
 123

LN
BI

P
43

9

14th International Conference on Software Quality, SWQD 2022
Vienna, Austria, May 17–19, 2022
Proceedings

Software Quality
The Next Big Thing in Software
Engineering and Quality

Daniel Mendez · Manuel Wimmer ·
Dietmar Winkler · Stefan Biffl ·
Johannes Bergsmann (Eds.)

Lecture Notes
in Business Information Processing 439

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Sudha Ram
University of Arizona, Tucson, AZ, USA

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896

More information about this series at https://link.springer.com/bookseries/7911

https://springerlink.bibliotecabuap.elogim.com/bookseries/7911

Daniel Mendez ·Manuel Wimmer ·
Dietmar Winkler · Stefan Biffl ·
Johannes Bergsmann (Eds.)

Software Quality
The Next Big Thing in Software
Engineering and Quality

14th International Conference on Software Quality, SWQD 2022
Vienna, Austria, May 17–19, 2022
Proceedings

Editors
Daniel Mendez
Blekinge Institute of Technology
Karlskrona, Sweden

Dietmar Winkler
TU Wien
Vienna, Austria

Johannes Bergsmann
Software Quality Lab GmbH
Linz, Austria

Manuel Wimmer
Johannes Kepler University of Linz
Linz, Austria

Stefan Biffl
TU Wien
Vienna, Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-04114-3 ISBN 978-3-031-04115-0 (eBook)
https://doi.org/10.1007/978-3-031-04115-0

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0619-6027
https://orcid.org/0000-0002-4743-3124
https://orcid.org/0000-0002-1124-7098
https://orcid.org/0000-0002-3413-7780
https://doi.org/10.1007/978-3-031-04115-0

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair was first organized in
2009 and has since grown to be the largest yearly conference on software quality in
Europe with a strong and vibrant community. The program of the SWQD conference
was designed to encompass a stimulating mixture of practice-oriented presentations,
scientific presentations of new research topics, tutorials, and an exhibition area for tool
vendors and other organizations in the area of software quality.

This professional symposium and conference aims to offer a range of comprehensive
and valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference welcomes anyone interested in quality in the whole software
life cycle including the following: software process and qualitymanagers, test managers,
software testers, product managers, agile masters, project managers, software architects,
software designers, requirements engineers, user interface designers, software develop-
ers, IT managers, release managers, development managers, application managers, and
many more.

The guiding conference topic of SWQD 2022 was “What’s The Next Big Thing in
Software Engineering and Quality?”, as changed product, process, and service require-
ments, e.g., distributed engineering projects, mobile applications, involvement of hetero-
geneous disciplines and stakeholders, extended application areas, and new technologies,
include new challenges and might require new and adapted methods and tools to support
quality activities in the software life cycle.

May 2022 Johannes Bergsmann

Message from the Scientific Program Chairs

The 14th Software Quality Days (SWQD) conference and tools fair brought together
researchers and practitioners from business, industry, and academia working on quality
assurance and qualitymanagement for software engineering and information technology.
The SWQD conference is one of the largest software quality conferences in Europe.

Over the past years, we have received a growing number of scientific contributions
to the SWQD conference. Since 2012, the SWQD conference has included a dedicated
scientific program published in scientific proceedings. In this 14th edition, we received
a total of eight high-quality submissions from researchers across Europe which were
each peer reviewed by four or more reviewers. Out of these submissions, we selected
four contributions as full papers. These accepted papers were then added to the already
established program from the previous edition, which had to be postponed in light of
the COVID-19 pandemic, yielding a rich program full of presentations and interactive
sessions.

The main topics from academia and industry in the new accepted manuscripts are
about the application of artificial intelligence for software engineering problems as well
as quality assurance for software-intensive systems.

May 2022 Daniel Mendez
Manuel Wimmer

Organization

Organizing Committee

SWQD2022was organized by Software Quality LabGmbH, the Institute of Information
SystemsEngineering at TUWien, theBlekinge Institute of Technology, and the Johannes
Kepler University Linz.

General Chair

Johannes Bergsmann Software Quality Lab GmbH, Austria

Scientific Program Chairs

Daniel Mendez Blekinge Institute of Technology, Sweden, and
fortiss GmbH, Germany

Manuel Wimmer Johannes Kepler University Linz, Austria

Steering Committee

Stefan Biffl TU Wien, Austria
Dietmar Winkler TU Wien, Austria
Daniel Mendez Blekinge Institute of Technology, Sweden, and

fortiss GmbH, Germany
Manuel Wimmer Johannes Kepler University Linz, Austria
Johannes Bergsmann Software Quality Lab GmbH, Austria

Organizing and Publicity Chair

Petra Bergsmann Software Quality Lab GmbH, Austria

Program Committee

SWQD 2022 established an international committee of well-known experts in software
quality to peer review the scientific submissions.

Matthias Book University of Iceland, Iceland
Ruth Breu University of Innsbruck, Austria
Tomas Bures Charles University, Czech Republic
Maya Daneva University of Twente, The Netherlands

x Organization

Deepak Dhungana IMC University of Applied Sciences Krems,
Austria

Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Henning Femmer Qualicen GmbH, Germany
Gordon Fraser University of Passau, Germany
Nauman Ghazi Blekinge Institute of Technology, Sweden
Volker Gruhn University of Duisburg-Essen, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany
Helena Holmström Olsson Mälmö University, Sweden
Marco Kuhrmann University of Passau, Germany
Eda Marchetti ISTI-CNR, Italy
Emilia Mendes Blekinge Institute of Technology, Sweden
Paula Monteiro Centro de Computação Gráfica, Portugal
Jürgen Münch Reutlingen University, Germany
Oscar Pastor Universitat Politècnica de València, Spain
Dietmar Pfahl University of Tartu, Estonia
Reinhold Plösch Johannes Kepler University Linz, Austria
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Felix Rinker TU Wien, Austria
Miroslaw Staron University of Gothenburg, Sweden
Rini Van Solingen Delft University of Technology, The Netherlands
Daniel Varro McGill University, Canada, and Budapest

University of Technology and Economics,
Hungary

Sebastian Voss fortiss GmbH, Germany
Stefan Wagner University of Stuttgart, Germany
Andreas Wortmann University of Stuttgart, Germany

Contents

Invited Papers

Continuous Software Engineering in the Wild . 3
Eriks Klotins and Tony Gorschek

Motivations for and Benefits of Adopting the Test Maturity Model
integration (TMMi) . 13
Erik van Veenendaal, Vahid Garousi, and Michael Felderer

AI in Software Engineering

Automated Code Review Comment Classification to Improve Modern
Code Reviews . 23
Miroslaw Ochodek, Miroslaw Staron, Wilhelm Meding, and Ola Söder

A Preliminary Study on Using Text- and Image-Based Machine Learning
to Predict Software Maintainability . 41
Markus Schnappinger, Simon Zachau, Arnaud Fietzke,
and Alexander Pretschner

Quality Assurance for Software-Intensive Systems

Specification of Passive Test Cases Using an Improved T-EARS Language 63
Daniel Flemström, Wasif Afzal, and Eduard Paul Enoiu

A Quality Model and Checklists for Reviewing Automotive Test Case
Specifications . 84
Katharina Juhnke, Denis Neumüller, and Matthias Tichy

Author Index . 105

Invited Papers

Continuous Software Engineering
in the Wild

Eriks Klotins1(B) and Tony Gorschek1,2

1 Software Engineering Research Lab (SERL), Blekinge Institute of Technology,
Karlskrona, Sweden

{eriks.klotins,tony.gorschek}@bth.se
2 fortiss GmbH, Munich, Germany

Abstract. Software is becoming a critical component of most products
and organizational functions. The ability to continuously improve soft-
ware determines how well the organization can respond to market oppor-
tunities. Continuous software engineering promises numerous advantages
over sprint-based or plan-driven development. However, implementing a
continuous software engineering pipeline in an existing organization is
challenging.

In this invited position paper, we discuss the adoption challenges and
argue for a more systematic methodology to drive the adoption of con-
tinuous engineering. Our discussion is based on ongoing work with sev-
eral industrial partners as well as experience reported in both state-of-
practice and state-of-the-art.

We conclude that the adoption of continuous software engineering pri-
marily requires analysis of the organization, its goals, and constraints. One
size does not fit all purposes, meaning that many of the principles behind
continuous engineering are relevant for most organizations, but the level
of realization and the benefits may still vary. The main hindrances to con-
tinuous flow of software arise from sub-optimal organizational structures
and the lack of alignment. Once those are removed, the organization can
implement automation to further improve the software delivery.

Keywords: Continuous software engineering · Process improvement ·
Continuous integration and delivery

1 Introduction

Software is a critical component of most products, services, manufacturing pro-
cesses, and back-office functions. The ability to continuously improve software is
crucial for organizations to respond to market opportunities swiftly and remain
competitive. Software is also becoming increasingly more complex. Organizations
seek to improve both the effectiveness and the efficiency of software engineering
to enable further growth without increasing overhead and losing flexibility.

Continuous software engineering is a paradigm aiming to streamline software
engineering by delivering software frequently and in small increments, and by
c© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-04115-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_1&domain=pdf
http://orcid.org/0000-0002-1987-2234
http://orcid.org/0000-0002-3646-235X
https://doi.org/10.1007/978-3-031-04115-0_1

4 E. Klotins and T. Gorschek

doing so reaping different benefits from fast customer feedback, to continuous
value delivery to said customers. Smaller increments are potentially easier to
plan, develop, integrate, and verify. On the customers’ side, more minor updates
ought to create less disruption and are easier to adopt in contrast to big-bang
software updates requiring downtime and catching up with the new features.
Software vendors can collect more focused telemetry and customer feedback
to steer further product development [2]. More frequent and smaller software
updates enable customers to provide more focused feedback empowering them
to participate in steering the product more actively. In turn, this allows collab-
orative and experience-based business models [2].

Continuous integration and delivery (CI/CD) is part of continuous software
engineering. We consider how organizations can apply continuous principles
throughout the whole software engineering process throughout inception, devel-
opment, integration, verification, delivery, operation, use, collection of feedback,
and planning the next software iteration steps [1].

However, few organizations have adopted continuous engineering beyond
automating tests and other repetitive development tasks. To the best of our
knowledge, an industrial-scale end-to-end pipeline from inception of a feature
to collecting and analyzing customer feedback has yet to be demonstrated in
peer-reviewed literature [7].

The potential benefits of continuous software engineering have gained much
attention. Benefits like flexibility, efficiency, and improved time-to-market are
appealing to most companies. However, the ability to retrofit an existing orga-
nization, what parameters determine the suitability, and what trade-offs are
associated with adopting continuous software engineering remain largely unex-
plored.

This invited position paper discusses the potential, and highlights chal-
lenges hindering the widespread adoption of continuous software engineering.
This is a position paper based on ongoing research with a dozen companies
from multiple domains, featuring different market positions and customers, as
part of the KKS research profile project Software Engineering Rethought (see
http://rethought.se).

Overall, we observe that end-to-end continuous software engineering, as per
many recommendations, may not be applicable everywhere [1,2]. However, orga-
nizations can adopt parts of the pipeline to streamline software engineering [4].
The challenge lies in the critical evaluation of the current situation and the
goals of the company to maximize the gains from adopting continuous software
engineering principles.

This paper is structured as follows: Sect. 2 presents the potential of an end-
to-end continuous software engineering. In Sect. 3, we discuss challenges and the
need for further research, before concluding our paper in Sect. 4.

2 Continuous Software Engineering in a Nutshell

The idea of continuous software engineering originates from lean principles in
manufacturing. One of the key principles in lean is to reduce waste and maximize

http://rethought.se

Continuous Software Engineering in the Wild 5

customer value by implementing the flow. That is, linking all relevant production
steps together and minimizing the lead time of each step. In software engineering,
this principle can be implemented by delivering small increments of software [6].

To enable the development and delivery of small software increments, soft-
ware vendors need to implement a software delivery pipeline. The pipeline picks
up the latest changes in the source code and automatically performs testing, inte-
gration, delivery, and other required steps to make the latest changes available
to end-users. Once end-users start using the software, feedback and telemetry is
relayed back to the software vendor for analysis and decision support to steer
further product decisions.

In an idealized scenario, end-users gain access to the latest features and start
generating feedback minutes after developers have finished the development [1,2].

The state-of-the-art view on the end-to-end pipeline, along with the key
steps, is shown in Fig. 1. The figure shows an idealized scenario that requires
adaptations to fit any real-life scenario.

In the figure, we show the key steps of the pipeline denoted with rectangular
boxes. The arrows represent the flow of software and related artifacts through
the pipeline. Dashed lines represent levels of stakeholders involved in product
development.

5 Continuous use

2 Continuous development

1 Continuous
product planning

3 Continuous
Deployment

4 Continuous
Delivery

6 Continuous
Monitoring

5.1 Continuous
Trust

Level II: Product

Level III: Operations

Level IV: End-user / customer

Level I: Engineering

2.1 Continuous 2.3 Continuous
architecture

2.2 Continuous
integration

7 Cross-cutting
concerns

7.1 Continuous
compliance

7.2 Continuous
security

7.3 Continuous
budgeting

7.4 Continuous
innovation

7.5 Continuous
experimentation

7.6 Continuous
improvement

5.2 Continuous
feedback

2.5 Continuous
NFR testing

 Less pain of
preparing releases

Investments: Automated
acceptance testing

 Improved customer
satisfaction, trust, feedback

Investments: Maintenance of
longitudinal relationships

 Improved quality,
scalability, streamlined process

Investments: Automation,
modularisation

Investments: Data
collection and maintenance

react to changing environment

Investments: Organisational
changes

Improved time-to-
market, easier roll-out of new
features

Investments: Adjusting
existing customer
agreements and business
models

Fig. 1. An overview of state-of-the-art continuous software engineering pipeline

We differentiate between four levels of stakeholders, present how continuous
software engineering affects each level, and present several potential opportuni-
ties (PT) associated with adopting continuous engineering. The PT’s are ideal-
ized positive outcomes that can be a result of realizing good continuous practices,
used here to highlight potential benefits only for illustration purposes.

6 E. Klotins and T. Gorschek

Level I: Engineering organization receives plans from the product planning orga-
nization and turns these plans into working software for deployment (Step 3).
The engineering organization implements build, test, integration, and deploy-
ment automation; ensures the organization and software architecture supports
incremental and parallel work. Note that the exact engineering activities are
case-specific. In the figure, we illustrate the most common activities.

PT 1: Automation and parallel work on small increments are shown to improve
efficiency quality, reduce stress and improve developer satisfaction. Independent,
cross-functional teams taking responsibility for specific features and modular
architectures allow scaling of development organization with minimal need for
additional overhead.

Level II: Product organization uses various inputs to devise plans for further
product development (Step 2). These plans guide the engineering organization.
Once the engineering is complete, the engineering organization returns working
software (Step 3).

PT 2: Working with lightweight plans and quick turnaround time allows product
organization to rapidly adjust and explore new market opportunities. In dynamic
markets, extensive market research and analysis could be counterproductive as
the results are already outdated when they arrive. Instead, organizations could
adopt a more experiment-driven approach and try out new ideas. It is possible if
testing new ideas and recovering from unsuccessful experiments are reasonable
effort and risk.

Level III: Operations takes the working software from the product organization
and makes it available for the end-users (Step 4). The working software generates
feedback and telemetry, enabling monitoring of customer behavior (Step 6) and
input for further planning (Step 1).

PT 3: Automating deliveries and frequently delivering to customers helps
improve time-to-market and reduces release pains. Release pain is associated
with developers required to put in extra effort to make sure the upcoming release
is ready for customers. For large releases, it is associated with additional stress
and workload. However, when releasing small incremental updates, the stress
and workload associated with each release are minimized.

PT 4: Implementing telemetry and automated collection of feedback allows mon-
itoring the software in use and making adjustments as needed. Quick turnaround
time allows rapid release of patches and bug fixes, thus reducing the adverse
effects of slipped defects. From the customers perspective, automated, seamless
updates remove the need to update the software manually.

Level IV: End-user/customer organization receives and uses the software (Step
5). Frequent upgrades and continuous access to new features enable service and
experience-oriented business models. Such models encourage trust (Step 5.1),
and the end-users are incentivised to actively participate in the product devel-
opment by providing feedback (Step 5.2).

Continuous Software Engineering in the Wild 7

PT 5: Both customers and the vendor can benefit from more closer experience
and service based collaboration model. It facilitated trust and created incentives
for customers not to switch to another vendor.

Cross-cutting concerns transcends organizational levels. For instance, continuous
improvement (Concern 7.6) attempts to measure and fine-tune the whole cycle
continuously. Continuous experimentation allows a product organization to set
up quick experiments to test market responses to new ideas (Concern 7.5).

PT 6: Continuous collection of data and frequent execution of the delivery
process allows to systematically and continuously improve the process with every
iteration.

PT 7: Transparency in planning and road maps of the development company
can achieve a number of benefits. (i) Internal coordination in the development
organization of what is in the pipe short- and medium term. (ii) Customers can
be prepared of what is coming to prepare and plan for changes and benefits. (iii)
Customers and the development organization can rather via transparency act as
partners as interested customers can be active in the planning and release work.

In summary, adopting an end-to-end continuous software delivery pipeline
as shown in Fig. 1 allows the software vendor to increase internal efficiency and
streamline value creation.

3 Challenges and Future Needs

Despite many potential advantages, the utilization of continuous software engi-
neering remains scarce relative to plan-driven or sprint-based engineering mod-
els. Several of our partner companies have started adopting initiatives mov-
ing towards continuous software engineering. However, the adoption is far from
straightforward and hindered by many challenges. In this section, we present
challenges that, in our view and experience, should be solved to support an
industry-wide adoption of continuous engineering principles.

Challenge 0: Should you do it? The tendency to go for one-size-fits-all solutions
and the power of “the next thing everyone is doing” can cause as much damage
as benefit. A key is to start with an analysis of both the capacity and goals of the
development organization, as well as the capacity and needs of the customer’s
organizations.

The development organization needs to specify goals and to break down
these goals to a level where success (or failure) to achieve these goals can be
“measured” by the organization, continuously as changes are realized. This is
paramount to a risk analysis, and also a cost benefit analysis anchored in reality
and objective observations. A significant bonus is that this activity also enables
creating a common understanding of the potential, implications and direction of
the changes from items impacting individual teams, to entire departments and
the whole organization, as well as how they are dependent and tie together. In
this, it is important to separate between the treatment (change/tool/action/new

8 E. Klotins and T. Gorschek

way of working) and the goals and attainment of the goals to enable an evidence-
based change continuously.

At the same time, knowing your customer and the impact of continuous on
them and the relationship with them is critical. What is the benefit for the cus-
tomer? Is the domain and agreements between the customer and the development
company suitable for a continuous environment? One specific example could be
if the customer wants continuous changes in the product, and is there a tele-
metrics/data feedback system in place to report on new features and changes
enabling feedback? In some domains and for some development organizations
a continuous model is non-controversial, but in some other domains most of
the benefits attained via try-and-learn-improve are impossible to achieve. For
example, an organization and customer operating in (even partly) safety-critical
products, or where down-time of products incur substantial consequences, the
benefit/risk/cost calculation is significantly different.

Significant research needs to be conducted, and usable and useful models
need to be developed, to establishing cost-effective ways to continuously evalu-
ate and course correct the continuous changes needed to achieve a continuous
product development environment; maybe inspired by a hierarchically connected
Goal-Question-Metric model [3] - back-filled by metrics and data collected via
the continuous feedback cycle. As such, a goal and measurement program is cre-
ated (and scaled to be usable and useful for the organization in question) and
it is important to realize that it might lead to the conclusion that continuous
engineering in its entirety and complete idealized form might not fit your organi-
zation. However, there are probably many parts of continuous engineering that
are beneficial for most organizations. Start there.

Challenge 1: Determining Adoption Goals and Constraints. We observe that
organizations often put forward aims like improving speed and efficiency to drive
the adoption of continuous engineering. However, such aims are too vague to be
measured and drive systematic improvements. When interpreted by different
parts of the organization, vague goals may come at odds, or even worse result in
different interpretations of said goals resulting in different direction of work and
sub-optimizations.

For example, an R&D unit could interpret the efficiency as maximizing the
delivery of new experimental features. For operations, efficiency could mean min-
imizing resources to ensure services availability. Without a joint view of what
efficiency means and how it is measured in the given organizational context,
internal deadlocks may arise, hindering the company’s adoption effort and opti-
mal operation.

Attaining specific goals often imply trade-offs. As in the earlier example, it
could be challenging to launch many innovative features and reach high stability
of services simultaneously. Such trade-offs need to be identified and analyzed to
understand the associated constraints and degrees of freedom.

The analysis of organizational goals, constraints, and trade-offs should drive
the organizational change towards continuous software engineering. One powerful
tool in coordinating an organization, and making goals clear is to break-down

Continuous Software Engineering in the Wild 9

goals into measurable effects or metrics. This requires a number of steps. The
terms “value”, “efficiency”, or “effectiveness” need to be defined for each part of
the organization [3]. These definitions need to be coordinated and streamlined
- in essence shared. Then, metrics on how to ascertain level of success have to
be detailed very early. How to measure if you are improving towards a goal is a
prerequisite before adopting any treatment or change. For example, if you say a
specific practice or set of practices should be realized to improve customer value,
what type of customer value, and how do you measure it? This analysis would
also pinpoint bottlenecks, inefficiencies, and areas of improvement, in addition
to acting as a coordinating force as an organization realizes changes. You need
to be able to measure benefits of a change as well as you measure the cost of
said change.

Challenge 2: Considering the Return-of-Investment Perspective. Retrofitting
an organization with a new continuous engineering pipeline and new ways of
working is a substantial investment. The investments should be justified with
potential benefits and be aligned with organizational objectives (Challenge 1).
Notably, the organization must be prepared to realize the potential and materi-
alize the benefits.

For example, an organization may invest in data collection (PT 5) and gain
the potential of improved data-driven decisions (PT 2). However, if the rest of
the organization is not ready to use the data in decision support, the potential is
not realized, and the investment is wasted. Furthermore, customers may be slow
in adopting new features, thus delaying the feedback and nullifying its value to
the organization.

The organization should perform a cost-benefit analysis to gauge the viability
of any goals, new practices, and working methods. Adoption champions should
do such analysis in parallel with determining adoption goals, trade-offs, and
constraints, see Challenge 1.

To address Challenges 1–2, we propose a model supporting inventory of goals,
trade-offs, and return-of-investment calculation to support the systematic adop-
tion of continuous practices. As a part of this analysis, the break-down of goals
into defining the terms used to establish a common vocabulary, then establish-
ing how to “measure” goal attainment by breaking down goals into measurable
items. This also allows for course corrections during the changes associated with
retrofitting.

Challenge 3: Focus on Cost Savings Instead of Value and Potential Creation. Our
industry partners often mention the need to reduce cost and improve efficiency
(PT 1) as reasons for considering continuous software engineering. Potential
benefits like new value streams, improved time-to-market, and new business
models are rarely, if at all, mentioned.

The question if adopting continuous practices would provide some cost sav-
ings is flawed. We compare such a question to asking whether eating health-
ier will be cheaper. Both eating healthier and adopting continuous engineering
will likely cost more. Developing tests, maintaining test suites and automa-
tion infrastructure, collecting and maintaining test data, refactoring software

10 E. Klotins and T. Gorschek

architectures, and driving organizational adjustments will push the overall cost
of software engineering upwards. At the same time, speed and flexibility will open
up opportunities for new offerings enabling the organization to become faster at
responding to market opportunities, among other benefits. Eating healthier may
cost more, but may enable you a better and longer life.

We propose emphasizing the business value arising from streamlining soft-
ware delivery over the exclusive focus on potential cost savings. More cross-
disciplinary studies are needed to explore the business value perspective. We
observe that continuous shares many characteristics with so called “digital trans-
formation”. Considering how continuous engineering fits into the broader organi-
zational transformation could help to shift the focus from cost savings to unlock-
ing the organizational potential [5].

Challenge 4: Remembering Conway’s Law. In 1967, M. Conway formulated an
adage that organizations develop systems that mimic their communication struc-
ture. In software engineering terms, software architecture should follow organi-
zational structures. To change the prior, one needs to change the latter first.

Best practices of continuous software engineering dictate that development
work should be done by real cross-functional teams that own the development of
whole features. A team should have full responsibility from generating improve-
ment ideas to development, testing, delivery, and telemetry analysis. This prac-
tice allows maintaining a modular architecture and to minimize the gap between
organizational structures and software architectures.

From discussions with our partner companies, we learned that organizations
often find their software architectures monolithic and poorly suited for paral-
lel development, automation, and modular deployments. The software travels
through various organizational silos, each performing a specific function without
the complete picture. Handover from one silo to another creates friction and
bottlenecks.

Attempts to break the software monolith often lead to failure as the sur-
rounding organization remains the same. Changing the organizational structures
is often extremely challenging due to internal inertia and resistance to changes.

We propose to explore the adoption of continuous engineering practices from
the organizational view first. That is, analyze what organization silos and bottle-
necks currently limit the continuous flow of software. Once organizational ineffi-
ciencies are addressed, the software delivery process can be further improved with
tools such as automation. In addition, the detailed goals and following follow-up
(metrics) should be owned by the parts of the organization (the teams) that own
the module or part of the architecture. This way you can measure the fit of the
organization to the goals of development. For example, a change in organiza-
tional structure might result in (metric) less waiting times between teams.

Challenge 5: Ever-Increasing Complexity. Contemporary market-driven software
engineering exists in a dynamic environment. It faces mercurial market influ-
ences, changing organizational goals, technologies, and the growing size and
complexity of software and the surrounding organization.

Continuous Software Engineering in the Wild 11

A single person, or a small group of people, can no longer grasp the com-
plexity and make optimal and timely decisions using their expertise alone. This
increase in complexity has far-reaching implications for how organizations make
decisions.

One viable way forward could be to consider data collection and analysis as
an integral part of the product and the engineering process. The organization
can use data to support decisions both on what features to develop (What to
build?) and how to improve the engineering process (How to build?).

Furthermore, retrospective analysis, that is, analyzing past events, has lim-
ited use in an increasingly changing environment. There is a potential to explore
the applicability of inferential statistical methods, simulations, and machine
learning techniques to make relevant predictions. This is however subject to
significant research initiative to develop transparent tools and methods that can
be trusted by practitioners to predict and simulate developments, at least in the
short-term.

4 Conclusions

This invited position paper analyzes continuous software engineering and pin-
points several challenges of adopting ongoing software engineering from our
collaboration with industrial partners. The challenges emphasize the need for
systematic methods to analyze organizational goals, context, structures, con-
straints, among other contextual factors, to remove inefficiencies and realize the
full potential of software-intensive products and services.

We wish to highlight that most inefficiencies and obstacles to streamlined
value delivery can be traced to the lack of organizational alignment and coor-
dination. The spirit of continuous engineering is to identify and remove such
hindrances systematically. In the end, continuous software engineering is more
about being pragmatic and disciplined in engineering than it is about automa-
tion.

