
Sound-Field Creation for Haptic 
Reproduction 

Atsushi Matsubayashi, Seki Inoue, Shun Suzuki, and Hiroyuki Shinoda 

Abstract In ultrasound haptics, a tactile sensation is evoked on human skin that 
touches the high sound pressure area generated due to the interference of ultrasonic 
waves. Therefore, by controlling the distribution of sound pressure amplitude using 
a transducer array, it is possible to create tactile sensations at multiple points simulta-
neously. In this chapter, we first describe the relationship between the complex gains 
of the transducer array and the generated sound field. Then, we provide various 
algorithms to control the amplitude pattern based on this relationship. 

1 Acoustic Field Reconstruction 

Ultrasound haptics is a technology that uses an array of ultrasound transducers to 
present tactile sensations remotely. The tactile sensation is caused by a nonlinear 
phenomenon called acoustic radiation. Assuming that the particle velocity of ultra-
sound is sufficiently small, the acoustic radiation pressure can be approximated as a 
quantity proportional to the square of the sound pressure p calculated in the range of 
linear acoustics (Hasegawa et al. 2000). Therefore, controlling p over certain control 
points leads to the design of a spatial tactile pattern that spreads over them. In this 
section, we first describe the forward problem of determining the sound pressure field 
p created by an ultrasound transducer array and then outline the inverse problem of 
determining the gain of the transducer array that generates the desired sound pressure 
distribution. 

1.1 Forward Problem of the Acoustic Field 

The first step is to formulate the sound field produced by the ultrasound-phased 
array. The ultrasound transducers that make up the array emit ultrasound waves due
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to the piston motion of their internal diaphragms. The sound field produced by an 
individual transducer is, in fact, affected by various factors, but let us first assume 
that it is a point source emitting spherical wave with frequency f0 at the origin. In 
this case, the sound pressure field created by the transducer is as follows:

p(t, x, y, z) = qamp

√   
x2 + y2 + z2 

e j (−k 
√

x2+y2+z2+2π f0t+θ)  , (1) 

where qamp, θ  are the intensity and phase of the point source, c is the speed of 
sound, and k = 2π f0/c is the wave number. This equation can be transformed into 
the product of the transfer function g, complex gain of the transducer q, and time-
dependent term. 

p(t, x, y, z) = g(x, y, z)q(qamp , θ  )e j2π f0t , (2) 

where 

g(x, y, z) = 1
√   
x2 + y2 + z2 

e− jk  
√

x2+y2+z2 (3) 

q(qamp , θ  )  = qamp e jθ . (4) 

Focusing on the f0 frequency component of the sound field p̂(x, y, z), the relation 
between the complex gain and the sound field is expressed as follows: 

p̂(x, y, z) = g(x, y, z) · q(qamp , θ  ). (5) 

To extend the transfer function to a general position, let x be the position of the 
sound source and x' be the observed position. In this case, the transfer function 
g(x, x') is as follows: 

g(x, x') = 1 

|x − x'|e
− jk|x−x'|. (6) 

Let us consider a case where there are multiple transducers. Suppose that there 
are N transducers, each with a gain of q1, q2, . . .  qN , at  x1, x2, . . .  xN . The sound 
pressure at point y can be expressed using vectors: 

p̂(y) = 
Σ 

i 

g(xi , y)qi = gT(y)q. (7) 

where 

g(y) = 

⎛ 

⎜⎜⎜ 
⎝ 

g(x1, y) 
g(x2, y) 

... 
g(xN , y) 

⎞ 

⎟⎟⎟ 
⎠ 

, (8)
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q = 

⎛ 

⎜⎜⎜ 
⎝ 

q1 
q2 
... 
qN 

⎞ 

⎟⎟⎟ 
⎠ 

. (9) 

This equation represents the continuous sound pressure created when the gain of the 
phased array transducer is given. 

In practical situations pertaining to mid-air haptic rendering, we often consider 
controlling the sound pressure at discrete points in the observation space y. When 
the discretized control points are represented by y1, y2, . . . ,  yM , the sound pressure 
at each point can be expressed as follows: 

p̂(y j ) = 
Σ 

i 

g(xi , y j )qi = gT(y j )q. (10) 

Therefore, the sound pressure vector at control points y follows the matrix equation: 

p̂ = Gq (11) 

where 
G = (g(y1), g(y2), . . . ,  g(yM ))

T . (12) 

This is the basic equation describing the forward problem of the phased array sound 
field. The vector of the transducer’s gain q and the sound pressure on the control 
points p̂ are related by the transfer function matrix G. 

