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Abstract. Facial Micro-Expression recognition in the field of emotional infor-
mation processing has become an inexorable necessity for its exotic attributes. It
is a non-verbal, spontaneous, and involuntary leakage of true emotion in disguise
of most expressive intentional prototypical facial expressions. However, it persists
only for a split-second duration and possesses fainted facial muscle movements
that make the recognition task more difficult with naked eyes. Besides, there
are a limited number of video samples and wide-span domain shifting among
datasets. Considering these challenges, several video-based works have been done
to improve the classification accuracy but still lack high accuracy. This works
addresses these issues and presents an approach with a deep 3D Convolutional
Residual Neural Network as a backbone followed by a Long-Short-Term-Memory
auto-encoder with 2D convolutions model for automatic Spatio-temporal feature
extractions, fine-tuning, and classifications from videos. Also, we have done trans-
fer learning on three standardmacro-expression datasets to reduce over-fitting.Our
work has shown a significant accuracy gain with extensive experiments on com-
posite video samples from five publicly available micro-expression benchmark
datasets, CASME, CASMEII, CAS(ME)2, SMIC, and SAMM. This outweighs
the state-of-the-art accuracy. It is the first attempt to work with five datasets and
rational implication of LSTM auto-encoder for micro-expression recognition.

Keywords: Micro-expression · Recognition · Deep learning · Transfer learning ·
Spatio-temporal

1 Introduction

Facial Micro-Expression (ME) discloses true mental state unconsciously while someone
is trying to obscure them advertently in a high-stake situation. This transient ME lasts
for less than 1/5 s [1] and diminishes under cover of ordinary acted facial expressions. It
has a very low intensity [2] due to the tiny movements of facial muscles. It is challenging
to create a high-stake situation in a controlled environment and generate ME voluntarily
against its spontaneous nature. These reasons impede the real-time [3] implementation of
ME recognition (MER) from publicly available ME datasets, while it gives an important
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cue for lie or deceitful behavior detection. Though there are only five spontaneous
publicly availableMEdatasets [3], all of themhave smaller size of samples. FacialAction
Coding System (FACS) coding [4] has also been used in most of the ME databases to
identify the action units (AU) that are linked to specific facial muscle movements within
facial components. AUs that are pertinent to emotional state help to reduce the subjective
biases in recognition ofMEs. Despite all of these challenges, ME recognition has gained
momentum in the computer vision community in the last few years [5] due to some
inescapable practical implications such as business deal negotiation, psychoanalysis,
forensic investigation, and homeland securities.

Many handcrafted works for feature descriptions were devised based on appearance-
based feature learning for ME recognition. For static and dynamic texture-based ME
recognition, LBP and many of its variants have been proposed in [6–12]. Though they
are very familiar, they are not innate for AU/motion-based recognition due to LBP
features. Hence the geometry or motion-based descriptors [13–17] were introduced to
capture the deformation in it with the facial landmarks or optical flow features. These
techniques are susceptible to head-pose variations and leaned to face registration. Also,
gradient-based feature descriptors [18, 19] were proposed to mitigate lighting variations
but still suffer from head-pose variations.

Automatic feature learning methods ignite independent learning from inputs effec-
tively. For that purpose, many deep learning-based models have gain popularity in recent
years for ME recognition. The first possible use of the convolutional neural network
(CNN) deep model [20] for ME recognition was less prone to better accuracy due to
over-fitting. Takalkar and Xu [21] proposed a CNN-basedmodel with data augmentation
to combat the over-fitting problem but ended up with minor improvement due to data
imbalance and subjective bias in annotations. In [22], temporal interpolation was used
with DCNN followed by a support vector machine (SVM) classifier for ME recognition
to combat the short duration. Peng. et al. [23] proposed a dual temporal scale convolu-
tional neural network (DTSCNN) for Spatio-temporal feature extractions from optical
flow inputs of a composite dataset from twoME datasets. It achieved better performance
in comparison to some hand-design methods. In [24], CNN accompanied long-short-
term-memory (LSTM) was proposed. It considered the class discrimination, expression
states, and persistence of states along with temporal change. It achieved better results
but was not strong enough to confront the imbalance sample problem. In TLCNN [25],
pre-trained CNN was used to model spatial features from a single frame then fed them
to LSTM. It used the combined video samples from three ME datasets. A pre-trained
deep network-based method on apex frame was done in [26]. Two-stream optical flow-
dependent high level features extractions and classification network was introduced in
[27]. In [28], dual-stream shallow CNN was proposed to combat with over-fitting and
saliency map. Deep recurrent-CNN (R-CNN) based-model trained from scratch for spa-
tiotemporal feature learning were presented in [29]. In [30] shallow R-CNN model was
designed and experimented on composite dataset samples. VGGNets and LSTM dis-
criminative attention model were proposed in [31]. Deep learning-based approaches and
models have shown a strong and reliable representation of discriminative features from
ME.
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Numerous researches have been carried out based on handcrafted feature engineer-
ing, automatic spatial features extractions, and temporal correlation among spatial fea-
tures to classify the ME from SMIC [32], CASME [33], CASMEII [34], CAS(ME)2

