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Abstract The central philosophy of statistical mechanics (stat-mech) and random-
matrix theory of complex systems are that while individual instances are essentially
intractable to simulate, the statistical properties of random ensembles obey simple
universal “laws.” This same philosophy promises powerful methods for studying
the dynamics of quantum information in ideal and noisy quantum circuits—for
which classical description of individual circuits is expected to be generically
intractable. Here, we review recent progress in understanding the dynamics of
quantum information in ensembles of random quantum circuits, through a stat-
mech lens. We begin by reviewing discoveries of universal features of entanglement
growth, operator spreading, thermalization, and chaos in unitary random quantum
circuits, and their relation to stat-mech problems of random surface growth and
noisy hydrodynamics. We then explore the dynamics of monitored random circuits,
which can loosely be thought of as noisy dynamics arising from an environment
monitoring the system, and exhibit new types of measurement-induced phases and
criticality. Throughout, we attempt to give a pedagogical introduction to various
technical methods and to highlight emerging connections between concepts in stat-
mech, quantum information, and quantum communication theory.

1 Introduction

While many-body physics has traditionally focused on the properties of cold matter
in equilibrium, emerging atomic, molecular, optical, and qubit platforms allow
access to far from equilibrium dynamics with local space and time control over
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interactions. A key challenge is to identify universal features of non-equilibrium
quantum dynamics and approach to thermalization. The dynamics of the scrambling
of local quantum information into non-local degrees of freedom by many-body
unitary dynamics plays a central role in addressing those questions. The growth
of entanglement is not only important to diagnose thermalization (or lack thereof),
but also characterizes the complexity of tensor network descriptions of quantum
dynamics. Of particular interest are universal properties that do not depend on
particular microscopic details and hold for generic quantum systems.

Insights into generic non-equilibrium dynamics can be gained by considering
minimally structured models, such as random unitary circuits [1–8], which capture
the salient ingredients of generic quantum systems, namely unitarity of the dynam-
ics and locality of the interactions. Using random quantum circuits, the growth of
entanglement in one-dimensional system was elegantly mapped to the celebrated
Kardar–Parisi–Zhang universality class [9] of random surface growth [7]. This
mapping also uncovered deep connections to the Ryu–Takayanagi formula in in
holographic AdS/CFT correspondences [10, 11], by establishing a relation between
entanglement dynamics and a geometric minimal-cut picture. Random unitary
circuits were also used to characterize exactly the local spreading of operators in the
Heisenberg picture [8, 12], providing a complementary picture on chaotic dynamics
and scrambling from the perspective of operator growth. Other probes of many-body
quantum chaos, e.g., related to level statistics, have also been computed exactly in
Floquet (time-periodic) circuits [13–18]. In turn, those exact results led to a coarse-
grained, “hydrodynamic” description of operator spreading that was conjectured
to universally apply to non-integrable quantum systems in one dimension. Since
then, random quantum circuits have become part of the standard toolbox to study
chaotic quantum dynamics and provided crucial insights into, e.g., the emergence
of irreversible hydrodynamics from unitary evolution in the presence of a conserved
charge [19, 20].

Motivated by the advent of noisy intermediate-scale quantum simulators [21],
random quantum circuits have also been used to study the dynamics of entan-
glement in open quantum systems, which are continuously “monitored” by their
environments. Non-unitary random circuits provide a natural tool to study the
competition between unitary dynamics, which leads to chaotic evolution and rapid
entanglement growth, and non-unitary operations resulting from measurements and
noisy couplings to the environment, which tend to irreversibly destroy quantum
information by revealing it [22, 23]. More generally, non-unitary circuits and ran-
dom tensor networks [24–29] can exhibit a variety of “phases” and phase transitions
with different entanglement scalings. The most studied representative example
of such an entanglement transition that results from the competition between
unitary dynamics and non-unitary processes is the so-called measurement-induced
phase transition [22, 23]. This transition occurs in monitored random quantum
circuits (MRCs) made up of random unitary gates, combined with local projective
measurements occurring at a fixed rate, separating two phases with very different
entanglement properties. Importantly, such measurement-induced phase transitions
(MIPTs) are only visible in an individual quantum trajectory (i.e., the pure state
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of the system conditional on a set of measurement outcomes) and in trajectory
averages of quantities that are non-linear functions of the density matrix. When
measurements are frequent enough, they are able to efficiently extract quantum
information from any initial state, and Zeno collapse it into a weakly entangled state
with area-law entanglement. In contrast, for a small enough measurement rate, the
unitary dynamics scrambles quantum information into non-local degrees of freedom
that can partly evade local measurements. In this entangling phase (volume law),
initial product states become highly entangled over time, while initial mixed states
remain mixed for extremely long times [30]. There are different perspectives on this
measurement-induced transition, either as a purification transition [30] or from the
language of quantum communication and error correction. In the volume-law phase,
the unitary dynamics is effectively able to hide non-local degrees of freedom that
span a decoherence-free subspace in which the dynamics is effectively unitary [30–
33]: this subspace can be regarded as the code space of a quantum error-correcting
code.

Measurement-induced transitions have been investigated numerically and the-
oretically in various contexts, dimensionality, geometries, with different families
of gates [22, 23, 26, 27, 30–72], establishing that it is a generic property of
quantum trajectories of open quantum systems. A particularly fruitful approach
to understand the phenomenology and universality class of measurement-induced
transitions is to use exact mappings onto effective statistical mechanics models
that emerge from using a replica trick to deal with the intrinsic non-linearities of
the problem, and after averaging over the random gates. This systematic statistical
mechanics approach based on replica permutation “spins” was first developed in the
context of random tensor networks [24, 25] and then extended to deal with random
unitary [73] and monitored [39, 40] circuit dynamics. Such stat-mech mappings
provide an appealing picture of the entanglement transition in terms of a (replica)
symmetry-breaking transition, where the volume-law coefficient of entanglement
has a simple interpretation as a domain wall surface tension. In turn, these recent
theoretical developments raise the intriguing prospect of using well-developed
statistical mechanics tools to study quantum communication channel capacity and
error-correction thresholds [30–33, 64, 74], and computational complexity [75, 76].
Finite-size evidence for such an entanglement MIPT was even recently observed
experimentally in trapped-ion chains [77]. The phase structure and dynamics of non-
unitary circuits are being actively explored at the time of writing of this chapter.

The outline of this chapter is as follows: in Sect. 2, we introduce random
quantum circuit dynamics and derive exact results on entanglement growth and
operator spreading in such circuits. We also comment on the role of symme-
tries in the dynamics. In Sect. 3, we introduce measurements and describe the
phenomenology of measurement-induced entanglement transitions from different
perspectives. Section 4 derives exact statistical mechanics mappings for random
unitary circuits with and without measurements, using a replica trick. Various
consequences for entanglement dynamics and criticality are discussed. Finally,
in Sect. 5, we discuss progress in understanding measurement-induced symmetry-
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breaking and topological orders and related criticality, which would be forbidden in
equilibrium and are stabilized by dissipation.

2 Random Unitary Quantum Circuits

We begin by studying entanglement growth in ensembles of unitary random quan-
tum circuit (RC) dynamics. The growth of entanglement is an important metric to
diagnose dynamical thermalization and distinguish this behavior from other dynam-
ical universality classes such as many-body localization. Entanglement growth also
reflects the complexity of matrix-product state (MPS) and tensor network state
(TNS) descriptions of quantum dynamics. Just as in the statistical mechanics of
many interacting particles, or random-matrix theory of complex Hamiltonians, the
statistical properties of random ensembles of circuits can often be captured with a
far-simpler theoretical description than the (generically exponentially difficult) task
of computing the detailed output of a given circuit instance. In this section, we
review two equivalently complementary perspectives of entanglement growth and
thermalization in RCs; first we work in the “Schrödinger” picture and examine the
growth of bipartite entanglement in the evolution of quantum states, and second, we
adopt a “Heisenberg” picture and examine the evolution and spreading of operators
under RC dynamics. These two descriptions are elegantly united [7] in a mapping
of the entanglement growth problem onto Kardar–Parisi–Zhang (KPZ) dynamics
of random surface growth [9]. We recount the connection of surface growth to an
equivalent picture in terms of directed random polymers, which has a geometrical
interpretation closely analogous to the Ryu–Takayanagi relation between geometry
and entanglement in holographic AdS/CFT correspondences [10, 11].

2.1 Entanglement Growth

For this discussion, we adopt the model of [7], which consists of a length L chain of
d-level qudits, in which, at every time step a randomly selected pair of neighboring
qubits is subjected to a random two-qudit entangling gate drawn uniformly from the
Haar distribution on U(d2). To study entanglement growth, consider the bipartite
von Neumann entropy: S(x, t) = −trρ[x+1,∞)logdρ[x+1,∞), for bipartitioning the
system across the bond (x, x + 1), where ρ[x,x′] is the reduced density matrices for
sites in the interval [x, x′].
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2.1.1 Mapping to KPZ Dynamics of Random Surface Growth

Due to the subadditivity property of entanglement, the entanglement entropy for
neighboring cuts is bounded by

|S(x, t) − S(x + 1, t)| ≤ 1, (1)

i.e., if S behaves like a “surface” with bounded slope. The stochastic dynamics of
this “surface” can be understood by a simple heuristic rule. When a gate acts on
bond (x, x + 1), the corresponding entanglement grows as

S(x, t + 1) = min{S(x − 1, t), S(x + 1, t)} + 1, (2)

which turns out to be exact (almost surely) in the limit of large onsite dimension
d → ∞, but which is believed to capture the universal aspects of RC dynamics
for any finite-d. This rule can be understood as follows: if S(x, t) = S(x − 1, t)

or S(x − 1, t) − 1, i.e., implying that site x + 1 is unentangled with (−∞, x] at
time t , then the gate increases the entanglement by an amount that is generically
proportional to 1 and becomes precisely 1 (almost surely) in the large-d limit. If
on the other hand, S(x, t) = S(x − 1, t) + 1, this implies that site x + 1 is already
maximally entangled with (−∞, x] and the gate is very unlikely to disentangle it, so
S(x, t) remains unchanged. We can see that since S(x, 0) = 0 ∀x, and since S(x, t)

changes by quantized amounts (at d → ∞), then S(x, t) is always an integer, and
these cases exhaust the possibilities. Concrete examples of updates are shown in
Fig. 1a,b. Notice that locally flat parts of the surface tend to grow (top left of Fig. 1b,
while bonds with negative local curvature get converted to having local positive
curvature (bottom left of Fig. 1b), and regions with positive slope of s do not grow
(bottom right of Fig. 1b).

