
Chapter 15
Structural Damage Identification for Plate-Like Structures Using
Two-Dimensional Teager Energy Operator-Wavelet Transform

Wei Zhou, Yongfeng Xu, and Jueseok Kim

Abstract Waveforms of propagating flexural waves can reveal plentiful information about anomalies caused by damage-
wave interactions, and such anomalies can be used for damage identification. However, they can be masked by the
interference of measurement noise and may be able to indicate only a fraction of the extent of the damage. In this paper,
an effective noise-robust damage identification method is proposed. It extracts local anomalies based on two-dimensional
curvature propagating flexural waves (2D-CPFW). To alleviate adverse effects of measurement noise on calculating 2D-
CPFW, the continuous wavelet transform with a second-order Gaussian function is used as a differentiation operator. Three
two-dimensional quantities, including the curvature of the 2D-CPFW, Teager energy of 2D-CPFW, and Teager energy of
the curvature of the 2D-CPFW, are defined and they can intensify local anomalies caused by the existence of damage. To
obtain a complete identification of damage extent based on the anomalies, a two-dimensional accumulative damage index
is defined. A convergence index is introduced to determine the number of waveforms to be included when calculating the
damage index. Effectiveness and noise-robustness of the proposed method are investigated in a numerical example of a
damaged plate. Results verify that the proposed method is effective and noise-robust in identifying the location and extent of
damage.

Keywords Baseline-free structural damage identification · Teager energy operator · Curvature propagating flexural
waves · Continuous wavelet transform

15.1 Introduction

Structures in service for mechanical, aerospace, and civil engineering purposes can suffer from aging and deterioration due to
long-term environmental effects and operational loads. To avoid catastrophic structural failures, structural health monitoring
is critical by identifying existing developing deterioration and assessing their conditions [1–3]. Vibration-based damage
identification has been a main research topic of structural dynamics for structural health monitoring in recent decades.
Quantitative changes in local stiffness and/or mass can occur when local damage exists in a structure [4–7]. Hence, vibration
characteristics of the structure, such as natural frequencies, operating deflection shapes, and mode shapes, can be used for
damage identification. The natural frequencies-based methods are generally used for global identification, as they can be
estimated with excitation and response points that are away from the damage [8]. Adams et al. [9] found that a damage
state of a structure can be identified as reduction in stiffness, which leads to changes of its natural frequencies. A damage
identification technique based on changes of natural frequencies was investigated by comparing natural frequencies at pristine
and damage states [10]. The mode shapes and operating deflection shapes-based methods are considered local identification,
as local anomalies cannot be identified unless the locality of the anomalies falls within a measurement grid [8]. Besides,
mode shapes and operating deflection shapes-based methods are vulnerable to measurement noise and only relatively large
damage is identifiable by using local anomalies in mode shapes and operating deflection shapes [11]. The use of curvatures
of mode shapes and operating deflection shapes, referred to as curvature mode shapes and curvature operating deflection
shapes, respectively, for damage identification were proposed in Refs. [12] and [13], respectively. It was shown that curvature
mode shapes and curvature operating deflection shapes are more sensitive to small damage than mode shapes and operating
deflection shapes. One the other hand, uses of continuous wavelet transforms (CWTs) were proposed and investigated in
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Refs. [14–17] to accurately calculate the curvature mode shapes. The multi-scale property of CWT can smooth measurement
noise and minimize errors by increasing the value of its scale parameter. However, global fluctuation of trends in curvature
mode shapes and curvature operating deflection shapes can mask their local anomalies caused by damage. To address this
problem, Teager energy operator (TEO) has been applied to further intensify local anomalies for damage identification based
on curvature mode shapes calculated by CWT [18, 19]. TEO can intensify local anomalies and minimize global fluctuation
of trends. Its use was introduced by combining CWT for identification of multiple damage for beams in Ref. [18]. Two-
dimensional TEO was applied to intensify local anomalies of two-dimensional curvature mode shapes calculated by CWT
for plates-like structures [19].

