
Chapter 1
On Model Validation and Bifurcating Systems: An Experimental
Case Study

Keith Worden, David J. Wagg, and Malcolm Scott

Abstract This chapter demonstrates some of the problems that can arise when validating models of nonlinear bifurcating
systems and the approaches that can avoid them. Validation is the process of determining the extent to which a model
accurately represents the structure or system of interest. Additional care needs to be taken when attempting to validate
models of nonlinear systems because of bifurcations that may occur. These phenomena present a difficulty for validation
because if a model does not precisely capture the bifurcation points, then the model’s predictions could be very inaccurate,
even if the model is (parametrically) very close to the real system. This situation could lead to a good model being dismissed
if data generated close to a bifurcation point were used to validate it. In this chapter, experimental data were gathered from a
three-storey shear building structure with a harsh nonlinearity between the top two floors, and bifurcations were observed in
the structural response. Two models are constructed here, with parameters estimated using Bayesian system identification: a
linear model and a nonlinear model. Selected features and metrics were then used to compare the model predictions to the test
data. The results show that an appropriate model could be rejected if an inappropriate validation strategy is employed, purely
as a result of slightly misplaced bifurcations. It is demonstrated that discrimination can be improved by taking modelling
uncertainties into account as part of the validation process.

Keywords Validation and verification · Nonlinear systems · Bifurcations · Bayesian system identification

1.1 Introduction

The purpose of this chapter is to discuss some issues associated with the validation of computational models of nonlinear
systems: in particular, systems that bifurcate. It is a very late follow-up to the paper [1], which discussed some of the issues
in the context of a single-degree-of-freedom (SDOF) system. In this chapter, results will be presented for more realistic
(MDOF) nonlinear systems and will address some of the issues involved in identifying and validating such systems. In this
chapter, the definition of model validation is taken from [2]: “Validation is the process of determining the degree to which a
model is an accurate representation of the real world from the perspective of the intended uses of the model.” The process of
validation—as a baseline—typically involves comparing model simulations to experimental data; this can be done directly, or
features can be extracted from the data and compared. Model uncertainties must also be taken into account during validation.
A key point in the definition above is that relating to “intended use” of the model. While complete validation might be
theoretically desirable, i.e., one establishes that the model provides a perfect description of physical reality, this is likely
to be impossible. In practice, one would typically be satisfied by showing that the model is effective over a given set of
circumstances and in making a restricted set of possible predictions over that set.

The framework for model validation for linear systems is arguably in a fairly healthy state; this is partly because of
the “smoothness” of linear systems; if the parameters of a linear system model are perturbed slightly, the perturbed model
predictions will only depart slightly from the predictions of the original model; there is continuity in the response, as a
function of parameters. This state of affairs will also hold for weakly nonlinear systems; however, it will fail for nonlinear
systems that bifurcate [3]. Such systems may change their output responses drastically, given even small changes in their
parameters. Bifurcations can occur in many different forms, but one of the most important types in structural dynamics are
the jump phenomena observed during experimental tests when a sine-wave excitation is varied in its frequency. The situation
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Fig. 1.1 Frequency response of the harmonically forced Duffing oscillator

Fig. 1.2 FRFs for Duffing systems with slightly different k3 parameters

is summed up quite nicely in Fig. 1.1, which expresses the amplitude response of an SDOF Duffing oscillator system [3],

mÿ + cẏ + ky + k3y
3 = x(t). (1.1)

As the excitation x(t) = X cos(ωt) experiences a smooth change in the frequency ω, there is a smooth increase in the
response amplitude. If X is small, such that the system has a nominally linear behaviour, the response will reach a peak
(resonance) and then decline smoothly with further frequency increase. If, however, X is large, at some frequency ωhigh, the
amplitude will drop sharply from its high value to a low value (point B in the figure drops to point D). If the frequency is
swept down from high values, a jump up will occur at some frequency ωlow.

A common approach to model validation is to give a quantified measure of how accurate the predictions made by the
model will be, taking into account all possible sources of uncertainty [4]. Such sources include uncertainties in the excitation
parameters or in the parameters of the model, if it has been identified from data. Bifurcations are clearly an issue here.
Consider Fig. 1.2; this shows the range of jump frequencies obtained if the nonlinear stiffness, k3 in Duffing’s equation,
is varied from 4.75 × 109 to 5.25 × 109. Clearly, a small error in this parameter, if identified from data, could make the
difference between a small amplitude prediction and a large one.

