reasonable limit does not affect the results presented here as drastically
as altering A and therefore will not be studied in this section. We are also limiting
ourselves to a Gaussian shape of the inhomogeneity. In the following we are focusing
on the impact introduced by the inhomogeneity in the injected field on the formation
of stationary LSs in different parameter regimes, also briefly discussing the impact
on homogeneous and periodic solutions. We will construct the bifurcation diagram
associated with the formation of LSs. The inhomogeneity allows us to not only
control the position of LSs but strongly affects their stability domains. In particular,
a new stability domain of a single-peak localized structure appears outside of the
region of multistability between multiple peaks of localized states [87, 88]. Finally,
in the last subsection, we apply the potential well model to the LLE, which was
derived and discussed in the context of the Swift-Hohenberg equation [92] and for
the LLE [87]. We close with a full exploration of parameter space, comparing the
results in the case of inhomogeneous injection to those in the case of homogeneous
injection presented in the previous section.

4.2 Homoclinic Snaking in the Presence of Inhomogeneities

We start with the analysis of the bifurcation structure of Eq. (7) in the regime of
homoclinic snaking discussed in the last section. Here, we are going to analyze the
emergence of LSs with increasing Ei and discuss the effects of the inhomogeneity
compared to the case of homogeneous injection. We are going to show that the inho-
mogeneity can act either attracting or repelling on the LSs, leading to LSs that are
pinned to the inhomogeneity on the center or on the side, respectively. Varying the
amplitude A in parameter continuations we are then going to discuss the transitions
between the different LSs and identify the bifurcations responsible for these tran-
sitions. In this section we investigate the effect of small added inhomogeneities on
the solution structure of the LLE in the regime of homoclinic snaking, i.e., in the
regime of θ < 2. One of the most obvious consequences of the introduction of an
inhomogeneous term is that the perfectly homogeneous solution as described in Eqs.
(3–4) vanishes. However, especially in the case of small A we are interested in, one
can still identify a solution that we are going to denote as quasi-homogeneous due
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Fig. 8 Homoclinic snaking in the presence of an attracting inhomogeneity for A = 0.1, B = 4.0,
θ = 1.7 (green line) and in the absence of the inhomogeneity (blue line) obtained by numerical
continuation on a domain of L = 100. The inset depicts two solutions at the positions marked by
the crosses. In the presence of the inhomogeneity, no perfectly homogeneous solution exists but a
quasi-homogeneous solution (gray line, inset). This quasi-homogeneous solution is connected with
the LS solution (black line, inset) via two folds. The region of existence (and stability) of the single
LS is drastically increased even by the small inhomogeneity, whereas the higher branches of the
snaking diagram remain almost unaltered

to its similarities to the homogeneous solution in the previous section. The quasi-
homogeneous solution shows a slight bump or peak (depending on the sign of A)
at the position of the inhomogeneity while consisting of the homogeneous solution
elsewhere. An example of the quasi-homogeneous solution for A = 0.1, θ = 1.7,
Ei = 1.12 can be found in the inset of Fig. 8 (gray line). The black line depicts a LS
at the same position.

Apart from the obvious difference in amplitude, the quasi-homogeneous solution
can be qualitatively distinguished from LSs by considering the different underly-
ing mechanisms responsible for the peak formation. The shape and height of the
peak (or bump) in the quasi-homogeneous solution are mainly determined by the
locally increased (or decreased) injection. Spatial interactions due to the Laplacian
or nonlinear effects hardly influence the peak formation. In other words, the value of
the quasi-homogeneous solution at the peaks maximum approximately matches the
value of the homogeneous solution with increased injection.

Focusing now on the destabilization of the quasi-homogeneous solution one can
note that the destabilization with respect to periodic perturbations as described in
the previous section is unlikely to happen in the presence of an inhomogeneity, since
the solution itself is inhomogeneous, defining a specific length-scale. Instead, the
quasi-homogeneous solution loses stability in a fold as depicted in Fig. 8. Following
another fold, a stable LS positioned on the center of the inhomogeneity emerges.
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Concerning the stability of the LS, two important differences to the case of homo-
geneous injection have to be pointed out. First of all, the LS in the case of A = 0.1 is
stable, not neutrally stable, towards perturbations in the formof an infinitesimal trans-
lation, i.e., the eigenvalue of the translational mode is non-vanishing and negative.
The breaking of the translational symmetry of the system by the inhomogeneity in
the case of positive A leads to a pinning of the LS on the center of the inhomogeneity.

Second, the onset of the region of stability of the single LS is shifted drastically
towards smaller values of Ei , as can be seen in Fig. 8. This shift is understandable
since the overall injection Einj at the peak consists of two contributions:

Einj.(x = 0) = Ei + A, (8)

i.e., a smaller amount of homogeneous injection Ei is needed for the creation of LSs.
However, more surprisingly, the next fold in the snaking diagram, delimiting the
region of stability of a single LS is hardly affected at all by the additional inhomo-
geneous injection. In Fig. 8, the case of an attracting inhomogeneity (A = 0.1, green
line) is depicted as well as the previously described case of homogeneous injection
(A = 0.0, blue line), showing that the fold where a single LS loses stability is not
drastically shifted. This difference provides valuable insights into the prerequisites
necessary for the formation of LSs. Only the injection (or driving in general) at the
maximum of the LS needs to exceed a certain value to create LSs; however, the
amount of injection at the sides of the LS seems to determine the end of the region
of stability.

Apart from this theoretical insight, this effect can be beneficial for the experi-
mental realization of cavity solitons or Kerr combs since it shows that by deploying
slightly inhomogeneous injection, one can drastically widens the region of stability
of the desired structures. Furthermore, as Fig. 8 suggests, the upper branches of the
snaking diagram are hardly affected at all by the inhomogeneity. At the end of the
snaking branch, the LSs even connect to a solution that fills the entire domain with
peaks; however, this solution is not perfectly periodic and such a solution does not
exist for all parameter values of θ and A. The fact that the upper branches of the
homoclinic snaking do not change in the presence of the inhomogeneity leads to
the second potentially useful result for experimental realizations: by using slightly
inhomogeneous injection, the region where only single LSs are stable gets widened
in contrast to the branches of several bound LSs yielding a parameter region where
solely the single LS is stable. Avoiding the multistability associated with homoclinic
snaking might be a promising way to address single LSs or Kerr combs more easily.

In the case of negative A, the bifurcation diagram in Fig. 9 shows that the norm
L1 as a function of the injected field amplitude Ei undergoes a homoclinic snaking
type of bifurcation. The quasi-homogeneous solution (lowest branch, solution profile
depicted on the lower left) evolves into a solution with a peak on each side of the
inhomogeneity. This branch (blue line) undergoes the classical homoclinic snaking,
with additional peaks growing on each side throughout the snaking. Solution profiles
at the positions marked by circles are depicted on the left. Shortly before the first
fold of the even branch, a single-peak solution (solution profile on the lower right)
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Fig. 9 Bifurcation diagram associated with the formation of localized structures under the effect
of inhomogeneity for with a negative amplitude of A = −0.1. Other parameters are θ = 1.7 and
B = 0.4

bifurcates in a subcritical pitchfork bifurcation. This solution undergoes a symmetry-
broken snaking where with each turn only one peak is added to the solution profile.
Peaks are only added on the far side of the inhomogeneity. Solution profiles at the
positions marked by the crosses are depicted on the right. Both the green and the blue
branches overlap substantially, since, e.g., a two-peak solution possesses essentially
the same L1-norm, regardless of the position of the peaks. It should be noted that none
of the branches connect to a periodic or a quasi-periodic solution. If one continues
to follow the branches they wind down again towards lower peak solutions.

Following the green branch, solution profiles at the positions marked with a cross
are depicted on the right-hand side of Fig. 9, showing that in this symmetry-broken
version of a homoclinic snaking diagram, peaks are not added in pairs to the solution
but the solution gains additional peaks one by one. Since the depicted L1-norm of
an n-peak solution does not differ greatly for different peak positions, the green and
the blue branches overlap when both branches show an even number of peaks. One
can note that similar bifurcations to the one leading to the emergence of the green
branch can be found close to every fold of the blue branch as is the case with the
so-called ladders [93]. The additional branches emerging from these bifurcations are
not depicted in Fig. 9 for the sake of clarity but these branches would also exhibit
solutions that show an uneven number of peaks on each side of the inhomogeneity.
Therefore, not only the completely symmetric and the completely asymmetric cases
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as depicted in Fig. 9 are possible, but so are every configuration of peaks on either
side of the inhomogeneity.

4.3 The Potential Well Model for the Inhomogeneous LLE

Since the impact of inhomogeneities in the injection on LSs is rather intriguing as
discussed in the previous section where both direct numerical simulations of the LL
Eq. (7) and numerical continuation techniques indicated that inhomogeneities can act
either attracting or repelling the LS depending on the amount of overall injection. To
further analyze the transition from an attracting to a repelling inhomogeneity, we use
a method that considers the single LS as an over-damped particle in a potential well
and has been applied to the Swift-Hohenberg equation [92] and to the LLE [87]. To
estimate semi-analytically the force exerted by the inhomogeneity at a position R = 0
on a particle located at position R, we perform a convolution of the inhomogeneity
with the spatial derivative of the solution profile in the absence of an inhomogeneity.
For this purpose, we decompose the right-hand side of Eq.7 into a homogeneous
part Nhom containing everything but the delayed terms and the inhomogeneity, and
an inhomogeneous part Ninh containing the inhomogeneity, i.e.:

∂t E(x, t) = Nhom[E] + Ninh[ξ] . (9)

We consider the following ansatz

E(ξ, t) = E0(ξ − R(t)) = E0h(ξ − R(t)) + w(ξ − R(t)), (10)

where E0 and E0h are the stationary solution of the inhomogeneous and homogeneous
system, respectively. The function w(ξ, t) describes the shape deformation of the
stationary solution caused by the inhomogeneity. The position R(t) denotes the
center of the localized structure. The goal is to derive a differential equation that
describes the time evolution of the position R(t). Inserting the ansatz Eq.10 into
Eq.9 yields:

− ∂R

∂t
∂ξE0[ξ − R(t)] = Nhom[E0(ξ − R(t))] + Ninh[ξ] . (11)

In addition, expanding Nhom[E0(ξ − R(t))] around E0h(ξ − R(t)) results in:

Nhom[E0] = Nhom[E0h] + L′[E0h]w + 1

2
L′′[E0h]ww + 1

6
L′′′[E0h]www. (12)

Inspection of Eq.12 reveals that 〈ϕG(ξ − R(t))|Nhom[E0(ξ − R(t))]〉 = 0, where
ϕG is the Goldstone mode of the homogeneous system associated with zero eigen-
value [92]. In fact, Nhom[E0h] = 0, because R0h is a stationary solution of the homo-
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geneous system. The linear term in w vanishes, because L′ is a self-adjoint operator.
The quadratic and cubic terms vanish, because even and odd functions are multiplied
and integrated over the full domain. Projecting 〈ϕG(ξ − R(t))| onto Eq.9 leads to:

∂R

∂t
= −〈ϕG(ξ)|Ninh[ξ + R(t)]〉

〈ϕG(ξ)|∂ξE0(ξ)〉 . (13)

The dynamics of the LS can be reduced to an ODE system with only the variable
R(t) which is the distance from the center of mass of the LS to the center of the
inhomogeneity.

∂R

∂t
= C

∫ {
Re[∂ξEhls(ξ)] Ae−(ξ+R)2/B

}
dξ = F(R), (14)

where C−1 = − ∫
∂ξEhls(ξ) · ∂ξEinhls(ξ)dξ and Ehls(ξ) refers to the stationary LS in

the homogeneous case (A = 0) written as a vector-function with the real and imagi-
nary part as separate components, whereas Ehls(ξ) refers to the same solution written
as a complex scalar.Einhls is the stationary centered LS solution in the presence of the
inhomogeneity (stable or unstable) also written in vector form. The right hand side
of Eq. (14) can be interpreted as the force F(R) exerted by the inhomogeneity on an
over-damped particle at a position R representing the LS. More detailed description
of the method used to derive Eq.14 is provided in [94]. The corresponding potential
V (R) therefore is defined as:

−∂RV (R) = F(R), (15)

and can be calculated by numerically evaluating the integral in Eq. (14). It has to be
noted, however, that the derivation loses its validity for large values of A; since then,
the shape deformation due to the inhomogeneity cannot be neglected.

Two examples of the calculated potential V (R) are depicted in Fig. 10, i.e. for
θ = 3.0, A = 0.1 and Ei = 1.6 (left) and Ei = 2.0 (right) respectively. The transition
from an attracting to a repulsive inhomogeneity, which has been discussed in the
previous section can be reproduced by the potential well approach. Furthermore,
the center of mass positions of the stable solutions (orange lines), which have been
calculated numerically, coincide well with the minima of the potential. The potential
well model therefore does not only qualitatively describe the transition from an
attracting to a repelling inhomogeneity but can also be deployed to quantitatively
estimate the position of LSs in the vicinity of an inhomogeneity.

The potential well model applied to the LLE however has one limitation: the
examples chosen in Fig. 10 both showcase where the position of the LLE is deter-
mined by its shape, i.e., the LSs pin to the inhomogeneity either with their maximum
in the attracting case, or with their first minimum in the repelling case. As described
previously, in a small parameter regime in between, they are pinned by certain ideal
values Eideal of the injection, which can be between minima and maxima. The poten-
tial well model does not reflect this behavior and therefore is not suitable to shed
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Fig. 10 Potential V (R) induced by an inhomogeneity of A = 0.1, B = 4.0 for θ = 3.0, Ei = 1.6
(left) and Ei = 2.0 (right). In agreement with the previous results, the inhomogeneity acts attracting
in the case of the smaller injection on the left-hand side and repelling in the case of the larger
injection on the right-hand side. The orange lines mark the position of the center of mass obtained
from numerical continuation showing a good agreement with the minima of the potential

light on it. It has to be noted though that this parameter regime in the presence of
small inhomogeneities is rather narrow, which is why the potential well model in
general still can be applied successfully to the LLE.

5 Conclusions

We discussed the formation of soliton frequency combs emanating from the output
of high-Q resonators filled with a Kerr media and driven by a coherent injected
beam. This simple device is well described by the Lugiato-Lefever equation. In
the first part, we have investigated the formation of periodic structures emerging
from a three-dimensional modulational instability that occurs in the cavity under the
combined influence of 2D diffraction and 1D chromatic dispersion. We showed how
the system evolves from the unstable homogeneous state towards the stable three-
dimensional body-centered cubic crystals. This 3D periodic structure is the most
stable solution over others such as lamellae, face-centered cubic, or quasiperiodic
crystals and its bifurcation structure is constructed in the absence of inhomogeneities.
These structures consist of regular distribution of localized structures traveling at the
group velocity of light within the cavity often called light bullets. In the regime
where the modulational instability appears subcritically, another class of aperiodic
but localized structures is formed in a regime where homogeneous solutions coexist
with a periodic structure in a finite range of parameters called the pinning zone. We
have discussed the formation of localized structures by drawing their homoclinic
type of bifurcation and have discussed their link to frequency combs. Frequency
combs generated in high-Q optical resonators are nothing but the spectral content of
the stable localized structure occurring in the cavity.
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The second part is more focused on the effect of inhomogeneity. We have consid-
ered an inhomogeneous injection in the formof aGaussian beam.Wehave shown that
for positive values of A, inhomogeneity acts as an attracting force on LS, and that the
LS pinned on the center of the inhomogeneity also persists for small negative values
of the inhomogeneity. In the case of negative A, the inhomogeneity acts repelling
on the center of the localized state. Finally, we have discussed the application of the
potential well approach after constructing the homoclinic snaking bifurcation.
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Optimization in Engineering Processes:
An Application of a Generalized
Fluctuation–Dissipation Theorem

Annie Steinchen

Dedicated to the memory of Slava Belyi
A missed colleague
Recently deceased from Covid-19

Abstract The generalization of the fluctuation–dissipation theorem is presented as
a tool to optimize transport processes beyond the linear laws of irreversible ther-
modynamics. The stability criterion accounting for non-local effects enlightens the
prominent role of the generalized quality factor Q and of the phase shift between
forces and fluxes and allows us to understand the microscopic response of complex
systems to fluctuations. It is the purpose of the present small review paper to show
example systems whose size is of the order of magnitude of the mean free path of
the heat carriers as it is in nanoscopic devices.

1 Introduction

During the last century, the linear laws of irreversible thermodynamics as first intro-
duced by L. Onsager [1] have been widely used by engineers [2] and the minimum
of entropy production [3–5] valid for these linear phenomenological laws was used
as a variational principle ruling the optimization of energy exchanges even out of its
application validity.

As already shown by many physicists for more than 50 years, when the
phenomenological laws between forces and fluxes deviate from the linearity [6, 7],
new variational principles are governing the regression of the fluctuations [8] so that
these last variational principles are now introduced to optimize processes in many
complex systems.

When extending irreversible thermodynamics to non-linear phenomena under-
going stochastic variations of the forces and fluxes, Nicolis [9] has derived an
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adequate definition of entropy and entropy production accounting for the effect
of the fluctuations that reduce to Prigogine’s formalism of classical irreversible
thermodynamics in the mean-field limit.

In his two last papers, Belyi [10, 11] shows that the spectral function of the
fluctuations is determined not only by dissipation but also by the derivatives of the
dispersion. New non-local effect originating from an additional phase shift between
the force and the response of the system is expected to be responsible for the properties
of nanomaterials such as carbon nanotubes [12] or graphene films, commonly used
now in advanced technologies.

Non-Fourier heat transfer and thermal waves [13] are indeed often reported [14]
in new devices designed for microelectronic cooling.

The extended thermodynamics has been applied recently by Jou et al. to heat
transfer in nanotubes [15, 16] and has been reviewed recently by G. Lebon [17].

Recently, Dong et al. [18] on the basis of the thermomass model of Cao and Guo
[19] gave a generalized expression of the entropy production for non-linear heat
transfer.

Because of semantic problems, it is often difficult to compare engineers’ and
physicists’ approaches, and to give a sense of the word “optimization” in terms
of stability, regression of fluctuations, and variational principles, it was for me a
nightmare that I try to evacuate in the next section.

2 Generalized Entropy Production in Non-Fourier Heat
Transfer

Historically, the linear law for heat conduction was shown to fail in solid dielectrics
at low temperatures. The search for a generalized Fourier equation has led Cattaneo
[20] and Vernotte to introduce their famous “telegrapher equation” that describes the
finite propagation speed of the second sound phonon gas and provides information
on the phonon scattering in solid-state heat transfer processes.

The Cattaneo–Vernotte equation introduces in addition to the classical Fourier
law for the heat flow q, an inertial term τ∂t q where τ is the heat flux relaxation time

τ∂t q + q = −λ∇T (1)

where λ is the heat conductivity (generally temperature-dependent).
Together with the energy conservation law, the following temperature equation

is obtained, at constant τ and λ called the telegrapher equation by analogy with the
propagation of a signal along an electric wire

τ
∂2T

∂t2
+ ∂T

∂t
= χ∇2T (2)
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where χ = λ/cv is the heat diffusivity.
As emphasized by Lebon [17], in nanomaterials, the mean free path of the heat

carriers is of the order of magnitude of the size of the system so that neither the
classical law of Fourier nor even Cattaneo’s equation is applicable so that the foun-
dations of classical non-equilibrium thermodynamics have been revisited. The role
of boundary conditions is also of fundamental importance in nanodevices, because
in such systems, bulk and boundary effects may be of the same order of magnitude.
Due to their mesoscopic sizes, the nanosystems make the bridge between the macro-
scopic description of irreversible thermodynamics and the microscopic approach of
statistical mechanics. The competition between the diffusive and ballistic modes of
heat transfer is described by a parameter linked to the size L of the system: the
Knudsen number Kn = 1/L. For large values of L, Kn < < 1, the regime is diffusive
while when L is of the same order of magnitude or smaller than the mean free path
of heat carriers, Kn ≥ 1 the ballistic regime dominates.