As mentioned previously, matrix G represents the transfer function for the case 
where each transducer can be approximated as a point source. However, similar 
matrix equations can be obtained for other practical situations pertaining to mid-air 
haptic rendering. For example, if we consider the transducer as a piston disk of radius 
a attached to a baffle plate, the transfer function at the far field is as follows: 

g(x, y, z) = i ωρua2 J1(ka sin θ)  
ka sin θ

√   
x2 + y2 + z2 

e− jk  
√

x2+y2+z2 , (13) 

where J1 is a Bessel function of the first order, u is the velocity of the disk, and 
θ represents the angle between (x, y, z) and the normal of the disk. This approxi-
mation has been adopted in several mid-air haptic rendering studies using common 
cylindrical transducers. 

Another example is to consider the effects of scattering. Thus far, we have consid-
ered the forward problem in a free-sound field. When considering scattering on the 
surface of an object such as a hand, according to the style of the boundary element 
method, the sound field can be represented as follows (Inoue et al. 2016):
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B p̂ = Gq, (14) 

Matrix B represents the scattering effect. Even in this case, the same matrix equation 
can be obtained by designating Ḡ = B−1G: 

p̂ = Ḡq. (15) 

Mid-air haptic rendering based on this scattered-field equation can increase the pres-
sure at a single point on the fingertip (Inoue et al. 2016) or create an accurate pressure 
distribution on the hand surface (Matsubayashi et al. 2020). 

1.2 Inverse Problem 

The problem we face in controlling ultrasound-phased arrays is the reverse of this 
forward problem. We must first determine the acoustic radiation pressure at the 
control points that we want to present to the user and then find the transducer complex 
gain to output the pressure distribution. 

Before discussing the sound pressure distribution control, let us first consider a 
simple case in which we want to maximize the sound pressure at a single point. 
The creation of this single focus is the most fundamental control and is practically 
significant. In this case, Eq. (7) can be written as 

argmaxq p̂(y) = argmaxqg
T(y)q. (16) 

If we increase the energy of q, p may become infinitely large; however, this is not 
realistic as a physical transducer has nominal power. That is, there is an upper limit 
on the absolute value for each component of p. As units are meaningless in this 
discussion, we set the upper limit to 1. That is, 0 ≤ qamp ≤ 1. Understandably, 
the solution is when each element is driven at its maximum, and the phases are 
intensified at the focal point. One of the transducer’s complex gains that achieves 
this is as follows: 

q = 

⎛ 

⎜⎜ 
⎝ 

g(x1,y)∗ 

|g(x1,y)| 
... 

g(xN ,y)∗ 

|g(xN ,y)| 

⎞ 

⎟⎟ 
⎠ . (17) 

where ∗ denotes the complex conjugate. 
Next, we consider the case of pressure distribution control. If the complex gain 

on the control points p is given, it is reasonable to assume that q can be obtained 
using the generalized inverse matrix G†. 

q = G† p (18)
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However, two problems specific to ultrasound mid-air haptic rendering arise here. 
One is the limitation of the transducer amplitude. As in the case with a single focus, it 
becomes necessary to drive the transducer at an amplitude lower than the transducer’s 
maximum power. The other is the determination of the phase distribution of the sound 
field. Humans cannot distinguish the phase differences of ultrasonic waves. We can 
feel tactile sensations as vibrations below 1 kHz, which is considerably lower than the 
ultrasound frequency, and we can only distinguish the phase difference even smaller 
than that (Kuroki et al. 2016). Therefore, we are not interested in the phase of the 
generated sound pressure distribution, and only the sound pressure amplitude is our 
target of control. In other words, given the desired amplitude of the sound pressure 
pamp, we need to find q such that 

∀ j ∈ {1, · · ·  , M} :  {pamp} j = |{Gq} j | 
∀i ∈ {1, · · ·  , N } :  0 ≤ |{q}i | ≤  1, (19) 

where {x}i means i component of x. 
To date, various approaches have been attempted to solve this complex problem. 