References

1. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

2. Humble, J., Kim, G.: Accelerate: The science of lean software and DevOps: Building
and scaling high performing technology organizations. IT Revolution (2018)

3. Khurum, M., Gorschek, T., Wilson, M.: The software value map-an exhaustive col-
lection of value aspects for the development of software intensive products. J. Softw.
Evol. Process 25(7), 711–741 (2013)

4. Klotins, E., Gorschek, T.: Towards cost-benefit evaluation for continuous* software
engineering activities. Rev. Empir. Softw. Eng. J. (2021)

5. Klotins, Eriks, P.A.E.: The unified perspective of digital transformation and con-
tinuous software engineering. In: Proceedings of 5th International Workshop on
Software-Intensive Business (IWSIB) (2022)

12 E. Klotins and T. Gorschek

6. Poppendieck, M., et al.: Principles of lean thinking. IT Manage. Select 18(2011),
1–7 (2011)

7. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deployment:
a systematic review on approaches, tools, challenges and practices. IEEE Access 5,
3909–3943 (2017)

Motivations for and Benefits of Adopting
the Test Maturity Model integration (TMMi)

Erik van Veenendaal1, Vahid Garousi2,3, and Michael Felderer4(B)

1 TMMi Foundation, Chester, UK
erik@erikvanveenendaal.nl

2 Queen’s University Belfast, Belfast, UK
v.garousi@qub.ac.uk

3 Bahar Software Engineering Consulting Limited, Carrickfergus, UK
4 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

Abstract. Test Maturity Model integration (TMMi) is a popular model for matu-
rity assessment and capability improvement of software testing practices in indus-
try. Originally inspired by theCapabilityMaturityModel Integration (CMMI), and
managed by the TMMi Foundation, the TMMi specification provides guidelines
for assessing and improving testing capabilities of teams and organizations. In this
invited paper, we discuss motivations for and benefits of adopting the TMMi. The
discussion is based on an international user survey, which received data from 74
companies that have received TMMi assessments and certifications.

Keywords: Test Maturity Model integration · TMMi · Test process
improvement · Software quality · Software testing

1 Introduction

In response to the growing demand for software quality and productivity, various ini-
tiatives, models, and approaches have been presented in the software industry since the
1980’s. Examples include the Capability Maturity Model Integration (CMMI) model
(cmmiinstitute.com) and the ISO/IEC 15504 standard, also known as the Software
Process Improvement and Capability Determination (SPICE) model.

Over the past three decades, CMMI adoption has gradually increased, mostly for
organizations working in governmental and defense projects. According to the CMMI
Institute (cmmiinstitute.com/learning/appraisals/results), more than 10,000 companies
have received CMMI appraisals (certifications).

While studies have reported that models such as CMMI and SPICE are useful,
their primary focus is process improvements on the “overall” software development
process lifecycle (SDLC). Despite the fact that software testing often accounts for a
non-trivial portion of a typical software project in terms of time, budget and costs, such
process improvement models do not provide specific improvement recommendations

© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 13–19, 2022.
https://doi.org/10.1007/978-3-031-04115-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-04115-0_2

14 E. van Veenendaal et al.

for software testing. For this reason, various models have been developed for dedicated
improvements of software testing practices. A 2018 survey paper in IEEE Software [1]
reported a catalog of 58 models for test maturity and capability improvements, e.g., the
Test Maturity Model integration (TMMi) (tmmi.org), which, according to the paper [1],
was the most widely used model.

Originally inspired by the CMMI, and managed by the TMMi Foundation, the
TMMi model provides guidelines for assessing and improving testing capabilities.
According to the internal assessments database of the TMMi Foundation, in total, 261
companies/teams were assessed in 28 countries by the end of 2021.

Since its inception in 2010, the TMMi Foundation has been proactive in promoting
the usage of the TMMi and also in surveying itsmembers and certified companies to track
the state of the test maturity worldwide. One recent such activity was an international
user survey of companies who have received the TMMi certifications. 74 companies
participated in the survey by providing data. We report and discuss some of the results
from that survey, focusing on motivations for and benefits of adopting the TMMi.

This invited paper is organized as follows. Section 2 provides a brief overview of
TMMi. Section 3 discusses motivations for adopting TMMi. Section 4 discusses benefits
of adopting TMMi. Finally, Sect. 5 concludes the paper.

2 A Brief Overview of TMMi

The roots of TMMi reach back to Gelperin and Hetzel’s evolutionary testing model [2],
published in 1988, and an early test improvement model named Test Maturity Model
(TMM) [3]. By seeing the need for a more established test improvement model, several
test and quality experts (volunteers) came together (mainly based in Europe) and founded
theTMMiFoundation in 2010.Thefirst stable versionof theTMMi specification (version
1.0) was published by the Foundation in 2012 [4]. The latest version of the specification,
as of this writing, is 1.2 [5], published in 2018. The TMMi Foundation is supported by
the so-called TMMi Local Chapters that publicize and organize TMMi-related services
and activities locally in their country or region. At the time of this writing, 26 TMMi
Local Chapters, together covering 54 countries, are in existence, e.g., in China, the USA,
Spain, Brazil, and France.

TMMi uses the concept of maturity levels for process evaluation and improvement.
Furthermore, for each maturity level, a set of process areas, goals, and practices are
identified. TMMi is alignedwith international testing standards, syllabi, and terminology
of the International Software Testing Qualifications Board (ISTQB), which has certified
over 770,000 test professionals (October 2021). With TMMi, organizations can have
their test processes objectively evaluated by accredited assessors and improve their test
processes.

TMMi has a “staged” scheme for test process assessment and improvement. It con-
tains stages or levels through which an organization passes as its testing process evolves
from one that is ad-hoc, also called “initial or unmanaged” (level = 1) to one that is
managed (level = 2), defined (level = 3), measured (level = 4), and optimized (level =

Motivations for and Benefits of Adopting the TMMi 15

5). TMMi has fivematurity levels. Each of them has several Process Areas (PA). Achiev-
ing each level ensures that the requirements (all process areas) of that level have been
achieved. Each PA has several specific goals (SG) and specific practices (SP). Across the
five levels, there are in total 16 PAs, 50 specific goals (SG), and 173 specific practices
(SP). Details of those elements can be found in the TMMi framework [5].

For instance, under maturity level 2 (“managed”), there are five process areas, e.g.,
PA 2.1 (Test policy and strategy). This PA has three SGs: SG 1 (Establish a test policy),
SG 2 (Establish a test strategy), and SG 3 (Establish test performance indicators). The
above SG 1, in turn, has three SPs: SP 1.1 (Define test goals), SP 1.2 (Define test policy),
and SP 1.3 (Distribute the test policy to stakeholders).

Amain underlying principle of the TMMi is that it is a “generic” model applicable to
various lifecycle models and environments. Several experience reports and case studies
from the industrial application of TMMi have been published, e.g., [6] and [7].

In a recent IEEE Software paper [8], we presented a status report about TMMi,
the trends of worldwide test maturity and certifications, and how companies have been
ranked in each of its process areas (PA’s). Our analysis showed that, since starting the
TMMi assessments in 2011, the number of annual assessments has been between 15–30
companies each year. In 2019 (20 formal assessments), 2020 (28 formal assessments) and
2021 (39 formal assessments), there has already been a considerable growth in the uptake
of the TMMi.We also found that for TMMi levels 2 and 3, PA2.5 (Test environment) and
PA3.4 (Non-functional testing) have relatively more “not achieved” scores compared to
other PAs. It seems that most companies have challenges in satisfying these two PAs.
The important aspects of what the motivations for and benefits of adopting the TMMi
are had not been systematically investigated so far, and that is the goal of our recent
2020 user survey, from which the current paper has been written.

3 Reasons (Motivations) for Adopting TMMi

Figure 1 shows the respondents’ opinions on reasons for adopting TMMi. Enhanc-
ing software quality, increasing testing productivity, and reducing product risk were
mentioned as the top three reasons, which essentially form the project management’s
“golden triangle”. This indicates better management of testing is an important motiva-
tion to adopt TMMi. Furthermore, achieving TMMi certification is a key motivation for
adopting TMMi, which indicates the importance of certification among TMMi certified
organizations and their business operations. Good engineering practices like standard-
ized compliance, delivery predictability and improved test engineering discipline are of
moderate importance for motivating the adoption of TMMi. Meeting customer require-
ments, improving team morale, accelerating software delivery, and improving business
alignment provide only a low motivation for adoption. Finally, reducing project costs
provides the lowest motivation to adopt TMMi.

16 E. van Veenendaal et al.

70%, 52

68%, 50

62%, 46

62%, 46

46%, 34

43%, 32

43%, 32

32%, 24

28%, 21

27%, 20

27%, 20

18%, 13

0 10 20 30 40 50 60

To enhance software quality

To increase testing productivity

To reduce product risk

To achieve TMMi certification

To achieve standard compliance

To improve delivery predictability

To improve test engineering discipline

To meet customer requirements

To improve team morale

To accelerate software delivery

To improve business alignment

To reduce project costs

Num. of participants (total=74)

Fig. 1. Motivations for adopting TMMi.

4 Benefits of Adopting TMMi

Figures 2 and 3 show the results on benefits of adopting TMMi. Enhancing software
quality, increasing testing productivity, and reducing product risk are not only high
motivations but actually also observed benefits of adopting TMMi, by the respond-
ing organizations. Achieving TMMi certification is also reported to be a benefit. An
interesting finding is that the internal factors of improved test engineering discipline
and improved team morale are reported to be major benefits but were only moderate
motivations to introduce TMMi. They can almost be considered “free” bonus when
implementing TMMi.

Reduced project costs are not only the least motivation but also the least experienced
benefit of adopting TMMi. This might indicate that TMMi is not suitable for organiza-
tions where reducing project cost is significantly more important than enhancing product
quality, engineering discipline, or compliance. It may also indicate that since there is
little motivation, the opportunities that are offered within TMMi to reduce projects costs
are not in focus and/or not given priority.

The list of motivations/benefits from the survey was designed such that they can be
categorized under six headings: product quality, test efficiency, compliance, people, test
predictability, and business alignment. For example, reduced product risks and reduced
number of defects both contribute to product quality, increased testing productivity
contributes to test efficiency, and an improved test engineering discipline and improved
team morale contribute to the people aspect. Changing the view from the individual
benefits to the categorized one provided the outcome shown in Fig. 4.

Motivations for and Benefits of Adopting the TMMi 17

SW quality

Test
productivityProduct risk

SW delivery

Busines
alignment

Delivery...

Project cost

Team morale

Disciplined
testing

Customer req.

Compliance

Certification

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Ac
tu

al
 b

en
ef

its

Expected benefits (motivations)

Fig. 2. Expected versus actual benefits when adopting TMMi.

72%, 53

69%, 51

66%, 49

68%, 50

51%, 38

39%, 29

55%, 41

30%, 22

50%, 37

30%, 22

36%, 27

19%, 14

0 10 20 30 40 50 60

Enhanced software quality

Increased testing productivity

Reduced product risk

Achieve TMMi certification

Standardized compliance

Improved delivery predictability

Improved test engineering discipline

Met customer requirements

Improved team morale

Accelerated software delivery

Improved business alignment

Reduced project costs

Num. of participants (total=74)

Fig. 3. Benefits of adopting TMMi.

A high 88% of the TMMi users are observing benefits for product quality (e.g.,
reduced product risks and/or reduced number of defects). Benefits are also commonly
observed in terms of test efficiency (77%), compliance (84%), and regarding the people
aspect (77%). Test predictability and business alignment both have a lower score. One
should understand that test predictability is not fully achieved with practices such as test
estimation and test project tracking at TMMi levels 2 and 3. Practices at higher TMMi
levels, e.g., measurement (in level 4) and quality control (in level 5), are often needed
to achieve test predictability. Hence, only when companies achieve TMMi level 4 or 5,

18 E. van Veenendaal et al.

Fig. 4. Ration of respondents which reported different benefits of adopting TMMi.

test predictability benefits are observed and experienced. Also, when business alignment
is low in the motivation list, the opportunities that are offered within TMMi to provide
business alignment are probably not enough in focus. It is also an indicator that more
specific practices on achieving business alignment (and value) should perhaps be present
in the next release of the TMMi.

5 Conclusion

In the context of TMMi, a logical question to explore is about the motivations of com-
panies to assess and improve their processes using TMMi. Results of the 2020 survey,
as reported in this paper, show that the main reasons for adopting TMMi are to: enhance
product quality, reduce product risk, increase testing productivity (efficiency), bench-
mark against an internationally-used model, and increasing the prestige of testing teams.
Most survey respondents reported observing those benefits after adopting TMMi. Thus,
most organizations have achieved the objectives they set when starting to do a TMMi
based test process improvement project. This is confirmed by the high satisfaction ratio
from the user survey. In answering the survey question, “In general, have the TMMi-
based test process improvement efforts been successful?”, 87%of respondents stated that
TMMi fully meets or exceeds their expectations; they are either satisfied, very satisfied,
or extremely satisfied with benefits achieved or exceeded.

References

1. Garousi, V., Felderer, M., Hacaloğlu, T.: What we know about software test maturity and test
process improvement. IEEE Softw. 35(1), 84–92 (2018)

2. Gelperin, D., Hetzel, B.: The growth of software testing. Commun. ACM 31(6), 687–695
(1988)

3. Burnstein, I., Homyen, A., Grom, R., Carlson, C.R.: Amodel to assess testing processmaturity.
Crosstalk J. Defense Softw. Eng. 11, 26–30 (1998)

4. TMMi Foundation: TMMi specification (reference model), release 1.0 (2012)
5. TMMi Foundation: TMMi specification (reference model), release 1.2 (2018)

Motivations for and Benefits of Adopting the TMMi 19

6. van Veenendaal, E., Shang, C., Xu, Y.: Achieving TMMi Level 3 – a Chinese case study. Qual.
Matters Mag. 8, 18–21 (2019)

7. Rungi,K.,Matulevičius,R.: Empirical analysis of theTestMaturityModel Integration (TMMi).
In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2013. CCIS, vol. 403, pp. 376–391.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41947-8_32

8. Garousi, V., vanVeenendaal, E.: TestMaturityModel integration (TMMi): trends of worldwide
test maturity and certifications. IEEE Softw. 39(2), 71–79 (2022)

https://doi.org/10.1007/978-3-642-41947-8_32

AI in Software Engineering

Automated Code Review Comment
Classification to Improve Modern

Code Reviews

Miroslaw Ochodek1(B) , Miroslaw Staron2 , Wilhelm Meding3,
and Ola Söder4

1 Computer Science, Poznan University of Technology, Poznań, Poland
miroslaw.ochodek@cs.put.poznan.pl

2 Computer Science and Engineering, Chalmers University of Gothenburg,
Gothenburg, Sweden

miroslaw.staron@gu.se
3 Ericsson AB, Stockholm, Sweden
wilhelm.meding@ericsson.com

4 Axis Communications, Lund, Sweden

ola.soder@axis.com

Abstract. Modern Code Reviews (MCRs) are a widely-used quality
assurance mechanism in continuous integration and deployment. Unfor-
tunately, in medium and large projects, the number of changes that
need to be integrated, and consequently the number of comments trig-
gered during MCRs could be overwhelming. Therefore, there is a need
for quickly recognizing which comments are concerning issues that need
prompt attention to guide the focus of the code authors, reviewers, and
quality managers. The goal of this study is to design a method for auto-
mated classification of review comments to identify the needed change
faster and with higher accuracy. We conduct a Design Science Research
study on three open-source systems. We designed a method (Comment-
BERT) for automated classification of the code-review comments based
on the BERT (Bidirectional Encoder Representations from Transform-
ers) language model and a new taxonomy of comments. When applied
to 2,672 comments from Wireshark, The Mono Framework, and Open
Network Automation Platform (ONAP) projects, the method achieved
accuracy, measured using Matthews Correlation Coefficient, of 0.46–0.82
(Wireshark), 0.12–0.8 (ONAP), and 0.48–0.85 (Mono). Based on the
results, we conclude that the proposed method seems promising and
could be potentially used to build machine-learning-based tools to sup-
port MCRs as long as there is a sufficient number of historical code-
review comments to train the model.

Keywords: Modern Code Reviews · Machine learning · BERT

c© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 23–40, 2022.
https://doi.org/10.1007/978-3-031-04115-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_3&domain=pdf
http://orcid.org/0000-0002-9103-717X
http://orcid.org/0000-0002-9052-0864
https://doi.org/10.1007/978-3-031-04115-0_3

24 M. Ochodek et al.

1 Introduction

Modern Code Reviews [3] require a rapid response from the reviewers in order
to facilitate short feedback loops and quick responses to the authors. Compa-
nies utilizing continuous integration, deployment, and delivery work actively to
increase the speed of review and seek different methods to improve it [22]. Tech-
niques used to speed up the review can vary, depending on the place in the
review process, from automated recommendation of lines to review [18], auto-
mated reviewer recommendation [25], identification of refactoring possibilities
[14] or attempts of automated code repairs [30].

However, in practice, during the phase of code review, performed using tools
like Gerrit or GitHub, the review comments can vary in how specific they are,
which hinders a quick identification of what should be improved in the code.
Less specific comments, usually meant for long-term improvement of code, or
even as a general discussion, can lead to slower development by postponing code
integration. A discussion between code reviewer and code author, if they do
not lead to a change, postpone the integration unnecessary and could be done
outside of the system [24].

Leading roles in software development organizations, such as project man-
agers, quality managers or measurement program leaders, continuously seek for
improvements of the ways of working. Their responsibilities, however, do not
provide them with the possibility to read and analyze all comments in the code
review databases as the comments are meant for software developers, not quality
managers. Therefore, automated support and a taxonomy can greatly improve
their work. Such a taxonomy, taken together with defect reports, is a very pow-
erful tool for finding systematic improvements in the ways of working of modern
companies, especially when the development is distributed or done in empowered
software development teams.

At the same time, the ability to quickly identify what should be changed
in the code can speed up the review process, as well as the integration and
subsequent testing. A good classification of the requested change can also lead
to structural improvements in software development projects. In our previous
studies, we established that it is possible to pinpoint which lines should be
manually reviewed by using sentiment analysis to classify comments [23]. We
have also demonstrated that it is possible to train a machine learning classifier to
find lines of code that violate a specific coding guideline, defined by architects and
designers [18]. However, an open issue is how to pinpoint the potential solution
given a review comment written in a free text in the context of continuous
integration (i.e. modern code reviews). Therefore, in this paper, we set off to
address the following research question:
How to automatically classify code review comments to determine the focus of
the code revision to be made?

Our results are two-fold. First, we designed a taxonomy of the purpose of
code review comments and, second, a BERT-based tool for automatic classi-
fication of new comments. We evaluated this method by applying it to three
open-source projects: the Mono Framework, Wireshark, and Open Network

Automated Code Review Comment Classification 25

Automation Platform (ONAP)—with a sample of 2,672 code-review comments
that were extracted and manually labeled. The results show that for the cate-
gories with many comments (over 50), the results are strong (MCC of over 0.68
and accuracy of 0.97). For the categories with a lower number of comments, the
accuracy is visibly lower (the lowest observed MCC was equal to 0.12 for one of
the categories with only 19 review comments).

The remaining of the paper is organized as follows. In Sect. 2, we present
the most relevant related work for this study are relate our results to these
works. In Sect. 3, we present the taxonomy of the review comments and the
machine learning mode which can classify new comments. In Sect. 4, we present
the design of the research to evaluate the taxonomy and the tool. Section 5
presents the results from the evaluation of our proposed method on the three
open source projects. Section 6 discusses the results from the perspective of their
applicability to summarize comments and consistency between projects. Finally,
we present the conclusions in Sect. 7.

2 Related Work

The field of code reviews and their analysis has been active since the 1970s and
several systematic reviews of this field exist, e.g. Wang et al. [29]. Initially, the
research focused on manual code reviews in form of walk-throughs where an
experienced software engineer reviewed the code of others. An interesting side
result of the work was that the modern code review research was done on only a
few open-source projects—Qt, OpenStack, and Android. This work identified the
problem which we address in our work—supporting the classification of review
comments. This classification is needed to accelerate the reviews and to perform
root-cause analysis afterward.

A systematic review of literature about modern code reviews (MCRs), con-
ducted by Davilla et al. [10], studied documented practices of modern code
reviews. Among others, they have found that “the review feedback is perceived as
valuable when it provides an opportunity to learn and improve the code,” which
we address in this paper. Thanks to our industrial collaborations, we found that
providing a taxonomy of code review comments can support this learning and
systematic root cause analyses. The systematic review by Davilla et al. proposed
a taxonomy of code reviews (finding 7), which we considered in our study, but
revised as we needed to use more fine-grained categories.

In a similar manner, Badampuri et al. [4] studied literature in the area of mod-
ern code review and found that the majority of solutions proposed in that area
are related to motivation enhancement, support for collaborative code review.
They have also found several studies in the area of using static analysis to identify
problematic code fragments and to review them. In our work, we want to go one
step further and increase the ability to “codify” the knowledge of collaborative
code reviews.

Several articles discuss the impact of code reviews, for example [19] or [27]
who discuss it from the developers’ perspective. Code reviews can trigger refac-
torings, but they need to be specific in their intent, otherwise, a code review

26 M. Ochodek et al.

risks being considered as a discussion trigger. However, there are studies that
acknowledge negative aspects of modern code reviews, e.g. design degradation
[26], slipping security defects [20] or staff turnover [17]. Therefore, automated
support for this manual activity is still needed.

The static analysis tools and techniques are found to be helpful in code
reviews, as Balachandran established [5]. They became a de-facto standard in
automated support of code quality checks in continuous integration [21]. How-
ever, the static analysis techniques are not meant for that purpose and there-
fore often result in many false-positives, i.e. warnings which do not need to be
addressed directly.

We could also observe that there are specific studies on how to identify
selected violations of coding guidelines using machine learning. [2] proposed to
use Normalised Compression Distance to find potential string overflows, null
pointer references, memory leaks, and incorrect API usage. [8] reported findings
on using machine learning techniques to detect defects in C programs at Ora-
cle. They concluded that the ML-based tools were not suitable replacements for
static program analysis tools due to the low precision of the results.

3 CommentBERT – Classifying Code-Review Comments

We propose a taxonomy of the focus of code-review comments and build a
machine-learning-based model that allows to automatically classify code com-
ments according the proposed taxonomy. The goal of the taxonomy is to provide
a structure to group similar comments – for root cause analysis – and link them
to changes in the source code – for improving the speed of code reviews.

3.1 Classifying Comments According to Their Focus

Figure 1 presents the taxonomy of comments. The taxonomy was designed as
a result of topic analysis of comments from the Wireshark project [9]. At first,
one of the researchers analyzed 1,248 code-review comments and incrementally
generated topics. The topics were used to label each of the comments. In the fol-
lowing steps, the initial version of the taxonomy (with some exemplary comments
belonging to each of the categories) was discussed between the researchers. The
code-review comments categories resulted from the analysis are non-exclusive. It
means that one comment could be categorized into more than one category. It is
important, as commenting can take very different forms and the goal of the tax-
onomy is to guide the authors and reviewers rather than finding the best, single,
fit for the comment. Finally, another researcher used the resulting taxonomy to
verify the labeling of the dataset. Any doubts on how to categorize particular
comments were discussed by the researchers.
The categories of the taxonomy are as follows.

code design – the comment is about a structural organization of code into mod-
ules, functions, classes, and similar, e.g. “code snippet inherited from original
dissector. I have refactored the code to have the decompression in a single place

Automated Code Review Comment Classification 27

Fig. 1. Taxonomy of comments. Each review comment can be categorized to one or
more categories.

now it should be a bit better”. It is also about overriding, e.g. “this will not
work for IA5. Why not simply override dataCoding before the switch?”, and
dead/unused code, e.g. “This is duplicated code, put outside the if-else.”.

code style – the comment is about the layout of the code, readability issues, for
example: “add blank line” or “formatting: remove space after 4”.

code naming – the comment is about issues related to naming code con-
structs, tables, for example “please use lowercase for field name =>
‘isakmp.sak.nextpayload’” or “Add name of dissector XXX: use custom...”

code logic – the comment is about algorithms used, operations on data, calling
functions, creating objects, and also the order the operations are performed, for
example “missing validation of chunk size, potential buffer overflow?” or “should
this be initialized with NULL or something?”

code io – the comment is about input/output, GUI, for example: “What about
showing the hub port, i.e. ‘address:port’? So the normal endpoints would display
as ‘address.endpoint’ and split would display as ‘address:port’” or “Debug output
to be removed?”.

code data – the comment is about data, variables, tables, pieces of information,
strings, for example: “You probably want encoding ENC BIG ENDIAN here.
You could also use proto tre add item-ret()int() here to avoid fetching the value

28 M. Ochodek et al.

twice. This is true for other places in the code too” or “Are these ports registered
with IANA? If not, I am not sure if they should be used here”.

code api – the comment is about an existing API or suggestions how the API
should evolve, for example: “This needs to remain the same as before. The dissec-
tion must continue therefore the latest offset must be updated after adding to the
tree. offset += dissect dsmcc un session nsap(tvb, offset, pinfo, sub sub tree)”
or “If they are non-standard and uncommon, I would replace them with: dissec-
tor add for decode as(“udp.port”, otrxd handle)”.

code doc – the comment concerns the documentation or comments in the source
code, for example: “Which 3GPP document specifies this AVP?” or “Maybe
remove this comment now? We do not support older drafts anymore”.

compatibility – the comment is related to the operating system’s compatibil-
ity, tools’ compatibility, versions, issues that appear only on certain platforms,
for example: “the Ubuntu failure is to the revert of my previous change (only
on btnImport clicked() call must be guarded)” or “I can empirically confirm that
/proc/self/exe somehow expands to the real path. So this code would probably
have no effect on Linux”.

rule def – the comment can be used to elicit a definition of coding/style rules,
note it has to explain the broader context, e.g., “‘add blank line’ is not a defini-
tion since we don’t know why the blank line should be added here; on contrary,
‘use space for indent (like rest of file)’ states that spaces should be used for inden-
tation (in general)” or “remove comment when it doesn’t help understanding the
code”.

config commit patch review – the comment is about patches, commits, review
comments, for example: “To be done in the next patch set” or “Right, if you
decide to do a formatting patch, it is best to do that in a separate change”.

config building installing – the comment is about a process of building, installing,
and running the product, for example “This is not required. Already done by the
install script” or “let’s remove this example, installing binary packages across
different distros is not supported and we should not recommend users to skip
signature checking, etc.”.

Naturally, this taxonomy can be used manually to understand and classify
each comment, but the best support is to use an automated classifier of these
comments. The classifier needs to be based on techniques from natural language
processing and has to utilize a pre-trained model as the number of comments
in a typical repository is not in parity to the diversity of the natural language
constructs available.

Automated Code Review Comment Classification 29

3.2 Training BERT for Code-Review Comments

We based our classifier on the BERT (Bidirectional Encoder Representations
from Transformers) language model [11], which is a deep artificial neural network
based on a multi-layer bidirectional Transformer [28] (however, technically, it
uses only the Transformer Encoder stack). The model is pre-trained on a large
corpus of plain text for masked word prediction and next sentence prediction
tasks. Such a base BERT model can be further trained to a specific downstream
task.

ENCODER

ENCODER

[CLS] You should implement virtual bool

1 2 3 4 5 6 128

1

ENCODER

ENCODER

2

12

BERT

768 768 768 768 768

co
de

_d
es

ig
n

co
de

_s
ty

le

co
de

_n
am

in
g

co
de

_l
og

ic

co
de

_i
o

co
de

_d
at

a

co
de

_a
pi

co
de

_d
oc

co
m

pa
tib

ili
ty

ru
le

_d
ef

Dropout = 0.1

Reviewer

0.2 0.1 0.3 0.6 0.3 0.6 0.9 0.2 0.1 0.0

0.0 0.0

Threshold = 0.5

Fig. 2. CommentBERT architecture.

