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Abstract. This work presents an application of machine learning meth-
ods in the area of environmental epidemiology. We have used lifestyle and
exposure data from 769 mother-child pairs from Slovenia and Croatia to
predict the neurodevelopment of the children, expressed through five
Bayley-III test scores. We have applied single- and multi-target (semi-
)supervised predictive methods to build models capable of predicting the
Bayley-III scores. Additionally, we have used feature ranking methods
to estimate the importance of individual lifestyle and mercury exposure
attributes on the Bayley-III test scores. The learned models offer use-
ful insights into the effect of prenatal mercury exposure on the neural
development of children.

Keywords: Machine learning · Multi-target regression ·
Environmental epidemiology · Feature ranking

1 Introduction

Mercury (Hg) is known to have adverse impacts on human health [5]. The general
population is mainly exposed to mercury in two ways: (1) through the diet
- mostly by fish consumption (methyl Hg) and (2) through dental amalgam
fillings (Hgo vapour). Prenatal or early postnatal exposure to methyl Hg can
cause neurodevelopmental disorders in children. A recent study [11] investigates
the association between prenatal exposure to mercury and neurodevelopment
of children, taking into account gene data (apolipoprotein E-Apoe). For their
purpose they have surveyed mother-child pairs from the central region in Slovenia
and from Rijeka, a city on the Croatian coast in the northern Adriatic, and have
collected data on their lifestyle and Hg exposure. The neurodevelopment of some
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children at 18 months of age has been assessed with the Bayley Scales of Infant
and Toddler Development, Third Edition (Bayley-III) Test [2]. This test helps
to identify children with delay in development and assesses their development in
different domains.

This study focuses on the data set provided by the PHIME study [11]. Our
goal is to train machine learning models that will be able to predict the Bayley-
III scores from the lifestyle and exposure data.

2 Data

The PHIME project [11], is part of a larger longitudinal birth cohort study set in
the Mediterranean area. The project was designed to investigate the association
between prenatal mercury exposure from fish consumption during pregnancy
and neuropsychological development of children as well as to investigate the co-
exposure to other potentially neurotoxic elements and their role in biological
response of the children exposed to Hg in the prenatal period.

The PHIME project started with the recruitment of women in their last
trimester of pregnancy or at child birth. The collected data consists of 540
mother-child pairs from Slovenia, and 229 from Croatia. At birth, cord blood
and maternal scalp hair were sampled for determination of trace elements con-
centrations. Mothers filled out a brief inclusion questionnaire, including general
information about health, dietary habits and socio-economic status. Six to eight
weeks later, breast milk was collected by mothers. Mothers were also required
to fill out a detailed questionnaire regarding their health, life-style and dietary
habits, socio-economic status, residential and occupational history. The children
were followed up at 18 months of age for assessment of their neuropsychologi-
cal performance using Bayley Scales of Infant and Toddler Development, Third
Edition Test (Bayley, 2006), administering cognitive, language and motor (fine
and gross) scores:

1. Cognition composite score (CCS)
2. Language composite score (LCS)
3. Motor composite score (MCS)
4. Fine Motor scaled score (FMSS)
5. Gross Motor scaled score (GMSS)

At the time of testing, another (supplementary) questionnaire was filled
out by the mothers, including the type of feeding from birth onwards, and
behavioural features. Table 1, taken from the workbook on Bayley-III scores,
summarizes the information about their values.

The data set is rather incomplete as there are a lot of missing data. For exam-
ple, the blood and urine features are available only for the Croatian population,
which makes up for less than 30% of our data set. For 331 mother-child pairs
there are no Bayley-III scores available. In total, the data set consists of 769
mother-child pairs which are described with 82 descriptive attributes (lifestyle
and exposure data). Our goal is to predict the values of 5 target attributes
(Bayley scores).



Modeling the Association Between Prenatal Hg Exposure 87

Table 1. Descriptive classification of the Bayley target scores

Composite score or equivalent Class

130 and above Very superior

120–129 Superior

110–119 High average

90–109 Average

80–89 Low average

70–79 Borderline

69 and below Extremely low

3 Machine Learning Methods

The availability, dimensionality and type of the target variables that we are
trying to predict (Bayley-III scores) determine the machine learning task. Given
that there are multiple numerical (integer) target variables, and the fact that
not all instances (mother-child pairs) have known values for them, the task at
hand is semi-supervised multi-target regression (MTR).