In the extended irreversible thermodynamics approach, the dissipative fluxes are
introduced as new variables of the generalized non-equilibrium entropy [6]. This
leads to the definition of thermodynamic forces and fluxes in order to maintain the
requirement of positiveness of the entropy production.

The non-equilibrium entropy is smaller than the equilibrium entropy depending
on the heat flux as an additional independent variable and reads

s(e, q) = seq(e, 0) − τ
(
2λT 2

)
q2

(3)

In other words, the equilibrium entropy contains in addition to the entropy of
non-equilibrium, a term due to the entropy created to reach equilibrium τ/(2λT 2)q2.

By a Legendre transform, the non-equilibrium entropy may be written as the
function of the temperature gradient

s ∗ (e,∇T ) = s(e, q) − τ∇T

T 2
(4)

It is interesting to note that Cattaneo’s relation is now derivable from a potential
identified as s∗ (e,∇T ); indeed, ∂s/∂q= 0 at the Fourier heat flux q= − λ∇T, i.e., at
the local equilibrium value of q instead of the global equilibrium value q = 0 for s(e,
q) chosen as the reference entropy. As shown by Lebon [17], the consequences of this
new non-equilibrium presentation are that it avoids the paradox of infinite velocity
of propagation of high-frequency signals and that it provides explicit formulations
of non-equilibrium entropy and temperature.

The non-local effects in small systems, peculiarly in non-Fourier heat transfers,
give a concrete example of the fluctuation–dissipation–dispersion relation for slow
processes as recently derived by Belyi [11].

Like the non-Joule dispersion contribution characterized by a non-local effect due
to an additional phase shift between the force and the response of the system, in nano-
materials non-Fourier heat transfer, there exists a similar balance between the two
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governing parameters mainly the heat capacity and the heat conductivity as between
electric capacitance and inductance in electric oscillation in plasma investigated by
Belyi [10] in its generalization of the Callen–Welton formula to systems with slowly
varying parameters.

The analogy appears straightforward and coherent with the recent ballistic-
diffusion model introduced by Chen [21, 22] and used for optimization purposes
by numerous Chinese engineering teams, for example, XuM. and Hu H. [23] or Cao
[24].

3 Conclusions

The nanoscopic systems are fascinating objects of research both in engineering and
in fundamental physics. There is a need to match both approaches in order to design
the most efficient nanodevices for cooling microelectronic devices. Optimization in
engineering aims to avoid the dangerous effects of amplification of temperature fluc-
tuations that could occur when the spectral function of the fluctuations is determined
not only by the dissipation but also by the derivatives of the dispersion.

The dichotomy betweenmicroscopic andmacroscopic descriptions is particularly
important in these mesoscopic systems that require the use of a multiscale approach.
Moreover, as the surface properties become dominant, all the governing parameters
have to be renormalized, the phonon–boundary interaction being sometimes promi-
nent. Even the definition of temperature in these systems is still to be clarified. A
very stimulating area of research!
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Co-evolutionary Complex Networks

Ioannis Antoniou, Evangelos Ioannidis, and Nikos Varsakelis

Abstract Co-evolutionary networks are mathematical graphs which are not passive
media of communication channels, simply supporting the spread of information.
The channels are actually redefined according to the spread of information among
the nodes. Co-evolutionary networks are learning. We report results on both passive
spread and active co-evolution in real networks, namely the influence of communi-
cation policies among agents, the impact of “experts” and “change agents”, hidden
influence, the spread of false beliefs, conflict, and the emergence of polarization and
centralization.

1 Introduction

When Slava sent to one of us (IA) his work on the generalized fluctuation–dissi-
pation theorem [1] and subsequent work [2], we realized that detailed balance was
under discussion [3]. In the graph theoretic representation, detailed balance means
locally that the in- and out-flows are balanced for each node. This of course is true for
transport networks, but not for communication networks. Thermodynamics, refor-
maluted in the language of Networks [4–6], reveals the geometry of macroscopic
relations. Diffusion in networks is a discrete process formulated as the spread of
local (node) properties in the network via the links. The key advantage of network
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theory [7, 8] is the explicit incorporation of interdependence among the elemen-
tary constituents of real systems. Interdependence is the mechanism conditioning
the emergence of structures far from equilibrium as emphasized by Ilya Prigogine
[9]. We review recent results concerning non-equilibrium spread in both passive and
active complex networks. The key idea underlying our work is Prigogine’s formula-
tion of traffic. Prigogine distinguished cars frommolecules by the fact that molecules
just collide and spread in a passive way, while car traffic is conditioned by active
selections among possible links [10–12]. This intelligent active transport is different
from the conventional energy-consuming active transport inspired by biology [13].
The spread dynamics in communication networks is formulated in Sect. 2. The influ-
ence of communication policies is discussed in Sect. 3 and the impact of “experts” in
Sect. 4.AttitudeChange andHidden Influences are addressed inSect. 5 and the spread
of false beliefs in Sect. 6. Finally, we discuss the emergence of Polarization (Sect. 7)
and centralization (Sect. 8) in Co-Evolutionary Networks. Co-evolution means that
space is not just a passivemedium of communication channels supporting the spread,
but a distributed medium of learning according to the spread of information.

2 Spread Dynamics

We denote byψκ(t) the activation of agent κ at time t. Activation means any relevant
qualification of each agent κ , such as knowledge level, attitude, opinion, and state
of health. The spread dynamics equation of the activations ψκ(t) in a network of N
agents is a generalization of the discrete diffusion equation in networks:

ψκ(t + 1) = ψκ(t) +
N∑

ν=1

Φνκ(t) (1)

∑N
ν=1 Φνκ(t) is the influence function of agent κ during time interval (t, t + 1].
Φνκ(t) is the influence function of agent κ from agent ν during time interval

(t, t + 1].
The influence of agent κ effectively sums the influences Φνκ from all agents of

the network. The specific form of the influence function depends on the nature of the
activation as well as on the modeling assumptions. In the case of activation spread,
the influence function is

Φλκ(t) = [[Ds
κ(t) = λ]] · wλκ · [[εmin

λκ ≤ ψλ(t) − ψκ(t) ≤ εmax
λκ ]] · (ψλ(t) − ψκ(t))

(2)

the term [[Q]] is the Iverson bracket which converts Boolean values to numbers 0, 1:



Co-evolutionary Complex Networks 279

[[Q]] =
{
1, if Q is True
0, if Q is False

ψκ(t) is the activation of agent κ at time t, taking values in the interval [−1, 1]
assessing the degree of positiveness or negativeness.

wλκ is the weight of influence of agent λ on agent κ , for activation change, taking
values in the interval [−1, 1].

Ds
κ(t) is the selection of the in-neighborλ by agent κ for communication, specified

by the corresponding selection probability psλκ . The bracket [[Ds
κ(t) = λ]] guarantees

that only agent λ was selected by agent κ at time t. Here, it is implicitly assumed
that only one agent is selected at a time. The selection probability psλκ reflects the
adopted selection rule (s) [14–16].

εminλκ and εmaxλκ are the “confidence bounds” for influence [15]. The bracket [[εminλκ ≤
ψλ(t) − ψκ(t) ≤ εmaxλκ ]] guarantees that activation influence may take place only if
εminλκ ≤ ψλ(t)−ψκ(t) ≤ εmaxλκ . This actually is a filtering rule (f), excluding (filtering
out) agents inappropriate for communication. The assumption that the influence of
agent λ on agent κ is proportional to the difference in activations ψλ(t) − ψκ(t) is
common in social influence models [14, 15]. This assumption is actually a discrete
form of diffusion.

3 Communication Policies in Organizational Knowledge
Networks

In knowledge networks, the activation ψκ(t) of each agent κ is its knowledge level,
taking values in the interval [0, 1]. The knowledge transfer efficiency from agent λ to
agent κ defines the weight wλκ of the communication channel λ → κ, taking values
in the interval [0, 1]. Knowledge transfer between two agents may take place only
from the agent with higher knowledge to the agent with lower knowledge, i.e. agent
κ may upgrade his/her knowledge level by the selected in-neighbor agent λ, only if
ψλ(t) − ψκ(t) > 0. The opposite direction does not contribute to the knowledge of
the selecting agent κ . This assumption is effectively a filtering rule (f) over the set of
in-neighbors, regarding the possibility for knowledge upgrade of the selecting agent
κ:

[[ψλ(t) − ψκ(t) > 0]]

Each agent in real networks adopts some communication policy [14], which spec-
ifies (a) the selection rule for communication, and (b) the prioritization of selection
versus filtering. There are 4 main selection rules, namely (i) random selection, (ii)
selection taking into account the incoming weights of the in-neighbors, (iii) selection
taking into account the knowledge levels of the in-neighbors, and (iv) selection taking
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into account both the knowledge levels and the incomingweights of the in-neighbors.
We present two extreme communication policies, namely

(A) The conventional communication policy f(s = r ) where filtering is imple-
mented after selection (fs prioritization). The selections of agents are assumed
random (s = r ) with selection probability:

ps=r
λκ = [[wλκ �= 0]]

∑N
ν=1[[wνκ �= 0]]

(B) The communication policy
(
s = wk

)
f where filtering is implemented before

selection (sf prioritization). The selections (s = wk ) of agents take into
account the knowledge transfer efficiency (w ) of each communication channel
as well as the knowledge level (k ) of each communicating agent. In this case,
the selection probability is

ps=wk
λκ = wλκ · ψλ(t)∑N

ν=1(wνκ · ψν(t))

The influence function (2) of the spread dynamics equation (1) takes two forms,
corresponding to the fs prioritization and sf prioritization:

Φfs
νκ (t) = [[ψν(t) − ψκ(t) > 0]] · [[Ds

κ

(
ψ(t), wμκ

) = ν]] · wνκ · [ψν(t) − ψκ(t)]
(3)

Φsf
νκ (t) = [[Ds

κ

(
ψ(t), [[ψμ(t) − ψκ(t) > 0]] · wμκ

) = ν]] · wνκ · [ψν(t) − ψκ(t)]
(4)

Faster knowledge attainment within organizations leads to improved innovation,
and therefore competitive advantage. Interventions on the organizational network
may be risky or costly or time-demanding.We have investigated [14] several commu-
nication policies in knowledge networks, which reduce the knowledge attainment
time without interventions. We present (Fig. 1) the impact of the selection rule
and prioritization on the emerging knowledge dynamics for two real organizational
networks, namely aConsultingCompany (CC) and aManufacturingCompany (MC).

We see clearly from Fig. 1 that the most efficient communication policy(
s = wk

)
f results in significant improvement of knowledge dynamics, compared

to the conventional f(s = r ) policy. For the CC network, the improvement is about
a 58% decrease in the Knowledge Attainment Time, while for the MC network the
corresponding decrease is 74%. The impact resulting from changing the commu-
nication policy from f(s = r ) to

(
s = wk

)
f is stronger for larger network sizes

[14].
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Fig. 1 Knowledge Attainment Diagrams (KAD) of the CC network (up) and the MC network
(down), comparing the

(
s = wk

)
f communication policy versus the conventional f(s = r ) policy.

The vertical axis is the percentage of the agents of the network, who have attained the maximal
knowledge due to spread, and the horizontal axis is time

4 Experts in Organizational Knowledge Networks

We have seen (Sect. 3) that “selecting” after “filtering” (sf prioritization) is more
effective compared to conventional fs prioritization. It is well-known that the pres-
ence of experts (highly knowledgeable agents) in the network generally improves
the performance of knowledge networks. We investigate the impact of prioritiza-
tion combined with experts’ positioning in the network. We discuss the simplest
random (s = r ) selection rule for communication with both prioritizations f(s = r )
and (s = r )f . The influence function (2) of the spread dynamics equation (1) takes
the corresponding forms:

Φf(s=r )
νκ (t) = [[ψν(t) − ψκ(t) > 0]] · [[Ds=r

κ

(
ψ(t), wμκ

) = ν]]
· wνκ · [ψν(t) − ψκ(t)] (5)

Φ(s=r )f
νκ (t) = [[Ds=r

κ

(
ψ(t), [[ψμ(t) − ψκ(t) > 0]] · wμκ

) = ν]]
· wνκ · [ψν(t) − ψκ(t)] (6)

The resulting knowledge attainment diagrams (KADs) for 5 representative
positionings of the experts are presented in Fig. 2.



282 I. Antoniou et al.

Fig. 2 Knowledge Attainment Diagrams (KAD) of Random Network (5% experts, weights = 0.2,
size = 20 N, where N = 200 agents). The 5 policies for positioning experts (random, degree, close-
ness, betweenness, and eigencentrality) are realized with the conventional prioritization “selection”
before “filtering” (fs prioritization—thin lines—right side), as well as with the reverse prioritization
“selection” after “filtering” (sf prioritization—thick lines—left side)

Knowledge attainment (Fig. 2) is significantly faster, when agents implement
“Selection” after “Filtering” (sf), compared to the conventional wisdom of “Selec-
tion” before “Filtering” (fs). This effect depends neither on the policy for positioning
experts nor on the structure of the network [17]. Most importantly, the best knowl-
edge attainment performance resulting from the conventional fs prioritization can
never match the performance of any knowledge attainment resulting from the supe-
rior sf prioritization. The reason for this fact is that sf prioritization ensures that
every “selection” realized after “filtering” results in some knowledge upgrade with
certainty. In other words, there are no “unfruitful” selections of agents for knowledge
upgrade, and therefore there is no waste of valuable time. On the contrary, with the fs
prioritization, selections of no knowledge upgrade are possible. The structure of the
network (random, small-world, scale-free) is less significant, if agents are intelligent
[17].
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5 Attitude Change and Hidden Influence in Organizational
Networks

The attitude of each agent is the activation ψκ(t), taking values in the interval
[−1, 1] assessing the degree of positiveness or negativeness. Theweightwλκ of influ-
ence of agent λ on agent κ , for attitude change, takes values in the interval [0, 1].
Agents resisting attitude change may “filter” relevant social influences of their in-
neighbors [15]. The selecting agent κ may be influenced by the selected in-neighbor
λ, only if the distance of their attitudes is not greater than the “tolerance” value
ελκ :|ψλ(t) − ψκ(t)| ≤ ελκ . This criterion for social influence is known as “bounded
confidence” [15]. We assume that ελκ = 2 · wλκ , taking values 0 ≤ ελκ ≤ 2 for
weight values 0 ≤ wλκ ≤ 1:

[[|ψλ(t) − ψκ(t)| ≤ ελκ ]]

We investigate 3 selection rules (Table 1) for communication in attitude networks:
(i) selection by randomness, (ii) selection by high link weight, and (iii) selection by
high link weight and high degree centrality.

The term dout
λ is the out-strength centrality, taking values in the interval [0, 1],

defined as

dout
λ = degoutλ

max
ξ=1,2,...,N

{
degoutξ

} =
∑N

μ=1 wλμ

max
ξ=1,2,...,N

{∑N
μ=1 wξμ

}

The selections of agents are realized with the conventional prioritization (filtering
after selection) fs. The influence function (2) of the spread dynamics equation (1)
takes the form:

Φfs
λκ(t) = [[Ds

κ(t) = ν]] · wνκ · [[|ψν(t) − ψκ(t)| ≤ ενκ ]] · (ψν(t) − ψκ(t)) (7)

We investigate the change of attitude of the agents of the network. Initially, all
agents have more or less the same attitude. We investigate selected Change Manage-
ment Strategies, aiming to influence the agents toward a “desired” attitude ψ target .

Table 1 Selection rules Selection rule s Selection probability psλκ

Random
s = r

prλκ = [[wλκ �=0]]∑N
ν=1[[wνκ �=0]]

Incoming weight
s = w

pwλκ = wλκ∑N
ν=1 wνκ

Incoming weight and out-strength
s = wd

pwd
λκ = wλκ ·dout

λ∑N
ν=1(wνκ ·dout

ν )
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The Change Management Strategies are implemented by engaging certain agents
initiating “change” by purposely disseminating messages, opinions, values, and
behaviors. These professionals are known as “change agents” [18]. The objective of
change agents is to influence the agents of the network, so that their attitude becomes
eventually close to the desired attitude ψ target . As change agents are in charge of
bringing about change within the network, their dynamics is distinguished from the
dynamics of the other (regular) agents. Change agents ω adjust their attitudes inten-
tionally toward the desired attitudeψ target , taking into account the attitude of their
out-neighbors. The attitude of each change agent ω should remain “close enough”
to the average attitude ψ

out
ω (t) of his/her out-neighbors, due to their “bounded confi-

dence”. The average attitude of the out-neighbors of the change agent ω at time t
is

ψ
out
ω (t) =

∑N
ν=1[ψν(t) · [[wων > 0]]]

∑N
ν=1[[wων > 0]]

The attitude of each change agent ω at time t + 1 is a shift in the average attitude
ψ

out
ω (t) toward the desired attitude ψ target , weighted by a “slicing” parameter β with

values 0 ≤ β ≤ 1. Therefore, the attitude dynamics equation for each change agent
ω is

ψω(t + 1) = ψ
out
ω (t) + β ·

(
ψ target − ψ

out
ω (t)

)
(8)

Change agents are actually triggering a “change cascade” in the network. “Thin
slicing” guarantees that influence is not “blocked” due to the “tolerance” limitations.

The term β ·
(
ψ target − ψ

out
ω (t)

)
in Eq. (8) is the “slice” of influence, used by the

change agent ω, to adapt to “tolerance” limitations of out-neighbors. Therefore,
the metaphor “thin slicing” means that the “slicing” parameter β is small enough
(up to 15% [15]). Change agents “adapt” their attitude to their local environment
as “chameleons” for maximal influence (hidden influence). The action of change
agents, in this perspective, is internal locally adaptive control. Results are obtained
by simulating the solutions (change management scenaria) on 4 real organizational
networks [15]:

An organizational network of a “Consulting Company” (CC) of size 46.
An organizational network of a “Manufacturing Company” (MC) of size 77.
A partnership network of a “Law Firm” (LF) of size 71.
An organizational network of an “IT Department” (IT) of size 56.

In order to investigate Change Management Strategies, we estimate the relative
decrease (%) of the average Change Adoption Time (CAT) in the case where change
agents are engaged based on some centrality, and communication among agents is
non-random (s = w or s = wd, Table 1). We compare (Fig. 3) the impact of the
Change Management Strategies with the case of no planning for initiating change
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Fig. 3 Relative decrease (%) of the average Change Adoption Times (CAT) with respect to random
engagement of change agents and “random” selection rule (s = r ), for the IT network with 10%
change agents. The 4 engagement policies of change agents based on high centrality (degree,
closeness, betweenness, and eigencentrality) are realized with “incoming weight” selection rule
(s = w ) (left) and with “incoming weight and out-strength” selection rule (s = wd) (right).
Results are presented for slicing parameter β = 5, 10, 15%

(random engagement of change agents) and no planning for communicating change
(random selection rule s = r ).

Planning the engagement of Change Agents and the Internal Communications can
accelerate theAdoption ofChange by 80% (Fig. 3), compared to “no planning”.More
specifically, the best changemanagement strategy is the engagement of change agents
based on degree centrality and preferential communication based on the “incoming
weight and out-strength” selection rule (s = wd). The value of planning (decrease
of the average CAT) is higher if there are a few change agents in the network.