The architecture of our model, which we call CommentBERT is presented in
Fig. 21. There is a related model called CodeBERT model [12], however, it was

1 https://github.com/mochodek/bertcomments.

https://github.com/mochodek/bertcomments

30 M. Ochodek et al.

trained using the pairs of class methods’ code and their documentations what
makes it specialized for so-called NLP-PL tasks, e.g., searching code fragments
based on queries in a natural language, rather than a general-purpose usage).

The input to CommentBERT is a tokenized code-review comment. BERT
uses a WordPiece tokenizer [32], which uses a fixed vocabulary to tokenize words
in the text (an unknown word could be split into sub-words that are present in
the vocabulary). We have set the input length to 128 tokens based on the analysis
of the lengths of code-review comments.2 Finally, BERT adds a special token
[CLS] at the beginning of the input sequence.

The input is transformed by going through 12 layers of BERT encoders. Each
encoder outputs the hidden state of 768 numbers for each of the tokens in the
input sequence. The output for the [CLS] token has a special meaning since it
is considered to represent the whole sequence. On top of that output, we build
a multi-label classifier by introducing a dropout layer (probability = 0.1) to
prevent overfitting the model and a dense output layer with 12 neurons—one
per category in our taxonomy. We use the binary cross-entropy loss function and
the sigmoid activation function for each of the outputs.

3.3 Example of Application of the Taxonomy

Figure 3 presents an example of how the taxonomy is applied for two comments
from the Wireshark project.

The comment at the top of the figure is about the data type as it refers to the
length of the type. It is also about the algorithm, as the reviewer suggests that
the length is not known at that place of the algorithm. Finally, it also mentions
a potential problem with the build failure, thus it is about the building process.

The comment at the bottom of the figure is about the process of building
the product (compilation) and about the fact that this problem was addressed
previously in another patch—which categorizes it into the category of patch
review.

This example, in addition to illustrating the categorization, shows that there
can be a dependency between the size of the comment and its categories. Longer
review comments tend to raise more issues and therefore can be assigned to
several classes.

4 Research Design

Since the goal of our study is to investigate how to automatically classify code
review comments to determine the focus of the code revision to be made?, we
are going to follow the Design Science Research (DSR) methodology [31]. DSR
focuses on developing and evaluating artifacts and solutions for practical pur-
poses. In particular, we focus on designing and validating the treatment (the
CommentBERT model for classifying code-review comments according to the
proposed taxonomy), which are two of the DSR-engineering-cycle steps.
2 The input length of 128 tokens corresponds to the 98 percentile of the comment

lengths distribution in the dataset of code reviews under study.

Automated Code Review Comment Classification 31

Fig. 3. An example classification of two comments.

4.1 Research Questions

We defined the following research questions that need to be answered to validate
the CommentBERT model:

– RQ1: How accurate the CommentBERT model could be when classifying
code-review comments according to the proposed taxonomy, assuming it is
trained on and applied to the same project?

– RQ2: How accurate a pre-trained CommentBERT could be when applied
cross-project?

– RQ3: How the accuracy of the CommentBERT is affected by the number of
training examples?

RQ1 is a central research question of the validation study. We would like
to investigate to what degree the CommentBERT model can be trained on and
applied to classify code-review comments within the same project. In the second
research question (RQ2), we would like to investigate the possibility of training
and using the CommentBERT model cross-project. Finally, we would like to
study the sensitivity of the CommentBERT to the number of positive examples
in the training dataset (RQ3) since some of the categories in our taxonomy could
be underrepresented in real-life code-review datasets. Therefore, we would like to
learn what is the minimum number of positive instances in the training dataset
to achieve reasonable accuracy of the model.

32 M. Ochodek et al.

4.2 Datasets

Table 1 presents three free and open-source software (FOSS) projects selected
for this study, i.e., Wireshark, ONAP, and the Mono Framework. We selected
these projects as they were available as open-source, but they are actively devel-
oped and used commercially. The developers in the community have industrial
affiliations, which indicates that software development standards are followed for
these projects.

We randomly sampled code-review comments from Gerrit instances (Wire-
shark and ONAP) and GitHub (Mono). We manually labeled the comments
according to the proposed taxonomy. At this stage our dataset consisted of 2,672
comments (Wireshark = 1,248, ONAP = 1,252, and Mono = 172). We observed
that some of the comments were duplicated, however, they regarded different
lines of code. Therefore, they represent a natural reviewers’ tendency to respond
in a similar way to similar issues in the code.

The code-review comments from ONAP and Mono were labeled by two
researchers using a similar procedure as for Wireshark. During that process,
there was no need to extend the taxonomy with new categories.

Table 1. The sample of code-review comments from FOSS projects under study.

Project #Comments Description

Wireshark 1248 Wireshark is a protocol analyzer, written mostly in C
and maintained by constributors from several companies

ONAP 1252 ONAP (Open Network Automation Platform) is a
platform for orchestration, management, and
automation of network and edge computing services

Mono 172 The Mono Framework is a Linux implementation of the
Microsoft .NET framework

4.3 Model Validation

To answer RQ1, we perform 10 runs of 10-fold cross-validation for each of the
datasets. For each fold, we fine-tune the BERT model and set the batch size
to fully utilize the memory. We use the RAdam optimizer with β1 = 0.9, β2 =
0.999, the base learning rate set to 1e−4, and perform 15 epochs of training. We
use the same hyperparameters for RQ2, however, this time we train the model
using the two datasets and apply it to classify code-review comments in the
remaining one. Finally, we investigate the accuracy of the model for different
types of categories and juxtapose it with the frequency of appearance of the
comments belonging to these categories in the datasets to discuss RQ3.

We base the analysis of the results on three well-recognized prediction quality
measures: accuracy, Matthews Correlation Coefficient (MCC), and area under
the receiver operating characteristic (ROC) curve (AUC). Accuracy is the ratio

Automated Code Review Comment Classification 33

between the correctly classified comments and all comments. Although the mea-
sure is straightforward to interpret, it is also very sensitive to a class imbalance
in the datasets. MCC is a variant of Pearson’s correlation coefficient for binary
classification (it takes values from −1 to 1). It can be used to evaluate prediction
quality for imbalanced datasets [6] and is also recommended for the evaluation of
machine learning algorithms in software engineering [15]. We use the thresholds
provided by Akoglu [1] to interpret the effect size based on MCC in our study.
Finally, the last measure in our suite is AUC. It is based on ROC curve, which
shows the level of balance between recall and precision. AUC takes values from
0 to 1, where 0 indicates a perfectly inaccurate model and a value of 1 reflects
a perfectly accurate one. In general, an AUC of 0.5 suggests no discrimination,
0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more
than 0.9 is considered outstanding [16].

5 Results

The results of the cross-validation procedure are presented in Table 2 (Wire-
shark), Table 3 (ONAP), and Table 4 (Mono). We excluded categories with less
than 10 comments to consider only the cases when, at least statistically, there
would be at least one comment belonging to a given category in each fold while
executing the cross-validation procedure.

The accuracy of the trained models ranged from 0.84 to 0.99 (mean = 0.94).
Such high accuracy can be attributed to the class imbalance in the datasets. The
average MCC value was equal to 0.60 which can be considered as of moderate
to strong correlation [1]. Finally, the average AUC was equal to 0.76, which is
considered acceptable [16]. Of course, the results differ depending on the category
and dataset. The most consistent results (MCCs within 0.10) were obtained for
code io, code style, code data, rule def, and code logic categories. The results
differed the most for code doc and compatibility (MCC ranged between 0.29 and
0.42, respectively). The MCC ranged within 0.20 for the remaining categories.

The results for the cross-project application of the CommentBERT model
are presented in Table 5. The prediction quality of such models was lower than
in the case of intra-project training and application. However, for at least half of
the categories, the MCCs could be interpreted as indicating at least fair to strong
correlation. The best accuracy was achieved for the categories regarding coding
style, logic, and data (MCC > 0.5). On contrary, the models struggled with
recognizing comments regarding design issues, documentation, and input/output
(MCCs < 0.10).

The results show that the number of examples in the training datasets seems
to have a visible impact on the accuracy of the CommentBERT model.

Figure 4 presents how MCC, AUC, and their variability changes when the
number of training examples increases. We observed a major improvement in
both MCC and AUC for the categories having 20 or more instances in the

34 M. Ochodek et al.

Table 2. Wireshark – the results of 10 × 10-fold cross-validation (ES – effect size,
N–Negligible, P–Poor, W–Weak, F-Fair, M–Moderate, S–Strong, VS–Very Strong).

Category n Accuracy MCC ES (MCC) [1] AUC ES (AUC) [16]

code design 44 0.98 (±0.00) 0.63 (±0.04) M-S 0.72 (±0.01) Acceptable

code style 90 0.98 (±0.00) 0.82 (±0.02) S-VS 0.88 (±0.01) Excellent

code naming 40 0.98 (±0.00) 0.54 (±0.04) F-S 0.69 (±0.03) Low

code logic 397 0.85 (±0.01) 0.65 (±0.01) M-S 0.83 (±0.01) Excellent

code io 41 0.97 (±0.00) 0.46 (±0.04) F-S 0.66 (±0.03) Low

code data 486 0.86 (±0.01) 0.71 (±0.01) M-VS 0.86 (±0.01) Excellent

code doc 50 0.96 (±0.00) 0.38 (±0.07) W-M 0.64 (±0.03) Low

code api 148 0.93 (±0.00) 0.65 (±0.03) M-S 0.81 (±0.02) Excellent

compatibility 59 0.96 (±0.00) 0.54 (±0.04) F-S 0.74 (±0.03) Acceptable

rule def 34 0.98 (±0.00) 0.43 (±0.05) F-S 0.65 (±0.03) Low

...patch review 61 0.98 (±0.00) 0.72 (±0.02) M-VS 0.82 (±0.01) Excellent

...installing 53 0.96 (±0.00) 0.49 (±0.06) F-S 0.71 (±0.03) Acceptable

dataset. Also, the prediction quality becomes more stable when there are more
training examples—a drop in standard deviations was observed when the size of
training datasets increased.

0.36

0.07

0.63

0.03

0.62

0.06

0.75

0.03

0.62

0.03

0.78

0.02
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

MCC MCC Std AUC AUC Std

10-20 20-40 40+

Fig. 4. Prediction quality of the models depending on the number of comments in
categories (10–20, 20–40, and 40+).

Automated Code Review Comment Classification 35

Table 3. ONAP – the results of 10 × 10-fold cross-validation (ES – effect size, N–
Negligible, P–Poor, W–Weak, F-Fair, M–Moderate, S–Strong, VS–Very Strong).

Category n Accuracy MCC ES (MCC) [1] AUC ES (AUC) [16]

code design 98 0.93 (±0.00) 0.46 (±0.03) F-S 0.69 (±0.02) Low

code style 109 0.97 (±0.00) 0.80 (±0.02) S-VS 0.87 (±0.02) Excellent

code naming 49 0.98 (±0.00) 0.68 (±0.03) M-S 0.79 (±0.03) Acceptable

code logic 471 0.86 (±0.01) 0.70 (±0.01) M-S 0.85 (±0.01) Excellent

code io 18 0.99 (±0.00) 0.48 (±0.06) F-S 0.67 (±0.03) Low

code data 333 0.87 (±0.00) 0.67 (±0.01) M-S 0.83 (±0.01) Excellent

code doc 75 0.97 (±0.00) 0.68 (±0.02) M-S 0.79 (±0.02) Acceptable

code api 121 0.94 (±0.00) 0.67 (±0.02) M-S 0.82 (±0.02) Excellent

compatibility 19 0.98 (±0.00) 0.12 (±0.08) N-P 0.53 (±0.02) Low

rule def 43 0.97 (±0.00) 0.49 (±0.05) F-S 0.69 (±0.03) Low

...patch review 37 0.98 (±0.00) 0.59 (±0.08) F-S 0.73 (±0.04) Acceptable

...installing 59 0.97 (±0.00) 0.63 (±0.02) M-S 0.79 (±0.02) Acceptable

Table 4. Mono – the results of 10 × 10-fold cross-validation for categories with ten or
more examples (ES – effect size, N–Negligible, P–Poor, W–Weak, F-Fair, M–Moderate,
S–Strong, VS–Very Strong)

Category n Accuracy MCC ES (MCC) [1] AUC ES (AUC) [16]

code style 22 0.97 (±0.01) 0.85 (±0.04) S-VS 0.89 (±0.03) Excellent

code logic 99 0.86 (±0.01) 0.71 (±0.03) M-VS 0.85 (±0.01) Excellent

code data 67 0.84 (±0.02) 0.66 (±0.03) M-S 0.83 (±0.02) Excellent

code api 16 0.93 (±0.01) 0.48 (±0.07) F-S 0.67 (±0.04) Low

6 Discussion

Classifying a single comment is useful, but having the taxonomy, and the auto-
mated tools for its application, provides us with the possibility to analyze all
comments for the projects. Figure 5 shows a summary of the percentage of com-
ments per category, grouped by the analyzed project.

Two of the categories are consistently the most frequent ones – comments
about the logic of the program and comments about the data. This indicates
that the reviewers discuss the algorithms, solutions to the problems rather than
focusing on more “mundane” comment categories like the naming conventions
or documentation of the code. Since these results are similar across the three
analyzed projects, it indicates that the reviews are done for the same reasons
in the studied projects. It can also indicate that the mechanisms for automated
code analysis, like the static analysis tools, handle the simpler cases like naming
conventions or documentation of the code (which are often regarded as technical
debt [7,13]).

On the other hand, the categories with the lowest percentage of classified
comments, like the I/O category, could be connected to automated checking

36 M. Ochodek et al.

Table 5. Prediction quality for cross-project model application (the mean values sorted
by MCC in descending order).

Category Accuracy MCC AUC

code style 0.95 0.69 0.82

code logic 0.80 0.58 0.79

code data 0.81 0.56 0.77

code api 0.91 0.48 0.72

config commit patch review 0.97 0.46 0.65

code naming 0.97 0.45 0.65

rule def 0.98 0.31 0.57

compatibility 0.97 0.26 0.60

config building installing 0.96 0.25 0.57

code design 0.94 0.08 0.53

code doc 0.95 0.04 0.51

code io 0.98 0.00 0.50

Fig. 5. Percentage of comments per category grouped by project.

tools. Our hypothesis, for further investigation, is that these kind of comments
are only used when the proper I/O is used, but could be improved.

Finally, an interesting observation is the low frequency of the code-review
comments belonging to the category of rule definition. To some extent, we
expected more comments to relate to universal principles of writing code, e.g.

Automated Code Review Comment Classification 37

“use AssertTrue(...) instead of AssertEqual(...)”. We based our expecta-
tion on the fact that there are guidebooks and coding guidelines for all projects,
e.g. there exist one for Wireshark.3

When it comes to cross-project usage of the CommentBERT model, we
observed that it is possible only to some degree. Our projects under study dif-
fer visibly when it comes to programming language, type of application, and
architecture, therefore, the observed difficulties in cross-application of the model
trained on different projects is not surprising. However, since the results were
consistent for some of the categories, a potentially feasible solution would be to
first fine-tune CommentBERT on open-source projects (since their code-review
comments are easily accessible) and then continue training on a sample of code-
review comments from a given project.

From the industrial perspective, leading roles, e.g., in line and projects, strive
to continuously improve the ways of working in different areas. For this, they
need to have tools that can effectively highlight pain-points. The CommentBERT
can do that, if used properly. When a quality manager analyses the outcome of it
over a year, for a product and/or team/-s, different patterns emerge quite soon.
An example is which (of the 12) review areas are being commented frequently,
and which seldom. Now, put that together with defect reports and test failures
– interesting conclusions can be drawn:

– Comments about complex code logic may be an indicator as to why it takes
long time to find errors in the code or why the defect inflow is high. All cus-
tomer errors reported are tied to how long time we have to fix them (depend-
ing on their severity) – if the time is not kept, we have to pay penalties

– Fast, successful integration is the goal of every software organization. Many
comments on config building installing may indicate why the team fails to
improve building and integration time.

– Errors in the code sometimes relate to backwards compatibility. These are
difficult to find – but if CommentBERT has pointed out this repeatedly, then
we can use it start scrutinizing the legacy parts instead of searching far and
wide

– Another similar example are implicit dependencies – frequent comments on
code io and code api may suggest this.

Based on the above observations, we could conclude that the proposed tax-
onomy and CommentBERT can form an important toolkit for quality managers
in modern software development organizations.

The dataset and the models trained in our study can be used as a starting
point to train comments’ classification models for other open-source or industrial
projects. The source code provided in the replication package for that study
might constitute a baseline for training inter-project classifiers and building ML-
based tools to be incorporated into CI pipelines.

3 https://www.wireshark.org/docs/wsdg html/.

https://www.wireshark.org/docs/wsdg_html/

38 M. Ochodek et al.

7 Conclusions

Modern Code Reviews promise shorter feedback loops and faster delivery of
higher quality code. However, they can also be a factor that decreases the speed
of development—instead of improving the source code, programmers can get
stuck in resolving misunderstandings.

In this study, we presented a method for automatically classifying review
comments based on a taxonomy of what should be improved in the code. This
method helps the designers to focus on the improvement potential suggested in
the comments by the reviewers. Our proposed method uses machine learning
for the automated classification of comments and it has been evaluated in three
open-source projects. The results show that the accuracy is satisfactory, although
it could be improved for these categories which are used sparsely.

Finally, when summarizing the results per category, we found that the pro-
grammers tend to discuss improvements in the usage of data types and designing
the algorithms, rather than improving the visual appearance of the code or sug-
gesting new coding guidelines.

In our future work, we plan to link the comments to the code which was
commented, to find patterns that can be used to guide refactorings. For example,
to be used to find the best match for methods to be used in program repair
[14,30]. We also plan for a larger evaluation of our technique at our partner
companies, including a longitudinal study of the improvements made to the
source code based on these reviews.

References

1. Akoglu, H.: User’s guide to correlation coefficients. Turk. J. Emerg. Med. 18(3),
91–93 (2018)

2. Axelsson, S., Baca, D., Feldt, R., Sidlauskas, D., Kacan, D.: Detecting defects
with an interactive code review tool based on visualisation and machine learning.
In: The 21st International Conference on Software Engineering and Knowledge
Engineering (SEKE 2009) (2009)

3. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: 2013 35th International Conference on Software Engineering (ICSE),
pp. 712–721. IEEE (2013)

4. Badampudi, D., Britto, R., Unterkalmsteiner, M.: Modern code reviews-
preliminary results of a systematic mapping study. In: Proceedings of the Eval-
uation and Assessment on Software Engineering, pp. 340–345. ACM (2019)

5. Balachandran, V.: Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation. In: Proceed-
ings of the 2013 International Conference on Software Engineering, pp. 931–940.
IEEE Press (2013)

6. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data
using matthews correlation coefficient metric. PLoS ONE 12(6), 1–17 (2017).
https://doi.org/10.1371/journal.pone.0177678

7. del Carpio, P.M.: Identification of architectural technical debt: an analysis based
on naming patterns. In: 2016 8th Euro American Conference on Telematics and
Information Systems (EATIS), pp. 1–8. IEEE (2016)

https://doi.org/10.1371/journal.pone.0177678

Automated Code Review Comment Classification 39

8. Chappelly, T., Cifuentes, C., Krishnan, P., Gevay, S.: Machine learning for finding
bugs: an initial report. In: IEEE Workshop on Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE), pp. 21–26. IEEE (2017)

9. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement, pp. 275–284. IEEE (2011)

10. Davila, N., Nunes, I.: A systematic literature review and taxonomy of modern code
review. J. Syst. Softw. 177, 110951 (2021)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

12. Feng, Z., et al.: Codebert: a pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155 (2020)

13. de Freitas Farias, M.A., Santos, J.A., Kalinowski, M., Mendonça, M., Sṕınola, R.O.:
Investigating the identification of technical debt through code comment analysis.
In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.)
ICEIS 2016. LNBIP, vol. 291, pp. 284–309. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62386-3 14

14. Ge, X., Sarkar, S., Witschey, J., Murphy-Hill, E.: Refactoring-aware code review.
In: 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 71–79. IEEE (2017)

15. Kitchenham, B.A., Pickard, L.M., MacDonell, S.G., Shepperd, M.J.: What accu-
racy statistics really measure. IEE Proc.-Softw. 148(3), 81–85 (2001)

16. Mandrekar, J.N.: Receiver operating characteristic curve in diagnostic test assess-
ment. J. Thorac. Oncol. 5(9), 1315–1316 (2010)

17. Mirsaeedi, E., Rigby, P.C.: Mitigating turnover with code review recommendation:
balancing expertise, workload, and knowledge distribution. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 1183–
1195 (2020)

18. Ochodek, M., Hebig, R., Meding, W., Frost, G., Staron, M.: Recognizing lines of
code violating company-specific coding guidelines using machine learning. Empir.
Softw. Eng. 25(1), 220–265 (2019). https://doi.org/10.1007/s10664-019-09769-8

19. Paixão, M., et al.: Behind the intents: an in-depth empirical study on software
refactoring in modern code review. In: Proceedings of the 17th International Con-
ference on Mining Software Repositories, pp. 125–136 (2020)

20. Paul, R., Turzo, A.K., Bosu, A.: Why security defects go unnoticed during code
reviews? A case-control study of the chromium OS project. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 1373–1385.
IEEE (2021)

21. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google (2018)

22. Staron, M., Meding, W., Söder, O., Bäck, M.: Measurement and impact factors
of speed of reviews and integration in continuous software engineering. Found.
Comput. Decis. Sci. 43(4), 281–303 (2018)

23. Staron, M., Ochodek, M., Meding, W., Söder, O.: Using machine learning to iden-
tify code fragments for manual review. In: 2020 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), pp. 513–516. IEEE (2020)

24. Thongtanunam, P., McIntosh, S., Hassan, A.E., Iida, H.: Review participation in
modern code review. Empir. Softw. Eng. 22(2), 768–817 (2016). https://doi.org/
10.1007/s10664-016-9452-6

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08155
https://doi.org/10.1007/978-3-319-62386-3_14
https://doi.org/10.1007/978-3-319-62386-3_14
https://doi.org/10.1007/s10664-019-09769-8
https://doi.org/10.1007/s10664-016-9452-6
https://doi.org/10.1007/s10664-016-9452-6

40 M. Ochodek et al.

25. Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Mat-
sumoto, K.I.: Who should review my code? A file location-based code-reviewer
recommendation approach for modern code review. In: 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
pp. 141–150. IEEE (2015)

26. Uchôa, A., et al.: How does modern code review impact software design degra-
dation? An in-depth empirical study. In: 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 511–522. IEEE (2020)

27. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H.C., Zaidman, A.: How
developers engage with static analysis tools in different contexts. Empir. Softw.
Eng. 25(2), 1419–1457 (2019). https://doi.org/10.1007/s10664-019-09750-5

28. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762
(2017)

29. Wang, D., Ueda, Y., Kula, R.G., Ishio, T., Matsumoto, K.: The evolution of code
review research: a systematic mapping study (2019)

30. Wen, F., Aghajani, E., Nagy, C., Lanza, M., Bavota, G.: Siri, write the next
method. In: 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE), pp. 138–149. IEEE (2021)

31. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering. Springer, Cham (2014). https://doi.org/10.1007/978-3-662-43839-8

32. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

https://doi.org/10.1007/s10664-019-09750-5
http://arxiv.org/abs/1706.03762
https://doi.org/10.1007/978-3-662-43839-8
http://arxiv.org/abs/1609.08144

A Preliminary Study on Using
Text- and Image-Based Machine Learning

to Predict Software Maintainability

Markus Schnappinger1(B), Simon Zachau1, Arnaud Fietzke2,
and Alexander Pretschner1

1 Technical University of Munich, Munich, Germany
{markus.schnappinger,simon.zachau,alexander.pretschner}@tum.de

2 itestra GmbH, Munich, Germany
fietzke@itestra.de

Abstract. Machine learning has emerged as a useful tool to aid software
quality control. It can support identifying problematic code snippets or
predicting maintenance efforts. The majority of these frameworks rely
on code metrics as input.

However, evidence suggests great potential for text- and image-based
approaches to predict code quality as well. Using a manually labeled
dataset, this preliminary study examines the use of five text- and two
image-based algorithms to predict the readability, understandability, and
complexity of source code.

While the overall performance can still be improved, we find Support
Vector Machines (SVM) outperform sophisticated text transformer mod-
els and image-based neural networks. Furthermore, text-based SVMs tend
to perform well on predicting readability and understandability of code,
while image-based SVMs can predict code complexity more accurately.

Our study both shows the potential of text- and image-based algo-
rithms for software quality prediction and outlines their weaknesses as a
starting point for further research.

Keywords: Software maintainability · Expert judgment ·
Maintainability prediction · Machine learning · Text classification ·
Image classification

1 Motivation

With the rise of software, the assessment and improvement of its quality is an
increasingly vital challenge. To support software quality control, a variety of
automated tools and measurements exist. Still, some quality attributes are hard
to determine without manual reviews [44]. As human analysts are expensive,
predicting such properties with machine learning drew attention over the past

Both Simon Zachau and Markus Schnappinger should be considered main authors.

c© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 41–60, 2022.
https://doi.org/10.1007/978-3-031-04115-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-04115-0_4

42 M. Schnappinger et al.

years. For instance, it has successfully been applied to identify code smells [10,
13,33], support fault localization [48], and predict the maintainability of source
code [42] or code changes [23,27].

Most contemporary studies rely on static code metrics as proxies for the
actual source code. However, as Ray et al. [37] and Hindle et al. [19] point
out, source code and natural language share certain characteristics, too. Accord-
ingly, techniques originally designed for natural language have successfully been
applied to source code, e.g. to aid recovery attacks against obfuscated pro-
grams [39], predict bugs [19], or identify code smells [32].

Hence, we hypothesize such algorithms can be employed for software quality
prediction, too. Since readability and understandability are characteristics of
both natural language and source code, we conjecture these attributes can be
predicted particularly well using text-based machine learning.

Furthermore, there exists evidence that software analysts already build a
strong hypothesis based on their first impression of the code. When analyzing
and labeling the code used in this study, several experts confirmed they have
been able to get an accurate intuition of the quality of a code snippet by looking
at a visual representation of its overall structure, without going into syntactic or
semantic detail. This applies in particular to assessments about the complexity
and understandability of code. In this study, we try to mimic this process by
training machine learning algorithms on images of source code. An example of
such a visual representation is provided in Fig. 1.

Gap: Many researchers successfully applied machine learning on software
metrics to predict software quality [17,23,27,35,43]. However, despite recent
advances in text and image classification, these techniques are not used so far
to predict software quality attributes as perceived by human experts.

Solution: This preliminary study explores the potential of two yet unapplied
machine learning techniques for quality prediction. In this study, we conduct
experiments in both a multi(4)-class and a binary classification setting. We com-
pare the performance of five text-based and two image-based machine learning
approaches using a publicly available, manually labeled dataset. The code is
sampled from seven software projects and contains both open-source and pro-
prietary projects. The learned quality label corresponds to the consensus of at
least three analysts.