To study the long-time dynamics, it is useful to “zoom-out” and coarse-grain
the spatial lattice and integral step of the circuit by introducing an average entropy
s(x, t) over blocks of sites of size � � 1 (similar to moving from a lattice
description of magnetic moments, to a continuum description of coarse-grained
average magnetization), and coarse-grain our time step by L so that a finite density
of gates is applied in a coarse-grained time step. The continuum limit of the “update
rule” Eq. (2) can then be written in the form of a KPZ equation:

∂s

∂t
= ν∂2

x s − λ

2
(∂xs)

2 + η(x, t) + c, (3)

where c reflects the average rate of growth of entanglement, η(x, t) is a random
noise (capturing the stochastic placement of gates in space and time in the RC
model), the ν term suppresses local curvature reflecting suppression of negative
curvature from processes like the one shown in the bottom left of Fig. 1b, and
finally the λ term reflects that the entanglement growth is slower in regions with
non-zero slope of s as described above. Other terms with more derivatives or higher
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non-linearities are irrelevant in the renormalization group sense, so that this KPZ
equation captures the universal aspects of the coarse-grained entanglement growth.

The overall trend of Eq. (3) is that entanglement grows linearly in time
〈s(x, t)〉 ∼ vEt + . . . with constant “entanglement-velocity” vE , and (. . . ) reflects
subleading contributions that grow more slowly than ∼ t . Universal scaling of
fluctuations about this average trend is governed by the exactly solved KPZ
universality class. Measurable quantities at distance x and time t scale as universal
functions of the ratio x/ξ(t) with correlation length ξ(t) ∼ t1/z where the dynamical
exponent z = 3

2 . For example, the difference in entanglement for cuts separated by
distance r at equal times t scales like 〈(S(x + r, t) − S(x, t))2〉 ∼ rαg (r/ξ(t)),
where g is a universal function and α = 1

2 . Another important critical exponent, β,

characterizes the RMS fluctuations in entanglement:
√〈(s(x, t))2〉 − 〈s(x, t)〉2 ∼

tβ with β = 1
3 and similarly controls the dominant subleading correction to the

entanglement growth: 〈s(x, t)〉 ∼ vEt + Btβ .

2.1.2 Directed Polymer and Minimal-Cut Interpretation

KPZ dynamics arises in a wide variety of problems besides random surface
growth. A prominent example is the dynamics of a directed polymer in a random
environment, i.e., a sequence of monomer segments arranged along one direction:
(“time”), which can be inclined but not turn back on itself. This directed polymer
perspective on KPZ dynamics has a natural geometric interpretation in the RC
dynamics. To estimate S(x, t), consider the following geometric construction: draw
a curve through the random circuit starting from bond (x, x + 1) at time t and
moving back through the circuit to time t = 0 without crossing any gates. The
length of this upper-bounds the Schmidt rank of the bipartition across bond (x, x+1)

(see Fig. 1) and hence also upper-bounds the entropy S(x, t). The best upper-bound
estimate for S(x, t) from this procedure is therefore given by the length of the
minimal such cut through the circuit. Reference [7] showed that this upper-bound
is in fact saturated in the large-d limit. Identifying the cut line with the shape of a
directed polymer, and the constraints imposed by the constraint that the line does
not cross the (randomly placed) gates as a random environment, then the problem
of finding minimum length cut is equivalent to minimizing the free energy of this
directed polymer in said random environment. This picture led to a more general and
universal “entanglement membrane” formalism to compute entanglement in chaotic
quantum systems [7, 78, 79].

This geometric interpretation of entanglement of a quantum state output by a RC
via the geometry of a minimal surface through the circuit is strikingly reminiscent
of the Ryu–Takayanagi formula relating the entanglement of a spatial region of a
conformal field theory ground-state to the surface area of a spanning geodesic the
dual bulk gravity description [10, 11], and to similar relation in high-bond dimension
tensor networks which can in a sense be viewed as lattice discretizations of the
gravity/CFT correspondence [24].
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Fig. 1 KPZ dynamics of entanglement growth in random circuits. In a random circuit model
consisting of randomly placed nearest-neighbor two-site gates (c), the entanglement dynamics as a
random surface growth where each gate on a bond tends to increase the height at that bond by one
block (a). (b) shows the surface growth steps for a gate acting on a bond with different pre-existing
entanglement configurations. (c) Shows an alternative, but equivalent picture of entanglement
growth in terms of a minimal cut: entanglement is upper-bounded by the minimal number of bonds
cut by a line that bipartitions the circuit without cutting through any gates. This minimal cut can be
viewed as the minimal free-energy configuration of a directed polymer in a random medium, which
is well-known to be equivalent to the random surface growth model. Reproduced from Ref. [7]

2.2 Operator Spreading

Examining the evolution of operators under RC dynamics provides a complemen-
tary perspective on thermalization and chaos. The spreading of operators in the
Heisenberg picture can be computed exactly for random quantum circuits [8, 12].
Let us focus on the case of d = 2 (qubits) for simplicity, although the concepts will
extend straightforwardly to arbitrary d, and consider the dynamics of an initially
local operator O, which we take to be a Pauli matrix. Under unitary time evolution,
this operator is going to become more complicated, and we expand it onto the basis
of Pauli strings S

O(t) = U†(t)O(0)U(t) =
∑

S
aS(t)S, (4)

where S are any product of Pauli matrices on distinct sites. Unitarity as well as the
normalization of the initial operator implies the conservation law:

∑
S |aS(t)|2 =∑

S |aS(0)|2 ≡ 1. The average evolution of the weights |aS |2 under random Haar
evolution is particularly easy to work out. Let us consider a single gate, acting on
two sites for simplicity. There are two cases: if the string S happens to be the identity
I at time t , then it is unchanged by the unitary gate and remains identity at time t+1.
On the other hand, if the string S is any other operator in the operator Hilbert space,
the random Haar evolution evolves it to any other non-identity string with equal
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probability. This means that the string weights obey the Markov process:

|aS(t + 1)|2 =
∑

S ′
WS,S ′ |aS ′(t)|2 , (5)

with the Markov operator

WS,S ′ = δS,IδS ′,I + (1 − δS,I)(1 − δS ′,I)

d4 − 1
. (6)

Instead of keeping track of the dL coefficients aS , it is convenient to focus on
simpler quantities. Here we follow Refs. [8, 12] and focus on the right weight
ρ(x, t), defined as the fraction of strings ending at position x

ρ(x, t) =
∑

S ending at x

|aS(t)|2 . (7)

Intuitively, the right weight keeps track of the “operator front” and can also be
related to out-of-time ordered correlators [8, 12] that are used in diagnostics of
quantum chaos. Because the right weight is locally conserved,

∑
x ρ(x, t) = 1,

we expect it to obey a coarse-grained (hydrodynamic) continuity equation

∂tρ + ∂xj = 0. (8)

The dynamics of the right weight can be readily understood from the Markov
process (5). Consider the action of a random unitary gate acting on sites x and x+1,
on a string at ending at position x at time t . There are only d2 − 1 operators out of
d4−1 non-identity operators that the random evolution can generate with an identity
operator at position x. We conclude that with probability p = (d2 − 1)/(d4 − 1),
the operator front does not move and remains at position x (on average), whereas
it moves right with probability 1 − p. This immediately implies that the right
weight follows a biased random walk: the operator front moves ballistically to
the right since p < 1/2 and will broaden diffusively with time as ∼ √

t . Using
standard results, this implies that the current in the hydrodynamic equation (8) can
be expressed within a gradient expansion as

j = vBρ − D∂xρ + . . . , (9)

with vB = 1 − 2p = d2−1
d2+1

, and D = 2p(1 − p) = 2d2

(1+d2)2 . This right weight thus

behaves as ρ(x, t) ∼ 1√
t
e−(x−vB t)2/(4Dt) at long times, and as d → ∞, the front

becomes sharp since D → 0, and vB → 1. This diffusive broadening of the operator
front is believed to be a generic feature of chaotic (non-integrable) quantum systems
in one dimension. (The operator front also broadens diffusively in interacting
integrable systems through a very different physical mechanism [80]). Note that
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one-dimensional hydrodynamics is known to be unstable in one dimension [81]:
sound waves that would naively broaden diffusively acquire some anomalous KPZ
scaling in fluctuating hydrodynamics due to non-linearities. This does not happen
in the context of operator spreading as the butterfly velocity vB does not depend
linearly on the right weight, and the operator front is believed to generically broaden
diffusively rather than with KPZ dynamics.

2.3 U(1) Symmetric Circuits

Random quantum circuits can be enriched by including global symmetries [19, 20],
for example, adding a conserved Q = ∑

x q(x), and demanding that random gates
decompose into Haar random operations within each block of the total charge in
order to ensure charge conservation. There are several ways to enforce charge
conservation: following [19], we can consider a one-dimensional chain in which
each site hosts a two-level system (“qubit”) whose computational basis states
{|0〉, |1〉} have charge q = 0, 1, respectively, and an auxiliary d-level system
(“qudit”) of charge-neutral degrees of freedom, i.e., with onsite Hilbert space
C

2 ⊗C
d . The dynamics will consist of local unitary gates and measurements, which

are chosen to conserve the U(1) charge associated with the z component of the
qubits. As before, the symmetry-preserving two-site unitary gates are arranged in a
brickwork geometry but now take the form:

Ui,i+1 =
⎛

⎜
⎝

U0
d2×d2 0 0

0 U1
2d2×2d2 0

0 0 U2
d2×d2

⎞

⎟
⎠ , (10)

where i labels a site, U
q
D×D is a unitary matrix of size D × D acting on the charge

q1 + q2 = q ∈ {0, 1, 2} sector (a local charge is defined to take values 0 and 1),
and D is the dimension of the Hilbert space of the charge sector. Each matrix is
drawn independently from the Haar random ensemble of unitary matrices of the
appropriate size.

Those random unitary gates spread the charge uniformly with equal probability,
so the charge performs a random walk

q(x, t + 1) = q(x + 1, t + 1) = 1

2
(q(x, t) + q(x + 1, t)) , (11)

independently of the onsite Hilbert space dimension d. Upon coarse-graining, this
naturally leads to a diffusion equation for the local charge

∂tq = Dq∂2
xq, (12)
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with the diffusion constant Dq = 1/2 for all d. Charge diffusion has some
interesting consequences on operator spreading that we will not discuss here; we
refer the reader to the original references [19, 20].

