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Abstract Local Convertibility refers to the possibility of transforming a given state
into a target one, just by means of LOCC with respect to a given bipartition of
the system, and it is possible if and only if all the Rényi entropies of the initial
state are smaller than those of the target state. We apply this concept to adiabatic
evolutions and ask whether they can be rendered through LOCC in the sense
above. We argue that a lack of differential local convertibility (dLC) signals a
higher computational power of the system’s quantum phase, which is also usually
connected with the existence of long-range entanglement, topological order, or edge
states. Remarkably, dLC can detect these global properties already by considering
small subsystems. Moreover, we connect dLC to spontaneous symmetry breaking
by arguing that states with finite order parameters must be the most classical ones
and thus be locally convertible.

Entanglement is one of the primary resources for quantum technology [1–7], as it
encodes the possibility of storing a large amount of information on a registry on
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one side and to change a state even in parts that are not directly manipulated[8, 9].
However, it is also clear that it is not the mere amount of entanglement, which
is important, but rather how it is distributed and how effectively it can be used
citealgorithm, gottesman, vidal2003a, vandernest2007, Briegel08, winter, eisert,
Briegel09, vandernest2013, Raussendorf13.

The quantum adiabatic algorithm provides a good paradigm to test the properties
of a given phase of matter, as it has been proven to provide a universal platform for
quantum computation [20]. It is based on the idea that starting from a simple system
with a known ground state, through a suitable adiabatic evolution, the final ground
state can encode the result of a computation or the state of a quantum system one
aims at simulating. Since the closing of the gap forces a dramatic slowdown in the
rate at which the Hamiltonian can be changed and the system expected to remain
in its instantaneous ground state, crossing a phase transition through the evolution
typically impairs the efficacy of an adiabatic algorithm. Hence, for this algorithm to
provide a nontrivial advantage, the choice of the initial quantum phase is crucial.

A criterion for this choice is provided by the concept of differential Local Con-
vertibility (dLC), which addresses the question of whether it is possible to reproduce
the adiabatic evolution of a bipartite quantum system through Local Operations and
Classical Communications (LOCCs) [21, 22]. Namely, upon partitioning a many-
body system into two blocks A and B, one questions whether the response of
the ground state |0〉 to an external perturbation can be rendered through LOCC
restricted to A and B individually? If affirmative, the ground state can be moved
around within a given quantum phase by LOCC. If negative, the adiabatic evolution
induced by the perturbation cannot be captured classically (due to the long-range
coherence present in the system). Quantitatively, it accounts for the response of the
Rényi entropy

Sα
.= 1

1 − α
log Tr ρα

A (1)

to the changing of a control parameter g in the Hamiltonian. Here, ρA
.= Tr B |0〉〈0|

is the reduced density matrix of the block A and α is a free parameter which tunes
different entanglement measures [23]. For instance, while low α’s weight more
evenly all eigenvalues of ρA, higher values of α enhance the role of the larger
eigenvalues. If all the Rènyi entropies decrease along a given path, this evolution
can also be rendered through LOCC (at least concerning the chosen partition of
A and B) [24, 25], and thus the adiabatic algorithm cannot provide a significant
improvement. This observation was at the heart of [26, 27].

Naïvely, one expects entanglement to always grow moving toward a phase
transition. In particular, S0 = log R, where R is the Schmidt rank of the state, i.e.,
the number of nonzero eigenvalues of ρA (while S1 is the von Neumann entropy
measuring the entanglement entropy for the subsystem A). Generically, R and thus
S0 increase with ξ because more degrees of freedom get entangled by increasing the
range of correlations. Nonetheless, the study of Local Convertibility shows that the
picture is more complex when higher α entropies are considered. Certain systems
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can support other forms of entanglement not captured by local correlation, which
are referred to as long-range entanglement (LRE) [28]. If the latter would decrease
approaching a phase transition, the competition between the different forms of
entanglement could be detected as a lack of dLC in all directions.

A simple form of LRE is connected to the existence of edge states at distant
boundaries of a system [29, 30]. Furthermore, these edge states are usually the
reflection of the existence of some sort of topological order. Interestingly, upon
partitioning a system into two, new pairs of edge states are created also at the
boundaries of the partitions. While for thermodynamic systems, the LRE connecting
the edge states is maximal, when the size of one of the partitions becomes
comparable with the correlation length, the edge state can undergo a process of
recombination which reduces their LRE. Through this mechanism, higher Rènyi
entropies can decrease as the correlation length increases, thus destroying dLC in
any directions of the adiabatic evolution. The behavior of dLC in relation to quantum
phase transitions and at criticality has been analyzed, respectively, in [31] and [32].

In addition to shedding new light on the role of edge states in providing a key
advantage in a universal quantum computational platform, dLC also proves useful in
identifying phases characterized by LRE. LRE is defined as that entanglement that
cannot be destroyed by reducing the state to a trivial (factorized) one through a finite
depth quantum circuit [28]. As such, it is usually revealed through nonlocal string
order parameters whose lengths exceed the order of usual correlations. Remarkably,
dLC can detect LRE using partitions of the order of the correlation length, thus
providing a somewhat local probe of an elusive long-range property [33–37]. We
will analyze a few examples of models displaying topological order in light of their
local convertibility. Topological phases have attracted a lot of attention for their
ability to defy the Ginzburg–Landau paradigm by not having any finite local order
parameter, but rather a topological one [38, 39].

However, dLC has also been connected to the usual spontaneous symmetry
breaking mechanism responsible for the ensuing of local order [40]. In particular,
on the whole, the complete understanding of the physical mechanism that selects
the symmetry-breaking ground states in the thermodynamic limit remains an open
problem [41, 42]. In complete analogy with the case of classical phase transitions
driven by temperature, the common explanation of this phenomenon invokes the
unavoidable presence of some local, however small, perturbing external field that
selects one of the maximally symmetry-breaking ground states (MSBGSs) among
all the elements of the quantum ground space [43]. Crucially, in this type of
reasoning, it is assumed that the MSBGSs are the most classical ones and thus the
ones that are selected in real-world situations, under the effect of decoherence that
quickly destroys macroscopic coherent superpositions.

At first glance, this notion appears to be obvious. For instance, in the paradig-
matic case of the quantum Ising model, the ground space of the ferromagnetic
phase at zero transverse fields h is spanned by two orthogonal product states
|0〉⊗N and |1〉⊗N which are in the same class of pointer states of the typical
decoherence argument, while the symmetric states �± = 1/

√
2(|0〉⊗N ± |1〉⊗N)

realize macroscopic coherent superpositions (Schrodinger cats) that are not stable
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under decoherence [44, 45]. Therefore, at zero transverse fields h, the situation is
very clear: the only stable states are those that maximally break the symmetry of
the Hamiltonian and at the same time those that feature vanishing macroscopic total
correlations, including entanglement, between spatially separated regions.

