
Continuous Software Engineering
in the Wild

Eriks Klotins1(B) and Tony Gorschek1,2

1 Software Engineering Research Lab (SERL), Blekinge Institute of Technology,
Karlskrona, Sweden

{eriks.klotins,tony.gorschek}@bth.se
2 fortiss GmbH, Munich, Germany

Abstract. Software is becoming a critical component of most products
and organizational functions. The ability to continuously improve soft-
ware determines how well the organization can respond to market oppor-
tunities. Continuous software engineering promises numerous advantages
over sprint-based or plan-driven development. However, implementing a
continuous software engineering pipeline in an existing organization is
challenging.

In this invited position paper, we discuss the adoption challenges and
argue for a more systematic methodology to drive the adoption of con-
tinuous engineering. Our discussion is based on ongoing work with sev-
eral industrial partners as well as experience reported in both state-of-
practice and state-of-the-art.

We conclude that the adoption of continuous software engineering pri-
marily requires analysis of the organization, its goals, and constraints. One
size does not fit all purposes, meaning that many of the principles behind
continuous engineering are relevant for most organizations, but the level
of realization and the benefits may still vary. The main hindrances to con-
tinuous flow of software arise from sub-optimal organizational structures
and the lack of alignment. Once those are removed, the organization can
implement automation to further improve the software delivery.

Keywords: Continuous software engineering · Process improvement ·
Continuous integration and delivery

1 Introduction

Software is a critical component of most products, services, manufacturing pro-
cesses, and back-office functions. The ability to continuously improve software is
crucial for organizations to respond to market opportunities swiftly and remain
competitive. Software is also becoming increasingly more complex. Organizations
seek to improve both the effectiveness and the efficiency of software engineering
to enable further growth without increasing overhead and losing flexibility.

Continuous software engineering is a paradigm aiming to streamline software
engineering by delivering software frequently and in small increments, and by
c© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-04115-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_1&domain=pdf
http://orcid.org/0000-0002-1987-2234
http://orcid.org/0000-0002-3646-235X
https://doi.org/10.1007/978-3-031-04115-0_1

4 E. Klotins and T. Gorschek

doing so reaping different benefits from fast customer feedback, to continuous
value delivery to said customers. Smaller increments are potentially easier to
plan, develop, integrate, and verify. On the customers’ side, more minor updates
ought to create less disruption and are easier to adopt in contrast to big-bang
software updates requiring downtime and catching up with the new features.
Software vendors can collect more focused telemetry and customer feedback
to steer further product development [2]. More frequent and smaller software
updates enable customers to provide more focused feedback empowering them
to participate in steering the product more actively. In turn, this allows collab-
orative and experience-based business models [2].

Continuous integration and delivery (CI/CD) is part of continuous software
engineering. We consider how organizations can apply continuous principles
throughout the whole software engineering process throughout inception, devel-
opment, integration, verification, delivery, operation, use, collection of feedback,
and planning the next software iteration steps [1].

However, few organizations have adopted continuous engineering beyond
automating tests and other repetitive development tasks. To the best of our
knowledge, an industrial-scale end-to-end pipeline from inception of a feature
to collecting and analyzing customer feedback has yet to be demonstrated in
peer-reviewed literature [7].

The potential benefits of continuous software engineering have gained much
attention. Benefits like flexibility, efficiency, and improved time-to-market are
appealing to most companies. However, the ability to retrofit an existing orga-
nization, what parameters determine the suitability, and what trade-offs are
associated with adopting continuous software engineering remain largely unex-
plored.

This invited position paper discusses the potential, and highlights chal-
lenges hindering the widespread adoption of continuous software engineering.
This is a position paper based on ongoing research with a dozen companies
from multiple domains, featuring different market positions and customers, as
part of the KKS research profile project Software Engineering Rethought (see
http://rethought.se).

Overall, we observe that end-to-end continuous software engineering, as per
many recommendations, may not be applicable everywhere [1,2]. However, orga-
nizations can adopt parts of the pipeline to streamline software engineering [4].
The challenge lies in the critical evaluation of the current situation and the
goals of the company to maximize the gains from adopting continuous software
engineering principles.

This paper is structured as follows: Sect. 2 presents the potential of an end-
to-end continuous software engineering. In Sect. 3, we discuss challenges and the
need for further research, before concluding our paper in Sect. 4.