The issue for validation is this: suppose that one has identified a very good model from data. Furthermore, suppose that
one is attempting to validate the model by comparing its predictions from measured data, using an error metric like the
normalised mean-square error (NMSE), defined by
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J (θ) = 100

Nσ 2
y

N∑

i=1

(ÿi − ˆ̈yi(θ))2, (1.2)

where the ÿi are measured samples from an acceleration time series, and ˆ̈yi(θ) are the corresponding predictions from the
model; θ are the model parameters and N response points are sampled and have variance σ 2

y . (With the normalisation here,
an NMSE value of 5% can be considered to indicate a good model, while a value of 1% indicates excellence [3]). If the
model parameters are an arbitrarily small value below the “true” parameters, a sine excitation at the “wrong” frequency will
elicit a very large difference in the responses, and one might be inclined to reject a good model.

The original paper [1] made a number of observations on the effects of bifurcation on model validation and suggested a
number of comparison features that might be less sensitive to small errors in model parameters. However, the discussion was
limited to SDOF systems and did not make contact with reality in a number of respects. The objective of the current paper
is to take the discussion a little further by considering MDOF systems and actually comparing identified model predictions
with reality, using a real experimental structure.

1.2 Experimental Case Study

In order to discuss some of the issues referred to earlier, data were acquired from a laboratory structure; this was a model of
a three-storey shear building, with substantial masses representing the floors. The mass of the columns could be neglected
in comparison to the floors, so the structure had effectively three DOFs. In fact, the structure was heavily influenced by
the structure discussed in [5], which was developed at Los Alamos National Laboratories. That structure was affectionately
known as the “bookshelf” structure and will be referred to as such here. The main difference between the structure here and
the LANL original is that the original was mounted on linear bearings and excited at the base, whereas here the base of the
structure is fixed to a testing table and forcing is applied at the first storey using an electrodynamic shaker. A schematic of
the new bookshelf is given in Fig. 1.3.

Each “shelf” of the bookshelf rig is made from a solid rectilinear aluminium block of dimensions 350 × 255 × 25mm
and has a mass of approximately 6.4 kg. At each corner, the shelves are connected to the upright beams using a block and
four bolts. A column is bolted to the underside of the top floor, and a motion-limiting constraint, referred to here as the

Fig. 1.3 Schematic of “bookshelf” rig
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Table 1.1 Excitation frequencies and amplitudes of data

Excitation Excitation Excitation

frequency Amplitude frequency Amplitude frequency Amplitude

(Hz) (N) (Hz) (N) (Hz) (N)

17 156 28 229 53 94

17.5 154 32 311 55 128

18 138 36 203 57 195

18.5 120 40 208 60 155

19 82 44 151 66 257

19.5 54 46 126 67 258

19.7 96 47 102 70 249

20 150 47.5 82 72 203

20.5 168 48 80 73 221

21 170 48.5 77 74 189

21.5 172 51.5 82 75 168

24 269 52 89

“bumper,” is bolted to the top of the second floor. The position of the bumper can be moved in order to adjust the gap d

between the column and the bumper. The system responses were measured using accelerometers attached to each floor/shelf.
Both data acquisition and shaker control were accomplished using an LMS SCADAS-3 interface connected to a PC running
LMS Test.Lab software.

1.2.1 Test Sequence

Two groups of data were gathered, each consisting of 35 data sets generated using periodic forcing between 17 and 75Hz;
this frequency range contains the first two natural frequencies of the structure. Higher frequencies were not considered
because the bumper–column impacts caused the results to become very noisy. The test frequencies were concentrated more
in regions where preliminary tests showed more nonlinear phenomena. Some additional measurements were made to give
a more accurate picture of the frequency response and to locate bifurcation (jump) frequencies. The first group of data was
taken with the gap between the bumper and column too far apart for them to engage and is referred to here as the linear
data. Linearity of the system in this case was confirmed using reciprocity checks and noting the absence of any response
harmonics. The second group of data was gathered with the gap d set to approximately 0.5mm and is referred to here as the
nonlinear data. The excitation amplitudes were adjusted so that the response amplitudes for each data set were at a similar
level; this was done for three reasons: (1) to ensure that the bumper engaged for the nonlinear data; (2) to ensure that the
measurement noise was small compared to the measured response; and (3) to ensure that the response amplitudes were not
big enough to compromise the linearity of system when the bumper did not engage. The forcing amplitudes for the nonlinear
data are shown in Table 1.1; similar amplitudes were used for the linear data.

