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Foreword1

It was a great pleasure and honor when my colleagues Milton Rosa, Daniel Clark
Orey, Francisco Cordero, and Pablo Carranza invited me to write the foreword for
this marvelous book that brings a collection of chapters dealing with mathematical
modelling programs in Latin America, and which emphasizes a collaborative context
for social construction of mathematical knowledge for educational change in society,
which seeks for social justice and promotes total peace in its four dimensions: Inner
Peace, Social Peace, Environmental Peace, and Military Peace, which are intimately
related.

This book is a very important contribution to the area of mathematical modelling.
The essays address issues and the consequences in mathematical practices and
conceptions developed through the conduction of modelling investigations. The
Summary of this book shows the breadth of this collection, and it would be very
difficult to comment on each essay. The titles are illustrative of their contents, and
each one has extensive bibliographical references.

A special characteristic of this book is related to its empirical evidence on how
categories of mathematical modelling are developed in Latin America, which
assesses the horizontal and reciprocal relations between mathematics (school/non-
school contexts) and the real world. This book is very original in both the choice of
theoretical contents and the methodological treatment given to all of them. It adds
relevant aspects to the mathematical modelling approach that is based on three Latin
American modelling programs: ethnomodelling, transversality of knowledge, and
reasoned decision-making.

Undoubtedly, these three mathematical modelling programs, independently and
collectively, provide educational gains, each one with its levels of specificity and
loyal to its principles. Each chapter, with its respective theoretical and

1Professor Ubiratan D’Ambrosio graciously accepted an invitation to write the Foreword to open
this book. We believe that this foreword is one of the very last texts he wrote before his passing on
May 12th, 2021, and we are greatly honored and thankful to the D’Ambrosio family for this honor
in including his thoughts here.
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methodological foundations: ethnomathematics, socioepistemology, and the attribu-
tion of meaning to learning, reveals its relevance to the context of Latin America.

Thus, I will use this foreword to comment on relevant aspects of mathematical
modelling, which are treated with different nuances in this entire collection. I refer to
mathematical modelling as the study of scientific, mathematical and, by extension,
technological phenomena in direct relation to its social, economic, political, envi-
ronmental, and cultural contexts.

I claim that the great advantage of working in this border zone lies in the
possibility of combining academic and dynamic treatment with historical, anthropo-
logical, and sociocultural studies to improve education. Indeed, this synthesizes the
strength of this collection of chapters.

Mathematical modelling helps individuals to transcend their pulsions of survival
that go beyond the anatomo-physiological mechanisms.2 This pulsion of transcen-
dence, unique to the species homo, is difficult to explain. It gives rise to sophisticated
and creative communication, and language, and to emotions, beliefs, and prefer-
ences. Some scholars call it will while others call it consciousness.

There are other denominations, some related to myths and religions. Conscious-
ness is an elusive concept. Many scientists say that terms such as will, mind,
consciousness, and other words describing subjective mental experiences cannot
be defined. It allows us to predict what will happen in the future and to socially
coordinate plans for the future.

Consciousness helps to extract meaningful information from the sense organs.
There are limitations, such as the recognition of will and of consciousness in anyone
except oneself. Self-recognition is the ability to recognize oneself as distinct from
another entity, as well as to plan, pay attention, recall memories of specific events,
and take the perspective of another creature.

Environmental conditions require activation of consciousness, but also from
learning and environmental influences within human’s own lifetime. To provide
for all similar contingencies would require an impossible roster of instructions and
wasteful volume of specific directions.

In most of the contingencies, decisions must be made ad hoc through the use of
instruments, both material and intellectual, such as counting, classifying, inferring,
and modelling, which are responsible for the development of ad hoc solutions.
Hence, we may understand the construction of knowledge as a three-step process:

1. How are ad hoc practices and solution of problems developed into methods?
2. How are methods developed into theories?
3. How are theories developed into scientific invention?

2The anatomo-physiology mechanisms are related to the functions and adaptations of the endocrine,
nervous, digestive, and cardiovascular systems, as well as the interactions among these systems
provide an understanding of the normal physiological responses of these systems and their
adaptations to perturbations.

vi Foreword



While methods are essentially a rational and coordinated use of techniques, theories
are impregnated modes of explanation and understanding, based on myths, on
spirituality, and even religions, as well as on science and mathematics and in
ideology, which are all mentifacts. It is undeniable that the human species are
characterized by the pulsions of survival of the individuals and of the species, like
all the living species, and by the pulsion of transcendence that is unique to the human
species.

Both, survival and transcendence, are in mutual interaction. The acquisition of the
pulsion of transcendence is the focus of mythologies and religions, a fascinating
research theme. Every individual and society, and the human species in general
develop strategies to cope with the ample reality. I clarify that every time I say ample
reality, I mean everything, the complex of natural and supernatural phenomena and
facts, the physiological, sensorial, emotional, and psychic reactions to the environ-
ment in the broad sense, as well as in the social interactions.

Indeed, everything, the physis (� nature) and the nomos (� social norms) are in
permanent change. Nomos is as indispensable ground for physis as physis is an
indispensable ground for nomos. They are in a symbiotic relation. Physis provides
the potentialities, nomos the actuality of humanity. I also consider that people select
facts and phenomena of reality that inform individuals and groups.

Obviously, no one has full access, awareness, and knowledge of reality; no one is
omniscient. Our natural limitations give us access to selected facts and phenomena.
The reason and the form of selection are extremely complex. They go from an
uneven capability of individuals and groups to receive information, in some cases
related to sensorial qualities or deficiencies, and in other cases to the interest in the
information received. The interest may be because of needs, or preference, or merely
by chance.

Anyway, the information received is processed, in a way not yet well understood.
The individuals or groups exert an action of generating artifacts and mentifacts from
the selected part of reality (sociofacts). They are incorporated into reality as repre-
sentations, which inform the individuals or groups and this cycle goes on. The main
question is then, how individuals and groups deal with representations of selected
facts and phenomena faced in their daily lives.

In a representation, reality is restricted to selected facts and phenomena, and the
result is a sort of isolated individualized reality, and to deal with it, individuals
attribute codes or parameters to the selected facts and phenomena. These parameters
may be of a mathematical nature, such as mathematical forms and mathematical
symbols. The isolated individualized reality, with the mathematical symbols attrib-
uted to the selected facts and phenomena, is a mathematical model of it, which is an
artifact that represents a model of a complex social reality.

Through models, humans try to give explanations of myths and mysteries, and
these explanations are organized as arts, techniques, theories, and strategies, which
help them to explain and deal with facts and phenomena. Intellectual resources allow
the individuals to deal with the models and the parameters they created, which are
representations of facts and phenomena of the reality in the broad sense. The most
common intellectual resources are based on observing, comparing, classifying,
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ordering, measuring, and quantifying, and individuals and groups deal with the
representations of selected facts and phenomena. These parameters are described
in terms of formal mathematics.

In this context, I call mathematical modelling as the process of dealing with
models in which the parameters associated with are the objectives of coping with and
explaining selected facts and phenomena of reality. They are also explained in terms
of formal mathematics. The practice of mathematical modelling is an iterative
method starting with reality, with which we started by selecting parameters,
constructing a model, proceeding to its mathematical analysis, verifying results
through control procedures, and reformulating the model by repeating the analyses
and control until we reach a satisfactory perception of the selected system taken from
reality.

In each step, the practitioner reformulates the choice of parameters and resumes
the process, which eventually allows for a better understanding of the selected facts
and phenomena of reality, which is the goal that justifies our practices as educators,
mathematicians, and scientists. The ensemble of the strategies to cope with ample
reality is a complex system of knowledge and behavior, generated by individuals and
socialized in a group of individuals with some affinity. This is the scenario discussed
in all the chapters of this book.

The basic questions are how individuals and groups of individuals develop their
means for surviving in their own natural and sociocultural environments, satisfying
the pulsion of survival [body] and how they go beyond survival, acquiring the
pulsion of transcendence [mind]. Survival and transcendence are the quintessence
of human life and are dealt with a complex system of knowledge and behavior
generated and organized by both each individual (from birth to death) and by the
affinity group. The way they are generated, organized, and socialized relies in
language and rhetoric in a broad sense.

These questions must be faced with transcultural and transdisciplinarian strate-
gies, which borrow methods of research from the sciences, cognition, mythology,
anthropology, history, sociology (politics, economics, and education), and from
sociocultural studies in general. These strategies rely on the analyses of the history
of ideas, and of the evolution of behavior, and knowledge of the human species, in
every natural and sociocultural environment. All these aspects are present in the
chapters of this book.

Thus, mathematical modelling discusses the corpora of knowledge developed by
humanity to survive and to transcend. It represents a transdisciplinarian and trans-
cultural investigation knowledge area supported by new theoretical and methodo-
logical developments. It is conceptually designed as a broad investigative program
of the evolution of ideas, knowledge, and practices developed by the human species
in different natural and sociocultural contexts.

Essentially, mathematical modelling implies with the development of an analysis
of how groups of humans generated ways, styles, arts, and techniques of doing and
knowing, learning and explaining, dealing with situations, and of solving problems
of their natural and sociocultural environments.
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Although the chapters of this book are assembled in parts dealing with:
(a) Ethnomathematics and Ethnomodelling: Empirical Work, Theoretical-
Methodological Approaches, and Research Questions; (b) Interdisciplinary Ecosys-
tems: Empirical Work, Theoretical-Methodological Approaches, and Research
Questions; and (c) Mathematics and People: Empirical Work, Theoretical-
Methodological Approaches, and Research Questions, the authors discuss specific
cases that fit into the broader concept of mathematical modelling in diverse contexts.

I understand that knowledge is a cumulative succession of strategies developed
by humans who live in different social, natural, and cultural environments in
response to the pulsions of their survival and transcendence. The main objective of
knowledge is to understand, to explain, and to cope with selected facts and phenom-
ena of reality as a whole through the development of mathematical models.

Mathematical modelling is such a strategy that deals with facts and phenomena,
and it is important to understand how knowledge is generated (cognition), how it is
individually and socially organized (epistemology), and how it is expropriated by
power structure, institutionalized, and given back to the people who generated it
through filters (politics). These steps are treated in an integrated and holistic way that
makes mathematical modelling as a strategy for building-up diverse knowledge
systems in different cultural contexts. I recognize this in the collection of chapters.

In this book, well-known specialists in this area address different topics in
mathematical modelling, which apply to different natural, economic, political,
environmental, and sociocultural environments. Altogether, the chapters mutually
complement each other, and the readers may draw conclusions that support these
theoretical and methodological proposals for the development of mathematical
modelling. This approach enables the creation of diverse ways of dealing with the
social construction of mathematical knowledge in Latin America through the devel-
opment of mathematical modelling.

The authors of the 18 chapters in this book, who represent the diversity of Latin
America, are from nine countries: Argentina, Brazil, Chile, Colombia, Costa Rica,
Cuba, Ecuador, Honduras, and Mexico. They were invited to share their ideas,
perspectives, and discuss investigations that represent a rich sample of three Latin
American perspectives on mathematical modelling. This book is a valuable and
necessary contribution to educational scholarship.

I congratulate the editors and each individual author for this remarkable accom-
plishment that shows how historical evolution of knowledge enables the develop-
ment of alternative mathematical knowledge systems that provide explanations of
daily problems, and situations, and which can lead to the elaboration of models as
representations of facts present in our own reality.

São Paulo, Brazil Ubiratan D’Ambrosio
April 2021
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Part I
Introduction

Based on empirical evidence, this section proposes a category of mathematical
modelling that assesses the horizontal and reciprocal relations between mathematics
and the real world, which provide epistemological and ontological changes in which
mathematical knowledge of the others is valued, respected, and recognized. These
changes also oblige both mathematics teachers and students to understand how
mathematical knowledge producers use and apply modelling processes that enable
them to build their own mathematical categories in the contexts that are governed by
reciprocal relations between academic and functional knowledge, which is part of
their daily life. The dimensions of these relations guide educational change in order
to modify mathematical teaching and learning processes in autonomous actions
compared to the emulations of typical mathematical procedures in the classrooms.
This proposed approach is based on three Latin American modelling programs:
ethnomodelling, transversality of knowledge, and reasoned decision-making pro-
cesses in which these dimensions are both theoretically and respectively based on the
connection between mathematics and culture, the attribution of meaning to the
learning process, and elements of socioepistemology.



Chapter 1

Modelling in the Life of People:
An Alternative Program for Teaching
and Learning of Mathematics

Francisco Cordero, Milton Rosa, Daniel Clark Orey, and Pablo Carranza

1.1 Introduction

The Common Core State Standards for Mathematics (CCSSM) defines modelling as
the means for using mathematics or statistics to describe a real-world situation and to
deduce additional information from the given phenomena by using mathematical
and/or statistical calculation and analysis (Common Core Standards Writing Team,
2013). The definition is workable for mathematical modelers and for those who
believe that the teaching and learning of mathematics can be improved if teachers
and students are taught to model their world mathematically.

Modelers are confident in creating relationships between school mathematics and
the reality of the world. The following questions became important to our common
dialogue: How do people or citizens model mathematically? How is modelling used
by a child, a young person, a university student? Within the working and profes-
sional bounds, how is modelling used at work and in other academic disciplines?
And in general, how do people use modelling in their real world?

The thesis of our approach here, consists of appreciating that disciplinary devel-
opment, generically, of mathematics education, has considered and used to study and
understand mathematical knowledge in school and outside of it, and, on the other

F. Cordero (*)
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de
México, Mexico
e-mail: fcordero@cinvestav.mx
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hand, to integrate mathematical modelling to teaching approaches, so that mathe-
matics is seen in the life of the learners and the diverse communities they live in.

Both orientations coincide with an important educational principle that attempts
to relate mathematics to the real world, and in our case the diversity of real worlds
found in Latin America. However, the tension between these orientations is embed-
ded in the relational construct of mathematics. For example, one tension assumes
that the school and/or academic body of facts learned in this environment is the only
and true knowledge that measures the experiences in our everyday lives, while the
other tension privileges traditional educational actions over mathematical modelling.

In this chapter, we propose, with empirical evidence, that there is a category of
modelling of peoples’ or citizens’ that deals with their own mathematics, which
values the horizontal and reciprocal relationships between mathematics and their
own real world condition, and with their growing practices that constitutes
re-significations of mathematical knowledge developed in their own contexts
(Carranza, 2017, Cordero, 2016, Rosa & Orey, 2020).

With these horizontal and reciprocal relationships between mathematics and the
real world, we seek to ensure that the learning process makes sense to both learners
and educators. In this context, the term sense is associated with a purpose or
intentionality and, in this case, related to the concepts of mathematics (Develay,
1994; Jacques, 1987).

Thus, we work with what we call axes of the didactic proposals that in principle
enable students to attribute meanings of their own learning. One of these axes
consider the functionality of learning not only for a time in the future but also for
the present. In another axis, we incorporate others as participants in the act of
learning. The term others is related to someone external to the classroom environ-
ment, such as: a villager, a school, a school library, and a theater, among others.

The conjunction of these two axes (future-present time horizon and the others)
leads to addressing real problems of the students’ culture and environment. In these
addressed problems, the concepts of mathematics emerge as rational tools for the
decision-making process that occurs by considering general areas such as cultural,
classroom-reality-approaches, and other knowledge domains.

In order to appreciate the dimension of the aforementioned areas and their power
to address problems of the teaching and learning of mathematics. Firstly, we present
three mathematical modelling programs developed in Latin America, which includes
perspectives from Argentina, Brazil, and Mexico. Secondly, we explain that each
program addresses mathematical knowledge outside of school and reveals that
knowledge that emerges in diverse communities, such as ethnic groups or settlers,
students with commitments to social welfare, and students and professionals from
other knowledge domains. Thirdly, we consider these three programs as axes that
generates a three-dimensional space that forms a corpus of mathematical knowledge
for educational change.

4 F. Cordero et al.



1.2 Three Latin American Mathematical Modelling
Programs and Their Orientations and Conceptions

It is necessary to present three Latin American mathematical modelling programs
and their orientations and conceptions that the authors base their work on and are
familiar with.

1.2.1 Ethnomodelling

The ethnomodelling application provides an opportunity to examine local and global
knowledge systems to get an idea of the forms of mathematics used in various
contexts and cultural groups through a symmetrical dialogical relationship and with
otherness (Rosa & Orey, 2017b).

This holistic context is created from the analysis of reality as a whole, which
allows members of different cultures to participate in the modelling process, which
enables these members to study and understand the aspects and components of
systems taken from their own reality, as well as to comprehend their interactions
that enable the approximation and also the relationship between these components
with the knowing and doing process of their daily life through ethnomathematics.

According to this context, ethnomodelling allows modelers to value and respect
the use of ethnomathematical practices (local) and the application of modelling tools
and techniques (global) so that these members can perceive their reality in a holistic
way. Thus, the main objective of ethnomodelling research is not only to solve
problems, nor the creation of a simple understanding of alternative mathematical
systems, but also to enable modelers to better their own understanding of the
importance and role of mathematics in their own diverse societal, cultural, and
school/academic contexts (Rosa & Orey, 2020).

For example, mathematization is one of the most important stages of mathemat-
ical modelling, and it allows the translation of diverse problems and situations for the
mathematical language through its connection with ethnomathematics by means of
ethnomodelling. Therefore, there is a need to highlight the processes of mathema-
tization as they develop through the use of techniques developed by the members in
distinct cultural groups and their natural encounter with ethnomathematics.

1.2.2 Mathematical Modelling in the Relationship Between
the Classroom and Approach to Reality

This relationship addresses real problems as a type of didactic proposal that involves
the analysis of its potentialities and difficulties. In this way, we develop proposals
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where concrete solutions to real problems are elaborated, which, as a result of
realism, turn out to be mostly of the interdisciplinary type.

There are several lines of analysis possible in our proposal. In our case, we
particularly focus on analyzing the emergence of mathematical concepts beginning
with the needs of interdisciplinary projects. Thus, two logical lines arise: one turns
out to be the logic of the project to be developed. One line convenes the knowledge
of mathematics that brings rationality to the decision-making process. Another is
formed by the disciplinarity logic that deploys concepts to give sustainability to the
mathematical components that projects demand.

In this case, mathematical modelling becomes a fundamental tool that produces
reasoning that would be difficult to achieve otherwise. In the addressed projects,
these modellings not only describe relationships, but also to build arguments for the
decisions to be made within their frameworks (Carranza, 2015, 2017). They organize
and examine data and evidence in analyzing the emerging mathematical concepts in
argumentative processes. However, other potential dimensions of analysis include:
new roles for educators, teamwork, the role of altruism and social welfare,
repositioning of students, teachers, and knowledge facing the community, among
others.

1.2.3 The Category of Socioepistemological Modelling

This category includes a process that accompanies the legitimation of mathematics
in use of communities of knowledge, which occur in different scenarios, as well as
the crossing between these scenarios and their uses and utilities. We call the first
scenario as epistemological plurality and the second scenario as transversality of
uses of mathematical knowledge. Both aspects define the mathematical functionality
of the communities of mathematical knowledge that occur in the different scenarios,
such as schools, work, and towns and cities (Cordero, 2016).

With this category of modelling, reality is projected to what is usual in all these
scenarios, where routine applications are expressed, such as the daily life of the
disciplinary specialist, the worker, and the people. In this context, it important to
standardize these scenarios in the pedagogical action of mathematics education in
order to consider all educational levels, and the diversity of disciplines, as well as the
work and life of people (Cordero, 2016; Mendoza & Cordero, 2018; Zaldívar et al.,
2014).

Generally speaking, with this projection of reality, functional knowledge means it
offers useful applicability in the worldly life situations of the people, such as work
and profession (Arendt, 2005). This useful knowledge is composed of uses and
meanings, which are re-signified in the transit of situations. In this regard, it can be
said that functional knowledge is the result of the transversality of the use of people’s
knowledge in different situations, which work as re-significators.

These situations are composed of significations and re-significations with their
respective procedures, which are regulated by an instrument: both are built according
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to the operations that the participants can perform, with the conditions that they can
capture and transform, and with the concepts that are progressively built (Cordero,
2016). With that structure, it carries out multiple realizations and adjusts its own
structure to produce a desirable pattern. It is a medium that supports the development
of reasoning and argumentation (Suárez & Cordero, 2010).

This is the process in which mathematical knowledge transcends and is
re-signified because it values the elements in the environment of the object to
which they give meaning. In accordance with this point of view, the teaching and
learning of mathematics would benefit if horizontal and reciprocal relationships
between different mathematical knowledge are included in this process.

1.3 The Context of the Social Construction of Knowledge
of the Three Latin America Mathematical Modelling
Programs

It is necessary to discuss the context of the social construction of knowledge of the
three Latin American mathematical modelling programs.

1.3.1 Ethnomathematics and Ethnomodelling

The ethnomathematics program offers a broader view of mathematical knowledge
by covering ideas, notions, procedures, processes, methods, and practices rooted in
different cultural environments. In this context, Rosa and Orey (2017a) highlight the
importance of the development of critical reflection on the social, cultural, environ-
mental, economic, and political dimensions of mathematics in a dynamic and
glocalized society.

The proposal of the ethnomathematics program, as outlined by D’Ambrosio
(1985), is to make mathematics a living and humanistic discipline that examines,
values and works with real situations, in time and space, through analysis,
questioning, and criticism of the phenomena present in everyday life (D’Ambrosio,
1990). The application of ethnomathematical techniques and modelling tools allow
us to examine systems taken from our reality and give us an idea of the various ways
of doing mathematics in a holistic way.

In this context, Rosa and Orey (2017a) highlight that ethnomathematics is related
to the study of mathematical ideas and procedures that consider the cultural context
in which mathematical notions and practices emerge through the mathematization of
local mathematical practices. Mathematization is related to knowledge systems
related to the daily life of the members of each cultural group and that can be
mathematized and translated into the language of school and academic mathematics.
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As mentioned earlier, the use of mathematization that is present in the daily life of
members of distinct cultural groups aims at the expansion and the perfecting of
mathematical knowledge since it leads to the strengthening of their cultural identity
(D’Ambrosio, 1990). Hence, modelling is one of the possible strategies enabling the
approximation and relationship between knowing and doing between different
mathematical systems.

This context enables modelling to be perceived as a set of representations of
reality that are generated, via inferences, with the use of mental representations that
allow to value and respect the ethnomathematical knowledge developed in everyday
situations. This approach contextualizes locally developed mathematical knowledge
since it studies mathematical phenomena that occur in various (global) cultural
contexts (Rosa, 2010).

In this regard, mathematical knowledge can be understood as resulting from local
(emic) rather than global (etic) origins that allow the proposition of acts of transla-
tion between those two perspectives (Eglash et al., 2006). This approach seems to be
reasonable since ethnomathematics often makes use of modelling in order to estab-
lish relationships between local conceptual frameworks and the mathematical
knowledge included in global designs.

In this context, Rosa and Orey (2020) argue that mathematical ideas, procedures,
and practices include geometric principles in craftsmanship, architectural concepts,
and practices that are found in activities and artifacts of local and global cultures,
which can be translated between different mathematical knowledge systems through
ethnomodelling. Consequently, this knowledge is related to a glocal position, with a
multicultural vision, through cultural dynamism among members of different
cultures.

1.3.2 The Interdisciplinary Ecosystem

Modelling occupies a fundamental place because of its power to discover relation-
ships and behaviors of objects and phenomena of the real problem, as well as to build
arguments for decision-making. In projects carried out with students in real contexts.
We have observed, on the one hand, an indispensable and strong interaction between
several disciplines to address problems that context demands to solve with
rationality.

Furthermore, and if we focus within the convened disciplinary fields, we have
found that such convocations are not necessarily coincidental to the logic of didactic
transpositions of disciplines. On the contrary, we can say that the dynamics of the
convocation are characterized by a network between disciplines in which meanings
in the context of concepts is the bridge that weaves them in a symbolical way.

Thus, a kind of ecosystem emerges where the concepts live and coexist in the
dynamics of the project for their contribution in the resolution of posed problems.
This coexistence then occurs within an ecosystem logic different from the one
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established a priori and manifested in conceptions of by educators, programs, and
textbooks.

The notion of ecosystem used here highlights, on the one hand, the constitution of
a coherent and stable ensemble and, on the other hand, its interrelation. In this
perspective, we have observed that the realization of projects based on a problem of
the context imply changes not only in the didactic triangle (students-teachers-
knowing), but also, and very strongly in the whole framework of the school
ecosystem in which this pedagogical action is inserted, which includes physical
spaces, management responsibilities, execution times, and commitments and respon-
sibilities of the whole institution.

1.3.3 Mathematics and People

In the socioepistemological mathematical modelling program, the interpretation of
reality constructs the horizontal and reciprocal relationship between school/aca-
demic and everyday mathematical knowledge of the disciplinary specialists,
workers, and people. For example, a community of bionic engineers in their every-
day specialist knowledge of control systems constructs a category of mathematical
knowledge called reproduction of behaviors. This category is reciprocally related to
the stability of a differential equation.

The first expresses the mathematical uses and meanings of the engineering
community and the second expresses the mathematical object of school mathemat-
ics. For those engineers, the differential equation is an instruction that organizes
behaviors while for school mathematics it is a way to find a solution that is not
known (Mendoza & Cordero, 2018). These are the realities that the modelling
program addresses (Buendía & Cordero, 2005; Cordero, 2016; Cordero et al.,
2015). Thus, the modelling program is based on theoretical-methodological con-
structs of the socioepistemological theory of educational mathematics.

For example, Cantoral (2013) has provided the foundations of the
socioepistemological theory, which consists of four principles: (a) normative of
social practice, (b) contextualized rationality, (c) epistemological relativism, and
(d) progressive signification (re-signification). These principles are intended to
explain the enigma of the social construction of mathematical knowledge and its
institutional dissemination. A core construct of this approach is related to social
practices developed in complex systems of social dimensions in which mathematical
knowledge is problematized by considering wise, technical, and popular knowledge
in order to synthesize them in human wisdom.

In this perspective, Cordero et al. (2016) considers that the social practice
construct, in socioepistemological theory that has revealed aspects of social dimen-
sions in school mathematics (basic, middle, and higher education) and how they may
be are rooted in reality, the uses of knowledge, and in more generic terms, the people
who have been forgotten and invisible throughout history. Thus, it is necessary to
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recover this knowledge in order to alleviate the difficulties of teaching and learning
mathematics in schools (Cordero et al., 2015).

For example, in the teaching of parabolas, which is a mathematical object that
appears in the mathematics courses of secondary education, between 15 and 17 years
of age, it can be difficult for many teachers, in their didactic context, to develop a
frame of reference to incorporate parabolas in situations of variation, approximation,
and transformation in order to generate arguments of prediction, local behavior, and
behavioral tendencies (Morales & Cordero, 2014; Mendoza et al., 2018).

With this approach, Cordero et al. (2016) formulates a general
socioepistemological program called Forgotten Subject and Transversality of
Knowledge (SOLTSA) in which the modelling program is immersed. Its main
objective is to reveal the uses of mathematical knowledge and its re-significations
in people’s mathematical knowledge communities. The SOLTSA Program is devel-
oped through two simultaneous lines of work: the Re-signification of Mathematical
Knowledge and its Educational Impact.

The first problematizes the categories of mathematical knowledge that happen in
communities between different knowledge scenarios that necessarily come into play,
such as the school mathematician, the disciplinary field, and the daily life of the
community. In the second line of work, multifactors and stages are formed that
contribute to the alliance of quality of the teaching of mathematics to lead to the
transformation and educational change in mathematics. Identity, socialization, and
inclusion, among others, are the multifactors for this purpose (Opazo Arellano et al.,
2018; Pérez-Oxté & Cordero, 2016; Medina-Lara et al., 2018).

1.4 The Empirical Work, the Theoretical-Methodological
Aspects, and Research Questions of the Three Latin
America Mathematical Modelling Programs

It is necessary to discuss the empirical work, the theoretical and methodological
aspects and the research question developed in the three Latin America mathematical
modelling programs.

1.4.1 Ethnomodelling: Modelling from a Cultural Context

It is important to find alternative methodological and pedagogical approaches to
record historical forms of local mathematical ideas and procedures that occur in
different cultural contexts because Western mathematical practices are accepted
globally without discussion and as unique truths. These practices are related to
measurement, calculation, games, divination, navigation, astronomy, modelling,
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and a wide variety of mathematical procedures in cultural artifacts (Rosa & Orey,
2010).

This approach represents a process of translation and elaboration of problems and
questions taken from everyday phenomena, and daily life through ethnomodelling,
which includes ideas, notions, procedures, techniques, strategies, perspectives, and
mathematical practices developed by members in different cultures, and which are
manifested and transmitted in various ways (Rosa & Orey, 2017b).

Thus, ethnomodelling is configured as an essential element in the field of cultural
anthropology, ethnomathematics, and mathematical modelling. Figure 1.1 shows
ethnomodelling as the intersection between three knowledge fields.

For Rosa and Orey (2017b), translation is considered as the description of the
processes of local modelling (cultural) systems that can have a mathematical repre-
sentation in Western culture and vice versa and that are represented by three types of
cultural visions of mathematical knowledge: local (emic), global (etic), and glocal
(dialogical).

(a) Local Mathematical Knowledge (Emic)
Emic mathematical knowledge is related to the knowing and doing coming

from the members of distinct cultural groups because it originates from within
the culture in an inner vision according to an intracultural1 posture. This
knowledge is in accordance with the perceptions and interpretations considered

Mathematical
Modelling

Ethnomathematics

Ethnomodelling
Cultural

Anthropology

Validation

Valuing
and

Respecting

Dialogue

Fig. 1.1 Ethnomodelling as the intersection between three knowledge fields. (Source: Rosa and
Orey (2012))

1Intraculturality promotes the recovery, strengthening, development, and cohesion within local
cultures for the consolidation of a multicultural society based on equity, solidarity, complementar-
ity, reciprocity, and social justice (Saaresranta, 2011).
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appropriate by the members of such cultures (Rosa & Orey, 2012). The emic
mathematical knowledge is oriented from us towards us with the perspective of
the natives, which is a vision from within, inside of the culture, interior, and
local.

(b) Global Mathematical Knowledge (Etic)
Etic mathematical knowledge is related to the knowing and doing coming

from external observers of cultures, which originates from outside of the cultural
group in an external view of its members in an intercultural2 posture. Mathe-
matical ideas and procedures are etic if they can be compared between cultures
through the use of common definitions and metrics. Etic knowledge is oriented
from them (researchers and educators) towards us with a perspective of external
observers, which is a vision from outside, external, and global (Rosa & Orey,
2012).

(c) Glocal Mathematical Knowledge (Dialogical)
This knowledge presents a cultural dynamism between emic and etic math-

ematical knowledge, which is represented by the encounters between two or
more cultures in the classrooms. The mathematical knowledge of members of
distinct cultural groups is combined with the Western mathematical knowledge
system, resulting in a dialogical perspective in mathematics education (Rosa &
Orey, 2017b). This knowledge includes the recognition of other epistemologies
and the holistic and integrated nature of mathematical knowledge developed in
different cultural contexts. This approach can ensure the development of under-
standing of the different ways of doing mathematics through mutual dialogue
and respect between global and local approaches through glocalization.

In this sense, Rosa and Orey (2017b) affirm that glocalization (global + local) is
a dialogical approach that considers the interaction between local and global math-
ematical knowledge for the elaboration of ethnomodels. This approach is also related
to the acceleration and intensification of interaction and integration between mem-
bers of distinct cultural groups that compose society.

1.4.1.1 Ethnomodels

Ethnomodels represent examples of mathematical knowledge systems that helps
members of distinct cultural groups to gain understanding and in the appropriation of
reality through the use of small units of information which link the cultural heritage
of these members with the evolution of mathematical procedures and practices that
are developed in their own cultural context (Rosa & Orey, 2017b). These
ethnomodels are emic, etic, and dialogical.

2Interculturality promotes the development of the interrelationship and interaction of knowledges,
knowings, science, and technology specific to each culture with other cultures, which strengthens
one’s own identity and interaction on equal terms among all local cultures with the global cultural
groups (Saaresranta, 2011).
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(a) Local Ethnomodels (Emic)
The emic ethnomodels are based on the contents that are important to the

members of local communities and represent the mathematical thinking of the
people who live in these surroundings. These ethnomodels are representations,
descriptions, and analyses expressed in terms of the categories and conceptual
schemes that are considered significant and appropriate for these members, as
they agree with the perceptions and interpretations considered appropriate by the
culture from within.

(b) Global Ethnomodels (Etic)
Etic ethnomodels are based on the view of external observers about the reality

that they are being modeled with the utilization of school/academic mathematics.
These ethnomodels are descriptions and analyses of mathematical ideas, con-
cepts, procedures, and practices expressed in terms of the categories that are
considered significant and appropriate by the community of scientific observers.
These ethnomodels must be precise, logical, complete, replicable, and indepen-
dent of external observers.

(c) Glocal Ethnomodels (Dialogical)
Dialogical ethnomodels present a cultural dynamism between the emic and

etic perspectives. These ethnomodels include the recognition of other epistemol-
ogies and the holistic nature of mathematical knowledge developed in diverse
cultures (Rosa & Orey, 2017b).

This context enabled the development of an understanding of ethnomodelling as
the translation of local mathematical procedures and global mathematical practices.
The Mangbetu Ivory Sculptures of Zaire are examples of the application of dialog-
ical ethnomodels. Figure 1.2 shows the development of the Mangbetu dialogical
ethnomodel.

Translation can be considered as the description of the modelling processes of
local mathematical systems, which can have a representation in other alternative
systems of mathematical knowledge through the elaboration of ethnomodels.

1.4.2 Modelling in Interdisciplinarity Contexts

Our interest in analyzing the potentialities and difficulties of interdisciplinary pro-
jects as a framework for the approach of disciplinary concepts is associated with
proposing contexts where learning would make sense for students. Although we
consider the sense as a personal construction, we also admit that there are charac-
teristics of didactic proposals that facilitate the student’s appropriation of it and thus
integrate it into their experiences, expectations, and emotions.

Some authors postulate that meaning can be constructed if the proposal in
question is associated by the student with existing events, thus facilitating its
integration into their world. Other authors indicate that meaning is an ability that
the student develops regarding to what they do in their training with what they intend
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to be. Our position integrates these two perspectives by articulating the time variable
in two modalities. We propose to the students, contexts with the intention that the
knowings in the learning process are useful in a double temporality: for the future,
but also the present.

One more dimension that is retained when designing proposals and is strongly
related to the above is that referred to as the functionality of knowledge. We have
come to understand that students must not only serve to understand the world around
them, but also to intervene in it. A third dimension is also considered in the design of
projects, and it refers to what we call the transcendence of the knowings. In the
projects, we seek that the knowings be experienced as useful not only for the
students but also for the community.

Fig. 1.2 Development of the Mangbetu dialogical ethnomodel. (Source: Adapted from Eglash
(1999))
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Some fundamental characteristics emerge from the three dimensions. One of
them is that the context of the proposal is real. Thus, the interpretation here attributed
to the term real refers to the possibility of immersion of the student in the context of
the projects. Another characteristic that emerges from the previous ones is the
dynamics of the relationship between the context and the knowledge to be taught.
In general, teachers usually choose a concept and then eventually look for a context
that gives meaning to it (Czocher, 2019; Stillman, 2019).

In our case, the situation is the other way around: the logic of the appearance of
the concepts does not respond to a guideline of the disciplinary logic, but to the logic
of the needs of each project. That is, a concept of interest is addressed when it
represents a contribution to the solutions requested in that specific project. Thus, the
projects modelers construct is developed in two directions: The questions to be
solved in the project (the logic of the project) determine the chronology of convo-
cation of knowledge (Blomhøj, 2019).

At the same time, the appearance of this knowledge demands approaches within
the discipline (disciplinary logic). These two logics are not linked directly, but
mainly by means of successive modelling; understanding modelling here, as a
mental process consisting basically of relating elements of the context with disci-
plinary abstract entities and this is developed in order to produce new relationships at
the level of abstract entities that are useful for the reference context that motivated
the process (Blomhøj, 2019).

For example, one of the projects we carry out in mathematics class is the
calculation, construction, and installation of Savonius type mills in rural posts in
Patagonia, Argentina.3 A fundamental aspect of the project is the one referred to
ensuring the vertical of the mill against the strong winds of the region. This vertical is
secured by means of tensioning cables that are fixed to concrete blocks buried in the
ground. The image in Fig. 1.3 represents the elements involved in the fastening
system.

A study carried out in Geogebra with the students allows for the analysis in detail
of not only the relationships of efforts that occur, but also to anticipate how those
efforts change if, due to the conditions of the terrain, it is necessary to place the
concrete blocks closer or further away from the mill. The image in Fig. 1.4 shows the
dynamic representation of the efforts made with the students.

To carry out the simulation, concepts of both mathematics and physics were
indispensable. In the case of mathematics, concepts linked to vectors and trans-
formations in the plane were called. As far as physics is concerned, the concepts
referring to Newton’s laws were fundamental.

3More information can be find ar: https://www.youtube.com/watch?v¼889fvPzVK1g&t¼2s
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1.4.3 Modelling in the Transversality of Knowledge

The structure of the modelling category ζ(Mod) is composed of the uses of mathe-
matical knowledge U(CM), and by the re-significations of those uses, Res(U(CM)),
in specific situations (S). Such situations are part of that environment (horizontal and
reciprocal relationships) that happen in communities of mathematical knowledge
(CCM).

Each specific situation Si is made up of sequential elements that construct the
mathematical significance, procedure, and instrument, which derive the argumenta-
tion of the situation (Arg(CM)). In generic terms, Arg(CM)i is a Res(U(CM))i built
by the CCMi in Si (Cordero, 2016). Indeed, it is a situational mathematical

Fig. 1.3 The fastening system to secure the vertical of the mill. (Source: Elaborated by the authors)

Fig. 1.4 Dynamic representation of efforts with students. (Source: Elaborated by the authors)
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knowledge, which corresponds to the revelation of the uses and meanings of the
object, typical of the community, regulated by the situation.

The U(CM) are re-signified in each S, but also when transversalities (Ti) occur
between scenarios or domains of knowledge (Di). However, in situations and
transversalities, moments happen (Moi), and between them also the uses are
re-signified. Moi are phases in the situational process. ζ(Mod) is composed of
two axes: the institutionalization (the external knowings) and the transversality of
knowledge (internal to the community), where Sij situations happen,Dj domains, and
alternations of scenarios: school-academic, work-profession, and city-everyday. The
scheme in Fig. 1.5 shows the synthesis of the ζ(Mod) which we call the Framework
of Mathematical Knowledge of ζ(Mod).

In addition, the principle of ζ the (Mod), P0, is functional knowledge; this means
that neither reality nor mathematics preexisted in the experiences of the communi-
ties. The P0, in other words, is the putting into use of people’s mathematics.

Fig. 1.5 The Framework of Mathematical Knowledge of ζ(Mod) (The interpretation of this
framework of the mathematical knowledge of the modelling category was widely discussed
considering the synthesis of three investigation experiences: the functionality of mathematical
knowledge, mathematical modelling, and initial mathematics teacher education. The collaborators
were F. Cordero, J. Mena-Lorca and J. Huincahue. Sabbatical stay at PUCV, 2016–2017.). (Source:
Cordero (2022))
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1.4.3.1 An Example: Stability and Reproduction of Behaviors

We outline the development of the modelling category ζ(Mod) in the episode
re-signification of stability by considering empirical research that has been
conducted with communities of engineers in the practice of their profession and in
training.

1.4.3.2 Data Collection and the Definition of the Study Community

The selection of the communities consisted of the availability of their members to be
video-recorded and interviewed in the scenarios of professional work. For this
chapter, we present a community of bionic engineers. With ethnographic methods
(Guber, 2001) and case study, their disciplinary work was characterized, through
identifying routine situations where they use mathematical knowledge and the
problematizations of their mathematical knowing.

The analysis of these characterizations was carried out with the constructs of the
modelling category in the socioepistemological theory and considering the docu-
mentary technique and semi-structured interviews in order to problematize, the
mathematical knowing was analyzed through the re-significance of these uses in
the school-academic and work-profession scenarios. The problematization formed
an epistemology of re-significations of the uses of mathematical knowledge that
emerges in the community when considering the specificity of the scenario.

On the one hand, with the documentary technique of analysis, and on the other,
with the technique of semi-structured interviews, patterns and relationships were
identified between them alluding to the tendency or reproduction of a behavior in the
contexts of the situations.

The patterns and relationships of behaviors were organized through an instrument
(instruction that organizes behaviors) accompanied by their significations (graphic
and analytical patterns) and procedures (variation of parameters). With the unit of
analysis composed of the constructs: use, re-signification, and transversality, the
situation that expresses the re-signification of uses of stability was formed.

The evidence of the framework of the mathematical knowing of the ζ(Mod), was
justified in one of the laboratory practices developed by the teaching engineer. The
practice has been called control of the temperature of the light bulb where the main
problem consisted of: once assigned a reference value, the temperature of the light
bulb reaches it. To this end, students assemble a physical model with the following
elements: Arduino board, light bulb, AC solid-state relay, and temperature sensor.
Figure 1.6 shows light bulb, relay, and Arduino connection scheme.

Initially, the students analyzed the behavior of the output signal in the system: the
temperature of the light bulb. The teacher drew on the blackboard, a graph as a
pattern of behavior of the maximum temperature that the light bulb can reach.
Figure 1.7 shows the graph output signal behavior.
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The system is characterized by system gain, the time constant of the system, and
the transfer function that relates the input and output signal. Students problematize
the adjustments of the parameters of the system gain and the time constant, based on
the graph provided by the Arduino software allowing it to reach its maximum
temperature. Finally, they seek to control the temperature of the light bulb by making
use of the on-off controller. In Fig. 1.8, it is observed how the curve, which

Fig. 1.6 Light bulb, Relay, and Arduino connection scheme. (Source: Mendoza and Cordero
(2018))

Fig. 1.7 Graph of output signal behavior. (Source: Mendoza and Cordero (2018))
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represents the behavior of the output signal, at certain time intervals, surpasses the
reference value and in others, it does not. This is due to the control mechanism.

In the design of the control system, three moments are observed: M1: System
dynamics (θ ! θref : θ tends to behave as θref), M2: Adjustment of the transfer
function or behavior model, (aθ0 + θ ¼ θref), and M3: Control of the output signal
and stability (aθ0 ¼ θref � θ : by control). Each one of these moments is subject to
the desired reproduction of a behavior, which mean that the output signal tends to
behave like the reference value or input signal.

In this way the stability is re-signified in the behavior of the input and output
signals, causing procedures such as the comparison between the output signal and
the reference value, modifying the parameters of the differential equation that
models the system, and signifying it as an instrument that is responsible for model-
ling the stability of the output signal and thus achieve that the behavior initially
proposed is reproduced.

1.5 The Mathematical Modelling of People as Horizontal
and Reciprocal Relationships Between School
Mathematics and the Reality of the Learners:
An Alternative Education

The mathematical modelling of people means the mathematics that emerges in the
communities of mathematical knowledge, in different scenarios: school-academic,
work-profession, and city-everyday. This mathematics is not formal/scientific math-
ematics, which is usually the frame of reference for school/academic mathematics.
On the contrary, it is a mathematics put into use by those communities, in their

Fig. 1.8 Graph of the output signal using the on-off control. (Source: Mendoza and Cordero
(2018))
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scenarios and in the alternation between them. Its ontological and epistemological
aspect is based on uses and situational meanings, which leads to re-significations of
uses in the alternation of situations, domains, and scenarios.

These re-signification of uses of mathematical knowledge, according to the
modelling programs in the context of social construction of mathematical knowledge
develop a new frame of reference for an innovative school mathematics curriculum.
Together the three modelling programs define a three-dimensional space that could
frame mathematical knowledge used by the members of different communities.

The axes of space are the fundamental aspects of each modelling program:
ethnomodelling, transversality of knowledge, and reasoned decision-making. Fig-
ure 1.9 shows the corpus of mathematical knowledge for educational changes.

The re-signification of mathematical knowledge is related to the knowledge of
people in their social generality, restricted in specific situations according to the
scenarios: school-academic, work-profession, and city-everyday. In that space, the
mathematical knowledge of the classroom lives permanently in a reciprocal and
horizontal relationship with the knowledge of the reality of the people involved.

However, this reality has to be restricted in order to standardize it to mathematics
education because it considers all educational levels and the diversity of disciplines,
as well as people’s work and lives. In this regard, reality is interpreted in the usual
way of all these scenarios, where the uses of routine mathematical knowledge are
expressed; that is, the day-to-day of the disciplinarian, the worker, and the people, in
cultures and in interdisciplinarity.

In this context, mathematical knowledge developed locally by people in their own
sociocultural contexts needs to be valorized, valued, and respected in the classrooms

Fig. 1.9 Corpus of
mathematical knowledge for
educational changes.
(Source: Elaborated by the
authors)
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because with the corpus composed of the three axes, the problems and difficulties of
the teaching and learning of mathematics are addressed, where the Transversality of
Knowledge (TS) and Reasoned Decision (DR) make up the epistemological plane of
uses (transformation of knowledge) with the Ethnomodelling axis (EM) defines the
ontological plans, respectively with local and global symmetry (transformation of
people) as showed in Fig. 1.9.

This approach requires a methodology of lines of action for this purpose, which
are cyclical, permanent, and reflective. On the one hand, it is necessary to
problematize the mathematical knowledge developed in the communities between
its different domains that necessarily come into play, such as the school mathemat-
ical discourse, the disciplinary field, and the day-to-day of the communities. Then, in
these communities (CCMk) the re-significations of uses of mathematical knowledge
(ResSkj) emerge, in different situations (Si), domains (Dj), and scenarios (Er).

It is important to emphasize that this knowledge emerges is related to non-school
mathematics. This approach forms new frames of reference that help the generation
of educational changes in the teaching and learning of mathematics. In this regard,
these frames of reference need to be conducted in the school environment with
moments of transversalities of mathematical knowledge (MTjk), in communities of
students and teachers (CCMl (Teacher/Student)).

In this context, school and non-school mathematical knowledge are confronted
and discussed, as well as the use of the mathematical knowledge of the others are
valorized, valued, respected through educational multi-factors and stages that con-
tribute to the alliance of quality of mathematics teaching (Cordero, 2016).

The multi-factors are elements that contribute to the educational changes of
mathematics, such as disciplinary identity of teachers, inclusion of the social con-
struction of mathematical knowledge, socialization of the use of mathematical
knowledge (another epistemology), and the emancipation of the dominant mathe-
matical knowledge. Figure 1.10 shows lines of actions for educational changes.

The educational changes of mathematics consist of valuing the horizontalities of
mathematical knowledge, the construction of autonomies of knowledge, and the
cultural forms of knowledge. In this regard, the episodes of students’ learning in the
classrooms have to be extended to the day-to-day of people in institutions and in
society, as well as in educational environment.

In this approach, the role of the teachers needs to be supported and further
developed in order to enable them to design and maintain educational contexts in
which systems of reciprocal relations of school mathematics and its connection to
reality of the learners in specific situations that enable the development of knowledge
that is coordinated by two axes: permanent programs (ProPer) and to disrupt and
transform the discourse of school mathematics (TrTf (dME)), which is shown in
Fig. 1.10.
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1.5.1 An Example: The Mathematical Modelling of People
as a Mathematics Put into Use Horizontality,
Autonomously, and Culturally

On the one hand, the function of the corpus of mathematical knowledge offers the
development of its re-signification that entails, simultaneously ontological and
epistemological transformations, and, on the other hand, the lines of action guide
educational changes, such as knowledge and the individual changes.

The three Latin America mathematical modelling programs offer distinct con-
ceptions in their epistemological, theoretical, and methodological procedures by
considering specific scenarios in each community. For example,

• Ethnomodelling offers the manual production of a figure, such as artisanal work
in the scenario of a cultural tradition of a certain community.

• The reasoned decision offers the lifting of a windmill according to the topogra-
phy of the terrain, as a community task agreed in the classroom-reality-approach
scenario of a community of technical students.

• The transversality of knowledge offers the design of a control system, in a school
laboratory in a school-academic scenario of a community of engineers in training.

A priori, there are three different situations: (a) the craft of a figure, (b) raising of a
windmill, and (c) the design of a temperature control system. Likewise, the mathe-
matics of each modelling seem to be foreign topics, such as the mathematical
iteration, the equilibrium equation, and the stability of a system or differential
equation. However, the functioning of the corpus offers relationships between
situations and mathematical subjects, considering the epistemological and ontolog-
ical planes, simultaneously:

Fig. 1.10 Lines of action for educational change. (Source: Elaborated by the authors)
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1.5.2 Re-significations

In the context of the three Latin America mathematical modelling programs there are
three distinct types of re-significations that are complementary even though each one
has its own conceptions. Thus,

• Re-signification of the mathematical iteration, which reproduces a figure with a
trend (figure size): larger size to smaller size.

• Re-signification of the balance of forces, which reproduces the magnitude of a
force vector according to the topography of the terrain: cable tension and anchor
depth.

• Re-signification of stability, which reproduces the importance of an ideal tem-
perature in a system: control of the temperature in a set range.

1.5.3 Emerging Knowledge: Non-school Mathematics

Mathematical iteration, balance of forces, and stability are external knowledge to the
educational community, while the respective re-significations are knowledge that
emerges within the local communities: it is related to the development of a
non-school mathematics.

For each re-signification, a category of mathematical knowledge can be inferred,
as a nucleus of the three models: reproduction of a behavior. This category has an
epistemology and is transversal to the three situations with their respective scenarios
and re-significations. Table 1.1 shows an emerging knowledge of communities in
specific situations.

The reproduction of behaviors category generates a very broad spectrum of
mathematical knowledge, which is not only transversal to different disciplinary
domains but can also be transversal to the different educational levels: basic, middle,
and higher. An iterative function, the balance of forces, and the differential equation
cannot be transversal to the basic levels, but they can be the reproduction of figures
in a larger or smaller grid; feel the tension of a wire in relation to a weight; or
generate behaviors to a given context.

1.5.4 The Environments of Mathematical Knowledge

The models and the act of modelling itself, as presented by these three programs
generate environments of mathematical knowledge that expand the mathematics in
the classroom, and the minds of participants. This opens up a mathematical vision for
educational systems that is deeper than the traditional emulation of standard math-
ematical procedures and problem solving. On the contrary, this approach integrates:
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1. Cultural field that relates to traditional knowledge with the school/academic
environments and highlights non-school mathematics in symmetrical dialogical
relationships and with otherness, which is to say, both forms of knowledge are
balanced to affect changes in individuals and communities.

2. Classroom-reality-approach in which mutual mathematical knowledge is agreed
upon during dialogue in the classroom and is put into a rational discourse for the
decision-making process among participants into the development of a pedagog-
ical action that is tangible to reality.

3. The scope of another domain of knowledge where it reveals the putting into use of
the mathematical knowledge of the knowing and doing process developed by
community members in order to confront it with the discourse of school mathe-
matics and consequently generate horizontal relationships between distinct
knowledge.

1.5.5 Teaching and Learning Mathematics

In summary, the re-signification of mathematical knowledge generated by these
three modelling programs that emerged in three different regions in Latin America
form an epistemological and ontological basis for designing and developing school
situations for the teaching and learning of mathematics, in a cyclical, continuous, and
reflexive manner.

Table 1.1 Emerging knowledge of communities in specific situations

Situation Craft of a figure
Constructing of a
windmill

Design of a temperature
control system

Instrument x1 ¼ g(x), x2 ¼ g(x1),
x3 ¼ g(x2), . . .
Instructing a behavior
to repeat

/X + βY + δZ ¼ 0
Statement that orga-
nizes behaviors

ay0 + y ¼ f
Statement that organizes
behaviors

Signification Geometric behavior
patterns

Balancing behavior
patterns

Behavior patterns of the
signals to be controlled

Procedure Geometric relationships
in iteration

Parameter variation Comparison between sig-
nals and parameter
adjustment

Argumentation

Reproduction of
behaviors

Reproduction of
behaviors

Reproduction of
behaviors

Source: Elaborated by the authors
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These designs consist of locating moments of transversality of knowledge to both
favor and valorize the emergence and re-significations of diverse regional, cultural
and curricular categories. Learning consists of creating new relationships between
different forms of knowledge. Teaching must be based on, and respect for the reality
and function of educators, which includes an understanding of the educational
environments and diverse forms of mathematical knowledge found in Latin Amer-
ica, through our permanent programs of accompaniment and alliance.

It is important to highlight here that the traditional discourse of school mathe-
matics can be disrupted and transformed in order to create a redesign of school
mathematical rhetorical communication whose fundamental, epistemological, and
ontological basis is related to the horizontality-autonomous-culture triad in which
the principles of the mathematical modelling programs can promote in order to
provoke change in the educational system.

These principles permeate the school mathematics, at all educational levels, by
considering the use of diverse mathematical knowledge, the reasoned decision-
making process, and the dialogical and symmetrical relations with the others.

1.6 Final Considerations

Undoubtedly the three Latin American mathematical modelling programs, indepen-
dently, provide educational gains, each with its own levels of specificity and loyal to
its principles. We both hope and imagine that over time others will emerge as this
dialogue takes hold, expands, and is experimented upon across our enormous,
diverse and rich region. However, the exercise of putting these first three together,
organized by axes, defines a corpus of mathematical knowledge that envisions
educational changes. On the one hand, an epistemological and ontological change,
where mathematical knowledge of the others is recognized, in a horizontal plane.

There is a necessity to state here that new empirical relationships between
mathematical knowledge and reality are happening across our vast region. The
re-signification of mathematical knowledge must be dimensioned and valued in
our classrooms. The inclusion of the environments plays a fundamental role, as it
includes mathematical knowledge that emerges in the student body and the teaching
staff of our schools and institutions.

On the other hand, this corpus of knowledge obliges us to respect and understand
mathematics educators as a community of professionals with rich experience,
creativity, and with equally diverse experience that constructs their own mathemat-
ical categories in their own environment as regulated by the reciprocal relations
between the knowledge of the school and the needs of their communities.

Thus, frame of reference of the corpus outlined here guides the necessary
articulations in autonomous actions in mathematical teaching, hence the importance
of generating research on the role of the teachers (Opazo Arellano et al., 2018). This
entails the permanence of the environment of reciprocal relationships that occurs in
mathematical functionality, and the educational change of mathematics. The spec-
trum of the corpus is large; it must be taken advantage of, and in the case of Latin
American mathematics educators is a rich resource.
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Part II
Ethnomathematics and Ethnomodelling:

Empirical Work, Theoretical-
Methodological Approaches, and Research

Questions

Ethnomodelling is a process of elaboration of problems and questions that emerge
from real situations that form an image or sense of an idealized version of the
mathema. The focus of this perspective essentially forms a critical analysis for the
generation and production of mathematical knowledge (creativity) and forms an
intellectual process for its production, the social mechanisms of institutionalization
of knowledge (school/academics), and its diffusion (education). This process is
modelling. In this perspective, by analyzing the role in reality as a whole, this
holistic context allows those engaged in the modelling process to study systems of
reality in which there is an equal effort made to create an understanding of all the
components of the system as well as the interrelationships among them. In this
section, the authors discuss the use of modelling as pedagogical action for an
ethnomathematics program that values the tacit knowledge of the members of
community by developing students’ capacity to assess the process of elaborating
ethnomodels in its different applications and contexts by having started with the
sociocultural context, reality, and interests of the students and not by enforcing a set
of external values and curriculum without context or meaning for the learners.



Chapter 2
Conceptualizing Positive Deviance
in Ethnomodelling Research: Creatively
Insubordinating and Responsibly
Subverting Mathematics Education

Milton Rosa and Daniel Clark Orey

2.1 Initial Considerations

The recognition of the relationship between culture and mathematics can be
interpreted as one of many reactions to cultural imperialism, which, in this case,
imposed its version of mathematical knowledge on colonized communities around
the world with the expansion of the great navigations that took place from the
fifteenth century onwards (D’Ambrosio, 1990), to which members of other cultures
were forced to adapt to these paradigms or perish. Consequently, mathematics can be
considered as a field of knowledge that often perpetuates imperialist goals by being
perceived as a secret weapon that maintains the imposition and domination of
Western capitalist values in local cultures (Bishop, 1990).

In this context, school/academic mathematics is often criticized because it col-
laborates to reinforce an Eurocentric approach that prevails in school curricula
worldwide and helps the process of globalization of particular types of mathematical
ideologies and technologies (D’Ambrosio & D’Ambrosio, 2013) that support the
maintenance of this cultural imperialism.

However, the development of non-prescriptive strategies to solve problems and
situations faced in different social domains and in distinct cultural contexts is an
important alternative method useful in identifying innovative problem solving
techniques, as well as to value the diversity of ideas, procedures, and practices
mathematics present in investigations in ethnomodelling (Rosa & Orey, 2017a).

Thus, this reaction to regulatory and normative impositions, as well as the
opposition to cultural imperialism may be related to the development of concepts
related to:
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1. Creative Insubordination (Crowson & Morris, 1982) that relates to issues of
social justice.

2. Responsible Subversion (Hutchinson, 1990) that relates to political issues.
3. Positive Deviance1 (Zeitlin et al., 1990) that relates to sociocultural issues. In this

context, globalized—one size fits all—mathematical standards may not be real-
istic for implementation of curricular activities at a local level. Therefore, teachers
may be forced to deviate, react creatively, responsible, subversively in meeting
the educational needs of their students (Rosa & Orey, 2017b). Thus, we propose
that teachers use positive deviance to develop actions in order to deal with such
situations because it “involves an intentional act of breaking the rules in order to
serve the greater good” (Gary, 2013, p. 26).

Despite being equivalent concepts, as they relate to the flexibility of rules and the
rupture with previously established regulations, so that it is possible to achieve the
well-being of members of distinct cultural groups, it is important to emphasize that
these concepts do not have a uniform definition, as there are subtle differences that
are related to the diverse contexts in which (mathematical) practices are developed
(Rosa & Orey, 2015a).

In this context, it can be argued that these concepts encompass innovative
solutions in the teaching practice of teachers and educators by helping them to
confront the belief that still persists in society that mathematics is a culturally
independent knowledge and that education is politically composed of exempted
acts and actions (Rosa & Orey, 2019).

It is important to emphasize that these concepts also combat a single educational
model of one size fits all, which makes it impossible to discuss the decolonizing
processes that can provoke a continuous position of transgressing and insurgency.
This decolonial concept implies a continuous struggle against the maintenance of the
status quo of superiority, prejudiced, dominating, and oppressive societies (Rosa &
Orey, 2019).

Therefore, the breadth of the concepts of creative insubordination, responsible
subversion, and positive deviance encompass innovative solutions in the pedagog-
ical action of ethnomodelling as it aims to confront the belief that still persists in
contemporary society that mathematics is a culturally neutral knowledge.

From this perspective, we emphasize that the historical relationships between
culture and mathematics illustrate that this field of knowledge is related to its
sociocultural aspects. In this regard, D’Ambrosio (1990) states that the culturally
specific nature of mathematics must be recognized, so that we can describe the ideas
and mathematical procedures practiced by members of distinct cultural groups.

1In sociology, deviance describes an action or behavior that violates previously established social
norms, as well as portraying its informal violations (Macionis & Gerber, 2010). In this sense,
deviance is a behavioral disposition that is in disagreement with an institutionalized configuration
and with the current codes of conduct. In this chapter we use the sociological concept of deviance,
which is related to a set of actions or behaviors that transgress formal and informal societal norms
that impose its own regulations to its own members (Akarowhe, 2018).
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It is important that alternative pedagogical and methodological approaches can be
used to direct local mathematical practices record the historicity of ideas and
mathematical procedures developed in diverse cultural contexts with the application
of innovative mathematical solutions to the challenges faced in the daily life.

In this direction, an alternative methodological approach that can contribute to the
development of this discussion is related to the use of the pedagogical action of
ethnomodelling in the school curriculum, can be considered as the application of the
theoretical basis of ethnomathematics that adds cultural perspectives to the model-
ling process (Rosa & Orey, 2012).

Thus, as a process of positive deviance, ethnomodelling seeks to change,
according to Marzano et al. (2005), existing external paradigms and conflicts with
the values and norms prevalent in the mathematical curriculum, as it represents the
development of ideas, mathematical procedures, and practices that are rooted in
diverse cultural contexts.

In this regard, Rosa and Orey (2017a) state that ethnomodelling links contempo-
rary views of ethnomathematics and, simultaneously, recognizes the need to develop
a holistic view of mathematical modelling processes that must be culturally based.
The insubordinate perspective of ethnomodelling shows the need for the modelling
process to be culturally linked so that we can encourage investigations related to
local communities to bring the cultural aspects of their practices to the teaching and
learning process in mathematics.

Similarly, Rosa and Orey (2015b) argue that ethnomodelling is useful insubor-
dinate and creative educational approach that ignores the linearity of the teaching
and learning process in mathematics predominant in schools by interrupting the
existing order in the development of the modelling process.

According to Hutchinson (1990), this approach can also be seen as an act of
responsible subversion, as it examines how members of distinct cultural groups
solve problems in their daily lives by using their own techniques and cultural
artifacts.

This context reveals the presence of responsible subversion aspects in the
ethnomodelling process, as it uses local mathematical knowledge and material
resources developed by members of distinct cultural groups to solve everyday
problems, situations, and phenomena. Thus, Rosa and Orey (2017b) affirm that
this approach can also be understood as an important characteristic of positive
deviance.

Consequently, deviant and positive behaviors are related to the development of
local mathematical ideas, procedures, and practices, which confer legitimacy to
members of distinct cultural groups who practice them in their own way in accor-
dance with their own beliefs, values, and traditions. These behaviors are therefore
accessible, acceptable, and sustainable.

For example, Lyman et al. (2005) argue that these aspects are identified as
continuous movement that aims to challenge the status quo of academic mathemat-
ical knowledge, as it seeks to subversively modify imposed regulations by the
educational system, but with responsibility, to better serve the needs of the members
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of the school community. This process involves the analysis of perspectives external
to the pedagogical models in force in traditional educational systems.

Therefore, there is a certain sense of disruption in the bureaucratic norms and
rules of school/academic mathematics by seeking to value and respect diverse
problem-solving techniques, as well as to appreciate diverse modes of production
of mathematical knowledge in different cultures (Rosa & Orey, 2015a). For exam-
ple, Dehler and Welsh (1998) argue that this approach is related to a form of positive
deviance, as it involves thoughts and/or actions that differ from the norms and
regulations imposed by educational systems.

Consequently, in this chapter we seek to conceptualize creative insubordination,
responsible subversion, and positive deviance in ethnomodelling investigations and
pedagogical actions as both purposeful and honorable behaviors that differ from the
imposition of norms and/or rules because they contain elements of innovation,
creativity, and adaptability.

Additionally, we discuss the concept of positive deviance for the development of
mathematics education through the exploration of its essence in the context of
educational practices related to pedagogical actions of ethnomodelling.

2.2 Creative Insubordination as Social Justice Issues

The concept of creative insubordination emerged in the 1970s, when a group of
health professionals made changes in public policies in the area of social well-being
by minimizing the repercussions of decision-making by higher entities in relation to
regulations. The practices developed locally by the professionals were also used in
interventions conducted in public health.

However, although most research conducted in during that time was linked to
public policies and related to health, especially in regard to nursing practices. Later
concepts of creative insubordination was also used in investigations to analyze
management activities in school systems (Rosa & Orey, 2015b).

In the 1980s, the concept of creative insubordination was used by Crowson and
Morris (1982), to describe how school administrators (principals and vice-
principals) circumvented norms or made institutional rules flexible by aiming to
offer better educational services. Flexibility in regard to regulations sought to meet
the needs of students, teachers, parents and/or guardians, and members of the school
community by resisting to the impositions of public policies and institutional
bureaucratic guidelines.

For example, through negotiation of norms or by dodging interactions with
central administration, managers gained ample autonomy in relation to their supe-
riors by providing improved school management and administrative flexibility. This
enabled the development of local decision-making processes most beneficial for
teachers, students, and members of the school community (Crowson & Morris,
1985).
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The counter-bureaucratic aspect of creative insubordination regarding decision-
making processes made the norms more flexible and refuted the rules with the
objective of subverting the authorities in power relations to legitimize the search
for actions that aimed at the common good of the members who participate in the
development of the school (Crowson & Morris, 1985).

The use of insubordinate, alternative, and creative ways was used to achieve good
results for the common good of the members of the school community through the
adoption of anti-bureaucratic behaviors (Rosa & Orey, 2015a). Indeed, it is impor-
tant that schools are educational spaces through which school managers and leaders
can make autonomous decisions, even if their actions are inconsistent with formal
institutionalized public policies (Chubb & Moe, 1990). This is an important towards
the development of social justice in society and school systems.

Also Gutiérrez (2015) affirms that creative insubordination focuses on social
justice, by showing its usefulness for the development of students’ citizenship, as
it makes it possible to question the imposition of undemocratic regulations. This
approach aims to interrupt institutional practices imposed by educational institu-
tions, as it advocates for the isonomy of students who are historically underrepre-
sented in the school systems by promoting their access to the teaching and learning
process in mathematics in an egalitarian way.

In this context, Rosa and Orey (2015a) affirm that there is a need to transform
mathematics, from a tool of systemic oppression to an instrument of liberation that
seeks to involve teachers and students in experimenting with the various forms of
mathematical knowledge present in everyday life through a fair and humanized way.

According to Gutiérrez (2016), instead of rigidly following district mandates or
implicitly imposing policies, mathematics educators can maintain a high ethical
standard to make mathematical classes motivating and humane for students,
teachers, and members of the school community.

This insubordinate process is creative because it is related to teaching practices
that promote social justice, as it assumes that members of a community have equal
rights and duties in all aspects of their social life. Similarly, it is necessary for
educators to practice creative insubordination when negotiating norms and making
institutional rules more flexible so that they can resolve phenomena, problems, and
situations they may face in their daily school life (Gutiérrez, 2016).

However, it is important that they also look for loopholes in educational public
policies, interpreting rules and norms in a way that allows them to defend the rights
of their students (Gutiérrez, 2015). In this regard, educators’ awareness of their own
experiences related to social justice issues makes it possible to negotiate authoritar-
ian regulations. This negotiation seeks to reflect on social inequalities, so that we can
understand the specific difficulties of members of distinct cultural groups that make
up school institutions.

This approach aims to implement actions that can creatively combat these
regulations (Rosa & Orey, 2015a, b). Professionals also become insubordinate and
creative when their values are congruent with actions taken in the development of
their daily administrative and teaching functions, as they focus to meet the demands
evoked by the members of the school community. It also the intent to help
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mathematics educators to develop pedagogical practices that seek to include students
in the use of mathematical knowledge from their daily lives (Gutiérrez, 2016).

For Rosa and Orey (2017a), ethnomodelling is an alternative pedagogical action
that enables us to achieve this goal. It is important to state here that mathematics
educators can become insubordinate and creative by protecting students from edu-
cational public policies unrelated to the interests of the school community through
the creation of networks with professionals who share the same emancipatory
visions of education.

In this way, Orey (2015) argues about the need for these professionals to question
the status quo that mathematics has acquired in contemporary society, as they seek to
counterbalance power relations that operate in diverse school systems. Regarding to
ethnomodelling, Rosa and Orey (2017b) state that creative insubordination questions
the nature of mathematics by highlighting its humanity and uncertainty and by
placing students at the center of the educational process, which enables their active
participation in the construction of mathematical knowledge and challenge deficit
narratives2 with respect to students from minority groups.

This perspective aims to reduce prejudice, harm, and inequality arising from the
disconnects between mathematical knowledge practiced in school and academic
contexts and its practical use in everyday life, as it aims to pursue social justice
(D’Ambrosio, 2007). Through ethnomodelling, creative insubordination allows us
to question the typical rules and norms presented as absolute truths in the teaching
and learning process in mathematics by adding humanistic features in the develop-
ment of mathematical ideas, procedures, and practices.

2.3 Responsible Subversion as Political Issues

The results of the study conducted by Hutchinson (1990) show that responsible
subversion emerged as a socio-psychological process that enabled a group of nurses
to bend the rules for the benefit of their patients. The behavior of these nurses was
considered responsible, because they used their best judgment to decide when and
how to make these rules more flexible.

For example, the group of nurses was held responsible, even though their actions
were considered subversive, as they violated medical orders and hospital policies.
Thus, these professionals acted responsibly, when consciously planning the best

2Deficit narrative is related to the myth of genetic determinism promoted by the dominant class that
provides a justification for the performance of students from minority cultural groups by promoting
the reduction of expectations that parents, teachers, and school leaders have in relation to this parcel
of the school population (Rosa, 2010). It argues that inequalities are caused by deficiencies in
disenfranchised members of minority groups and communities. In educational systems is the belief
that the education gap is caused by students’ shortcomings and not by systematic injustices
(Valencia, 2010).
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decision-making for their patients, but their behavior was described as subversive, as
they frequently inflected state laws related to nursing practices (Hutchinson, 1990).

The political characteristic of this approach is related to the fact that this group of
nurses was frustrated with public health policies that affected their nursing practices,
especially, when they were developed by individuals with limited knowledge and/or
limited experience in health (Kunaviktikul, 2014). Thus, these professionals flexed
public policies that they considered oppressive in relation to health issues as well as
marginalized their patients in relation to their common well-being (Giddings, 2005).

However, this group of nurses also faced a dilemma when they found that,
according to their own practices, some medical orders were not considered the
best course of action for treating their patients. This tension was related to the
adjustment of established rules was formally and informally moralized among this
group of professionals (Hutchinson, 1990). Indeed, these nurses developed these
subversions in moral and responsible terms, as there was a flexion of norms to better
serve the interests of their patients.

For Hutchinson (1990), the moralization of norms and regulations exhibited by
this group of clinical nurses enabled the confrontation of their experiences with a
conflicting set of institutional expectations, which presented a dilemma between
following the doctors’ instructions or caring for the patients to better meet their
medical needs. According to Beauboeuf-Lafontant (1999), the refusal of this status
quo is an important political decision to maintain an ethical and moral sense, and it is
necessary to raise awareness about the motivation that directs these professionals
towards conscious decisions-making.

This fact explained the efforts these professionals made to ensure that the
treatment they considered appropriate was officially sanctioned by medical defer-
ences (Hutchinson, 1990). In this context, responsible subversion was associated
with the challenges of a dominant paradigm, as well as the act of transgressing social
and organizational mores traditionally accepted in society. However, politically, this
established view can be challenged through a responsible subversion that is embed-
ded in the current social order (Bloom & White, 2016).

In the field of mathematics education, D’Ambrosio and Lopes (2015) demon-
strated how subversion refers to the practices of educators who, responsibly and with
discernment, oppose non-pedagogical prescriptions, educational bureaucracy, and
the demands of public policies that do not benefit teachers, students, and the school
community. Therefore, the concept of responsible subversion also refers to the
oppositional actions taken in relation to institutional norms and rules that are not
committed to the educational needs of the school population.

Responsible subversion, then, seeks to combat privilege and authority that has
been accorded to the traditional academic mathematical discourse. The recognition
of this challenge enables the understanding of how these elements of domination
influence the distribution of power in modern society (Fitzmons, 2003). This sub-
versive action enables students to become active participants of the educational
process, through a political direction that can enable full access to their rights, as
well as their full participation in the citizenry with responsibility (Rosa, 2010).
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This contesting action is a challenge to the established authority, as it opposes to
the inclusion of members of distinct cultural groups in the decision-making process
by applying discriminatory public policies. Regarding to this political aspect of
responsible subversion, it is emphasized that, for D’Ambrosio (2007), mathematics
education is a tool for the development of individual, national, and global well-
being. In this sense, the teaching and learning process in mathematics is a pedagog-
ical action with sociocultural and political implications.

Therefore, it is necessary to highlight that the advances of this political proposi-
tion show that the quality of mathematics education must be accessible to all
students, and not just to a reduced privileged group of students (D’Ambrosio,
2007). Thus, in this act of responsible subversion, mathematics educators aim to
break institutional rules that seek to minimize the sonority of the stigmas of discrim-
ination frequently experienced in the school system by students from minority
groups.

As proposed by Rosa and Orey (2017b), mathematics educators can be consid-
ered as subversive and responsible professionals, when they develop actions to
design creative pedagogical alternatives, such as ethnomodelling, that enable the
active participation of students in the teaching and learning process in mathematics.
In this regard, responsible subversion is a political tool that values the mathematical
practices developed by members of distinct cultural groups that compose the school
community.

With respect to ethnomodelling, responsible subversion can be considered as a
political instrument that seeks to combat the dehumanizing effects of the curricular
bureaucratic authority. Thus, Haynes and Licata (1995) state that this subversion
aims to responsibly guarantee that curricular bureaucracies do not represent a
disservice to students because public policies and institutional procedures are often
disconnected from the school community.

This context enables the use of responsible subversion to conduct research in
ethnomodelling that aims to include the cultural aspects of mathematics in the
modelling process (Rosa & Orey, 2015b). This political decision-making perspec-
tive is one of the main components of responsible subversion that fights against the
inhuman effects of bureaucratic authority (Haynes & Licata, 1995), which can be
triggered in these investigations.

In this regard, Rosa and Orey (2017a) state that responsible subversion in
ethnomodelling can be perceived in two ways:

1. The assertion that western mathematics does not consist of a superior body of
knowledge, and it is necessary to show that this kind of knowledge is not more
advanced than diverse locally developed mathematical ideas, procedures, and
practices that are rooted in a system of distinct values.

2. The refusal to label the perception of western mathematics as a set of neutral
knowledge and, therefore, unique and hegemonic that promotes the ideology of
certainty.

38 M. Rosa and D. C. Orey



In this context, Svačinová (2014) affirms that these two ways might be used to
identify the political level of ethnomodelling, as they aim to combat the primitivism3

that is linked to the development of local mathematical practices, as well as to reject
the hegemony of western mathematics. Hence, Rosa and Orey (2017a), emphasize
that an important characteristic of the responsible subversion of ethnomodelling is
related to the fight against colonialism that takes a political position against the
dominance of western school/academic mathematics.

Consequently, ethnomodelling values cultural dynamism4 between different con-
ceptions of mathematical knowledge by recognizing the importance of cultural
relativism, which aims to prevent the hegemony of this knowledge over those
developed in other cultural contexts (Rosa & Orey, 2017a).

According to the assumptions of responsible subversion, it is necessary that
mathematics educators become aware of when, how, and why they should act
against established procedures and unfair guidelines that do a disservice to the
members of the school community (D’Ambrosio & Lopes, 2015).

Therefore, it is important that educators responsibly subvert the rules available in
the educational system in order to promote the development of students as critical
and reflective citizens by enabling their access to civil, social, political, and social
rights (Rosa & Orey, 2015a).

In this regard, to responsibly subvert education means to expand and improve the
educational system, to protect educators, teachers, students, and members of the
school community from the imposed norms and regulations, as well as to understand
the biases that prevent these individuals to access their rights, which are routinely
denied to them. It also creates a place where new policies can immerge in relation to
social justice and democracy.

2.4 Positive Deviance as a Sociocultural Issue

Initially, the concept of positive deviance emerged in the literature conducting
nutrition research conducted in the 1960s. In these investigations, researchers
confirmed the importance of using information collected from families so that they
could plan alternative nutritional programs that were in line with their local practices
(Wishik & Van Der Vynckt, 1976). This concept was then refined by the

3There is a need to combat cultural primitivism that seeks to devalue locally developed mathemat-
ical ideas and procedures, which seem to lack technological potential and advanced scientific and
mathematical knowledge. Hence, it is important to show that members of distinct cultural groups
also develop sophisticated mathematical practices so that they can solve problem and situations they
face in their daily lives (Eglash, 2000; Rosa & Orey, 2005).
4In the process of cultural dynamism, members of distinct cultural groups develop active interac-
tional processes that are in an ongoing negotiation between the local and the global mathematical,
scientific, and technological knowledges in a dialogical manner through the development of the
dynamic of the encounters of diverse cultures (D’Ambrosio, 2007).
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investigators Zeitlin et al. (1990) who observed that, despite poverty in certain
communities, some poor families had well-nourished and healthy children although
living in communities with a prominent level of malnutrition.

These professionals advocated the use of this concept to address issues of child
malnutrition in relation specific communities through the identification of local
practices that enabled the nutrition of children with the aim of amplifying them to
other contexts. Subsequently, Sternin et al. (1998) used the concept of positive
deviance to combat Vietnamese child malnutrition and to identify healthy children
among malnourished peers, their parents and relatives, considered as positive devi-
ants,5 managed to deviate from the normal course of action to save them from
malnutrition.

This approach encouraged these researchers to identify individuals who solved
malnutrition problems through locally developed practices by replicating them to
create contextualized solutions in their own communities. Thus, health service users
considered these professionals as defenders of social inclusion, because they sought
to improve the social conditions of the citizens and, also, as active participants in
society through the use of locally developed practices. These positively deviant
actions were frequently undertaken by the flexibilization of norms and by breaking
the rules of clinical practices (Gary, 2012).

In this direction, Spreitzer and Sonenshein (2004) argue that positive deviance
aims to provide a conceptual framework that helps us to understand, identify, and
explain the behaviors that oppose standardization and regulations. Therefore, Gary
(2012) states that positive deviance is used in different fields of knowledge to
describe actions that deviate from pre-established norms and standards in a positive
direction, as decisions are made to improve the solution of problems based on local
practices.

According to this context, Vardi and Wiener (1996) state that a deviant and
positive behavior focuses on voluntary flexibilization of social norms and standard-
ized behaviors that threaten the well-being of the members of distinct cultural
groups.

It is necessary to state that, Dodge (1985) affirms that this conceptualization is
used in business, administration, management, sociology, nursing, criminology,
health, healthcare, and organizational behavior. Positive deviance is also used to
combat chronic societal problems, such as child malnutrition, female genital muti-
lation, sex trafficking, and problems related to child health and hospital infections, as
well as being considered a technique to solve organizational and institutional
problems and issues (Lloyd, 2011).

However, we emphasize that no consistent definition of positive deviance for
contexts related to education or mathematics education. In this sense, the viability of

5Positive deviants are individuals who are focused, persistent, and optimistic in their pursuit of
better ways to help members of their own communities. They seek for social change based on their
local observations, as well as they are successful in applying strategies that enable them to create
and find solutions to solve problems in their own contexts (Bloch, 2001). Similarly, teachers and
educators can be considered as positive deviants
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the conceptual notion of positive deviance in the arena of educational practices need
to be investigated. Consequently, Rosa and Orey (2017b) state that understanding of
the concept of positive deviance can contribute to the development of innovative
mathematical ideas, procedures, and practices that are linked to the sociocultural
context of students.

Therefore, the concept of positive deviance may be related to the ethnomodelling
process, with regard to the use of local procedures and techniques to solve problems
and situations faced by members of distinct cultural groups in their daily lives. It is
important to point out that, in different sociocultural contexts, the characteristics
associated with the concept of positive deviance (Tarantino, 2005; Gary, 2012) can
be adapted to educational contexts by showing the flexibility of rules and norms
through four important characteristics that are detailed below.

2.4.1 Positive Deviance Is Intentional and Honorable

Positive deviance focuses on achieving the common good, which replaces subser-
vience to the norms and rules imposed by institutions (Bloch, 2001). As a behavior
to be achieved, positive deviance has honorable intentions, regardless of the results
obtained from its actions (Spreitzer & Sonenshein, 2004).

These intentionally deviant behaviors include honorable behaviors that accom-
modate the norms of the members of the reference group, as they are socially
beneficial (Warren, 2003) for members from diverse cultures.

For example, Bloch (2001) argues that when positive deviants, such as nutrition-
ists, nurses, school managers, teachers, and educators, realize that a given procedure
may fail, these professionals are motivated to seek an innovative, intentional way in
order to solve it, because they aim for a differentiated and successful and honorable
service for the portion of the population they serve in their daily lives.

2.4.2 Positive Deviance Differs from Established Regulations

A central theme of positive deviance is related to its proposal to work with actions
that differ from current regulations and norms (Dehler & Welsh, 1998). Most
importantly, this concept is opposed to formal authoritarian systems, as it describes
behaviors that deviate from commonly accepted and established norms. According
to Spreitzer and Sonenshein (2004), the normative formulation of positive deviance
is a behavior that significantly differs from the rules of the members of a group
considered as a reference (Spreitzer & Sonenshein, 2004).

Thus, Warren (2003) highlights that there is a need for positive deviants to resist
social pressures that encourage conformance to norms and regulations in order to
obey the imposed rules by the system. In this regard, Bloch (2001) states that these
deviants are not afraid to deviate from their path to follow a different direction, with
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the objective of finding a fairer way for them to play their transformative role in
society more broadly.

2.4.3 Positive Deviance Contains Innovative, Creative
and Adaptable Elements

Positive deviance is a source of adaptive capacity in organizational transformation
(Dehler & Welsh, 1998) of members of diverse communities. This pro-social
behavior6 uses creativity to diverge from current norms and rules. Thus, educators
considered positive deviants look for creative solutions to solve the educational
problems encountered in their daily teaching practices by making the regulations
imposed by the school system more flexible.

Innovation requires a departure from the accepted rules by society as innovative
thinking that involves the creation and development of innovative ideas that aim at
the well-being of the population (Appelbaum et al., 2007). In this direction, Lindberg
and Clancy (2010) state that this deviant behavior is creative and adaptable, although
it is often perceived as a resource that aims to use alternative solutions that deviate
from established norms for solving the problems faced in the activities performed
daily by the members of distinct cultural groups.

2.4.4 Positive Deviance Involves Risks

Positive deviance involves risks for deviants when these individuals positively
deviate from the norms and regulations imposed by society (Appelbaum et al.,
2007). For example, Stewart et al. (2004) describe how rules and implicit expecta-
tions are at play when nurses decide whether to extend the limits of the scope of their
practices. Thus, most of these professionals practice their deviant actions with
caution, as they also consider the maintenance and preservation of their work
permits.

According to Kramer and Schmalenberg (2008), positive deviants are aware that
they can be held responsible if there are negative outcomes for the individuals they
serve, such as customers, patients, and students. However, these nurses accept these
risks so that they can improve their living conditions. Consequently, these pro-
fessionals also identify the risks associated with this process, such as, for example,
the loss of influence, reputation, and sociopolitical position.

6Prosocial behavior or the intention to benefit others (Helliwell & Putnam, 2004) is a social
behavior that benefits other people or society as a whole, such as helping, sharing, donating,
co-operating, and volunteering (Brief & Motowidlo, 1986).
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This decision-making process may contain multiple conditions related to uncer-
tainty that provides threats to positive deviants. Even though these professionals
realize that when they go beyond the limits of hospital rules and protocols, they are
also taking risks, but they are not overly concerned about these risks (Kramer &
Schmalenberg, 2008).

On the other hand, as the positive deviance may acquire a high emotional charge,
as it evokes interruptions in the existing systems, this behavior is capable of causing
administrative disapproval. So, it is important to emphasize that actions against these
deviants can be decided by external professionals who are in charge of applying
rules and regulations as punishment. This context shows that, for Dehler and Welsh
(1998), the label of deviant may inappropriately imply that this behavior is harmful
and needs to be fought.

In line with this theoretical discussion, positive deviance can be considered a
problem-solving process through the use of diverse and differentiated solving
problems practices (Lindberg & Clancy, 2010) developed in specific contexts. For
Rosa and Orey (2017b), positive deviants discover solutions to problems and solving
them by using locally developed mathematical strategies, procedures, and tech-
niques by legitimizing their actions to solve everyday problems.

For example, Lindberg and Clancy (2010) state that positive deviance recognizes
the experience acquired daily, considering it relevant to the process of solving
problems faced in daily life. In this context, Rosa and Orey (2015a) emphasize
that these both deviant and positive actions are also related to the assumptions of
ethnomodelling.

2.5 Conceptualizing Positive Deviance in Ethnomodelling

Because it started an epistemological disturbance that may have caused a review of
the academic mathematical knowledge system, deviance triggered by
ethnomodelling is positive when it contributes to facing taboos that suggest the
mathematics being studied as a universal field of study, without cultural roots and
with a lack of traditions (Rosa & Orey, 2015b).

