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On the Dynamic Virtualization of a 3D-Printed Scaled Wind
Turbine Blade

Heorhi Brzhezinski, Silvia Vettori, Emilio Di Lorenzo, Bart Peeters, Eleni Chatzi, and Francesco Cosco

Abstract Innovative production techniques, such as 3D printing of metals, require attention both in the production and in
the post-production phase. In fact, such manufacturing processes introduce higher margins of uncertainty compared to more
canonical processes. As a consequence, they require an increased effort to succeed in delivering representations for the so-
called dynamic virtualization process. Virtualization encompasses the ensemble of activities that are aimed at formulating the
virtual model of a given structure and subsequently validating and updating this model in order to guarantee a realistic and
accurate response prediction in a broad range of operating conditions. This chapter explores the main challenges related to
the mentioned limitations, in the context of a down-scaled industrially relevant case study: a 3D-printed scaled titanium Wind
Turbine (WT) blade. The scaled blade has been the object of a complete virtualization process: from the design by means of
conventional WT blade tests, up to its “Digital-Twin” establishment, where we exploit state-of-the-art Virtual Sensing (VS)
techniques, due to their intrinsic capability of “enriching” the high-fidelity model’s predictions with information extracted
from test data.
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4.1 Introduction

The 3D printing process of metals introduces technological challenges, e.g., limitations to 3D-printed specimens dimensions.
For this reason, it is common practice to print the several sub-parts of the final product individually and then weld them
together. Weld beads create areas of structural properties discontinuity that are difficult to be modeled. Moreover, intrinsic
manufacturing process defects and thickness variations due to surface post-processing often arise. Canonical virtualization
techniques produce realistic estimates under static conditions. Within the dynamic domain, the punctual stiffness variation
caused by the mentioned limitations leads to large discrepancies between the “Digital Twin” and the physical structure.
A model updating process based on experimental data can be installed to fill this gap. However, data acquired during dynamic
tests derives from a few instrumented locations along the entire structure. The full-field response of the system can be
obtained through the use of Virtual Sensing (VS) techniques [1–6], i.e., methods that allow to estimate quantities of interest
by combining a limited set of measurements and a validated finite element (FE) model. Kalman-type filters are commonly
adopted for the purpose of VS. When joint input-state-response estimation is addressed, extensions of the standard Kalman
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filter (KF) such as the Augmented Kalman filter (AKF) [7] and the Dual Kalman filter (DKF) [8] can be exploited. Within
this work, the AKF [9] is tested on a 3D-printed scaled titanium Wind Turbine (WT) blade with the purpose of enriching
its “Digital Twin” response predictions and performing load identification. The paper starts from Sect. 4.2, which describes
the 3D-printed WT blade and the test campaign object of this work. The next section introduces the WT blade FE model
and overviews the carried out model updating activities. Section 4.4 describes the results of the input-response estimation
obtained via the AKF during the tests presented in Sect. 4.2.

4.2 3D-Printed Scaled Titanium WT Blade: Test Campaign

The case study analyzed in this chapter concerns a 3D-printed scaled titanium WT blade. The CAD model used to print the
titanium blade has been retrieved scaling down an existing larger CAD model shared by DTU Wind Energy in the framework
of the ReliaBlade research project. This CAD model is related to a 12.6m blade entirely designed and manufactured at DTU
Wind Energy. The entire 3D-printed specimen, manufactured by 3D Systems (Leuven, Belgium), comprises the scaled blade
and a flange that was designed to allow the blade clamping to a concrete block. Figure 4.1 shows the manufacturing process,
which consisted of the following steps:

• Four sub-parts of the entire structure have been 3D-printed.
• A stress relief heat treatment has been applied to the four sub-parts.
• The four sub-parts have been welded together.
• The plate has been removed using wire through Electrical Discharge Machining (EDM).
• A polishing process has been applied to the structure to obtain the final surface.

This section describes the setup adopted during the test campaign carried out at Siemens Digital Industries Software
(Leuven, Belgium) on the scaled blade, along with the series of tests performed with different types of excitation. Figure 4.2
shows the setup adopted during the measurements on the scaled WT blade. During all the hereby described tests, the WT
blade was clamped to a concrete block as depicted in detail in Fig. 4.5.