Long et al. were the first to solve this problem and rendering haptic shape using 
ultrasound (Long et al. 2014). They proposed a method to determine q after solving 
an eigenvalue problem to find the sound pressure phase such that the focal points 
at control points strengthen each other. A little later, Inoue et al. (2015) proposed 
a method to determine the sound pressure phase first, similar to Long et al. by 
relaxing the phase optimization problem to a semidefinite programming. In a different 
approach, a fast method for finding q has been proposed by applying the Gerchberg– 
Saxton algorithm used in optics (Hertzberg et al. 2010; Inoue et al. 2015; Marzo and 
Drinkwater 2019). This algorithm has been improved to a faster and more accurate 
version, GS-PAT, by Plasencia et al. (2020). Matsubayashi et al. (2020) solved the 
least-squares problem using Levenberg–Marquardt method, which is slower than 
the other methods but achieves a more accurate reproduction of the sound pressure 
field. All of the above methods consider q as a continuous quantity. However, in 
practical applications, the amplitude and phase of the transducers are input in discrete 
quantities. Suzuki et al. (2021) focused on this and proposed a very fast method to 
determine q by combinatorial optimization. In the next section, we review these 
methods. 

2 Overview of Various Algorithms 

This section outlines the algorithms that have been proposed for generating ultrasonic 
amplitude distributions and their respective applications.
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2.1 Eigenmethod 

As described in the previous section, we are only interested in the amplitude of 
sound pressure on the control points. The eigenmethod proposed by Long et al. in 
2014 determines a good candidate for phase distribution that can achieve the target 
amplitude distribution (Long et al. 2014). This method first considers the transducer 
gain vector q̄ j , which creates a focus of sound pressure p

amp 
j on the control point j : 

q̄ j = pamp 
j 

⎛ 

⎜⎜⎜ 
⎝ 

G∗
j,1 ΣN 

i=1 |G j,i |2 
... 

G∗ 
j,N ΣN 

i=1 |G j,i |2 

⎞ 

⎟⎟⎟ 
⎠ 

(20) 

This vector is a minimum-norm solution. G q̄ j represents the pressure distribution 
at the control points when a focus is generated at the control point j . Therefore, the 
following matrix R represents the interaction between focal points: 

R = G 
(
q̄1, · · ·  , q̄M 

) 
. (21) 

For phase of the focal points t (|ti | ≤  1) such that Rt is large, the focal points have a 
constructive effect on each other; thus, the energy efficiency from the transducers is 
high. This implies that it is easier to achieve the target amplitude distribution under 
the upper limit of the transducer array. Finding such a t is equivalent to solving the 
following eigenvalue problem: 

Rx = λx (22) 

The eigenmethod seeks the eigenvector corresponding to the largest eigenvalue of 
R and uses its phase for the inverse problem. When phase t is obtained, the eigen-
method solves the matrix equation with weighted Tikhonov regularization to obtain 
the transducer gain q. 

⎛ 

⎜⎜⎜ 
⎝ 

G 
σ γ 
1 · · ·  0 
... 

. . . 
... 

0 · · ·  σ γ 
N 

⎞ 

⎟⎟⎟ 
⎠ 
q = 

⎛ 

⎜⎜⎜ 
⎝ 

diag(pamp)t 
0 
... 
0 

⎞ 

⎟⎟⎟ 
⎠ 

, (23) 

σi = 

⏋|||| 

|||||| 

MΣ 

j=1 

G j,i p
amp 
j 

M 

|||||| 
(24) 

where diag(pamp) is a diagonal matrix with pamp as a diagonal element. γ is a regu-
larization parameter. The solution q is then truncated so that it does not exceed the
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Fig. 1 When a tracked hand touches a virtual object, multiple focal points are generated at the 
intersection (Long et al. 2014) 

maximum output of the transducers (qi ∈ [0, 1]). The computational complexity of 
solving this linear equation is O(N 3), which is the bottleneck of this method. There-
fore, it should be noted that the computation time of this method becomes extensive 
when the number of transducers is considerable. The entire process is presented in 
Algorithm 1. 

Algorithm 1 Eigen Method 
Input: pamp and γ 
1: x ← Largest eigenvector of R 
2: for j = 1 to  M do 
3: t j ← x j 

|x j | 
4: end for 
5: for i = 1 to  N do 

6: σi ← 

/|||| 
ΣM 

j=1 
G j,i p

amp 
j 

M 

|||| 
7: end for 

8: Solve 

⎛ 

⎜⎜⎜ 
⎝ 

G 
σ γ 
1 · · ·  0 
. 
. 
. 