Charge conservation has particularly dramatic consequences on the dynamics
of entanglement [82–86]: the charge contributions to the Renyi entropies grow
diffusively, Sn>1 ∼ √

t , while the von Neumann entropy remains ballistic as in
the absence of symmetry Sn=1 ∼ t . This phenomenon arises from rare fluctuations
that leave a region empty (or maximally filled). Consider for concreteness d = 1
(no neutral degree of freedom), corresponding to the onsite charge states q = 0
and q = 1. We are interested in the entanglement across a cut at L/2 following
the dynamics of an initial product state for the qubit such as |ψ〉 = ⊗L

i=1|+〉i ,
where |+〉 = 1√

2
(|0〉 + |1〉) (the generalization to other initial states will be readily

apparent). We can divide the system into three regions: a central region of radius
� = √

Dt centered at the entanglement cut, and regions to the left and right. We
then define a configuration to have a “dead-region” of size � if the spins in a region
of size ∼ � are either all 0, or all 1, e.g., |ψdead〉 = |· · · + + + 00 . . . 00 + + + . . . 〉.
The amplitude for this state in the initial configuration is generically exponentially
small in � (e.g., for the particular initial and dead-region states mentioned above, it
is ∼2−�/2). So one might be tempted to ignore contributions from large dead regions
with � � 1. However, a crucial point is that these rare dead regions make an outsized
contribution to Renyi entropies with Renyi index n > 1. To see this, consider the
evolution for time t of an amplitude in the initial state having a dead region of
size � � t2/Dq . In this time, particles begin to diffuse into the dead region from
the edge but do not have time to fluctuate across the entanglement cut. Hence, the
time-evolved state is still separable into left- and right-Schmidt states. The Schmidt
weight for such rare dead regions is given by their probability to occur in the initial
state, which is ≈ 2−� ≈ 2−√

Dt . By contrast, typical configurations without dead
regions all evolve into highly entangled states with much smaller Schmidt weight
≈ 2−vEt , where vE is the entanglement velocity. All Rényi entropies with n > 1
are dominated by the log of the largest Schmidt coefficient and grow as

√
t . The

von Neumann entropy S1 is dominated instead by typical Schmidt coefficients: the
number of these grows exponentially in t , but they are also exponentially small in t

and are therefore subleading for n > 1. We note that, in systems with both charged
and neutral degrees of freedom (such as the qubit×qudit model mentioned above),
this diffusive charge contributions to Renyi entropy add to a dominant ballistic (∼ t)
growth from neutral degrees of freedom. However, in a purely charged models with
bounded maximal or minimal charge on each site, Renyi entropies will always grow
diffusively.
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3 Measurement-Induced Phase Transitions

The random circuit dynamics discussed above represents the unitary evolution
of an ideal closed quantum system. In practice, no system is truly isolated, and
understanding the interplay of unitary operations with environmental noise and
decoherence is a key challenge for quantum computing. Environmental decoherence
can be modeled as the environment “monitoring” (i.e., effectively measuring) the
system, which we will idealize as strong projective measurements that collapse the
qubits in the measured basis removing their entanglement with the rest of the system
that had been generated by the unitary gates (extensions of this to weak/partial
measurements are also possible [38, 70]). While there has been a resurgence of
investigation of this question, the idea of quantum to classical phase transitions
driven by noise has a long history going back to an early work by Aharonov [87]
from over 20 years ago. Specifically, we consider the model introduced by [22, 23]
consisting of alternating circuit layers with random unitary gates and measurement
layers in which each qubit is projectively measured with probability p, which
reduces to random circuit dynamics for p = 0. In the other extreme limit, p = 1,
the system’s state is repeatedly collapsed to an unentangled product state.

At first glance, one might expect that any non-vanishing measurement probability
0 < p ≤ 1 would eventually collapse the system into a short-range entangled
after sufficient time evolution. For example, bipartite entanglement SA between a
region A and its complement Ac is generated only by local gates that straddle the
boundary ∂A and is generated at rate ∼ |∂A|, whereas the rate of measurement-
induced collapse is extensive ∼ p|A| [35]. However, this naive argument ignores a
critical feature of the random circuit evolution: scrambling. Namely, random circuit
evolution tends to obscure the information stored in a single qubit by encrypting it in
a random highly entangled superposition of many qubits. Consequently, measuring
any single qubit in A does not reveal one qubit’s worth of information about the state
of Ac (as for measuring half of a simple EPR pair), but rather only reveals partial
information that roughly scales with the mutual information between the measured
qubit and Ac: I(x) = Sx + SAc − Sx∪Ac , where x denotes the distance of the
measured qubit from the boundary ∂A. In the highly entangled states generated by
random circuit evolution with local gates, this mutual information generically falls
to zero at large distances.

Considering a 1d circuit with A = (−∞, 0] for concreteness, a back-of-the-
envelope estimate suggests that if I(x) falls off faster than 1/x, then the rate that
measurements reduce SA is ∼ p

∫ 0
−∞ I(x)dx, which is a finite constant. Some

approximate mean-field-like arguments suggest I(x) ∼ x−3/2 in this context [32,
33], and numerically, one finds I(x) ∼ x−1.25 compatible with the interpretation
of this quantity in terms of the return probability of a directed polymer in a random
environment [88]. Therefore, despite the extensive fraction ∼ p of qubits measured
after each circuit layer, only measurements close to the boundary of A remove an
appreciable amount of entanglement, and the rate of entanglement production by
circuit dynamics and entanglement loss due to measurement collapse both scale
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like |∂A|, such that the outcome of their competition depends on p. These simple
arguments predict the existence of a sharp measurement-induced phase transition
(MIPT) at critical measurement probability 0 < pc < 1, with the scrambling
dynamics producing highly-entangled states for p < pc, and measurements
collapsing the system into short-range entangled states for p > pc. Indeed, clear
numerical evidence for such a measurement-induced entanglement phase transition
has been observed in this model for large-scale random Clifford circuits, and
smaller-scale circuits with Haar random gates via exact diagonalization [34].

3.1 Entanglement Transition

The hallmark of the entanglement MIPT in this model is a singular change in the
“average” entanglement entropy, S(�), for a continuous region of size � of the typical
state produced by the monitored random circuit from volume law, S(�) ∼ � for
infrequent measurements (p < pc) to area law (p > pc). Specifically, referring to
the output, |ψm(t)〉, of a particular instance of the random circuit with measurement
outcomes m as a trajectory, we define the trajectory-averaged (Renyi) entanglement
entropies for region A as

S
(n)
A = EU,m

[
1

1 − n
log trA

(
ρn

A,m(t)
)]

, (13)

where n is the Renyi index (von Neumann entropy is defined through the limit
n → 1), Em denotes averaging over measurement outcomes (weighted by the Born
probability of obtaining that outcome) and measurement locations, and ρA,m(t) =
trAc |ψm(t)〉〈ψm(t)| is the reduced density matrix for the trajectory.

To be specific, consider the trajectories produced by evolving initially unentan-
gled product states by monitored random circuit evolution with 1 + 1d connectivity,
and choose entanglement interval A to be a single contiguous interval of length
�. Numerical simulations [34] (Fig. 2b) show that for p < pc S̄(�, t) grows
linearly (∼ t) until a time scale of t � � where it saturates to a volume-law
behavior S̄(�) ∼ s(p)� + . . . , with volume-law coefficient log 2 ≥ s(p) > 0,
and where (. . . ) denotes further subleading-in-� terms, including universal �1/3

corrections [88]. By contrast, for p > pc, the entanglement quickly saturates to
an area-law behavior S̄A ∼ |∂A| in O(1) time. Precisely at the transition, p = pc,
the entanglement appears to grow logarithmically in time S̄A(t) ∼ log t , saturating
to S̄A(t � |A|) ∼ log �.

The collapse of numerical data for bipartite entropy � = L/2 over a range of p

and system size L is consistent with a universal scaling function:

S̄(�) = G
[
(p − pc)L

1/ν, t/Lz
]

+ S̄non-universal, (14)



Entanglement Dynamics in Hybrid Quantum Circuits 223

Fig. 2 Measurement-induced entanglement phase transition . (a) in a monitored random circuit
(MRC). (b) Finite-size scaling of measurement-trajectory-averaged bipartite entanglement entropy,
SA for region of size |A| = L/2, for random Clifford circuits at long times, shows a continuous
phase transition at critical measurement rate pc ≈ 0.16, with volume-law entanglement S ∼ L for
p < pc, and area-law entanglement S ∼ const. for p > pc. At criticality, long-time entanglement
grows logarithmically in L (and also builds up logarithmically with time). Reproduced from
Ref. [34]

with scaling exponents z ≈ 1, and ν ≈ 1.3 for random Clifford circuits and uni-
versal scaling function G(x, τ) coexists with a non-universal area-law background
S̄non-universal that evolves smoothly across the transition. For eL � t � L, the
entanglement saturates to a steady-state value with scaling form:

G(x, τ � 1) ∼

⎧
⎪⎪⎨

⎪⎪⎩

|x|ν x → −∞ (entangling-phase)

αlog(|x|) x � 1 (critical-regime)

0 x → +∞ (collapsed-phase)

(15)

Critical phenomena aficionados may notice that the critical exponents ν, z are
suspiciously close to those of a 1+1d bond percolation transition νpercolation = 4/3,
zpercolation = 1. Indeed, the entanglement for monitored random circuits can be
mapped to percolation-like statistical mechanical models (see below); however, the
transition is believed to be generically different from simple percolation except in
the limit of infinite onsite Hilbert space dimension. For completeness, we note that
a distinct but related entanglement transition between thermalizing and many-body
localized (MBL) arises in the purely unitary dynamics (no measurements) generated
by a constant or time-periodic Hamiltonians without temporal randomness [89–91].
In this context, percolation-type entanglement critical phenomena have also been
observed in random Clifford models [92].

A subtle, but crucial point is that the entanglement transition is only visible if one
first computes the entanglement of a trajectory and then averages over trajectories.
By contrast, the trajectory-averaged state ρ = Em(ρm) is generically volume law
entangled for any p (including p = 1!). As a corollary, the entanglement transition
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is not visible in averages of local operators: Em [〈O〉] = trρO, but only in their
higher moments such as: Em [〈O1〉〈O2〉]. This poses a significant challenge to
experimentally observing measurement-induced phase transitions: since computing
non-linear functions of a trajectory (entanglement, higher moments of observables,
etc.) requires measuring many copies of the same trajectory |ψm〉. Since we cannot
simply copy this state (no-cloning theorem!), one must instead sample many times
from the circuit to obtain multiple copies with the same measurement outcomes m.
For such non-linear functions of state, this post-selection on measurement outcomes
generically adds sampling overhead that is exponential in the space-time volume of
the circuit: ∼ exp(pLt) for a circuit of depth t acting on L qubits.