Generally, MTR problems can be approached in two ways: locally or globally.
When a local approach is used, one predictive model is learned for each target
attribute. Alternatively, when using a global approach to MTR, a single model is
learned that is able to predict values for all targets simultaneously. The difference
between the two approaches is in the way how the target space is interpreted by
the algorithm. When using the local approach, no potential relations between the
target attributes can be exploited as the algorithm only focuses on one target
attribute. With global approaches, the potential relations between the target
attributes are taken into account and can, in some cases, lead to better predictive
performance. In cases, when interpretable model types are used, such as decision
trees and decision rules, the global approach yields a single interpretable model,
as opposed to several interpretable models resulting from the local approach to
MTR. It can be challenging for the domain experts to combine local models into
an overall interpretation. In this work, we apply both local and global approaches
and compare their predictive performance.

Simple models (models with low complexity in terms of how they interpret
the input space) often exhibit low predictive power. It is a standard practice to
combine many such models into ensembles, which is a known way of improv-
ing the predictive performance. An ensemble model combines predictions of the
individual models within the ensemble to produce the final prediction. Such
ensemble models are also often used for feature ranking.

A feature ranking is a list of all descriptive attributes (inputs), ordered
according to their ranking scores. The idea is to determine which descrip-
tive attributes carry the most discriminating information w.r.t. the target
attribute(s), i.e., the higher the ranking score of a given descriptive attribute,
the higher its importance. In settings with high-dimensional descriptive spaces,
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it is often beneficial to reduce the number of descriptive attributes before learn-
ing the predictive models. Obviously, removing highly important attributes will
result in poor predictive performance. Hence, by using a feature ranking algo-
rithm, one can determine the importance of all attributes and make an educated
cut-off (ultimately considering only the attributes with high importance scores).
The ranking of attributes can also be used to validate interpretable predictive
models, i.e., if an attribute appears high in a decision tree and also has a high
feature ranking score, one can be confident that that attribute is quite important
w.r.t. discriminating the values of the target attribute(s).

In this study, we have used machine learning methods that produce inter-
pretable predictive models as well as ensembles thereof. Additionally, we have
also used a feature ranking method to produce a ranking of descriptive attributes.
The used methods are briefly described below. All methods are implemented
within the CLUS1 software. The first type of interpretable models that we used
are predictive clustering trees (PCTs). In particular, we have built MTR trees
[12], such as the ones shown in Figs. 1 and 2. PCTs are based on the predictive
clustering paradigm [3], which generalizes decision trees and parametrizes them
to support multitude of structured output prediction tasks, one of which is MTR.
Decision trees can also be seen as a hierarchical clustering, where the structure of
the decision tree mirrors the clustering hierarchy. Each node represents a cluster
that can be described by the tests that appear in the tree. Each node holds a
test and if we combine all the tests from the root node to the selected node, we
get the description of the cluster at the selected node. A prediction with a PCT
is made in the same way as with a standard decision tree.

The importance scores were calculated by using the feature ranking method
for MTR [8]. This method is based on ensembles of MTR trees [6] and calculates
the Genie3 importance score, based on Random forests (RFs) of 100 PCTs for
MTR. The importance scores and the corresponding ranking denote the relative
importance of each attribute for predicting all targets, jointly and separately.
Highly ranked attributes contain the most discriminative information w.r.t. the
target(s) of choice.

Our data set contains missing values for many of the target attributes, i.e., not
all mother-child pairs have known values for the Bayley-III scores. The standard
PCT top-down induction algorithm does not support such cases. Therefore, we
have also used semi-supervised PCTs (SSL-PCTs), an extension to the standard
PCT induction algorithm, where both, labeled and unlabeled instances are used
for calculating the heuristic score of candidate splits during model learning [7].

Both, PCTs and SSL-PCT were also used in the ensemble setting. In par-
ticular, we have used the RF algorithm to build our ensembles of (SSL-)PCTs.
The RF algorithm builds an ensemble of many decision trees in order to lift the
predictive performance over that of individual PCTs in the ensemble. The RF
ensembles with PCTs and SSL-PCTs are denoted as RF-PCTs and RF-SSL-
PCTs, respectively.