Contribution: Using text-based input, Support Vector Machines outperform
other algorithms including Naive Bayes, BERT, RoBERTa, and CodeBERT by
a large margin. Considering binary classification, they reach the same accuracy as
an average human analyst. They are able to predict the readability, understand-
ability, and complexity of source code with Matthews Correlation Coefficients
(MCC) above 0.61 and F-Scores above 0.81, while a ZeroRule baseline classi-
fier yields an MCC of 0.0 and F-Scores below 0.38. Furthermore, we observe
better performance for binary classification than for ordinal multiclass predic-
tion. While the naive baseline is outperformed by far in the first case, it is only
slightly exceeded in the second case. This observation holds for both text-based

Using Text and Image-Based Learning to Predict Maintainability 43

Fig. 1. First impressionistic, unreadable visualization of source code. The example on
the left shows code that was later on considered hard to maintain, while the example
on the right is rather easy to maintain. The examples feature the classes Cells.java

and UniformTexture.java, resp., from Art Of Illusion [41].

and image-based algorithms. Here, image-based Support Vector Machines yield
the best results as well with MCCs between 0.43 and 0.67 and F-Scores between
0.71 and 0.76.

These results are promising on the one hand, but are not yet applicable in
practice on the other hand. Nevertheless, this preliminary study demonstrates
the potential of image- and text-based classification algorithms for quality predic-
tion and identifies which weaknesses remain to be addressed in further research.
In particular, data preprocessing poses a major challenge.

Outline. The remainder of this paper is organized as follows. First, we describe
in detail the experimental design including the dataset used, machine learning
algorithms implemented, and data preprocessing techniques applied. Second,
the experiment results are presented. This is followed by a critical discussion of
the results and the limitations we identified. Eventually, we synthesize related

44 M. Schnappinger et al.

research and alternative approaches to predicting software maintainability. The
last chapter summarizes the study and presents our final conclusions.

2 Experimental Design

In this study, we examine the performance of text-based and image-based
machine learning algorithms to predict the source code attributes readabil-
ity, understandability, and complexity. Readability describes how easy it is for
humans to syntactically parse written information [38]. In contrast, understand-
ability is concerned with the ease of extracting relevant concepts and compre-
hending the semantics of a text or code snippet. Both attributes contribute
significantly to software maintainability [1,47] and are also key characteristics of
natural language texts. Hence, we investigate the use of classification algorithms
from the natural language domain to predict these source code attributes.

Besides, the complexity of code has received lots of attention. The most popu-
lar approaches to capture the human intuition of code complexity are McCabe’s
cyclomatic complexity [30] and the cognitive complexity measure referred to
by SonarQube [4]. While the effectiveness of these metrics is controversial, we
observed human experts are able to build strong intuitions about code complex-
ity even at first glance. This observation was made during the creation of the
dataset described in Sect. 2.1. To recreate that first impression of an expert, we
utilize images of source code. Then, we investigate the use of image classification
to predict the complexity.

This section elaborates on the investigated algorithms, the used dataset,
evaluation metrics, and preprocessing techniques.

2.1 Dataset

Unfortunately, there are only few software quality datasets publicly available. In
1993, Li and Henry [27] published a dataset containing the number of changed
lines per code file. This attribute is often used as a proxy for software main-
tainability, e.g. in prediction experiments by [26,27,51]. However, that dataset
does not distinguish between different maintainability aspects. Hence, there is no
possibility to target specific sub-characteristics such as readability or complexity.

In contrast, we consider a manually labeled dataset that provides expert eval-
uations of the readability, understandability, perceived complexity, modularity,
and overall maintainability of Java classes [40,41].

This dataset is a collection of code snippets from five open-source and four
proprietary projects reviewed and rated by various experts. In total, 70 profes-
sionals participated in the creation of the dataset. The participants are affiliated
with 17 different organizations including Airbus, Audi, BMW, Facebook, and
Oracle. Eventually, the study was able to collect around 2, 000 assessments, cov-
ering 519 Java classes.

Using Text and Image-Based Learning to Predict Maintainability 45

Software quality consists of several sub-aspects such as maintainability or
security [20]. Similarly, maintainability can also be divided into several sub-
aspects. In our case, the assessment focuses on the sub-categories complexity,
modularity, readability, and comprehensibility as well as the overall maintain-
ability judgment of the expert. This decomposition guides the experts which
viewpoints to consider during the assessment and mitigates the threat to con-
struct validity, i.e. different participants might not share the same understanding
of the broad term maintainability. Furthermore, this division enables researchers
to focus on specific sub-aspects such as readability or comprehensibility.

Despite this decomposition into sub-characteristics and limited viewpoints,
the subjective nature of the assessment remains problematic. Therefore, each
class was evaluated by at least three experts. The Expectation-Maximization
algorithm [8] finally aggregates their votes and computes the most probable
‘true’ label for each maintainability category. For more information about the
selection of the study objects and the detailed labeling procedure please refer to
[40] and [41].

In the presented machine learning experiments, we consider the aggregated
consensus rating as the label. For our study, we have access to all open-source
and two proprietary projects. The open-source dataset contains 304 entries, i.e.
Java classes, which are extended to 374 entries by the two commercial projects.
We conduct our experiments on both the open-source and extended versions to
compare if the additional data makes a difference.

The experts labeled each code file on a four-part Likert scale, indicating
whether they fully agree, slightly agree, slightly disagree, or fully disagree the code
fulfills a certain quality attribute. This enables a fine-granular ordinal multiclass
classification. In addition, we also examine a less fine-grained binary classification
setting. Here, we separate the code into supposedly perfect (strongly agree) and
not fully perfect code. Problematically, the dataset is imbalanced: Most code
files are labeled as readable, understandable, and not complex, whereas very few
entries are considered the opposite. This can lead to underrepresented labels
getting only little attention during training and to distorted evaluation results.
For the binary setting, the distribution is less imbalanced. The distributions for
both settings are depicted in Table 1. The values in parentheses denote only the
publicly available data.

2.2 Architectures and Algorithms

There are a plethora of machine learning architectures available. In the following,
we explain the chosen algorithms in detail. Besides the text and image classifica-
tion algorithms described below, we deploy Support Vector Machines (SVM) [5],
which are capable of processing both texts and images.

Text-Based Learning. Naive Bayes [31] is a common classifier for text-
based input. Here, a TF-IDF analysis preprocesses the text and determines how
important specific terms in the analyzed text are. Furthermore, various trans-
former architectures have become prevalent in text-based machine learning use

46 M. Schnappinger et al.

Table 1. Distribution of the dataset in both the multiclass (top) and binary case
(bottom). The values in parentheses denote the number of entries from open-source
projects.

Multiclass label Number of data points

Readability Understandability Complexity

Strongly agree 203 (183) 193 (157) 26 (22)

Weakly agree 111 (79) 96 (76) 51 (41)

Weakly disagree 47 (38) 60 (51) 75 (60)

Strongly disagree 13 (4) 25 (20) 222 (181)

Binary label

Supp. perfect code 203 (183) 193 (157) 222 (181)

Other 171 (121) 181 (147) 152 (123)

cases. Hence, we employ BERT [9], CodeBERT [12], and RoBERTa [28] in this
study, too.

While BERT, the Bidirectional Encoder Representations from Transformers,
can suffer from unfortunate random initialization, RoBERTa (Robustly opti-
mized BERT approach) is considered more stable [28]. CodeBERT, in contrast,
was designed specifically to analyze source code and its connection to natural
language [12]. Due to the small size of our dataset, we have resorted to pre-
trained, publicly available models1 and then fine-tuned them to the downstream
task of maintainability prediction. For more information about these models
please refer to [9,12,28].

Image-Based Learning. Convolutional neural networks are known to recog-
nize specific features within images and classify images based on these structures.
Due to external limitations of this study, we could not test all available neural
network and deep learning setups. AlexNet [25] is a reasonable choice here since
it consists of basic layers that integrate well with most machine learning frame-
works. For the configuration of the network, we follow Karpathy et al. [22]. One
challenge for convolutional neural networks, in general, is the need for a large
training dataset.

1 BERT: https://huggingface.co/bert-base-uncased.
RoBERTa: https://huggingface.co/roberta-base.
CodeBERT: https://huggingface.co/microsoft/codebert-base.

https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/microsoft/codebert-base

Using Text and Image-Based Learning to Predict Maintainability 47

2.3 Training and Evaluation

Since the dataset is quite small, we dedicate 80% of the data for training and
20% for testing. This is a trade-off to accommodate both needs – a large enough
training part for the training-intensive architectures, as well as a large enough
testing part for evaluating and comparing the approaches. Using stratified splits
accounts for equal label distributions in both partitions, thus mitigating the
effects of the imbalanced label distribution. In contrast to related work [42], we
shuffled the dataset before splitting and did not consider project boundaries.

During training, we applied grid-search cross-validation to identify the best
performing hyper-parameters and internal preprocessing options. For the text-
based approaches, we examined e.g. the use of stemming, camelCase splitting,
and the number of tokens to be respected in n-grams. For the SVM architectures,
we varied their internal kernels, namely Polynomial, Sigmoid and Radial Basis
kernels.

Metrics to evaluate machine learning models are based on different perspec-
tives on the confusion matrix. For multiclass classification, there are two ways
to calculate performance scores: In macro-aggregation, the respective metric
is applied to each class separately and aggregated afterward. Aggregating all
classes before calculating the respective metrics is called micro-aggregation. In
this study, we use micro-aggregation. In this case, F-Score, precision, recall, and
accuracy yield identical values when evaluating multiclass predictions. For the
remainder of this paper, we will thus only use F-Score to refer to this value. Due
to the imbalance of the dataset, we consider the Matthews Correlation Coefficient
(MCC) [14] as well. Its use is common and suggested in the defect prediction
domain, where imbalanced data distributions are commonly observed [50]. The
MCC measures the alignment of two raters while considering agreement might
happen by chance. In our context, we consider the learned model the first rater,
and the ground truth as the output of a second rater. A value equal to zero
indicates random alignment, while a value of 1 indicates perfect alignment and
a value of −1 corresponds to perfect inverse alignment.

To put the performance of all learned models into context, we establish two
baselines. A naive ZeroRule classifier identifies the most common label in the
training set and always predicts this label. Due to its constant nature, the MCC
of this classifier is 0. Comparing the ratings of the individual human experts
to the eventual consensus vote, we find frequent deviations between them. In
fact, the average expert is only aligned with the consensus in approx. 63–70%
of the cases, depending on the considered quality attribute. This human-level
performance provides an illustrative, second baseline.

Both baselines are summarized in Table 2. For readability reasons, the table
is restricted to performances on the extended dataset only. Please note the per-
formance of the ZeroRule classifier depends on the data distribution. In our case,
its values are identical for the binary and multiclass settings. This is because the
most common class in the multiclass analysis is identical with the supposedly
perfect code in the binary setting.

48 M. Schnappinger et al.

Table 2. Baselines for multi-class prediction and binary prediction

Multiclass baselines Readability Understand. Complexity

MCC F-Score MCC F-Score MCC F-Score

Average expert 0.451 0.658 0.440 0.633 0.511 0.703

ZeroRule classifier 0.000 0.543 0.000 0.516 0.000 0.594

Binary baselines

Average expert 0.613 0.797 0.621 0.804 0.581 0.940

ZeroRule classifier 0.000 0.543 0.000 0.516 0.000 0.594

2.4 Preprocessing for Text-Based Prediction

Before we can use the labeled code files for machine learning, we have to prepro-
cess them. For the text-based analysis, the code files are parsed as raw text and
then tokenized. For the transformer models, we use their integrated tokenizers.
As such, the BERT model comes with its own tokenizer, as do the RoBERTa and
CodeBERT models. Since these transformer architectures only accept inputs of
a length shorter than 512 tokens, we have to split the file into multiple parts and
treat each part as a distinct data point if it originally contains more tokens [45].
Thus, the dataset size increases. Notably, the labels in our dataset have been
assigned to the whole Java class. After splitting the code, we assign the original
label to all its parts.

In contrast, for Naive Bayes and text-based SVM we could use the com-
plete files. The necessary features are produced by a Term Frequency – Inverse
Document Frequency (TF-IDF) analysis of the code file.

2.5 Preprocessing for Image-Based Prediction

For the image-based analysis, we transform the code files into syntax-highlighted
images. We decided to add syntax-highlighting to i) ease the identification of rel-
evant structures and ii) mimic an analyst opening the file in a code editor. The
same color theme is used for all images. First, we transform the Java files to
PDF files using PDFCode2. Second, these files are converted into PNG files of
680× 680 pixels. This size ensures the color from the syntax-highlighting is still
visible although single characters might be no longer readable, depending on the
length of the code. Due to resource constraints, our implementation of AlexNet
downsizes the images to 224×224 pixels similar to the original AlexNet [25]. Our
experiments with higher resolution images have not led to significant improve-
ments.

The code is positioned in the top center of each image. An example is provided
in Fig. 2. There, the code is unreadable by design.

2 https://github.com/xincoder/PDFCode.

https://github.com/xincoder/PDFCode

Using Text and Image-Based Learning to Predict Maintainability 49

Fig. 2. Image of syntax-highlighted source code from UniformTexture.java from Art
Of Illusion [41]

2.6 Experiment Execution

AlexNet is implemented on top of Keras [6], while BERT and its derivatives use
PyTorch [11]. Naive Bayes and SVMs are based on scikit-learn [34].

We conducted every experiment using the extended dataset and using only
the open-source data. This allows for analyzing the effect of additional data
points and increases the reproducibility of our results for those without access
to the confidential data. A replication package is publicly available on GitHub3.

Every experiment was executed with different random seeds to mitigate the
effects of random bias. We limited ourselves to two seeds as we did not find large
differences between the runs. The reported values correspond to the average.

3 https://github.com/simonzachau/SWQD-predict-software-maintainability.

https://github.com/simonzachau/SWQD-predict-software-maintainability

50 M. Schnappinger et al.

3 Experiment Results

Table 3. Prediction results on the extended dataset and performance obtained on the
open-source data in parentheses.

Multiclass classifier Readability Understandability Complexity

MCC F-Score MCC F-Score MCC F-Score

Naive Bayes 0.196 (0.038) 0.587 (0.607) 0.136 (0.112) 0.540 (0.533) 0.000 (0.000) 0.600 (0.590)

SVM (text-based) 0.358 (0.398) 0.640 (0.705) 0.332 (0.301) 0.613 (0.598) 0.284 (0.241) 0.633 (0.623)

BERT 0.032 (0.017) 0.306 (0.316) 0.023 (0.017) 0.276 (0.273) 0.005 (−0.038) 0.259 (0.232)

RoBERTa 0.013 (0.001) 0.290 (0.314) 0.010 (−0.001) 0.280 (0.262) −0.013 (0.021) 0.240 (0.271)

CodeBERT −0.009 (0.027) 0.274 (0.327) 0.004 (0.042) 0.263 (0.295) −0.012 (0.021) 0.234 (0.269)

SVM (image-based) 0.232 (0.470) 0.580 (0.713) 0.302 (0.427) 0.580 (0.631) 0.402 (0.337) 0.673 (0.615)

AlexNet 0.000 (0.000) 0.293 (0.607) 0.000 (0.000) 0.113 (0.205) 0.000 (0.000) 0.600 (0.164)

Binary classifier

Naive Bayes 0.555 (0.538) 0.780 (0.779) 0.521 (0.695) 0.760 (0.844) 0.464 (0.478) 0.747 (0.746)

SVM (text-based) 0.609 (0.554) 0.807 (0.787) 0.660 (0.657) 0.827 (0.820) 0.637 (0.523) 0.827 (0.771)

BERT −0.013 (−0.042) 0.629 (0.568) −0.029 (0.031) 0.646 (0.656) 0.027 (0.005) 0.585 (0.574)

RoBERTa −0.001 (−0.017) 0.613 (0.600) 0.026 (0.035) 0.674 (0.697) −0.050 (−0.015) 0.615 (0.608)

CodeBERT 0.028 (0.016) 0.627 (0.602) 0.036 (−0.002) 0.680 (0.646) 0.018 (0.032) 0.653 (0.645)

SVM (image-based) 0.513 (0.565) 0.760 (0.795) 0.430 (0.530) 0.713 (0.762) 0.667 (0.495) 0.840 (0.754)

AlexNet 0.000 (0.000) 0.453 (0.500) 0.006 (0.000) 0.500 (0.500) 0.000 (0.000) 0.400 (0.590)

For each classification approach, we investigate both the performance in a multi-
class setting and a binary setting. The latter provides a first impression about the
quality of the source code, while the multiclass prediction is more fine-grained.
Table 3 lists the results concerning MCC and F-Score for each predicted quality
attribute. The values in parentheses refer to the performance obtained using
only the open-source data. The table shows the results for multiclass prediction
in the top part, while the bottom part displays the results obtained for binary
classification. Here, we combined three classes of the multiclass setting into one
class as described in Sect. 2.1. To ease a comparison with the multiclass perfor-
mance, we use F-Score and MCC to evaluate the binary prediction, too. Please
note the micro-averaged F-Score yields the same value as the micro-averaged
accuracy, precision, and recall scores.

3.1 Text-Based Classification

We find text-based SVMs outperform all other text-based approaches concern-
ing MCC and F-Score independently of the predicted quality attribute. In the
multiclass case, readability can be predicted with an MCC of 0.36 and F-Score
of 0.64; understandability with an MCC of 0.33 and F-Score of 0.61; and com-
plexity with an MCC of 0.28 and F-Score of 0.63. For binary predictions, an
MCC of 0.61 and F-Score of 0.81 is reported for readability; 0.66 and 0.83 for
understandability; and 0.64 and 0.83 for complexity.

Using Text and Image-Based Learning to Predict Maintainability 51

The second-best classifier is Naive Bayes. It delivers the second-best results
for readability and understandability. However, for the complexity label, its
results are identical to the constant ZeroRule classifier. Notably, BERT,
RoBERTa, and CodeBERT perform worse than the naive baseline classifier
regarding the F-Score. Their MCC is close to 0 in all experiments, thus indi-
cating only little information was learned during training.

In the binary setting, text-based SVMs outperform other text classification
approaches as well. However, the difference to Naive Bayes is much smaller com-
pared to the multiclass prediction. The obtained performance values are notably
higher than in multiclass settings. The MCC is at 0.61, 0.66, and 0.64, resp.

3.2 Image-Based Classification

SVMs appear superior for image-based classification as well. AlexNet yields an
MCC of 0 in all experiments, indicating the algorithm was not able to learn
any relevant information and performed only as well as the constant classi-
fier. Notably, its F-Score in the multiclass setting is even below the baseline
for readability and understandability. In the binary case, AlexNet achieved F-
Scores slightly above the baseline while the MCC remains at 0. In contrast, SVM
obtained an MCC of 0.51 and F-Score of 0.76 for readability, 0.43 and 0.71, resp.,
for understandability, and 0.67 and 0.84 for complexity.

3.3 Interpretation

For an easier comparison of the seven approaches, we visualize the MCC obtained
on the extended dataset in Fig. 3 (multiclass classification) and Fig. 4 (binary
classification).

In our experiments, we found Naive Bayes and SVMs to perform better
than convolutional neural networks and transformers. Further, we observe binary
classification yields better results than multiclass prediction. On the extended
dataset, the text-based approaches tend to perform better when predicting read-
ability and understandability while the image-based approaches predict complex-
ity more accurately. This is in line with our hypotheses.

Naive Bayes and SVMs perform better than expected, whereas AlexNet and
the transformer approaches are below expectations. The SVM can play to its
strengths of performing well on small datasets. At the same time, the small size of
the dataset, as well as its imbalance, are likely to be the problem for convolutional
neural networks and transformer architectures. Another evidence for this is that
the interpretation of the dataset as binary classes almost exclusively achieved
higher scores than in the multiclass scenario.

52 M. Schnappinger et al.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Naive Bayes

SVM text-based

SVM image-based

AlexNet

BERT

RoBERTa

CodeBERT

Average Human Expert

MCC

Complexity
Understandability
Readability

Fig. 3. Comparison of the MCC for multiclass classification

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Naive Bayes

SVM text-based

SVM image-based

AlexNet

BERT

RoBERTa

CodeBERT

Average Human Expert

MCC

Complexity
Understandability
Readability

Fig. 4. Comparison of the MCC for binary classification

Using Text and Image-Based Learning to Predict Maintainability 53

The transformer models BERT, RoBERTa, and CodeBERT achieve similar
results in all experiments. However, the obtained MCC is close to 0. Thus, these
models can be compared to randomly selecting a label. Still, all possible labels
have been predicted at least once in our experiments.

Analyzing the predicted classes, we found some algorithms did not predict
certain labels at all. For instance, Naive Bayes did only predict one out of four
possible labels for complexity, and only two out of four labels for readability in
the multiclass setting. In the binary interpretation, all labels are predicted at
least once, which leads to higher scores. In our tests with AlexNet, always only
one class is predicted in every experiment. This holds across both multiclass and
binary prediction as well as across the extended and the open-source dataset.
This renders the numbers unusable to compare to other approaches.

4 Discussion

The results are promising on the one hand, but also demonstrate room for
improvement on the other hand. As of now, we observe large deviations in the
ordinal multiclass prediction between the performance of the trained models and
human performance. While the ZeroRule baseline is only slightly exceeded in this
setting, it is outperformed by far in the binary setting. It is encouraging to see the
performance of the text- and image-based SVM model even reaches the perfor-
mance of an average human expert concerning the MCC. However, this binary
setting probably oversimplifies a complex problem. Still, these results provide
evidence on the potential of applying text and image classification algorithms to
predict software quality.

The extended dataset contributes 70 additional data points. However, we
cannot confirm that more available data leads to better results in general. For
instance, text-based SVM yielded a higher MCC and higher F-Score predicting
multiclass readability on the smaller dataset. The same observation is made
using the image-based SVM to predict readability or understandability. Still, in
most cases, better performance was observed using the extended dataset.

So far, we are not aware of other studies using image-based classification
on source code. A summary of related work is presented in Sect. 5. Due to the
recentness of the dataset we used, only few comparable experiments are avail-
able. The most comparable experiment is described in [42]. The authors focused
on the overall maintainability judgment of the code instead of single quality
attributes like readability or understandability. Their models are based on static
code metrics. Besides, they apply a different validation technique respecting
project boundaries, while we shuffled the dataset before splitting it. Thus, the
experiment settings are too different to reasonably compare the results.

We found preprocessing to be an extensive challenge for both image-based
and text-based inputs. Most image-based machine learning architectures require
an input of quadratic and constant size. Source code neither has a defined length
nor a quadratic layout. We chose an image size of 680×680 pixels, which is a rea-
sonable trade-off between the high number of dimensions and the training time.

54 M. Schnappinger et al.

Another challenge is the layout of the image. Either the code is displayed as large
as possible, or with normalized font size. We decided not to normalize due to
large discrepancies in the length of the code files. The longest file in this dataset
is 28 pages long (ISO A4 format). Had we chosen to scale the size according
to this maximum value, the majority of the images would have appeared com-
pletely void. Since the algorithms try to recognize structural patterns, we chose
to display these structures as prominently, i.e. large, as possible.

In the text-based experiments, the hyper-parameters about stemming and
camelCase splitting did not lead to significant differences in the performance of
the SVM and Naive Bayes classifiers.

In this experiment, BERT and its derivatives could not predict any quality
attribute reliably. We attribute the poor performance of the transformer models
mainly to one characteristic: the limited input length. As they accept only input
smaller or equal to 512 tokens, we had to split most code files. This is a problem
if the quality defects leading to a bad quality judgment are not evenly distributed
across a Java class, which is a reasonable assumption. If the use of text-based
machine learning for quality evaluation is to be moved forward, quality labels on
the granularity of smaller code snippets are needed. However, manually labeling
a sufficient amount of data points was out of scope for this study.

For image-based approaches, AlexNet always predicted one class and
neglected all others. Contrary to expectations, that one class varied between
experiment runs and was not always the majority class. Oftentimes, such behav-
ior indicates a bug. To validate our setup, we replaced the images of one class
with black dummy images to contrast the otherwise predominantly white images.
In that experiment, the prediction achieved a perfect result (MCC = 1). This
confirms the correctness of the implementation. We also conducted experiments
using AlexNet with larger input images. However, it did not yield a noticeable
difference. We hypothesize that the content of the images looks too similar for
the convolutional neural network to identify useful characteristics.

4.1 Threats to Validity

The biggest threats to validity are introduced by the selected algorithms and used
dataset. Though it is manually labeled and believed to contain the consensus
of expert assessments, the dataset contains only a relatively small number of
samples. Still, it is significantly larger than other, commonly used datasets such
as the Li-Henry dataset [27]. However, the construct validity of manually labeled
datasets is inherently threatened. Especially regarding software quality, which
is deliberately defined vaguely [20,21], there exist several different viewpoints.
We mitigated this threat by—instead of referring to the broad term software
quality or maintainability—asking for evaluations with respect to more precise
sub-attributes. In addition, the labeling platform offers explanations of the single
attributes as tooltips. However, we recognize that participants may still interpret
these terms differently.

As mentioned earlier, a large amount of machine learning algorithms exists.
We made sure to include both simple (Naive Bayes and SVMs) and more

Using Text and Image-Based Learning to Predict Maintainability 55

sophisticated models such as transformers and neural networks. We acknowl-
edge using more or different approaches may have led to different results. Due
to the limitations of this study and the long training periods required by most
approaches, we had to limit ourselves to a subset of all applicable algorithms. To
mitigate the potential effects of random seeds, we performed each experiment
twice and report the average. Though we did not find significant deviations
between the runs, one could repeat the experiment several times more. Another
threat is the bias introduced by the chosen train-test split, which we mitigated
by shuffling and stratifying the data. While we are going to further improve
these weaknesses in future experiments, we see value in this preliminary study
and its results. To increase the reproducibility of our results, we report the per-
formance of our classifiers on the publicly available dataset in Sect. 3 and provide
a replication package.

4.2 Future Work

There are various ways of how to further improve our results and setup. Even
the extended version of the used dataset is small compared to those typically
used for image- or text-based learning. A larger and more balanced dataset can
likely improve results for most of our approaches. The dataset at hand also
admits a numerical interpretation of the labels. Hence, modeling the prediction
as a regression model is an interesting possibility. In the future, we plan to
analyze other machine learning architectures and incorporate techniques from
Explainable Artificial Intelligence to foster the debugging and interpretation of
the results.

5 Related Work

Automated software quality evaluation and control is an increasingly important
topic. Lately, machine learning has been used to evaluate characteristics that
typically need to be interpreted by human experts. This includes, e.g., main-
tainability prediction [17,27,43] or code smell detection [13,33]. An overview of
machine learning techniques for code smell detection is provided in [10].

Text-based models for code have been utilized by Palomba et al. [32] to
identify code smells based on textual analysis. Salem and Banescu [39] used
the TF-IDF of source code to foster metadata recovery attacks on obfuscated
source code. Corazza et al. [7] performed a study where they manually analyzed
code comments and predicted human ratings using TF-IDF as well. Buse and
Weimer [2,3] developed a metric for code readability based on entropy within the
code. Their model was later refined by Posnett et al. [36]. While they do predict
the readability of code, they use static measurements as features. In contrast,
we use textual or image representations of the code.

To predict software maintainability, several related studies use a dataset pub-
lished by Li and Henry [27], which refers to the number of changed lines as a
proxy for maintainability. The data is drawn from only two software systems,

56 M. Schnappinger et al.

which are programmed in Classic-ADA. Then, regression models are used to pre-
dict the number of changed lines [27]. Kaur and Kaur [23] summarize 27 exper-
iments using this dataset. Furthermore, neuro-genetic algorithms were used by
Kumar et al. [26], while van Koten and Gray applied Bayesian Networks [46].