[35], and SAMM [36] datasets. There is some resemblance between macro-expressions
(MACE) and MEs in terms of some facial dynamics. In addition, MACE datasets (e.g.,
CK+ [37], MUGFE [38], and OULU-CASIA [39]) have a large number of samples,
which facilitate taking advantage of transfer learning in recognition of ME from limited
samples using deep learning models. Automatic ME recognition from frame sequences
is quite challenging due to the persistence in a small number of frames. Moreover, ME
videos contain some/many redundant and neural frames that increase the computational
cost as well as the influence of irrelevant feature extractions. Despite this, video-based
end-to-end deep ME recognition is more resilient as it models the spatio-temporal fea-
tures against the illumination, head-pose, and subtle motion variations. Though com-
posite ME samples from multiple ME datasets make the solution even harder due to
inconsistency among them, it helps to model ME to a greater extent from a diverse and
large group of samples possessing different intrinsic factors that might be a set/subset
in the wild samples. That paves the way to realistic categorization of ME from more
spontaneous and natural ME samples.

We propose a method to extract spatio-temporal features from composite samples
of five spontaneous ME datasets [32–36] through the 3D CNN in the residual network
as backbone and LSTM auto-encoder for de-noising and fine-tuning the high-level fea-
ture maps comprising the temporal deformation of spatial features and followed by a
native structural regularizer accompaniedwith a soft-max classifier. Twocross-validation
strategies, Leave-One-Subject-Out (LOSO) and Stratified 5-Fold cross-validations (CV)
have been designed and tested on the combined samples to estimate standard accuracy,
unweighted average recall (UAR), and un-weighted average F1-Score (UF1). Two-
stage transfer learning has been used based on three benchmark MACE datasets[37–
39]. Our model shows superior recognition accuracy on three metrics that surpass the
state-of-the-art methods.

The main contributions to this work are summarized below:

• We propose an automatic ME recognition method based on the 3DCNN-18 resid-
ual network as a backbone for spatio-temporal feature extractions followed by a
conv-LSTM auto-encoder with the size of 2-1-2 for fine-tuning the temporal co-
relation among spatial features and de-noising them. Finally, a structural regularizer is
appended for aggressive summarization to feed the final vector to a soft-max classifier.

• Macro-to-micro transfer learning has been revitalized to deal with over-fitting due to
the lower number of ME video samples.

• Construction of a compositeME video dataset with three class samples (e.g., negative,
positive, and surprise) from five publicly available ME datasets.

• Validation with two CV techniques, LOSO and Stratified 5-fold, to measure effective-
ness and verify the generalization of themodel using cross samples and cross subjects.
That shows the very high effectiveness of the proposed method that outweighs the
state-of-the-art MER approaches.
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The rest of this paper is organized with methodology in Sect. 2, experiments in
Sect. 3, and results and discussion in Sect. 4, and conclusions in Sect. 5.

2 Methodology

This section systematically presents our proposed method. The approach encompasses
the pipeline, model architecture, evaluation metrics, and loss function, and transfer
learning mechanism from macro to micro expressions.

2.1 Process Pipeline

General pipelines show the flow of input video processing steps, 3DCNN-18 residual
[40] backbone for spatio-temporal feature extractions, 2D Conv-LSTM auto-encoder
inspired by [41], and a structural regularizer followed by a soft-max classifier. It covers
the input to emotional class label predictions froma sequence of spontaneousME frames,
which is depicted in Fig. 1.