In this context, ethnomodelling can cause an interruption in the existing order that
prevails in mathematics education, as it encourages the study of ideas and pro-
cedures, as well as the use of local mathematical practices developed in distinct
cultural contexts, which are in accordance with the tacit knowledge7 and perceptions
of its members (Rosa & Orey, 2017a).

In accordance with this context, the emergence of ethnomodelling can also be
interpreted as a reaction to forms and aspects of cultural imperialism that spread

7This kind of knowledge is related to the ways in which members of distinct cultural groups
appropriate mathematical knowledge by relating them to their own experiences, beliefs, and cultural
values (Rosa & Orey, 2017a).
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internationally from European colonization. This may be linked to concepts of
positive deviance, as it is related to concepts of emancipation and local mathematical
knowledge by legitimizing it in its own sociocultural roots (Rosa & Orey, 2017b).

Consequently, ethnomodelling promotes a sociocultural debate that deviates from
the supposedly superior status quo of school/academic mathematics in relation to
locally developed mathematical procedures and practices, as it documents alterna-
tive forms of dissemination of mathematical thinking and reasoning (Rosa & Orey,
2017b). This approach combats ethnocentric perspectives that perpetuate the inac-
cessibility of members of cultural minorities to civic, political, social and cultural
rights (Turner, 2016).

According to Svačinová (2014), investigating the nature of mathematical knowl-
edge and objects supports a diversity ways to understand them in their own socio-
cultural contexts. In this sense, Rosa and Orey (2017b) state that the emergence of
new opportunities for discussing the nature of mathematical knowledge shows that
the deviation8 triggered by ethnomodelling is positive because it seeks to combat the
existing hegemony in mathematical modelling processes developed by school envi-
ronment and academic context, while promoting the inclusion of cultural elements in
this process.

In relation to this deviant behavior, the positive development of educational
actions aim at valuing diverse forms of mathematical knowledge as it promotes
cultural dynamism. Members of distinct cultural groups develop a local interpreta-
tion of their own culture (emic approach9), as opposed to the global analysis of
external observers (etic approach10) about their beliefs, behaviors, and traditions
(Rosa & Orey, 2017a).

In this perspective, positive deviance is a set of non-prescriptive practices or
strategies (Fielding et al., 2006; Pascale et al., 2010) that are contextualized in the
environment in which they are developed, as they aim at encouraging a search for
solutions to problems faced by members of distinct cultural groups in their daily
lives. In this process, mathematics is considered a social construct culturally rooted
in its own traditions.

Therefore, positive deviance is an approach based on the premise that it is in the
communities themselves, through collective participation, that solutions to daily

8Deviation is the act of deviating or a wandering from the common way and from an established
rule. It is a departure, as from the right course or the path of duty, which is a noticeable or marked
departure from accepted norms and rules (Rosa & Orey, 2015a).
9The emic approach is associated with the point of view of the internal members (insiders) of the
cultural groups, as they are observers from within their own culture. Emic knowledge is obtained
through observation, diffusion, and dissemination of locally developed ideas, procedures, and
mathematical practices (Rosa & Orey, 2017a).
10The etic approach is related to the viewpoint of researchers, teachers, and educators (outsiders) in
relation to customs, beliefs, and the development of mathematical and scientific knowledge of
members of distinct cultural groups. They are the outsiders or the outside observers who develop
concepts, theories and hypotheses about local knowledge that is considered important and mean-
ingful to insiders (Rosa & Orey, 2017a).
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problems are found. Thus, this approach aims that, through a self-discovery process,
the identification and optimization of resources and existing solutions available in
communities are used to solve their own problems (Sternin et al., 1998).

Similarly, Damazio (2004) suggests that it is in the community itself that schools
can find the didactic elements necessary for the development of its curricula. When
referring to the mathematics curriculum, Chieus (2004) emphasizes that the peda-
gogical work directed to diverse cultural perspectives enables a comprehensive
analysis of the school context, as “pedagogical practices transcend the physical
space and start to welcome the knowledge and actions present in every sociocultural
context of the students” (p. 186).

Therefore, active participation in this process allows members of distinct cultural
groups to identify and articulate these solutions by applying them in their daily lives
with the objective of seeking to improve the quality of life of these members
(Masterson & Swanson, 2000). This pedagogical action aims to make mathematics
a living knowledge that works through real situations, using a critical and reflective
analysis of everyday phenomena. In our view, this objective can also be achieved by
applying the assumptions of ethnomodelling in the daily work of the members of
these groups (D’Ambrosio, 1990).

Positive deviance enables local solutions to be developed, applied, and used to
solve common problems by encompassing innovative techniques locally developed
by members of distinct cultural groups. These techniques are also related to the
flexibility of norms, rules, and regulations imposed by educational institutions, as
they make it possible to change the behavior of these members (Rosa & Orey,
2015a).

For example, almost five decades ago, the results of the study conducted by
Alinsky (1972) showed that changes in beliefs and behaviors require an unfreezing
of perceptions held in relation to locally developed practices. Positive deviance
involves members of diverse communities in discovering (unfreezing) successful
alternatives (practices) with respect to local wisdom that, according to Rosa and
Orey (2017a), may be related to the development of ideas, procedures, and mathe-
matical practices linked to the sociocultural context of these members.

Similarly, Gerdes (2012) states that it is important to acknowledge that there is
mathematical knowledge frozen in everyday practices and artifacts. For example,
craftsmen who discovered a certain technique developed their own tacit knowledge,
as they used hidden mathematical thinking to solve the problems they face in their
daily lives. Thus, the unfreezing of this knowledge enables the (re)discovery of local
mathematical procedures and techniques, which reveals the development of the
mathematical potential of these members.

According to Gerdes (2012), the unfreezing of this mathematical knowledge
serves as a starting point for valuing local mathematical practices in classrooms,
while, at the same time, it raises awareness among researchers, teachers, and
educators in reflecting on the relationship between mathematical thinking/reasoning
and the artifacts produced by using this knowledge, and also between the knowing
and doing mathematics regarding to the use of technological resources.
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This context allows members of distinct cultural groups to deviate from society’s
expectations in order to explore successful alternative procedures that are related to
the development of local cultural norms, rules, regulations, beliefs, and perceptions
of these members (Masterson & Swanson, 2000). Therefore, researchers, teachers,
and educators can be considered as positive deviants when they design alternatives
methods that can achieve satisfactory results for the common good of the members
of the school communities (Rosa & Orey, 2017b).

This action is in opposition and, often, poses a challenge to the established
authority that opposes well-being of students through discriminatory public policies
(Rosa & Orey, 2017b). Therefore, these teachers and educators can be forced to
deviate from the normative rules so that they can meet the educational needs of their
students. This approach is attainable through the development of positive actions
that contrast to a passive acceptance of bureaucratic regulations imposed by the
educational system. In this regard, Gary (2012) states that this process involves an
intentional act of bending the rules to serve the common good of members of the
school community and society.

Educators are positive deviants when they push institutional bureaucratic bound-
aries to achieve the intended results in their pedagogical practices in the classrooms.
This deviant action shows the importance of these professionals leaving their own
epistemological cages, which is a metaphor developed by D’Ambrosio (2011).

In cages, birds breed and reproduce, yet they only see what the bars allows them
to observe, they only fly in the space delimited internally, they only feed on the
products they find in this environment and they only communicate in a known
language. The become accustomed to the world in which they live, rarely
questioning it. The birds may not even know the color in which the cage is painted
on its outside (D’Ambrosio, 2011).

Abandoning these cages is a challenging task, as they offer several benefits, such
as recognition by peers, as well as the guarantee and maintenance of employment
and promotions. Yet, the price of these benefits is high, as the bars prevent pro-
fessionals from contacting and getting to know the sociocultural reality of members
of other cultures, as well as making it impossible to inspire innovative paradigms for
the development of their creativity (Rosa, 2019).

For D’Ambrosio (2011), frequently, researchers, teachers, and educators are
imprisoned in their own cages, which make it difficult for them to become aware
of the existence of other cultures, epistemologies, worldviews, perspectives, and
cosmologies. In this context, remaining caged can be convenient and comfortable
because it avoids contact between these professionals and members of other
cultures.

However, there are professionals who are fearless (deviant) in relation to
questioning their cages, which exist as a result of the organization of their mathe-
matical backgrounds, training, thinking and reasoning (D’Ambrosio, 2011). It is
important that these professionals discuss current norms and rules in order to make
them more flexible in the teaching and learning process in mathematics.

Thus, the development of the modelling process is a pedagogical action that
proposes discussion about repression by encouraging researchers, teachers, and
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educators to help in the recovery of student cultural dignity (Rosa, 2019). In this
context, the concept of positive deviance for ethnomodelling is related to intentional
and honorable behaviors that deviate from the established norms and differ from
imposed rules.

This field of study provides the development of elements of innovation, creativ-
ity, and adaptability that may, however, involve risks for its deviants. Thus, the
assumptions of ethnomodelling seek to bend the bureaucratic expectations of aca-
demic mathematical modelling process that aims of valuing the diverse ways in
which the production of this knowledge is triggered in other cultural contexts by
using the connection between ethnomathematics and modelling.

2.6 Final Considerations

The breadth of the concepts of creative insubordination, responsible subversion and
positive deviance encompasses innovative solutions in relation to pedagogical action
of mathematics education, including ethnomodelling, as it aims to confront the belief
that still persists in society that mathematics is knowledge detached from culture.
The insubordination unleashed by mathematics educators is creative because it
evokes a disturbance that favors a sense of positive deviance from standardized
practices and a review of regulations that, for these professionals, can be considered
as responsibly subversive.

The main objective of this chapter was to discuss the concept of positive deviance
in ethnomodelling by exploring and identifying the essence of this concept in the
educational context, which is related to the development of teaching and learning
strategies that encourage the exploration of local mathematical ideas, procedures,
and practices. Thus, positive deviance can be considered as a sociocultural change,
based on the observation that in distinct cultural groups there are members who
develop successful procedures, techniques, and strategies that create local solutions
to solve the problems faced in their daily lives.

We emphasize that positive deviance was used in nutrition, as it aimed to
understand how children grow and develop in poor families and communities, in
which malnutrition is a constant certainty. These families developed culturally
appropriate practices that were successful so that they could nurture and care for
their children, despite of their poverty and high-risk environment in which they live.
Similarly, ethnomodelling involves the study of ideas, procedures, and mathematical
practices that are developed in distinct cultural contexts that can be used in the
pedagogical action of modelling through its connection with ethnomathematics. This
context allowed researchers, teachers, and educators to challenge the traditional
mathematical thinking and reasoning that is still prevalent in educational systems.

Historically, mathematical knowledge has taken different forms in diverse cul-
tures through the development of techniques and procedures that, many times, were
in opposition to the predominant mathematical system or to the rules commonly
legitimized by the school context, the academic paradigms about the notions of
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ethnomodelling show that the development of this process is culturally rooted.
Hence, a systematic study of ethnomodelling includes the development of skills
that help the observation of phenomena based on distinct cultural contexts by
determining innovative points of view on the teaching and learning process in
mathematics, which aim to improve the cultural sensitivity11 of the members of
distinct cultures in this process.

The positive deviance in ethnomodelling inform how the teaching and learning
process in mathematics can be transformed by valuing locally developed mathemat-
ical procedures and practices, as well as by the active participation of these members
in a glocalized society.12 So, there is a need for researchers, teachers, and educators
to flex the Eurocentric perspective of mathematical knowledge to meet the educa-
tional needs of their students. We, therefore, propose that mathematics educators
become positive deviants, so that they can guide their pedagogical actions in this
direction (Rosa & Orey, 2017b). For example, the ongoing, seemingly never-ending
effect of prejudice enhances school problems and perpetuates the social exclusion of
students from institutional and community services.

Acts of positive deviance by educators can reduce stigma and prejudice, which
can be caused by the rules imposed by inequities inside the educational system,
which prevents social justice from being fully achieved. Social norms differ across
communities, societies, and cultures. Thus, a certain positive act or behavior can be
perceived as deviant and receive sanctions or punishments in a certain context and
yet it might be understood as a traditional behavior in another context. Furthermore,
as the understanding of social norms and rules by members of a society changes over
time, so does the collective perception of positive deviance.

Finally, we conclude that the concept of positive deviance is useful because it
offers mathematics educators a basis for empowerment and a decision-making
process when actions and behaviors that are considered normal and expected by
the status quo collide with what may be of benefit provided to students.

This concept is necessary to the development for the inclusion of local mathe-
matical procedures and practices based on ethnomodelling, in order to assist educa-
tors in meeting cognitive, cultural, social, and pedagogical needs of participants.
Certainly, a sense of positive deviance in this field of study shows the need to use a
cultural perspective in the mathematics curriculum for the twenty-first century.

11Cultural sensitivity is related to the ability of members of distinct cultural groups to become aware
of the differences and similarities between cultures, without attributing values or imposing rules and
norms, such as positive or negative, better or worse, and right or wrong to their members (Rosa,
2010).
12In a glocalized society, there is a predominance of the acceleration and intensification of the
interactional process between local and global knowledge developed by members of distinct
cultural groups through cultural dynamism that is triggered in this dialogic process (Rosa &
Orey, 2017b).
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Chapter 3
Ethnomodelling as a Methodological
Alternative to Basic Education: Perceptions
of Members of a Research Group

Zulma Elizabete de Freitas Madruga

3.1 Introduction

The insertion of future teachers in research has to be done during their undergraduate
coursework. The articulation between teaching, research, and extension tripod is a
challenge assumed in the Pedagogical Project of the Licentiate Degree in Mathe-
matics (Projeto Pedagógico do Curso de Licenciatura em Matemática) at the
Universidade Federal do Recôncavo da Bahia (UFRB), in the municipality of
Amargosa, state of Bahia, Brazil. With regard to research, actions are implemented
to provide a space for training, which is essential for reflection and construction of
the identity of the future teachers.

The development of actions aimed at research at UFRB have contributed to
improving scientific thinking and the ability to generate new knowledge that helps
to train students in the various aspects related to their personal and professional
training. In this perspective, the Institutional Scientific Initiation Scholarship Pro-
gram (PIBIC) stands out and it has helped to develop research activities in addition
to contributing to the student’s permanence at the University.

Considering these aspects, this chapter intends to share the actions carried out
within a research group, formed primarily by students of the Licentiate Degree in
Mathematics at UFRB in order to understand the perceptions of participants on
Ethnomodelling, as a potential methodological alternative for Basic Education.
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3.2 The GEPTEMaC1 (Grupo de Estudos e Pesquisas Sobre
Tendências da Educação Matemática e Cultura): From
the Beginning to Future Actions

The project entitled “Ethnomodelling and Problem Solving: possibilities for teach-
ing and learning Mathematics in Basic Education”, aims to plan, to develop, to
experiment and reflect on the use of Ethnomodelling (Ethnomathematics combined
with Mathematical Modelling) and Problem Solving in Basic Education Mathemat-
ics classes.

The execution of this project foresees 3 years, having started in April 2020.
During the first year studies were conducted on the following trends in Mathematics
Education: Ethnomathematics, Mathematical Modelling (Ethnomodelling) and
Problem Solving.

The project team is made up of the coordinating professor; a collaborating
professor from another Higher Education Institution (HEI); ten undergraduate math-
ematics students, two of whom are PIBIC scholarship holders (in their second year
of work); two Master’s degree students in Science and Mathematics Education; and
seven teachers working in Basic Education (three masters, three specialists, and one
graduate), from different regions of Recôncavo and Southern Bahia, Brazil.

Group meetings provide studies and research and are mainly moments for sharing
knowledge. Meetings occur on GoogleMeet, synchronously; and on WhatsApp, in
an asynchronous way, which enables the participation of members from different
municipalities.

After a year of study and theoretical research on the trends listed in the project,
this team decided to create the Study and Research Group on Trends in Mathematics
Education and Culture (Grupo de Estudos e Pesquisas sobre Tendências da
Educação Matemática e Cultura)—GEPTEMaC, registering it in the Directory of
Groups in Brazil.

The various publications of theoretical research boosted the creation of the group.
In a year and a half of study and research, 19 articles were produced and submitted to
journals (7 published, 7 accepted for publication, and 5 submitted and waiting for the
evaluation process); 6 full articles published in event proceedings, and 5 expanded
abstracts and 9 abstracts published in event proceedings. In addition, 28 presentations
by the group members were made at regional, national, and international scientific
events.

Any production developed by group members is done through a process of
collaboration, construction, and reconstruction, based on discussion with peers. It
is believed that this fact is fundamental for the group’s collective growth. Nine
pedagogical proposals are currently being prepared on the themes of interest to the

1Study and Research Group on Trends in Mathematics Education and Culture that is registered
in the Directory of Research Groups in Brazil. Available at: http://dgp.cnpq.
br/dgp/espelhogrupo/720033. E-mail: geptemac@cfp.ufrb.edu.br

54 Z. E. d. F. Madruga

http://dgp.cnpq.br/dgp/espelhogrupo/720033
http://dgp.cnpq.br/dgp/espelhogrupo/720033


group: Mathematical Modelling, Ethnomodelling and Problem Solving, which will
be published in an e-book that is under production.

The idea is that these proposals will be developed by members of the group and
collaborators, with students of Basic Education, and will be later analyzed, and their
results will be disseminated in the form of scientific publications.

The group’s reflections, discussions, and productions are directed towards the
study and search for teaching and learning strategies for Mathematics in Basic
Education, supported by authors such as D’Ambrosio (2013) related to
Ethnomathematics; Biembengut (2016) related to Mathematical Modelling in the
perspective of Mathematics Education; Onuchic and Allevato (2014) related to
Problem Solving; and Rosa and Orey (2017) related to Ethnomodelling.

The GEPTEMaC is understood as a space for initial and continuing education,
which takes place through the sharing of ideas and collective and collaborative
actions. On these aspects, Fiorentini (2013) highlights collective work as a starting
point for overcoming and understanding numerous problems in practice, and as a
means for professional training. The reflections carried out collectively favor the
understanding of practices, the recognition of some lack of theoretical knowledge,
among other possibilities that are presented when reflecting on the pedagogical
actions and listening to the different points of view of other teachers.

It is worth highlighting the participation in the GEPTEMaC of students (under-
graduate and graduate) and teachers of Basic Education and Higher Education, in the
quest to break with the “culture of suspicion and misunderstanding between math-
ematics educators residing in the academic world and mathematics educators with
action in the classrooms of the school world” (D’Ambrosio & D’Ambrosio, 2006,
p. 79). According to this context, D’Ambrosio and D’Ambrosio (2006) argue that:

Some research groups try to change this culture, inviting professors to join, as researchers, in
research projects in the classroom. A collaborative relationship is established, and the Math
teacher finds a voice and agency in the research group (. . .). Some researchers consider this
practice a work of socialization of the mathematics teacher in the world of research. These
teachers begin to build a role for research in their pedagogical practice, making research an
essential element in their professional life (p. 79).

One of the GEPTEMaC’s premises is to give equal voice to all members, there is no
hierarchy, and group decisions are taken together, respecting the will of the majority.
The encouragement of research and dissemination is recurrent in the group, as well
as collaboration, as it is understood that in this way, the theoretical, professional, and
academic growth of all involved takes place.

In addition, the results of the group’s actions are developed through extension
projects and partnerships with schools in the municipality and region, seeking to
contribute to the qualification of both its members and other Basic Education
teachers. It is understood that the creation of a Study and Research Group is
important for the development of skills in students, based on collaboration and
collectiveness, not only in the academic sphere, but also in the professional field.

In addition to discussions conducted among its members, the group carries out
actions in the form of conversation circles and dialogue with guests who have
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experience in the field of Mathematics Education, striving for diversity and the
exchange of knowledge and experiences among those involved.

The actions of GEPTEMaC deal with trends and methodological approaches in
Mathematics Education: Ethnomodelling, Mathematical Modelling, and Problem
Solving. It is noteworthy that some group participants discuss these topics in their
research, such as Course Conclusion Papers (TCC) and Master’s Degree Disserta-
tions. This chapter specifically addresses the group’s ideas, studies, and perceptions
about Ethnomodelling.

3.3 About Ethnomodelling

Ethnomodelling focuses on the relations between Ethnomathematics and Mathemat-
ical Modelling. Ethnomathematics is understood as the art or technique of knowing,
explaining and understanding different cultural contexts (D’Ambrosio, 2013). It is a
natural, social, cultural, and imaginary (ethno) environments of explaining, learning,
knowing, and dealing (mathema) with modes, styles, arts, and techniques (tics).

It is a program that aims to explain the processes of knowledge generation,
organization and transmission in different cultural systems. It studies the relation-
ships and connections between mathematical notions and other cultural elements,
knowledge and mathematical know-how acquired in the development of a profes-
sional activity (D’Ambrosio, 2013).

It is understood that Mathematical Modelling (MM) enables the connection
between representations and the world (Bassanezi, 2010), defined it as a dynamic
process used to obtain and validate (mathematical) models. For Bassanezi (2010),
modelling is a form of abstraction and generalization in order to predict trends.
“Modelling essentially consists of the art of transforming reality situations into
mathematical problems whose solutions must be interpreted in the usual language”
(Bassanezi, 2010, p. 24).

Some researchers have published research that corroborates these relationships,
such as: Madruga (2012), Albanese and Perales (2014), Biembengut (2016),
Madruga and Biembengut (2016), Pradhan (2020), among others. However, the
authors Rosa and Orey (2014, 2017, 2018) are the main references on
Ethnomodelling.

Ethnomodelling seeks to value and understand local mathematical knowledge,
translating it into school/academic (global) language, expanding the scope of this
knowledge to people from other cultures or geographic space (glocal) (Rosa & Orey,
2017). For these authors, Ethnomodelling can be understood as the study of math-
ematical practices that members of the most diverse cultural groups develop through
Mathematical Modelling.

Thus, the Ethnomodelling procedures involve mathematical practices used and
developed in different situations and problems faced in the daily life of the members
of this group. For example, Rosa and Orey (2017) state that is necessary to
understand mathematical knowledge arising from social practices that are rooted in
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cultural relations. In this sense, Ethnomodelling studies this mathematical knowl-
edge through an “interaction process that influences the local (emic) and global (etic)
aspects of a given culture” (p. 18).

The emic approach seeks to understand the behavior of individuals from a given
culture and their customs, and also to understand how these people mobilize
knowledge to carry out their daily tasks; while the etic aspect seeks to analyze this
behavior in an attempt to universalize it through a standardized procedure. In this
context, Rosa and Orey (2017) state that:

1) Etic Approach: is related to the point of view of researchers, researchers and educators in
relation to beliefs, customs and mathematical and scientific knowledge developed by
members of a certain cultural group. 2) Emic Approach: is related to the point of view of
members of different cultural groups in relation to their own customs and beliefs and also to
the development of their own scientific and mathematical knowledge (p. 20).

According to Rosa and Orey (2017), the etic view is that of external observers of a
given culture and they have a point of view considered culturally universal; and the
emic view is of individuals who are immersed in a cultural group and have a
culturally specific point of view. For these authors, from the understanding of
emic and etic, individuals from a certain (local) group will enable and join together
through dialogue with different cultural groups, through transculturality.
D’Ambrosio (2020) states that:

The approach to discussing integrated knowledge must be transdisciplinary. And it must, of
course, contemplate the human species in all times and spaces, throughout history and the
geographical occupation of the planet. It must therefore be cross-cultural. We are the same
species, evolving over time and occupying different spaces (D’Ambrosio 2020, p. 153).

In this regard, “transculturality can ensure the translation of knowledge acquired by
distinct cultural members to members of other cultural groups through
Ethnomodelling” (Rosa & Orey, 2017, p. 18). Thus, Ethnomodelling can be con-
sidered an alternative methodological approach, which seeks to systematize mathe-
matical knowledge from different cultural groups, allowing it to overcome global
cultural and ideological barriers, contributing to the dialogue with members of other
cultures.

For example, Rosa and Orey (2017, p. 19) state that: “Distinct cultural members
share their own interpretation of their culture (emic approach) in contrast with the
interpretation provided by researchers (. . .) and educators who are outsiders (etic
approach) to these manifestations”.

In this regard, Rosa and Orey (2018) state that it is essential that there is a
dialogue between the emic and etic approaches, called the dialogic approach
(glocal), through which one can understand the cultural influences in the elaboration
of the ethnomodels, showing the interdependence and complementarity between the
emic and the etic, through cultural dynamism.
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3.4 The Ways to Understand the Participants’ Perceptions

This chapter presents qualitative research, according to Bogdan and Biklen (2010),
using as a data production instrument the testimony of 15 people, all members of the
GEPTEMaC, including: 8 students from the Licentiate Degree in Mathematics;
2 Master’s degree students from the Postgraduate Course in Science and Mathemat-
ics Education; 5 Basic Education teachers, 1 graduate student from the Mathematics
Education Program, 2 specialists, and 2 masters.

The group participants answered a questionnaire with open questions, in which
they discussed issues related to their participation and perceptions over the 2 years of
research in the group. The questions were addressed in two blocks: (1) the impor-
tance of the group for their academic and professional training; (2) on the concept of
Ethnomodelling and its potential for Basic Education; this last block being presented
in this chapter.

For data processing, and in order to reach the objective of understanding the
participants’ perceptions about Ethnomodelling, as a potential methodological alter-
native for Basic Education, as well as Discursive Textual Analysis (ATD) was used.
According to Moraes and Galiazzi (2013), the analysis was carried out in three
stages: (a) deconstruction and unitarization (units of meaning); (b) categorization
(relationships between what was unitarized); (c) construction of metatexts, based on
the researcher’s interpretations. Below is a summary of what each of these steps
consists of, pointing out its fundamental aspects.

(a) Deconstruction and unitarization: This initial stage, after the constitution of the
corpus of analysis (selection and organization of the material to be submitted for
investigation, based on the research objectives), fragmented the text into
88 meaning units, with a view to achieve the research objective. The
unitarization process requires the researcher’s fidelity to what is contained in
the research corpus, “a phenomenological attitude of letting the phenomenon
manifested” (Moraes & Galiazzi, 2013, p. 53).

(b) Categorization: This step results from the process of organizing and grouping
the units of meaning, which may arise from two situations: objective and
deductive form—called a priori category; and inductive and subjective form—

called emergent categories (Moraes & Galiazzi, 2013). This process requires the
investigator’s creative, attentive, and organized potential. The units of meaning
were organized into 12 preliminary categories, and then grouped into 3 final
categories, explained below. We opted for the use of emerging categories.

(c) Metatexts: The writing of metatexts expresses the researcher’s understanding of
the phenomenon of investigation, based on the categories chosen in the previous
stage. At this stage, the writing process plots the description of the phenomenon,
the interpretation performed by the researcher and, thus, there is the emergence
of the new (Moraes & Galiazzi, 2013).

The three categories that emerged from the responses of the group participants
are presented below, demonstrating their perceptions about Ethnomodelling, and its
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potential for teaching and learning Mathematics in Basic Education: (a) The concept
of Ethnomodelling; (b) Potential of Ethnomodelling; (c) Valuing knowledge and
cultures.

3.5 Ethnomodelling in the Perception of GEPTEMaC
Members

In order to understand how the GEPTEMaC participants perceive Ethnomodelling as
a potential methodological alternative for Basic Education, 15 testimonies of the
participants were analyzed, which consisted of answers to an open questionnaire.
These participants will be called research collaborators, and their answers will be
coded as C1, C2, . . . and C15. According to the procedures indicated by Moraes and
Galiazzi (2013) for ATD, three categories emerged, and are summarized below.

3.5.1 The Concept of Ethnomodelling

According to the testimonies, it was clear that GEPTEMaC members perceive
Ethnomodelling as the connection between Ethnomathematics and Mathematical
Modelling. In this context, Rosa and Orey (2017) consider Ethnomodelling as the
intersection between Cultural Anthropology, Ethnomathematics and Mathematical
Modelling.

These statements corroborate to the concept that Ethnomodelling is the study of
mathematical practices developed by members of different cultural groups, through
modelling. In this sense, its procedures incorporate the mathematical practices
developed and used in the various problems and situations faced in the daily lives
of members of these groups.

However, contributors diverge on the definition of what is Ethnomodelling
beyond the connection mentioned above, presenting as answers: trend (2); program
(1); method (1); pedagogical alternative (1); pedagogical proposal (2); pedagogical
action (1); pedagogical strategy (1); methodological approach (1); methodological
alternative (1); methodological tool (2); and methodological proposal (2).

Two definitions of Ethnomodelling are in line with the idea of trend. One of the
collaborators states that it is “a trend that seeks, through knowledge of a certain
culture, to develop models that will help in the learning process” (C10), and another
defines it as “a trend in the large area of research in Mathematics Education” (C14).

It should be noted that Mathematics Education can be considered an area of
studies and research that has solid foundations in Education and Mathematics. In this
regard, Mathematics Education opened space for research and discussions involving
questions about the teaching of Mathematics.
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From research, trends have emerged in the area of Mathematics Education that
incorporate different approaches considered relevant to the teaching and learning
process. Researchers in Mathematics Education have different points of view, that is,
conceptions, regarding the evolution of trends in this area.

Among the trends in Mathematics Education can be highlighted: Problem Solv-
ing, History of Mathematics, Ethnomathematics, Mathematical Modelling (MM),
among others. Perhaps because MM and Ethnomathematics are considered trends,
collaborators believe that Ethnomodelling can also be considered as a trend in
mathematics education.

Ethnomathematics, in addition to be a trend in Mathematics Education, is defined
by D’Ambrosio (2013) as a research program that aims to explain the processes of
knowledge generation, organization, and transmission in different cultural systems.
It studies the relationships and connections between mathematical notions and other
cultural elements, knowledge and mathematical know-how acquired in the develop-
ment of a professional activity (D’Ambrosio, 2013).

Considering this definition, one of the collaborators stated that Ethnomodelling
“is a program that enables the teaching of Mathematics, where the student’s expe-
rience, reality and social knowledge is prioritized, it allows learning to be built
together, between teacher and students” (C1).

The collaborator who considers Ethnomodelling as “a method used to bring to the
classroom, the academic environment, the mathematical knowledge present in a
given culture” (C12), must be relating to the concept of MM defended by
Biembengut (2016) who defines it as a research method applied to Education that
consists in the elaboration of models.

Some of the collaborators consider Ethnomodelling as a methodological alterna-
tive, proposal, strategy, or pedagogical action. The assertions that this is “a peda-
gogical action that proposes to (re)know the mathematical knowledge and practices
historically constructed by different cultural groups and take them to the classroom
through modelling” (C8), are in line with the ideas of what:

(. . .) ethnomodelling can be considered as a set of strategies that enable the resolution of
problems present in knowledge systems developed in different cultural contexts. These
strategies can be considered as ways of communication, behavior, individual and collective
knowledge, which through interaction can result in a pedagogical action for the teaching and
learning process in mathematics (Rosa & Orey, 2018, p. 116).

Participants who consider Ethnomodelling as an approach, alternative, tool or
methodological proposal, claim, for example, that “Ethnomodelling appears in the
area of Mathematics Education as a methodological alternative that aims to enhance
different mathematical knowledge in different social and cultural contexts” (C6), or
that is considered as “a methodological approach that enables students to establish a
relationship between their daily practice and mathematical knowledge present in
cultures and cultural groups that practice mathematics far from academic mathemat-
ics” (C15).

It is important to highlight that Rosa and Orey (2017) also present this idea when
they state that Ethnomodelling can be considered “an alternative methodological
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approach, which aims to record the ideas, procedures and mathematical practices
that are developed in different cultural contexts” (p. 23).

In agreement with Madruga (2021), it is believed that Ethnomodelling is a
proposal for the teaching of Mathematics, in order to provide a space for interaction
and reflection, in the elaboration and deepening of knowledge from the most diverse
cultures, in a permanent movement that turns to educational practices.

In this sense, Ethnomodelling can be a methodological proposal that uses the
concepts of diversity and culture (ethno) in line with mathematical modelling (tics)
in order to enhance learning (mathema) at different levels of education, aiming to
suggest a path to teaching and learning Mathematics.

3.5.2 Potentialities of Ethnomodelling

In the Brazilian scenario, according to a survey carried out by Madruga (2021), until
the first half of 2021 there were 12 scientific research published, all dissertations,
which dealt with the possibilities of Ethnomodelling in the teaching of Mathematics.
These, in general, highlight the potential for developing Ethnomodelling in the
classroom, with positive results in terms of teaching and learning (Sonego, 2009;
Reges, 2013; Altenburg, 2017; Cortes, 2017; Pimentel, 2019; Dutra, 2020; Eça,
2020; Martins, 2020; Mesquita, 2020; Santos, 2020; Barreto, 2021; Rodrigues,
2021).

Using themes from the reality and culture of students from different Brazilian
regions, such as: rice planting (Sonego, 2009); candy factory (Reges, 2013); Pom-
eranian culture related to German immigration (Altenburg, 2017); marketers selling
at a Free Fair (Cortes, 2017); coffee culture (Dutra, 2020); rural community (Mar-
tins, 2020); peripheral community (Mesquita, 2020); cocoa crop (Santos, 2020),
among others. Research has shown that teaching through Ethnomodelling can
provide the learning of mathematical content based on respect and cultural
appreciation.

The contributors and members of GEPTEMaC agree with the authors of the
aforementioned research by stating that “Ethnomodelling has very significant poten-
tial in the teaching and learning of Mathematics, especially for Basic Education
students” (C1), and that “it seeks an improvement in the teaching-learning process of
the discipline, with the incorporation in the mathematical curriculum of knowledge
arising from the student’s life and human values, such as, for example, cooperation,
solidarity and respect” (C4).

The use of Ethnomodelling in teaching practice seeks to integrate the knowledge
institutionalized by the academy, with the knowledge constituted and practiced by
members from different sociocultural contexts through a dialogic approach (Rosa &
Orey, 2017), discharging in this way, the supremacy kind of knowledge over
another.

To support pedagogical actions through Ethnomodelling is to build educational
scenarios that aim at the critical training of teachers and students from a sociocultural
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perspective. In the perception of the collaborators of this research “Ethnomodelling
becomes powerful and possible because through it we will be working with the real
context of our students of Basic Education” (C5).

And yet, “the teacher has the opportunity to be working on cultural, social and
moral values that permeate the daily lives of Basic Education students. Furthermore,
it seeks to contextualize the teaching of Mathematics, which is a very important
factor for the university to actually reach schools” (C6). According to Eça and
Madruga (2021),

Ethnomodelling, with these positions demarcated by anthropological characteristics, pro-
motes in the educational sphere the decentralization of knowledge about the figure of the
teacher and shares this responsibility with everyone involved in the teaching and learning
process in a participatory and active manner, thus promoting the emancipation of the
students in the process rooted in dialogical principles. A fact that contributes for them to
assume the role of protagonist of his own learning (Eça & Madruga, 2021, p. 9).

In line with this statement, the collaborators mentioned that Ethnomodelling allows
students to “become researchers and get involved in the teaching process” (C1), and
also “to make students more thinking and active learners to perform and solve
everyday problem and situations, by conceiving and establishing possible relation-
ships between cultural and academic mathematical knowledge” (C7).

Research collaborators state that, based on Ethnomodelling, “learning occurs
with meaning” (C11); and that students can awaken “greater motivation to know
and learn mathematics” (C2). This motivation is mentioned in the research by Santos
(2020), when he states that the students felt motivated and enthusiastic about the
activities carried out outside the classroom, in the context of a chocolate factory.

While Dutra (2020) states that teachers should strive “to understand the cultural
aspects that are present in everyday life, providing a motivating, contextualized, and
meaningful learning” (p. 49).

Several published studies dealing with Ethnomodelling as an methodological
alternative for teaching Mathematics, including those by Sonego (2009), Reges
(2013), Altenburg (2017), Cortes (2017), Pimentel (2019), Dutra (2020), Eça
(2020), Martins (2020), Mesquita (2020), Santos (2020), Barreto (2021), and Rodri-
gues (2021) show different possibilities and potential for the classroom, specifically
in Basic Education.

The members of GEPTEMaC also perceive these potentialities when they state
that “the results obtained during and at the end of the process are perceived in the
construction of the mathematical content present in the school curriculum” (C10);
and that Ethnomodelling enables students to “explore different mechanisms of
learning mathematics and perceive their presence in different areas” (C4). In this
perspective, Santos and Madruga (2021) state that the:

(. . .) contextualized use of the mathematical object with the cultural aspect contributed to the
students’ involvement in the teaching and learning process; in the construction of autonomy,
overcoming difficulties in interacting with different types of people; for them to evaluate
points of view, asking questions and contributing with colleagues and professor-researcher
during the dialogues promoted in class (pp. 19–20).
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In this regard, GEPTEMaC members consider Ethnomodelling as a potential meth-
odological alternative for the teaching of Mathematics, as it values the cultural
aspects of Mathematics, considering the differences between students, understand-
ing that they learn in different ways, and that they are part of distinct cultural
contexts, social, and economic contexts, and mainly that these students bring
knowledge and actions that must be considered in the teaching process.

In this way, it is also highlighted that Ethnomodelling can contribute to learning
process that is able to provide students with knowledge that supports their experi-
ence in society and the improvement of a critical and active view by enabling them to
intervene in society and seeking to transform them positively.

3.5.3 Valuing Knowledge and Cultures

Ethnomodelling aims to provide a teaching of Mathematics that dialogues with the
cultural context in which the student is inserted, contributing to the appreciation of
the environment and social, cultural and economic aspects. In this context,
D’Ambrosio (2020) affirms that the:

(. . .) proposal of the Ethnomathematics Program is to recover the humanistic, social, and
cultural character of mathematics and in all areas of knowledge. In particular, I speak in a
broad sense of Mathematics as the human being’s own abilities to observe, to classify and
order, to evaluate, to measure and to quantify and infer. The ultimate goal of activating these
capabilities is to deal with all everyday problems and situations while at the same time
understanding and explaining facts and phenomena of reality in the broadest sense (p. 153).

Understanding the ways (tics) in which people explain and solve their daily prob-
lems (mathema), in the most different cultures (ethno), is the premise of
ethnomathematics, as well as the appreciation of the most varied cultures, diversity
and the search for education for peace. Ethnomodelling shares these premises, as it
brings with it the assumptions of ethnomathematics in the conception of
D’Ambrosio (2020) who suggests that “tics” of “mathema” can be developed in
the classrooms (Madruga, 2021).

Ethnomodelling, according to Rosa and Orey (2017), seeks to value and under-
stand local mathematical knowledge, translating it into school/academic (global)
languages, as well as enabling the expansion of the reach of this knowledge to people
from other cultures. or geographic spaces (glocal).

Therefore, Ethnomodelling procedures involve mathematical procedures and
practices used and developed in various problem situations faced in the daily lives
of these groups (Rosa & Orey, 2018), providing “an appreciation of the mathemat-
ical knowledge produced by different peoples” (C2). Furthermore, “it allows for the
appreciation of different cultural mathematical knowledge, which is sometimes used
by students implicitly” (C7).

In this sense, Ethnomodelling “enables students of Basic Education, as well as
teachers to perceive in different contexts the local knowledge and practices to be
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applied in the teaching of mathematics” (C7), valuing “knowledge (tacit) to be
somehow as a “facilitator” for learning academic knowledge” (C2).

Tacit (emic) knowledge comes from the experience that each person has during
their lifetime. Thus, it is subjective, as it stems from the values and experience of
each individual. This type of knowledge is difficult to transfer to formal and written
language. It can be considered as know how because it is contextualized and
analogous (Nonaka & Takeuchi, 1997).

In the development of Ethnomodelling, there is “the appreciation of the knowl-
edge that students bring with them” (C2), as well as “the consideration of all the
knowledge that the person already has” (C13).

Corroborating with the ideas of Rosa and Orey (2012), it is believed that
Ethnomodelling, as well as Mathematical Modelling, can also facilitate a pedagog-
ical structure that promotes the identification and dissemination of tacit (emic) and
explicit (etic) knowledge. Explicit (etic) knowledge is understood as that which has
already been transformed into formal language.

Therefore, it was passed into the form of manuals, standards, texts, and mathe-
matical equations. In this way “it is possible to value the experiences of different
peoples, including our own students in classroom practices” (C8), in order to
“contribute so that new generations know and recognize a much more cultural
mathematics, linked to everyday life of different groups” (C4).

It can be inferred, through the collaborators’ testimonies, that they perceive that
Ethnomodelling has an important role in the construction of knowledge, not just
mathematical ones; and it can facilitate communication between teachers and stu-
dents, enabling the conversion between tacit (emic) and explicit (etic) mathematical
knowledge through the development of dialogical ethnomodels.

Consequently, this context generates an environment “where the student’s expe-
rience, reality and social knowledge are prioritized, enabling learning to be built
together, between professor and students” (C1).

Previously, Nonaka and Takeuchi (1997) suggested that the process of conver-
sion between explicit and tacit knowledge is spiral, as it is a continuous and dynamic
process that evolves through social interactions. Tacit and explicit knowledge are
complementary, and the interaction between them will result in more knowledge. In
this sense, the conversion of knowledge can be broken down into four ways of
creating knowledge: socialization, combination, externalization, and internalization.

(a) Socialization comprises the conversion of tacit knowledge into another tacit one.
This process occurs from the interaction between people (Nonaka & Takeuchi,
1997). It is understood that this tacit knowledge can be considered as local
(emic) knowledge highlighted by Rosa and Orey (2017, 2018). In the develop-
ment of Ethnomodelling, this socialization can occur through visits to certain
places (Pimentel, 2019; Santos, 2020; Dutra, 2020), or conversations with
people experienced in certain subjects, it is learning through experience, “valu-
ing the culture and the knowledge that comes from the students” (C8). Where
“the teacher and students share tacit knowledge through experiences, ideas,
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mental models and technical skills through the development of interactive,
cooperative and contextualized activities” (Rosa & Orey, 2012, p. 277).

(b) Externalization is a process of articulating tacit knowledge into explicit concepts
(Nonaka & Takeuchi, 1997). It can also be defined as a process of beginning the
creation of global (etic) knowledge, as tacit knowledge becomes explicit,
expressed in the form of metaphors, analogies, concepts, hypotheses, models
or ethnomodels. Ethnomodelling can facilitate this externalization process, as it
“provides the appreciation of the knowledge that students bring with them,
allowing this knowledge to be somehow a facilitator for the learning of aca-
demic knowledge” (C2).

(c) Combination occurs when explicit knowledge is transformed into other explicit
knowledge (Nonaka & Takeuchi, 1997). Thus, when changing the context, there
is a recategorization or increase of explicit knowledge, in a way, transforming
this knowledge.

The different types of explicit knowledge that students possess are combined and
converted into new explicit knowledge, which contains a higher level of complexity.
This process allows explicit knowledge, which is combined, to be reorganized,
restructured, systematized, and refined (Rosa & Orey, 2012, p. 278).

It is understood that, in Ethnomodelling, this combination occurs when
students are able to articulate what has been learned, when they share different
explicit knowledge, based on previous learning, integrating them into new
explicit knowledge. This could be related to etic (global) knowledge itself.

(d) Internalization is the process of transforming explicit knowledge into tacit
knowledge (Nonaka & Takeuchi, 1997). In a way, it identifies with the common
concept of learning by doing. Ethnomodelling can contribute to this internaliza-
tion process while “it helps students to see the application of mathematics in
different contexts and everyday situations, in order to understand that this is not
just an explanation and reproduction of calculations and formulas, but beyond
these theories, they can be seen and used to solve problem situations” (C7).

In this context, Rosa and Orey (2012) affirm that “internal reflection and the
exchange of information between teacher and students and between students and
students favor the internalization of knowledge, facilitating the development of
critical awareness through social relationships” (p. 277). It is believed that this
internalization process generates learning, that is, dialogic knowledge (glocal).
Figure 3.1 shows the relation of the conversion of knowledge and its relation to
ethnomodelling.

Based on the investigations conducted by Nonaka and Takeuchi (1997), the
conversion of knowledge can be considered as a spiral movement. According to this
perspective, Rosa and Orey (2017) highlight that Ethnomodelling is a spiral process,
which develops a dialogic movement that relates the students’ emic knowledge
(tacit) and etic knowledge (explicit).

It is important to emphasize that this approach can be effective with the support of
the elaboration of ethnomodels and, consequently, generating learning, in the quest
to “aggregate the cultural knowledge of a people with academic (school) knowledge,
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as well as the search for (ethno)mathematical models that are related to a study
problem arising from questions cultural” (C5).

When models are developed as a result of the understanding of mathematical
situations practiced by the members of a cultural group, these are called
ethnomodels. For Rosa and Orey (2017), ethnomodels are cultural artifacts, which
can be considered as pedagogical tools, and can be used to facilitate the understand-
ing of practices and comprehension of systems taken from the reality of different
cultural groups. An ethnomodel can be considered as a clear and objective way of
explaining mathematical knowledge from a cultural group (externalization).

3.6 Final Thoughts

The intention of this chapter was to share the actions carried out within a research
group, formed primarily by students of the Licentiate Degree in Mathematics at the
Federal University of Recôncavo da Bahia, Brazil, presenting a research that aimed
to understand the perceptions of the participants on Ethnomodelling, as a potential
methodological alternative for Basic Education.

The results showed that the project has contributed to the initial or continuing
education of the participants, both as professors and researchers, while addressing an
methodological alternative considered new by the group. Research in teacher edu-
cation (initial and continuing), as well as teacher participation in research groups,
play a fundamental role in their professional development, supporting training that
contributes to the constitution of research teachers.

In the critical and joint reflections between undergraduates, graduate students,
active teachers in Basic Education and University researchers, the problematization

Fig. 3.1 Conversion of knowledge and its relation to Ethnomodelling. (Source: Personal file)
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of individual and joint actions is encouraged, as well as the practices and elaboration
of research projects, followed by intervention.

Regarding Ethnomodelling, the results showed that research collaborators, mem-
bers of GEPTEMaC perceive it as a connection between Ethnomathematics and
Mathematical Modelling, which seeks to value and understand local mathematical
knowledge, translating it into school/academic language (global) by expanding the
scope of this knowledge to people from other cultures or geographic space (glocal),
as highlighted by Rosa and Orey (2017, 2018).

For Rosa and Orey (2017), it is necessary to understand the mathematical
knowledge arising from social practices that are rooted in cultural relations. In this
sense, Ethnomodelling studies this mathematical knowledge through an “interaction
process that influences the local (emic) and global (etic) aspects of a given culture”
(Rosa & Orey, 2017, p. 18).

The research collaborators highlight the importance of developing
Ethnomodelling in the classroom in Basic Education by considering it as a peda-
gogical action to enhance learning, which is able to bring the sociocultural knowl-
edge of students closer to the school/academic Mathematics knowledge by valuing
their knowledge and practices.

The data led to the understanding that Ethnomodelling can assist in the knowl-
edge conversion process, aiding in learning by helping students to activate their tacit
knowledge and transform it into explicit, passing through spiral stages (socialization,
externalization, combination and internalization), through the social interactions that
occur during the development of this process.
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Chapter 4

Ethnomodelling Aspects of Positionality
Between Local (Emic) and Global (Etic)
Knowledge Through Glocalization
(Cultural Dynamism): The Specific Case
of a Market-Vendor

Daniel Clark Orey and Diego Pereira de Oliveira Cortes

4.1 Initial Considerations

In the context of academic research, a valid discussion exists in relation to the
positionality between researchers and the ones being “researched”, as well as its in
relation to context, fieldwork, and academy (D’Olne Campos, 2000). This concern is
apparent in sociocultural research, for example, investigations developed in and
around ethnomathematics.

It is important to state here that the concept of positionality in the context of
ethnomodelling research presents us with a topic of paramount importance.
Positionality is a neologism related to the quality of being positional. It refers to
the position of investigators in relation to members of the communities they are
studying. In this regard, there is a need for researchers to become aware of their
position in relation to the participants of their investigations (Rose, 1997).

This awareness is related to the (re)construction of the status of insiders (emic,
local) and outsiders (etic, global) in terms of their positionality during the develop-
ment of their research. This approach allows for an improved, and clearer under-
standing of the cultural dynamics of members of distinct cultural groups under
investigation.

According to Rosa and Orey (2017a), in the ethnomodelling process, the
positionality of actual being there in the field can capture the relations between
symbolic mathematical practices and the reproduction of a given social context.
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However, this investigative experience can be considered frustrating, as the field-
work is composed of a heterogeneous group of spaces, times, and contexts.

In this regard, everyday life is like an arena of sociocultural inquiry through
which boundaries of observation, analysis and interpretation are practically limitless.
Thus, positionality is one of the main objectives for the successful conduction
of research in ethnomodelling because it is necessary to understand the interactions
of local (emic), global (etic) and glocal (dialogical) approaches to the development
of mathematical knowledge.

It is important to highlight how the aspects related to research conducted was
done in a state public school located in a metropolitan region of Belo Horizonte,
Minas Gerais, in 2017, and also in a local farmer’s market located in the same region.
The market in which this research was conducted sells a variety of horticultural
products, clothing, food products, and handicrafts. However, in this investigation,
only the labor practices of the market in relation to the commercialization of
horticultural products were studied.

The main objective of this study was to the identification of how a dialogical
approach in ethnomodelling contributes to the process of re-signifying function
concepts of 38 students enrolled in the second year of high school during their
interaction with a market vendor and his labor practices.

We would like to emphasize here, that we use the term re-signification “as a
process of construction of (new) meanings and (new) interpretations of what we
know, do and say” (Jiménez-Espinosa, 2002, p. 4). This is mainly in relation to the
mathematical knowledge related to the concepts that function and can be
reinterpreted through the interaction of students with the members of distinct cultural
groups, such as the market vendors.

A second objective was to outline possibilities regarding the positionality of the
vendor according to his emic/etic (glocal) perspective in a dialogical way (Rosa &
Orey, 2012), which is related to his movement from his cultural environment (the
street market) to the school setting and vice versa, in which he develops his labor
activities. In addition, the aim of this research was also related to the discussion of
the pedagogical potential that contextualized knowledge locally developed by the
farmer-vendor in this study, can offer for the study of mathematical concepts, such as
functions in a formal school setting.

In this respect, we used empirical information taken from data collected during
the conduction of the fieldwork of the research entitled: Re-signifying Function
Concepts—a Mixed Study to Understand the Contributions of the Dialogical
Approach of Ethnomodelling, developed in the master’s degree program in Mathe-
matics Education of the Universidade Federal de Ouro Preto (UFOP). As well, we
sought to contemplate the conceptual and practical aspects related to culturally
rooted mathematical knowledge in the context of the market.

In the context of this research, this work is related to particular aspects of the
interpretation of answers given by the vendor-market to the questions of a semi-
structured interview conducted by the first author of this chapter. Thus, as the
researchers looked for answers to the research question, a diversity of concepts
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related to functions emerged that offered subsidies for the development of future
investigations.

Therefore, reflecting on the findings from this research, it became important to us
how this experience is related to the theoretical basis that permeated its methodo-
logical development, as well as how practical realities can be used in the pedagogical
action in the classrooms.

From this perspective, an aspect of dialogue through a cultural dynamism1 that
emerged as a result of this investigation highlighted that ethnomodelling, including
its local (emic), global (etic), and glocal (dialogical) approaches, are related to the
development of the positionality of the farmer-vendor and the researchers. And
finally, this chapter promotes reflections and observations made by us over
3 (three) years of studies after the original research was developed.

4.2 Ethnomodelling and Its Connection
to Ethnomathematics and Modelling

In the interrelations between diverse areas of investigations, a diversity of knowl-
edge and culturally rooted practices have been incorporated in distinct research
fields. This approach helped the culmination of the development of ethno-x.
Although various fields of scientific knowledge had advanced rapidly, in the mid-
eighteenth-century aspects related to culture were not effectively incorporated into
these areas (D’Olne Campos, 2000).

However, D’Ambrosio (2001) and Rosa and Orey (2014) argued that in the early
nineteenth century, the development of ethnosciences, which sought to understand
cultural knowledge and its relationship with scientific knowledge began to merge.
This makes sense as through centuries of colonization, travel, trade, and war;
scholars from diverse parts of the world began modestly to dialogue and share
their knowledge.

In this respect, the growing discussions and rudimentary understanding of cul-
tural knowledge and practices promoted the development of new epistemological
fields related to ethnobotany (1896), ethnozoology (1914), ethnogeography (1916),
ethnobiology (1935), and ethnoherpetology (1946) (Cardona 1985 apud D’Olne
Campos, 2000).

1With cultural dynamism, local (emic) mathematical ideas and procedures interact with globally
consolidated mathematical practices developed in schools through the development of a reciprocal
relationship between emic (local) and etic (global) knowledge. Thus, mathematical practices
developed in ethnomodelling investigations value the cultural dimension of emic mathematical
knowledge, which is analyzed from the elaboration of ethnomodels that represent daily problems
and situations taken from reality and contextualized in the daily life of the members of the school
communities. This approach provides the exchange of mathematical knowledge, procedures, and
practices between the school and the community contexts by deepening the power of the dynamics
of the encounters between these two cultural knowledges (Rosa & Orey, 2017a).
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Similarly, reflections on the nature of mathematical cognitive contexts (historical,
social, and cultural) can be motivated the by the intention to clarify the understand-
ing from knowledge built by humanity in different sociocultural contexts, by interest
groups, communities, societies, peoples, and nations, gave rise to the
Ethnomathematics Program as proposed by D’Ambrosio (Rosa & Orey, 2014).

The ethnomathematics program is conceived as an attempt to understand the
adventure of humanity in the pursuit of peace, social justice, knowledge, and the
adoption of behaviors that can be shared with the members of distinct cultural
groups. This perspective presents historical and philosophical aspects that seek to
promote the development of pedagogical implications (D’Ambrosio, 2001). Thus,
ethnomathematics is associated with:

(. . .) mathematics found among identifiable cultural groups, such as: national tribal societies,
worker groups, children of a certain age, and professional class. Its identity largely depends
on the focus of interest, motivation and certain codes and jargons that do not belong to the
domain of academic mathematics (D’Ambrosio, 1994, p. 89).

Along with cultural aspects and diverse ways mathematical models can describe
phenomena, the first time ethno/modelling was cited by Bassanezi (2002), who
established that, in certain circumstances, the process of mathematical modelling
may be related to and used with the principles of an essentially ethnomathematical
nature.

Thus, in seeking a holistic or more comprehensive understanding, Rosa and Orey
(2003) discussed the need to use pedagogical approaches that connect the cultural
aspects of mathematics (ethnomathematics) with the academic aspects of this
knowledge (modelling). This approach is referred by Rosa and Orey (2010) to as
ethnomodelling.

However, it is important to highlight that mathematical knowledge developed by
members of diverse cultural groups has their own interpretation (emic) in opposition
to external interpretations of school/academic mathematics (etic). Thus,
ethnomodelling uses modelling techniques to establish relationships between the
structures of local and school/academic mathematics (Rosa & Orey, 2017a) through
the elaboration of ethnomodels.2

In this regard, both ethnomathematics and modelling look at the relations
between local and school/academic knowledge (global), thereby promoting cultural
dynamism between different mathematical knowledge systems (Rosa & Orey,
2010). This particular research sought to understand how mathematical knowledge

2Ethnomodels are descriptions of local (emic), global (etic), and glocal (dialogical) mathematical
knowledge through specific methods, procedures, and techniques that help members of distinct
cultural groups to develop understandings of their own world by using small units of information
that compose its entire representation. Ethnomodels help to link the development of mathematical
practices to the cultural heritage of these members, who detain necessary information to solve
problems and situations described in systems taken from their own reality. This approach helps the
organization of pedagogical actions in classrooms by using emic (local), etic (global), and dialogical
(glocal) aspects of mathematical knowledge through the development and elaboration of
ethnomodels (Rosa & Orey, 2018).

74 D. C. Orey and D. P. d. O. Cortes



used in a traditional street market might provide the understanding and link to the
mathematical knowledge developed in the classrooms through looking at the math-
ematical practices used by the street market vendor.

4.3 Contextualizing the Free Market

One of questions discussed here is related to the results of the study conducted by
Cortes (2017) in a traditional street market that is located in a metropolitan region of
Belo Horizonte, in Brazil. This particular street market has been operating in this
same location for over 30 years and runs on Sundays, from 7 am to 3 pm. With,
approximately 500 stallholders who show and sell their products that are related to
food, jewelry, crafts, clothing, and local grown vegetables and fruits. Currently,
according to its administration, approximately 10,000 people attend this street
market every Sunday.

4.3.1 Introducing the Market-Vendor

At the time of the conduction of the original research, the vendor-marketer in this
study was 60 years old and studied only until the fourth grade. He has worked at the
street market since 1990 and does not have any other profession. He prefers to work
at the market, as he has a higher income than if he was working as an employee by
receiving only the minimum wage, which would not be enough to support his
family. Currently his net income is about three times the Brazilian minimum wage.

Before working at the market, he worked on a farm in a coffee and sugar cane
plantation, and in his youth, he also worked for 6 months in a steel mill, returning
later to work in the fields and when he developed his own market stall. His family
includes three sons and his wife. His eldest son is married and lives in another city,
while on certain occasions, his unmarried son helps him sell goods at the market,
while his other son accompanies him on his purchases made at CEASA-MG,3 in
Contagem, which is a city located in the metropolitan region of Belo Horizonte.

This particular market-vendor sells cassava, tomato, chayote, okra, onion,
banana, yams, green corn, lettuce, cabbage, chives, chicory, watercress, spinach,
broccoli, cilantro, and mustard in his stall. Of these goods, this vendor himself
cultivates cassava, okra, yam, and leaf vegetables on a leased land, and the rest of
the products are purchased at CEASA-MG. To purchase the goods at CEASA-MG,

3CEASA-MG is the supply center of the state of Minas Gerais. Among the CEASA-MG activities
are related to the wholesale trade in grain, meat, processed foods, agricultural inputs, packaging,
restaurants, personal financial services, public health agencies, education, and security.
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this participant uses a pickup truck, however, when he cannot pick them up, he
places orders with his colleagues at the street market to make his purchase.

It is important to emphasize here that the vendor was careful to only buy and sell
quality products, despite being more expensive, and having a loss with some of these
products, such as tomatoes. In his opinion, the products he cultivates have an
excellent quality, as the harvest is developed in a more careful manner and timely
way. These products are sold the day after they are harvested, and they are fresher.
The street market is held only on Sundays, during the week he works in the
cultivation and care of his vegetables on a leased plot of land near where he and
his family resides. These weekly activities ensure the livelihood of his family.

4.3.2 Interviewing the Market-Vendor

The interview with the market-vendor was held on May 27th, 2016, and its main
objective was to understand some specific aspects and characteristics of his own
culture, as well as to understand procedures related to the use of the mathematical
practices in his daily life. Another objective was related to the elaboration of
rhetorical emic ethnomodels4 developed from the market-vendor’s labor practices.

Methodologically, the development of the analysis of the collected data and the
subsequent interpretation of the results obtained in the interview was conducted by
applying the assumptions of a Mixed Methods Study in its QUAN + QUAL design in
which both quantitative and qualitative data were collected and analyzed. Continu-
ing with this analytical procedure, the qualitative data were quantified, which
enabled the interpretation of the results of this study through the elaboration of
three categories that allowed the research question of this study to be answered.

One of these categories was identified as “Out-of-school environment of the street
market and the market vendor”. By analysing the collected data in this interview, the
first author chose to prepare a report for this category, in text format, as described in
the next paragraphs of this chapter in order to interpret the results of this method-
ological instrument. It is important to state here, that when analyzing factors related
to this investigative context, the researchers particularly focused their attention on:

1. The inclusion of the level of education of the vendor.
2. The working time for marketing the products.
3. The experience of the vendor.
4. The degree of mathematical knowledge used in the market.

4The rhetorical emic ethnomodels can be regarded as representations that are developed by the
members of a specific cultural group, which are based on mathematical ideas, concepts, and
procedures rooted in the cultural aspects of the group, such as religion, clothing, behaviors,
ornaments, architecture, and lifestyles. Consequently, ethnomodels are based on ideas, procedures
and characteristics that are important for the internal understanding of the sociocultural surround-
ings of these members (Rosa & Orey, 2017a).
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5. The knowledge of addition, subtraction, multiplication, and division that contrib-
uted to the satisfactory performance of his work in the market.

At the same time, the activities performed by the vendor were not reduced to only the
domain of elementary mathematical operations, and it is important to consider the
relevance of the articulation of his mathematical knowledge with other knowledge,
such as, for example, reading, writing and, above all, respect for the social roles
played by members of this particular cultural group and context.

Accordingly, it is important to highlight that the commercial activities developed
in the street markets in this region revealed an environment full of possibilities,
ideas, procedures, techniques, and mathematical practices that can be translated by
the actions of “comparing, classifying, quantifying, measuring, explaining, general-
izing, inferring, modelling, and diverse ways used to evaluate, are all ways of
thinking, and are present in all human beings” (D’Ambrosio, 2005, p. 30).

For example, through the analysis of the answers given by the market-vendor to
the open questions of the interview, it is inferred that there is evidence of the
application of local (emic) mathematical practices, which emerged when the vendor
mentioned that he sells his products by using plastic packages or small packages by
stating that:

They make calculation easier. I make smaller packages, and I make a package of (. . .) three,
five, and fifty reais.5 There are some products that I do pack from three to fifty because the
customer wants a smaller or bigger package. Depending on the product I sell, the price goes
up because the product is heavy, and the pack is bigger. Thus, I gain profit on weight, in kilos
or in grams, right!

For sales, the market-vendor sells his products in packages or per kilo according to
the choice of the customers. Packages typically weigh half a kilo and were weighed
on a balance scale. According to the market-vendor, this type of weighing makes it
possible to obtain a profit from sales, as “I put half a kilo in the package to make a
profit and I weigh everything on the scale”.

Thus, this knowhow is related to the development of mathematical thinking that
seeks to explain and understand the diverse ways that the market-vendor has to deal
with the work environment in which he is inserted (Cortes, 2017). Then, the vendor
makes available a product that can be purchased by customers in packages of a
variety of sizes, with the aim of speeding up the purchase process by customers. In
this sense, the vendor commented that: “I make a package to make it easier for the
customer, as they are in a hurry, and I need to help them quickly”.

The way the market-vendor uses to quantify his goods through different sized
packages denotes the use of a certain set of skills such as estimation and calculation,
as it enables the understanding of how local (emic) knowledge is impregnated in the
mathematical procedures and practices that are developed in the street market
environment. As well, the packaging of products can be considered as an artifice

5The Brazilian real or reais (R$) is the official currency of Brazil that is subdivided into 100 cents
(Orey & Cortes, 2020).
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shared in the street market as one of the “ad hoc6 practices to deal with problems and
situations arising from reality” (D’Ambrosio, 2012, p. 16).

Nevertheless, according to Rosa (2010), diverse ad hoc practices are aimed at
temporary situations or instant solutions that are developed and disseminated in
different contexts, such as the street market, for the resolution of problems arising in
these environments.

The analysis of the answers given to the questions in the interview showed that
the market-vendor used several variables to calculate his expenses, losses, and
profits in the market, such as fuel expenses to pick up products at CEASA-MG,
fertilizers, and packaging. Thus, the market-vendor commented that “costs were
spent on compost, manure, gasoline, and plastic (packaging)” (Cortes, 2017, p. 160).

However, though it was not possible to identify the mathematical practices he
used for resolving this particular everyday problem, it was inferred that the monthly
amount collected by the market-vendor was sufficient for the support of his family
and, also, to cover daily household expenses. For example, the market-vendor
argued that “I work as a vendor because I earn more, because if I work as someone’s
employee, I will only earn the minimumwage, which is not enough for me to support
my family, so, I prefer to work in the market” (Cortes, 2017, p. 176).

This analysis also showed that when the market-vendor was asked about how he
calculates the price of his products in order to avoid losses, he argued that “if I pay
for the merchandise from forty contos7 [reais] upwards, I sell my products it in the
range of about five contos [reais] a kilo to six contos [reais] a kilo, if I pay from sixty
contos [reais] upwards, then I’ll put it in the range of seven contos [reais] upwards”.
The market-vendor also develops the sales and promotions prices of his products by
stating that:

I do promotion with vegetables and lettuce, in this case of three contos [reais], then I put a
promotion on these products, two for five contos, it’s the promotion of the street market, at
the moment, and it can be three packages for five packages in this case. There are promotions
of three for five and two for five, and we do it, we sell it early and then we lower the price.
Then, it goes until the end of the day in the market, because my products have good quality,
they are first class products, and then, I don’t sell for less than that (Cortes, 2017, p. 170).

The answers given by the market-vendor, gave evidence also of an informal use of
his mathematical knowledge, by which his commercial and financial labor activities
are conducted with the use of personal techniques and strategies (mental calculation
and measurements). Table 4.1 shows an excerpt taken from the interview between
the first author and the market-vendor.

This excerpt from the interview with the vendor-market shows that the use of
emic (local) and etic (global) knowledge through the application of a dialogic

6Ad hoc is a Latin expression that means for this purpose. It generally means a solution designed for
specific problems or tasks, non-generalizable, and which cannot be adapted to other purposes (Rosa
& Orey, 2010).
7Conto is a former Brazilian currency unit used until 1942. Currently, it is a jargon employed by the
market-vendor when he wants to talk about the monetary unit of reais.
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Table 4.1 Excerpt from the interview conducted by the first author with the market-vendor

Researcher: Explain how you calculate the price of your products that are sold at the fair. Can you
use okra as an example? How do you calculate its sale price?

Market-Vendor: In grams?

Teacher-researcher: In kilograms.

Market-Vendor: How I calculate this price (. . .). If it is ten contos a kilo (. . .). If it’s one hundred
grams, then, I calculate the price of how much a kilo and two hundred grams of okra will be. And
also, one kilo and two hundred and fifty grams, one kilo three hundred and fifty grams, then, I
calculate each price, I already have everything here in my head.

Researcher: Let’s use some examples just to understand it and see your strategy that you use. For
example, imagine that the product okra is at four contos [reais] a kilo, then, you weigh it and see
that the customer took one kilo and four hundred grams.

Market-Vendor: One kilo and four hundred grams.

Researcher: How do you think, how do you do calculate its price?

Market-Vendor: If the price of okra is four reais (. . .) then, one hundred grams will forty cents. It’s
four times, then, it is one conto [real] and sixty cents, and it is three contos and twenty cents. It’s
seven contos [reais] and twenty cents (. . .). Is that okay?

Researcher: But it’s four reais a kilo, right? Could you please rephrase it, as its weight is one
kilogram and four hundred grams?

Market-Vendor: One kilo and four hundred grams, how much is that? (. . .) [thinking] (. . .) forty
cents per gram, eighty cents, one conto [real] and twenty cents (. . .) [thinking] (. . .) it’s two reais,
right? (. . .) it gives two reais to four hundred grams.

Researcher: Going back to the question of kilograms, can you explain again how do you calculate
the price to be paid? Let’s see the example, at four reais, the person takes one kilo and eight
hundred grams, how do you calculate its price?

Market-Vendor: One kilo and eight hundred grams? (. . .). It will be (. . .) [thinking] (. . .) minus
eighty cents, then, it will be seven and twenty. Four reais per kilo, right? Did I do it right?

Researcher: Yes! So, is that how do you thought about it? Can you explain it?

Market-Vendor: I thought from the top to the bottom.

Researcher: But, please, can you explain how and why do you calculate it? [Laughter].

Market-Vendor: Because it’s easier, right? I added eight hundred grams with one kilo, and then, I
did eight contos [reais] minus eighty cents, right? So, the value decreased.

Researcher: Could you, please, explain it in more detail? I didn’t get it yet.

Market-Vendor: You didn’t understand it (. . .) [laughs] (. . .) the thing is that I take it (. . .) how
is it? (. . .) one kilo and eight hundred grams, (. . .), then, one kilo is four reais and one and half
kilos is six reais, then, there is another three hundred grams, which is one another one real and
twenty cents. It’s seven reais and twenty cents.

Researcher: Yes! But now, as I understand it, you did the calculation, the second time, in a unique
way.

Market-Vendor: It’s a different way.

Researcher: But could you explain how you did it in the first time and then you explain how you
did it at this time.

Market-Vendor: The first time I decreased it, right?

Researcher: But can you explain how did you calculate it?

Market-Vendor: I don’t know how to explain it (. . .). I did the calculation according to what is
easier for me, I do the calculations at the moment in the market, at the time in my stall and,
sometimes, and my stand is full of customers, and I have to do the calculations quickly.

(continued)
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(glocal) approach enables members of distinct cultural groups to better understand
how mathematical practices are locally developed and how they are used in the daily
lives of these members, which are contextualized in environments defined according
to the diverse and unique customs, history, language, and culture of these members,
in this case, the vendor.

Yet, the activities and tasks performed by the market-vendor in his daily labor
practices include skills of mental calculation and estimation, which can be consid-
ered as a starting point for the elaboration of problems and situations for the

Table 4.1 (continued)

Researcher: I understand (. . .) and just for me to reflect here (. . .) because I think I did understand
what you just explained (. . .), because I think you did it like that (. . .) and if I’m wrong, you can
correct me (. . .), I think you thought like this: a kilo costs four reais, and two kilos cost eight reais,
but since I asked you to calculate one kilo and eight hundred grams, you did two hundred grams
less, so you calculated that two hundred grams would be eighty cents.

Market-Vendor: Eighty cents!

Researcher: Isn’t that, right? Then, you took the eight reais minus the eighty cents and gave you
got seven reais and twenty cents. Is that right?

Market-Vendor: Hum-hum (. . .) [confirming the assertation].

Researcher: So, that’s it. And now, in the second time, how did you calculate it?

Market-Vendor: In the second time I put it together (. . .), let’s assume that one and half kilos cost
six reais and that three hundred grams times forty cents is one real and twenty cents, right?

Researcher: So, what did you do next?

Market-Vendor: Then, the total cost is seven reais and twenty cents, isn’t it?

Researcher: Yes!

Market-Vendor: It’s easier!

Researcher: Let’s just use one more example.

Market-Vendor: It’s because, as a simple and humble person, sometimes I have no reading and I
have no writing practice, and I did the calculation to find the price of my products like this (. . .).
Have you seen how I did the calculation? If I work more, I do the calculations faster. Have you
noticed that?

Researcher: Yes! That’s what I was going to ask you now because I can see that when you are
there, at the market, you would have already done that same calculation much faster.

Market-Vendor: Yes, it is.

Researcher: Could you explain about your feeling of being there in the market doing the
calculations to determine the price of your products and by being here doing this interview.

Market-Vendor: Yes! My feeling is that when I am there in the market, I am with a warm body and
I have an active memory, and I am connected to my products and to the place I work and, thus, I
already have the prices of my products in my head, which makes easy for to find the price for each
product. Here, I am not in my working place and the calculations were done in a different context
that is an environment that I’m not used to experience.

Researcher: I understand!

Market-Vendor: Let’s suppose that a product costs one real and ninety cents per kilo or two reais
and ninety cents per kilo, then, it’s difficult to calculate its price. For me, it’s more difficult to do
this kind of calculation, and I can do it only by using a calculator. And let’s suppose that one kilo
of a product costs five reais and then, I know that a hundred grams cost fifty cents. Then, it’s much
easier, right?

Source: Adapted from Cortes (2017, p. 151/152)
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implementation of a pedagogical action that can dialogue with local (emic), and
school/academic (global) mathematical knowledge used in classrooms.

4.4 Positionality Between the Going and Coming
of the Market-Vendor

The possible duality between research field and school/academic contexts can foster
the development of strangeness and familiarity (D’Olne Campos, 2000), which is
related to etic (global) and emic (local) approaches as proposed by Rosa and Orey
(2012) as a theoretical foundation for the development of ethnomodelling. This
context promotes a unique dialogue (glocal) between diverse kinds of knowledge
(local and global) in which exchange of information improve a deeper understanding
of mathematical procedures and practices developed in diverse contexts (Rosa &
Orey, 2017a).

This approach enables the development of the re-signification of mathematical
concepts such as functions in a more meaningful way, which shows the connection
between local and academic learning (Cortes, 2017). In this regard, the research field
can be characterized as the locus of the collection of empirical data such as
indigenous communities, school settings, and markets. On the other hand, academy
can be considered as the starting point of the researchers who may be in universities,
schools, or laboratories, searching for empirical data by comprising research prac-
tices (Rosa & Orey, 2017a).

Therefore, in this research, we continue to use emic (local), etic (global), and
dialogical (glocal) approaches so that we can understand the theoretical and practical
knowledge that is developed respectively, in relation to the research field and the
academy. We emphasize that both emic (local) and etic (global) concepts have been
proposed as an analogy to the terms Phon-emic and Phon-etic, which were first used
and studied by the linguist Pike (1954).

In this sense, these terms were used in correspondence to the sounds used by a
given language, for example, the phonemic is associated with the study of specific
sounds used in a given language, while phonetics studies the general aspects of vocal
sounds and production of sounds in different languages (Rosa & Orey, 2017a).

In this correspondence between emic (local) and etic (global) approaches,
Sturtevant (1974) cited by D’Olne Campos (2000) highlights that the terms “Etic:
refers to real-world characteristics independent of culture. Emic: an attempt to
discover and describe the behavioral system of a given culture in its own terms,
identifying not only the structural units but also the structural classes to which they
belong” (p. 121).

According to this assertion, the emic (local) approach can be understood as the
perception that members of a given cultural group have in relation to their customs,
traditions, and beliefs. Thus, this approach can be considered as the “view of the self
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towards our own8” (Rosa, 2015, p. 333). Here, the emic (local) approach is related to
the mathematical perception of the market-vendor regarding his labor practices.

The etic (global) approach can be understood as the mathematical understanding
of members who do not belong to a particular cultural group, but who seek to
interpret the mathematical knowledge developed by members of that group through
an external view. This approach can be considered as the “view of the self towards
the other9” (Rosa, 2015, p. 333). In this study the etic (global) perspective is related
to the view of the researchers and the students in relation to the labor practices of the
market-vendor.

On the other hand, a dialogical (glocal) approach can be understood as the
symmetrical dialogue10 developed with alterity11 between the emic (local) and etic
(global) approaches, as no perspective is more important than the other because they
are complementary in the search for a mutual understanding of the mathematical
knowledge involved in the mathematical practices developed by the members of
distinct cultures (Rosa & Orey, 2017b).

Therefore, the movement of coming and going of the market-farmer between the
research field and the academy and, consequently, between the emic (local) and etic
(global) approaches, may assume a dichotomous position regarding to the observa-
tion of members of a given cultural group through an exclusively internal (emic) or
external (etic) postures (Rosa & Orey, 2017b). However, this dichotomy should not
be seen as an obstacle for conducting research in ethnomodelling, as the dialogue
between both the emic (local) and etic (global) approaches enables translation12

between understandings developed in the field and in the academy (Rosa & Orey,
2012).

8This is how we do it.
9This is how they do it.
10A symmetrical dialogue is a type of bidirectional communication in which members of distinct
cultural groups have the right to speak symmetrically. It means that this dialogue is developed
without the predominance of members of a particular cultural group over others. In this type of
dialogue, ideas and previously acquired knowledge are socialized by generating behavioral change
in these members through the development of transformative actions in society (Freire, 1996).
11According to Levinas (1970), alterity derives from the Latin word alter, which is a philosophical
term related to otherness. It is generally taken as the philosophical principle of exchanging one’s
own perspective for that of the others. In this regard, alterity refers to the state of being that of the
others and diversity. It contains concepts like difference and otherness within itself. Hence, it is
important that difference and otherness are unpacked to begin understanding alterity and the cluster
of meanings associated with otherness.
12Translation is defined by Miremadi (1993) as a reciprocal process from one culture to the other
and from other cultures into one culture. According to Rosa and Orey (2017a), this translational
process implies a holistic performance that incorporates globalization and localization by expanding
the intracultural flow, which seeks to value and respect the mathematical knowledge developed by
members of distinct cultural groups. Therefore, this translational process implies in using alternative
ways of expressing cultural meanings, which aims to allow investigators to perceive and experience
other realities, cosmologies, and worldviews in an interactional process that mutually influences
local (emic) and global (etic) mathematical practices though cultural dynamism.
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In this direction, the emic approach is related to observations of mathematical
knowledge from an internal perspective of the members of a specific cultural group,
while the etic approach is associated with external observations, which are
conducted outside the context of theses members by an outside observers and
investigators. On the other hand, the dialogical approach is related to the reciprocal
complementarity between the knowledge developed emically and etically (Rosa &
Orey, 2012).

For example, it is important to note that the excerpt of the interview, shown in
Table 4.1, evidenced the pedagogical richness that the use of emic and etic forms of
knowledge, complemented by the application of the dialogical approach, can offer to
the understanding of mathematical concepts developed by the market-vendor.

However, in the course of this interview, it quickly became evident that when the
market-vendor left his workplace to meet the researcher in a school setting (aca-
demic). The data interpretation shows that the market-vendor was slightly uncom-
fortable in this unique environment and with questions asked by the researcher (first
author), which caused a certain discomfort that led him to make some mistakes when
performing his calculations, which would probably not occur if he was at the street
market.

By justifying his discomfort, the vendor originally explained that: “It’s because
there, at the street market, my memory is active and I already have the prices of the
products in my head” (Cortes, 2017, p. 153). This justification incurs in a kind of
positionality in which the market-vendor left his typical cultural environment (emic),
which is internal, within the culture, to an external cultural environment (etic) from
outside of his culture (Rosa & Orey, 2017a).

Because positionality is a necessary condition for the dialogical interaction to
manifest itself in the fieldwork conducted in research in ethnomodelling, it is
necessary for the researchers and researched to recognize this movement of coming
and going, in this study, between the street market and the school environment, as
well as the approximation and/or distance between the researcher (first author) and
the researched (market-vendor) (Rosa & Orey, 2017b). This movement of coming
and going of the market-vendor, between the street market and the school (academic
environment), was related to the process involved in human relationships and
interactions that take place during the conduction of research in ethnomodelling.

In the context of the street market, mathematical knowledge is not always
developed in the school context. In this specific study, local mathematical knowl-
edge was used for contextualizing and enriching school mathematical concepts and
content, which increased the power of students’ reasoning in a holistic way. In this
regard, Rosa and Orey (2006) argue that there is a need to value social, political,
economic, and cultural knowledge linked to daily life of the students. For example,
in this study the market-vendor participated in a seminar at the school by positioning
himself in the academic context.

The seminar occurred at school, with the participation of all 38 students, the
researcher (first author) and the market-vendor. In this seminar, which was essential
for the development of the analytical and interpretative process of this research, the

4 Ethnomodelling Aspects of Positionality Between Local (Emic). . . 83



researcher (first author) observed the interactions and collaborations between the
students and the market-vendor by recording them in his field diary.

However, the market-vendor seemed to be comfortable with his position in the
school environment as he explained to the students about the daily labor practices he
developed in his own workplace. According to D’Olne Campos (2002), the under-
standing of this inseparable movement of coming and going enabled the conversa-
tion, the mathematics, and demonstrated symmetrical dialogues or an otherness13

that permeated the dynamics of encounters between the researched (emic) and
researchers (etic).

Thus, students were encouraged to question about the mathematical procedures
developed by the market-vendor during the deployment of his labor practices, as
well, they were able to clarify issues related to the elaborations of ethnomodels
related to the re-signification of function concepts (Cortes, 2017). In this regard,
during the development of the seminar, the market-vendor shared the mental and
physical skills and abilities that he had performed during the deployment of his labor
activities at the street market.

For example, during the seminar, several questions were raised in relation to his
knowledge and experience related to the determination of the price of his products.
In this context, students also requested that the market-vendor explained about the
operation of the manual weight scale, as well as how discounts are determined and
how he used mental calculations related to the determination of the price regarding to
his expenses so that he can make profit.

Therefore, the results of this study show how the market-vendor, in this study,
continuously developed his mathematical ideas and procedures that directed him to
the development of his own critical and reflective capacity, which is related to
knowledge sharing and also with the compatibilization of mathematical practices
that are in correspondence with his daily labor practices (Cortes, 2017). This is
evident now, as on a recent visit to the street market, the first author observed that the
market-vendor has moved towards electronic tools and is no longer using the manual
weight scale, which can be considered as a transcendence of his labor practices.

According to this context, market-vendors are considered members of a specific
cultural group, whose daily activities are intrinsic to the development of pedagogical
implications in the elaboration of mathematics curricular tasks that can contribute to
the implementation of an ethnomodelling perspective in the classrooms.

13Otherness can be considered as the quality of being different, which enables members of distinct
cultural groups to perceive diverse sociocultural features and characteristics in which the main
objective is to contemplate diversity. Then, otherness is a situation, state or quality that is
constituted through relations of difference, contrast, and distinction. The practice of otherness is
linked to relationships among members of one’s own group or of distinct cultures. In this way,
otherness is also recognized as the estrangement and detachment of the investigators who are there
in the research field and who are here in the academic environment in this back-and-forth movement
of coming and going that is mediated by dialogicity (Rosa & Orey, 2017a).
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4.5 Implications of the Pedagogical Action
of Ethnomodelling Regarding to Positionality
of a Market-Vendor

It is important to outline here some of the pedagogical aspects that were revealed
during the conduction of the fieldwork of this study, as well as our thoughts about
some implications for research after observing the positionality of a market-vendor
and his coming and going movement between his workplace and the school setting.

For example, Cortes (2017) argued for and described the street market as an
informal multicultural setting through which students and the market-vendor came
together and shared mathematical knowledge in a social, economic, and educational
environments that had relevance in a transdisciplinary extra-escolar fashion.

We state here that, during the development of this study, local (emic) mathemat-
ical procedures and techniques developed by the market-vendor in his workplace
(street market) and mathematical knowledge applied in schools (etic, academic
context) were observed, analyzed, and interpreted. This approach offered pedagog-
ical opportunities for the elaboration of ethnomodels by applying emic (local)
knowledge related to the labor practices of the market-vendor, which showed the
existence of specific mathematical concepts used in everyday situations present in
the street market.

For example, according to Cortes (2017), the market-vendor explained how he
uses mathematical operations to determine the price of these products:

Researcher: Going back to the question about kilograms, can you explain again how do you
calculate the price to be paid for the product? For example, if a person wants to buy one
kilo and eight hundred grams of tomatoes, how do you calculate that if its price is 4 reais
each kilo?

Market-Vendor: One kilo and eight hundred grams? (. . .) it will be (. . .) [thinking] (. . .) it is
8 reais minus eighty cents, then the prices are seven reais and twenty cents. Did I do it
right?

Researcher: Yes! So, is that how did you think about it? Can you explain it to me?

Market-Vendor: I did it from the top down (p. 155).

We observed that the market-vendor performed this operation in a different way
from that commonly used in the classrooms. For example, the market-vendor
affirmed that: ““I did it from the top down” and instead of calculating the product
of 1.8 kg by R$4.00, he calculated the difference of 200 grams to complete it from
1.8 kg to 2.0 kg” (Cortes, 2017, p. 160).

Then, first, the market-vendor calculated the multiplication of 2.0 kg by $4.00,
whose result is R$8.00 and then, he subtracted R$0.80, which was equivalent to the
value of R$7.20. In this perspective, Biembengut (2000) argued that it is
necessary to:

(. . .) know, understand, and explain a model [from an etic perspective] or even as certain
people or social groups have used or use it [from an emic perspective], can be significant,
mainly because it offers us an opportunity to “penetrate the thought” of a culture and obtain a
better understanding of its values, its material and social base, among other advantages
(Biembengut, 2000, p. 137).

4 Ethnomodelling Aspects of Positionality Between Local (Emic). . . 85



According to this assertation, Rosa (2010) argued that it is from everyday knowledge
that learners are enabled to unlock mathematical meanings implicit in culturally
specific contexts as, for example, the street market, through the approximation of
mathematical knowledge mathematician developed in other cultures or diverse
contexts (street market) with the mathematical practices used in the school
environment.

Thus, the market-vendor replied that, early in the day, at the beginning of the
street market working day, the sale of products is “more expensive due to expenses
with gasoline, plastic (packaging), snacks, and the helper”. This argument is
complemented by his comment on the following example:

Let’s say I am going buy tomatoes, and it will cost 40 reais a box, which is 40 cents per
100 grams. Thus, I cannot sell the tomatoes at that price because of my expenses. In this way,
I put the price at five reais a kilo. The price of this product should be more expensive because
I don’t go to CEASA to buy and sell tomatoes at the same price. So, the price increases
100 percent, 60 percent, and 50 percent, depending on the price I buy the product. This
system is used on any product. If the product is priced at 80 or 100 reais a box, then, its price
must be 10 reais ou 12 reais (Cortes, 2017, p. 160).