On the other hand, as we turn on the external field h, we have a whole range
of values, below the critical field h = hc, where it remains a finite magnetic order
associated with spontaneous symmetry breaking [46], which implies an application
of the decoherence argument within the entire, globally ordered phase. This means
that, again, the only stable states are those that maximally break the Hamiltonian
symmetry. However, now the symmetry-breaking states are entangled, and their
mixed-state reductions on arbitrary subsystems possess in general nonvanishing
pairwise entanglement [1, 48, 49], as well as pairwise quantum [50–52] and classical
correlations [46]. It is thus now unclear if and in what sense the MSBGSs are the
most classical among all quantum ground states.

Below we will provide a general conjecture on the nature of ordered quantum
phases and the origin of spontaneous symmetry breaking, by comparing various
quantifiers of local and global quantum correlations in symmetry-breaking and
symmetry-preserving quantum ground states. We will first compare measures of
local, pairwise quantum correlations and show that in symmetry-preserving ground
states the two-body entanglement captures only a modest portion of the local, two-
body quantum correlations, while in maximally symmetry-breaking ground states
it accounts for the largest contribution. Next, we will introduce proper criteria and
quantifiers of the degree of classicality of quantum states for their global contents
of macroscopic entanglement and quantum correlations. Finally, we will show that,
within the quantum ground space corresponding to macroscopically ordered phases
with nonvanishing local order parameters, the MSBGSs are the most classical
ground states in the sense that they are the only quantum ground states that satisfy
the following two criteria for each set of Hamiltonian parameters consistent with an
ordered quantum phase in the thermodynamic limit:

• Local convertibility—All global ground states are convertible into MSBGSs
applying only local operations and classical communication (LOCC transforma-
tions), while the reverse transformation is impossible.

• Entanglement distribution—The MSBGSs are the only global ground states that
minimize the residual tangle between a dynamical variable and the remainder
of a macroscopic quantum system. Stated otherwise, the MSBGSs are the
only ground states that satisfy the monogamy inequality—a strong constraint,
with no classical counterpart, on the shared bipartite entanglement between
all components of a macroscopic quantum system—at its minimum among all
other possible ground states and thus minimize the macroscopic multipartite
entanglement as measured by the residual tangle.

Verification of these two features amounts to proving that the mechanism of
spontaneous symmetry breaking selects the most classical ground states associated
with globally ordered phases of quantum matter with nonvanishing local order
parameters.
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This chapter is organized as follows: in Sects. 1, 2, and 3, we will analyze the
dLC of the Cluster-Ising chain, of the λ−D model and of the two-dimensional toric
code with different perturbative terms, to show how all these models, characterized
by different types of topological order, are not locally convertible. In Sect. 4, we will
use the paradigmatic example of the Quantum Ising Chain to elucidate the role of
edge states in dLC and thus to provide a picture of how LRE prevents convertibility
and why small partitions can detect it. In Sect. 5, we detail the conjecture on the
characterization of MSBGS as the most classical ones. Finally, we draw some
conclusions in Sect. 6.

1 The Cluster-Ising Model

The first Hamiltonian we consider is

H(g) = −
N∑

j=1

σx
j−1σ

z
j σ x

j+1 + g

N∑

j=1

σ
y
j σ

y

j+1, (2)

where σα
i and α = x, y, z, are the Pauli matrices, and, except otherwise stated, we

take open boundary conditions σα
N+1 = σα

0 = 0. The phase diagram of (2) has
been investigated in [53, 54]. For large g, the system is an Ising antiferromagnet
with a finite local order parameter. For g = 0, the ground state is a cluster state.
It results that the correlation pattern characterizing the cluster state is robust up to
a critical value of the control parameter, meaningfully defining a “cluster phase”
with vanishing order parameter and string order [53, 54]. Without symmetry, the
cluster phase is a (non-topological) quantum spin liquid since there is a gap and
no symmetry is spontaneously broken. Protected by a Z2 × Z2 symmetry, the
cluster phase is characterized by a topological fourfold ground state degeneracy,
reflecting the existence of edge states and fanning out from g = 0 where 4 Majorana
fermions are left free at the ends of the chain [53, 55]. In the DMRG, we resolve
the ground state degeneracy, by adding a small perturbation σx

1 σz
2 ± σz

N−1σ
x
N

to the Hamiltonian. The Cluster and Ising phases are separated by a continuous
quantum phase transition with central charge c = 3/2. Let us also note that the
Hamiltonian (2) can be mapped to three decoupled Ising chains [53, 54].

Through a Jordan–Wigner transformation σ+
k = c

†
k

∏
j<k σ z

j , σ−
k = ck

∏
j<k σ z

j ,

σz
k = 2c

†
kck − 1, the Hamiltonian of the Cluster-Ising model can be written as

H(g) = −i
∑

k

[
f

(2)
k f

(1)
k+2 − gf

(1)
k f

(2)
k+1

]
, (3)

where f
(1)
k = ck + c

†
k and f

(2)
k = −i(ck − c

†
k) are two types of Majorana fermion

operators. Although no local order parameters exist to characterize the topological
phase, the topological order in the Cluster-Ising model can be detected, see Fig. 1,
by the edge states (a1) and string order parameters (a3).
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Fig. 1 The edge state, correlation length, and the string order parameter of the Cluster-Ising
model. (a1) shows that there is edge state in the cluster phase, whereas there is no edge state
in Ising antiferromagnetic phase. (a2) shows the correlation length of 〈σnσn+3〉 − 〈σn〉〈σn+3〉
displaying a critical behavior. (a3) is the string order parameter Oz = (−)N−2〈σy

1

∏N−1
j=1 σz

j σ
y
N 〉

We find that the symmetric partition A|A displays local convertibility, Fig. 2:
(a1), (a2). This is indeed a fine-tuned phenomenon since the cluster phase results
nonlocally convertible, for a generic block of spins, both of the type A|B and the
B|A|B, Fig. 2. We remark that such a property holds even for size region A smaller
than the correlation length. Indeed, the entanglement spectrum is doubly degenerate
in all the cluster phases, as far as the size of the blocks A and B is larger than the
correlation length, see Fig. 3. In contrast, the antiferromagnet is locally convertible,
with nondegenerate entanglement spectrum.