Sinusoidal excitation was chosen here as it is known to generally produce the strongest manifestation of nonlinear
phenomena. A good approximation to sinusoidal forcing was fairly simple to achieve for the structure in its linear state.
However, when the bumper engaged, the harsh nonlinearity made controlling the input force rather difficult. The nonlinear
experimental results presented below resulted from periodic forcing of a similar nature to that shown in Fig. 1.4. The force
signal contains harmonics at multiples of the forcing frequency and the natural frequencies of the system. This pollution does
not pose a problem from a model validation point of view because the measured forcing from the test data could be used as
an input to a model when generating features. Furthermore, despite the non-sinusoidal forcing, multiple bifurcations were
still observed in the test data.

1.2.2 Response Data

For many of the excitation frequencies, the time histories of the linear and nonlinear data look very different; an example
of this can be seen in the plot in Fig. 1.5 that shows the second floor response when excited at 44Hz. The linear system
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Fig. 1.4 Example of force signal applied to the bookshelf structure rig: (a) time history; (b) spectral density

Fig. 1.5 Acceleration time
histories at 44Hz, linear and
nonlinear data

response is close to sinusoidal, whereas the nonlinear response is very asymmetric, showing a strong second harmonic. Plots
of frequency response values (acceleration amplitude divided by forcing amplitude) for the linear and nonlinear data are
shown in Fig. 1.6. For non-harmonic responses, the amplitude here is taken as half of the peak to peak distance. When in its
linear state, the structure has its first two natural frequencies at around 19.3 and 49.5Hz; in its nonlinear state, the maximum
response values were seen at 19.5 and 51.5Hz. At the second resonance, the nonlinear data shows a “bending” of the peak
that is typical of dynamic systems with a hardening stiffness [3]. Figure 1.6 also shows a sharp drop after the second peak
of the nonlinear response; this is a result of a saddle-node “jump” bifurcation as discussed in the introduction here. Further
tests were made to pinpoint bifurcation frequencies; as expected, these were sensitive to forcing amplitude. At forcing levels
of 115, 130, and 150N, the response amplitude jumps took place at 53.558, 54.557, and 55.065Hz, respectively. A nice
example of a jump can be seen in Fig. 1.7, which shows the acceleration time histories at 55.065 and 55.066Hz at 150N
forcing. If the rig is excited very close to one of these bifurcation frequencies, its response has two possible stable amplitudes.
By perturbing the system, it was possible to switch the response between them. Briefly resting a hand on the top floor caused
it to move from the high-to-low-amplitude response; it could be returned to the high-amplitude response by giving the top
floor a sharp tap.

At periodic excitations between 65 and 75Hz, the nonlinear data shows subharmonic oscillations, as in Fig. 1.8, which
shows the acceleration time history when excited at 68Hz. It is likely that these are as a result of period-doubling bifurcations,
but constructing bifurcation diagrams for the test data is problematic because of the measurement noise and stiffness coupling
effects.
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Fig. 1.6 Plot showing response
of the second floor to periodic
forcing, linear and nonlinear data

Fig. 1.7 Second floor
acceleration time histories, when
excited at 55.065 and 55.066Hz

Fig. 1.8 Second floor
acceleration when excited at
68Hz

1.3 Model Development and Parameter Estimation

1.3.1 Equations of Motion

For the purposes of illustrating validation strategies, two models of the bookshelf rig have been created here: a linear model
and a nonlinear model. These differ only in that the nonlinear model accounts for the bumper mechanism. In each case, the
rig is modelled as a lumped-mass, three-degree-of-freedom system. For the linear model, it is assumed that there is a linear
stiffness and damping between each floor, giving equations of motion,
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ÿ1 = (Fs − k1y1 − k2(y1 − y2) − c1ẏ1 − c2(ẏ1 − ẏ2))/m1