We compare further the social influence capability of employees of different hier-
archical classes. The social influence capability is estimated in terms of centralities.
We present (Fig. 4) the results for degree centrality (the best engagement policy) for
the four real organizational networks.

We observe that employees in senior positions do not always serve as the best
change agents (Fig. 4). For example, all “Executives” in the IT network have a very
low degree of centrality compared to other employees, even from the “Administrative
Staff”. In addition, many “Researchers” in the MC network are more suitable to act
as change agents compared to “Project Leaders”. On the contrary, several senior
employees in both CC and LF networks have also a high degree of centrality.

6 Unreliable Organizational Knowledge Networks

In real knowledge networks, false beliefs spread among agents due to the presence
of unreliable channels [19]. The activation ψκ(t) of each agent κ is its knowledge
level, taking values in the interval [−1, 1], with interpretation indicated in Table 2.
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Fig. 4 Employee hierarchical class versus employee centrality in four real organizational networks.
Dots represent employees

Table 2 Knowledge levels on a specific knowledge item and interpretation

ψκ(t) = 1 The agent κ has global knowledge

0 < ψκ(t) < 1 The agent κ has partial knowledge

ψκ(t) = 0 The agent κ is ignorant, having no knowledge

−1 < ψκ(t) < 0 The agent κ has partially false beliefs

ψκ(t) = −1 The agent κ has false beliefs in all statements related to global knowledge

The off-diagonal weights wλκ(t) (Table 3) estimate the knowledge transfer effi-
ciency through the communication channel λ → κ from agent λ to agent κ . The
diagonal weights (Table 4) wκκ(t) estimate the knowledge creation efficiency of the
agent κ .

We consider randomly evolving weights, according to a uniform distribution. The
weight evolution is independent of the knowledge evolution. Knowledge transfer
networks include only non-creative agents (wκκ = 0). Knowledge creation networks
include also at least one creative agent (wκκ �= 0). The selections of agents are

Table 3 Off-diagonal weight values and interpretation

wλκ(t) = 1 The communication channel λ → κ does not introduce any limitations or
errors

0 < wλκ(t) < 1 The communication channel λ → κ involves limitations or/and errors which
reduce the transmission and/or absorption of knowledge

wλκ(t) = 0 There is no communication channel from agent λ to agent κ

−1 < wλκ(t) < 0 The communication channel λ → κ involves limitations or/and errors which
result in changes from “justified-true-beliefs” to “false-beliefs”

wλκ(t) = −1 The communication channel λ → κ changes all “justified-true-beliefs” to
“false-beliefs”
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Table 4 Diagonal weight values and interpretation

wκκ(t) = 0
Non-creative agent

Agent κ cannot increase or decrease his/her knowledge ψκ(t), from time t
to t + 1, due to his/her own creative work only

wκκ(t) �= 0
Creative agent

0 < wκκ(t) ≤ 1
Innovative agent

The knowledge of agent κ is increasing from time t
to t + 1, due to his/her own innovative work only.
Agent κ is operating as a “source” of knowledge for
the system

−1 ≤ wκκ(t) < 0
Self-destructive agent

The knowledge of agent κ is decreasing from time t
to t + 1, due to his/her own self-destructive thinking
only. Agent κ is operating as a “sink” of knowledge
for the system

assumed random with the conventional prioritization (filtering after selection) f(s =
r ).

The off-diagonal influence function (2) of the spread dynamics equation (1) takes
the form:

Φf(s=r )
νκ (t) = [[ψν(t) − ψκ(t) > 0]] · [[Ds=r

κ (t) = ν]] · wνκ · [ψν(t) − ψκ(t)] (9)

The knowledge creation (diagonal influence function) by agent κ during the time
interval (t, t + 1] is

Φκκ(t) = wκκ · [1 − ψκ(t)] (10)

Knowledge creation may be modeled as knowledge transfer from a “knowledge-
able self”, possessing the globally available knowledge ψλ(t) = 1. Therefore, the
knowledge dynamics equation for each agent κ , during the time interval (t, t + 1], is

ψκ(t + 1) = ψκ(t) + max

{
N∑

λ=1

Φλκ(t),−1 − ψκ(t)

}
(11)

The term max
{∑N

λ=1 Φλκ(t),−1 − ψκ(t)
}
in the RHS is introduced in order to

keep the knowledge levels bounded from below, in the interval [−1, 1].
We investigate representative spread scenarios for a 5-agent network with (A)

non-negative random weights (Fig. 5), (B) non-positive random weights (Fig. 6),
and (C) random weights with no sign restriction (Fig. 7).

Knowledge evolution for non-negative weights has been illustrated in two real
organizational knowledge networks, namely a “Consulting Company” (CC) of size
46 and a “Research Team of a Manufacturing Company” (MC) of size 77 [19].

We further examine (Figs. 8 and 9) how attacks on links (“breaks” or “infections”
of certain “healthy” communication channels) influence knowledge dynamics, in the
following two cases:



288 I. Antoniou et al.

Fig. 5 Knowledge evolution for non-negative random weights. Left: Knowledge transfer may
occur, without knowledge creation. Initial false beliefs do not influence significantly the knowledge
dynamics of the agents. Right: Only one agent (κ = 1, red) is creative, whose initial knowledge is
not maximal. The non-creative initial “experts” or “gurus” (κ = 3, blue) will “follow” the creative
agents (κ = 1, red), who eventually become the new “experts”

Fig. 6 Knowledge evolution for non-positive randomweights. Left:Knowledge transfermayoccur,
without knowledge creation. False beliefs emerge via unreliable communication channels, even if no
false belief is present initially. Middle: All agents are creative. False beliefs may “infect” all agents,
resulting in global “knowledge death”. In such a case, “resurrection” is possible only by reliable
knowledge creation. Right: Only one agent (κ = 3, blue) is creative, whose initial knowledge is
maximal

• Intervention by Breaking Links (elimination of certain links)
• Intervention by Infecting Links (reversing the sign of certain links).

We explore three attack strategies for the selection of links to attack, namely

• Attacking Links with High Weights (W-Strategy)
Select the links λ → κ with the highest weights wλκ .

Only the network structure is considered.

• Attacking Links with High Weights capable to Transfer Knowledge (TW-
Strategy)

Select the links λ → κ with the highest weights that satisfy the condition at
t = 0: ψλ(t = 0) − ψκ(t = 0) > 0.
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Fig. 7 Knowledge evolution for random weights with no sign restriction. We re-examine the
scenarios with non-negative random weights (Fig. 5), with no sign restriction on the weights.
Left: Although initial false beliefs have no significant influence on knowledge dynamics (Fig. 5),
unreliable communication channels result in significant increase in the knowledge attainment
times accompanied by “violent” knowledge fluctuations. Right: One creative agent is sufficient
to “enlighten” all agents toward attaining global knowledge, even in the presence of agents with
false beliefs and unreliable channels. This is true in general (theorems I and II in [19])

Fig. 8 Knowledge Attainment Diagrams (KAD) of the CC network, after attacking 2% links

Fig. 9 Knowledge Attainment Diagrams (KAD) of the MC network, after attacking 2% links
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The network structure and the possibility for knowledge transfer at t = 0 are
considered.

• Attacking Links with High Knowledge Transfer (KT-Strategy)

Select the links λ → κ with the highest value of the knowledge transfer at t = 0:
[ψλ(t = 0) − ψκ(t = 0)] · [[ψλ(t = 0) − ψκ(t = 0) > 0]] · wλκ .
The network structure and the knowledge transfer at t = 0 are considered.
“Infecting” links is more harmful than “breaking” links. Infecting links results

in slower knowledge attainment, compared to breaking the same links. This is not
unexpected, given our observation that infected links give rise to “wild” fluctua-
tions (Fig. 7). Attacking links with high weights, regardless of their capability for
knowledge transfer (W-Strategy or TW-Strategy), has a small impact on knowledge
attainment (Figs. 8 and 9). The reason for this fact is that the links selected with
the W-Strategy or the TW-Strategy may transfer little or even no knowledge. On the
contrary, knowledge attainment (Figs. 8 and 9) is significantly influenced by attacks
on links with high knowledge transfer (KT-Strategy). Most significantly, attacks
based on the KT-Strategy cause delays in the start of knowledge attainment. For
example, for the 2% attack, knowledge attainment effectively begins after 20 steps
for the CC network (Fig. 8) and after 80 steps for the MC network (Fig. 9). This
means that the network remains “non-operational” for a significant duration after the
attack.

7 Conflict and Polarization in Co-evolutionary
Organizational Networks

In real communication networks, there is strong interdependence of attitudes ψκ(t)
and influence weights wλκ(t). The attitudes take values in the interval [−1, 1]
assessing the degree of positiveness or negativeness (Sect. 5). The weights may
also take values in the interval [−1, 1], interpreted as “attractive” or “repulsive”
interpersonal social ties. We discuss evolutionary scenarios assuming the simplest
random (s = r ) selection rule for communicationwith the conventional prioritization
(filtering after selection) f(s = r ). The influence function (2) of the spread dynamics
equation (1) takes the form:

Φf(s=r )
νκ (t) = [[|ψν(t) − ψκ(t)| ≤ ενκ(t)]] · [[Ds=r

κ (t) = ν]]
· wνκ(t) · [ψν(t) − ψκ(t)] (12)

The attitude dynamics equation for each agent κ , during the time interval (t, t+1],
is

ψκ(t + 1) = ψκ(t) + [[ψκ(t) < 0]] · max
{

N∑

λ=1

Φλκ(t),−1 − ψκ(t)

}
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+ [[ψκ(t) ≥ 0]] · min
{

N∑

λ=1

Φλκ(t), 1 − ψκ(t)

}
(13)

The terms max
{∑N

λ=1 Φλκ(t),−1 − ψκ(t)
}
and min

{∑N
λ=1 Φλκ(t), 1 − ψκ(t)

}

are introduced in order to keep the attitude values boundedwithin the interval [−1, 1].
The evolution of weights depends on both attitudes and weights (co-evolutionary

network) (Chap. 7 of [8]). This is in fact a local learning rulewhich differs for selected
and non-selected agents. If the in-neighbor agent λ is selected by agent (Dκ(t) = λ),
the corresponding weight wλκ(t) may change due to Learning, depending on the
Relevance Feedback.We consider both positive (amplifying) and negative (damping)
feedbacks. The Relevance Feedback of agent κ from agent λ is assessed by the func-
tion Fλκ(t) = 1 − |ψλ(t) − ψκ(t)|, taking values −1 ≤ Fλκ(t) ≤ 1, depending
on the difference of attitudes |ψλ(t) − ψκ(t)|, with 0 ≤ |ψλ(t) − ψκ(t)| ≤ 2. The
Learning of agent κ from agent λ is assessed by the function Lλκ(t) = � · [[Fλκ(t) ≥
0]] + (1 − �) · [[Fλκ(t) < 0]], where � ∈ (0, 0.5) is a constant, implying the
“learning” rate of the interpersonal ties. The learning function Lλκ(t) takes values
0 ≤ Lλκ(t) ≤ 1, according to the sign of relevance feedback Fλκ(t). In this way, the
weights dynamics is conditioned by a “slow-positive” and “fast-negative” relevance
feedback Fλκ(t). The reason underlying this assumption is that trust, and therefore
influence, builds up slowly but may be torn down quickly [20]. The weight update
for the selected agents is

wλκ(t + 1) = (1 − Lλκ(t)) · wλκ(t) + Lλκ(t) · Fλκ(t) (14)

If the in-neighbor agent λ is not selected by agent (Dκ(t) �= λ), the corresponding
weight wλκ(t) is subjected to decay with parameter ζ ∈ (0, 1):

wλκ(t + 1) = wλκ(t) · ζ (15)

Combining Eqs. (14) and (15), we have the Weights Evolution Formula:

wλκ(t + 1) = [[Dκ(t) = λ]] · [(1 − Lλκ(t)) · wλκ(t) + Lλκ(t) · Fλκ(t)]

+ [[Dκ(t) �= λ]] · wλκ(t) · ζ (16)

We investigate the case where two competing groups of influential agents (“pro-
moters” versus “adversaries” of change) operate concurrently within the same orga-
nizational network. The social outcome of the co-existence of promoters and adver-
saries in the same organizational network is characterized by conflicting “pulls”
toward the two extremes of attitude +1 and −1. We assume that initially (t = 0) all
agents, except for the promoters and adversaries, are

Same-minded: all agents share the same “neutral” attitude ψκ(t), taking random
values in a narrow interval, as for instance [−0.05,+0.05].

Positively linked: all weights wλκ(t) are non-negative.
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Due to the above two initial conditions, only “attractive” interactions are possible
in the network, according to theAttitudeChangeDynamics Equation (13). Therefore,
if there is no external intervention, the final distribution of attitudesψκ(t) is expected
to lie within the same interval [−0.05,+0.05]. However, we assume that some of
the agents act as “promoters” or “adversaries”:

Promoters influence individuals toward the promoting attitude ψ+ = 1, while at
the same time,

Adversaries influence individuals toward the adverse attitude ψ− = −1.
Promoters and adversaries are purposely disseminating targetedmessages, beliefs,

values, and behaviors, influencing the individuals of the network so that their attitude
(of the individuals) to become eventually close to the “target” attitude ψ target , which
is equal to ψ+ = 1 (if the influential agent is a “promoter”) or equal to ψ− = −1
(if the influential agent is an “adversary”). We assume that “promoters” (ψ+ = 1)
and “adversaries” (ψ− = −1) have always the same attitude, like “informed” or
“stubborn” agents. The analysis is performed for the 4 real organizational networks
of Sect. 3 and presented in Figs. 10, 11, and 12.

From Figs. 10 and 11, we observe that the co-existence of promoters and adver-
saries may drive the network to the extreme polarization of attitudes: all agents
eventually adopt extreme attitudes ψ+ = 1, ψ− = −1.

Although initially all agents are positively linked, negative links are emerging,
reaching eventually a maximum value (blue horizontal lines in Fig. 12). The emer-
gence of negative weights is due to the feedbacks on weight updates (network co-
evolution). The dynamics of both positive and negative links are symmetric and
monotonic.

Fig. 10 Attitude diagrams for the 4 real organizational networks. Both promoters and adversaries
have high centrality and the learning rate � is 40%. The supporters, neutrals, and opponents are
represented in the upper, middle, and lower lanes, defined by the accepted deviation δ = 0.5 which
is indicated by the two blue horizontal lines. The number of promoters versus adversaries is 10%
versus 10%
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Fig. 11 Change adoption diagrams for the 4 real organizational networks, corresponding to Fig. 10

Fig. 12 Signed links diagrams for the 4 real organizational networks. Both promoters and adver-
saries have high centrality and the learning rate � is 40%.Thenumber of promoters versus adversaries
is 10% versus 10%. The blue horizontal line indicates the percentage of Final Positive Links (FPL).
The red horizontal line indicates the percentage of Final Negative Links (FNL)

In the theory of structural balance, Rapoport noted on page 541 of [21] that the
Structure Theorem generates 4 aphorisms corresponding to a balanced graph:

My friend’s friend is my friend (triangle category I)
My friend’s enemy is my enemy (triangle category II)
My enemy’s friend is my enemy (triangle category III)
My enemy’s enemy is my friend (triangle category IV).
Social influence, trust, and friendship are directed (asymmetric) relations, and

structural balance was formulated in terms of undirected triangles (symmetric rela-
tions). We extended structural balance for directed networks, considering signed
directed triangles [22]. The evolution of balance is presented in Fig. 13.
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Fig. 13 Balance diagrams for the 4 real organizational networks, corresponding to Figs. 11 and
12. The blue line indicates the minimal value of balance. This minimal value is called Minimal
Balance (MB). The green line indicates the time required for balance to take this minimal value.
This time is called Minimal Balance Time (MBT). The red line indicates the time required for the
re-establishment of balance. This time is called Balance Time (BT)

As negative links emerge, network balance decreases rapidly up to a minimal
value and afterwards, a “new” balance including both positive and negative links
is eventually re-established (Fig. 13). The macroscopic emergence of balance due
to microscopic local agent-to-agent interactions is an example of a “micro–macro
link”. Self-organization manifests because negative links emerge, until the balance
of signed directed triangles is re-established. This re-establishment of balance may
be seen as learning of the social network. The initial balanced network of same-
minded and positively linked agents evolves into a “new” balanced network where
same-minded agents are positively linked and different-minded agents are negatively
linked [22].This “new” balance emerges concurrently with a polarization of attitudes
(Figs. 11, 12, and 13).

8 Intelligence Agents and Centralization
in Co-evolutionary Knowledge Networks

We consider knowledge networks with non-negative activations ψκ(t) ≥ 0 and
weights taking values 0 ≤ wλκ(t) ≤ 1. The diagonal weight (self-weight) wκκ(t)
incorporates the capability of agent κ for innovation. We investigate several knowl-
edge dynamics scenarios, with the conventional fs prioritization (selection before
filtering) with 4 main selection rules, presented in Table 5.

The off-diagonal influence function (2) of the spread dynamics equation (1) takes
the form of Eq. (3) in Sect. 3:
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Table 5 Probabilistic selection rules for knowledge acquisition

Selection rule s Selection probability psλκ (t) Bound of rationality

Random
s = r

prλκ (t) = [[wλκ (t) �=0]]∑N

ν = 1

ν �= κ

[[wνκ (t) �=0]] All incoming links have equal
selection probability
There is no rationality, as
communication is random
The agent κ has no intelligence

Knowledge
s = k

pkλκ (t) = [[wλκ (t) �=0]]·ψλ(t)∑N

ν = 1

ν �= κ

([[wνκ (t) �=0]]·ψν(t))
More knowledgeable in-neighbors
have higher selection probability
Rationality is limited to the
awareness of the knowledge of the
in-neighbors
The agent κ has knowledge-based
intelligence

Weight
s = w

pwλκ (t) = wλκ (t)∑N

ν = 1

ν �= κ

wνκ (t)
Higher incoming weights have
higher selection probability
Rationality is limited to the
awareness of the incoming weights
The agent κ has weight-based
intelligence

Knowledge–weight
s = wk

pwkλκ (t) = wλκ (t)·ψλ(t)∑N

ν = 1

ν �= κ

(wνκ (t)·ψν(t))
Higher products of
weight · knowledge have higher
selection probability
Rationality is limited to the
awareness of the incoming weights
and the knowledge of the
in-neighbors
The agent κ has both knowledge-
and weight-based intelligence
The agent κ has finer discrimination
capability, lower bound of
rationality, and higher intelligence,
compared to the other cases

Φfs
νκ (t) = [[ψν(t) − ψκ(t) > 0]] · [[Ds

κ

(
ψ(t), wμκ(t)

) = ν]]
· wνκ(t) · [ψν(t) − ψκ(t)] (3)

The evolution of weights depends on both knowledge levels and weights (co-
evolutionary network) (Chap. 7 of [8]). This is in fact a local learning rule which
differs for selected and non-selected agents. If the in-neighbor agent λ is selected by
agent (Dκ(t) = λ), the corresponding weight wλκ(t) may change due to Learning,
depending on the Relevance Feedback. The Relevance Feedback of agent κ from
agent λ is assessed by the functionFλκ(t) = [[ψλ(t) − ψκ(t) > 0]] taking binary
values, 0 or 1, depending on whether some knowledge is transferred via the channel
λ → κ . If someknowledge is transferred, the channel efficiency (weight) is enhanced,
otherwise itweakens.TheLearningof agentκ fromagentλ is assessedby the function
Lλκ(t) = �·[[Fλκ(t) = 1]]+(1 − �)·[[Fλκ(t) = 0]], where 0 < � < 0.5 is a parameter
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implying the learning rate of the weights. The learning function Lλκ(t) takes values �

or 1− �, distinguished according to the value of the relevance feedback Fλκ(t). That
is because we want to incorporate a “slow-positive” (Fλκ(t) = 1) and “fast-negative”
(Fλκ(t) = 0) effect of the relevance feedback Fλκ(t) on the evolutionary dynamics
of the weights. The weight update for the selected agents is

wλκ(t + 1) = (1 − Lλκ(t)) · wλκ(t) + Lλκ(t) · Fλκ(t) (17)

If the in-neighbor agent λ is not selected by agent (Dκ(t) �= λ), the corresponding
weight wλκ(t) is subjected to decay with parameter ζ ∈ (0, 1) and the weight
evolution is given by Eq. (15):

wλκ(t + 1) = wλκ(t) · ζ (15)

Combining Eqs. (17) and (15), we have the Weights Evolution Formula:

wλκ(t + 1) = [[Ds
κ(t) = λ]] · [(1 − Lλκ(t)) · wλκ(t) + Lλκ(t) · Fλκ(t)]

+ [[Ds
κ(t) �= λ]] · wλκ(t) · ζ (18)

All agents create new knowledge (wκκ(t) > 0 for κ = 1, 2, . . . ,N ) periodically
with period T . The period T is the innovation rate of the system. The selection
function Dκ(t) incorporates (a) the selection of distinct agents ν (with ν �= κ) for
knowledge acquisition, based on some selection rule s

(
Dκ(t) = Ds

κ(t) = ν
)
, as well

as (b) the self-selection of agent κ (Dκ(t) = κ) for innovation productionwith period
T . Therefore, the selection function Dκ(t) is defined as follows:

Dκ(t) = [[ t
T

=
⌊
t

T

⌋
]] · κ + [[ t

T
�=

⌊
t

T

⌋
]] · Ds

κ(t) (19)

where �x� is the floor function which returns the largest integer not greater than x.
For example: �2.2� = 2 and �2.9� = 2.