2 The λ − D Model

In this section, we study the local convertibility of the λ − D model Hamiltonian
describing an interacting spin-1 chain with a single-ion anisotropy

H =
∑

i

[(
Sx

i Sx
i+1 + S

y
i S

y

i+1

) + λSz
i S

z
i+1 + D

(
Sz

i

)2
]
, (4)

where Su and u = {x, y, z} are spin-1 operators: Sz|±〉 = ±|±〉 and Sz|0〉 = 0. The
phase diagram has been investigated by many authors [56–58]. The Hamiltonian
above enjoys several symmetries, including time reversal Sx,y,z → −Sx,y,z, parity
Sx,y → −Sx,y , Sz → Sz generating Z2 × Z2, and the link inversion symmetry
Su

j → Su
−j+1.

We only consider λ > 0. For small/large D and fixed λ, the system is in a
polarized state along |+〉±|−〉 or |0〉, respectively. For large λ and fixed D, the state
displays antiferromagnetic order. At intermediate D and λ, the state is a “diluted
antiferromagnet” with strong quantum fluctuations, defining the Haldane phase,
which cannot be characterized through any local order parameter. With symmetry
protection, the topological order in the Haldane phase can be detected by the edge
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Fig. 2 The local
convertibility and the
entanglement spectrum of the
Cluster-Ising model Eq. (2).
We characterize the
differential local
convertibility in terms of the
slopes of the Rényi entropies.
Panel (a) is for bipartition
A|A, A = 50. There is
differential local
convertibility throughout the
two different phases because,
for fixed g, ∂gSα does not
change sign with α. Panel (b)
is for bipartition A|B, A = 3,
B = 97. Panel (c) is for
A|B|C, being one block
A ∪ C with A = 48, C = 49,
and B = 3. Panels
(a3, b3, c3) and (a4, b4, c4)

display respectively the
reduced density matrix
eigenvalues xn and the
entanglement spectrum. The
larger and the smaller
eigenvalues of reduced
density matrix xn,
respectively;
ES

.= {− log xn}. In
convertible phases, we
observe that the change in the
largest eigenvalues is “faster”
than the rate at which the
smallest eigenvalues are
populated. In contrast, the
non-differential local
convertibility arises because
the sharpening of the first part
of the spectrum is
over-compensated by the
increasing of the smallest xn
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Fig. 3 The local convertibility and the entanglement spectrum of the Cluster-Ising model with
bipartition 45|10|45. We characterize the differential local convertibility in terms of the slopes of
the Rényi entropies. ∂gSα changes sign in the cluster phase. (a3) and (a4) display the largest and
the smaller eigenvalues of reduced density matrix xn, respectively; ES

.= {− log xn}. In convertible
phases, we observe that the change in the largest eigenvalues is “faster” than the rate at which
the smallest eigenvalues are populated. In contrast, the non-differential local convertibility arises
because the sharpening of the first part of the spectrum is over-compensated by the increasing of
the smallest xn

states and string order parameters defined in Fig. 4 (see [59]). Without symmetry,
the ground state is gapped and no symmetry is spontaneously broken, making the
Haldane phase a quantum spin liquid. In fact, for open boundary conditions (which
we apply in the present analysis), the Haldane ground state displays a fourfold
degeneracy, which cannot be lifted without breaking the abovementioned symmetry
of the Hamiltonian. This is the core mechanism defining the Haldane phase as a
symmetry-protected topological ordered phase [60, 61].

In Fig. 5, we display the schematic phase diagram of the λ−D model. We sweep
through the phase diagram in the following two ways: (1) fix λ = 1 and change
D; the Haldane phase is approximately located in the range −0.4 � D � 0.8. (2)
Fix D = 0, varying on λ; the Haldane phase is located in the range 0 � λ � 1.1
(see Fig. 5). We analyzed the four states separately adding the perturbation to the
Hamiltonian ∼ (Sz

1 ±Sz
N) with a small coupling constant to resolve the ground state

degeneracy.
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Fig. 4 The edge states, correlation lengths, and string order parameters of the λ − D model. The
sweep (1) through the λ−D phase diagram is considered (see text). In (a1), we show the Haldane
phase edge states; we do not find edge states in the other phases. In (a2), the string order parameters
Ou = (−)N−2〈Su

1

∏N−1
j=1 e

iπSu
j Su

N 〉. In (a3), the correlation length of 〈Su
j Su

j+n〉 − 〈Su
j 〉〈Su

j+n〉

Fig. 5 We sweep through the phase diagram in the following two ways: (1) fix λ = 1 and change
D; the Haldane phase is approximately located in the range −0.4 � D � 0.8. (2) Fix D = 0,
varying on λ; the Haldane phase is located in the range 0 � λ � 1.1

We find that the Néel, ferromagnetic, and the large D phases are locally
convertible (see Fig. 6: (a1), (a2)). Consistently with [62], all of the Haldane
ground states are characterized by doubly degenerate entanglement spectrum for the
symmetric A|B partitions with A = B, for both sweep ways (Fig. 6: (a3) and (a4))
(see [63] for an understanding of doubly degenerate entanglement spectrum). Such
a property is not recovered in the cases of asymmetric A|B and A|B|A partitions:
in these cases, the entanglement spectrum is not found doubly degenerate, because
we broke the link inversion symmetry [62] (Fig. 6: (b3), (b4)). See also [64] for an
analysis of the entanglement spectrum close to the quantum phase transitions.

We find that the Haldane phase is not locally convertible (see Figs. 6: (b1),
(b2), 7, and 8). We remark that for both ways to partition the system the nonlocal-
convertibility phenomenon is found even in the case of sizes of B smaller than the
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Fig. 6 The local convertibility for the partition A|B. The sweep (1) through the λ − D phase
diagram is considered (see also Fig. 5 for the schematic phase diagram).The upper panels display
the results for the symmetric case A|A. The bottom panels refer to the antisymmetric case
A = 96, B = 4. The Rényi entropies are presented in (a1), (b1). The sign distributions of the
entropies’ derivatives are shown in (a2), (b2). The eigenvalues of reduced density matrix xn and the
entanglement spectrum are shown in (a3), (a4), (b3), (b4) as in Fig. 2. The features of differential
local convertibility are characterized by the slopes of the Rényi entropies and correspond to specific
features of the entanglement spectrum as explained in Fig. 2
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Fig. 7 Sweep (1) through the λ − D model: λ = 1, D ∈ {−1, 1}. The sign distribution of
the derivative of the Rényi entropies ∂DSα for partitions A|B|A, A = 48 and B = 4 (upper
panels) and A = 45 and B = 10 (lower panels); both with N = 100 are presented in (a2). The
features of differential local convertibility are characterized by the slopes of the Rényi entropies
and correspond to specific features of the entanglement spectrum as explained in Fig. 2. The Sα’s
are presented in (a1) for α = 0.5, 100 decreasing from top to low. All such quantities are calculated
for the ground state in Stot

z = 1 sector

correlation length ξ . As for the model Eq. (2), we find that the symmetric bipartition
A = B displays local convertibility as a fine-tuned effect, which is broken for
generic partitions, see Figs. 7 and 8.