ÿ2 = (−k2(y2 − y3) − k3(y2 − y3) − c2(ẏ1 − ẏ2) − c3(ẏ2 − ẏ3))/m2

ÿ3 = (−k3(y3 − y2) − c3(ẏ2 − ẏ3))/m3,

(1.3)

where yi , ki , ci , andmi are, respectively, the floor displacements, stiffness coefficients, damping coefficients, and floor masses
for i = {1, 2, 3} (Fig. 1.3); overdots denote differentiation with respect to time. For the nonlinear model, it is assumed that
there is an additional linear stiffness between the top two floors, when the bumper is in contact; the equations of motion
become

ÿ1 = (Fs − k1y1 − k2(y1 − y2) − c1ẏ1 − c2(ẏ1 − ẏ2))/m1

ÿ2 = (−k2(y2 − y3) − k3(y2 − y3) − Fc − c2(ẏ1 − ẏ2) − c3(ẏ2 − ẏ3))/m2

ÿ3 = (−k3(y3 − y2) − c3(ẏ2 − ẏ3))/m3,

(1.4)

where

Fc =
{
0 if (y3 − y2) < d

kc(y2 − y3 + d) if (y3 − y2) ≥ d
(1.5)

with kc the additional linear stiffness from the bumper and d the clearance between the bumper and column when the
structure is at rest. Clearly, the effects of the bumper–column interaction are considerably more complicated than a simple
bilinear stiffness; however, these are difficult to model with a simple lumped-mass system. The bilinear model was chosen
as a baseline, as such systems are still capable of producing the significant nonlinear phenomena observed in the test data:
amplitude jumps, superharmonics, and subharmonics [3].

The responses here were simulated using a fourth-order Runge–Kutta scheme with a timestep of 4 × 10−5. The short
sampling interval was necessary because of the discontinuous nature of the nonlinearity. The simulation allowed the forcing
to be taken from actual measurements on the rig, as well as using sine-wave and random excitation. Typically, the initial 150
forcing cycles were discarded to remove transient effects.

Some preliminary results on model validation for this structure were presented in [6].

1.3.2 Parameter Estimation

The parameter estimation problem here is quite demanding; there are 11 parameters involved, and one—the clearance d—
enters the equations in a nonlinear fashion. Two algorithms were applied here in order to produce the final estimates. In the
first step, the self-adaptive differential evolution (SADE) algorithm was used [7]. SADE has proved to be a powerful choice in
previous work for models that are nonlinear in the parameters and can operate directly on the measured accelerations without
the need to integrate to velocity and displacement [8]. Although SADE can estimate confidence intervals for parameters [9],
it assumes they have Gaussian distributions, which may be misleading for nonlinear systems. To better characterise the
uncertainty in the parameters, a second identification step was applied—a Bayesian approach [10], with the SADE algorithm
providing the initial parameter estimates. In this case, a vanilla Metropolis–Hastings (MH) algorithm was used. The Bayesian
approach allows sampling from the actual parameter distributions, so that histograms or density estimates can be computed
and displayed. Both of these algorithms, SADE and Bayesian ID, have been applied effectively on variants of the bookshelf
structure in the past [11, 12].

In the first exercise here, a linear baseline model was identified using data acquired with the structure in its nonlinear
state. As both SADE and the MH algorithm are stochastic algorithms, ten runs were carried out for each algorithm, and the
results with lowest cost were selected. The training data were composed of ten sets of response data generated by excitation
frequencies between 18 and 60Hz with 150 cycles per frequency; in each case, the NMSE and parameters were averaged
to give the final result. In the best run, SADE gave an acceptable NMSE of 5.4%. The MH algorithm was then run using
the SADE parameter estimates as initial values; a Gaussian proposal distribution was used with variances set at 2% of
the initial estimates. The priors on the parameters were taken as uniform, with bounds one order of magnitude below and
above the SADE estimates. A burn-in period of 5000 iterations was used, after which 30,000 iterations were required for
the algorithm to converge on a stationary distribution. With the MH step, the average NMSE between the linear model and
nonlinear training data improved slightly to 5.2%. The results of the parameter estimation, of both the SADE and MH steps,
are reported in Table 1.2.
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Table 1.2 Linear model parameter values found using SADE and the MH algorithm

