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Abstract There is a sharp rise in communication and computing needs. The iter-
ative generations (xG) of communication networks typically improve capacity and
quality of service (QoS) parameters by an order of magnitude. In the emerging
5G+ and 6G networks, there is a call for embedded intelligence which can bring a
revolutionary change in the network fronthaul as well as backhaul. Programmable
computing is aligned with the computational concepts from the original inspira-
tion of the Software-Defined Networks (SDNs). However, the essence of the SDN
concept has been lost throughout the years due to rapid industry-absorption of the
architecture-specific details whereas the programmable computing part has been
widely overlooked. In this chapter, we describe a programmable computing archi-
tecture in the 6G network system. Then we demonstrate the key enablers that can
support this programmable computing architecture. We provide a simple case study
to illustrate how programmable computing can be leveraged in the emerging 6G
use-cases.

1 Introduction

Communication networks are all around us. As the name suggests, communication
networks are typically used for communication, whether this is cellphones for making
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a voice call, video streaming, controlling your IoT (Internet of Things) devices for
smart home applications, or drone-based surveillance and monitoring systems [1].
Even the smart, wireless TVs in your living room are part of the massive, wireless
communication ecosystem as they serve on-demand high-definition contents which
typically require high-speed Internet connection through the home access point or
router. These wide examples of communication networks are rolled out every few
years in terms of a new generation (xG). The evolution of wireless communication
networks from 2 to 5G has already been astounding and associated with a sharp
increase in the number of supported users along with much-improved capacity and
service performance guarantees. The better the service performance, the more satis-
fied the users are. As the 5G networks are being rolled out, both academia and
industry are drafting the next generation of wireless and mobile networks, which are
referred to as the 6G networks [2, 3]. Is 6G just hype? Or does it bring a new flavor of
communication? Is it just a business model to sell new networking equipment to your
favorite mobile broadband provider and cellular network operators so that they can
impose a heftier monthly subscription charge? Or does it really provide something
additional to what we already have in 4G (LTE, WiMAX) and 5G networks [4]?

To answer this question, we need to understand what 4G and 5G were designed
to deliver to mobile users. A key difference between 4 and 5G is the adoption of
millimeter-wave (mmWave) bands (for higher capacity and supporting more users)
and much lower delay requirements. There are many small and densified cells in
5G networks that use beamforming and other technologies to deliver 1–30 Gbps
(gigabits per second) of speed compared to the speed in the order of hundreds of MBps
(megabits per second) in the predecessor 4G networks. On the other hand, the 6G
networks are different from 5G networks in terms of providing 100 Gbps to 1 Tbps (1
terabit per second) speed. This is an ambitious requirement drafted, inspired by some
of the laboratory experiments conducted recently with Terahertz (THz) frequency
and VLC (visual light communication) technology. However, in 6G networks, to
accommodate this very high-speed communication, the nodes need to be within even
smaller areas than those in 5G networks, referred to as tiny cells. Imagine so many tiny
cells in your city, which are dynamically formed on a need basis, then dissolved, and
then formed again to cater to a different service need. This dynamism will be much
more dominant in 6G networks because of the integrated aerial-terrestrial-satellite
networks. In 4G and 5G networks, typically terrestrial network base stations are used
to serve the users. However, in 6G networks, drone cells, terrestrial base stations,
nanosatellites, etc. will all be connected [5, 6]; and it is very difficult to satisfy the
capacity and delay requirements to combat the ultra-high level of dynamism in such
a complex mesh of networks. As a consequence, flexible architecture is required to
compute the resource allocation, security provisioning, service quality assurance, and
so forth. In this chapter, we talk about the softwarized or programmable computing
for 6G networks, which can be considered as the key manager of tiny cells of 6G
networks.