Besides vibration characteristics, propagating elastic waves can reveal local anomalies that exist in the neighborhood of
damage and assist with its identification by capturing and visualizing anomalies of waves. Propagating elastic waves-based
methods have been investigated and applied for damage identification in recent decades. Frequency-wavenumber domain
analysis is one of the wave-based methods. It is capable of eliminating the incident waves and separating wave modes to
highlight the presence of any reflected waves associated with damage. Ruzzene [20] introduced the frequency-wavenumber
domain analysis for damage identification by using waveforms obtained by a scanning laser Doppler vibrometer (SLDV).
Kudela et al. [21] introduced an adaptive wavenumber filtering technique by constructing a filter mask in the wavenumber
domain to solve an issue caused by boundary reflections of propagating waves. Wave spectra in the frequency-wavenumber
domain can show distinction among wave modes, but the space information is lost in the analysis. Hence, a short-space
two-dimensional Fourier transform was introduced in Ref. [22], which yields the frequency-wavenumber spectra at various
spatial locations. Besides, the waveform analysis was studied for damage identification purposes. It extracts local anomalies
in waveforms of the propagating waves for damage identification. The waveform analysis was introduced in Ref. [23]:
waveforms were measured by an SLDV and root mean square values of their complete time history were used to formulate
a damage index. An integral mean value damage index was introduced in Ref. [24] and compared with the damage index
based on root mean square values. It was shown that the damage index based on root mean square values is more sensitive to
the existence of damage and less sensitive to that of environmental noise. To improve the sensitivity of waveform analysis for
damage identification, new waveform analyses were recently presented based on curvatures of the waveforms. The reason is
that curvature mode shapes have proved more damage-sensitive than mode shapes and used for damage identification. Sha et
al. [25] introduced a concept of wavefield curvature by calculating curvatures of waveforms of propagating waves at selected
time instants, and an energy image was then formed by square sums of the curvatures of waveforms of the propagating
waves. Xu et al. [8] presented curvature of waveforms of propagating flexural waves by using local-regression polynomials
to estimate curvature waveforms of a pseudo-pristine structure.

In this work, a baseline-free structural damage identification method is proposed for plate-like structures. It identifies
location and extent of damage based on two-dimensional curvature propagating flexural waves (2D-CPFW). The 2D-CPFW
is analogous to two-dimensional curvature mode shapes in Ref. [19]. A two-dimensional CWT is used to calculate 2D-CPFW
for alleviating adverse effects of measurement noise and errors. To further intensify local anomalies based on the 2D-CPFW,
three quantities are defined, including the curvature of the 2D-CPFW, Teager energy of the 2D-CPFW, and Teager energy
of the curvature of the 2D-CPFW. A damage index is proposed to identify damage based on the three defined quantities. In
the process of calculating the damage index, a convergence index is introduced to determine the number of waveforms to be
included. Numerical investigations are conducted to study the effectiveness and noise-robustness of the proposed method.

The rest of the paper is arranged as follows. In Sect. 15.2, the proposed damage identification method based on 2D-CPFW
is presented. In Sect. 15.3, the numerical investigations are described, respectively. Conclusions of this work are presented in
Sect. 15.4.

15.2 Methodology

15.2.1 Formulation of 2D-CPFW for Plate-Like Structures

A propagating flexural wave of a plate-like structure can be considered as a three-dimensional spatial-temporal signal, as it
consists of two-dimensional waveforms at different time instants denoted by t . A waveform of the propagating flexural wave
at t , denoted by Wt (x, y), can be considered as an instantaneous deformation with x and y being the spatial coordinates of a
point on the structure. The mean curvature of Wt (x, y) is the second-order spatial differentiation of Wt (x, y), and it can be
expressed by Yoon et al. [26]
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κ2D
t = κx,t + κy,t = ∂2Wt (x, y)

∂x2
+ ∂2Wt (x, y)

∂y2
= ∇2Wt (x, y) (15.1)

where
⎧
⎨

⎩

κx,t = ∂2Wt (x,y)

∂x2

κy,t = ∂2Wt (x,y)

∂y2

(15.2)

denote curvature propagating flexural waves along x- and y-axes, respectively, and ∇2 is the Laplace operator. The
instantaneous bending moments of the plate at a spatial point along x- and y-axes, denoted by Mx,t and My,t , respectively,
can be calculated by

Mx,t (x, y) = −D (x, y)
(
κx,t + νκy,t

)
(15.3)

and

My,t (x, y) = −D (x, y)
(
κy,t + νκx,t

)
(15.4)

respectively, where

D = Eh3

12
(
1 − v2

) (15.5)

is the flexural rigidity of the structure, in which E and ν denote the Young’s modulus and Poisson’s ratio, respectively, and h

denotes the thickness of the structure. Summing up Eqs. (15.3) and (15.4) yields

Mx,t (x, y) + My,t (x, y) = −D (x, y)
(
κx,t + νκy,t + κy,t + νκx,t

) = −D (x, y) (1 + ν)
(
κx,t + κy,t

)
(15.6)