According to the perspective provided by the market-vendor, it is inferred that his
emic ethnomodel is related to the multiplicative thinking, in which the sale price is
approximately a tenth part of the purchased price. Moreover, the vendor adds
another value to this price, which aims to cover the costs and surcharges for the
products sold in his stall.

Although the market-vendor did not develop formal academic (school) knowl-
edge in relation to the study of functions and their main mathematical characteristics,
he has developed his own mathematical procedures to determine the price of his
products, which deals with the labor experience and observation of the world around
him. This context allowed him to apply an intuitive concept of function he developed
during his work in the street market.

Therefore, through these emic (local) constructs, which are subject to adjust-
ments, the market-vendor can add charges or admit discounts that are inherent to the
labor needs and the sale conditions his products. These constructs are typical of the
market-vendor’s culture, which are comprised in “several ways, techniques, and
skills (tics) of explaining, understanding, dealing, and living with (mathema) differ-
ent natural and socioeconomic contexts (etnos)” (D’Ambrosio, 2001, p. 63) that are
present in his own cultural environment.

It is important to emphasize that the market-vendor’s mathematical knowledge
can be considered as the development of his own ethnomathematics since culture is
not considered as a construct apart from and causing the development of mathemat-
ical practices because it is not inseparable from the development of mathematical
knowledge represented by the members of distinct cultures. According to
D’Ambrosio (2001), this happens when members of distinct cultural groups develop
their own strategies and techniques in order to calculate, quantify and, also in this
case, to work with money and pricing products.

According to these results, it was inferred that the market-vendor performed his
duties so that, when communicating his survival strategies, he proposed new ways of
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relating to mathematics and his own reality. Consequently, in this context,
ethnomodelling provided an opportunity for the market-vendor to strengthen his
cultural roots through his mathematical knowledge and the peculiarity of his labor
practices. This opportunity also provided for students, the development of an
understanding of daily activities in their own reality in the context of the street
market.

Hence, students observed mathematical strategies, which are used by the market-
vendor and associated with the development of his own tics and/or techniques. When
students developed their ethnomodels related to the market-vendor’s mathematical
ideas, they experienced a direct connection between what members of distinct
cultural groups do with mathematics, and what they are learning in the classrooms.

The implication of this pedagogical action is to show the relevance of the use of
diverse ways to solve problems that are inherent to the process of pricing and selling
products in the street market by the market-vendor. Accordingly, D’Ambrosio
(1990) argues that these ad hoc practices develop mathematical procedures used
by the members of distinct cultural groups in order to help them to deal with
phenomena and daily activities from their own reality.

Therefore, D’Ambrosio (1997) has affirmed that in order to solve specific prob-
lems, members of these cultural groups create ad hoc solutions, and methods that are
generalized to solve similar situations. Thus, members of distinct cultural groups
come to know mathematics in ways that are quite different from academic-western
mathematics taught in schools.

Thus, the analysis of this study on the daily life of the market-vendor showed to
the students how the market-vendor’s quest for survival can be transformed into
transcendence by the development of his unique mathematical knowledge and
talents. This approach enabled students to strengthen their own culture through the
use of mathematical knowledge developed by the market-vendor in his workplace at
the street market.

4.6 Final Considerations

In the everyday environment of the street market, we can easily recognize local
practices, such as the mathematical procedures and techniques developed by the
market-vendor. This approach provides a study of practical mathematical content
that involves fast mental calculations to resolve problems and situations related to
discounts, profits, and losses, as well as notions of proportional thinking related to
functions. Thus, the daily life of the market-vendors is impregnated with the
mathematical knowledge and practices found in a typical urban street market culture,
evidencing the quantifications, measurements, classifications, and comparisons with
the knowledge and instruments that are available in this context.

These street markets provide a rich context for study and interactions for students
in local schools. In this sense, the daily use, and the commercialization of products in
the street market, are ripe for the study and inclusion of teaching and learning
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process in mathematics revealed mathematical practices learned outside of the
school environment, which can be considered as the: Ethnomathematics of a Street
Market through Ethnomodelling. Therefore, a key component of ethnomodelling is
to enable a critical view of reality by using mathematical tools that provide tech-
niques for the pricing of products, profit, and loss and, also, allowed for a look at
making the analyses of comparative prices, accounts and budget making, which
enables the development of curricular mathematical activities.

On the other hand, after a few years during the pandemic, on a visit to the market,
the first researcher noticed that the vendor was now using electronic scales and in the
face of the change, was positioned to reflect on what might be the effects of the
innovative technologies on the work practices and culture of the market-vendor. This
is a question that may lead to a more in-depth study in the future. In this sense, in
common cultural settings such as these, one easily sees aspects of mathematics and
interactions worthy of study, based on a particular cultural dynamism of the market
and the community it serves, which is developed with an emphasis on dialogical
communication that is characterized by mutual respect.

In accordance with this context, the initial investigation conducted in this study
showed how ethnomodelling is based on the understanding of the mathematical
labor practices developed by the market-vendor and its connections with the
re-signification of the function concepts. Thus, it would be good to organize ongoing
studies that revisit the street market on various occasions over time. It is important to
state here that, currently, we are looking at long-term funding of research that would
allow a longitudinal growth study.

Thus, in this research, one of the main contributions of ethnomodelling was to
organize and present the market-vendor’s mathematical practices (emic approach,
local) to facilitate their communication, transmission, and dissemination in the
school environment. Thus, the representation of the vendor’s local mathematical
knowledge was translated through scientific methods (etic approach, global) that
were related to the re-signification of the concept of function (dialogue,
glocalization). Consequently, we have seen how ethnomodelling contributes to the
appreciation of the ways of knowing/doing of the market-vendor who developed his
own mathematical practices, such as counting, measuring, comparing, classifying,
and modelling.

The activities carried out at the street market unveiled an environment full of
ideas, procedures, and mathematical practices, inherent to the product marketing
process, which were implicit in this context, and which are different from those
practiced in the school environment. What is powerful as well, is how we showed
how to look at ethnomodelling in contexts that are more day to day in their cultural
context.

Therefore, ethnomodelling enabled the insertion of the re-signification of func-
tion in the mathematical curriculum through the elaboration of mathematical activ-
ities that originated in the sociocultural context of the school community. This
approach enabled the dialogical development between ideas, procedures, and intrin-
sic mathematical practices to the vendor marketing process (local, emic approach)
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and school mathematical content (global, etic approach) with the use of problem
situations that emerged in the context of the street market.

In this regard, “the use of everyday purchases to teach mathematics reveals
practices learned outside the school environment, which is a true ethnomathematics
of commerce” (D’Ambrosio, 2001, p. 23). In this way, it is important to emphasize
that the school/academic mathematical knowledge related to the concept of functions
was adjusted to include the market-vendor’s daily life for the elaboration of the
activities proposed in the mathematics curriculum.

Thus, an important contribution of ethnomodelling to the process of re-signifying
the concept of functions was to provide an analysis of the informal and labor
strategies used by the market-vendor, as well as the formal techniques used by
students in each cultural context, as these environments constitute spaces for the
effective exchange of mathematical knowledge, which is essential for the constitu-
tion of mathematical knowledge.

In this regard, ethnomodelling is understood as a teaching and learning process
that favors a critical analysis of the multiple sources of mathematical knowledge
used by students in carrying out proposed activities in the classrooms. This approach
corroborated the point of view of Rosa and Orey (2012) who argue that mathemat-
ical knowledge can be entered, localized, guided, and grounded in the cultural profile
of students and their community.

According to this context, in the dialogical approach, the emic observation sought
to understand the mathematical practices developed from the internal cultural
dynamics and the relationship between the vendor and the market, which is the
cultural environment in which he is inserted. On the other hand, the etic approach
provided interculturality, as it employed comparative perspectives with the use of
academic mathematical concepts, such as, for example, the concept of functions.
Again, we are curious to see, if after the Covid (when it is safe) and with innovative
technologies if these results have changed.

In conclusion, the data from this study, showed us how dialogue between
mathematical knowledge is an inherent commodity, as it were, of the marketing
process developed by the vendor by developing activities based on problem situa-
tions that emerged from a street market. This dialogue enabled a sharing of experi-
ences and knowledge that generated innovative mathematical knowledge, the
re-signification of the concept of function for students.

The insertion of the dialogical approach to ethnomodelling and the school
curriculum of students furthered the valuation of other epistemologies (knowledge)
and cosmologies that were related to the mathematical knowledge of the vendor.
This is why Rosa and Orey (2012) have argued that a mathematical curriculum based
on the perspective of ethnomodelling can provide a theoretical basis, which is a
context, for learning, as it uses diverse cultural and linguistic elements of members
of distinct cultural groups in the pedagogical action for the process of teaching and
learning mathematics.

It is important to note that ethnomodelling as evidenced here, provided the
recognition that mental calculations, strategies, and instruments of non-standard
measures reveal specific dynamics of knowledge, to do, to understand and
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comprehend the ideas, the procedures and mathematical practices used in the daily
life of the market, in a way learners will revisit over and over in the course of their
lives.

This approach can be considered as a peculiar territoriality of the market-vendor
that made possible the development of perspectives and a relationship with the
students in this study and also with the mathematical practices taught at school.
Thus, the dialogue between the coming and going through the dialogical activity
enabled the emic (local) connection and narratives with descriptions and related
ideas with etic (global) knowledge by enhancing reciprocity.

In this process, the positionality of the market-vendor in being there in the
academic setting captured the relationship between his symbolic mathematical
knowledge and practices in his own sociocultural context (street market) and its
connection to the school environment.

Consequently, it is necessary that students participate in extramural or extracur-
ricular activities because they can observe the outside world to find out diverse ways
in solving problem situations they face in their daily life (Monteiro & Pompeu Jr.,
2001).

In this regard, Rosa (2010) argued that there is a need to articulate both academic/
school knowledge and everyday knowledge, as this path enables the development of
a teaching and learning process in contextualized and meaningful mathematics.

Therefore, respect and attention to the daily experiences of students are relevant
to the promotion of a meaningful relationship between everyday local mathematical
knowledge and that systematized in schools is vital now (post-pandemic), more
than ever.

Thus, we can both conclude and agree with Grijó (2011), that it is important to
consider work with mathematics in a holistic way by valuing knowledge brought
outside the school walls such as a street market, which stimulates reflective and
creative thinking, and critical students, as well as celebrating and valuing the existing
mathematical diversity.
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Chapter 5
Ethnomodelling as a Pedagogical Action
in Diverse Contexts by Using a Dialogical
Knowledge

Érika Dagnoni Ruggiero Dutra, Jéssica Rodrigues,
Ana Paula Santos de Sousa Mesquita, and Milton Rosa

5.1 Initial Considerations

In 1996, Professor Ubiratan D’Ambrosio gave a plenary talk at the Annual Meeting
of the California Mathematics Council, at the Asilomar Conference Center, in
California. After he descended the stage, Professor Daniel Clark Orey asked to
talk with him, and their initial conversation became 48 h that changed Orey’s life
forever. Together they walked the grounds, shared lunch and dinner, and before he
returned to Brazil, Professor D’Ambrosio suggested Professor Orey to apply for a
Fulbright Scholarship to work with mathematical modelling and ethnomathematics
at the Pontifícia Universidade Católica de Campinas (PUCC), in the state of São
Paulo, Brazil.

In 1998, Professor Orey spent a semester in the modelling/ethnomathematics
specialization program with Professors D’Ambrosio, Rodney Bassanezi, and
approximately 40 mathematics teachers from diverse states in Brazil who worked
in groups of 5 or 6 participants to develop their research projects. One of those
teachers who participated in these projects would become Professor Milton Rosa.
The PUCC modelling groups developed a broad and diverse selection of themes,
such as HIV, sex education, beer, esoterics, games, and coffee. Themes were very
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much based on culture, mathematics, and modelling, which enabled participants in
these projects to develop models along these themes.

Professor Orey soon was able to see how modelling was used to bring out aspects
of the emerging themes of ethnomathematics, and how modelling is used by
thousands of Brazilian teachers to bring-out aspects of, indeed translate how,
ethnomathematical ideas, procedures, and practices that are present in diverse
contexts. Professor Orey began spending most of his time with the coffee group
and doing field research in Professor Rosa’s classrooms in Amparo, in the São Paulo
state, Brazil, and numerous visits to various coffee plantations and production
facilities in the region.

Fast forward 22 years later, both Professors Rosa and Orey are now professors at
the Universidade Federal de Ouro Preto (UFOP), in Ouro Preto, Minas Gerais,
Brazil, where they have been developing investigations with numerous students in
ethnomathematics, mathematical modelling, and ethnomodelling. In this regard,
Rosa and Orey (2010) proposed the notion of ethnomodelling, which is the study
of mathematical practices developed by members of distinct cultural groups through
modelling.

In 2014, researchers Neil da Rocha Canedo and Marco Aurélio Kistemann
published a theoretical essay based on a study related to scientific production in
Mathematical Modelling within the scope of Mathematical Education in Minas
Gerais. In this bibliographic research, they investigated theses, dissertations, and
articles in books and journals authored by professors, researchers, master and
doctoral students from a diversity of educational institutions and universities in the
state of Minas Gerais.

By considering their research objectives, Canedo and Kistemann (2014)
presented results they found by conducting an investigative paradigm related to
the State of the Art by including a methodological trend concerned with developing
studies aimed at systematizing published investigations through cross-sectional
studies. This approach enables researchers to unveil prevailing perspectives as
well as theoretical frameworks used in studies with the highest level of general
development, such as techniques, strategies, and/or a scientific field achieved at a
particular time and place.

Thus, Canedo and Kistemann (2014) investigated studies conducted in this line of
inquiry to systematize the accumulated theoretical knowledge and methodological
procedures by presenting a portrait of the development of mathematical modelling in
the state of Minas Gerais. As well, they showed the contribution to the development
of ethnomodelling by researchers Daniel Orey and Milton Rosa, both professors at
the Universidade Federal de Ouro Preto (UFOP).

Hence, it is relevant to acknowledge that in any city or region of the country, there
is at least one deep-rooted tradition or culture, whose knowledge, procedures, and
practices are spread from generation to generation. Thus, when teachers develop
pedagogical actions based on the sociocultural context of their students and com-
munity by using ethnomathematical influences (local, emic) that are present in
classrooms together with the techniques and strategies of mathematical modelling
(global, etic), these professionals use ideas, procedures and mathematical practices

94 É. D. R. Dutra et al.



that are different from the mathematical contents studied academically in the school
environment.

However, the pedagogical action of Ethnomodelling enables the connection
between local (emic) mathematical knowledge and practices with global (etic)
mathematical knowledge through its dialogical (glocal1) approach. According to
Ruggiero (2020), these practices are found beyond the physical space of the school
environment, and it can be used in the development of activities based on the
sociocultural context of the students.

Therefore, we highlight that the way students learn must be linked to their own
sociocultural context, however, it is important that teachers understand the social and
cultural aspects that are present in everyday life of the students by aiming to provide
a teaching and learning process in mathematics that is motivating, contextualized,
and meaningful, which enables the development of ethnomodelling (Ruggiero et al.,
2019).

In this context, we point out here that the first empirical study developed on
ethnomodelling was conducted from 2015 to 2017, by Cortes (2017), at the
Universidade Federal de Ouro Preto. Subsequently, from 2017 to the present date,
5 (five) investigations were developed at UFOP and there are 7 (seven) research
projects in process on ethnomodelling, which are related to its emic (local), etic
(global), and dialogical (glocal) approaches studied in distinct sociocultural contexts.

Thus, the main objective of this chapter is to share data gleaned from three studies
conducted by our students in the development of their masters’ degree research on
diverse ethnomodels they found in their own communities under the ethnomodelling
perspective, which deal with local, global, and dialogical mathematical knowledge
found on coffee production, peripheral communities, and math trails. However,
despite the diversity of these themes, each study has built on the last, as
ethnomodelling as a theoretical basis, grows and matures and grows in its theoretical
and methodological applications in diverse sociocultural contexts.

5.2 Ethnomathematics, Modelling, Ethnomodelling,
and Ethnomodels

In 2010, Professors Daniel Clark Orey and Milton Rosa developed the concept of
ethnomodelling in order to establish mathematical modelling as a relevant pedagog-
ical action for the development of an ethnomathematics program, which helps
members of distinct cultures to understand how cultural origins and linguistic, social
values, morals and lifestyles influence the evolution of mathematical knowledge
developed in diverse context.

1Glocal (dialogical) approach mixes the local and global forms of knowledge, experience, cosmol-
ogies, paradigms, and worldviews (Orey & Cortes, 2020).
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Similarly, Shockey and Mitchell (2016) claim that ethnomodelling is a research
field that has matured in Brazil and has spread globally. They also state that the
theoretical and methodological foundations of ethnomodelling initiated an interna-
tional discussion about the interdisciplinary role of this research field as a potential
contribution to the ethnomathematics program.

According to this context, D’Ambrosio (2017) states that the introduction of the
concept of ethnomodelling can be considered as the recognition that modelling is the
cognitive strategy per excellence for these members to deal with situations and
problems present in their own ethnos, not only in everyday life, but also in the
imaginary world.

In this regard, Lachney et al. (2016) emphasize that researchers in mathematics
education can use the insights of ethnomodelling to describe an engaging dynamic of
the cultural encounters that promotes interactions between emic (local) and etic
(global) knowledges through the development of a dialogical approach.

The etic approach corresponds to the perceptions of external observers towards
others whereas the emic (local) approach corresponds to a vision of internal
observers towards their own cultural context. Thus, ethnomodelling seeks to connect
emic (local) and etic (global) mathematical knowledge by offering a dialogical
approach as an alternative point of view based on the dialogue between these two
perspectives (Rosa & Orey, 2017b).

Thus, ethnomodelling can be defined as a practical application of
ethnomathematics that adds cultural perspectives to the concepts of mathematical
modelling, which provides a theoretical basis for the development of pedagogical
action that values and respects the diverse cultural and linguistic elements of
members of distinct cultures for teaching mathematics through the elaboration of
ethnomodels (Rosa & Orey, 2010).

In this context, D’Ambrosio (1993) describes ethnomathematics as the art or
technique (techné¼ tics) used by members of distinct cultures to explain, know, and
understand the problems of reality (mathema) in the environment in which these
members of these (ethnos) live. Thus, ethnomathematics can be understood as the
ways in which members of distinct cultures develop ideas, procedures, and tech-
niques so that they can use them to solve problems they face daily.

For example, tics are related to measurements, inferences, and performing calcu-
lations, comparisons, and classifications, which are different ways of modelling the
social, cultural, political, economic, and environmental contexts. Therefore,
ethnomathematics proposes the study of sociocultural aspects of mathematical
knowledge (Rosa & Orey, 2006). There is need for effective teaching and learning
processes in mathematics to be shared in classrooms, and it is important to under-
stand how culture is present in students’ learning and, also, how cultural knowledge
can be used as a pedagogical resource in schools (Rosa & Orey, 2017a).

In this regard, Orey and Cortes (2020) argued that ethnomodelling is a teaching
and learning strategy linked to ethnomathematics, in which students solve everyday
problem situations by understanding mathematical practices used in their own
sociocultural contexts. In this process, Ruggiero et al. (2021) stated that
ethnomodelling is related to the daily activities carried out by members of different
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cultural groups (ethnos) by valuing and respecting the development of their tech-
niques (tics) so that these members can deal with the phenomena, situations and
problems that make up the different mathemas of their daily life.

In this aspect, ethnomodelling connects diverse cultural characteristics of math-
ematics to school/academic aspects of modelling through the use of a set of features
that can be translated between different systems of mathematical knowledge (Rosa
& Orey, 2017b). Hence, ethnomodelling is understood as a pedagogical action that
connects cultural forms of mathematical development with school curriculum
through the modelling process, which results in the exchange of mathematical
ideas, procedures, and practices that are historically and dialogically shared among
members of distinct cultural groups (Mesquita, 2020).

For example, the former promotes an etic approach (from the outsiders of the
culture) and the latter develops an emic (local) approach (from the insiders of the
culture), which deal with the elaboration of ethnomodels produced by the members
of distinct cultural groups (Canedo & Kistemann, 2014).

Consequently, ethnomodelling seeks to connect mathematical knowledge with
culture by using emic (local) and etic (global) approaches through its dialogic
(glocal) approach and thus enable a holistic understanding and a broad understand-
ing of mathematical knowledge developed locally by members of different cultural
groups. In this perspective, emic (local) and etic (global) approaches can comple-
ment each other through cultural dynamism provided by the dialogicity between
these two kinds of knowledge (Orey & Cortes, 2020).

This occurs when the emic approach is associated with the point of view of the
members of cultural groups, who are the observers from within the culture. In this
approach, emic mathematical knowledge is acquired through observation and dis-
semination of locally developed mathematical ideas, procedures and practices (Rosa
& Orey, 2017b).

The etic approach is related to the point of view of external observers
(researchers, teachers, and educators) in relation to customs, beliefs, and the math-
ematical knowledge of members of a given cultural group, who are observers from
outside the culture, who develop concepts, theories and hypotheses of local knowl-
edge, which is important and meaningful to internal observers of culture (Rosa &
Orey, 2017b).

The dialogical approach highlights the interdependence and complementarity
between emic and etic approaches as it provides a balanced or symmetrical dialogue
with otherness (alterity). By establishing that none of these approaches is more
important than the other, ethnomodelers come to see how they complement each
other in the search for mutual understanding and holistic approach to mathematical
knowledge involved in mathematical practices developed in different contexts (Rosa
& Orey, 2017a).

Therefore, this approach enables researchers, teachers, and educators to become
aware of their own prejudices and become familiar with cultural differences that are
relevant to members of different cultures. Consequently, Ethnomodelling can be
considered as a practical application of ethnomathematics that adds cultural charac-
teristics to the modelling process (Rosa & Orey, 2017b).
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Therefore, it is important to state here that ethnomodelling investigators use
translation to describe the process of modelling emic (local) mathematical systems,
as well as to enable the development of etic (global) forms of school/academic
representations and vice-versa. These characteristics are related to the ideas, pro-
cedures, and mathematical practices developed by members of distinct cultural
groups, which are translated through the process of ethnomodelling, which depends
on acts of translation between local (emic) and global (etic) approaches and vice
versa (Rosa & Orey, 2019).

These translations are related to the interrelations between the local (emic) and
school/academic (etic) knowledge, which are addressed to help members of distinct
cultural groups to understand specific mathematical procedures, techniques, and
practices acquired in diverse contexts. This translational process is used to describe
the process of modelling local (emic) and global (etic) cultural by applying a
dialogical approach through cultural dynamism (Orey & Cortes, 2020).

Thus, the use of ethnomathematics and the application of mathematical modelling
helps members of distinct cultures, such as students and educators, to move away
from exotic interpretations of mathematical ideas, procedures, and practices by
enabling the establishment of relations between local conceptual frameworks and
mathematical concepts embedded in global practices through dialogical processes
(Lachney et al., 2016).

In this context, Canedo and Kistemann (2014) stated that ethnomodelling was
used as an educational practice in a non-school context related to a math trail, which
was composed by activities such as the elaboration of ethnomodels related to the
curve on a school wall and the slope of the streets in Ouro Preto, as developed by
Professor Orey with university students and learners from the municipal school
system in the city of Ouro Preto. In these activities, students developed ethnomodels
to show the potentiality of ethnomodelling as a pedagogical approach to mathemat-
ics education curriculum at all educational levels.

In another research, Pinto and Orey (2018) conducted a project related to the math
trail that was aimed to encourage students to develop a sense of awareness and
importance towards the conservation and preservation of cultural heritage as well as
the identification of the presence of mathematics and modelling in the sociocultural
contexts of their own towns. This investigation was developed with 29 seventh grade
students in a municipal school in Itabirito, in the state of Minas Gerais, Brazil.

According to Pinto and Orey (2018), this study was developed from the mathe-
matical point of view of elements of historical heritage, based on increasing aware-
ness and sensitivity of students to this theme based on the perspective of
ethnomodelling. Data were collected through photographs taken by the students
and notes and operations carried out in their field notebook.

During the fieldwork, students were able to observe various geometric patterns, in
the lines of houses and churches, which drew their attention because of their high
degree of complexity. Results showed that students learned about their own local
history and the architectural importance of the town by examining the existing
geometric richness found in their walks by elaborating ethnomodels (Pinto &
Orey, 2018).
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In this regard, ethnomodels establish relations between local (emic) mathematical
knowledge and the procedures and practices used in the school and/or academic
contexts. Ethnomodels are developed by the members of distinct cultural groups
were elaborated in order to instigate a greater potential for association between local
communities (emic) and school and/or academic (etic) mathematical knowledge,
which is one of the most important aims of the development of these representations
(Rosa & Orey, 2017b).

In accordance with this context, ethnomodels are consistent representations of the
knowledge socially constructed and shared by the members of distinct cultural
groups. Thus, ethnomodels help to link the development of mathematical practices
developed by these members with their cultural heritage (Rosa & Orey, 2010). In the
ethnomodelling process, ethnomodels can be classified as emic (local), etic (global),
and dialogical (glocal).

Emic (local) ethnomodels are representations developed by the members of
distinct cultural groups taken from their own reality as they are based on mathemat-
ical ideas, procedures, and practices rooted in their own cultural contexts, such as
their own science, religion, clothing, ornaments, architecture, and lifestyles.

Etic (global) ethnomodels are elaborated according to the view of the external
observers in relation to the systems taken from reality. In this regard, ethnomodelers
use techniques to study mathematical practices developed by members of different
cultural groups by using common definitions and metric categories.

Dialogical (glocal) ethnomodels are based on the shared understanding that
complexity of mathematical phenomena is only verified in the context of cultural
groups in which they are developed. In these ethnomodels, the emic approach seeks
to understand a particular mathematical procedure based on the observation of the
local internal dynamics while the etic approach provides a cross-cultural understand-
ing of these practices.

Consequently, Albanese and Perales (2014) affirmed that ethnomodelling pro-
motes an understanding of the ways in which members of distinct cultural groups
communicate, think, diffuse, and disseminate mathematical ideas, procedures, and
practices developed locally. This approach is related to the elaboration of
ethnomodels that are understood as cultural artifacts that can be used as pedagogical
tools that enable the understanding and comprehension of systems taken from the
daily lives of these members.

In this process, ethnomodelling is related to the daily activities carried out by
members of different cultural groups (ethno) by valuing and respecting the devel-
opment of their techniques (tics) so that these members can deal with the phenom-
ena, situations and problems that make up the different mathemas of their daily life
(Ruggiero et al., 2021).

According to this context, Ethnomodelling seeks to connect the cultural charac-
teristics of mathematics with its school/academic aspects of modelling through the
use of a set of characteristics that can be translated between different systems of
mathematical knowledge (Rosa & Orey, 2017b).

Thus, ethnomodelling can be understood as a pedagogical action that aims to
connect cultural forms of mathematical development with the school curriculum, as
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one of its main objectives is to have a cultural view of the modelling process, which
can result in the exchange of ideas, mathematical notions, procedures and practices,
which are historically and dialogically shared among members of different cultural
groups, aiming at the transcendence of these knowledge and practices (Rosa & Orey,
2017b).

In the pedagogical action of ethnomodelling, it is important to develop
ethnomodels, which are defined as cultural artifacts, which are the tools used to
enable and facilitate the understanding and comprehension of systems taken from the
daily lives of members of different cultural groups (Rosa & Orey, 2017b). Therefore,
the use of ethnomodelling as a pedagogical action for the ethnomathematics as a
program values the tacit knowledge2 of the members of distinct cultural groups.

According to Ruggiero (2020), this approach enables the development of stu-
dents’ ability to develop and elaborate ethnomodels for the different applications and
contexts from their interests in the sociocultural reality in which they are inserted
and, not only, by imposing a curriculum without context or meaning for their
learning.

5.3 Research Methodological Design: An Adaptation
of Grounded Theory

Grounded Theory is an inductive, qualitative, and exploratory methodology that
emerged in the social sciences with sociologists Barney G. Glaser and Anselm
L. Strauss, in 1967, having as one of its objectives the validation of qualitative
research as methods for the elaboration of an emerging theory. This theory enables a
detailed analysis and in-depth interpretation of information through encodings,
which allows the identification of concepts based on data analysis. Thus, the data
are collected and systematically analyzed through the identification of preliminary
codes in the open coding process so that the results obtained are then interpreted
through the elaboration of categories identified in the axial coding (Gasque, 2007).

In this codification process, the methodological steps are pre-established to enable
the possible elaboration of a theory that emerges from the data from its qualitative
analysis. Thus, in this inductive theory, the data are collected, analyzed, and
interpreted systematically by enabling the development of a methodological model
theoretically based on the information obtained during the analytical phase of the
study, which is organized, analyzed, and prepared to conduct the open and axial
coding process that is proposed by the Grounded Theory.

2Tacit knowledge is embedded in personal experiences, it is subjective, contextualized, and
analogous. For example, members of distinct cultural groups do not learn how to ride a bicycle
by reading a manual, as they need personal experimentation and practices to acquire the skills
necessary to learn this action. Therefore, this knowledge is acquired and accumulated through
individuals’ experience, as it involves intangible factors such as beliefs, perspectives, perceptions,
value systems, ideas, emotions, norms, hunches, and intuitions (Rosa & Orey, 2012).
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According to Strauss and Corbin (1990), to start an analytical process, first by
making use of direct quotes from the participants, which are fragmented in order to
be analyzed line by line and sentence by sentence. This procedure allows the
identification of preliminary codes through common characteristics and concepts
related to a studied problem situation.

Continuing with this analytical process, axial coding is initiated by developing a
detailed analysis of the preliminary codes obtained while performing the open
coding. In this phase, preliminary codes are grouped according to similar properties
and concepts, which helps to identify the conceptual categories (Strauss & Corbin,
1990).

Thus, there is a need to emphasize that this interpretive process can be conducted
through a dense description of the conceptual categories that are identified in the
analytical process. For the writing of these categories, direct quotations from the
students are also used to provide a trustworthy context of the studied problem, thus
enabling a detailed interpretation of the results obtained in the conduction of the
research.

It is important to highlight that in the 3 (three) investigations described in this
chapter, the authors developed and adapted Grounded Theory, as selective coding
that enabled the development of the central category was not used as a methodolog-
ical procedure in these studies given that there was no writing of an emerging theory
of the data, since the main objective of the investigators was to answer the proposed
research question.

5.4 Ethnomodelling Investigations

This section outlines 3 (three) investigations that focus on how we can use their
results to emphasize and introduce ethnomodelling by applying common day-to-day
activities and phenomena. Then, we show the connections of these projects to daily
events that enable us to demonstrate how they form interesting, practical, and useful
pedagogical actions to be developed by educators for the process of teaching and
learning mathematics conducted for students in their own sociocultural contexts.

In these projects we selected activities developed with students inside and outside
of school contexts so that ethnomodelling could provide an integrative approach to
the school mathematics curriculum that considers emic (local), etic (global), and
dialogical (glocal) mathematical knowledge origins, which helps educators,
teachers, and learners to understand its main theoretical foundations and methodo-
logical assumptions based on an adaptation of grounded theory.

This approach helps educators and student to understand ethnomathematics in
realistic, holistic, and a more comprehensive way, while looking at diverse mathe-
matical procedures and practices developed by members of distinct cultural groups
that make up diverse students’ population in the schools. These three studies present
the possibility of using daily practices as pedagogical actions in the process of
teaching and learning mathematics through the elaboration of ethnomodels during
the development of ethnomodelling.

5 Ethnomodelling as a Pedagogical Action in Diverse Contexts by Using. . . 101



5.4.1 Investigation 1: Ethnomodelling and Coffee: Proposing
a Pedagogical Action for the Classrooms

According to Ruggiero (2020), the main objective of this qualitative research was to
assist members of distinct cultural groups in developing perspectives related to both
emic (local) and etic (global) mathematical knowledge through a dialogical approach
(Rosa & Orey, 2017b). This research activity also enables a sociocultural appreci-
ation of the members of different cultural groups (coffee and school cultures) by
students through an understanding of cultural dynamism. In this regard, emic (local)
mathematical knowledge was used holistically for the development and formulation
of etic (global) curricular mathematical activities, in a dialogical manner, which
enabled the understanding of mathematical processes developed by members
inserted in the coffee culture.

This study was conducted in a private school, located near Manhuaçu, in the Zona
da Mata Mineira, Minas Gerais, with 35 students from the second year of a high
school. The following research question was defined to guide the researcher in the
conduction of this investigation: How does an application of ethnomathematics,
together with modelling tools, contribute to the development of a broader under-
standing of mathematical and geometric contents for students of the second year of
high school, through a pedagogical action based on ethnomodelling, relating to
coffee culture of a city near of Manhuaçu, in Minas Gerais?

To support the development of this research, the theoretical basis of
ethnomodelling, mathematical modelling, and ethnomathematics were used. Data
collecting was conducted by using two questionnaires (both an initial and a final
one), four blocks of activities, a seminar, notes in the teacher-researcher’s field diary,
and three semi-structured interviews. The analysis of the collected data was
conducted according to the methodological design adapted from Grounded Theory
(Gasque, 2007) through both open and axial codings, which provided, respectively,
the development of preliminary codes and the conceptual categories. In this study,
the researcher did not use selective coding because her intention was not to writing
an emerging theory, but to answer its research question.

In the context of coffee culture, Rosa (2010) highlights that student involvement
with the communities and cultures in which they are a part of, is an important tool to
support the teaching and learning process in mathematics. Thus, Ruggiero (2020)
states that it is necessary to consider the development of a pedagogical action for
mathematics in a holistic way through the valorization of knowledge and actions
brought from outside school environments. This pedagogical action stimulates the
development of creative, critical, and reflective thinking of the students, as well it
provides the use and appreciation of various mathematical practices existing in
everyday life.

In this regard, baskets used in the coffee harvest made it possible to develop
curricular activities through which the emic (local) mathematical knowledge devel-
oped by the members of the coffee culture met with other mathematical knowledge
systems, such as the school and academic contexts (etic) through cultural dynamism
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provided by the ethnomodelling dialogical approach. This approach is related to the
dynamics of the encounters between different cultures (Rosa, 2010).

Regarding coffee harvesting, at the site visited by some researchers, workers use
artisanal baskets to transport this product. Thus, they receive payment for all the
coffee they can harvest on a working day. When these workers were asked about the
form of payment, the investigators were informed that the farmer used the basket
they made as a unit of measure for payment. Thus, Ruggiero (2020) asked students
to discuss and write their conclusions about how to know if the farmer was making
the correct payment for the coffee workers.

The analysis of answers given to this problem-situation show that students from
3 (three) groups answered this question positively while students from the other
3 (three) groups answered it negatively. For example, students in Group C replied
that “Yes, because we think the payment method is fair despite the fact that some
baskets have different volumes, they just approximate them, not making payment so
uneven”. On the other hand, students in Group B stated that “No, he is paying less
than he should because the farmer is paying 60 liters while coffee workers are
harvesting 64 liters”, which was the volume calculated by these students previously
(Ruggiero, 2020).

The researcher also argued that the analysis of these responses also shows that
these students identified the need to standardize the size of the basket used to harvest
coffee. For example, students in Group A stated that “the farmer should make the
payment based on the weight of the coffee bag or by using a basket with standard
measures, since the handmade basket for each picker could have different mea-
sures”. On the other hand, students in Group C and Group D highlighted the
importance of initially calculating the volume of the basket when commenting that
the harvesters “should calculate the volume of the basket and then stipulate a value
for this measure”. Figure 5.1 shows a basket used for harvesting coffee that was
shown to students during their visit to the coffee farm.

The next proposed activity was related to the standardization of coffee baskets
because during a visit to the coffee farm, students identified that these cultural
artifacts have no standardized size for their measurements. This question was related
to the etic (global) school knowledge of the students with the emic knowledge (local)
of the coffee workers through the dialogical approach of ethnomodelling. As the
students had not yet studied the contents of Spatial Geometry, the researcher
explained the main characteristics of geometric solids before they solved the fol-
lowing question: Which geometric solid do you think is more suitable to represent
this basket? Determine its volume from an approximate representation of the basket
used in coffee harvesting.

Subsequently, the researcher drew specific geometric solids on the blackboard
and asked the students to determine what would be the best approximation for the
geometric shape of the coffee basket, which has a circular mouth and a quadrilateral-
shaped bottom. Figure 5.2 shows the geometric solids (etic knowledge) represented
by the researcher on the blackboard in the classroom.

The answers given to this question show that students in Group B, Group D and
Group E chose the truncated cone, students in Group C and Group F chose the
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cylinder and students in Group A chose the truncated pyramid as the geometric
solids to represent the basket used in the coffee harvest. The researcher also asked
students to represent through a process of drawing the basket used in the coffee
harvest.

The answers given by the students show that the etic representations
(ethnomodels) of the coffee basket were developed by using emic information, for
example, baskets were made by using real measurements (emic) and geometric
shapes learned in the school (etic) in order to verify the necessity of the standard-
ization of this cultural artifact. Figure 5.3 shows the dialogical representation of the
baskets used to harvest coffee and, also, their measurements.

Table 5.1 shows the volume determined by the students for the baskets through a
dialogical representation that simultaneously used emic and etic knowledge related
to this cultural mathematical practice.

Fig. 5.1 Basket used to
harvest coffee. (Source:
Ruggiero, 2020, p. 205)

Fig. 5.2 Geometric solids represented by the researcher on the blackboard. (Source: Ruggiero,
2020, p. 205)
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Figure 5.4 shows the elaboration of a dialogical ethnomodel developed by the
students of Group C in relation to the approximate calculation of the volume of the
coffee basket.

The researcher inferred that these ethnomodels were elaborated according to the
view of external observers (etic/students) who represented the baskets in the way that
they imagine how mathematical developed internally and locally (emic/coffee pro-
ducers) work. According to Rosa and Orey (2017b), these ethnomodels are related to
school and academic mathematical knowledge that predominate in curricular activ-
ities developed in schools, however, these knowledges and practices are also rooted
in the local coffee culture.

The results of this study demonstrated that the students participating in this
investigation developed the necessary abilities to understand their own reality in
order to improve the quality of life of the members of their own community, such as
when students designed a vehicle prototype to assist coffee workers to harvest this

Fig. 5.3 Dialogical representations of the baskets used to harvest coffee. (Source: Ruggiero, 2020,
p. 205)

Table 5.1 Volume of the baskets by using dialogical representations

Groups Basket measurements
Geometric
solid Volume

A Height ¼ 52 cm; square base side ¼ 34 cm; square base
side ¼ 48 cm

Truncated
pyramid

V ffi 88.1
L

B Height ¼ 45 cm; smaller base radius ¼ 19 cm; largest
base radius ¼ 24 cm

Truncated
cone

V ffi 64.7
L

C Height ¼ 50 cm; base radius ¼ 24 cm Cylinder V ¼ 86.4
L

D Height ¼ 56 cm; smaller base radius ¼ 24 cm; largest
base radius ¼ 25.8 cm

Truncated
cone

V ffi
107.3 L

E Height ¼ 56 cm; smaller base radius ¼ 18 cm; largest
base radius ¼ 24 cm

Truncated
cone

V ffi 78 L

F Height ¼ 38 cm; base radius ¼ 19 cm Cylinder V ffi 42.5
L

Source: Ruggiero (2020, p. 206)
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product in mountainous terrains. This perspective shows the possibility of using
daily practices developed by members of a certain cultural group (coffee culture) in
the teaching and learning process in mathematics through ethnomodelling.

5.4.2 Investigation 2: A Sociocritical Analysis
of Ethnomodelling as a Pedagogical Action
for the Development of Mathematical Content
in a Peripheral Community

This study was conducted by Mesquita (2020) in a public state school, located in a
peripheral community in the metropolitan region of Belo Horizonte, Minas Gerais.
Collected data originatedwith for the study originated from6 (six) students in the eighth
grade ofmiddle school andwith a collector of recycledmaterials. Itsmain objectivewas
related to conducting a sociocritical analysis of ethnomodelling as a pedagogical action
in the development of mathematical content in a peripheral community.

Other objectives are related to: (a) the discussion and problematization of the
relations between mathematical modelling and ethnomathematics that culminated
with the concept of ethnomodelling, (b) identification cultural characteristics of
peripheral communities and (c) investigation of mathematical practice through
ethnomodelling in the classroom.

The following research question was elaborated: How can ethnomodelling as a
pedagogical action constitute a critical environment for the development of math-
ematical content of eighth grade students in a peripheral community in the metro-
politan region of Belo Horizonte? The theoretical basis of this study was related to
concepts of ethnomathematics (D’Ambrosio, 2001), mathematical modelling and its
sociocritical perspective, ethnomodelling (Rosa & Orey, 2017b), and peripheral
communities (Lana, 2016).

As in the above research, the data were collected, analyzed and coded according
to the assumptions of the Grounded Theory (Glaser & Strauss, 1967). For the data
analysis, both open and axial coding were used, which allowed for the elaboration of
conceptual categories that provided the interpretation of results obtained in this
study.

Fig. 5.4 Dialogical ethnomodel elaborated by students in Group C. (Source: Ruggiero, 2020,
p. 209)
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In order to collect data, Mesquita (2020) elaborated three blocks of activities
based on ethnomathematics (emic), mathematical modelling (etic), and
ethnomodelling (dialogical) approaches; two questionnaires (initial and final), field
diary of the researcher and a semi-structured interview conducted with a recycled
material collector were developed, which were used as instruments of data collec-
tion. For example, one of the activities of the fieldwork developed in this research
was related to the interview with Mr. João, who is a collector of recycled materials,
whose interview excerpt is available below:

Researcher: How does the sale of recycled materials work? Does each material have a
different price? How is it?

Mr. João: Yes, they have a different price. One kilo of cardboard costs 30 cents of real.

Researcher: So you need to collect a lot of cardboard to sell, right?

Mr. João: Yes, but a kilo of cardboard is fast to collect. I also collect pet bottles and sell
them by kilo. However, there are different types of pet bottles. For example, pet soda
and mineral water bottles are different categories. So, a kilo of pet soda bottle costs
1 real and an aluminum can cost 4 reais a kilo. But, the price can go up if a lot of
people show up to buy them. This is a question of demand and supply. Each one can
costs 5 cents of real and I know that 80 cans weights approximately 1 kilo and, more or
less, 1 can costs 5 cents of real.

Researcher: And how do you that? When you sell the cans, how do you know that that
amount of cans gives you that value?

Mr. João: I do this work by myself, and I know it because of my experience in collecting
cans and approximate their weight in my hands in order to compare the weight of the
cans and calculate each price (Mesquita, 2020, p. 135/136).

Then, Mesquita (2020) asked students to read and discuss this interview excerpt in
order to solve questions 1, 2, 3, and 4. Hence, the answers given to Question 1:
According to Mr. João, a can costs 5 cents of real when sold in junkyard. So, how
much would Mr. João earn if he sells 5 cans?, show that 6 (six) students answered it
correctly by stating that the total value was 25 cents (p. 155). These students
performed the multiplicative calculation between the number of cans (5) and its
unit value (R $0.05) to determine the total value. For example, student F12 affirmed
that “he would earn R $0.25 if he sold 5 cans” (Mesquita, 2020, p. 156).

The analysis of the answers given to Question 2: By following the same logic of
question A, how much would Mr. João earn if he sells 20 cans? shows that 6 (six)
correctly answered this question by stating that the cost of 20 cans are equivalent to
R $1.00 because they multiplied the unit value of each can by the amount of cans
sold by Mr. João.

The analysis of the answers given to Question 3: Now calculate how much would
Mr. João earn if he sold 32 cans? And 240 cans? shows that 6 (six) students
correctly answered this question by stating that this amount would be R $1.60 for
32 cans. Again, these students applied the multiplicative process to solve this
question, however, F8 used multiplication by decomposing the number
32 ¼ 30 + 2 (Mesquita, 2020, p. 180). Figure 5.5 shows the emic ethnomodel
elaborated by student F8.

This analysis also shows that when these participants were asked to determine the
price of 240 cans, 4 (four) students correctly answered that the value was R $12.00
by using the multiplication algorithm as performed in the previous questions while
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2 (two) students did not answer this question. It is important to emphasize here that
these students solved questions B and C of this activity by elaborating emic and
rhetorical ethnomodels, which were prepared according to the information provided
by Mr. João.

The analysis of the answers given to Question 4:How could we calculate the total
value that Mr. João would earn if the quantity of cans was very high., shows that 2
(two) students did not answer this question while 4 (four) students exemplified this
how to determine this value by using larger quantities of cans. For example, student
M7 argued that “I just multiplied the value of each can by the total number of cans”.
Figure 5.6 shows how student F8 exemplified this problem-situation by using
800 cans in order to determine the total value of these cans.

This example showed that participant F8 elaborated an emic ethnomodel to solve
the proposed question that shows its generalization to determine the value to be
obtained for any quantity of cans. This mathematical thinking shows evidence of the
dialogue between distinct mathematical knowledge related to the school community
through Mr. João with the school through the students via the development of
curricular mathematical content.

The results or this study showed that ethnomodelling contributed to the develop-
ment of mathematical content of the students, who are residents of a peripheral
community, which enabled them to discuss about the lack of adequate basic sanita-
tion that make up the daily lives of its members. These results also show that
ethnomodelling provided students with the development of a critical reflection in
relation to their space itself.

Fig. 5.5 Emic ethnomodel elaborated by student F8. (Source: Mesquita, 2020, p. 189)

Fig. 5.6 Resolution of question 4 by student F8. (Source: Adapted from Mesquita, 2020, p. 188)

108 É. D. R. Dutra et al.



In addition, these students reflected about multicultural and interdisciplinary
experiences from the development and presentation of the project: Projeto Wall-e:
Repensando a Produção de Lixo em Comunidades Periféricas por meio da
Matemática (Wall-e File: rethinking production of garbage in peripheral communi-
ties through mathematics), at the 3rd Minas Gerais Scientific Initiation Fair—
FEMIC, which culminated with a 1st place in the category of Exact and Earth
Sciences and the accreditation for the 18th Brazilian Fair of Sciences and Engineer-
ing—FEBRACE.

5.4.3 Investigation 3: A Mathematical Trail
and the (Re)Discovery of Mathematical Knowledge
Outside of the School

In this investigation, Rodrigues (2021) conducted research entitled: Exploring the
Perspective of Researchers and Participants of the Maths Trails about the (Re)-
Discovery of Mathematical Knowledge Outside of School: A Qualitative Study in
Ethnomodelling, which sought forms and contributions of ethnomathematics and its
connection with mathematical modelling in the context of the sociocultural perspec-
tive of ethnomodelling.

This research was developed with input from two national and three international
researchers, who investigate themes related to Math Trails and also with six former
students of an ethnomathematics course that was offered in a Mathematics Education
Master’s degree program. All of these participants had experiences with Math Trails.

In this regard, D’Ambrosio (2001) stated that the ethnomathematics program
aims to discover and analyze processes of origin, transmission, diffusion, and
institutionalization of mathematical knowledge developed by the members of dis-
tinct cultural groups. Hence, Rosa (2010) states that this approach enables the
promotion of a teaching and learning process in mathematics that respects the values
and knowledge of members of different cultural groups, which are brought to the
classroom. In this context, Rosa (2005) states that mathematical modelling is
considered as a set of procedures whose objective is to build a parallel to try to
explain, mathematically, the phenomena present in the human being’s daily life,
helping him to make predictions and take decisions.

According to these assertions, Rosa and Orey (2017b) argue that ethnomodelling
can be used when ethnomathematics is actively used as a system based on a
theoretical basis that can solve everyday problems related to the contexts: social,
cultural, economic, political and environmental through the mathematical modelling
procedures, as it considers the knowledge acquired from cultural practices developed
in the communities with the use of locally developed procedures and techniques.

One of the main objectives of this study was to identify local mathematical and
geometric concepts that are relevant to the development of awareness and appreci-
ation of mathematical procedures and practices that emerge from different
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sociocultural contexts through the development of math trails according to the
perspective of these participants. In addition, this study also made it possible to
understand the contribution of the Ethnomathematics Program and its connection
with mathematical modelling in its sociocultural perspective through
ethnomodelling in the context of Math Trails.

In this regard, the dialogicity between these theoretical bases enabled the under-
standing of the mathematical and geometric processes developed by the members
inserted in their own reality in a holistic way. In this way, the following research
question was elaborated: How can the perspective of researchers and participants of
math trails can contribute to the development of mathematical modelling activities
in an ethnomathematics perspective through ethnomodelling?

In order to support this research, the theoretical basis of ethnomathematics,
mathematical modelling, ethnomodelling and math trails were used in its conduc-
tion. Data collection was carried out through one questionnaire, five semi-structured
interviews, one focus group, and also through the notes in the teacher-researcher’s
field diary. The data analysis and the interpretation of results of this study were
conducted according to a methodological design adapted from the Grounded The-
ory, through the open and axial codifications, which made it possible, respectively,
to identify the preliminary codes and conceptual categories.

The results of this investigation show that math trails present a good form of
pedagogical action, as they consist of a sequence of designated places or stations
along a planned route, in which students stop to explore the mathematical content
contextualized in everyday situations (Richardson, 2004). In this context, this study
identified local mathematical and geometric concepts relevant to the development of
awareness and appreciation of mathematical procedures and practices that emerge
from different sociocultural contexts through the mathematical trails. For example,
Fig. 5.7 shows an activity related to the Column Fountain that was performed by the
students in one of the math trails be developed in Ouro Preto.

In this context, some students from the discipline Ethnomathematics in the
Professional Masters’ degree in Mathematics Education, from UFOP that was taught
by Professors Milton Rosa and Daniel Orey, in which students explored the concepts
of spatial geometry, as well as historical, social and cultural aspects of Column
Fountain, on Rua Alvarenga, in Ouro Preto. Figure 5.8 shows the exploration of the
concepts of symmetry and spirals involved in the construction of fountains in Ouro
Preto, which demonstrates the geometric curves concepts at Contos Fountain that
were determined by the students.

These results also show that math trails operate and connect historical, social, and
culturally relevant contexts for problem solving, as well as providing pedagogical
potential for the development of mathematical content in a creative way through the
contextualization of teaching and learning processes in mathematics.

According to Orey (2011), although educators can present examples of school
mathematical content originating from their sociocultural experience, it is important
that they make a connection between community mathematical knowledge/doing
with school mathematical thoughts through dialogicity. Thus, teachers can use
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cultural artifacts developed locally to contextualize everyday problem situations to
involve students in the teaching and learning process in mathematics.

This approach is similar to the development of Math Trails with respect to cultural
artifacts found during the course of the previously determined path (Owens et al.,
2003). In this direction, these results also show that these math trails enabled the
humanization of mathematics, as the mathematical contents become alive for

Fig. 5.7 Column Fountain on Rua Alvarenga. (Source: Orey, 2011, p. 10)

Fig. 5.8 Contos Fountain in Ouro Preto. (Source: Orey, 2011, p. 11)
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students by engaging them cognitively, physically, and emotionally (Kenderov et al.,
2009) in the activities proposed inside and outside the classrooms.

The interpretation of these results show that there is a need for students to become
aware of the relevance of cultural aspects of mathematics in the process of building
ethnomodels that are related to the activities performed in the daily life of the
Mathematical Trails. This interpretation also showed that there is a need for mem-
bers of the school community to develop differentiated pedagogical actions so that
enable students to understand that mathematical knowledge is related to the socio-
cultural aspects of ideas, procedures, and mathematical practices developed by the
member of local communities.

5.5 Final Considerations

In the three investigations presented here, we were interested in discussing mathe-
matical knowledge intrinsic to the development of different activities, communities
and cultures. This aspect is not always valued nor perceived as important by scholars
in the academia and, consequently, may not be considered nor explored in school
contexts and/or in formal academic pedagogical practices. In this regard,
ethnomodelling seeks to connect the cultural aspects of mathematics
(ethnomathematics) to school and/or academic mathematics (modelling) (Rosa &
Orey, 2017b) in a dialogical manner.

Ethnomodelling also values the relevance of and for the elaboration of
ethnomodels developed by the members of distinct cultural groups who translate
problem-situations and phenomena taken from their own realities to other mathe-
matical knowledge systems. In order to enable the understanding and comprehen-
sion of these systems, the students in these investigations developed ethnomodels
that are considered accurate and consistent representations of mathematical knowl-
edge that is socially constructed in their own terms.

Hence, the main objective of this chapter was to show how a group of investiga-
tors conduct research based on an ethnomodelling perspective within the scope of
mathematics education, and how it is beginning to construct understanding of the
mathematical knowledge developed by the members of distinct cultural groups
through the development of ethnomodels, which help to give voice to, revitalize,
and enhance the identity of community members and, at the same time, enhance the
importance of the acquisition of mathematical knowledge developed in their daily
lives.

In this context, an ethnomodelling approach was developed to help investigators,
educators, and students to comprehend how cultural aspects of mathematics might
play a role in the development of the modelling process through the lens of the
members of local communities and researchers who develop investigations in this
field through the development of important epistemological, theoretical, and meth-
odological applied in their investigations.

It is important to emphasize here that these studies revealed that the conduction of
our investigations within the ethnomodelling perspective in the state of Minas Gerais
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is still evolving and represents a work in progress. Yet we can envision that this
research area has a promising future in developing a concrete understanding of
different mathematical practices originating in the sociocultural contexts of distinct
communities.

For example, ongoing investigations on ethnomodelling related to the mathemat-
ical knowledge developed in math trails, soap-stone artifacts, abandoned gold mines,
deaf culture, weaving and tapestry, local communities, rural and urban schools,
traditional handmade lace work, and the architecture of the historic towns in our
region are taking place in the realm of our investigations regarding to the elaboration
of emic, etic, and dialogical ethnomodels.

This approach has allowed for a way for us to dialogue and listen to the voices of
those who are actually doing mathematics in the context of their own daily activities
that form a part of diverse ethnomathematical contexts in our region. For example,
for far too long, outsiders, external observers have been describing how the others
(insiders) think or how they develop their own mathematical ideas, procedures, and
practices without giving a strong voice to, or direction about the questions of those
that actually are observed to be considered ethnomathematically.

In this context, we are trying to develop a platform in which the others (insiders)
show us, the outsiders, how they foster mathematical knowledge and do mathemat-
ics on their own terms. Thus, it is necessary that we respectfully listen, value, and
respect mathematical experiences of diverse peoples, not traditionally studied or
given a voice. This context also enables students, educators, and researchers in our
region, to make an effort to translate school/academic mathematics on other terms or
mathematical knowledge systems and eventually tell their own story.

It is important to emphasize that members of distinct cultural groups form the
essence for the development of an ethnomodelling process, which contemplates,
inherently, the complementarity of ethnomathematics and modelling. In this process,
ethnomodelling discusses the evolution of mathematical knowledge through the
history of humanity as a response to a variety of situations and problems originated
in and by the distinct contexts.

In our opinion it is a pleasure to be able to share these possibilities to this
community of educators and researchers in mathematics education, especially, to
those who, like us want to give voice to the people that have often been marginalized
and forgotten. We hope that this chapter encourages other voices as well who hope to
develop ethnomodelling as an investigative program that values and respects differ-
ent mathematical worldviews, cosmologies, and paradigms in their own contexts. It
is our invitation for future investigations in this research field.

There is nothing more rewarding than to have locals walk across a street and
engage in sharing the context, history, and background of objects being modelled
and being able to mathematize these perspectives for others to consider!
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Chapter 6
Ethnomodelling: Weaving Networks
Between Academic Mathematical
Knowledge and Cultural Knowledge
in the Tocantins Southeast Region

Alcione Marques Fernandes, Cristiane Castro Pimentel,
and Nayane Rodrigues de Deus

6.1 Introduction

The study and research group in Mathematics and Mathematics Education as part of
the Mestrado Profissional em Matemática em Rede Nacional1 (PROFMAT) at the
Universidade Federal de Tocantins, Campus de Arraias, in the state of Tocantins,
Brazil, was created in 2018 with the objective of aggregating the research developed
by the teachers participating in this Program. Together with their advisees, the
researchers establish the necessary reflective dimension for a graduate program as
a professional master’s degree program.

Within the Study and Research Group, the line of study related to
Etnomatemática e Formação de professores2 proposes to discuss the
Ethnomathematics Program as a research area, establishing its foundations in the
mathematics teachers’ education, both at undergraduate and graduate levels. Thus,
this line of research brings together students from the Teacher Education Programs
in Mathematics, as well as students from the PROFMAT Program.
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This chapter presents and discuses 2 (two) investigations conducted by the
students: Cristiane Castro Pimentel (Master’s Degree Thesis) and Nayane Rodrigues
de Deus (Completion of Course Work), both completed in 2019, and whose theo-
retical scope is based on the concepts of ethnomodelling.

Currently, investigations related to research in Ethnomathematics Research and
Teacher Education Programs have been developed within the Lagoa da Pedra
Quilombola Community, located in the municipality of Arraias, in the state of
Tocantins, Brazil, with a view to providing guidance for the development of
students’ project related to the completion of their final course work.

6.2 Ethnomathematics and Ethnomodelling: The Faces
of Mathematics Seen Through a Cultural Mirror

Ethnomathematics was constituted as a research field in the Mathematics Education
and advanced to its establishment as an investigation area after the 5th International
Congress on Mathematics Education (ICME-5), held in Adelaide, Australia, in
1984, where Ubiratan D’Ambrosio chaired the opening conference entitled: The
sociocultural bases of Mathematics Education (D’Ambrosio, 2018).

However, discussions about the cultural influences on mathematical thought
organization are not restricted to this historical period; previously there was some
sparse research on mathematical practices related to culture (Rosa & Orey, 2014).
However, in terms of historical landmarks, we can consider the year 1984 as the birth
of Ethnomathematics as a program. The Ethnomathematics word was created from
an etymological game established by the mathematics educator D’Ambrosio (2018)
who stated that:

Why not ethno [for a commonly accepted group of myths and compatible values and
behaviors] + techné [for manners, arts, techniques] + mathema [for explaining, understand-
ing, learning]. My proposal is a research program to understand tics of mathema in different
ethnos. The three Greek roots together form ethno+mathema+tics or, as it would sound
better, ethnomathematics (p. 28).

This perspective of Ethnomathematics adopted by D’Ambrosio allows us to inves-
tigate different cultural groups based on their ideas, their history, their comparisons
and inferences that are used to understand the phenomena and solve problems in the
daily lives of the members of these group (D’Ambrosio & Rosa, 2016).

In this regard, Barton (2006) stated that ethnomathematics can be defined as “a
research program on the way cultural groups understand, articulate and use concepts
and practices that we describe as mathematic, whether or not the cultural group has a
concept of mathematics” (p. 53). We understand that Ethnomathematics makes it
possible to understand local knowledge and practices by using concepts and meth-
odologies specific related to mathematical thinking.

According to D’Ambrosio (2009), when entering the universe of local mathe-
matical knowledge, whether from a community, a professional group, or any ethnic
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group, we come across different ways and procedures of living with reality and
everyday life. Thus, it is important to highlight that the:

Daily life is impregnated with the knowledge and practices typical of culture. At all times,
individuals are comparing, classifying, quantifying, measuring, explaining, generalizing,
inferring and, in some way, evaluating using the material and intellectual instruments that are
typical of culture (D’Ambrosio, 2009, p. 22).

Thus, when translating these daily activities into mathematical language, we are
considering the dialogue between diverse sociocultural practices3 and school/aca-
demic mathematical knowledge through ethnomathematical and modelling perspec-
tives (Rosa & Orey, 2017).

In this pedagogical action, ethnomodelling points in the direction of establishing
a methodological studies for comprehension of knowledge/tasks from the perspec-
tive of school/academic mathematics and vice-versa, that is, “ethnomodelling can be
considered as the study of ideas and procedures used in mathematical practices
developed by the members of different cultural groups” (Rosa & Orey, 2016, p. 57).

The study and research of practices developed by the members of different
cultural groups enable the establishment of a dialogue between such mathematical
practices with geometric, architectural, and artistic concepts, which are typically
related to school/academic mathematics (Rosa & Orey, 2017).

The convergence between these cultural practices and the elaboration of mathe-
matical models is addressed in Ethnomodelling, which is a research area that falls at
the intersection between Ethnomathematics, Cultural Anthropology, and Mathemat-
ical Modelling (Rosa & Orey, 2017). Figure 6.1 shows ethnomodelling as an
intersection area of these three knowledge fields.

In the intersection between 3 (three) areas of investigation: Ethnomathematics,
Cultural Anthropology and Mathematical Modelling, we can establish that the
research process of sociocultural practices is developed from the translation of
these practices into other mathematical systems, such as school/academic environ-
ments and vice-versa (Rosa & Orey, 2017).

For example, in the “process of translating locally developed systems the elabo-
ration of ethnomodels takes place through the use of culturally mediated tools, which
seek to bring local practices closer to those used in academia” (Rosa & Orey, 2016,
p. 59).

For Rosa and Orey (2016), in establishing this dialogue between sociocultural
practices and academic mathematics, it is possible to consider that observers, who
are members of a given cultural group, share the same concepts and ideas (emic
approach) and, in counterpoint, the observation of researchers and educators of these
sociocultural practices is considered as an etic approach.

3It is necessary to think about ways to conceive and practice an exercise in mathematics education
that signals to ways of reading, understanding, and explaining the world in order to make sense of
the paths of mathematical construction in different cultural contexts, through a cultural learning
process (Farias & Mendes, 2014, p. 38).
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According to Rosa and Orey (2017), the search for the interpretation of the
members of a specific cultural group’s knowledge and practices leads to a dialogical
approach that can be understood as the bridges built between their own mathematical
conceptions regarding to these practices and the translations conducted by the
external observers, such as researchers and educators.

6.3 Ethnomodels

Throughout history, members of different cultural groups have developed tech-
niques, tools, and artifacts that can help them to solve daily problems faced in
their own communities. For example, it is important to consider this quest for
survival and transcendence as inherent elements to humanity, because:

As I said earlier, I see survival and transcendence as the essence of being human [verb]. The
human [noun] being, like all living species, seeks only their survival. The will to transcend is
something more distinctive of our species (D’Ambrosio, 2009, p. 50).

In this search through different problem-solving techniques, Rosa and Orey (2016)
state that ethnomodels can be described as “cultural instruments or artifacts used to
provide comprehension and understanding of systems that are taken from the reality
of members of different cultural groups” (p. 61). They also affirm that “from this
perspective, the primary objective for the elaboration of ethnomodels is to translate

Fig. 6.1 Ethnomodelling as an intersection of areas. (Source: Adapted from Rosa & Orey, 2017,
p. 36)
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the mathematical ideas, concepts, and practices developed by the members of
distinct and diverse cultural groups” (p. 66).

This context enabled Rosa and Orey (2021) to state that ethnomodels are based on
three different characteristics: emic, etic, and dialogical. Emic ethnomodels are
constructed and manipulated within a given cultural group by its members. These
models are based on mathematical procedures that are directly related to religious,
artistic, and mythological principles, which means that:

Local or emic ethnomodels are representations developed by members of distinct cultural
groups taken from their own reality as they are based on mathematical ideas, procedures, and
practices rooted in their own cultural contexts, such as religion, clothing, ornaments,
architecture, and lifestyles (Rosa & Orey, 2021, p. 447).

Hence, ethnomodels can be considered as the translation developed by researchers
and educators to describe processes used in mathematical practices by the members
of a certain community or cultural group. This translational process is conducted
between two complementary systems, such as local (emic. communities) and school/
academic (educational institutions) mathematical language (Rosa & Orey, 2017). In
this way, we can establish that etic ethnomodels use concepts, methods and theories
distinct from the members of other cultural groups from which ethnomodels are
derived (Rosa & Orey, 2021).

Finally, according to Rosa and Orey (2016), dialogical ethnomodels allow for a
holistic approach to be created between the two forms presented above: emic and etic
ethnomodels. It is necessary to state that “this approach is necessary to understand
and explain this mathematical practice in its entirety, from the point of view of
external observers regarding the perception of mathematical knowledge developed
by members of this local cultural group” (p. 72).

Below, we present the results from two investigations that were conducted at the
Research and Studies Group in Ethnomathematics and Teacher Education at
Profmat/Arraias, from the perspective of Ethnomodelling.

6.4 Ethnomodelling in the Manufacturing of Jewelry
at Mestre Juvenal’s Goldsmithery

The monography, which is the final paper presented in the Teacher Education
Course in Mathematics was developed by the student Nayan Rodrigues de Deus,
in 2019, under the guidance of the first author/researcher, focused on identifying
mathematical practices developed by goldsmiths in the manufacture of jewelry at the
Mestre Juvenal workshop, located in Natividade, Tocantins.

In this chapter, we emphasize that the elaboration of ethnomodels practiced by
goldsmiths in their work of making jewelry is an important cultural component of the
members of this specific cultural group. For example, Bonfim (2019) highlights that
jewelry produced in Natividade more than a century ago is a tradition that has been
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passed down from generation to generation by the first masters who applied this
local knowledge.

In this context, it is important to contextualize the relevance of Natividade for the
development of this research. Natividade is a town located in the Southeast region of
Tocantins state, Brazil, on the right bank of the Tocantins River; listed by the
Instituto do Patrimônio Histórico e Artístico Nacional4 (IPHAN) as a national
historic heritage since 1987, preserving in its streets, churches, alleys, and squares,
original traces of the state’s colonial period. Figure 6.2 shows the location of
Natividade town.

According to IPHAN (2007), Natividade is significantly influenced by the past
that goes back to around the eighteenth century in which the ruins of the beginning of
the town demonstrate the relevance of these characteristics. This municipality is the
oldest in the state of Tocantins since it was founded in 1734 during the discovery of
the gold and, currently, this town still has mineral extraction as one of its main
sources of income.

The population of Natividade cultivates different ways of knowing and doing
their daily practices that arise from orality and, among of them, there is the knowl-
edge developed by the artisans and their artisanal production of jewelry in gold and
silver. In order to develop these artifacts, they use an ancient technique known as

Fig. 6.2 Location of
Natividade in Tocantins
state, Brazil. (Source:
https://upload.wikimedia.
org/wikipedia/commons/5/
50/Tocantins_Municip_
Natividade.svg)

4National Historical and Artistic Patrimony Institute.
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filigree that can be considered as a fundamental and representative part of the process
of the historical constitution of this town.

Filigree is an art of working with metal, which is essentially a popular type of
goldsmithing technique passed from generation to generation. We emphasize that,
according with IPHAN (2007), the jewelry is handcrafted by using the filigree
technique. In this regard:

(. . .) technique of using gold or silver threads [filigrees] as fine as those of a hair, which,
intertwined and welded, form a delicate lace, transforming into whole pieces or being able to
be applied as details to other objects. This technique also refers to the ethno-linguistic origins
of slavery, which went there from the foundation of the town. This slavery revealed an
important number of black mines, from the Gold Coast and who brought important mining
techniques and possibly jewelry (as was customary in West Africa) to the village of
Natividade (p. 57).

Therefore, the filigree technique used by the artisans in Natividade has its origins
developed by both the Portuguese influence and the African roots. In addition, it has
undergone a process of resignification in the elaboration of techniques in a South
American environment. Figure 6.3 shows the filigree technique used by the artisans
in the Natividade community.

In accordance with Bonfim (2019), currently in Natividade, the master goldsmiths
and/or filigree artisans pass on their knowledge to apprentices, who collectively
mark their geography and history, which are permeated with senses and meanings
that help them to build the cultural identity of their people.

In this context, Wall and Araújo (2015) affirmed that there are 3 (three) gold-
smiths in this town: Mestre Juvenal and João Bosco. It is necessary to emphasize that
the only artisan who is interested to discuss the educational purpose of this approach
is Mestre Juvenal, who aims to train new goldsmiths and, in addition, introduce them

Fig. 6.3 Filigree technique. (Source: Araújo, 2006)
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to the production of handcrafted jewelry. Currently, Mestre Juvenal goldsmithing
has 12 members and during the conduction of this interview, he stated that “I have
passed on my teachings on the art of the knowing/doing of handcrafted jewelry to
42 young nativitanos5”.

The research presented in this chapter was conducted in 2019 by using primary
sources: semi-structured interviews with three goldsmiths and three apprentices. In
addition, documentary sources that are part of the Associação Comunitária Cultural
de Natividade6 (ASCCUNA) collection and the IPHAN Monument Project. In this
research, we did not deal with the investigation conducted with gold miners in the
Príncipe district, which is 35 km away from Natividade, and who were interviewed
about their craft.

The results of this study showed that the masters and his apprentices develop their
own works from an ethnomodelling perspective, bearing in mind that jewelry
manufacture in Natividade originates from a centuries-old tradition, and which
was developed from Portuguese and African roots. Thus, Deus (2019) states that:

We can see through the explanations given by the goldsmiths that the preservation of the
ancestry jewelry confection, highly values the tradition of this local knowing/doing. In this
sense, it is worth emphasizing that the approximation of the natives with their adornments is
presented as something familiar and representative to the community (p. 39).

The handcrafted jewelry manufactured in Natividade can be considered as represen-
tative symbols of the history and culture of this town. Figure 6.4 shows examples of
important manufactured jewelry.

As these pieces are among the most manufactured by the goldsmiths and can be
considered as cultural symbols of the town of Natividade. It is important to discuss
the ethnomodel elaborated in the making process of the Native Heart jewelry.

During the interviews with the 3 (three) goldsmiths and 3 (three) apprentices, we
inferred that this cultural artifact is considered by the majority of interviewees as the
town’s cultural symbol by standing out as a favorite among tourists (Deus, 2019).
For example, one of the participants stated that “the jewelry most requested by
tourists is the Native Heart”. Figure 6.5 shows the technical description of the
confections of the Native Heart pendant.

It is necessary to point out that the Native Heart represents the origin of the town,
as it has the classic meaning of the symbol of love, which is linked to religiosity. In
this context, the yellow heart represents pure, sincere, and true love and, in addition
to love, it also represents strength, truth, wisdom, justice, the divine, spirit, birth,
intuition, and regeneration (Wall & Araújo, 2015).

According to Wall and Araújo (2015), 4 (four) stages are necessary to make the
Native Heart: (a) preparation of the frame, (b) filigree making, (c) finishing, and
(d) cleaning, which can be considered as the necessary steps for the elaboration of
ethnomodels.

5Nativitano is a demonym or gentilic given to people born in the town of Natividade, in the state of
Tocantins, Brazil.
6Natividade Cultural Community Association.
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6.4.1 Dialogical Ethnomodels of Native Heart Jewelry

Below, we briefly describe each of the 4 (four) stages related to the putting together
of the Native Heart through the elaboration of dialogical ethnomodels.

6.4.1.1 Preparation of the Frame

In this first step, Wall and Araújo (2015) comment that it is necessary to define the
size of the piece to be developed. Usually, the diameter of the jewelry is between
64 and 76 mm and its weigh is from 7.5 to 8.5 g. In defining the process to determine
the diameter of the frame, a caliper is used to measure its diameter and, after taking
its measurements, the gold is melted with an oxygen torch at a temperature between
900 and 1000 �C. In sequence, the gold is melted and transformed into an ingot and
then undergoes to lamination processing in order to become a fine wire (filigree). In
this case, three wires are used for each face of the heart and the wire thickness is
determined as a function of the width of the diameter. After the completion of these
processes the piece is welded.

Fig. 6.4 Examples of important manufactured jewelry of Natividade. (a) Passionflower earrings in
gold, (b) bead bracelet in gold, (c) slave bracelet in gold, (d) fish pendant in gold, (e) native heart
pendant in gold, and (f) slave ring in gold. (Source: Araújo, 2006)
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Fig. 6.5 Technical description of the confection of the Native Heart jewelry. (Source: Wall &
Araújo, 2015)
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6.4.1.2 Filigree Making

In this second step, Wall and Araújo (2015) affirm that the filigree is worked
intensively to achieve the ideal filigree thickness between 0.20 to 0.25 mm. To
start, make a sharp point at one end of the wire, using pliers to pull it and then anneal
it. The next process is to bend the filigree and braid it. Use the drift motor with
mandrel to braid the filigree. It is with the filigree that you fill in the frames or the
skeletons of this jewelry. It is with filigrees that frames in the jewelry model are filled
in. To get a good frame fill, start the process with the inner details of the top of the
heart. Then flatten both sides of the heart, using the inlay and always annealing. In
summary, the filigree is braided, annealed, and placed on the frame produced in the
previous step.

6.4.1.3 Finishing

In order to finish the previous process, Wall and Araújo (2015) state that a total of
53 units (little balls) are produced to compose the Native Heart. Of these 53, 28 little
balls are placed in the body of the heart; 6 on its back ring; 14 are part of the finishing
in the top of the heart (little flower) and another 5 are placed inside of the heart.
The filigrees in the laterals of the heart give the finishing on its sides. Then, they
make the ring that is attached to the top of the heart to join its two sides. Then they
make the counter ring with a drop shape that are the support for the chain. Fill the
counter ring with filigree and weld the little balls. To finish the heart, weld the little
flowers (balls) to the top of the heart and, finally, weld the back ring.

6.4.1.4 Cleaning

At the end of the previous stage, Wall and Araújo (2015) highlight that for the
cleaning step, the jewelry is washed with water and neutral soap, lathering and
cleaning with a brass brush, and quickly dipped in a muriatic acid. The jewelry is
ready for use. Figure 6.6 shows a finished Native Heart pendant.

The filigree process used to the confection of the Native Heart production in
Natividade, refers to the cultural identity of this town, it is also noticed that the
jewelry is related to religious beliefs, deities, and local traditions. Frequently, the
production of Nativitan jewelry is wrapped in a twisted gold thread that forms
filigree circles and flowers, which are three-dimensional figures placed at the center
of the heart as a decoration, as well as a way of bringing the two bodies together.
Oftentimes, hearts can appear made with half a gold cap in the center of the flowers
(Deus, 2019).

It is important to highlight here that the elaboration of a dialogical ethnomodels
related to the production of the artisanal jewelry is developed by using the measures
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of the diameter of this cultural artifact in order to define its size, which is established
at the beginning of this process (Deus, 2019).

During the elaboration of this ethnomodel, the goldsmiths determine the amount
of gold needed to produce the jewelry, the percentage of metal casting, the temper-
ature in degrees for the casting of these metals, as well as the circumferences formed
by the filigree wires that are inserted inside of the piece, they also place small balls
inside of each circle, which remind us of the spheres.

All stages of casting, baking, annealing, as well as lamination, understood as the
transformation of the gold ingot into increasingly finer threads, have inherent
ethnomodelling characteristics. In this context, the goldsmiths in this study use
filigree as a delicate jewelry embellishment in which fine, pliable threads of precious
metal are twisted or curled into a design and then soldered onto a piece of jewelry.

In the end of this process, each handcrafted piece possesses mathematical con-
cepts of symmetry and harmony directly related to the concept of beauty. In this
regard, the creation of “beauty represents the realization of the highest spiritual
potential of human beings, in the manifestation of their sensitive consciousness. The
forms of beauty are powerful” (Ostrower, 1998, pp. 280–281).

Therefore, in addition to the cultural identity of the members of this community,
jewelry manufactured in Natividade has several mathematical elements that consti-
tute it, such as mathematical procedures, techniques, and concepts of symmetry that
can be observed in the double face of the Native Heart.

Fig. 6.6 Finished Native Heart pendant. (Source: Araújo, 2006)
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6.4.2 Ethnomodelling of the Walls and Reception Square
of the Arraias Cemetery, in the State of Tocantins,
Brazil

The dissertation defended in the PROFMAT, in 2019, addresses the geometric
elements of the cemetery in the town of Arraias, in the state of Tocantins, Brazil,
in order to describe the ethnomodels present in the stone walls that limit its borders
and in the reception square in its entrance (Pimentel, 2019).

This qualitative research was based on testimonies of former inhabitants of the
town and artisans with the purpose of unveiling the ethnomodels used in the process
of using stones to develop their craft work. The development of this investigation
aimed to answer the following research question: “What are the geometric
ethnomodels present in the wall of the Arraias cemetery and in its reception square?”
(Pimentel, 2019, p. 20).

Arraias is a Tocantins secular municipality with an estimated population of
10,525 inhabitants,7 located in the south part of the state. Figure 6.7 shows the
location of Arraias town in the state of Tocantins, Brazil.

The town of Arraias is located in the southeast region of the state of Tocantins,
Brazil, which is 420 km away from the state capital named Palmas. Its climate is

Fig. 6.7 Arraias location in
the state of Tocantins.
(Source: https://pt.
wikipedia.org/wiki/Arraias)

7For more information, please, access: https://www.ibge.gov.br/cidades-e-estados/to/arraias.html.
Retrieved on November 7, 2021.
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tropical humid with dry and rainy seasons divided throughout the year. Its codename
is “Town of Hills”, as the town is located in the middle of many hills, and it is also
practically surrounded by the ruins of stone walls built by the slaves in the eighteenth
century (Fernandes, 2016).

The use of stones to build the walls has been constant in the town’ s history,
dating back to the time of slavery. Because of this tradition, there are still a few
artisans dedicated to this ancient technique of fitting stones by considering its
different configurations in the shape of building walls. Figure 6.8 shows a retaining
wall built in the town center by using stones.

For the construction of the cemetery walls and its reception square, we assume
that the same traditional technique used in the stone walls built by slaves around the
town was also used to build the walls in this graveyard, as well as in other old
buildings in the Arraias town. The conversations held with Mr. Domingos de Souza,
known as Dominguinho, a 95-year-old man, born and raised in Arraias, shared his
active participation in the process of building the cemetery walls, since its initial
construction. His learning took place through contact with two stone construction
masters from Natividade, with the aim of constructing the first wall of the Arraias
cemetery.

The results of the interview conducted with Mr. Domingos, on January 20th,
2019; about the process of building the walls, he reported that “in the past there was
no cement, so they used lime made by them that was mixed with clay to build the
wall with stones”. According to him “we take the stone row and burn it in order to
have the dust, then we mix the dust with the clay to build the wall” (Pimentel, 2019,
p. 72).

In this interview, Mr. Domingos commented about the technique he used in the
execution of the stone works by stating that this practice is derived from observations
and practices, which are characteristics inherent to traditional knowledge. In this
regard, Almeida (2010) highlights that this work is:

Fig. 6.8 Retaining wall built with stones in the town center. (Source: Pimentel, 2019, p. 68)
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Strengthened by creative adaptation to the ecological environment from which they emerge.
Since this knowledge is passed on orally and experimentally, it is responsible for
maintaining hundreds of cultural groups spread across places and not yet co-opted by the
logic of the market system that levels and standardizes everything (p. 63).

It is necessary to emphasize that, during this investigation, Mr. Domingos was
unable to report details about the local procedures (emic knowledge) used by him
to carry out the development of his stone works. Therefore, he only described that
this work is a lengthy process and difficult to be expressed in words. For example,
Pimentel (2019) affirms that the “technique of working with stones is difficult
because it takes time, as Mr. Domingos often has to do and undo his work in order
to find a perfect fit between the stones (p. 73).

In relation to the research question of this study, we chose to present and describe
etic ethnomodels observed in the constructions of both the stone wall and the
reception square at the Arraias cemetery entrance.

6.4.2.1 Etic Ethnomodels on Stone Walls and in the Reception Square
of the Cemetery

At the Arraias cemetery entrance, we come across a reception square, built in stone,
as well as the walls and floor. This construction dates from the early 1980s and it was
planned by the city government, yet we did not have access to its initial project. We
were also able to identify that Mr. Domingos was the project’s executor by using the
techniques related to the handicraft of stone construction. According to Rosa and
Orey (2016), etic ethnomodels present the view of external observers regarding to
cultural practices developed by the members of a particular cultural group.

Based on this assumption, we analyze the shapes present in the reception square
and on the cemetery walls from the Euclidean geometric perspective through the
elaboration of etic ethnomodels by establishing several parallels in the artisanal
construction with academic geometric patterns. Figure 6.9 shows geometric
ethnomodels of the reception square at the Arraias cemetery entrance.

Fig. 6.9 Ethnomodel of the reception square at the Arraias cemetery entrance. (Source: Pimentel,
2019, p. 88)
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According to Fig. 6.9, we identified the shape of a pentagon at the entrance of the
reception square, as well as this construction presents elements of spatial geometry.
Figure 6.10 shows the next ethnomodel related to the columns at the entrance of the
cemetery, which can be considered as a rectangular prism in a etic ethnomodel as
shown in Fig. 6.11.

For the artisan Mr. Domingos, the process of accommodation of the stones in
order to produce the geometric shapes showed the possibilities of the elaboration of

Fig. 6.10 Etic ethnomodel of the columns at the entrance of the cemetery. (Source: Pimentel, 2019,
p. 89)

Fig. 6.11 Ethnomodel of
the rectangular prism.
(Source: Pimentel, 2019,
p. 90)
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etic ethnomodels that represent his mathematical knowledge that he learned by
observing other master craftsmen as they developed their work.

Finally, we can consider that the stone constructions in the Arraias cemetery
follow an emic ethnomodel developed over the years by artisans such as
Mr. Domingos, who established appropriate criteria for laying the stones, in order
to constitute a firm, solid and visually symmetrical construction by reproducing
various geometric shapes.

6.5 Final Considerations

The ethnomodels presented in this chapter are the result of two investigations
conducted, in 2019, within the Study and Research Group in Mathematics and
Teaching of Mathematics in accordance with Ethnomathematical perspective and
Teacher Education.

The research with the handcrafted jewelry of Natividade, Tocantins, resulted in a
final monograph as part of the required course work that made use of the method-
ological procedures focusing on observations and interviews with artisans and
apprentices in order to identify their perceptions about the mathematics present in
their handcrafted jewelry work. We presented here ethnomodels of the Native Heart
jewelry, all the other forms of jewelry have geometric elements that can be translated
into school/academic mathematical language and, thus, be described as
ethnomodels.

The research about the walls and the reception square at the cemetery entrance in
Arraias, which was developed as a Master’s thesis at PROFMAT. The results
showed the application of a proposal for pedagogical action composed of activities
that used geometrical elements present in the construction, and architecture, enabled
the study of geometric shapes. The etic ethnomodel described in the study represents
the mathematical knowledge of the artisan Sr. Dominguinhos’ memories that
emerged from the answers of this interview.

The Ethnomathematics and Teacher Education research line continues to develop
studies in the area of Ethnomathematics and Ethnomodelling at Tocantins southeast
region. The result of one of these investigations is related to the recent publication of
a chapter in partnership with the student Jeferson Dias dos Santos in relation to the
production of cassava flour in the Lagoa da Pedra Quilombola Community. In this
work, Fernandes and Santos (2021) described an ethnomodel developed in this
Community for the production of the flour, with the objective of improving the
quality of production and its reduction preparation time.

We understand that research and discussions about Ethnomodelling in the Tocan-
tins southeast region will continue to bear results, given the vast research field that is
presented. The region has several quilombola communities and other traditional
communities that develop, in their daily lives, ethnomodels inherited from their
ancestry that shape the field of Ethnomodelling. In this regard, Rosa and Orey
(2021), affirm that:

6 Ethnomodelling: Weaving Networks Between Academic Mathematical. . . 133



These tools [ethnomodel] enable them [member of distinct cultural groups] to identify and
describe the beautiful and often very unique mathematical ideas, procedures, and practices
developed in diverse cultural contexts by using the processes of schematizing, formulating,
and visualizing problems in truly different ways, as well as by discovering relations and
regularities in order to translate real-world problems through mathematization processes
(p. 446).

In this context, the group of studies and investigations regarding ethnomodelling,
and teacher education has contributed to observing and recording emic, etic, and
dialogical ethnomodels developed by the members of traditional communities at
Tocantins state in Brazil.This context shows that mathematical knowledge impreg-
nated in the daily activities of these members must considered and respected,
through the elaboration of ethnomodels. This process can help the development of
a process related to the recovery of the importance of the knowledge local developed
in their communities by valuing and legitimizing their knowledge that is transmitted
and diffused from generation to generation.
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Chapter 7
Mathematical Analysis of the Ceramic
Designs of the Pre-Columbian Culture
of Ecuador Trough Ethnomodelling
with a Sociocultural Approach

Juan Ramón Cadena and Ronald Patricio Chasiloa Llumiquinga

7.1 Introduction

This chapter proposes mathematical modelling as a teaching-learning methodology
based on the conceptual framework of ethnomathematics that integrates a historical,
semiotic and epistemological approach. For this proposal, some examples of
pre-Columbian ceramics from Ecuador are taken as an object of study.