The softwarized network programming is inspired by the fusion of AI (artificial
intelligence)-based computing [7] and the software-defined networks, commonly
referred to as SDNs [8, 9]. The reason for this conception is two-fold. 6G networks,
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in contrast to earlier generations of communication systems, are being designed for
embedded intelligence, particularly in the network edge [10]. Therefore, the coor-
dination of 6G should be done in such a way that considers AI natively. You must
have read about AI, or watched science fiction movies that talk a lot about intel-
ligent robots! Although we haven’t reached that level of intelligence yet, commu-
nication networks are a leading area where intelligence may have great success.
By intelligence, we refer to the basic pattern recognition algorithms and mainly
data-driven models. In popular lingo, we refer to this as machine learning or deep
learning models which are built on observing various trends and patterns in the
communication networks. These are also known as predictive techniques. If your
network operator can predict that there will be 100 cellphone users in your shopping
mall area in the suburbs during the next half an hour, it can switch on the tiny cell
base stations to serve those users and the other time it doesn’t have to keep those
base stations active, thereby saving energy. Energy-efficient technology, although
appearing to have a negligible impact on the carbon footprint at a tiny cell level, can
lead to much reduced emissions on a collective level across a town or city. This is
just but one example of the awesome features predictive technologies can provide
to communication network users. They can proactively assign network resources
(called channels) [11, 12], they can forecast what type of content (movie, music,
etc.) the users may want to watch [13], how the users will interact with one another,
etc. If such intelligence can be embedded into smartphones and other devices in the
edge of the network, they can transform those small user-devices into powerful edge
computing devices which can take part in distributed learning to figure out inter-
esting computing problems, for example, contact tracing, pandemic modeling in a
distributed environment in real-time, and so forth. We hope that you could get the
big picture of the usefulness of embedded AI in 6G systems.

On the other hand, the SDN architecture needs to be fused with the embedded
AI in 6G networks also. Typically SDN architecture was coined from a computer
science perspective, to make the best use of object inheritance and code reusability
[14]. What do we mean by this? If you are familiar with object-oriented program-
ming such as C++, C#, Java, etc., you will definitely be familiar with abstractions
such as classes, objects, encapsulation, inheritance, polymorphism. Clever computer
scientists thought about using this concept to extend to network entities. On the
top level, a network router may have some basic class of operations, and the next
level of the router may have further abstraction with some added features. All we
have to do is: define the objects, and extend the classes, and map them to the hard-
ware implementation of network routers and other network equipment. This is an
abstract but powerful concept, which unfortunately became lost in “translation” from
the computer science perspective to network engineering practice. Practitioners of
4G and 5G networks overlooked and forgot the inherent significance of the orig-
inal concept of SDN, and simply implemented the central coordinator/controller-
based management of network nodes and routers. By referring to such implemen-
tations as SDN, the programmability feature was entirely missed. If we can bring
the programmable computing from the original SDN concept and infuse AI with it,
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it can do wonders for the embedded AI as a key enabler for emerging 6G network
systems.

We hope that we understand the big picture of programmable computing in 6G
by now. Let us embark on the journey into the chapter where we will be able to tell
you about the machine/deep learning-based AI models that can help the 6G systems
to do on-demand model building and deployment. We will first provide some related
work regarding programmable computing, inspired by SDNs. Then we will provide
preliminary on machine learning and deep learning models. Next we will present
the 6G programmable computing architecture with AI as well optimization model
incorporation. A use-case will be then provided so that readers can have a high-
level understanding of how such programmable computing can provide high service
performance in 6G systems. Future challenges and directions for programmable
computing in 6G networks will then be briefly discussed.

2 6G Network Requirements

Readers should take note of the fact that at the time of writing this chapter, 6G
is still at the conceptualization phase. Even though 6G networks do not exist yet,
theoretical and experimental work are encouraging researchers and telecommunica-
tion engineers to learn from the limitations of the current generations of networks
(4G, 5G, etc.) to help make a completely different generation of networks with
several key requirements. The connectivity between devices (not just cell phones
and smart devices but also billions of IoT devices) will be complex yet fluid in an
integrated aerial-terrestrial-satellite network. Each component of such a complex
network system has its own physical specifications and requirements. For example,
aerial networks can be formed much faster in remote/rural areas with ease compared
to the conventional terrestrial base stations. However, their achilles heel is the battery
(energy constraint)! Readers are familiar with drones that can take aerial photog-
raphy but can be in flight for not more than half an hour (take for example an
off-the-shelf DJI Phantom drone). When you use such drones for communication
to form a mesh network, they can do wonders for remote sensing to detect fire
in the forest bed, or connect rural villages or Indigenous communities that cannot
be accessed with hard-to-deploy and much more expensive terrestrial links using
fiber optics. Drones can use 2.4 GHz (gigahertz) links which are similar to what
you typically have at a home wireless access point, and other high-frequency links
for collecting and forwarding packets to the Internet. But their mobility, energy
constraint, capacity, wireless channel quality, blocking, and path loss models are
quite different when compared to terrestrial base stations and users. Now imagine
if you use these two radio access technologies with various inherent requirements
together! Now imagine you throw the nanosatellites and low earth orbit satellites
into the mix. The 6G network will be so difficult to manage in such a complex co-
presence of the different radio access technologies. What is the 6G network manage-
ment for? There are several requirements of 6G systems considered by researchers
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Fig. 1 6G network
requirements compared with
those considered in 5G
settings