Rearranging Eq. (15.6) and applying Eq. (15.1) yield

κ2D
t = κx,t + κy,t = −Mx,t (x, y) + My,t (x, y)

D (x, y) (1 + ν)
(15.7)

When small-extent damage occurs to the structure, the value of D will change in the neighborhood of the damage. More
importantly, local anomalies occur to κ2D

t and can be used to reveal the existence of the damage. An instantaneous mean
curvature κ2D

t can be obtained using the second-order central finite difference scheme [26]. However, the scheme can amplify
adverse effects of measurement noise and errors in Wt (x, y). It is proposed that CWT with the second-order Gaussian
function be used as the second-order differentiation operator for calculating κ2D

t as it can alleviate the adverse effects of
measurement noise and errors [19]. The differentiation can be achieved by a convolution of ∇2Wt (x, y) in Eq. (15.1) with a
zeroth-order Gaussian wavelet function:

gu,v,s (x, y) = 1√
πs

e
−

(

( x−u
s )

2+
(

y−v
s

)2
)

(15.8)

where s is the scale parameter, and u and v are translation parameters along x- and y-axes, respectively. The convolution is
denoted by ∇2Wt ⊗ gu,v,s with ⊗ being the notation of convolution. Based on the differentiation property of the convolution
[27], the following relationship exists:

∇2Wt ⊗ gu,v,s = Wt ⊗ ∇2gu,v,s (15.9)

where∇2gu,v,s calculates the second-order Gaussian function, which is often referred to as the Mexican hat wavelet function.
The term Wt ⊗ ∇2gu,v,s in Eq. (15.9) is defined as the 2D-CPFW, and it can be further expressed by
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W ′′
s,t (u, v) = Wt ⊗ ∇2gu,v,s

= 1√
πs

Wt ⊗ ∇2e
−

(

( x−u
s )

2+
(

y−v
s

)2
)

= s2∇2
∫ ∞
−∞

∫ ∞
−∞ Wt (x, y) 1√

πs
e
−

(

( x−u
s )

2+
(

y−v
s

)2
)

dxdy

= s2∇2
(
Wt ⊗ gu,v,s

)

(15.10)

It is indicated by Eq. (15.10) that the calculation of W ′′
s,t (u, v) is equivalent to an application of ∇2 to Wt ⊗ gu,v,s . While

the level of the measurement noise and errors in Wt can be lowered by its convolution with gu,v,s , which acts as a low-pass
filter, the application of ∇2 will not suffer from the amplified adverse effects of the measurement noise and errors that exist
in that of a finite difference scheme.

15.2.2 Local Anomalies Intensified from W ′′
s,t

Though local anomalies caused by damage in Wt can be identified in W ′′
s,t , they can be masked by global trends of W ′′

s,t ,
similar to those in curvature mode shapes [28, 29]. Hence, a high-order derivative of W ′′

s,t and their Teager energy [19, 30]
can be used to further intensify the local anomalies from the trends and identify the location of damage by minimizing the
global trends.

Curvature of W ′′
s,t

Based on the differentiation property of CWT and Eq. (15.9), the rth-order derivative W ′′
s,t using CWT is expressed by

W
(r+2)
s,t = ∇r

(
W ′′

s,t ⊗ gu,v,s

) = W ′′
s,t ⊗ ∇rgu,v,s = Ws,t ⊗ ∇r+2gu,v,s (15.11)

and it calculates CWT of Wt with the (r + 2)th-order Gaussian wavelet function. It is shown that CWT of a mode shape
with the 4th-order Gaussian wavelet function is capable of localizing damage and the use of a higher-order Gaussian wavelet
function can become necessary for a high-order mode shape [31]. The reason is that the high-order mode shape cannot be
well fitted by a 4th-order polynomial. In practice, a dense measurement grid is applied for measuring Wt to avoid spatial
aliasing, which is also the case in this work. Further, the width of an interval of non-zero values of gu,v,s depends on the value
of s: the smaller s, the smaller the interval. In a small interval, the measured Wt can be well fitted by a 4th-order polynomial,
and hence the proper value of r in Eq. (15.11) is chosen to be 2. In other words, CWT of Wt with the 4th-order Gaussian
wavelet function can be used to intensify local anomalies for damage identification purposes. When r = 2, Eq. (15.11) can
be written as

W
(4)
s,t = Ws,t ⊗ ∇4gu,v,s = s2∇4 (

Wt ⊗ gu,v,s

)
(15.12)

and W
(4)
s,t is called the curvature of W ′′

s,t .