3 The Perturbed Toric Code

We now study a set of spin-1/2 localized at the edges of a 2D square lattice with
periodic boundary conditions in presence of a perturbation V :

H = −
∑

s

∏

i∈s

σ x
i −

∑

p

∏

i∈p

σ z
i + V (λ), (5)

where s and p label the vertices and plaquettes of the lattice, respectively, while
σx

i and σz
i are Pauli operators of the spin living at the edge i. For V (λ) = 0 the

Hamiltonian above is the celebrated toric code, a paradigmatic model for topological
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Fig. 8 Sweep (2) through the λ − D model: D = 0, λ ∈ {0, 1.5} (see Fig. 5 for a schematic phase
diagram). The sign distribution of the derivative of the Rényi entropies ∂λSα for partitions A|B|A,
A = 48 and B = 4 (upper panels) and A = 45 and B = 10 (lower panels); both with N = 100 are
presented in (a2). The features of differential local convertibility are characterized by the slopes of
the Rényi entropies and correspond to specific features of the entanglement spectrum as explained
in Fig. 2. The Sα’s are presented in (a1) for α = 100, 0.2 increasing from low to top. All such
quantities are calculated for the ground state in Stot

z = 1 sector

order [65]. For the analysis below, we remark that in this case, the ground state
of this model features ξ = 0. We consider different V (λ) (see Table 1), where λ

stands for {λ1, . . . , λN } which are the parameters controlling the perturbation. The
perturbation in (5) is such that the correlation length is increasing with λi until it
divergences at a critical point λc. For a discussion of this criticality, see [66].

For λ < λc, these systems are topologically ordered, while for λ > λc, they are
trivial paramagnets. In both phases, there is no local order parameter. This model
belongs to a class of so-called quantum double models that correspond to those
phases whose low-energy theory is a lattice gauge theory [65]. We demonstrate that
one can distinguish the topological from the paramagnetic phases of (5) using dLC,
even when small subsystems A are considered.

For each V (λ), we compute the ground state wavefunction |ψ(λ)〉 and its reduced
density matrix ρA(λ). For some V (λ), we can apply exact analytical approach;
for the generic perturbation Vxz(λ) = ∑

i (λzσ
z
i + λxσ

x
i ), we resort to numerical

analysis.
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Table 1 List of the various perturbation used in the topological toric code and some of their
properties. dLC, i.e., no splitting of the Rényi entropies, only occurs if the perturbation is fine
tuned in order to keep the system with ξ = 0. The left column shows the type of perturbation
studied. The first column details whether the considered model is gauge invariant. The second
column indicates whether dLC occurs. For certain perturbations, the ground state of the system is
accessible exactly (third column). The last column provides the information on ξ

Perturbation V (λ) G.I. DLC Exact ξ
∑

s e−λs

∑
i∈s σ z

i ✓ ✓ ✓ 0

λh

∑
i∈H σz

i ✓ ✗ ✓ 
= 0

λz

∑
i σ z

i ✓ ✗ ✗ 
= 0

λz

∑
i σ z

i + λx

∑
j σ x

j ✗ ✗ ✗ 
= 0

Fig. 9 Cylinder of infinite
length and width Ly = 5 used
in 2D DMRG calculation. (a)
Subsystems on which Rényi
entropies are calculated:
As—one star and
As,p—composition of star
and plaquette. Loops lz1 and lx2
used to distinguished between
topological sectors are also
depicted. (b) Subsystem Ch.i.
that contains half of the
infinite cylinder

The numerical method employed here is an infinite DMRG algorithm [67] in two
dimensions. The method provides Matrix Product State (MPS) representation of a
complete set of ground states on a cylinder of infinite length and finite width Ly

(Fig. 9) for a given Hamiltonian that realizes topological order. As argued in [68],
each ground state has a well-defined flux threading through the cylinder. The flux is
measured by (in general) dressed Wilson loop operators that enclose the cylinder in
the vertical direction.

In the case of fixed-point toric code (Eq. (5) with V = 0), these loops are given
by lz1 and lx2 (Fig. 9a). Four topological sectors are then distinguished by 〈lz1〉, 〈lx2 〉 =
±1. Once the perturbation is present, Wilson loops may change, but as long as the
perturbation is small, 〈lz1〉 and 〈lx2 〉 can still be used to identify topological sectors
because 〈lz1〉, 〈lx2 〉 � ±1.

Simulations are carried out with cylinders of width up to Ly = 5 for
√

λ2
x + λ2

z ≤
0.05 and 0 ≤ λ < 0.7 as shown in Figs. 10 and 11 respectively. In the topological
phase, the outcome of each simulation is four quasi-degenerate ground states, from
which the one with 〈lz1〉, 〈lx2 〉 � +1 is chosen for further investigation. This is done
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Fig. 10 The splitting phenomenon. The figure displays the splitting with opposite slopes between
the small and large α Rényi entropies. We see the splitting occurring around α � 0.6. The Rényi
entropies are calculated for the partition As,p of Fig. 9a for the ground state of H = HT C + Vxz

Fig. 11 Rényi entropies as a function of λ for the ground state of H = HT C + Vxz with λx = λ

and λz = λ/2. Here, Ly = 5. The reduced system A consists of As and Ch.i. in panels A and B,
respectively. As λ increases, the correlation length increases. The Schmidt rank R and the low α <

α0-Rényi entropies increase as well. The value of α0 is 0.4 and 0.6 in panels A and B, respectively.
Nevertheless, the total entanglement S1 and all the higher Rényi entropies are decreasing with ξ .
Notice the spike in panel B marking the quantum phase transition to the paramagnetic phase at
λc ∼ 0.35

to ensure that finite size effects have the least possible impact on results. In the
limit Ly → ∞ all four ground states become locally indistinguishable. The results
are converged in bond dimension of MPS which acts as a refinement parameter.
A reduced density matrix of a half-infinite cylinder Ch.i. (Fig. 9b) is calculated
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throughout the simulation. The bond dimension is increased until convergence of
its spectrum is reached.