. . . 
. 
. 
. 

0 · · ·  σ γ 
N 

⎞ 

⎟⎟⎟ 
⎠ 
q = 

⎛ 

⎜⎜⎜ 
⎝ 

diag(pamp)t 
0 
. 
. 
. 
0 

⎞ 

⎟⎟⎟ 
⎠ 

9: q ← truncate(q, [0, 1]) 
Output: q
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Algorithm 2 Corrected Eigen Method 
Input: pamp and γ 
1: x ← Largest eigenvector of R 
2: for j = 1 to  M do 
3: t j ← x j 

|x j | 
4: end for 
5: for i = 1 to  N do 

6: σi ← 

/|||| 
ΣM 

j=1 
G j,i p

amp 
j 

M 

|||| 
7: end for 

8: Solve 

⎛ 

⎜⎜⎜ 
⎝ 

G 
σ γ 
1 · · ·  0 
. 
. 
. 

. . . 
. 
. 
. 

0 · · ·  σ γ 
N 

⎞ 

⎟⎟⎟ 
⎠ 
q = 

⎛ 

⎜⎜⎜ 
⎝ 

diag(pamp)t 
0 
. 
. 
. 
0 

⎞ 

⎟⎟⎟ 
⎠ 

9: p ← Gq 
10: q ← MΣ 

j 
pi 

p 
amp 
i 

q 

11: q ← truncate(q, [0, 1]) 
Output: q 

Using this algorithm, Long et al. configured a system to present the cross-sectional 
shape of an object. The object shape is rendered by generating many focal points 
in real time at the intersection of the hand and the object, as shown in Fig. 1. They  
demonstrated that this system enabled users to recognize the shape of objects only 
from haptic sensations. This system is the first reported example of generating a 
sound pressure distribution with a specific shape for mid-air haptic rendering by 
determining the optimal sound pressure phase. However, it has been shown that the 
eigenmethod produces a distribution with slightly less pressure than the given sound 
pressure amplitude pamp. Plasencia et al. modified the eigenmethod by multiplying 
the obtained transducer amplitudes by a correction factor (Plasencia et al. 2020) 
(shown in Algorithm 2). Comparisons between certain algorithms in their paper are 
described in Sect. 2.4. 

2.2 Semidefinite Relaxation 

In 2015, Inoue et al. proposed a shape rendering method based on the generation of 
sound pressure distribution. Similar to the eigenmethod, this method first obtains the 
distribution of the optimal sound pressure phase. This method considers the following 
minimization problem. 

minimize ∥Gq − diag(pamp )t∥2 2 
subject to |ti | =  1, i ∈ {1, · · ·  , N } (25)
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Then, it assumes that, when the phase distribution t is obtained, the transducer gain is 
determined by q = G−diag(pamp)t, where G− is the Tikhonov regularization matrix 
G− = (G∗G + λI )G∗. In this case, the objective function can be transformed as 
follows: 

∥Gq − diag(pamp )t∥2 2 (26) 

= ∥(GG− − I )diag(pamp )t∥2 2 (27) 

= t∗diag(pamp )(GG− − I )∗(GG− − I )diag(pamp )t. (28) 

Denoting M = diag(pamp)(GG− − I )∗(GG− − I )diag(pamp), the minimization 
problem can be expressed as follows: 

minimize t∗ Mt 

subject to |ti | =  1, i ∈ {1, · · ·  , N } (29) 

To make the problem easier to solve, it can be rewritten as an equivalent problem. 

minimize Tr(T M) 
subject to diag(T ) = 1, T ≥ 0, rank(T ) = 1, (30) 

where T = tt∗. If the rank constraint is removed, we obtain a semidefinite pro-
gramming (SDP) problem, and the global optimal solution can be easily obtained. 
To solve this SDP problem efficiently, Inoue et al. employed the block-coordinate 
descent method. The approximate solution of the original problem t was obtained as 
the phase of the eigenvector corresponding to the largest eigenvalue of the solution 
of the relaxed problem T . After phase determination, the transducer amplitude was 
obtained by solving the Tikhonov regularized linear equation. Similar to the eigen-
method, the computational complexity of this part is O(N 3), which is the bottleneck 
of this method. The details are shown in Algorithm 3. 