Parameter SADE estimate MH—mean MH—standard deviation

m1 6.4 kg 6.89 kg 0.402 kg

m2 6.64 kg 6.67 kg 0.39 kg

m3 6.26 kg 6.08 kg 0.355 kg

k1 4.32 × 105 N/m 4.29 × 105 N/m 0.229 × 105 N/m

k2 6.39 × 105 N/m 6.28 × 105 N/m 0.357 × 105 N/m

k3 3.99 × 105 N/m 3.57 × 105 N/m 0.145 × 105 N/m

c1 53.0Ns/m 76.8Ns/m 8.30Ns/m

c2 99.2Ns/m 118Ns/m 8.76Ns/m

c3 6.2Ns/m 5.19Ns/m 0.429Ns/m

Table 1.3 Nonlinear model parameter values found using SADE and the MH algorithm

Parameter SADE estimate MH—mean MH—standard deviation

m1 6.69 kg 6.76 kg 0.412 kg

m2 6.65 kg 6.63 kg 0.401 kg

m3 6.26 kg 6.17 kg 0.395 kg

k1 4.36 × 105 N/m 4.28 × 105 N/m 0.260 × 105 N/m

k2 6.34 × 105 N/m 6.38 × 105 N/m 0.346 × 105 N/m

k3 3.56 × 105 N/m 3.58 × 105 N/m 0.157 × 105 N/m

c1 78.0Ns/m 79.0Ns/m 7.37Ns/m

c2 110.2Ns/m 119.1Ns/m 8.62Ns/m

c3 6.9Ns/m 5.12Ns/m 0.463Ns/m

kc 5.06 × 105 N/m 4.83 × 105 N/m 0.384 × 105 N/m

d (mm) 0.480 0.491 0.0358

The second exercise here was to estimate parameters for the nonlinear model from the nonlinear structure. In this case, a
three-stage process was used because the MH algorithm failed to work without good initial estimates, but SADE struggled
to produce good estimates when all 11 parameters were included. In the first stage, parameters were estimated for the linear
model with the structure in its linear state. In the second stage, the nonlinear model was estimated with the nonlinear data,
with the mass and stiffness estimates held at the values from the previous stage; this produced estimates of kc and d and
refined the damping estimates. With this procedure, the first stage gave an NMSE of 3.0% for the linear model and 4.3%,
which were considered acceptable. Using the SADE estimates as initial estimates, as before, the MH algorithm was then
run, with the same settings as used previously. The MH run reduced the NMSE to 3.7%, averaged over the three floors. The
parameters from these algorithms are given in Table 1.3. Apart from the low NMSE values, it is reassuring that the mass
estimates are all close to the calculated mass of the floor blocks (6.4 kg), with m3 slightly lower as it has less column mass
entrained. The parameter histograms from MH are presented in Fig. 1.9; note that some of these appear quite non-Gaussian.

1.4 Validation Features and Metrics for Nonlinear Systems

In structural dynamics applications, a feature is a subset of data extracted from the raw data of a dynamic response, which
can be used to compare experimental data to a model output. A metric represents a quantitative evaluation of the similarity
between recorded and predicted features. Described below are a selection of features and the metrics used in the following
sections. The features are time histories, FRFs, and bifurcation points, and the metrics are NMSEs and t-statistics. Only
features appropriate to periodically excited systems are considered here. A good discussion of features for validating models
of randomly excited systems is given in [5].

The first feature considered is the system response time history itself, typically either displacement, velocity, or
acceleration. Acceleration is the most commonly used as it is arguably the easiest to measure. A common metric used
for comparing time histories is the NMSE defined in Eq. (1.2). The advantages of comparing time series for model validation
are that they are information rich; disadvantages are that they are unlikely to be the “quantity of interest” for the intended use
of the model, the model might do a good job of predicting important aspects of system behaviour but still have a poor NMSE
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Fig. 1.9 Histograms of the nonlinear parameter values generated by the MH algorithm

between time histories, and it is difficult to take uncertainties into account. Furthermore, as discussed in [1], the NMSE has
problems with systems that are sensitive to initial conditions.