The learning of mathematics in the educational system of Ecuador has always
represented a problem of importance and evident implications. According to the
analysis of the latest results of the exam that assesses the development of aptitudes
and skills that students must achieve upon completion of intermediate education and
that are necessary for successful development as citizens and to be able to access
higher education studies, the subject of mathematics is the one with the lowest
quantitative results within the basic subjects.

It can be seen in Graph 7.1 that their average barely exceeds the elementary level.
In the framework of the Pisa Tests, in which the country participates for the first and
only time in 2017, 70% of students did not reach the basic level of mathematical
mastery skills, which reflects the low level of international competitiveness in this
science (Ineval, 2018).

In our country, teaching schemes are still maintained in which traditional school
pedagogies predominate, memorization of standard algorithms, non-contemporary
approaches and decontextualization with the environment, prioritizing of results
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before processes, memory before reasoning and, especially, teaching attached to
forced abstraction, all combine to limit the potential of this science in the develop-
ment of cognitive types of reasoning, proposition, and criticality.

We understand that professional training of mathematics teachers must go
through processes that consider reflection as a constant didactic practice (Huincahue
et al., 2018). Mathematics education in Ecuador presents a dialectical contradiction
between Western European rationality, which is reduced to instrumental reason
vis-à-vis nature, centered on the individual human being, and Andean rationality
that recognizes the duality between nature and human beings (Cadena & Trujillo,
2016).

As Lévi-Strauss (1977) said, in the scenario of the Newtonian model of formal
science, it is not exempt from myth and with other forms of sensitivity in under-
standing the world, such as symmetry (reciprocity that is reflected in a dualistic
worldview of reality) and non-arbitrariness (complementarity), the question then
arises: How can we improve the learning of mathematics in Ecuador from a cultural,
anthropological and historical perspective?

The following section presents an educational proposal from the ethnomodelling
perspective, which aims to improve the learning of mathematics in Ecuador from a
cultural context, considering the archaeological wealth of the region. The ceramic
design of the Andean region offers the possibility of semiotic, geometric, and
arithmetic interpretations.

Graph 7.1 Average mathematics proficiency (Ecuador). (Source: Ministry of Education of
Ecuador)
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7.2 An Educational Proposal for the Development
of Ethnomodelling

This work, under the ethnomodelling scheme, according with Rosa and Orey (2016),
theoretically aims to carry out three differentiated and interpretive visions of the
phenomenon of mathematics teaching.

(a) Global vision: learn about the conceptions of contemporary culture and educa-
tion in a dialogue with anthropology and history, trying to explain from outside,
or from an academic perspective, the way in which these currents converge in the
pedagogy of mathematics.

(b) Local vision: investigate the aspects related to the characteristics of each cultural
sector, considering the conditions of the generation of cognition and conceptu-
alization of mathematical elements, such as counting, measurement, classifica-
tion, and generalization (Rosa & Orey, 2016). In this context, a study of the
ceramics of the pre-Columbian cultures of the northern region of Ecuador pre-
sents with a valuable research opportunity, from the perspective of mathematics.

(c) Glocal vision: is used to inquire about the aspects that connect the two visions,
the external in symbiosis with the internal, the objective analysis of the different
sources emanating from the West and that of the Andean onto semiotic, through
the generation of flexible methodologies that incorporate and allow for self-
study and to rediscover our own episteme.

There is already a route started a few years ago by researchers determined to find
innovative methods for teaching mathematics in multicultural contexts. In addition,
as an expectation and valuation of the knowledge of the indigenous peoples in many
South American countries (Cadena & Trujillo, 2016).

Mathematics contributes to the achievement of competences that make it possible
to solve problems outside of it, such as enhancing capacities for discernment,
systematization, creativity, criticality, and crucial decision-making. Inherent in this
categorization of mathematics, teacher training plays a very important role (Cadena
& Trujillo, 2016).

According to Llinares (2012), there must be a sustainable interrelation of the level
of knowledge of mathematics and the associated pedagogical load through the
didactic transposition. Furthermore, Blanco-Álvarez et al. (2017) state that, in
another context, the disciplinary knowledge must be complemented with an inclu-
sive vision of the cultural environment that produces significant learning.

Then, to the extent of the problem raised, a proposal is suggested that seeks to
reduce school failure in learning mathematics from a study that has
ethnomathematics as its central nucleus, as a new look at education from anthropo-
logical, historical, and educational perspectives (D’Ambrosio, 1990).

It is important while considering the mathematical knowledge accumulated
through generations is based, among others, on ideas concerning comparison,
classification, measurement, operability, and generalization. Therefore, these must
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be explained under the phenomenological characteristics of a historical, cultural,
social, political, and ideological context (Rosa & Orey, 2016).

We must also consider that the view of ethnomathematics conceives a very
particular episteme, with an Andean ethos1 that measures the dimensionality of
time and space in contrasting contexts with the perspective of mathematics coming
from the European, Arab, Babylonian, and Egyptian sources. Then, it is necessary to
generate research that allows us to recover, recreate, and reinvent the contributions
of the native American peoples (Cadena & Trujillo, 2016).

In this regard, from an Ecuadorian perspective, diverse mathematical concepts or
ideas are best studied by looking at its content in the timeline, and beyond the
historical niche, in the conditions of society, in its reality as an ontological construct
and its relationship with nature (Cadena & Trujillo, 2016). In this direction, we
emphasize that the teaching-learning process of mathematics in Ecuador has been
based mainly on the acceptance and uncritical reproduction of the western rationality
model.

As mentioned earlier here, the Pisa data suggest what has been done in the past
does not work. A new perspective that respects history, culture, technology, and the
diversity of the Andean region is called for. For its part, Andean rationality recog-
nizes otherness (difference), as something essential that admits and enriches.

As well, with the introduction of reason and myth used together with other forms
of understanding the world, symmetry (reciprocity, which is reflected in a dualistic
vision of reality) and non-arbitrariness (complementarity). All form a context for
understanding and learning. In this context, the Andean person builds a collective
identity in relation to the human being (Lizcano, 2006).

Considering that the notion of culture is difficult to demarcate and apply in the
field of education, this implies both historical and political contexts, along with
different meanings in terms of language, the topics to be discussed should have
characteristics that allow an epistemological model, which combines the universal
with the particular thought (Kragh Sørensen, 2014).

Finally, with the union of the two approaches: global and local, referred to by
Rosa and Orey (2016), as glocal, the topics under study are viewed according to a
more integrative and disruptive model, in such a way that as the contents are taken
into account, the dialogue between knowledge developed by the insiders and out-
siders, which makes them acquire an epistemological and otherness.

That is, the recognition of the knowledge of others and how it interacts with local
knowledge as a practice of knowledge creates a clearer understanding. In this sense,
Cadena and Trujillo (2016) state that it is also important to recognize the different
ethical conceptions of cultures and tend towards a universal ethos.

Research can then be carried out under the following theoretical assumptions:
mathematical modelling as a didactic strategy used to produce meaningful learning
in mathematics with unique methodological and strategic implications, and

1Andean ethos does not refer to a reflection on the normativity of human behavior, rather it refers to
the harmony of the human being with nature (Sobrevilla, 2008).
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ethnomodelling, which incorporates sociocultural elements to the mathematical
modeling approach, taking into account the aspects that promote an interaction
between the interpretation of the mathematical phenomenon and the objective reality
(Orey & Rosa, 2021), in our case the ethnomodelling contributes to the understand-
ing of the ceramic designs from the perspective semiotics and mathematics.

Regarding mathematical modelling, we start from the general vision of this
process as a construct for the interpretation of reality based on approximations of
mathematical processes in their broadest spectrums.

Mathematical modelling elaborates schemes that allows for solving a problem in
the areas of human knowledge, such as the social, biological, and epistemological,
by means and elaboration of models that identifies its characteristics to discover,
improve or propose a medium alternative to solve and verify a solution. Modelling as
a method of teaching mathematics presupposes some interesting stages: integration
of mathematics into other areas of knowledge, stimulating the student’s interest in
solving everyday problems, developing group work skills, by using technological,
utilitarian, and communicational resources (Biembengut & Hein, 2004).

Mathematical modelling needs to be considered first as a mathematics teaching
strategy. According to Blum and Borromeo Ferri (2009), this scheme consists of a
Cantor-type diagram, in which two disjoint sets relate to interaction loops. Figure 7.1
shows model sets of modelling.

Fig. 7.1 Model sets of modelling. (Source: Blum & Borromeo Ferri, 2009, p. 46)
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Considering the particularities of the social environment, it is necessary to
address the mathematical competencies associated with this didactic scheme, the
main thing, according to Greefrath and Vorhölter (2016) is the development of the
ability to transfer a real model to the mathematical model in both directions.

When referring to the initial contact with a real situation, Bassanezi (2002) states
that students incorporate elements that become familiar with their surroundings, the
history associated with the concept, and the implications of everyday life, such as the
shape of wine barrels, beekeeping, crafts, and ceremonial plates.

In terms of ethnomathematics, according to the six dimensions proposed by
D’Ambrosio (1990), which are Conceptual, Historical, Cognitive, Epistemological,
Political, and Educational; the vision of the socio-cultural environment, ideology
and identity constitutes the openness towards concrete activities in the classroom,
which are inherent to the measurement, classification, hierarchy and inference,
provide a different conception of a western model because the ethnic characteristics
referring to the members of local groups are outlined with their own cultural,
historical, and epistemological load. In the case of diverse Andean environments,
some real situations are associated with engineering, terracing bridges, agriculture,
artisan production, and fishing.

In this chapter, we present a study related to ceramic designs developed by the
members of pre-Columbian cultures in Ecuador. A process is induced that allows the
mathematical modelling by applying the conditionalities inherent to prior
knowledge.

In this context, Rosa and Orey (2016) emphasize that when referring to mathe-
matical modelling with the additivity of the cultural, ethnographic, social, and
anthropological approach. We work with ethnomodelling, which can be considered
as a set of techniques and strategies that allow researchers to look at how members of
specific cultural groups solve problems faced in their own cultural environment and
context.

Furthermore, with reference to Rosa and Orey (2016), it can be said that, if
ethnomathematics emphasizes the production of mathematical knowledge in specific
cultural environments, ethnomodelling seeks to academically catalog cognitive
mathematical processes in distinct sociocultural contexts by using modelling
procedures.

According to Rosa and Orey (2018b), ethnomodelling originates from the union
between ethnomathematics and mathematical modelling that has a much deeper
conception in which reference is made to connections between emic (local) and
the etic (global) mathematical knowledge through dialogue (glocal).

It is important to understand that mathematical experiences and knowledge
developed from generation to generation are important characteristics of people,
societies, and cultures, which are contained within the emic points of view while the
etic perspectives are presented as academic scientific knowledge that has the capac-
ity to be reproduced anywhere. The combination of the emic and the etic perspec-
tives aims to generate a dialogical mathematical knowledge. Figure 7.2 shows
ethnomathematics as an intersection between three fields of study.
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The application of ethnomodelling in problem solving does not preclude math-
ematical representations of the real in the modelling process (Saxena et al., 2016). It
also seeks to develop forms of conceptual interpretation. In this context,
ethnomathematics through ethnomodelling connects the historical, cultural, and
anthropological versions of mathematical phenomena in environments that are
meaningful for student understanding (Rosa & Orey, 2017).

In Latin America, the new educational currents propose interculturality as the
basis for dialogue between the different cultures on the continent and outside it,
rejecting the incommensurability between cultures and the differentiation of social
behavior between them. This includes ethnomathematics, ethnoengineering and
other ethnosciences (Esterman, 2015).

This philosophy raises interculturality as the basis of dialogue between the
different cultures of this region and outside of it by rejecting the incommensurability
between cultures and the differentiation of social behaviors and ongoing exchanges
between them. Western formal philosophy draws on other philosophies. If we
consider Western science as hegemonic, it is necessary to consider other views of
it, the so-called ethnosciences that are structured in differently from the Cartesian
model (Cadena & Trujillo, 2016).

Next, we present several cases of pre-Columbian plates from the northern high-
lands of Ecuador that were analyzed from the perspective of the practical application
of ethnomodelling.

Fig. 7.2 Ethnomathematics as an intersection between three fields of study. (Source: Rosa & Orey,
2018a, p. 2)
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7.3 Case Analysis: Ethnomodelling in Pre-Columbian
Plates from Ecuador

This study is based on the mathematical analysis of the ceramic plates found in the
northern highlands of Ecuador dated between 200 BC to 630 AD. Thanks to
archaeological exploration and ethnomodelling methodology; it has been possible
to identify underlying mathematical elements.

In such a way that it allows for it to address several aspects: semiotics, mathe-
matical modelling, and the didactic transpositions of knowledge from ancestral
cultures to new generations of students to achieve an effective learning of mathe-
matics through identity elements with culture, the history, and the appropriation of
ethos characteristics of the Andean peoples.

This research is part of the search and analysis of the semiotics and mathematics
of pre-Hispanic societies that inhabited the territory that includes the provinces of
Pichincha from the Rumipamba ravine (Quito), Imbabura and Carchi in Ecuador,
and the Altiplano of Ipiales in Colombia (northern highlands) Fig. 7.3 show the map
of the northern highlands of Ecuador.

In order not to limit ourselves to the descriptive aspect of this research, which
could raise arbitrary theoretical assumptions, or force explanations to adapt to our
own logic and point of view, it is necessary to be willing to meet the unexpected. The
designs found in the pre-Hispanic containers of the Sierra Norte represent symbolic
shapes and colors that express the finite manifestation of a reality that unfolds
beyond the sensible.

It often happens that, when entering the depths of the pre-Hispanic heritage, and
when compared with other cultures, whether Western or Asian, certain implications
arise not only of conceptual structures, but of traditional history and cultural
contexts. In these societies, the vehicle for the transmission of ideas and concepts
was the formulation of conventional symbols embodied in different materials that
were often taken from nature and the animal world that surrounded them (Molestina
Zaldumbide, 2020).

Fig. 7.3 Map of the northern highlands of Ecuador. (Source: Quito Geographical Institute)
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Among the archaeological remains recovered and preserved by the Zaldumbide
Rosales Foundation, in the Sierra Norte area of Ecuador, are ceramics with anthro-
pomorphic shapes that are reflected in plates, which contain geometric figures such
as triangles, rhombuses, squares, and circles. There are also lines, parabolas, hyper-
bolas, and catenaries. The colors in the designs are red, brown, and black (Molestina
Zaldumbide, 2020).

Each one of the plates is represented with anthropomorphic, zoomorphic, and
phytomorphic motifs, generally applied to the internal part of the ring-based plates,
representing men and women, animals such as birds, deer, monkeys, round bats,
felines, among others. There are also drawings of people in the form of dance with
the same ceremonial representations.

These peoples worshiped the Sun of the Pastos, an eight-pointed star that has
become the insignia of these cultures and has been used to represent them as their
own in our country (Albis, 1987). The painter Guayasamín used it as a central
element in the mural on a wall of the Congress Building of Ecuador (Fig. 7.4).

With the help of computer software, Fig. 7.5 shows the designs embodied in
ceramics that have been modeled to improve the understanding of geometric shapes
and implicit mathematical concepts.

For example, the plate F436 comes from the funerary equipment of the Tuza
culture located in the north of Ecuador, the red color represents life, there are three
concentric circles, in the inner circle a quadripartition is made: two opposite triangles
through the vertex triangles and another two towards the circumference, in the
triangle’s figures of snakes, are observed considered as messengers of the mountain
gods. There are also two circular sectors with multiple crossed lines that represent
seeding furrows. These figures induce us to think about the complementary duality,
which is typical of Andean philosophy or Pachasofía. Figure 7.6 shows plate F436
coiled snakes.

Figure 7.7 shows plate F837 elaborated by using the GeoGebra program.
Figure 7.8 shows a plate from the same culture, but with a 7-pointed star inscribed

in a circle. Inside of the star are 13 circles, inside which are three small circles that
appear to represent human heads. It is complemented by a filling of sectors with
grooves. In plate F120, Fig. 7.8 shows an anthropomorphic semiotics, axial, and
central symmetries, but this plate also incorporates a human figure, a fisherman, who
indicates the geometric relationship with daily activities.

Next, the mathematical analysis is presented through ethnomodelling with spe-
cific cases of ceramics from the northern highlands of Ecuador.

7.3.1 Conics: Hyperbola and Ellipse

Figure 7.9 shows that there are two conics on an ellipse located in the center and a
hyperbola with a vertical transverse axis on the outer contour of the plate F837.
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Fig. 7.4 Mural on a wall of the Congress Building of Ecuador. (Source: Frame by Oswaldo
Guayasamín. https://live.staticflickr.com/65535/48206855656_338eabb8cd_b.jpg)
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7.3.2 Rotations

Rotation: Fig. 7.10 shows that inside of plate F80 is observed a rotational symmetry
because a center called the center of rotation can be found so that if we rotate the
complete figure by using an angle of π/2, consecutively, the rotated figure continues
to coincide with the original figure.

7.3.3 Symmetries

Symmetry: Two points of a graph have central symmetry with respect to the center
of coordinates when this midpoint of the segment divides the plate in two points. In
the same way, two points have axial symmetry with respect to a line, if that line is the

Fig. 7.5 Designs embodied
in ceramics. (Source: Own
design in GeoGebra)

Fig. 7.6 Plate F436 Coiled
snakes. (Source: Foundation
Zaldumbide Rosales)
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Fig. 7.7 Design of the
bottom of the F837. (Source:
Plate design elaborated in
GeoGebra)

Fig. 7.8 Plate F120. (Source: Foundation Zaldumbide Rosales)

Fig. 7.9 Design of outer contour of the plate F837 plate in GeoGebra. (Source: Plate design
elaborated in GeoGebra)
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bisector of the segment that joins the two points. Figure 7.11 shows the interior of the
plate F328 in which points A and B are symmetric with respect to the y-axis and
points C and D are symmetric with respect to the origin of the coordinate system.

7.4 Didactic Applications in the Classroom

Aworkshop was held on the different types of symmetries expressed in figures of the
Cuasmal culture. This activity was developed with 30 students from 12 to 13 years
old who were ninth graders, school period of 2021–2022, in the General Educational
Unit Píntag School, located in Píntag, Quito Canton, Pichincha province, Ecuador.

Fig. 7.10 Rotation of plate
F80. (Source: Foundation
Zaldumbide Rosales)

Fig. 7.11 Symmetries in
the interior of plate F318.
(Source: Plate design
elaborated in GeoGebra)
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7.4.1 Symmetries

Activities given to students about symmetries are shown below.

Activities

(a) Symmetries about orthogonal coordinate system.

• The teacher organized workgroups of 5 students and for this work 3 groups
were established in two different parallels.

• The teacher delivered 5 different printed figures of different plates.
• The working group analyzed the types of axials, rotational, and central sym-
metry in each figure and developed a poster.

• Posters were presented in the form of an exhibition.
• It was requested that students identify the types of symmetry existing in each
figure, in addition to answering the following assertations and questions:

– Identify and trace the axis(s) of symmetry in the figure.
– Does the graph have an axial symmetry?
– Does the graph have a rotational symmetry?
– Does the graph have a central symmetry?

For example, for group 1, it was proposed for students to analyze the symmetry
present in the plate F120 (Fig. 7.12).

Results
Group #1 was made up of students Juan, Gustavo, Carlos, Andrea, and María.

After they analyzed and graphed Fig. 7.12, plate F120, they agreed that the
figure does not have an axial symmetry to the x-axis, because if it is bent by the
center, both sides are the reflection, but the figure of the fisherman is reflected
differently.

In the same way, they showed that the figure does not have a rotational
symmetry because when it is rotated at an angle of 90�, their positions are
different, because the fisherman is horizontally, different of the original vertical
form. However, if the figure is rotated through an angle of 180�, it is observed
that the figure returns to its original shape, which indicates that it has central
symmetry. Figure 7.13 shows the symmetry with respect to the linear equation
y ¼ �x.

(b) Symmetry with respect to the linear function: y ¼ �x.
Results
Group #2 made up of students Javier, Andrés, Camila, and Fernanda. After

analyzing and graphing of plate F514, showed in Fig. 7.13, students agreed that
the figure does not have an axial symmetry to the x- and y-axis (horizontal and
vertical axes) because if the image is bent through the center towards both sides,
the reflection does not match the original figure. However, they observed that
when the figure is bent diagonally there is an axial of symmetry, and then the
linear function y ¼ �x is an axis of symmetry.

150 J. R. Cadena and R. P. C. Llumiquinga



The students also stated that the figure does not have a rotational symmetry
because when rotating the figure in an angle of 90�, the final position is different
from the initial one. Regarding whether the figure has a central symmetry, it was
established that it does since it has the same effect as a 180� turn.

7.4.2 An Agricultural Problem

A farmer of the Cuasmal culture, has planted corn in the circular sectors: cBC and cED
, and the rest of the land has water. It is known that the angle formed between the arc

length dAB is of π/4. It also known that cCA forms the same angle as cAB and that the
diagonal cEC of the square inscribed in the circumference measures 12 m. Figure 7.14
shows a graphic representation of this problem.

Fig. 7.12 Plate F120.
(Source: Foundation
Zaldumbide Rosales)

E
B

A

CD

π/4

Fig. 7.13 Plate F514.
(Source: Foundation
Zaldumbide Rosales)

7 Mathematical Analysis of the Ceramic Designs of the Pre-Columbian. . . 151



Determine:

What is the area of the part of the land that the farmer planted with corn?
What is the area of the land covered by the water?

Resolution

1. As the inscribed square shares the diagonal and at the same time the diameter of
the circumference, its radius is half of this measurement.

d ¼ 12 m

r ¼ 12
2
m

r ¼ 6 m

2. Now we calculate the enclosed circular area of cAB

A1 ¼ r2θ
2

A1 ¼
62 π

4

2

A1 ¼ 36π
8

m2

3. Since the area A1 included by the region is repeated 4 times, we multiply by 4 in
such a way that we obtain the total area.

4. The area planted with corn is AC ¼ 56.548 m2.

Fig. 7.14 Representation of
the agricultural land.
(Source: Figure elaborated
in GeoGebra)
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5. Now we calculate the total area of the land.

A ¼ πr2

AL ¼ π62

AL ¼ π36

AL ¼ 113:10 m2

6. Finally, the area covered by water is the total area of the land minus the area
planted with corn.

AW ¼ AL � AC

AW ¼ 113:10 m2 � 56:55 m2

AW ¼ 56:55 m2

7.4.3 A Feeding Problem

The chef of a village of the Cuasmal culture wants to serve more meat than
vegetables on a plate that has a graphic pattern representation. For this, he wants
to know if the part of the plate that has the shaded pattern is smaller than the part of
the plate that does not have this pattern, and in this way, he is able to serve the food in
that sector.

In order to do this, it is known that the angle ϴ that forms the shaded circular
sector measures 80� and that the segments of the circular sector are equal to their
counterparts. In addition, these segments measure the same as the radius of the plate
and that the segment of the smallest circular sector formed inside of the plate has a
ratio of 8:1 with respect to the largest circular sector. Figure 7.15 shows the
representation of the plate in this problem.

Determine:

What percent of the plate has a shaded pattern?
In which sector should the meat be served?
Inquire about the importance of meat in the human diet?
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Resolution

1. In order to know the perimeter of the plate, the student measured the contour and
concludes that the plate has a perimeter of 60 cm and from there we calculated its
radius.

p ¼ 2πr

r ¼ p
2π

r ¼ 60
2π

r ¼ 30
π

r ¼ 9:55 cm

2. We calculated the area of the circular region that has the shaded pattern, for this
we will use the formula. We transformed 80� to radians and obtained:

80� � πrad
180

¼ 4πrad
9

θ ¼ 1:396 rad

A ¼ θ:r2

2

Fig. 7.15 Representation of the plate of the feeding problem. (Source: Figure elaborated in
GeoGebra)
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A ¼ 1:396ð Þ 9:55ð Þ2
2

A ¼ 63:66 cm2

3. As the shaded circular sector is repeated twice, we multiplied it by 2:

A1 ¼ A � 2
A1 ¼ 63:66 � 2
A1 ¼ 127:32 cm2

4. Now we deducted the internal part in white that is inside the shaded circular
sector, as it is in a ratio of 8 to 1, then we determined that:

A2 ¼ A1
8

A2 ¼ 127:32 cm2

8

A2 ¼ 15:92 cm2

A3 ¼ A1� A2

A3 ¼ 127:32 cm2 � 15:92 cm2

A3 ¼ 111:4 cm2

5. In order to know the percentage of the surface represented by the shaded sector,
we calculated the area of the plate:

AT ¼ π:r2

AT ¼ π:9:55cm2

AT ¼ 286:52cm2

6. Now we transformed A3 and AT into percentages:

x ¼ 100% � 111:4cm
286:52 cm

x ¼ 38:88%

7. Responding to question #1, about what percentage does the shaded pattern on the
plate represents, we deduced that this value is 38.88%.

8. Responding to question #2, related to which part of the plate the meat should be
served, we concluded that in the part that has the shaded pattern since it is the
smallest.
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9. In relation to the question about the importance of meat in the human diet, we
concluded that meat is of great importance since it provides mostly proteins that
allow for the development of our bones, muscles, cartilage, skin, and blood.

7.4.4 Some Reflections About the Ethnomodelling Process

Examples discussed in this chapter showed that, according to Yang (2003),
glocalization becomes an expression that promotes positive dialogic relations
between different cultures and worldviews. In this context, Rosa and Orey (2017)
affirm that this perspective creates possibilities for generating spaces for promoting
dialogue between local and global mathematical knowledge approaches.

Thus, it important to state that, in ethnomodelling research, dialogue helps to
prevent the “global from overwhelming the local, while the local is still benefitting
from what the global has to offer” (Fernandez, 2009, p. 46). In this regard, Rosa and
Orey (2018b) highlight that:

(. . .) glocalization may be understood as the particularization of the universal, which is the
local adaptation and translation between global and local approaches. There are ways to
understand mathematical ideas, procedures, and practices that are universally applicable as
general templates that are modified to reflect particular cultural traits such as the develop-
ment of mathematical strategies and techniques applied to solve problems members of
distinct cultural groups face daily (p. 193).

The results of this investigation showed that cultural dynamism in ethnomodelling
intensifies the translation between local and the global mathematical forms of
knowledge through dialogue. This process captures the simultaneity of both univer-
salizing and particularizing tendencies during the development of cultural interac-
tions and provides an inclusive environment for addressing complementary interests
during the conduction of research in mathematics education.

7.5 Conclusions

This chapter has been carried out through a historical investigation regarding the
ceramics of the Cultures found in Northern Ecuador, therefore, a vision of cultural
and social identity is incorporated, which implies the construction of mathematical
concepts generated from the intuitive to the analytical, through the analysis of
genealogical conjunctures of mathematical knowledge.

The considerations of ethnomathematics as a new look of mathematics education,
with all its possibilities, intrinsic nuances, globality, locality, dialectics, and
dialogicity between different cultures in time and space allows for the use of
iconographies as didactic material.
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An attempt has been made to systematize an ethnomodelling scheme through its
stages of analysis of the ancestral elements through the emic, the etic, and the
dialogic perspectives by considering the approach to mathematical concepts with a
dynamic that allows for the incorporation non-traditional elements in the classroom,
the use of free software to motivate the construction and semiotic interpretation of
the ceramic designs of our cultures.

The arrangement of this chapter in a combination of theoretical analysis and
practical application in the classroom will allow for continued dialogue in relation to
further generation of innovative spaces for the management of didactic and peda-
gogical resources that stimulate the construction of mathematical knowledge with
alternative and identity ideas. This research has been carried out on several theoret-
ical assumptions:

• The problem of mathematics education in Ecuador based on algorithmic and
decontextualized models.

• The use of identity resources such as pre-Columbian ceramics from the Northern
Highlands from a semiotic and mathematical point of view.

• The implementation of ethnomodelling as a strategy for the analysis and imple-
mentation of teaching techniques and strategies.

• The analysis of learning outcomes in the classroom through a focused essay.

Based on the above, it can be concluded that interactions between archeology and
the teaching of mathematics for the rescue of cultural elements such as
pre-Columbian ceramics, which have not been sufficiently studied under the
approach of mathematics immersed in them, will allow subsequent studies to expand
the subject, and studies can be conduct that analyze the impact on mathematics
education in Ecuador.
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Appendix 7.1: In the Classroom: Students in Group
1 Analyzing Plate F120

Source: Personal file
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Appendix 7.2: Student Answers to the Problem
of Planting Corn

Source: Personal file
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Appendix 7.3: Ceramic Plates

Source: Foundation Zaldumbide Rosales
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Part III
Interdisciplinary Ecosystems: Empirical

Work, Theoretical-Methodological
Approaches, and Research Questions

The main objective of this section is to share some experiences and reflections
related to a type of didactic pedagogical proposal that the authors conducted in the
Argentinean Patagonian context. These investigations are characterized by being
developed in real-world contexts and respond to the intention of facilitating the
attribution of meaning to learning by students. In this section of the book, the authors
summarize the main characteristics of the projects developed with students in
mathematics classrooms in which mathematical modelling enables them to build
rational arguments for the development of decision-making process that these pro-
jects demand.



Chapter 8
Analyzing the Availability of Renewable
Energy Resources in a Project
in a Real-World Context: A Framework
for Making Sense of Learning

Pablo Carranza and Fabio Miguel

8.1 Introduction

When we think of mathematics teaching/learning experiences, the first step is usually
selecting a disciplinary concept to teach (Chevallard, 1985) and then finding a
context that gives it meaning. In this chapter, we will share a proposal that alters
that dynamic while, of course, still preserving concepts to teach.

In our case, the starting point is reflecting on the conditions that could facilitate
students’ attribution of meaning to disciplinary concepts. Why do we focus on
meaning? For several reasons. One of them is our belief that the learning process
becomes more significant if students can attribute meaning or sense to it. Another
reason responds to an ethical principle: students (as well as educators) have the right
to carry out activities that have a meaningful impact on their lives.

The activity we present in this chapter addresses a real-life problem; more
specifically, a problem for the inhabitants of the region where the students and
teachers involved live. From a didactic perspective, this activity was chosen due to
its potentialities to address disciplinary concepts; mainly mathematical.

From a pedagogical perspective, the activity (consisting of the calculation,
construction and installation of Savonius windmills) constitutes a possibility for
the students to find meaning in mathematics both from a professional and personal
viewpoint.
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8.2 Problem

As we stated in the introduction, one of the initial interests that motivated this project
was searching for proposals where students could attribute meaning to learning.
Nonetheless, we understand that meaning is not a quality of a didactic proposal
(Develay, 1993, 2004) and knowledge itself does not carry meaning (de Vecchi &
Carmona-Magnaldi, 1996). We claim that meaning is a construction made by a
student according to his or her life experiences, expectations, emotions, etc.; even to
their life projects (Martínez Licona & Palacios Ramírez, 2012; Pinzón, 2016).

However, even if we consider meaning as a personal construction, we also
acknowledge that there are certain characteristics of the didactic proposal that help
students grasp it and consequently incorporate it into their life experiences, expec-
tations and emotions. Among those characteristics is what we call the “temporal
dimension” and it is developed in two directions: present and future. Simply put, we
expect knowledge to become useful for the students’ present and future.

Another dimension considered when designing this proposal (and strongly related
to the previous one) is knowledge functionality. We believe knowledge should help
students understand the world around them while also allowing them to intervene in
it. A third dimension considered is knowledge significance. We want students to gain
knowledge considering it useful for them and the community.

We argue that these characteristics are enhanced if they are part of a proposal
being implemented in a real-world context rather than in one staged by, for instance,
a professor. By “real-world context”, we mean a context that exists in the real world
and students can experience it without the influence of any didactic fiction.

Nevertheless, a situation in a real-world context where students can immerse
themselves in the problem can rarely be discussed from a monodisciplinary
approach. In general, a real-world context is complex (and quite rich) and usually
requires knowledge from various disciplines to reach a solution. Another character-
istic of these contexts is that they frequently contain various teaching/learning
situations. Therefore, we will refer to project as the characteristics of the general
problem to be tackled in the real-world context. Likewise, we will refer to problems
to solve as the project’s internal problematic instances.

However, it is also relevant that the real-world context authentically demands
disciplinary knowledge. That is, it has to be a context where concepts (Bednarz et al.,
2018; Buxton, 2006; Spandaw, 2009), abilities and competencies related to, at least,
the mathematics disciplinary field genuinely emerge.

Additionally, the mathematical concepts to be discussed in the proposal’s frame-
work have to be related to the possibilities and interests of the formal education in
question. To meet this authenticity requirement, we searched for a context that
demanded rationality in the decision-making process, precision in the decisions,
and that, to a certain extent, required quantifications.

The context needs to meet a set of physical and chronological viability require-
ments as well. This means the proposal should be able to be carried out within the
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duration of the mathematics course. Besides, the requirements in terms of physical
space, tools and technology should be met with the available resources.

So far, we presented a set of objectives which are, among others: (a) to find
proposals where students can attribute meaning to learning, and (b) carry out those
proposals in real-world contexts, where (c) students can understand and intervene in
that reality. However, there is a didactic-pedagogical matter to address: is it possible
to discuss disciplinary concepts (particularly, mathematical) in this type of proposal?
In this and the following chapters, we will try to contribute some thoughts to this
(in our criteria) fundamental matter.

Within the range of possibilities, the professors selected a context that tackled an
environmental issue connected to the mathematics course’s approach. The project
involved the calculation, construction and installation of Savonius windmills
(Savonius, 1922)for rural communities relying on a subsistence economy in Argen-
tinian Patagonia.

In this chapter, we will present a summary of two “problems to solve”. They
appeared in the project’s framework where concepts from mathematics and other
disciplines were discussed. It is worth mentioning that interdisciplinarity was not a
condition for selecting the project. It was an almost natural consequence of choosing
a real-world context that presented the three characteristics mentioned above (tem-
poral dimension, knowledge functionality and knowledge significance). Figure 8.1
shows the type of windmill installed. With an intentionally simple design, its rotor is
built with recycled 200 L barrels.

In this project, the windmills were designed for groundwater pumping. The
objective was to provide water for animals and facilitate irrigation for the trees and

Fig. 8.1 Schematic
diagram of the Savonius
windmill. (Source: Authors’
own work)
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plants at the inhabitants’ rural facilities. Throughout the project, a significant number
of problems to solve appeared; however, due to space limitations, we will only
discuss two of them. They involved the availability of renewable energy sources.
The problems were analyzed to address a family’s concern since a Savonius wind-
mill would be installed at their house.

The family (with scarce economic resources as all of the other recipients of the
windmills) was starting a small agrotourism business. Apart from pumping water for
their animals, they needed to provide electricity to a refrigerator to keep fresh
products for the tourists. It is worth mentioning that this property did not have an
electricity supply of any kind (power grid, generators, or photovoltaic panels).

This issue had not been considered or anticipated when designing the proposal.
However, it was discussed in class for two reasons: it was related to the character-
istics of the context, and it was potentially didactic. In fact, the question that
encouraged the analyses presented in this article was about the possible convenience
of replacing the diaphragm pump originally planned for the windmill (to pump
water) with an alternator. This alternator would generate electricity to charge the
refrigerator’s batteries. That is, we tried to analyze the possibility of adapting the
windmill by replacing the pump for water pumping with an alternator for electricity
generation.

Before analyzing this adaptation from a mechanical perspective (parts replace-
ment, mechanical or electrical revolutions per minute multiplier, etc.), it was neces-
sary to study the long-term availability of the wind resource in the area throughout
the year.

Still, the study of wind resource availability was anticipated beforehand. In this
case, the novelty was assessing the situation from a different perspective—consid-
ering the possibility of supplying energy to a refrigerator instead of pumping water
from a well.

8.3 Method

The project involving the calculation, construction and installation of Savonius
windmills for rural communities has been implemented since 2015 at the National
University of Río Negro (UNRN), Argentina. It has been carried out within the first-
year mathematics course in the first semester of the Industrial Maintenance Techni-
cian program (Carranza, 2015, 2017). It involves around 50 first-year students aged
between 18 and 50. The students are mostly middle and mid-low socioeconomic
status men.

The National University of Río Negro is an institution recently established. The
Industrial Maintenance Technician program (TSMI, by its Spanish initials) is a
3-year degree. As of the date of the activities discussed here, the lessons take
place in a rented facility. The available resources, in terms of infrastructure, are
traditional classrooms (with desks facing a blackboard), a blackboard, a projector
and a socket.
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Throughout its first years, the project was funded by the UNRN to buy the
necessary tools and materials. Later, for the continuity of the project, we were
granted funding by the National Ministry of Education. The trips to the locations
were funded by the corresponding townships.

When designing the proposal, the disciplinary concepts, particularly mathemat-
ical, were thought to emerge in class as conceptual tools. Tools that allowed students
to construct rational arguments for the decision-making process the project demands.
In fact, due to the project’s nature, this matter cannot be discussed from an intuitive
perspective or following a trial-and-error strategy until finding an adequate solution.
If the windmill were poorly constructed, people could get hurt or the rural property
could be damaged; we could even disappoint our recipients and fail to meet their
expectations. Therefore, the disciplinary concepts become essential to provide a
safety framework for the students’ construction/installation actions in the project.

Figure 8.2 shows a graphic representation of the project’s dynamic in its two
logical directions: the project’s logic direction and the disciplinary logic direction.
The development of the project requires undertaking actions and making decisions
(project’s logic). These requirements represent problems to solve (shown as the
black circles) through rational arguments.

To address these problems rationally, it is necessary to introduce concepts whose
use requires knowing the disciplinary logic, its objects and methods (Crombie, 1980;
Hacking, 1965). One of the first problems to solve was the availability of the wind
resource in the region. Wind is a windmill’s source of energy and it also causes stress
on its structure.

Therefore, it is crucial to know what the maximum wind speed is to design the
windmill’s structure. For this purpose, it was necessary to answer questions such as
the following:

(a) Is the available wind resource enough to ensure water pumping throughout
the year?

(b) What is the wind speed frequency distribution within the usable speed range?
(5–20 m/s).

(c) What is the duration of the usable and non-usable time frames?
(d) Is the usable wind resource available sufficient in summer?

Fig. 8.2 Development of the project in two logical dimensions. (Source: Authors’ own work)
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(e) What is wind behaviour at high speeds? Is it stable or are there gusts?
(f) What is the behaviour of nocturnal winds?

These and other questions became the core of the project’s sustainability. For
instance, in (f) we question the behaviour of nocturnal winds. Since the windmill has
a mechanical handbrake, it was necessary to know whether the windmill could
operate during nighttime or not because of the strong gusts of wind. If the windmill
functioning at nighttime was not a possibility, it would be advisable to always leave
the handbrake off during the inhabitants’ rest time.

To carry out a precise analysis of wind resource availability, we accessed a
database of a local weather station of the National Institute of Agricultural Technol-
ogy (INTA, by its Spanish initials). Figure 8.3 shows the first lines shown in this
database. It is in .csv format.

A set of data that registered changes every 10 min between 2010 and 2015 could
be accessed. It considered several variables, such as wind speed (m/s), wind direc-
tion, gusts, and even solar radiation (W/m2), among others. In total, the weather
station’s database contained over 311,000 registries including 38 variables (approx-
imately, 12,000,000 data). In order to illustrate the analysis carried out with the
students, the following Table 8.1 shows the absolute frequency distribution of the
wind speeds (m/s) for each month in 2013.

As regards the project’s logic, this table showed the students essential information
to identify the available wind resource and to calculate the stress caused on the
windmill. It should be noted that during August (column A), wind speed ranged
between 41.3 and 43.5 m/s 12 times. Graph 8.1 shows a representation of the
information in Table 8.1.

Some students proposed visualizing wind in real-time using specialized applica-
tions or websites (Fig. 8.4). In those visualizations, they could observe the reason
behind the predominance of the dry winds from the West in the region. A stable
high-pressure centre is located in the Pacific Ocean while a low-pressure centre is in
the Atlantic Ocean by resulting in strong winds towards the East. These winds
release their humidity in the high peaks of the Andes Mountains. Then, they advance
towards the region as strong dry winds.

This first analysis led to others where students carried out a seasonal wind
resource assessment. That is, a study of the periods in which the windmill could
be functional (wind speed ranging from 5 to 20 m/s). Night wind speed was also

Fig. 8.3 Partial view of the weather station database. (Source: Authors’ own work)
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examined every month. Moreover, knowing the predominant direction of the wind
(West) allowed students to determine the windmills’ location by considering the
obstacles trees and possible constructions nearby could represent.

These studies based on the database of the region’s wind were incredibly useful to
establish the availability of this resource and to measure the stress that would be
caused on the windmill. As regards the disciplinary logic, in this case, mathematical
and statistical, we discussed an important number of concepts. For instance,
Table 8.1 was done using the matrix function Frequency. The limits of each interval
were calculated through formulas considering the maximum and minimum values as
well as the parameter resulting from the desired number of intervals.

Both Table 8.1 and Graph 8.1 evidenced the asymmetry in wind distribution
(Weibull model). As a result, we considered the importance of both the average
values and the median. It was also necessary to include position and dispersion
measurements to analyze wind variability in each season. Besides, the database
recorded missing or incorrect values; for example, in Table 8.1, the value of all the

Graph 8.1 Distribution of wind speed frequencies during the year 2013. (Source: Authors’ own
work)

Fig. 8.4 Screenshot of Windy.com website. (Source: www.windy.com)
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registries in June, column J, is 0. Therefore, it was necessary to address this issue
as well.

Thanks to Table 8.1, it was easier to estimate the windmill’s power. In fact, the
analysis of power was discussed a few weeks later to estimate the possible volume of
water we could lift, approximately, 7 m. The following formula was used (Avila,
2017; Menet, 2004): Pmax ¼ 0.18HDv3, where H represents rotor’s height, D rep-
resents rotor’s diameter, and v represents wind speed.

This calculation was done considering the average speed of each interval
(avg-intv column). Table 8.2 shows the relative frequency for each speed interval
in Table 8.1 corresponding to January 2013 (J Relative column). It also shows the
power generated at that speed (Power column). Lastly, it was possible to estimate the
windmill’s average power each month. The table shows the estimated values for
January weighting the power values by their relative frequencies (weighted average).

The power formula, in turn, evidenced the importance of wind speed (cubic
participation) in relation to other elements that are related to the rotor’s size (lineal
participation). This led to discussing some interpretations related to tangents of
polynomials. This is an example of the bidirectional project’s dynamics: the project’s
logic requires problem-solving whereas the disciplines’ logic allows us to construct
arguments for our decisions.

Table 8.2 Windmill power
values for January 2013

avg-intv J Relative Power Weighted power

1.1 0.5 0.5 0.3

3.3 0.1 12.5 0.9

5.4 0.1 57.9 7.8

7.6 0.1 158.8 9.0

9.8 0.0 337.5 16.2

12.0 0.1 616.3 45.7

14.1 0.0 1017.2 25.8

16.3 0.0 1562.7 23.5

18.5 0.0 2274.8 44.3

20.7 0.0 3175.8 17.1

22.8 0.0 4287.9 22.1

25.0 0.0 5633.4 26.5

27.2 0.0 7234.5 4.9

29.4 0.0 9113.4 4.1

31.5 0.0 11,292.3 2.5

33.7 0.0 13,793.5 0.0

35.9 0.0 16,639.2 0.0

38.1 0.0 19,851.6 0.0

40.2 0.0 23,452.8 0.0

42.4 0.0 27,465.3 0.0

Total power 250.6

Source: Authors’ own work
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In this case, the mathematical and statistical tools allowed us to calculate wind
behaviour leading to the conclusion that there are innumerable long series of time
where wind speed is inferior to the windmill’s start-up speed (approximately, 5 m/s).
This means it would not be possible to guarantee a daily, continuous power supply to
a refrigerator. At least, not relying on the wind energy resource. Some students then
suggested installing one or more photovoltaic panels to provide a daily energy
supply to the refrigerator.

Following the same principle of supporting our decisions with arguments, we
encouraged students to use the INTA’s weather station’s database. We asked them to
examine solar radiation as an energy source; a topic that is also related to the TSMI
curricula. Among wind speed and other variables, INTA’s weather station recorded
solar radiation on surface. This variable (which was also registered every 10 min
from 2010 to 2015) measures solar radiation in watts per square meter (W/m2).

At an epistemic level (Hacking, 1990, 2002) the wind speed and the solar
radiation on surface variables are different in nature; partly, due to the random
component of each of these phenomena. Not knowing the existence of a possible
explanatory model for the wind speed variable led to an exploratory data analysis
(Behrens, 1997; de Mast & Kemper, 2009). At first, the students’ epistemic relations
as regards the solar radiation phenomenon were similar.

However, upon observing the data on the database’s numerical semiotic register
and the graphic illustrating evolution throughout the day, the possibility of an
underlying mathematical model was suggested. Figure 8.5 shows the evolution of
solar radiation on January 3, 2014 in GeoGebra (y-axis: immediate solar radiation at
W/m2, x-axis: time of the day).

Among other points, a peak of solar radiation reaching, approximately, 100 W/m2

at around 2 p.m. can be observed. Due to the available mental models (Blomhøj,
2019), some students proposed a quadratic modelling of the daily evolution of solar
radiation. It is worth mentioning that, as in many other cases, this type of modelling
was not chosen because of its precision but because of the phenomenon’s dynamic,
which, in this case, was cyclical. Furthermore, a few weeks before, the students had

Fig. 8.5 Evolution of solar radiation for a day in January 2013. (Source: Authors’ own work)

174 P. Carranza and F. Miguel



modelled the rotor’s swept area (Fig. 8.6) and some of them commented on the
similarities between these two graphics.

Eventually, the modelling of the evolution of solar radiation was carried out
following a sinusoidal model and adjusting its parameters visually. This strategy was
sufficient in terms of precision and didactic richness for the objectives of the problem
to discuss. Figure 8.7 shows the polygonal line regarding the data on solar radiation
on April 14, 2014 and the sinusoidal model carried out with the students. It should be
noted that it was cloudy in the morning and the afternoon. This constitutes an

Fig. 8.6 Variation of the area to the wind in a Savonius rotor. (Source: Authors’ own work)

Fig. 8.7 Sinusoidal modelling of solar radiation for a cloudy day in April 2014. (Source: Authors’
own work)
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example of returning to the context in the modelling. A least-squares adjustment
model would not represent the maximum solar energy available. Especially, consid-
ering that the region is characterized by semi-desert weather in which cloudy or rainy
days are rare.

The algebraic representation of the modelling of solar radiation’s evolution
allowed us to calculate, quite precisely, the immediate maximum energy available
at any time of the day; however, this was not enough to predict power availability
(Blum & Borromeo Ferri, 2009; Brown & Ikeda, 2019).

The daily power value (W/h) was crucial to determine how many hours, per m2 of
the solar panel, the refrigerator could be functioning. This matter led us to introduce
concepts related to definite integrals. With the available algebraic model, we could
determine the maximum amount of solar power available in the area.

On top of that, the definite integral with variable limits allowed us to estimate the
power supply to different electrical appliances at different times during the day. This
was possible because it could report the maximum daily power available in terms of
the chosen time frames.

Figure 8.8 shows a definite integral with the value of the maximum power
available per m2 on a day of January if, for example, the energy were to be used
on watering a vegetable garden between 8 a.m. and 11 p.m.

The interpretation of the obtained value according to the context was very
interesting: the power equals to having a 170-W light bulb on for 10 h. When
arguing about the different interpretations of the obtained power values, a student
with a background in the installation of solar panels remarked:

But, professor, that is not the power we are going to use, it is the power available on the
surface. A solar panel does not convert all of the energy. A bit, actually a lot, is lost. In the
course I took, I learnt that the input is between 20 and 25 percent.

Fig. 8.8 Available power between 8 and 11 a.m. for a day in January 2013. (Source: Authors’ own
work)
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The strategy to determine the real power generated by a m2 of the photovoltaic panel
resulted in interesting debates. One of them dealt with determining the 20% of the
total solar power available on the Earth’s surface (numerical semiotic register).
Whereas another discussed the representation of the corresponding function and
the calculation of its definite integral.

Figure 8.9 shows this second strategy. GeoGebra’s graphic view shows the point
representation of the solar radiation variable from INTA’s weather station, the
sinusoidal model that represents them, its definite integral, and the model of the
photovoltaic panel’s generated power along with its definite integral.

Observing the difference between the available power in terms of solar radiation
and the power effectively generated by the photovoltaic panel allowed the students
to conclude that the solar resource, in the region’s latitude, is not abundant, espe-
cially in winter.

For a better grasp of the limitations in terms of power, professors and students
made a table based on the algebraic models and the limits of the definite integrals.
This table contained information on the energy output of a panel per m2 on a certain
day, every month. It was measured considering hours of use of some common
electric appliances (computers, LED lamps, and televisions).

This analysis allowed us to understand the complexity of the variables to con-
sider. Including the variables related to the cost of each type of solution, the
maintenance, spare parts availability and trained personnel for their maintenance.

As mentioned before, this project has been carried out with first-year students
during the first semester of the TSMI program since 2015. Throughout the first
2 years of the COVID-19 pandemic (2020 and 2021), the activities were limited

Fig. 8.9 From solar radiation to panel’s generated power for a day in January 2013. (Source:
Authors’ own work)

8 Analyzing the Availability of Renewable Energy Resources in a Project. . . 177



because of the online modality implemented. However, still, all studies and analyses
were carried out with the students.

In the years prior to the pandemic, the proposal was carried out in a real context
where students “immersed” themselves in the problem. Moreover, their proposed
solution was also developed in this context, in this case, the construction and
installation of a windmill at a rural facility. Image 8.1 shows the hoisting of the
first windmill built by students from the 2015 cohort. In this case, the chosen location
was the rural facility of an inhabitant named Yolanda.

In the case presented in this chapter, we analyzed the availability of the wind
resource and solar radiation to supply energy to a refrigerator at the rural facility “La
Margarita”. The video linked below shows footage of the assembling and hoisting of
the windmill at this location (first installation): https://www.youtube.com/watch?
v¼889fvPzVK1g&t¼2s.

8.4 Conclusions and Perspectives

In the experiences detailed in this chapter, we focused on presenting contexts to
students that facilitate the attribution of meaning to the learning process. It is worth
mentioning that more projects cover this matter. Some of them were already carried
out, others are in progress and others are being planned.

Image 8.1 Hoisting the first windmill built by students. Year 2015. (Source: Authors’ own work)
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These projects address several characteristics that, to our understanding, facilitate
the attribution of meaning. For that purpose, we considered three interconnected
dimensions: temporal dimension, knowledge functionality dimension, and knowl-
edge transcendence dimension. Certain hypotheses underlie their articulation. One
of them refers to students as social beings. Here, we refer to them as people who
socialize outside of the classroom (Vygotsky, 1931) as well as within their
community.

Another hypothesis is related to emotional and affectional matters. We see the
world as something subject to improvements that can result from individual as well
as collective actions. In this sense, students are encouraged to work in teams where
they can design and implement an intervention to improve this world. We claim that
completing this cycle of designing a solution and implementing it arises certain
emotions in the students, among other matters. Hence, contributing to motivation
and therefore attribution of meaning.

Considering these hypotheses, one of the first research questions we posed was
about the possibility of addressing disciplinary concepts (in particular, mathemati-
cal) with this type of proposal. In other words: how can we incorporate mathematics
in a proposal with such characteristics? What role could this discipline play?

Supported on the idea that students have to effectively implement the proposed
solution, we contemplated a fundamental use for mathematics, intending to guaran-
tee a genuine and authentic need to evoke knowledge. The strategy involved making
mathematics appear as a set of conceptual tools that allow students to construct
convincing arguments for their decisions. Those decisions would not be banal for
being, precisely, a real intervention in the real world (Showalter, 2013). Therefore,
mathematics would be used to construct rationality, and to perform a thorough
analysis of relevant phenomena to then have supporting arguments when taking
action.

The idea of constituting mathematics as a set of conceptual tools to use for
rationality construction led us to the problem with mathematical modelling. The
modelling cycle was repeatedly introduced in all the projects we carried out. This, in
fact, becomes quite evident when considering that there are three components
involved: context, the need to act rationally, and mathematics.

In this chapter, we discussed one of those mathematics models: the one referred to
the analysis of solar radiation and its possible use to supply electricity to a refriger-
ator at La Margarita. This and the other models made with the students in this
particular project were surprisingly rich for both students and professors. In the case
of professors, it was not only because of their semantic richness but also because,
along with the students’ interventions, they allowed us to significantly improve our
understanding of the analyzed phenomena. In this sense, the learning process was
mutual.

Another learning stage for the professors’ team, this time of a didactic nature, was
constituted by what could be defined as meta-context permeability. On the one hand,
we have the real context which, in this case, is characterized by the rural inhabitants
and their difficulties in accessing underground water. On the other hand, when
students approach the problem in the real-world context, they create situations
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with didactic potentialities that result from their interactions with the real-world
context.

As a result, there appears what we deem the meta-context: a context constituted
by the students’ approach to the real-world context. This meta-context, which is
dynamic and presents instances not planned in the professors’ analysis carried out
beforehand, creates situations with didactic potentialities.

One such example is the study of solar radiation. In the analysis made before the
project, the professors had only considered the study of the wind resource since it is
the source of energy for the windmill. The conversations among students upon the
first visit to the rural location and their subsequent insistence to tackle the issue
encouraged us to reconsider our planning and incorporate the study of solar radia-
tion; more precisely, due to its didactic potentialities.

In addition, the teaching team has learnt (and it is continuing to do it) within what
could be denominated an additional margin for uncertainty to the development of the
project’s logic and, consequently, to the disciplinary logic. By accepting a margin for
uncertainty or permeability for the phenomena in the meta-context, we could analyze
solar radiation and we could introduce the related knowledge, such as definite
integrals, and parameters in trigonometric functions, among others.

This meta-context permeability also allowed us to address another problem,
which was presented by the students and was related to hoisting the windmill. It
will be discussed in detail in the next chapter along with a student’s observation that
resulted in the modelling of stress and torque.

Another instance of this permeability was observed with the students from the
2017 cohort. That group proposed a design for the rotor different from the one
originally planned. This new design resembled a turbine with deflectors and its
purpose was to optimize performance. Image 8.2 shows the rotor built by said
student cohort.

In order to have arguments that could support the construction of this new design,
it was necessary to carry out an analysis to find the optimal point among a set of
variables (quantity, inclination and blade rotation) that could maximize the available
power for a determined wind speed range. The complexity of that analysis exceeded
the department’s capabilities. Thus, to carry it out we had to request the collaboration
of a research centre of the National University of Comahue. Figure 8.10 shows the
simulation produced by our collaborators. To understand this simulation, students
had to be introduced to concepts related to partial derivatives, among others.

As was anticipated in Sect. 8.3, the chosen real-world contexts have naturally
evoked extra-mathematical knowledge that was indispensable to continue with the
project’s logic. One such example is the case presented in this chapter, where we
studied the availability of the wind energy resource by consulting the database from
a weather station.

We could confirm the almost unavoidable interdisciplinarity that this type of
proposal entails. Such unavoidable communication among disciplines to construct
rational arguments questions traditional education in watertight compartments. In
fact, it creates tension in several directions within the traditional education
ecosystem.
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One of those directions refers to the professors’ concepts of teaching, learning
and even planning. As regards this last aspect, the traditional didactic transposition is
questioned: in a proposal constituted by projects in real-world contexts, it is neces-
sary to not only consider the disciplinary logic but also the project’s logic.

Within the project’s logic, the disciplinary logic (mathematics, in our case) could
likely establish essential connections with other disciplines. This could occur due to

Image 8.2 Another rotor design for Savonius windmill. (Source: Authors’ own work)

Fig. 8.10 Simulation of new Sanonius rotor design with optimized variables. (Source: Authors’
own work)
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the semantics carried by the mathematical objects as a result of being formed within
the project’s logic. As opposed to being required by the disciplinary logic, which
could be relatively autonomous within its internal development.

The different conceptions of what teaching and learning represent may also be
questioned when making incursions into a proposal like this. In fact, if we agree that
a concept has been learnt when the student is able to reuse it in new situations
without any type of assistance or suggestion from others (Robert, 1992), then an
experience like the presented in this proposal represents a sort of open laboratory
where it is possible to observe if there is effective progress in the students’ learning.

This projects include various instances of autonomous work in a real-world
context (that is, without any help or advice from the educator) where students
must consider certain concepts to solve the innumerable problems they encounter
during the construction and installation stages.

Venturing into this type of proposal constitutes evidence for the pressing need to
consider other elements in the teaching-learning process. Elements that go beyond
disciplinary concepts: we place particular emphasis on the abilities and competen-
cies related to modelling (Blomhøj, 2019; Maaß, 2006).

Once again, there appears a strong interrelation: the disciplinary concepts, abil-
ities and competencies related to modelling interact and enhance each other (Blum &
Borromeo Ferri, 2009; Brown & Ikeda, 2019). Moreover, as we will discuss in
chapter four, the modelling tool and the kind of objects from the context to be
considered influence the reasonings as well as the concepts, abilities and competen-
cies involved.

Another aspect questioned by this dynamic of projects in a real-world context is
related to the administrative area and managing space, time and responsibilities. It is
indispensable to consider an institution as an ecosystem where, as the name suggests,
individuals, spaces, responsibilities, actions and objectives are interrelated and at
balance.

A proposal as the one developed here puts the traditional school ecosystem under
strain: the necessary spaces are not always available, in many cases learning is
produced outside of the classroom, time cannot be systematically adjusted according
to the traditional configuration of a course, and professors can no longer teach in
watertight compartments.

Carrying on with this type of proposal entails considering that, in time, the school
ecosystem will have to be adapted to be able to integrate this new dynamic. This
could lead to a new balanced state for the ecosystem that allows us to not only
develop but also replicate these experiences. The problem then surpasses the didactic
view and positions itself in the pedagogical and administrative field.

Finally, we could observe an important improvement in the competencies related
to teamwork, complex objective achievement, and certain matters referring to gender
equality and respect; both within the team and towards the rural inhabitants.
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Chapter 9
Descriptive and Prescriptive Modelling
in a Math Class Project: Disciplinary
Concepts Participating in the Construction
of Arguments for Decision Making

Pablo Carranza and Jaime Moreno

9.1 Introduction

Overall, in this chapter, we discuss the potentialities of projects in a real-world
context as pedagogical-didactic proposals to approach disciplinary concepts, partic-
ularly, mathematical. We will share details on some of the stages of a project
consisting of the calculation, construction and installation of Savonius windmills
for rural communities in Argentinian Patagonia. We have been working on this
project for several years at the National University of Río Negro (UNRN1).

To design these windmills, we deemed necessary their easy, low-cost construc-
tion as well as their simple maintenance. This led, for instance, to using recycled
200 L barrels for the rotor. Although the barrels do not optimize wind resource
management, they are cheap and easy to obtain and, eventually, to replace.

The simplicity of the design is intended and not improvised. In fact, for the design
to work, thorough analyses and foundations are needed to ensure the objective
(in this case, to pump water) will be accomplished and long-lasting. These analyses
are part of the work university students at UNRN carried out. They are also the
conceptual framework that allows the students to construct and install the windmills
in rural communities.

Thus, realism is a defining characteristic of this proposal and it is used from a
didactic perspective as a framework for argumentation for decision making. Accord-
ingly, this required rationality has led both students and professors to evoke disci-
plinary knowledge of mathematics, among other fields, which allowed them to create
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a safety framework for their actions during the construction and installation stages.
In both cases, such knowledge was evoked during the modelling process.

In this chapter, we will present a few models created with university students in
the project involving the calculation, construction and installation of windmills. The
models will be categorized into descriptive and prescriptive.

9.2 Conceptual Framework

As in the previous chapter, we address our interest to present didactic situations to
students. Situations where they can attribute meaning to the learning process. Once
again, we claim that meaning is not a characteristic or attribute of the proposal, but a
construction (Develay, 1993). This construction is formulated by a student according
to several elements in which some of them being their own environment, others
being of a more personal nature. Nonetheless, we also understand that certain
characteristics of the proposals may facilitate the students’ attribution of meaning.

Among such characteristics is what we call a temporal dimension and it is
developed in two directions: present and future. Simply put, we expect students to
perceive their gained knowledge as something useful for both their present and
future. Another dimension considered, and strongly related to the previous one, is
knowledge functionality. We believe knowledge should help students understand the
world around them while also allowing them to intervene in it. Finally, a third
dimension taken into account is defined as knowledge significance. Our purpose is
that students see this knowledge as something useful for themselves and the
community.

In this chapter, we will focus on the second dimension, centered on the function-
ality of disciplinary knowledge. More specifically, we will address the disciplines’
potential to construct arguments that allow students to make rational decisions in
their interventions. This proposal is carried out in a real-world context to facilitate
meaning attribution. By real-world context, we understand an existing context that
students can experience. A context where the decision-making process is significant
to them (third dimension). In other words, instead of being a context presented by the
professor, it is taken from their community so students can fully experience it and
observe how their decision-making process is effectively applied.

The issue of contexts and their realism is also discussed by other authors who
refer to their potentialities and difficulties (Bednarz, 2018). Among the potentialities,
we can find motivation (Brown, 2019), which is associated with the idea of meaning
mentioned above; and what some call place-based awareness (Showalter, 2013). As
regards difficulties, this last author mentions that finding mathematically rigorous
cases also poses a challenge. That is, finding contexts that genuinely demand
disciplinary knowledge (Buxton, 2006; Spandaw, 2009); in our case, mathematical.

In this regard, we adhere to the idea that knowledge should be genuinely required
by the context and not fictitiously introduced by professors (Boaler, 2001; Brown,
2019). Because that leads to a traditional didactic contract (Brousseau, 1988) in
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which students focus on meeting their educators’ expectations rather than on finding
the rational solution the context demands.

One of the proposals we carried out is the calculation, construction and installa-
tion of Savonius windmills (Savonius, 1922) for rural communities in Argentinian
Patagonia. We consider this proposal incorporates the three dimensions presented
above. A more detailed description can be found in the previous chapter.

Here, we will discuss the potentialities this type of proposal presents for mathe-
matical modelling. On the one hand, we have a real-world context that is marked by
an imbalance or conflict: there is a problem or a particular situation that requires a
solution. On the other hand, we cannot discuss that solution based on intuition or
following a trial-and-error strategy. It is necessary to carry out a rational analysis of
both the characteristics of the problem and its possible solutions.

Modelling then constitutes a space that synthesizes the real-world context. In this
space, it is feasible to introduce disciplinary knowledge that allows us to carry out a
precise analysis of the problem and to develop a solution supported by arguments.
Hence, mathematics along with other disciplinary fields function as a set of concep-
tual tools for the construction of rational arguments for the decision-making process
demanded by the context.

This type of proposal (particularly, the one involving the calculation, construction
and installation of Savonius windmills) is referred to as a project due to its richness
and complexity. Here, the project in question will be named: Savonius Windmills
Project. Due to space limitations, we will only discuss two of the situations where
mathematical modelling was necessary. One of them refers to the analysis of guy
wires, whereas the other focuses on the stress involved in hoisting the windmill into
its vertical position.

Both situations fit in a typical modelling cycle (Blomhøj, 2019; Caron, 2019;
Czocher, 2019). Briefly described, this cycle starts with a real-world situation and a
problem, then the reality’s characteristical elements linked to the problem are
considered. Next, those characteristical elements are associated with disciplinary
methods and objects (Crombie, 1980; Hacking, 2002). Finally, at the abstraction
level, reasonings and analyses are produced establishing relations previously
unknown or inexistent to then carry out an argument-based intervention in the
context.

This characterization of the modelling cycle is not exhaustive. Some authors
discuss a validation stage (Maaß, 2006) and others the itineration of the cycle
(Brown & Ikeda, 2019), among other points. While we agree on such ideas, we
wish to highlight the importance of what we could call the ending of the cycle: the
return to the context that encouraged the modelling. Such return is carried out with
conceptual tools for comprehension and action; tools that were not possessed before
the modelling.

Within the field of research on didactics of mathematics, the literature proposes a
characterization for models: descriptive modelling and prescriptive modeling (Blum
& Borromeo Ferri, 2009; Brown & Ikeda, 2019). In a few words, a descriptive
modelling may characterize and show a better understanding of a phenomenon in
context. Prescriptive modelling may indicate how to intervene in the context.
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In the following sections, we present two examples of what we consider to be a
dialectic between those two types of models. Both examples occur within the
Savonius Windmills Project; however, we want to add that the same dialectic has
been observed in other projects. They will not be discussed here due to space
limitations.

9.3 Methods

The Savonius Windmills Project has been carried out since 2015. Nevertheless, due
to the COVID-19 pandemic, some adjustments have been made through 2020 and
2021. Its authors are the professors in charge of the first-year mathematics course in
the Industrial Maintenance Technician program (a 3-year degree) at the National
University of Río Negro, Argentina. The project is therefore conducted with first-
year university students enrolled in the program; approximately, 50 students aged
between 18 and 50.

This project is the core of the mathematics course and it is developed throughout a
semester, which is also the course’s formal length (first-year students). The instal-
lation process usually occurs after that period because of the extremely cold Pata-
gonian winter. The didactic strategy of this proposal is to promote as much
rationality as possible in each of the project’s stages (calculation, construction and
installation of the windmills). Precisely, that rationality genuinely justifies the need
for disciplinary concepts and methods.

In other words, for the concepts’ emergence, we seek to make the most of the
certainty that the project has to be successfully carried out. That certainty is
important. If a windmill falls, the results can be tragic for the rural family using it;
hence its fundamental aspects are thoroughly analyzed.

9.3.1 Case 1: Modelling of the Guy Wires

One of the fundamental aspects of the project is supporting the windmill in a vertical
position. It is worth mentioning that the Patagonian region is distinguished by its
strong winds that can sometimes reach 100 km/h in spring. Thus, even if the
windmill is locked during extreme winds, it must be able to resist the wind stress
on its structure. Figure 9.1 illustrates the support system used in the project for each
of the eight guy wires.

The windmill stands vertically because of a set of supporting guy wires made of
steel. The wires are attached to a concrete block buried in the ground. As a result, the
concrete block and the ground above absorb the impact of the region’s strong winds.
The modelling discussed here addresses a problem that typically occurs when
installing the windmill at a rural family’s location. One of the tasks entrusted to
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the inhabitants is to dig four pits for the concrete blocks. A detailed plan and the
necessary explanations are given to perform this task.

In some cases, the inhabitants cannot maintain the designated distance between
the pits and the foot of the mill (6 m) because of blocks of stone or large roots. Since
these families live roughly 400 km away from the university and have no means of
communication whatsoever, in those cases, they decide to relocate the pits according
to their own criteria.

This possibility is discussed beforehand with the students. In this regard, one of
the most relevant questions professors frequently ask is: “If the wire is attached to
the ground at a higher (or lower) distance than expected, do you think the stress on
the wire and the concrete block varies due to the anchor being nearer or farther from
the ground?”. We will summarize the students’ usual answers as follows: “Stress
will not change regardless of the distance of the guy wires because it is caused by the
wind”.

To study this issue, the professors proposed creating a dynamic representation of
the stress in terms of the distance between the wire and the windmill (Fig. 9.2). This
representation was made using GeoGebra.

The curve shown in Fig. 9.2 is traced from the extreme of the vector named tierra
(ground) which represents the vertical stress on the concrete block and the ground
above it. This figure evidences how the stress module varies when the anchoring
point is nearer or further; this is controlled by the distancia (distance) slider. This
modelling allowed students to deepen their understanding of the stress dynamics on
the guy wires and to identify other aspects previously unknown. For example, the
vertical component of the enrienda vector, named vertical. Identifying that compo-
nent led to recalculating the stress on other concrete blocks not shown in the figure,
which are the blocks representing the foot of the windmill.

We believe this is a descriptive modelling since it shows the stress interactions on
the support of the windmill. Its dynamism lets us observe how and why the stress
varies depending on a location. Thanks to this description, iterated as many times as

Windmill
Wind

Guywire

6 meters

Galvanized
pipe

Block
H

Ground

Fig. 9.1 Savonius windmill and its support system. (Source: Authors’ own work)
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necessary, students could understand that the depth of the pit should be determined
according to its distance to the foot of the windmill and the wind. In addition, they
would need to inspect the depth of the pits dug by the community members at the
construction site.

The project’s dynamic makes the installation of a windmill an efficient yet
complex task. In general, the process lasts between 3 and 4 h. Thus, work is intense
and coordinated. Students are divided into groups and each group is entrusted with
certain responsibilities during the installation process. In particular, the team respon-
sible for the footing and guy wires must check the pits’ depth according to the
analysis done in class (Fig. 9.2).

The environmental working conditions and the challenges of the installation tasks
impeded having a laptop at the location. Therefore, the team assigned to the pits
cannot use one to determine depth according to the distance between the inhabitant’s
pits. Calculations on paper are difficult to do as well due to the same reasons.
However, this difficulty could be anticipated and discussed in class thanks to the
professors’ gained experience working on other windmill installations. As a result,
we could create a new model that allowed us to quantify the phenomenon.

We created a spreadsheet in class containing the relations and variables involved
in determining the ground vector (Fig. 9.3). This work was based on the descriptive
modelling in Fig. 9.2 and done before the installation at the location.

This second model was carried out once the first one was understood. The
objective was to quantify the variables by algebraically expressing the relations
discovered in the previous modelling. Since this model was designed on a spread-
sheet, students could view it from their smartphones during the installation stage.

Fig. 9.2 Dynamic representation of the stress on the anchor in terms of distance. (Source: Authors’
own work)
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They would only need to measure the distance of the pits dug by the community
members. Then, they input those values on the spreadsheet to determine if it was
necessary to deepen the pits or not; all of this was carried out quickly and safely.

9.3.2 Case 2: Lifting the Windmill at the Location

Roughly 50 students divided into teams participated in the construction of the
windmill. Each team was in charge of a certain task: building the structure, building
the rotor, preparing the concrete blocks and the guy wires, and building the braking
system. Thus, each task was performed by a different team.

All these components are built at the students’ houses or at specific places
assigned for that purpose. After that, the main parts of the windmill are taken to
the location. Once there, the teams work together to assemble it and hoist it next to
the water well. Lastly, they install the hoses and the windmill starts working (if the
wind power is sufficient at that time).

One of the critical moments in the installation at the assigned location is lifting the
windmill from the horizontal assembling position to a vertical working position. The
modelling presented in this section emerged from a student’s question. Upon
watching footage from previous years showing how the windmills were hoisted,
the student asked whether it would be better to lift it differently (https://www.
youtube.com/watch?v¼6o0LdHIVdFE). Figure 9.4 shows a schematic diagram of
the windmill’s hoisting process: a vehicle with an electric winch is placed at a certain
distance from the windmill. The synthetic cable of the winch is attached to the
superior part of the windmill (Point A).

The student asked: “Isn’t it better to attach the cable to the center of the structure
(Fig. 9.4, Point B) instead of how it’s being shown in the video (Fig. 9.4, Point A)?”.

Fig. 9.3 A spreadsheet on
the quantification of the
variables affecting the guy
wires. (Source: Authors’
own work)
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Moreover, considering the debate for the modelling of the guy wires (Fig. 9.2),
another student asked: “Does the distance between the vehicle and the structure
affect stress?” These and other questions encouraged a new dynamic modelling in
GeoGebra that quantified the stress (vectors) using sliders. This time, the modelling
was done in scale.

This dynamic modelling of the stress on hoisting the windmill into its vertical
position (Fig. 9.5) required different concepts than the ones needed for the analysis
of the stress on the guy wires (Fig. 9.2). In that case, one of the main
non-mathematical concepts discussed was the equilibrium of forces and Newton’s
laws. Whereas in this case, we applied an even more abstract concept: torque.

Since this modelling was done in scale, it was descriptive as well as prescriptive.
We consider it was descriptive because it showed how vectors, their modules and
their relations are interwoven in the hoisting process. Evidencing these objects
allowed us to gain a better understanding of the stress dynamics, leading to a detailed
characterization of the stress on each of the proposed alternatives.

Fig. 9.4 Schematic diagram of a vehicle hoisting the Savonius windmill. (Source: Authors’ own
work)

Fig. 9.5 Modelling of the stress on hoisting the Savonius windmill. (Source: Authors’ own work)
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In addition, we consider it prescriptive because as a result of understanding the
stress dynamics students could produce arguments for the decisions for several
matters, and for instance:

1. It is convenient to attach the winch cable to the upper end of the windmill
(Fig. 9.4, Point A) because less stress is produced compared to when it is attached
to the center (Fig. 9.4, Point B).

2. The farther the vehicle is from the foot of the windmill, the lesser the stress
produced on the winch cable.

3. Higher stress is produced in the initial stage when the windmill is being pulled to
the vertical position. Therefore, more precautions are necessary during said stage
of the hoisting process. Cable resistance needs to be taken into account during this
high-stress stage.

4. Initially, the windmill should be at a certain angle (not horizontal). Otherwise, the
stress would solely be on (horizontal) towing and not on hoisting (vertical
component).

5. There is a horizontal component at the foot of the windmill whose module is
maximum at the beginning of the process. This tends to cause the foot to move
towards the vehicle (these vectors are hidden in Fig. 9.5 due to space limitations).

6. The quantification of modules in scale allowed us to learn about the resistance the
vehicle’s winch cable has to withstand; this information was later compared with
the winch’s specifications.

9.4 Results

The results obtained in these studies are as follow.

9.4.1 On Semantic Richness

One of the first results we could observe from the models carried out with the
students was their semantic richness. Indeed, mathematical objects are no longer
abstract entities. In the models, many of them carry meaning associated with the
context of origin that remains throughout their eventual transformations. This
semantics establishes the relations between the mathematical object and the real-
world object; thus, establishing a connection.

Still, there is one difficulty proven in class and connected to this matter. Students
have to understand the objects at a disciplinary-logic level and retain their semantic.
Therefore, their attention is required at two levels: disciplinary logic and semantic.
However, the outcome is positive since the semantic dimension of the object, their
connection to reality, helps the students gain a better understanding of them. In this
regard, during the windmill’s installation and construction stages, it has been
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observed that students integrate the arguments produced in class throughout each
modelling.

This can be seen in the actions they perform autonomously. One such example is
the installation stage of the windmills. In 3–4 h, the teams, in complete autonomy,
recall their class debates to act diligently and rationally during the decision-making
process at the location, which may demand foreseen or unexpected decisions.
Another clear example can be found in the students’ explanations to the community.
After completing the installation, they explain to the inhabitants what precautions to
take in the use of the windmill and how to perform preventive or corrective
maintenance tasks.

9.4.2 On Interdisciplinarity

Another result observed is the inevitable interdisciplinarity. None of the cases
presented in this chapter could have been solved without knowledge from other
disciplines; specifically, from physics.

In the first case, it was necessary to include concepts related to Newton’s laws.
More precisely, the concepts of equilibrium of forces for bodies at rest. Without
these concepts, it would have been impossible to carry on with the dynamic
representation of the entwinement of vectors that showed us how the distance
between the pits and the foot of the windmill affects the stress module.

For instance, in the modelling of the guy wires in GeoGebra, the mathematical
concepts provided technical assistance that helped us represent and relate the
vectors, whereas the physics concepts assisted us in the explanation of the phenom-
enon. Figure 9.6 shows the modelling of the stress on the upper corner of the
windmill (Point B).

Fig. 9.6 Stress on the upper corner of the windmill. (Source: Authors’ own work)
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The *BD vector represents, in a simplified manner, the force of the wind on the
windmill. Its reaction,*BD0, is explained using physical arguments (bodies at rest,
Newton’s laws); whereas its construction was carried out using mathematical con-
cepts (D and D0 are centrally symmetric with respect to B).

On the other hand, * BD0 should be considered a component of another vector
since there is no object applying a force in that direction (argument from physics).
The construction of the *BE vector—of which *BD0 is a component, is done
using, once again, mathematics: a line is perpendicular to the X-axis containing D0.
Point E is the result of the intersection of this line and the line containing the guy
wire.

In turn, there is a vertical component of the *BE vector that tends to compress
the structure of the pipe that transmits the stress to the foot of the windmill (argument
from physics). Its construction involves mathematics as well: a line is parallel to the
X-axis containing point E and intersects the Y-axis in point F, and etc.

Therefore, the interaction between the two disciplinary fields in this modelling
was constant throughout its construction. The same occurs with the interpretation
and comprehension of the phenomena. For instance, in Fig. 9.7 we can observe two
vectors, the guy wire BC located at 7.53 m of the foot of the windmill and the main
tube represented by AB (6 m tall).

When repeating the modelling in full representation (Fig. 9.2), some students
observed possible module equality between the *BD and *CI 0 vectors (Fig. 9.7).
This possible equality identified on the graphic semiotic register (Duval, 1993) was
then observed on the numeric register (coordinates of both vectors on algebra view in
GeoGebra). The confirmation of this supposition was supported by the physical and
mathematical framework that emerged from the constructive and conceptual rela-
tions between the vectors.

The importance of the students’ discovery should be noted: the*CI 0 vector is the
horizontal component of the stress the guy wire causes on the anchoring system. To

Fig. 9.7 Two related efforts. (Source: Authors’ own work)
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remain in place, the ground has to exert a same-module force in the opposite
direction. Students could conclude that installing a windmill on sandy ground was
not recommended (return to context). It is worth mentioning that, in this case, the
modelling was prescriptive since it allowed us to determine how to act in the context
(opting for find firm instead of sandy ground).

This indispensable interdisciplinarity was also observed in the case 2 modelling
where stress was studied concerning the hoisting process of the windmill. Once
again, physics and mathematics took part in the construction of the model. As
regards physics, the key concept, in this case, was torque, although Newton’s laws
and equilibrium of forces were also introduced. As regards mathematics, similar to
the descriptive modelling in case 1, rigid transformations were crucial.

One difference with the modelling of the guy wires in GeoGebra (Fig. 9.2) was
switching to semiotic, numerical and algebraic registers (Duval, 1993, 2006) since it
was an analysis based on torque equilibrium. The same intrinsic interdisciplinarity
was observed in the case 1 modelling done on a spreadsheet as represented in
Fig. 9.3.

Let us recall that that modelling had a particular objective: once the vector
relations in the guy wires were understood, it was necessary to quantify (at the
installation stage) pit depth according to the distance between the foot of the
windmill and the pits dug by the inhabitants. That depth can be seen on cell B11
(Fig. 9.3) and, even though the value results from algebraic and pre-algebraic
calculations (Haspekian, 2005), other concepts were also introduced. For instance,
estimated ground density (cell B7), and various volumes (cells B8 and B10), among
others.

This intrinsic interdisciplinarity likely occurs because the project is centered on a
real-world problem of the context. It is not influenced by the traditional didactic
transposition (Chevallard, 1985) in which the concept to be taught is chosen first
(monodisciplinary) and then the appropriate context to discuss it is selected. In this
case, a real-world problem from the context was chosen first and it was then analyzed
to determine if it was appropriate to address a set of disciplinary concepts. Since such
problems are usually interdisciplinary, they involved knowledge from other disci-
plinary fields.

9.4.3 On the Construction of Rational Arguments
for the Decision-Making Process

Another aspect to highlight is the models’ potential to help students grasp a situation,
analyze it, adopt reasonings and produce arguments for the decisions the project
demands.

These models were created in spaces for debate between students and professors
where even the professors discovered new characteristics to be considered; one of
them being the relation between wind force and horizontal force on the ground.
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9.4.4 On the Didactic Contract

The models constructed rationality that impacted the didactic contract of the math-
ematics class in at least two aspects: knowledge retention and mutual expectations.
As regards the first aspect, the models were first introduced by the professors due to
some difficulties the students had. However, the students themselves progressively
acquired them and managed to propose their own analysis. Thus, the models were
created in spaces for debate and discussion, not upon the professors’ exposition of
knowledge.

The second aspect was another interesting phenomenon; however, it was more
related to tackling a real-world problem in context. Usually, in a traditional didactic
design, students are interested not only in solving a given problem but also in what
their professors expect from them. In some cases, their interest is in how their
professor considers the problem should be solved. In this regard, their worries and
their need to know about the professors’ expectations are only natural since they
have to pass the exams graded by them.

In this type of proposal, we can observe some changes since students are no
longer exclusively focused on their professors’ expectations. Now, they are also
focused on what the context requires. Since this proposal demands that students
produce a solution to a particular problem, their interest shifts from those expecta-
tions to other matters. For instance, meeting the community’s expectations, being
able to follow the team dynamics in terms of commitment and responsibilities.

In Argentina, students can usually retake mid-term exams in case they failed. This
is called a “make-up exam.” In this proposal, the reality of some situations does not
leave room for a “make-up exam”. For instance, a windmill falling would be
unacceptable. This forces both students and professors alike to pay extra attention
so their decisions are supported by strong arguments. Here, the disciplinary methods
and concepts are the founding principles for the construction of rationality. The
models become spaces for precise analysis for that construction.

It should be noted that case 1 was discussed using two models, whereas for case
2 only one was needed. This is due to, at least, two reasons: the students’ knowledge
and the initial objectives of each model.

In case 1, the issue with the anchor distance and stress was addressed progres-
sively. The modelling in GeoGebra, where it is evidenced that distance affects stress,
was carried out at the beginning of the semester. It also involved a set of knowledge
more or less already acquired (Robert, 1998) by the students; such as Newton’s laws
and rigid transformations. After discovering the relationship between stress and
distance, it was necessary to quantify stress to determine the depth of the pits. To
do so, it was important to calculate wind stress on the windmill.

Moreover, identifying the module of that vector led to more analyses. One of
them was the modelling of the rotor’s swept area and the other was a statistical
analysis of the region’s wind. To carry out said statistical analysis, a database was
accessed. It contained the registries of a government’s weather station that showed
5 years of data on wind speed (m/s). This data recorded changes every 5 min.
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Figure 9.8 is presented for illustrative purposes only. It shows the steps followed
to quantify the “wind” vector. This figure illustrates a modelling carried out with the
students where they performed a simplified analysis of the contribution of each half
barrel in the swept area.

Then, once the wind vector was quantified, it was possible to study the modelling
on a spreadsheet. A few weeks passed between these two events. As regards the
modelling of the lifting of the windmill, the professors considered the limited time
availability and the complexity the quantification posed on the students by consid-
ering it dealt with torque.

Therefore, the modelling was done in scale. As a result, the student’s question
about the convenient point to attach the wire could be answered, and an integral
analysis of the moment of hoisting could be performed. Thanks to this analysis it was
even possible to define the vehicle’s winch cable specifications.

9.5 Perspectives

It is important to discuss some perspective on Mathematical Modelling.

9.5.1 Modelling as a Tool to Discuss Disciplinary Concepts
and as Curricular Content

The models presented in this chapter, as well as others we carried out with students,
prove their dual functionality. They become potential elicitors of knowledge and
disciplinary methods while also becoming an object of study.

Fig. 9.8 A simplified analysis of the contribution of each half barrel in the swept area. (Source:
Authors’ own work)
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As regards knowledge acquisition, it is worth mentioning that the disciplinary
concepts that emerged during the modelling were later thoroughly discussed. This
discussion was done considering the disciplinary field to analyze their properties and
functions. Therefore, the models contained other activities that were not strictly
related to the project but that focused on discussing certain aspects of the concepts
being learnt; even with instances of institutionalization (Brousseau, 1998).

As regards modelling as a learning object, the models were presented by the
professors, primarily, because of the approach in which the students previously
learned disciplinary concepts. They were designed to be taught as exercisable not
as usable. In fact, those exercises were usually done on paper and without context or
with a context assigned by their professors. The project’s proposal constituted an
important qualitative leap in these and other dimensions for the students. For
instance, when working in teams towards different objectives.