Using this algorithm, Inoue et al. constructed a system called HORN, which 
presents volumetric tactile objects in air (Inoue et al. 2015). This system uses a large 
number of ultrasonic transducers to present a sound pressure pattern of sufficient 
intensity with some shape. As shown in Fig. 2, this allows the user to interact with a 
virtual object without any delays and time resolution losses caused by hand tracking.
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Algorithm 3 Semidefinite Relaxation i c denotes the index set i c = {1, · · ·  , N }\{i}, 
and Xic,i c denotes the matrix X minus i rows and i columns. 
Input: pamp, t0 and μ >  0 (small valued parameter) 
T ⇐ t0t∗0 
for k = 1 to  K do 
Pick i ∈ {1, · · ·  , N } 
h ⇐ Tic,i c Mic,i 
γ ⇐ h∗ Mic,i 
if γ >  0 then 
Tic,i ⇐ −  

/ 
1−μ 
γ h 

Ti,i c ⇐ −  
/ 

1−μ 
γ h∗ 

else 
Tic,i ⇐ 0 
Ti,i c ⇐ 0 

end if 
end for 
t̂ ← Largest eigenvector of T 
for i = 1 to  M do 
ti ⇐ t̂i /|t̂i | 

end for 
q ⇐ G−diag(pamp)t 
q ← truncate(q, [0, 1]) 

Output: q 

Fig. 2 HORN generates static volumetric haptic image using a large number of transducers sur-
rounding workspace
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2.3 Gerchberg–Saxton Algorithm 

The methods of first finding the optimum sound pressure phase and then solving the 
linear equation, as described in the previous sections, are computationally expensive 
when a large number of transducers are used. In contrast, the methods for iteratively 
obtaining a solution at high speeds have been studied. One of them is the Gerchberg– 
Saxton algorithm (GSA) (Gerchberg 1972). The GSA is known as an effective tool 
to solve phase recovery problems and has attracted attention in a wide range of fields, 
such as electromicroscopy, computer holography, and astronomy. Phase recovery is 
the problem of estimating the phase of a physical quantity when only the intensity of 
the quantity is observed. Our problem can be considered to be a type of phase recovery 
problem. In terms of acoustic pressure amplitude control using an ultrasound-phased 
array, which is the subject of this chapter, GSA-based methods have been proposed in 
the context of hyperthermia (Hertzberg et al. 2010), mid-air haptic rendering (Inoue 
et al. 2015), and acoustic manipulation (Marzo and Drinkwater 2019). The details 
of the algorithm differ between these methods, and the method proposed by Marzo 
and Drinkwater (2019) is presented here. 

In this method, each ultrasound transducer is assumed to change only its phase. In 
one iteration, constraints are placed on each of the two vectors q, p while alternately 
propagating between them as follows: 

1. Propagate forward: p ⇐ Gq 

2. Impose constraint: pi ⇐ pamp 
i 

pi 
|pi | 

3. Propagate backward: q ⇐ G∗p 

4. Impose constraint: qi ⇐ qi 
|qi | 

Algorithm 4 Gerchberg-Saxton Algorithm 

Input: pamp and p0 such that |p(0) 
j | =  pamp 

j 

1: p ⇐ p0 
2: for k = 0 to  K − 1 do 
3: q̂ ⇐ G∗p 
4: for i = 1 to  N do 
5: qi ⇐ q̂i 

|q̂i | 
6: end for 
7: p̂ ⇐ Gq 
8: for j = 1 to  M do 

9: p j ⇐ pamp 
j 

p̂ j 
| p̂ j | 

10: end for 
11: end for 
Output: q
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The computational complexity in one iteration is O(NM). In their study, they 
state that approximately 100 iterations are sufficient. Considering that N ≫     M in 
several applications, this method is fast and was proposed to take advantage of 
its high speed to perform acoustic manipulation of multiple micro-objects in three 
dimensions. However, because acoustic manipulation and mid-air haptic rendering 
have various similarities in terms of the requirements of the target sound field, this 
algorithm is also useful for mid-air haptic rendering. 

2.4 GS-PAT 

In 2020, Plasencia et al. proposed an algorithm that is more accurate and faster than 
the GSA, that is, GS-PAT. The GSA uses G∗ as the back-propagation matrix, which 
is inaccurate in terms of the amplitudes of the transducer. Conversely, GS-PAT uses 
the normalized matrix F and updates p in the following manner: 

1. p̂ ⇐ GFp 

= G 

⎛ 

⎜⎜⎜ 
⎝ 

G∗
0,0 ΣN 

i=1 |G0,i |2 · · ·  G∗
M,0 ΣN 

i=1 |GM,i |2 
... 