Faces in ME video frames are detected and aligned with a deep-based reliable face
alignment network [42] along with a real-time and robust single-shot-scale invariant
face detector (S3FD) [43] to correct head-pose. It reduces the negative influence on ME
recognition. The face has been cropped based on the detected bounding box to eliminate
the irrelevant area from images. The facial images are then normalized to 64× 64, which
makes training faster for video sequences by reducing the computational cost. Then it is
augmented using vertical flipping and 8° counter-clockwise rotation to triple the original
samples. It helps to reduce over-fitting to some extent. Furthermore, the frame sequences
have been padded with last framewhich is the onset frame in our case for all ME datasets
except SMIC, as the apex frame is not annotated in it. We restrict the ME video length
to 12 frames for batching to reduce the computational cost and unnecessary redundancy.
As the datasets samples are highly imbalanced, we have calculated the class weights
for sampling in weighted random sampler for batching to ensure the representative
samples for each class for recognition. After all of these preprocessing, augmentation
and batching steps, the frame sequences have been fed into the model depicted in Fig. 2
for saptio-temporal feature extractions and classification. The model is described in the
following section.

2.2 Model Architecture

It encompasses a residual 18 3DCNN backbone network, a 2-1-2 LSTM auto-encoder
with 2D convolution, a 3DCNN layer followed by a structural regularizer, and a soft-
max classifier. Here 3DCNN is for convolutions in spatial and temporal dimensions of
ME frame sequence concurrently. It is implemented in a residual framework with 18
layers to capture the dynamic changes in spatial ME features from faces. The elicited
spatio-temporal features with the dimension (channel× length× height×width) have
been transferred as input to the convolutional LSTM two-layer auto-encoder for compact
representation of features by reducing noises and fine-tuning the subtle spatial changes.
It unrolls both LSTM encoder cells for the length dimension. We have considered the
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vanilla LSTM cell with 2D convolutions, which are formulized in the following set of
equations-

it = σ(Wxi conv xt + Whi conv ht−1 + Wci ∗ ct−1 + bi) (1)

ft = σ
(
Wxf conv xt + Whf conv ht−1 + Wcf ∗ ct−1 + bf

)
(2)

ct = ft ∗ Ct−1 + it ∗ tanh(Wxc conv xt + Whc conv ht−1 + bc) (3)

ot = σ(Wxo conv xt + Who conv ht−1 + Wco ∗ ct + bo) (4)

ht = ot ∗ tanh(ct) (5)

In Eqs. (1), (2), (3), (4), and (5), it is the input, ft is the output from forget gate,
Ct current state, ot output, and Ht is the hidden state at current time step t. Again,
conv represents the convolution operation and * for Hadamard product. LSTM cell is
iteratively unrolled for the activated feature map sequence obtained from the 3DCNN
backbone. Conv-LSTM encoder mapped the input as a compact representation to an
encoded vector. Here, it is the hidden vector h2 from the 2nd LSTM encoder cell for the
last featured frame in the high-level features frame sequence. Conv-LSTM decoder with
two LSTM cells has been used to reconstruct the fine-grained, smooth spatio-temporal
transient evolution. Here 3 × 3 convolutional filter is used for both the decoder and
encoder parts. Regenerated ME features stacked on h3 through length iterations from
the decoder part are fed into a 3DCNN layer with kernel 1 × 3 × 3. It converts the
feature maps from regressive to actual class form to categorize ME expression sequence
into three labels negative, positive, and surprise. Then a native structural regularizer with
adaptive average pooling is used for aggressive summarization to generate a vector of
three predicted values. It reduces the trainable parameters to alleviate the over-fitting. A
finishing soft-max classifier is used to ensure the predicted of three values is 1.

2.3 Evaluation Metrics and Loss Functions

To evaluate themodel on compositeME samples, threemetrics have been used to observe
the influence of data organization, preprocessing, augmentation, and frame rate setup,
as well as to measure the effectiveness of the proposed model. Here standard accuracy,
balanced accuracy, i.e., UAR and UF1 macro metrics, have been represented in Eqs. (6),
(7), and (8).

Standard Accuracy = TP + TN

TP + FP + TN + FN
(6)

Un-weighted Average Recall =
∑

per class accuracy

C
(7)

Un-weighted Average F1 Score = 2TP

2TP + FP + FN
(8)
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Fig. 1. ME recognition pipeline comprising preprocessing of input video to class label prediction.

Fig. 2. Model architecture composed of 3D ResNet18 and Conv-LSTM auto-encoder appended
with structural regularizer.