Nonetheless, one question remains since we still need to identify the individual
and collective processes that allow students to link elements from the context to the
appropriate models, without the influence of professors or (in more general terms) of
a didactic contract that provides a framework for those processes. We believe this is
relevant considering that students will not have such framework or the aid of a
professor in their personal and professional interactions.

9.5.2 Replication or Development of the Proposals

As of the date of publication of this article, the team has carried out various projects
similar to the one presented here. Some of them include:

• Parabolic solar cookers.
• Savonius windmills.
• Water purification systems for families.
• A prototype for an application for phones in tracks in protected areas.
• Environmental pollution testing in urban areas.
• Mobile solar-powered water pumping systems.
• Thermal conditioning for a school library.

These projects have been carried out at urban secondary schools, rural secondary
schools and universities. In terms of future perspectives, we still need to find a
possible architecture or shared quality that can result in a systematization that allows
us to give tools to other educators intending to work on this type of proposal.

In this sense, the models perform a key role in this possible architecture. They
become a sort of factory that produces reasonings and arguments based on disci-
plinary concepts and enables the development of the project. The characterization of
this type of proposal in a real-world context and the models become a foundational
basis to determine how these factories work.
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9.5.3 Modelling Instruments

We observed that modelling is not merely the result of the relation between the
problem of a context and the representations of its author. The instrument or support
chosen to create the modelling affects that relation; thus affecting the type of pro-
ductions that can result from it.

In other words, the modelling is affected by the chosen instrument and this
instrument is an influence upon what can be modeled and upon the results in terms
of reasonings and conclusions. Therefore, the modelling instrument becomes a sort
of active lens through which the relationship between the problem and the person
analyzing it is influenced.

For instance, in case 1, the analysis of how the guy wires’ anchoring distance
affect the stress on them was carried out using two instruments: GeoGebra and
Spreadsheets. These programs, now considered modelling instruments, conditioned
the discussed aspects of the problem and what could be analyzed as well as
concluded. In this regard, GeoGebra shows great potentiality because of its views
and dynamic tools, such as the sliders.

However, as we will discuss in Chap. 4 when we introduce two new types of
modelling, those same potentialities can facilitate a certain type of productions. We
will refer to them as analogical to the detriment of others we will name analytical.
This is done considering an economics of knowledge.

Given the facilities GeoGebra offers for representing objects, it may be more
adequate to emulate a reality of the context in GeoGebra (analogical) instead of
focusing on the more abstract relations between the objects (analytical), which is less
cost-effective in terms of reasoning.
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Chapter 10
Designing and Building a Mobile Support
for Solar Panels: A Project for 12-Year-Old
Students that Requires Concepts, Among
Others, of Mathematics

Pablo Carranza and Ailen Morales

10.1 Introduction

As in the previous chapters, here we focus on proposing situations where learning is
seen as meaningful. In this case, we worked with first-year students at a secondary
school in a town quite singular due to its rapid growth. In this town with significant
migration flows, we found that students’ ages varied considerably within the same
grade level, and they also came from different locations. For the school system, these
students presented significant learning difficulties which resulted in high rates of
grade repetition or even dropouts. In this situation, it became crucial to consider what
we deem a fundamental matter: how can we help students find meaning in learning?

To address this matter, we considered a set of hypotheses that we named
dimensions and that tend to characterize situations that facilitate the attribution of
meaning to learning. This led us to proposing the students creating a solution for a
real problem that affected a substantial number of inhabitants in the area (even their
parents and grandparents): groundwater pumping for irrigation and animals. The
proposed solution for this problem consisted of building a support for photovoltaic
panels that would supply electricity to a small water pump. Given the lack of the
energy source (solar radiation), the students had to consider the possibility of
regulating the angles of the support to maximize energy usage.

The didactic objective was addressing mathematical disciplinary concepts that
would appear as a set of rational tools to construct arguments for their decisions.
However, this discipline alone proved to be insufficient to understand the problems
of the project and to propose the necessary solutions. In this chapter, we focus on our
reflection on the introduction in unison of different disciplines in order to understand
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and solve problems in real-world contexts. Moreover, in many cases, this introduc-
tion involved teaching certain concepts because they were not previously known.

10.2 Problem

The problem we will address in this chapter establishes a relation between learning
contexts, modelling and interdisciplinarity. In this case, the term learning context
refers to the didactic context; that is, to the space designed by the teacher to promote
learning concepts and developing abilities and competencies. Some refer to it as a
didactic situation (Brousseau, 1998); however, due to certain possible particularities,
we will use the term learning context. Precisely, one of those particularities may be
the type of didactic context presented: a real-world context.

It is necessary for us to explain that by “real-world context” we mean one that
exists or it is likely to exist in the real-world (Bednarz, 2018; Brown, 2019) but also
allows students to be embedded in it and fully experience it. On the contrary, if the
learning context exists or it is likely to exist, but students cannot experience it, we
consider it as an evoked or mediated context by, generally, the educator. There are
other possibilities for learning contexts, such as simulations (Bush et al., 2018;
Chance & Rossman, 2006; Heuvel-Panhuizen, 2018; Rider & Stohl Lee, 2006).

Nonetheless, we understand that these and other options present their potential-
ities and difficulties. In this chapter, we discuss real-world contexts due to the
students’ possibilities to immerse themselves in a given problem. Discussing real-
world contexts and mathematics learning leads, almost naturally, to consider model-
ling. In fact, modelling allows us to connect these contexts to the mathematical
world. Precisely, we argue that modelling is a mental construction that establishes a
connection between an individual’s representation of context and a structured field
of knowledge such as mathematics.

Why relate a real-world context to mathematics through modelling? One answer
seems evident: the analyses and conclusions of a real-world context that can be
obtained using mathematics are qualitative and quantitatively far superior to what
could be obtained through direct observation of reality. And why relate these
contexts to mathematics learning through modelling? In this regard, interesting
evidence can be found: modelling contributes to the students’ attribution of meaning
to mathematics; besides, when modelling a problem from the context, it facilitates
discussing concepts and their resignifications (Boaler, 1993, 2001; Spandaw, 2009;
Urrieta Jr., 2007).

Therefore, both real-world contexts and mathematical modelling are topics of
didactic interest. Several studies (along with their corresponding experiments)
appear to question this relationship between real-world contexts and mathematical
modelling. More precisely, our questions on this matter are: is mathematics suffi-
cient to create a mathematical model of a real-context problem with students? Or is it
necessary to introduce other disciplinary fields? We acknowledge that this is no
trivial matter due to the possible impact on the whole school organizational system
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that having to integrate a connection of disciplines when addressing mathematical
activities in a real-world context could have.

Moreover, if what we could call mathematics’ lack of self-sufficiency to discuss
mathematical modelling in real-world contexts is proven, we should probably
consider an interdisciplinary didactic. In this chapter, we will share some details
on an activity related to this matter as well as some considerations towards this
direction. The results, conclusions and perspectives presented here are related to the
previous chapters. However, we detailed some changes that precisely evidence
certain phenomena we consider relevant.

One of those changes is that we, the authors, were not the educators in charge of
the class. Nonetheless, we did conduct the activity presented in this chapter. In this
particular case, an organization aspiring to strengthen secondary school students’
mathematics learning invited us to conduct a workshop. This workshop was held in
the second semester of 2019 with first-year students (aged between 11 and 13)
during out-of-school hours. The location was the library of a school in Añelo,
Neuquén province, Argentina. In fact, the students’ age is another change in
comparison to previous projects where adult university students participated
(as mentioned above, we worked with children and pre-teens). Another change is
related to the location and institution where this activity took place. Añelo is quite a
fast-growing town because it is located in the epicenter of a formation called Vaca
Muerta.

This formation is a significant oil and gas reservoir where resources are extracted
through fracking. The intense drilling activities during the last years have impacted
the town’s dynamics. What once was a calm rural town is now affected by expo-
nential growth. As a result of this exponential growth, no homogeneous profiles
could be observed within the students at the mentioned school. Some students came
from families relying on a subsistence economy in which their main activity was
livestock (sheep) farming, whereas others came from different countries or regions
due to their parents’ jobs in the petroleum industry. What is more, their family
dynamics also varied.

In this industry, and particularly in this area, work shifts usually consist of
14 days working at the drilling site followed by 7 days off. Therefore, apart from
the mentioned heterogeneity, most of the students did not have the same family
dynamics. Lastly, another aspect to consider was the high rates of grade repetition of
first-year students: almost 50% of first-year students are held back a year; this is their
first step into the secondary education system.

Considering all these aspects, we contemplated the idea of facilitating students’
attribution of meaning to learning and proposed a project related to the region’s
context. This activity would be conducted with the students. For this purpose, we
considered the school’s first-year curricula, its available facilities, and the charac-
teristics of the students, the school, and the region’s inhabitants. It is worth men-
tioning that an important number of students come from two rural areas (Sauzal
Bonito and Los Chihuidos). Each of these villages has an approximate population of
500 people. They are about 100 km away from Añelo and can only be accessed
through gravel roads.
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The project consisted of the development of a mobile supporting structure for a
photovoltaic panel. This panel would be used to supply energy to a water pump that
would allow people to extract water for irrigation and animals from a small
unconfined aquifer. The panel and its structure were given to an inhabitant named
Ms. Zenaida (we will refer to her as Doña Zenaida) (38�30020.5300S,
69�10019.6900W). Personnel of the National Institute of Agricultural Technology
referred her, and she did not have a water pumping system for this small aquifer.

We opted for a mobile supporting structure in an attempt to optimize the use of
the solar radiation available in the area. The purpose was to try to set the photovoltaic
panel in a perpendicular position to the solar rays throughout the year. This is
especially relevant since, at the region’s latitude, the variation in the angles of the
rays is significant. For instance, if the solar panel is oriented towards a summer-
based position, its performance during winter will be insignificant; and vice versa.
Moreover, the students could easily replicate this optimal design at their families and
neighbours’ houses. Therefore, other people apart from Doña Zenaida could be
benefited from this.

As regards the development of this project done with students in the second
semester of 2019, in this chapter we will discuss aspects related to the articulation
between different disciplines for the construction of arguments for the students’
decisions. Particularly, we will focus on what could be called the unavoidable
interdisciplinarity resulting from proposals based on real-world contexts.

The project’s objective was to build a supporting structure for the photovoltaic
panel. Said structure had holes on its inferior part to allow Doña Zenaida to move the
structure’s supporting bar each month in order to tilt the panel to a perpendicular
position to the sun. Figure 10.1 shows the supporting structure in question and its
two possible positions (for summer and winter).

In terms of didactics, one of the main objectives of this project was to help
students grasp the meaning of learning. For this purpose, the concepts would appear
as conceptual tools to construct the rational arguments for the decisions the project
demanded. One of these decisions was determining the location of the holes on the
horizontal structure. These holes would allow the panel to be perpendicular to the

Summer sun

Winter sun

panel

Summer
position

Winter
position

Fig. 10.1 Supporting
structure for photovoltaic
panel and two possible
positions. (Source: Authors’
own work)
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sun. Nonetheless, this was one of the last decisions to make. Before that, it was
necessary to understand the phenomena and perform several tasks.

In this sense, we argue that comprehension is a necessary condition to make
decisions and act upon them. From our view, the process is not about having students
follow a set of instructions or indications to build the supporting structure. On the
contrary, we intend to develop creativity and autonomy habits in them (Beauvais,
2006; Beauvais & Haudiquet, 2010) that lead to their own production of a solution.
This creativity should be supported by arguments that allow them to have a degree of
confidence in the solution’s viability. As in the projects presented in previous
chapters, students will not only have to produce a solution but also implement it.

In the following section, we will describe some of the project’s initial stages
where the dynamic of the introduction of mathematical concepts is evidenced. It is
also shown how this knowledge indispensably had to interact with other disciplines;
mainly, Physics.

10.3 Method

After introducing the project to the students, the first stage involved understanding
what a photovoltaic panel does. The presentation of this and other stages will be
schematized by detailing some of the stages’ elements in order to summarize each
description.

10.3.1 Stage 1: What Does a Solar Panel Do?

Objective: to understand the function of a solar panel—converting solar radiation
into energy.

Location: schoolyard and library. Materials: photovoltaic panel, cables, 12 V lamp.
Activities: the students learnt about the parts of a solar panel and verified its energy

production by connecting it to a 12 V lamp.
Concepts and disciplines introduced: principles of electricity, incandescence,
electrical conductivity, short circuits, and electrical safety (physics).

10.3.2 Stage 2: Is the Energy Production of the Solar Panel
Constant?

Objective: to identify the factors affecting the panel’s energy production. Location:
schoolyard and library.
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Materials: solar panel, cables, 12 V lamp.
Activities: the students studied the lamp’s brightness intensity in relation to

(a) adjusting the panel’s tilt angle, (b) changing the panel’s orientation towards
the sun, and (c) covering the panel completely or partially.

The students made several guesses proposing a connection between the tilt angle
and the voltage of the electric current generated. The concept of voltage constituted
an available term (Robert, 1998) for them due to their daily interactions with electric
appliances.

Concepts and disciplines introduced: angles, rotation, lines, electricity, voltage
(mathematics and physics).

10.3.3 Stage 3: Does Voltage Change?

Objective: to validate the hypothesis about the connection between the tilt angle and
the voltage of the electric current generated going from a visual assessment
(lamp’s brightness) to a quantification (measuring voltage using a multimeter).

Location: schoolyard, library, and computer lab.
Materials: photovoltaic panel, cables, 12 V lamp, multimeter, sheets of paper,

computers with spreadsheets installed, protractor.
Activities: we developed a protocol in which students set the panel facing the sun

while registering three factors: the panel’s tilt angle (quantitative, sexagesimal
system), lightening of the lamp (categorical, yes-no) and voltage measured by a
multimeter (quantitative, decimal).

In the following meeting, the students used spreadsheets for the first time in the
computer lab to represent these three variables and to create a line chart for the two
quantitative variables (independent variable: tilt angle; dependent variable: regis-
tered voltage).

Concepts and disciplines introduced: sexagesimal system, parallax error, decimal
system, tabular representation of data, ordered pairs, line charts, functional relations,
principles of the scientific method, introduction to algebra (Bruillard & Haspekian,
2009; Haspekian, 2005), and voltage (physics and mathematics).

Conclusion: despite the graphics showing a voltage fluctuation connected to the
panel’s tilt angle, we concluded there was a contradiction in the voltage hypothesis.
In most of the observations, the voltage level was higher than required to light up the
lamp; however, the lamp was not turned on.

10.3.4 Stage 4: Another Factor? Amperage

Objective: to discuss a new hypothesis that explains the lightning of the lamp as well
as the brightness intensity variation in relation to the panel’s tilt angle. To
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measure a new variable using the multimeter: the observed amperage according
to the angle’s value.

Location: schoolyard, library, and computer lab.
Materials: photovoltaic panel, cables, 12 V lamp, multimeter, pencil and paper,

computers with spreadsheets installed, protractor.
Activities: we repeated the tilt angle protocol to register the amperage shown in the

multimeter (quantitative variables) and the lightning of the lamp (categorical
variable).

At the next meeting, we entered the data registered on paper into the computers’
spreadsheets and created the corresponding graphics.

Concepts and disciplines introduced: sexagesimal system, parallax error, decimal
system, tabular representation of data, ordered pairs, line charts, principles of
functional relations, introduction to algebra, amperage, scientific method.

Conclusion: the graphics showing the relations between angle, amperage, volt-
age, and lightning of the lamp allowed us to establish the causal relationship between
the lightning of the lamp and the amperage produced by the panel. Simultaneously,
they showed how the produced amperage was related to the panel’s angle.

10.3.5 Stage 5: Is the Tilt Angle Relevant?

Objective: to rectify the reference angle for the solar panel.
Location: schoolyard, library.
Materials: photovoltaic panel, cables, multimeter, adhesive tape and wood stick.
Activities: some students proposed the idea that to obtain the panel’s optimum

amperage, we should not consider an angle to the ground, we should focus on
an angle perpendicular to the sun.

To confirm it, we used adhesive tape to fix a wood stick in a perpendicular
position to the panel. Then, we measured the amperage produced based on the stick’s
shadow on the panel rather than on the angle.

Concepts and disciplines introduced: perpendicularity, decimal numbers, pro-
jections, scientific method, amperage (physics and mathematics).

Conclusion: we could observe that the maximum amperage was produced when
the stick did not cast any shadows on the panel. Therefore, the panel’s perpendicular
position to the sun was optimal.

The stages of this project succeeded each other. Figure 10.2 shows the project’s
dynamics where two directions of development can be observed. On the one hand,
the direction of the project’s logic.

On the other, the direction of the introduced disciplines particularly referred to the
concepts that emerged in the successive stages.

We will now summarize one of the final stages of the project: determining the
structure’s measures as well as the distance between the holes for each of the panel’s
positions.
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10.3.6 Stage K: Measures and Distance of the Mobile
Supporting Structure

Objective: to determine the support’s measures, the distance between the holes and
the type of materials to use.

Location: schoolyard, library, computer lab.
Materials: photovoltaic panel, paper and pencil, wood strips, measuring tape, set

square and calculator.
Activities: the activities were conducted in two main phases. In the first phase, we
tried to make a scale representation of the support. In the second phase, we made a
dynamic modelling of the support in GeoGebra.

In this stage, we gave the students information about the angle of the solar rays at
Añelo’s latitude, available on the Internet. We considered the solar rays’ angle to the
ground at 2 pm (maximum solar radiation) on a typical day of each season.

According to this context, we considered four possible angle values: one for
summer (December 21st), one for spring (September 21st), one for autumn (March
21st) and one for winter (June 21st).

10.3.6.1 First Phase: Scale Model Representation

To determine the measures and the location of the holes that would determine the
distinct positions of the panel, the students suggested making a scale model.
However, briefly put, this strategy was inefficient to determine measure and distance
in scale. With the available tools for the workshop, students (nor teachers) could
move with precision all of the scale model’s articulations.

10.3.6.2 Second Phase: Representation in GeoGebra

After analyzing a set of conditions including the date, students’ responsibilities with
other school subjects, and the conceptual requirements of each strategy, among
others; we decided to propose making a dynamic representation of the supporting
structure in GeoGebra.

Fig. 10.2 Development of the project in two logical dimensions. (Source: Authors’ own work)
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While the scale model strategy did not allow us to determine the measures, it did
help students make a representation of the support’s parts and movements. There-
fore, despite being imprecise and jumbled, it facilitated the mental representation of
the parts and articulations.

Relying on those mental representations and the disassembled scale models, we
assisted the students with the modelling in GeoGebra that established the relations
between the elements of the scale model, its movements, and the representation in
this software. It is worth mentioning that the students were not familiar with
GeoGebra. In fact, it was necessary to install it on the school’s computers. Therefore,
we had to teach them how to use the software’s interface.

The construction of the modelling produced a sort of analogical relation between
the scale model and the GeoGebra representation. In other words, the parts of the
supporting structure, its articulations and proportions were represented in GeoGebra
exactly as they would be built in the real support. Figure 10.3 shows GeoGebra’s
graphic view displaying the modelling for the winter and summer positions.

CE segment: photovoltaic panel.
ASol segment: solar rays.
EG segment: panel’s supporting bar.
CG distance: distance at which the hole should be punched to introduce the bolt that

will set the panel in a perpendicular position to the solar rays. Figure 10.4 shows
all the objects involved in the modelling.

The panel is represented on a perpendicular line to the solar rays that contains
point C. The supporting bar EG, whose longitude is determined by the ratio of the
circumference d, intersects the lower part of the support in G 2.08 m away from point

Fig. 10.3 Model for winter and summer positions. (Source: Authors’ own work)

10 Designing and Building a Mobile Support for Solar Panels: A Project. . . 211



C. The CG distance is our reference point to punch the holes securing the panel’s
perpendicular position to the solar rays in that season (winter).

Concepts and disciplines introduced: perpendicularity, circumference, angles,
decimal numbers, sexagesimal system, rotation, lines, points, and segments, ordered
pairs representations, properties of triangles (mathematics).

Conclusion: the scale representation and the analogy between the model and the
supporting structure to build allowed us to determine the distance (CG) at which the
holes should be punched on the base of the structure. Since the sun’s angles in
autumn and spring were similar, we only punched one hole for those two positions to
facilitate Doña Zenaida’s tasks. Thus, the support had three positions: summer,
winter, and autumn-spring.

10.3.7 Stage K + 1: Cutting the Materials—How Can We
Save on Materials?

Objective: to optimize cutting the square-tube iron profiles to minimize the number
of tubes to buy.

Location: schoolyard, library.
Materials: measuring tape, blackboard, paper, and pencil.

Fig. 10.4 Different elements of dynamic model. (Source: Authors’ own work)
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Activities: the modelling in GeoGebra in stage X allowed us to determine the
measures of the parts of the photovoltaic panel’s mobile support. Since the iron
profiles sold are 6 m long, the students had to establish the optimal combination
of cuts to reduce the number of profiles to buy.

Concepts and disciplines introduced: decimal numbers, basic mathematical opera-
tions, rounding numbers up (mathematics).

Conclusion: we could establish the possible series of longitude values of the parts
to be cut as well as the number of profiles to buy.

10.3.8 Stage K + 2: Buying Square Tube Iron Profiles,
Cutting, and Welding

For safety reasons and lack of infrastructure at the school, the cutting and welding of
the rigid parts was done by the professors at their own houses. The support’s parts
were given to the students afterwards.

10.3.9 Stage K + 3: Will It Work?

Objective: to assemble and test the functionality of the mobile support, the photo-
voltaic panel, and the water pump.
Location: schoolyard.

Materials: support’s parts, photovoltaic panel, water pump, cable, basic tools,
electric drill, and paint.

Activities: the students assembled the mobile support and used an electric drill to
punch the holes for the panel’s different positions. They also painted the indica-
tions for each hole. Then, they connected the water pump to the panel and verified
the system’s functionality.

The students could observe and confirm two aspects: the system’s functionality
and how changing the panel’s position from one season to another resulted in the
pump lifting less water.

Concepts and disciplines introduced: integration of general concepts.
Conclusion: the solution for Doña Zenaida’s rural facility could be materialized

by the students. This stage can be seen in Image 10.1 (the students’ faces are blurred
to protect their identities).
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10.3.10 Stage K + 4: Assembling the System at Doña
Zenaida’s Location

Objective: to install the mobile supporting structure, the photovoltaic panel, and the
water pump at Doña Zenaida’s location.

Location: school and Doña Zenaida’s location.
Materials: support’s parts, photovoltaic panel, water pump, cable, basic tools, and an

electric drill.
Activities: when we concluded the previous stage (Stage K + 4), the school calendar

was about to end. The administrative formalities to request permits from the local
authorities of the Ministry of Education could not be presented on time. There-
fore, the students were not allowed to travel to Doña Zenaida’s location.

To avoid the possible damage caused by long-term storage and upon the uncer-
tainty caused by the spreading pandemic (December 2019), we decided to install the
supporting structure without delay. The transportation and assembling tasks at Doña
Zenaida’s rural facility were conducted in mid-December 2019 by the professors and
personnel from the organization that funded the project.

We installed the system and checked its proper operation. Then, we explained to
Doña Zenaida and her collaborator the maintenance tasks and the different panel’s
positions according to each season. This stage can be seen in the Images 10.2 and
10.3.

Image 10.1 Students testing parts. (Source: Authors’ own work)
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10.4 Results

This project was conducted within a semestral workshop with students with “sig-
nificant learning difficulties in mathematics” from a school in Añelo, Neuquén,
Argentina. It was developed in what we could define as the periphery of the school
organization: in parallel to the school classes and their corresponding schedules,

Image 10.2 Final installation of panel. (Source: Authors’ own work)

Image 10.3 Final installation of support. (Source: Authors’ own work)
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teachers, and curricula. That is, we worked with the students during out-of-school
hours.

We could argue that this type of proposal could only be carried out within the
framework in which it was effectively developed: a workshop during out-of-school
hours, without the restrictions and demands of the school ecosystem. Nevertheless,
such affirmation can have at least two objections. First, an innumerable number of
experiences like this can be observed within formal education systems; indeed, some
examples of this can be found in other chapters from this book. Second, this type of
proposal is precisely promoted in the objectives of the curricula.

A possible explanation for the observable gap between the curricula’s objectives
and what effectively occurs at school is that the materialization of those objectives
requires a school ecosystem that grants a space to develop them. One of the
ecosystem’s aspects that could facilitate this type of proposal is the expansion of
the physical workspace, which is usually the classroom.

Especially in mathematics classes, since the generalized epistemological refer-
ence shows that the mathematical objects and methods are abstract entities that can
be discussed using paper, computers, and a board. This type of proposal questions
the idea of the classroom as the sufficient workspace to develop mathematical
concepts.

In this project, it was indispensable to use other spaces like the schoolyard (and
even Doña Zenaida’s rural facility). It is worth mentioning that this aspect was not
part of the project’s objectives. It was a consequence of intending to facilitate the
students’ attribution of meaning to the learning process through an activity that
relates mathematical concepts to a problem in context.

Apart from workspace expansion, time extension should also be considered in
this type of proposal. We could observe that to carry out certain activities, more than
the time assigned by the formal system was necessary. In this school, lessons are
organized into 80-min modules. We could corroborate that to work on the stages that
could not be interrupted, we needed to extend the time of those modules.

Another expansion to be considered, and one we wanted to explicitly show here,
is related to the interaction between disciplines. The purpose of describing the stages
in the previous section was to evidence the unavoidable introduction of, at least, two
disciplinary fields: mathematics and physics.

The inseparable interaction between these fields maintained an argumentative
coherence in the development of the project. For instance, stages 1 to 5 were
characterized by a constant introduction of physical and mathematical concepts
that were necessary to understand the phenomenon: the influence of the panel’s
angle in the electric power generated.

Without discussing or at least introducing the concepts of electricity, voltage, and
amperage it would have been impossible to develop the argumentative processes that
led to studying the panel’s angle as an optimizable variable.

In these cases, the introduction of physical knowledge was not an application or
re-signification (Robert, 1998, 2003). In other words, the students could not recall
those concepts with or without their teachers’ assistance because they did not know
them. They simply had no point of reference for them; especially, for the concept of
amperage.
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In this regard, we could argue there are two different types of interactions
between the disciplines: concept application or resignification, and concept intro-
duction. We will refer to concept application or resignification as the interaction in
which previously discussed knowledge is recalled.

In some cases, this knowledge may already be known by the students, and they
recall it on their own or with the teacher’s assistance. The concept of amperage
cannot be linked to this type of interaction. The students did not have a point of
reference to consult or a conceptual construction to rely on to understand this
concept. Therefore, it was necessary to spend time explaining the basics of amperage
to them.

These two types of interactions determine distinct roles for the teacher as well. In
the first case (application or resignification of concepts from another discipline)
students can introduce the concepts and integrate them into their argumentative
discourse without major deviations from the monodisciplinary line. In general, in
this type of interaction, the teacher looks for indications or points of reference that
allow the students to recall those concepts and apply or re-significate them.

However, if it is a concept introduction interaction, the situation is quite different.
The teacher must stop the activity in question and create a learning opportunity for
what they consider the fundamental aspects of the concept from another discipline.
Once done, they can resume the activity.

As a result, the teachers enter into what they may consider an unexplored
epistemological and didactic territory. Therefore, their teaching work is affected
by a new stressful phenomenon that can be studied in terms of their comfort zone
(Carranza et al., 2017; Miravalles et al., 2014) and work ergonomics (Roditi, 2000).

As regards teachers exploring extra-disciplinary areas, we could observe stress
associated with the difficulties of controlling the uncertainty produced by such
explorations. This stress could influence the teachers into not conducting or con-
tinuing with this type of proposal, especially, if the school ecosystem shows
indifference or reluctance towards the initiative.

As mentioned above, certain expansions need to be considered and this type of
proposal should be introduced into the traditional school ecosystem. They are
necessary conditions to support and facilitate the development and consolidation
of a proposal like the one we present. If not present, tensions may arise in the school
ecosystem. Unless all the parts involved in the ecosystem act with conviction, it is
highly likely that the traditional ecosystem itself will stifle the initiative and nothing
will change.

With this, we wish to emphasize the importance of contemplating the institution
as a whole when approaching a proposal like this. It is then indispensable not to think
of teaching as a set of watertight compartments in which each teacher focuses on
their discipline. Instead, it should be reconsidered as a progressive interrelation of
communicating vessels and shared spaces.

Thus, these proposals are not only didactic but also pedagogical. This occurs
because of the interrelations between the proposal and the school administration,
teachers, non-teaching staff, and parents. Such interrelations occur to ensure the
community can efficiently use the obtained solutions.
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As regards the modelling in GeoGebra, it was interesting to verify its didactic
potential to construct reasonings and determine the actions to take. Then, we wish to
highlight something we consider fundamental: modelling constitutes an abstraction
space that, supported by a mathematical conceptual framework (in this case),
allowed us to understand the system and reach conclusions that would have been
very difficult to draw through direct observation of reality.

Therefore, modelling presents significant potentialities to construct rational argu-
ments to support the actions demanded by the project. In a way, it becomes a space
for the construction of rationality for teachers and students. This allows them to
move forward with the project on a firm rational footing.

In this sense, interesting phenomena have been observed in relation to the didactic
contract (Brousseau, 1988). The argumentative construction achieved with the
modelling allows the teachers to switch positions. They are no longer in the
knowledge holder position; instead, their position is now marked by rationality. In
this rationality, different agents are involved and the results’ validity is supported on
the constructed arguments and not on the teacher’s status.

The modelling in GeoGebra has allowed us to corroborate relevant phenomena
that had already been discussed in the literature: modelling is a vehicle for learning
disciplinary concepts as well as a learning object (Blomhøj, 2019; Blum &
Borromeo Ferri, 2009; Boaler, 2001; Brown & Ikeda, 2019; Spandaw, 2009). As
regards future perspectives, we underscore three major relevant aspects:

• Is it possible to systematize this type of proposal to facilitate the teachers’
appropriation? In other words, what are the common denominators shared by
these proposals? Is it possible to conceive an architecture of proposals based on
real-world contexts?

• How can the interdisciplinary instances be tackled in this type of proposal as
regards didactics and management? As regards didactics, is there an interdisci-
plinary didactic or is it sufficient with expanding the teacher’s epistemological
field? As regards management, is it possible to design a plan or progressive
adaptation program to adapt the traditional school ecosystem to this type of
proposal?

• As regards modelling and the constant evolution of technological tools, is there a
classification of modelling by the type of elements considered in the context?
Related to this matter, in the next chapter we will present our views on another
modelling analysis. We will study models in terms of being centred on the objects
from the context (analogical modelling) or on the relations between the context
(analytical modelling).

Finally, we understand that proposals based on real-world contexts have a great
potential for learning disciplinary concepts; especially considering the concepts’
possibilities to construct rational arguments. We also understand as well that these
dynamics are not affected by the singularities of a region or country. Each commu-
nity has spaces that can be improved and where students and teachers alike can
intervene and feel active members of their community.
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Chapter 11
Analogical Modelling and Analytical
Modelling: Different Approaches
to the Same Context?

Pablo Carranza, Mónica Navarro, and Mariana Letourneau

11.1 Introduction

In this chapter, we present a set of models created with students in which we tackled
problems from different projects in real-world contexts. Only three of those projects
carried out between 2015 and 2021 are presented. These models occurred in
complete modelling cycles (reality, modelling, reality) and they allowed both stu-
dents and professors to significantly improve their understanding of the analyzed
phenomena. Moreover, several of those models were fundamental for the decisions
taken in the projects.

The types of models are different as well. Some are characterized for retaining
elements or objects from the context, whereas others favour more abstract relations.
They result from how students establish connections between the problem’s context
and the mathematical world.

Besides, we could observe links between these types of models that evidence the
evolution in the students’ mental processes. The models could also be didactically
considered as strategies for progressively difficult modelling; allowing students to
deepen their understanding of the phenomena and the appropriation of relatively
complex disciplinary concepts.
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11.2 Problem

The literature on the role of modelling in mathematics teaching highlights two
major uses: modelling as a vehicle for learning disciplinary concepts, and modelling
as a teaching object (Blum & Borromeo Ferri, 2009; Blomhøj, 2019; Brown &
Ikeda, 2019; Caron, 2019; Czocher, 2019).

As regards the learning vehicle role, modelling has been acknowledged to show
potential for the discussion of mathematical concepts. Indeed, the models, as an
abstraction space for a given problem, become the appropriate place for the learning
and resignification of mathematical concepts.

However, modelling a problem with mathematical objects and methods consti-
tutes a non-evident cognitive act. Complex mental processes appear in the interac-
tion between the elements of the problem, in the person’s perception of them, in the
representations of the mathematical concepts, and the available modelling tools and
creative abilities, among others.

The relationship between these matters does not appear to be a linear and
determined sequence. Constructing a mathematical modelling of a problem does
not constitute a bijective relationship between the problem and the mathematical
tools. A problem can be modelled in different ways and vice versa. This relationship
between the problem and the mathematical tools requires certain abilities and
competencies that are nowadays considered necessary. Therefore, learning how to
create models becomes a teaching-learning object.

By modelling, we understand a cycle that begins with a problem, continues in a
space of mathematical objects, and then returns to the problem. What is the purpose
of carrying out this cycle? Going through the mathematical objects allows us to
analyze and construct arguments supported by a rich mathematical scaffolding.
Besides, these arguments are many times impossible to obtain through direct obser-
vation of reality. To sum up, using mathematical modelling elevates the level of
comprehension of the problem and allows us to approach it with solid arguments.

In this sense, the literature distinguishes two different types of modelling:
descriptive modelling and prescriptive modelling (Blum & Borromeo Ferri, 2009;
Brown & Ikeda, 2019). Descriptive models allow us to understand how a problem
works, whereas prescriptive models help us determine how to act in the problem in
question.

In this chapter, we will present a set of models created with students for projects
in real-world contexts. In the examples we detail, the two types of models as well as
their constant interactions can be observed. In fact, it is possible to observe how the
models constitute vehicles for learning mathematical concepts and how they can
become learning objects.

However, our focus is on proposing a categorization for modelling based on the
type of problem’s elements considered. Thus, we will discuss the concepts of
analogical modelling and analytical modelling. In the former, physical elements of
the problem as well as its relations, connections and articulations are taken into
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consideration. In the latter, abstract relations non-observable through our senses are
considered.

In this chapter we present these and other differences with illustrative examples of
the models created with students for projects in real-world contexts. We will refer to
projects rather than problems due to several reasons. We claim that a project, due to
its complexity, contains a set of different problems and it is developed within a
period bigger than a problem. Moreover, these projects are claimed to be in a real-
world context because said context exists and students are embedded in it. Besides,
their solutions are implemented in it; that is, the context is not created, it is
experienced.

In general, the models presented here are prescriptive since they facilitated the
construction of arguments to intervene in the projects’ problems. However, they are
also descriptive because they helped to understand the analyzed phenomena. To
present the models in terms of being analogical or analytical, we will first introduce a
summary of the projects in which they were created.

11.3 Method

The models discussed here were created in three projects carried out in real-world
contexts: the “Savonius Windmills” project, the “Mobile Panel” project, and the
“Water Purification Systems” project.

11.3.1 Savonius Windmills

Course: mathematics (semestral).
Level: tertiary education. First semester of the first year.
Students: aged between 18 and 50.
Project’s summary: the students designed, calculated, and constructed windmills to

pump underground water for irrigation and animals. The windmills were given to
rural communities relying on a subsistence economy in Argentinian Patagonia.

Year: the project has been carried out since 2015. One or two windmills are built
each year.

Funding: National University of Río Negro (2015–2017). Argentine National Min-
istry of Education (2018–2022).

Illustrative media: Fig. 11.1 shows the type of windmill built. The following
hyperlink redirects to a video summarizing the installation stages of two wind-
mills at two different rural facilities: https://www.youtube.com/watch?
v¼889fvPzVK1g.
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11.3.2 Mobile Photovoltaic Panel

Course: extracurricular mathematics workshop (semestral).
Level: secondary education. Second semester of the first year.
Students: aged between 11 and 13.
Project’s summary: the students designed, calculated, and built a mobile supporting

structure for a photovoltaic panel. The purpose was to optimize the use of the
available solar radiation. The panel and a water pump were given to a rural
inhabitant in Argentinian Patagonia.
Year: 2019.

Funding: organizations and companies.
Illustrative media: Fig. 11.2 shows the supporting structure during the assembling

stage. The students assembled the structure at the schoolyard.

11.3.3 Water Purification Systems

Course: mathematics (annual).
Level: tertiary education. First year.
Students: aged between 18 and 40.
Project’s summary: the students designed, calculated, built, and tested prototypes for

low-cost water purification systems for families. These systems are based on
technology developed by researchers at the University at Buffalo, in the United

Fig. 11.1 Schematic
representation of Savonius
Windmill. (Source: http://
cepechile.blogspot.com/)
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States (Gan & Zhang, 2017). The recipients are any inhabitants who are not
connected to drinking water distribution systems.

Year: 2021.
Funding: organizations and university.
Illustrative media: Fig. 11.3 shows the first and second versions of the system’s

technological principle while Fig. 11.4 shows the culmination of the building
stage of one of the five prototypes built by the students.

The set of models we will present were created in these three projects. All of them
shared common ground: they allowed students to understand the phenomena in the
projects and to construct rational arguments for their decisions. Although there are
points in common between all the models exposed, they are differentiated by the
type of elements they retain from the context.

Fig. 11.2 Photovoltaic supporting structure. (Source: Authors’ own work)

Solar still

Solar flux

Radiation Convection

Cover
foam

Conduction Lake
water

EvaporationCarbon-coated
paper

A solar still is made by placing carbon-coated paper
(center) atop sections of a polystyrene block that floats
on a water source to be purified(left)

Water wicks up the ends of the carbon-coated paper
to the top surface, Incoming sunlight evaporates
water that is collected for drinking.

Fig. 11.3 Solar distillation. (Source: Buffalo University)
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11.3.4 Modelling 1 of the Guy Wires in the Savonius
Windmill: Analogical Modelling

The plateau region in Argentinian Patagonia is characterized by low precipitation
levels (200 mm average per year) and strong winds. In this region, there live
inhabitants relying on a subsistence economy where their main activity is sheep
and goat farming. Usually, the necessary water for the animals, and for watering
plants and crops is manually extracted from groundwater supplies (between 5 and
7 m deep).

The project’s proposal was to develop low-cost, low-maintenance windmills that,
by exploiting the wind resource, could facilitate the groundwater extraction tasks for
the inhabitants. While the wind is a usable resource, strong gusts could damage the
windmill. Therefore, the anchoring system had to be thoroughly analyzed. One of
the topics particularly studied with the students referred to the location of the guy
wires. In this regard, the professors usually ask one question:

Professors: “We will place the anchors of the guy wires 6 m away from the foot of
the windmill. As you saw during your visit to the field, we may not be able to place
the anchors where we planned. There were big shrubs and blocks of stone that may
force us to relocate the anchors at a different place. The question is: if the anchor is
placed nearer or farther from the original location, will the stress on the anchor and
the guy wire change? Or will it remain the same?”

The students usually answer: “The force depends on the wind. If the wind does
not vary, there is no reason for the stress to change”. Figure 11.5 illustrates the
windmill and one of the guy wires holding the mill to a concrete block buried on the
ground 6 m away from its foot.

The purpose of the professors’ questions was to analyze whether the stress on the
anchor (concrete block and ground) changed according to the distance between the
anchor and the windmill (6 m in the figure). Being one of the first considerations
analyzed, professors usually propose a dynamic representation of stress in GeoGebra
aiming to understand the relations between the vectors.

Fig. 11.4 Students’ prototype of solar water distilling system. (Source: Authors’ own work)
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Briefly put, they started the modelling process and students progressively
acquired the autonomy to complete it on their own. In this case, the modelling was
descriptive because it allowed us to understand the relation between the stresses.
Figure 11.6 shows the model produced. The slider controls the distance at which the
guy wire is attached to the concrete block.

Due to space limitations, we will not share the details of the creation of the
modelling. The curve observed shows the evolution of the rear end of the d vector.
This vector represents the stress caused on the concrete block and the ground above
it when holding the windmill in its vertical position.

Fig. 11.5 The Savonius windmill and its support system. (Source: Authors’ own work)

Fig. 11.6 Dynamic representation of the stress on the anchor in terms of distance. (Source:
Authors’ own work)
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The modelling, iterated many times in class, helped students understand that the
anchor’s distance is a variable to consider when digging the pits for the concrete
blocks. To assist their comprehension, some of the iterations included a visualization
of the geometrical elements that structure those relations (symmetries could only be
visualized through the objects).

This model was created based on the reproduction of fundamental physical
elements of the context and the relations between them:

• Windmill’s main pipe.
• Guy wire.
• Pit location.
• Associated vectors.

Therefore, it was a direct reproduction of the elements from the context: the pipe
was represented by a segment, the wire was represented by another segment and the
anchors appeared as intersection points. Indeed, there is a replication of the elements
from reality in the modelling. The only elements that could not be observed through
our senses were the vectors. The relations between them were mathematical con-
structions based on elementary geometry and rigid transformations.

We argue this modelling was analogical since it was a replication of the objects
from the context, which was done by geometrical objects. At a semantic level, the
students could establish a direct, bijective relation between the elements from the
context seen through their senses and their representations in the model. We will
present another model referred to the problem of the guy wires; it will be a
continuation of Modelling 1.

11.3.5 Modelling 2 of the Guy Wires in the Savonius
Windmill: Analytical Modelling

The previous modelling done in GeoGebra helped the students understand a phe-
nomenon relevant to the project: the stress on the guy wires was influenced not only
by the wind speed but also by the distance at which the pits for the concrete blocks
were dug. Of the various conclusions drawn, here we focused on one in particular:
the nearer the pits, the deeper we must dig them.

That modelling was descriptive as well as analogical and was aimed at under-
standing the phenomenon. Once it was understood, the next step was its quantifica-
tion. That is, it was necessary to determine with precision the pits’ depth according to
their distance to the foot of the windmill. It is worth mentioning that, while students
were constructing the windmills, the inhabitants had to dig the pits for the concrete
blocks. For this purpose, an explanatory plan with a schematic diagram of the
distance between the pits and the foot of the windmill was given.

However, sometimes, they could not maintain the designated distances because
of large shrubs’ roots or blocks of stone. In those cases, they decided to relocate the
pits. As a result, during the windmill’s installation stage, students had to revise the
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pits’ depth according to their final location. Moreover, the context determined that
this revision task had to be expeditious. There was no time to make the necessary
calculations at the location.

Likewise, it was not convenient to use the previous modelling in GeoGebra due to
the location’s conditions: the ambient light and the risks of damage for a laptop.
Since that model was not appropriate for revising the pits’ depth at the location, a
new modelling was created on a spreadsheet that students would be able to access
from their smartphones (Fig. 11.7).

Most of the cells for this modelling already had input values or formulas, the main
data to input during the installation at the location was the pits’ distance (B3 cell).
Once it was introduced, the B11 cell showed, in meters, the optimum pits’ depth. For
the purpose of this chapter, we considered some characteristics of this modelling in
relation to the type of elements from the context retained. This time, there were no
physical (pipe and guy wires) or geometrical objects to represent in the modelling.

In this case, we retained, mainly, the abstract relations between the objects that
could not be seen through our senses. As regards mathematics, algebra (Haspekian,
2005; Bruillard & Haspekian, 2009) and trigonometry are introduced instead of
geometry. Likewise, the modelling abstraction level required the students to identify
the trigonometric relations using paper and pencil; then, they had to materialize them
in a spreadsheet. In this case, there is no longer a direct relationship between the
objects from the context and the objects from the modelling. The abstraction level is
greater.

Due to its role in the context, this modelling was prescriptive since it helped the
students determine how to proceed (as regards pits’ depth). Besides, it was analytical
because of the type of elements considered. Additionally, it is worth highlighting the
transitional role of the analogical modelling regarding the analytical modelling. The
geometrical representation of the objects in the modelling in GeoGebra introduced
mathematical objects that allowed the students to identify the trigonometric relations
of the analytical modelling.

Fig. 11.7 A spreadsheet on
the quantification of the
variables affecting the guy
wires. (Source: Authors’
own work)
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In other words, to identify those relations that would be used in the modelling on
spreadsheets, the students no longer used the windmill’s context as a reference; they
used the modelling in GeoGebra. By observing this model on their laptops and the
board, they recognized the triangles that consequently led to considering the trigo-
nometric relations. Hence, the analogical modelling assisted in the comprehension of
the stress variation concerning distance. What is more, it also helped transition to the
analytical modelling that demanded greater abstractions.

11.3.6 Modelling 3 of the Lifting of the Savonius Windmill:
Analogical Modelling

Among the analyses carried out with the students, there was one referred to hoisting
the windmill from its horizontal assembling position to its vertical functional
position. For this purpose, they watched footage from previous years showing how
windmills were lifted. The hoisting stage at the location is critical due to the risk of
the mill falling and the consequent damage if one of the parts involved in the hoisting
process broke. Figure 11.8 shows a schematic diagram of the windmill’s hoisting
process. The structure is lifted to its vertical position using the synthetic cable of a
vehicle’s electric winch. Figure 11.8 shows a schematic diagram of a vehicle
hoisting the Savonius windmill.

The winch’s synthetic cable is attached to the superior part of the windmill (A).
Upon watching the footage, one student proposed changing the attachment point
from point A to point B to reduce stress. Other students proposed placing the vehicle
as far as possible from the windmill, while others suggested the opposite; others also
questioned whether the synthetic cable would resist the strain. In the end, the
proposals were analyzed through a modelling.

To facilitate the comprehension of the stress dynamics at the hoisting moment,
the professors induced a modelling we consider as analogical. That is, a reproduction
of the physical elements from the context in, in this case, GeoGebra. Figure 11.9
shows this modelling.

Fig. 11.8 Schematic diagram of a vehicle hoisting the Savonius windmill. (Source: Authors’ own
work)
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This model assisted the comprehension of the stress produced during the hoisting
stage and its changes as the windmill is closer to its vertical position. The lifting is
controlled by the slider alpha angle and the location of the vehicle is controlled by
the slider named malaco.

To quantify stress, the vectors’ modules were made in scale. This allowed us to
determine, for example, if the winch’s cable would resist the strain during the
hoisting. Unlike the modelling of the stress on the guy wires in GeoGebra, in this
case, it was necessary to draw on elementary algebra since the physical concept that
relates the vectors is torque (M ¼ Fxd).

We consider this modelling as analogical because it consisted of the replication of
objects from the context. This replication was achieved by using, mainly, geomet-
rical elements. Figure 11.10 shows the graphic view with all the geometrical
elements involved.

The modelling allowed us to understand the stress dynamics as well as to reject
the idea of attaching the winch’s cable to the windmill’s point B, the stress would be
greater if the cable was attached there and not in point A.

Likewise, the modelling confirmed that the winch’s cable was appropriate for
hoisting the windmill (according to its specifications, it resists 4 times more strain
than the one caused at the hoisting stage). Besides, it allowed us to answer, among
other matters, the question on the distance between the vehicle and the windmill, the
farther the vehicle, the lesser the stress produced.

This modelling was descriptive because it assisted the comprehension of the
stress dynamics. However, it was also prescriptive since it helped determine the
decisions on how to act when hoisting the windmill. Moreover, because it was
strongly based on the representation of objects from the context, it was analogical. Its
creation was mainly based on geometrical elements, although elementary algebra
was introduced for the physical concept discussed: torque.

Fig. 11.9 Modelling of the stress on hoisting the Savonius windmill. (Source: Authors’ own work)
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11.3.7 Modelling 4: Analysis of the Savonius Windmill’s
Rotor—Analogical Modelling

One of the objectives of the Savonius windmills project is to let the inhabitants
produce their solutions to the underground water extraction problem. For this
purpose, we chose an easy, low-cost design. Additionally, given the distance
between the rural facilities and the urban centres, we opted for a design that could
be built using disused objects from the fields. That is why the windmill’s rotor is
built using recycled 200 L barrels.

As regards the rotor, various questions usually arise among the students: “Why
are we using two rows of barrels instead of one?”, “Will we produce more power if
we use more rows?”, and “Is it true that the rotor vibrates?”. In these situations,
students are usually asked to create a modelling for the rotor in GeoGebra that, even
if it is simplified, allows them to understand the functionality and consequences of
the design.

The modelling induced by the professors was analogical: physical elements of the
rotor and their relations were taken into consideration, and then, a model was created
introducing, mainly, geometrical elements and rigid transformations (rotations,
translations, and symmetries). Figure 11.11 shows the simplified modelling of the
rotor built using four half-barrels placed in two rows (two up and two down).

In this modelling, the rotor’s spin is controlled by an angle-type slider named
alpha. The modelling represents the four half-barrels as well as each half-barrel’s
contribution to the total area, although it is a simplified representation. The contri-
butions of each half-barrel are represented by points; their traces allow us to
understand the dynamics of the rotor’s swept area. Figure 11.12 shows, in a

Fig. 11.10 Graphic view of all geometrical elements involved in modelling. (Source: Authors’
own work)
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simplified manner, the swept area of each half-barrel and the total area of the four
half-barrels when they are all spinning.

This modelling was descriptive for assisting us in understanding the rotor’s
functionality: in this regard, a fundamental aspect is the one referred to the variable
rotor’s area (superior trace). This variation in the rotor’s swept area led to warning
the students about the windmill’s vibration. The reason for such vibration was the
variability of the swept area, not the supposed irregular centres of gravity of the axis
of rotation.

Thanks to the modelling, we could answer the question on the (in)convenience of
using only two half barrels instead of four. Not only the total area would be minor
but there would also be greater vibration as a result of the increased variability of the
area. Therefore, we could determine that placing the four half-barrels in the same
row would be inconvenient since they would obstruct each other.

This model was also prescriptive. Among other conclusions, the ones related to
the unavoidable vibration of the rotor led the students to prioritize bolting rather than
welding. From the current perspective, the model was analogical: there is a replica-
tion of objects from the real-world using geometrical objects; besides, the rigid
transformations are predominant.

Fig. 11.11 Analysis of the contribution of each half barrel in the swept area (first steps). (Source:
Authors’ own work)
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11.3.8 Modelling 5: Analysis of the Possible Changes
to the Savonius Windmill’s Rotor—Analytical
Modelling

In the previous modelling, the students discovered that the windmill would vibrate
due to certain matters inherent in the design: the variable swept area. A group of
students suggested analyzing a possible modification to reduce or, in the best-case
scenario, eliminate the vibration. The conversation ensued as follows:

Group 1: “Since there is increased variability using two barrels, and less variability
using four barrels. . .is it possible that there will be even less variability using six
barrels?”

Group 2: “But they shouldn’t be at the same level, otherwise they would collide.”
Group 1: “It could be a windmill with three rows of barrels”.
Professors: “Are you sure that that is how you reduce vibration? That is, by

increasing the number of barrels?”

This debate continued and encouraged performing a new analysis about increas-
ing the number of half barrels symmetrically placed and their effect on the variability
of the total swept area. Unlike the previous modelling created for four half-barrels, in
this case, we tried to create a model for six, eight or more half-barrels.

The constructive method of analogy with the real world was now perceived a
tedious due to the costs in terms of time and the elements involved. Meanwhile, in
the construction of the modelling of the four half barrels, more precisely on the
section of the fourth half-barrel, some students identified the trigonometric relation

Fig. 11.12 Analysis of the contribution of each half barrel in the swept area. (Source: Authors’ own
work)
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that described the area contribution of each half-barrel. Two elements constituted
clear evidence: the shape of the curve that described the tracing and the triangular
geometry of the contribution of each half-barrel.

To model the six-half-barrels rotor’s swept area, the students proposed a more
economical option as opposed to the analogical model: using trigonometric func-
tions. A brief representation of the type of modelling created by the students with the
professors’ assistance can be seen below (Fig. 11.13).

Figure 11.13 shows the graphic and algebra view of the original modelling
(analogical) of four half-barrels, the curve of the total area of the four half-barrels
obtained by the analytical model and the curve of the total area of a hypothetical
windmill with six half-barrels. The trigonometrical models of each half barrel are
hidden in the graphic view, but they can be seen in the algebra view.

Similar to the guy wires case, we observed a switch in the type of modelling: from
analogical to analytical. In the guy wires case, due to the characteristics of the
context, it was convenient to carry out the modelling of the pits depth calculation
on a different support (Spreadsheets). In this case, the support (GeoGebra) was
appropriate, although that was not the case for the type of modelling used
(analogical).

It is worth mentioning that the students found in the analogical modelling the
indications to create an analytical modelling: the shape of the curve of the area of
each half-barrel, and the triangular geometry of the area of each half-barrel. Fig-
ure 11.14 shows this triangular geometry.

Considering the wind comes from below, the simplified wind area of the half-
barrel in the figure is determined by the projection of the barrel’s diameter on the
X-axis (multiplied by the height of the barrel). This geometrical representation and
the shape of the curve that describes the projection based on the angle constituted

Fig. 11.13 Analysis of the contribution of each half barrel in the swept area (trigonometric
functions). (Source: Authors’ own work)
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enough evidence for the students to propose the trigonometric functions as more
economic models to address the problem.

Therefore, due to economy reasons and, again, parting from the indications of the
analogical modelling, the students created an analytical modelling of the rotor’s
swept area. As a result, they could confirm that as the number of half barrels
increases, the variability in the swept area decreases, which results in a reduction
of the vibration. Parting from this analysis, the students could provide a basis for a
helical design (Fig. 11.15) that would have no vibration in the rotor.

11.3.9 Modelling 6: Building a Supporting Structure
for a Solar Panel—Analogical Modelling

Within the framework of an extracurricular workshop conducted at a secondary
school, we presented the students (aged between 11 and 13) a project to build a
mobile supporting structure for a photovoltaic panel. The purpose was to improve
the usage of solar radiation. The panel would supply energy to an electric 12 V water
pump used to extract water from an unconfined aquifer at a rural facility in Argen-
tinian Patagonia.

After weeks of exploring the causal relationships that optimize the performance
of the solar panel (see Chap. 3), the students discovered that the optimal amperage
was obtained when the photovoltaic panel was in a perpendicular position to the
solar rays.

Fig. 11.14 Triangular geometry of the area of each half-barrel. (Source: Authors’ own work)
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Students and teachers then determined to provide four different positions for the
photovoltaic panel, one for each season of the year. However, given the proximity
between the angles for spring and autumn, only one position was considered for
those two seasons. As a result, the supporting structure presented three positions:
summer, autumn-spring, and winter.

One of the potentialities of the analogical models in GeoGebra is that the scale
work leads to quantifiable results based on basic geometrical elements. Considering
the students’ age and their difficulties in mathematics, we opted for that strategy to
determine the placement of the holes for each of the panel’s positions. Figure 11.16
shows the construction made in GeoGebra that allowed them to determine the
distance between the holes for the photovoltaic panel.

This modelling helped the students determine placement by simply moving
the slider (sun’s angle) until reaching the angle for each season and then observing
the distance of the CG segment. This representation was descriptive since it allowed
the students to understand how the mobile support worked. It was also prescriptive
because it helped determine the actions to take.

From the perspective of the type of elements considered, it is an analogical
modelling. In its construction, physical objects from the context were replicated as
well as the movement and contact relations between them. Moreover, this modelling
led to identifying—through elementary geometry elements—the distances at which
the holes had to be punched to guarantee the panel’s perpendicular position to the
solar rays.

Fig. 11.15 Helical
windmill. (Source: https://
www.turbosquid.com/es/3
d-models/3ds-max-helical-
savonius-wind-turbine/804
711)
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11.3.10 Modelling 7: Optimization of the Lateral Sides
of the Water Purification System—Analogical
Modelling

In the framework of a project carried out in the Geology and Palaeontology programs
(Bachelor’s degree), first-year students (in 2021) designed, calculated and, built and
tested prototypes for low-cost, solar-powered water purification systems. The sys-
tems’ technological principle was based on research carried out at the University at
Buffalo (the USA). The professors involved in the project maintained contact with
the researchers under memorandums of understanding between the two universities.
This agreement authorized the non-profit use of this technological development
(Gan & Zhang, 2017).

The project with students consisted of implementing that technology into pro-
totypes to be tested. Therefore, while the technological principle was already
determined, designing the prototypes involved an important number of decisions
to make. Especially considering the shortage of the needed energy source (solar
radiation) in Argentinian Patagonia.

The system consisted of using solar radiation to evaporate water retained in an
absorbent fabric. Then, that steam was condensed in a transparent cover and
transported in gutters into a container. The water collected (distilled) was then
purified using the appropriate salts. Figure 11.17 shows a picture of the first version
of this technology. It was published by the researchers at the University at Buffalo.

To optimize the system’s functionality, one of the variables analyzed was the
surface of the lateral sides of the cover. The modelling we present here was created
with students from the mathematics course. Its purpose was to determine the possible
existence of a minimum area of lateral sides for a prototype with a base area of 1 m2.

Fig. 11.16 Supporting structure for photovoltaic panel. (Source: Authors’ own work)
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Figure 11.18 shows the students’ construction in GeoGebra; they were assisted by
their professors.

While performing the analysis with the students, a set of variables remained
undefined. For instance, the angle of the cover’s upper part and the height of the
north side. Therefore, the professors induced a modelling with sliders on three
variables: the measure of a side of the base (lado CD), upper part’s angle (alfa)
and north side’s height (nortealt). This modelling was also constructed based on
physical objects and their geometrical relations.

The 2D graphic view shows the rectangular base that allowed us to obtain the
minimal surface of lateral sides for the 39� upper part’s angle and the 40 cm height of
the north side. The minimal surface of the lateral sides was obtained by placing the
lado CD slider at 60 cm, approximately. The inferior curve shows the evolution of
the south side’s surface. This side was also relevant for not receiving direct radiation,
being the coldest one and probably the one that condenses more water.

Solar still

Solar flux

Radiation Convection

Cover
foam

Conduction Lake
water

EvaporationCarbon-coated
paper

A solar still is made by placing carbon-coated paper
(center) atop sections of a polystyrene block that floats
on a water source to be purified(left)

Water wicks up the ends of the carbon-coated paper
to the top surface, Incoming sunlight evaporates
water that is collected for drinking.

Fig. 11.17 Solar distillation. (Source: Buffalo University)

Fig. 11.18 Modelling the surface of the lateral sides of the cover. (Source: Authors’ own work)
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The 3D graphic view shows the cover. It was created replicating the physical
objects and their geometrical relations. This modelling was descriptive since it
allowed the students (and professors) to understand the problem in question. At
the same time, it was prescriptive because, by finding the dimensions that determine
the minimal area of lateral sides, it facilitated determining the criteria for the actions
to take. Moreover, from our perspective, it was analogical due to the objects retained
from the context and their geometrical relations.

11.3.11 Modelling 8: Optimization of the Lateral Sides
of the Water Purification System—Analytical
Modelling

For this project, the students (around 40) were divided into teams. In total, there were
five teams and each of them made their own decisions, which in some cases were
different. Therefore, there were five prototypes with some variations. For instance, as
regards the strategy of keeping the upper part of the cover in a perpendicular position
to the solar rays, some preferred to place regulable floaters based on the summer
position, while others were based on the winter position. This led to certain differ-
ences in some of the variables, in particular, the angle of the upper part of the cover.

In the analysis of the optimal measures, it was necessary to work on the three
variables (sliders). Each team assigned their values to the upper part’s angle (alfa)
and the height of the north side (nortealt) to determine the measure of the side named
caraslat. For a more evident analysis of the change of the minimal surface of the
lateral faces (caraslat) according to the other variables, the teachers proposed making
an algebraic representation of the addition of the lateral sides’ surfaces.

Thus, the independent variable would be lado CD, while the dependent variable
would be the addition of the lateral sides’ surfaces, and the parameters would be the
upper part’s angle and the height of the north side. Figure 11.19 shows the curve
obtained; first, supported on paper and then in GeoGebra (p(x)).

The tangent line to the curve for a given x value became a visual indicator of the
location of the minimal point. The function p(x) that models the total surface of the
lateral sides was done on paper based on the analogical modelling from the repre-
sentation in GeoGebra’s 3D algebra view.

Again, this modelling was descriptive as well as prescriptive due to the same
reasons detailed for the analogical modelling. In this case, resorting to algebra for the
relation between the measure of lado CD and the total surface of the lateral sides
constituted a conceptual leap different from the previous modelling. This model was
then analytical. It was no longer based on the physical relations between the objects.
Instead, it was based on the more abstract relations that exceeded sensorial percep-
tion. These relations had to be analyzed in the algebraic and functional plane, among
others.
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11.4 Results and Perspectives

In terms of preliminary results, we claim that, as the literature states, modelling is an
appropriate place for learning disciplinary concepts; in particular, mathematical. The
eight models presented here have allowed us to discuss new concepts while
re-significating concepts already known by the students. The list of mathematical
concepts introduced in each modelling will not be listed here as it is not relevant for
this chapter.

We do wish to highlight the diversity of the branches of mathematics that are
interrelated in the same modelling and the possibilities for the resignification of
elementary concepts that become fundamental to characterize objects as well as
parts’ movements. To illustrate, we could consider the circle; a geometrical object
which at the same time is used as an instrument to measure distance and even to
determine rotations. The modelling experiences with the students have enabled them
to interpret and reinterpret concepts not only by the semiotic registers in which they
appear (Duval, 1993, 2006; Hitt, 2004) but also by the phenomena that they can
explain and the objects that can represent the real-world.

Another interesting dynamic observed in the models with students refers to the
tool-object dialectic (Douady, 1986, 2002; Czocher, 2019). Because of the models, it
was possible to deepen the learning of concepts in that dialectic. The concepts are
tools for understanding and describing phenomena, but they are also considered
learning objects. As such, one can be familiarized with their characteristics, rules and
types of use leading to instances of institutionalization of the characteristics of the
mathematical objects.

As regards modelling as a teaching object connected to abilities and competen-
cies, we could verify a considerable number of difficulties among the students at the
beginning of the modelling. Partly, this could be explained by their lack of

Fig. 11.19 Optimization of the lateral sides of the water purification system. (Source: Authors’
own work)
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experience. The mathematics they experienced in their prior education could be
described as a discipline where the concepts are exercised but not applied. Therefore,
the abilities referring to the associations between mathematical objects and real-
world relations were scarce at the beginning of the models. As a consequence, the
professors had to intervene and induce relationships between the objects of these two
worlds (real and model).

Another difficulty observed is related to the supports where the models were
carried out. For all the students, GeoGebra was a new tool at the beginning of the
activities, although the spreadsheet was familiar to them. We understand that the
supports on which the models are produced are not transparent. This lack of
transparency is understood in two directions: the knowledge of both the existence
and use of the supporting tools, and the possibilities they enable. In this regard, we
argue that the support is not transparent when modelling and, thus, some represen-
tations are feasible on a certain support while others are expensive in terms of
procedure, or plainly impossible to carry out. Hence, a support has a space of
possibilities linked and this space conditions what can be modelled with it. Thus,
the students also presented difficulties due to their initial lack of knowledge about the
GeoGebra support.

There were two more phenomena linked to difficulties observed at the initial
stage. On the one hand, there was confusion caused by the change in the didactic
contract. On the other, there was a lack of experience working in teams in complex
contexts. As regards the didactic contract, the students entered their project classes
with habits quite different from the ones in project-based learning. Their prior
experiences were marked by doing individual activities using pencils and paper,
their educators’ expository lessons and final exams at the end of the course. The
dynamic of working in projects in a real-world context and, particularly, the models
where they had to produce arguments caused surprises at the initial stages of the
projects. The same applies to teamwork and collective commitments.

In addition to that, the proposals presented here were carried out throughout the
first year of their education. It is important to highlight that dropouts characterize this
period. Thus, the students who remained in the courses also had to learn how to solve
complex issues in the projects related to their classmates’ absence. In this sense, we
highlight that the models presented were carried out in educative experiences (pro-
jects) that lasted 4 or 8 months, depending on the case. This relatively long-time
frame allowed the students to improve their previously mentioned difficulties.

We also consider relevant the interdisciplinarity, unavoidable at times, to discuss
modelling. In particular, although not limited to, the analogical models. However,
since analogical models replicate characteristics and phenomena of the context, they
appear to have an evident tendency to resort to interdisciplinarity in comparison to
analytical models. This could be observed in the development of all the analogical
models presented here.

Moreover, the analogical models seemed more appropriate than the analytical for
the general and basic understanding of the analyzed phenomena. The analogical
modelling possibility to establish direct relations between the objects from the
context and the objects of the model appear to have facilitated the students’ appro-
priation of the problems as well as their understanding.
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This potentiality presented in the analogical models did not pose any difficulties
in the possibilities of constructing arguments or making decisions based on them. On
the contrary, precisely for establishing relations between the model and reality, they
helped the students construct the arguments for their decisions. In this direction, we
have observed certain difficulties in the analytical models. Their level of abstraction
posed difficulties in the students’ understanding and production of potential analyses
relevant to the problems being discussed. This was verified in the answers to open
questionnaires we gave to them.

In those questionnaires, they were asked about matters observed in an analytical
modelling. In general, their answers did not contemplate elements of the model.
Instead, there was a tendency of returning to the real-world context to explain it,
which was inappropriate considering the impossibility to observe the phenomenon in
the real-world context. Thus, the analogical models appear as an interesting inter-
mediate instance in relation to the analytical models. In fact, the analytical models
presented in this chapter were produced based on analogical models.

There appears a sort of sequence of levels of abstraction where the analogical
modelling constitutes the first step of abstraction on which it is convenient to support
more abstract models that enable other types of analyses. As a result, at least two
potentialities can be observed. On the one hand, the possibility of creating different
interpretations and arguments of each type. On the other, the staggering or sequenc-
ing where analogical modelling is relevant for two reasons: its results and its support
for a more complex analytical model.
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Part IV
Mathematics and People: Empirical Work,
Theoretical-Methodological Approaches,

and Research Questions

The category of socioepistemological modelling is an educational program to learn
about the use of mathematical knowledge of communities in their different scenar-
ios: school, work, and life. This study reveals the emergence of people’s mathemat-
ical knowledge. Within this framework, the orientation of the program is to conform
epistemologies of the use of mathematical knowledge as a basis for all educational
levels: basic, intermediate, and higher education. In this section, a modelling cate-
gory is defined as a theoretical variety to express the functionality of mathematical
knowledge in a plane formed by two axes: transversality of mathematical knowledge
and institutionalization of scenarios. This category is the re-signification of uses of
mathematical knowledge in a horizontal and reciprocal relationship between math-
ematical knowledge. Empirical evidence is offered for the research questions on the
relationship through the re-signification and the educational impact in the domains
on some engineering and engineering students. But also, about the role of the
relationship in the initial training of mathematics teachers to generate disciplinary
identity. Furthermore, on the relationship to define the contemporaneity of learning,
which consists of handling technology to obtain adequate representations of data and
generate symbolic processing. And finally, on the connectivity that the relationship
provokes between contemporary natural phenomena such as Covid 19 and the
design of school situations in mathematics.



Chapter 12

A Category of Modelling: The Uses
of Mathematical Knowledge in Different
Scenarios and the Learning of Mathematics

Francisco Cordero, E. Johanna Mendoza-Higuera, Irene Pérez-Oxté,
Jaime Huincahue, and Jaime Mena-Lorca

12.1 Introduction

A sui generis category of mathematical modelling is formulated, due to the episte-
mological, ontological, and educational stance of our research approach. This does
not correspond to the classical definitions of modelling in the field of mathematics
that in general draw attention to the interests of the work of modelling, in which
major aspects intervene: represent reality and apply a knowledge structure to a real
situation, with empirical or analytical models according to disciplinary interests
(Bissell & Dillon, 2012).
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The category is a variety1 of mathematical modelling, which is a process that
legitimate of the mathematics in use that happen in different scenarios and to the
crossings between scenarios of those uses. We will call the first one epistemological
plurality and the second transversality of uses of mathematical knowledge. Both
aspects define the mathematical functionality of the mathematical knowledge com-
munities that occur in the scenarios: school, work, and city.

An invariant that has been identified in the different meanings of mathematical
modelling is the relationship with reality. This invariant, although, in generic terms,
is common in modelling, it can also be the tip of the iceberg that denotes the different
mathematical modelling programs to improve mathematical teaching and learning.
One aspect of our interest, in this article, is to discuss what is meant by reality in our
modelling program. This meaning of reality will lead to a category of modelling that
will value the uses and meanings of mathematical objects, which will be formulated
and justified later.

12.1.1 That What Is Called “Reality”

Entering the subject: Mathematics in education must be accountable for reality; and
this should be a fundamental basis at the different educational levels. But it is
necessary to question the term reality in the relations between school mathematics
and mathematical work to gain precision. Cordero et al. (2016) makes us see that this
so-called reality has different meanings, but also the discussion can be extended to
the various philosophical currents as mentioned by Pollak (1979).

Nevertheless, for questioning, it is necessary to direct it to empirical aspects and
to keep in mind the fundamental principles of Kant’s critique of practical reason
(1788/1998). In this sense, aspects such as the subjective reality and others linked to
the human sensations, which favour the functional sense of knowledge, where their
uses and re-significations happen in the discipline work and life. For example, a
reality in modelling may be the behaviour of a particle in an electromagnetic field,
and the model that is generated in this respect responds to the disciplinary interests of
science, as well as in some engineering.

However, reality in mathematics classrooms, as shown by Cordero et al. (2016),
is not clear nor trivial: to bring mathematics to the student’s reality and to create
environments of everyday life mathematics, are slogans that have not been able to be
carried out fully. School mathematics, in its tradition, has not been oriented to
this end.

Therefore, reality should be restricted, in order to standardize it to the education
of mathematics: to consider all levels of education and the diversity of disciplines, as
well as the work and life of people. Perhaps, reality should be interpreted in what is

1Variety expresses the idea of creating an alternative definition for mathematical modelling as
explained in the Constructs of the Modelling Category section: a variety.
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usual in all these scenarios, where routine uses are expressed; that is to say, the
everyday life of the disciplinary specialist, the worker, and the people (Cordero,
2016; Zaldívar et al., 2014; Mendoza & Cordero, 2018).

In general terms, with this account of reality, functional knowledge means a
useful knowledge of people in situations of mundane life, work, and the profession
(Arendt, 2005). This useful knowledge is composed of uses and meanings, which are
re-signified in the transit of the situations. In that sense, it can be said that functional
knowledge is the result of the transversality of the use of the knowledge of the people
in the different situations, which are re-signified.

The definition of re-signification is articulated by the definition of use, then: the
uses of mathematical knowledge U(CM)2 are organic functions of situations (func-
tioning), which are manifested by the “tasks” that make up the situation, and the
form of use will be the class of those ‘tasks’. The tasks can be activities, actions,
executions, and alternations of domains. When tasks alternation happens, a new
organic function is generated, which will be debated with the forms of the uses.

Thus “act of use” it was agreed to call it a re-signification of mathematical
knowledge uses (Res(U(CM)) (Cordero & Flores, 2007). Re-signification is, in
some way, the construction of knowledge. Later, in the approach, transversality,
re-signification, and functionality will become constructs to observe and analyse in
different communities of knowledge.

12.2 The Problems and Socioepistemology

In this Modelling Program the interpretation of reality must build the reciprocal
relationship between mathematical knowledge and everyday knowledge of the
disciplinary specialist, the worker, and the people. For example, a community of
bionic engineers in their day-to-day knowledge of Control Systems builds a category
of mathematical knowledge called Behaviour Reproduction. This category is in
reciprocal relationship with the Stability of a differential equation.

The first expresses the mathematical uses and meanings of the engineering
community and the second expresses the mathematical object of school mathemat-
ics. For these engineers, a differential equation is “an instruction that organizes
behaviours” while for school mathematics is finding a solution that is not known
(Mendoza & Cordero, 2018). These will be the realities that this Modelling Program
will meet (Cordero, 2016; Cordero et al., 2015; Buendía & Cordero, 2005).

To carry out scientific research with the Modelling Program, it requires
theoretical-methodological constructs. What is formulated here belongs to the
Socio-Epistemological Theory of Educational Mathematics Cantoral (2013, 2019)
has provided this with fundamentals, which consist of four principles: the
normativity of social practice, contextualized rationality, epistemological relativism,

2The acronym U(CM) comes from Spanish, which means Mathematical Knowledge Uses.
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and progressive signification (resignification). With these principles,
socioepistemology explains the enigma of the social construction of mathematical
knowledge and its institutional diffusion.

A fundamental construct is the social practice, with which, in a complex system
of the social dimension processes, in relation to the cognitive, epistemological, and
didactic dimensions, mathematical knowledge is problematized, considering the
sage, technical and popular knowledge to synthesize them with human wisdom.
Research has been conducted where the mathematics put into use by communities is
problematized when successive variation is modelled in mathematics (high school
students) and in science (cardiologists) (Cantoral et al., 2018).

Cordero et al. (2016) considers that the construct social practice, in the Socio-
Epistemological Theory, has revealed that in school mathematics (basic, middle, and
higher education) aspects of the social dimension, such as: reality, the uses of
knowledge, and in more generic terms, people, have been forgotten subjects.
These are necessary to recover, in order to alleviate the problem of the teaching
and learning of mathematics (Cordero et al., 2015).

For example, to teach parabola, a mathematical object that appears in middle
school mathematic courses, between 15 and 17 years old, it is difficult for a teacher,
with their teaching resources, to have a frame of reference to incorporate the
parabola in situations of variation, approximation, and transformation to generate
prediction arguments, local behaviour, and trends, respectively (Morales & Cordero,
2014; Mendoza et al., 2018).

With this approach, Cordero formulates a General Socio-Epistemological Pro-
gram called Forgotten Subject and Transversality of Knowledge (SOLTSA, acro-
nym derived in Spanish), where the Modelling Program is immersed (Cordero,
2016). Its foremost objective is to reveal the uses of mathematical knowledge and
its resignifications that occurs in the mathematical knowledge communities in the
different settings: school, work, and city.

The Program SOLTSA is developed through two simultaneous lines of work: the
Re-signification of Mathematical Knowledge, and its Educational Impact. In the first
one, mathematical knowledge categories that occur in the communities between
different scenarios of knowledge that obligatorily comes into play, are discussed:
school mathematics, disciplinary field, and everyday life of the community.

For example, in the first one it can be a differential equation, in the second it can
be the heating of a focus and in the third scenario it can be the reproduction of a
behaviour. The three aspects mentioned are resignifications of the stability uses, as it
will be seen later (Cordero, 2016; Mendoza & Cordero, 2018). In the second line
of work, the multi-factors and stadiums that contribute to the quality alliance of
mathematical teaching, to lead to the transformation and educational change of
mathematics. Identity, socialization, and inclusion, among others, are the multi-
factors for this purpose (Opazo-Arellano et al., 2018; Pérez-Oxté & Cordero, 2016;
Medina-Lara et al., 2018).

After this necessary digression, the stance on mathematics in the SOLTSA
program is shown below. First, it is stated that this study is concerned with the
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social function of mathematical knowledge.3 This fact has led to questions about the
uses of knowledge from diverse communities. For example, this reveals that these
uses are different for mathematicians as compared to engineers (Cordero et al., 2015;
Mendoza & Cordero, 2018; Pérez-Oxté & Cordero, 2016), but they are also different
in school and in everyday life (Carraher et al., 1997).

The meaning of this evidence opens questions that require their contrasts to be
precise. It is not enough to ask, in this case, what is mathematical knowledge; but
also, what mathematics, which entails considering its epistemological plurality and
its transversality of knowledge (Cordero, 2016; Cordero et al., 2015). Perhaps
because of this, there are investigations that proposes to integrate
non-mathematical entities that contribute to learning into classical mathematical
classrooms, for example, Lim et al. (2010) analyze the role of prediction in learning
mathematics.

The previous stance leads to a stance on modelling. It is a category that responds
to what is useful to a human in a specific situation. It is something more robust than a
mathematical application (to a real situation), it is a specific community practice, in
its scenarios: school, work and city. This situation is composed of significations and
re-significations with their respective procedures, regulated by an instrument: both
are constructed according to the operations that the participants can perform, with
the conditions that they can capture and transform and with the concepts that they are
progressively building (Cordero, 2016).

This category of modelling carries out multiple realizations and makes adjust-
ments in its structure to produce a desirable pattern; it is a medium that supports the
development of reasoning and argumentation (Suárez & Cordero, 2010). It is in itself
a construction of mathematical knowledge. The category of modelling is the process
where mathematical knowledge is re-signified, which values the elements, in the
environment of the object to which they give meaning (this statement will be
discussed more carefully in Fig. 12.6).

12.3 Research Questions and Tasks

The theoretical approach consists of constructing a reference frame, where the
teacher and the student legitimize the uses of mathematical knowledge (epistemol-
ogies of uses) for the benefit of teaching and learning. Its construction is not obvious;
it requires scientific research that can endow with truthful elements of these episte-
mologies. The category of modelling plays the role of providing a form and
functioning of mathematical knowledge uses to observe, analyse, and shape them
in specific situations. These categories are inferred in the study, communities using

3By mathematical knowledge, it refers to the mathematics put into use by the different communities
in their different scenarios: school, work, and city. The ages of the people that make up the
communities can correspond to children, adolescents, young people, and adults.
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empirical theoretical-methodological aspects, but what is not known (that needs to
be known) a priori is the educational impact.

For that, it will be necessary to design school situations for all educational levels
(basic, middle, and high) and work on the following research questions: (a) What are
the extensions of learning episodes in the classroom when the reciprocal relationship
between mathematics and reality, is restored? and (b) What are the fundamental
factors in the new permanent program to maintain the environments of reciprocal
relationships? These tasks should guide the educational transformation that favours
the reciprocity between mathematics and everyday life in the classroom.

12.4 The Status of the Uses of Mathematical Knowledge
and Modelling in Mathematics Education

The appearance of mathematical modelling in the mathematical education has to do
with the following facts. Depending on what is meant by mathematical education,
different pronouncements are found in relation to the application of mathematics in
education.

Henry Pollak (1979) says that the applications of mathematics and mathematical
modelling already played an important role in school mathematics in the nineteenth
century in Europe and North America. Felix Klein, mathematician and mathematics
educator, introduced applications to school mathematics in Germany and other parts
of Europe through the development of an innovative curriculum that integrated the
applications of mathematics into higher education. Moreover, Klein defended, in the
teaching of mathematics, a balance between applications and modelling on the one
hand, and pure mathematics on the other. Surely, these pronouncements have
achieved educational impacts on the world.

For example, in the Common Core State Standards for Mathematics (CCSSM) of
the United States, mathematical modelling had minimal attention in 1989 and 2000,
but it is currently prioritized: On the one hand, there is the Standard for Mathematical
Practices (SMP), and, on the other hand, for secondary education, it is a conceptual
category (Hirsh & McDuffie, 2016). Blum and Borromeo-Ferri (2009) argue that
mathematical modelling can support the learning of mathematics regarding motiva-
tion, comprehension, and retention.

Progress is undeniable; mathematical modelling in education today plays a
significant role in mathematical education (Kaiser & Sriraman, 2006). However,
attention to another aspect is given in this research. In this scenario, the basis for
defining what mathematical modelling is, is the ambit of science, but not in the ambit
of people. For example, CCSSM states that modelling means to use mathematics or
statistics to describe a real-world situation and to deduce additional information from
the situation by mathematical and statistical calculation and analysis (CCSWT,
2013).

252 F. Cordero et al.



This definition is feasible, surely for mathematical modelers, and also for those
who believe in modelling for mathematical education. But here is the questioning
(and in return the point of interest) is: (a) How do they model? and (b) How do
people use modelling? These people can be scientific, but it is not necessary.

12.5 Construct of the Modelling Category: A Variety

The structure of the modelling category ζ(Mod) is composed of the uses of mathe-
matical knowledge U(CM), and by the re-significations of those uses, Res(U(CM)),
in specific situations (S). Such situations are part of that environment (mutual
relations) that occur in communities of mathematical knowledge (CCM).

Each specific situation Si is formed by sequential elements that construct what is
deemed mathematical: signification, procedure, and instrument, to derive the argu-
mentation of the situation (Arg(CM)). In generic terms, Arg(CM)i is a Res(U(CM)i)
constructed by CCMi in Si (see Fig. 12.6) (Cordero, 2016). It is a situational
mathematical knowledge; it does not correspond to the emulation of the mathemat-
ical object in the situation, but to the revelation of the uses and meanings of the
object, community-owned, regulated by the situation.

The U(CM) re-signify themselves in each S. Additionally, also when
transversality (Ti) occurs between scenarios or domains of knowledge (Di). Still, in
the situations and transversality, moments happen (Moi), and between them, the uses
are re-signified also. The Moi’s are phases in the situational process.

12.5.1 The Variety: From the Mathematical Object
to the Functionality of Mathematics

It is believed that a convenient way to face the enigma of the category is to bring it to
the notion of variety, which consists of creating a difference without losing unity.
This means that mathematical modelling has a unit that defines or distinguishes it as
such. In that sense, a principle prevails both in the approaches to science and in the
approaches to education, which has to do with a cycle that connects the real world
and mathematics.

In this context, Blum’s model (2011) is an example of this principle: it defines the
cycle with a sequence that, in general, begins with a real-life situation, which in turn,
in simplifying and idealizing, becomes a real-life model, since which, through
mathematization processes, a mathematical model is derived. Then, with mathemat-
ical tools, it is interpreted and validated in the real-life situation.

The cycle, with its sequence of phases, is consistent with the principle: it connects
the reality of the world with mathematics. And, that cycle is taken to different
educational levels to improve the learning of mathematics. An important aspect, of
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this study’s interest, is to point out that in the usual educational approach the cycle
pre-exists4 the experiences of the teacher and the student; the processes between the
phases of the cycle are monitored or studied.

It is believed that from this fact the variety can formulated. For this purpose, let us
consider the principle (P) of mathematical modelling (Mod). P is the cycle that
connects the real world and mathematics. Then the variety must be based on a
principle P0 of P. In some sense P0 is a derivative of P; it can be a sub-principle of
P or, at best, something that gives rise to P. However, in this case P0 is the functional
aspect of the reciprocal relationship between mathematics and everyday life. This P0

generates the category of modelling ζ(Mod), that is, the uses of people’s mathemat-
ical knowledge.

Hence, on the one hand, mathematical modelling, in generic terms, is formulated
as follows:

• Principle P assumes the existence of a mathematical knowledge (M ) and an
existence of reality (R). Given R there is a specific mathematical knowledge M0

that mathematizes R: M0(R) ¼ R0, where R0 is an interpretation of R.
• M0(R) is a mathematical object: it is the knowledge generated by the mathematical

modelling.

On the other hand, the variety of modelling is formulated as follows:

1. Now, P0 is functional; hence, neither R nor M pre-exists.
2. The use of people’s mathematics is functional, U(CM).
3. People live in different situations, Sk.
4. In the transition between the Sk, there are epistemologies Ej (plurality) and

transversality Tn (re-significations).
5. The Skmight be on domains of knowledge Dm and in the alternations between the

Dm’s.
6. The modelling category is the re-signification of uses, Res(U(CM)), when a

transition between Sk and Sm happens, even in alternance of domains. This is
the knowledge that generates ζ(Mod).

The category ζ(Mod) is composed of two axes: the institutionalization and the
transversality of knowledge, where situations Sij, domains Dj and alternations of
scenarios occur: the school-academic scenario, the work-profession scenario, and the
city-everyday life scenario. The scheme of the variety, which is called the Mathe-
matical knowledge framework of ζ(Mod), is represented in Fig. 12.1.

4This pre-existence means that a priori the teacher and the student are not mathematical modelers.
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12.6 An Example: Start-Up of ζ(Mod)—From Stability
to the Reproduction of Behaviour

The development of the category of modelling ζ(Mod) is outlined in two episodes,
considering empirical research that has been carried out with communities of
engineers in the profession and in training: Re-signification of stability and
transversality of knowledge.

12.6.1 Data Collection and Definition of the Study
Community

The selection of the communities consisted of the availability, of its members, to be
video-recorded and interviewed, preferably, in the scenarios of professional work.
The selected communities were Bionic Engineers and Industrial Chemical
Engineers.

