
Chapter 12
An Optimal Sensor Network Design Framework for Structural
Health Monitoring Using Value of Information

Mayank Chadha, Zhen Hu, Charles R. Farrar, and Michael D. Todd

Abstract A structural health monitoring (SHM) system is essentially an information-gathering mechanism. The information
accumulated via an SHM system is crucial in making appropriate maintenance decisions over the life cycle of the structure.
An SHM system is feasible if it leads to a greater expected reward (by making data and risk-informed decisions) than the
intrinsic cost (or investment risk) of the information-acquiring mechanism incurred over the lifespan of the structure. In
short, the value of information acquired through a feasible SHM system manifest into net positive expected cost savings over
the life cycle of the structure. Traditionally, the cost-benefit analysis of an SHM system is carried out through pre-posterior
decision analysis that helps one evaluate the benefit of an information-gathering mechanism using the expected value of
information (EVoI) metric. EVoI is a differential measure and can be mathematically expressed as a difference between the
expected reward and investment risk. Therefore, by definition, EVoI fails to capture the compounded savings over the life
cycle of the structure (since it quantifies absolute savings). Unlike EVoI, we quantify the economic advantage of installing an
SHM system for inference of the structural state by using a normalized expected-reward (benefit of using an SHM system)
to investment-risk (cost of SHM over the life cycle) ratio metric (also called a risk-adjusted reward in short) as the objective
function to quantify the value of information (VOI). We consider monitoring of a miter gate as the demonstration example and
focus on the inference of an unknown and uncertain state parameter(s) (i.e., damage from loss of contact between gate and
wall, the “gap”) from the acquired sensor data. This paper proposes a sensor optimization framework that maximizes the net
expected compounded savings achieved as a result of making SHM system-acquired data-informed life cycle management
decisions. We also inspect the impact of various risk intensities of decision-makers on the optimal sensor design.

Keywords Value of information · Bayesian optimization · Behavioral psychology · Structural health monitoring ·
Sensor design

12.1 Introduction

This paper briefly describes a sensor optimization framework with a target of maximizing the net savings as a consequence
of using an SHM system over the life cycle of the structure. Conventionally, the cost-benefit analysis of an SHM system
is carried out through pre-posterior decision analysis using the expected value of information (EVoI) metric (a differential
metric). We use expected value of information (EVoI) (a differential metric) and risk-adjusted reward (a normalized metric)
as an optimality criterion. Finally, the goal of this research is to obtain the optimal sensor network design that maximizes the
value of information over the life cycle of the structure.
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12.2 Value of Information Metric

Consider an SHM-based decision-making problem. Let the state of the structure at time t ∈ �T be defined by an uncertain
state-parameter vector denoted by �(t) with a realization θ (t) ∈ ��(t). The data acquired by the SHM system z ∈ �Z at time
t is defined by a random variable Xz(t), where xz(t) ∈ �Xz(t) denote an observed realization. The goal of an SHM system is
to recommend a maintenance strategy selected from a set of predefined choices �D = {d0, d1, . . . , dn}. For a risk profile of
the decision-maker parameterized by (γ , ξ ), let L(di, θ true; γ , ξ ) denote the consequence cost/regret/loss function that defines
the total perceived loss as a consequence of making the decision di when the true state of the structure is θ true(t) at time t
(see [1, 2]). To obtain the benefit of an SHM system in the design phase, we require the following:

1. We need a probabilistic state-parameter evolution model (see [2]). Let �(t) denote a random variable representing the
state parameter at a time instance t ∈ �T . The prior state-parameter evolution model is then quantified by f�(t)(θ (t)).

2. We need an inflation-adjusted cost function. The factor (r(t) + 1)t adjusts for the future inflation, where r(t) is the assumed
future monthly rate of inflation at time t in months. We consider four types of costs:

• Cost A: The inflation-adjusted consequence-cost of decision making at time t, denoted by
∼
L

(
dj , θtrue(t), t; γ, ξ

) =
L

(
dj , θtrue(t); γ, ξ

)
.(r(t) + 1)t . The inspection and maintenance decisions are usually carried out at discrete time

steps.
• Cost B and Cost C: The maintenance (cost B) and operation (cost C) cost of the SHM system, denoted byCM(t)= CM .

(r(t) + 1)t and CO(t) = CO. (r(t) + 1)t, respectively. Here, CM denotes the current estimated cost for one instance of
maintenance of the system, and CO denotes the currently estimated operation cost per month. We assume that the
maintenance is done periodically.

• Cost D: The cost of design and initial installation of an information gathering system C(z). We assume this to be an
initial cost and hence time-independent.