. . . 
... 

G∗ 
0,N ΣN 

i=1 |G0,i |2 · · ·  G∗ 
M,N ΣN 

i=1 |GM,i |2 

⎞ 

⎟⎟⎟ 
⎠ 
p. 

2. pi ⇐ pamp 
i 

p̂i 
| p̂i | , i ∈ {1, · · ·  , N }. 

The matrix F is composed of vectors that are minimum-norm solutions when 
each control point is generated independently, which is identical to the one used in 
the eigenmethod described in Sect. 2.1. In GS-PAT, the matrix R = GF  is calculated 
in advance to reduce the computational complexity of the matrix-vector product in 
iterations. When the number of iterations of the algorithm is K , The computational 
complexity of the GSA is O(K N  M), whereas that of GS-PAT is O(KM2 + NM2). 
Considering M < K < N in various practical situations pertaining to multi-point 
mid-air haptic rendering and multi-object manipulations, GS-PAT has an advantage 
over the GSA in terms of computation time. Using a middle-end GPU (NVIDIA 
GTX 1660) with N = 512, M = 32, K = 100, GS-PAT was experimentally shown 
to be capable of 17000 optimizations per second. 

Plasencia et al. also conducted simulations to compare the accuracy of the eigen-
method, the GSA, and GS-PAT for multi-point amplitude control. The results showed 
that GS-PAT performed well as the other algorithms and was considerably faster. 
However, when the number of focal points was large (M ≥ 16), GS-PAT was found 
to be less accurate than the eigenmethod.
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Fig. 3 a Spatio-temporal modulation, b independent control of focal movement speed and refresh 
rate of haptic stimuli by multi-focus generation (Plasencia et al. 2020) 

The fast multi-point pressure rendering achieved by this algorithm has the poten-
tial to enable more diverse mid-air haptics sensations. In recent years, it has been 
reported that, by moving a single focal point at a high speed, it is possible to 
provide more intense tactile stimulation and recognize the shape of the trajec-
tory (Frier et al. 2018; Takahashi et al. 2018) (see Chap. “Modulation Meth-
ods for Ultrasound Midair Haptics,” for details). However, how the speed and 
frequency of the tactile stimuli affect human perception remains to be clarified. 
Fast multi-focus generation enables independent control of the focus movement 
speed and the refresh rate of the haptic stimulus in these modulation methods. 
For example, rotating three focal points on a circle can present haptic sensa-
tions at three times the refresh rate of a single point rotated at the same speed 
(see Fig. 3). This algorithm is expected to reveal a variety of human perceptual 
characteristics. 

Algorithm 5 GS-PAT 

Input: pamp and p0 such that |p(0) 
j | =  pamp 

j 

1: p ⇐ p0 
2: R ⇐ GF  
3: for k = 0 to  K − 1 do 
4: p̂ ⇐ Rp 
5: for i = 1 to  M do 
6: pi ⇐ pamp 

i 
p̂i 

| p̂i | 
7: end for 
8: end for 
9: p(Ω) 

i ⇐ (pamp 
i )2 

p̂i 
| p̂i |2 

10: q = FpΩ 

11: q ← truncate(q, [0, 1]) 
Output: q

http://dx.doi.org/10.1007/978-3-031-04043-6_9
 26392 21882 a 26392 21882 a
 
http://dx.doi.org/10.1007/978-3-031-04043-6_9
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2.5 Levenberg–Marquardt Algorithm 

Basically, there is a tradeoff between accuracy and speed in sound pressure amplitude 
control. In 2019, Matsubayashi et al. proposed a method to control the sound pressure 
amplitude accurately, although it is slower than previous methods. They used the 
Levenberg–Marquardt algorithm (LMA), which is known as an effective solution 
method for unconstrained nonlinear least-squares problems, to control the sound 
pressure amplitude in a scattered sound field. The scattering of ultrasonic waves 
on the surface of the hand is not a problem for macroscopic tactile rendering (e.g., 
different intensities of tactile rendering for each of the five fingers). However, when 
more detailed pressure reproduction is required, such as when we want to control the 
shape of the pressure generated on the fingertips, we need to consider its effect. They 
described the optimization for controlling the scattering sound field as the following 
least-squares problem. 