Therefore, the diagonal influence function (2) of the spread dynamics equation
(1), representing the Innovation Production from agent κ , takes the form:

Φκκ(t) = [[Dκ(t) = κ]] · wκκ(t) · ψκ(t) (20)

The emerging dynamics of network co-evolution is assessed [23] in terms of

• the average knowledge of the agents and the “knowledge inequality” (standard
deviation of knowledge of the agents)

• the average selection entropy of the agents
• the out-degree centralization of the network.

We explore the impact of 4 significant factors on the emerging co-evolution of
the network, namely
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Fig. 14 Simulations for the 4 different probabilistic selection rules: (1) random s = r (black), (2)
knowledge s = k (red), (3) weight s = w (blue), and (4) knowledge-weight s = wk (green).
Results are illustrated for a the average knowledge (up left), b the standard deviation of knowledge
(up right), c the selection entropy (down left), and d the centralization (down right). The y axis for
the average knowledge (a, up left) and the standard deviation of knowledge (b, up right) is on the
log-10 scale, indicating the exponential increase of knowledge dynamics. Results are illustrated for
N = 100 agents with high innovation rate (period T = 5 steps), involving 5% top-innovators

• the intelligence of the agents, expressed by the selection-decision rule for
knowledge acquisition (Fig. 14)

• the innovation rate of the agents (Fig. 15)
• the number of “top-innovators” (Fig. 16)
• the network size (Fig. 17).

We observe (Fig. 14) that average knowledge and “knowledge inequality” are
both increasing exponentially in time. Intelligent agents reduce selection entropy
and centralize the network.

We observe (Fig. 15) that higher innovation rates result in (a) higher average
knowledge, (b) higher knowledge inequality, (c) stronger selection entropy decrease,
and (d) stronger network centralization increase.

We observe (Fig. 16) that fewer “top-innovators” result in a stronger selection
entropy decrease and a stronger network centralization increase.

We observe (Fig. 17) that smaller networks give rise to a stronger centralization
increase.



298 I. Antoniou et al.

Fig. 15 Simulations for the 3 different innovation rates: (1) low rate with period T = 15 steps
(black), (2) medium rate with period T = 10 steps (blue), and (3) high rate with period T = 5
steps (red). Results are illustrated for: a the average knowledge (up left), b the standard deviation
of knowledge (up right), c the selection entropy (down left), and d the centralization (down right).
The y axis for the average knowledge (a, up left) and the standard deviation of knowledge (b, up
right) is on the log-10 scale, indicating the exponential increase of knowledge dynamics. Results
are illustrated for N = 100 agents communicating by weight and knowledge (s = wk ), involving
5% top-innovators

Fig. 16 Simulations for the 3 different numbers of top-innovators: 5% (black), 10% (blue), and
15% (red). Results are illustrated for a the average knowledge (up left), b the standard deviation
of knowledge (up right), c the selection entropy (down left), and d the centralization (down right).
The y axis for the average knowledge (a, up left) and the standard deviation of knowledge (b, up
right) is on the log-10 scale, indicating the exponential increase of knowledge dynamics. Results
are illustrated for N = 100 agents with high innovation rate (period T = 5 steps), communicating
by weight and knowledge (s = wk )
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Fig. 17 Simulations for the 3 different network sizes: N = 100 agents (black), N = 200 agents
(blue), and N = 300 agents (red). Results are illustrated for a the average knowledge (up left),
b the standard deviation of knowledge (up right), c the selection entropy (down left), and d the
centralization (down right). The y axis for the average knowledge (a, up left) and the standard
deviation of knowledge (b, up right) is on the log-10 scale, indicating the exponential increase of
knowledge dynamics. Results are illustrated for agents with high innovation rate (period T = 5
steps), communicating by weight and knowledge (s = wk ), involving 5% top-innovators

9 Discussion

(A) The risky or costly structural interventions to organizational networks may be
avoided, simply by raising the awareness of the agents, so that the “fruitful”
selections for knowledge upgrade are more likely to be realized. The impact of
the order of implementation of “Filtering” (f) and “Selection” (s)onknowledge
attainment (Sects. 3 and 4) reveals the non-commutativity of these two network
operations in the context of knowledge networks, indicating a “Non-Boolean
Network Logic” [24].

(B) Raising the awareness of agents to implement intelligent selections is a much
more effective Knowledge Management Strategy, compared to changing the
positions of experts within the network from random to central nodes (Sect. 4).

(C) Senior employees are not always the most suitable to act as change agents.
Communicating with “local hubs” results in faster change adoption. Change
agents feed the members of the network with “thin slices” of influence, in order
to avoid crossing the “confidence bound”. Network-based “Planning” reduces
the change adoption time by 80% (Sect. 5). As highly influential employees
are not detectable from the formal organizational chart alone, Organizational
Network Analysis (ONA) is useful to identify the most suitable change agents,
and moreover to uncover the communication patterns resisting the adoption of
change.
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(D) False beliefs are transmitted through unreliable communication channels.Unre-
liable communication channels undermine seriously the knowledge acquisition
(Sect. 6). “Infecting” links is more harmful than “breaking” links, due to “wild”
knowledge fluctuations and the elongation of knowledge attainment. More-
over, attacking even a “small” percentage of links (≤5%) with high knowledge
transfermay result in dramatic elongation of knowledge attainment (over 100%)
as well as in delays in the onset of knowledge attainment. Links of high knowl-
edge transfer should be protected, because in Information Warfare, these links
are the “best targets”. “Infecting” channels is more harmful than “breaking”
channels. Managers should be aware that the impact of unreliable communi-
cation channels is far more serious compared to the impact of false beliefs
or ignorance. Therefore, managers should be timely aware of the “unhealthy”
unreliable relationships.

(E) Themacroscopic emergence of balance due tomicroscopic local agent-to-agent
interactions is an example of a “micro–macro link” (Sect. 7). Self-organization
manifests because negative links emerge, until the balance of signed directed
triangles is re-established. This re-establishment of balance may be seen as
learning of the social network. The proposed network co-evolution model
allows designing control scenarios involving conflict, for example, the planning
and simulation of slow or fast re-establishment of balance, or the intentional
emergence of structural split and polarization. The action of promoters and
adversaries resembles the action of driver nodes [25] for network control.

(F) Rational intelligent agents transform the network into a “centralized world”,
reducing the entropy of their selections-decisions for knowledge acquisition.
The average knowledge, aswell as the “knowledge inequality”, grows exponen-
tially (Sect. 8). Our work offers some insight into the dynamics of networked
societies. The World Wide Web resulted in global interconnectedness. We are
interconnected through online social networks, platforms, and communities
(Facebook, LinkedIn, Instagram, Twitter, Airbnb, ResearchGate, TripAdvisor,
Booking, and YouTube). We are influencing each other, directly or indirectly,
intentionally or unintentionally, on a global scale. We share knowledge and we
rank individuals, services, or products. This “ranking” is visible, for example,
the Followers on Instagram or Twitter, the Endorsements on LinkedIn, the
Likes on Facebook, the 5-star experience at Airbnb or Booking or TripAd-
visor, the RG Score at ResearchGate, and the Views and Likes on YouTube.
Therefore, intelligent decision makers (selecting agents) being aware of this
ranking decide with higher rationality, lowing the selection entropy. Intelli-
gent selections are effectively a mechanism of “preferential attachment” (the
newcomer is aware of the degree connectivity of all other nodes, and attaches
to nodes with higher degrees). This behavior increases the centralization of the
network society because more and more individuals tend to select the “best
option” (high-ranked agents) and the link weights with the low-ranked agents
are weakening. Of course, the correlation between the rank/popularity and the
quality of the “best option” is not always positive.
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(G) Network structure and dynamics specify the possibilities. The actualization of
the possibilities is the implementation of the policy for “Selection” and “Filter-
ing”. The utilization of the available possibilities depends on individual choices,
including randomness [26]. Each choice (policy adoption) is in fact a passing
from “Potentiality” (δυνάμει) to “Actuality” (ενεργεία), realizing the “Ent-
elechy” (Eντελšχεια), as Aristotle defines the terms in Metaphysics (Books 7,
8, 9). The transition from “Net Potentiality” to “Actual Communication” is the
Entelechy. “We come much nearer to Aristotle’s ‘biological’ view of space–
time” [9]. “Life’s history on our planet (is) the single actualized version among
millions of plausible alternatives that happened not to occur” [27].
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Thermal Fluctuations Induced
Emergence of Umbilical Defects in
Nematic Liquid Crystal Cells

Esteban Aguilera, Marcel G. Clerc, David Pinto-Ramos, and Valeska Zambra

Abstract Optical vortices are equally relevant for their fundamental features as
beams with topological properties and applications in image processing, telecom-
munications, optical tweezers, and quantum information. The interaction of light
beams with umbilical defects in liquid crystal cells is a natural source of optical
vortices. Here we investigate, experimentally and theoretically, the mechanisms of
the matter vortices that appear in liquid crystal cells and establish statistical laws
that govern them. Based on an adequate stochastic equation, the law for the number
of nucleated vortices as a function of anisotropy, bifurcation parameter, and noise
level intensity is set. Experimental results show a fair agreement with the theoretical
findings.

1 Introduction

In the last decades, a great effort has been developed to understand spiral output light
beams about their axis of propagation, orbital angular momentum of light or optical
vortex [1–5]. These beams have a donut-like structure, that is, the beam intensity
cancels out into the center, generating a phase singularity into the envelope. Around
the point of zero intensity, the phase distribution forms an N -armed spiral, with N
being the topological charge [2–6]. These optical vortices have aroused interest from
both the fundamental and applied point of view. The photonic applications ranging
from optical tweezers [7–9], enhancement of astronomical images [10], quantum
computation [11], wavefront sensors [12], and data transmission [13]. From a fun-
damental point of view, the interchange of angular momentum between light and
matter has attracted attention (see the collected articles [5] and references therein).
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Fig. 1 Vortex nucleation in a nematic liquid crystal cell with homeotropic anchoring and negative
dielectric anisotropic constant. a Schematic representation of the experimental setup. The rods are
a schematic representation of the average orientations of molecules. b Snapshot of a vortex gas
obtained in the nematic liquid crystal (NLC) cell. The lower inset is a schematic representation of
the director and complex amplitude

Different methods have been used to generate optical vortices based on diffractive
elements [14], deformable mirrors [15], holograms [16], spiral phase plates [17],
nanostructured glass plates [18], and helical structures of liquid crystals [19–22]. In
most of these methods, the light beam interacts with a material object which has a
helicity. Hence, to control the optical vortex, it is important to have an adequate align-
ment between the light beam, the target, and the geometry of it. In the case of liquid
crystals with photosensitive walls, the light induces a vortex in the matter (umbilical
defect), with which interacts, generating an optical vortex [22–24]. These matter vor-
tices are described by a nonlinear amplitude equation, the Ginzburg-Landau equation
with real coefficients [24–26]. When a sufficiently large electric field is applied to
a nematic liquid crystal cell with homeotropic anchoring and negative anisotropic
dielectric constant, a gas of umbilical defects emerge (see Fig. 1). These defects later
begin to be annihilated by pairs with opposite charges [27]. The emergence process
and statistical rules that this phase singularity gas followed have not been established.

Using a liquid crystal cell with homeotropic anchoring and negative dielectric
anisotropic constant under the effect of a transverse voltage allows us to study
the statistical laws that govern the nucleation of vortices. Theoretically, based on
a stochastic amplitude equation, the Ginzburg Landau equation with additive noise,
we establish the law for the number of nucleated vortices as a function of anisotropy,
bifurcation parameter, and intensity of the noise level. Experimental results show a
qualitative agreement with the theoretical findings.
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2 Experimental Setup

Nematic liquid crystals are nonlinear optical media [27, 28], composed by rod-like
molecules that have a preferential orientational order but not a positional one. This
state of matter shares features of solids and liquids, such as fluidity and birefrin-
gence. Introducing a liquid crystal inside a cell, that is, it is sandwiched between
two confining layers, the molecules oriented according to anchoring conditions.
Homeotropic anchoring is characterized by molecules that are oriented orthogo-
nal to cell walls, as illustrated in Fig. 1. If the dielectric anisotropic constant of the
liquid crystal is negative, when applying a vertical electric field, the molecules tend
to orient orthogonal to it. This generates different domains connected by orienta-
tion defects or phase singularities, matter vortices [27]. Let us consider a 15 µm
thick cell, (SB100A150uT180 manufactured by Instec), filled with nematic liquid
crystal LC BYVA- 01 (Instec) with dielectric anisotropy εa = −4.89, birefringence
�n = ne − no = 0.1, rotation viscosity γ = 204 mPas, splay and bend elastic con-
stant, respectively, K1 = 17.65 pN and K3 = 21.39 pN. This sample is placed inside
a thermal control chamber (Linkam LTS420), which in turn is inserted inside a
microscope (Leica DM2700P), in between the crossed linear polarizers. The thermal
control chamber allows precise control of the temperature of the liquid crystal cell.
Likewise, cross-polarizer microscopy enables an efficient vortex detection method-
ology. Figure1a shows a schematic representation of the experimental setup. To
monitor the images a CMOS camera is connected to the microscope. A sinusoidal
voltage with a frequency 100Hz is applied to the sample.

Maintaining the temperature at 26 ◦C, the voltage is turned on, the dynamics of
vortex nucleation and annihilation are recorded. Figure2a depicts the temporal evo-
lution of the observed umbilical defects. To figure out vortex evolution, we have
considered a voltage sweep between 9.0 Vpp and 30.0 Vpp. Likewise, keeping the
voltage at 15 Vpp it is switched on and sweeping the temperature between 25 and
80 ◦C, the dynamics of vortex nucleation is analyzed. From the chart in Fig. 2a, we
infer that there is an abrupt process of vortex nucleation. The vortices are subse-
quently annihilated by pairs of opposite charges, generating a coarsening process
characterized by a power law [29].

3 Theoretical Description

To shed light on the vortex nucleationmechanisms, theoretically, we consider the liq-
uid crystal cell close to orientational instability, which is described by the stochastic
Ginzburg-Landau equation [24–26]

∂t A = μA − |A|2A + ∇2A + δ∂η,η Ā + √
T ζ(r, t), (1)
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Fig. 2 Nucleation and evolution of umbilical defects in a liquid crystal cell driven by an electric
field.aExperimental temporal evolutionof the number of vortices as a functionof time at fixeddriven
voltage of 15 Vpp, 100 Hz, and 26 ◦C. Right panel account for a temporal sequence of snapshots
of the liquid crystal cell driven by an electric field and constant temperature (t1 < t2 < t3 < t4 <

t5 < t6). b Numerical temporal sequence of polarized field 	(r, t) = Re(A)Im(A) obtained by
the numerical simulations of the stochastic Ginzburg-Landau equation (1) with μ = 1.0, δ = 0.0,
and T = 0.01

where the complex field A(r, t) accounts for the amplitude of the critical mode
that describes the deviation of the molecular director with respect to the verti-
cal direction. Ā accounts for the complex conjugate of A. μ is the bifurcation
parameter that is proportional to the voltage minus the critical Fréederickz volt-
age [24–26]. For a planar anchoring cell, the Fréederickz voltage has the analyti-
cal expression VFT ≡ 2π

√
K3/εa . δ = K1 − K2/(K1 + K2) is the parameter that

accounts for the anisotropy of the liquid crystal elastic constants. ∂η ≡ ∂x + i∂y
is a differential operator, note that the Laplacian operator satisfies ∇2 = ∂η,η̄.
ζ(r, t) is a Gaussian white noise with zero mean value 〈ζ 〉 = 0 and correlation
〈ζ(r, t)ζ̄ (r′, t ′)〉 = δ(t − t ′)δ(r − r′) and T accounts for the noise intensity level.
The main sources of noise are inherent thermal fluctuations and electrical fluctua-
tions on the applied voltage.

For μ � 0, the Ginzburg-Landau Eq. (1) has a null solution A = 0 as a stable
equilibrium, which corresponds to molecules that are not reoriented, homeotropic
state. For μ > 0, this state becomes unstable by means of a degenerate pitchfork
bifurcation, giving rise to the appearance of vortices [26]. Figure2b illustrates the
emergence of vortices in model Eq. (1) as a result of stochastic fluctuations. As in
the experiment, the uncontrollable fluctuations, noise, nucleates a large number of
vortices that are subsequently annihilated by opposite pairs. Numerical simulations
were implemented using a finite differences scheme in space that uses a centered
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stencil of five grid points with Runge-Kutta order-4 algorithm, with a 500 × 500
points grid temporal step dt = 0.0004, and Neumann boundary conditions.