which include: up to 1 Tbps capacity, 1 ms or below delay, embedded intelligence
for native support for edge computing, and so forth. Now why these requirements?
These requirements of 6G systems are needed to support the killer applications of the
future that include: tactile internet, remote surgery, haptic connections, immersive
infotainment (e.g., using virtual/augmented reality), autonomous cars, etc. These
applications typically require a huge amount of bandwidth which justifies the high
capacity of 6G networks. Such applications also need a very low communication
delay in the order of a few milliseconds, and typically require local computer vision
and natural language processing tasks that in turn heavily rely on AI models. Readers
can refer to a simple comparative illustration of 6G network requirements compared
to the predecessor 5G network settings in Fig. 1. Next we will derive inspiration from
the existing work to be able to sketch a programmable computing infrastructure for
6G network systems that can adequately support the aforementioned requirements
and applications.

3 Background and Motivation

Software-Defined Networks, commonly referred to as SDNs, have been widely
studied and considered in various network technologies from 4G/5G core networks
to IoT systems. From SDNs we derive the motivation because it is the focal point
of computer science theory for reusable coding for programming/reprogramming
network elements and current telecommunication engineering practice. So let us
take a closer look at SDNs first and try to understand what is actually missing that
makes it not readily scalable to 6G networks with the required embedded intelligence.

Refer to Fig. 2 which describes the operation of the SDN controller. It
typically separates (decouples) the control and data plane when packets are
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Fig. 2 SDN controller decoupling the control plane from the data plane

forwarded over networks. Traditional routers perform a dual role, they process
both control (computing) and data (packet forwarding) planes. But this puts a lot
of processing/computing burden on these network nodes, such as bridges, routers,
access points, etc. Why do we want to separate these planes? Let us consider a simple
example. You are a distribution manager and a distributor at the same time at the
pickup corner of a large shopping outlet. As the distribution manager, you receive
various calls, emails, etc. for customer orders, and then also need to distribute them
to the customers for curbside pickup, home delivery, etc. This is a very complicated
job. If you could separate this between you and your colleague, life could be much
easier, right? In this simple example, the distribution manager is the example of a
control plane while the distribution tasks are analogous to the packet forwarding
operations on the data plane of the SDN.

While the control functionality is placed on the SDN controller (or several SDN
controllers) to coordinate the entire network which could be your university campus
network or the power grid cyber-physical system network, today’s SDNs miss the
object-oriented design concept. This could strengthen the SDNs to be systematically
built and scaled. However, the network engineering practitioners, probably out of the
excitement, absorbed the architectural essence of SDN and forgot the programma-
bility part. This is where the motivation for a programmable network starts for us.
What does the programmability imply? Think about a network node; which has
simple or basic functionality such as packet forwarding. The packet forwarding could
be a class and all the simple packet forwarding elements could then be instances of
that class. An extended class could be a router with firewall functionality that can
forward packets and also have the ability to act as firewalls. The key takeaway of this
idea is code reusability. First, we have a basic abstract network element class, and all
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the instances of this class will be simple network forwarding entities. By simple code
reusability and extension, we can have a firewall class to make many other instances
of routers with firewall capability. There could be many more extensions with such
programmability.

Such a programmable computing-powered SDN controller can simply make new
classes and instances and deliver those instances to the off-the-shelf, “empty” routers.
In other words, the network controller could decide, for switch k, to add more new
rules when the traffic load variation significantly changes in Fig. 1. An even more
dramatic example of the programmable computing-aided scenario could be a drone
which can act as a “transformer” by changing its role from a flying access point,
energy harvesting static access point, a home router in a rural area, or a relay node,
or even a surveillance node. How can the node change its modus operandi on the
go? To build such a versatile drone (or a versatile network functionality box) will
mean there should be lots of hardware resources and multiple software packages on
a self-contained system. This raises the cost and practicality of such systems in a
significant way.

This brings the next question: how can the controllers have the capability to make
the best models and decisions fast enough so that these models could be deployed
down onto the network switches, routers, relay nodes, drones, and so on. The answer
is: by either a rule-based or data-driven approach. Rule-based approaches include
optimization techniques, heuristics, etc.; while the data-driven approaches typically
consist of supervised learning, unsupervised learning, and reinforcement learning.
Next, we provide the preliminaries of these rule-based data-driven approaches that
are the building blocks of the softwarized, programmable computing in 6G networks
for performing a diverse set of network and service functions.

4 Preliminaries of Rule-Based and Data-Driven
Approaches

As mentioned earlier, there are rule-based techniques which are the traditional tech-
niques. On the other hand, there are data-driven approaches to train a model that can
be readily deployed to the network nodes.