Similar to these studies, Malhotra and Lata [29] use the observed changes
in software systems as their target variable. Then, they discretize the data into
binary classes corresponding to high and low maintainability. However, they do
not provide the threshold used to separate them and mostly focus on the effects
of data preprocessing techniques.

Another dataset for C programs was created in 1987 by Harrison and
Cook [15]. This dataset is used for example by Xing et al. [49], who trained
support vector machines on it, or by Khoshgoftaar et al. [24], who used regres-
sion models.

Other studies aim to predict the rating of human experts instead of code
changes. Using the same dataset as in our study, the maintainability of code was
predicted in [42]. Here, the authors employ a human-level baseline as well to
put the performance of the evaluated machine learning classifiers into context.
However, static code metrics are used as input and a different aspect of the
dataset was chosen as the label. Hegedűs et al. [17] predicted the perceived
changeability of methods using a three-fold label. They achieved an accuracy of
0.76, while the constant baseline classifier already yielded an accuracy of 0.67.
On class-level, Schnappinger et al. [43] achieved an accuracy of 0.81, using a
three-fold scale, too. Hayes and Zhao [16] used the perceived maintainability of
software developed by students and developed a regression model to predict the
judgment.

So far, we observe studies relying on human evaluations often do not report
which maintainability sub-aspects the experts focused on [16,35,43], do not share
their data publicly [43], or rely on the opinion of a single expert [16,18,35].

In this study, we target three fine-granular sub-dimensions of maintainability
and evaluate classification techniques chosen specifically for these attributes.
We explore the use of image and text classification algorithms to predict the
readability, understandability, and complexity of source code.

6 Conclusion

Current machine learning approaches for predicting expert software qual-
ity evaluations often base their prediction on static code metrics. In related
domains, image and text classification reached significant results as well, sug-
gesting their potential use in quality prediction. In this study, we investi-
gate how well text-based and image-based classification algorithms can predict
readability, understandability, and complexity of code. We compare five text-
based machine learning architectures (Naive Bayes, Support Vector Machines,
BERT, RoBERTa, CodeBERT) and two image-based classifiers (Support Vector
Machines, AlexNet). The labels are drawn from a publicly available, manually
labeled dataset. We examine both a fine-granular ordinal multiclass classification
and binary classification settings.

Using Text and Image-Based Learning to Predict Maintainability 57

Using text-based input, Support Vector Machines outperform other algo-
rithms by a large margin. In the binary classification setting, they are able to
predict the readability, understandability, and complexity of source code with
Matthews Correlation Coefficients above 0.61 and F-Scores above 0.81. Regard-
ing image-based classification, Support Vector Machines yield the best results
as well with F-Scores between 0.71 and 0.76. Although the employed models
outperform a ZeroRule baseline classifier, the multiclass prediction does not yet
reach an operational level. In contrast, in a simplified binary setting, our models
reach human-level results. This demonstrates the potential of image and text
classification algorithms.

However, in this preliminary study, we identified several open challenges for
future research: In our view, the main challenge for the applicability of these
approaches is currently posed by their need for fixed-size inputs. Indeed, state-of-
the-art transformer models require text samples of fixed length. Similarly, most
image-based algorithms assume a constant image size. This requires a prepro-
cessing of source code files of unbounded length and arbitrarily complex struc-
ture into fixed-size data points, which in our experiments caused a deterioration
of data quality. In particular, the partitioning of source code into fixed-length
strings or fixed-size images did not match the granularity of the available labels.

This preliminary study opens an interesting line of research in quality pre-
diction. As this was our first foray into using text- and image-based machine
learning for software quality prediction, we are confident that subsequent work
will improve on the identified limitations.

References

1. Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D.: Software complexity and
maintenance costs. Commun. ACM 36(11), 81–95 (1993)

2. Buse, R., Weimer, W.: A metric for software readability. In: Proceedings of the
2008 International Symposium on Software Testing and Analysis, pp. 121–130.
ACM (2008)

3. Buse, R., Weimer, W.: Learning a metric for code readability. IEEE Trans. Software
Eng. 36(4), 546–558 (2010)

4. Campbell, G.A.: Cognitive complexity: an overview and evaluation. In: Proceedings
of the 2018 International Conference on Technical Debt, pp. 57–58 (2018)

5. Chang, Y.W., Hsieh, C.J., Chang, K.W., Ringgaard, M., Lin, C.J.: Training and
testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res.
11(48), 1471–1490 (2010)

6. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
7. Corazza, A., Maggio, V., Scanniello, G.: Coherence of comments and method imple-

mentations: a dataset and an empirical investigation. Software Qual. J. 26(2),
751–777 (2018)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22
(1977)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North, pp. 4171–4186 (2019)

https://github.com/fchollet/keras

58 M. Schnappinger et al.

10. Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A.: Detecting
code smells using machine learning techniques: are we there yet? In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 612–621. IEEE (2018)

11. Facebook: Pytorch (2020). https://pytorch.org
12. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural

languages. In: Findings of the Association for Computational Linguistics: EMNLP
2020. Association for Computational Linguistics, Online, November 2020

13. Fontana, F.A., Zanoni, M., Marino, A., Mäntylä, M.V.: Code smell detection:
towards a machine learning-based approach. In: 2013 IEEE International Con-
ference on Software Maintenance, pp. 396–399. IEEE (2013)

14. Gorodkin, J.: Comparing two k-category assignments by a k-category correlation
coefficient. Comput. Biol. Chem. 28, 367–374 (2004)

15. Harrison, W., Cook, C.: A micro/macro measure of software complexity. J. Syst.
Softw. 7(3), 213–219 (1987)

16. Hayes, J.H., Zhao, L.: Maintainability prediction: a regression analysis of measures
of evolving systems. In: 21st IEEE International Conference on Software Mainte-
nance (ICSM 2005), pp. 601–604. IEEE (2005)

17. Hegedűs, P., Bakota, T., Illés, L., Ladányi, G., Ferenc, R., Gyimóthy, T.: Source
code metrics and maintainability: a case study. In: Kim, T., et al. (eds.) ASEA
2011. CCIS, vol. 257, pp. 272–284. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-27207-3 28

18. Hegedűs, P., Ladányi, G., Siket, I., Ferenc, R.: Towards building method level
maintainability models based on expert evaluations. In: Kim, T., Ramos, C., Kim,
H., Kiumi, A., Mohammed, S., Śl ↪ezak, D. (eds.) ASEA 2012. CCIS, vol. 340, pp.
146–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35267-
6 19

19. Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P.: On the naturalness of
software. Commun. ACM 59(5), 122–131 (2016)

20. ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. Technical report (2010)

21. Jung, H.W., Kim, S.G., Chung, C.S.: Measuring software product quality: a survey
of ISO/IEC 9126. IEEE Softw. 21(5), 88–92 (2004)

22. Karpathy, A., Fei-Fei, L., Johnson, J.: Convolutional neural networks for visual
recognition, Stanford University (2017). http://cs231n.github.io

23. Kaur, A., Kaur, K.: Statistical comparison of modelling methods for software main-
tainability prediction. Int. J. Software Eng. Knowl. Eng. 23(06), 743–774 (2013)

24. Khoshgoftaar, T.M., Munson, J.C.: Predicting software development errors using
software complexity metrics. IEEE J. Sel. Areas Commun. 8(2), 253–261 (1990)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

26. Kumar, L., Naik, D.K., Rath, S.K.: Validating the effectiveness of object-oriented
metrics for predicting maintainability. Procedia Comput. Sci. 57, 798–806 (2015)

27. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. J. Syst.
Softw. 23(2), 111–122 (1993)

28. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

29. Malhotra, R., Lata, K.: An empirical study on predictability of software maintain-
ability using imbalanced data. Software Qual. J. 28(4), 1581–1614 (2020)

https://pytorch.org
https://doi.org/10.1007/978-3-642-27207-3_28
https://doi.org/10.1007/978-3-642-27207-3_28
https://doi.org/10.1007/978-3-642-35267-6_19
https://doi.org/10.1007/978-3-642-35267-6_19
http://cs231n.github.io
http://arxiv.org/abs/1907.11692

Using Text and Image-Based Learning to Predict Maintainability 59

30. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 4, 308–320
(1976)

31. Murphy, K.: Naive Bayes classifiers. Univ. Br. Columbia 18(60) (2006)
32. Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.: A textual-

based technique for smell detection. In: 2016 IEEE 24th International Conference
on Program Comprehension (ICPC), pp. 1–10. IEEE (2016)

33. Pecorelli, F., Palomba, F., Di Nucci, D., De Lucia, A.: Comparing heuristic
and machine learning approaches for metric-based code smell detection. In: 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC),
pp. 93–104. IEEE (2019)

34. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

35. Pizzi, N.J., Summers, A.R., Pedrycz, W.: Software quality prediction using median-
adjusted class labels. In: Proceedings of the 2002 International Joint Conference
on Neural Networks, IJCNN 2002, vol. 3, pp. 2405–2409. IEEE (2002)

36. Posnett, D., Hindle, A., Devanbu, P.: A simpler model of software readability. In:
Proceedings of the 8th Working Conference on Mining Software Repositories, pp.
73–82. ACM (2011)

37. Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., Devanbu, P.: On the
‘naturalness’ of buggy code. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 428–439 (2016)

38. Raymond, D.R.: Reading source code. In: CASCON, vol. 91, pp. 3–16 (1991)
39. Salem, A., Banescu, S.: Metadata recovery from obfuscated programs using

machine learning. In: Proceedings of the 6th Workshop on Software Security, Pro-
tection, and Reverse Engineering, pp. 1–11 (2016)

40. Schnappinger, M., Fietzke, A., Pretschner, A.: Defining a software maintainability
dataset: collecting, aggregating and analysing expert evaluations of software main-
tainability. In: 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 278–289. IEEE (2020)

41. Schnappinger, M., Fietzke, A., Pretschner, A.: A software maintainability dataset,
September 2020. https://doi.org/10.6084/m9.figshare.12801215

42. Schnappinger, M., Fietzke, A., Pretschner, A.: Human-level ordinal maintainability
prediction based on static code metrics. In: Evaluation and Assessment in Software
Engineering, EASE 2021, pp. 160–169 (2021)

43. Schnappinger, M., Osman, M.H., Pretschner, A., Fietzke, A.: Learning a classifier
for prediction of maintainability based on static analysis tools. In: Proceedings of
the 27th International Conference on Program Comprehension, pp. 243–248. IEEE
(2019)

44. Schnappinger, M., Osman, M.H., Pretschner, A., Pizka, M., Fietzke, A.: Software
quality assessment in practice: a hypothesis-driven framework. In: Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, p. 40. ACM (2018)

45. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification?
In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI),
vol. 11856, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32381-3 16

46. Van Koten, C., Gray, A.: An application of Bayesian network for predicting object-
oriented software maintainability. Inf. Softw. Technol. 48(1), 59–67 (2006)

47. Von Mayrhauser, A., Vans, A.M.: Program comprehension during software main-
tenance and evolution. Computer 28(8), 44–55 (1995)

https://doi.org/10.6084/m9.figshare.12801215
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16

60 M. Schnappinger et al.

48. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016)

49. Xing, F., Guo, P., Lyu, M.R.: A novel method for early software quality prediction
based on support vector machine. In: 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE 2005), pp. 10-pp. IEEE (2005)

50. Yao, J., Shepperd, M.: Assessing software defection prediction performance: why
using the matthews correlation coefficient matters. In: Proceedings of the Evalua-
tion and Assessment in Software Engineering, pp. 120–129 (2020)

51. Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using mul-
tivariate adaptive regression splines. J. Syst. Softw. 80(8), 1349–1361 (2007)

Quality Assurance
for Software-Intensive Systems

Specification of Passive Test Cases Using
an Improved T-EARS Language

Daniel Flemström(B) , Wasif Afzal , and Eduard Paul Enoiu

Mälardalen University, Väster̊as, Sweden
{daniel.flemstrom,wasif.afzal,eduard.paul.enoiu}@mdh.se

Abstract. Test cases that only observe the system under test can
improve parallelism and detection of faults occurring due to unantic-
ipated feature interactions. Traditionally, such passive test cases have
been challenging to express, partly due to the use of complex mathemat-
ical notations. The T-EARS (Timed Easy Approach to Requirements
Syntax) language prototype was introduced to respond to this and has
received positive feedback from practitioners. However, the prototype
suffered from few deficiencies, such as allowing non-intuitive combina-
tions of expressions and usage of temporal specifiers that quickly got
difficult to understand. This paper builds on the T-EARS prototype and
input from experienced testers on a previous iteration of the language.
The collected experience was applied to a new prototype using a struc-
tured update process, including a set of system-level requirements from a
vehicular software system. The results include a new, improved grammar
for the T-EARS language and a description of the evaluation semantics.

1 Introduction

We trust vehicular software to be functional, safe and reliable on a daily basis.
Traditionally, a great number of software tests ensure that the software works as
specified. Intuitively, the more the tests can be run in parallel, the shorter each
testing cycle can be and more thorough the testing. One approach that has shown
promising results in dealing with this problem is passive testing using guarded
assertions (G/As) [12,22]. As in contemporary passive testing or monitoring,
the idea is to treat the input stimuli (that affects the system state) and the test
oracle (that decides if a system requirement is fulfilled or not) independently.
Consequently, if all necessary signals have been logged, passive testing allows
parallel evaluation and even off-line evaluation of G/As.

A weakness with most passive testing or monitoring approaches [3] is that
they rely on formal descriptions of test cases that tend to meet quite some
resistance from practitioners [2,5,7] for being too complex. Although there exist
predefined patterns and even graphical representations [2,7] to facilitate the
formalization of either requirements or test cases, the problem of readability
and traceability remains. As a reaction to such difficulties, T-EARS (Timed
Easy Approach to Requirements Syntax) was proposed as an engineer-friendly

c© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 63–83, 2022.
https://doi.org/10.1007/978-3-031-04115-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_5&domain=pdf
http://orcid.org/0000-0001-8096-3592
http://orcid.org/0000-0003-0611-2655
http://orcid.org/0000-0003-2416-4205
https://doi.org/10.1007/978-3-031-04115-0_5

64 D. Flemström et al.

approach to writing passive test cases [8]. The T-EARS language allows writ-
ing easy-to-write and easy-to-read (executable) requirements and test cases for
signal-based systems such as vehicular systems. The initial versions of the app-
roach and the language were appreciated by the test engineers [9], but still suf-
fered from having an experimental (very open) grammar and automatic conver-
sions that did not always evaluate as the tester expected. Unexpected evaluation
results were especially common for the timing-related keywords.

The work in this paper aims to improve the T-EARS language, prototyped
in [8] and [4], so the language becomes more intuitive from a testing perspec-
tive. Primarily, these refinements concern the grammar and semantics of the
language. Other refinements include suggesting a set of boiler plates to decrease
the distance between the EARS patterns and the final corresponding passive test
cases. Finally, the intuition and usage of the temporal specification is addressed.

The results of these refinements have been implemented and evaluated in [11].
The industrial validation part of that paper analyzed 116 safety-related require-
ments from an ongoing industrial project at Alstom Transport AB. The refined
T-EARS language and the supporting tool-chain were found to be applicable for
64% of the studied requirements. Furthermore, an expert from Alstom Trans-
port AB performed two testing sessions to validate the applicability of the refined
T-EARS language in terms of requirements coverage and fault detection respec-
tively. The result from the first testing session showed that the translation to
T-EARS was stable for a number of requirements whereas some requirements
could not be evaluated due to certain signals not being logged, which is a com-
mon situation in testing at Alstom Transport AB. In the second testing session,
the expert injected faults in the SUT, known to be hard to find with traditional
testing. The G/As were able to detect all injected faults. In summary, the eval-
uation showed how passive testing with an improved language can be used to
understand requirements coverage and finding faults.

Whereas [11] focus on the overall approach and evaluation, this paper focus
on providing more detailed insights into the language and how we improved it.
The main contributions are (i) an Ohm grammar for the improved T-EARS
language and (ii) semantics descriptions for the improved T-EARS language.

2 Background

2.1 Passive Testing

Passive testing is an approach where the test cases only observes the system
under test (SUT). When a testable state is detected, further observations are
done to see whether the tested requirement is fulfilled or not. The concept has
been used in many variants in various domains [3]. Notably, most of these works
target non-vehicular software testing, such as protocol testing in web and telecom
applications and are based on formal specifications.

Specification of Passive Test Cases Using an Improved T-EARS Language 65

2.2 Guarded Assertions

The concept of an independent guarded assertion (IGA) [12] or simply a guarded
assertion (G/A) was introduced as an approach for system-level, passive testing
of vehicular software. A G/A is defined by a guard expression, G, that decides
whether the assertion expression, A, is expected to be fulfilled or not.

Let’s consider the following illustrative vehicular requirement: “whenever the
brake pedal is pressed, the brake light should be lit”. Assuming that we success-
fully created a guard and an assertion expression for this example, the guard
expression G would decide whether the brake pedal is pressed or not (a sequence
of time intervals where the guard is true), and the assertion expression A would
evaluate to true whenever the brake light is lit. For each guard interval, as long
as A is true, the test is considered to be passed. Conversely, if A is false any
time during the guard interval, the test had failed when A was false. Outside
the guard intervals, the result of the assertion expression is not evaluated.

A previous attempt to express such G/As can be found in the SAGA
(Situation-based Integration Testing of Automotive Systems using Guarded
Assertions) approach [8]. The SAGA approach is the prototype of a tool chain
consisting of an interactive test case editor and a description language i.e., the
T-EARS language mentioned in the next section.

2.3 Easy Approach to Requirements Syntax (EARS)

The purpose of the Easy Approach to Requirements Syntax (EARS) [16] is to
provide minimal syntax, helping the requirements engineer to write natural lan-
guage requirements that are less ambiguous, better structured, and less complex.

While already successful for specifying requirements [14,15], we argue that
by evolving the syntax to be machine-interpretable, the quality of requirements
would increase, as well as the gap between requirements and testing would
reduce [17,24]. The T-EARS language [4,8,10] with the accompanied SAGA-
Toolkit is a first step towards such an extension of EARS.

2.4 The Ohm Grammar Language

Ohm1 and the Arc Ohm parser library are used for specifying the grammar
and semantics of a domain specific language. Such a language is defined by i) a
set of terminals, ii) a grammar and iii) a set of semantic rules. Firstly, a set of
terminals (such as keywords or numbers) defines what you can write, and a set
of rules define how you are allowed to combine the terminals into the different
constructs of the language.

While the grammar describes all acceptable strings for the described lan-
guage, it does not say anything about what it means. The interpretation (or
actual meaning) of the rules is called the semantics of the language.

1 https://github.com/harc/ohm.

https://github.com/harc/ohm

66 D. Flemström et al.

Fig. 1. Method overview

3 Method

The work of the new T-EARS version started with the prototype in [8] and a case
study on the previous prototype [9] as input. The refinements were performed
during a number of iterations as illustrated in Fig. 1. Each iteration started with
(an updated version of) the T-EARS prototype. For the first iterations, we sys-
tematically generated possible expressions and syntax trees by hand. For each
of those expressions, we (manually and independently) created a sketch of the
intuitive evaluation of the expression (according to our understanding and dis-
cussions with test engineers at Scania and Alstom Transport AB). Possible and
required expressions were sorted into useful expressions and expressions that
should be forbidden (bad expressions). Further, to ensure the expressiveness of
he language, a set of 40 safety-critical requirements from Alstom Transport AB
and a complex requirement from Scania CV AB were used for the static evalu-
ation of the language updates. The set of useful expressions was then analyzed
against a set of evaluation questions concerning, e.g., usefulness, completeness
and intuitiveness. Based on this analysis, the prototype grammar, the translated
requirements, and the useful expressions were updated until the expressions and
the grammar was consistent. This process was repeated until the requirements
could be expressed as passive test cases using the updated language, leading to
test cases that were easy to understand and interpret. During parallel work with
industrial adoption of passive testing using the refined T-EARS language [11],
a set of tuning keywords were added to ignore false fails. With all refinements
in place, 116 safety critical requirements were analyzed in [11] to determine the
applicability of the final results.

4 Result: The Updated T-EARS Language

T-EARS provides six boilerplates as shown in Listing 1.1. Just as EARS, T-
EARS reasons about system states and system events. A system state can be
represented as a binary signal that is true when the system is in the specified

Specification of Passive Test Cases Using an Improved T-EARS Language 67

1 2 3 4 5 6 7 8 9 10

Fail

Pass

A

G

While G shall A within 1.5s

(a) BP-2:Asserting States

Fig. 2. State boilerplate example. Shadow = grace period of 1.5 s (Color figure online)

state and false when the system is considered to be in another state. State is
internally represented as a series of time intervals (while state is true), and events
are represented as a series of time-stamps. In the text, we use the binary signal
metaphor and intervals interchangeably.

’Bp -1’ = while true shall <sys response state A>
’Bp -2’ = while <sys state G > shall <sys response state A> within t
’Bp -3’ = when <events G> shall <sys response state A> within t
’Bp -4’ = when <events G> shall <response events A> within t
’Bp -5’ = when <events G> shall <sys response state A> for tf within tw
’Bp -6’ = when <events G> shall <sys response state A> within tw for tf

Listing 1.1. Resulting T-EARS Boilerplates, sys = system

The rest of this section outlines how each EARS pattern (one through six)
is realized in T-EARS. The observant reader will note that, while T-EARS,
in general, follows the EARS structure and usage of keywords, the syntax the
<system name> is not used in T-EARS. Instead, T-EARS assumes the system
name to be implicit by the signal expressions to facilitate automatic evaluation
of the final passive test cases. Further, when describing the patterns, the system
state and response are represented as intervals or states only. More details on
how to combine signals and operators to express such states and events using
logged data are covered separately in Sects. 4.8–4.11.

Ubiquitous: A ubiquitous requirement describes a property of the system that
should always hold, e.g., “the big red emergency lamp should never be lit”. In
T-EARS this is realized by the first boiler plate. The result is a pass whenever
the state assertion A is true and failed for not (A).

State-Driven: A state-driven requirement describes a property of the system
that should hold as long as it is in a particular state. E.g., “while the vehicle is
moving shall doors be locked”. In T-EARS, BP-2 is used for such requirements.
Figure 2 shows that, in general, during the specified guard intervals (G == true
in Fig. 2), a pass (P == true in Fig. 2) is reported whenever the assertion is true,
and a fail (F==true in Fig. 2) whenever the assertion is false. While passes are
duly reported during the whole guard intervals, fails during each within-period

68 D. Flemström et al.

0 1 2 3 4 5 6 7 8 9 10

Fail

Pass

A

G

When G shall A within 1.5s

(a) BP-3: Asserting State Response

0 1 2 3 4 5 6 7 8 9 10

Fail

Pass

A

G

When G shall A within 1.5s

(b) BP-4: Asserting Event Response

Fig. 3. Event boilerplates evaluation examples (Color figure online)

(yellow shadow in Fig. 2) are ignored. The within period starts at each guard
interval and have the length specified after the within keyword. Outside the
guard intervals, the value of the assertion is ignored.

1 2 3 4 5 6 7 8 9 10

Fail

Pass

A for 1s

A

G

When G shall A for 1s within 1.5s

(a) BP-5: Completed Response

1 2 3 4 5 6 7 8 9 10

Fail

Pass

A for 1s

A

G

When G shall A within 1.5s for 1s

(b) BP-6: Started Response

Fig. 4. Boilerplate evaluation examples (Color figure online)

Event-Driven: An event driven requirement describes an expected response
to a (series of) discrete event(s). E.g, “when horn button is pushed shall the
horn honk”. T-EARS provides a few variations for this pattern for asserting event
responses or a state response. The first, BP-3 is used for asserting a system state
response within a timeout whenever an event occurs. The intuition is that for
each guard event, one pass is reported as soon as the assertion is true. However,
if the assertion is not true any time before the timeout t, a fail is reported at g
+ t. Figure 3a shows how this boilerplate is evaluated for four guard events. The
yellow shadow shows the within t period occurring after each guard event. For
the first guard event (at 2 s) A becomes true just before the within interval ends
and a pass is reported. When second guard event occurs (at 4 s), A is already
true and a pass is reported immediately. For the third guard event (g3 at 6 s),
the system response A does not occur within t and a fail is reported at g3 + t.

Specification of Passive Test Cases Using an Improved T-EARS Language 69

Finally, the last guard (at 8.5 s) is immediately pass since A is already true. BP-
4 is used for asserting a system event within a timeout t as shown in Fig. 3b. The
semantics follows BP-3. A pass is reported if a response event (A) occurs before
the within period ends, and a fail is reported at g + t if no event occurred. For
the first guard (2 s) an event is found before the within period (in yellow) ends.
A pass is reported at that time. For the second guard event (at 5 s), there is an
event a at 5 s. Since this event occurred at the same time as the guard event,
it cannot be a response to that guard event and is thus ignored. Instead next
event in A that occurs at 6 s yields a pass since it is still inside the within period.
For the third guard event (at 7 s) no response in A occurs and as for BP-3, a
fail is reported at g + t (8.5 s). There are also two boiler plates for asserting a
system state of a particular length. The first, BP-5, requires the system state
to be tf long and finish within tw. Figure 4a shows three examples on how this
boilerplate is evaluated. For the first guard event, A is already true. The for 1s
period is counted from guard and results in an event if A stays true for 1.5 s.
This event is evaluated as in BP-3. For the next guard, A becomes true at 5 s, so
we start counting the 1.5 s from here. However, the within period ends before the
1.5 s could be completed. A fail is thus reported at g+ t as for BP-3. For the last
guard event, A is not true long enough, but since the within period ends first,
this does not matter and a fail is reported at g + t. BP-6 is used for asserting
that a response state of (min) length tg is initiated within tw from each guard
event. Figure 4b illustrates the difference between BP-6 and BP-5. With G and
A the same, we note that for the second guard event, we allow the for period
(the arrows in the figure) to stretch outside the within period (yellow shadow in
the figure). As a consequence, the second guard events results in a pass when A
has been true for 1.5 s after the guard event. For the last guard event, we still
get a fail, but the fail is reported because the for period could not be fulfilled
(slightly later than the BP-5 example).

Option: Some requirements are only applicable to certain configurations of the
SUT. E.g., “where the vehicle has a horn, [horn requirement]”. In T-EARS
this is accomplished by using the where <boolean expression> before a G/A
boilerplate. In contrast to a guard expression (that varies over the time covered
in the log-file), this is a single Boolean value that concerns the whole log-file.

Unwanted Behavior: Some behaviors are unwanted but still require a
response. E.g., “if oil pressure is critical then the motor should shut down”.
In T-EARS, there is no if, or then-keyword, however unwanted behavior can
modeled by using the existing boilerplates.

Complex: More complex requirements can be constructed by combining the
EARS patterns. E.g when the honk button is pressed while engine is run-
ning shall horn honk. In the new version of T-EARS, nesting while and when
expressions were removed in favor to stricter rules on how to combine states and
events to form guard expressions. Instead of nesting the when and while expres-
sion, above expression is expressed using the more structured rules of Events

70 D. Flemström et al.

and Intervals, as when honk button is pressed and engine is running shall horn
honk .

In the upcoming sections, we present the grammar developed to realize these
boilerplates.