4 Vortices Nucleation Law

Numerically, we have monitored the number of vortices at a given instant as a func-
tion of the bifurcation parameter μ. Figure3a summarizes the results found. From
these charts, we infer that the number of vortices grows linearly with the bifurcation
parameter. Likewise, we note that this behavior is not modified when we change
the anisotropy δ. Experimentally, we have studied the number of umbilical defects
in a given instant as a function of the voltage applied to the sample. We found that
the number of defects grows with the voltage, which shows a qualitative agreement
with the numerical results (cf. Fig. 3b). The defects emerge from the homeotropic
state, due to the inherent fluctuations of the system. Hence, to understand the nucle-
ation process, we approximate Eq. (1) by its deterministic linear part and consider
the Fourier mode decomposition A = Akeσ t+i(kx x+ky y), after straightforward calcu-
lations we get

σ = μ − k2x (1 + δ) − k2y(1 − δ) ± 2iδkxky, (2)

where Re(σ ) is the growth rate mode, kx and ky are wavenumber modes in the hor-
izontal directions. σ(kx , ky) > 0 corresponds to unstable modes. Notice that white
noise is characterized by excited in the samemanner all modes. The boundary condi-
tions and geometric dimensions of the system determine the wavenumbers of modes.
For simplicity, if we consider periodic boundary conditions and a square domain
wavenumbers take the form kx = 2πn/L and ky = 2πm/L , where L is the size of
the box and {n,m} are integer numbers. The nodes of the spatial modes correspond
to zeros of the amplitude; that is, these nodes correspond to phase singularities (vor-
tex germ) for the modes. The mode with the maximum number of vortices (nodes)
corresponds to σ = 0. To calculate this maximum number of vortices, we proceed
by calculating the number of modes in one direction [σ(nc, ky = 0) = 0], then in
the other [σ(kx = 0,mc) = 0], and finally we determine the maximum number of
vortices (nodes) by

N = ncmc =
(

L

2π

)2
μ√

(1 − δ2)
. (3)

Note that all other unstable modes have a similar expression (3) multiplied by
a proper fraction. Hence, the number of vortices is proportional to the previous
expression, in particular to the bifurcation parameter, which is consistent with what
is observed numerically and experimentally (see Fig. 3). Likewise, we note that this
result predicts that the number of vortices diverges when δ2 tends to 1. This limit
physically corresponds when one of the elastic constants diverges. This phenomenon
is observed when there is a nematic-smectic transition (K2 → ∞) when the temper-
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Fig. 3 The number of defects in a given instant as a function of the bifurcation parameter and noise
level intensity. The number of defects obtained from numerical simulations of Eq. (1) with μ = 1.0
at t = 12 (a) and t = 60 (b). The points with a bar account for mean value and standard deviation
obtained after carrying out for each parameter 30 realizations. Number of umbilical defects as a
function of the driven voltage at t = 0.5 s (c) and t = 1.0 s (d). The points with a bar account
for mean value and standard deviation obtained after five experimental realizations. The number
of defects in a given instant as a function of the anisotropic parameter δ. obtained from numerical
simulations of Eq. (1) at t = 12 (e) and t = 60 (g). The points with a bar account for mean value and
standard deviation obtained after carrying out for each parameter 20 realizations. The continuous
curves were obtained using the fitting function N = A/(1 − δ2)b + C . The simulations and fitting
parameters are specified in insets. (f) The number of defects in a given moment as a function of
the noise intensity level T . (h) Umbilical defects number as a function of the temperature after 1 s
of applying voltage 15 Vpp. The points with a bar account for mean value and standard deviation
obtained after carrying out 5 experimental realizations
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ature is modified [30]. However, the liquid crystal under our study does not present
this type of transition. The study of vortex nucleation near the nematic-smectic tran-
sition is in progress. Figure3 shows the number of vortices at a given moment as a
function of the anisotropy parameter δ. This result shows an excellent agreement with
expression (3). To study its trend, we have used a more general fitting function of the
form N = A/(1 − δ2)b + C , which can take into account the nonlinear effects and
errors of the vortex measurement method. From charts, Fig. 3e and g, note that the
critical exponent b evaluated at higher times is dissimilar that predicted theoretically.
This effect is due to the fact that nonlinear terms begin to play a non-negligible role.
Experimentally, we cannot carry out a similar analysis since elastic anisotropy δ is
determined by intermolecular interactions that we cannot control.

Formula (3) does not depend on the noise intensity level T . Indeed, the number
of vortices (nodes) does not depend on the intensity of the noise, however, their
presence is essential to stimulate unstable modes. Figure3f shows that effectively
the noise intensity level does not affect the number of vortices created. When the
noise intensity is very large the linear theory is no longer valid and the vortices
are no longer related to the linear modes (see Fig. 3f). To investigate experimentally
fluctuations that are inherent to our system, we have estimated the number of vortices
in a given moment as a function of temperature. Figure3h summarizes the results
found. We deduce that there is a tendency to increase the number of vortices with
temperature. The increase in temperature has a double effect; on the one hand, it
increases the thermal fluctuations and, in turn, modifies the elastic constants [30].
This last effect is responsible for the increase found in the number of vortices.

5 Noise Induced Emergence of One-Dimensional Defect

The above vortex creationmechanism should be a general defect creationmechanism
not only valid in two dimensions. A simple dimensionless model of one-dimensional
topological defects is the dissipative bistable model, which has the form [31, 32]

∂t u = εu − u3 + ∂xxu + √
Tχ(t, x), (4)

where u(x, t) is a one-dimensional order parameter, ε is a bifurcation parameter,
χ(x, t) is a Gaussian white noise with zero mean value 〈χ〉 = 0 and correlation
〈χ(x, t)χ(x ′, t ′)〉 = δ(t − t ′)δ(x − x ′) and T accounts for the noise intensity level.

The bistable model Eq. (4) is monostable for negative ε, where the equilibrium is
u = 0. When the bifurcation parameter changes sign and becomes positive, the sys-
tem exhibits a pitchfork bifurcation, giving rise to two equilibria u = ±√

ε, bistable
regime. In the latter regime,when inhomogeneous initial conditions are considered, it
exhibits domain walls between these two equilibria. These domain walls are usually
called kinks (uk) or anti-kinks. Analytically these solutions have the form
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Fig. 4 Number of kinks in a given instant as a function of the bifurcation parameter ε obtained from
numerical simulations of Eq. (5) with T = 0.1 at t = 20. The points with a bar account for mean
value and standard deviation obtained after carrying out for each parameter 80 realizations. The
continuous curves were obtained using the fitting function N = nε0.41. The right panels account
for a single kink and a kink gas, respectively

uk(x) = ±√
ε tanh

(√
ε

2
(x − x0)

)
, (5)

where x0 accounts for the position of thewall, that is, uk(x = x0) = 0. Figure4 shows
a single kink and several kink-antikink interacting solutions obtained from numerical
simulations of Eq. (4). These solutions are topological since the destruction of a kink
employing continuous deformations can only be carried out through collision with
an anti-kink.

When one starts from the null state, the fluctuations induce the emergence of
kink and anti-kink solutions. Figure4 shows how the number of kinks changes as
a function of the bifurcation parameter. This chart shows that the number of kinks
grows with the bifurcation parameter and has a power law. To understand this law,
we use the same strategy used to understand vortex emergence. Then we linearize
the dynamics around the zero value u = 0, which takes the form

∂t u = εu + ∂xxu + √
Tχ(t, x) (6)

Introducing the ansatz u = u0eikx+σ t , in the above equation, one get σ = ε − k2.
Hence, all unstable modes are in range {−√

ε,
√

ε}. The unstable mode with the
most spatial oscillations corresponds to k = √

ε = 2πN/L , where N is the number
of domains or zeros of the critical mode. Then the number of domains satisfies the
relation

N = L
√

ε

2π
. (7)

Therefore, the number of defects or kinks grows with the square root of the
bifurcation parameter. Figure4 shows a good qualitative agreement. However, the
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exponent is different. The possible origin of the difference between the exponent of
analytical expression (7) and the numerical one (see Fig. 4) are nonlinearities and
interactions of kinks and anti-kink that are neglected in the analytical expressions.

6 Conclusion and Remarks

Despite many studies of vortices for their fundamental properties associated with
particles with topological properties and their interest in various technological appli-
cations such as telecommunications, image processing, and optical tweezers, the
study of vortex nucleation in real physical systems had not been addressed to our
knowledge. Based on linear theory and stochastic fluctuations, we can establish that
the matter vortices are a consequence of the different excited unstable spatial modes.
The above is summarized by formula (3) multiplied by a constant that accounts for
the effect of all unstable modes. Therefore, we can establish that the number of vor-
tices grows proportionally to the bifurcation parameter; it is inverse to the square
of the elastic anisotropy and does not depend on the level of the noise intensity.
Experimental observations show a qualitative agreement with theoretical findings.
Vortices are an intrinsically nonlinear nature phenomenon; however, we show that
the generic mechanism for creating vortices in nature is based on a simple linear
theory of critical spatial modes.

Experimental imperfections, which give rise to heterogeneous parameters, can be
a source of vortices. To understand the effect of heterogeneities is by modifying the
linear problem to non-constant coefficients, which generates that the modes depend
on these coefficients. The inclusion of this type of effect is in progress. Likewise,
in the developed theory, we have considered no spatial and temporal correlation,
white noise; however, the system may exhibit spatial correlations, which may be a
consequence of the anisotropic elastic coupling of the liquid crystal. This type of cor-
relation may be responsible for exciting some privileged unstable nodes, stochastic
resonance. The inclusion of these phenomena can improve the simplified description
presented.
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Thermodynamic Instability
of the Atmospheric Boundary Layer
as a Precursor of an Earthquake

Sergey Pulinets

1 The Thermal Anomalies Before Earthquakes

The history of short-term earthquake forecast is the most complex and intricate in
modern seismology research. Starting from approval of concepts of the physical pre-
cursors [22] through its complete neglection [5] to reasonable understanding that
there is some light at the end of the tunnel [11]. Inside this mess, there is a small spot
that probably will lead us to the solution of the problem. It is the thermal anomalies
registered before earthquakes. They were known for many years [13] but remained
behind the main scene. Even important results [21], unfortunately, published and
limited and margin scientific sources were not known until they attracted our atten-
tion.

According to [13], the increase in the air temperature and drop of relative humidity
were observed during season/monthwhen the strongM > 5.4 earthquakes happened
in Central Asia (Turkmenia and Uzbekistan) [21] were surprised by excessive drop
of the air pressure few days before the earthquakes M > 4.5 in Tajikistan (Fig. 1).
But this effect gives clue to understanding of the observed phenomena.

Confirmation of the [13] results from Central Asia was obtained in Mexico while
registering the atmospheric conditions around the time of M7.8 Colima earthquake
on 21 January 2003 [16] when the synchronous variations of the air temperature
(increase) and relative humidity (decrease) were registered 1 week before the main
shock of Colima earthquake. These results were laid in foundation of the physical
mechanism of the observed thermal anomalies [17] and to further development of
the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model [18].

It should be noted that the pre-earthquake thermal anomalies characteristic to
practically 100% of earthquakes and are used now as reliable earthquake precursors.
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Fig. 1 Variations of the air temperature and pressure around the time of M4.5 earthquake near Sul-
tanabad registered at Dushanbe, 14 kmdistance from the epicenter. Dot shadowed areas demonstrate
the anomalous excessive drop of air pressure, vertical line shadowed areas—periods of excessive
increase of the air pressure

Fig. 2 Left panel—the air temperature variations over the epicenter of Crete M6 earthquake at
altitude 100m. Right panel—the relative humidity variations for the same case

So as not to be unfounded, we demonstrate in Fig. 2 the variations of air temperature
and the relative humidity before the Crete M6 earthquake on 27 September 2021.

One can see that anomalies start on 17 September, 10d before the main shock. It
should be noted that there were no mesoscale atmospheric phenomena in this region,
absolutely quiet weather, and if we use the official weather forecast, we would never
expect what is happened with the temperature and humidity after 17 September.
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2 Air Ionization as a Main Source of Pre-earthquake
Atmospheric Anomalies

It was established that sharp increase of radon emanation before earthquake within
the zone of earthquake preparation [26] in which size is determined by estimation
made by [3].Up to the altitudes near 1km radon is themain source of the air ionization
[7]. In general, enhanced radon emissions have been observed prior to earthquakes
and this has been recorded all over the world [15, 20]. Let us consider what effect
radon can provide in the near-ground layer of atmosphere [18].

Thus, the decay of radon 222Rn releases α-particles with energy Eα =−5.46MeV.
Since the energy of atmospheric gas ionization is in the range from 10 to 30 eV, each
α-particle released by radon can produce on the average∼3× 105 electron-ion pairs.
It is known from literature data [8, 23, 25] that the average radon activity near the
Earth’s surface is ∼2000Bq Bq/m3. Here, it should be noted that the measurements
were performed at a depth of around 70cm from the Earth’s surface in three quite
different geological regions (Mexico, Turkey, and Russia). These were not periods of
increased seismic activity. Since radon is known to be six times heavier than air, its
accumulation occurs in lowlands (ravines, gorges, and folds); this fact explains the
choice of the height at which the measurements were conducted. Also, it is known
that during the preparation of earthquakes, the radon activity can increase by an
order of magnitude; however, the reference level for calculation was taken of order
of ∼2000Bq Bq/m3. Then, in view of the ionization capacity of radon α-particles of
∼3 × 105 electron–ion pairs, the ion formation rate is ∼6 × 108 m−3 s−1.

As it was described in [17] after series of plasma-chemical reactions, the final ions
undergo the hydration process leading to formation of condensation nucleus. This
process is called the Ion Induced Nucleation (IIN) [10]. A hydrated ion of a size of
around 1–3 μm (particles of this size range are observed by the AERONET network
a few days before the earthquake) contains around 0.4 × 1012 water molecules. The
latent heat constant U0 is:

U0 ∼ ×103J/mole 1 mole = 6.022 × 1023. (1)

For a given radon activity and the formation of hydrated ions of a size of ∼1
μm, the release of latent heat is ∼16W/m2, which is consistent with experimentally
recorded fluxes of infrared outgoing longwave radiation (OLR) [14]. Since 1 eV =
1.6 ×10−19 J, a given radon activity of 2000Bq Bq/m3 leads to an expenditure on
ionization of 1.7 × 10−9 J/m3 s−1. The ratio of IIN-induced heat to the energy spent
on the ionization of atmospheric gases is then 16/(1.7 × 10–9) ∼ 1010, which is
evidence that the energetic efficiency of the process is extremely high.
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3 Autocatalytic Reaction Leading to Thermal Instability

We should take into account that we deal with the essentially non-equilibrium sys-
tem which the zone of earthquake preparation represents. According to [9], “Non-
equilibrium in such systems can be associated with the inhomogeneity of the distri-
bution of temperature and composition of the substance over the volume, with the
flows of matter within the system, and with more complex types of non-equilibrium
caused by propagation of electromagnetic waves, flow of electric current, etc. Sys-
tems been far from thermodynamic equilibrium can exchange with the environment
not only energy, but also the mass of a substance. Such systems, in contrast to closed
ones, are called open. The energy in them can dissipate and irreversibly transform
into other types of energies, for example, into the energy of vibrational or thermal
motion of atoms. Therefore, sometimes such systems are called dissipative.”

One more factor of instability that should be mentioned – is the presence of water
within our volume of analysis in two phases (gaseous and liquid) with active phase
transition due to ion’s hydration. Such state is also the source of system instability [6].
The hydration is essentially differing from usual condensation that is traditionally
considered in water phase transitions in atmosphere. It gives opportunity to extract
the additional amount of thermal energy from the latent state what will be considered
further in paragraph devoted to the Atmospheric Chemical Potential (ACP).

According to [12] for processes development in dissipative media, we should
consider the following factors (schematically presented in Fig. 3).

1. The threshold sensitivity.
Radon is emanating from the Earth’s crust continuously regardless the presence
of seismic activity, but as it was mentioned earlier, its flux essentially growth at
the last stage of the seismic cycle of earthquake preparation, and after reaching
some threshold starts to generate the chain of processes leading to generation of
thermal and electromagnetic precursors of earthquakes.

2. The process becomes the so-called exacerbation process [12] leading to hyper-
bolic growth of some parameters.
We can see in the Fig. 3 the curve of radon variation before the Kobe earthquake
in Japan in January 1995 described in [27]. Another picture from [24] shows
the avalanche increase of the number of ions produced by corona discharge with
increasing the voltage on the needle-producing discharge. The maximum value
of the voltage in experiment is 3.5 kV while the energy of α-particles emitted
by radon during decay is 5.46 MeV.

3. The exacerbation processes are usually characterized by auto-catalytic reactions
[12].
In Plasma-chemical reaction described in [17] hydronium H3O+(H2O)n is one
of the final products, and it supports the increase of water molecules attached to
the formed cluster ions, and launches the reaction shown in the top of the Fig. 3
again and again (positive feedback) playing the role of catalyzer [1, 4]).
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Fig. 3 Consequences of increased radon emanation due to dilatation process initiating the exacer-
bation regimewith instability stimulated by autocatalytic exothermal reaction. LetterM in formulas
means the presence of any neutral gas molecule

The larger number of water molecules attached to ions formed after ionization and
formation of terminal ions, themore essential heat releasewe observe. As indicator of
the process intensity, the size of formed cluster ions could serve. But there existsmore
reliable measure of the thermal instability intensity called the correction of chemical
potential of water vapor in atmosphere [18]. To be short, we call it atmospheric
chemical potential (ACP).
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4 Atmospheric Chemical Potential as a Measure
of Thermal Instability in Atmosphere

Here we will explain why the result of pressure excessive drop (Fig. 1) surprised
the paper authors, and why the meteorological agencies are not able to forecast the
observed variations of air temperature and relative humidity (Fig. 2) before strong
earthquakes.

All thermodynamic models of the atmosphere, while considering the phase tran-
sitions of water and latent heat fluxes, operate with latent heat (per mole, or per
molecule) as a constant at a given temperature. It is equal to 0.422 eV per one water
molecule. But if onewill carefully deal with real data, he can often find that violations
of the gas equation are observed (inexplicable additional variations in temperature,
humidity, and pressure). We approached this phenomenon from the other side when
studying the processes of ionization of the boundary layer of the atmosphere by
radon, the release of which from the earth’s crust sharply increases at the final stage
of preparation for a strong earthquake. We gave some estimates in Sect. 3. Here we
will go straight to the final result. As it turned out, atmospheric ions formed during
the ionization of atmospheric gases by energetic alpha particles emitted by radon dur-
ing decay, instantly become hydrated. Hydration is not equivalent to condensation
because the process takes place at any level of relative humidity and does not require
saturated vapor. But all the same, a phase transition of water molecules from a free
to a bound state takes place, and, just as during condensation, latent heat is released.
The phase transition of the first order (evaporation/condensation) occurs when chem-
ical potentials of interacting molecules are equal. For one-component systems, the
chemical potential is equivalent to the thermodynamic potential, which makes it
possible to estimate thermodynamic parameters, for example, humidity, through the
chemical potential U . And this is where miracles begin. It turned out that at a high
rate of ion production and high concentration of ions, the released amount of latent
heat is larger than for ordinary condensation of the same number of water molecules
condensed/attached. How much larger? If we talk about earthquakes, then this value
(the difference between the released latent heat during hydration and during normal
condensation) ranges from 0.01 to 0.1 eV, i.e. in extreme cases, it can reach about
25% of the latent heat constant. This difference we call the correction of the chemical
potential of the water vapor in the atmosphere.

After radon activity exceeds the corresponding threshold, the hydration takes
explosive character, what leads to sharp decrease of the relative humidity which
cannot be predicted bymeteorological models, because they do not see the saturation
to predict the humidity drop. That’s why the forecast of relative humidity variation
shown in Fig. 2 is impossible by the ordinary meteorological means. We can say
that from the point of view of traditional meteorology the observed phenomena is
anomaly.

Now we can explain Fig. 1. According to Dalton law, the total atmospheric pres-
sure is the sum of the gas constituents’ pressures. Here we can consider the sum
of dry air pressure and the water vapor pressure. Because the authors of the paper
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did not take into account the drop of relative humidity due to ionization process,
they couldn’t explain the excessive drop of the total air pressure few days before the
earthquake.