In Fig. 10, we can see the behavior of the Sα Rényi entropies as we span
the parameter space λx, λz for the perturbation Vxz. We see clearly that in the
topologically ordered phase a splitting of Sα’s occurs: ∂λSα ≶ 0 at a given value
of α = α0; we found α0 � 0.6 (see the caption of Fig. 10). We will henceforth refer
to this phenomenon as α splitting. In the paramagnetic phase, all the Rényi entropies
are monotones with λ. This behavior is generically independent of the size and shape
of the subsystem A, as long as A contains some bulk [35]. Below, we explain the
phenomenon. The topologically ordered phase we consider is characterized by the
presence of a state (at λ = 0) with ξ = 0 and a flat entanglement spectrum (and
an area law) [69]. The flat entanglement spectrum implies that small perturbations
result in decreasing Sα for α > α0 being α0 < 1, because the distribution becomes
less flat in the most represented eigenvalues in the entanglement spectrum. In
contrast, S0 must increase with ξ as an effect of the perturbation (new degrees of
freedom are involved in the entanglement spectrum). So the α splitting results from
the insertion of a finite ξ in the state evolving from a state with a flat spectrum and
zero ξ . We also observe that such property is shared with the so-called G-states
that include all the topologically ordered quantum double models and states like the
cluster states [70], and therefore our findings apply to this class of models as well
[69] (see [71] for a discussion of the cluster phase diagram). Here, we remark that
the splitting effectively distinguishes a class of quantum spin liquids (states with
finite correlation length and no local order parameter), which are notoriously very
difficult to detect, since one cannot measure correlation functions of all the possible
local observables. To further distinguish non-topologically ordered quantum spin
liquids like the cluster states from topologically ordered states, we need to measure
the degeneracy of the ground state, since the former have a unique ground state,
while topological states possess a degeneracy protected by topology.

Moreover, notice that the splitting occurs no matter how we perturb in the plane
λx, λz, and it is, therefore, a robust property of the phase. Note again that in the
paramagnetic phase, all the ∂λSα have the same sign and no splitting ever occurs,
which is easily understood from the presence (at very large λ) of a completely
factorized state, see Fig. 11.

We remark that the splitting phenomenon effectively distinguishes the topolog-
ically ordered state from a topologically trivial ordered state (like a ferromagnet).
As discussed above, the latter states have typically Sα increasing with ξ and no
splitting occurs. Summarizing, we can distinguish between the topological phase
and the paramagnet of (5); furthermore, we can distinguish between the topological
phase and a symmetry-breaking phase.

To corroborate our findings, we resort to exact analysis for suitable perturbations
V (λ)’s. We consider two cases: (i) Vh = λz

∑
i∈h σ z

i , corresponding to placing
the external field ∝ σz only along the horizontal links of the lattice; and (ii)
V (λ) = ∑

s e−λ
∑

i∈s σ z
i leading to the Castelnovo–Chamon model [72]. Since these

perturbations commute with the plaquette operators of Eq. (5), the ground state of
these models can be written as the superposition of loop states |g〉 with amplitudes
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α(g). A loop state |g〉 is obtained from the completely polarized state in the z

direction, by flipping down all the spins intersected by a loop drawn on the lattice.
The corresponding loop operators g form a group G called the gauge group of these
theories.

In case (i), the star operators
∏

i∈s σ x
i interact only along the rows of the lattice.

The model maps onto the product of arrays of Ising chains by the duality As → τ z
μ,

σz
i → τx

μτx
μ+1: HT C + Vh �→ Hff = ⊕L

i=1(−λ
∑

μ τx
μτx

μ+1 − ∑
μ τz

μ) [73, 74].
The relevant correlators in the variables σ can be obtained through the correlators in
the dual variables τ that can be accessed exactly [46]. In the following, we sketch a
proof that the splitting phenomenon does occur in this model (see [35] for additional
details). We consider the star As = {i1, i2, i3, i4} as subsystem A (see Fig. 9); ρAs

is block diagonal with 2 × 2 blocks labeled by |i1i2i3i4〉 and As |i1i2i3i4〉. It results
that ρA has maximum rank unless α(g) = α(g1)α(g2), implying there is a zero
eigenvalue in each block. In the dual picture, this is equivalent to require 〈τiτj 〉 =
〈τi〉〈τj 〉. Such condition holds at λ = 0 only, and therefore R increases at λ 
= 0.
The factorization of the amplitudes also proves that both α = 1, 2-Rényi entropies
decrease at small λ [35].

The case (ii) is important to test the argument of the interplay between splitting
and increasing of the correlation length. This argument implies that a perturbation
for which ξ(λ) = const does not lead to a splitting in the Rényi entropies. The
model of Castelnovo–Chamon features exactly this since spin–spin correlation
functions 〈σx

i σ x
j 〉 are vanishing for every value of λ. The exact ground state is

made of loops with amplitudes α(g) = e−λ/2
∑

i∈s σ z
i (g), where σz

i (g) = 〈g| σz
i |g〉.

The topological phase is (λ < λc ≈ 0.44). A lengthy calculation leads to
Sα(ρA) = (1 − α)−1 log Z−α(λ)

∑
g∈G e−λLgwα−1(λ, g), where Z = ∑

g e−λLg

and w(λ, g) := ∑
h∈GA,k∈GB

e−λLhgk , and Lm is the length of the loop m of the
gauge group G; here, GA and GB are the gauge groups of the subsystems A and B,
respectively. The analysis of small and large λ expansions reveals that ∂λSα(λ) ≤ 0
[35]. As a particular case, S0 is constant for every value of λ. Accordingly, for this
fine-tuned perturbation, all Rényi entropies decrease, and therefore no splitting is
observed. This is consistent with the fact that also in this model, the amplitudes
α(g) factorize as discussed in (i).

4 The Quantum Ising Chain

To better extract the effect of edge states on local convertibility, it is desirable to
have a model with three properties: (i) it should support edge states, (ii) quasi-
particle excitations should be identifiable, and (iii) there should be a mechanism
for destroying the edge states and observing the different behavior. The one-
dimensional transverse field Ising model fulfills these requirements [46, 75]. It is
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defined by the Hamiltonian

HI = −
N∑

j=1

(
t σ x

j σ x
j+1 + h σz

j

)
, (6)

where t is a hopping amplitude (which we can set to t = 1) and h is the control
parameter for the external magnetic field. A quantum phase transition for h = t = 1
happens in the thermodynamic limit of N → ∞. This QPT’s signatures have been
recently observed experimentally [76].

The Hilbert space of (6) can be described in terms of eigenstates of the string
operator μx

N = ∏N
j=1 σz

j , which generates the Z2 symmetry of (6). For h > 1,
the system is paramagnetic with 〈σx〉 = 0. For h < 1, the spectrum of the Ising
model becomes doubly degenerate. A ground state that is also an eigenstate of
μx

N has a vanishing order parameter 〈σx〉 = 0. This ground state is known as
the “thermal ground state.” This is the state employed in the 2-Sat problem and
adiabatic quantum computation protocols for finite N [20]. In the thermodynamic
limit (N → ∞), σx can acquire a nonzero expectation value. The symmetry will be
broken spontaneously and the ground state will be given by the (anti)symmetric
combination of the two eigenstates of μx

N . For h < 1, we consider both the
ferromagnetic ground state (MSBGS) with nonvanishing order parameter 〈σx〉 and
the thermal one enjoying the same Z2 symmetry as the Hamiltonian.