Local Anomalies Intensification Using TEO

TEO was first proposed to estimate the point-wise energy of a one-dimensional oscillating discrete signal p [n] with n

denoting the number of a discrete signal value. It is a nonlinear operator and can be expressed by Kaiser [32]

� (p [n]) = p2 [n] − p [n − 1]p [n + 1] (15.13)

Later, the TEO was extended to handle a two-dimensional discrete signal q [n,m] with [n,m] denoting the discrete number
of a discrete signal value [33], and the two-dimensional TEO can be expressed by
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�2D (q [n,m]) = q2 [n,m] − q [n − 1,m] q [n + 1,m] + q2 [n,m] − q [n,m − 1] q [n,m + 1]
= 2q2 [n,m] − q [n − 1,m] q [n + 1,m] − q [n,m − 1] q [n,m + 1]

(15.14)

It has been shown that � and �2D can intensify weak local anomalies of curvature mode shapes [19, 30]. Hence, it is
proposed that the �2D be applied to W ′′

s,t and W
(4)
s,t for further intensifying local anomalies caused by damage and identifying

its location: Teager energy of W ′′
s,t (TE-CPFW) and that of W

(4)
s,t (TE-C-CPFW) can be expressed by

�2D (
W ′′

s,t [n,m]
) = 2

(
W ′′

s,t [n,m]
)2 − W ′′

s,t [n − 1,m]W ′′
s,t [n + 1,m] − W ′′

s,t [n,m − 1]W ′′
s,t [n,m + 1] (15.15)

and

�2D
(
W

(4)
s,t [n,m]

)
= 2

(
W

(4)
s,t [n,m]

)2 − W
(4)
s,t [n − 1,m]W(4)

s,t [n + 1,m]

−W
(4)
s,t [n,m − 1]W(4)

s,t [n,m + 1]
(15.16)

respectively, where W ′′
s,t [n,m] and W

(4)
s,t [n,m] denote the discrete values of W ′′

s,t and W
(4)
s,t , respectively.

15.2.3 Damage Identification Based on Intensified Anomalies

When a mode shape is used for damage identification, it can be insensitive to certain damage or it cannot fully indicate the
extent of the damage. In this case, uses of other mode shapes are necessary as the more mode shapes are used, the more likely
the location and extent of the damage are identified. Similarly, not all waveforms and their associated anomalies described
in Sect. 15.2.2 can fully indicate the location and extent of damage, and each of them may be able to indicate a fraction of
the extent of the damage. While it is advantageous that a large number of waveforms are measured, an accumulative damage

index that considers the local anomalies in Sect. 15.2.2, i.e., W(4)
s,t , �

2D
(
W ′′

s,t

)
and �2D

(
W

(4)
s,t

)
, from available waveforms

is proposed and expressed by

δ (�t [n,m]) =
t=t2∑

t=t1

|�t [n,m]| (15.17)

where �t [n,m] denotes an intensified two-dimensional local anomaly, which can be W
(4)
s,t , �

2D
(
W ′′

s,t

)
and �2D

(
W

(4)
s,t

)
, t1

and t2 are the starting and ending instants of waveforms to be included in δ, and |·| denotes an absolute value.
While there are three anomalies to formulate δ in Eq. (15.17), the effectiveness of δ for identifying the location and extent

of damage depends on values of t1 and t2, which determine waveforms to be included. Since the use of waveforms near an
excitation point can lead to misdiagnosis as local anomalies [23], t1 should be selected as an instant after an excitation ends
such that

t1 > te (15.18)

where te denotes the ending instant of the excitation. In this work, it is proposed that the proper value of t1 be

t1 = te + tp (15.19)

where tp denotes the duration of the excitation. The inclusion of tp in Eq. (15.19) can diminish misdiagnosis due to the
waveforms generated during the occurrence of the excitation. Regarding the proper value of t2, it is proposed that the value
be determined based on a convergence index, which is expressed by