1 CLUS software is available for download at http://source.ijs.si/ktclus/clus-public.

http://source.ijs.si/ktclus/clus-public
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The second type of interpretable models we used are predictive clustering
rules (PCRs) [16]. PCRs are multi-target decision rules, capable of modeling
MTR problems. The PCR algorithm implements the standard sequential cover-
ing algorithm for rule discovery. In each step, the standard covering algorithm
generates a single rule and removes data instances from the data set which are
covered by that rule. A data instance is covered by a rule if it satisfies its con-
dition clause. The algorithm continues to generate rules until there are no more
instances left in our data set. A rule is added to the rule set if the predictive
performance of the rule set with the new rule is better than without it. When
making predictions, the discovered rules can be used in one of two ways: ordered
or unordered. When rules are ordered (such models are often called decision
lists), only one rule can be triggered. The order of the rules is determined by
the algorithm. If none of the rules are triggered, the default rule is applied. The
triggered rule gives the final prediction. This explicitly gives higher importance
to those rules that have a higher weight, which can affect the interpretation of
the predictions. When using unordered rules, several rules can be triggered, i.e.,
the instance, for which the predictions are being produced, can, depending on
the rule conditions, trigger more than one rule. In those cases, predictions are
combined into the final prediction (similar to what is done with tree ensembles).

4 Related Work

The predictive clustering framework has been successfully applied to many
diverse problems in the domain of life and medical sciences. Here we name a
few. [15] have applied predictive clustering methods to reveal the relationship
between fungi and different salt concentrations. Their study has revealed new
interesting properties about halophilic fungi and has expanded the knowledge of
possible life performance under diverse and extreme environmental conditions.
[4] have utilized the clustering aspect of PCTs and have discovered interesting
clusters of patients with Alzheimer’s disease that share biological features. The
clusters have discovered both gender specific differences and several biological
features that can relate to the progression of the disease. [14] have used PCTs
to identify subgroups of patients with Parkinson’s disease that would react pos-
itively or negatively to medication modification. Their findings will assist physi-
cians that make the therapy modifications for a given patient by narrowing down
the number of possible scenarios.

In the recent works by [1,11,13] multiple linear regression has been applied
to evaluate possible relationship between Hg exposure in prenatal life and 5
neurodevelopmental scores of children at 18 months of age. The model adjusted
for potential confounders (mother’s age, child’s sex, birth weight, education of
the mother, smoking during pregnancy and concentration of selenium and lead
in cord blood) revealed that doubling the Hg concentration on cord blood would
result in 0.33 points lower fine motor score. Similar decrement was observed
for Slovenian and Croatian populations in the meta-analysis done by [1]. On
the other hand, doubling the Hg concentration in cord blood of Apoe ε4 carriers
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would decrease the cognitive score for 5.4 points [11]. The observed changes were
small on an individual level, but were statistically significant and relevant on a
global (population) scale.

To the best of our knowledge, there is no publication related to the appli-
cation of machine learning methods to the problem of associating prenatal and
early postnatal exposome with the neural development of children. Given the
geographic specificity of the problem, and its potential to generalise to the entire
human population, we consider this publication to be very relevant in the field
of environmental epidemiology.

5 Experimental Setup

PCT and SSL-PCT models were built with a variance reduction heuristic and
M5Multi pruning method [10]. Same setup was used for both single- and multi-
target variants. In the standard PCT top-down induction (TDI) algorithm, the
variance reduction heuristic is calculated based on the values of the target vari-
ables. Our data set contains some instances where values of the target vari-
ables are not known. Therefore, the standard PCT TDI algorithm needs to be
instantiated with a different variance reduction heuristic function. In particu-
lar, SSL-PCTs introduce the w parameter, used to control the contribution of
target and descriptive attributes variances towards the overall variance in the
currently observed instances. This parameter is data set sensitive and must be
optimized [7] for each data set individually. Therefore, we optimize it by using
5-fold internal cross-validation to select one of the candidate values which range
between 0.1 and 1.0 with a step of 0.1.