In Eqs. (6), (7), and (8), TP, TN, FP, FN, andC represent True Positive, TrueNegative,
False Positive, False Negative, and the number of classes, respectively.

As the target ME datasets are highly imbalanced, we have considered these metrics
to reduce the bias of the model to higher sample classes on accuracy. Model sensitivity
is measured with UAR by averaging the recall on each predicted class of a ME video
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sequence, and UF1 is calculated at the macro level from precision and recall for each
predicted sample. Also, the standard accuracy has been estimated on the total number
of correctly classified samples out of total predicted samples.

Themodel has been trained based on cross-entropy loss function on predicted output.
Therefore, it is suitable for multiclass label classification and for highly imbalanced
datasets such as publicly available ME datasets. The analytical form is given in Eq. (9).

loss(x, class) = −log

(
exp(x[class])
∑

j exp
(
x
[
j
])

)

= −x[class] + log

⎛

⎝
∑

j

exp
(
x
[
j
])

⎞

⎠

For class weights-

loss(x, class) = weight[class]

⎛

⎝−x[class] + log

⎛

⎝
∑

j

exp
(
x
[
j
])

⎞

⎠

⎞

⎠ (9)

In Eq. (9), x is the normalized output from the soft-max layer, and the class is [0,
1, 2] for three categories negative, positive, and surprise, respectively. As the model has
been trained on a batch of ME frame sequence, the loss has been calculated based on
the average of loss of each predicted sample in that batch.

2.4 Macro to Micro Knowledge Transfer

The model has been trained on three benchmarks MACE datasets, CK+ [37], MUGFE
[38], and OULU-CASIA [39]. In our model, the backbone network is pre-trained on
kinetics-400 [44], and the conv-LSTM auto-encoder with 4 LSTM cells and the 3DCNN
layer are initialized randomly. The proposed model has about 37.6 million trainable
parameters. On the other hand, publicly accessible ME datasets have a lower number
of video samples. So, the training of the model on target ME samples in the first place
must be a cause of over-fitting. Considering these facts, we have done the pre-training on
MACE video samples in negative, positive, and surprise classes for similar knowledge of
ME. Then the model is further trained on ME composite samples in the same categories
for target knowledge MER. Datasets organization and experimental details have been
discussed in Sect. 3.

3 Experiments

This section describes the organization of data samples into three discrete categories
negative, positive, and surprise for both MACE and ME. It also represents the data set
summaries, model implementation, and design and implementation of cross-validations
LOSO and Stratified-5Fold.

3.1 Macro and Micro Datasets Organization

Three benchmark MACE datasets have been used for the transformation of knowledge
about ordinary prototypical facial expressions. The widely used extended Cohn-Kanade
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(CK+) [37] is one of them. The other twoMUGFE [38] and OULU-CASIA [39] are also
very relevant datasets forMACEvideo samples.Wehave considered frame sequences for
the expressions of anger, disgust, sadness, happiness, and surprise in all three datasets. In
CK+, the respective MACE videos have been reduced to the range of 6 to 50 frames by
manually eliminating some early neutral frames but preserving the last one as a peak in
each sequence. For MUG facial expression dataset, we have kept the video length is less
than or equal to 62 frames by discarding the neutral and less expressive frames. Videos of
OULU-CASIA have been restricted to 20 frames in the same way. Only the samples of
the strong visible lighting part of this dataset are taken for our transfer learning. All the
samples from these datasets are categorized into three classes negative (anger, disgust,
and sadness), positive (happiness), and surprise (surprise). So, it results in a composite
MACE three class dataset for pre-training. Samples from these representative datasets
are summarized in Table 1.

We have considered five spontaneous ME datasets mentioned in Table 2 for ME
recognition in negative, positive, and surprise categories.Acomposite dataset comprising
of ME video samples from those ME datasets has been constructed. Here the negative
one has been formed with anger, disgust, and sadness, where happiness and surprise for
positive and surprise respectively. The number of samples in each class is tabulated in
Table 1. To the best of our knowledge, this is the first attempt to recognize ME on five
ME datasets. To reduce the subjective bias, all ME samples except SMIC enlisted in
Table 1 have been reclassified based on AUs [45].