2 Continuous Software Engineering in a Nutshell

The idea of continuous software engineering originates from lean principles in
manufacturing. One of the key principles in lean is to reduce waste and maximize

http://rethought.se

Continuous Software Engineering in the Wild 5

customer value by implementing the flow. That is, linking all relevant production
steps together and minimizing the lead time of each step. In software engineering,
this principle can be implemented by delivering small increments of software [6].

To enable the development and delivery of small software increments, soft-
ware vendors need to implement a software delivery pipeline. The pipeline picks
up the latest changes in the source code and automatically performs testing, inte-
gration, delivery, and other required steps to make the latest changes available
to end-users. Once end-users start using the software, feedback and telemetry is
relayed back to the software vendor for analysis and decision support to steer
further product decisions.

In an idealized scenario, end-users gain access to the latest features and start
generating feedback minutes after developers have finished the development [1,2].

The state-of-the-art view on the end-to-end pipeline, along with the key
steps, is shown in Fig. 1. The figure shows an idealized scenario that requires
adaptations to fit any real-life scenario.

In the figure, we show the key steps of the pipeline denoted with rectangular
boxes. The arrows represent the flow of software and related artifacts through
the pipeline. Dashed lines represent levels of stakeholders involved in product
development.

5 Continuous use

2 Continuous development

1 Continuous
product planning

3 Continuous
Deployment

4 Continuous
Delivery

6 Continuous
Monitoring

5.1 Continuous
Trust

Level II: Product

Level III: Operations

Level IV: End-user / customer

Level I: Engineering

2.1 Continuous 2.3 Continuous
architecture

2.2 Continuous
integration

7 Cross-cutting
concerns

7.1 Continuous
compliance

7.2 Continuous
security

7.3 Continuous
budgeting

7.4 Continuous
innovation

7.5 Continuous
experimentation

7.6 Continuous
improvement

5.2 Continuous
feedback

2.5 Continuous
NFR testing

 Less pain of
preparing releases

Investments: Automated
acceptance testing

 Improved customer
satisfaction, trust, feedback

Investments: Maintenance of
longitudinal relationships

 Improved quality,
scalability, streamlined process

Investments: Automation,
modularisation

Investments: Data
collection and maintenance

react to changing environment

Investments: Organisational
changes

Improved time-to-
market, easier roll-out of new
features

Investments: Adjusting
existing customer
agreements and business
models

Fig. 1. An overview of state-of-the-art continuous software engineering pipeline

We differentiate between four levels of stakeholders, present how continuous
software engineering affects each level, and present several potential opportuni-
ties (PT) associated with adopting continuous engineering. The PT’s are ideal-
ized positive outcomes that can be a result of realizing good continuous practices,
used here to highlight potential benefits only for illustration purposes.

6 E. Klotins and T. Gorschek

Level I: Engineering organization receives plans from the product planning orga-
nization and turns these plans into working software for deployment (Step 3).
The engineering organization implements build, test, integration, and deploy-
ment automation; ensures the organization and software architecture supports
incremental and parallel work. Note that the exact engineering activities are
case-specific. In the figure, we illustrate the most common activities.

PT 1: Automation and parallel work on small increments are shown to improve
efficiency quality, reduce stress and improve developer satisfaction. Independent,
cross-functional teams taking responsibility for specific features and modular
architectures allow scaling of development organization with minimal need for
additional overhead.

Level II: Product organization uses various inputs to devise plans for further
product development (Step 2). These plans guide the engineering organization.
Once the engineering is complete, the engineering organization returns working
software (Step 3).

PT 2: Working with lightweight plans and quick turnaround time allows product
organization to rapidly adjust and explore new market opportunities. In dynamic
markets, extensive market research and analysis could be counterproductive as
the results are already outdated when they arrive. Instead, organizations could
adopt a more experiment-driven approach and try out new ideas. It is possible if
testing new ideas and recovering from unsuccessful experiments are reasonable
effort and risk.

Level III: Operations takes the working software from the product organization
and makes it available for the end-users (Step 4). The working software generates
feedback and telemetry, enabling monitoring of customer behavior (Step 6) and
input for further planning (Step 1).

PT 3: Automating deliveries and frequently delivering to customers helps
improve time-to-market and reduces release pains. Release pain is associated
with developers required to put in extra effort to make sure the upcoming release
is ready for customers. For large releases, it is associated with additional stress
and workload. However, when releasing small incremental updates, the stress
and workload associated with each release are minimized.