The quantum Ising model (6) can be mapped exactly, although nonlocally, to a
system of free spinless fermions {cj , c

†
j }, see [75]. We remark that this mapping

preserves the entanglement between A and B [77, 78] and generates the Kitaev
chain. As emphasized in [79], this formulation highlights the presence of Majorana
edge states as emergent degrees of freedom. Majorana fermions are the elusive
particles (coinciding with their own anti-particles), proposed by E. Majorana. Many
research groups are trying to find and manipulate them [29, 30]. Each Dirac fermion
of the chain can be used to define two Majorana fermions:

f
(1)
j ≡

⎡

⎣
∏

l<j

σ z
l

⎤

⎦ σx
j = c

†
j + cj , f

(2)
j ≡

⎡

⎣
∏

l<j

σ z
l

⎤

⎦ σ
y
j = i

(
c

†
j − cj

)
(7)

We represent this mapping pictorially in Fig. 12. In the paramagnetic phase
(h > 1), the Hamiltonian pairs predominantly Majoranas on the same site j (this
correlation is drawn as a double line in the picture). In the ferromagnetic phase
(h < 1), the dashed line connecting different sites is dominant. In Kitaev’s approach,
the double degeneracy of this phase emerges as the first and last Majoranas are left
unpaired and can be combined into a complex fermion (the occupancy/vacancy of
this fermion costs no energy). We will see that the same picture applies when the
system is divided into two partitions: in the ferromagnetic phase, this operation cuts
the dominant link and leaves unpaired Majorana edge states on each side of the cut.
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Fig. 12 Top: the Ising chain is mapped into a system of Majorana fermions by doubling the lattice
sites. Middle and bottom: a schematic cartoon of the quasi-particle excitations in the two phases of
the model and the effect of bipartitioning the system; for small h, edge states form at the opposite
boundaries of the subsystem A. The property of local convertibility depends on the correlations
between such edge states

This is a key many-body feature that renders phases supporting boundary states
more “quantum” than other systems and hence more powerful when employed as
simulators. Since any subsystem develops its edge states, in these phases, q-bits
of information are stored nonlocally between the sites, and we will see that this is
mirrored by the nontrivial entanglement behavior, yielding nonlocal convertibility.
Such phenomenology, which can hardly be implemented in a classical setting, must
be a fundamental ingredient of a machine aimed at simulating a generic quantum
system, and this is the reason for which nonlocal convertibility is a strong indicator
of a higher computational power.

4.1 The Rényi Entropies

An advantage of working with a quadratic theory such as the Ising chain is
that many-body states can be constructed exactly out of individual quasi-particle
excitations. The latter can be found as the linear combination of the fermionic
operators {cj , c

†
j }, which diagonalizes the Hamiltonian. Doing so, we define a new

set of operators {c̃j , c̃
†
j } so that the ground state |0〉 is annihilated by all c̃j . On top of

it, one can excite quasi-particles by progressively applying all possible combinations
of c̃

†
j , giving a total of 2N states in the Hilbert space.
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To calculate the entanglement between the subregions A and B, we use the
Schmidt decomposition of the ground state

|0〉 =
∑

l

√
λl |ψ(A)

l 〉 |ψ(B)
l 〉 , (8)

where |ψ(A,B)
l 〉 span the Hilbert space of block A and B, respectively [23]. We are

after the eigenvalues λl , which can be found, for instance, as

λl = 〈0|ψ(A)
l 〉〈ψ(A)

l |0〉 , (9)

where a tracing over the B degrees of freedom is implicitly assumed. Similarly to
what is done for the whole system, the states |ψ(A)

l 〉 can be constructed in terms of
individual excitations. However, these are different from those of the whole chain,
as they are completely contained inside the block. If A consists of L consecutive
sites, these block excitations {dj , d

†
j } are the linear combinations of the c-operators

within the block, which diagonalize the correlation matrix constructed out of all
their two-point correlation functions, as shown below. Each state |ψ(A)

l 〉 of this 2L-
dimensional Hilbert space can thus be characterized by the occupation number 0
or 1 of each block excitation. Moreover, the eigenvalues νj of the aforementioned
correlation matrix provide us with the expectation values

〈0|djd
†
j |0〉 = 1 + νj

2
, 〈0|d†

j dj |0〉 = 1 − νj

2
, (10)

all other correlations being zero. Note that νj � 1 indicates that dj annihilates the
vacuum |0〉. It follows that certain quasi-particle excitations of the Hamiltonian are
completely contained within the block, since dj |0〉 = 0 implies that dj is just a
superposition of c̃j ’s. Since dj is defined just within the block, it follows that these
c̃j ’s are also contained in the block. Conversely, smaller values of νj are related to
excitations lying only partially within a subregion. In turn, djd

†
j acts on the ground

state as a projection operator which selects the component with 0 occupation number
for the lth block excitation, while d

†
j dj projects it on an occupied lth excitation.

Hence, (9) can be written as the expectation value of a string of operators of this
type. Using (10) as the building blocks of these correlators, we have

{λl} =
L∏

j=1

(
1 ± νj

2

)
, (11)

with all the possible combinations of plus/minus signs, corresponding to the
occupation/unoccupation of the different block excitations.



170 L. Amico et al.

Finally, the Rényi entropies read [77, 78]

Sα(ρA) = 1

1 − α

L∑

j=1

log

[(
1 + νj

2

)α

+
(

1 − νj

2

)α]
. (12)

4.2 The Correlation Matrix

As we just discussed, the Rényi entropies are accessed through the “eigenvalues” of
the reduced density matrix of a block of L consecutive spins for the thermal ground
state [77, 78]. Such “eigenvalues” can be obtained from the diagonalization of the
2L × 2L correlation matrix: 〈f (a)

k f
(b)
j 〉 = δj,kδa,b + i (BL)

(a,b)
(j,k) , with

BL ≡

⎛

⎜⎜⎜⎜⎝

�0 �1 . . . �L−1

�−1 �0
...

...
. . .

...