conv (i) = ‖δi‖2
‖δi‖2 + ‖δi − δi+1‖2

(15.20)
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Fig. 15.1 Flowchart of the proposed damage identification method

where δi and δi+1 are equal to δ in Eq. (15.17) with the same value of t1 in Eq. (15.19) but different values of t2, and ‖·‖2
denotes the 2-norm of a vector; the value of t2 for δi in Eq. (15.20) is expressed by

t2 = t1 + ik

fs

(15.21)

in which k denotes the number of waveforms for one increment in calculating conv and fs denotes the sampling frequency
of the waveforms, and the value of t2 in δi+1 is expressed by

t2 = t1 + (i + 1) k

fs

(15.22)

As mentioned above, each waveform and its associated anomalies described in Sect. 15.2.2 can indicate a fraction of the
extent of the damage. The damage index δ with a larger value of t2 may lead to a more complete identification of the extent
of the damage, since it cumulatively collects anomalies caused by the damage. Further, when t2 is increased to a certain value,
δ will converge and so will its identified extent. Hence, the index conv quantifies the convergence of δ: when conv = 1,
δ is considered convergent. Since a high sampling frequency is usually used to measure waveforms in practice, changes of
δ between two consecutive sampling instants can be so small that a false convergence can be identified. And it can lead to
a trivial conv and inaccurate damage identification results. Hence, k is introduced to t2 in Eq. (15.21) in order to include
multiple waveforms to better quantify the convergence of δ. In this work, the proper value of t2 is chosen as its minimum
value, with which conv ≥ 0.99. Finally, an auxiliary damage index is defined to further improve indication of the location
and extent of the damage based on δ:

δ̃ (�t [n,m]) =
(

δ (�t [n,m])

max (δ (�t [n,m]))

)2

(15.23)

It is worth noted that δ̃ ∈ [0, 1] and damage can be identified in neighborhoods with high δ̃ values. A flowchart summarizing
the proposed damage identification method is shown in Fig. 15.1.

15.3 Numerical Investigation

In this section, the effectiveness and noise-robustness of the proposed method are investigated using a numerical simulation
of an aluminum plate with damage in the form of two thickness reduction areas.



15 Structural Damage Identification for Plate-Like Structures Using Two-Dimensional Teager Energy Operator-Wavelet Transform 145

Fig. 15.2 (a) Dimensions of a damaged aluminum plate in the form of two thickness reduction areas (unit: mm) and (b) an excitation force in the
form of a five-count wave packet. Locations and extent of square and circular damage areas are depicted by solid black areas in (a)

15.3.1 Numerical Test Specimen and Finite Element Model

A pinned-pinned-pinned-pinned aluminum plate of a length of 500mm and a thickness 10mm is modeled as a test specimen
with dimensions shown in Fig. 15.2a. Its mass density is 2700 kg/m3, Young’s modulus is 69GPa, and Poisson’s ratio is0.33.
A finite element model of the plate is constructed using ABAQUS with linear eight-node brick (C3D8R) elements. Two one-
sided thickness reduction areas, including a square one and a circular one, with a depth of 5mm are introduced. The square
damage and circular damage area are centered at (137.5, 137.5)mm and (375, 375)mm, respectively; the square damage
area has a side length of 25mm and the circular damage area has a radius of 15

√
2mm. The damaged plate is under zero

initial conditions and subject to an excitation force applied to its central location, i.e., (250, 250)mm. The excitation force is
an Nc-count wave packet [8], which can be analytically expressed by

f (t) = A

(

H (t) − H

(

t − Nc

fc

)) (

1 − cos

(
2πfct

Nc

))

sin (2πfct) (15.24)

where A denotes the amplitude of f , H is Heaviside function, which is expressed as

H (t) =
{
1 t ≥ 0

0 t < 0
(15.25)

and fc is the central frequency of the force. In this investigation, the applied excitation force is a five-count wave packet, as
shown in Fig. 15.2b, with A = 0.5N, Nc = 5 and fc = 50 kHz.