4.1 Keyword Terminals

The terminals grammar block defines a rule for each keyword and also groups
the keywords into a logical group:
1 keyword =
2 / 1. 2. 3. 4. 5. */
3 where | and | for | true | const
4 | when | or | within | false | alias
5 | while | longer | inf | def
6 | shall | shorter | events
7 | than | intervals
8 | at
9 /*6*/

10 |allow|fail|ignore

Listing 1.2. Non-trivial Terminals

The first group of keywords outlines the G/A (e.g., where, when). The con-
junctions group (and, or) allows composing expressions. The third group consists
of the timing modifiers (for, within etc.). The fourth group has a set of built-in
constants (true, false, inf). The fifth group concerns structuring the expres-
sions (e.g., def, alias, const).

4.2 Structural Elements

The structural elements block defines the following main rules:
1 Constant =
2 const identifier "=" (Timeout | Num | Boolean)
3 IntervalsDef =
4 def intervals identifier "=" Intervals
5

6 EventsDef =
7 def events identifier "=" Events
8

9 Alias = alias identifier "=" identifier

Listing 1.3. Structural Elements

The purpose of the rule Constant in Listing 1.3 is to define named constants,
e.g., limits or timeouts. The constant is checked by the corresponding seman-
tic operation of the rule where the constant is used. A constant can only be
defined once within a test case context. The purpose of the rules IntervalsDef
and EventsDef is to structure sub-expressions into named expressions to increase
readability. A def expression can only be defined once using the same name. Fur-
ther, the keywords events, intervals facilitates type checking while typing
the expressions in the interactive editor. The expression is evaluated where used
(not where it is defined). The alias keyword renames an identifier. An alias can
be redefined, allowing the same alias in two G/As to have different meanings.

Specification of Passive Test Cases Using an Improved T-EARS Language 71

Since an alias is resolved where it is evaluated, using an alias inside a named
expression offers a primitive way of user-defined functions. Another purpose of
the alias keyword is to create abstractions for, e.g., release or variant of a system
without changing the test logic.

4.3 Basic Data Types

There are four basic types, Boolean, Float, Integer, and Time. Listing 1.4
shows how they are defined. The example shows the Boolean type. One sub rule
defines explicit usage (e.g., true, false) and one rule allows using an identifier
(e.g., −−constOrAlias). The identifier rule allows using a constant or alias (an
alias is a renamed constant). There is also a main rule for how identifiers can be
specified. The identifier–quoted allows strings in quotes that would otherwise be
forbidden.
1 Boolean = (true | false) --bool
2 | identifier --constOrAlias
3

4 identifier ="’" idstring_quoted "’" --quoted
5 | idstring
6 // --
7 idstring = ~digit ~keyword letter+ (specialChar | alnum)*
8 idstring_quoted = (specialChar | mustQuoteChar | alnum)+
9 specialChar = ("_" | "/" | "[" | "]" | "." | "|" | ":")

10 mustQuoteChar = "-" | "+" | " " | "(" | ")"
11

12 sign = ("+" | "-")
13 TimeUnit = ("s"~"h | "ms"~"h")

Listing 1.4. Basic Data types

Examples of such strings are strings that contain spaces or keywords. The
support rules below row 7 in Listing 1.4 shows the details of, e.g., sign and string
handling. The tilde operator followed by the letter h (at line 13 in the listing)
prevents the time unit to be confused with the keyword shall.

4.4 Signals Data Type

In a signal based system, the input and output consists of a set of (single value)
signals that vary over time. Example signals are actuator readings, signals from
other subsystems, and even sampled continuous values such as speed or temper-
ature. These signals can be recorded into log files and fetched by name when
building T-EARS expressions. Using the T-EARS editor [8,11], it is also possible
to manually construct abstract signals to allow executable examples for higher-
level requirements. In T-EARS, there are also several ways to manipulate signals
as described by the Signals grammar block:
1 Signal =
2 Signal SigOP Signal --sigOpSig
3 | SignalFunction --func
4 | (true | false | NUM) --constant
5 | identifier --sigAliasConst
6 | "(" Signal ")" --parentheses
7

72 D. Flemström et al.

8 SigOp =
9 ("+" | "-" | "/" | "*")

10

11 SignalFunction =
12 derivative "(" (Timeout ",")? Signal ")"
13 | abs "(" Signal ")"
14 | bitmask "(" IntegerOrConst "," Signal ")"
15 | count "(" Events "," Intervals ")"
16 | maxVal "(" NonemptyListOf < Signal , ","> ")"
17 | select "(" Signal "," Signal "," Signal ")"
18 | exists "(" identifier ")"

Listing 1.5. The Signal Datatype

The rules Listing 1.5 defines the Signal data type. Besides the main rule
Signal, there are two support rules: SigOp defines trivial mathematical opera-
tions on two signals, and, SignalFunction, that defines all built-in functions that
return a value of type Signal.

In more detail, the Signal data type is represented by a series of samples [time,
value] pairs and is denoted with the letter S (Signal). In the examples below, we
use the notation S = [s0, . . . , sm] for a signal with m + 1 samples, where each
sample ([time, value] pair) is noted as si = [ti, vi]. Logs may be sampled with
a variable sampling rate, so the value between one sample is considered to be
constant until the next sample.

When evaluating mathematical expressions (line 2, −−sigOpSig), the signals
are projected on a common timeline. The operator (e.g., plus or minus) is then
applied on each sample along the common timeline. The −−func sub-rule at
line 3 allows more advanced signal processing in the functions listed by the
support rule SignalFunctions. The currently provided functions are derivative,
a forward approximating derivative with an optional threshold to smooth out
the result over several samples as sn(i) = vn+i−vn

tn+i−tn
. The threshold t makes sure

to increase i from 1 until i : t < tn+i − tn. Increasing the threshold widens the
delta in the approximation. The abs function processes each sample of a signal
as vn = abs(vn). The bitmask function returns vn = vn ∧ bitmask, applied on
each sample of a signal. The count function takes two arguments: one Events
and one Intervals argument. The result is a signal with the number of events
during the interval of ri as value. The value is constant during each interval of
ri. The maxVal function takes a list of Signals and returns a new Signal with the
largest sample value at each sampled point in time. The select function selects
samples from the second or third signal argument depending on the first signal
argument’s value. Where the first signal argument equals true, the sample from
the second signal is used. Otherwise, the sample from the third signal argument is
used. If the first expression is constant, only the used signal needs to be defined.
The exists function returns a signal that is constant true if there exists a signal
with the name of the given identifier. Typically, the last two functions, select
and exists, are often used together to enable default values for optional signals.

Specification of Passive Test Cases Using an Improved T-EARS Language 73

(a) Intervals Conjunctions (b) The between Function

Fig. 5. Interval operations and creation. R denotes intervals, P denotes events

The sub-rule at line four in the listing (−−constant) defines a pseudo-signal
with a constant value. The signal is defined over the logged min and max time.
It is possible to specify a binary or a numerical value.

If an identifier is specified (−−sigAliasConst , sub-rule at line five), this may
refer to a signal name to fetch from a loaded log file, an alias, or a named
constant. If the identifier is an alias, the alias is resolved until a signal name or
a constant is found. A constant (sub rule −−constant) is interpreted as a signal
with a constant value over the entire log file.

4.5 Intervals Data Type

The syntactical rules for Intervals are presented in Listing 1.6.
1 Intervals =
2 IntervalsExpr TimeFilter*
3 ((and|or)
4 IntervalsExpr TimeFilter*)* --conj
5

6 TimeFilter =
7 longer than Timeout --atLeast
8 | shorter than Timeout --atMost
9

10 IntervalsExpr(Interval Expression) =
11 | "(" Intervals ")" --parentheses
12 | IntervalFunction --func
13 | Signal RelOp Signal --relop
14 | (true | false) --boolean
15 | definedIntervals --definition
16 |"[" ListOf <Interval , ","> "]" --list
17

18 Interval = "[" Timeout "," Timeout "]"
19

20 RelOp = ("==" | "!=" | "~=" | " >=" | ">" | " <=" | "<")
21

22 IntervalFunction =
23 not "(" Intervals ")"
24 | between "(" (Events|Timeout) ","
25 (Events|Timeout) ")"

Listing 1.6. The Intervals Datatype

The first rule at lines 1–4 in Listing 1.6, together with the support rule
(TimeFilter at lines 6–9), allows filtering intervals shorter or longer than a spec-
ified threshold. The filters can be defined in any order. The rule at lines 1–4

74 D. Flemström et al.

also defines the two possible conjunctions (and, or) between intervals, shown
in Fig. 5a. The intuition is the same as and/or between binary signals (high
inside an interval and low outside). Intervals can also be constructed by the two
built-in support functions (line 12: −−func, and lines 22–25: IntervalFunction).
Currently, there are two such functions defined. The function not returns the
two-complement of an interval series. The function between can be used for con-
structing intervals from Events or from one event and a constant, to create fixed
length events, as illustrated in Fig. 5b.

The −−relop rule at line 13 together with the rule RelOp at line 20 defines
how signals and relational operators are combined to form Intervals. The signals
are projected onto a common timeline (each unique sample time from both
signals) and each sample is compared using the operator. Again, it should be
noted that values are not interpolated between samples. The rule at line 16
(−−list) and line 18 (Interval) defines manual specification of an intervals series.
The time can be specified numerically, but also by using named constants.

4.6 Events Data Type

The Events data type describes how to compose a series of system events. The
rules for the Events data type are presented in Listing 1.7 and Fig. 6.
1 Events =
2 Intervals ForExpression --intervalFor
3 | Events and Intervals --andIntervals
4 | Intervals and Events --intervalAnd
5 | Events or Events --eventsOr
6 | Events ("+"|"-") Timeout --nudge
7 | EventFunctions --function
8 | definedEvents --definition
9 |"[" ListOf <Timeout , ","> "]" --list

10 | "(" Events ")" --parenthesis
11

12 EventFunction =
13 risingEdge "(" Intervals ")"
14 | fallingEdge "(" Intervals ")"
15 | cycle"(" (Events ",")? Timeout ")"

Listing 1.7. The Events Datatype

0 1 2 3 4 5 6 7 8 9 10

A for 1.5s

P1 and A

A

P1 or P2

P2

P1

Fig. 6. Evaluation examples of the event rules

Specification of Passive Test Cases Using an Improved T-EARS Language 75

The first rule at line 2 in Listing 1.7 (−−intervalFor) defines events as a
response to a timeout on an interval. The result is one event for each interval,
long enough to reach the timeout as P = [rs+t]∀r : rs+t < re, where R is a series
of intervals with each interval starting at rs and ending at re. The next two rules
at lines 3–4 (−−andIntervals, −−intervalAnd) defines the and operator between
Intervals and Events. The intuition is that the events occurring during an interval
are kept. Note that the rule P1 and P2 is removed from the language. The reason
is that events are represented by high resolution timestamps and would need to
be identical to yield any results, which is not realistic. A workaround is to replace
P with acceptable intervals around each event in P , as in the following example:

W = between(P − t, P + t) (1)
P and Q ⇒ Q and W (2)

The interval W represents an interval that is reasonably close to P . The points
in Q that reside in any of these intervals will be kept. It should be noted that
if the interval is constructed using the points of Q instead, the result would be
the points in P that match an interval. Also, the time t needs to be sufficiently
small to not create overlapping intervals in W .

Line 5 in Listing 1.7 (−−eventsOr) shows the only conjunction between
Events. The expression P1 or P2 would evaluate to all events in P1 and P2,
sorted and with duplicates removed.

Line 6 (−−nudge) shows how each event can be pushed forward or backward
in time. The expression P1 + t would evaluate in a series events [p + t] ∀p ∈ P1.

For more complex Events operations, there are some built-in functions that
takes other data types as input and returns Events (Line 8 (−−function) and
lines 12–15 (EventFunction)). Currently, there are three such functions defined.
The first two concerns edge detection. Detecting the edges of signals or intervals
is common in creating events based on signal or interval features. Since intervals
are conceptually treated as a binary signal, rising edge and falling edge corre-
spond to each interval’s start and end. The last function is requested by test
engineers to ensure that cyclic events are correctly sent on the CAN bus. The
first argument is an optional event series. The cycle will start at the first event
in this series and continue as long as the last logged sample (in the currently
loaded log). The second argument defines the cycle width.

The rule −−list on line 9 in Listing 1.7, allows to hand-craft en Event series
by assigning individual time points to an Events. These time points may be
either specified as (milli) seconds or by using a constant or alias for a constant.

Finally, the −−definition rule allows for using a defined events-expression.
When evaluated, any level of aliases are resolved and eventually, the defined
Events expression is evaluated.

4.7 Boolean Expressions

The EARS pattern Option is realized by the where keyword and a Boolean
expression. This Boolean expression decides if the G/A should be evaluated at
all or not. The grammar for Boolean is shown in Listing 1.8.

76 D. Flemström et al.

1 BoolExpr = BoolExpr (and|or) BoolExpr --conj
2 | BoolExpr ("==" | "!=") BoolExpr --eq
3 | Num RelationalOperator Num --op
4 | BooleanFunction --func
5 | Boolean --boolean
6 | identifier --constOrAlias
7 | "(" BoolExpr ")" --para
8

9 Boolean = (true | false)
10 BooleanFunction =
11 exists "(" identifier ")" --exists

Listing 1.8. The BoolExpr Datatype

4.8 Guarded Assertion Rules

There are two types of guarded assertions: The State G/A, observes the system
state and expects some requirements to be held during this time. These are
specified using the while keyword as shown in line 4 in Listing 1.9. The second
type is the Event G/A that reacts to events and checks a requirement in response
to the events. Event G/As are specified using the When keyword as shown in line
5 in Listing 1.9. Both rules are build up by a guard rule and an optional assertion
rule.
1 GA = ((identifier "=")? Config? GuardedAssertion)
2 Config = where BoolExpr
3 GuardedAssertion =
4 while Intervals (shall IntervalAssertion)?
5 | when Events (shall EventsAssertion)?
6

7 IntervalAssertion = Intervals (within Timeout)?
8

9 EventsAssertion =
10 Intervals for Timeout within Timeout
11 | Events within Timeout
12 | Intervals (within Timeout)? (for Timeout)?

Listing 1.9. Guarded Assertions

The Events assertion is a bit more complicated with three rules. The first rule
at line 10 in Listing 1.9 shows the case when the response to an event is that
the system enters the state (described by Intervals) for a time (first Timeout
expression). If the system is kept in the asserted state for that time, a pass is
emitted for the guard at that time (g + t). If the system does not enter the
asserted state, a fail is emitted as soon as the asserted state does not hold. The
above must have been completed before the within period of the guard ends.

The second Event Assertion rule in line 11 in Listing 1.9 shows the case when
an assertion event is expected as a response to a guard event. If an assertion event
can be detected before the within period of a guard ends, a pass is emitted for
that guard at that time. If no event is detected, a fail is emitted at the end of
the within period. If the guard events are very close in time, the same assertion
event can satisfy several guards.

The third rule in line 12 in Listing 1.9 shows the case when a state of a
particular length is required to start within the specified time. The difference to
the rule in line 10 is that the assertion for-period does not need to be finished

Specification of Passive Test Cases Using an Improved T-EARS Language 77

before the within period of the guard ends. If the system is already in the asserted
state, time is counted from the start of the guard.

4.9 Miscellaneous Modifiers

The statement ignore <|> timeout tells the evaluation core to ignore any fails
before or after the specified time. This is used when there are disturbances
at startup or shut down of the system under test. There is also a statement
Allow timout fail that makes the G/A ignores fails of the specified length. It
is typically used to rule our sampling errors that may lead to fails due to the
assertion appears to change before the guard due to sampling errors.

4.10 Timing Considerations

Another core feature of T-EARS, partially present in the early prototypes, is
the possibility to specify timing information in logical expressions. Using the
keyword for, the length of an interval could be specified and using the keyword
within, timeouts, or grace times could be specified. Further research, however,
revealed that longer expressions with the timing keywords applied to each sub-
expression were difficult to comprehend or even evaluate correctly. One culprit
was that the for keyword filtered out intervals longer than the specified timeout,
regardless of the expression context, which sometimes yielded very confusing
results. The reason is that we, as human readers, have different expectations
on what effect for has, depending on the expression context. Our solution is to
separate different filtering expectations into different keywords. The construction
longer than and shorter than as described in Sect. 4.5 filters intervals with
respect to length, regardless of the current context. Concerning the for keyword,
the new grammar considers the perception of relative time base: Consider the
expressions R for 10 s. Regarding R as a binary signal, the expression evaluates
to one event each time the signal has been true for 10 s. At first glance, this
seems to be an exact definition, but putting the expression into different contexts
reveals some interesting properties.

In the context of a guard expression, we expect (R for 4 s) to be “mea-
sured” from the start of each interval in R, resulting in a series of events, say
[p1, p2, . . . , pn]. In the assertion context, however, there is an implicit assumption
that the assertion evaluation is a consequence of a guard event (or interval) and
hence, (R for 4 s) is expected to be measured from each pi in the guard expres-
sion, i.e., the time for the associated guard. As a consequence of the potential
for confusion, the new T-EARS restricts the usage and the meaning of the for
keyword, as described in Sect. 4.5 and 4.8. Mixing the for keyword with the
within keyword makes things even more complicated. Further, the effect of
within..for is different from the effect of for..within on an expression.

4.11 General Structure of a T-EARS Test Case

Putting the pieces together, Listing 1.10 illustrates a minor test case:

78 D. Flemström et al.

1 // ------------- REQ 558-S1------------
2 // While the vehicle is underway with a speed more thatn 10 km/h,
3 // the doors shall be locked.
4

5 // ////// Abstract G/A /////////
6 //def intervals MOVING = [[5s,30s] ,[100s,300s]]
7 //def intervals DOOR_LOCKED = [[6s,31s] ,[120s,300s]] // PASS ,FAIL
8

9 //// G/A Concretization (Can be centralized in a main def file) /////
10 // System version 1.2.4
11 const DOORS = 1
12 const DOOR_LOCKED_MASK = 8
13

14 def intervals MOVING =
15 MWT_Standstill == false and MWT_BUS2_Speed > 10
16 def intervals DOOR_LOCKED =
17 bitmask(DOOR_LOCKED_MASK ,MWT_door_lock) == DOOR_LOCKED_MASK
18

19 // G/A Definition(s)
20 ’558-S1’ = where DOORS > 0
21 while MOVING == true
22 shall DOOR_LOCKED == true within 3s

Listing 1.10. General Structure of a T-EARS Script

In the example (Listing 1.10), there are three regions of particular interest.
The first region (Line 1–7) contains requirement information and example data
for an abstract G/A, followed by a region with structural elements (lines 10–17)
that make G/As easier to read. These connect the abstract signals to expressions
of actual log data. If aliases, constants, and definitions are common to many
G/As, they are typically put in a shared file instead. The last region of interest
at lines 19–22 is where the actual passive test case is defined. Any number of
named G/As can be specified.

5 Discussion on T-EARS Improvement

The early prototypes of the T-EARS language allowed experimenting with a
great variety of expressions that could be defined and evaluated against real
industrial requirements. Many of these were useful, while others turned out to
be less useful. In this work, the goal is to promote useful expressions while sup-
pressing less useful ones and updating the language to be more complete and
intuitive. Thus, the goal here concerns updates of the language constructs to
improve readability without losing expressiveness. We achieved this goal through
a minimal set of top-level boilerplates, introducing strong typing, restricting the
usage of timing keywords, and defining new keywords to avoid ambiguous defi-
nitions. Although the sum of keywords and language constructs added outgrew
the ones removed, the result is a language that more clearly corresponds to
the EARS patterns. Instead of automatic conversions between events and inter-
vals, there are now only a few well-defined ways of constructing expressions
between the types. One operation that was explicitly removed was (Event and

Specification of Passive Test Cases Using an Improved T-EARS Language 79

Event). Since this would require the timestamps to be precisely matching, allow-
ing such an operation would, in practice, only add confusion to the test cases.
When the new restricted grammar was applied to old T-EARS expressions, it
revealed quite a few misunderstandings regarding events/intervals. Concerning
the expressiveness, the first three EARS patterns (Ubiquitous, State-Drive, and,
Event-Driven) are (still) wholly covered by the G/A boilerplates. The fourth
EARS pattern (Option) was a strong suggestion from the testers in the case
study [9]. The testers wished to have conditionally evaluated G/As depending
on configuration information and other G/As. Here rudimentary support was
added for Boolean expressions and constants. However, it is still not possible
to use the activation or result of a G/A to turn on/off others’ evaluations. The
fifth EARS pattern can be accomplished but the keywords if and then may
introduce confusion around states or events and are thus not included in T-
EARS. The sixth EARS pattern (complex) allows mixing while and when which
generated expressions that were inherently difficult to understand. The complex
EARS pattern is instead realized in T-EARS using the well defined composi-
tion rules of Events and Intervals. Another vital requirement from the testers
was user-defined functions. Albeit rather crude, this is now possible in T-EARS
since the definitions are evaluated late, and aliases can be used as parameters
for the definitions.

Finally, a word about timing. While the early T-EARS prototypes used the
for-keyword as a filter (keeping all intervals longer than the specified timeout),
the tester’s expectations differed depending on where the keyword was specified.
In some cases, an event was expected after the timeout. In other cases, intervals
of precisely the length of the timeout. Further, when the for expression was
used in an assertion, their semantic meaning was unclear. The remedy was to
remove the filtering semantics altogether and introduce keywords for filtering
(longer than, shorter than), while the for keyword was restricted to a few
consistent meanings. Further, moving the within keyword from individual sub-
expressions to the G/A boilerplate reduced confusion. Consider the example:
R1 for 10 s and P1 within 2 s or P2 within 4 s. In the example, it is not clear
where the time starts. Using the left-hand side of the sequence operator, or the
guard as the time base for the timing specifications within the evaluation of the
timeouts became consistent with the expectations of the testers’ intuition.

6 Related Work

This work relates to passive testing, specification of test cases, and the tool sup-
port for the use of passive testing and specification of such test cases. We rely on
the work of independent guarded assertions [12,22] introduced for increasing the
testing parallelism in the vehicular domain. An earlier approach to guarded asser-
tions has been evaluated by Rodriguez Navas et al. [22] and a model-checker has
been used for both modelling and test case execution. In this paper, we improve

80 D. Flemström et al.

upon this by translating these test cases directly from requirements. Regard-
ing the testability of such requirements, Pudlitz et al. [19,20] used a markup
language by relying on annotations of the natural language. Different from this
approach, our improved T-EARS language is using a temporal specification of
requirements. All these approaches are similar to the passive testing technique as
it is outlined by Cavalli et al. [3] and also relate to run-time verification [13,23].
Since the use of these techniques relies on the formal specification of test cases,
several researchers have attempted to use patterns and graphical models for the
formalization of both requirements and test cases [1,2,7,25]. The specification
of passive testing using the improved T-EARS takes another route by focusing
on simplicity and closeness to the requirements text. T-EARS is based on an
Easy Approach to Requirements Syntax (EARS), proposed by Rolls-Royce for
the creation of semi-structured natural language requirements [16]. EARS has
been used in several domains and has been shown to be useful for handling real-
world requirements [14,15]. Regarding the tooling for the specification of passive
test cases, several researchers have focused on providing support for specifica-
tion patterns [6,18] and creating monitors and guarded assertions in Matlab [26].
Related to runtime monitoring, Rabiser et al. [21] developed a domain-specific
language for defining and checking constraints at runtime.

7 Conclusion and Future Work

We have presented an updated T-EARS language grammar together with a semi-
formal specification of the semantics behind the language. The update consists of
a careful re-definition of the grammar and semantics for e.g., test case structure
and temporal specification. By restricting the possible G/A patterns to a few
well-defined boilerplates, the language and its new evaluation core now have a
closer correspondence to the EARS patterns. These boilerplates also match the
intuition of the testers better. The intuition is also increased by making the
notation of timeouts context-dependent, i.e., the guard time domain is now a
natural base for the assertion time domain.

Although T-EARS has taken a significant step forward, there are still some
features deferred to future research. The first one primarily concerns the accom-
panied evaluation-core of the T-EARS language. While not necessary from an
evaluation point of view, other attempts to create more user-friendly specifi-
cation languages provide semantic mappings to proven temporal logic such as
MITL or LTL. Creating such a mapping for T-EARS would allow certified
evaluation tools rather than JavaScript that is used today. Such a mapping
would also move the T-EARS evaluation from the offline to the online domain.
Another issue is that, while the grammar supports specifying negative time like
when PG shall PA within − t, the current semantics do not. Finally, speci-
fying an evaluation aggregation policy for passive testing is needed to allow a
drill-down analysis approach on the increased number of results.

Acknowledgement. The work in this study has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement Nos.

Specification of Passive Test Cases Using an Improved T-EARS Language 81

871319, 957212; from the Swedish Innovation Agency (Vinnova) through the XIVT
project and from the ECSEL Joint Undertaking (JU) under grant agreement No.
101007350.