�1−L . . . . . . �0

⎞

⎟⎟⎟⎟⎠
, (13)

where j, k specifies the entry �j−k ≡
(

0 gj−k

−gk−j 0

)
, which is itself a 2 × 2

matrix whose a, b entries are defined as

gj ≡ 1

2π

∫ 2π

0

cos θ − h + i sin θ√
(cos θ − h)2 + sin2 θ

eijθ dθ . (14)

The antisymmetric matrix B can be brought into a block-diagonal form by a
SO(2L) rotation, with each block of the form

�̃j = νj

(
0 1

−1 0

)

This rotation defines a new set of Majorana fermions f̃
(a)
j with only pair-wise

correlations. This rotated operator basis can be used to introduce the new set of

complex operators: dj =
(
f̃

(1)
j + if̃ (2)

j

)
/2 (and their Hermitian conjugated). The

matrix (13) contains all the information to completely solve the model. By taking
L = N , i.e., extending the correlation matrix to the whole system, the d-modes
coincide with the c̃-operators, one would obtain from the diagonalization of the
Hamiltonian.
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For L = 2, the two eigenvalues of the correlation matrix are easily found to be

ν± =
√(

g1 − g−1

2

)2

+ g2
0 ± g1 + g−1

2
, (15)

which allows for a complete analytical study of the entanglement entropy and its
derivative (see Fig. 14).

4.3 The Z2 Symmetric Ground State

Thus, in the Ising chain, the 2L states within a block of L consecutive sites can
be constructed in terms of individual quasi-particle excitations, which can be either
occupied or empty. These excitations are in general delocalized, with a typical size
set by the correlation length. However, a Z2 symmetric state possesses one special
excitation, with support lying at the opposite edges of the block and formed by
two Majorana edge states [79]. When the block is extended to the whole system
(L = N ), the block excitations coincide with the system’s excitations, including the
boundary states.

The entanglement between two subsystems A and B can be extracted from the
2L eigenvalues ±iνj of the correlation matrix Eq. (13) incorporating the correlations
of the excitations within the spin block. Here, L is the number of lattice sites in
A. The eigenvalues of the reduced density matrix can then be constructed out of
the νj ’s, using (11) in the method section. The ν’s can be interpreted as sort of
occupation numbers, since they capture the overlaps between each block quasi-
particle excitation and the ground state, according to (10): νj = 0 means that this
block excitation is half-filled and half-empty in the ground state, while νj = 1
indicates that the excitation is either completely occupied or not present at all.

In Fig. 13, we plot these eigenvalues νj as a function of the magnetic field for
L = 2 and L = 10. Notice that in both cases only one block excitation has a

Fig. 13 Plot of the occupation number νj obtained from the correlation matrix (13) as a function
of h for L = 2 (left) and L = 10 (right). For L = 2, the explicit form of the eigenvalues ν± is
given in (15). Notice that only one of the ν’s shows a nontrivial behavior: it corresponds to the
boundary state, which is only partially contained in the subregion
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Fig. 14 Left: plot of the four eigenvalues of ρA for L = 2, as a function of h. The solid lines are
the analytical results, while the crosses show the numerical ones with N=200 (notice the different
scales in the vertical axis between the top and bottom panels). Right: contour plot of the sign of
the derivative by h of the Rényi entropy for different values of h and α

nontrivial behavior, while the other eigenvalues stay approximately constant around
unity in all phases. Significant deviations happen only close to the QPT (as the
correlation length diverges). As discussed, the modes with νj � 1 define bulk states.
In contrast, the nontrivial eigenvalue is close to zero for h � 0 and rises rapidly
toward 1 crossing the QPT at h = 1: in the ferromagnetic phase, it corresponds to
a block excitation which is neither occupied nor empty. By cutting the chain into
two subregions, we severed the dominant inter-site correlation and hence generated
two unpaired Majorana edge states (see Fig. 12). We noticed, however, that as h

increases, the occupation number of this edge excitation increases, indicating edge
state recombination.

Having discussed the behavior of the eigenvalues νj ’s and the role of the
boundary states, it is straightforward to analyze the Rényi entropy and address the
issue of differential local convertibility. It is interesting to concentrate on the two
extreme limits: L = 2 and L → ∞.

The two occupation numbers ν± for L = 2 are shown in the left panel of Fig. 13,
and the resulting four eigenvalues of the reduced density matrix, according to (11),
are plotted in the left panel of Fig. 14. While in locally convertible phases, the
largest eigenvalue(s) decrease approaching the QPT, indicating an increase of the
entanglement; here, we see that the edge state recombination results in a growing
larger eigenvalue. The right panel of Fig. 14 presents the sign of the entanglement
entropy derivative, to be considered with dLC. We see that in the paramagnetic
phase, the Rényi entropy always decreases. Instead, in the doubly degenerate phase,
the entropy derivative vanishes at some value of α and changes sign, indicating
that local (differential) convertibility is lost in this phase (as already observed
numerically for small N and larger L in [26]). It is important to notice here that
these results imply that classical local gates operating on two sites project out the
half-occupied state and hence lose the edge state entanglement.

For the L → ∞ limit, we can take advantage of the results of [80–82], where
the full spectrum (eigenvalues and multiplicities) of the reduced density matrix and
the Rényi entropies were calculated analytically. Figure 15 shows a plot of the first
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Fig. 15 Left: plot of the first few eigenvalues of ρA, for an infinite size block, as a function of
h. The eigenvalues’ multiplicities are not shown (for instance, the highest eigenvalue is doubly
degenerate for h < 1 and unique for h > 1, see [82]). Right: plot of the derivative of the Rényi
entropy with respect to the magnetic field h, as a function of α, for two different values of h in the
ferromagnetic region

few eigenvalues of ρA and a plot of the entropy derivative as a function of α for
h = 0.6 and h = 0.9. We see that the largest eigenvalue (doubly degenerate in
the ferromagnetic phase) decreases monotonously toward the QPT, while smaller
eigenvalues are allowed to grow, yielding a monotonous increase of all the Rényi
entropies. It is thus clear that local convertibility is restored in the infinite L limit.

We checked these results numerically for systems up to N = 200 and with
different partitions. We considered different block sizes and move the blocks within
the chain. The qualitative picture does not change significantly as one varies (A|B),
but the location of the curve where the entropy derivative vanishes moves in the
(h, α) space. It tends toward the phase transition line h = 1 as the block sizes grow
bigger, confirming our expectation on the role of the boundary excitations. Namely,
we see that as long as the edge states from different boundaries do not overlap, their
occupation number eigenvalue stays constant and vanishes. It starts increasing only
once the correlation length grows comparable to one of the block sizes, indicating
the recombination of the edge states and a decrease in the entanglement contribution
from the edge states.