With ethnographic methods (Guber, 2001) and a case study by each engineering
community, this disciplinary work was characterized. The characterization consisted
of identifying the routine situations where they use mathematical knowledge and the

Fig. 12.1 Mathematical knowledge framework of ζ(Mod) (The interpretation of this framework of
mathematical knowledge of the modelling category was widely discussed considering the synthesis
of three investigation experiences: the functionality of mathematical knowledge, mathematical
modeling and initial mathematics teacher training. The collaborators were F. Cordero, J. Mena-
Lorca, and J. Huincahue. A version of this interpretation was agreed upon in Huincahue’s doctoral
thesis (2017).). (Source: Cordero (2022))
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problematizations of their mathematical knowledge. The analysis of these charac-
terizations was carried out through the constructs of the modelling category with the
Socio-epistemological Theory and considering the documentary technique and
semi-structured interviews.

To problematize, the mathematical knowledge was analysed, through the
resignification of those uses in the school-academic and work-profession settings.
The problematization formed an epistemology of resignifications of the mathemat-
ical knowledge uses that emerges in the community when considering the specificity
of the scenario. On the one hand, with the documentary technique of analysis, and on
the other, with the semi-structured interview technique, patterns, and relationships
among them were identified, alluding to the tendency or reproduction of a behaviour
in the contexts of the situations.

The behavioural patterns and relationships were organized by an instrument
(instruction that organizes behaviours) accompanied by their meanings (graphic
and analytical patterns) and procedures (variation of parameters). And with the
unit of analysis composed of the constructs: use, resignification and transversality,
the transformation situation was conformed (resignification of uses of stability) (see
Fig. 12.6). Subsequently, the transformation situation was taken as a basis to design
activities and analyse their emergence in the community of engineers during training
of different semesters.

12.6.2 Community of Bionic Engineers

The community of mathematical knowledge of bionic engineers CCM (BE) that
were observed and interviewed, are assigned to the Interdisciplinary Unit of Engi-
neering and Advanced Technologies of the National Polytechnic Institute (UPIITA-
IPN), Mexico (Mendoza & Cordero, 2018). Bionic Engineering is conceived as the
set of interdisciplinary knowledge between electronics and biology whose purpose is
the creation of artificial systems to reproduce the characteristics and structure of
living organisms.

The subject of Modelling and Control of Biological Systems is the backbone of
the curricular program, for which it was observed, for 3 months, the professional
practice (as a teacher) of a bionic engineer and the practices of the engineers in
training (the students). One of the central concepts is the study of control systems.
The artificial devices that are built are made up of processes that are required to be
controlled, in such a way that the desired characteristics and structure can be
reproduced.

Likewise, the stability of these systems, which are modelled by differential
equations, was one of the characteristics that led to the emergence of different
concepts and techniques both for Control Theory and for mathematics itself. In
general, the objective of a control system is to control the outputs in some prescribed
way by means of the inputs through the elements of the control system (Mendoza &
Cordero, 2018).
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The design of control systems is the specific situation of the CCM (BE) in the
school setting, which gives meaning to the category of modelling (behavioural
reproduction) whose structure is the core situation (transformation situation) that
rules the mathematical knowledge uses of the engineer. The meanings, the pro-
cedures, the instrument, and the arguments are specific to CCM (BE) (Mendoza &
Cordero, 2018) (see Table 12.1).

With the evidence of the ζ(Mod)’s mathematical knowledge framework, it was
decided to justify it in one of the laboratory practices developed by the teaching
engineer. The practice is called control the lightbulb’s temperature, where the main
problem is: once assigned a reference value, the temperature of the lightbulb reaches
it. For this purpose, students assemble a physical model with the following elements:
Arduino board, lightbulb, AC solid state Relay and temperature sensor (Fig. 12.2).

Initially the students analyse the behaviour of the output signal in the system: the
temperature of the lightbulb: “The temperature must stay within a certain range (. . .)
what we are going to see is an asymptote that corresponds to the maximum
temperature that the lightbulb can reach” (Mendoza & Cordero, 2018). The teacher
draws on the blackboard and comments on the following (Fig. 12.3).

The system is characterized by the system gain, the system time constant and the
transfer function that relates the input and output signals. The students, in laboratory
practice, must adjust the parameters of the system gain and the time constant, based
on the graph provided by the Arduino software, allowing it to reach its maximum
temperature. A group of students problematize the adjustments of the parameters:

A1. That’s why I tell you, it’s 77 degrees, I have to put it in . . .
A2. And how many were there?
A1. 8000 ohh! Do not
A2. Ahhhh still needed to stabilize
A1. I told you (Class observation, cited in Mendoza & Cordero, 2018).

Table 12.1 Core and specific situations: transformation and control systems (Source: Mendoza
and Cordero (2018))

Construct of what is
deemed
mathematical Core situation Specific situation

Transformation
situation

Design of Control Systems

Meanings Graphical and analytical
behaviour patterns

Behaviour of the input signal and the output
signal

Procedures Variation of parameters Feedback transfer function

Instrument Instruction that orga-
nizes behaviours

The differential equation models the behav-
iour of the signals and the stability of the
system

Argumentation/re-
signification

Tendency behaviour/
reproduction of
Behaviours

Reproduction of the behaviour from the exit to
the entrance
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The previous paragraph alludes to that the temperature had not reached its maxi-
mum, thus the comment: it was not stabilized. Finally, they seek to control the
temperature of the bulb by using the ON-OFF controller. Figure 12.4 shows how the
curve, which represents the behaviour of the output signal, in certain time intervals
exceeds the reference value and in others it does not. This is due to the control
mechanism as the teacher expresses it below:

Fig. 12.2 Connection diagram: lightbulb, Relay and Arduino. (Source: Mendoza and Cordero
(2018))

Fig. 12.3 Graph of the output signal behaviour and Transfer function of the plant. (Source:
Mendoza and Cordero (2018))
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(. . .) they will give a reference value θ ref (. . .) this would be temperature θ (vertical axis),
the temperature will rise and there will surely be a surplus, but at this moment the lightbulb
will have been turned off (. . .) (What is in red means the energy in the lightbulb, or the
voltage, (. . .) or the effect of turning off the lightbulb). The temperature will vary more or
less in this way (black curve). The point is that this is going to be oscillating (. . .) That is, if
the temperature is greater than or equal to (. . .,) then turn on, if not, turn off (. . .) (Class
observation cited in Mendoza & Cordero, 2018).

In the control system design, three moments are observed: M1: System dynamics
(θ ! θref : θ it tends to behave like f ); M2: Adjustment of the transfer function or
behaviour model (aθ0 + θ ¼ θref); M3: Control of the output signal and stabil-
ity (aθ0 ¼ θref � θ : a control). Each of these moments is subjected to the
Reproduction of a desired behaviour, that is, the output signal tends to behave as
the reference value or input signal (Fig. 12.4).

In this way, stability is signified in the behaviour of the input and output signals,
causing procedures such as the comparison between the output signal and the
reference value, modifying the parameters of the differential equation modelling
the system and meaning it as an instrument, which is responsible for modelling the
stability of the output signal and thus achieve that the behaviour initially proposed is
reproduced.

12.6.3 Community of Chemical Industrial Engineers

These engineers are industrial chemists and in their day-to-day professional they
make diagnostics of electrical transformers; and what they problematize are the
concentration behaviours of the chemical elements that make up the transformers,

Fig. 12.4 Graph of the output signal using the on-off control. (Source: Mendoza and Cordero
(2018))
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in monthly and annual periods: they predict the lifetime of the transformer according
to the reproduction of the chemical elements’ graphical behaviours in monthly and
yearly units (Pérez-Oxté & Cordero, 2016).

The diagnosis of electrical transformers is part of the daily life of a CCM (ChIE).
They work in a chemical laboratory located in the Yucatan peninsula. There they
diagnose electrical transformers to prevent serious failures in equipment through
their early detection, preventing them from being damaged. They constructed a
Graphical Diagnostic Method that consist of the concentration history for each of
the gases in the electric transformer oil over time. They analyse the concentrations of
the gases to see abnormal increases or behaviours that can be indications of possible
failures in the electric transformer.

Eight gases are classified into three blocks of analysis, which emerge from the oil
contained in the transformer, and the description of the conditions of their graphical
behaviour is used to determine whether or not the transformer is in good condition:

1. Block 1. Gases that are indicators of possible failures in the transformer: Hydro-
gen—is an indicator of partial discharges; Ethylene—Hot spots; and Acetylene—
Arc. Hydrogen is always present in all faults; however, an increase in this is an
indicator of something abnormal in the transformer. It is present because it is
easily formed and becomes apparent, for example, by electricity flashing inside
the transformer. Ethylene comes in higher concentration and requires twice as
much energy as Hydrogen to form, while Acetylene should not be produced since
it is a reason to consider a possible failure in the electric transformer and thus,
leaving it out of order. There should be no elevated levels of these three gases,
they may form but their concentration must be stable.

2. Block 2. Gases that must store a ratio 1:10 in their concentrations for the situation
to be considered normal: Carbon monoxide and Carbon dioxide. The extraordi-
nary behaviour of these gases indicates a fault called Paper pyrolysis, which
means that the paper inside the transformer is burning. The presence of these
gases appears naturally due to the wear of the transformer. The ratio 1:10 of these
gases is represented graphically as a parallel behaviour.

3. Block 3. Gases that indicate a natural wear on the electric transformer: Methane,
Ethane and Water. The behaviour of the concentrations of these gases must be
stable, that is, with slow and constant increases.

With the Diagnostic Graphical Method, the main question that this community
makes is about the assignment of significations to the graph in the specific situation
of the diagnosis of transformers. These graphs are considered as models of behav-
iour, which is to say, as tools that allow reading, interpreting, and inferring infor-
mation on the trending of the concentrations of the gases that the transformer has.
Based on this, decisions are made (Pérez-Oxté & Cordero, 2016).

Three uses are identified: Statistical control, Graphic-fault relationship, and
Graphical diagnostic model. The diagnosis of transformers is the specific situation,
in which the main focus is “behaviour reproduction”. These behaviours are
re-signified in the moments of each use. This occurs since the situation generates
an environment of reciprocal relations between the arguments of Prediction,
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Trending Behaviour and Optimization, starting from the re-signification of the
graph’s uses in which functions and forms are debated.

The core of this environment is the reproduction of behaviours (Pérez-Oxté &
Cordero, 2016): for example, to make conjectures about a possible transformer
failure, a reading and interpretation of two of the eight graphs of the gas concentra-
tions is enough. In this case, Carbon Monoxide and Carbon Dioxide are indicators
that there is Paper pyrolysis and therefore maintenance must be performed. The ratio
1:10 that the gases must present is analysed from a trend behaviour of the concen-
trations of the gases.

In Fig. 12.5, it can be observed that the graphical behaviour of Carbon Monoxide
tends to be about 150 ppm, while the behaviour of the Carbon Dioxide tends to
stabilize at 1500 ppm, concluding that the state of the transformer is in good
condition.

When the trending behaviour is not stable in the proportion of 10%, this is an
indicator that the transformer has a possible failure. By examining this example, it is
possible to recognize the variation of the concentrations and stability aspects from
analysing the trending behaviour of both gases and predicting whether the trans-
former requires maintenance or not. In the models, there are increases in the
concentrations of gases on certain dates, but these are considered normal, because
the increase of one of the gases is similar to the one of the other.

Ideally, in the graphic models, there would be a ratio of one gas to the other of
10%, but that does not happen, and it is enough that the relationship is fulfilled in the
trend of the models. In this sense, the moments indicated above play the
following role:

1. Moment 1. Statistical control. The variation and the stability in the concentrations
of gases in a transformer. Discussion: Graphs with similar variations model stable
behaviours.

2. Moment 2. Graphical-fault relationship. The trending behaviour of the gas
concentrations to determine the stability in the graphs. Discussion: graphics
show non-similar variations that lead to question the trending behaviour of them.

3. Moment 3. Diagnostic graphic model. Prediction in the simultaneity of variations
in gas concentrations and the optimization for future trends. Discussion: stability
as a quality to discern between normal and extraordinary behaviours (Pérez-Oxté
& Cordero, 2016).

In summary, it can be said that the specific situation that this community of
engineers CCM (ChIE) treats in their daily professional routine is to signify certain
concentrations at certain periods of time to analyse and make decisions about the
state of the transformer.

Staging. From the specific situation of CCM (ChIE) a staging was performed
(Pérez-Oxté & Cordero, 2016.) Five students (men) participated. All were in the
third semester of the Industrial Chemical Engineering training program in the
Chemical Engineering department at the Autonomous University of Yucatan,
Mexico.

12 A Category of Modelling: The Uses of Mathematical Knowledge. . . 261



In the research report they were called community of mathematical knowledge of
industrial chemical engineering trainees. For the purposes of this discussion, the
learning episodes of re-significations of the uses of mathematics between the three
moments indicated previously:

• The re-signification between Moment 1 Statistical Control and the Moment
2 Relation graphic-failures. The behaviour of the concentrations of the gases is
analysed. The presence of variations in the concentrations and the conditions in
which they are present served to characterize those graphical models that predict
whether the electric transformer is in good condition or not. For this purpose,
arguments such as the prediction of the electric transformer were generated from
looking for the reproduction of the behaviours with trends similar to ideal graphic
models.

Debate and new functions and forms: The graphics functioning focused on the
behaviour of the concentrations with the form of the graphs considered as
constant behaviours was discussed. The new way was to assess variation by
comparing states, concentration, in-time intervals, and determining growths and
decreases in the graphs. The new functioning of the graph was the prediction of
the chemical element’s concentration state in future time intervals.

• The re-signification between Moment 2, Graphic-fault relationship, and Moment
3 Graphical diagnostic model. The qualities of the graphic models are analysed,
to make differences or similarities that help to discern normal and extraordinary
behaviours. For this purpose, they are subjected to selection situations, where the
graphic model would be closest to an ideal behaviour. Arguments were generated
to optimize diagnostics for future time intervals.

Debate and new functioning and forms: The argumentative functioning of the
graphic on the trend with the form of extraordinary behaviours that had peaks or
not, at a certain time, was discussed. The new functioning of the graphic consisted
of characterizing the behaviour, at a certain interval of time and with a certain
proportion, as a condition of the appropriate behaviour. The new graphical form
consisted in comparing the changes of states, in a determined time.

Fig. 12.5 Models of behaviour of Carbon monoxide and Carbon dioxide gases. (Source: Authors’
elaboration based on data from electrical transformers)
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An important aspect to note is that these training engineers were in the third
semester of their studies, and the corresponding school mathematics focuses atten-
tion on the concept of function, with its properties, and its graphs, its derivability,
and analytical methods for calculating maxima and minima, and for solving differ-
ential equations. In the learning of re-significations that are described above, first,
this does not have an algebraic formula of the function and, secondly, with numerical
data interpreted by the graphs’ uses, the variation to predict and the transformation to
reproduce behaviours, are valued and selected to optimize behaviours.

This is an example of the modelling category delimited to the data collection that
has been presented here. The result shows us that the investigation is the revelation
of functional mathematics that emerged from those communities of engineers in the
scenarios described. This category of modelling involves reflecting on its meaning in
school mathematics. First, that category (trend behaviour), a priori, is not in the
school treatment of mathematics.

Then, the advancement in characterizing the category of modelling in teachers
and students of the different educational levels is desired. This can be a fundamental
component of the reference frame that will derive the educational change of math-
ematics: the decentration of the mathematical object that will allow the entry of the
uses and meanings of the objects that emerge in the communities in the different
scenarios.

12.7 Efficacy of the Category for Learning Mathematics

The category of trending behaviour of functions ζ(ctf) is related to the derivative and
asymptotic behaviour, stability, and optimization. The trending behaviour of func-
tions is intrinsic to the graph and generates a development of uses of the graph that
re-signifies mathematical knowledge, by making distinctions and forming construc-
tions as an essential part of modelling (Cordero, 2008).

In the following, there are three situations described by Cordero (2008). Each one
is formed by three moments that indicate a development of the category.

1. S1: Variation of coefficients in the transformation of a function. Moments:
Changes and slope changes; Comparison between graphs and ratios; And Simu-
lation of graphic behaviours. This situation privileges the conception of function
from a relation with its behaviour. The function is understood as the relation
between variables where the variability of one of them is represented, that is to
say, the ways of behaving concerning the others. In this sense, it is affirmed that
the function is re-signified as an instruction that organizes behaviours: f is
transformed into F ¼ Af(Bx + C) + D (Cordero, 2008; Buendía & Cordero,
2005; Cordero et al., 2010).

2. S2: Relations between functions through operations. Moments: The Sum of
functions in a graphical context; Graphic sequences in the sum of functions
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f + hk¼ gk; and Transformation of graphs f + ? ¼ h. Here, the operations between
the functions through their graphs becomes operating functions by looking for
trending behaviour (Cordero, 2008), not from local or point-to-point aspects but
through the shapes of the curves.

3. S3: Stability of differential equations. Moments: (a) Sequences of first order
differential equations (EDL) y0 + y ¼ F, varying F; (b) Sequence of first order
linear differential equation, varying coefficients ay0 + y ¼ F; and (c) Sequence of
second-order linear differential equation and generalizations: y0 ¼ F � y;
ay0 + by

00 ¼ F � y; a1y
0 + a2y

00
+ ⋯ + any

n ¼ F � y. Here, the differential
equation is seen as a relation between functions that determines behaviours. ζ(ctf)
favours identifying coefficients in the function, recognizing patterns of graphical
behaviour, searching trends in behaviours and establishing relationships between
functions. The signs “+” and “¼” are transformed into notions of tendency about
the behaviours (Buendía & Cordero, 2013; Cordero et al., 2016).

The previously mentioned allows recognizing in these uses of mathematical
knowledge is a category that produces a continuous material, that is, it has a genesis
and a development, for it to reproduce in the educational system. For this, it must be
constituted as an argument, in this case, of specific situations where “reproductions
of behaviours” are meanings that provide procedures such as variation of parameters,
and which involve functional tools to organize behaviours through instructions
(Cordero, 2008).

12.7.1 The Transversality Tk

The transversality of the mathematical knowledge will be the new epistemological
statuses (Fig. 12.6). To achieve the educational impact of these new statuses, it is
necessary to establish programs that will have to be systems to favour the function-
ality of mathematical knowledge. These systems should articulate to science, edu-
cation, and society. The immersion in the Communities of Mathematical Knowledge
will be fundamental to achieve the horizontality of knowledge.

12.8 Conclusions: The Educational Change
in Mathematics: A Hope

It is necessary to understand mathematics teachers as a community of mathematical
knowledge that builds its own mathematical categories, particular to their environ-
ment, regulated by the mutual relations between school knowledge and reality. The
reference framework (MR) will guide the necessary articulations in autonomous
actions in the Mathematics teaching, hence the importance of generating research on
the teachers’ function (Opazo-Arellano et al., 2018), which will lead to the
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permanence of the environment of the reciprocal relations that happen in the
mathematical functionality, and to the educational change of the mathematics
decentralizing the object (Cantoral, 2013; Cantoral et al., 2015).

References

Arendt, H. (2005). La condición humana [The human condition]. Paidós.
Bissell, C., & Dillon, C. (2012). Ways of thinking, ways of seeing. In Mathematical and other

modelling in engineering and technology. Springer.
Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In

G. Kaiser, W. Blum, R. Borromeo-Ferri, & G. Stillman (Eds.), Trends in teaching and learning
of mathematical modelling (pp. 15–30). Springer.

Blum, W., & Borromeo-Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt?
Journal of Mathematical Modelling and Application, 1(1), 45–58.

Buendía, G., & Cordero, F. (2005). Prediction and the periodical aspect as generators of knowledge
in a social practice framework. A socioepistemological study. Educational Studies in Mathe-
matics, 58(3), 299–333. https://doi.org/10.1007/s10649-005-2295-5

Fig. 12.6 Re-signification of U(Graph) and the moments of transversality Moi(Tk). Design of
School Situations of Socialization (DSES). (Source: Authors’ elaboration)

12 A Category of Modelling: The Uses of Mathematical Knowledge. . . 265

https://doi.org/10.1007/s10649-005-2295-5


Buendía, G., & Cordero, F. (2013). The use of graphs in specific situations of the initial conditions
of linear differential equations. International Journal of Mathematical Education in Science and
Technology, 44(6), 927–937. https://doi.org/10.1080/0020739X.2013.790501

Cantoral, R. (2013). Teoría Socioepistemológica de la matemática Educativa. Estudios sobre la
construcción social del conocimiento [Socioepistemological theory of educational mathemat-
ics. Studies on the social construction of knowledge]. Gedisa.

Cantoral, R. (2019). Socioepistemology in mathematics education. In S. Lerman (Ed.), Encyclope-
dia of mathematics education (pp. 1–7). Springer Nature. https://doi.org/10.1007/978-3-319-
77487-9_100041-1

Cantoral, R., Moreno-Durazo, A., & Caballero-Pérez, M. (2018). Socio-epistemological research
on mathematical modelling: An empirical approach to teaching and learning. ZDMMathematics
Education, 50(1–2), 77–89. https://doi.org/10.1007/s11858-018-0922-8

Cantoral, R., Reyes-Gasperini, D., & Montiel, G. (2015). Socioepistemología, Matemáticas y
Realidad [Socioepistemology, mathematics and reality]. Revista Latinoamericana de
Etnomatemática, 7(3), 91–116.

Carraher, T., Carraher, D., & Schliemann, A. (1997). En la vida diez, en la escuela cero [In life ten,
in school zero]. Siglo XXI.

Common Core Standards Writing Team. (2013, April 11). Progressions for the common core
standards in mathematics high school, modelling. Common Core Standards Writing Team.

Cordero, F. (2008). El uso de las gráficas en el discurso del cálculo escolar. Una visión
socioepistemológica [The use of graphs in the discourse of school calculation. A
socioepistemological vision]. In R. Cantoral, O. Covián, R. M. Farfán, J. Lezama, &
A. Romo (Eds.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas: Un reporte
Iberoamericano (pp. 285–309). Díaz de Santos-Comité Latinoamericano de Matemática
Educativa. A. C.

Cordero, F. (2016). Modelación, funcionalidad y multidisciplinaridad: El eslabón de la matemática
y el cotidiano [Modelling, functionality and multidisciplinarity: The link of mathematics and
everyday life]. In J. Arrieta & L. Díaz (Eds.), Investigaciones latinoamericanas de modelación
de la matemática educativa (pp. 59–88). Gedisa.

Cordero, F. (2022). La Matemática, sus Usos y Significados. Un Programa Socioepistemológico de
la Matemática Educativa [Mathematics, its uses and meanings. A socioepistemological pro-
gram of educational mathematics]. Manuscrito en preparación.

Cordero, F., Cen, C., & Suárez, L. (2010). Los funcionamientos y formas de las gráficas en los
libros de texto: Una práctica institucional en el bachillerato [The functions and forms of graphics
in textbooks: An institutional practice in high school]. Revista Latinoamericana de
Investigación en Matemática Educativa, 13(2), 187–214.

Cordero, F., & Flores, R. (2007). El uso de las gráficas en el discurso matemático escolar. Un
estudio socioepistemológico en el nivel básico a través de los libros de texto [The use of graphs
in school mathematical discourse. A socioepistemological study at the basic level through
textbooks]. Revista Latinoamericana de Investigación en Matemática Educativa, 10(1), 7–38.

Cordero, F., Gómez, K., Silva-Crocci, H., & Soto, D. (2015). El Discurso Matemático Escolar: La
Adherencia, la Exclusión y la Opacidad [The school mathematical discourse: Adherence,
exclusion and opacity]. Gedisa.

Cordero, F., Solís, M., Buendía, G., Mendoza, J., & Zaldívar, D. (2016). El comportamiento con
tendencia, lo estable y las Ecuaciones Diferenciales Lineales. Una Argumentación Gráfica
[Trend behavior, stability and Linear Differential Equations. An graphic argumentation].
Gedisa.

Guber, R. (2001). La etnografía. Método, Campo y Reflexividad. Norma: Bogotá.
Hirsh, C. & McDuffie, A. (2016). Annual perspectives in mathematics education: Mathematical

modelling and modelling mathematics. National Council of Teachers of Mathematics.
Huincahue, J. (2017). Propuesta de modelación matemática en la Formación de Profesores y bases

para una variedad de Modelación desde la Teoría Socioepistemológica [Proposal of mathe-
matical Modelling in Teacher Training and bases for a variety of Modelling from

266 F. Cordero et al.

https://doi.org/10.1080/0020739X.2013.790501
https://doi.org/10.1007/978-3-319-77487-9_100041-1
https://doi.org/10.1007/978-3-319-77487-9_100041-1
https://doi.org/10.1007/s11858-018-0922-8


Socioepistemological Theory; Doctoral dissertation, Pontificia Universidad Católica de Val-
paraíso]. Repositorio de producción científica asociada a proyectos y becas financiadas por la
Agencia Nacional de Investigación y Desarrollo de Chile. Retrieved from http://repositorio.
conicyt.cl/handle/10533/232985.

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in
mathematics education. Zentralblatt fur Didaktik der Mathematik, 38(3), 302–310. https://doi.
org/10.1007/BF02652813

Kant, I. (1998). Crítica de la razón práctica [Critique of Practical Reason] (E. Miñana y Villagrasa
& M. G. Morente (Trans.), 4th ed.). Ediciones Sígueme. (Original work publisher 1788).

Lim, H., Buendía, G., Kim, K., Cordero, F., & Kasmer, L. (2010). The role of prediction in the
teaching and learning of mathematics. International Journal of Mathematical Education in
Science and Technology, 41(5), 595–608. https://doi.org/10.1080/00207391003605239

Medina-Lara, D., Cordero, F., & Soto, D. (2018). La resignificación de la media aritmética, bajo el
análisis gráfico de la representación de los datos [The resignification of the arithmetic mean,
under the graphic analysis of the representation of the data]. Acta Latinoamericana de
Matemática Educativa, 31(1), 655–661.

Mendoza, E. J., & Cordero, F. (2018). La modelación en las comunidades de conocimiento
matemático. El uso de las matemáticas en ingenieros biónicos. El caso de la estabilidad
[Modelling in the communities of mathematical knowledge. The use of mathematics in bionic
engineers. The case of stability]. Revista Latinoamericana de Etnomatemática, 11(1), 36–61.

Mendoza, E. J., Cordero, F., Solís, M., & Gómez, K. (2018). El Uso del Conocimiento Matemático
en las Comunidades de Ingenieros. Del Objeto a la Funcionalidad Matemática [The use of
mathematical knowledge in the communities of engineers. From object to mathematical func-
tionality]. Boletim de Educação Matemática, 32(62), 1219–1243.

Morales, A., & Cordero, F. (2014). La Graficación-Modelación y la Serie de Taylor. Una
Socioepistemología del Cálculo [Graphing-modelling and the Taylor Series. A
socioepistemology of calculus]. Revista Latinoamericana de Investigación en Matemática
Educativa, 17(3), 319–345.

Opazo-Arellano, C., Cordero, F., & Silva-Crocci, H. (2018). ¿Por qué estudiar la identidad
disciplinar en la formación inicial del docente de matemáticas? [Why study disciplinary identity
in the initial training of the mathematics teacher?]. Premisa, 20(77), 5–20.

Pérez-Oxté, I., & Cordero, F. (2016). Una epistemología basada en la transversalidad de los Usos de
la gráfica de una comunidad de ingenieros Químicos industriales [An epistemology based on the
transversality of the uses of the graph of a community of industrial chemical engineers].
Investigación e Innovación en Matemática Educativa, 1(1), 24–30.

Pollak, H. (1979). The interaction between mathematics and other school subjects. In New trends in
mathematic teaching IV (pp. 232–248). UNESCO.

Suárez, L., & Cordero, F. (2010). Modelación-Graficación, una categoría para la matemática
escolar. Resultados de un estudio socioepistemológico [Modelling-Graphing, a category for
school mathematics. Results of a socioepistemological study]. Revista Latinoamericana de
Investigación en Matemática Educativa, 13(4), 319–334.

Zaldívar, D., Cen, C., Briceño, E., Méndez, M., & Cordero, F. (2014). El Espacio de Trabajo
Matemático y la situación específica de la matemática funcional: Un ejercicio de diálogo [The
Mathematical Working space and the specific situation of functional mathematics: An exercise
in dialogue]. Revista Latinoamericana de Investigación en Matemática Educativa, 17(4-II),
417–436. https://doi.org/10.12802/relime.13.17421

12 A Category of Modelling: The Uses of Mathematical Knowledge. . . 267

http://repositorio.conicyt.cl/handle/10533/232985
http://repositorio.conicyt.cl/handle/10533/232985
https://doi.org/10.1007/BF02652813
https://doi.org/10.1007/BF02652813
https://doi.org/10.1080/00207391003605239
https://doi.org/10.12802/relime.13.17421


Chapter 13

Modelling and Anticipation of Graphical
Behaviors in Industrial Chemical
Engineering: The Role of Transversality
of Knowledge in Learning Mathematics

Irene Pérez-Oxté and Francisco Cordero

13.1 Introduction

This document addresses the relationship between learning mathematics, university
engineering and the engineering profession. The purpose comes from the disassoci-
ation between school mathematics and reality,1 which we assume as the main
challenge for learning mathematics. We consider that this disassociation is the
consequence of the epistemological lack of uses and meanings of mathematical
objects in school scenarios.

The aim is to know, from the social construction of knowledge, the function of the
mathematical knowledge in professional scenarios, mathematics in the diverse
disciplines and, in general terms, the ordinary mathematical knowledge of people.
Based on the socioepistemological theory, we build theoretical frameworks to
establish the pertinence of the uses of mathematical knowledge at all educational
levels (elementary, secondary and higher education).

Therefore, the specific goal of this research is to consider a professional scenario
of industrial chemical engineers who diagnose electrical transformers which gives
evidence of the emergence of a category of use named anticipation of behaviors
through the segmentation of times; this is called periodization. Based on this
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category, its transversality of mathematical knowledge in engineering students is
formulated through the design of activities triggering re-significations of anticipa-
tion. The transversality of uses is confronted with the usual school mathematics to
valorize the uses of mathematical knowledge in learning mathematics.

Finally, a foresight of the educational impact is formulated based on the results.
For example, the uses of anticipation learning mathematics. It is worth mentioning
that the courses in the area of mathematics are a filter for many careers in engineer-
ing. The curriculum at the Faculty of Chemical Engineering has many mathematical
courses in the first semesters (FIQ, 2014). Nevertheless, little is questioned about
learning mathematics based on the reality and the scientific-humanistic approach
defined by Freudenthal (1968).2

Various educational models currently consider the teaching of mathematics close
to the student. Modelling is an option for learning processes. For example, mean-
ingful learning is the basis of the science, technology, engineering, and mathematics
(STEM) curriculum. The core of this educational model is focused on the ability to
innovate, invent and solve problems. The perception of some upper secondary
school students is set on a practical dimension; they claim scientific knowledge as
something that provides access to the comprehension of the world.

Similarly, they express interest in studying a STEM career because it allows them
to appreciate the employment relationship (Holmegaard et al., 2014). However, the
range of conceptions that educators have about this term is also questioned. For
example, according to Wong et al. (2016), the lack of clarity surrounding the
acronym is an issue among science and mathematics educators in England; it is
often interpreted as a form of interdisciplinary work.

One of the topics in the STEM literature is the sequencing of activities of
modelling in the mathematics and science curriculum; one of its purposes is to
combine it with engineering based on a coherent learning experience (Sokolowski,
2018). The modelling cycle of Blum (2002) has been an important reference for this
topic. The common principle of the modelling methods is to determine a solution
from a situation problem inductively. The path between the problem and its solution
is not trivial in many cases and sometimes the students do not benefit by from the
processes of modelling (Sokolowski, 2018).

In spite of these questionings about learning mathematics of thematic areas in the
STEM model, the role of mathematics at different educational levels is critical.
According to Long, Iatarola and Conger (2009 cited in Loveys & Riggs, 2019), the
type of mathematics courses attended during the secondary level is essential to
determine the preparation of American students for the mathematics at the university
level. For example, Sanders (2009) proposed an integrative STEM education which
includes approaches that explore teaching and learning of two or more thematic
STEM areas or between a STEM discipline and one or more school subjects.

2The mathematics educational approach to other sciences and social practice. In other words,
considering mathematics as a human activity, mathematization from contexts, and mathematics
for all students (Freudenthal, 1968).
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Kang et al. (2019) highlighted the impact of science, in the life of boys and girls,
being the clue for helping people and society, and in this sense, it is interesting how
scientists balance their work and everyday life without giving up their personal time.
The requirements of the socioepistemological vision are to construct epistemologies
of uses and meanings of mathematics and establish re-significations of these uses at
different educational levels, in discipline where functional knowledge is expressed3

and in daily life of people.
For example, in Medicine, Cantoral et al. (2018) reported how variation and

changes in the context of interpretation of electrocardiograms are used in the
practices of cardiologists. The work developed by Mendoza and Cordero (2018) is
an example of the use of the stability of movement and signals evidenced in the
activity of bionic engineering underlying the Mathematical Work of Lyapunov.
They proposed knowledge where stability, under the practice of controlling the
temperature of a light bulb, means that the behavior of an output signal tends to
reproduce the behavior of an input signal.

13.2 Professional Scenario in Engineering

With an emphasis on the transversality of knowledge, we placed this investigation
between professional and academic scenarios: The Dissolved Gas Analysis (DGA)
for the activity of maintenance of electrical transformers by industrial chemical
engineers and students from the third semester of industrial chemical engineering.
The continuity of the courses of maintenance and diagnosis plays an important role
in the phases of professional development of these engineers.

In fact, the activities of their professional occupation are the anticipation of
failures of electrical transformers. This is why its professional slang is provided
with diagnosis techniques, for example, Dissolved Gas Analysis (DGA). However,
these techniques may generate false positives, this means, they could indicate that
the transformer has a flaw when it doesn’t really exist. Figure 13.1 shows the
mechanism for the interpretation of gases DGA.

It is important to highlight that Fig. 13.1 also exemplifies the process of diag-
nosing because:

There is great uncertainty in the database of gases because of the variety of patterns and the
amount of gases generated by the different types of malfunctions that are affected by many
factors, among them the type of oil and its temperature, the method of sampling, the
characteristics of isolation and the environment stands out. Therefore, different interpreta-
tions of failures or conflict between them can be obtained with the different techniques of
interpretation of the DGA (Sarria-Arias et al., 2014).

3Functional knowledge, in plain terms, means a useful knowledge of people in their worldly and
professional life and work (Arendt, 2005). From Socioepistemology, it is the result of the
transversality of the use of people’s knowledge in different situations that are re-signified.
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The extraction of a sample of the oil in the transformer is required for the analysis of
the dissolved gases; this sample is analyzed in the laboratory and gives useful
information about the state of the oil and the identification of the type of fault. It is
important to notice that different types of failures generate different gases (Pandey &
Deshpande, 2012).

The interpretations are consulted in the literature and analyzed during the stu-
dents’ engineering studies. For example, “in the key gas method, the presence of fuel
gas depends on the temperature of the oil in the transformer” (Sarria-Arias et al.,
2014, p. 108). Figure 13.2 represents graphically the percentages of the current gas
when the failure is an arc of the transformer.

In summary, the first step of the procedure is analyzing the different inspections,
essays and necessary proofs to diagnose at an early stage the possible problems that
could emerge during the life of the transformer (ABB ability, n.d.). This information
is analyzed to take decisions about the need for actions on the transformer
(conducting advanced essays or corrective actions). Prediction is the main charac-
teristic of their activity. This means they examine if the transformer is fully opera-
tional by taking measurements over time. Statistics are taken periodically. The trends

Fig. 13.1 Mechanism for the interpretation of gases DGA. (Source: Taken from Sarria-Arias et al.
(2014, p. 106))

Fig. 13.2 Diagnostic approach of the key gas method. (Source: Taken from Sarria-Arias et al.
(2014, p. 108))
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of the data are obtained taking into consideration time and international norms of this
discipline.

Our community of study was defined by chemical engineers working in the state
of Yucatan, Mexico. The issue concerning the diversity of interpretations on the
readings of the statistics was attended to by building their own method characterized
by the efficiency to diagnose the transformers in this state. Under this professional
scenario, we decided to study the functional mathematical knowledge built by this
community and its relationship with the educational field.

To this end, some activities were built with the intention of promoting the
construction of meanings around the graphical behaviors of the concentrations of
specific chemical elements with students of industrial chemical engineering. The
transversality of knowledge is analyzed based on the Socioepistemological Theory
with emphasis on the uses of mathematical knowledge.

13.3 A Category for Modelling and Functional
Mathematics: Theoretical Framework
in Socioepistemology

The empirical study reported is placed on the social construction of mathematical
knowledge, specifically on the reciprocal relationship between mathematics and the
industrial chemical engineers. The theoretical framework considers the
Socioepistemological constructs of uses, re-significations and transversality of
knowledge. They are articulated with the category of modelling whose principle is
based on the problematization of the relationship between disciplinary domains of
science and daily life.

The epistemology of uses of mathematical knowledge resulting from this princi-
ple involves the valorization of uses for the learning of mathematics (Mendoza &
Cordero, 2018). The following constructs are defined with this theoretical
framework:

• Uses of mathematical knowledge. They are the organic functions of the situations
(functioning) manifested by the “tasks” that conformed the situation and the form
of use will be the class of these “tasks”. These tasks can be activities, actions,
executions and alternation between own domains of the organism of the situation
(Cordero & Flores, 2007).

• Re-signification of uses. When the alternation of tasks happens, a new organic
function is generated, that will debate with the forms of uses. This act of use is the
re-signification of the uses of mathematical knowledge (Cordero & Flores, 2007).
Re-significations occur in specific situations. These are part of an environment
and are made up by the elements: meaning, procedure and instrument which
derived the argumentation of the situation (Cordero et al., 2019).

• Transversality of knowledge. Transversality is the re-signification of the uses of
knowledge between scenarios or knowledge domains (for example, between
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school and work, or between mathematics and engineering). It occurs in moments
(M1M2 in Fig. 13.3) which are phases in the situational process (Mendoza &
Cordero, 2018).

Functional mathematics is defined as the result of the transversality of use of
mathematical knowledge of industrial chemical engineers (community of study). It
is made up of an epistemology of uses from the activity of diagnosing electric
transformers. The basis for the design of school activities is the contribution to the
emergence of uses in engineering students.

The category of modelling, in the context of the diagnosis of transformers, is the
re-signification of uses in the transversality from profession to school. This means,
between the activity of diagnosing electric transformers and the discussion of the
behaviors of graphical models. We reported the re-signification that emerges in this
alternation. Figure 13.3 shows a category of modelling in a specific situation.

In this context, Fig. 13.3 also points out the graphical method of diagnosis as
knowledge. Its emergence will be attended to at two moments of transversality:
Moment 1, Engineers in their professional activity and Moment 2, Engineers in
school (M1 and M2 shown in Fig. 13.3). The emergence of knowledge is confronted
with school mathematics: on the one hand, the professional activity, a category of
periodization-anticipation and on the other hand, school, algorithmic optimization
methods.

The graphical method of diagnosis is a method built by industrial chemical
engineers given the complex activity of diagnosis. The method is recognized as a
functional knowledge because it is an efficient process for maintenance; it is
grounded on a database registry maintained by engineers for many years. This
method leads to a record named historic, it refers to the concentration of eight
gases (chemical elements) represented in parts per million (ppm4) in the oil of the
transformer; for example, Fig. 13.6 shows 16 records over the course of 7 years.

The use of the emergent mathematical knowledge inferred in the investigation
involves dividing a portion of time into periods to discuss graphical behaviors,
which is called action of periodization. These actions were carried out on the

4Parts per million (ppm) is a unit of measure for measuring concentration. It refers to the number of
units of a specific substance for every million units of the whole set.

Fig. 13.3 A category of modelling in a specific situation. (Source: Authors own elaboration)
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interpolation instrument that reproduces graphical behaviors through procedures that
compare different periods based on the established behaviors.

In this regard, the periods are compared to conclude if there are stable or
extraordinary behaviors. Ideally, stable behaviors are reproduced during the different
periods. This could mean that the transformer is in good shape. Then, anticipate the
behaviors is an argumentation that is built with the idea of periodization. This fact is
named re-signification of graphical behaviors in a periodization situation in our
theoretical framework.

We will now give evidence that this re-signification occurs in chemical engineers
and its transversality in engineering students.

13.4 Method of Research: From Profession to School

This is qualitative research. The decisions taken in the investigation allowed the
emergence of a functional knowledge to be seen, that will be described next. It was
decided to examine research focused on revealing the uses of mathematical knowl-
edge in an engineering community in their professional activities in order to identify
a functional mathematical knowledge. The work selected was Torres (2013) that
focused on the use of graphs to diagnose electrical transformers and its results
showed that graphs are models of the behavior of chemical elements that define
the life of a transformer.

Participants were industrial chemical engineering students (five students). The
students’ productions were analyzed based on the theoretical framework. An epis-
temology of uses that allowed the design of activities was built with these results.
Finally, a triangulation of data between these two scenarios was conducted: inter-
views with chemical engineers and the productions of the engineering students. The
following scheme of implementation (Fig. 13.4) shows the path followed in the work
and the variables observed empirically.

Fig. 13.4 Scheme of implementation of the research. (Source: Authors own elaboration)
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The first variable observed was the uses of mathematical knowledge. The infor-
mation from the interviews (of professional engineers) focused on the implementa-
tion of its method of diagnosis. Attention was paid to the mathematical instruments
that allowed the construction, the meanings associated to the graphical behaviors and
the processes induced by the meanings were characterized. Characterizing the
graphical behaviors into regular or extraordinary was the guideline to make deci-
sions on the transformer. We will now define the elements used in the research based
on the Socioepistemological theory.

The epistemological structure underlying the characterization of the use of
mathematics in a scenario, like engineering, is called specific situation (Cordero,
2001). The elements that composed this structure are (Buendía & Cordero, 2005):

• Meanings. Students engage in interactions with their teachers and classmates,
which are reflected through situational arguments. We believe these meanings
can be based on two connections that are consistent with definitions and proper-
ties as long as personal interpretation is full of images and metaphors (Bishop
1999 cited in Buendía & Cordero, 2005).

• Procedures. Operations induced by meanings.
• Instruments. System of resources to build meanings in the context of interactions

(Cordero, 2001).
• Argumentation. It refers to the re-significations of uses that express modelling of a

situation.

The conformation of an epistemology of uses (periodization situation) and the
design of activities that was put into play with engineering students were conducted
based on the information collected. The second variable observed was the pro-
ductions of the students. The intention was to characterize the uses that emerged
with the activities built.

13.4.1 Periodization Situation

The disciplinary activity of the industrial chemical engineers led them to the
construction of a graphical method of diagnosis that allowed them to minimize the
false positives in the electrical transformers. According to Torres (2013), the pro-
fessional activity of the engineers is summarized in the following paragraph as the
industrial chemical engineers anticipate fails in electrical transformers. They built a
graphical method of diagnosis to fulfill this purpose. This method is composed of the
history of the concentrations of eight chemical elements registered over time. The
registry was built for approximately 2 years.

Graph readings were taken to achieve this activity. In this sense, the use of a graph
as a statistical control is at the core of their activity. The chemical elements divided
in three blocks are associated with fails that can occur in the electrical transformer.
Figure 13.5 shows the relationships between chemical elements and possible fails in
the electrical transformers.
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The graphical models are characterized by considering the dates when the
concentrations of the chemical elements are registered. On the y-axis are the
concentrations measured in parts per million (ppm) and the Time-axis does not
have a constant scale. This is because the concentrations are registered every
6 months approximately, but if there are extraordinary behaviors it is more likely
to take consecutive readings to monitor the state of the transformer. Figure 13.6
shows an example of the model of the behavior for the element Ethylene with the
mentioned characteristics.

A model of deterioration in ideal conditions would imply the null existence of
concentrations of the chemical element at any time. But this is not always possible
due to the natural wastage and the oil reactions in the electrical transformer.

Figure 13.6 shows two graphical behaviors of Ethylene. The presence of this
element indicates hot points in the oil of the electrical transformer. A stable behavior
can be appreciated in model A because “it shows 7 ppm of Ethylene since 2009; a
year later, in 2010, it still shows 7 ppm; then a year later, 2011, it shows 6 ppm, a
year later, 2012, it is between 6 and 5 ppm and in the last test, May 2013, it shows
7 ppm” (free translation from Torres, 2013, p. 106).

Graph B exemplifies an extraordinary behavior. In this model, “the increase of the
presence of Ethylene gas in the final analysis in the month of March is showing a hot
point” (free translation from Torres, 2013, p. 111). The analysis of graph B is similar

Fig. 13.5 Relationships between chemical elements and possible fails in the electrical trans-
formers. (Source: Adapted from Torres (2013))

Fig. 13.6 Concentrations of ethylene and its presence is indicative of hot points. (Source: Authors
own elaboration based on data from electrical transformers)
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to the one of graph A, but in the latter the concentration has an increment of 200 ppm
between 2010 and 2011. Seven months later, in March of 2012, the concentration
has reached 400 ppm (100 ppm more than the previous record).

In a brief way, the graphical method of diagnosis looks for meanings of specific
concentrations at certain periods to anticipate behaviors. The situational structure is
composed by the interpolation of data (instrument); this is, to organize and define
behaviors. This instrument gives meanings in the context of the situation, like
reproducing an ideal behavior from one period to a later period. This meaning
leads to a procedure which consists of the action of periodization; this is segmenta-
tion by periods and comparison of behaviors. Altogether, the instrument, its signi-
fication and the procedure generate an argumentation named anticipation.

In this regard, Table 13.1 shows that the activities are justified under a category of
anticipation in a periodization situation.

The graphical model in Table 13.1 shows 13 data (A, B, C, . . ., M) and 2 poly-
nomials modelling the behaviors. The action of periodization is taken if the
non-desirable predictive value of polynomial 1 (VPP1) occurs. The aim is to repro-
duce a desirable behavior (P2) in the period [13, 20] as opposed to obtain the
polynomial that best fit to the data (A, B, C, . . ., M).

The analysis of the arguments of the professional engineer regulated the activities
built (methodological instruments of investigation) and that were implemented with
engineering students. The information was organized in the following way:

Table 13.1 Periodization situation that generates an argumentation of anticipation. (Source: Pérez-
Oxté (2021))

Elements of
construction Periodization situation

Meanings Reproduction of graphical behaviors

Procedure Comparison of periods

Instrument Interpolation
P(xi) ¼ yi is the polynomial that fits to the points (x1, y1), . . ., (xn, yn)
n pairs of points for different xi

Argumentation/re-
signification

Anticipation
Reproducing a desirable behavior (P2) in a period
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• Activity 1: Use of statistical control. Variation and stability of the concentration of
gases in a transformer.

• Activity 2: Use of the relationship graph-failure. The trend behavior of the
concentration of gases in order to determine the stability of graphs.

• Activity 3: Use of the graphical model of diagnosis. Prediction of the simultaneity
of the variations of the concentrations of gases and the optimization of future
trends.

The proposed situation for future engineers is the following:

1. Determine the state of the electrical transformer through the graphical method.
2. Indicators in the activities.

Five indicators that structured the activities are listed below. For practical effects,
their nomenclature is Ii. Two compound blocks for different gases were shown to
engineering students. Three gases were analyzed in block 1: hydrogen, ethylene and
acetylene. Carbon monoxide and dioxide of two different transformers were shown
in block 2. Figure 13.7 shows block 1 that deals with gases associated to an index of
failure in the electrical transformer.

• I1. Describe the variations of the concentration of gases (Block 1).
• I2. Anticipate the behaviors under the following: If Ethylene decreased from 14 to

7 ppm from year 2008 to 2009, how does the concentration of gas decrease after
2009?

• I3. Determine the graphical characteristics needed to conclude that the trans-
former is in good shape for a period of 5 years.

• I4. Build a graph Subtraction that expresses the subtraction of the concentrations
of hydrogen and ethylene and indicate the behavior of the resulting graph with
respect to the graphs of hydrogen and ethylene.

• I5. Analyze the behaviors simultaneously (Block 2), identify the similitudes and

differences and identify the trends (Condition yBCi tið Þ
yMCi tið Þ ¼ 10).

Figure 13.8 shows Block 2 that deals with graphical models of gases that should
keep a ratio of 10%.

Fig. 13.7 Block 1: Gases associated to an index of failure in the electrical transformer. (Source:
Authors own elaboration based on data from electrical transformers)
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13.5 Data Analysis

The resulting scientific knowledge of this research was built from the specific
situation of the diagnosis of the transformers. A functional knowledge that gives
meanings to the graphical behaviors emerged. The analysis of data considered the
descriptions and narratives given by the engineering students.

The information was first organized by the procedures used by the engineering
students: analysis of the variation by comparing states, varying or distinguishing
between graphical behaviors. Then, the meanings associated were questioned:
movement, patterns of behavior or adaptation. After the codification of the empirical
data, the analysis was refined in terms of the functioning and forms of use of the
knowledge of the situation.

13.5.1 Context of the Study

The study involved five male students was formed in the third semester of industrial
chemical engineering at the Faculty of Chemical Engineering at the Autonomous
University of Yucatan, Mexico. The engineering students were taking courses like
Differential Equations, Phases of Equilibrium, Organic Chemistry, Analytical
Chemistry and Instrumental Analysis, Numerical Methods 1 and Research
Workshop 1.

Experimentation was carried out for 2 h outside of their regular courses; the
activity was divided in three moments. Notes were taken during the staging and it
was video recorded. The nomenclature EIi 2 Ej was used to make reference to the
engineering student i in team j. The aim of the staging was the characterization of the
meanings that participants gave to the graphical behaviors.

Finally, the productions of the engineering students were triangulated with
the arguments of the professional engineers (information collected in Torres,
2013). The hypothesis was that the mathematical arguments of professional engi-
neers are the same in students.

Fig. 13.8 Block 2: Graphical models of gases that should keep a ratio of 10%. (Source: Authors
own elaboration based on data from electrical transformers)
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13.5.2 Constructions of Knowledge in Industrial Chemical
Engineering

Three moments were characterized during the three activities, each with the respec-
tive elements of construction of the engineering students. They are summarized in
Table 13.2.

13.5.2.1 M1: Prediction of Graphical Behaviors for Diagnosis

The arguments of variation expressed by the engineering students focused on two
aspects, the local and global variation, as a first approach to give meaning to the
behaviors of the concentrations of the elements.

For example, one engineering student (EIi) described the variation of the con-
centrations of Ethylene gas (transcription 1). He gives meanings regarding a perma-
nent state by highlighting a period with no significant changes in the concentrations
during a considerable period of time. He identifies a period with great changes in the
concentration in parts per million to give an explanation in terms of the associated
failure.

EI3 – E2: It can be observed that from 22-02-05 to 03-05-07, there was a slight increase in
the concentration of ethylene gas (from 2 to 5 ppm). After these dates, an abrupt change in
the concentrations was observed; it was reflected with a considerable increase and a later
decrease in a period of two years. It could be caused by a failure (a hot point). (Transcription
1: Student answer).

The global analyses were expressed in terms of stable behaviors to answer the posed
questions. The transcription of the student EI2 2 E1 gives evidence of I1 (transcrip-
tion 2), the graphical models define a predictive behavior linked with the state of the
electrical transformer. In this way, a connection between behaviors and trends is
evidenced with a situation of variation.

EI2 – E1:With regard to hydrogen, we could talk in general terms about a decrease until the
concentration reaches zero, so there would be NO problems of partial discharges by the end
of the process. As for the inconvenient hot points associated to ethylene, we could talk in a

Table 13.2 Elements of construction of industrial chemical engineering students. (Source: Pérez-
Oxté (2021))

Elements of
Construction

M1: Prediction of graphical
behaviors for diagnosis

M2: Trend behaviors for
stable behaviors

M3: Selection of
ideal behaviors

Meanings Movement
Permanent states

Patterns of graphical
behavior

Pattern of
adaptation

Procedures Comparison of two states Variation of parameters Discrimination of
attributes

Instruments Amount of continuous
variation

Instruction that orga-
nizes behaviors

The stablea

aWhat we term the stable is formed by an ideal object in a selection situation
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general way about a constant behavior with a slight tendency to increase (Transcription 2:
Student answer).

Indicators I2–I3 highlighted the confrontation between the situation of diagnosis
and the prototypical graphical models in this first moment. This was expressed by the
comparison between the graphical model of the ethylene gas and a lineal model in a
certain period (transcription 3).

EI2–E1: After the fall in 2009, the concentration of ethylene was expected to continue
decreasing in an almost constant way (under a lineal model); however, according to the
graph this does not happen. From this year on, the concentration remained quite stable at an
interval of between 6 and 8 ppm. In terms of the transformer, this is interpreted in that the
presence of hot points from 2009 is the same despite the passing of time over years, which is
good because the transformer remained in good shape (Transcription 3: Student answer).

Prediction of behaviors underlies in the identification of regular behaviors. The
action of association of data composed by the prototypical models indicates a link
between known mathematics and the situation itself.

13.5.2.2 M2: Trend Behaviors for Stable Behaviors

The students established relationships between the three graphs when they were
asked to sketch the graph obtained from the subtraction (comparison) of the con-
centrations of the graphical models of hydrogen and ethylene (I4—Block 1). These
relationships are translated in the following expression:

Reduction of Concentrationþ Absence of Peaks ¼ Regular Behavior

Figure 13.9 shows evidence of the production of the community and its respective
justification.

Fig. 13.9 Graphic model of subtraction of hydrogen and ethylene. (Source: Student’s work)
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EI1–E1: This is how I was taught. For example, you can say that the complete reduction on
the part of the hydrogen with regard to the ethylene, cannot be seen at the beginning. If you
see the graph of ethylene, it is still present in a practical sense but. . . once the hydrogen is
reduced, the concentration of Ethylene is maintained at “zero”, but in these graphs, the aim is
that these peaks do not appear because if they do appear then it means that they are failing
even with the reduction; the concentrations are failing because it is a comparison. In this
case, the behavior of the hydrogen and ethylene are shown but no peak is shown so this
means that the reduction they are making is correct (Transcription 4: Student answer).

By this time, it was concluded that the engineering students identified behaviors with
trends when comparing graphical models. This also means distinguishing extraor-
dinary behaviors.

13.5.2.3 M3: Selection of Optimal Behaviors (Ideal)

Indicator 5 (I5), under the analysis of two gases, carbon monoxide or dioxide
(Fig. 13.10), and the task of determining whether the gases meet the 10% relation-
ship, give evidence of the contrast between the meaning of a proportion of 10% and
the real data analyzed. Therefore, this specific situation demands a re-signification of
their knowledge in such a way that the existence of behaviors with a tendency to this
proportion is enough.

This trend led them to look for similar variations in the graphical models. The
ideal is that both graphs modeled parallel straight lines, but this does not happen. A
debate about the ideal model emerged in moment 3; they justified it by associating a
model of a constant function at zero to claim that those were the best concentrations
to declare that the transformer is in good condition. However, they recognized how
difficult it was due to the natural wastage of the electrical transformers.

In this way, these models are also immediately discarded despite being constant
models. Lineal models were considered the most suitable and closer to the reality of
the life of electrical transformers because it is desirable to consider wear represented
by increasing constant and non-exponential behaviors. The following excerpt (tran-
scription 5) gives evidence of the existence of ideal graphical models like the best
that could happen.

Fig. 13.10 Gases that should keep a ratio of 10%. (Source: Student’s work)
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EI2-E1: There is a trend of increase or being maintained in range; so, it could not be possible
to bring the concentrations of ethylene gas down to zero; maybe it could reach a minimum
and be kept there (Transcription 5: Student answer).

Engineering students idealized behaviors and compared them with the models of the
solved activities, the comparison of behaviors over periods of time is among their
procedures.

13.5.3 Re-significations Between Moments

In the following sections there is a discussion about the re-significations between
moments.

13.5.3.1 Re-signification Moment 1–Moment 2

Discussion. Description of the variation of the concentrations through the compar-
ison of states in a local or global way. The graph was considered as a model of
behavior instead of the representation of a function.

The presence of variations in the concentrations and the current conditions were
used to characterize the graphical models that predicted if the electrical transformer
was in good shape or not. Argumentations, like the prediction of the state of the
electrical transformer from the reproduction of behaviors with similar trends of ideal
models, were created to this end.

Debate and New Functioning and Forms. Table 13.3 shows the use of graph as
statistical control.

13.5.3.2 Re-signification Moment 2–Moment 3

Discussion. The qualities of the graphical models are analyzed; this means, identi-
fying normal behaviors with ideal trends or extraordinary behaviors that could
indicate a failure in the transformer, from where it is possible to predict behaviors.
The analysis of the qualities of the graphical models is carried out by identifying
differences and similarities to discriminate between normal and extraordinary behav-
iors. To this end, they are submitted to situations of selection, where the graphical
model is the closest to the ideal model. Argumentations were generated to optimize
diagnosis for future intervals of time.

Table 13.3 Use of graph as statistical control. (Source: Students’ work)

Fu Fo

Predict stable
behaviors.

Comparison between the concentration of gases in the oil in the electrical
transformer.
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Debate and New Functioning and Forms. The argumentative functioning of the
graph on the trend of the form of extraordinary behaviors that showed peaks or not in
a certain period of time was discussed. The new functioning of the graph consisted in
the characterization of the behavior in a certain period of time and with specific
proportion as a condition for the behavior. And the new graphic form consisted in the
comparison of changes in the states in a specified time. Table 13.4 shows the use of
the graph in the relationship graph-failures.

Table 13.5 show the use of graph as a model of diagnosis.
The argumentation of anticipation was generated with the functioning and forms

identified in the productions of the students. A process of periodization where ideal
graphical behaviors are proposed for reproduction in immediate periods emerged in
the situation. Part of the structure of the situation was the analysis of behaviors and
its comparison of different periods.

13.6 Confrontation of Uses of Anticipation and Usual
School Mathematics5

By way of conclusion, the category of mathematical knowledge built from the
emergence of uses of mathematical knowledge is not focused on the mathematical
object; in fact, its focus is on the uses and meanings of the mathematical objects. The
category of uses is a plural epistemology (professional and school scenarios) and of
transversality of knowledge. The focus is on the re-signification of uses. Then, the
uses of anticipation are confronted with the usual school mathematics.

Engineering students did not use the mathematical knowledge from their math-
ematics courses when facing the periodization situation in spite of their knowledge
of the concepts of function and derivative and optimization methods to determine

Table 13.4 Use of the graph in the relationship graph-failures. (Source: Students’ work)

Fu Fo

Identify trend behaviors with a specific
condition.

Analysis of trend behaviors from its
attributes.

Table 13.5 Use of graph as a model of diagnosis. (Source: Students’ work)

Fu Fo

Build graphical models with trends. Distinction of attributes in graphical models.

5Understand it by the usual mathematical content that appears in textbooks. For example,
in the mathematical texts used in engineering, there is a prevalence of the basic mathematical
concepts of calculus and statistics as mathematical objects from which properties, definitions
or theorems, in general terms, are derived without considering the meanings of the uses
of the mathematics of engineers (Cordero et al., 2019).
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derivatives, critical points, maximums and minimums. Instead, in an autonomous
way, they re-signified the variations to determine regular or irregular behaviors, and
then, deduce an anticipated behavior. The instruments were the numerical data and
the graphical behavior and not the functions (formulas) nor the derivatives (algo-
rithms). Table 13.6 exemplifies the previous discussion.

The impressions of the engineering students of the activities carried out were
captured as a result of the methodology of focus group. Trends and regularities of
their points of view were classified in two different aspects of seeing mathematics
and mathematics in engineering.

13.7 Reflections and Conclusions

The category of modelling was characterized to valorize the functional relationship
between school mathematics and a specific engineering situation. This relationship
provided the meanings associated to the graphic behavior in use. We highlight the
following aspects:

1. Absence of peaks in the graphical models with regular behaviors.
2. Constant behavior in periods as the ideal behaviors in spite of variations.
3. Trends of graphical behaviors in the reduction of the concentration of gases.

The focus of the modelling approach in this article is the function of mathematics
as an organic incorporation (Mendoza & Cordero, 2018). There were also two
aspects that professional engineers discussed explicitly in their graphical method
that the engineering students did not consider:

1. Discussion of the Constant

EI1-E1: During the period 2005–2007, a considerable increase in the concentration of
hydrogen is shown; then a decrease in the levels of concentration is shown for the period
2008–2010 and it spiked again in 2011 reaching a concentration of 10 ppm and regulated
remaining at zero, namely constant, by the end of the same year.

2. Discussion of Behaviors
On one side, in the first moment of the activity and explained by the inheri-

tance of school mathematics, the industrial chemical engineering students made
reference to the constant although there was no explicit constant function in the
model (Transcription 3). This reference is re-signified when the students made
reference to behaviors that vary at an interval, behaviors with trends, normal
behaviors. On the other side, there is a functional justification to idealize behav-
iors in the activities, for example, by sketching the graph that comes from the
subtraction between two other graphs.

This is, what the ideal subtraction graph would be, students re-signified the
idea of constant to establish a functional relation for this specific situation:
Reduction of the Concentration + Absence of Peaks ¼ Regular Behavior.
With these antecedents, we claim that meanings were given to graphical behav-
iors and that the constant function to monitor behaviors was decentralized, given
the posed activities.
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Chapter 14

Categories of Modelling and Reproduction
of Behaviors in Other Disciplines: Teaching
Mathematics in Engineering

E. Johanna Mendoza-Higuera, José Luis Morales-Reyes,
Falconery Giacoleti-Castillo, and Francisco Cordero

14.1 Introduction

Mathematics has been a compulsory subject in the basic cycles of engineering
education. It has a defined status and function that is even visible from the annals
of engineering at the École Polytechnique in France and the Escuela Real de Minas
in Mexico. The curricular programs, in general, are organized into three groups:
basic sciences, engineering sciences, and professional courses. In that way, the
fundamental knowledge is initially offered, which will be applied later in the sub-
jects specific to each program and hence allow the development of knowledge within
engineering (Cajas, 2009 cited by Mendoza-Higuera, 2020).

In this regard, Mathematics Education, in the last four decades, has been
concerned with reflecting on the teaching of mathematics in as engineering, by
seeking answers to questions such as: What mathematics should future engineers
learn?, What mathematical knowledge do engineers use in their professional prac-
tice?, and What is the role of mathematics in engineering education?

In our case, we recognize a reciprocal and horizontal relation between mathe-
matical and engineering knowledge (Mendoza-Higuera, 2020; Giacoleti-Castillo,
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2020; Morales, 2020): one favors the development of the other and vice versa. This
view leads to the recognition that there are uses of mathematical knowledge in
engineering that make it meaningful from different knowledge communities (aca-
demic, school, and professional) and that they are excluded in school mathematics.
In this sense, we are interested first in showing the reciprocal relation between
mathematics and engineering as scientific disciplines.

Subsequently, we will delve into the problems of teaching mathematics in the
training of future engineers. In addition, we will show that in the study of the uses of
mathematical knowledge in engineering communities—for example, in electron-
ics—the categories of modelling and reproduction of behaviors typical of
Socioepistemological Theory in Mathematics Education emerge (Cordero, 2022)
to account for the transversality of knowledge. Finally, we report on some results of
implementing a design of a socialization school situation where those categories are
the guiding thread of the proposed tasks.

14.2 The Teaching of Mathematics and Engineering

If we consider the engineer as a builder of artifacts that improve the quality of life of
humans and make possible what humans cannot do with their bodies and their
strength, in the terms of Aracil (2017), engineering has been developing for thou-
sands of years. The invention of artifacts and systems such as the wheel, the steam
engine, the computer, the internet, among others, are responses to this need to
improve their lives. The Neolithic Revolution began with the sedentary lifestyle
and the origin of agriculture (purely technical activities), but also the concern to
protect and organize their settlements to live better. Later, with people already
established in cities and kingdoms, the need to build bridges, roads, fortifications,
artillery, and other instruments needed for warfare arose.

Likewise, it was necessary to establish an economy that would allow facing the
needs of society, such as the construction of public works (activities where the
progress of technology is perceived). In this sense, different situations can be
described that account for the emergence of mathematical knowledge and engineer-
ing from practical activity. For example, G. Monge, an innate engineer who, while
studying to become a master builder, solved a problem of the location of a fortifi-
cation that consisted of preparing works so that no part of them would be exposed to
direct fire from the enemy. Monge solved it through a procedure of his invention that
included geometric representation, breaking with the arithmetic operations tradition-
ally used (Mendoza-Higuera, 2020).

Another example is the case of Diego de Guadalaxara and Tello, who, without
having a scientific background, developed instruments for the exploitation of mines.
According to Cházaro (2011 cited by Mendoza-Higuera 2020):

(. . .) his questions were not aimed at explaining nature or finding the causes of the natural;
his interests in mathematics were the same as those of his creators: to measure the land to
calculate mine shots, to avoid landslides, and to dewater them (p. 745).
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In the two cases presented, the mathematics they developed was based on engineer-
ing, either in the construction of works or in mining. On the other hand, from the
scientific activity, works such as those of Newton, Cauchy, Fourier, Riemann,
Lebesgue, Euler, Lagrange, among others, show the relation that has existed since
the beginning between engineering and mathematical scientific activity. For exam-
ple, Fourier tackled the phenomenon of heat propagation, since this was a relevant
problem for the metallurgical industry of the time.

It was necessary to know the interior temperature of the Earth and the way it
changes with time and depth. Thus, he studies the behavior of heat propagation in
solids through the stable and permanent flow of time. The mathematical solution to
the problem is an infinite trigonometric series that represents a system of tempera-
tures, which by its physical character establishes the convergence of the series as
they cannot be infinite (Farfán, 2012). Similarly, Cordero (2003) in the works of
Cauchy (1882), Riemann (1898) and Lebesgue (1926) identified a pattern that
expresses the accumulation of what flows in a region through the comparison of
two states which leads to the formulation of the Fundamental Theorem of Calculus
(Cordero, 2003).

And the last among a variety of examples that we could present here, Newton,
who sought to model, anticipate, and predict natural phenomena, which would
finally help to solve technological problems, ends up formulating what is now
known as the Taylor Series (Cantoral, 2019). In this way, the relation between
mathematics and reality is explicit, exemplified in the study of natural phenomena,
which not only provided scientific knowledge but also practical knowledge, hence
the link with engineering and technology.

In summary, we emphasize two points. First, mathematics and engineering have
lived and still live a reciprocal relationship in terms of their use and construction of
knowledge; both have been favored by the development of the other, which ends up
providing meanings for mathematics from both disciplines; secondly, the nature of
engineering is based on practical or technological work, where knowledge emerges
that responds to functional justifications and that account for the use of mathematical
knowledge as a tool.

However, in engineering education, there has been, from the beginning, a dis-
cussion that focuses on establishing what knowledge engineers need to know: is it
scientific or theoretical knowledge that should prevail, or is it practical knowledge?
For example, the École Polytechnique was founded in France to train engineers
closer to the sciences than to craftsmanship. Romo-Vázquez (2014) based on the
work of Belhoste (1994), analyzes the educational models proposed at the École
Polytechnique and indicates that it moves from an encyclopedist model to an
analytical one and then to one focused on applications.

The first seeks to show the alliance between the sciences and the arts. The second
focuses on training in mathematics, especially in mathematical analysis as a basis for
physics, mechanics and geodesy. The third focuses on content that was useful for its
application. Whatever the model, it generally reflects the search for a balance
between the theoretical and the practical. Currently, when analyzing the curricula
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of various universities, it is observed that the contents are organized into three
groups: basic sciences, engineering sciences, and professional courses.

Thus, initially, basic or fundamental knowledge is offered, which will later be
applied in the subjects of each program and which in turn allow the development of
knowledge within engineering (Cajas, 2009 cited by Mendoza-Higuera, 2020). In
most cases, in the second cycle subjects, the lecture is strengthened with laboratories
or practical activities that allow the student to apply the knowledge learned.

However, in the first cycle, specifically in mathematics, its teaching is not
distinguished according to the specificities of each of the engineering careers or
programs (Cajas, 2001), better yet, in some cases, the teaching only focuses its
attention on meanings, procedures, and arguments from mathematics but not from its
use in other disciplines, from the meanings that emerge in the situations that an
engineer or engineering student faces according to his or her specialty.

All of the above seems to respond to a philosophy of mathematics teaching where
the academic knowledge proper to mathematical activity prevails and ignores the
potential of the knowledge that emerges from doing, proper to human activity. It is
assumed that the knowledge produced from doing does not have the same character
as scientific knowledge, perhaps that is why basic sciences are required to provide a
reasoned logic to the knowledge produced from engineering practices. Mathematics
has even been called a service discipline for engineering in that it provides basic
tools to be applied later in the solution of engineering problems (Howson et al.,
1988).

From Socioepistemological Theory in Mathematics Education (TSME for its
acronym in Spanish) (Cantoral, 2019; Cordero, 2022) we recognize that school
mathematics is goes through a duality rather than a confrontation. In the develop-
ment and innovation of techniques (either from science, with its support or without
it) is assumed that there is a construction of mathematical knowledge, certainly not in
the form that mathematical activity demands, but yes, a functional knowledge that
includes meanings, arguments, and procedures typical of engineering.

The dual nature of school mathematics consists of understanding that there are
scenarios where mathematics is the object of study and others where it is not. That is
to say, school mathematics treats mathematics as an object of study, but in other
areas, it is an instrument (Cordero, 2016). There are professional users of mathe-
matical knowledge, who are not mathematicians and use mathematics but not as an
object of study. Figure 14.1 shows the duality of school mathematics.

In these scenarios where school mathematics is taken as an instrument, functional
justifications prevail, i.e., all knowledge that accounts for the meanings, procedures,
and arguments, comes from its disciplinary practice and not from mathematics per
se; in any case, these justifications are different to the reasoned justifications proper
to mathematical activity. The TSME, as a model of practices, articulates, and
formulates epistemologies from functional and reasoned justifications; and thus
clarifies the dual nature of mathematics (Cordero & Flores, 2007; Cordero et al.,
2010).

The role of school mathematics in the development of engineering and the
training of its human resources, responds to a character of the instrument, where
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the mathematical knowledge that is built there is the expression of its intimacy and
corresponds to a functional nature.

This knowledge is built by the engineer in his practice, in his condition of a
situated subject, who belongs to a culture, to a community, to a way of understanding
and developing the work of his profession, to a way of producing knowledge. Thus,
our emphasis is on functional mathematics and on accounting for those categories
that emerge in these practices (Mendoza-Higuera, 2020).

In short, school mathematics has the status of fundamental basic science in the
training of engineers, and its function is that of a tool at the service of other
disciplines. This status and function reveal a problem: the teaching of mathematics
in engineering is devoid of the meanings of mathematical knowledge that emerge
from engineering practice and is far from the reality of the learner.

Finally, this status and function have caused phenomena in school mathematics,
which are expressed in the construct mathematical school discourse (dME for
acronym in Spanish) (Soto & Cantoral, 2014). This specifies that school mathemat-
ics does not have a frame of reference that integrates uses and meanings to mathe-
matical objects inside and outside mathematics.

In this regard, Cordero (2001) points out that the reconstruction of meanings
provides categories of mathematical knowledge to form the frame of reference, and,
for this reconstruction, the source is the human activity. In 2008, Cordero says that
the use of graphs is a category that confronts the dME and in 2016 manages to
articulate the frame of reference with a type of modelling that emerges in certain
communities.

The dME provokes ignoring the dual nature of school mathematics and the
construction of situational, and therefore functional, knowledge in human groups.
Mendoza-Higuera et al. (2018) give empirical evidence of that fact with diverse
communities of engineers; Giacoleti-Castillo (2020), reveals the category tendential
behavior as a resignification of the Laplace Transform in a community of electrical

School mathema�cs
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mathematical 

knowledge

Specialist in a 
mathematical topic

Model

Object of 
knowledgeInstrument

Work activity Mathematical 
activity

(Development of 
Social Practices)

Other domains Dual Nature
Mathematical power

Institutionalization

Daily

Functional justification Reasoned justification

Fig. 14.1 The duality of school mathematics. (Source: Cordero, 2016, p. 70)
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engineers, and Morales (2020) offers school situations in higher education to
re-signify the concept of derivative.

14.3 The Social Construction of Mathematical Knowledge
and Its Categories

The TSME seeks to establish a horizontal and reciprocal relationship of school
mathematics within mathematics and outside it, specifically in communities of
other disciplines such as engineering. Therefore, epistemological plurality and
transversality of knowledge, which are promoted by the Forgotten Subject and
Transversality of Knowledge Program (SOLTSA for acronym in Spanish) devel-
oped within TSME, are unavoidable constructs for this task.

When epistemological plurality is assumed, diverse mathematics is admitted,
establishing meanings by disciplinary communities, scenarios, and specific situa-
tions experienced by people, according to their work and needs. For this reason, we
agree to call this knowledge mathematical, which in turn encompasses what we call
functional mathematics. Its dimension, at the educational level, will have to relate
knowledge with institutional knowledge and with reality or realities.

Functional mathematics comes in when people bring their mathematical knowl-
edge into play to face the situations they live in, which entails the use of mathemat-
ical knowledge and, in turn, the resignification of these uses. When they move
through situations, domains, and scenarios, they show the transversality of knowl-
edge (Cordero, 2022).

In this sense, the SOLTSA works on two lines of research: in the first one, the
categories of mathematical knowledge are problematized in different domains where
attention focuses on revealing the uses of mathematical knowledge and its
resignifications that are condensed in the categories of mathematical knowledge;
and, in a second line, multiple factors are configured that contribute to the teaching
of mathematics such as identity, inclusion, socialization, and others, through the
design of socialization school situation (Cordero, 2022).

So, to address the problem of teaching and learning mathematics for engineering
students, the conformation of a frame of reference (FR) is proposed that recognizes
the functionality through transversality and the plurality of mathematical knowledge
(multidisciplinary domains of knowledge), all in specific situations.

Thus, in a dialectic between mathematics and reality (habitual in people’s daily
lives), both pieces of knowledge are mixed, and become one; rather, they are
transformed into a unity of knowledge, of knowledge in use by people.

The transformation decentralizes the object and the uses are re-signified between
situations and between scenarios: the school-academic; the work-profession; and the
city-everyday life. With the school situations of socialization, the learning of math-
ematical resignifications will take place in permanent processes (uses and meanings)
as opposed to terminal objects (concepts and definitions) (Cordero, 2022).
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The action of functional mathematics consists of re-signifying the uses of math-
ematical knowledge in the transversality of knowledge proper to the communities of
knowledge. These actions take place in specific situations. Specificity rules the uses
of mathematical knowledge. It is agreed to call these uses categories of mathematical
knowledge.

In this context, Cordero (2022) and Mendoza-Higuera (2020) explain that a
category of mathematical knowledge is sui generis due to the epistemological,
ontological, and educational stance of the research approach, and state that:

(. . .) the category is a process that accompanies the epistemological plurality and the
transversality of knowledge that define the mathematical functionality of the communities
of mathematical knowledge that take place at school, at work, and in the city (Mendoza-
Higuera, 2020, p. 63).

As a whole, the epistemology of uses and its resignifications shape the categories of
mathematical knowledge as a social material product to be favored in teaching and
learning, which become visible in the design of socialization school situation. In
order to shape elements that contribute to the alliance of quality with the teaching of
mathematics and that in turn specify the relevance of the new program under
development and its educational impact, it has been considered to evidence the
socialization to counteract the exclusion of the social construction of knowledge that
is visualized from the problematic.To begin to materialize this impact, we seek to
constitute processes that transform de school mathematics discourse; we call them
design of socialization school situation (DSES). This is based on epistemologies that
favor the uses of mathematical knowledge, and also on a perspective which, on the
one hand, allows counteracting the phenomena provoked by the mathematical
school discourse (dME) and, on the other hand, allows the analysis of the partici-
pants’ resignification process (Morales, 2020; Morales & Cordero, 2020).

These are aimed at the valorization of the epistemology of uses. To this end, the
valorization processes are explained with the dialectical perspective of exclusion-
inclusion (Soto & Cantoral, 2014). That is to say, people necessarily confront the
mathematical school knowledge with their own mathematical knowledge.

This dialectic then composes a model in which the transition between the dME
and the social construction of mathematical knowledge (CSCM for acronym in
Spanish), plays an indispensable role, the latter usually excluded in school
mathematics.

At this point, it is worth distinguishing that CSCM is not restricted only to the
interaction between people, but as mentioned by Cordero et al. (2015):

We consider the interactions between individuals (we care about which individuals and their
historical processes), the processes of debates and negotiations that the community
undergoes to institutionalize knowledge (institutional process), and the functionality of
this knowledge in a specific context and situation (functional process), characteristic of
social practice (p. 69).

By understanding the processes of exclusion and inclusion as a dialectical relation-
ship, it is pointed out that one does not live without the other, and that exclusion will
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be characterized by the elements of the dME and inclusion by the CSCM. Figure 14.2
shows the model of the exclusion-inclusion dialectics.

Three laws are considered in the dialectical process, namely: the confrontation of
opposites, unity, and change (Soto, 2014). The dialectic is a duality that confronts
two contrary categories (dME and CSCM), which as pointed out could not live one
without the other but coexist in permanent struggle, which produces unity.

14.3.1 Category of Modelling and Reproduction of Behaviors

The SOLTSA has managed to constitute some specific situations in which categories
such as prediction, analyticity of functions, and tendency behavior of functions
emerge. These categories have been revealed in historical epistemological studies
and, in turn, in the emergence in specific situations of knowledge communities that
make use of mathematical knowledge. With the research of Mendoza-Higuera
(2013, 2020) and Giacoleti-Castillo (2020), the extension of the category tendency
behavior of functions, proper of the transformation situation, to the reproduction of
behaviors has been promoted.

Each category is composed of meanings, procedures, arguments, and instruments
that make up an epistemology of the uses of mathematical knowledge. Thus, the
transformation situation is composed of meanings as patterns of graphical and
analytical behaviors that entail procedures of parameter variation to the extent that
the function is taken as an instruction that organizes behaviors, maintaining as a
guiding thread the search for tendencies when reproducing a known or given
behavior1 (Cordero, 2001; Mendoza-Higuera, 2020; Giacoleti-Castillo, 2020).

Fig. 14.2 Model of the
exclusion-inclusion
dialectics. (Source: Soto,
2014)

1In Chap. 12, of this book, the epistemological moments of this category are extensively mentioned.
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In addition, although it will not be extensively discussed here, in Mendoza-
Higuera (2020) there is evidence of the reproduction of behaviors in the
resignification of uses of linear differential equations with constant coefficients as
stability models in the situation of control system designs (Fig. 14.3).

In addition, together with these categories, the category of modelling is
established as the process that accompanies the construction of mathematical knowl-
edge as humans transform their reality, in contrast to other modelling proposals
that seek to understand reality by relating it to mathematics through a model that
represents it. Thus, this category of modelling starts from a principle P0 that
corresponds to the functional of the reciprocal relationship between mathematics
and everyday life; in this sense, P0 generates the uses of the mathematical knowledge
(U(CM)) of people.

When these uses go through different situations (Sij) and domains (Dj), they
constitute epistemologies (Er) and transversalities that re-signify the uses of that
mathematical knowledge. And, the category corresponds to this resignification of
uses (Cordero, 2022) as shown in Fig. 14.4.

14.4 Category Reproduction of Behavior: Emergence
and Staging in Engineering Knowledge Communities

As already mentioned, to address the problem of teaching and learning mathematics
in engineering, it is proposed to build a frame of reference that problematizes
institutional mathematical knowledge and complements it with functional mathe-
matics (put into use by communities of knowledge). In this way, we will show the
emergence of the category reproduction of behaviors in a situation of design of

Fig. 14.3 Transformation situation and design of control systems. (Source: Mendoza-Higuera,
2020, p. 190)
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control systems, typical of school scenarios of electronic engineers in training, where
the Laplace Transform is resignified.

In turn, we present the staging of a design of socialization school situation where
the category is the guiding thread for the resignification of the derivative with
students of chemical engineering. At the same time, we account for the transversality
of the category in situations of different domains such as electronic engineering and
chemical engineering.

14.4.1 Control Systems Designs: A Resignification
of the Laplace Transform

Giacoleti-Castillo (2020) and Giacoleti-Castillo and Cordero (2020) exhibited the
functional factors that relate to continuous and discontinuous behaviors in a specific
situation of control system design, and how these factors re-signify the Laplace
Transform. In the approach of this research, two elements are of vital importance:
control systems and the Laplace Transform. The first element defines the specific
situation of the study community; the second is the mathematical object re-signified
in the specific situation of the community of engineers in training.

The design of control systems was constituted as a situation, given that it is a
central activity in the daily work of electronic engineers, both in their professional
scenario and in their training (Mendoza-Higuera & Cordero, 2018). Control systems
are devices designed by engineers where, given a certain desired behavior, several
control actions (procedures) are executed to reproduce it. This alludes to the category
reproduction of behavior since it is sought to reproduce desired or pre-established
characteristics (behaviors).

In the signals and actions executed in a control system, behaviors occur that are
typically modeled by functions that are defined discontinuously (e.g., the unit step
function); however, the reproduction of the behaviors in the system output is

Fig. 14.4 Mathematical
knowledge framework of
the modelling category.
(Source: Cordero, 2022)
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continuous. The purposes of a control system can be summarized as follows: detect
an error and correct the error. Given the disturbances that occur in a system, there are
times when the desired behavior is not being achieved. In other words, an error is
occurring that is detected by the system and to correct it, the same system is fed back
by carrying out certain control actions.

Control theory uses transfer functions to perform these control actions, which
characterize the input-output relationships of systems described by linear differential
equations. The transfer function of a control system is defined as the quotient
between the Laplace Transform of the output signal (response function) and the
Laplace Transform of the input signal (excitation function), where the initial condi-
tions are zero (Ogata, 2010).

Transfer Function G sð Þ ¼ L output signalf g
L input signalf g

That is, it is in the transfer function where the control actions are applied to reduce
the difference between the output signal and the input signal so that the desired
behavior of the system is obtained. The control system designed by the mathematical
knowledge community of engineers in training (CCM(IEF) for its acronym in
Spanish), in this study consists of controlling the behavior of the temperature of
the water contained in a bottle, in which edible algae (Spirulina) are grown.

The optimum temperature for algae growth is between 31 and 39 �C. But the
temperature of the water in the container has a behavior that is frequently disturbed
by the ambient temperature, among other factors. This causes the water temperature
to be out of the optimal range at times. To avoid this problem, the community
designs a system that controls the behavior of the water temperature in the desired
range of 33–37 �C. The main objective of the control system is, then, to always
maintain the water temperature in the desired range (Castro et al., 2019). Figure 14.5
shows the physical equipment of the control system.

The control system (Fig. 14.5) works in such a way that the sensor takes the
temperature of the water contained in the bottle. The Arduino software receives the
temperature data provided by the sensor (it processes the data every 5 s). If the water
temperature in the container is out of the desired range, then the system generates an
error signal and activates a feedback procedure: a control action is executed to
correct the error, which consists of activating the pumps for recirculation of water
from another container to the bottle containing the algae, in order to return the water
temperature to the desired range in the shortest possible time (Castro et al., 2019).
When the water temperature returns to the desired range, recirculation stops.

In the behaviors of the water temperature being controlled, the community
identifies the following components of the control system: desired temperature
range (input signal) and temperature obtained in the container (output signal). The
reproduction of behaviors in this community is defined through the following two
epistemological factors: timing, and the tendency in a range.
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Timing. Under control theory, timing is defined as the role of the time domain in
control systems. This consists of problematizing the phenomena or behaviors of a
system in a temporal domain so that control actions can be executed (Hernández,
2010). This role of time has several connotations: one of them is its non-linear
consideration; time is not considered as a domain where phenomena occur in which
no intervention is possible. On the contrary, in the design of the control system, the
engineer schedules, in advance, different actions to be executed at certain moments
(of time) so that the system controls behaviors over time.

This treatment of time in the specific situation of the community allowed the
system components to be built in advance so that the control actions would be
activated at certain future moments (m1, m2, m3. . .), where control errors will occur
(temperature outside the desired range). In designing the control system, they were
anticipated in time to control the effects of disturbances that would occur at those
future times, so that the behavior of the water temperature is ideal at all times
(Fig. 14.6).