Fig. 4.1 3D-printed scaled titanium WT blade manufacturing process

Fig. 4.2 Experimental setup
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Fig. 4.3 Sensors’ setup. USGs are reported in blue, rosettes in orange, accelerometers in black, and inputs locations in red

Table 4.1 Experimental modal
frequencies and damping for the
titanium WT blade in
clamped-free conditions

Modes Frequency (Hz) Damping (%)

1 25.0 1.27

2 55.0 0.91

3 90.4 0.56

4 193.2 0.56

5 236.4 0.32

6 343.2 1.78

Fig. 4.4 Static load applied at the blade tip during pull and release tests

The entire setup includes 3 types of sensors: 4 uniaxial strain gauges (USGs), 10 rosettes, and 10 tri-axial accelerometers.
During the test campaign, a Simcenter SCADAS system and Simcenter Testlab software have been used for data acquisition.
The strain sensors are arranged in sections along the blade on both the top and bottom blade surfaces as shown in Fig. 4.3.
On the other hand, the accelerometers have been positioned only on the top surface.

Three types of tests have been performed according to the adopted excitation: impact testing using a modal hammer,
shaker testing, and the so-called pull and release tests. Figure 4.3 shows the locations of the impact and the shaker on the
structure. Data acquired during the impact test has been used to determine the scaled WT blade modes, which have been
extracted using Simcenter Polymax. Table 4.1 reports the resulting experimental frequencies and damping.

During shaker testing, constant frequency sine tests and continuous random tests up to 500 Hz were carried out. Finally,
as common practice for WT blades, pull and release tests were carried out. During this type of tests, the blade in clamped-
free boundary conditions (BCs) is pulled downward and then released for recording its free vibration response. As shown in
Fig. 4.4, during the hereby described test campaign, the static load has been applied by hanging a mass (known weight equal
to 1.5 kg) at the blade tip. The blade release has been reproduced by cutting the plastic tie used to hang the mass.
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Fig. 4.5 Scaled WT blade clamping system (left). FE model BCs (right)

Table 4.2 FE model parameter values before and after optimization

Spring’s stiffness (N/mm) Young’s modulus (Gpa) Poisson’s ratio (/) Density (kg/mm3)

Initial values 30,000 121 0.34 4.430 × 10−6

Final values 33,167.2 116.039 0.34208 4.873 × 10−6

4.3 3D-Printed Scaled Titanium WT Blade: FE Model Validation

The scaled WT blade FE model has been developed in Simcenter 3D starting from the CAD model used for 3D printing.
The mesh is made up of around 65,000 nodes and 33,804 six-sided solid elements. The initial isotropic material (Ti6Al4V)
properties have been defined according to the data sheet provided by the manufacturer. Figure 4.5 (left) shows the physical
BCs obtained by means of 2 bolts used to clamp the flange to the concrete block and a layer of glue. The described BCs have
been recreated in the FE model through two RBE2 connections at the holes where the bolts were placed and four springs.
In particular, the flange has been divided into four parts, each connected to a spring via a RBE2 connection. As shown in
Fig. 4.5 (right), the free ends of the springs have been fixed. An initial stiffness value of 30,000 N/mm was used for each
spring.

The numerical modes have been computed using NX Nastran SOL 103, and the frequency range 0–500 Hz has been
chosen for validation. Experimental tests in this range have revealed the 6 natural frequencies reported in Table 4.1. In
order to update the FE model, NX Nastran SOL 200 has been adopted in Simcenter 3D, and the experimental modes and
frequencies reported in Sect. 4.2 have been used as reference. The following parameters have been set to be adjusted by the
optimization: springs stiffness, isotropic material Young’s modulus, Poisson’s ratio, and density. Some of the ranges have
been imposed from the processing data sheet provided by the manufacturer of the WT blade. The others were kept below a
10% deviation. Table 4.2 reports the parameters initial and optimized values.

Figure 4.6 shows the Modal Assurance Criterion (MAC) diagram between the reference experimental modes and the
updated numerical modes. Table 4.3 reports the optimization results in terms of modal frequencies.

4.4 Joint Input-Response Estimation Through the AKF during Random and Pull
and Release Tests on the 3D-Printed Scaled WT Blade

This work exploits the AKF for simultaneously estimating the 3D-printed WT blade response and the load it was subjected
to during the shaker tests (continuous random excitation) and the pull and release tests described in Sect. 4.2. In order to
reduce the computational effort derived by the high dimensionality of the FE model, a Reduced Order Model (ROM) has
been built following the procedure described in [10–12]. The six normal modes reported in Fig. 4.6 have been used to build
the ROM, along with one residual attachment mode related to the unknown (for the filter) force [11, 12]. The attachment
mode has been computed as a static mode under a unitary input applied at the unknown excitation position. Therefore, two
different attachment modes have been used for the pull and release and the continuous random tests.
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Fig. 4.6 MAC between numerical and experimental mode shapes from hammer test

Table 4.3 Experimental and updated numerical frequencies for the titanium WT blade in clamped-free conditions

Modes Experimental frequency (Hz) Numerical frequency (Hz) Absolute error (Hz) Percentage error (%)