To build the random forest ensemble models (for prediction and feature rank-
ing) we used 100 individual (SSL-)PCTs as base learners. Each (SSL-)PCT was
allowed to grow without limiting the number of instances in the leaf nodes, i.e.,
no pre-pruning was applied, and had only a subset of sqrt|D| random attributes
available when learning, where |D| is the number of descriptive attributes. The
final prediction of the ensemble is obtained by taking the predictions of the
individual (SSL-)PCTs and calculating their arithmetic mean.

Ordered PCRs were learned by using the standard covering algorithm, adding
additional rules only if they improve the predictive performance of the model.
Unordered PCRs were learned by using the weighted covering algorithm, where
the only difference from the former algorithm is that we do not immediately
remove instances that are covered by a new rule, but rather decrease their weight
inversely proportional to the error that the new rule makes when predicting
their target values. For both rule-based models we used multiplicative dispersion
search heuristic and added rules to the resulting rule set if and only if they cover
at least 45 instances. Unordered PCRs were obtained by setting the weight
controlling the amount by which weights of covered instances are reduced within
the error weighted covering algorithm, to 0.5 and the instance’s weight threshold
to 0.1 (if an instance’s weight falls below this value, it is removed from the
learning set).
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We calculated root relative squared errors (RRSEs) to evaluate the predictive
performance of the generated models. RRSE is relative to what it would have
been if we had just predicted the average value for each score. Thus, the relative
squared error takes the total squared error from our model and normalizes it
by dividing it with the total squared error of a model that simply predicts the
average. In general, we want the RRSEs to be lower than one and as close to
zero as possible. The formula for calculating RRSE for the target attribute t is:

RRSEt =

√
√
√
√

∑N
i=1(yi − ŷi)2

∑N
i=1(yi − yi)2

, (1)

where N is the number of data points, yi is the true target value of instance i,
ŷi is the predicted value for the target and yi is the arithmetic mean, calculated
over the target values within the training set. The average RRSE over T target
attributes is then calculated as:

aRRSE =
1
T

T∑

t=1

RRSEt . (2)

We used 10-fold cross-validation to estimate the RRSEs of our models.
Table 4 contains the obtained RRSEs values.

6 Results

The algorithms for building PCTs and SSL-PCTs yield models that can easily
be interpreted. The produced PCT and SSL-PCT models are shown in Fig. 1
and Fig. 2, respectively. The PCT model identified the child’s gender, the con-
centration of methyl Hg in the mother’s blood and the mother’s age as the most
relevant attributes. The semi-supervised PCT model identified the concentration
of methyl Hg in the cord blood and the number of pregnancies as most relevant
attributes.

The PCRs model illustrated in Table 2 consists of an ordered list of 9 rules.
Each data instance that we are trying to predict is tested against the condition
clause in the rules in the specified order. Prediction is done by the first rule that
has its condition clause satisfied (i.e. the rules are ordered). If there exists no
such rule, than the prediction from the default rule is applied.

Similarly, in Table 3 we illustrate an unordered PCRs model. There, the
collection of rules can be seen as a set rather than a list. An instance is tested
against each rule and a prediction is obtained by averaging the predictions from
all individual rules that had their condition satisfied by the instance. If the
instance fails to satisfy any condition, then the prediction from the default rule
is taken as final.

Table 4 summarizes the values of root relative squared errors (RRSE) for
each method per target score.

The random forest of PCTs with Genie3 feature ranking method outputs a
list of attributes ordered by their importance scores. Each score is calculated
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NO

Sex = 'Male'

YESNO

Mother's age > 23

NO

YES

CCS 110.98

LCS 102.63

MCS 106.04

FMSS 11.78

GMSS 10.14

CCS 126.06

LCS 124.58

MCS 133.57

FMSS 16.19

GMSS 14.99

CCS 113.46

LCS 109.88

MCS 109.50

FMSS 12.80

GMSS 10.26

MeHg > 0.41

YES

CCS 112.68

LCS 110.07

MCS 107.97

FMSS 12.38

GMSS 10.18

Fig. 1. A predictive clustering tree for MTR predicting the values of the five Bayley-III
scores simultaneously.