The tendency in a range. This tendency refers to the behavior in a region, in
which the reproduction of the behavior is desired to occur in the control system. As
mentioned above, given the desired behavior, the system was built to control/
maintain that behavior, in such a way that at all times the tendency of the signal is
in the desired range (33–37 �C). Figure 14.6 shows a graph displayed by the system
showing the output signal, which has a trending behavior in the desired range
(we have drawn the blue lines to indicate the desired range of temperature).

In this specific situation, the behaviors of the control system became problematic
over time (horizontal axis of the graph). This is per what was pointed out by Ogata
(2010), who indicates that in the operation of a control system it is necessary to
interpret the signals in the time domain. In the case of the CCM(IEF), this

Fig. 14.5 Physical equipment of the control system. (Source: Giacoleti-Castillo, 2020, p. 71)
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interpretation allowed them to problematize the behavior of the water temperature,
which occurs with a tendency in a range-, to reproduce the desired characteristics.

The two factors described above give functional meaning to the continuous
reproduction from discontinuous behaviors in the specific situation of the control
system design. In this way, then, the reproduction of behaviors is interpreted with a
continuous graph. Figure 14.7 shows a graph constructed by the community to
explain the operation of the control system. This figure shows that the behavior of
the output signal graph describes a tendency in the 33–37 �C range, which is the

Fig. 14.6 Temperature behavior in the output signal of the system. (Source: Giacoleti-Castillo,
2020, p. 77)

Fig. 14.7 Continuous behavior from discontinuous behaviors. (Source: Giacoleti-Castillo, 2020,
p. 78)
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desired range for algae growth, and this tendency is reproduced over time. That is,
behavior is reproduced at all times, and this reproduced behavior is trending in a
range.

In controlling the behavior of water temperature for algae harvesting, CCMIF
problematizes the tendency of that behavior: it is desired to control that the water
temperature is in the desired range at all times. To this end, timing reproduces the
desired behavior, which is interpreted as continuous behavior.

The role of time as timing occurs when the community schedules in advance the
control action to be executed at future times (m1, m2, m3, . . .) where control errors
will occur (temperature out of the desired range). The control action executed at
those moments is the recirculation of the water by pumping, with the purpose that the
water temperature returns to the desired range in the shortest possible time and thus
prevents it from crossing the tolerance range. Regarding this, community members
state the following:

If at any time this temperature leaves the desired range, the system starts working, either to
heat the water or to cool it, depending on the temperature at which it is. Because what we
want is for it to always be in that range. When [the temperature] at some point reaches higher
or lower than that range, the pumps are activated, and the first pump delivers the water; the
second pump takes out a quantity of water, within a few seconds. So, the water is
recirculated. Say, you are going to supply 2 or 3 seconds of water; then it waits 5 seconds,
it takes the data back from the temperature sensor and, if it is or is not already in the range, it
activates or does not activate the pump. And it is from that that we have it, from a certain
number of cycles we maintain the water temperature range (Transcript of community
interview, 2019).

Figure 14.7 shows that to explain the temperature behavior at times m1, m2, m3,
traces are made that are expressed discontinuously. This is because the control
actions are executed only when the system detects that the water temperature has
gone out of the desired range; they do not always occur, but only at times (m1, m2,
m3) when it is required to return the temperature to that range. Thus, the temperature
behaviors at these times are expressed with piecewise plots, that is, discontinuous
behaviors. However, the reproduction of these behaviors is interpreted continuously;
this is because the behavior of the water temperature is always being controlled, not
only at times m1, m2, m3, and also at all times.

It should be noted that continuous behavior is now tending towards discontinuous
behavior. In other words, the behavior of the output signal, which is expressed
continuously, is a reproduction resulting from discontinuous behaviors. This is
because, at times when the system signals an error signal, the water temperature
reproduced has a behavior within the tolerance range before returning to the desired
range; thus, this behavior reproduced in the output tends to the discontinuous
behaviors of the times m1, m2, m3. That is, continuous behaviors are reproduced
from discontinuous behaviors.

Finally, the functionality of the Laplace Transform (LT) in this specific situation
refers to the two purposes of a control system: to detect an error and to correct
it. Precisely, the uses of the LT are put into operation in the control system when, at
various times, the water temperature behavior is determined, and when the system’s

304 E. J. Mendoza-Higuera et al.



feedback procedure is executed, to reproduce the behavior of the temperature in the
desired range. In addition, this functionality is endowed with meanings referring to
the two epistemological factors presented above: the timing and the tendency in a
range. Table 14.1 shows the construction of the mathematical in the specific situation
of the knowledge community.

In the problematization of this specific situation, elements alluding to a functional
justification of the Laplace Transform are put into operation; in other words,
knowledge is constructed that corresponds to the mathematical, that is, to that
which is useful to the community in its daily work and activities. This is in contrast
to school mathematics, which focuses its attention on the object and ignores the uses
of mathematical knowledge in everyday life.

From these functional aspects, the Laplace Transform is re-signified as
the instruction that organizes continuous behavior in the control system. All of the
above composes an epistemology of uses of the Laplace Transform (LT) in the
specific situation. This epistemology confronts the school mathematics of the LT,
which privileges its algorithmic and utilitarian character is privileged as a method to
solve a differential equation, leaving aside its functional value that responds to the
daily work of the communities in specific situations.

Table 14.1 Construction of the mathematical in the specific situation of the knowledge community

Construction of
the mathematical

Core situation Specific situation
Transformation Design of water temperature control system for

algae harvesting

Meanings Graphical and analyti-
cal behavior patterns

Behavior of the system signals (continuous and
discontinuous)
Timing
Trend in a range

Procedures Parameter variation Comparison of signals (input and output) and
recirculation of water in the containers
(Feedback in the transfer function to achieve a
desired behavior)

Instrument Instruction that orga-
nizes behaviors

Instruction that organizes continuous behavior

Transfer Function ¼ LT output signalð Þ
LT input signalð Þ

Argumentation/
resignification

Trend behavior/behav-
ioral reproduction

Continuous reproduction from discontinuous
behavior

Source: Giacoleti-Castillo (2020, p. 84)
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14.4.2 Transformation of Mathematical School Discourse:
Staging the Reproduction of Behaviors

The uses of mathematical knowledge in other disciplines and the categories they
form are the basis for elaborating of school designs that strengthen the meanings
usually provided by school mathematics. When starting from recognizing certain
uses of the derivative, specifically in the daily professional life of engineering, which
is usually excluded in school mathematics, a specific scenario is visualized to
promote a transformation of the dME.

For this purpose, what is reported by Pérez-Oxté and Cordero (2016, 2020), who
analyze how a community of chemical engineers study the state of an electrical
transformer from the graphical analysis of its chemical compounds. In this context,
uses of the derivative emerge that are not normally part of school calculus: predic-
tion, tendency behavior (reproduction of behaviors), and analyticity.

Thus, from these uses, Morales (2020) elaborated a school design, which was
socialized with chemical engineering students, to investigate the processes of valo-
rization of the uses of the derivative, which arise in the student, in the transition from
signifying it as the slope of a tangent line to re-signifying it either as a prediction, or a
tendency behavior, and or analyticity.

Thus, a contribution is made, on the one hand, by providing the mathematics
teacher with an environment of uses and meanings of the derivative, and on the other
hand, a design of school situation to improve and strengthen the learning of the
derivative with chemical engineering students. These designs allow moving from the
focus on the mathematical object to the valuation of uses of mathematical knowledge
(Medina, 2019; Morales, 2020).

Object decentering is considered as a sine qua non condition to propitiate the
interaction between two contrary categories: the dME and the CSCM (as already
deepened in previous sections). The perspective that guided this design was the
exclusion-inclusion dialectic (Soto & Cantoral, 2014), which establishes that to
make transit between the dME and the CSCM there must be a confrontation between
these elements, subsequently, a unity and finally a change would occur. Table 14.2
shows how the laws of dialectics and the elements that make up the specific situation
are articulated in the construction of the design.

In particular, the DSES is based on three situations: approximation, variation, and
transformation, and on the exclusion-inclusion dialectic perspective, as can be seen
in the general scheme of Fig. 14.8.

The composition of Morales’ design (Morales, 2020) allows observing a transit
and dependence between these situations; that is, the approximation works as the
prelude to reaching the situation of variation, and these, in turn, promote the
emergence of the generation of behaviors through the analysis of tangent lines. In
this way, the aim is to find out whether the role of the tangent line in the generation of
behaviors is superimposed on the algorithmic search for its equation, which is what
is commonly done in the dME.
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This design was staged with five students from the Bachelor of Chemical
Engineering from a Costa Rican university, who had already passed calculus courses
in one and several variables, in addition to linear algebra and differential equations.
This allowed analyzing how the use of a design based on the uses of mathematical

Table 14.2 The perspective of the design of socialization school situation

Laws of the exclusion-
inclusion dialectics

Articulation of the laws of dialectics in the construction of the
school situation design for socialization

Confrontation of opposites Activities are developed in which the arguments arising from the
specific situation take precedence over those stipulated in the
school mathematical discourse. The aim is to break with the usual
application given to the mathematical object.

Unity The situation is composed of four elements: meanings, proce-
dures, instruments, and arguments. These elements do not neces-
sarily act in a linear order; any one of these may occur first and the
others may follow.
A particular feature of this interaction is that when the participant
focuses on the definition of the derivative, they will not move to
the CSCM, whereas when they value the environments of use and
meanings, they will have made the proposed transition.

Change It will appear when those who participate in the resolution of the
design, consider, in a horizontal relationship, the arguments/
resignifications that emerge from the specific situations.

Source: Morales (2020, p. 47)

Fig. 14.8 The general outline of the design of socialization school situation. (Source: Morales,
2020, p. 48)
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knowledge led to the resignification of the uses of the derivative of this group of
students.

In the following, three episodes are presented that give an account of the
implementation of the DSES: confrontation, unity, and change. For this, the concrete
case of one of the participating students will be evidenced. In the transcripts, the
student’s comments/reasonings/justifications are denoted with A, B, . . ., the inter-
viewer’s interventions with E, and the interviewer’s clarifications of the students’
behavior in square brackets.

The first of the situations presented in the DSES is the approximation. This
situation aimed to confront school mathematics, in which a function is usually
given, a point is indicated, and then a tangent line is asked to be determined and
graphed. In the first part of the activity, the tangent line shows whether the electrical
transformer shows stable or extraordinary behavior. In other words, the drawing of
the tangent line does not only respond to the fact of the following instruction but has
an intrinsic functionality in the situation presented. In this sense, the student will
signify the behavior of the tangent with that of the curve that models the concentra-
tion of a certain gas inside the transformer from the variation between these two,
alluding to ideas of tendency.

The second part of the activity is a combination of the approximation and
transformation situations. On the one hand, the inverse problem of school mathe-
matical discourse is presented, i.e., a straight line is given, and a curve must be drawn
on it for which the given line is its tangent, and, in order to achieve this curve, the
variation of parameters and their disciplinary knowledge about stable behavior is
used. Draw a line that exhibits stable behavior on the given graph in the initial
context, such that it is locally tangent at some point on the given graph.

A: And what would be the equation of that graph? [remains silent for a few seconds].
The only thing I can think of is to do the tendencies piecewise, before the peak
and after the peak.

E: And then how would you draw a line that shows a stable behavior in the graph?
A: I would think of it very much as a control chart, in which there is a line that is

basically the average, in which there are an upper and a lower limit.
E: How would you represent that? [Subsequently starts drawing straight lines on the

given graph].

In this first part of the activity, the student can recognize that at x¼ 0 the equation
of the tangent line corresponds to the linear part of the polynomial, although he does
not see it in the first graph. Figure 14.9 shows the activity one solving.

E: What would be the equation of the red line?
A: It would be equal to y ¼ 6
E: Is that red line tangent to the graph? [At this point the student is silent and unsure].
A: A tangent line represents the derivative of a function. Well, the slope.
E: So, the red line would be?
B: No because it touches it at more than one point.
A: No, it can only be at one
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As the student starts to be asked questions about the relationship he observes
between the given graph and that of the tangent line, he begins to notice that both
have the same behavior in a neighborhood centered on the tangent point.

Thus, the student begins to affirm that the graph of the tangent line allows
modelling the graphical behavior of the gas. In this section we can see how the
student looks for the graph to take a certain tendency, which he considers stable
when it takes more and more the shape of the straight line, that is, he looks for the
differences between them to be minimal and in this way the tangent line is the
instruction that organizes its behavior.

The above discussion corresponds to the preamble of the second part of the
activity, which aims to see the unit, in this sense, it is intended to know if they use
the tangent line as a generator of the behavior of a curve in a neighborhood around
zero. For this, the graph of a polynomial is provided, and the signs of the linear part
are modified, after which the students are asked to determine what the graph would
look like as a result of this change.

The episode of change is the last of the exclusion-inclusion dialectic, in which
only functional arguments of the derivative are expected to be used. The activity
consists of making a prediction of the subsequent state of the transformer, knowing
only the behavior at a given time and the variation that occurs in it.

In Fig. 14.10, A and B represent the behavior of ethylene at different times.
Assume that you only know A and the change from A to B (but not B). Build a
model that allows you to predict B from these data.

A: I can think of that [draws the red line], just look at the tendency of A and B, and
draw a linear regression, which in very engineering words is a rule of three.
[Figure 14.11 shows student’s work in this stage].

E: How would you do it?
A: What I would do is try to associate the height of A to a value [plots a vertical and a

horizontal axis]. And since it is at different times it is time-dependent [label the
horizontal axis with t] and the behavior of ethylene is concentration [label the

Fig. 14.9 Activity one solving. (Source: Morales, 2020, p. 68)
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vertical axis with C] so I would have ordered pairs, and if I name A time zero and
B time one, with that I could get the concentration as a function of time.
[Figure 14.12 shows student’s work in this stage].

Assume that the graphical behavior of ethylene is now unknown. Knowing that
the data were taken every 6 months, that one of the concentrations was 6.02 ppm and

Fig. 14.10 Diagram of
third stage behavior.
(Source: Morales, 2020,
p. 79)

Fig. 14.11 Student solving
in the third stage. (Source:
Morales, 2020, p. 79)

Fig. 14.12 Student solving in the third stage. (Source: Morales, 2020, p. 79)
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that the variation from that point to another is 2.7, then predict what concentration
would be 3 months later.

A: Well, the first thing is that since you only have one piece of data, you would have
to assume a tendency.

E: And how do you mean?
A: For example, by now, in the previous example, we assume a linear tendency.

Because if I had several data, I would know how that concentration behaves over
those 6 months, but otherwise I would have to assume one.

E: And then what could be done?
A: At the moment what comes to mind is to try to see it graphically [makes a graph].

This point is for the 6 months [and makes the asterisk in Fig. 14.13] and the one
for the 9 months is here, whether it goes up or down.

A: What I still don’t understand is how to interpret the value of 2.7. I imagine it must
be like what we were doing now: knowing the orientation of the tangent line, then
perhaps I might intuit something.

E: Ok, so it is clear that you don’t know what will happen at 9 months if there will be
a concentration of more than 6.02 ppm or less than 6.02 ppm.What would happen
if you knew the slope of the tangent, what would happen?

A: I would know the sign of the slope, and then I would draw a line. Either
something like this (. . .) or like this [plots two lines seen in Fig. 14.14].

Fig. 14.13 Student solving
in the third stage. (Source:
Morales, 2020, p. 80)

Fig. 14.14 Student solving
in the third stage. (Source:
Morales, 2020, p. 81)
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E: And how do you get the slope of a tangent line?
A: I’m going to construct the nicer graph again but starting at zero. The slope of the

tangent line is the derivative, so I know that it would be increasing [makes another
graph which is seen in Fig. 14.15].

E: Could you explain a little bit about what you did [as written in Fig. 14.16]?
A: What I did was to express the equation of that tangent line. Before I had put

measures 6 and 9, but it was more cumbersome, so it was easier to put the
measure at zero. As we know that at time zero I have a concentration of 6.02,
then that 6.02 is going to be the intercept of the equation of the tangent line and
the 2.07 is the change, that is, it is going to be the slope, so that’s how I did that
equation [marks with a green “check” the equation Cn ¼ 2.7t + 6.02]. And then,
as they say, that I evaluated the concentration 3 months later, I simply evaluated at
t ¼ 3 [makes another green check, this time on Cn(t ¼ 3)]

E: What would happen if the slope were �2.7?
A: I would assemble the same equation only with a negative slope. And in that case,

there would be a lower concentration after 3 months.

This section corresponds to the last part of the design, that is, to show the change.
From the beginning, the student puts into play re-significations of the tangent line
and does so by resorting, for the solving of the activity, to the linear approximation.
As it was pointed out in the previous activities, the tangent line is the guide for the
generation of stable behavior.

Moreover, although the students had already studied the Taylor polynomial
f xþ hð Þ ¼ f xð Þ þ f 0 xð Þhþ f 00 xð Þ

2! h2 þ f 000 xð Þ
3! h3 þ . . . and that they could resort to

Fig. 14.15 Student solving in the third stage. (Source: Morales, 2020, p. 81)

Fig. 14.16 Student solving in the third stage. (Source: Morales, 2020, p. 82)
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this using the fact that h corresponds to the 3 months that have elapsed since the
given shot, making a linear approximation and taking the first datum as zero time,
with which one would have f(0 + 3) ¼ f(0) + 2.7 ∙ 3¼ 6.02 + 8.1¼ 14.12, this is not
the resource they used.

From the beginning, the student resorts to the plot of a tangent line to predict the
behavior of the gas in the requested later state, as well as to the slope formula to
construct an equation that allows him to make the prediction. In other words,
knowing that the data collection is every 6 months and that the prediction is 3 months
later, the student is using the fact that the tangent line behaves similarly to the graph
that would model the real behavior of the gas.

The above show how the transversality between situations enables the emergence
of the re-significations of the derivative. In the latter case, as a predictor of subse-
quent gas behaviors based on the search for tangent-tending behaviors.

14.5 Final Reflections

Entering the problem of teaching and learning mathematics in engineering education
from TSME and the SOLTSA, in particular, entails several challenges. One of them
is to implement a reciprocal and horizontal dialogue with the other, in this case with
engineering community.

Immersion in knowledge communities to identify situations where there are uses
of mathematical knowledge and to infer the emergence of categories of mathematical
knowledge imply precise methodological resources that justify the theoretical con-
structs that underlie these inferences. In this regard, the knowledge community and
its situations are fundamental to describing the functional mathematics that is put
into use there and thus forms the frame of reference that will contribute to the
redesign of the dME for the training of engineering students.

In this paper, we account for the category of behavior reproduction and its
emergence in electronic engineering, in an academic environment, where when
facing a specific situation of control system design, functional justifications arise
(specific to the situation and its discipline) that account for the uses and
re-significations of the Laplace Transform.

The latter goes from being a strategy for solving linear differential equations in
the algebraic form to becoming an instruction that organizes continuous behaviors
through procedures where the comparison of signals controls the feedback mecha-
nism so that the output signal behaves as required. On the other hand, in chemical
engineering where a chemical engineer faces a specific situation of analysis of a
transformer, different categories emerge, being the reproduction of behavior
(or tendency behavior) one of them.

To determine that there are no indications in the transformer gases, the behavior
of each of the graphical models of the dissolved (or real) gases is analyzed,
comparing it with a graphical model of the ideal gases (the one required to affirm
that the transformer has no faults). In this way, the tendency of gas behavior is
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analyzed according to the variation between the models, which is characteristic
reproduction of behavior (Torres-Burgos, 2013).

The category reproduction of behaviors emerges in situations of electronic
engineering (Giacoleti-Castillo, 2020) and chemical engineering (Pérez-Oxté &
Cordero, 2016, 2020), pointing out transversality of uses that re-signify the knowl-
edge of the Laplace Transform and the derivative, respectively. In this way, we
account for the category of modelling as that action that makes visible the
transversality of uses of mathematical knowledge and the re-signification of math-
ematical knowledge.

In human activity, modelling emerges in a natural way to transform the reality of
the engineer who faces situations that need to be solved and, while providing a
solution, makes use of reasoned and functional justifications that constitute this
functional mathematical knowledge. Figure 14.17 shows category of modelling in
engineering scenarios.

As indicated by Mendoza-Higuera and Cordero (2018), the category of modelling
does not appear in the usual school mathematics for engineering education, however,
it does appear in everyday situations of mathematical knowledge communities, for
example, of bionic, electronic, or chemical engineering students.

Finally, to intervene punctually and forcefully in the mathematics classroom, it is
necessary to build instruments that contribute to the re-signification of knowledge by
the students, in this sense, the designs of the school situation of socialization, where
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Fig. 14.17 Category of modelling in engineering scenarios. (Source: Authors own elaboration)
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the categories of mathematical knowledge are implemented, will be those
instruments.

Then, to disrupt and transform the dME, which will have an educational impact,
we offer a design where the student permanently confronts the traditional meanings
of the derivative with the use of prediction and tendential behavior. Here the
category of behavioral reproduction appears when the tendency is the instrument
that allows him to respond to the prediction task.

Consequently, it is convenient to incorporate the reciprocal and horizontal dia-
logue between mathematics and engineering, where the categories of mathematical
knowledge are identified and their implementation can be established in classrooms
to promote the educational impact and establish permanent programs that contribute
to this path.
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Chapter 15
Prospective Mathematics Teacher
Discipline Identity and the Modelling
Category: The Value of the Learner’s
Knowledge

Claudio Opazo-Arellano, Sindi Marcía-Rodríguez, Henry Chávez-Martínez,
Eleany Barrios-Borges, and Francisco Cordero

15.1 Introduction

To transform education demands to value people’s knowledge, however, to achieve
this aspiration implies to formulate permanent programs which impact the initial
teacher training. The impact will define a vision change about the meaning of learning
to teach where a consequence is the discipline identity construction (Opazo-Arellano
et al., 2018; Opazo-Arellano, 2020). An initial teacher training principle is to learn to
teach since it defines pedagogical and discipline knowledge of the prospective teacher
(Blanco & Mercedes, 2005; Contreras et al., 2010; Cornejo, 2014).

However, which is the knowledge nature that is learned by the prospective
teacher? And moreover, what nature is the knowledge that the teacher teaches during
his initial teacher training? In order to answer these questions, two work lines are
opened. On one hand, some problematize the construction of the educational
frameworks in the country where the teacher works. On the other hand, the discipline
knowledge that joins and distinguishes the teaching within the different educational
levels (Mercado, 2002).

To build the meaning of teaching is something more solid that just acquiring
specific knowledge about how to teach or how to organize what it is taught. Both
aspects are relevant nevertheless; the most important aspect is within the knowledge
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nature that is learned to teach in the initial teacher training. This research describes
the prospective mathematics teacher’ knowledge finding that what is learned is the
hegemonic character of the school mathematics.

In Cordero’s words (2022) a zoom to the mathematical objects (definitions and
concepts) over the permanent processes (uses and meanings). These categories
express a different relationship with the mathematical knowledge since in the first
one is standard and utilitarian and the second one favors a horizontal and reciprocal
relationship within the mathematical knowledge. Therefore, to value the knowledge
that builds and spreads who learns (Cordero, 2016) in this initial teacher training
privileges the first relationship with the mathematics knowledge.

A consequence of this event is the phenomenon of adhesion to the school
mathematics discourse (Cordero & Silva-Crocci, 2012) that is why the prospective
teacher adopts the school mathematics knowledge as the unique referent for his
teaching. However, the social construction of the learner of the mathematics knowl-
edge is excluded. The adhesion construct has been interpreted and developed with
basis on theoretical-methodological elements of the socio-epistemology forgotten
subject and knowledge mainstreaming (Cordero, 2022).

To emphasize that to adopt a culture, a problem or some knowledge without
questioning or disrupting its nature contributes to the adhesion phenomenon
(Cordero & Silva-Crocci, 2012). In this sense, Opazo-Arellano et al. (2018) and
Opazo-Arellano et al. (2021) explain this phenomenon extent in the initial teacher
training of the prospective mathematics teacher process. They affirm that when this
knowledge community adopts the school knowledge through a hegemonic way, the
teaching of mathematics causes the exclusion of autonomous argumentations of the
learner. This leaves in a second place the epistemological pluralism1 and the
knowledge mainstreaming2 within the mathematics classrooms.

As it was described above, the authors indicate that in order to avoid the adhesion
phenomenon within the initial teacher training it is a condition to construct the
discipline identity. In other words, a resistance to the school mathematics discourse
(Opazo-Arellano, 2020). In this sense some factors that contribute to the prospective
teacher to face the adhesion to the school mathematics discourse were identified
finding the re-signification of the mathematics knowledge3 as a concrete demonstra-
tion of the teaching of mathematics transformation. Besides this construct defines
epistemologically and ontologically the discipline identity (Opazo-Arellano &
Cordero, 2021).

1Epistemological pluralism is opposed to hegemony in the sense of the consideration of different
arguments, meanings and procedures that exist and that are associated with mathematical knowl-
edge in a specific situation and context (Cordero et al., 2015).
2Mainstreaming is the resignification of the uses of knowledge between scenarios or knowledge
domains, for example: between school and work; or between mathematics and engineering
(Cordero et al., 2019).
3Re-signification expresses the mobility of the uses and meanings of mathematical knowledge in
different specific situations, typical of other domains of knowledge and everyday life (Mendoza-
Higuera et al., 2018).

320 C. Opazo-Arellano et al.



The factors that were found are results from making the mathematics knowledge
problematic in terms of the definite integral and asymptote of a function. The
collection of this data was developed in communities of prospective mathematics
teachers in Honduras highlighting two autonomous argumentations through analy-
sis: the accumulation and tendency behavior (Marcia-Rodríguez & Cordero, 2021;
Cordero & Domínguez, 2001; Chávez-Martínez, 2022). These argumentations form
the socio-epistemological corpus of the teaching of mathematics where the common
thread is the modelling category (Cordero, 2022).

The modelling category transforms into the epistemological and ontological
justification that develops a vision about the teaching of mathematics. That means
it defines the construction of the discipline identity. Since the prospective teacher
plans, delivers and evaluates the teaching of the mathematics knowledge since the
epistemological pluralism (Two expressions are used in the text: epistemological
pluralism and Epistemological Diversity. Please unify all by epistemological diver-
sity.) and transversality of mathematical knowledge. Factors that are demonstrated
when socialization school situations designs are applied since in this process the
school knowledge is faced and people’ mathematics knowledge emerge (mathemat-
ics knowledge uses).4

What derives into that the prospective mathematics teacher avoids the adherence
to the school mathematics knowledge because it legalizes the mathematics knowl-
edge diversity, it resists the mathematics knowledge put in practice is teaching and
learning scenarios and projects the re-signification of the mathematics knowledge
within the learner’s autonomous argumentations.

A summary about what it was stated before is the discipline identity because it
expresses the teaching vision and the mathematics knowledge that is constructed by
the prospective teacher when he prepares the teaching within the initial teacher
training. Figure 15.1 shows the discipline identity within the initial teacher training.

15.2 Adhesion Phenomenon and the School Mathematics
Discourse: A Latino-American Perspective

Within the school-academic production and spreading of scientific knowledge
scenarios there are cultural behaviors that overshadow the knowledge that does not
come from of the countries known as “central”. That means supremacy of the
dominant cultures thinking is given. At the same time, a pejorative load to the
Latino-American cultural expressions facing the world and within the same region
(Fig. 15.2). These behaviors that weak the different fields of the discipline task of the

4The uses of mathematics knowledge are understood as the organic functions of the situations
(working) that are demonstrated in the tasks that form the situation. These tasks types are the form
of the math knowledge use. The tasks can be: activities, actions, own rotation of domains of the
organism of the situation (Cordero & Flores, 2007).
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mathematics education in Latino-America were known as the adhesion phenomenon
(Cordero & Silva-Crocci, 2012; Silva-Crocci, 2021).

The adhesion phenomenon:

Creates superiority slogans to do a good job in case some practices from central countries are
adopted. Some examples are the thesis titles in English in peripheral countries no matter its
natural language is the Spanish, to adopt concepts of dominant-occidental origin, to name
academic programs of peripheral countries, to work around problems initiated by mentors or
programs from central countries, among other behaviors (Cordero et al., 2015, p. 33).

What stated before describes the scenario that suggests and gives meaning to the
adhesion phenomenon. One characteristic is that this phenomenon reduces the
process of setting up of endogenous theoretical varieties in Latino-American
research programs. In these terms, Cordero and Silva-Crocci (2012) refer to the
disadvantage that Latino-American live about the knowledge construction. They

Knowledge construction

LatinoamericaScientific tradition
regions

Opacity

World scientific
work

Dominant

Fig. 15.2 Socio-historical aspects that suggest the knowledge. (Source: Cordero et al., 2015)

Math teaching planning

Teaching vision:
Epistemological
pluralism and

transversality of 
mathematical
knowledge.

Modelling category:

Math knowledge
resignification

Fig. 15.1 Discipline identity within the initial teacher training. (Source: Opazo-Arellano, 2020)
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declare that if there are no resistances facing these facts that cause disadvantage they
will not vary. In this context what the authors defend is to reject to be adherent
(Cordero et al., 2015).

It is important to declare that this phenomenon has an effect on the mathematics
teaching and learning problem where the school mathematics discourse plays an
essential role: its supremacy over the teachers and students’ cultural thinking pro-
vokes adhesion what implies attitudes that do not criticize the mathematics contents
that are taught such as the exclusion of its construction and its working opacity
(Cordero & Silva-Crocci, 2012; Silva-Crocci, 2021).

It is relevant to mention that the adhesion to the school mathematics discourse
reaches the initial teacher training because the prospective teacher adopts the school
knowledge as the unique referent since the mathematics knowledge construction’s
situational characteristic. This derives in to focus the attention on the concepts and
definitions over the uses and meanings that people create daily.

About this Opazo-Arellano et al. (2020) show how the prospective mathematics
teacher adopts an absolute loyalty to the definite integral concept. This avoids the
accumulation as an autonomous argumentation that emerges from who learns to
teach. To identify the adhesion to the school mathematics discourse some arguments,
procedures and meanings that result from the mathematics knowledge of the integral
being problematic (Table 15.1).

Table 15.1 was developed from the following an excerpt of the audio transcrip-
tion related to the interview conducted with a prospective mathematics teacher,
which is reproduced below (Opazo-Arellano et al., 2020).

I already solved the integral without reading the questions. . . I simply saw this and the first I
thought was to solve the definite integral. Logically leaving the variables “a” and “b” that
area values I do not know. Then in the first question I was asked which would be the value
for “a” and for “b” then I simply put the expression in the calculator which showed me 3 and
6 so that was what I put and I did not try with anything else.

Table 15.1 A prospective mathematics teacher’s answer

Section a: What can be the values of a and b?

Participant’s notes:

Participant’s notes:
Considering the expression * and by trial and error some values for a and b would be a ¼ 3 and
b ¼ 6.

Source: Opazo-Arellano et al. (2020)
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To solve this definite integral is in terms to apply the procedure that norms what is
usual at school mathematics where many of these procedures are acquired and
reproduced in routine problems proposed by calculation texts (Valencia Álvarez &
Valenzuela González, 2017). This makes to adopt the school knowledge in a
hegemonic way causing that the prospective mathematics teacher does not partici-
pate of the social mathematics knowledge construction (Opazo-Arellano & Cordero,
2021).

Another example of adhesion to the school mathematics discourse is the asymp-
tote as it is usual within the teaching of mathematics where it is privileged the
graphic representation of a function f(x) accompanied by a straight line that is close
to f(x) without cutting it. This instruction is not questioned within the initial teacher
training (Chávez-Martínez, 2022) what derives into the school knowledge as the
unique referent to plan, deliver and evaluate teaching (Opazo-Arellano & Cordero,
2021).

As an example, some demonstrations of this school knowledge during the initial
teacher training are present. These are part of a preliminary analysis where the
adhesion phenomenon was identified when a prospective mathematics teacher
made problematic asymptote behaviors (Table 15.2). In this case the adhesion is in
the reproduction of the mathematics object asymptote as straight line.

In the example of the Table 15.2 the prospective mathematics teacher refers to the
vertical asymptotes which relate with the values of the rational functions where the
denominator makes indefinite forms. This logic favors prototypes of functions that
have the graphic behavior of the Fig. 15.3 (Domínguez, 2003).

It is important to state that this prototype of functions are what the school math
discourse privileges about the asymptote teaching making the graphic representa-
tions hegemonic as the straight line for example.

Table 15.2 An prospective mathematics teacher’s answer in Honduras

Which of the functions do have asymptote behaviors and which do not? Explain

Answer Answer transcription
The functions (3), (4) and (5) have a symptote behavior
since they are rational functions. For some values of x the
denominator would be 0 which is an indefinite form. The
functions (1), (2) and (6) do not have asymptotes.

Source: Students’ work
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15.3 Discipline Identity and Socialization School Situations
Design

The two examples presented in the previous section show the reach of the school
mathematics discourse where what the prospective mathematics teacher learns is
defined by this dominant epistemology leaving aside the math knowledge that
constructs and spread the teacher who learns to teach through the initial teacher
training. Then, the demand itself makes to avoid the adhesion to the school math-
ematics discourse. Making the school knowledge problematic is relevant since this
mechanism makes tense the nature of the knowledge that is learned by the prospec-
tive mathematics teacher.

At the same time, it opens a gap to legitimize the diversity of knowledge, to resist
the mathematics knowledge put into practice and project the re-signification of the
knowledge from the people’s autonomous argumentations. It is convenient to
declare that to make the mathematics knowledge problematic supposes an episte-
mological change what is supported from a frame of reference5 that favors people’s
mathematical knowledge re-significations. In this sense, a consequence of this
process is to value the accumulation (Fig. 15.4).

In other words, the autonomous argumentations that show the uses of math
knowledge of the learner, as a result of the debate between functions and forms,
which recognize people’s experience. It is remarkable that this frame of reference
has been systematized in an ontological and epistemological structure where the
synthesis is in the situations derived from the systematic study of people’ knowledge
in their diverse communities of mathematics knowledge as shown in Table 15.3.

Fig. 15.3 Common
asymptote teaching during
the initial teacher training at
UPNFM (Universidad
Pedagógica Nacional
Francisco Morazán).
(Source: Authors own
elaboration)

5To build the frame of reference it is necessary to know, reveal and value the use of mathematical
knowledge of the work, the school, the work and the people. All this placed in a horizontal and
reciprocal relationship. The frame of reference will articulate the functional and the everyday,
promoted by contemporary socialization studies, since they express people’s own knowledge and
environment, the dialectic between academic and native knowledge.
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The question that suits in this context is: How is the vision of mathematics used in
the initial teacher training? The answer is in the Socialization school situation
design since it is important for the educational impact. Therefore, its essential
function is to value the mathematics knowledge and its re-significations in the
knowledge teachers and students’ communities. It is also necessary to keep the
reciprocity and horizontality between the school and people’s habits. That means,
through the socialization school situation design contributes to disrupt and transform
the school mathematics since the diversity of mathematics knowledge (Cordero,
2022).

The construction of socialization school situations design is compound by two
elements: an epistemological basis and a perspective. The epistemological basis
roots in each of the situations that compose the mathematical epistemology
(Table 15.3). The perspective is one of the multifactors that have been built as the
discipline identity (Fig. 15.1). Then the discipline identity and the socialization
school situation design articulate in the initial teacher training with basis on making
the mathematics knowledge problematic.

The educational impact is necessary however, it is not enough to add or eliminate
a mathematics subject from the school curriculum. On the other hand, to promote an
epistemological change that increases the learner’s knowledge to teach. In this way,
when the prospective teacher plans, delivers and evaluates his teaching he will
legitimize, resist and project a mathematics classroom that avoids the exclusion of
the mathematics knowledge social construction (Opazo-Arellano, 2020). What
favors to value knowledge which participate within the social construction of the
mathematics knowledge (Cordero et al., 2015). Next, two cases where mathematics
knowledge being problematic and the socialization school situation design partici-
pate will be shown. The summary is in the epistemological pluralism and the
knowledge mainstreaming.

Prospective 
mathematics teacher training

Adhesion to the school 
mathematics discourse 

Frames of reference of resignifications 
and uses of people’s mathematics

knowledge 

The definite integral: A definite 
object over a permanent process 

The accumulation: A 
knowledge mathematics

category 

To learn to teach 
mathematics

Discipline Identity

Fig. 15.4 Synthesis of the problems and role of disciplinary identity in initial mathematics teacher
training. (Source: Opazo-Arellano et al., 2020)
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15.4 Epistemological Diversity: The Case of Accumulation
in the Prospective Mathematics Teachers

The category of accumulation is the expression of the Integral mathematics knowl-
edge function that people have. In Cordero (2003), we find that in mathematics,
physics and engineering (Students and Teachers) the structure of the definite integralR b
a f xð Þdx ¼ F bð Þ � F að Þ is in action. This use made a change of the orientation of

the structure: Analyze the model from the root that means: F bð Þ � F að Þ ¼ R b
a f xð Þdx.

The change of orientation in the definite integral is the pattern of the theory of
integration construction which results into a new structure of the definite integral
together to the differential element (Fig. 15.5).

The notion of accumulation is the nucleus of the definite integral structure. The
invariant (independent to the context) is the comparison of two states F(b) � F(a).
The model is F bð Þ � F að Þ ¼ R b

a f xð Þdx the main point of the structure and the
differential element F(x + dx) � F(x) is an action that relates in a systemic form
the progressive phases of the structure and remains invariant to the contexts of the
quantities that stream (Cordero, 2022).In order to understand deeper what was
explained before Cordero (2003) perceives potentiality in this new structure in the
definite integral and suggests a treatment of the argumentation of the integral.
Because of its peculiarity he decides to call it category of argument which defines
an argumentative plan: the variation. In the variation plan, the integral is associated
to the notion of quantity through which form conceptions about the integral
(“∑dP ¼ P”), where the objects result to be interrelated variables (y ¼ f(x)) and
the procedures base on ideas to compare.

Fig. 15.5 Definite integral
new structure. (Source:
Cordero, 2022)
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Then the differential element been taken plays the role of process in this argu-
mentation field. The conceptions are influenced by the understanding of the local
situation to know the worldwide situation (Cordero et al., 2002; Cordero, 2003).

In this regard, we find in Mota (2019) how a community of bio-mathematicians
analyzes the specific situation of the thermal constant calculation (how to make the
accumulation of the degrees-days). The objective of the calculation proposed by the
community is to measure the accumulation of degrees-days each hour. In order to do
that the accumulation of degrees-days from the i� 1 hour to the i hour are described
such as:

max gij � Tb

� �
, 0

� �
24

According to the author the previous expression determines how the degrees-days
vary in the local form that means max{(gij � Tb),0} represents how the temperature
varies and the 1

24 represents to the differential of time, 1 h. The representation of this
accumulation as the local state of the situation is the following:

F t þ dtð Þ � F tð Þ ¼ F0 tð Þdt

That results in:

F t þ dtð Þ � F tð Þ ¼ max gij � Tb

� �
, 0

� �
24

In this context, Mota (2019) mentions that in the previous example it is observed
how the quantification of the phenomenon allows to recognize some aspects for
example, how the phenomenon varies (temperature) and the time interval in that type
of variation remains (1 h). In this study was identified how the differential element be
taken contributes with recognizing the accumulation of the local element. This
author declares that the category of accumulation emerges such a functional knowl-
edge6 that helps to solve the problem exposed by the bio-mathematicians mathe-
matics knowledge community.

It is relevant to note that the accumulation shows the knowledge of a specific
community therefore in the case of the bio-mathematicians the accumulation give
the meaning of the thermal constant. What was stated before creates an epistemology
different to what it is taught through the school mathematics. Figure 15.6 shows the
accumulation category frame.

This epistemology is excluded or overshadowed in calculation lessons as a habit
since the classic treatment of the integral in the texts of calculation is generated from
the approximation category. The argumentative plan is the approximation. In this
sense, the integral is associated to the number notion through which establishes

6That means where the uses of mathematics knowledge are expressed.
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integral definitions “ lim
n!1

Pn
i¼1

f xið ÞΔxi ”) where the objects are functions ( f: [a,

b] → R) and the procedures based on the ideas to achieve (interval division,
rectangle addition that cover a given region). In this regard, the border is the process
used in this argumentation plan. The properties are external to the mathematical
object and component elements (Cordero, 2003).

In order to recognize the epistemology effect within Fig. 15.6 which motivated
the design of the construction of a socialization school situation where prospective
mathematics teachers are. As a result, a phenomenon that is varying continuously is
recognized: a constant quantity through time interval. What was exposed before was
decided in a research reference frame; eight prospective Mathematics teachers
(6 men and 2 women), in their third year of career at Universidad Pedagógica
Nacional Francisco Morazán, at Nacaome Campus, at Valle, Honduras participated
in this research. This career curriculum has 12 periods (each year has 3 periods) with
49 subjects in total.

It is important to mention that two of the situations that were constructed within
the design of the socialization school situation are under the context of the con-
sumption of degrees-days of a pandemic (unit of measurement for the heat accumu-
lation in an organism) and the filling and the emptying of a container. One of the
characteristics is the use of the graph when an algebraic expression is absent when it
is discussed how something is changing.

In terms of the results of the socialization school situation design, they show how
it is considered constant in a small space the phenomenon that is varying

Fig. 15.6 Accumulation
category frame. (Source:
Marcía-Rodríguez, 2020)
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continuously within the indicated contexts which are represented by the temperature
or water quantity. This development allows the participant to recognize accumulated
quantities within short periods of time. In the same sense, this allows to know the
total accumulation they add each quantity accumulated in the local place that means
the variation within the local place represents small quantities accumulations (dif-
ferential element) since the adding of those quantities defines the total accumulation
(Table 15.4).

It is relevant to mention that the community of prospective teachers does not think
about generating areas to approximate to a curve but they face a phenomenon that is
varying continuously where each variation accumulates some quantity. In order to
value the accumulation as an autonomous argumentation of the participants favors to
develop procedures which lead to re-significate the definite integral as something
usual within the teaching of mathematics at school since the construction elements as
a result of an empirical research.

In this sense the elements of the change situation are relevant as shown in
Table 15.3. In other words, the prospective mathematics teachers do not emulate a
procedure of something that was previously taught (Cordero, 2022; Marcia-
Rodríguez & Cordero, 2021). Therefore the epistemological diversity implies to
value other epistemologies that are developed in people’s habits (accumulation) and
if they are incorporated in the school mathematics that allows to give meaning to the
mathematics object.

15.5 Transversality of Mathematical Knowledge: The Case
of Behavior with Tendency to the Prospective
Mathematics Teachers

The forgotten subject program and transversality of knowledge recognizes in what is
usual in the teaching of the school mathematics the absence of people’s mathematics
knowledge. It is true that this knowledge lives in scenarios such as at work, the city
and at school. On the other hand, transversality is promoted of mathematics knowl-
edge such as an element that will transform the school mathematics including what is
functional from the knowledge and promoting a connection between the school and
routine knowledge (Cordero, 2022).

Transversality of mathematical knowledge is the re-signification of the uses of
knowledge in at least two domains or different scenarios. For example: between the
school and work or between mathematics and engineering (Mendoza & Cordero,
2018). This means that mathematics knowledge adopts meanings in specific situa-
tions (Sei), according to its use. In particular, the asymptote of a function f(x) is
described in the school as straight line that comes closer to f(x) without cutting it.

However, in domains (Dk) such as the bionic engineering (D1), biology (D2) and
the epidemiology (D3) the asymptote builds an environment of meanings referred to
tendency behaviors among functions: the temperature of the reference of a focus
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Table 15.4 Students’ answers where they recognize the accumulations in a local form

Second situation activity
1. The following graphs show the forecast of the atmosphere temperature for Friday (blue) and the
minimum temperature for the degrees-daysa consumption of the virus (red).

(a) How many degree-days will the bug consume between 0 and 8 h that day

Student Evidence
AHN

I took what was in 0, we had said 18, then 19 [. . .] then the result was 11. Then 11/2,
resulted in 5.5. To this 5.5 such it was for 1 h, I divided it between 24 and resulted
in 0.2291. Then I did the same with the others and I added all of those results and
it was 3.18.

KHN

Graphic representation of the accumulated quantities of the local form developed in
one of the activities of the DSES.

Source: Marcia-Rodríguez and Cordero (2021)
a The activity is within a context of an insect growing, degrees-days is the unit of measurement to
measure the quantity of heat consumed or accumulated.
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(Se1) (Mendoza-Higuera et al., 2018; Mendoza-Higuera, 2020), the ability of pop-
ulation support (Se2) (Soto & Vilches, 2018) and the speed of tendency among
recovery rates and infection in a pandemic (Se3) (Chávez-Martínez, 2022).

With this own mathematics knowledge epistemology at work scenario, the
socialization school situation design was built and put into practice with prospective
mathematics teachers. The students gave new meanings to the asymptote through the
value of the mathematics knowledge uses on other domains showing arguments
related to the tendency of functions behavior. When this was put into practice
11 prospective mathematics teachers participated (8 men and 3 women)7 who
were in their fourth year of career at Universidad Pedagógica Nacional Francisco
Morazán, at Nacaome campus, at Valle, Honduras.

15.5.1 Tendency Behavior of Functions: A Learner’s
Autonomous Argumentation

Euler, in his translation of Introducción al Análisis del Infinito (1748) offered a
context of asymptote as an intrinsic property of a straight line which characterizes the
behavior through the form of the infinite branch of the straight line (Domínguez,
2003, p. 50). In Domínguez’s words (Domínguez, 2003) this refers to the behavior
has form and in consequence this fact could help in our contemporary to
re-significate the asymptote straight line such as curved asymptote.

This aspect is relevant because the epistemological status from the asymptote in
the school mathematics discourse privileges the asymptote of a function such as a
straight line (Cordero & Domínguez, 2001). Our concern is to incorporate this
epistemology in the socialization school situations design but also that epistemology
of uses that people believe.

It is convenient to mention that the Socio-epistemology worries about to recover
people’s autonomous argumentations in specific situations.

This mathematics knowledge is functional since who learns to teach focus his
attention to routine problems. Some examples are the accumulation and the tendency
behavior. In terms of the tendency behavior Cordero (1998) affirms that “it is an
argument that establishes relationships between functions and it is composed by a
coordinated collection of concepts and situations of calculation where some varia-
tion worldwide are discussed” (p. 56).

The construction of this argument gives meanings to the asymptote from patterns
of graphic and analytical behavior where the subtraction and the quotient are the
criteria to allow building asymptote functions f(x) to a given function g(x). The
asymptote function is recognized as an instruction that organizes tendency

7In the examples that are exposed, to protect the identity of the participants we have decided to
name (H) to each of the prospective mathematics teachers. Moreover, a number is present to
distinguish them.
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behaviors. These elements are summarized in Table 15.5 as a transformation nucleus
situation8 that generates a wider knowledge: the asymptote.

15.5.2 Socialization School Situation Design

The design has three specific situations Se1, Se2 and Se3. These allow an alternation
of domains that generate new uses of the asymptote which are given by establish a
mutual relationship to achieve and keep a desired temperature, keep the fluctuation
of a population around the supportive capacity and determine a positive recovery fee
in a pandemic.

15.5.3 Mainstreaming Examples and Evidence
in the Prospective Mathematics Teachers

In the Se1 it is expected that the participants describe the temperature function
behavior of a focus T(t) when the time passed by knowing that it must to achieve

Table 15.5 The situation of the transformation and the asymptote

Mathematics
construction

Transformation Asymptote: uses of the asymptote

Meanings Graphic and analytical
behavior patterns

Construction patterns: subtraction and
quotient
lim
x→1 f xð Þ2 g xð Þ½ �= 0

lim
x→1

f xð Þ
g xð Þ

� �
= 1

Procedure Variation parameters Vary the asymptote function f(x) from a
given asymptote function g(x)

Instrument Instruction that orga-
nizes behavior

The subtraction and quotient are instruc-
tions that organize asymptote behavior

Argumentation/
re-signification

Tendency behavior Asymptote behavior

Source: Chávez-Martínez (2022)

8The nucleus situation creates a calculation Socio-epistemology that promote the knowledge
emergency made by math construction elements (knowledge put into practice), signification,
procedure, instrument and argument (Cordero, 2001; Cordero et al., 2019).
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and keep closer to the reference temperature Tr(t). Figure 15.7 shows the tempera-
ture T(t) of a focus and reference temperature Tr(t).

It is known that an on-off control reestablishes the temperature of a focus T(t)
comparing it with the reference temperature Tr(t), determining an error ε(t) that
controls the on and off of the focus and with this the temperature. Some of the
tasks are:

(a) Write an expression that relates T(t), Tr(t) and ε(t). Besides, it answers the
following: which should be the behavior of ε(t) to keep T(t) closer to Tr(t)?

(b) Express T(t) in terms of Tr(t) and ε(t).
In this sense in terms of the alternative (a) prospective mathematics teachers

compare T(t) and Tr(t) through the subtraction to determine the error ε(t)
modelling a construction pattern that caused patterns variation procedures and
to organize asymptote behavior. In terms of the alternative (b) of the tasks what
were given above prospective teachers present a model that will significate the
asymptote as the reproduction of the desired temperature considering that it
should be achieved and kept (see H1’s answer within Table 15.6).

To vary ε(t) it was achieved to construct asymptote functions to Tr(t),that
means to organize behavior. In order to do this, some specific conditions are
necessary. For example, in terms of the behavior ε(t), the prospective teacher H3
promoted a decreasing exponential function while the prospective teacher
described a condition to reproduce a desired temperature that means that ε(t)
should have a tendency towards 0 when the time tend to the infinite. Table 15.7
shows H3 and H4 students’ answers about the behavior of ε(t).

(c) How is the T(t) behavior when the time passes by?
Through the description of T(t) in terms of Tr(t), the future teacher H1 turns

into the tendency form to highlight the global behavior of T(t) from comparing its

Fig. 15.7 Temperature T(t) of a focus and reference temperature Tr(t). (Source: Chávez-Martínez,
2022)
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tendency with Tr(t), when time tends to the infinite. Table 15.8 shows H1 answer
about the tendency behavior function of the temperature of the focus description.

The construction pattern that signified to the asymptote in Se1 that is re-signified in
Se2 where the tendency of a population dynamics towards a population support is
reproduced. The subtraction is also the way of comparison that models the pattern
P(t) ¼ C(t) + S(t). P(t) represents the population dynamics C(t) the capacity of
population support and S(T) the super saturation. Figure 15.8 shows the capacity of
support C(t) and population P(t) relationship.

The expressions (t)� Tr(t)¼ ε(t), P(t)� C(t)¼ S(t) mean a graphic and analytical
behavior pattern where the subtraction is part of an asymptote criteria. They will be
f(x), g(x) and h(x) functions, f(x) ¼ g(x) + h(x), so h!0 when x! 1 . If
lim
x!1 f xð Þ � g xð Þð Þ ¼ 0 then g(x) is asymptote of f(x).

Table 15.6 H1 student’s
answer to the task (b)

Result Answer’s transcription

T(t) ¼ Tr(t) + ε(t)

Source: Students’ work

Table 15.7 H3 and H4 students’ answers about the behavior of ε(t)

H3 student

H4 student
Answer Answer’s transcription

Tr(t) ¼ 103

T tð Þ ¼ e�
1
t þ 103 has an exponential form

The behavior ε(t) to keep T(t) closer to Tr(t) this
can subtract to T(t) is T(t)-ε(t) ¼ Tr(t) or that
lim
t→1ε tð Þ= 0 and lim

t→1T tð Þ= lim
t→1Tr tð Þ.

Source: Students’ work

Table 15.8 H1 answer: tendency behavior function of the temperature of the focus description

Answer Answer’s transcription

The behavior of T(t) when the time passes by
becomes constant and comes closer to Tr(t).

Source: Students’ work
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The Se3 demands a way of comparison by quotient that creates a second asymp-
tote criterion: They will be f(x), g(x) and h(x) functions of x, if lim

x!1
f xð Þ
g xð Þ ¼ 1 then g(x)

is asymptote of f(x). The evidence of this mathematics knowledge that is developed
by the prospective teachers is tasks that were prosed in Se3 and the way they used
their knowledge to solve them.

(A) The graphic of three curves was presented to the prospective teachers: one for
the infection rate and two for possible recovery rates from a pandemic. Fig-
ure 15.9 shows the infection rate and possible recovery rates from a pandemic.

In the instruction of Se3 was demanded to choose between two graphics (red
or green) the recovery rate that represents the best scenario of a pandemic. The
prospective teachers’ answers show argumentations from the graphic in terms of
the speed of the graphics its closeness to zero or the comparison between its
variations. Table 15.9 shows H2, H4, and H5 students’ answers to the task (a) of
the Se3.

(B) Given the function f tð Þ ¼ e�t þ 1
tþ1 for the infection rate. Choose between the

functions k1(t) ¼ e�t o k2 tð Þ ¼ 1
tþ1, the recovery rate that represents the best

scenario of the pandemic. Determine what was asked for using the criterion
lim
t!1f tð Þ � k tð Þ.

(C) Does this criterion allow determining the recovery rate that represents the best
scenario for the pandemics? Why?

Fig. 15.8 Capacity of support C(t) and population P(t) relationship. (Source: Chávez-Martínez,
2022)
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In the task (B) previously above, the objective is that the prospective teacher
use the first criterion of asymptote in order to create a debate about the way of
the use of knowledge in the first two situations. In this sense the participants
discuss about the reach of the criterion finding that it does not facilitate to
determine the recovery rate that represents the best scenario in a pandemic.
However, it is recognized the difference in the speed of the rate increase.
Table 15.10 shows H1 student’s answer to the task (B) and (C) of the Se3.

The expression although k2(t) decreases less suggests that the speed of the
tendency re-significate the uses of the asymptote that refer to its form. In this

Rates Infection rate

Time

Recovery
rates

Fig. 15.9 Infection rate and possible recovery rates from a pandemic. (Source: Chávez-Martínez,
2022)

Table 15.9 H2, H4, and H5 students’ answers to the task (a) of the Se3

H2 student
Answer Answer’s transcription

The red since it would imply a faster
recovery.

H4 student
Answer Answer’s transcription

I would choose the green since in its graphic
it is observed that is bigger than the red
graphic which indicates the green graphic
represents a bigger number of recoveries tan
the red one.

H5 student
Answer Answer’s transcription

The green since it remains further from zero
at the beginning.

Source: Own construction from the work of the students
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sense, it is affirmed that the asymptote determine the form and the speed of
tendency of some curves (Cordero et al., 2010a). In this last task of Se3 an own
epidemiology notion is presented: the basic number of the reproduction the
same that allowed expanding the situation offering three possibilities to decide
which recovery rate is the best option. Now the task (D) is presented and the
development of two future teachers of the study group.

(D) The basic number of reproduction (R0) represents the number of people that an
infected person can infect.

R0 is obtained through the quotient:

R0 ¼ infection rate
recovery rate

lim
t!1R0 > 1 indicates that there is an increase of the number of the infected cases

(epidemic).
lim
t!1R0 � 1 indicates that there is a decrease of the number of the infected

cases (epidemic balance).

Table 15.10 H1 student’s answer to the task (B) and (C) of the Se3

Answer

Answer’s transcription

(B) This will be k1(t) ¼ e�t and k2 tð Þ ¼ 1
tþ1 and f tð Þ ¼ e�t þ 1

tþ1

For k1 tð Þ ¼ e�t ¼ 1
et

Then

lim
t!1 e�t þ 1

tþ1

� �
� e�t

h i
¼ lim

t!1e�t þ lim
t!1

1
tþ1 � lim

t!1e�t ¼ 0

For k2 tð Þ ¼ 1
tþ1

Then

lim
t!1 e�t þ 1

tþ1

� �
� 1

tþ1

h i
¼ lim

t!1e�t þ lim
t!1

1
tþ1 � lim

t!1
1

tþ1 ¼ 0

(C) No because in both cases they come closer to 0 and that does not determine which the best
option is although k2(t) decreases less.

Source: Own construction from the work of the students
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Considering what was stated before, answer the following: calculate lim
t!1R0

to determine which of the functions k1(t) ¼ e�t o k2 tð Þ ¼ 1
tþ1 represents the best

scenario of the epidemic in termos of the recovery rates

(a) What meaning can you relate to each quotient?
(b) How is the graphic behavior of f(t) related to k2(t)?

(c) Is there an asymptote relationship between f(t) and k2(t)? Explain.

Proposed tasks in the (D) section have the intention that the future mathematics
teachers establish an asymptote relationship between the graphics referring to
the tendency behavior. This is comparing the possible recovery rates with the
infection rate through the quotient and also to determine the rate that tends faster
to the infection rate. Table 15.11 shows the prospective mathematics teacher H5
answers are exposed.

Table 15.11 H5 Student’s answer to the task D (a, c and d) of Se3

Student 5

Answer Answer’s transcription

lim
t!1

e�tþ 1
tþ1

e�t ¼ 1þ et

tþ1 ¼ 1
lim
t!1

e�tþ 1
tþ1

1
tþ1

¼ 1þ tþ1
et ¼ 1

(a) It presents an asymptote behavior.
(b) Yes, since they are two very similar graphics
and one gets closer to the other one.

Source: Students’ work
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The re-signification of the asymptote uses make us to recognize not only the
form but also the speed of tendency between the graphics what gives avoided
meanings by the school mathematics discourses. Students’ community gives
these meanings when interpreting the tendencies between the recovery rates and
the infection rate. Table 15.12 shows H3 student’s answer to the task D (b) of
Se3.

15.5.4 Uses of the Asymptote Relationships: Transversality

The re-signification that was exposed within the previous situations resulted from a
debate between workings (tasks) and forms (tasks types) (Cordero et al., 2010b)
summarized in the following use: to reproduce tendency behaviors. In other words,
the tasks that promote the construction from the asymptote are closely related with
keeping the form and the speed with the tendency of a function to another one.

This is made by the comparison of the functions’ behavior in the infinite and the
determination of its tendencies through the subtraction and/ or the quotient. What
stated before is an autonomous argumentation that re-significates the usual teaching
of the asymptote since the transversality of knowledge favors the relationships
between the uses of the asymptote. Table 15.13 shows the uses of the asymptote
relationships since three specific situations.

Table 15.12 H3 student’s answer to the task D (b) of Se3

H3 student

Answer Answer’s transcription

For k2(t).
As lim

t!1R0 � 1, indicates that there is a decrease

in the number of infected cases.
Now for k1(t).

lim
n!1

e�tþ 1
tþ1

e�t

� �
¼ lim

n!1 1þ e�t

tþ1

� �
¼ 1.

There is Pandemic!
lim
t!1R0 > 1, therefore [. . .] there is an increase of

the number of the infected cases.
(a) Therefore k2(t) represents the best scenario for
the infection.
(b) Para k2(t) the quotient represents as the time
passes by; the result will keep close to 1. On the
other hand for k1(t) when the time passes by the
quotient will be increasing.

Source: Students’ work
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15.5.5 How the Asymptote Increases the Future Mathematics
Teacher Knowledge?

After applying the socialization school situation design, who learn to teacher were
asked What is the asymptote? Finding the summary in the tendency behavior of the
functions where the graphic organizes behavior that favor to anticipate variation
phenomenon in specific domains, scenarios and situations. For example, H1 affirms
the following:

It would be a function since (. . .) there exists another function that takes values in its domain,
this functions tends to the first function. We can also say that the asymptote is the tendency
that a function has to evaluate its border for extremely big values.

In this direction, H3 also says that “When there are two functions (. . .) we can say that
the asymptote defines the behavior of the other function that means delimiting
according to the asymptote function behavior”. Then, rethinking the teaching of
mathematics demands to value the mathematics knowledge from who learns to teach.

Its impact will be in the re-signification process of the mathematics knowledge
which emerge from putting this into practice in situations based on epistemologies
where the uses norm the planning, delivering and the evaluation of the teaching.
What sated before derives into that the prospective teacher builds a vision about the

Table 15.13 Uses of the asymptote relationships since three specific situations

Se1 Se2 Se3 The Asymptote

Use: To reproduce a
desired temperature.

Use: To reproduce the
tendency of a popula-
tion dynamics.

Use: To reproduce a
positive tendency in
the recovery rate of a
virus.

Use: To reproduce
tendency behaviors.

Function: To keep the
temperature of the
focus T(t), as close as
possible to the refer-
ence temperature
Tr(t).

Function: To keep the
fluctuation of the pop-
ulation around the
capacity of support.

Function: To distin-
guish the recovery
rate that tends to
faster to the
infection rate.

Function: To keep the
way and/or speed of
the tendency of a
function.

Way:
1. To compare the
temperature of the
focus with the refer-
ence temperature
through the time.
2. To determine an
error of temperature of
the focus through the
function’s subtraction.
lim
t!1 T tð Þ � Tr tð Þ½ � ¼ 0

3. To reestablish the
temperature of a focus

Way:
1. To compare the
population and the
capacity of support
through the time.
2. To determine a
supersaturation in a
population through
the subtraction of
functions.
lim
t!1 P tð Þ � C tð Þð Þ ¼ 0

3. To reestablish the
population to its
capacity of support.

Way:
1. To compare the
possible recovery
rates with the infec-
tion rate through the
quotient.
2. To determine the
rate that tends faster
to the infection rate.

lim
t!1

f tð Þ
k tð Þ

� �
¼ 1

Way:
1. To compare the
behavior between two
functions when the
independent variable
tends to the infinite.
2. To determine its
tendencies through the
subtraction and/or the
quotient.
lim
x!1 f xð Þ � g xð Þ½ � ¼ 0

lim
x!1

f xð Þ
g xð Þ

� �
¼ 1

Source: Authors own elaboration
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mathematics knowledge from the transversality of knowledge. In this sense the
category of modelling is relevant because it bases the meaning of learn to teach
epistemologically and ontologically.

15.6 Conclusions

This chapter calls the attention about the discipline identity factor, theoretical
construct that found its ontological and epistemological basis on the
re-signification of mathematical knowledge. That means, mathematical knowledge
emerges when people face the final objects and opens gaps to the permanent process.

Discipline identity causes that who learns to teach about a vision change about the
meaning of what to learn is and what to teach is finding demonstrations of this
process in factors such as the epistemological diversity and transversality of knowl-
edge. Two cases have been exposed at the last section.

The relevance of the category of modelling and the discipline identity is to be a
common thread about the prospective mathematics teacher knowledge but also in the
resistance to the mathematical discourse. This dominant Epistemology causes adhe-
sion to the school knowledge therefore to develop permanent programs that impact
the initial teacher training is something urgent.

The impact of the category of modelling and the discipline identity will be defined
when to learn to teach is not related to emulate mathematics objects but to value
people’s knowledge and promote reciprocity and horizontality about mathematics
knowledge. Here are our contribution of the education transformation.
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Chapter 16

Contemporary Learning in the Interaction
of the Human with Data, Via
Technology-Mediated Graphics: The
Discourse-Representation Dialogue
in Mathematics

Arturo Mena-Lorca, Jaime Mena-Lorca, and Astrid Morales-Soto

16.1 Introduction

We assume that education is a human right (United Nations, 1948). Furthermore, we
assume that mathematics education is also a human right (UNESCO-ICSU, 1999),
and a “fundamental prerequisite for democracy” (p. 34). Countries and economies
recognize these rights and strive to satisfy them.

Our country ratifies it (Gobierno de Chile, 2006). Nevertheless, in the region, data
show that goodwill does not suffice to achieve such an important goal. Data also
suggest that a country’s educational system may not only fail to equalize opportu-
nities for all but also tends to be regressive and to augment inequality.

16.2 A Big Challenge

Chile has had an ever-increasing performance in the measurements of the Program
for International Student Assessment, PISA, which it joined in 2003. Such results are
consistent with UNESCO’s Latin American Laboratory for Evaluation of Education
Quality, LLECE, and Trends in International Mathematics and Science Study,
TIMSS (OECD, 2017). However, that growth is slow, and, in absolute terms, the
performance is not good.

Almost half of the students are below level 2 on the test, either minimum or below
the scale. That means that an approximate ratio of 1:2 represents the children who
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can handle at most routine problems in which all the information is in sight. The
approximate ratio of Chilean children who reach the two highest levels in the test is
like the ratio of children below the scale in the countries with the best results.

If we compare the approximate ratio of students below level 2 in the test in
different groups of countries, we have that: in Latin America, it is 2:3; in OECD
countries, 1:4; in countries (of the sample) with a GDP like Chile, 1:3. There is a gap
of 2 years in mathematics schooling with the OECD average and 3 years with high-
performing countries such as Taipei (OECD, 2017). We must add significantly lower
performances of students with fewer economic resources (OECD, 2017), of women
as compared to men, and of students of technical-professional education as com-
pared to those of scientific-humanist education (MINEDUC, 2019).

Now, the World Economic Forum claims that, by 2025, due to a shift in the
division of labor between humans and machines, “85 million jobs may be displaced
by, while 97 million new roles may emerge that are more adapted to the new division
of labor between humans, machines and algorithms” (World Economic Forum,
2020, p. 5). This projection involves a severe social problem (APEC, 2020), of
which not all educators seem concerned.

16.3 A Researchers’ Community Task

Researchers involved in mathematics education in the region must take responsibil-
ity so that their tasks do not circumscribe to the advancement of the discipline. For
instance, if mathematics teachers think that teaching mathematics consists of teach-
ing mathematical procedures (in Chile, which is true for 1:3 teachers) (Ávalos,
2014), or do not tune their student assessment with the facilities provided by
computational aids, there is not much room for improvement. The situation vaguely
resembles Achilles and the tortoise, but with Achilles already ahead and accelerating
and the tortoise doing calisthenics.

Nowadays, general curriculum development tends to stress the importance of
independent thinking, collaborative work, use of technology, some integration of
scientific disciplines and mathematics, modelling to understand phenomena
(MINEDUC, 2019). No doubt, problem-solving and modelling are mathematics
activities; communicating and arguing are also, in this case, mathematics. Never-
theless, the status of representing, which, for many a reason is considered crucial for
teaching and learning mathematics, has varied in mathematics history.

Our proposal centers on mathematical modelling with permanent technological
support and direct reasoning on graphs of various kinds and involves a rather drastic
reduction of routine calculations. However, since the mathematical community took
a critical distance from arguments more geometric (especially in the nineteenth
century), we examine the issue here.
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16.4 The Various Societies

Cell phones and computers are essential when considering contemporary culture.
Some people are thinking about an ecosystem, the 5.0 or Super-Smart Society
(Council for Science, Technology and Innovation, 2018), that would be the culmi-
nation, soon, of earlier stages of human development. Society 1.0 would be Hunter-
gatherers; 2.0, the Agrarian Society; 3.0, the Industrial Society; and 4.0 would be the
current Information Society.

Naturally, educational policies must respond to this type of phenomenon. Sup-
pose we are in transit from one to another of these Societies. Limiting ourselves to
insisting on the uses of the preceding one is necessarily a setback since the stage is
moving. The dynamics of transition often repeat on a smaller temporal scale, which
is related to the evident fact that the knowledge of one generation is not enough to
solve the problems that the next generation must face. If education planning does not
consider this issue, it will hardly reach its goal, the tortoise walks, modern Achille
boarded a plane (Mena-Lorca, 2022).

Now, changing the era has a profoundly democratic quality: a technological
advance may initially produce inequality, but when the community already assim-
ilates that advance, that inequality disappears (Turchin, 2016), to give way, in
principle, to a better condition. Is it not the goal of all education to move to a better
stage than the present, personally, and collectively, and to strive tirelessly to reduce
inequality?

Anthropologist Donald states other eras or cultures of humankind (Donald, 1991)
that appear as responses to increasingly complex scenarios. The emergence of
language initiates the mythical culture; language depends on the development of
symbolic communication: What things are and what they mean can be elaborated
and outsourced.

Theoretical culture appears with writing; the necessity of recording complex facts
and phenomena (trade, astronomy) leads to creating external symbols of which
mathematicians were the first; memory externalizes. The written record improves
the ability to relate ideas and supports better analytical thinking; the development of
science inextricably links to these records; teaching emphasizes computational
skills.

The primary function of memory is no longer remembering information but
assisting in complex mental processes. What characterizes theoretical culture
(Donald, 2007) is its “massive external memory storage” (p. 218), which in turn
“becomes by far the most important factor of an individuals’ cognition” (p. 212).

Now, it is evident that, at present, the strong development of information tech-
nology and the Internet translates into modifications in the acquisition of knowledge.
The brain may freely focus on things for which it previously had less time and spend
considerably less time on routines and more on creativity (Villani et al., 2018). We
add that, with computers, processes that previously only human brains could per-
form (spell checking, arithmetic, or symbolic calculation), in turn, externalize.

16 Contemporary Learning in the Interaction of the Human with Data,. . . 349



Furthermore, the Internet works as a great calculator with countless controls
supported by various groups (scientific and others) relating to tides, earthquakes,
climate, economy, and many others. Thus, with digital technology, processes that
previously only human brains could perform externalize.

16.5 Graphic Thinking

16.5.1 Graphical Representations in Mathematics

Representations play a crucial role in learning mathematics (Duval, 2017). However,
the history of mathematics has led it to explicitly depart from graphical representa-
tions, at least in some now fundamental school and university curriculum areas.
Euclid developed a kind of geometric algebra (van der Waerden, 1961; Høyrup,
2017).

Numbers are what we can construct with straightedge and compass: “all of them”

are commensurable segments of m, n, m + n, mn, m/n units (all of them reducible to
the same denominator). Nevertheless, we can also construct

ffiffiffi

2
p

, which cannot be
written as m/n (Aristotle, 2000, 1.23.41 to 26). Thus, a segment of 2 units and an arc
whose measure is

ffiffiffi

2
p

do not intersect.

16.5.2 “Modern” Graphics

In 1739, Nicole Oresme, in his Tractatus de configurationibus qualitatum et
motuum, states a mathematical representation of movement (Clagett, 1968). It
includes uniform movement and uniformly and not uniformly accelerated move-
ment. For Oresme, every measurable thing (except numbers) is a continuous quan-
tity. He does not refer only to physical bodies’movement, but also to the intensity of
linear qualities: the intensity of the light of the sun, the whiteness of a substance, the
grace of God.

Oresme represents the “intensity” (Clagett, 1968, p. 169) of a quality by a
rectangular line segment orthogonal to a baseline where the latitude, i.e., the quantity
of any linear quality is continuously represented. Thus, this representation not only
preludes the Cartesian plane but is also a tool for modelling quite a wide spectrum of
phenomena. Then, Oresme proceeds to think of such diverse linear qualities in terms
of their corresponding geometrical representations (Suárez, 2014).

Tartaglia, in his Nuova Scientia (1537), takes a necessary step, drawing the
trajectory of a bullet as a curve, when even experienced gunners thought, according
to their reading of Aristotle, that a cannonball went up in a straight line and then fell
vertically (Santbech, 1561). Fermat (1636) and Descartes (1637) changed the sense
of graphing in much of mathematics.
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For example, an ad hoc (quadrant of a) plane allows drawing curves, condensing
loci into formulas, and expressing succinctly many geometric properties that the
Greeks studied. For example, equation x2

a2 þ y2

b2
¼ 1 has all the information needed

about an ellipse. It is also an expression of a gardener’s construction, although
decoding the formula takes some work.

Subsequent advances, particularly by Newton and Leibniz, showed how the
‘algebraic’ treatment allowed the study of a geometry that cannot be faithfully
represented due to its infinitesimal smallness.

16.5.3 Two Major Problems

When Infinitesimal Calculus appeared, making a rigorous building in the style of
Euclid was not a priority: the vast number of applications was interesting enough.
However, later, the need to lay firm foundations became apparent. Two were the
most decisive problems; one refers directly to graphic representations; the other
closely relates it.

A significant problem was the severe difficulties encountered when handling
mathematical series as if it were simply a matter of adding finitely many terms.
For example, Euler (1769) registers that s ¼ 1� 1þ 1� 1 . . . ¼ 1

2, since one would
have 1 � s ¼ s. On the other hand, it became increasingly apparent that working on
infinitesimal calculus occasionally resorted to (Euclidean) geometric arguments.

For example, Bolzano (1817), trying to complete one of Gauss’s proofs of the
Fundamental Theorem of Algebra, notices that this used the following: if a real
polynomial is negative for some value a of x, and positive for a value b, then, in some
determined value c in the interval [a, b] (or [b, a]), the corresponding curve would
intersect the axis OX, and therefore would have a root there.

This fact is today a corollary of the intermediate values theorem. However, it
requires (similarly to locating √2 among the commensurable numbers) to verify that
the intersection of the curve with the axis is possible. Mathematics needed to
understand continuity/completeness: analysis called for a deeper comprehension of
numbers.

The arithmetization of Analysis, attributed to Weierstrass, was initiated in Cauchy
(1821) and culminated in Peano (1890). It provides a numerical-only foundation for
the infinitesimal calculus, whose properties are based only on number systems’
axiomatics. It distrusted geometric arguments, and such well-founded skepticism
remained.

Additionally, around 1870 began a long-lasting debate related to other founda-
tional problems, and the need to work symbolically and, as far as possible, without
inadvertent assumptions, increased (Bochenski, 2018).

All this leaves us, then, a severe dilemma for teaching, which cannot simply
betray the desire for mathematical rigor but requires graphic representations.
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Nonetheless, the problem solved by the arithmetization of Analysis is precise and
should not be understood too generally.

Mathematicians, when working, often use pictures, the profusion or scarcity of
drawings depending on the specialty, but this will not show in mathematical papers.
Regardless, there are phenomena whose representation must be well understood. For
example, the convergence of a sequence depends on a neighborhood of infinity; what
happens before any constant on the domain of the sequence does not affect that
convergence; hence, the graph could never represent it.

Also, the graphing of a continuous curve cannot support the claim that a poly-
nomial curve does not have infinite (small) jumps, peaks, or sinuosity. For a
considerable part of mathematics, the graphical representation is not understandable
without theory’s considerations. Hence, using graphical representations for mathe-
matics teaching cannot be justified solely for pedagogical reasons since hiding what
we must see is the risk.

16.6 Representations Today

Strictly speaking, the questioning of graphing that we have been doing refers to
continuity/completeness and categories within them–differentiability. That leaves
aside, of course, the non-continuous case. There are graphical representations in
which continuity/completeness might be considered, but it does not hinder their
usefulness; for example, (topological) graphs, Leibniz-Euler-Venn diagrams. How-
ever, these diagrams seek to represent basic notions such as belonging and set
inclusion; thus, completeness, which the diagrams might suggest, does not affect
those notions.

Now, the idea of representation itself turns into mathematical objects, such as in
the representation of groups, of Lie algebras, of categories, and others: representing
objects allow us to study their properties. A somewhat different approach to imagine
how vital representation can be in mathematics is an observation made by the
authoritative Saunders Mac Lane (1971).

For example, Mac Lane (1971) states that the notation f : X ! Y for functions
quickly replaced the notation f(X) ⊂ Y, and added: “It expressed well a central
interest in topology. Thus, a notation (the arrow) led to a concept (category)” (p. 29).
Of course, an unavoidable reflection here, as a somehow related example, is the
importance of the decimal positional numbering system for the development of
mathematics.
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16.7 The Case of Differential Equations

The arguments in favor of graphical representations are not valid for the usual
topology of Euclidean spaces, questioned by the arithmetization process. We ana-
lyze this question here since mathematical modelling tends to resort to differential
equations that occupy a prominent place in the arithmetization of Analysis, both in
questioning geometric representations and difficulty presented by the convergence
of series.

As we will see, mathematicians have used representations to formulate a differ-
ential equation, solve it, and advance the theory. Accordingly, the representations are
diverse: some very precise, others rather qualitative, freehand drawn; the former seek
to understand better the results obtained, the latter develop geometric intuition, helps
to reason, stimulates discovery, and even shortens proofs.

At the end of the seventeenth century, Calculus was a way of solving geometric
problems: analytical expressions allowed establishing relationships between geo-
metric objects (Tournès, 2009). In differential equations, the main question was
solving the inverse tangent problem: constructing a curve whose tangents satisfy a
given property. Thus, the solutions obtained had to be interpreted in geometric
terms, for which simple curves were drawn and intersected.

Hence the importance of the tractrix and its generalizations, which make it
possible to draw transcendent curves. These appeared in that problem but were
outside the scope of Cartesian geometry, limited to algebraic curves (Tournès,
2009). Riccati (1752) will prove that general tractrices allow to obtain every curve
defined by a differential equation. Differential equations texts frequently used
representations (Manfredi, 1707, e. g., collects three dozen illustrations at the end).

In the middle of eighteenth century, there is a marked transition from the
geometric to the algebraic: the equation is no longer the means, but the end; the
equation is a definition of the curve, and now it is a question of studying functions,
even in the absence of geometric representation (Guicciardini, 1994).

Algebraic algorithms now serve to obtain the solutions, finite or not (series,
continued fractions). The calculation becomes very technical, for example, with
Euler. On the other hand, the study focuses on the complex domain, and the
solutions cannot be represented as real curves, and Euler, e. g., does not include
any drawing in his writings on the subject (Euler, 1769). This causes an obstacle to
visualization and intuition (Israel & Menghini, 1998).

Poincaré (1882a, b) reverts to representations from a different perspective: the
qualitative study of the global properties of integral curves. He observes that most
differential equations cannot be integrated by known functions and proposes to study
locally each function defined by a differential equation, according to tradition, and
the global aspect of the set of the integral curves. His diagrams belong in the real
domain and are freehand drawn since only the relative positions of the curves matter.
He makes sure that the points he defines (singular, limit cycles, and cycles without
contact) are represented (Tournès, 2012).

16 Contemporary Learning in the Interaction of the Human with Data,. . . 353



Poincaré (1892) does not abandon the analytical style but makes representations
that enhance the intuition of the general shape of the integral curves that must plot in
these diagrams; these allow the detection of global properties not yet proven and
guide the quantitative analysis in some relevant areas. His geometry is of a new kind,
and he names it, following Leibniz, Analysis situs. His method allows him to show
some errors made, for example, in Hill’s careful and relevant calculations, due to a
lack of geometric intuition (Tournès, 2012).

Poincaré’s works were also the basis for the local and global analysis of nonlinear
differential equations, including the stability theory for fixed points and periodic
orbits (Kohno, 1994). For his part, Aleksandr Lyapunov studies the behavior of
solutions in a neighborhood of an equilibrium position and thus extends the stability
of solutions to what today is called Lyapunov stability.

This implies that initially close points continue to be so (which is not as frequent
as one might imagine) and defines what today is called the Lyapunov exponent,
which serves to determine whether elements of the state space of a dynamical system
that are arbitrarily close remain close in the subsequent movement, and that serves to
anticipate the separation that may occur (Lyapunov, 1966).

However, Poincaré’s work did not receive immediate acceptance since it did not
depart further from traditional analytical work (Israel & Menghini, 1998). Neither
did Lyapunov’s, which was published first in Russian and then in French. However,
when these works became known and developed by the community, they were
suitable for studying Lorenz’s strange attractor, one of the first cases of fractals
known by the community.

Nowadays, it is unfeasible to imagine the study of dynamical systems and
complexity without an abundant presence of representations. In this regard, note
that the theory of fractals was already in the works of Gaston Julia (1918) and Pierre
Fatou (1919), but that it was necessary to wait years for their study to become
popular, which happened, precisely, when it was possible to represent them via
electronic resources.

Possibly a phrase by Lebesgue, who read Fatou’s thesis with great interest, is the
most emphatic way of appreciating the importance of representations in this context:
“It seems to me that Fatou supposes gladly enough that everybody knows or sees the
same thing as he does and gives perhaps fairly little explanations” (Lebesgue, 1991,
p. 138).

16.8 Graphs in the Teaching of Mathematics

Today, mathematics classrooms use algebraic and dynamic geometry software.
Nevertheless, the students’ work proceeds mainly in the way it used for decades
and recurring to software only for the mathematical calculations. This is very
regrettable and entails a loss of opportunities. For example, up to the 1980s, in a
Calculus course, it was necessary to work rigorously and laboriously to draw a

354 A. Mena-Lorca et al.



function to use it to solve a problem. Software that directly delivers the curve makes
the possibility of using it as a model more immediate.

Here we are interested in pointing out that mathematical modelling offers an
opportunity to gain experience mathematics in the same way in which, in general
terms, mathematics is elaborated (Borromeo Ferri et al., 2020). Mathematical
modelling radically changes the focus of learning, and the profuse use of computers
brings in the progressive disappearance of many outdated practices.

16.9 Our Project

16.9.1 Socioepistemology

Socioepistemological Theory of Educational Mathematics, or Socioepistemology,
aims for the student to achieve learning that is functional to him/her, that is, that
allows him/her to build his/her meanings and mobilize knowledge to face situations
and solve problems in his/her daily life or in other domains where it is required. It is
learning that is incorporated organically and that transforms the student’s reality
(Cantoral, 2014; Cordero, 2006).

That aim opposes the usual school mathematical discourse, dME, in the class-
room (Cordero, 2006). The dME is the result of an educational tradition that seeks to
ensure that students learn a subject first and then apply it in a situation that, for them,
is artificial or scarcely meaningful. Hence, TSME aims to redesign the dME through
an epistemological rupture with the usual paradigm of school mathematical knowl-
edge, promoting functional mathematical knowledge. The redesign of the DME
requires a re-signifying of knowledge, a process that seeks for the elements that
favor in the students the construction of mathematical knowledge (Cantoral, 2014;
Suárez & Cordero, 2010).

Modelling is a category of mathematical knowledge (Cordero et al., 2022;
Morales et al., 2012, 2016; Morales & Cordero, 2014), and an activity that generates
mathematics knowledge when facing a mathematical task in which the individual
puts his/her knowledge into play. Graphing is a category of modelling. It allows
redefining the teaching of mathematics and, with it, redesigning the dME (Mena-
Lorca, 2016).

16.9.2 Purpose

Our aim is that learners be part of the construction of mathematical knowledge
(Aravena & Morales, 2018). Also, we are always trying to refine our understanding
of the direction been taken by the mathematics education’s vector. Learning math-
ematical procedures is part of the experience of doing mathematics. Nevertheless,
the purpose of learning for the ordinary citizen never was, and today, less than ever,
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to learn procedures per se, but to develop tools to solve problems (and acquire the
usual competencies related to it).

We privilege mathematical modelling as a particularly suitable means to serve the
purposes of mathematics education. We think that, in a way, classroom modelling
provides an opportunity to learn mathematics as is done, that is, facing a problem,
examining the hypotheses, conjecturing, and verifying, establishing conclusions. On
the other hand, there are powerful reasons why some organizations and economies
are calling attention to the need of approaching big data in Statistics, computational
thinking, and modelling (Araya et al., 2020; González et al., 2020).

We cannot assume that learning to model with this specification is achievable
with current curriculum objectives and implementation, at least, not in our region.
Notwithstanding, we think that the shadow of a transition to Society 5.0 is an
opportunity to get rid of some computations, eventually long, complicated, and/or
outdated, and explore paths for resolution and, more generally, to carry out
creative work.

Nowadays, individuals must understand complex phenomena, which requires
mixing general or specific knowledge; Mathematics helps make connections. More-
over, we have observed how different communities, scientists, engineers, econo-
mists, and professionals in general use graphs and various apps to extract
information, make decisions, or communicate results, that is, how they use them in
their daily lives work (Mena-Lorca et al., 2021). Thus, we must re-design the DME,
and, for that, we need to re-signify mathematical knowledge.

So, we elaborated a series of measures, a strategy. We will follow Oresme’s idea:
to think about phenomena starting from their corresponding representations. For
that, we will need to get deeper into contemporary mathematical practice and add
digital technology’s considerations.

16.9.3 Modelling

Mathematical modelling study starts with simple, baseline models, some of which
are well known, each associated with a graph. However, in practice, phenomena
become more complex when connected, which usually requires assembling models.
A basic example is Newton’s laws: a slight alteration in the falling of a body may
traduce in it no longer being modellable with a parabola. The parabolic model must
couple with another that accounts for the variation.