Table 1. Macro expressions and micro expressions video samples summary from three MACE
datasets and five publicly available spontaneous ME datasets

Dataset Negative Positive Surprise Total video samples

Before
augmentation

After augmentation

Macro expressions video samples

CK+ [37] 133 69 83 285 1140

MUGFE [38] 376 163 143 682 2728

OULU-CASIA
[39]

208 69 69 346 1384

Micro expressions video samples

SMIC [32] (HS &
VIS)

93 79 63 235 705

CAMSE [33] 80 6 14 100 300

CASMEII [34] 145 25 15 185 555

CAS(ME)2 [35] 19 6 6 31 93

SAMM [36] 31 23 13 67 201
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As ME videos have many redundant frames, which have a detrimental effect on
recognition accuracy, we have eliminated many irrelevant frames by keeping only the
frames in between onset and apex frames, including these two. Thus, the ME video
sequences have been reduced to the intervals 6 to 13, 5 to 12, 7 to11, and 11 to 12 for
CASME, CASMEII, CAS(ME)2, and SAMM, respectively. The last frame in each ME
sample is the framewith the highest peak. As SMIC is not annotatedwith apex frames, so
we have kept the original video length. Only high-speed (HS) and visual (VIS) samples
have been considered for SMIC. But this composite dataset has introduced a domain
shifting challenge due to subject diversities and different disparate attributes among
the ME datasets. But a larger number of samples facilitates to alleviate over-fitting and
model generalization, which has been supported by the results in Sect. 4. Preprocessing
and augmentation except smoothing are like those that have been discussed in Sect. 2.1.
In the case of the MACE dataset, image smoothing has also been used for augmentation.

3.2 Experimental Settings

The proposed model has been trained on a composite macro dataset summarized in
Table 1. The sequence length of each video is made equal to 12 frames by selecting the
frames at equal interval and is padded with the last frame. Then the padded sequences
have been used for pre-training. The hyper-parameters such as batch_size and initial
learning rate are set to 64 and 0.0001, respectively. Learning rate is scheduled with
patience 5 for equal validation loss in five consecutive epochs. An early stopping reg-
ularizing is used based on degraded or unchanged validation loss for 10 consecutive
epochs. Learnable parameters have been optimized using Adam optimizer. The dimen-
sion of a batch of videos is 64 × 3 × 12 × 64 × 64. For training and testing on ME
composite target samples, we have considered the initial learning rate as 0.001, and the
early stopping epoch is 8. For both cases, a weighted random sampler is configured and
used to combat the bias towards the larger sample classes. But all other settings remain
the same. The model is trained and tested on a platformwithWindows 10 Pro, Intel Core
I5 7400 CPU 3GHz, 8 GB DDR4 RAM, and NVIDIA GeForce RTX 2070 with 8 GB
memory. The widely used Pythonic deep learning framework PyTorch has been used to
accomplish the experiment.

3.3 Model Evaluations

The proposed model has been aligned with similar domain knowledge through the hold-
out evaluations (80%:20%) onMACE composite samples. Here the model is trained and
validated against three classes. The resulting confusion matrix is given in Fig. 3. Then
the pre-trained model has been evaluated on our composite ME dataset in Table 1.
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For this purpose, two validation strategies have been carefully considered and tuned
for evaluating themodel under three classes negative, positive, and surprise.One isLOSO
CV, and the other one is Stratified-5 fold. Many challenges have been induced in the
composite ME dataset due to the domain transition, especially the subjective diversities
and the larger variations in temporal and spatial- frequencies along imbalance problem
are notable. These cause a bias towards a specific group of ME video samples. LOSO
and Stratified-5 fold are there to reduce biases for such data distributions. In LOSO, 87
subjects have been used to validate the model, where each subject is tested in each split
during one epoch. On the other hand, each fold-out of 5 equal folds has been used as test
samples in each split during one epoch. Themetrics such as standard accuracy, UAR, and
UF1 have been estimated from these validations. Figure 4 demonstrates the confusion
metrics of best accuracies for both the tests. Also, the evolution of model convergence
has been recorded in Fig. 5 and 6.

Fig. 3. Confusion matrix from pre-training on the composite MACE dataset

Table 2. Disparate spatio-temporal properties of five Publicly available spontaneousMEdatasets.
Here, HS-High Speed, VIS-Visual Camera, NIR- Nearly Infrared.