4.1 Rule-Based Techniques

There are various approaches to optimize network performance based on the network
traffic load dynamics and other variables in the 6G radio access side or the fronthaul.
For formulating resource allocation and scheduling problems in various 6G tiny cells,
optimization models based on linear programming, convex optimization, Lyapunov
optimization, stochastic optimization, and matching algorithms are widely used.
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While such techniques are well suited for obtaining closed-form solutions to the opti-
mization problem, collecting all the information typically is a time-intensive process
particularly when the search space for finding the solution is large. On the other
hand, when optimization techniques do not provide an optimal solution, an accept-
able solution is still required. This is when heuristics, such as greedy approaches,
are designed. Let us consider a simple example. Suppose there is an array of intel-
ligent reflective surfaces in a 6G network. How to find the optimal angle of the
reflecting surface elements with respect to the different frequency bands used in the
network? Since there is no unified channel model for multi-band frequencies, it is
difficult to obtain a closed-form solution for this problem. So the next best solution
is to approximate a solution using trial-and-error-based approaches or heuristics, or
greedy algorithms that can provide at least some reasonable or acceptable throughput
and delay performances. Typically these algorithms need to be designed manually.
Human operators need to observe the various network variables, formulate an objec-
tive function subject to various constraints, and then figure out whether the conven-
tional optimization algorithms are computationally hard or not. If this is the case, the
problem is typically broken down into simplified problem(s) or subproblems that can
be easily solved; and heuristics are developed to opportunistically solve the simplified
problem or the subproblems. While for known network configurations, the optimiza-
tion techniques typically provide optimal or near-optimal solutions, their execution
time and the single-shot solution (once at a time) warrant a different method, namely
the data-driven approach.

4.2 Data-Driven Approach: Machine Learning and Deep
Learning

The data-driven approaches typically build an experiential learning model by discov-
ering various patterns in the network activities. While they do not provide closed-
form solutions, they are known to perform very well given large data sizes. The
experience culminated by big data originating from the IoT system or a cellular
network can allow the network coordinator to predict how much resources need to
be allocated in the several next minutes, which frequency bands and channels are
likely to be occupied, which contents will be in high-demand, and so on. There
are statistical approaches that typically provide descriptive analytics and are widely
used for constructing anomaly detection in network intrusion detection systems.
There are machine learning-based approaches such as support vector machines and
random forest (based on decision trees) to mainly train AI models for deciding various
regression and classification tasks. These can provide fast, embedded intelligence for
the resource-constrained nodes (e.g., IoT devices and drones) in 6G networks. On
the other hand, for complex and large data processing which involves non-linearity
and cannot be handled with conventional rule-based approaches, the deep learning
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methods using various neural networks are gaining popularity. For instance, artifi-
cial neural networks (ANNs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs) are used for various types of classification tasks involving
non-linear pattern identification in complex networks data. When these models are
trained over a long period of time, for similar networks the pre-trained models can
be quickly deployed by the network coordinator to the network entities to reprogram
their functionality and optimally handle the prevailing network dynamics. This is the
power of these AI models, in conjunction with the network manager/coordinators,
to provide an on-demand reconfiguration of network nodes.

5 6G Programmable Computing with Optimization and AI
Models

With the above preliminary, we are now ready to describe the 6G programmable
computing architecture with optimization and AI models. We will use Fig. 3 to
describe this architecture.

As shown in Fig. 3, there are three layers in the proposed programmable computing
architecture with optimization and AI models: the application plane, hardware plane,
and data plane. For detailed description of the inspiring architecture, please refer to
the authors’ inspiring work in this area in [15]. Let us start from the bottom up,
with the data plane. The data plane consists of various base stations (BSs) ranging
from terrestrial to drone-managed networks. Satellite networks in the integrated
6G networks could also be shown, but for simplicity, we decided not to make the
illustration more complex than it already is. The base stations could be static or
mobile cellular base stations managing 6G tiny cells or macrocells. There could
be user devices acting as device-to-device (D2D) nodes or hotspots acting as relay
entities for packet forwarding where the traditional base stations cannot reach. There
could be drones or aerial base stations also to cover areas where the conventional
base stations access is not available or they are overwhelmed due to network traffic
congestion. These various networks generate a lot of traffic competing for 6G base
station resources, and under highly dynamic channel conditions, blocking models,
and ultra-high mobility; the serving base stations need to be reprogrammed to deliver
the best service and minimize the possibility of a service outage.