Waveforms of propagating flexural waves of the damaged plate are obtained on a grid of 101 × 101 measurement points
with a sampling frequency of 2MHz for the first 500µs after the excitation is applied; a total of 10001 waveforms are
obtained. Figure 15.3a through d show four waveforms at 50µs, 80µs, 120µs and 275µs, respectively. In Fig. 15.3a, a
propagating flexural wave is generated and spreads out from the excitation point, and its wavefront can be observed. In
Fig. 15.3b, the wavefront of the propagating flexural wave is partially reflected near the top right corner of the square damage
area. In Fig. 15.3c, the wavefront is beyond the square damage area and propagating flexural waves are partially reflected
and scattered from the two damage areas. Subsequently, as shown in Fig. 15.3d, distinct wave propagation features related
to the damage areas are not prominent, as they are masked by those related to reflections of the waves at the boundaries
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(a) (b)

(c) (d)

Fig. 15.3 Noise-free waveforms at (a) 50µs, (b) 80µs, (c) 120µs, and (d) 275µs. Locations and extent of square and circular damage areas are
depicted by solid red lines

of the plate. To investigate effects of measurement noise on damage identification results, high-amplitude white Gaussian
noise is added to the response of each measurement point of the damaged plate such that a signal-to-noise ratio (SNR) of
−10 dB is achieved. Figure 15.4 shows the noise-contaminated waveforms at the instants same as those in Fig. 15.3. In Fig.
15.4, the overall propagation pattern of the noise-contaminated waves is similar to that of the noise-free ones, but the noise
significantly impacts the waveforms. In Fig. 15.4a, the wavefront of the propagating flexural wave is blurred by the noise.
In Fig. 15.4b, the reflected wave near the square damage area cannot be observed. In Fig. 15.4c, the reflected and scattered
waves near the two damage areas can still be observed though the adverse effects of the noise are obvious. Subsequently, as
shown in Fig. 15.4d, the distinct wave propagation features related to reflections at the boundaries are significantly masked
by the noise.
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Fig. 15.4 Noise-contaminated waveforms at (a) 50µs, (b) 80µs, (c) 120µs, and (d) 275µs. Locations and extent of square and circular damage
areas are depicted by solid red lines

15.3.2 Numerical Damage Identification Results and Discussion

The proposed damage identification method is applied to identify the damage on the plate. The use of the noise-free

propagating flexural waves is first investigated. The convergence index conv related to W
(4)
s,t , �

2D
(
W ′′

s,t

)
, and �2D

(
W

(4)
s,t

)

are calculated and plotted in Fig. 15.5, where the values of t1 in Eq. (15.19), k in Eq. (15.21) and s in Eq. (15.8) are selected
to be 200µs, 20 and 2, respectively. Base on conv, the values of t2 corresponding to δ in Eq. (15.17) using W

(4)
s,t , �

2D
(
W ′′

s,t

)

and �2D
(
W

(4)
s,t

)
are selected to be 1310µs, 960µs, 780µs, respectively.

Auxiliary damage index δ̃ using W
(4)
s,t , �2D

(
W ′′

s,t

)
, and �2D

(
W

(4)
s,t

)
are calculated and shown in Fig. 15.6a, b and c,

respectively. In Fig. 15.6a, large δ̃ values are observed in the neighborhoods of the two damage areas, while smaller δ̃ values
are observed beyond the damage areas. Further, the size of the damage areas is well depicted by δ̃ in Fig. 15.6a. Similar
damage identification results can be observed in Fig. 15.6b and c. Specifically, as shown in Fig. 15.6d and e, relatively large

values of δ̃ using �2D
(
W

(4)
s,t

)
only exist within the damage areas, which is the same case for δ̃ using �2D

(
W ′′

s,t

)
. Besides,
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Fig. 15.5 Convergence indexes for the noise-free numerical propagating flexural waves based on (a) W
(4)
s,t (b) �2D

(
W ′′

s,t

)
and (c) �2D

(
W

(4)
s,t

)

smaller values of δ̃ using �2D
(
W ′′

s,t

)
and �2D

(
W

(4)
s,t

)
beyond the damage areas are observed, compared with those using

W
(4)
s,t .
To study the noise-robustness of the proposed method, the use of the noise-contaminated propagating flexural waves is

investigated. The proposed method is applied with the values of t1 in Eq. (15.19), k in Eq. (15.21) and s in Eq. (15.8) are the

same as those for the noise-free waveforms. The convergence indexes conv related to W
(4)
s,t , �2D

(
W ′′

s,t

)
and �2D

(
W

(4)
s,t

)

are calculated and plotted in Fig. 15.7. The values of t2 corresponding to δ in Eq. (15.17) using W
(4)
s,t , �2D