Spatial/Temporal
properties

SMIC
HS/VIS/NIR [32]

CASME [33] CAMSEII [34] CAS(ME)2 [35] SAMM [36]

Spatial resolution 640 × 480 640 × 480,
720 × 1280

640 × 480 640 × 480 2040 × 1088

Temporal
frequency

100/25/25 60 200 30 200
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Fig. 4. Confusion matrix for LOSO CV and Stratified 5-folds on composite ME dataset

Fig. 5. LOSO CV standard accuracy, UAR, and UF1 scores

Fig. 6. Stratified 5-fold CV standard accuracy, UAR, and UF1 scores
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4 Results and Discussion

We have constructed and used a composite ME dataset from the five spontaneous ME
datasets mentioned in Table 3 for LOSO and Stratified 5-fold CV to categorize ME
video sequence in three classes negative, positive, and surprise. Our proposed method
and evaluations on this ME combined dataset show superiority to the state-of-the-art
methods. It achieves significantly higher effectiveness standard accuracy, UAR, and
UF1 metrics for both CVs, which is clear from the results in Table 3 and Fig. 4, 5, and
6. Table 3 has recorded the results for similar tasks base-on recent methods. CapsuleNet
based on apex frame [46] has achieved about 65%UAR, and UF1which is lower by 32%
and 31%, respectively, compared to our proposed method. In RCN-A [30], the score has
been improved up to 71% and 74% for both metrics. However, it is also far behind our
estimated results. In macro assisted network MicroNet [47], there is a reasonable gain
for both the metrics. It is ended up with scores less than 86% and 87%, respectively. Our
proposed method has demonstrated a remarkable gain in terms of three metrics standard
accuracy, UAR, and UF1. The estimated score is about 97% for all three metrics in the
stratified CV. In the case of LOSO CV, our approach shows consistent scores of 97%,
97%, and 96%, respectively. We have covered both LOSO and stratified CV, but other
approaches have done evaluations on the first one.

To lessen the over-fitting due to small size ME datasets, our composite ME dataset
with larger video samples put a positive impact on all three accuracies by confronting the
domain shifting challenge. Transfer learning on the integrated MACE dataset is another
contributing factor to it. Subjective bias reduction with the objective categorization of
ME samples, length of frame sequence reduction to 12 frames with apex frame as the
last one, augmentation, and small spatial size of each frame have influenced the model
prediction approvingly.With these facts, model designwith spatio-temporal backbone in
3D residual framework and de-noising the five-dimensional activated feature maps with
two encoders convolutional LTM layers and two accompanied LSTM decoder layers.
This auto-encoder has facilitated further abstraction of relevant spatial changes in the
ME frame sequence. Final structural regularization has subsidized the parameters.

The collaborative positive effects of our method on accuracies have also demon-
strated the model generalization in-terms of a myriad of attributes inME datasets, which
has been captured by normalized confusion matrices and shown in Fig. 4. Some irreg-
ular weight updates have caused the minor drifting before the epoch 20 and epoch 42
in Fig. 5 and 6 respectively, which is due to the random initialization of parameters of
auto-encoder and the last 3DCNN layer. After that points model is started to converge
for all three metrics in both CV.
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Table 3. LOSOCVME recognition results based on contemporarymethods for negative, positive
and surprise classes in different compositions of ME datasets.

Methods Composite datasets CV Accuracy UAR UF1

CapsuleNet on apex frame
[46]

SMIC, CASMEII and
SAMM

LOSO – 0.651 0.652

RCN-A [30] SMIC, CASMEII and
SAMM

LOSO – 0.719 0.743

MicroNet [47] SMIC, CASMEII and
SAMM

LOSO – 0.857 0.864

Ours SMIC, CAMSE, CASMEII,
CAS(ME)2 and SAMM

LOSO 0.973 0.971 0.966

Stratified
5-Fold

0.976 0.976 0.973

5 Conclusions

Our work has proposed a method and model for ME recognition on composite ME
video sequences from spontaneous datasets SMIC, CASME, CASMEII, CAS (ME)2,
and SAMM. To the best of our knowledge, it is the first attempt for ME recognition on
fiveMEdatasets. The proposedmodel combines the synergies of 3DResNet 18 and conv-
LSTM auto-encoder. Two exhaustive cross-validations LOSO and Stratified 5-fold, have
been experimented on the composite dataset. Our method shows remarkable accuracies
compared to state-of-the-art methods. From our model evaluation, it is evident that the
model is generalized, highly effective across domain shifting amongME datasets. In the
future, this will help to classify the ME frame sequence from diverse ME samples in the
wild.
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