We will discuss below a possible route to avoiding post-selection through
measuring different types of observables involving an ancillary reference qubit
initially entangled with the system, designing a classical decoder to avoid the need
to prepare multiple copies of a trajectory to detect the area-law phase. Using this
strategy, moderate-scale experiments have been successfully performed on trapped-
ion experiment [77] by identifying a model in which the MIPT occurs at very
low measurement density. We note that these methods are currently specific to
Clifford circuits, and it is not clear what their overhead would be for MRCs with
computationally universal gate sets. We also note that in recently investigated space-
time duals of RC dynamics [54] (or equivalently in random tensor network states
in which the tensors are generated by random circuits [93, 94]), a closely related
entanglement transition arises, which can be observed by post-selection only on the
final measurements of physical qubits in the Bell basis [54], incurring exponential
overhead only in spatial volume (∼ eL cost) rather than space-time volume (∼ epLT

cost).

3.2 Alternative Perspectives on MIPTs

Above, we considered a setup where initially unentangled states were evolved
under MRC dynamics resulting in either extensive entanglement production (p <

pc) or continuation of short-range entanglement due to measurement collapse
(p < pc). A fruitful alternative perspective if we instead consider feeding mixed
states into MRCs (or equivalently states that initially share entanglement with
other degrees of freedom), which will expose intriguing connections between the
entanglement transition with themes from quantum information, communication,
and error correction.

3.2.1 Purification Transition

First consider the trajectories arising from inputting a maximally mixed (“infinite
temperature”) state ρ∞ = 1

2L1 with entanglement S = −trρlog ρ = Llog 2 into
an MRC. For p = 1, every qubit is measured, and the state immediately “purifies”
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the maximally mixed into a pure quantum state with vanishing total entanglement
entropy. By contrast, for p = 0, the purely unitary RC evolution does not affect S,
and the state remains maximally mixed at all times. Given our experience with pure-
state inputs, it is natural to expect that there is a critical measurement probability
pc, where MRC dynamics undergoes a phase transition between regimes where
densely repeated measurements purify any mixed initial state (p > pc) or fail to
do so due to scrambling dynamics that obscure whether the measured qubit is in
a mixed state due to environmental entanglement or entanglement of other qubits
in the system (p < pc). A priori it might not be obvious that the purification
transition [30] for mixed state inputs should coincide precisely with entanglement
transitions; however, numerically, they appear to do so [30], and we will see below
in the context of statistical mechanical mappings that these transitions have a unified
“dual” interpretation as the same bulk-ordering transition of a replica-spin model.

An important caveat to the purification interpretation is that at ultra-long time
scales (t ∼ expL), MRCs for any non-zero measurement fraction (p > 0) will
eventually purify an arbitrary input state. Hence, the purification transition is only
evident in the limit eL � t � L � 1.

3.2.2 Ancilla Probe of Purification Transition

We can view the maximally mixed input state ρ∞ as arising from having each
qubit in the system being entangled with an ancilla qubit that does not participate
in the circuit dynamics. The purification perspective then suggests a useful way
to characterize the entanglement/purification transition via examining whether the
mutual information between ancillas and the system (S) survives to long times or is
killed by measurement collapse (Fig. 3).

In fact, to observe the transition, it suffices to examine just a single “reference”
ancilla, R, and look at the trajectory average of the reference ancilla [41]:

SR = EU,m [SR] ≡ EU,m

[−trR ρRlog ρR

]
. (16)

Measured at times 2L � t � L, and in the limit L → ∞, SR exhibits
a discontinuous jump across the transition. This jump provides a convenient
numerical signature that precisely locates the transition via a crossing in curves
of SR versus p for different L.1 This single-ancilla feature has been referred to as
a scalable probe of MIPT, in the sense that it avoids the exponential-in-L cost of
measuring many-body entanglement of a trajectory.

1 As an aside, we note that if the ancilla qubit, R, is initially entangled non-locally with the system,
e.g., by applying a scrambling unitary before undergoing MRC dynamics, then in the L → ∞
limit, SR precisely jumps from log2 for p < pc to 0 for p > pc. On the other hand, if the
ancilla qubit is locally entangled with a single system qubit, SR is not quantized (for example, with
probability p that qubit could immediately get measured even for p < pc) and its jump across the
transition is non-universal.
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Fig. 3 Quantum information perspectives on the MIPT entanglement transition— adapted from
[30]. (a) Entanglement transition as a purification transition for entangled reference ancilla qubits
(R). The entanglement entropy of the reference, SR , serves as an order parameter for the transition.
When a pre-scrambling unitary is included before the MRC dynamics, SR jumps from log(2)

to 0 in the infinite size limit as evidenced by finite-size scaling shown in (b) for random Clifford
circuits. (c) Shows an alternative quantum communications perspective of this setup, where the pre-
scrambling circuit is viewed as a random encoding of the quantum information between R and the
system (S), the MRC channel N represents a communications channel, including monitoring by an
environment E, and then one attempts to decode the information at the output (with a hypothetical
optimal decoder). The entanglement transition represents a phase transition in the quantum channel
capacity of this communications setup (c)

3.2.3 Experimental Observation of MIPT in Trapped Ions

Using a standard method of measuring the reference qubit entanglement entropy
(e.g., using tomography to determine its density matrix) would still require many
copies of a given trajectory that would incur a much larger post-selection overhead.
However, Refs. [30, 77] highlight a method to potentially avoid post-selection. In the
purifying phase, the measurements collapse the reference ancilla into a pure state
disentangled from the system. This pure state may be in a random basis determined
by various measurement outcomes, so that further measurements of the ancilla in
a fixed (e.g., computational) basis would generally see a large-entropy mixture of
0 and 1 outcomes. However, if this basis can be determined using the knowledge
extracted from the measurement outcomes in the circuit, then one could observe
the purity of the entangled state without preparing multiple copies of the same
trajectory. This idea can be carried out for Clifford circuits [77], whose classically
efficient simulations permit one to design a feedforward circuit using quantum
logic to transform the ancillas into the computational basis when they are purified.
Using this technique, Ref. [77] was able to observe finite-size signatures of a MIPT
in a trapped-ion chain without post-selection (Fig. 4). While this experiment was
relatively small scale, involving 8 system qubits and one reference qubit and a
variable small number (≤ 4) of measurements, clear signs of the limiting behavior
in the large- and small-measurement regime were observed, and the methods
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Fig. 4 Finite-size evidence of MIPT entanglement transition in trapped-ion chain—adapted from
[77]. (a) Circuit schematic of experiment: a reference qubit R is entangled with the system S
through an entangling XX gate (unitary uXX = eiπ/4X⊗X). The information is then scrambled
with scrambling circuit UC and subjected to random Clifford MRC dynamics. Four ancillas A
hold the intermediate measurement outcomes, deferring measurement to the end of the circuit.
Before measurement, a feedback decoding circuit UF is then applied to the R and A to attempt
to disentangle the reference and measurement ancilla and place the reference in the computational
basis (which will be successful if the ancilla is purified). (b) Quantum entanglement SQ of R
determined through tomography and averaged over ∼103−4 shots for two trajectories where R
stays mixed (top) or is purified (bottom). (c) Classical entropy of R after a thresholding procedure,
〈SC,T 〉, for various system sizes and measurement rates show a qualitative change in system-size
dependence across the MIPT (determined by simulation to occur at p ≈ 0.72)

developed pave the way for larger-scale experiments (e.g., in architectures where
mid-circuit measurements can be performed to avoid the need to sacrifice ancilla
qubits as a classical register to hold measurement outcomes). Recent work [95]
further shows that related ideas can allow detection of the scrambling phase without
post-selection through entanglement distillation methods.

We emphasize that the efficient measurement-decoding implementations in
these works are special to Clifford circuits and exploited their efficient classical
simulability. While Clifford circuits are an interesting important class of quantum
circuits that play an important role in many areas of quantum information such
as stabilizer codes (among others), they are also in a sense fine-tuned and non-
generic in that they are not capable of universal quantum computation and that small
deviations from Cliffordness ultimately spoil their efficient simulation. It remains
an important open question whether similar decoding strategies can be used to
reduce the overhead associated with post-selection to observe MIPTs in MRCs with
universal gate sets.

3.2.4 Connection to Quantum Channel Capacity and Quantum Error
Correction

The purification perspective also suggests intriguing connections between MIPTs
to quantum communication and error correction [30, 31]. Specifically, one can
view the MRC as a communication channel transmitting input mixed state ρin
initially entangled with reference system R through the MRC dynamics to an output.
A key metric for the quality of a quantum communication channel is quantum
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channel capacity (QCC), which is roughly speaking the number of qubits’ worth
of information that can be transmitted through a noisy channel, optimized over all
possible encoding and decoding protocols. A famous result [96] of Lloyd, Shor,
and Devetak [LSD] relates the QCC for a channel N to the coherent information:
IC[N , ρin] = SA′ − SA′R , where SX is the von Neumann entanglement entropy
of subsystem X, ρin is the input state of system A, A′ denotes the system qubits
after transmission through the channel, and R is the reference ancilla system with
which A is initially entangled, and which does not undergo any dynamics. This
quantity can be understood as the amount of entanglement that survives from
input to output by subtracting off “incoherent” entanglement with the environment
responsible for information loss in the channel. To see this, note that we can purify
the channel as a unitary interaction between the system and an environment E, and
SA′R = SE , where E is the environment that from the output. Namely, LSD showed
that the quantum channel capacity is equal to the stabilizing limit of the coherent
information maximized over input state:

QCC = lim
n→∞

1

n
maxρ∈IC

[N⊗n, ρin
]
. (17)

Intuitively, taking a large number of copies reflects that channel capacity character-
izes the ability to transmit long sequences of communications rather than a single
message. For a certain class of the so-called degradable quantum channels, which
generalize dephasing and erasure error channels, and which were shown [31] to
include MRCs, the coherent information is simply additive, Ic(N⊗n) = nIc(N ),
and it suffices to consider just a single copy of the channel. Further, the average
coherent information for MRCs was shown [31] to be precisely equal to SR .

This strongly suggests that the entanglement/purification transition in MIPTs can
also be regarded as a phase transition in quantum channel capacity (QCC) between
a high-capacity phase where the MRC channel transmitting an extensive number of
qubits (p < pc) and a low-capacity phase where with vanishing fraction of qubit
information transmitted (p > pc).