What is advantage of the ACP and how it is calculated? According to [2], the
relative humidity H(t) can be expressed as:

H(t) = exp (−U (t)/kBT )

exp (−U0/kBT )
= exp

(
U0 −U (t)

kBT

)
= exp

(
−0.032ΔU cos2 t

(kBT )2

)

(2)
where U (t) is the current latent heat per one molecule, U0 – the latent heat of
evaporation, and ΔU – is the required value of the chemical potential correction
ACP. Using (2), it could be expressed through the air temperature T and relative
humidity H as:

ΔU = 5.8 × 10−10 (20 T g + 5463)2 ln(100/H). (3)

The advantage of these parameters is that it expresses intensity of the ioniza-
tion process taking into account both the changes of air temperature and relative
humidity and can be used to monitor the global radon activity without direct radon
measurements, which is especially valuable in inaccessible regions of the planet.

What is also very useful – it is the self-similarity of ACP variations before earth-
quakes for the same area. In the different regions of the globe, these variations could
differ what is quite understandable. The radon activity could vary not only before
earthquakes but for any cases of activation of tectonic faults what makes possible to
map the active tectonic faults without geologic prospection. Another advantage of
ACP is that it reacts also on the volcanic activity and its increase is observed before
the volcano eruption what provides one more application of ACP in real forecast of
the seismic and volcanic activity.

The practical applications are not the purpose of the current paper, so just for
understanding of beauty of this parameter and the scale of atmospheric anomalies
before the strong earthquakes I would like to demonstrate the spatial distribution
of the ACP before the strong M7.7 Jamaica earthquake on 28 January 2020. This
distribution was registered 5d before the earthquake, 23 January (Fig. 4).

5 Conclusion

We considered the thermal instability in the boundary layer of atmosphere, which
appears as a result of development, the critical processes characteristic to the open
nonequilibrium systems with dissipation within the period of the strong earthquake
approaching. It is initiated by the sharp increase of the radon release within the
earthquake preparation zone, which initiates the strong modification of the boundary
layer of atmosphere. The thermal anomalies and especially the derived atmospheric
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Fig. 4 Scorpio-shaped spatial distribution of the ACP 5d before the M7.7 Jamaica earthquake

chemical potential could be used in practical application for the short-term volcano
and earthquakes forecast [19].

6 Four Dimensions of My Interaction with Slava Belyi

We are brothers. We have the common Alma Mater – Lomonosov Moscow State
University, even more, the common Faculty of Physics, even deeper, the common
division – Radiophysics, and finally, the common cathedra with the strange name:
“General Physics for Mekhmat and Wave Processes”. This name does not reflect the
scientific themes and directions, but only the fact that professors from our cathedra
were lecturers at the Mechanico-Mathematical faculty of Moscow State University.
In reality, the professor’s staff was a kind of embryo of completely new direction in
Radiophysics. Just during period of our University studies, the fundamental trans-
formation of classical oscillation theory happened with its conversion into nonlinear
oscillations, formation of statistical radiophysics, non-equilibrium thermodynam-
ics, nonlinear open systems and synergetics. Professors Stratonovich, Klimontovich,
Romanovsky, Shmalgausen were the real founders of these directions, and commu-
nications with them at their lectures and seminars formed the axis of our movement
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into the science. Professor Klimontovich became a scientific advisor of Slava for
many years.

Slava was 4 years older than me, so our contacts at the university were not very
tight, but the first andmain dimension of our interaction was the spirit of our cathedra
which we saved for all our life and could distinguish ourselves due to this spirit being
present inside us.

Our second encounter happened in small scientific town Troitsk located South
from Moscow. Again, we found ourselves in a common cradle for many years, now
for professional work in the Pushkov Institute of Terrestrial Magnetism, Ionosphere
and Radiowave Propagation of the Russian Academy of sciences (IZMIRAN). Slava
appeared there in 1971, and me in 1972. There was the unique situation at IZMIRAN
where co-existed two ionospheric departments simultaneously because of incompat-
ibility of their heads Dr. Lev Lobachevsky and Prof. Natalia Ben’kova. There was
the official explanation that the first department provided the application research,
and the second—the fundamental research of the ionosphere. In relation to us it was
quite opposite. Slava was working on fundamental problems of plasma physics, and I
was involved in the space instrumentation development. In mutual communications,
Slava impressed with his absolute calm, but this tranquility was based on an inner
sense of self-righteousness. By the end of my carrier at IZMIRAN, I became the
Deputy Director of the Institute and formally Slava was my subordinate. I checked
the employee yearly reports and sometimes wondered that some of them had several
papers published, and Slava only one. But in reality, it could be publication inNature
accompanied by the State Prize of the Soviet Union.

Troitskwas the small city and in those times themajoritywere the scientists greedy
for contacts and social activity. With transformation of the country, we searched for
new forms of such activity and one of ideas was the organization of the Rotary club in
Troitsk. As a Chairman of the Club of Scientists council with group of like-minded
scientists we became the Charter members of the Troitsk Rotary club. Slava was
also between the first members of the club. He shared his experience on contacts
with Rotarians in Belgium and France and proposed some interesting ideas for our
activity and he did this with calmness and confidence as always.

In casual conversations in club with Slava, I learned about his contacts with
Professor Prigogine, one of the founders of Synergetics, and this became the fourth
dimension of our personal contacts. At those times I started to work on the physics
of earthquake precursors and realized that our geospheres all together compose a
complex open system in which the critical process development could be explained
with the help of synergetic approach. The thermal instability of atmospheric boundary
layer that is discussed in this article is a bright example of synergy ideas application,
and I want to dedicate this paper to Slava.



322 S. Pulinets

References

1. M.A. Biondi, Atmospheric electron-ion and ion-ion recombination processes. Canad. J. Chem-
istry. 47, 1711–1719 (1969)

2. K.A. Boyarchuk, A.V. Karelin, R.V. Shirokov, The basic model of the ionized atmosphere
kinetics (VNIIEM Publ, Moscow, 2006), p. 320

3. I.R. Dobrovolsky, S.I. Zubkov, V.I. Myachkin, Estimation of the size of earthquake preparation
zones. Pageoph. 117, 1025–1044 (1979)

4. Castleman A.W. (1973) Aerosol chemistry physics and chemistry of upper atmosphere. Ed.
BM McComac. Dordrecht, Holland. p. 143-157

5. R.J. Geller, D.D. Jackson, Y.Y. Kagan, F. Mulargia, Earthquake cannot be predicted. Science,
New Series 275(5306), 1616–1617 (1997)

6. H. Haken, Synergetics (Springer-Verlag, Berlin Heidelberg, 1983), p. 390
7. W.A. Hoppel, R.V. Anderson, J.C. Willett, Atmospheric Electricity in the Planetary Boundary

Layer, - in Studies in Geophysics, in The Eart’s Electrical Envirinment. (National Academy
Press, Washington. D.C, 1986), pp. 149–165

8. S. Inan, T. Akgül, C. Seyis, R. Saatçilar, S. Baykut, S. Ergintav, M. Baş, Geochemical mon-
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Multistability of Vector Solitons
in High-Q Resonators

B. Kostet, Y. Soupart, E. Averlant, K. Panajotov, and M. Tlidi

Abstract We investigate the formation of vector solitons in weakly birefringent
high-Q resonators. The presence of nonlinear polarization mode coupling in optical
resonators subject to a coherent optical injection allows stabilizing up to two families
of bright or dark vector dissipative solitons, depending on the dispersion properties of
the system. We use coupled Lugiato–Lefever equations to investigate the dynamical
properties of interacting laser fields confined in the Kerr optical resonators. Anoma-
lous and normal dispersion regimes are considered, and it is shown that in both cases
two branches of dissipative solitons coexist and exhibit different peak powers and
different polarization properties. In these regimes, the input–output characteristics
possess either a bistable or a tristable homogeneous response. The coexistence of
two branches of localized states is not possible without taking into account the polar-
ization degrees of freedom. The stabilization mechanism of these localized states is
attributed to a subcriticalmodulational instability in the case of anomalous dispersion
and to a front-locking mechanism in the normal dispersion regime. Their bifurcation
diagrams exhibit either a homoclinic or a heteroclinic snaking type of instability,
depending on the dispersion properties.
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1 Introduction

Dissipative structures are inherent to out-of-equilibrium systems that are subject to
mechanisms that tend to restore uniformity (a transport process such as diffusion,
dispersion, diffraction, or thermal conductivity) and which compete with nonlinear
interactions that tend to locally amplify the field intensity (chemical reactions or
matter–light interaction), while dissipation of energy competes with injection [1,
2]. These properties can be found in many real-life systems, e.g. in the fields of
chemistry [3, 4], biology [5], ecology [6–9], andnonlinear optics [10–12].Dissipative
structures can be spatially extended patterns and/or localized in time. In the first
case, the organization of matter or energy in the bulk of the material often originates
from a modulational instability (MI). Some of the most common spatial patterns
are stripes, hexagons, and honeycombs [13]. Furthermore, when the modulational
instability appears subcritically, there can exist a pinning region where isolated spots
of the pattern are embedded on a homogeneous background which are often called
dissipative solitons (DSs) [14]. Another type of dissipative solitons that can appear in
the presence of bistability, without any pattern or any specific wavelength emerging,
is due to the front-locking mechanism [15, 16]. In this case, the interaction of two
fronts, i.e. heteroclinic connections between the two stable homogeneous steady
states (HSSs), (also called continuous wave, CW solutions in optics), is responsible
for the appearance of the DSs. For both of these formation mechanisms, the two
balances between the nonlinear effect and the transport process on the one hand, and
between pumping and dissipation on the other hand, make the DSs robust structures
with an intrinsic size defined by the dynamical properties of the system only. This
leads to very interesting prospects in the field of optics for possible applications such
as information processing and optical storage [17–19].

Staying in the field of optics, considering the polarization degrees of freedom
leads to richer dynamics. In free propagation, i.e. in the absence of an optical res-
onator, it has been shown that new modulational instabilities can appear, and with
them, symmetry breaking, domain wall vector solitons, rotating vector soliton bound
states [20], dark–bright vector solitons [21] and vector flat-top solitons [22]. In the
presence of a Kerr resonator, the third-order dependency of the polarization on the
electric field implies that the medium becomes birefringent. In particular, when the
polarization state of the DSs evolves in time while the group velocities of the two
different polarization components are locked, they are called group-velocity-locked
vector solitons (GVLVSs) [23, 24]. Another common case corresponds to the locking
of the polarization states of the two components, called polarization-locked vector
solitons (PLVSs) [25, 26]. Other situations exist, such as vector solitons with locked
and precessing states of polarization [27] or group-velocity-locked vector soliton
molecules [28].

Most of the above-mentioned physical systems are spatially extended, where DSs
correspond to spots in the two- or three-dimensional bulk of the material. However,
in the field of nonlinear optics, they can be obtained in small area waveguides where
diffraction can be neglected, so that the transport phenomenon role is carried out
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by the chromatic dispersion of light. In this case, the DSs are called temporal DSs
and present themselves as pulses propagating indefinitely in the cavity without any
spreading of their temporal profile. This makes the temporal DSs very attractive for
information processing as they could serve as bits in an all-optical buffer [29–31].
Another property of temporal DSs gathering ever more increasing interest is the
optical spectrum built over many roundtrips in the cavity, which is made of equally
spaced lines, also called optical frequency combs, allowing a myriad of applications
in spectroscopy, metrology, and photonics [32–35]. When the generation of these
optical frequency combs is due to the nonlinearity of a Kerr medium, they are called
Kerr combs. In particular, a lot of this interest has been focused on high-Q resonators
which have seen rapid development in recent years. This is partly due to their ability
to host the Kerr combs in small devices with low pump power and various other
important properties such as on-chip integration [36], octave-spanning spectra [37],
or tuning of the central frequency [38].

In this chapter, we investigate numerically the formation of vector temporal soli-
tonswith different polarization states and intensities in optical resonators for different
cases. This approach is valid for both all-fiber macroscopic resonators and micro-
scopic resonators. First, we consider the anomalous dispersion regime in which we
investigate bright DSs generated by the patterning phenomenon of modulational
instability. We pursue with the normal dispersion regime where we place ourselves
far from anyMI, with low detunings and bistability between stable CWsolutions, and
consider dark DSs generated by the front-locking mechanism. In the case of higher
detunings, we show that the polarization degrees of freedom lead to the appearance
of tristability of stable CWs, bringing a high degree of multistability of DSs with
very different polarization states.

2 The Vectorial Lugiato–Lefever Model

In 1987, L. A. Lugiato and R. Lefever theoretically evidenced the possibility of a
spontaneous emergence of spatial stationary dissipative structures in the transverse
plane of a laser beam circulating in a passive optical resonator filled with a nonlinear
Kerr medium [10]. They provided a model allowing for the description of the spatio-
temporal evolution of the electric field envelope E in such a system and that is since
known as the Lugiato–Lefever equation (LLE) :

∂E

∂t
= Ei − (1 + iθ)E + i |E |2E + i

∂2E

∂x2
. (1)

Here, t is the normalized time, x is the normalized coordinate along the cavity, and θ
is the frequency detuning of the injected field to the cavity resonance frequency. The
self-organization of the electric field within this out-of-equilibrium system and the
robustness of the resulting structures are explained by the appropriate balances of,
on the one hand, diffraction with nonlinearity and, on the other hand, of the internal
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losses with the pump Ei . This breakthrough in the field of nonlinear optics aroused a
great interest among the scientific community, and the Lugiato–Lefever (LL) model
was (and still is) widely used and developed.
Our purpose here is to adapt the LLE in order to take into account the polarization
degrees of freedom of the electric field propagating inside a passive optical res-
onator. Moreover, when the transverse dimensions can be neglected (e.g. by using
waveguides), so can the diffraction. The transport phenomenon playing its role is the
chromatic dispersion and it is possible to find stable structures that are now localized
in time instead of space. Such temporal dissipative solitons form a pulse train in
the output branch of the resonator whose power spectral distribution is made out of
evenly spaced teeth, forming so-called optical frequency combs. Adding a polariza-
tion degree of freedom will result in a vectorial LL model made out of two coupled
LLEs, one for each polarization component of the electric field. Let us first briefly
recall basic notions about polarization and how to characterize it. The reader familiar
with the Stokes parameters and the polarization ellipse can skip the next section.
Characterizing the Polarization
In this section, we recall the fundamental notions and quantities necessary to study
light polarization following the presentation made in [39]. From a classical point
of view, the propagation of light corresponds to the spatio-temporal evolution of
an electromagnetic wave constituted of an electric and a magnetic field oscillating
perpendicularly relative to one another and both lying in the plane normal to the
direction of propagation. Transverse waves such as electromagnetic waves possess a
fundamental property called polarization describing the oscillatory behavior of the
electric field vector in the transverse plane. Polarization of incoming light can be
constantly evolving with time in a random fashion. Such light is said to be unpo-
larized. In that case, during the spatio-temporal evolution of the electric field, the
successive orientations of the vector are uncorrelated and no dominant polarization
state emerges. However, polarization is a central concept in nonlinear optics and laser
physics since lasers generally produce quasi-monochromatic light which is always
at least partially polarized. Different quantities can be used to characterize the polar-
ization properties of an electric field E based on its components in the transverse
plane (Ex , Ey). Among them, widespread are the Stokes parameters, defined as

S =

⎡
⎢⎢⎣
S0
S1
S2
S3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

|Ex |2 + |Ey|2
|Ex |2 − |Ey|2
E∗
x Ey + Ex E∗

y

i(Ex E∗
y − E∗

x Ey)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ph + Pv

Ph − Pv

Pπ/4 − P3π/4

Pl − Pr

⎤
⎥⎥⎦ ∈ R

4, (2)

where ∗ stands for the complex conjugate.

While S0 is the total intensity, S1 and S2 give information about the fluxes of light
polarized linearly along the horizontal x-direction (Ph) and the vertical y-direction
(Pv) and along the directions at angles 45◦ (Pπ/4) and 135◦ (P3π/4) with respect to
the x-direction, respectively. The sign of S1 and S2 indicates which flux overcomes
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Fig. 1 Schematic representation of the Stokes parameters. The oscillations of the electric field in
the transverse plane along the horizontal x-direction and the vertical y-direction are captured by
S1 while S2 gives informations about the directions at angles π/4 and 3π/4 with respect to the
horizontal direction. Finally, S3 quantifies the amount of right (S3 < 0) or left (S3 > 0) circularly
polarized light

the other while their magnitude quantifies that excess. Finally, the circular polariza-
tion is described by parameter S3, whose sign tells us if it is left-handed (S3 > 0) or
right-handed (S3 < 0). Considering a light beam propagating in the z-direction (nor-
mal to the page), Fig. 1 gives a schematic representation of the Stokes parameters,
sometimes seen as the components of a quantity S, the Stokes (pseudo-)vector (as it
does not transform as a vector), and fully describing the polarization state of light.
Note that we generally work with the normalized quantities si = Si/S0 ∈ [−1, 1].

Pure polarization states as presented in Fig. 1 are given by s1 = [1,±1, 0, 0]T ,
s2 = [1, 0,±1, 0]T , and s3 = [1, 0, 0,±1]T . However, in general, the tip of the elec-
tric field vector draws an ellipse in the course of its evolution, combining non-zero
linear and circular components of polarization.

Based on the Stokes parameters and in order to complete our characterization of
the polarization state of the output light, we can define several other quantities. The
degree of polarization (DoP) takes a value between 0 and 1 and is the ratio of the
total polarized flux and the total flux:

DoP(S) =
√
s21 + s22 + s23 . (3)

Unpolarized light exhibits a zero DoP whereas light in a single state of polarization
is fully polarized and the corresponding DoP is equal to 1. That general feature can
be refined into its constitutive parts, namely the degree of linear polarization (DoLP)
and the degree of circular polarization (DoCP), given by

DoLP(S) =
√
s21 + s22 , and DoCP(S) = s3. (4)

DoLP varies from 0 (for circularly polarized or unpolarized light) to 1 (for linearly
polarized light) while DoCP goes from -1 (for left circular polarization) to 1 (for
right circular polarization). Light that is either unpolarized or linearly polarized has
a DoCP of 0.

In the general case, we can define the ellipticity ε of the polarization ellipse
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Fig. 2 Polarization ellipse in the (x, y)-transverse plane for light propagating in the z-direction.
The major and minor axes of the ellipse are denoted by a and b, respectively

ε = |s3|√
s21 + s22 + s23 +

√
s21 + s22

= b

a
, (5)

which is the ratio of the minor axis to the major axis of the ellipse describing the
trajectory followed by the tip of the electric field vector (see Fig. 2).

Vectorial LL model
We consider the propagation of light inside a Kerr resonator submitted to coherent
optical pumping (see Fig. 3). The ring cavity is filled with a birefringent medium, and
its slow and fast axes are oriented along the x- and y-directions, respectively. This
model is suitable to describe macroscopic fiber cavities as well as microscopic res-
onators. We take into account the polarization degrees of freedom and we neglect the
phenomenon of diffraction so that the nonlinearity of the medium balances with the
chromatic dispersion only, and the field only varies along the longitudinal direction.
The Brillouin and Raman scatterings are not considered so that, over one roundtrip,
the linear polarization components Êx,y(z, τ ) of the slowly varying electric field
envelope obey the nonlinear Schrödinger equations that take the general forms [40]:

∂ Êx

∂z
+ β̂1,x

∂ Êx

∂τ
+ i β̂2,x

∂2 Êx

∂τ 2
+ αi,x

2
Êx =

iγ

(
|Êx |2 + 2|Êy|2

3

)
Êx + iγ

3
Ê∗
x Ê

2
ye

−2i�β̂z, (6a)

∂ Êy

∂z
+ β̂1,y

∂ Êy

∂τ
+ i β̂2,y

∂2 Êy

∂τ 2
+ αi,y

2
Êy =

iγ

(
|Êy|2 + 2|Êx |2

3

)
Êy + iγ

3
Ê∗
y Ê

2
x e

2i�β̂z, (6b)

where ∗ stands for the complex conjugate. The spatial variable z represents the
longitudinal coordinate while the temporal variable τ = t − β̂1z is expressed in a
reference frame moving at the mean group-velocity : β̂1 = |β̂1,x + β̂1,y |/2 = v−1

g .