PT 4: Implementing telemetry and automated collection of feedback allows mon-
itoring the software in use and making adjustments as needed. Quick turnaround
time allows rapid release of patches and bug fixes, thus reducing the adverse
effects of slipped defects. From the customers perspective, automated, seamless
updates remove the need to update the software manually.

Level IV: End-user/customer organization receives and uses the software (Step
5). Frequent upgrades and continuous access to new features enable service and
experience-oriented business models. Such models encourage trust (Step 5.1),
and the end-users are incentivised to actively participate in the product devel-
opment by providing feedback (Step 5.2).

Continuous Software Engineering in the Wild 7

PT 5: Both customers and the vendor can benefit from more closer experience
and service based collaboration model. It facilitated trust and created incentives
for customers not to switch to another vendor.

Cross-cutting concerns transcends organizational levels. For instance, continuous
improvement (Concern 7.6) attempts to measure and fine-tune the whole cycle
continuously. Continuous experimentation allows a product organization to set
up quick experiments to test market responses to new ideas (Concern 7.5).

PT 6: Continuous collection of data and frequent execution of the delivery
process allows to systematically and continuously improve the process with every
iteration.

PT 7: Transparency in planning and road maps of the development company
can achieve a number of benefits. (i) Internal coordination in the development
organization of what is in the pipe short- and medium term. (ii) Customers can
be prepared of what is coming to prepare and plan for changes and benefits. (iii)
Customers and the development organization can rather via transparency act as
partners as interested customers can be active in the planning and release work.

In summary, adopting an end-to-end continuous software delivery pipeline
as shown in Fig. 1 allows the software vendor to increase internal efficiency and
streamline value creation.

3 Challenges and Future Needs

Despite many potential advantages, the utilization of continuous software engi-
neering remains scarce relative to plan-driven or sprint-based engineering mod-
els. Several of our partner companies have started adopting initiatives mov-
ing towards continuous software engineering. However, the adoption is far from
straightforward and hindered by many challenges. In this section, we present
challenges that, in our view and experience, should be solved to support an
industry-wide adoption of continuous engineering principles.

Challenge 0: Should you do it? The tendency to go for one-size-fits-all solutions
and the power of “the next thing everyone is doing” can cause as much damage
as benefit. A key is to start with an analysis of both the capacity and goals of the
development organization, as well as the capacity and needs of the customer’s
organizations.

The development organization needs to specify goals and to break down
these goals to a level where success (or failure) to achieve these goals can be
“measured” by the organization, continuously as changes are realized. This is
paramount to a risk analysis, and also a cost benefit analysis anchored in reality
and objective observations. A significant bonus is that this activity also enables
creating a common understanding of the potential, implications and direction of
the changes from items impacting individual teams, to entire departments and
the whole organization, as well as how they are dependent and tie together. In
this, it is important to separate between the treatment (change/tool/action/new

8 E. Klotins and T. Gorschek

way of working) and the goals and attainment of the goals to enable an evidence-
based change continuously.

At the same time, knowing your customer and the impact of continuous on
them and the relationship with them is critical. What is the benefit for the cus-
tomer? Is the domain and agreements between the customer and the development
company suitable for a continuous environment? One specific example could be
if the customer wants continuous changes in the product, and is there a tele-
metrics/data feedback system in place to report on new features and changes
enabling feedback? In some domains and for some development organizations
a continuous model is non-controversial, but in some other domains most of
the benefits attained via try-and-learn-improve are impossible to achieve. For
example, an organization and customer operating in (even partly) safety-critical
products, or where down-time of products incur substantial consequences, the
benefit/risk/cost calculation is significantly different.

Significant research needs to be conducted, and usable and useful models
need to be developed, to establishing cost-effective ways to continuously evalu-
ate and course correct the continuous changes needed to achieve a continuous
product development environment; maybe inspired by a hierarchically connected
Goal-Question-Metric model [3] - back-filled by metrics and data collected via
the continuous feedback cycle. As such, a goal and measurement program is cre-
ated (and scaled to be usable and useful for the organization in question) and
it is important to realize that it might lead to the conclusion that continuous
engineering in its entirety and complete idealized form might not fit your organi-
zation. However, there are probably many parts of continuous engineering that
are beneficial for most organizations. Start there.