Strictly speaking, SR is not precisely the same as QCC, but rather reflects a sort of
“average” QCC. Namely, the typical formal definition of QCC involves optimizing
over input state ρin for each random circuit instance (the encoding of the input
may exploit specific knowledge of the circuit gates and measurement locations,
e.g., to avoid encoding information near positions that are heavily measured), and
average QCC would be obtained by averaging each optimized result over circuit
configuration. Instead, SR captures a different order of limits, where averaging over
the MRC ensemble is performed before optimization over inputs (it can be shown
that the optimal input to the average channel is the maximally mixed state ρ∞ [31]).
We note however that optimal communication capacity is rarely if ever achieved in
practice, and a more physically relevant question is whether there exists a threshold
error rate below which one can communicate encoded information at a finite rate.
The above results (see also further detailed arguments and numerical simulations
in [30, 31]) show that MRCs indeed have such a threshold.
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The measurement-induced entanglement transition can also be understood as
a quantum error-correction (QEC) threshold [31, 74]. Indeed, the QCC problem,
which involves encoding information into a quantum state, and subjecting it to a
noisy and error-prone channel before attempting to recover it using a decoder, is a
form of QEC.

3.2.5 Information Gained by the Observer

A closely related perspective of the MIPT can be formulated in terms of the ability
of the observer to extract information about the state of the system. In the volume-
law phase, information scrambling by the unitary evolution hides information into
highly non-local degrees of freedom that are hidden from the local measurements.
As a result, in that phase, the observer would require a time scaling exponentially
with the system size in order to extract all the information about the system. In
contrast, in the area-law phase, the observer can learn everything about the state
of the system in a time of order one. The amount of information extracted by the
measurements about the initial state of the system can be quantified by the Fisher
information [39], which is non-analytic at the MIPT.

4 Replica Statistical Mechanics Models

Most of the phenomenology of measurement-induced phase transitions described
above relied on numerical results, either on small (L ∼ 20 qubits) Haar circuits or
larger (∼103 qubits or qudits) Clifford circuits. To understand the scaling properties
and phase structure of monitored quantum circuits on a firmer ground, we now turn
to an analytic approach by deriving an exact mapping onto a statistical mechanics
model. Using a replica trick, entanglement properties can be mapped onto the free
energy cost of a boundary domain wall in a classical “spin” model [25, 39, 40, 73],
with the entanglement transition corresponding to a simple (replica) symmetry-
breaking transition. This replica approach to performing statistical mechanics
mappings for entanglement transitions was first introduced in the context of random
tensor network states [25], which turn out to be very closely related to MIPTs in
MRCs.

4.1 Replica Trick

Our goal is to compute the Renyi entropies of such individual quantum trajectories,
averaged over measurement outcomes and random unitary gates. Each trajectory is
weighted by the Born probability pm = trρm, where ρm = |ψm〉〈ψm| is the (pure)
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density matrix of the system:

S
(n)
A = EU

∑

m

pm
1

1 − n
log

[
trρn

A,m

(trρm)n

]
, (18)

where EU refers to the Haar average over random unitary gates, and
∑

m denotes
averaging over quantum trajectories (i.e., over measurement outcomes). Here, it
will turn out to be convenient to work without an explicitly normalized density
matrix in computing time evolution, and so we include the factors of ∼ trρ in
the denominator to explicitly enforce normalization of the density matrix when

computing observables. We will denote S
(n)
A the Renyi entropy averaged over

measurement locations.
On the face of it, computing the Renyi entropies (19) might seem like a daunting

task: entanglement properties are usually hard to access analytically, and the non-
equilibrium time evolution combined with the non-linearity of the measurements
makes the problem even harder. However, following Refs. [25, 39, 40, 73], we can
use the replica trick to compute (19). As in the field of classical random spin models
and spin glasses, the basic idea is to rely on the simple identity:

log x = lim
k→0

xk − 1

k
. (19)

This equation is exact, but the “trick” is to compute the average of the logarithm
log x (here over random unitaries and measurement outcomes), which is a hard
task in general, using the average of the moment xk , where k is an integer, which
is usually a lot easier. This step involves analytic continuation in k, which can be
subtle in some cases. Using this replica trick, we can write the Renyi entropies as

S
(n)
A = lim

k→0
EU

∑

m

pm

(1 − n)k

(
(trρn

A,m)k − (trρ⊗kn
m )

)
. (20)

We will write Q = nk+1 to denote the total number of replicas, where the additional
replica comes from the Born probability pm = trρm weighting different quantum
trajectories. Within this replicated state, we can write

S
(n)
A = lim

k→0

1

(1 − n)k
EU

∑

m

(
tr
[
S⊗k

A,nρ
⊗Q
m

]
− tr

[
ρ⊗Q
m

])
, (21)

where SA,n is a permutation “swap” operator implementing the partial trace in
the region A, acting on each of the first k replicas (which are themselves n-fold
replicated states) as

SA,n =
∏

x

χgx , gx =
{

(12 · · · n), x ∈ A,

identity = e, x ∈ Ā.
(22)
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gx labels the permutation on site x, and χgx = ∑
[i]
∣∣igx(1)igx(2) · · · igx(n)

〉〈i1i2 · · · in|
is its representation on the replicated onsite Hilbert space, i.e., on its n-fold tensor
product. As indicated in the equation above, gx is the cyclic (identity) permutation
when x is in the region A (when x is in the region Ā). Here, we use standard
cycle notation to denote permutations, for example, (123)4 refers to the cyclic
permutation 1234 → 2314.

4.2 Haar Calculus and Boltzmann Weights

The next step is to perform the average over the (replicated) random unitary gates,
using the Haar measure (see [97] for a nice physicist-accessible review of some
technical aspects of Haar averages over the unitary group). The average over each
gate can be evaluated using the formula

EU∈U(D)

(
U∗Q ⊗ UQ

)
=

∑

σ,τ∈SQ

WgD(g−1
1 g2)Xv(g1) ⊗ Xv(g2), (23)

where g1, g2 are permutations of the replicas, Wg are called Weingarten functions,
and D = d2, Xv(g1) = X (g1) ⊗ X (g1) permutes the output legs of U by g1
and contracts them with the corresponding legs of U∗, and similarly for Xv(g2)

acting on the input legs. The reason the average EU∈U(D)

(
U∗Q ⊗ UQ

)
can be

expanded onto permutations of the replicas is that such permutations commute with
the action of the unitaries, which are the only terms surviving the Haar average.
The commuting actions of the unitary and permutation groups on a tensor product
Hilbert space is a mathematical statement known as Schur–Weyl duality. This step
can be generalized to other subgroups of the unitary groups, see Ref. [98]. Using
standard tensor network notations [99], we will write Eq. (23) as [40]

(24)

Here WgD(g) denotes the Weingarten function of the permutation g,

WgD(g) = 1

Q!
∑

λ�Q

χλ(e)χλ(g)
∏

(i,j)∈Y (λ)(D − i + j)
, (25)

where the sum is taken over all integer partitions λ of Q [denoted in the above
equation by the notation λ � Q, such that λ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ · · · ,
λi ∈ N and

∑
i λi = Q], and the product is taken over all cells (i, j) in the Young

diagram Y (λ) of the shape λ. Here e denotes the identity group element, and χλ(g)

is the irreducible character of the symmetric group SQ indexed by the partition λ.
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Those Weingarten coefficients WgD(g) can also be computed by contracting the
unitaries within each replica in the left-hand side of Eq. (23) to obtain a trivial result
using U†U = 1. This yields

Xv(e) =
∑

g1,g2∈SQ

WgD(g−1
1 g2) (trXv(g1))Xv(g2), (26)

where e is the identity permutation. The trace of X (g) simply counts the number of
cycles in the permutation g,

trXv(g) = DC(g), (27)

where C(g) is the number of cycles in the permutation g. We thus find

∑

g1∈SQ

WgD

(
g−1

1 g2

)
DC(g2) = δg2 , (28)

where δg is equal to 1, that is g = e, and 0 otherwise. This equation can be used
to define the Weingarten coefficients WgD , as the inverse of DC . Equation (23)
applied to the brick-wall pattern of unitary gates defines a statistical model on the
honeycomb lattice, where permutations live on vertices. Contracting unitary gates
can be done by assigning a weight to links connecting unitaries given by

W(g1, g2) = tr
[X †(g1)X (g2)

] = dC(g−1
1 g2). (29)

Note the factor of d here, instead of D, since we are focusing on a single leg of the
unitary (Xv = X ⊗X ). This weight is associated to all links that were not measured.
If a link was measured instead, all replicas are constrained to be in the same state,
and the weight is instead d after averaging over possible measurement outcomes.
Those equations fully determine the weights of the statistical model in monitored
Haar random circuits. Upon averaging over measurement locations and outcomes,
the weight assigned to a link is therefore given by [40]

Wp(g1, g2) = (1 − p)dC(g−1
1 g2) + pd. (30)

Putting these results together and ignoring for the moment boundary conditions, we
obtain an anisotropic statistical mechanics model defined on the honeycomb lattice,

Z =
∑

{gi∈SQ}

∏

〈ij 〉∈Gs

Wp(g−1
i gj )

∏

〈ij 〉∈Gd

WgD(g−1
i gj ), (31)

where Gs (Gd ) denotes the set of solid (dashed) links on the lattice. In Fig. 5, the
vertical (dashed) links on the honeycomb lattice represent the Weingarten functions
that originated from averaging the two-site unitary gates, and the solid links keep
track of the link weights originating from averaging over measurements.
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Fig. 5 Statistical mechanics model (a) Geometry of the statistical mechanics model of SQ spins.
The red sites correspond to the boundary spins to be pinned by the boundary condition. (b) In the
d = ∞ limit, the model reduces to a Potts model on a square lattice. Reproduced from Ref. [40]

4.3 Boundary Conditions and Domain Wall Free Energy

By imposing different boundary conditions corresponding to fixing permutations at
the boundary, the statistical mechanics model results in different partition functions

ZA = EU,mtr
[
S⊗k

A,nρ
⊗Q
m

]
,

Z0 = EU,mtr
[
ρ⊗Q
m

]
,

(32)

from which the averaged nth Rényi entropy S
(n)
A can be obtained in the replica limit

via

S
(n)
A = n

1 − n
lim

Q→1

ZA − Z0

Q − 1
. (33)