References

1. Asteasuain, F., Braberman, V.: Specification patterns can be formal and still easy.
In: International Conference on Software Engineering and Knowledge Engineering
(SEKE 2001), pp. 430–436. Knowledge Systems Institute is a Graduate School,
Knowledge Systems Institute (2010)

2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-
tive, real-time, and probabilistic property specification patterns using a structured
English grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015)

3. Cavalli, A.R., Higashino, T., Núñez, M.: A survey on formal active and passive
testing with applications to the cloud. Ann. Telecommun. 70(3), 85–93 (2015).
https://doi.org/10.1007/s12243-015-0457-8

4. Daniel, F., Eduard, E., Wasif, A., Daniel, S., Thomas, G., Avenir, K.: From natural
language requirements to passive test cases using guarded assertions. In: Interna-
tional Conference on Software Quality, Reliability and Security (QRS 2018), pp.
470–481. IEEE Computer Society (2018)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering
(ICSE 1999), pp. 411–420. Association for Computing Machinery (1999). https://
doi.org/10.1145/302405.302672

6. Filipovikj, P., Jagerfield, T., Nyberg, M., Rodriguez-Navas, G., Seceleanu, C.: Inte-
grating pattern-based formal requirements specification in an industrial tool-chain.
In: International Computer Software and Applications Conference (COMPSAC
2016), vol. 2, pp. 167–173. IEEE Computer Society (2016)

7. Filipovikj, P., Nyberg, M., Rodriguez-Navas, G.: Reassessing the pattern-based
approach for formalizing requirements in the automotive domain. In: International
Requirements Engineering Conference (RE 2014), Los Alamitos, CA, USA, pp.
444–450. IEEE Computer Society, August 2014. https://doi.org/10.1109/RE.2014.
6912296

8. Flemström, D., Gustafsson, T., Kobetski, A.: Saga toolbox: interactive testing of
guarded assertions. In: International Conference on Software Testing, Verification
and Validation (ICST 2017), pp. 516–523. IEEE Computer Society (2017)

9. Flemström, D., Gustafsson, T., Kobetski, A.: A case study of interactive devel-
opment of passive tests. In: International Workshop on Requirements Engineering
and Testing (RET 2018), pp. 13–20. Association for Computing Machinery, New
York (2018). https://doi.org/10.1145/3195538.3195544

10. Flemström, D., Gustafsson, T., Kobetski, A., Sundmark, D.: A research roadmap
for test design in automated integration testing of vehicular systems. In: Interna-
tional Conference on Fundamentals and Advances in Software Systems Integration
(FASSI 2016) (2016)

11. Flemström, D., Jonsson, H., Enoiu, E.P., Afzal, W.: Industrial scale passive testing
with T-EARS. In: Conference on Software Testing, Verification and Validation
(ICST 2021), Los Alamitos, CA, USA, pp. 351–361. IEEE Computer Society, April
2021. https://doi.org/10.1109/ICST49551.2021.00047

https://doi.org/10.1007/s12243-015-0457-8
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1109/RE.2014.6912296
https://doi.org/10.1109/RE.2014.6912296
https://doi.org/10.1145/3195538.3195544
https://doi.org/10.1109/ICST49551.2021.00047

82 D. Flemström et al.

12. Gustafsson, T., Skoglund, M., Kobetski, A., Sundmark, D.: Automotive system
testing by independent guarded assertions. In: International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW 2015), pp. 1–7. IEEE
Computer Society (2015). https://doi.org/10.1109/ICSTW.2015.7107474

13. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009)

14. Mavin, A., Wilkinson, P.: Big ears (the return of “easy approach to require-
ments engineering”). In: International Conference on Requirements Engineering
(RE 2010), Los Alamitos, CA, USA, pp. 277–282. IEEE Computer Society, Octo-
ber 2010. https://doi.org/10.1109/RE.2010.39

15. Mavin, A., Wilksinson, P., Gregory, S., Uusitalo, E.: Listens learned (8 lessons
learned applying EARS). In: International Requirements Engineering Conference
(RE 2016), Los Alamitos, CA, USA, pp. 276–282. IEEE Computer Society, Septem-
ber 2016. https://doi.org/10.1109/RE.2016.38

16. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to require-
ments syntax (EARS). In: International Requirements Engineering Conference (RE
2009), pp. 317–322. IEEE Computer Society (2009)

17. Merz, F., Sinz, C., Post, H., Gorges, T., Kropf, T.: Bridging the gap between test
cases and requirements by abstract testing. Innov. Syst. Softw. Eng. 11, 233–242
(2015). https://doi.org/10.1007/s11334-015-0245-7

18. Miao, W., Wang, X., Liu, S.: A tool for supporting requirements formalization
based on specification pattern knowledge. In: International Symposium on The-
oretical Aspects of Software Engineering (TASE 2015). IEEE Computer Society
(2015). https://doi.org/10.1109/TASE.2015.13

19. Pudlitz, F., Brokhausen, F., Vogelsang, A.: What am i testing and where? Com-
paring testing procedures based on lightweight requirements annotations. Empir.
Softw. Eng. 25(4), 2809–2843 (2020). https://doi.org/10.1007/s10664-020-09815-
w

20. Pudlitz, F., Vogelsang, A., Brokhausen, F.: A lightweight multilevel markup
language for connecting software requirements and simulations. In: Knauss, E.,
Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 151–166. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-15538-4 11

21. Rabiser, R., Thanhofer-Pilisch, J., Vierhauser, M., Grünbacher, P., Egyed, A.:
Developing and evolving a DSL-based approach for runtime monitoring of systems
of systems. Autom. Softw. Eng. 25(4), 875–915 (2018). https://doi.org/10.1007/
s10515-018-0241-x

22. Rodriguez-Navas, G., Kobetski, A., Sundmark, D., Gustafsson, T.: Offline anal-
ysis of independent guarded assertions in automotive integration testing. In:
International Conference on Embedded Software and Systems (ICESS 2015), pp.
1066–1073. IEEE Computer Society (2015). https://doi.org/10.1109/HPCC-CSS-
ICESS.2015.251

23. Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying runtime monitoring
for automotive electronic development. In: Falcone, Y., Sánchez, C. (eds.) RV 2016.
LNCS, vol. 10012, pp. 462–469. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46982-9 30

24. Sneed, H.M.: Bridging the concept to implementation gap in software system test-
ing. In: International Conference on Quality Software (QSIC 2008), Los Alamitos,
CA, USA, pp. 67–73. IEEE Computer Society, August 2008. https://doi.org/10.
1109/QSIC.2008.48

https://doi.org/10.1109/ICSTW.2015.7107474
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2016.38
https://doi.org/10.1007/s11334-015-0245-7
https://doi.org/10.1109/TASE.2015.13
https://doi.org/10.1007/s10664-020-09815-w
https://doi.org/10.1007/s10664-020-09815-w
https://doi.org/10.1007/978-3-030-15538-4_11
https://doi.org/10.1007/s10515-018-0241-x
https://doi.org/10.1007/s10515-018-0241-x
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.251
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.251
https://doi.org/10.1007/978-3-319-46982-9_30
https://doi.org/10.1007/978-3-319-46982-9_30
https://doi.org/10.1109/QSIC.2008.48
https://doi.org/10.1109/QSIC.2008.48

Specification of Passive Test Cases Using an Improved T-EARS Language 83

25. Walter, B., Hammes, J., Piechotta, M., Rudolph, S.: A formalization method to
process structured natural language to logic expressions to detect redundant spec-
ification and test statements. In: International Requirements Engineering Con-
ference (RE 2017). IEEE Computer Society (2017). https://doi.org/10.1109/RE.
2017.38

26. Zander-Nowicka, J., Schieferdecker, I., Marrero Perez, A.: Automotive validation
functions for on-line test evaluation of hybrid real-time systems. In: Autotestcon,
pp. 799–805. IEEE Computer Society (2006). https://doi.org/10.1109/AUTEST.
2006.283767

https://doi.org/10.1109/RE.2017.38
https://doi.org/10.1109/RE.2017.38
https://doi.org/10.1109/AUTEST.2006.283767
https://doi.org/10.1109/AUTEST.2006.283767

A Quality Model and Checklists
for Reviewing Automotive Test

Case Specifications

Katharina Juhnke(B), Denis Neumüller(B), and Matthias Tichy(B)

Institute of Software Engineering and Programming Languages, Ulm University,
Ulm, Germany

{katharina.juhnke,denis.neumueller,matthias.tichy}@uni-ulm.de

Abstract. Testing is the key activity in ensuring the quality of automo-
tive systems. The corresponding test case specifications often contain test
cases expressed in natural language. However, there is a lack of review
approaches that are easy to apply for practitioners to ensure appropriate
quality of those test case specifications. We therefore present an ana-
lytical quality assurance method based on a quality model and review
checklists derived from it. Especially, we focus on quality criteria that are
relevant for natural language test cases and in the context of the automo-
tive domain. To ensure applicability in industrial practice, we stringently
involve practitioners in the development of the quality model via expert
workshops. The systematic derivation of quality characteristics results in
a quality model for automotive test case specifications. Furthermore, we
show how review checklists for a multidimensional review were derived
from it. A first evaluation indicates that these review checklists support
practitioners in conducting reviews and also foster the understanding of
qualitative test case specifications.

Keywords: Automotive test case specifications · Quality model ·
Review checklists · Formal review · Goal question metric

1 Introduction

Test case specifications in the automotive domain contain the relevant test cases
for a specific system or component in the vehicle. For system integration tests or
system tests, which are partly executed in prototype vehicles by human testers,
these logical test cases are mostly natural language based [8,14,16]. Juhnke et
al. [15] investigated challenges regarding this type of test case specifications in
detail in a mixed method study. They identified that quality assurance meth-
ods in particular were rated as insufficient by the practitioners interviewed and
surveyed from the automotive industry. Especially, there is a lack of concrete
guidelines, checklists and a general understanding of what constitutes a high-
quality automotive test case specification.

To close this gap, this paper presents an analytical quality assurance method
based on a quality model for automotive test case specifications, which serves
c© Springer Nature Switzerland AG 2022
D. Mendez et al. (Eds.): SWQD 2022, LNBIP 439, pp. 84–104, 2022.
https://doi.org/10.1007/978-3-031-04115-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04115-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-04115-0_6

Reviewing Automotive Test Case Specifications 85

as basis for the definition of checklists. It, thus, contributes to improving the
quality of automotive test case specifications. To ensure that the developed
quality model and the derived checklists are actually applicable in industrial
practice, we focused on the continuous involvement of practitioners in the
development process.

The main research question guiding our research in this regard is the follow-
ing: How can the quality of automotive test case specifications be assessed? To
answer this question, we divide it into three research questions.

First, in order to assess the quality of a test case specification, quality criteria
are needed. Such criteria are typically grouped in a quality model. We address
this in our first research question:

RQ 1: What quality criteria must a quality model for automotive test case
specifications contain?

Based on the Goal Question Metric (GQM) [2] approach, we present a qual-
ity goal and specify five viewpoints that are relevant for the review of test case
specifications. We use five knowledge sources (standards, general literature on
test case quality, automotive specific documents, expert opinions from inter-
views, and workshops with practitioners) that address different aspects of the
viewpoints to gather information for deriving questions and metrics to build the
quality model for automotive test case specifications.

Second, this quality model should be applicable and useful for practitioners
resulting in the following research question:

RQ 2: How can the quality model for test case specifications be made appli-
cable to reviews by industrial practitioners?

We show how we use the different viewpoints of quality in a multidimensional
review to tailor the review towards different roles in the testing process. For each
of these dimensions, we define a set of questions derived from the quality model,
which are summarized in review checklists.

Third, it is important to evaluate how applicable these review checklists are
for practitioners, which results in our third research question:

RQ 3: How do reviewers assess the review checklists in terms of supporting
the review of test case specifications?

We conduct an evaluation with practitioners in which they apply the check-
lists and subsequently discuss their suitability in an expert workshop. The results
of this initial evaluation indicate that practitioners confirm that the quality
model and the derived review checklists support the review of test case specifi-
cations while enhancing the understanding of a qualitative test case specification.

The remainder of this paper is structured as follows: In Sect. 2, we discuss
related work regarding existing quality models for test case specifications. In
Sect. 3, we describe our methodical approach to developing the quality model
and its quality criteria. In Sect. 4, we explain how we integrated the quality
model into the review process and finally, in Sect. 5, we show how our quality
model and the checklists derived from it were assessed by practitioners. Section 6
summarizes the paper and identifies future work.

86 K. Juhnke et al.

2 Related Work

Quality models [12], consisting of individual quality criteria, define how the qual-
ity of artifacts can be assessed. Up to now, there exist no explicit quality model
for test case specifications in the automotive domain that takes into account
automotive-specific aspects of test case documentation, compliance with func-
tional safety requirements, or natural language test cases.

Zeiß [22] presents a quality model for test case specifications (i.e., test suits)
without explicit reference to the automotive domain. The quality model is based
on the ISO 9126 standard [10], which has been revised by the ISO 25010 stan-
dard [12]. While the product quality model of the ISO 9126 standard focuses
on the quality evaluation of software or systems, Zeiß [22] argues that for test
specifications the use of a specialized quality model is more convenient, since the
vocabulary used differs and characteristics are interpreted differently. Hence, Zeiß
adapted his quality model from the ISO 9126 standard to test specifications writ-
ten in the Testing and Test Control Notation (TTCN-3), which is used as stan-
dardized language for the specification and execution of large test suites [6,7].
This includes the definition of metrics for a selection of subcharacteristics of the
quality model, which are adapted to TTCN-3 based test specifications.

Athanasiou et al. [1] present a quality model for test code, i.e., test cases
described by means of a test script language. This model focuses on three qual-
ity characteristics for assessing test code quality: completeness, effectiveness, and
maintainability. The quality characteristic maintainability is subdivided into the
further subcharacteristics analyzability, changeability, and stability. These qual-
ity characteristics result from the combination and mapping of eight metrics,
which are applicable to automated test cases. The test code quality model from
Athanasiou et al. [1] is similar to the quality model from Zeiß [22], as it contains
a subset of quality characteristics. Moreover, it is also related to the revised
ISO 9126 standard [10] and refers to test cases which are described by a test
script language and do not contain natural language parts. This simplifies the
application of various computable metrics, such as code coverage, which are not
applicable to natural language test cases.

The quality models from related work [1,22] are both intended for automated
executable test cases, i.e., executable TTCN-3 test cases or test code. Especially
the quality model presented by Zeiß [22] was mainly developed with a special
focus on the instantiation of TTCN-3 test cases for automated executable test
cases. Accordingly, the corresponding metrics also refer to executable test code.
However, our approach considers natural language based test case specifications
in the automotive domain that do not necessarily have to be executable auto-
matically. In addition, both quality models are based on the outdated ISO 9126
standard [10] and do not contain any automotive-specific quality characteristics,
so that they are unsuitable for the application to automotive test case specifica-
tions. Hence, it seems appropriate to develop a new quality model for automotive
test case specifications.

Reviewing Automotive Test Case Specifications 87

3 Developing a Quality Model for Automotive Test Case
Specifications

We used the general structure of a quality model (cf. ISO 25010 [12]) and the
systematic Goal Question Metric (GQM) approach according to Basili et al. [2]
to develop a quality model for automotive test case specifications. In this section,
we describe how we applied the GQM approach and the resulting quality model.

3.1 Application of the Goal Question Metric (GQM) Approach

Following the template of Basili et al. [2], we define the overall quality goal:

“Improve (purpose) quality aspects (issue) of automotive test case specifications
(object: product) from a methodical view, test plan view, requirements view, test
platform view, and functional safety view (viewpoint).”

Our object of measurement is an automotive test case specification for a spe-
cific system that is to be classified as a product. The purpose and issue of a
quality model is to improve the quality of such specifications. To achieve this, it
is necessary to consider the quality from different perspectives, as there are differ-
ent consumers that work with the test case specification, such as test designers,
functional safety assessors, or testers (viewpoints). These different consumers
have different demands for, respectively views on, a qualitative test case specifi-
cation. We describe the five review views including exemplary requirements for
a qualitative test case specification in Table 1.

Based on the defined review views (cf. Table 1) and the quality goal, we
specified a set of questions and metrics to assess the quality. To do this, we used
the following five different sources of knowledge (I–V), which in turn address
different aspects of each review view (viewpoint).

Source I: ISO 29119 – The ISO 29119 standard [11] defines vocabulary, pro-
cesses, documentation and techniques for software testing. Part 3 of the standard
explicitly refers to test documentation, which includes the test case specification.

Source II: General Literature on Test Case Quality – We identified literature
dealing with the quality of test cases, reflecting the current state of the art in
this respect and thus influencing the derivation of quality criteria. These include:

1. Bowes et al. [3] define 15 testing principles and best practices, which lead to
high quality testing.

2. Meszaros et al. [18] define 12 test case qualities.
3. Hauptmann et al. [8] define 7 Natural Language Test Smells (NLTS) based

on their experience from the industrial environment.
4. Petunova et al. [19] define 14 questions for the assessment of test cases and

present them in a checklist for test case reviews.

88 K. Juhnke et al.

Table 1. Review views with exemplary view-specific quality requirements

Review view (Role) Examples of quality requirements

Methodical View
(Methodologist)

Compliance with company- or project-specific guidelines for
the creation and documentation of test case specifications,
e.g., compliance with templates

Test Plan View
(Test Manager)

Focus is on the implementation of the test strategy defined in
the test plan, e.g., the correct derivation of test cases
according to the given test case derivation procedures,
prioritization of test cases, or creation of test cases to achieve
specific test goals

Requirements View

(Department)

Focus is on ensuring that all functionalities in the
requirements specification are covered by test cases and that
test cases correspond to the content of the requirements

Test Platform View
(Tester)

Focus is on the feasibility of test cases with respect to a
particular test platform, e.g., whether test cases contain all
test data required for the test platform or whether a test case
can be executed resource-efficiently on the respective test
platform

Functional Safety View

(Functional Safety
Manager)

In a functional safety assessment the correct implementation
of functional safety requirements according to the ISO 26262
standard [11] is reviewed by a functional safety manager or
engineer, e.g., correct implementation of test goals and test
derivation procedures

Source III: Test Case Specification User Guide – The Test Case Specification
User Guide (TUG) [5] is a company-internal document of Daimler that con-
tains guidelines for test case documentation. In particular, the basic structure
of a test case and its attributes as well as the structure of a test case specifi-
cation are described. This source is important because it contains regulations
of an automotive company that have to be reflected in an automotive-specific
quality model.

Source IV: Challenges – Challenges concerning test case specifications were sum-
marized by Juhnke et al. [15]. These identified challenges are important as a
source because they reveal certain problems in test case specifications that are
considered as quality deficiencies.

Source V: Workshops – We conducted two workshops with domain experts from
Daimler. The first workshop focused on functional safety (W-FuSa) as an impor-
tant aspect in the automotive domain. We conducted the workshop with func-
tional safety experts from various departments during a regular meeting of the
functional safety committee at Daimler. A total of nine functional safety experts
participated, who work as functional safety managers, conduct functional safety
assessments or are responsible for process and method guidelines concerning
functional safety in the company. The guiding question of the workshop was:
“Which aspects have to be examined from a functional safety point of view in a
test case specification review?”. We discussed different aspects with the workshop

Reviewing Automotive Test Case Specifications 89

participants, partly using examples confirmed or supplemented by the experts.
The results of the workshop are summarized in Table 2. Particularly, due to
the ISO 26262 standard [11], great importance is attached to the relationship
between test plan and test case specification, which is reflected by the results W-
FuSa01 to W-FuSa04 of the workshop. Furthermore, the test coverage of safety
requirements (W-FuSa05), the documentation of the test case derivation proce-
dure (W-FuSa06), the test type (W-FuSa07) as well as the priority (W-FuSa08
and WFuSa09) were emphasized by the functional safety experts.

Table 2. Results from the workshop with functional safety experts

ID Quality Aspect mentioned by the Functional Safety
Experts

(A) Aspects to be considered with regard to the test plan

W-FuSa01 The test goal has to be defined for safety-relevant test cases accord-
ing to the test goals specified in the test plan.

W-FuSa02 The test case derivation procedures specified in the test plan have
been used for deriving test cases.

W-FuSa03 The test case specification has to fulfill the test coverage required
in the test plan.

W-FuSa04 Test cases have to be specified for each function to be tested.

(B) Traceability between test cases and requirements

W-FuSa05 For all testable safety requirements exist test cases.

(C) Test case attributes and meta data to be specified

W-FuSa06 The test case derivation procedure has to be documented for safety-
relevant test cases.

W-FuSa07 The test type has to be documented for safety-relevant test cases.

W-FuSa08 The priority has to be documented for safety relevant test cases.

W-FuSa09 The priority of safety-relevant test cases is set to the highest possible
priority.

The second workshop focused on the demands of testers (W-Testers), since
they are the main consumers of test case specifications. Therefore, we conducted
a workshop with five testing experts, who review and implement test cases as
well as document test results. Four of the workshop participants have already
been working in their current position for four to five years and one for more than
eleven years. In addition, four of the workshop participants have an ISTQB®

Certification Tester Foundation Level. The quality of the test case specifications
currently processed by the workshop participants was rated with 3.8 from a
scale of 1 (very good) to 5 (very poor), confirming the predominant quality
problem with test case specifications. The aim of the workshop was to discuss
the questions: “What is a qualitative test case from a tester’s point of view?”
and “What are typical findings for testers in a review?”.

90 K. Juhnke et al.

Table 3. Results from the workshop with testing experts

ID Quality Aspect mentioned by the Testing Experts

W-Tester01 The defined preconditions of a test case have to be complete.

W-Tester02 The defined preconditions do not contain any unnecessary precon-
ditions.

W-Tester03 The defined preconditions of a test case have to be consistent, i.e.,
configurations that have already been made are not overwritten by
a subsequent precondition

W-Tester04 The sequence of the defined preconditions is logical and executable.

W-Tester05 The defined preconditions bring the test object into the state
required for test execution.

W-Tester06 Test cases for the corresponding test platform must be included in
the test case specification.

W-Tester07 The test cases have to be potentially executable with the test tech-
nologies typical for the respective test platform.

W-Tester08 Ideally, the test case specification provides specific information for
the tester, eg., test sequence, test configuration, model series assign-
ment.

W-Tester09 The test case descriptions contain information relevant to the exe-
cution of the test for the respective test platform, e.g., signal names
for the execution of HiL tests.

W-Tester10 The test cases can be implemented for the respective test platform
taking into account the available resources, such as time or person-
nel.

W-Tester11 A test case covers as few functions as possible, so that errors can be
assigned immediately and the time required to repeat the test case
is appropriate.

The workshop was based on a total of 20 problems in test cases (so called
test smells) that were identified in previous reviews from three different test case
specifications currently being processed by the testers. The test smells identified
in the test case specifications included too many, superfluous or missing pre-
conditions, contradictory preconditions, test cases that were not suitable for the
corresponding test platform, inconsistent terms and notations, very large test
cases, mixing of actions and expected results, missing test purpose description,
incomplete, vague or inaccurate test case descriptions as well as missing signal
names and time behavior. 80% of the discussed test smells have an effect on the
work of the testers, such as incorrect configuration of the test object, unnecessary
testing effort, incorrectly implemented test cases, failed test cases or the tester
is forced to contact the test designer due to ambiguities. In all cases, from the
tester’s point of view, the test designer is the person responsible for fixing the
test smells. The other 20% of the considered test smells rather have an impact
on the test designer, for example a resulting additional effort in the test case
documentation in case of a refactoring.

Reviewing Automotive Test Case Specifications 91

Overall, we gathered the results presented in Table 3 based on the statements
made by the testing experts during the workshop.

Based on the five presented sources – (1) ISO 29119, (2) General Litera-
ture on Test Case Quality, (3) Test Case Specification User Guide, (4) Chal-
lenges, (5) Functional Safety and Tester Workshops – and the GQM approach,
we derived a total of 7 questions and 78 metrics. The following seven main
questions (Q1–Q7) determine the quality of a test case specification:

Q1 Does the test case specification meet requirements for completeness, correct-
ness and appropriateness while complying with methodical guidelines?

Q2 Does a test case specification use information from other documents so that
changes to that information can affect the test case specification?

Q3 Is the test case specification or a test case understandable for certain users?
Q4 Is the test case specification suitable for handover to the resp. test platforms?
Q5 Does the test case specification and its test cases meet special functional

safety requirements?
Q6 Is the test case specification/are the test cases contained maintainable?
Q7 Is the test case specification suitable for further processing in the existing

tool chain without loss of information?

The quality aspects presented in Tables 2 and 3 were considered in particular
in the main questions Q1 and Q5. For a detailed presentation of the questions,
their metrics, and their origins, we refer to Juhnke [13, Table 5.4 p.138ff]. We
used this result of the GQM approach to define a quality model for automotive
test case specifications, which we describe in the next section.

3.2 Automotive Test Case Specifications Quality Model

We developed a quality model consisting of seven quality characteristics: (1) Suit-
ability, (2) Compatibility, (3) Usability, (4) Reliability, (5) Safety, (6) Maintain-
ability, and (7) Portability. Each characteristic represents a specific question
(Q1–Q7) that emerged using the GQM approach and represents it with a spe-
cific term. The structure and some terms of the quality model are inspired by
the product quality model from the ISO 25010 standard [12]. In the following,
the seven quality characteristics are explained in more detail. Additionally, we
illustrate each quality characteristics with an example of a metric. Due to space
restrictions, we refer the interested reader to Juhnke [13, Table 5.4 p.139ff] for a
complete listing.

Suitability (Q1) is the degree to which a test case specification meets stated
and implied needs. This quality characteristic comprises the subcharacteristics
Completeness, Correctness, and Appropriateness. Completeness is the degree to
which a test case specification or a test case covers all specified needs regard-
ing completeness with respect to various artifacts. Correctness is the degree to
which the content of a test case is correctly specified with the needed degree of
precision. Appropriateness is the degree to which the test case specification or

92 K. Juhnke et al.

Fig. 1. Automotive test case specification quality model

a test case facilitate the accomplishment of specified tasks and objectives. An
example metric for assessing the Completeness of a test case specification is:
“The scope of the test case specification is documented including typical pitfalls
of the system.”

Compatibility (Q2) is the degree to which a test case specification exchanges
information with other systems and contains all the necessary information for
this. This quality characteristic comprises the subcharacteristic Co-existence.
Co-existence is the degree to which a test case specification is independent of
resources shared with other documents. One aspect of Co-existence is to ensure
that the test case specification is self-contained and no links to external docu-
ments are present.

Usability (Q3) is the degree to which a test case specification or a test case can
be read, understood or learned by specified users. This quality characteristic
comprises the subcharacteristics Learnability and Test Evaluability. Learnability
is the degree to which a test case specification contains or provides repeating
structures or test case descriptions that support specific users in understanding
or writing test cases. Test Evaluability is the degree to which test results or test
failures can be assigned to certain test steps. The following is an example for
assessing the Test Evaluability : “Test cases are divided into test steps and each
action can be clearly assigned to an expected result.”

Reliability (Q4) is the degree to which a test case specification or a test case are
suitable for further processing and for deriving reproducible results. This quality
characteristic comprises the subcharacteristics Maturity and Repeatability. Matu-
rity is the degree to which a test case specification meets the approval criteria
for further processing. Repeatability is the degree to which the same test case

Reviewing Automotive Test Case Specifications 93

implementations or manual test case procedures can be derived repeatedly from
a test case description. For example, to achieve Repeatability test case descrip-
tions should not contain alternative or optional steps, which can be indicated by
the use of control flow words like “or”, “if”.

Safety (Q5) is the degree to which a test case specification or a test case meets
special demands for functional safety. This quality characteristic comprises the
subcharacteristics Functional Safety Conformity for Test Case Attributes and
Functional Safety Conformity for Requirement Coverage. Functional Safety Con-
formity for Test Case Attributes is the degree to which functional safety aspects
are considered for test case attributes. Functional Safety Conformity for Require-
ment Coverage is the degree to which functional safety aspects are considered
requirements coverage. A concrete aspect of Functional Safety Conformity is, for
example, that for each safety relevant test case the test case derivation procedure
has to be specified according to the test plan.

Maintainability (Q6) is the degree of effectiveness and efficiency with which a
test case specification or a test case can be modified by the responsible test
designers. This quality characteristic comprises the subcharacteristics Modu-
larity, Reusability, Analyzability, and Modifiability. Modularity is the degree to
which a test case is composed of discrete elements such that a change to one
test case has no impact on other test cases. Reusability is the degree to which a
test case or part of a test case description can be reused in the same or another
test case specification. Analyzability is the degree of effectiveness and efficiency
with which it is possible to assess the impact on an intended change to one or
more of test cases of a test case specification, or to identify parts to be modified.
Modifiability is the degree to which a test case specification or test case can
be effectively and efficiently modified without introducing defects or degrading
existing test case specification quality. Some indicators for the Reusability of
test specifications are the parametrization of test cases, as well as the reuse of
conditions or sequences where possible.

Portability (Q7) is the degree of effectiveness and efficiency with which a test
case specification can be transferred from one (software) system to another. This
quality characteristic comprises the subcharacteristics Transferability and Adapt-
ability. Transferability is the degree to which a test case specification is suitable
for the transfer to other (software) systems. Adaptability is the degree to which
a test case specification can effectively and efficiently be adapted for different
test platforms, model series or variants. To obtain a indication for the Transfer-
ability of test case specifications, we recommend to assess their conformance to
guidelines and templates.

The quality model as shown in Fig. 1 has been developed with the focus on
natural language based test case specifications in the automotive domain based
on the current state of the art and current challenges reported by practitioners.
Regarding the automotive domain, the quality characteristic Safety is of par-
ticular importance, as it highlights aspects of functional safety that have been

94 K. Juhnke et al.

confirmed by functional safety experts. The special feature of the developed
quality model is that it refers both to the entirety of the test cases contained in
a test case specification and their properties as well as to document properties
(e.g., structure of the test case specification, documentation of persons responsi-
ble and reference documents used) and thus enables an assessment of a test case
specification as a whole.

Overall, the presented quality characteristics of a quality model for automo-
tive test case specifications allows an answer to research question RQ 1:

RQ 1: What quality criteria must a quality model for automotive test
case specifications contain?