minimize ∥diag(pamp )t − B−1 Gq∥2 2 
subject to |ti | =  1, |qi | ≤  1, (31) 

If we fix the transducer amplitude to the maximum value and omit the computation-
ally expensive calculation of B−1, the following problem is obtained: 

minimize ∥Bdiag(pamp )t − Gq∥2 2 
subject to |ti | =  1, |qi | =  1 (32) 

Furthermore, by setting q = [e j θ1 , · · ·  , e jθN ]T and t = [e jθN+1 , · · ·  , e jθN+M ]T , the  
problem is simplified to an unconstrained least-squares problem for the phases of 
sound pressure and transducers. θ = [θ1, · · ·  , θM+N ]T . 

Without going into detail, the update step of θ in the LMA is calculated as follows: 

h = −[J (θ )T J (θ ) + λI ]−1 J (θ )T f(θ ), (33) 

where 

f(θ ) = 
( 
Re[Bdiag(pamp)t − Gq] 
Im[Bdiag(pamp)t − Gq]. 

) 
, (34) 

and J (θ ) is a Jacobian matrix of f(θ ). Only if the value of the objective function after 
the step ∥f(θ + h)∥2 2 decreases, the phases will be updated θ ⇐ θ + h. In addition, 
λ is a damping factor that contributes to the convergence stability of the rhythm and 
is updated according to the behavior of the objective function after the step. When λ 
is large, the behavior of the LMA is similar to the steepest descent method, and when 
λ is small, the LMA converges in a manner similar to the Gauss–Newton method.
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Fig. 4 Pressure amplitude control of the finger surface: (a1-a3) Target amplitude distribution. 
(b1-b3) Simulation results of the distribution reproduced by LMA (Matsubayashi et al. 2020) 

Algorithm 6 describes the details of this process in which the update method for λ 
follows (Madsen et al. 2004). 

Matsubayashi et al. proposed a method to dynamically generate a mesh model of 
the hand surface and render the sound pressure amplitude on the surface in real time 
using the LMA described above. They generated pressure amplitude distributions 
with different widths at the fingertips (see Fig. 4) and verified that these distributions 
were discriminable via a user study. This is the first reported study of accurately con-
trolling the sound pressure amplitude distribution on the skin surface by considering 
the scattering on the hand surface. 

LMA can be applied not only to the scattered sound field but also to the free 
field by replacing matrix B with the identity matrix. Sakiyama et al. used LMA in a 
free-field condition to reproduce the pressure distribution measured by a microphone 
array to render textures such as fingers, brushes, and towels. 

LMA can generate an accurate amplitude distribution, but it is computationally 
expensive. The bottleneck of this method is that linear Eq. 33 need to be solved for 
step calculations, whose computational complexity is represented by O((N + M)3. 
However, if there is a control point with zero target amplitude, the phase at that point 
is not considered, and the computational complexity is reduced. The number of zero-
amplitude control points can be quite large in situations where we want to prevent 
the sound pressure from being affected by scattering effects, other than the tactile 
point position. If the number of control points with nonzero amplitude is M ', the
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Algorithm 6 Levenberg-Marquardt Algorithm 
Input: pamp, θ 0, and  γ >  0 (small valued parameter) 

θ ⇐ θ 0 
ν ⇐ 2 
A ⇐ J (θ )T J (θ ) 
g ⇐ J (θ )T f(θ ) 
λ ⇐ γ ∗ maxAii  
for k = 1 to  K do 
solve (A + λI )h = −g 
σ ⇐ (F(θ + h) − F(θ ))/(hT (g − λh)) 
if σ >  0 then 

θ ⇐ θ + h 
λ ⇐ λ ∗ max 

( 1 
2 , 1 − (4σ − 1)3

) 

A ⇐ J (θ )T J (θ ) 
g ⇐ J (θ )T f(θ ) 
ν ⇐ 2 

else 
λ ⇐ λ ∗ ν 
ν ⇐ 2 ∗ ν 

end if 
end for 

Output: θ 

computational complexity is O((N + M ' 3) . Using a high-end GPU (NVIDIA 
GeForce RTX 2080 Ti), it has been shown experimentally that each iteration takes 
approximately 10 ms when N + M ' = 1500, M = 10, 000. In this case, five itera-
tions for one optimization would result in a haptic refresh rate 20 Hz. 