NO

CB THg > 6.06

NO

YES

CCS 108.34

LCS 109.20

MCS 106.65

FMSS 11.38

GMSS 10.70

CCS 111.58

LCS 104.84

MCS 107.04

FMSS 12.21

GMSS 10.09

Pregnancy = 'First'

YES

CCS 113.36

LCS 107.68

MCS 107.28

FMSS 12.19

GMSS 10.21

Fig. 2. A semi-supervised predictive clustering tree for MTR predicting the values of
the five Bayley-III scores simultaneously.
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Table 2. A list of PCRs for MTR predicting the five Bayley-III scores simultaneously.
The rule conditions are given in the second column. The predictions are in columns
CCS, LCS, MCS, FMSS and GMSS.

# Rule conditions CCS LCS MCS FMSS GMSS

1 CB Zn ≤ 1507.795 117.06 106.73 107.50 12.32 10.04

2 CB Serum Ca > 2.89 AND
CB Serum Mg > 0.71

113.26 106.15 108.69 12.69 10.08

3 M milk Mn ≤ 1.599 111.19 106.89 106.89 12.10 10.06

4 CB As ≤ 0.466 114.34 105.32 106.76 12.36 9.78

5 GA > 40 AND
CB Se ≤ 112.38

112.17 105.34 106.13 12.17 9.78

6 M milk Zn ≤ 2539.085 108.04 104.83 106.56 12.00 10.13

7 no amalgams > 2 AND
M hair THg > 26

114.02 107.43 107.02 12.21 10.06

8 frozenfish = 3 AND
gest age = 2 AND
BMI > 18.9069

106.41 105.39 107.26 11.60 10.71

9 CB Serum Ca > 2.51 AND
BMI ≤ 33.91

115.65 112.34 110.84 12.32 11.23

10 Default 103.33 101.91 102.79 10.87 10.00

Table 3. A set of PCRs for MTR predicting the five Bayley-III scores simultaneously.
The rule conditions are given in the second column. The predictions are in columns
CCS, LCS, MCS, FMSS and GMSS.

# Rule conditions CCS LCS MCS FMSS GMSS

1 CB Zn ≤ 1507.795 117.06 106.73 107.50 12.32 10.04

2 CB Serum Ca > 2.91 AND
CB Serum FeIII ≤ 44.10

114.12 107.12 107.74 12.65 9.81

3 M milk Mn ≤ 1.397 AND
M milk Se > 8.344747

110.27 106.48 106.87 12.14 10.04

4 Default 111.70 106.38 107.19 12.09 10.21

as the average decrease in impurity while inducting the PCTs. The greater the
decrease, the more important an attribute is. Table 5 gives a snapshot of the
list, showing only the top and bottom three attributes as well as some other
attributes in between that appear in the (SSL-)PCT models.

The ranking in Table 5 identifies the concentration of total Hg in the mother’s
hair as the most important attribute for determining the Bayley-III scores, the
concentration of Cu (copper) and As (arsenic) in the cord blood as the second
and third most important attribute, and continues down to the information
about whether the mother is smoking currently, the concentration of methyl Hg
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Table 4. The RRSEs for each multi-target model the an overall average RRSE
(aRRSE) across all five scores. Bolded numbers denote the best-performing model
for a given score. Underlined number denotes the best overall-performing model.

Method Cognition Language Motor Fine motor Gross motor Overall

PCT 1.0094 0.9961 1.0158 1.0071 1.0147 1.0086

SSL-PCT 1.0094 1.0130 1.0096 1.0070 1.0016 1.0081

Ordered PCRs 0.9836 1.0168 1.0117 1.0095 1.0136 1.0070

Unordered PCRs 0.9942 1.0048 1.0019 1.0029 0.9944 0.99968

RF-PCTs 0.9855 0.9928 1.0118 0.9888 1.0098 0.9977

RF-SSL-PCTs 0.9868 1.0072 1.0113 0.9931 1.0051 1.0007

Table 5. Feature ranking of the top ten/bottom three attributes and of those that
appear in the (SSL-)PCT models.

Rank Attribute name Importance score

1 M hair THg 806.3

2 CB Cu 786.8

3 CB As 769.3

4 mothers age 768.4

5 CB Pb 762.5

6 CB MeHg 697.5

7 freshfish 680.6

8 BMI 672.6

9 CB Se 665.4

10 CB THg 663.9

11 child sex 605.3

41 M blood MeHg 123

54 firstpregnancy 90.8

... ... ...