Indeed, the first-order dispersion coefficient β̂1, j represents the inverse speed of
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BS
Ei Output

Ei

Output

Fig. 3 (Left) Schematics of a typical optical macroscopic fiber resonator pumped with a linearly
polarized field coherently coupled to the intracavity field at the beam splitter (BS). (Right) Schemat-
ics of a microscopic toroidal resonator or microring cavity. We will see in the next sections that the
electric field adopts a elliptical polarization along its path in the cavity. Reproduced from [41]

the envelope of the electric field component Ê j in the material. The second-order
dispersion coefficient β̂2, j characterizes the group-velocity dispersion of component
Ê j and we neglect higher order terms in the expansion of the propagation constant
around the carrier frequency ω0:

β̂ j (ω) =
∞∑
k=0

β̂k, j

k! (ω − ω0)
k, β̂k, j = dk β̂ j

dωk

∣∣∣∣∣
ω0

. (7)

The zeroth-order coefficient �β̂ = β̂0,x − β̂0,y = 2π|nx − ny|/λ represents the dif-
ference between wavenumbers corresponding to the polarization components and
therefore characterizes the birefringence of the material. The parameters αi, j stands
for the internal linear losses in each direction of polarization. Finally, the nonlinear
coefficient γ accounts for the Kerr nonlinearity.

In order to consider the superposition of the intracavity field with the linearly
polarized input beam, we impose the following boundary conditions coupling the
fields at roundtrips m and m + 1:

Êm+1
x,y (z = 0, τ ) = √

T Êix,iy + √
Re−iδx,y Êm

x,y(L , τ ), (8)

where T and R are, respectively, the intensity transmission and reflection coefficients
at the beam splitter, Êi x,iy are the polarization components of the source field, and
δx,y are the phase differences between the injected field and the circulating field
after having traveled a cavity length L . To derive the mean-field Lugiato–Lefever
model, we integrate the field equations (6) over one roundtrip and apply the boundary
conditions (8). Under the assumptions of high-finesse (T � 1), and of detuning and
coupling coefficient of order 1, we introduce the continuous limit by t = mtR and

∂ Êx,y(t, τ )

∂t
= Êm+1

x,y (z = 0, τ ) − Êm
x,y(z = 0, τ )

tR
, (9)
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with tR the cavity roundtrip time and t a slow time variable describing the field
evolution from one roundtrip to another. We can now write the vectorial Lugiato–
Lefever model as two coupled evolution equations for the polarization components
of the renormalized electric field envelopes Ex,y [42, 43],

∂Ex

∂t
= Ei cos(ψ) − (1 + iθx )Ex + i

(
|Ex |2 + 2

3
|Ey |2

)
Ex + �β1

∂Ex

∂τ
+ iη

∂2Ex

∂τ2
, (10a)

∂Ey

∂t
= Ei sin(ψ) − (1 + iθy)Ey + i

(
|Ey |2 + 2

3
|Ex |2

)
Ey − �β1

∂Ey

∂τ
+ iη

∂2Ey

∂τ2
. (10b)

It has to be noted that, in what follows, the fast time τ will be interpreted as a spatial
variable. Indeed, knowing the group-velocity of light within the cavity of fixed length
L , we can identify a position corresponding to each time τ . Consequently, for a given
roundtrip (meaning that we fix the value of t), the observation of E(t, τ ) over the
interval going from τ = 0 to τ = tR = L n

c precisely gives the evolution of the electric
field along the cavity for the selected round trip, as τ is expressed in a reference frame
moving at the group-velocity of light in the cavity. The following renormalization
factors were used in order to obtain the non-dimensional system of equations (10) :

Ex,y =
√

γL

α
Êx,y, Eix,iy =

√
γLT

α3
Êi x,iy, (11)

t = α

tR
t ′, τ =

√
2α

|β̂2|L
τ ′, (12)

θx,y = 1

α
δx,y, β1,x,y =

√
2αL

|β̂2|
β̂1,x,y . (13)

We consider that the input field Ei is linearly polarized in a direction oriented with
an angle ψ with respect to the slow axis and that the total losses α = (αi L + T )/2
are the same for each direction of polarization and renormalized to 1. The frequency
detunings between the injected field components and the closest corresponding cav-
ity resonance are given by θx,y and we placed ourselves in a reference frame moving
at a speed being the mean group-velocity between the polarization components,
hence �β1 = (β1,x − β1,y)/2. The parameter �β1 is known as the group-velocity
mismatch (GVM) parameter; however, in what follows, wewill assume that noGVM
affects the propagation of light inside the cavity which is a reasonable approximation
for practical applications [44]. The group-velocity dispersion (GVD) coefficient is
taken to be the same in both directions. In other words, it is here assumed that the
second-order dispersion acts identically on both components of polarization of the
electric field. Parameter η = ±1 stands for the sign of theGVD. Finally, the factor 2/3
is the cross-phase modulation (XPM) coefficient through which occurs the coupling
between the field components. We complete our discussion of the model by giving
some physical values of the parameters that one can encounter in physical applica-
tions [29] and [45]. While using silica fibers for optical transmission of information,
it is suitable to use a carrierwave ofwavelength in the vicinity ofλ = 1.5µm. Indeed,
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in this spectral region, internal losses due to absorption and scattering can go down
to αi ≈ 0.2 dB/km. In this conditions, a typical value for the group-velocity disper-
sion coefficient is β̂2 ≈ −20 ps2/km. The nonlinear coefficient γ characterizes the
nonlinear response of the material to the presence of the electric field and is of the
order of 2 (W km)−1. A typical value for the refractive index for silica optical fibers
is n ≈ 1.467. When considering optical frequency combs, a fundamental property is
the free spectral range (FSR), corresponding to the constant spacing between spectral
lines. This FSR is equal to the repetition rate of the propagating pulse in the cavity,
1

tR
.

Linear stability analysis

The homogeneous steady state solutions (HSSs) of system (10) satisfy the conditions
∂Es

x,y/∂τ = ∂Es
x,y/∂t = 0 and therefore obey the equations

Ii x,iy =
[
1 +

(
θx,y − Ix,y − 2

3
Iy,x

)2
]
Ix,y, (14)

with Ii x,iy = E2
i x,iy and Ix,y = |Es

x,y |2. For fixed values of the control parameters
that are the frequency detunings θx,y and the injected field intensities Eix,iy , Eq.
(14) possesses up to five physical solutions. A linear stability analysis of the HSSs
brings insights concerning the dynamics of the system as a function of the control
parameters and allows one to identify regimes that are interesting to investigate. In
the case of zero GVM (�β1 = 0), we will perform it by adding a small perturbation
to the HSSs (Ex,y = Es

x,y + E ′
x,y) and splitting the fields components into their real

and imaginary parts. To the first order in the perturbations E ′
x,y , system (10) rewrites

∂E ′
x,r

∂t
= −E ′

x,r + θx E
′
x,i − 2

[
Es
x,r E

′
x,r + Es

x,i E
′
x,i + 2

3

(
Es
y,r E

′
y,r + Es

y,i E
′
y,i

)]
Es
x,i

−
(

|Es
x |2 + 2|Es

y |2
3

)
E ′
x,i − β2

∂2E ′
x,i

∂τ 2
, (15a)

∂E ′
x,i

∂t
= −E ′

x,i − θx E
′
x,r + 2

[
Es
x,r E

′
x,r + Es

x,i E
′
x,i + 2

3

(
Es
y,r E

′
y,r + Es

y,i E
′
y,i

)]
Es
x,r

+
(

|Es
x |2 + 2|Es

y |2
3

)
E ′
x,r + β2

∂2E ′
x,r

∂τ 2
, (15b)

∂E ′
y,r

∂t
= −E ′

y,r + θy E
′
y,i − 2

[
Es
y,r E

′
y,r + Es

y,i E
′
y,i + 2

3

(
Es
x,r E

′
x,r + Es

x,i E
′
x,i

)]
Es
y,i

−
(

|Es
y |2 + 2|Es

x |2
3

)
E ′
y,i − β2

∂2E ′
y,i

∂τ 2
, (15c)
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∂E ′
y,i

∂t
= −E ′

y,i − θy E
′
y,r + 2

[
Es
y,r E

′
y,r + Es

y,i E
′
y,i + 2

3

(
Es
x,r E

′
x,r + Es

x,i E
′
x,i

)]
Es
y,r

+
(

|Es
y |2 + 2|Es

x |2
3

)
E ′
y,r + β2

∂2E ′
y,r

∂τ 2
, (15d)

where subscripts r and i denote real and imaginary part, respectively.
We now specify the shape of the perturbations E′ that are taken under the form of
normal modes of constant amplitude Ẽ and of frequency and wavenumber λ,ω ∈ C,
respectively, E′ = Ẽ exp(λt + iωτ ), with

E′ =

⎡
⎢⎢⎣

E ′
x,r

E ′
x,i

E ′
y,r

E ′
y,i

⎤
⎥⎥⎦ , and Ẽ =

⎡
⎢⎢⎣

Ẽx,r

Ẽx,i

Ẽ y,r

Ẽy,i

⎤
⎥⎥⎦ . (16)

In order to investigate the temporal stability of the homogeneous states with respect
to such perturbations, we substitute E′ in Eq. (15) and set the spatial derivatives to
zero. This leads us to the following eigenvalue problem:

MTẼ = λẼ (17)

with

MT =

⎡
⎢⎢⎣

−1 − 2Es
x,r E

s
x,i A1 − 4

3 E
s
y,r E

s
x,i − 4

3 E
s
y,i E

s
x,i

A2 −1 + 2Es
x,r E

s
x,i

4
3 E

s
y,r E

s
x,r

4
3 E

s
y,i E

s
x,r

− 4
3 E

s
x,r E

s
y,i − 4

3 E
s
x,i E

s
y,i −1 − 2Es

y,r E
s
y,i A3

4
3 E

s
x,r E

s
y,r

4
3 E

s
x,i E

s
y,r A4 −1 + 2Es

y,r E
s
y,i

⎤
⎥⎥⎦ ,

(18)
the temporal evolution matrix of the perturbation, and

A1 = θx − 2
(
Es
x,i

)2 −
(

|Es
x |2 + 2|Es

y |2
3

)
,

A2 = −θx + 2
(
Es
x,r

)2 +
(

|Es
x |2 + 2|Es

y|2
3

)
,

A3 = θy − 2
(
Es
y,i

)2 −
(

|Es
y |2 + 2|Es

x |2
3

)
,

A4 = −θy + 2
(
Es
y,r

)2 +
(

|Es
y |2 + 2|Es

x |2
3

)
.

For each value of the injection amplitude Ei , there are either one, three, or five
physical homogeneous steady state solutions to the system (17) for each of which
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correspond four eigenvalues of MT that characterize the temporal evolution of the
perturbation.More precisely, the real partλr of the temporal eigenvalue informs about
the growth rate of the perturbation. If all λr are negative, the perturbation will die out
and the system will fall back on the base state Es , which is subsequently qualified as
stable. If, on the contrary, the dominant eigenvalue has a positive real part, E′ will
grow with time, driving the perturbed state E away from the base state Es . In that
case, the base state is said to be unstable with respect to perturbations of the form
E′. A zero dominant eigenvalue prevents us to conclude from the restricted linear
stability analysis. The imaginary part λi of the temporal eigenvalue characterizes
modulations and periodic behavior in the temporal evolution of the perturbation.

Considering the stable stationary states, it is worth looking at the spatial evolution
of the perturbation or, in other words, their spatial stability. Back to system (15), we
now set the temporal derivative to zero, inject the perturbation (16), and isolate the
spatially dependent terms. This results in the eigenvalue problem

MSẼ = �Ẽ (19)

with � = ω2,
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(20)
the spatial evolution matrix of the perturbation, and

B1 = θx − 2(Es
x,r )
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(

|Es
x |2 + 2|Es

y |2
3

)
,

B2 = θx − 2(Es
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y |2
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)
,
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x |2
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)
,

B4 = θy − 2(Es
y,i )
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|Es
y |2 + 2|Es

x |2
3

)
.

Regarding the spatial stability, we focus on the presence of amodulational instability
which is characterized by a transition in the spectrum of � from a pair of complex
conjugated eigenvalues to real eigenvalues:

�init = {a1 ± ia2; b1 ± ib2} → �fin = {a3; a4; b3 ± ib4}, (21)
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with a1, a2, a3, a4, b1, b2, b3, b4 ∈ R
+∗ .

Indeed, for stationary states, if the dynamics of the perturbation (16) is characterized
by a real wavenumber ω ∈ R, then it evolves as E′ = Ẽ exp(ω̃τ ) where ω̃ = iω
is purely imaginary. Consequently, the perturbation leads to a modulation of the
amplitude of the electric field along the cavity, without global growth or decay, and
results in the formation of a periodic pattern (sometimes called wavetrain) filling
the cavity. In the fields of nonlinear optics and laser physics, the transition (21) is
referred to as modulational instability.

3 Modulational Instability in the Case of Anomalous
Dispersion

In this section, we investigate how the polarization of light affects the usual solutions
found in the LL model in the case where the second-order dispersion is anomalous,
i.e. η = +1. We begin with a standard linear stability analysis of the continuous
wave solutions in this case, with respect to a perturbation of the form exp(iωτ +
λt). We fix the detuning along the fast axis θy , while θx and Ei are the control
parameters. The resulting stability map in the parameter space is shown in Fig. 4.
For some representative values of θx (cuts (a),(b), and (c)), the total intracavity field
intensity S0 = |Ex |2 + |Ey|2 is plotted as a function of the fast time τ in Fig. 5.
Along these cuts, curves with positive slope (∂S0/∂Ei > 0) are stable, while curves
with negative slope (∂S0/∂Ei < 0) are unstable. For very low values of θx , moving
along the cut (a), (corresponding to the input–output characteristic curve Fig. 5a), we
encounter the threshold from which the single stable CW state (region I) becomes a
single modulationally unstable state (region II). For higher injection values, we enter
the hysteresis loop (region IV) meaning that a domain of bistability between two
modulationally unstable states appears. We can continue past the hysteresis loop,
where only the upper modulationally unstable state is left.
As the detuning θx is increased (going upwards on themap), we can see that the value
of the Ei threshold of the bistability between MI states (the border between regions
II and IV) monotonically decreases, while the threshold of the MI bifurcation (the
border between regions I and II) decreases before increasing again, at which point it
becomes superseded by the birth of a new bistability, between one stable CW state
and one modulationally unstable state (region III). Two distinct bistabilities exist for
different ranges of the injection power at this point, as shown in the input–output
characteristics Fig. 5b. The threshold corresponding to the disappearance of region III
and the one corresponding to the appearance of region IV start converging for higher
values of θx , until both different types of bistabilities coincide which leads to the red
region V where one CW state coexists with two different modulationally unstable
states. The cut (c) illustrates this region, with the corresponding CW intensity curve
shown in Fig. 5c.
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Fig. 4 Stability map of the CW solutions in the parameter plane (Ei , θx ). Region I corresponds to
parameters for which the system only hosts one single stable steady state. Region II corresponds
to parameters for which the system only hosts one single modulationally unstable state. Region III
corresponds to parameters for which the system hosts bistability between one stable steady state and
one modulationally unstable state. Region IV corresponds to parameters for which the system hosts
bistability between two modulationally unstable states. Region V corresponds to parameters for
which the system hosts tristability between one stable steady state and two modulationally unstable
states
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Fig. 5 Steady states corresponding to the cuts taken along the dashed lines in Fig. 4, with the total
intensity S0 given as a function of the injection for fixed values of the x detuning (a) θx = 1, (b)
θx = 2.25, and (c) θx = 3. Other parameters are the same as in Fig. 4. Full lines correspond to stable
states, dashed lines correspond to unstable states, and dotted lines correspond to modulationally
unstable states
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Fig. 6 Profiles of the
non-normalized Stokes
parameters S0, S1, S2, and S3
as a function of the fast time
τ for two coexisting bright
DSs with different
properties. Parameters are
Ei = 2.54, θx =
2.75, and θy = 4.3.
Reproduced from [46]
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The bistability between a stable CW state and a subcritically arising MI pattern is
a key ingredient to the generation of DSs [11]. This coexistence leads to a range of
the control parameter (where DSs can be stabilized) called the pinning range. Thanks
to the polarization properties of our system, two different MI patterns exist, and in
particular two different MI patterns can coexist with a stable CW state in the red
areas of Fig. 4, meaning that it should be possible to generate two different types of
DSs in this cavity for overlapping values of the two pinning ranges associated with
each type of DS. This is shown in Fig. 6 with the profiles of two different bright
DSs as a function of the fast time τ , obtained by direct numerical simulation of
Eq. (10) with periodic boundary conditions. We show their total intensity S0, and we
characterize their polarization properties through the other non-normalized Stokes
parameters S1, S2, and S3, as defined in Sect. 2. S0 is the total intensity of light. S1
is the component of light that is linearly polarized along the axes x and y. S2 also
corresponds to light polarized linearly, but diagonally at 45◦ with respect to the x- and
y-axes. S3 is the circular component of the light polarization. The two DSs obtained
in the same physical system clearly exhibit different intensities, with the brighter
pulse on the left of the profile, since it has a higher peak power on the S0 profile.
The brighter DS is labeled A, while the darker one is labeled B. Their polarization
properties are also quite different. The A-type DS has a negative S1, representing
a component of the polarization aligned with the y-axis. Its positive S2 represents
a component aligned at 45◦ with the x-axis, and finally, the negative S3 indicates
a right-handed circular component. The B-type DS has a positive S1 (component
aligned with the x-axis), negative S2 (component aligned at 45◦C with the x-axis),
and negative S3 (right-handed circular component). The background exhibits a very
small positive S2, a moderate positive S3, and a very small negative S3, so that its
polarization is mostly aligned at 45◦ with the x-axis, showing only a very slight
ellipticity.

It is well known that DSs generated by subcritical modulational instabilities
exhibit bifurcation diagrams in the form of homoclinic snaking, emerging from the
modulational instability bifurcation in the input–output characteristic curve [47]. We
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Fig. 7 (a) Profile of an
A-type DS and (b) Profile of
a B-type DS for fixed
parameters of
Ei = 2.54, θx = 2.75, and
θy = 4.3. (c) Bifurcation
diagram showing the
L2-norm N0 as a function of
injected field amplitude Ei .
Dashed (full) lines are
unstable (stable) solutions.
Reproduced from [46]
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verify how this behavior changes due to the polarization by performing a numerical
continuation in the parameter space with a predictor–corrector method initiated by a
numerical simulation profile, both using periodic boundary conditions. The detuning
parameters are all fixed, while the amplitude of the injection is varied. The results are
shown in Fig. 7(c), where the normalized L2-norm N0 = ∫

(S0 − S̃0)/L dτ is shown
as a function of Ei . S̃0 corresponds to the CW intensity, so that the contribution of
the background is removed from the norm. As usual for a homoclinic snaking, an
unstable branch emerges from the MI bifurcation of the HSS, then reaches a turning
point where it becomes stable, which corresponds to the B-type DS. The DS then
grows for increasing injection amplitude, until it reaches a saddle-node bifurcation
where the solution becomes unstable. Then, the unstable branch goes through another
turning point where it becomes the stable A-type DS. There is only a finite range
of parameters where the two types of DSs coexist, between the values Ei1 and Ei2.
The profiles of the two coexisting solitons, types A and B, are shown in Fig. 7a,
b, respectively, for fixed parameters of Ei = 2.54, θx = 2.75, and θy = 4.3. Homo-
clinic snaking bifurcation diagrams usually present themselves in the form of two
branches oscillating across the pinning range, one corresponding to an even number
of identical peaks, and the other one corresponding to an odd number of identical
peaks. These two branches continue until the DSs entirely fill up the cavity, and
they connect back to the patterned state. The system is then highly multistable, as
these solutions all coexist in the pinning range. In our case, the behavior is more com-
plex, as the system can host different types of vector DSs. The numerical simulations
shown in Fig. 8 illustrate what happens in this case. As usual, even or odd numbers of
DSs hosted in the intracavity field each correspond to a homoclinic snaking branch.
For the regions where both pinning ranges coexist, the main branches divide into
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Fig. 8 Evolution of the
L2-norm N as a function of
injected field amplitude Ei
for numerical simulations
taken with a step of 0.001 for
Ei . Reproduced from [46]
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sub-branches for the different combinations of A-type and B-type DSs (see insets).
In this figure, numerical simulations allow to draw the stable branches only.