(
W ′′

s,t

)
and

�2D
(
W

(4)
s,t

)
are selected to be 2140µs, 1860µs, 2100µs, respectively. Compared with the values of t2 for the noise-

free waveforms, larger t2 values are required for the noise-contaminated waveforms. Associated auxiliary damage index δ̃

using W
(4)
s,t , �

2D
(
W ′′

s,t

)
and �2D

(
W

(4)
s,t

)
are calculated and plotted in Fig. 15.8a, b and c, respectively. In Fig. 15.8a, large δ̃

values are observed in the neighborhoods of the two damage areas, while smaller δ̃ values are observed beyond the damage

areas. Similar results can be observed in Fig. 15.8b and c. Besides, smaller values of δ̃ using �2D
(
W ′′

s,t

)
and �2D

(
W

(4)
s,t

)

beyond the damage areas are observed, compared with those using W
(4)
s,t . It can be seen that δ̃ using �2D

(
W

(4)
s,t

)
has the best

performance for damage identification. The damage index δ̃ using �2D
(
W

(4)
s,t

)
near the square and circular damage areas

are zoomed and shown in Fig. 15.8d and e, respectively. It can be seen that relatively large δ̃ values only exist within the
damage areas.
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Fig. 15.6 Auxiliary damage index δ̃ for the noise-free numerical propagating flexural waves based on (a) W
(4)
s,t (b) �2D

(
W ′′

s,t

)
, (c) �2D

(
W

(4)
s,t

)
,

(d) a zoomed-in view of the square damage area in (c) and (e) a zoomed-in view of the circular damage area in (c). Locations and extent of square
and circular damage areas are depicted by solid red lines
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Fig. 15.7 Convergence indexes for the noise-contaminated numerical propagating flexural waves based on (a) W
(4)
s,t (b) �2D

(
W ′′

s,t

)
and (c)

�2D
(
W

(4)
s,t

)

Effects of the scale parameter in CWT, i.e., s, on damage identification results using δ̃ are studied in noise-contaminated
propagating flexural waves. In this study, three other different s values are selected as 1, 3, and 4, respectively, to obtain δ̃

values using �2D
(
W

(4)
s,t

)
and corresponding results are shown in Fig. 15.9a through c, respectively. It can be seen that all

δ̃ associated with these four different s values, i.e., 1 through 4, can indicate the location and extent of the damage. When
increasing s from 1 to 2, smaller values of δ̃ beyond the damage areas are observed. However, when increasing s from 2 to 3
relatively large values of δ̃ beyond the damage areas are observed. The values of δ̃ beyond the damage areas become larger
when increasing s from 3 to 4. These observations indicate that the proposed method can identify the location and extent
of the damage with high accuracy, the proposed method has high robustness against high-amplitude measurement noise in
propagating flexural waves, and there exists an optimal s with which the location and extent of the damage can be identified
with δ̃, with whose values outside the damage areas are low.

15.4 Concluding Remarks

In this paper, a damage identification method is proposed for plate-like structures by extracting damage-induced local
anomalies in waveforms of propagating flexural waves. In the proposed method, CWT with the second-order Gaussian
function is used for calculating 2D-CPFW. Three types of local anomalies are intensified as the curvature of 2D-CPFW,
TE-CPFW and TE-C-CPFW based on the 2D-CPFW. A damage index is proposed to identify damage based on these three
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Fig. 15.8 Auxiliary damage index δ̃ for the noise-contaminated numerical propagating flexural waves based on (a) W
(4)
s,t (b) �2D

(
W ′′

s,t

)
, (c)

�2D
(
W

(4)
s,t

)
, (d) a zoomed-in view of the square damage area in (c) and (e) a zoomed-in view of the circular damage area in (c). Locations and

extent of square and circular damage areas are depicted by solid red lines
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Fig. 15.9 Auxiliary damage index δ̃ for the noise-contaminated numerical propagating flexural waves based on �2D
(
W

(4)
s,t

)
with (a) s = 1, (b)

s = 3 and (c) s = 4. Locations and extent of square and circular damage areas are depicted by solid red lines

types of local anomalies. When calculating the damage index, a convergence index is proposed to determine the number
of included waveforms. The effectiveness of the proposed method is numerically investigated. It is found that the proposed
method is accurate for identifying the location and extent of damage and robust against high-amplitude measurement noise.
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