Using the fact that ZA = Z0 = 1 in the replica limit k → 0 (Q → 1), this can
be rewritten in a more intuitive form as the free energy cost of the domain wall
associated with changing the boundary condition in the entanglement region:

S
(n)
A = lim

k→0

FA − F0

k(n − 1)
, (34)

with FA = − log ZA and F0 = − log Z0. The SQ “spins” on the boundary, which
are permutation group elements gx ∈ SQ for boundary sites x, are pinned by the
boundary condition that is uniform and set to gx = e for Z0, corresponding to a
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trivial contraction. The partial trace in ZA is implemented as follows:

gx =
{

gSWAP ≡ (12 · · · n)⊗k, x ∈ A,

identity = e, x ∈ Ā.
(35)

This equation follows immediately from k copies of (22).
Now that we have mapped the calculation of the entanglement entropies of the

random circuit with projective measurements onto a (replica) statistical mechanics
model, and many qualitative features of the entanglement transition can be under-
stood naturally. At small p, the Boltzmann weights give a ferromagnetic interaction
favoring group elements on neighboring sites to be equal, and we thus expect an
ordered phase of the statistical mechanics model. In that phase, the free energy cost
FA − F0 in (34) associated with changing the boundary conditions in the region
A, and thus of creating a domain wall, scales with the size of the interval LA of

A at long times, corresponding to volume-law entanglement S
(n)
A ∼ LA. As the

measurement rate p gets closer to 1, the effective temperature of the statistical
mechanics model is increased, leading to a disordered phase. The domain wall
condensate present in this phase can freely absorb the domain wall at the boundaries
of the entanglement interval, such that, for a distance exceeding the correlation
length from the boundary, there is no additional free energy cost from the boundary
domain. In this limit, the free-energy cost of the boundary domain will scale like the

boundary of A, corresponding to area-law scaling of entanglement S
(n)
A ∼ const.

4.4 Symmetry and Conformal Invariance

A crucial property of the statistical mechanics model derived above (Eq. (31)) is that
the Boltzmann weights are invariant under global right- and left-multiplication of all
group elements

gi → hLgih
−1
R , gj → hLgjh

−1
R , where hL, hR ∈ SQ. (36)

This follows from the fact that both the cycle counting function and the Weingarten
functions (which are inverse of each other) are class functions, that is, they depend
only on the conjugacy class of the permutation group elements. Physically, the two
factors of SQ symmetry correspond to the separate invariance under permuting the
replicas in the forward (U ) and backward (U∗) time contours. This structure will be
important in the next section and in the discussion of MRCs with symmetry below.

This general mapping indicates that the measurement-induced transition corre-
sponds to a simple ordering, (replica) symmetry-breaking transition. In general,
assuming that the transition is of second order, it should be described by a two-
dimensional conformal field theory (CFT) with central charge c = 0 in the replica
limit Q → 1. (Recall that c measures the way the free energy changes when a finite
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scale is introduced; since here the partition function Z0 = 1 is trivial in the replica
limit, we have c = 0.) Such CFTs at central charge c = 0 are non-unitary and
are especially complicated even in two dimensions. However, there are a number
of general properties that follow from general scaling considerations and conformal
invariance.

Since the bulk properties of the transition only depend on Q, the statistical model
approach naturally explains why all Rényi entropies with n ≥ 1 have a transition at
the same value of pc, as observed in the numerics. Conformal invariance also allows
us to derive the general scaling form of the entanglement entropy near criticality, by
noting that the ratio of partition functions ZA/Z0 that appears in (34) corresponds
in the CFT language to the two-point function of a boundary condition changing
(BCC) operator φBCC [100, 101]

ZA/Z0 = 〈φBCC(LA)φBCC(0)〉, (37)

where the operators are inserted at the boundary of the entanglement interval A.
Near criticality, this two-point function scales as ∼ 1/L

2h(n,m)
A fn,m(LA/ξQ) with

ξQ ∼ |p − pc(Q)|−ν(Q) the correlation length of the statistical mechanics model,
and fn,m are universal scaling functions that depend on n and m independently.
Plugging this expression into the replica formula (34), we find the general scaling
of the entanglement entropy (up to non-universal additive terms)

S
(n)
A = αnlog LA + fn

(
LA

ξ

)
, (38)

with ξ ∼ |p − pc|−ν the correlation length in the limit Q → 1, and αn =
2

n−1
∂h
∂m

∣∣
m=0 is a universal prefactor. Note that αn is unrelated to the central charge

of the theory and instead is a boundary critical exponent. In particular, conformal

invariance predicts that S
(n)
A ∼ log LA at criticality p = pc, with a universal

prefactor that depends on the Rényi index n.

4.5 Large Hilbert Space Dimension Limit

4.5.1 Mapping Onto Classical Percolation

In the limit of large onsite Hilbert space dimension, d → ∞, the SQ model above
reduces to a Potts model with Q! colors defined on the square lattice. To see this,
we evaluate the partition function weight Jp(gi, gj ; gk) associated with each down
triangle in Fig. 5, integrating out the middle spin:

Jp

(
gi, gj ; gk

) =
∑

gl∈SQ

Wp

(
g−1

i gl

)
Wp

(
g−1

j gl

)
WgD

(
g−1

l gk

)
. (39)
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The partition function can then be equivalently written in terms of the triangle
weight Jp as

Z =
∑

{gi∈SQ}

∏

〈ijk〉
Jp(gi, gj ; gk), (40)

subject to the appropriate boundary conditions that distinguish Z0 from ZA. In the
d → ∞ limit, we have dC(g) ∼ dQδg , where δg is the delta function that gives
1 if and only if g = e is the identity element in the permutation group SQ and
gives 0 otherwise. This follows from the fact that the number of cycles C(g) is
maximized by the trivial permutation: C(g) = Q. Since the Weingarten weights
are defined as the inverse of DC(g) with D = d2, we immediately find that in the
d → ∞ limit, we have WgD(g) = D−Qδg . Substituting into the triangle weight,
the triangle weight (39) and after some straightforward algebra, one finds [40]

Jp(gi, gj ; gk) = ((1 − p)δ
g−1
i gk

+ p)((1 − p)δ
g−1
j gk

+ p), (41)

which further factorizes into partition function weights defined separately on the
bonds 〈ik〉 and 〈jk〉. The partition function weight across the bond 〈ik〉 equals 1 if
gi = gk and p if gi �= gk , and an analogous weight is assigned to the bond 〈jk〉.
If we treat each onsite group element gi ∈ SQ as a state (color) in a spin model,
the partition function weight precisely matches that of a Q!-state Potts model on a
square lattice, whose links are between sites i and k, and between sites i and j in
each unit cell.

In order to analytically continue Q → 1, we rewrite the partition function
of this Potts model in terms of the so-called Fortuin–Kasteleyn (FK) cluster
expansion [102]. We expand the partition function as a product over links with
weight (1−p)δ

g−1
i gk

+p, by assigning an “occupied” link to the term (1−p)δ
g−1
i gk

,

while an empty link corresponds to picking the trivial term p in the product. The
occupied links form clusters, where the permutation spins are forced to be the
same due to the Kronecker delta functions. One can then perform the sum over
permutations

∑
{gi∈SQ} in the partition function (40) exactly, which allows us to

rewrite it as a sum over FK clusters:

Z =
∑

clusters

p#empty links(1 − p)#occupied links (Q!)#clusters . (42)

Using this exact rewriting of the partition function, we can now readily take the
replica limit Q → 1 since Q only appears in the Boltzmann weight of the clusters
in that formulation. In the replica limit, all clusters carry a trivial weight, and
the partition function (42) describes a classical bond percolation problem, where
links are occupied with probability 1 − p (no measurement) and are empty with
probability p (corresponding intuitively to a local measurement cutting the circuit).
This percolation picture of the transition is rather appealing and natural and predicts
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critical exponents that are close to the ones measured even for finite d (d = 2 in
most numerical simulations). For example, it predicts a diverging correlation length
ξ ∼ |p − pc|−4/3, with pc = 1/2 in this percolation limit.

4.5.2 Entanglement and Minimal-Cut Picture

To compute the scaling of entanglement in this limit, it turns out to be more con-
venient to consider configurations with mixed measurement locations. Averaging
over measurement outcomes and over Haar gates for a such given configuration
of measurement locations, the statistical model mapping described above still goes

through, with the link weight now being either Vl(g
−1
i gj ) = dC(g−1

i gj if that link
is not measured, or Vl(g

−1
i gj ) = d if that link coincides with a measurement. Now

in the limit d � 1, we have Vl(g
−1
i gj ) ∼ dQδ

g−1
i gj

as before so the statistical

mechanics model for such fixed measurement locations is a fully ordered (zero
temperature) ferromagnet on a lattice diluted by the measurements: each bond that is
measured is effectively cut, while all other weights constrain the statistical model’s
spins to be the same in this limit. This is consistent with the percolation picture
derived above.

As we show next, a frustrated link costs a large energy ∼ log d, leading to an
effective minimal-cut picture in that limit [23]. To see this, recall that computing
entanglement requires computing two different partition functions ZA and Z0,
which differs only by their boundary condition on the top boundary of the circuit.
The boundary condition for the calculation of ZA forces a different boundary
condition in region A and thus introduces a domain wall (DW) near the top
boundary. In the limit d → ∞, the DW is forced to follow a minimal cut, defined as
a path cutting a minimum number of unmeasured links (assumed to be unique for
simplicity). Due to the uniform boundary condition in Z0, all vertex elements in Z0
are equal, so Z0 is trivial and given by a single configuration of spins. ZA differs
from Z0 due to the fact the DW will lead to frustrated links that contribute different
weights to ZA. Each frustrated unmeasured link contributes a very large energy cost
associated with this domain wall between g = gSWAP and g = e

�E = (n − 1)m log d, (43)

using the energy weight on each link El = −log d C(g). Since this energy
cost is very large as d � 1, the domain wall will follow a path through the
circuit minimizing the number of unmeasured links it has to cut. This leads to the
expression ZA = p(1−n)m�DWZ0, with �DW the number of unmeasured links that
the DW crosses along the minimal cut [23, 63]. In the replica limit, this leads to a
simple expression for the Renyi entropies

S
(n)
A = �DW log d, (44)
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where this equation is valid for any given configuration of measurement locations.
We will use �DW to denote the average of �DW over measurement locations,
which are simply percolation configurations. This quantity has a simple scaling in
percolation: it is extensive �DW ∼ LA (volume law) for p0 < p0,c = 1/2, and
constant �DW ∼ O(1) (area law) for p0 > p0,c = 1/2. At criticality, this implies a
logarithmic scaling of the entanglement entropy [23, 103, 104]

S
(n)
A ≈

d�1

√
3

π
log d log LA. (45)

Strictly speaking, this minimal-cut formula only applies for d = ∞, while for d

large but finite, it is only valid up for distances smaller than a crossover length
LA � ξ(d) that we briefly discuss in the next section.