4 Front-Locking in the Case of Normal Dispersion

In this section, we will be operating in the normal dispersion regime, i.e. η = −1, as
this will allow us to avoid MI and focus on CW solutions only. Fronts, sometimes
also called switching waves, are heteroclinic connections between different CWs.
Their dynamics, including the generation of dark DSs, has been studied in the scalar
case [48], without taking into account the polarization of light.

We start with the linear stability analysis of the CWs. Figure9(a) shows the param-
eter space (θx , Ei ), with a region of bistability between two stable CW states in blue,
whilewhite regions correspond tomonostability. Figure9(b) shows the bistable curve
corresponding to a section of the map for a fixed value of θx . The system can host
a mixed state, called front, connecting these two stable CWs as shown in Fig. 9(c).
These fronts are generally not stationary. Depending on the value of the pump, one
of the states will invade the other. For low values of Ei , the front will move toward
regions where S0 is higher, meaning that the CW corresponding to the lowest total
intensity will invade the system (left panel). For high values of Ei , the front moves
in the opposite direction and the CW corresponding to the highest total intensity will
invade the system (right panel). There exists a point in-between, called the Maxwell
point, where the front is stationary as both states are equally stable so that they will
not invade each other.



Multistability of Vector Solitons in High-Q Resonators 341

i i

)b()a(

(c)

Fig. 9 (a) Stability map in the θx -Ei plane, with θy = 1.95. The white (blue) region indicates
monostability (bistability). (b) Bistable curve obtained for θx = 1.90 and θy = 1.95. Stable (unsta-
ble) CW states are denoted by solid (dashed) lines. (c) Front propagation to the right, below the
Maxwell point (left panel: Ei = 1.462), at the Maxwell point (middle panel: Ei = 1.46652), and
above the Maxwell point (right panel: Ei = 1.471). The boundary conditions are fixed to the CW
values. Reproduced from [49]

We can notice that the fronts possess oscillatory tails on the bottom of their lower
branch. This is an essential ingredient for the formation of DSs, as it is through
these tails that the interaction between fronts is mediated. When the oscillations are
absent, and the front is only exponentially decaying, there is no interaction between
fronts so that it is impossible to stabilize the DSs [50–52]. The oscillatory tails
however allow for an oscillatory potential of interaction with positive and repulsive
interactions, depending on the relative positions of the fronts, and with equilibrium
positions where those attractive and repulsive interactions are perfectly balanced. A
numerical simulation with periodic boundary conditions of two fronts converging
toward each other is summarized in the space–time map at the top of Fig. 10. In this
case, the amplitude of the injected light is higher than the Maxwell point, so that the
upper state tries to invade the system. The two well-separated fronts (Fig. 10(a)) then
reach an equilibrium position as shown in Fig. 10(b), meaning that the repulsion of
the fronts counterbalances their attraction as well as the front motion, and the DS is
formed. In the casewhere the amplitude of the injected light is lower than theMaxwell
point, the two fronts should start close enough so that the repulsive interaction will
beat the invading motion and move them toward their equilibrium position. In our
case, only the lower part of the fronts exhibit such oscillatory tails, so that only dark
DSs will be formed. Two different dark DSs can be formed depending on the exact
initial conditions, Fig. 10(b) or Fig. 10(c). The latter is the simplest solution, with a
simple soliton consisting of only a dip in the total light intensity, while the first one
is another more complex solution, with a single bump at the bottom of the profile.
These two solutions thus can coexist for the same values of the parameters. They also
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Fig. 10 Two fronts interact in an attractive way, which leads to the formation of vectorial dark
dissipative solitons with the total intensity in the τ -t map (top panel). (a, b) Cross-sections along
the dashed lines indicated in the τ -t map. (c) stable single dip DVDS. Numerical simulations
of Eq.10 are obtained for the parameters Ei = 1.4675, θx = 1.90, and θy = 1.95. Reproduced
from [49]

Fig. 11 Optical frequency combs corresponding to the two coexisting profiles shown in Fig. 10.
Parameters are Ei = 1.46655, θx = 1.90, and θy = 1.95. Reproduced from [49]

have similar spectral properties, as the spectral contents of DSs are optical frequency
combs shown in Fig. 11. The simplest DS shows an envelope in the shape of a sech2

curve [34], while the solution from Fig. 10b shows additional bumps at each side
of the envelope of the comb. The two combs share the same FSR, as this is only
determined by the repetition rate which is the same for all of our DSs, since they
move in the cavity with the same group velocity.

To investigate this coexistence, we show the bifurcation diagram for these two
solutions with the detuning parameters fixed, the injected field amplitude as the
control parameter, and we describe the branches through the normalized L2-norm
N = ∫

S0/Ldτ , where L is the size of the system. The profiles obtained through
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numerical simulations were used to initiate a predictor–corrector continuation algo-
rithm [53]. The so obtained diagram, shown in Fig. 12, is called a collapsed het-
eroclinic snaking, because the branch oscillates with an exponentially decreasing
amplitude around the Maxwell point until it collapses on it. A closeup of the col-
lapsed snaking curve is shown alongside the bifurcation diagram. Profiles associated
with the points (a–h) are shown underneath the bifurcation diagram. Each turning
point of the snaking curve corresponds to a change of stability, and a new stable state
brings a new solution, with an additional bump at the extremum of the DS each time,
as can be seen on profiles (a–d). This branch emerges from the point SN1 where
the CW regains its stability and the higher stable CW appears, and after oscillating
and collapsing, it connects to the point SN2 where the lower stable CW loses its
stability. This point actually corresponds to a bifurcation to a MI state, that exists for
a range of the injection amplitude that is extremely small before turning unstable.
When the branch has collapsed on the Maxwell point and thus stops oscillating, the
solution stops changing and only the width of the DS varies as we continue along
the curve. Indeed, profiles (e–h) show that the width increases as we go down the
branch, meaning that the lower state invades the entire system. At the end of this
branch, we connect back to the lower stable CW at the point SN2 as the lower state
has entirely invaded the system.

The DSs formed by this mechanism are robust structures, and they can coexist in
the same system as shown in Fig. 13which depicts the space–timemap of a numerical
simulation with periodic boundary conditions, initialized with random noise added
to a constant value between the two stable CWs. We also show their normalized
Stokes parameters, S0 to s3, to illustrate that the two different coexisting dark DSs
exhibit slightly different peak powers and polarization properties.

5 Tristability in the Case of Normal Dispersion

Wewill now consider the propagation of light in a pumped Kerr cavity in the normal
dispersion regime for higher values of the detuning parameters. As this parameter
is increased, the hysteresis loop formed by the CWs widens and undergoes new
bifurcations. In particular, a secondhysteresis loop can appear leading to the existence
of three different solutions for the same value of the detuning, as shown by the linear
stability analysis represented in Fig. 14 in the phase space (Ei , θx ). In this map,
light blue regions correspond to two stable solutions coexisting, while light red
regions correspond to three stable solutions coexisting. At the very bottom of the
figure (low values of θx ), for a fixed value of the detunings and varying Ei , only
one light blue region (II) is encountered, corresponding to a simple hysteresis loop.
Higher in the map, two distinct blue regions can be encountered while varying Ei

for fixed θx as highlighted by the dashed line (a), which is the above-mentioned
case of two hysteresis loops. The input–output characteristics of the CWs for this
cut are shown in Fig. 15(a) with the output intensity as a function of the injected
field amplitude. Because the two hysteresis loops widen as the detuning is increased,
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i i

Fig. 12 Bifurcation diagram showing the L2-norm N as a function of injected field amplitude
Ei . The right panel is a zoom around the snaking curve. Solid (dotted) curves correspond to stable
(unstable) localized solutions. (a–h) Profiles of the total field intensity S0. Parameters are θx = 1.90
and θy = 1.95. Periodic boundary conditions were used. Reproduced from [49]

they end up overlapping, leading to the first light red tristable region (IV). As θx
is increased, this tristable region disappears as the upper hysteresis loop collapses
into a single monotonous curve, going back into simple bistability represented by
the light blue region II. The light red region IV then reappears for higher θx values
through the inverse process, as a new hysteresis loop reappears near the upper saddle-
node bifurcation. An example of tristable region is highlighted by the dashed line
(b), for which the corresponding input–output characteristics of the CWs are shown
in Fig. 15(b). This curve shows the coexistence of three stable solutions for the
same value of all parameters. We can also notice in Fig. 14 the presence of regions
with modulationally unstable states bordering on the right the bistable and tristable
regions. These states will not be relevant here as we will operate far from them, and
thus far from any branch corresponding to modulationally unstable states.

The polarization properties of each of these CW solutions are already of interest.
Despite an injected light with a constant and completely linear polarization, cross-
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Fig. 13 (Top) (τ , t) map of the total intensity S0. Parameters are the same as in Fig. 11. (Bottom)
The Normalized Stokes parameters S0, s1, s2, and s3 as functions of the fast time τ . Reproduced
from [49]

phase modulation (XPM) allows the intracavity fields to show a rich complexity
in how each of the Stokes parameters evolves as shown in the previous sections.
To investigate this further, the normalized Stokes parameters for the current set of
parameters are shown in Fig. 16. All of the Stokes components undergo hysteresis
loops at the same values of the pump, as those hystereses correspond to the ones
from Fig. 15, but with very different output values, so that the three CWs exhibit very
different polarization properties. The linear components can be in any configuration;
however, one common trait between those CWs is that they are elliptically polarized,
even if slightly. It can also be noted that the sign of s3 changes between both curves
Fig. 15(a) and Fig. 15(b), indicating that a change in the value of the detunings can
also lead to notable variations in the polarization properties of the intracavity light.

Similarly to the previous section, the coexistence of stable CW solutions for
fixed values of the parameters allows for fronts connecting them to emerge. The
most important feature of these fronts is the presence of oscillatory tails damped
around the CW, allowing two fronts evolving toward each other to interlock and
subsequently constitute a stable structure embedded in a CW background and with a
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Fig. 14 Stability regions in the parameter space Ei–θx . Parameters are: θy = 5 and η = −1. Region
I corresponds to monostability, with the presence of only one stable state. Region II corresponds
to bistability between two stable states. Region III corresponds to bistability between one stable
state and one modulationally unstable state. Region IV corresponds to tristability between three
stable states. Region V corresponds to tristability between two stable states and one modulationally
unstable state. Finally, region VI corresponds to tristability between one stable state and two mod-
ulationally unstable states. Examples of two consecutive bistable curves and of a tristable curve
along the dashed lines (a) and (b) are shown in Fig. 15a, b, respectively. Reproduced from [41]
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Fig. 15 Bistable curve (a) and tristable curve (b) obtained for θy = 5. These curves are taken
along the dashed lines (a) and (b) in Fig. 14 corresponding to θx = 2.7 and θx = 6.5, respectively.
Full lines correspond to stable states, dashed lines correspond to unstable states, and dotted lines
correspond to modulationally unstable states. Reproduced from [41]

finite width. This front-locking mechanism arises as a result of the complex balance
between attractive and repulsive interactions occurring through the front oscillatory
tails, with the stable structures being dissipative solitons.

The bifurcation diagram for these dark DSs, corresponding to the case with two
distinct hysteresis loops shown in Fig. 15(a), is presented in Fig. 17. Similarly to
the previous bifurcation diagrams, it was obtained through numerical continuation
with a predictor–corrector algorithm that was initialized with a profile obtained by
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time-stepping numerical simulations with periodic boundary conditions. Two types
of fronts can appear, connecting either CW3with CW2, or CW2with CW1. For each
type of front, a type of DS can be stabilized, and the branches corresponding to each
of these two types of dark DSs (light orange for the connection between CW3 with
CW2 and dark blue for the connection between CW2 with CW1) present themselves
again in the form of a collapsed snaking curve. They emerge from the saddle-node
bifurcations corresponding to the appearance of CW3 and CW2 and connecting
to the modulational instability bifurcation responsible for the loss of stability of,
respectively, CW1 and CW2. We notice that the collapsed snakings exhibit more
oscillations and that their amplitudes are larger compared to the previous section,
which is explained by the fact that the hysteresis loops are wider than previous due
to the higher value of the detuning parameters. The profiles of the Stokes parameters
corresponding to the points (a)–(c) and (a′)–(c′) are depicted in Fig. 18 and show that
again, each turning point leading to a new stable branch of dark DS corresponds to a
new type of solution, with an additional bump at the bottom of the profile. As a dark
DS corresponds to an excursion from a background corresponding to a CW solution
into another CW solution for a short domain of the fast time τ , the Stokes parameters
behave in the same way as the ones of the CW solutions. Since the CWs have very
different polarization properties that are always elliptical, the DSs exhibit the same
properties. DSs that belong to the same snaking curve share more or less the same
polarization properties with slight variations as the shapes of the profiles differ. The
differences between DSs that belong to different snaking curves are however more
pronounced, as the two CWs involved are not the same in each case. This means
that the background values, the peak powers as well as the Stokes parameters are all
very different in this case. The spectra corresponding to the total intensity profiles of
these solutions are again optical frequency combs, shown in Fig. 19. The frequency
combs of the DSs share the same free spectral range regardless of their types, as they
all share the same repetition rate.

The branch corresponding to modulationally unstable states is also shown in
Fig. 20 to evidence that both collapsed snakings occur in a regime that is far enough
from it, so that there can be no confusion between our front-locking-induced DSs
and modulational instability-induced DSs.

The bifurcation diagramcorresponding to the casewith twooverlapping hysteresis
loops shown in Fig. 15b is presented in Fig. 21. This time, the two types of fronts
connecting either CW3 with CW2, or CW2 with CW1 can appear for the same
values of the system parameters, and so can the associated dark DSs. We obtain
again a collapsed snaking bifurcation diagram for the branches corresponding to
each of these two types of DSs (light orange for the connection between CW3 with
CW2 and dark blue for the connection between CW2 with CW1), except that the
two oscillating curves now overlap for a certain range of the injected field amplitude
called C. As such, two types of dark DSs exist again, (a)–(c) connecting CW1 to
CW2 and (a′)–(c′) connecting CW2 to CW3, shown in Fig. 22. The two types of
DSs, similarly to the previous case, have very different peak powers, background
values, and polarization properties. In the region C, the system can host dark DSs of
the two types, (a)–(c) and (a′)–(c′). However, they cannot be hosted at the same time
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Fig. 18 Profiles of the Stokes parameters S0, s1, s2, and s3 as a function of the fast time τ for
the stable DS solutions indicated in Fig. 17. The size of the system was taken as L = 100. Profiles
(a)–(c) correspond to the region highlighted on the left, while (a′)–(c′) correspond to the region
highlighted on the right. Injection amplitude values are Ei = (a) 2.2917, (b) 2.2922, (c) 2.2926 (a′)
2.9394, (b′) 2.9406, and (c′) 2.9406. Reproduced from [41]

Fig. 19 Vector Kerr combs
corresponding to Fourier
transform of the stable DS
solutions shown in Fig. 18.
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Fig. 20 Close-up showing
the MI branch emerging
from the end of the upper
snaking curve from Fig. 17a.
Reproduced from [41]
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Fig. 21 Tristable heteroclinic snaking. Left panel: Bifurcation diagram showing the L2-normN as
a function of the injected field amplitude Ei . Stable (unstable) states are denoted by solid (dashed)
lines. MI states are denoted with dotted lines. Parameters are θx = 6.5 and θy = 4.5. The size of
the system was taken as L = 200. Right panel: Close-up on the snaking curves collapsing onto
the Maxwell point of each respective bistability showing the coexistence region C . Reproduced
from [41]
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Fig. 22 Profiles of the Stokes parameters S0, s1, s2, and s3 as a function of the fast time τ for the
stable solutions indicated in Fig. 21. Parameters are the same as in Fig. 21. Injection amplitude values
are Ei = (a) 3.2195, (b) 3.217, (c) 3.2209, (a′) 3.3094, (b′) 3.3087, and (c′) 3.3085. Reproduced
from [41]

and in the same physical system as they require different background intensities.
The combs corresponding to these profiles are drawn in Fig. 23. They share the same
properties as the ones from Fig. 19, except for a different FSR that is only due to
the fact we used a different cavity length in this case, for the sake of numerical
convenience.



Multistability of Vector Solitons in High-Q Resonators 351

Fig. 23 Vector Kerr combs
corresponding to the stable
solutions shown in Fig. 22.
Reproduced from [41]
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6 Conclusions and Perspectives

We have investigated the formation of dissipative solitons in high-Q micro- and
macro-resonators driven by a linearly polarized injected light. We have studied the
influence of the polarization degrees of freedom in these optical resonators that are
described by the vectorial Lugiato–Lefever equation. These additional degrees of
freedom impact the homogeneous steady states solutions by creating a new critical
second-order transition allowing for the generation of multistability. We have shown
that there can be up to three coexisting stable solutions. Two operating regimes were
considered: anomalous and normal dispersion.

In the anomalous dispersion regime, the linear stability analysis indicated that one
or more homogeneous solutions suffer modulational instability. We have focused
on the situation where two modulationally unstable homogeneous solutions coexist
with one stable CW solution. Besides periodic solutions, an infinite number of DSs
characterized by either a odd or even number of peaks coexist with the periodic
and the CW solutions. The system can host two types of DSs, as the stable CW
solution provides the continuous background needed to host them, and the system
exhibits multistability. We have shown that their bifurcation diagram each follows
an homoclinic snaking type of bifurcation. These two types of DSs exhibit different
peak powers and polarization properties and can coexist in the same physical system.

In the normal dispersion regime, we first showed that for low values of the detun-
ing, we obtain a bistable regime where DSs can be formed thanks to the interaction
between switchingwaves, or front, connecting pairs of CWsolutions. The bifurcation
diagram of these DSs obeys collapsed heteroclinic snaking. Then, for higher values
of the detuning, there can be up to the three coexisting CW solutions. The system
can also host two types of DSs, each exhibiting a separate collapsed snaking. Again,
the two types of DSs exhibit different peak powers and polarization properties. For
the right values of the detuning parameters, these two collapsed snaking curves can
have an overlapping domain of stability and the two types can coexist for the same
values of the system parameters, however not in the same physical system.
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These results bring new insights into the properties of dissipative structures in
driven resonators when the polarization degrees of freedom are taken into account.
In order to further complete the description, the influence of the group-velocity
mismatch between the two polarization components should be considered. However
neglected in the present study, this property can significantly impact the dynamics,
as it leads to a drift of the DSs caused by a breaking of the τ → −τ symmetry.
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