1 25.020 24.758 −0.262 −1.047

2 55.004 54.512 −0.492 −0.894

3 90.426 93.405 2.979 3.294

4 193.201 187.902 −5.299 −2.743

5 236.416 242.358 5.942 2.513

6 343.176 349.807 6.631 1.932

Fig. 4.7 Tests excitation points and “observed” locations for joint input-response estimation through the AKF

The AKF algorithm has been employed within this work to perform predictions basing on a set of measurements from
different types of sensors, i.e., strain and acceleration. To check the effectiveness of the filter, only a few sensors over the
entire set of responses acquired during tests were used as observations for the AKF. The remaining sensors data have been
used as reference to check for the validity of the estimated responses. Figure 4.7 shows the observations set adopted for
both the pull and release and the continuous random tests. In the framework of Kalman-type filters, model uncertainties and
measurement errors are taken into account by including, respectively, the process and the measurement noise terms within
the system representation. These are stationary mutually uncorrelated Gaussian noises with given associated covariance
matrices. For the hereby presented case study, the measurement noise covariance has been retrieved from the background
noise recorded by sensors during tests. The process noise covariance has been instead tuned by trial and error.

Figure 4.8 shows a comparison of the input time history estimated by the AKF (in magenta) and the actual input (in black)
applied to the system for both the pull and release and the random tests. During the random tests, the force applied by the
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Fig. 4.8 Pull and release excitation history (top). Continuous random excitation time history (bottom, left), detailed time history (bottom, center),
and PSD (bottom, right). Actual and predicted signals are, respectively, reported in black and magenta

Fig. 4.9 Pull and release time histories (left), detailed time histories (middle), PSD (right) of sensors uni TopSec3, TopSec4, TopSecE2
(respectively, from top to bottom)

shaker has been recorded by a force cell placed between the shaker and the structure. During pull and release tests instead,
the static input time history has been reconstructed from the known weight of the mass used to pull the blade. From Fig. 4.8,
it can be inferred that the AKF is able to estimate the input during both tests.

For what concerns the pull and release test, an estimate of the prediction error can be computed as the difference between
the actual static input and the mean value of the estimated input profile (before and after the blade release), which is equal to
1.32 × 103 mN. The static offset between the actual and the estimated input profiles before the blade release can be ascribed
to the assumption of punctual loading made to approximate the input location in the model adopted for the AKF. For what
concerns the continuous random test, the algorithm succeeds in estimating the correct input amplitude. On the other hand,
the AKF generates an input featuring a flatter PSD with respect to the measured signal. The latter is highly affected by the
blade resonances due to the specific BCs between the shaker and the structure. This behavior is difficult to be captured by
the filter. The estimated input root mean square error (RMSE) is equal to 4.5126 × 103 mN.

Response estimation results are reported in Fig. 4.9 (pull and release) and in Fig. 4.10 (continuous random) for 3
“unmeasured” locations (a USG, a rosette, and an accelerometer). These plots compare the measured (black), simulated
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Fig. 4.10 Continuous random time histories (left), detailed time histories (middle), PSD (right) of sensors uni TopSec3, TopSec4, TopSecE2
(respectively, from top to bottom)
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Fig. 4.11 Pull and release strain sensors RMS (left). Pull and release accelerometers RMS (right)

(gray), and estimated (magenta) signals in time and frequency domain. In order to demonstrate the filter performance, the
root mean square (RMS) trend over the entire set of sensors along the blade is reported in Figs. 4.11 (pull and release) and 4.12
(continuous random) for the measured (black), simulated (gray), and estimated (magenta) responses. Figures 4.9, 4.10, 4.11,
and 4.12 highlight the ability of the filter to correctly estimate the blade response, both in terms of strain and acceleration.
Moreover, it is shown how the filter enhances the simulated responses by coupling the FE model with a few physical
observations.
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Fig. 4.12 Continuous random strain sensors RMS (left). Continuous random accelerometers RMS (right)

4.5 Conclusions

This chapter reports on the dynamic virtualization process installed for a 3D-printed scaled titanium WT blade. The individual
steps of the process consisted in: (1) modeling the WT blade CAD model, (2) manufacturing the blade through an innovative
3D printing process, (3) building a FE model from the available CAD model, (4) testing the blade by means of conventional
WT blades testing procedures, (5) validating and updating the FE model using experimentally extracted modal parameters,
and (6) extending the information acquired during tests to the full-field response and simultaneously predicting the unknown
loads by means of the AKF. This work has proven the effectiveness of the AKF results for both random and pull and release
tests when a fusion of strain and acceleration responses is used. The next step could consist in applying other types of
Bayesian filters that allow to jointly estimate the system state and parameters, along with the unknown loads. These tools
could be used for estimating the defects due to the manufacturing process, e.g., the percentage of pores inside the artifact
due to 3D printing.
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