Challenge 1: Determining Adoption Goals and Constraints. We observe that
organizations often put forward aims like improving speed and efficiency to drive
the adoption of continuous engineering. However, such aims are too vague to be
measured and drive systematic improvements. When interpreted by different
parts of the organization, vague goals may come at odds, or even worse result in
different interpretations of said goals resulting in different direction of work and
sub-optimizations.

For example, an R&D unit could interpret the efficiency as maximizing the
delivery of new experimental features. For operations, efficiency could mean min-
imizing resources to ensure services availability. Without a joint view of what
efficiency means and how it is measured in the given organizational context,
internal deadlocks may arise, hindering the company’s adoption effort and opti-
mal operation.

Attaining specific goals often imply trade-offs. As in the earlier example, it
could be challenging to launch many innovative features and reach high stability
of services simultaneously. Such trade-offs need to be identified and analyzed to
understand the associated constraints and degrees of freedom.

The analysis of organizational goals, constraints, and trade-offs should drive
the organizational change towards continuous software engineering. One powerful
tool in coordinating an organization, and making goals clear is to break-down

Continuous Software Engineering in the Wild 9

goals into measurable effects or metrics. This requires a number of steps. The
terms “value”, “efficiency”, or “effectiveness” need to be defined for each part of
the organization [3]. These definitions need to be coordinated and streamlined
- in essence shared. Then, metrics on how to ascertain level of success have to
be detailed very early. How to measure if you are improving towards a goal is a
prerequisite before adopting any treatment or change. For example, if you say a
specific practice or set of practices should be realized to improve customer value,
what type of customer value, and how do you measure it? This analysis would
also pinpoint bottlenecks, inefficiencies, and areas of improvement, in addition
to acting as a coordinating force as an organization realizes changes. You need
to be able to measure benefits of a change as well as you measure the cost of
said change.

Challenge 2: Considering the Return-of-Investment Perspective. Retrofitting
an organization with a new continuous engineering pipeline and new ways of
working is a substantial investment. The investments should be justified with
potential benefits and be aligned with organizational objectives (Challenge 1).
Notably, the organization must be prepared to realize the potential and materi-
alize the benefits.

For example, an organization may invest in data collection (PT 5) and gain
the potential of improved data-driven decisions (PT 2). However, if the rest of
the organization is not ready to use the data in decision support, the potential is
not realized, and the investment is wasted. Furthermore, customers may be slow
in adopting new features, thus delaying the feedback and nullifying its value to
the organization.

The organization should perform a cost-benefit analysis to gauge the viability
of any goals, new practices, and working methods. Adoption champions should
do such analysis in parallel with determining adoption goals, trade-offs, and
constraints, see Challenge 1.

To address Challenges 1–2, we propose a model supporting inventory of goals,
trade-offs, and return-of-investment calculation to support the systematic adop-
tion of continuous practices. As a part of this analysis, the break-down of goals
into defining the terms used to establish a common vocabulary, then establish-
ing how to “measure” goal attainment by breaking down goals into measurable
items. This also allows for course corrections during the changes associated with
retrofitting.

Challenge 3: Focus on Cost Savings Instead of Value and Potential Creation. Our
industry partners often mention the need to reduce cost and improve efficiency
(PT 1) as reasons for considering continuous software engineering. Potential
benefits like new value streams, improved time-to-market, and new business
models are rarely, if at all, mentioned.

The question if adopting continuous practices would provide some cost sav-
ings is flawed. We compare such a question to asking whether eating health-
ier will be cheaper. Both eating healthier and adopting continuous engineering
will likely cost more. Developing tests, maintaining test suites and automa-
tion infrastructure, collecting and maintaining test data, refactoring software

10 E. Klotins and T. Gorschek

architectures, and driving organizational adjustments will push the overall cost
of software engineering upwards. At the same time, speed and flexibility will open
up opportunities for new offerings enabling the organization to become faster at
responding to market opportunities, among other benefits. Eating healthier may
cost more, but may enable you a better and longer life.

We propose emphasizing the business value arising from streamlining soft-
ware delivery over the exclusive focus on potential cost savings. More cross-
disciplinary studies are needed to explore the business value perspective. We
observe that continuous shares many characteristics with so called “digital trans-
formation”. Considering how continuous engineering fits into the broader organi-
zational transformation could help to shift the focus from cost savings to unlock-
ing the organizational potential [5].