80 smokingcurrently 9.7

81 M milk MeHg 5.9

82 numberofcigarettesperday 1.9

in her milk and the number of cigarettes she smokes per day as the three least
important factors. Mother’s age, child’s sex and the concentration of total Hg in
the cord blood can also be considered very important, because they appear in
the tree models, and rank very high in the rankings.

The above described results are in line with the main outcomes of the Slove-
nian and Croatian birth cohort study PHIME, which tested the existence of
association between exposure to methyl Hg in prenatal or early life and neu-
rodevelopmental performance of children. There have been reports [9,11,13] on
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significantly negative association between total or methyl Hg in cord blood or
maternal hair (both indicate exposure to Hg in prenatal period) and fine motor
scores of Bayley-III assessment, as well as cognitive scores, although only in a
sub-population of carriers of apolipoprotein epsilon 4 gene variant [11,13]. Pre-
natal exposure to Hg was confirmed as a significant predictor for cognitive and
fine motor scores regardless of the genotype by the RF-PCT+Genie3 and SSL-
PCT methods, ranking at the first position in the former method, and being the
root in the tree model in the latter. However, some additional predictors were
revealed in the present study, namely copper (Cu) and arsenic (As) concentra-
tions in cord blood, the first known for its pro-inflammatory effects and the
second for potential neurotoxicity, similarly as Hg. Both Hg and As share the
source of exposure which might explain the observed significance. First preg-
nancy also came out as an important attribute, which is yet to be explained
(Table 6).

Table 6. The RRSEs for each single-target model and the overall average RRSE
(aRRSE) across all five scores. Bolded numbers denote the best-performing model
for a given score. Underlined number denotes the best overall-performing model.

Method Cognition Language Motor Fine motor Gross motor Overall

PCT 1.0157 0.9745 1.0067 1.0226 1.0212 1.0081

SSL-PCT 1.0221 1.0092 1.0040 1.0051 1.0000 1.0080

Ordered PCRs 1.0147 1.0364 1.0066 1.0134 1.0099 1.0162

Unordered PCRs 0.9993 1.0113 1.0004 1.0083 1.0013 1.0041

RF-PCTs 0.9921 0.9895 1.0165 0.9934 1.0158 1.0014

RF-SSL-PCTs 0.9909 0.9892 1.0099 0.9896 1.0112 0.9981

In our particular case, local and global approaches exhibit similar predictive
performance. Local approach outperforms the global only for the best language
and motor score, and, for other scores, including the overall one, the global app-
roach is marginally better. SSL-PCTs perform slightly better than fully super-
vised PCTs.

7 Conclusion

In this paper, we have applied machine learning methods to model the associa-
tions between exposure to mercury in the environment and neural development
of children. In this multi-target regression problem our target attributes repre-
sent Bayley-III scores. The problem was modeled with PCTs, RF of PCTs and
semi-supervised variants of them, as well as with PCRs. We have also produced a
ranked list of attributes, according to their importance when used for predicting
the target attributes.

All methods generate models with comparable predictive performance but
the best performing model was generated with the RF-PCTs method. Given the
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specific nature of the problem, an observation can be made that a global app-
roach is better than a local one, because it generalizes better and thus captures
only the high-level relationships between the features, and does not succumb
to the noise introduced by the missing data and limited number of instances.
The random forest of PCTs model marginally outperformed the baseline model
(simply predicting the average value) for the targets Cognitive score, Language
score and Fine motor (scaled). Similarly, the random forest of SSL-PCTs out-
performed the baseline model for the targets Cognitive score and Fine motor
(scaled). PCRs and PCTs were able to predict one target (Language and Cog-
nition score, respectively) better than the simple baseline model. Other models
were not able to outperform the baseline model, predicting arithmetic mean for
individual targets, calculated on the training data. We believe that the poor
predictive performance of generated models can be attributed to high sparsity
of the data set. Obtaining more labeled data should result in better performing
models.

Despite this rather low predictive power of models, the results obtained are
in line with the main findings of previous work on the PHIME data set. Some
additional predictors were revealed, providing valuable insight into the environ-
mental epidemiology aspects of chronic low-level exposures and will be further
evaluated by using an expanded version of the data set. Application of machine
learning methods is particularly valuable in studies like PHIME, where a large
number of attributes is used to make a prediction within a rather narrow range
of values.
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