Frequency response functions (FRFs) are options for validation features; these are straightforwardly estimated for random
excitation or swept-sines. However, care is needed for nonlinear systems, as different excitations produce different FRF
estimates, and an FRF estimated by random excitation may not represent well the behaviour of the system with harmonic
forcing [3]. FRFs for swept-sine excitation of nonlinear structures can be challenging to obtain because precise control of
the input waveform is needed. FRFs can be compared in the same way as time histories, using an NMSE as the metric.

While features and metrics can be used in a deterministic fashion for validation, it is much better to account for
uncertainties. If parameter uncertainties can be propagated to give response value probability distributions, appropriate
metrics exist for comparing these [5]. (As discussed in [1], FRFs and probability densities can be features that are insensitive
to initial conditions.) A good discussion on statistical tests for validation metrics is given in [13]. Hypothesis tests for
validation usually require an assumption about the distribution of interest; often they are taken to be Gaussian. In the Gaussian
case, a simple measure of discrepancy is the t-statistic,

t = |r − r|
s

, (1.6)
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where r is the measured feature and r and s are the sample mean and standard deviation of the predicted feature distribution.
If the response distribution is not Gaussian, it may be possible to make a transformation to bring it closer before computing
the t-statistic. The Box–Cox transformation is a simple transformation used to remove skewness from distributions [14], as
follows:

rλ = λr − 1

λ
, (1.7)

where λ is a constant that is chosen to minimise the skewness of the transformed distribution.
For nonlinear systems, a good approach is to select features that directly address that nonlinearity; in the current context,

a good feature would be the jump or frequency bifurcation. It is clearly important to know whether the structure and model
will jump at different frequencies.

The following section will describe the application of these features and metrics in validating the models identified for
the experimental bookshelf structure.

1.5 Validation

This section presents the results of validating the linear and nonlinear models of the bookshelf structure using three different
features: time histories, FRFs, and bifurcation frequencies. For each feature, deterministic and non-deterministic metrics
were considered, the latter taking uncertainty into account. Twenty-five data sets, gathered using periodic forcing between
17 and 75Hz, were used for model validation. These were separate from the training data used to estimate the parameters.
In the analysis, the uncertainty in the parameter estimates from the MH algorithm was propagated into the model outputs.

The Markov chains from the algorithm generated 30,000 samples of each parameter. First of all, a Maximin Latin
Hypercube design was used to select 1000 subsamples that covered the parameter space. For each parameter, the model
was run for 300 forcing periods with the measured shaker forces as excitation, and the first 150 cycles were discarded
to eliminate transients. For each simulation, the NMSE was calculated, giving a distribution over the runs; the frequency
response amplitude was also calculated for each set of response data. These distributions were used to calculate the non-
deterministic validation metrics in the following two sections.

1.5.1 Time Histories

The deterministic validation metric used here was the NMSE between modelled and measured acceleration time histories.
In each model run, the measured force from the shaker was used as input. Model parameter values were taken as the mean
of the distributions estimated in Sect. 1.3.2. The average NMSEs for the linear and nonlinear model were 17% and 35%,
respectively. These might be considered high, but it should be noted that this is the first time the models have encountered
validation data. At first sight, it appears that the linear model is performing better; however, a closer look is needed. In fact,
the high average for the nonlinear models is because of three data sets generating very high errors; at 52 and 53Hz, the
nonlinear model gives errors of 200% and 500%, respectively. These high values are a result of the model misplacing the
bifurcation frequency and predicting high response amplitudes when the true values are low (and vice versa). This highlights
a disadvantage of using time-series features for models of bifurcating systems; the model is penalised for replicating the
bifurcation behaviour of the system unless it does so near-perfectly. After removing the three “outliers,” the NMSEs are
plotted as shown in Fig. 1.10, from which it is clear that the nonlinear model generally produces better predictions.

Figure 1.11 shows the modelled and measured time histories of the second floor acceleration when the structure is excited
at 21Hz. While the nonlinear model reproduces the harmonic content seen in the real system, it actually generates an error
of 6% compared to the 3% of the linear model. This effect is because of the incorrect phase of the harmonics; this is another
example of the model being penalised for replicating the nonlinear behaviour of the system unless it does so extremely
closely.