4.6 Finite d Universality Class

The infinite onsite Hilbert space dimension limit discussed above has an accidentally
enlarged symmetry. The Potts model has a symmetry group SQ! that is much larger
than the SQ × SQ symmetry of the generic Boltzmann weights at finite d. (Note
that SQ × SQ is a subgroup of SQ!: the left and right actions of SQ on itself have
a permutation g ∈ SQ! representation—this is known as Cayley’s theorem.) The
leading perturbation implementing this symmetry breaking in the Potts model was
identified in Refs. [25, 40] and turns out to be relevant, with scaling dimension
� = 5

4 . For any large but finite onsite Hilbert space dimension d, we thus expect a
crossover from percolation criticality for length scales � � ξ(d) ∼ d4/3 [23], to the
finite d universality class (which does not depend on d) at long distances � � ξ(d).
The boundary and bulk conformal spectrum of this theory were recently studied
numerically [36, 42, 62], and a Landau–Ginzburg action was proposed in Ref. [27].
In the case of Clifford circuits, the universality class of the transition depends in a
more subtle way on the onsite Hilbert space dimension [29, 98].

5 Symmetry and Topology in Measurement-Induced Phases
and Criticality

Looking beyond featureless Haar-random two-qubit gates and single-site mea-
surements, there is a huge variety of possible variations on a theme, including
considering circuits and measurements that obey symmetry constraints, including
multi-site measurements that “collapse” into interesting, entangled states rather
than featureless product states, and many others. Here, we briefly describe a small
selection of these enrichments to give a flavor of the possibilities.
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5.1 Symmetric Monitored Random Circuits

A simple extension of the MRC models described above is to include symmetry
constraints in the random gates and measurement operations, i.e., demand that
these preserve a symmetry group G. The appropriate symmetry depends on the
microscopic realization of the qubits in question. For example, trapped-ion and
Rydberg atom systems natural have interactions that respect a discrete Ising sym-
metries (G = Z2), superconducting qubit and cavity-QED systems typically have
U(1)-conserving interactions, and quantum dot spin-qubits often interact by SU(2)-
invariant spin-exchange (absent spin–orbit coupling). Of these, so only simpler
Abelian symmetries such as G = Z2 [43, 45, 46, 59, 64] and G = U(1) [63, 70]
have been studied theoretically.

The inclusion of symmetry naturally begs two questions: (i) are the univer-
sal properties of the entanglement transition modified by the symmetry? and
(ii) are there additional measurement-induced phases or critical phenomena that
arise with symmetry [analogous to how symmetry distinguishes spontaneous-
symmetry-broken and symmetry-protected topological (SPT) or symmetry-enriched
topological (SET) phases in equilibrium]? So far, the answer to the question (i)
appears to be negative [63]; at least in the limit of large onsite dimension d and
small-scale numerics for d = 2, it appears that the entanglement transition occurs
in a regime where the charge degrees of freedom are frozen by measurements and
do not affect the entanglement transition bulk criticality. However, the answer to
question (ii) is affirmative, and numerous examples of transitions in both the area-
law and volume-law phases have been constructed in a wide range of universality
classes.

To set the stage, let us consider the general symmetry structure of the statistical
mechanics replica models. As detailed in [59] (see also [27]), in replicated statistical
mechanics models, a symmetry group G of the circuit dynamics is incorporated
into the Q-fold replicated theory as a separate G symmetry separately for each
replica and, within each replica, separately for both each forward (U ) and backward
(U∗) “contours” of the time evolution. These symmetry factors are, respectively,
permuted by the left (forward time contour) and right (backward time contour)
replica-permutation symmetry of the permutation “spins” in the stat-mech descrip-
tion. Finally, hermiticity of the density matrix implies that exchanging the forward
and backward contours and complex conjugating the coefficients are a symmetry.
Since doing this Hermitian conjugation twice is trivial, this gives an extra Z2
factor to the symmetry group, but which acts non-trivially on the other replicated
symmetry groups [27]. Combined, this gives the overall symmetry group:

G =
[(

G
×Q
L � SQ,L

)
×
(
G

×Q
R � SQ,R

)]
� Z

H

2 , (46)

where � indicates that the replica permutation action of the symmetric group SQ

also permutes the associated G symmetries for each replica, and hence, these two
factors do not generally commute, the left (L) and right (R) subscripts refer to the
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forward and backward contours, respectively, and the H superscript on the final Z2
factor reminds that this is associated with hermiticity. It is not yet clear whether or
how the Z

H

2 factor plays a role in determining the structure of MIPTs, so we ignore
it in the following, but simply mention it for completeness.

5.2 Area-Law Phases

As described above, the area-to-volume-law entangled transition is a transition
between phases in which the replica permutation symmetry, respectively, remains
intact or becomes spontaneously broken (Fig. 6).

Since the short-range entanglement structure of the area-law phase is identical
to that found in ground states of local Hamiltonians, it is natural to guess that
the area-law MRC phases with symmetry G coincide with equilibrium phases
(i.e., paramagnetic, spontaneous-symmetry-broken, SPT, or SET) with the same
symmetry.

Indeed, for discrete symmetries, it is straightforward to design models that
achieve a large class of symmetry-breaking and topological orders in the
measurement-dominated regime. To be specific, consider Ising-symmetric random
Clifford circuits (G = Z2), with (space-time-random) measurements drawn from
local generators of a stabilizer group S (i.e., a group of mutually commuting
Pauli strings). In the extreme limit of measurement-only dynamics, these stabilizer
measurements project into a state specified by eigenvalues of s = ±1 for each s ∈ S .
Such stabilizer states can support a large class of interesting many-body orders

Fig. 6 Measurement-induced stabilizer orders. Phase diagram (a) and circuit model (b) of Ising-
symmetric MRCs exhibiting area-law phases with- and without-order reproduced from Ref. [46].
The model in (a) consists of measurements with probability p or random two-qubit Clifford gates
with probability 1−p. Measurements are randomly chosen as Z⊗Z measurements with probability
r or single-qubit X ⊗ 1 or 1 ⊗ Z measurements with probability 1 − r . The phase diagram in (b)
includes a critical fan (center region) that would shrink to a phase boundary line for an infinite
system. (c)-(d) are reproduced from Ref. [45] and show a model (c) that includes measurements of
either X ⊗ Z ⊗ X stabilizers for a cluster state (a 1d SPT protected by a pair of Z2 symmetries
generated by

∏
i Z2i and

∏
i Z2i+1, respectively), single-site Z operators, and random Clifford

gates with probabilities pt , ps, pu, respectively. In the measurement-dominated regime (dashed
box), ps tunes between area-law phases with trivial or SPT order. These give way to volume-law
entangled phases at sufficiently large pu



Entanglement Dynamics in Hybrid Quantum Circuits 241

including discrete symmetry-breaking and symmetry-protected topological (SPT)
orders, and non-chiral-topological or fracton orders (i.e., toric code like orders but
not fractional quantum Hall effect with chiral edge modes).

5.2.1 Measurement-Induced Symmetry-Breaking Order in 1+ 1d

For example, in a qubit chain with symmetry generated by X = ∏
i Xi , measuring

s ∈ {ZiZi+1} on every bond projects into random spin-glass state(s) with frozen but
random spin texture si,i+1 = ZiZi+1 = ±1∀i. Here, a fixed set of measurement
outcomes si actually correspond to two possible states. For example, for a 3-site
chain states with {s12, s23} = {+1,−1} form a two-dimensional subspace with
basis states {| ↑↑↓〉, | ↓↓↑〉} that each spontaneously break the Z2 symmetry (or
equivalently, we can form cat-like superpositions of | ↑↑↓〉 ± | ↓↓↑〉 that have
definite overall X = ±1, but have long-range mutual information between all spins).
Thus, we see that the states stabilized by this measurement-only dynamics have the
same form as the spontaneous-symmetry-breaking ground space of an ideal Ising
magnet with couplings that are ferromagnetic or antiferromagnetic depending on
si,i+1 = ±1.

We note that different trajectories have different random frozen configurations,
so that the trajectory average of long-range symmetry-breaking correlations such
as lim|i−j |→∞ Em,U 〈ZiZj 〉 = 0 strictly vanishes (this could be anticipated on
general grounds since such linear averages always behave like infinite-temperature
averages), but where higher moments of symmetry-breaking correlations such as the
Edwards–Anderson (EA)-type order parameter χ(2) = lim|i−j |→∞ Em,U |〈ZiZj 〉|2
are non-vanishing.

So far, we have considered an idealized limit with only measurements. Numerical
simulations [45, 46, 59] that perturb away from this fine-tuned point by including
random unitary dynamics (e.g., by random Clifford circuits, which can be efficiently
simulated) or by competing stabilizer measurements (e.g., of non-commuting
observables such as {Xi} that stabilize trivial symmetric product states) show
clear evidence that these area-law orders survive over a finite range of couplings
in thermodynamically large systems and extend to generic area-law phase with
symmetry-breaking order in trajectories with area-law entanglement. We note that,
generically, the spin-glass pattern found in the ordered trajectories is not frozen
in time but undergoes (classical) stochastic fluctuations induced by competing
measurements or unitary gates between each time step.

5.2.2 Measurement-Induced Topological Orders

The above recipe can be straightforwardly extended to produce models of area-
law phases with more complicated measurement-induced orders including: SPT
orders [45], intrinsic topological or SET order, and fracton orders—essentially any
phase describable by stabilizer states. As for the measurement-induced spontaneous-
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symmetry-breaking phase discussed above, these phases are characterized by glassy
order in each trajectory, which can be diagnosed by various non-local analogs of
the EA order parameter described above. Due to its relation to error correction, we
briefly elaborate on a particular example: measurement-induced Z2 (a.k.a. “toric”
or “surface” codes) topological order [105] in 2 + 1d MRCs.