Challenge 4: Remembering Conway’s Law. In 1967, M. Conway formulated an
adage that organizations develop systems that mimic their communication struc-
ture. In software engineering terms, software architecture should follow organi-
zational structures. To change the prior, one needs to change the latter first.

Best practices of continuous software engineering dictate that development
work should be done by real cross-functional teams that own the development of
whole features. A team should have full responsibility from generating improve-
ment ideas to development, testing, delivery, and telemetry analysis. This prac-
tice allows maintaining a modular architecture and to minimize the gap between
organizational structures and software architectures.

From discussions with our partner companies, we learned that organizations
often find their software architectures monolithic and poorly suited for paral-
lel development, automation, and modular deployments. The software travels
through various organizational silos, each performing a specific function without
the complete picture. Handover from one silo to another creates friction and
bottlenecks.

Attempts to break the software monolith often lead to failure as the sur-
rounding organization remains the same. Changing the organizational structures
is often extremely challenging due to internal inertia and resistance to changes.

We propose to explore the adoption of continuous engineering practices from
the organizational view first. That is, analyze what organization silos and bottle-
necks currently limit the continuous flow of software. Once organizational ineffi-
ciencies are addressed, the software delivery process can be further improved with
tools such as automation. In addition, the detailed goals and following follow-up
(metrics) should be owned by the parts of the organization (the teams) that own
the module or part of the architecture. This way you can measure the fit of the
organization to the goals of development. For example, a change in organiza-
tional structure might result in (metric) less waiting times between teams.

Challenge 5: Ever-Increasing Complexity. Contemporary market-driven software
engineering exists in a dynamic environment. It faces mercurial market influ-
ences, changing organizational goals, technologies, and the growing size and
complexity of software and the surrounding organization.

Continuous Software Engineering in the Wild 11

A single person, or a small group of people, can no longer grasp the com-
plexity and make optimal and timely decisions using their expertise alone. This
increase in complexity has far-reaching implications for how organizations make
decisions.

One viable way forward could be to consider data collection and analysis as
an integral part of the product and the engineering process. The organization
can use data to support decisions both on what features to develop (What to
build?) and how to improve the engineering process (How to build?).

Furthermore, retrospective analysis, that is, analyzing past events, has lim-
ited use in an increasingly changing environment. There is a potential to explore
the applicability of inferential statistical methods, simulations, and machine
learning techniques to make relevant predictions. This is however subject to
significant research initiative to develop transparent tools and methods that can
be trusted by practitioners to predict and simulate developments, at least in the
short-term.

4 Conclusions

This invited position paper analyzes continuous software engineering and pin-
points several challenges of adopting ongoing software engineering from our
collaboration with industrial partners. The challenges emphasize the need for
systematic methods to analyze organizational goals, context, structures, con-
straints, among other contextual factors, to remove inefficiencies and realize the
full potential of software-intensive products and services.

We wish to highlight that most inefficiencies and obstacles to streamlined
value delivery can be traced to the lack of organizational alignment and coor-
dination. The spirit of continuous engineering is to identify and remove such
hindrances systematically. In the end, continuous software engineering is more
about being pragmatic and disciplined in engineering than it is about automa-
tion.

References

1. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

2. Humble, J., Kim, G.: Accelerate: The science of lean software and DevOps: Building
and scaling high performing technology organizations. IT Revolution (2018)

3. Khurum, M., Gorschek, T., Wilson, M.: The software value map-an exhaustive col-
lection of value aspects for the development of software intensive products. J. Softw.
Evol. Process 25(7), 711–741 (2013)

4. Klotins, E., Gorschek, T.: Towards cost-benefit evaluation for continuous* software
engineering activities. Rev. Empir. Softw. Eng. J. (2021)

5. Klotins, Eriks, P.A.E.: The unified perspective of digital transformation and con-
tinuous software engineering. In: Proceedings of 5th International Workshop on
Software-Intensive Business (IWSIB) (2022)

12 E. Klotins and T. Gorschek

6. Poppendieck, M., et al.: Principles of lean thinking. IT Manage. Select 18(2011),
1–7 (2011)

7. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deployment:
a systematic review on approaches, tools, challenges and practices. IEEE Access 5,
3909–3943 (2017)

	Continuous Software Engineering in the Wild
	1 Introduction
	2 Continuous Software Engineering in a Nutshell
	3 Challenges and Future Needs
	4 Conclusions
	References