When the parameter uncertainty is propagated, distributions of the NMSEs result, as shown in Fig. 1.12. The plot shows
the maximum and minimum values for each frequency. As before, the errors are dominated by some very high values;
however, in the mean (with outliers removed), the nonlinear model performs better than the linear one. At some frequencies
close to the bifurcation point, the NMSE distributions were bimodal depending on whether they correctly predicted the upper
or lower branch for the amplitude.
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Fig. 1.10 NMSE values below 30% for nonlinear training and validation data, linear and nonlinear models

Fig. 1.11 Modelled and measured acceleration when excited at 21Hz, linear and nonlinear models

Fig. 1.12 Plot showing maximum and minimum NMSE values for each forcing frequency
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1.5.2 Frequency Response

Plots of the modelled and measured frequency responses (acceleration amplitude divided by forcing amplitude) for the
second floor are shown in Fig. 1.13. The model frequency responses were generated using time histories simulated with
the model parameters at their expected values. In this case, the linear model appears to outperform the nonlinear one; the
respective errors are 30% are 60%. The discrepancy is the result of the nonlinear model incorrectly predicting the lower
amplitude beyond 52Hz.

The model parameter uncertainty was propagated once more, to give distributions for the frequency response values.
Many of these distributions looked Gaussian “by eye,” generally those away from the second natural frequency. Some of the
distributions showed marked skewness; an example for the 18Hz frequency is given in Fig. 1.14. This figure also shows that
the mode of the nonlinear model distribution is at the measured value from the structure, while the linear model is clearly
biased. At frequencies close to the second natural frequency, the response distributions for the nonlinear model became
bimodal again because the model incorrectly predicted the amplitude branch.

A plot showing the uncertainty in the modelled frequency responses of the second floor, alongside the test data, is given
in Fig. 1.15. The shaded area is bounded by the maximum and minimum values of the predicted response distributions.
The bimodal nature of the distributions for the nonlinear model can be seen in the figure between 51.5 and 55Hz. For both
models, the majority of the measured response values is within the bounds of the model distributions; however, the nonlinear
model has a single exception at 52Hz, while the linear model has four exceptions at 53, 55, 57, and 72Hz.

In order to quantify the distance between the measured values and the model distributions, the response value distributions
were transformed using Box–Cox transformations and the t-statistics were computed in each case (see Sect. 1.4). In almost
every case, the t-statistic was lower for the nonlinear model than for the linear, with the main exceptions occurring around

Fig. 1.13 Modelled and measured responses of Floor 2 to periodic forcing at different frequencies, nonlinear and linear models

Fig. 1.14 Histogram showing predicted response value of second floor at 18Hz, nonlinear and linear models. Predicted response value
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Fig. 1.15 Uncertainty of the modelled response of second floor to periodic forcing at different frequencies. Excitation frequency (Hz) t-statistic,
nonlinear model t-statistic, linear model

Fig. 1.16 Modelled response
close to bifurcation point:
excitation amplitude 115N

the bifurcation frequency where the response distributions for the nonlinear model were bimodal. The mean values of the
t-scores over all the frequencies tested were 1.30 for the nonlinear model and 1.66 for the linear model. Care must be
taken with the t-statistic, as it can favour models with higher uncertainty (because of the variance in its denominator), and
this is not necessarily what is needed. In this case, the parameter distributions had comparable variances, but this uncertainty
propagated through to narrower response distributions for the nonlinear model, so the t-statistics are actually underestimating
the nonlinear model performance.

1.5.3 Bifurcation Behaviour

In the tests, the bookshelf rig showed two types of bifurcations: a saddle-node bifurcation leading to a jump in amplitude
just above the second natural frequency and period-doubling bifurcations leading to subharmonics between 65 and 75Hz.
Linear systems do not bifurcate, so the linear model cannot replicate this behaviour. A comparison between the bifurcation
behaviours of the bookshelf rig and the nonlinear model is given below.