Based on the traffic demand, user movement pattern, channel conditions, and
other network dynamics, the 6G network manager, located at the 6G network home
office (HO) where hardware virtualization is performed to facilitate the control plane
and to provide service/application plane functionalities including QoS and security
provisioning in terms of network slicing, virtual network function (vNF), signal
processing, remote radio resource allocation, mobility control, sleep scheduling of
base stations, etc.

The base stations placed on the data planes consist of terrestrial and aerial (drone)
base stations, mobile user equipment (UEs), wireless local area network access points
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Fig. 3 Programmable computing architecture with optimization and AI models in 6G networks
[15]

(WLAN-APs), visible light communication (VLC) base stations, vehicle-to-other
(V2x) nodes, IoT devices, etc. The 6G network manager, which could be a central-
ized or a distributed/virtualized platform, is responsible for deriving and on-demand
distribution of optimal and intelligent models and/or policies to these various base
stations, access points, and wireless equipment to optimally forward the data packets
for satisfying the 6G communication requirement. On the data plane, the wireless
nodes, based on the derived optimal and/or intelligent model/policy, observe the
current traffic demand, channel conditions, and so forth and then decide which models
are ideal for the current situation. Therefore, by matching the network dynamics, they
proactively download the optimal/intelligent network policy as shown in Fig. 2. For
example, the stochastic multi-armed bandit (MAB) model [16], belonging to the rein-
forcement learning family, is deployed for stationary D2D nodes while the adversarial
MAB model is downloaded by the mobile UEs [17]. Thus, the proposed system model
benefits from the reusability of the MAB schemes for new programmable network
nodes. Specifically, the application plane has to define a few primary instances of
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optimization and AI model types. Upon current network topology and dynamics,
network devices can simply be reprogrammed to accommodate an appropriate model
to combat the prevalent conditions by merely creating an instance or a program based
on the base definition that it procures from the repository of optimization/AI modules
in the application plane.

As mentioned earlier, the classical optimization techniques are not scalable with
the highly varying network dynamics. As a result, it is often challenging to provide
closed-form expression on the existence and guarantee of an optimal solution for
a well-defined, complex problem. Many of the constraints and conditions are often
relaxed upon the utilized algorithm design to find suboptimal solutions. Further-
more, such optimization techniques are typically a one-shot process as they require
centralized, oracle-like knowledge to ingest the whole dataset to give the optimal
benchmark decision. On the other hand, a supervised learning model is typically
trained before decision-making since inference is known to be much faster than the
training time. However, such supervised learning models require extensive and versa-
tile training datasets. The lack of an adequate dataset, which is critical to train the
existing machine/deep learning models, will be a crucial barrier to maximizing their
predictive performance. Moreover, the performances of such supervised learning-
based models are typically sub-optimal, and a lack of interpretation as to why they
provide such performance still raises a lot of concerns among researchers for mass
deployment on networking devices in contrast with the traditional straight-forward,
feedback-based decision making. Therefore, ultra-fast online learning techniques
are essential to be deployed to the 6G users (e.g., BSs, home APs, mobile UEs, and
so forth) for localized, distributed decision making. The type of MAB can also be
changed on-demand to cater to the sudden change in the network dynamics experi-
enced by the 6G users. Furthermore, the recent advances in regret analysis for the
variants of MAB algorithms can be leveraged to demonstrate their tightly bounded
performance guarantee. Thus, MAB emerges as the most viable candidate compared
to the classical optimization and supervised learning counterparts.

6 Conclusion: Future Directions and Caveats

Intelligent decision-making is anticipated to be a key embedded feature in the
upcoming 6G networks that will realize innovative future applications. Since
these services have ultra-reliable requirements easily impacted by varying network
dynamics, on-demand ultra-fast learning techniques emerge as a formidable research
challenge. In this chapter, we addressed this challenge and proposed a soft-
warized network consisting of an on-demand policy selector that considers the
ongoing network dynamics and accordingly chooses the best intelligence module
for deploying to the nodes for that particular network.

Unlike the classical optimization and supervised learning methods,
online/sequential learning techniques such as MAB algorithms with different
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policies can be focused on viable online, sequential learning techniques for 6G node
deployment by the proposed on-demand selector.

As a caveat, it is worth noting that for deploying the models on-demand, there
could be some connectivity issues causing the AI models not to be timely updated that
may cause the target routers/network nodes to be rendered dysfunctional. To combat
such a corner case, we may assume a default, basic functionality of programmable
routers to cope with such scenarios. How to optimally generalize such a default func-
tionality is left open as future work for 6G softwarized networks and programmable
routers.
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