2.6 Combinatorial Optimization 

In the methods described so far, the amplitude and phase of the transducers were 
taken as continuous quantities. However, in practical use, they are input as discrete 
quantities. Furthermore, it has been found that even small amounts of gain infor-
mation input to each transducer can produce accurate distributions. For example, it 
was reported that about eight values (3-bit) in phase are sufficient to reproduce some 
sound field patterns (Morales et al. 2021). Therefore, the inverse problem can be 
formulated as combinatorial optimization. This is much simpler than the problems 
we have considered so far, and allows for fast optimization. 

In 2021, Suzuki et al. proposed a method to solve the inverse problem by discretiz-
ing the gain and applying a greedy algorithm (Suzuki et al. 2021). In this method, the 
amplitude qamp and phase θ of the transducer are divided into I and J respectively;
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Algorithm 7 Combinatorial optimization 
Input: pamp 

for i = 1 to  N do 
qi ⇐ qamp∗ e− j θ∗ s.t. qamp∗ , θ∗ = argmin Ei (q

amp 
i , θi ) 

end for 
Output: q 

qamp ∈ 
⎧ 
1 

I 
, 
2 

I 
, . . . ,  1 

⎞ 
, (35) 

θ ∈ 
⎧ 
0, 2π 

1 

J 
, . . . ,  2π 

J − 1 
J 

⎞ 
. (36) 

In this method, the gain qi = qamp 
i e jθi is determined one by one for all transducers 

by searching all combinations of these discretized gain sets. Algorithm 7 describes 
this method. The decision to the gain of the i-th transducer is made by minimizing 
the difference between the target sound pressure and the sound pressure when the 1 
to i-th transducers are driven. Therefore, objective function Ei to decide the gain of 
the i-th transducer is set as 

Ei (q
amp 
i , θi ) = 

MΣ 

j=1 

||||| p
amp 
j − 

||||| 

iΣ 

k=1 

g(xk, y j )qamp 
k e j θk 

||||| 

||||| 

2 

. (37) 

To minimize the objective function Ei (q
amp 
i , θi ), the brute-force search is used, which 

means that the objective function is computed for all combinations and the smallest 
one is selected. The computational complexity of the whole process is O(I J  M  N  ), 
but since this method can generate distributions with sufficient accuracy using small 
values of I and J , the computation time is short in various practical situations. 

Suzuki et al. have implemented the previously described methods (the eigen-
method, the semidefinite relaxation, GS-PAT, the LMA, and this method) on a CPU 
and performed experiments to compare them. The results show that this method 
has the shorter computation time than the other method when I = 1, J = 16. They  
also performed simulations to generate multiple foci with identical amplitudes. Their 
results showed that the method could reconstruct the sound pressure given at the con-
trol point with at least 80% accuracy which is better than eigenmethod and semidefi-
nite relaxation. LMA gave the most accurate results, but the longest computation time. 
GS-PAT (Matsubayashi et al. 2020) showed an intermediate performance between 
this method and the LMA in terms of both accuracy and time.
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3 Summary 

In this chapter, we introduced the basic equations for controlling the ultrasonic sound 
field and the various algorithms for solving them. The requirements for sound field 
control in mid-air haptics rendering are accuracy and speed. The use of GS-PAT or the 
combinatorial optimization is suitable for fast movement of stimulus points, such as 
when generating a focus that perfectly follows a fast-moving finger. Note, however, 
that in such cases, even if the algorithm is fast enough, the effects of hardware and 
sound transmission delays need to be compensated for. On the other hand, if you want 
to generate an accurate sound pressure distribution, LMA is superior. Especially in 
the situation where tactile sensation is generated on a specific part of the hand, 
taking into account the effect of scattering on the surface of the hand, this algorithm 
is suitable because the computation time is not much affected by the number of zero 
pressure points. These and other ultrasonic sound field control algorithms proposed 
so far, and the applications realized by them have been introduced above, but this is 
only an overview. Please refer to the respective literature for details. 

One of the major advantages of ultrasonic haptic technology is the ability to freely 
control the pressure applied to the skin surface. This is also important in investigating 
the sense of touch in the human body. Investigating how the spatial patterns of 
pressure and the waveforms of the vibrations applied to it affect human perception 
is the basis for future mid-air haptic rendering technology. It has the potential to 
define the necessary elements for haptic design and furthermore to create new tactile 
sensations that do not exist in the real world. For this purpose, further development 
of algorithms to control the ultrasonic field is expected. 
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