When new data/measurement xz(t) ∈ �Xz(t)is obtained, the state of the structure is updated by obtaining the posterior
distribution of the state parameter, denoted by f�|Xz (θ |xz), using Bayesian inference (see [3]). The updated posterior
state-parameter evolution model, denoted by f�(t)|Xz(t) (θ(t)|xz(t)), is obtained by using Bayesian inference utilizing the
measurement data simulated by a finite element model that is assumed to be the ground truth.

The EVoI of the design z for a risk profile (γ , ξ ) at a given time instance is defined as:

EVoI (z, t; γ, ξ) = Csave (z; γ, ξ) − C(z) (12.1a)

Csave (z, t; γ, ξ) = EXz(t)

[
min
di

∼
L

(
dj , θtrue(t), t; γ, ξ

)
]

− min
di

E�(t)

[∼
L

(
dj , θtrue(t), t; γ, ξ

)
]

(12.1b)

Here, Csave(z, t; γ , ξ ) gives the expected cost saved by making a better decision based on newly acquired measurements
through the mechanism z at time t for the risk profile (γ , ξ ). The EVoI over the life cycle for an SHM system z for the risk
profile (γ , ξ ), denoted by EVoILC(z; γ , ξ ), and the risk-adjusted reward, denoted by λLC(z; γ , ξ ) is then defined as (derived
in Chadha et al. [3]):

EVoILC (z; γ, ξ) = CsaveLC (z; γ, ξ) − (C(z) + CM&O(z)) (12.2a)

λLC (z; γ, ξ) = CsaveLC (z; γ, ξ)

(C(z) + CM&O(z))
(12.2b)

The quantity CsaveLC(z; γ , ξ ) denotes the expected savings over the life cycle of the structure as a consequence of making
data-informed decision-making for the risk profile (γ , ξ ), such that:
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CsaveLC (z; γ, ξ) =
NA∑

n=1

(
min
di

E�(tAn)

[
L̃

(
dj , θtrue

(
tAn

)
, tAn; γ, ξ

)])

−
NA∑

n=1

(
EXz(tAn)

[
min
di

E�(tAn)|Xz(tAn)

[
L̃

(
dj , θtrue

(
tAn

)
, tAn; γ, ξ

)]]) (12.3)

An SHM system is feasible if it satisfies either of these equivalent conditions:

EVoILC(z) ≥ 0, or λLC(z) ≥ 1. (12.4)

Among many SHM system designs, optimal designs zEVoI and zλ are obtained as:

zEVoI = arg max
z∈�Z

EVoILC(z), and zλ = arg max
z∈�Z

λLC(z) (12.5)

We obtain the optimal sensor design using EVoILC(z) and λLC(z) as the objective functional by deploying the Bayesian
optimization algorithm described in Yang et al. [3].

12.3 Application to Miter Gates

Let the state of the miter gate be completely defined by the loss of boundary contact (or a “gap”) between the gate and
the concrete wall at the bottom of the gate, such that θ ∈ �� = [θmin = 0, θmax = 180 in]. Consider a binary decision-
space �D = {d0, d1}, such that d0 is a decision to not do specified maintenance and d1 is a decision to perform some
specified maintenance. Figure 12.1a below shows the optimal sensor network design zEVoI obtained using Eq. (12.5) and
the optimization algorithm delineated in Yang et al. [3]. It was observed that the Bayesian algorithm picked two sensors
close to the gap (encircled with red) leading to maximum EVoILC (zEVoI). However, for comparison purposes, we consider
the optimal design zEVoI and the random design zrandom to have five sensors. This shows that effectively, the optimal design
would consist of a smaller number of sensors.

We observe that the optimal sensor design leads to a higher expected value of information at an intermediate time period
(5–30 months). Beyond this time period, the structural damage is high enough that a conservative decision-maker (the
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Fig. 12.1 Miter gate and the sensor network design considering conservative decision profile. (a) Optimal sensor design zEVoI. (b) Random design
zrandom
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Fig. 12.2 Comparison of EVoI(z, t; γ , ξ ) for optimal and random design at various time instances

considered profile for the simulation) would recommend maintenance be carried out irrespective of the SHM design used to
obtain the measurements. Therefore, for higher damage levels, decisions obtained using optimal design and random design
are the same. The EVoI(z, t; γ , ξ ) is not smooth in Fig. 12.2 because lower particle numbers were used for Bayesian inference
using the particle filter technique. This was done to reduce computational costs.

12.4 Conclusions

This paper briefly details the mathematical formulation behind a sensor optimization framework that aims at maximizing the
net cost saving over the life cycle of the structure. The idea targets the core of an SHM system and attempts to come up with
the most optimal data acquisition system design. This is currently ongoing research.
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