Additionally, many situations that we need to model consist of a couple of
different interacting phenomena. For instance, the logistic population growth
model is a baseline model that can be mathematically studied and plotted for ideal
situations. Now, growth of population depends on infectious processes (Gao et al.,
1995; Mena-Lorca & Hethcote, 1992; Mena-Lorca et al., 1999). Moreover, for a
pandemic, e. g., we need to consider the interaction of the dynamics of human
populations with known local behaviors of economic growth and birth and death
rates, which, in turn, are regularly adjusted.
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The latter is related to the complexity of many phenomena that we are interested
in understanding and modelling, even in an elementary way, such as disasters of
various kinds (earthquakes, hurricanes, volcanic eruptions, avalanches, fires, Covid-
19). Approaching complexity is unavoidable, and chaotic behavior may arise even
when the basal models are relatively simple. For example, complexity occurs in the
problem of three gravitational masses attracting each other.

Also, in the interaction of three species via predation: a specific logistic equation
models each one, but the global dynamics of the behavior of the three species
together is chaotic (Ramos-Jiliberto et al., 2008). Something similar happens with
Lorenz’s physical model for climate (Lorenz, 1963), which is somehow simpler
since it considers only polynomial expressions up to degree 2.

Nota bene, our modelling category does not restrict to the usual cycle connecting
reality and mathematics. Instead, we veer attention to re-signifying of uses, centering
on the functionality of the reciprocal relation between mathematics and daily life, in
the transition from one situation S to another, S0 (Cordero, 2016; Mena-Lorca,
2016). We will give an example in the following.

16.9.4 A Strategy

To address the complex situation described so far, we developed a strategy. We
foster collaborative work, both for students and teachers, and adapt the learning
evaluation to that scenario. We resolutely prioritize developing mathematical think-
ing over retaining and performing calculation procedures whose usefulness for
tackling problems is not ensured and can be done faster and correctly by digital
technology.

We have observed that when modelling a phenomenon, going firstly to symbolic
expressions, whether known or unknown, not only does not help to understand that
phenomenon but also tends to seize the students’ thinking. Symbols may compress
much meaning, but the students hasten to manipulate it in front of a symbolic
expression, distracting themselves from the phenomenon. Thus, we use graphic
representations to avoid this issue. We encourage students to learn mainly on
representations that they can make and manipulate on their own, extract qualitative
information from them, and, whenever possible, reason directly with the graphs of
the models.

We do not focus directly on mathematical theory but keep in mind that, ulti-
mately, a graphic representation might not faithfully represent a mathematical
phenomenon: it is the mathematical considerations that support the analysis and
conclusions in the context of the model. Students begin by familiarizing themselves
with simple models, as we suggested before.

Then, we invite them to vary the model’s parameters, and later, to consider
situations that need a model to interact with another one. For instance, active noise
control, which eliminates exterior noise by using a sound created by an electronic
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circuit that superimposes and, adding to it, cancels it, helps to re-signify the addition
of sinusoidal functions.

Thus, students must first know of some ‘baseline’ models—linear, quadratic,
exponential, and others, and become familiar with them and explore their parame-
ters’ variation according to a given situation. Then, we ask them to observe and
analyze graphs usually taught in mathematics courses and realize that some are
associated with baseline models of specific disciplines and that they refer to local
behaviors only.

Later, we present situations that need modelling a phenomenon from a local view,
in variables and time. From there, the students will address problems that are
disciplinary (biological, economic, physical, and, naturally, mathematical) and/or
real-life (decision-making for investment in health, education or retirement, control
of infectious diseases).

Students explore, conjecture, argue graphically. By varying the parameters, they
develop graphic categories of functions (affine, quadratic, exponential, trigonomet-
ric, e. g., which they name at will) and associated models (linear, parabolic, periodic)
that are related to algebraic expressions they may have. They interpret trigonometric
functions in a Cartesian plane and a goniometric circle and classify them (sine–
cosine, tangent–cotangent, and secant–cosecant).

In so doing, they create additional categories of asymptoticity, periodicity,
amplitude, and the like. Superimposing graphs, they identify trigonometric identi-
ties, solve equations and inequalities, and even glimpse and later develop the Fourier
series (Mena-Lorca et al., 2021). It is particularly interesting for modelling that they
experience the variation of parameters with functions such as f(x)¼ a sin (bx + c) + d;
g(x) ¼ a exp (bx) + c (Mena-Lorca et al., 2021).

Subsequently, that way of studying turns into the analysis of ‘real’ phenomena.
Thus, the student can glimpse and examine, for example, the eventual periodicity of
a particular behavior (Mena-Lorca, 2016; Morales & Cordero, 2014; Morales et al.,
2012). In this regard, observing the instability that can occur due to slight variations
in the initial conditions, an observable phenomenon in our strategy, is very instruc-
tive to acquire a contemporary scientific perspective (Mena-Lorca et al., 2006).

16.10 Functioning-Form Dialogue, Re-signifying,
and Functionality

If we take, for example, a sinusoidal function, the variations of the parameters a, b,
c allow us to understand the behavior of the curve better but also to re-signify it
through considering its meaning in different scenarios such as musical and others.
This example shows a glimpse of a far-reaching general situation, which we refer to
in our earlier comments on differential equations: the lack of a functioning-form
dialogue (Cordero et al., 2010a) was an obstacle for some developments, such as
finding the solutions to some of those equations.
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Poincaré, by considering both the local and global aspects of a differential
equation and freehand drawing the relative positions of the curves, clearly advocated
such a dialogue, thus enhancing the intuition of the general shape of the
corresponding integral curves and detecting global properties which needed to be
proven. That dialogue guided his study and allowed him to correct mistakes due to a
lack of knowledge of the form.

Similarly, Lyapunov, extending local stability to global (Lyapunov) stability
determines whether the transformation of the state space of the corresponding
dynamical system is continuous to anticipate eventual separations. Moreover, the
fact that the work of Julia and Fatou on fractals needed half a century to be
comprehended is, clearly, another example of the absence of the functioning-form
dialogue provided by the graphs. Similarly, Lorenz’s attractor had to wait 10 years
for people to understand its form and thus comprehend its functioning.

The difference between the two last cases is that Fatou and Julia’s arguments were
purely mathematical, but Lorenz’s analysis comes from modelling.

In our project, re-signifying draws mainly from the specific situation under study.
We use diverse data and graphics from the media and some databases (https://www.
gapminder.org/tools/, https://www.worldometers.info/, and similar) that represent a
variety of models (physical, economic, climatic, and others). This allows the student
to handle the information better and recognize functional mathematics in his/her
daily life (Mena-Lorca et al., 2021).

As we said, our modelling category focuses on the re-signifying of uses, and
concentrates on the functionality of the reciprocal relation between mathematics and
daily life, in the transition from one situation S to another, S0 (Cordero, 2016; Mena-
Lorca, 2016).

Take, for example, the quadratic function. Let S be the parabolic aspect in the
reflection in a mirror, and S0 the graphic-cinematic in the falling of bodies. We do not
focus on the quadratic function as the mathematical model, there are reference
frames, and, in both cases, the domain is bounded, so what is involved is just a
section of the graphic of that function.

Instead, we concentrate first on that the epistemic bases of S have an optical
origin, and its variability refers to the position of the mirror’s derivative function,
whose variation is, in turn, constant, to get the appropriate concavity. Now, for S0,
the second derivative is constant by Newton’s law. The model refers only to first and
second derivatives, and thus, we have Taylor’s series development in a bounded
interval (Mena-Lorca et al., 2021).

16.10.1 Graphing and Technology

The Internet provides graphs that represent phenomena like those taught in school
classrooms at various levels. Nevertheless, it also provides many graphs generated
by basal models of physics, economics, biology, and science not approachable in
school education. Moreover, the Internet makes available graphs of data collected by
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sensors that function as the initial values of specific numerical methods to tackle
models used to analyze complex behavior (such as tsunamis, storm surges, or
economic issues that affect the stock market).

In such cases, it may be challenging to determine the initial conditions or the trend
of the phenomenon; the behavior may or may not be stable (something analogous to
the Lorenz model behavior may occur, although, in these cases, the phenomena are,
nowadays, better known). On the other hand, the use of technological resources
helps to specify and manage different registers and representations developed to
understand and test feasible conclusions of working groups.

Also, we developed specific apps to raise modelling categories via graphs. These
not only represent and reference specific mathematical contents and their properties
but also make it possible to reason and argue directly from graphic families with
graphic arguments (Mena-Lorca et al., 2021).

All this allows both students and mathematics teachers to talk about global and
local aspects and become more aware of the properties of the different categories of
models and graphs. For example, trending behaviors such as periodicity,
asymptoticity (Cordero et al., 2010b), and limit processes such as Taylor series
expansion in the local case, and Fourier series (Morales & Cordero, 2014).

The web offers information about specific and, thus far, local processes that help
make statements that are sufficient for decisions of some kind. However, in the long
term, the behavior may be different. A parameter-dependent dialogue of a local
situation and a global situation is required; eventually, that dialogue may involve
two curves that vary differently.

Mathematically, it is well known, for example, the behavior of the sine and
quadratic functions, which allows studying the behavior of phenomena modeled
with any of these functions, with data provided by the Internet. However, if we
consider a phenomenon consisting of two others, reach one modeled with one of
these functions, the result is not entirely known (not sinusoidal nor quadratic).

Today’s apps provide resources that enable a vision of the phenomenon’s behav-
ior for cases such as this. Thus, we must study the use of complex mathematical
knowledge, highlighting the work with complex models. More generally, if two
phenomena, modeled with known functions f and g, respectively, interact, we cannot
assume that the resulting phenomenon is easily understood. For example, in the
current global pandemic, the infection should grow exponentially, and the control
sought (via vaccination, use of a mask, isolation, and others) points to achieving a
Gaussian distribution, but that does not happen (Mena et al., 2021).

The phenomenon under study has a mathematical basis, which allows making
graphic representations; however, understanding it starts with the graphic represen-
tations. Indeed, the phenomenon studied is frequently multi-dimensional; it depends
on several variables. To understand its complexity, we vary one or more parameters
to observe the sensitivity of the phenomenon to that change. This effect can be
chaotic; Lorenz himself (1963) had a 12-variable climate model; his discovery
comes from having removed the last three decimal places from six that one of the
variables had.

360 A. Mena-Lorca et al.



We use graphic representations to analyze the effect of variation of the parame-
ters. Rotating the axes allows better appreciation of the phenomenon, the quadratic
law of the fall of a body is not apprehended in the same way in the vertical fall as in
the displacement of a projectile. On the other hand, the graph makes it possible to
section according to different hyperplanes and reconstruct the phenomenon using
level sets as in working with a scanner, that is, in the way of Oresme’s.

Mathematics has tools to integrate the information on the behavior of the phe-
nomenon thus obtained. All of this is makes up the dialogue between functioning
and form (Cordero et al., 2010a). We observe that this is how experts from various
specialties understand and handle the phenomena that interest them and thus value
mathematics. On the other hand, without digital technologies, it might be challeng-
ing to understand some phenomena (10 years after its publication, Lorenz’s seminal
work had been cited in just three meteorology papers).

The case of the pandemic represents a more general and more recurrent situation.
The general population may access the web’s data and graphs over phenomena that it
needs to understand (although it does not know the initial graphs and sources). These
phenomena may need a couple (or more) of local modelling processes, both related
to phenomena under study, but the result of the interaction is not entirely clear due to
the interaction of the models.

To deal with the complexity described, simulations and graphs associated with
them are generally required. For example, for phenomena such as species competi-
tion, either for resources or as in predator-prey phenomena (González-Olivares et al.,
2013; Ramos-Jiliberto et al., 2004, 2008), and more particular ones, such as habitat
fragmentation due to highroads (Mena-Lorca et al., 2006), or spread of infectious
diseases such as Covid-19 (Mena et al., 2021).

16.10.2 Integrating Resources

Bearing the above in mind, we have integrated tablets and smartphones for the
construction of mathematical knowledge. We operate in a freely available platform,
integrated to Moodle, which uses dynamic geometry software and a symbolic
calculation system. To these, we integrated a series of graphic apps of our creation,
manipulable via parameter variation, by using sliders (https://www.matemati.cl/
webapp/).

This integration makes it possible for us to leave graphing, arithmetic, and
algebraic’ computations (factoring, solving equations, calculating finite sums, der-
ivation, integration, and others) to the electronic resources (Mena-Lorca, 2016;
Mena-Lorca et al., 2021). When at work, the student has several windows simulta-
neously opened to support the functioning-form debate and, with it, the re-signifying
of mathematical objects (Mena-Lorca, 2016; Mena-Lorca et al., 2021).
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16.10.3 The Strategy at Work

We have employed this methodology with our students (either undergraduate or
registered in a masters’ degree in mathematics education) to analyze phenomena of a
very diverse nature: economic, geographic, distribution of goods, availability of
services, decomposition of interacting physical particles, and many others. With this,
we have brought them closer to understanding the world and valuing mathematics,
especially appreciating specific theorems, sometimes previously unknown, that
clarify their view on specific phenomena (Mena-Lorca et al., 2021).

The goal is not to learn mathematics per se but to appreciate the role of mathe-
matics in understanding the world. The view focuses on the phenomena under study
and how the communities of experts work on them. So, we start with the information
found on the web about ad hoc models, in which specialists use graphs to commu-
nicate. To understand the phenomenon and its complexity, we encourage to learn to
connect the information and data with the underlying mathematics; for that, the
graphic representation comes in handy (Mena-Lorca, 2016; Mena-Lorca et al.,
2021).

16.10.4 An Opportunity for Teachers

An appropriate platform, directly connected to the Internet, allows the student to
self-evaluate in various subjects, answering questions asked by the system; feedback
may include algebraic properties and graphical representations. In turn, the teacher
can estimate the possible responses of the student and eventual ad hoc returns.
Moreover, free interaction with the Internet, so that integrating data and information
from other disciplines is more straightforward, thus including teachers from other
places and other areas makes it easier, for example, to design STEM activities
(Mena-Lorca et al., 2021).

A realistic scenario is that teachers work together and take advantage of that space
to plan their lessons, share designed material, and develop learning sequences, all
provided with technological resources for computing and graphing. This scenario
allows for their professional development, saves them time, and makes it possible to
use, adapt and improve material produced by other users (Mena-Lorca et al., 2021).
Several in-progress modelling-related graduate theses, both master’s and doctor-
ate’s, under our guidance, use this approach.
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16.11 General Assessments

We have verified that our work focuses on the reciprocal relationship between
mathematics and everyday life and produces functional learning and a break in the
usual dME. In addition, the student values mathematics and uses graphs to connect
models, eventually interdisciplinary (Mena-Lorca et al., 2021).

By working as we describe here, the students develop functional mathematical
knowledge, specifically by arguing with the aid of graphs (Morales et al., 2012), and,
more precisely, the functioning-form dialogue. Naturally, this is important at all
levels; however, it is especially relevant in higher education, where a significant
number of students drop out of their careers due to their inability to handle the
(calculation procedures of) mathematics.

We have gained understanding from the confluence of collaborative work,
information from the web, and integrating existing resources with specially designed
apps. Thus, we can claim that every participating student has developed his/her
mathematics thinking and has a better understanding of the role of mathematics in
the world.
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Chapter 17

Modelling of Natural Phenomena
as a Source to Re-signify Mathematical
Knowledge

Miguel Solís, Francisco Cordero, Eleany Barrios-Borges,
and Adriana Atenea De la Cruz-Ramos

17.1 Introduction

Within the COVID-19 pandemic context that started in 2020, official information in
different countries was used through mathematical graphs within other ways of
communication. This type of report was spread among specialists and was given
to all the population (Gobierno de Mexico, Secretaría de Salud, 2020). Terms as
daily cases curve or accumulated cases curve and expressions as flattening of the
curve become very popular among people. However, not always they were under-
stood properly.

Without having the intention of doing a sociological analysis to answer why the
information through mathematical graphs was not given to the citizens including
some professionals where the curricular mathematics played a fundamental role in
their university training. Therefore, we focused our attention on mathematics edu-
cation in different school levels in societies as ours in Latino America.

We compared it with the school mathematics, mathematical knowledge catego-
ries that emerged in the representations, by multidisciplinary groups, of the pan-
demic behavior of the world’s cities, to know daily cases curve or accumulated cases
curve and expressions as flattening of the curve become very popular among people.
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This comparison will provide us an epistemological vision of mathematics that is
in the multidisciplinary relationships and put people’s mathematical knowledge into
practice but it is not in the school mathematics. This fact will entail to criticize the
school mathematics that insists on to establish an only mathematical epistemology
over other possibilities.

In this chapter, we show an example within the pandemic development context, a
real or natural phenomenon as in its representation which re-signify the mathemat-
ical knowledge. On the one hand, this context is an environment where the appear-
ance of the knowledge category denominated function graph tendency behavior in
the representation. On the other hand, the basis of a functional principle: the use and
its people’s mathematics re-signification.

These categories of re-signification are the support for didactic designs within the
school mathematics. Through this fact we reflect about the present mathematics
teacher status and a proposal for his training and permanent support giving reference
frames of the uses of people’s mathematical knowledge as school activities context.

17.2 Mathematics Education Problem and Latin America

Different sources offer revealing data of the National Educational System (Instituto
Nacional para la Evaluación de la Educación, 2007) that on one way make a
reference frame up of the Mexican Educational system and that can be extended to
any Latino-American educational system. For example, in some specific numbers in
all the SEN there are 32 million of students from different educational levels through
this way: within the basic level an 80%, within the medium upper level a 12% and
within the upper level a 10%. This means that from the 15 million of boys and girls
who attend primary level just 2.4 million attend university.

Moreover, it is know that from 100 boys and girls who attend primary level, five
finish a university career. From these five, one is company manager another one is a
lawyer, one is economist and a half engineer half a doctor. None of them studies
physics, mathematics or biology. Some revealing data indicates that there is a
cultural distortion in terms of the role of science among most of the population.
Society itself considers that science is far away from daily life (Cordero, 2015).

It calls the attention that at the seminar about divulgation of science and technol-
ogy that was done in 1999 (Seminario sobre divulgación de la ciencia y Tecnología,
1999) distinguished that the citizen in general, considers that what it is made in
science has nothing to do with what happens in the society but this fact in some sense
it thrives nowadays (Cordero et al., 2009).

All of this together with some political and economic aspects of the country lack
of social cohesion and social inequity. On the one hand, a notorious reduction of the
flow of student population from primary level to university and on the other hand,
the skimpy selection of scientific careers of the population that achieves to finish
their university studies in some way express a loss of knowledge value, an unequal
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education. This is the educational problem that boys and girls live in the society and
develop in their daily lives. It will be said in this way learn mathematics or not.

To compare this lack of social cohesion and this inequity it will be required
necessarily to work more and intensively in the knowledge socialization where
reciprocal dialogue environments between school knowledge and people’s reality
(Cordero, 2016a; Cordero et al., 2015). Some permanent reciprocal simultaneous
programs should be created with the development of science and education that
contribute directly to the building of a knowledge society (Cordero, 2015). Any
educational program will be articulated to this fact. The functional and what is usual
are unavoidable within the socialization studies since they express the knowledge
and the own environment of the citizen, the dialectics between the academic and the
native (from people) knowledge (Cordero, 2016a; Cordero et al., 2015).

Educational research in generic terms where the socialization plays an important
role heightens the problem: the student’s learning chapters within classrooms will
increase people’s routine at the institution and society as an educational referent and
the teacher’s function will keep the environments where reciprocal relationships
systems of the school mathematics and the learners’ reality at specific knowledge
situations.

17.3 The Forgotten Subject and the Theory

Cantoral (2013) provides basics to the Socioepistemological Theory Educational
Mathematics through formulating the research program own theory’s nature. This
one consists about the study of the social construction of the mathematical knowl-
edge and its institutional spreading. A central construct is the social practice which is
a complex system of social, didactics, epistemological and cognitive processes
which emerge to make the mathematical knowledge problematic considering the
scientific, technical and popular knowledge to summarize it within the human
knowledge.

The theoretical perspective has been made by a hundred of made researches since
more than two decades by a socioepistemological community with different gener-
ations. Cordero (2016b) considers that the social practice construct within the
evolution and development of the Socioepistemological Theory has provided a
meaning considering about the problem that there is a forgotten subject and it is
fundamental to rescue it. This thesis has different expressions: reality, what is usual,
the uses of the knowledge and in more general terms, people.

Through this thesis a Socioepistemological program called Forgotten subject and
knowledge mainstreaming is formulated (Cordero et al., 2020). The main objective
consists of revealing the uses of mathematical knowledge and its re-significations
within the people’s mathematical knowledge communities: at school, at work or the
profession and its realities. Through these two simultaneous work lines: the
re-signification of the mathematical knowledge and its educational impact. Within
the first one the categories of the mathematical knowledge that happen in the
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communities among different domains of knowledge which play an obliged role: the
school mathematics discourse, the discipline field and the community’s usual situ-
ations and within the second one the multi-factors and stages which help the quality
mathematics teaching alliance.

The main research questions of the program consider the following questioning:
Which is the epistemological status of the mathematical knowledge function with
specific situations around people’s environments? What are the extensions of
the classroom learning chapters when the forgotten subject recovers? What are the
fundamental factors that formulate the new permanent quality program for the
mathematics teacher’s function?

17.4 The Natural Phenomena Modelling

Nowadays school mathematics has lost the link with the reality. However, if we talk
about reality we will restrict it to standardize the mathematics education: all educa-
tional levels will be considered and the discipline diversity the same as work and the
city. The reality will be interpreted in what is usual within all these scenarios where
the usual uses of the mathematical knowledge are expressed: the functional. This
means that professionals, workers and citizens’ routines will be the reference frame
to make the school mathematics recovers the link with the reality (Cordero, 2016a;
Cordero et al., 2015).

The pandemic’s spreading modelling is mainly required to make decisions. We
need to estimate the quantity of infested to prepare the health system to face the
pandemics and take decisions to decrease the spreading of the same one. This type of
modelling to take decisions but in the Educational Mathematics field is retaken by
Niss (2015), who calls it prescriptive modelling what is to design, to prescribe, to
organize or structure some world aspects with the purpose to adopt measures based
on decisions from some type of mathematics considerations.

An important difference is the essential role of the sensitivity within the evalu-
ation of the models with prescriptive purposes. The sensitivity analysis can be
associated with the role that determined variable plays within the model: How
does the variation of variables affect within the model? How much does the variation
of variables within the model? Some news spread by different means of communi-
cation in different countries about the spreading of COVID-19 pandemics show
three graphs of estimated number of infected people. They refer to a positive, an
ideal and another one which is critical compared to the real possibilities of the health
system of the country.

Within these news, the phrase to flatten the curve is cause of many controversies
in terms of its interpretation, which can associate with a decrease of the quantity of
infected people daily. Which is the dynamics under the phenomenon? How is the
model made up? What are the parameters of an epidemiological model? How and
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how much do they influence? Were the questions that guided us within the study of
the epidemiological models. Figure 17.1 shows the visualization of the idea to
decrease the spreading or to flatten the curve of a pandemic.1

Vidal et al. (2020) in their search about epidemiological mathematical models
draft the mathematical modelling within the study of pandemics as a “model made
up by a set of symbols and formal mathematics links which represent an approxi-
mation to the existent real links to the study object” (p. 2). These models can be
classified into some groups, for example, determinists, stochastics, statics and
dynamics. Determinists are those who work with known conditions and data are
controlled by the factors that intervene within the study.

Stochastics are associated with the notion of probability; they have a doubtful
behavior and the expected result is not known. Statics or dynamics refer to the way
time is treated. The static models give a result for all the considered time. The
dynamics models give the temporary variable series back considered through the
time of the study.

17.4.1 SIR Model

Through time more specific models have been generated for the modelling of the
spreading of the illnesses. The Kermack and McKendrick’s (1927) Susceptible,
Infected and Recovered model (SIR) is still a valid mechanism to take decisions
about public policies. Its use is of interest since the low number of variables that

Fig. 17.1 Visualization of the idea to decrease the spreading or to flatten the curve of a pandemic.
(Source: Available in https://es.wikipedia.org/wiki/Aplanar_la_curva)

1The dark purple curve shows a pandemic that is spreading fast while the other curve shows a
slower spreading.
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describe the model. However, it allows the analysis of the pandemic’s behavior in
future states and for different values of the variables.

That means how the pandemic can behave for a long period of time in different
scenarios of spreading given by the public applied decisions and the population’s
behavior. Kermack and McKendrick (1927) were more understood about the diverse
effects which regulate the spreading of pandemics. The problem can be summarized
in the following way: one (or more) infected person in a community of sensitive
individuals to the illness. The pandemic spreads from the infected over the sensitive
ones. Figure 17.2 shows the pandemic process.

The figure shows the recent infected (vt), that means those who start the illness
moreover, the infected in each stage of the pandemic (vt, θ) and the total number of
infected people (yt). The total number of infected is the addition of the infected who
are within the different stages of the pandemic.

Kermack and McKendrick (1927) present the spreading model of the pandemic
for the case that the elimination rate (l ), the adding of the death rate and the recovery
rate, and the infection rate (κ) be constant. The probability of an infection is in
proportion not only to the number of infected but also to the number of not infected.
Through this way they made this system of differential equations to represent the
function of susceptible (x(t)), infected (y(t)) and recovered (z(t)) respectively, where
N is the total population for all time.

dx
dt

¼ �κxy

dy
dt

¼ �κxy� ly

dz
dt

¼ ly

where

x tð Þ þ y tð Þ þ z tð Þ ¼ N

Fig. 17.2 Pandemic process. (Source: Kermack & McKendrick, 1927, p. 703)
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These mathematical models interpret the pandemic behavior. The models are differ-
ent but what is similar is that the behavior in interpreted by a tendency behavior
category. That means, this category is, in one sense, a principle that thrives in the
formulation of the models: the tendency of the spreading of pandemic.

17.5 The Mathematical Knowledge Re-significations

The re-significations of the math knowledge happen within people’s life. Next, we
will present two examples in this sense, on the one hand, where the use of the
derivative in school-academic scenarios and engineer and on the other hand the
re-signification of the use of the graph within people’s daily life.

17.5.1 The Use of the Derivative by Engineer Students
and Engineering

Morales-Reyes (2020) recognizes that the uses of the derivative within the Engi-
neering are excluded from school mathematics. Therefore, it considers very impor-
tant to create a relationship where reality mathematics permeates school
mathematics. Moreover it considers both types of knowledge with the same episte-
mological value. With this purpose a school situation design with exclusion-
inclusion dialectics perspective. This type of designs base on an epistemology that
favors the uses of mathematical knowledge and in a theoretical perspective which
guide the focus of the design, counteract the exclusion phenomenon and allows the
analysis of the participants’process of re-signification.

The used epistemology comes from the consideration of a modelling category
which is an expressed practice such as the argument of a situation made up of
significations and re-significations with their respective procedures which are being
build according to the operations that participants are able to do with the conditions
they are capable to capture and transform with the concepts that have been build up
progressively. For the articulation of these elements we turn to the uses of the
derivative which emerge in a community of chemical engineers in the graph analysis
of the chemical compounds of electric transformers. In this context, some uses of the
derivative emerge which are not part of the school calculation.

The results show that the transition among the three stages that made up the
design make the participants to face the school mathematical knowledge: they
should determine tangent lines but not knowing the algebraic expression of the
function and the point of tangency and moreover they should determine graphs
behaviors and later states appealing for this the tangent lines. These are aspects that
allow to value in what is usual within the discipline of the use of mathematical
knowledge however, they do not consist at any didactic main idea not for the school
texts or school curriculum.
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17.5.2 The Use of the Graph Within People’s Usual Habits

According to Zaldívar-Rojas and Cordero (2021) explain that the mathematical
knowledge refers to two dialectic elements: the function and form, what is done
and how is done, respectively. The implemented activities since the
Socioepistemological theory make possible to identify ideal scenarios since the
analysis and the discussions about a determined group and knowledge are not
limited.

What is above make possible to implement a situation called primaveras this
situation consisted of observing with attention the movement of a mass connected to
a spring to strengthen the discussion about the conditions and elements as the
tendencies involved in this situation giving preference to the visualization and
work made with specific devices. The design of this situation retakes functional
elements of the mathematical knowledge and makes notions of Cartesian graphs.
The situation bases on the modelling of movement situations using graphs known as
the modelling-graphing category which emphasizes the use of graphs and the
tendency behavior.

The situations studied by Zaldívar-Rojas and Cordero (2021), allow to recover
expressions associated to the explanation of movements identifies by the students:
for example, to analyze the graph function retaking daily life situations particularly
those involved in the uses of springs. The use of movement sensors that together
with the analysis and arguments of the explanations achieve to identify maintenance
movements as well as movement crisis and functions that means, to mention
maintenance refers to these representations and movements relationships.

They represent stability, later while the maintenance crisis, the movements are
done in a specific way for the students to identify the tendency behavior related to
this identification in their daily life therefore they will be able to explain according to
the context that surround them.

At this moment, it is needed that the students identify and explains movements
that they can make and represent themselves that means; where the graphic start and
which the point of reference is and moreover to find and explain the conditions that
originate a tendency or variation model since the student can modify those
conditions.

To implement situations as what described above make possible that the students
when identifying daily life movements with the graphs generated by the movement
of themselves retake in their arguments concepts as functions, point of reference and
most of the time without being perceived or what has been explained previously.
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17.5.3 Epilogue: A Vision of the School Calculation Based
on the Re-significations of the Use of Mathematical
Knowledge

The calculation status within the didactics is when we talk about of taking knowl-
edge to teaching within the educational system. It is not about the knowledge itself
but knowledge with didactic intention. The objective is to puzzle out an epistemol-
ogy. School calculation means that the calculation (Calculus) with an intentional
epistemology of being taught and learned since it brings different component among
both types of knowledge.

For example, calculation as knowledge has concepts and explicit definitions
while calculation as intentional knowledge has implicit categories. About the first
one the main components are the mathematical objects such as the function, the
border, the derivative and the integral while for the second one is the situational
meanings of those mathematical objects such as the prediction, graphing and
analyticity (Cordero, 1998, 2001, 2003).

Not appreciating the difference among these types of knowledge can bring
ingenuous ideas about the mathematics teaching-learning problem. For instance,
writing mathematical texts with a didactics without students (Cantoral & Farfán,
2003). Calculation status within educational institutions that still thrives consists of
that the Calculus in general terms is known as (with the help of textbooks) the
branch of mathematics that deals with differentiation and integration. In this sense
the programs of such content have to do with the concepts of function, border,
derivative, integral and convergence.

In this sense the programs of such content have to do with the concepts of
function, border, derivative, integral and convergence. They go together with the
specific operations: the quotient limit lim

x!x0

f xð Þ�f x0ð Þ
x�x0

¼ f 0 x0ð Þ2 and the addition limit

“ lim
n!1

P
n

i¼0
f xið ÞΔxi , if n ! 1, Δxi ! 0”,3 all of this together to the function as the

main concept of the Calculation subject. However, in terms of this perspective it is
difficult to achieve the main objective of the Calculus: the analyticity of the
functions f xþ hð Þ ¼ f xð Þ þ f 0 xð Þhþ f 00 xð Þ h22! þ . . . :4 That objective concerns the
calculation epistemology not the school curriculum unfortunately.

2Derivative definition: The function f defined in an open interval I that contains the a point. Then f is

differentiable in a if lim
h!0

f aþhð Þ�f að Þ
h exists. In this case, the limit appears by f 0(a) and it is called the

derivative of f in a.
3Integral definition: A function f enclosed in [a, b] is integrable in [a, b] if sup{L( f,P) : P partition
of [a, b]} ¼ inf {U( f,P) : P partition of [a, b]}. In this case the common number it is called the

integral of f in [a, b] and appears by y
R b
a f .

4Analyticity definition: A function f is the adding of its Taylor series in an open interval that contains
a is analytical in the point a.
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It is probable that the Taylor series is more advanced mathematics that to be
taught and learned requires of the derivation and in one sense of the integration.
What meaning does this fact about the topic we are in charge of? This status consists
of focusing the attention on the concepts. In this regard, the analyticity is just one
more concept (in this case advanced) and does not reflect that the analyticity can be
the main idea of the calculation or in other words the calculation knowledge.

The focus on the concepts creates unavoidable sequences dimming the situational
meanings where it is debatable the function and form of those concepts (Domínguez,
2003). To make this clearer we will analyze what happens with the concept of the
derivative. In general terms and paraphrasing what the calculation texts say (Stewart,
1994) we find that the differential calculation is considered as the study that deals
with the question about how a quantity varies in relationship with another one, in this
sense it is established that the main concept of the differential calculation is the
derivative (Rosado, 2004).

Later, they advise that after learning to calculate derivatives they will be used to
solve problems where rates of change intervene. Therefore, they define the slope of
the tangent line to a curve y ¼ f(x) in the point x ¼ a, as m ¼ lim h!0

f aþhð Þ�f að Þ
h . Or

define the speed of an object with a position function s ¼ f(t) in the instant t ¼ a, as
v að Þ ¼ lim h!0

f aþhð Þ�f að Þ
h .

Moreover, they advise that the borders of the previous function emerge when a
rate of change is calculated within science or engineering such as the speed of a
chemical reaction or a marginal cost in economy. Such borders imply the definition
of the derivative of a function:

f 0 að Þ ¼ lim h!0
f aþ hð Þ � f að Þ

h

Such focus has been studied by diverse ways but agreeing on there are qualitative
leaps between the two conceptualization levels which play a role within the
sequence: the level process and the object level (Dubinsky & Harel, 1992). Students’
difficulties appear when they have to work not with particular functions but with
defined functions by any property. It is because of that; the analysis becomes more
difficult since it is needed to consider the functions as objects that can be included in
more complex processes such as the function types. The cognitive and epistemolog-
ical dominant focuses are not enough nowadays. It is necessary to integrate approx-
imations to the didactic field that allow us to take into account the role played by the
coercion and institutional and cultural aspects within the teaching-learning problems
(Artigue, 1998).

However, the focus of the attention is so strong within the border that avoids other
situational aspects. It privileges referring procedures to the quotient m ¼ y�y0

x�x0
,

through approximation arguments expressed in the quotient border
lim
x!x0

f xð Þ�f x0ð Þ
x�x0

¼ f 0 x0ð Þ. In this situation it is required a given function f and a specific
point (a, f(a)) to calculate the derivative or to find the tangent line to the graph of the
function at this point.
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There are not other procedures as the comparison between two states of a quantity
through a subtraction f(x + h) � f(x) with prediction arguments expressed by the
analyticity f xþ hð Þ ¼ f xð Þ þ f 0 xð Þhþ f 00 xð Þ h22! þ . . .

For example, to predict the position of a mobile when its initial position is known
and its variation at the same time. In this situation the function f is not known just the
quantity states f(x) y f(x + h) and the variations f 0(x), f

00
(x), . . . or are not perceived as

the parameters of the f given function variation (Af(Bx + C) + D) with arguments of
tendency behaviors expressed within the function graph Af.

For example, to determine the value of the quotient A since the function f behaves
as the line Y¼ ax + f(x0) close to the point (x0, f(x0)). In this situation the function f is
transformed into the function Af(Bx + C) + D, where the parameters A, B, C, and
D are the suitable for the function y tends to behave as the specific line Y.

As a summary to find the tangent line, to predict a mobile position and to expand
a graph are situations where it is debatable the function and form of the concept of
the derivative. The quotient border re-significates5 through the prediction, graphing
and analyticity: the derivative and the tangent line debate against the comparison of
the two states and the simultaneous succession of the derivative (González, 1999;
Cantoral, 2001; Cantoral et al., 2000; Buendía, 2004; Buendía & Cordero, 2005;
Cordero, 2001), at the same time debate against the parameter’s variation and the
tendency behavior (Domínguez, 2003; Campos, 2003; Rosado, 2004; Hernández,
2004). However, this fact does not make any didactic content not for the calculation
texts or the school curriculum.

17.6 An Example: The School Pandemic Curve Modelling

The example that is presented emerges at the beginning without a school intention
just with the objective to explain people the technical information about the pan-
demic, how the human intervention can manipulate the behavior of this one,
represented here by the pandemic curve, which is how people’s actions can flatten
the curve. When in this basic explanatory model it is perceived the emergency of
aspects such as graph behaviors, simulation, prediction, accumulation among others
it is decided to create a school activity based on this basic model with the objective
that these present aspects contribute to the construction of school mathematical
knowledge (Solís, 2020).

Through the design of this activity, it starts simulating the phenomenon using
concrete materials, file cards in this case (these will represent individuals), from this
hypothetical data the time is distributed in the file cards and its components are
studied from simulations some concepts are studied such as growing, growing speed,

5Resignification is not establishing a meaning within a context for later to look for another one and
in this way to re-significate what it already has a meaning. But it is the construction of the
knowledge within the humans.
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maximum values. Then school mathematics conventional representations are made
and finally it is discussed about the accumulation and accumulated value. The
complete activity (Solis & De la Cruz, 2022) can be read from the book: La
Matemática en la Ingeniería. Modelación y Transversalidad de Saberes. Situaciones
de Aprendizaje (Cordero, Solis & Opazo, 2022), which is presented and described in
the next section.

17.6.1 Moments

In this section of the chapter, the moments of the activity are presented and
described.

17.6.1.1 Moment 1: Pandemic Modelling That Is Developed Without
Contention and Mitigation Actions Which Can Intervene

Time Cases Distribution (Curve Form)

Here the natural evolution of the pandemic is presented. That is there are not
intentional measures to contain or mitigate it. The way of modelling the Pandemic
is distributing over a base line (the time), concrete objects, which represent infected
individuals (in this case file cards). The distribution is made from a table of given
values.

The practice of counting will allow answering the questions about the peak of the
phenomenon such as the number of accumulated cases. The distribution of the file
cards shows a characteristic form (Fig. 17.3), in this moment we have not talked
about graphs or functions or to establish a conventional system of Cartesian axis in
this case time v/s infected.

Towards a Conventional Graphic Representation

To go deeper towards the graphic representation of the phenomenon it is asked to
draw the outline of the distributed file cards and some questions are asked about the
number of cases in a specific day. When asking to enumerate the files (number of
cases) and the columns (pandemic days) a conventional Cartesian frame of reference
is being constructed. Figure 17.4 shows the distribution of case outline.

Variation, Accumulation, and Accumulated Value

In this moment, the behavior of the phenomenon is analyzed from the configuration
of the file cards distribution. There is not an explicit reference of the graph of a
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function, we are in what Cordero and Flores (2007) have called the moment of the
symptom of the use of a graph of a function.

Within a value table (Table 17.1) it is asked about the daily difference in the
number of cases and in the other one (Table 17.2) about the accumulated cases every

Fig. 17.3 Cases
distribution during the
pandemic. (Source: Solís &
De la Cruz, 2022)

Fig. 17.4 Distribution of
cases outline. (Source: Solís
& De la Cruz, 2022)
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day. The intention is to analyze the evolution within the Pandemic time paying
special attention to the daily speed about Pandemic growing.

A questionnaire about the given and found values is focusing the attention on the
increase or decrease of the cases, same as the peak of the curve giving answers as
what can be formal as the derivative and the slope of the function. At the same time,
questions which ask about the moments of more or less speed of growing can have
link with the mathematical objects as second derivative, concavity and inflection
point.

Table 17.1 Daily difference
cases

Day New cases Previous day difference

1 1 1

2 2 1

3 4 2

4 7

5 10

6 12

7 13

8 13

9 12

10 10

11 7

12 4

13 2

14 1

Source: Solís and De la Cruz (2022)

Table 17.2 Accumulated
cases per day

Day New cases Accumulated cases per day

1 1 1

2 2 3

3 4 7

4 7

5 10

6 12

7 13

8 13

9 12

10 10

11 7

12 4

13 2

14 1

Source: Solís and De la Cruz (2022)
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17.6.1.2 Moment 2: Pandemic Modelling When Some Sanitary
Measures Have Been Taken: The Flattening of the Curve

In this moment is a logic that when reducing the movement and encourages the
social distance of the community, the speed of the spreading of the Pandemic will be
reduced. Some values of the table that propose values according to this situation
have been taken. The new situation shows a similar number of total infected at the
end of the Pandemic with the situation of the moment 1. What did it change then?
The new distribution shows a peak less high but the duration of the Pandemic is
longer now.

New Distribution of Cases Through Time: Flattening the Curve

About the reference of the previous situation that means, using the same files and
columns (that will become the time v/s cases in a Cartesian system) we will make the
proposed distribution in a given values table. Figure 17.5 shows the distribution and
outline at the scenario.

Graphic Comparison of the Two Phenomena

The same as the situation of the scenario 1, the outline of the new distribution is
drawn and they are compared. It is now necessary to add more columns what
indicates that the pandemic has been longer however, the peak is less high. The
number of the total cases represented by the file cards is similar in both scenarios.

Fig. 17.5 Distribution and outline at the scenario 2. (Source: Solís & De la Cruz, 2022)

17 Modelling of Natural Phenomena as a Source to Re-signify. . . 381



The similarities between the two outlines are analyzed that means in both cases
the pandemic starts with a growing that is increasing until to achieve the maximum
speed represented in the growing by the point of inflection since the speed of
growing decreases gradually until becoming zero being represented by the peak of
the curve after it is presented a decrease of the cases with a similar behavior to the
growing.

With value tables it is asked about the quantitative aspects of the graph of daily
cases and accumulated cases. At every moment, the analysis is between the differ-
ences and similarities of the graphs. A graphic representation about how the accu-
mulated cases behave has not been worked in this moment.

17.6.1.3 Moment 3: A Flattened Curve

The two graphs represent the way of distributing time (horizontal line) a determined
number of file cards (cases). In this context it is about the same population within
two different situations (scenarios). In this activity it is shown that flattening the
curve does not mean to achieve a smaller peak or less total infected numbers but to
distribute all the possible cases looking a smaller peak but within a longer period.

What maintains (almost) the total number of cases (area under the curve) allows
perceiving the distribution 1 has been accommodated in the distribution 2 by the
effect to flatten it. The activity favors the idea of the curve 1 has been transformed in
the 2 by the effect of flattening it.

17.6.1.4 Moment 4: What Is the Best Scenario?

In this moment, the context of the activity is introduced the hospital care of the
infected and the daily capacity that the community has to take care of them. Some
simple hypotheses that we used were:

(a) The required hospitalization time to achieve the objective is equal in all the cases
that means 24 h (1 day).

(b) The infections of the all-new cases occur always at midnight (12:00 a.m.).
(c) Due to the community size, we can suppose that because of practical objectives

the patient is diagnosed and hospitalized at midnight as well.
(d) All the patients are discharged by a doctor at midnight.
(e) When a patient leaves the hospital the possibility to accept another one arises.

With this information the students will decide about which the best scenario is.

17.6.1.5 Moment 5: Building the Graphs

Until here concrete material has been used to model the pandemic situation in our
hypothetical community. From the file cards the cases were accumulated in columns
that presented the days of these cases happened and we obtained a representation of
what happened.
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In this moment it is pretended to do the abstraction of what happened previously
and their conventional mathematics and science representations, that means, the
Cartesian plane are used. Since the instructions are between files and columns to
Cartesian coordinates.

17.6.1.6 Moment 6: Accumulated Cases Graph: A Growing
and Bounded Function

With this new frame of reference, the construction of the accumulated cases graph
calculated in the moment 1 and 2 starts. Both graphs are analyzed and compared
(daily cases v/s accumulated cases) within the concepts of primitive functions and
derivative function are implicit.

Here it is evident the growing and bounded characteristic of this new curse and it
is shown that to flatten the curve has not to do with the maximum height of the same
but its slope.

17.6.1.7 Moment 7: Analyzing Curves of a Real Pandemic

When finishing the activity, the student can draft an accumulated cases curve from a
daily cases one with a real phenomenon data measured until the design of the
activity. (Dirección General de Epidemiología, 2021).

Intentions and Learning

This activity was designed to be used by different educational level students; the
teacher who uses it can do the pertinent changes. This can be used even in not
educational situations or in other subjects apart from mathematics. Although the
activity does not explicit some concepts the teacher can refer to the activity to
introduce formal mathematical objects within the class when the subject requires it.

Some mathematical concepts involved in the activity are among others: function
(to distribute the cases through days), increasing and decreasing function, maximum,
tangent line, first derivative (growing speed), second derivative, (curve inflection),
area under the curve (accumulated value), Cartesian plane (explicit), point in the
plane and a graph of a function and the graphic integration (in the sense of the
calculus) this present in the last activity.

In this example we show the tendency behavior category in particular presenting
the function (pandemic curve) as an instruction (mitigation, contention and even
restriction measures) which organizes behaviors (flattening of the curve).
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17.7 Mathematics Teacher’s Role: A Hope

Mathematics teachers as homo academicus (in the sense of Bourdieu (2008)) live
within a discipline and social disadvantage. It is not clear who trains them. The
training of the mathematics teachers is debatable when it is needed to precise their
discipline. There are not agreements, it is debatable if the discipline is the pedagogy
or mathematics or even both. This increases in countries as ours where there are
mathematics teacher with no teaching training.

With not clear definition a mathematics teacher should be subject of the school
mathematical discourse as a consequence the teacher adheres to the school mathe-
matical discourse, is not able to (or does not want) to touch it. But disrupting is
condition sine qua non to achieve a profound teacher training transformation
(Cordero et al., 2015). A hope is to achieve that the mathematics teacher builds a
discipline identity whose source of sense can be the social construction of the
mathematical knowledge. Permanent programs with these slogans will be the resis-
tance instruments of the school mathematical discourse where the teacher role will
keep the autonomy.

Then the mathematics teachers’ role should keep the environments where recip-
rocal relationships of the school mathematical system and the reality of the learner in
specific knowledge situations. However, to keep the maintenance should disrupt the
school mathematical knowledge (Cantoral et al., 2015); the uses of people’s knowl-
edge (Cordero, 2016a; Opazo-Arellano, 2020; Medina, 2019; Mendoza-Higuera,
2020; Pérez-Oxté, 2021) and in more general terms: mathematics as a human
activity, mathematics from contexts and mathematics for all the students
(Freudenthal, 1968).

17.8 Research Programs and Recovery Instruments

We do not pretend to propose a new methodology or a new reform of the mathe-
matics teacher training our main objective, on the one hand, is to present a frame of
reference from the learner’s native knowledge, the person who uses his mathemat-
ical knowledge in his profession and the person who uses his mathematical knowl-
edge to live in the society and on the other hand, to present the processes where the
horizontal and reciprocal dialogue among the frame of reference, the educational
models and the teacher training will happen.

It is important to mention that this frame of reference and this horizontal dialogue
do not exist within the educational system so we have to build them. To achieve this
task it is required to disrupt the dominant epistemology school mathematics, to be
opened to the epistemological pluralism that obliges the inclusion of the forgotten
subject. This individual uses his mathematical knowledge in diverse functions and
forms that school does not imagine nowadays. That is why we say that the construc-
tion will derive in a school where the mathematical knowledge will dialogue
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between the academic discovery and the people’s native knowledge revelation
horizontally. In this last one, in generic terms, is the subject who learns, works and
lives in the city but is out of the school.

Maybe because of that, the childhood and youth mathematical knowledge social
representations where women and men admit mathematics is far from reality. The
relationships among mathematics as a discipline, school mathematics and daily life
mathematics are not clear in the educational programs of societies. The loss of the
mathematical knowledge and the educational inequality (just some can learn math-
ematics) keeps growing. With no doubt we have to do something. Our research
program, which we call it from now one Socioepistemological Program, consists of
three axes: education, research and intervention.

A knowledge society consists of valuing the knowledge and makes it equal,
which means, the most important element to achieve that is in our case the mathe-
matical knowledge function. We are required to study and know it and make the
frame of reference explicit. Through this we recover the forgotten subject and in
consequence school mathematics will be increased. Therefore, we should focus our
attention to the knowledge processes of socialization and reformulate the mathemat-
ics education programs according to the societies.

Research should be made by constructs whose nature bases the knowledge role.
We need to create a source of sense to achieve that. Studies will need to be oriented
towards the knowledge mainstreaming to know the re-signification of the mathe-
matics at school, work and city. Every time to progress in the creation of some
characteristics of the mathematical function that means to identify the mathematical
knowledge in specific situations categories but in generic terms within people’s daily
lives.

17.9 Conclusions

As a summary to formulate an epistemological pluralism made up by the function,
re-signification and mathematical knowledge mainstreaming. Mathematics will have
new expressions according to people.

The intervention within the problem will consist of creating recovery instruments
that set in a horizontal dialogue the school mathematics and the mathematics in daily
life. A natural discipline debate will consist in the articulation of both math. This last
one will create a construct of ethnographic nature due to we require it of the function
math own by people in their specific field.

Because of the importance of this fact, we will call it the native’s math revel
methodologically. We will analyze “the mathematics” of the school, work and city.
The specification in this field will be defines by the permanent uses of people and the
maintenance of the field. Fields will be distinguished and usual will be defined with
adjectives. These will be the recovery instruments.
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The articulation between the institutional and functional will consist of breaking
the focus on the object. The new arguments will be about the re-significations of the
uses of mathematical knowledge which make the classic orientations of resolutions
tense against an innovative orientation, the modelling. The first one worries about
the knowledge processes while the second one focuses on knowledge function.

As a summary, the center of the problem about mathematics education consists of
the forgotten subject thesis therefore we will recover it. We cannot see the mathe-
matics teacher as someone who does not have knowledge, who needs more training
to cover his empty fields. It is necessary to understand it as a mathematical knowl-
edge community that constructs its own mathematical categories of its environment
normed by the reciprocal relationships between the school and reality knowledge.

The educational mathematics discipline with its research programs will play a
fundamental role to achieve that. This should guide the necessary articulations in
three big actions: alliance, immersion and reciprocity with the mathematics teacher
communities in all the educational levels (Fig. 17.6).

These actions should be around the social and economic moments that the world
lives and agree with the communities (where all research groups and teachers
participate) strategies that set in the same academic and social status the training
of researchers in our discipline field and make the teaching professional with all the
educational levels. The actions and strategies will be transformed into concrete ideas

Fig. 17.6 Simultaneous reciprocal permanent program: the mathematics teacher’s role. (Source:
Cordero, 2016b, p. 29)
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quality Alliance with the educational system teachers, which will help to precise if
the new development program is suitable and the mathematics educational impact.
Figure 17.6 shows simultaneous reciprocal permanent program: the mathematics
teacher’s role.

We will design Alliance portfolios with each educational levels (Primary, Sec-
ondary and Higher Education), institutions and organisms, with research programs
with different levels of impact together its multifactorial permanent programs (iden-
tity, inclusion, socialization and emancipation) focused on the reciprocal dialogue
construct between the classroom and reality in levels: disadvantage, hope, possible
and autonomy. Mathematical knowledge mainstreaming will be the new epistemo-
logical status.

These programs are systems that favor the mathematical knowledge function
where some diversity, mainstreaming and the other consideration happen. These will
be own programs of the knowledge communities where reciprocities between
mathematics and reality happen, private knowledge categories of these communities
that later become discipline jargons and places that express social, political and
cultural movements. The immersion with the mathematical knowledge communities
will thrive to the alliance of the quality of mathematics teaching in balance with the
development of the education mathematics discipline.
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Part V
Conclusion

The re-signification of mathematical knowledge as generated by a selection of
mathematical modelling programs in diverse regions in Latin America form both
an epistemological and ontological basis to the design and development of teaching
and learning of mathematics at all educational levels: basic, intermediate, and higher
education. This development is cyclical, continuous, and reflective. The program
designs consist of locating moments of transversality of knowledge that favor and
value the emergence and re-signification of a diversity of mathematical knowledge.
In this context, learning consists of a creation of pedagogical relations between
diverse mathematical knowledge, teaching, and didactics that are accompanied by
the social function of educators, which consists of maintaining the environments of
mathematical knowledge through permanent support and partnership programs.
Therefore, the discourse of school mathematics is disrupted and transformed in
order to create its redesign in which this fundamental epistemological and ontolog-
ical basis develops a relation of horizontality-autonomy-cultural knowledge, which
is fostered by the principles of mathematical modelling programs. This approach
entails an educational change of mathematics, at all educational levels, which
considers the development of knowledge of the others by including their diverse
reasoned and symmetrical decision-making process through modelling as found in
diverse regions of Latin America.



Chapter 18

The Mathematical Teaching and Learning
Process Through Mathematical Modelling:
Educational Change in Latin America

Milton Rosa, Daniel Clark Orey, Francisco Cordero, and Pablo Carranza

18.1 Introduction

Historical evolution enables the development of alternative mathematical knowledge
systems that provide explanations of daily problems, and situations, and which lead
towards the elaboration of models as representations of our own reality
(D’Ambrosio, 2015). After centuries of cultural exchange between Europe, North
and South America a unique, sophisticated, and rigorous mathematics and science is
emerging in our region.

The modelling process that was introduced a century ago was adapted by and
helps members of distinct communities to draw information about their own prob-
lems, realities and needs, through the elaboration of representations, which generate
mathematical knowledge and incorporates our unique creativity and invention. It is
proposed, with empirical evidence, that a category of mathematical modelling has
developed here in Latin America that assesses both the horizontal and reciprocal
relations between mathematics (school/non-school contexts) and the real-world.

These relations, on the one hand, provide scholars with powerful opportunities
that make use of epistemological and ontological changes, where mathematical
knowledge of the others is recognized, equally, on a horizontal plane. On the

M. Rosa (*) · D. C. Orey
Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
e-mail: milton.rosa@ufop.edu.br; oreydc@ufop.edu.br

F. Cordero
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de
México, Mexico
e-mail: fcordero@cinvestav.mx

P. Carranza
Universidad Nacional de Río Negro, General Roca, Río Negro, Argentina
e-mail: pcarranza@unrn.edu.ar

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Rosa et al. (eds.), Mathematical Modelling Programs in Latin America,
https://doi.org/10.1007/978-3-031-04271-3_18

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04271-3_18&domain=pdf
mailto:milton.rosa@ufop.edu.br
mailto:oreydc@ufop.edu.br
mailto:fcordero@cinvestav.mx
mailto:pcarranza@unrn.edu.ar
https://doi.org/10.1007/978-3-031-04271-3_18#DOI


other hand, they encourage both mathematics teachers and students to understand
and investigate how they can build their own mathematical categories that are found
in environments governed by the many reciprocal relationships between academic
knowledge and functional knowledge, which can be considered as the common
ground for the community of knowledge creators.

18.2 Contextualizing Three Latin American Modelling
Programs

The dimensions of mathematical modelling described in the chapters of this book
show us the relations that can develop a strong frame of reference that can guide the
educational change in Latin America. This change agent makes use of autonomous
actions compared to the emulations of typical mathematical procedures in our
classrooms.

Therefore, this approach recognizes that there may be many more, but begins
with three Latin American modelling programs: ethnomodelling, transversality of
knowledge, and reasoned decision-making. Each one, with its respective theoretical
and methodological foundations uses ethnomathematics and ethnomodelling, inter-
disciplinarity, and socioepistemology seek to give and attribute meaning to learning
and the daily activities performed by members of distinct cultural groups.

The late Professor Ubiratan D’Ambrosio graciously accepted an invitation to
write the Foreword to open this book. We believe that this foreword is one of the
very last texts he wrote before his passing on May 12, 2021, and we are greatly
honored and thank the D’Ambrosio family for this honor in including his thoughts
here. D’Ambrosio talks here that this book brings a collection of chapters dealing
with mathematical modelling programs in Latin America.

D’Ambrosio also emphasized the importance of a collaborative context for social
construction of mathematical knowledge for educational change in society that seeks
social justice and promotes peace. He also states that this book shows how historical
evolution enables the development of alternative mathematical knowledge systems
that provide explanations of daily problems, and situations, and which can lead to the
elaboration of models as representations of facts present in our own reality.

We would like to take this opportunity to pay tribute to Ubiratan D’Ambrosio for
his contributions to mathematics, mathematics education, and other knowledge
areas. Internationally, D’Ambrosio contributed to the development of mathematics
education, through his international leadership and worldwide dissemination of
ideas related to sociocultural issues, peace, and social justice.

D0Ambrosio’s development of ethnomathematics and mathematical modelling,
and their application in mathematics education were powerful and profound. It is
important to state here that D’Ambrosio is one of the most important and influential
mathematicians of the twentieth and twenty-first centuries, mainly in relation to his
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mentorship, support, and encouragement through investigations related to social,
political, and cultural aspects of mathematics in the entire world.

For example, D’Ambrosio’s approach sought to promote interactions among all
social classes and his preoccupation with people’s welfare, the preservation of
natural and cultural resources can be synthesized as peace in its several dimensions,
such as inner peace, social peace, environmental peace, and military peace, which is
defined as total peace.

In this regard, D’Ambrosio shared with us his vision as to how fundamental it
should be that the teaching and learning of mathematics values the greater sociocul-
tural context of mathematical knowledge and that we must encourage and connect
this aspect to diverse learning processes for goals important not just to formal or
academic curricula so that we are able to achieve social justice and peace in this time
of crisis.

Continuing with the contextualization of three Latin America mathematical
modelling programs, the introduction as the first chapter of the first section of this
book, entitled: Modelling in the Life of People: An Alternative Program for Teach-
ing and Learning of Mathematics, written by Francisco Cordero, Milton Rosa,
Daniel Orey, and Pablo Carranza, proposes a category of mathematical modelling
that assesses the horizontal and reciprocal relationships between mathematics and
the real world. These relations provide epistemological and ontological changes in
which mathematical knowledge of the others is recognized on a horizontal stage.

On the other hand, these changes oblige mathematics teachers and students to
understand as mathematical knowledge producers that through modelling processes
that enable us to build our own mathematical categories of their own contexts, which
are governed by the reciprocal relations between academic knowledge and func-
tional knowledge that is part of their daily life. The dimensions of these relations
guide educational change that encourages forms of mathematical teaching in auton-
omous actions compared to the emulations of typical mathematical procedures in the
classroom.

Chapters of this book show the creation of diverse ways of dealing with the social
construction of mathematical knowledge in Latin America. Thus, the authors of the
18 chapters in this book, who represent the diversity of Latin America, are from nine
countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, Hondu-
ras, and Mexico. It is important to highlight that authors from Cuba and Honduras
are also developing their investigations at Cinvestav in Mexico.

They were invited to share their ideas, perspectives, and discuss investigations
that represent a rich sample of three Latin American mathematical modelling pro-
grams: ethnomodelling, transversality of knowledge, and reasoned decision-making
processes. Based on empirical evidence, each one of these dimensions are also
theoretically based on ethnomathematics, socioepistemology, and the attribution of
meaning to the learning process.
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18.2.1 Ethnomathematics and Ethnomodelling

The six chapters of the second section of this book come from common conceptions
of ethnomathematics and ethnomodelling and its empirical investigations, theoreti-
cal and methodological approaches, and research questions.

The second chapter entitled: Conceptualizing Positive Deviance in
Ethnomodelling Research: Creatively Insubordinating and Responsably Subverting
Mathematics Education, written by Milton Rosa and Daniel Clark Orey, discussed
important dilemmas in mathematics education and how they form a certain bias in
relation to the acknowledgment of the importance of local mathematical knowledge
orientation in many research paradigms. Thus, a search for innovative pedagogical
actions such as ethnomodelling can be useful for recording historical forms of
mathematical ideas, procedures, and practices developed in diverse cultural contexts.

Yet, it is important to emphasize how basic assumptions found in ethnomodelling
do not present an attempt to replace school and/or academic mathematics. At the
same time, it is necessary to acknowledge the existence of important contributions
found in local mathematical knowledge in the development of mathematics through
history for its inclusion in the school mathematics curriculum.

In this context, a certain insubordination triggered by investigations conducted in
ethnomodelling is creative and often evokes disturbance that causes a sense of
responsible subversion in the revision of rules and regulations in the context of
mathematics curriculum.

This approach enables educators to use acts of positive deviance to develop
pedagogical actions. A sense of positive deviance involves an intentional act of
rule breaking in order to serve the greater good of students. This process increases
the potential for continual growth in the debate about the nature of mathematics we
teach as it relates to local needs and the cultural aspects of where to who we serve as
educators. It proposes a dialogue between the local and global approaches to the
construction of mathematical knowledge through unique dialogical approaches
using ethnomodelling.

The third chapter entitled: Ethnomodelling as an Alternative to Basic Education:
Perceptions of Members of a Research Project, written by Zulma Elizabete de
Freitas Madruga, presents the perceptions of members of a ethnomodelling research
group at the Universidade Federal do Recôncavo Baiano, in the state of Bahia,
Brazil. A group composed of schoolteachers, undergraduate students, graduate
students, and mathematics professors participated in the project. Here, the primary
goal is to demonstrate what participants in the project found after the conclusion of
the first stage of the project.

This stage consists of theoretical studies on ethnomodelling, which members in
the group see as a methodological alternative to mathematics teaching in basic
education. Interviews were conducted with all 15 members of the project. These
interviews were analyzed by means of discursive textual analysis. The results
indicate that the project contribution to the initial or continuous education for both
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teachers and researchers is related to the discussion and exploration this innovative
alternative approach to mathematics education.

The fourth chapter entitled: Ethnomodelling Aspects of Positionality Between
Local and Global Knowledge Through Glocalization: A Case of a Farmer Vendor,
written by Diego Pereira de Oliveira Cortes and Daniel Clark Orey, is both theoret-
ically and empirically based on a master’s degree research entitled: “Re-signifying
the concepts of function: A mixed-methods study to understand the contributions of
the dialogic approach of ethnomodelling” conducted by Cortes (2017).

Through ethnomodelling, the authors seek to discuss the connection between
local, global, and glocal mathematical knowledge as defined by Rosa and Orey
(2017). In particular, the authors discuss aspects of a neighborhood farmer’s market
(local) and the positionality of a farmer vendor as a result of his dialogical contact
with aspects of global knowledge studied in academic environments.

In addition, the authors also seek to understand concepts of both familiarity and
strangeness that occurred during interactions between the farmer vendor and stu-
dents in this study, which enabled the development of cultural dynamism that
promoted the diffusion of glocalized knowledge during the development of
ethnomodelling (Orey & Rosa, 2021).

The fifth chapter entitled: Ethnomodelling as a Pedagogical Action in Diverse
Contexts by Using a Dialogical Knowledge, written by Ana Paula Santos de Sousa
Mesquita, Érika Dagnoni Ruggiero Dutra, Jéssica Rodrigues, and Milton Rosa,
shows that the use of ethnomodelling in classrooms promotes the development of
strategies that encourages learners to apply mathematical ideas and procedures that
help them to elaborate models based on the activities present in their daily lives.

In this chapter, the authors present the results of three studies developed by
applying an ethnomodelling perspective that encourages further discussion of dia-
logical approaches used in different contexts such as coffee culture, peripheral
communities, and math trails. The main objective of the first study, which was
conducted in the context of coffee culture, was to develop a pedagogical action
that help members of distinct cultural groups (coffee and school cultures) to value
emic and etic mathematical knowledge in a dialogical manner.

The second study was developed in a peripheral community and aimed to carry-
out a sociocritical analysis of the ethnomodelling process as a pedagogical action in
the development of mathematical content of the students. The third study sought to
analyze and discuss the sociocultural perspective of ethnomodelling that aimed to
assisted participants in reading their own reality by directing them to a better
understanding of their surroundings through their participation in Math Trails.
From the results of these studies, the authors inferred that ethnomodelling provides
us with the development of a critical and reflective analysis of the students own
communities in a multicultural and interdisciplinary fashion in a holistic and
dialogical way.

The sixth chapter entitled: Ethnomodelling: Weaving Networks Between Aca-
demic Mathematical Knowledge and Cultural Knowledge in the Southeastern
Region of Tocantins, written by Alcione Marques Fernandes, Cristiane Castro
Pimentel, and Nayane Rodrigues de Deus, presents the research and guidelines
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developed with the studies and research group in Mathematics and Mathematics
Teaching linked to the Professional Masters’ Degree Program in the Mathematics
Network—PROFMAT, at the Universidade Federal do Tocantins, Arraias Campus,
in the research line: Ethnomathematics and training of teachers.

Ethnomodelling is defined as the study of ideas, notions, and procedures used by
members of distinct cultural groups used to solve daily problems (Rosa & Orey,
2019), and both facilitated and enabled discussion about the elaboration of stone
walls in the cemetery in Arraias as well as the research on the making of handmade
jewelry in gold and silver filigree in Natividade, and an ongoing research garden
project in a quilombola community.

From the discussions conducted in these investigations, it is possible to highlight
the new and growing webs that are slowly being woven among academic and
cultural knowledge forms in the southeastern region of Tocantins through
ethnomodelling.

In the seventh chapter: Mathematical Analysis of the Ceramic Designs of the
Pre-Columbian Cultures of Ecuador Through Ethnomodelling with a Sociocultural
Approach, written by Juan Ramón Cadena and Ronald Patricio Chasiloa
Llumiquinga, shows that ethnomodelling is considered as a conjunction between
mathematical modelling and ethnomathematics in its social, cultural, and historical
dimension.

Latin America is a promising region where educators can experiment and develop
alternative ways in which we can insert methodologies optimizing the learning of
mathematics in contexts of culture, history, and diversity and through other ways of
understanding this science, especially in the Andean region, where similar realities
and scenarios are shared.

This chapter aims to make a theoretical and didactic proposal, based on archae-
ological data on the designs of ceramics of pre-Columbian cultures of Ecuador,
considering the geographical situation close to parallel zero, the astronomical,
agricultural, and multi-climatic peculiarities, this study intends to rediscover them
under an approach does not exempt from the myths and other forms of sensitivity
about the understanding of the world that defines the Andean and Latin American
ethnos.

Ethnomodelling will allow making a methodological proposal to understand
universal notions such as symmetry and translation present in ceramics. The result
of the empirical analysis allows obtaining an etic interpretation (global) of the emic
context (local) of these designs. This dialogical systematization helps to treat this
knowledge under a sociocultural perspective, with pedagogical elements of didactic
concretion that can be applied in the classroom by the teachers.

In addition, through the transdisciplinary interaction between mathematics, arche-
ology, anthropology, and history; significant learning will be accomplished in order
to contribute to the achievement of regional identity.
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18.2.2 Interdisciplinary Ecosystems

The four chapters of the third section of this book focus on interdisciplinary
ecosystems, empirical investigations, theoretical and methodological approaches,
and related research questions.

The eighth chapter entitled: Analyzing the Availability of Renewable Energy
Resources in a Project in a Real-World Context: A Framework for Making Sense
of Learning, written by Pablo Carranza and Fabio Miguel presented a proposal
developed to facilitate the attribution of meaning to learning: it is the calculation,
construction and installation of Savonius windmills. This project may be considered
as a solution to the problem of access to water for rural residents with limited
economic resources in the Argentinean Patagonia.

This project is a case where mathematics and other disciplines must interact to
analyze renewable energy resources and produce a viable solution to the real
problems of rural people. This is an example of how the three dimensions or
characteristics: temporality, transcendence and functionality of learning can be
applied in research in order to facilitate the attribution of meaning. In the case of
mathematics, modelling represents an indispensable space for analysis and construc-
tion of arguments for the actions to be undertaken.

The ninth chapter entitled: Descriptive and Prescriptive Modelling in a Math
Class Project: Disciplinary Concepts Participating in the Construction of Argu-
ments for Decision Making, written by Pablo Carranza and Jaime Moreno, analyzes
the dynamics of modelling as space for the analysis and construction of arguments in
order to have foundations for the important actions to be taken within the framework
of a project consisting of calculating, building and installing Savonius windmills.

It is important to state here that these windmills are not imaginary or model nor
are they scale models. They can be considered true windmills that work in safe
conditions for both students and rural residents.

The rationality of this study does not come from a demand by teachers because it
represents a genuine and authentic situation as it comes from the real-world context
in which the project is developed. Thus, this chapter analyzes two critical situations:
one is related to the fastening system that keeps the mill in its vertical position,
allowing it to withstand strong winds of the Argentinean Patagonia while the other
deals with the hoisting mechanism of the mill at the time of its installation.

Hence, models that arise in this context are primarily descriptive because they
facilitate an understanding of the phenomena and then become prescriptive, because
they allow for the construction of reasoning in order to function with solid founda-
tions. This article also highlights how the context determines the use of technological
tools and how they favor the approach of different concepts, even if it is the same
problem. For example, the case of the guy wires was analyzed by using both
Geogebra and Spreadsheet tools.

The tenth chapter entitled: Designing and Building a Mobile Support for Solar
Panels: A Project for 12-Year-Old Students That Requires Concepts, Among Others,
of Mathematics, written by Pablo Carranza and Ailén Morales, develops a fieldwork
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study with university students and the research team, which was conducted with
12–15 years-old students in a secondary school.

Three dimensions were applied in this study: temporality, transcendence, and
functionality of learning, whose characteristics were crossed with the school’s
curriculum and its possible availability in educational environments. This led to
proposing a project in which students had to build a mobile support for a photovol-
taic panel in order to provide electricity to a water pump.

This project highlights the importance of considering the integration of disci-
plines when dealing with real-world situations since it raises questions about the
relevance of promoting learning in sealed disciplinary compartments, as traditionally
occurs in educational systems, at least in Argentina. Thus, this project can be
considered as an example of the interaction between disciplines if researchers want
to maintain an argumentative coherence in the development of their projects. They
questioned then the traditional monodisciplinary didactic transposition.

The eleventh chapter entitled: Analogical Modelling and Analytical Modelling:
Different Approaches to the Same Context?, written by Pablo Carranza, Mónica
Navarro, and Mariana Letourneau, brings together a set of mathematical modelling
projects developed in real-world environments with the objective of proposing a new
categorization related to mathematical modelling based on the objects retained in
these contexts.

When analyzing the set of modelling processes conducted in these projects, the
authors observed that some of them retained relatively observable elements of their
context while others were developed from more abstract relationships. The former
were called analogical modelling due to their close relationship with objects of
reality.

The latter is called analytical modelling due to the higher level of abstraction
students developed in these processes. In addition, a review of the development of
the modelling projects enabled the identification of a sequence that was character-
ized by the initial analyzes of the proposed problem through the application of an
analogical modelling and then continuing with the use of analytical modelling.

The reasoning produced in an analogical modelling exhausted the possibilities of
development, while at the same time, the space where they emerged enabled these
processes to move to another type of modelling in order to continue its development.
It is important to state here that analytical modelling is more abstract and dynamic,
which enriches the analyses of the proposed object of study.

Yet, analogical modelling projects can reach their potentialities, and are funda-
mental for the development of modelling processes when students build strong
arguments in order to understand the abstract relationships necessary for the under-
standing of the analytical modelling process that are developed later in these
projects.
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18.2.3 Mathematics and People

The six chapters of the fourth section of this book deal with interactions between of
mathematics and people and empirical investigations, theoretical and methodolog-
ical approaches, and research questions.

The twelfth chapter entitled: A Category of Modelling: The Uses of Mathematical
Knowledge in Different Scenarios and the Learning of Mathematics, written by
Francisco Cordero, E. Johanna Mendoza-Higuera, Irene Carolina Pérez-Oxté, Jaime
Mena-Lorca, and Jaime Huincahue, discussed that there is a functionality of math-
ematical knowledge that is demanded by other domains of knowledge, such as:
school/academic, work/profession, and daily life.

The knowledge of any one person is put to use in these scenarios and many times
simultaneously. This means that the use of this knowledge is re-signified with
characteristics specific to each scenario, and the re-signification emerges because
these uses are in a horizontal and reciprocal relationship with each other. However,
these resignifications, in general, are not present in school mathematics.

The authors propose a research program to build a frame of reference to legitimize
the mathematics in use that takes place in the different scenarios and in the
transversality between them. These two aspects define a category of mathematical
modelling, which on the one hand, formulates a theoretical variety and, on the other,
it will involve a program to permanently change and transform school mathematical
knowledge.

Due to the nature of this research, the authors decided to study mathematics in its
social construction, through the development of Socioepistemological Theory of
Educational Mathematics, which takes as its epistemological and ontological basis
human wisdom as a synthesis of wise, technical, and popular knowledge.

On this basis, the authors present powerful empirical evidence on the role of the
modelling category. On the one hand, they discuss the resignification of stability, in a
control system, through a modelling category, the reproduction of behaviors in a
community of bionic engineers.

And, on the other hand, the re-signification of asymptotics and optimization, in a
graphical model of chemical elements, through modelling categories prediction,
trend behavior and selection to establish the life of a transformer, in a community
of chemical engineers. Using an ethnographic and case study methods, immersions
were made in these communities to reveal the emergence of modelling categories.

The results show that the aforementioned modelling categories bring into play the
use of mathematical knowledge with the realities of the learners. It also offers an
environment of meanings to the mathematical objects of school mathematics, as in
the case of functions of real variable and linear differential equations are re-signified
as instructions that organize and reproduce behaviors. This category is transversal to
the different scenarios and could be transversal to the different educational levels
(elementary, middle, and high school). In the light of the results, the authors reflect
on the need to understand the mathematics teachers as a generator of their own
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modelling categories and thus pronounce the autonomy of mathematical knowledge
as a source of learning.

The thirteenth chapter entitled: Modelling and Anticipation of Graphical Behav-
iors in Industrial Chemical Engineering: The Role of Transversality of Knowledge
in Learning Mathematics, written by Irene Pérez-Oxté and Francisco Cordero, pre-
sents a peculiar study of the modelling category in the daily professional work of a
community of industrial chemical engineers. The peculiarity consisted in
constructing a method to be developed from the category of modelling in the
profession to the category of modelling in the schools.

The research method is empirical. An immersion was made in a community of
industrial chemical engineers who diagnose electrical transformers. With the
socioepistemological theory, the authors give evidence of the emergence of the
modelling category anticipation of graphic behaviors through the periodization of
segmented times. Then, school activities were designed to make this category
transversal in engineering students.

The methodological instruments were carried out by using documental analysis
technique in order to analyze semi-structured interviews and a focus group. The
activities were focused on confronting the modelling category with the usual school
mathematics, in order to bring about the valorization of the uses of mathematical
knowledge, usually overlooked in school mathematics. The authors highlighted the
activities: use of statistical control, use of the relationship graph-failure, and use of
the graphical model of diagnosis.

These activities were based on three moments of construction of the modelling
category anticipation of graphical behavior: prediction of graphical behaviors for
diagnosis, trend behaviors for stable behaviors, and selection of ideal behaviors. One
aspect that stands out in the results is the confrontation between the uses of
anticipation and school mathematics: linear models of approximation with irregu-
lar/regular behaviors, definition of the limit of a function with behaviors with a
tendency in a period, and second derivative criterion with ideal behaviors and their
reproduction.

The fourteenth chapter entitled: Category of Modelling and Reproduction of
Behaviours in Other Disciplines: The Teaching of Mathematics and Engineering,
written by E. Johanna Mendoza-Higuera, Falconery Giacoleti-Castillo, José Luis
Morales-Reyes, and Francisco Cordero. The authors outlined how to build a hori-
zontal and reciprocal relationship between school mathematics and engineering.

With the Socioepistemological Theory of Educational Mathematics, they pro-
posed a reference framework that values the functionality of mathematics that
engineering demands. On the one hand, they evidenced the emergence of behavior
modelling categories in engineering knowledge domains, in specific situations, and
on the other hand, they discussed the educational impact of this category on the
mathematical training of engineers.

More specifically, the re-signification of linear differential equations forms a
trend in models that reproduces behaviors and forms the derivative as a model that
means the tangent line as an element that models a trend behavior that predicts a
future state is evidenced. As a result of the investigation, the authors concluded that
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the category of behavior reproduction emerges in situations of electronic engineering
and chemical engineering, describing a transversality of uses that re-signify the
knowledge of the Laplace Transform and the derivative, respectively.

Thus, they concluded that the modelling category is a didactic action that makes
visible the transversality of uses of mathematical knowledge and the re-definition of
mathematical knowledge. However, the category of modelling does not appear in the
usual school mathematics for the training of engineers.

The fifteenth chapter entitled: The Disciplinary Identity in Initial Mathematics
Teacher Training and People’s Category of Modelling: A Valorization of the
Knowledge of the Learner, written by Claudio Opazo-Arellano, Sindi Marcía-
Rodríguez, Henry Chávez-Martínez, Eleany Barrios-Borges and Francisco Cordero,
shows how the problematization of mathematical knowledge, with the category of
modelling, causes the emergence of autonomous arguments, in contrast to the
emulation of procedures that were previously taught.

The authors justify this fact through the use of disciplinary identity factor, a
theoretical construct that found its ontological and epistemological foundation in the
re-signification of mathematical knowledge. That identity provokes in the one who
learns to teach a change of vision about the meaning of what is to learn and what is to
teach. It opens its spectrum of school mathematics to epistemological plurality and
the transversality of knowledge, of mathematics.

The educational impacts of this category of modelling and disciplinary identity is
defined when learning to teach is not associated with emulating procedures of
mathematical objects, but with valuing the knowledge of people and promoting
the reciprocity and horizontality of mathematical knowledge. The authors show
evidence of this through, on the one hand, the re-signification of the accumulation
of quantities that change over time to confront the area representation of the integral
of a function.

On the other hand, the transversality of the uses of the asymptote in different
situations, such as: reproducing a desired temperature, reproducing the trend of a
population dynamics, and reproducing a favorable trend in the recovery rate of a
virus. These transversalities of the asymptote confront the privileged representation
of the symptom as a straight line, in school mathematics.

The sixteenth chapter entitled: Contemporary Learning in the Interaction of the
Human with Data, Via Technology-Mediated Graphics: The Discourse-
Representation Dialogue in Mathematics, written by Arturo Mena-Lorca, Jaime
Mena-Lorca, and Astrid Morales-Soto, presents a reflection on the contemporary
processes of learning mathematics.

The authors justify the thesis that human beings process information in a dialogue
of the discursive and graphic forms in which it is presented. Contemporaneity
consists in managing technology to obtain adequate representations of the data and
for the symbolic processing of the relationships at stake; in turn, to some extent, this
shifts attention away from computational routines and allows focus on contemporary
learning requirements: modelling, decision making, computational thinking.

The authors explore correspondences of relationships in the ways of processing
information, in history and how the ways of processing information have been
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redefined with the management of technology. In this sense, mathematical modelling
with permanent technological support and direct reasoning on various types of
graphs implies a fairly drastic reduction in routine calculations.

The authors also consider previous research to argue that students value mathe-
matics and use graphics to connect models, eventually interdisciplinary. In addition,
they develop functional mathematical knowledge, specifically arguing with the help
of graphs. Naturally, this is important at all school levels; however, it is especially
relevant in higher education, where a significant number of students abandon their
careers due to their inability to handle the (calculation) procedures of mathematics.

In the seventeenth chapter: Modelling of Natural Phenomena as a Source to
Re-signify Mathematical Knowledge, written by Miguel Solís, Francisco Cordero,
Eleany Barrios-Borges, and Adriana Atenea de la Cruz-Ramos, shows that in the
context of the development of the pandemic, Covid 19, which began in 2020, a real
or natural phenomenon, in its modelling mathematical knowledge is re-signified.

On the one hand, this context is found in environments where the emergence of
the category of knowledge referred to as trend behavior of the graph of functions in
modelling was shown. And, on the other, the basis of a functional principle: the use
and re-signification of the mathematics of people. These re-signification categories
are the foundation for didactic designs in school mathematics.

With this fact, we reflect on the current status of the mathematics teacher and a
proposal for their training and permanent accompaniment, providing reference
frameworks for the uses of people’s mathematical knowledge as a context for school
activities. The authors provided an example, which questions how the actions of the
population can flatten the epidemic curve.

The questioning is a reality, its modelling is a horizontal and reciprocal relation-
ship between mathematics and that reality. This modelling corresponded to the
category of trend behavior, with which the function is re-signified as an instruction
that organizes behaviors: epidemic curve, mitigation measures, containment, restric-
tion and flattening of the curve.

The authors also reflect, as a prospective, on the systems that favors the func-
tionality of mathematical knowledge, where pluralities, transversalities, and the
consideration of the other occur. They consider that the systems should be typical
of the knowledge communities, where reciprocities between mathematics and real-
ities occur; categories of intimate knowledge of those communities that later become
disciplinary jargons; and localities that express social, political, and cultural
movements.

The fifth section of this book presents a summary of findings, conclusions and
reflections of the work presented in this collection. This chapter entitled: The
Mathematical Teaching and Learning Process Through Mathematical Modelling:
Educational Change in Latin America, written by Francisco Cordero, Milton Rosa,
Daniel Orey, and Pablo Carranza, discusses the re-signification of mathematical
knowledge as generated by a selection of mathematical modelling programs in
diverse regions in Latin America form both an epistemological and ontological
basis to the design and development of teaching and learning of mathematics at all
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educational levels: basic, intermediate, and higher education. This development is
cyclical, continuous, and reflective.

The designs consist of locating moments of transversality of knowledge to favor
and value the emergence and re-signification of a diversity of mathematical knowl-
edge. Learning consists of the creation of new relations between this diverse
mathematical knowledge, teaching and didactics accompanied by the social function
of educators, which consists of maintaining the environments of mathematical
knowledge through permanent support and partnership programs.

Thus, the discourse of school mathematics is disrupted and transformed, to create
its redesign whose fundamental epistemological and ontological basis will forms the
relationship of horizontality-autonomy-cultural knowledge, fostered by the princi-
ples of mathematical modelling programs. This entails the educational change of
mathematics, at all educational levels, permanently considering the knowledge of the
others, and include the reasoned decision, and symmetry and the others as found in
diverse parts of Latin America.

18.3 Final Considerations

Undoubtedly, the three mathematical modelling programs presented here provide
educational opportunities for reflection, changes and gains, each with its levels of
specificity and loyal to its principles. However, in the exercise of putting them
together, organized by axes has come to define a corpus of mathematical knowledge
that envisions educational changes in Latin America.

On the one hand, epistemological and ontological changes, where mathematical
knowledge of the others is recognized, on a horizontal plane. New empirical
relationships between mathematical knowledge and reality occur. Re-signification
of mathematical knowledge needs to be dimensioned and valued in the classrooms.

Inclusion of these environments can play a fundamental role, since it includes the
mathematical knowledge that emerges in the larger community and the student body
and the teaching profession itself. This corpus of knowledge enables mathematics
teachers and researchers in Latin America to understand its development and at the
same time, as a community, to comprehend mathematical knowledge built in
accordance with our own mathematical categories in our own contexts, and which
is governed by the reciprocal relations between school knowledge and our own
diverse contexts and realities.

This framework guides necessary articulations in autonomous actions in mathe-
matics teaching, hence the importance of generating research on the role of the
teachers will lead to the permanence of the environment of reciprocal relationships
that happen in mathematical functionality, and the educational changes of mathe-
matics. The spectrum of the corpus is great, yet it is necessary to take advantage of it.

When facing new situations or problems, members of distinct cultural groups
come to, indeed, construct their own understanding of these phenomena by applying
solutions they developed through history. In the next step, they may use the same
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procedures to solve similar phenomena previously faced in their own daily lives and
contexts by organizing them into methods (D’Ambrosio, 2017).

In this regard, the chapters that compose this book show the necessity to continue
the debate of issues regarding mathematical modelling and its diverse conceptions in
Latin America. The discussions surrounding these issues show that powerful and
valuable research and experience as illustrated here, the importance of the field of
mathematical modelling in Latin America, and the possibilities for continued and
diverse conceptions emerging here, offers as an instrument towards the improvement
of mathematics education that helps to clarify the nature of mathematical knowledge
and offers possibilities for educators and learners everywhere.

Finally, taken together, the valuable experience and the accompanying investi-
gations featured in this book provide examples of excellence, as well as new
trajectories for further research and education. As well, they offer a glimpse of
future direction in the field of mathematical modelling, especially in relation to its
role in advancing creative and innovative interrelations between academic science
and other worldviews and paradigms.

In closing, this book discussed the contributions of a wide variety of investiga-
tions conducted from the perspective of mathematical modelling by researching
three Latin American modelling programs with their respective theoretical and
methodological foundations such as ethnomodelling, interdisciplinarity, and
socioepistemology, which demonstrate the vibrance of innovative and creative
development of mathematical modelling in this part of the world.

As many researchers in a large variety of research and educational fields in Latin
America assert that, there is, despite our many inequities, frustrations, and difficul-
ties found here, relevant investigations in diverse scientific areas are happening as
well. We are proud of our colleagues and their work as shared in this book, and we
are also pleased to offer powerful examples of the excellent scientific-mathematics
work being undertaken towards the improvement of teaching, learning, and inves-
tigating in Latin America.
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