Following [105], consider a standard model of the surface code consisting of
a qubit array on a chess board (square lattice with two-site unit cell consisting
of alternating “black” and “white” squares), whose dynamics are dominated by
measurements of stabilizers consisting of product of X or Z operators, respectively,
over the corners of the white and black squares or “plaquettes” (P), sP ∈
{∏i∈Pwhite

Xi,
∏

i∈Pblack
Zi}. In the measurement-dominated regime, measurements

then collapse the state into one adiabatically connected to a stabilizer state sP ∈
{±1}. If this model is defined on closed manifold, then specifying sP for all
plaquettes, P uniquely specifies a state. However, if the model is defined on a
topologically non-trivial manifold, M , with genus g, e.g., a torus (g = 2), then
the stabilizers only fix a ground space of dimension 4g , which can be seen by
noting that for each non-trivial cycle c ∈ π1(M), around a handle of M , one
can define a pair of additional stabilizers, Xc,Zc = ∏

i∈M Xi, Zi , which are
independent from, but commute with the measured stabilizers s. Xc and Zc′ operator
loops that intersect but wrap different cycles anticommute and hence cannot have
simultaneous eigenstates. This topological ground space has been proposed as a
promising quantum memory for fault-tolerant computation, since its states cannot be
distinguished by local noise, but rather, only by measuring non-local string operators
(X,Z)c.

This gives rise to the topological degeneracy in the measurement-stabilized
trajectories. In Ref. [105], it was shown that by tuning the fraction of surface-code
stabilizer measurements with competing random circuit evolution or trivial product-
state stabilizer measurements, one can obtain phase transitions between trajectories
with and without Z2 topological order. Unlike for the symmetry-breaking example
above, this distinction cannot be probed by any local measurement. Instead, one can
diagnose topological order either by two alternative routes. Each trajectory would
exhibit a quantized entanglement entropy γ = log 2 [105–107] defined via the
subleading constant part of the entanglement of a region A: SA = a|∂A|−γ , where
a is a non-universal constant, and |∂A| is the length of the perimeter of region A.

Alternatively, one could consider the dynamics of a maximally mixed state: here,
in the area-law phase, the measurements tend to purify the state. However, in the
topologically ordered phase, measurements only purify the local degrees of freedom
and leave an equal-weighted mixture over the 4g states of the topological ground
space resulting in entanglement S ∼ 2g log 2 in the steady state.

The model of Ref. [105] also exhibits an unconventional critical point with non-
relativistic dynamics (dynamical exponent z �= 1), and logarithmic violations of
area-law scaling in 2d, possibly related to emergent subsystem symmetries. This
highlights the potential for novel types of critical phenomena arising in MRC
dynamics, which do not naturally arise in more familiar equilibrium settings.
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5.3 Volume-Law Phases

The prospect of measurement-induced orders in the area-law phase could be
anticipated based on our knowledge of ground-state phases of equilibrium matter,
which also exhibit area-law entanglement. Perhaps more surprising is the prospect
of additional phases arising within the volume-law entangled regime, where the
entanglement structure of trajectories is similar to that of finite-temperature equilib-
rium states, which do not support any quantum orders and rule out even classical
orders in low dimensions.

5.3.1 Volume-Law Phases with Order—Stat-Mech Perspective

In the statistical mechanics language, the volume-law regime corresponds to
spontaneously broken SQ,L × SQ,R replica permutation symmetry. However, the
residual G

×Q
L,R symmetries remain and could conceivably be spontaneously broken,

or protect or enrich topology. These various possibilities are discussed in detail in
Ref. [59], which provided a particularly simple argument (supported by numerics)
for volume-law phases with order: Consider stacking (and weakly coupling) two
subsystems that, before coupling, respectively, form an ordered area-law phase,
and a featureless volume-law phase of degrees of freedom with trivial symmetry
properties. Since each of these systems corresponds to gapped phases in the
stat-mech variables, weak coupling between the two will not destroy the symmetry-
breaking or topological properties of the first subsystem, nor the volume-law
entangled (replica-permutation-breaking order) of the second subsystem, and will
therefore result in an ordered and volume-law entangled phase. While “obvious”
in the stat-mech language, this predicts a highly non-trivial result in terms of
the original degrees of freedom in the MRC. Namely, that it is possible to have
stable phases with quantum-coherent orders in the highly entangled and scrambled
trajectories of a quantum circuit! The coexistence of volume-law entanglement and
symmetry-breaking spin-glass order (below the classical lower critical dimension)
was also observed numerically in symmetric Clifford circuits in Refs. [46, 64].

5.3.2 Charge Sharpening Transitions in the Volume-Law Phase

Beyond the possibility of stabilizing ground-state orders in volume-law entangled
trajectories, it turns out that there are additional phases and associated critical
phenomena within the volume-law regime of symmetric MRCs that cannot be
understood by any ground-state order parameter, but rather are distinguished by
sharply distinct dynamics of symmetry quantum numbers (which we henceforth
refer to as “charges”).

For concreteness, let us consider augmenting the U(1)-symmetric RC model
described above in Sect. 2.3, by adding random measurements of each site with
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Fig. 7 Schematic phase diagram of 1 + 1d U(1) Symmetry MRCs for the U(1) symmetric MRC
model described in the text (reproduced from Ref. [63]), includes both a volume-law entanglement
(red) to area-law entanglement (blue) transition at critical measurement rate p = pc, and a charge
sharpening transition within the volume-law phase at p = p#. The diffusive growth of Renyi
entropies, Sn, associated with diffusive dynamics and rare dead-region physics, for random unitary
circuit evolution p = 0, immediately converts into ballistic growth for any non-zero measurement
rate p > 0. t# denotes the time scale for measurements to sharpen an initial state that is a
superposition of different charge sectors into one with definite charge. The purification time for
an initially mixed state to collapse into a pure state due to measurements is denoted by tπ . L

denotes system size

probability p in the charge basis of the qubit and in any basis of the neutral large-
d qudit [63]. This model can be analyzed by generalizing the statistical mechanics
model to incorporate symmetry, which results in hardcore charge degrees of freedom
that undergo a random walk on the replicated circuit network, and which are coupled
to the replica-permutation spins by the measurements [63]. In the large-d limit,
it is possible to take the replica limit exactly and analyze the charge dynamics
as a classical stochastic evolution. In the large-d limit, standard Haar averaging
formulas immediately imply that off-diagonal coherences between density matrix
elements of different charges are strictly vanishing, i.e., this model does not support
any spontaneous breaking of U(1) symmetry. Nevertheless, two distinct phases are
observed [63] within the volume-law entangled regime, separated by an apparently
continuous phase transition at critical measurement probability p# < pc, which
precedes the entanglement transition at pc (pc = 1/2 in the large-d limit).

For p < p#, the measurements fail to collapse an initial superposition of different
total charges into a given charge sector (Fig. 7), i.e., the global symmetry quantum
number (“charge”) remains “fuzzy” up to a time scale t � L that diverges with
system size L. By contrast, for p > p#, measurements collapse the system into a
state with sharp total charge in finite time independent of system size (for t � L

measurements always sharpen the total charge). In 1 + 1d models, these charge
“sharp” and charge “fuzzy” phases are distinguished by the behavior of charge
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fluctuations [63, 108]:

C(r) = Em,U

[〈σz(r)σ z(0)〉 − 〈σz(r)〉〈σz(0)〉] ∼
{

1/r2 p ≤ p#

e−r/ξ p > p#
, (47)

where the power-law decay for p < p# is expected to become truly long-
ranged limr→∞ C(r) ∼ const. in higher dimensions, or with discrete Abelian
symmetries [108]. In addition, this work reveals that even a small amount of
measurements singularly change the dynamics of entanglement growth and charge
fluctuations from the diffusive (dynamical exponent z = 2) motion for p = 0, to
ballistic (z = 1) for 0 < p ≤ p#, and eventually to exponentially fast relaxation
(z → ∞, massive dynamics) for p > p#.

We emphasize that unlike the measurement-induced symmetry-breaking and
topological orders described above, which are smoothly connected to equilibrium
ground-state orders,2 this charge sharpening transition (like the entanglement
transition) is a purely dynamical effect that is special to non-equilibrium MRC
dynamics. While these examples give an idea of the possibilities for new types
of non-equilibrium measurement-induced orders, at present, a rigorous/exhaustive
classification of measurement-induced orders remains an open challenge.

6 Discussion

The examples reviewed above highlight the promise for using well-developed
statistical mechanics tools to investigate universal aspects of emerging quantum
dynamics and quantum information theory concepts and to uncover new regimes
of measurement-induced non-equilibrium orders.

Despite rapid progress, several open challenges remain. The statistical mechanics
model mapping of MRC dynamics onto a classical spin model establishes the
existence of these transitions through convergence of strong- and weak- coupling
expansions, establishes an equivalence between the entanglement- and purification-
transition perspectives, and strongly suggests that the 1+1d entanglement transition
is described by a (non-unitary) conformal field theory (CFT). However, a detailed
analytic understanding of the precise universality class and CFT content remains
unsolved (though these questions are being explored numerically [36, 42, 62]).
To gain analytic insight into this question, and particularly to study measurement-
induced criticality and orders in 2d and 3d circuits and incorporate more complex

2 For example, by continuously turning off the coupling between the stabilizer-state qubits and
volume-law entangled trivial degrees of freedom in the above construction, and then dialing
the stabilizer measurement probability to unity, which, in the replicated statistical mechanics
description corresponds to disentangling two gapped degrees of freedom and then smoothly
changing couplings within a gapped phase, respectively, and does not produce a phase transition.
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features such as multiple types of non-commuting measurements, it may be
desirable to develop continuum quantum field theory methods for treating quan-
tum circuits (see [70] for preliminary efforts along these lines for free-fermion
circuits). The study of different classes of circuits, including e.g., Gaussian free-
fermion circuits and tensor networks [37, 56, 65, 70, 109, 110], or self-dual unitary
circuits [17, 18], might also help addressing some of those questions, as well as
revealing new measurement-stabilized phases. Looking beyond these more detailed
aspects, a natural question is whether there are other paradigms for obtaining
universal phenomena in quantum circuit dynamics, for example, which do not
require post-selection on measurement outcomes to observe and could be explored
experimentally as well as theoretically.

Early studies have also suggested intriguing possibility of gaining universal
insights into fundamental limits of quantum communication. However, there is
significant room to put these suggested connections on more rigorous footing and
to explore other connections between statistical mechanics of random circuits to
random quantum error-correcting codes, or possibly even to fundamental quantum
complexity theory. One could even imagine that studies of noise and error prop-
agation in random circuits might yield practical design principles for optimizing
aspects (e.g., dimensionality, connectivity, etc. . . ) of qubit architectures in order
to maximize their ability to generate complicated entangled states or minimize the
impact of noise on quantum algorithms.
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