Based on various sources – ISO 29119, General Literature on Test Case
Quality, Test Case Specification User Guide, Challenges concerning Test
Case Specifications, Functional Safety and Tester Workshops – the following
seven quality characteristics were derived: (1) Suitability, (2) Compatibility ,
(3) Usability, (4) Reliability, (5) Safety, (6) Maintainability, and (7) Porta-
bility. These are described in more detail by a total of 17 subcharacteristics
as shown in Fig. 1.

4 Review of Automotive Test Case Specifications

We adapt the review process from the IEEE 1028 standard [9] and Spillner et
al. [21] for the review of test case specifications (cf. Fig. 2).

Fig. 2. Phases of the review process regarding a test case specification

A central aspect of a formal review is the Phase 4 in which the review
object – the test case specification – is reviewed by one or more reviewers (also
called inspectors). Checklists are a success factor for conducting reviews as they
increase effectiveness [17,21]. Furthermore, Broekman et al. [4] see advantages
of checklists in the field of testing embedded software, because the experiences
of testers can be explicitly recorded in checklists and this knowledge can thus be
used in future projects. Checklists are also suitable for formalizing information
about an artifact to be tested and offer a systematic approach to conducting

Reviewing Automotive Test Case Specifications 95

reviews. Therefore, the use of checklists for reviewing test case specifications
is beneficial as they concentrate the reviewer’s focus on typical problems and
defects in test case specifications.

Our approach for the review checklists is based on the multidimensionality of
quality [3,20] and combines it with the five different review views as defined in
Table 1 at the beginning of Sect. 3. In this way, different review perspectives are
taken into account for the assessment of test case specification quality according
to the roles (e.g., developer, system owner, functional safety engineer, tester)
relevant for automotive test case specifications.

A multidimensional review considers different dimensions, reference doc-
uments, and roles according to Pfaller et al. [20]. We define the following
five dimensions in accordance to the review views: (1) Methodical Review I,
(2) Methodical Review II, (3) Content Review I, (4) Content Review II, and
(5) Safety-Relevant Review. These dimensions are primarily intended to assess
test case specification quality in relation to conformity to one or more specific
reference documents by a specific role. The focus of the dimensions differs as
follows:

Methodical Review I (Methodical View) focuses primarily on formal criteria
with regard to the applicable guidelines for test case documentation, i.e., the
test case specification user guide [5]. Methodical Review II (Test Plan View)
focuses on the fulfillment of requirements specified in the test plan that corre-
sponds to the respective test case specification, i.e., the conformity of the test
case specification with the test plan is checked. Content Review I (Requirements
View) focuses on the conformity of the test cases with respect to the associ-
ated requirements. Both the correctness and the completeness of the test cases
in relation to the requirements play a role. Content Review II (Test Platform
View) emphasizes the perspective of the testers of the respective test platforms.
It focuses in particular on the feasibility and suitability of the test cases for
the respective test platform. Safety-Relevant Review (Functional Safety View)
comprises questions on a test case specification that are relevant in the context
of functional safety assessments.

Table 4 shows recommendations which reference documents are suitable for
which dimension and which reference document must (•), can (◦) or should
not (–) be used accordingly. These reference documents can be supplemented
by further project-specific documents and assigned to the respective dimension.
For example, in addition to typical input artifacts for creating test case spec-
ifications, such as the requirements specification, test plan or standards, other
documents that provide further information on the functional scope (e.g., net-
work communication description, sequence diagrams, Simulink models) can also
be relevant for Content Review I or testers of a test platform can also define their
own specific demands for suitable test cases. Furthermore, internal guidelines,
such as for Daimler the Test Case Specification User Guide (TUG) [5] or the
methodical manual for electric and electronic software development and quality
management (internally known as QMH), may be relevant.

96 K. Juhnke et al.

Table 4. Dimensions for the review with assigned roles and documents

Dimensions

Methodical Methodical Content Content Safety-

Reference Review I Review II Review I Review II relevant

Documents Review

TUG [5] • – – – –

Requirement
Specification

– – • – •
Test platform-
specific Demands

– ◦ – • –

Test Plan • – – ◦
ISO 26262 [11] – – ◦ – ◦a

QMH – – ◦ – •
... ...

Project-specific
Documents

◦ ◦ ◦ ◦ ◦
Role Methodol-

ogist
Test Manager (Specialist)

Department
Tester Functional

Safety
Manager /
Engineer• recommended, ◦ optional, and – not recommended reference document

a The comparison with the ISO 26262 [11] standard is marked here as optional, since the QMH
represents the company-internal interpretation at Daimler.

Additionally, Table 4 shows that each dimension is assigned a role which is
considered suitable to answer the specific questions of a dimension. Each role
reflects a specific view of the test case specification in accordance with the dimen-
sion. An reviewer can assume on one or more roles. The roles Methodologist and
Test Manager refer to reviewers who are familiar with methodological guide-
lines (e.g., test case specification user guide) and the corresponding test plan, so
that a valid statement can be made about the degree of fulfillment of the test
case specification in relation to these documents. The role Specialist Department
refers to persons who are particularly able to evaluate the content of the cor-
responding test cases, i.e., whether requirements and associated test cases are
consistent and whether the designed test cases are actually technically possible.
This requires specialist knowledge of the System Under Test (SUT). The role
Tester refers to persons who are assigned to an appropriate test platform and
have test expertise in this regard. For example, testers can give an assessment
as to whether the corresponding test cases are suitable for the respective test
platform. The role Functional Safety Manager/Engineer is usually only consid-
ered for safety-relevant systems (i.e., systems with an ASIL classification from
A to D). For non-safety-relevant systems, the dimension Safety-relevant Review
can therefore be omitted and does not have to be considered for the review.
A Functional Safety Manager/Engineer examines in particular whether speci-
fications of ISO 26262 standard [11] were considered in the test case specifica-
tion (e.g., application of the correct test case derivation procedures) or whether
more company-specific specifications which are defined in the QMH have been

Reviewing Automotive Test Case Specifications 97

complied with. Each dimension summarizes a set of questions specific to that
dimension over the entirety of the test case specification. Therefore, each of the
78 metrics (for a complete listing see Juhnke [13]) was reformulated into a ques-
tion and assigned to the respective dimension(s) according to the defined review
perspectives. This means that each dimension and thus each reviewer receives
its own checklist with questions on the test case specification.

In summary, based on the results of the GQM approach, a total of five review
checklists were defined and provided as MS Excel templates. These review check-
lists provide reviewers with a tool with which they can systematically review test
case specifications. The review guideline serves as a manual containing informa-
tion on why and how to use these checklists. By providing the MS Excel tem-
plates containing the review checklists and the review guideline describing the
concept of multidimensional review, reviewers are provided with a guide to assist
them in performing test case specification reviews. This allows to formulate an
answer to the research question RQ 2 in the following:

RQ 2: How can the quality model for test case specifications be made
applicable to reviews?

The basis for the development of the presented automotive test case spec-
ification quality model are the questions and metrics defined using the GQM
approach. These are used to derive perspective related checklist questions.
By providing these questions in a MS Excel template, the different aspects
of the quality model can be integrated into the review process. In this way,
reviewers can use the respective checklist for the review of test case specifi-
cations depending on a specific review perspective (respectively dimension).

5 Evaluation

We initially presented the multidimensional review concept in two internal com-
pany working groups (with 14 and 11 participants) concerning test methodology
at Daimler. It was positively perceived by the experts.

We additionally conducted a qualitative study to further investigate the
applicability and usefulness of our checklist-based approach for automotive test
case specifications and, thus, to answer research question RQ 3. In this study,
automotive experts applied the checklists to real test case specifications for differ-
ent systems. The study design and the results of the qualitative study conducted
are presented in this section.

Study Design. The general task of the study participants was to assume the role
of an reviewer by reviewing a test case specification. To ensure a high validity of
the review, the participants were asked to review a self-defined scope of their own
test case specifications by using the developed review checklists. Furthermore,
this kept the effort for the study participants low and provided them with added
value by participating in the study. The study design consists of three phases

98 K. Juhnke et al.

and is shown in Fig. 3. In the first phase, the participants had the opportunity
to participate in a training on internal guidelines for test case documentation
in order to refresh their knowledge on this topic. Subsequently, they received
a preliminary questionnaire in the second phase, which was sent to them as an
online questionnaire via the tool LimeSurvey [13, Chapter C.1]. After completing
the preliminary questionnaire, the participants received instructions on how to
conduct the reviews [13, Chapter C.2], the review guideline and the MS Excel
template containing the review checklists. After reviewing the test case speci-
fication, participants received a final questionnaire [13, Chapter C.3]. Finally,
in the third phase, the study participants took part in an expert workshop to
discuss their impressions gained on the review checklists.

Fig. 3. Study setup for evaluating the developed review checklists

Data Collection. We recruited 11 test designers and testers from Daimler and
external partners. We sent them online questionnaires, instructions and the
review checklists and gave them 7 weeks to complete their reviews. A total of five
participants completed the questionnaires and conducted a review of their test
case specifications. Due to high expenses for the ongoing day-to-day business,
the other six test designers and testers were unfortunately unable to conduct
their reviews in the foreseeable future. As shown in Table 5, the participating
practitioners were two test designers (P01 and P03) and one tester (P02) as well
as two external engineering partners (P04 and P05).

Before conducting the review, study participants rated the subjectively per-
ceived quality of the test case specifications they selected for the review on a
scale from 1 (very good quality) to 5 (very poor quality) with an average of
3.4. The reason for this is that only one of the reviewed test case specifications
had already been reviewed and approved, while the other test case specifications
were either not yet finished, represented an intermediate result or had not yet
been reviewed. Basically, the study participants would use checklists for future
reviews. They stated that they wanted to do this sometimes (2 participants),
often (1 participant) or always (2 participants).

Threats to Validity. Despite careful study design, threats to validity cannot
be completely excluded, which is why they are considered in the following. To

Reviewing Automotive Test Case Specifications 99

Table 5. Overview of the review checklist study participants

ID Company Time in Reviewing Using Responsibilitiesb

Affiliation Current Activity Expertise Review C D I R

(Years) (Years) (Levela) Checklists

Internal Employees

P01 11 – 25 < 1 1 no � � �
P02 3 – 5 1 – 3 2 no �
P03 6 – 10 < 1 1 no � � �

External Engineering Partners

P04 11 – 25 > 10 4 yes � � �
P05 3 – 5 4 – 9 4 yes � �

a Expertise Levels: (1) Beginner, (2) Advanced Beginner, (3) Competent Practitioner, (4) Experi-
enced Practitioner, (5) Expert
b Responsibilities: (C) creating, (D) delegating, (I) implementing (R) reviewing test case spec.

increase internal validity, the participants were able to choose when, where and
which test case specifications to review. This should reduce the influence of
external factors on the causality of the results. In addition, the chosen test
case specifications, working methods and work environment should lead to a
representative sample of the participants daily work.

The biggest threat to the external validity is the low number of five partic-
ipants since many of the other invited persons were too preoccupied by their
day-to-day work. This can also be a bias in the selection. However, the study
was conducted with real practitioners from the automotive industry who pos-
sessed a diverse range of experience, expertise and responsibilities with regards
to test case specifications. Additionally, the multidimensional review concept
was positively perceived by the 25 experts in the two internal working groups.
Furthermore, the developed quality model could be influenced by company spe-
cific requirements. We tried to mitigate this issue by incorporating standards as
well as other related work and keeping the developed process general enough to
be applicable/adoptable by other companies in the automotive field. Regarding
the construct validity the aim of our study is to evaluate the review checklists
themselves and not any associated tooling. In order to exclude the influence of
custom tooling on the feedback of the participants the review checklists were
implemented in MS Excel since the practitioners were already familiar with this
tool and using it in their daily work. To measure the applicability and usefulness
of the review checklists the participants were questioned before and after per-
forming the review. When the participants where inquired whether they needed
further support in performing the study no ambiguities regarding the supplied
instructions or the use of the review checklists surfaced. To strengthen the con-
clusion validity, our study results have been discussed and verified in a final
expert workshop. This should mitigate the possibility of misinterpretation by the
evaluators and ensure that the opinions of all experts are represented equally.

100 K. Juhnke et al.

Nonetheless, we suggest conducting another study with a larger and more diverse
set of participants to strengthen our results, e.g., in the form of an experiment
comparing the quality of reviews with and without the review checklists.

Results. After applying the review checklists and carrying out the individual
reviews of their test case specifications, the study participants answered the
final questionnaire. The results of this questionnaire are summarized in Fig. 4.

Fig. 4. Results of the review study

The results show that 3 out of 5 participants (60%) felt predominantly certain
when conducting the checklist-based review. They believe that this has improved
the quality of their test case specifications because 4 out of 5 participants (80%)
are rather or very confident in this respect. Furthermore, 2 out of 5 participants
(40%) found the checklists rather helpful or very helpful and 3 out of 5 partic-
ipants (60%) tend to recommend them to their colleagues. Moreover, at least
2 out of 5 participants (40%) believe that the checklists contribute to a better
understanding of what a qualitative test case specification is about.

In the subsequent expert workshop (cf. Phase 3 in Fig. 3), which lasted 1.5
hours, the impressions that the five study participants were able to gain from
the review checklists were discussed. For this purpose, the participants were
openly asked what they liked and what they disliked about the review checklists.
Furthermore, it was discussed why the vast majority of participants found the
checklists only partially helpful. Thus, positive and negative aspects regarding
the review checklists were collected from the feedback of the experts.

Basically, the study participants got along well with the MS Excel templates,
as they also use standard software, such as MS Excel or Word, for carrying out
reviews. The following aspects were highlighted by the experts:

Reviewing Automotive Test Case Specifications 101

Positive Comments From the Experts on the Review Checklists:
“The checklists provide a guide that helps you not to forget anything.”
“The checklists are good, because even an experienced reviewer sometimes forgets
something.”
“Checklists are absolutely helpful.”
“The checklists encourage a uniform understanding of quality.”
“The checklists give me an instrument with which I can objectively evaluate whether
a test case specification is poor and show concrete things that can be improved.”
“The checklists contain good questions, especially in the Safety-relevant Review.”
“Helpful comments on the individual questions have been included in the checklists.
The review guideline explains the concept and use of the checklists in a logical way.”
“The checklists provide a structured guidance for the quality assurance of test
case specifications and should be implemented as a uniform procedure within
the company.”

“The checklists should not only be used at the end of test case specification creation,

but also at the beginning. The review of some initial example test cases can thus

reduce additional work later on.”

Negative Comments From the Experts on the Review Checklists:
“There are many questions in the checklist for the dimension Content Review I.”
“The review checklist are too complex because to many questions are asked. This
usually leads to frustrated reviewers and, as experience shows, to poorer review
results.”
“There are no specifications for tailoring.”

“Many questions from Methodical Review I could be determined automatically.”

Also, optimization potentials of the review checklists were discussed during
the expert workshop. The main point of criticism was the complexity of the
review checklists measured by the number of questions they contained. Espe-
cially if only one reviewer is entrusted with the review and has to consider all
dimensions, she or he can quickly lose the overview. There is a danger that the
reviewer will quickly become frustrated, resulting in poorer review results. The
concept of a multidimensional review offers added value especially when differ-
ent experts are actually involved in the conduct of the review and the checklist
questions are thus distributed among different persons.

In this respect, the tailoring of the review checklists was discussed during the
workshop in order to reduce the number of checklist questions. If several review-
ers are involved in the review, the number of checklist questions per reviewer is
already reduced because each reviewer only receives her or his dimension-specific
checklist. Overall, the experts noted that the questions provided by the review
checklists represent a comprehensive and valuable catalog which reflects current
issues within test case specifications. In the special case that only one reviewer is
assigned with the review of the entire test case specification and all dimensions
are to be considered, this is challenging. In this case the reduction of checklist
questions is appropriate. Accordingly, it was noted by the experts that not all

102 K. Juhnke et al.

aspects are relevant to each system or each test platform. Therefore, the check-
list questions should be used as starting point and critically questioned during
the planning of the review and adapted to the respective context.

A further approach to reduce the number of questions was seen by the experts
in the automated answering of some checklist questions. Since in particular infor-
mation on the questions from the dimension Methodical Review I can be calcu-
lated automatically, this is seen as a great potential to take the pressure off the
reviewer.

The feedback from experts on the review checklists collected through the
qualitative study allows us to answer research question RQ 3 as follows:

RQ 3: How do reviewers assess the review checklists in terms of support-
ing the review of test case specifications?

The initial evaluation indicate that the review checklists have the poten-
tial to improve the quality of test case specifications by providing a com-
prehensive catalog of questions that indicate typical issues in test case spec-
ifications. In this way, they provide support to the reviewer in reviewing
test case specifications and contribute to the understanding of which criteria
constitute a qualitative test case specification. When planning a test case
specification review, it is recommended that the scope of the checklist ques-
tions is checked and, if necessary, adapted to the needs of the current test case
specification. Otherwise, reviewer assess the checklists as too extensive and
complex. Furthermore, the lack of automatically answering certain checklist
questions in the MS Excel templates was also mentioned as a negative aspect,
especially for Methodical Review I.

The comments of the experts regarding the automated answering of cer-
tain checklist questions triggered the subsequent development of a tool called
QualiCheck (see Juhnke [13]). QualiCheck can automatically calculate answers
for simple checklist questions, which are then presented to the reviewer.

6 Conclusion and Future Work

Existing quality models for test case specifications are unsuitable for use in the
automotive domain, as they do not consider automotive-specific quality charac-
teristics like functional safety nor natural language for the specification of test
cases. Following the GQM approach, we used multiple knowledge sources, includ-
ing workshops with practitioners, to identify viewpoints, questions and metrics
which are important to assess the quality of test case specifications. Based on our
findings, we presented a quality model for automotive test case specifications con-
sisting of seven key (quality) criteria. To facilitate the use of our quality model,
we also describe its integration in a multidimensional review process derived from
the IEEE 1028 standard and Spillner et al. We described the required process
steps as well as the necessary documents (review checklists) for a systematic and

Reviewing Automotive Test Case Specifications 103

thorough review of the test case specifications. The initial evaluation indicates
that practitioners from the industry perceive the developed review checklists as
helpful and would recommend them to their colleagues. Our results show that
the application of our quality model is a good first step for improving the quality
of test case specifications in the automotive domain. We discuss in more detail
in Juhnke [13, Table 5.4 p.138ff] the extent to which our review approach is
applicable to other OEMs. Future work should focus on the development of a
condensed review checklist for the use in short reviews by a single reviewer and
a suitable approach for tailoring. Additionally, the developed QualiCheck tool
could be extended to automate further tasks of performing a review.

References

1. Athanasiou, D., Nugroho, A., Visser, J., Zaidman, A.: Test code quality and its
relation to issue handling performance. IEEE Trans. Softw. Eng. 40(11), 1100–1125
(2014). https://doi.org/10.1109/TSE.2014.2342227

2. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal question metric paradigm. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 2, pp. 528–532.
Wiley, New York (1994)

3. Bowes, D., Hall, T., Petric, J., Shippey, T., Turhan, B.: How good are my tests? In:
Proceedings of the 8th Workshop on Emerging Trends in Software Metrics (WET-
SoM 2017), pp. 9–14. IEEE (2017). https://doi.org/10.1109/WETSoM.2017.2

4. Broekman, B., Notenboom, E.: Testing Embedded Software. Addison-Wesley, Lon-
don (2002)

5. Daimler AG: Test Case Specification Template 2.0 User Guide: Structure and
Usage of TestSpec Template 2.0 (2018)

6. European Telecommunications Standards Institute (ETSI): The Testing and Test
Control Notation Version 3 (TTCN-3) (2018). eTSI ES 201 873 V3.4.1

7. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An introduction to the testing and test control notation (TTCN-3). Comput. Netw.
42(3), 375–403 (2003). https://doi.org/10.1016/S1389-1286(03)00249-4

8. Hauptmann, B., Heinemann, L., Vaas, R., Braun, P.: Hunting for smells in natural
language tests. In: Proceedings of the 35th International Conference on Software
Engineering (ICSE 2013), pp. 1217–1220. IEEE (2013). https://doi.org/10.1109/
ICSE.2013.6606682

9. IEEE Computer Society: Standard for Software Reviews and Audits. IEEE
1028:2008 (2008). https://standards.ieee.org/standard/1028-2008.html

10. International Organization for Standardization (ISO): Software Engineering -
Product Quality - Part 1: Quality Model. ISO/IEC 9126–1:2001 (2001). https://
www.iso.org/standard/22749.html. (status: Withdrawn)

11. International Organization for Standardization (ISO): Road Vehicles - Functional
Safety - Part 4: Product Development at the System Level. ISO 26262–4:2011
(2011). https://www.iso.org/standard/51359.html

12. International Organization for Standardization (ISO): Systems and Software Engi-
neering - Systems and Software Quality Requirements and Evaluation (SQuaRE) -
System and Software Quality Models. ISO/IEC 25010:2011 (2011). https://www.
iso.org/standard/35733.html

13. Juhnke, K.: Improving the Quality of Automotive Test Case Specifications. Ph.D.
thesis, Ulm University (2021). https://doi.org/10.18725/OPARU-35558

https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1109/WETSoM.2017.2
https://doi.org/10.1016/S1389-1286(03)00249-4
https://doi.org/10.1109/ICSE.2013.6606682
https://doi.org/10.1109/ICSE.2013.6606682
https://standards.ieee.org/standard/1028-2008.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/51359.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://doi.org/10.18725/OPARU-35558

104 K. Juhnke et al.

14. Juhnke, K., Tichy, M., Houdek, F.: Challenges concerning test case specifications in
automotive software testing. In: Proceedings of the 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA 2018), pp. 33–40 (2018).
https://doi.org/10.1109/SEAA.2018.00015

15. Juhnke, K., Tichy, M., Houdek, F.: Challenges concerning test case specifications in
automotive software testing: assessment of frequency and criticality. Softw. Qual.
J. 29(1), 39–100 (2020). https://doi.org/10.1007/s11219-020-09523-0

16. Lachmann, R., Schaefer, I.: Towards efficient and effective testing in automotive
software development. In: Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.)
Informatik 2014, pp. 2181–2192. Gesellschaft für Informatik e.V. (2014). https://
dl.gi.de/handle/20.500.12116/2847

17. Lanubile, F., Mallardo, T.: Inspecting automated test code: a preliminary study.
In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol.
4536, pp. 115–122. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73101-6 16

18. Meszaros, G., Smith, S.M., Andrea, J.: The test automation manifesto. In: Maurer,
F., Wells, D. (eds.) XP/Agile Universe 2003. LNCS, vol. 2753, pp. 73–81. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45122-8 9

19. Petunova, O., Bērzǐsa, S.: Test case review processes in software testing. Inf. Tech-
nol. Manag. Sci. 20(1), 48–53 (2017). https://doi.org/10.1515/itms-2017-0008

20. Pfaller, C., Wagner, S., Gericke, J., Wiemann, M.: Multi-dimensional measures
for test case quality. In: Proceedings of the 1st International Conference on Soft-
ware Testing, Verification, and Validation (ICST 2008), pp. 364–368. IEEE (2008).
https://doi.org/10.1109/ICSTW.2008.28

21. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations: A Study Guide
for the Certified Tester Exam, 4th edn. Rocky Nook, Santa Barbara (2014)

22. Zeiß, B.: Quality Assurance of Test Specifications for Reactive Systems. Disserta-
tion, Georg-August-Universität zu Göttingen (2010)

https://doi.org/10.1109/SEAA.2018.00015
https://doi.org/10.1007/s11219-020-09523-0
https://dl.gi.de/handle/20.500.12116/2847
https://dl.gi.de/handle/20.500.12116/2847
https://doi.org/10.1007/978-3-540-73101-6_16
https://doi.org/10.1007/978-3-540-73101-6_16
https://doi.org/10.1007/978-3-540-45122-8_9
https://doi.org/10.1515/itms-2017-0008
https://doi.org/10.1109/ICSTW.2008.28

Author Index

Afzal, Wasif 63

Enoiu, Eduard Paul 63

Felderer, Michael 13
Fietzke, Arnaud 41
Flemström, Daniel 63

Garousi, Vahid 13
Gorschek, Tony 3

Juhnke, Katharina 84

Klotins, Eriks 3

Meding, Wilhelm 23

Neumüller, Denis 84

Ochodek, Miroslaw 23

Pretschner, Alexander 41

Schnappinger, Markus 41
Söder, Ola 23
Staron, Miroslaw 23

Tichy, Matthias 84

van Veenendaal, Erik 13

Zachau, Simon 41

	 Message from the General Chair
	 Message from the Scientific Program Chairs
	 Organization
	 Contents
	Invited Papers
	Continuous Software Engineering in the Wild
	1 Introduction
	2 Continuous Software Engineering in a Nutshell
	3 Challenges and Future Needs
	4 Conclusions
	References

	Motivations for and Benefits of Adopting the Test Maturity Model integration (TMMi)
	1 Introduction
	2 A Brief Overview of TMMi
	3 Reasons (Motivations) for Adopting TMMi
	4 Benefits of Adopting TMMi
	5 Conclusion
	References

	AI in Software Engineering
	Automated Code Review Comment Classification to Improve Modern Code Reviews
	1 Introduction
	2 Related Work
	3 CommentBERT – Classifying Code-Review Comments
	3.1 Classifying Comments According to Their Focus
	3.2 Training BERT for Code-Review Comments
	3.3 Example of Application of the Taxonomy

	4 Research Design
	4.1 Research Questions
	4.2 Datasets
	4.3 Model Validation

	5 Results
	6 Discussion
	7 Conclusions
	References

	A Preliminary Study on Using Text- and Image-Based Machine Learning to Predict Software Maintainability
	1 Motivation
	2 Experimental Design
	2.1 Dataset
	2.2 Architectures and Algorithms
	2.3 Training and Evaluation
	2.4 Preprocessing for Text-Based Prediction
	2.5 Preprocessing for Image-Based Prediction
	2.6 Experiment Execution

	3 Experiment Results
	3.1 Text-Based Classification
	3.2 Image-Based Classification
	3.3 Interpretation

	4 Discussion
	4.1 Threats to Validity
	4.2 Future Work

	5 Related Work
	6 Conclusion
	References

	Quality Assurance for Software-Intensive Systems
	Specification of Passive Test Cases Using an Improved T-EARS Language
	1 Introduction
	2 Background
	2.1 Passive Testing
	2.2 Guarded Assertions
	2.3 Easy Approach to Requirements Syntax (EARS)
	2.4 The Ohm Grammar Language

	3 Method
	4 Result: The Updated T-EARS Language
	4.1 Keyword Terminals
	4.2 Structural Elements
	4.3 Basic Data Types
	4.4 Signals Data Type
	4.5 Intervals Data Type
	4.6 Events Data Type
	4.7 Boolean Expressions
	4.8 Guarded Assertion Rules
	4.9 Miscellaneous Modifiers
	4.10 Timing Considerations
	4.11 General Structure of a T-EARS Test Case

	5 Discussion on T-EARS Improvement
	6 Related Work
	7 Conclusion and Future Work
	References

	A Quality Model and Checklists for Reviewing Automotive Test Case Specifications
	1 Introduction
	2 Related Work
	3 Developing a Quality Model for Automotive Test Case Specifications
	3.1 Application of the Goal Question Metric (GQM) Approach
	3.2 Automotive Test Case Specifications Quality Model

	4 Review of Automotive Test Case Specifications
	5 Evaluation
	6 Conclusion and Future Work
	References

	Author Index