Data were gathered to show the frequencies at which amplitude jumps occurred at two different forcing amplitudes: 115
and 150N. For each amplitude, a time history was recorded just above and below the bifurcation point. These time histories
are referred to here as the bifurcation data. At 115 and 130N, with parameters set at their expected values, the model shows
amplitude jumps at similar points to those seen in the test data, as seen in Fig. 1.16. This plot replicates a stepped-sine test but
uses measured forces from the rig at the bifurcation point, rather than sine waves. The frequency is varied by changing the
timestep between points. At 150N, the model did not jump but did show a discontinuity in its transition to the low-amplitude
response, shown in Fig. 1.17. One should recall that this is a bilinear system rather than one of Duffing type [3].
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Fig. 1.17 Modelled response close to bifurcation point: excitation amplitude 150N

Fig. 1.18 Histogram showing
model uncertainty in the
predicted bifurcation frequency:
forcing amplitude 115N

Fig. 1.19 Histogram showing
model uncertainty in the
predicted bifurcation frequency:
forcing amplitude 150N

As before, the uncertainty in the predicted bifurcation frequency was characterised by propagating the parameter
uncertainty through the model. The same MLH design of 1000 parameter values was used as in the previous section, and the
bifurcation point was found by bracketing it between converging pairs of upper/lower frequencies. The resulting distributions
for amplitudes of 115 and 150N are shown in Figs. 1.18 and 1.19.

While the model did not jump with an excitation amplitude of 150N and the parameters at their expected values, it did
jump at this forcing amplitude for around 30% of the parameter vectors in the MLH design. At 115N, the model bifurcated
for all 1000 vectors in the MLH design. An intermediate study at 130N showed jumps at 80% of the sampled parameters.
These results suggest that nonlinear model is doing quite a good job of replicating the saddle-node bifurcation behaviour of
the system.
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1.6 Discussion and Conclusions

In this chapter, experimental data was gathered from a three-storey experimental structure with a harsh nonlinearity. Two
models were then created of the structure, one linear and one nonlinear. A selection of validation features and metrics were
then applied to the models. The different approaches to validation gave quite different outcomes. In terms of the NMSEs
for the time histories and frequency responses, the raw statistics made the linear model look much better than the nonlinear
model; however, a closer look and proper consideration of uncertainties showed the opposite conclusion. Furthermore, the
nonlinear model successfully captured the bifurcation behaviour of the bookshelf rig in qualitative terms. The results show
that a model that accurately represents the physics of the true nonlinear structure can appear much worse than one that
does not and could be rejected as a result of slightly misplaced bifurcation points, unless the correct validation strategy is
employed. This issue still occurs if only a small proportion of the validation data is close to the bifurcation point. The results
suggest that the NMSE is a poor validation metric unless an extremely accurate model is required because the model can be
penalised for replicating the nonlinear behaviour of a system unless it does so nearly perfectly.

While it is known that it is important to take uncertainties into account when validating a model, the results here
show that this is particularly true for bifurcating systems. The problems illustrated here for validating models of nonlinear
bifurcating systems can be mitigated by ensuring that model uncertainties are appropriately accounted for. This can be
done by propagating model uncertainties to give probability distributions for the model outputs and using statistical tests to
compare them to the test data. Only parameter uncertainty was considered here, but ideally, when validating a model, all
forms of modelling and experimental uncertainty should be taken into account. It is possible that nonlinearity may introduce
difficulties in incorporating other forms of uncertainty, but this was considered to be outside the scope of this study.

It is worth reiterating two of the purposes of model validation: first, choosing whether to accept a model or to reject it
and perform further model development; second to quantify the accuracy with which the model can make predictions. These
two steps are often done as part of the same process, i.e., the model will be accepted when it reaches an acceptable level of
predictive accuracy. However, for nonlinear systems, it may be desirable to introduce some extra criteria that must be met
before the model is accepted because of the wide range of behaviours they can exhibit; bifurcations being a perfect example.
Taking the above case study as an example, suppose that the quantity that the model is required to predict is the response
to periodic forcing, then this would dictate the feature that is used to assess the model accuracy. If one wanted to provide
further confirmation that the model had captured the system characteristics fully, then further features could be investigated.
The above results suggest that comparing the bifurcation characteristics would be a more suitable way of doing this than
comparing the time histories.

It should be noted that nonlinearity causes a diverse range of phenomena, only a small number of which were observed
here. Care should therefore be taken in generalising these conclusions to different nonlinear systems.
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