4.4 Symmetry Broken Ground State

To further confirm our interpretation on the role of boundary modes, in the ordered
phase h < 1, we also considered the ferromagnetic ground state for which 〈σx〉 
= 0.
Since this state does not support well-defined Majorana edge states, we expect a
restoration of local convertibility. We calculate the Rényi entropy of this symmetry
broken ground state numerically. Namely, we add a very small perturbation ε(σ x

1 +
σx

N) to Hamiltonian (6) and apply the variational MPS routine to obtain the ground
state [47]. In this work, the converge tolerance is 10−6. Figure 16 shows the plots
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Fig. 16 Numeric results of differential local convertibility for the ferromagnetic (symmetry
broken). On the left, a partition 200 = 2|198 and on the right 200 = 50|100|50

of the sign of the entropy derivative for two possible partitions (small and large A

block) and validates our expectation that both phases are locally convertible. We
considered several partitioning choices and the results are not distinguishable from
those in Fig. 16.

In conclusion, we see that for h > 1, the disordered ground state is always locally
convertible. In the ordered phase, the ferromagnetic ground state, i.e., with broken
symmetry, is also locally convertible for any chosen partition. For the thermal
ground state, however, the convertibility depends on the interplay between the size
of the partitions (A|B) and the correlation length of the system. This phenomenon is
a manifestation of edge state recombination. These entangled pairs lie on opposite
boundaries of the partition (see Fig. 12), but with finite support intruding in the
bulk about the order of the correlation length. For sufficiently large block sizes,
the entanglement between boundary states does not depend on the correlation
length and remains constant throughout the phase. However, as this length increases
approaching a QPT, the edge states effectively grow closer to one another. If either
of the subregions A and B is sufficiently small, the tails of these states can overlap,
and we see their occupation number increasing and their entanglement decreasing,
yielding nonlocal convertibility.

5 Classical nature of ordered quantum phases and origin
of spontaneous symmetry breaking

To discuss the differences among different ground states of a model with a
degenerate lowest energy manifold, we take as an example the ferromagnetic one-
dimensional spin-1/2 XY in the presence of a transverse field and periodic boundary
conditions. The Hamiltonian of such model reads [46, 75, 83, 84]

H = −
N∑

i=1

[(
1 + γ

2

)
σx

i σ x
i+1 +

(
1 − γ

2

)
σ

y
i σ

y

i+1 + hσz
i

]
, (16)
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where γ is the anisotropy parameter in the xy plane, h is the transverse local field,
and the periodic boundary conditions σ

μ
N+1 ≡ σ

μ
1 ensure a perfect invariance under

spatial translations.
For this class of models, the phase diagram can be determined exactly in great

detail [75, 84, 85]. In the thermodynamic limit, for any γ ∈ (0, 1], a quantum phase
transition occurs at the critical value hc = 1 of the transverse field. For h < hc,
the system is characterized by a bidimensional ground state manifold in which two
elements are living in both parity sectors. As a consequence, in such a manifold, it
is possible to define elements showing a ferromagnetic order along the x axis which
highlights the fact that they violate the Z2 parity symmetry. Indeed, given the two
symmetric ground states, the so-called even |e〉 and odd |o〉 states belonging to the
two orthogonal subspaces associated with the two possible distinct eigenvalues of
the parity operator, any symmetry-breaking linear superposition of the form

|g(u, v)〉 = u|e〉 + v|o〉 (17)

is also an admissible ground state, with the complex superposition amplitudes u

and v constrained by the normalization condition |u|2 + |v|2 = 1. Taking into
account that the even and odd ground states are orthogonal, the expectation values of
operators that commute with the parity operator are independent of the superposition
amplitudes u and v. On the other hand, spin operators that do not commute with the
parity may have nonvanishing expectation values on such linear combinations and
hence break the symmetry of the Hamiltonian (16).

Consider observables OS that are arbitrary products of spin operators and anti-
commute with the parity. Their expectation values in the superposition ground
states (17) are of the form

〈g(u, v)|OS |g(u, v)〉 = uv∗〈o|OS |e〉 + vu∗〈e|OS |o〉 . (18)

Both 〈o|OS |e〉 and 〈e|OS |o〉 are real and independent of u and v, and hence the
expectation (18) is maximum for u = ±v = 1/

√
2 [84]. These are the values of the

superposition amplitudes that realize the maximum breaking of the symmetry and
identify the order parameter as well as the MSBGSs.

Besides the quantum critical point, there exists another relevant value of the
external magnetic field, that is, hf = √

1 − γ 2, the factorizing field. Indeed, at this
value of h, the system admits a twofold degenerate, completely factorized ground
state [86–90].

To discuss the entanglement and discord-type correlations of quantum ground
states, we consider arbitrary bipartitions (A|B) such that subsystem A =
{i1, . . . , iL} is any subset made of L spins, and subsystem B is the remainder. Given
any global ground state of the total system, the reduced density matrix ρA (ρB ) of
subsystem A (B) can be expressed in general in terms of the n-point correlation
functions [48]:
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ρA(u, v) = 1

2L

∑

μ1,...,μL

〈g(u, v)|σμ1
i1

· · · σμL

iL
|g(u, v)〉σμ1

i1
· · · σμL

iL
(19)

and analogously for ρB . All expectations in Eq. (19) are associated with spin
operators that either commute or anti-commute with the parity along the spin-z
direction. Therefore, the reduced density matrix ρA can be expressed as the sum
of a symmetric part ρ

(s)
A , i.e., the reduced density matrix obtained from |e〉 or |o〉,

and a traceless matrix ρ
(a)
A that includes all the terms that are nonvanishing only in

the presence of a breaking of the symmetry:

ρA(u, v) = ρ
(s)
A + (uv∗ + vu∗)ρ(a)

A . (20)

Both ρ
(s)
A and ρ

(a)
A are independent of the superposition amplitudes u and v,

while the reduced density matrix depends on the choice of the ground state. This
implies that the elements of the ground space are not locally equivalent. Explicit
evaluation of expectations and correlations in symmetry-breaking ground states
in the thermodynamic limit is challenging even when the exact solution for the
symmetric elements of the ground space is available.

We will now sketch a method that allows overcoming this difficulty and whose
general validity is not in principle restricted to the particular model considered. To
obtain ρ

(s)
A , it is sufficient to transform the spin operators into fermionic ones and

then apply Wick’s theorem. Such algorithm cannot be applied to spin operators
OA, acting on subsystem A, that anti-commute with the parity. To treat this case,
we first introduce the symmetric operator OAOA+r , for which, by applying the
previous procedure, we can evaluate 〈e|OAOA+r |e〉. Then, the desired expectation
〈e|OA|o〉 can be computed by exploiting the property of asymptotic factorization of
products of local operators at infinite separation [41, 43, 84] that yields 〈e|OA|o〉 =√

lim
r→∞〈e|OAOA+r |e〉, where the root’s sign is fixed by imposing positivity of the

density matrix ρA(u, v). Having obtained the exact reduced density matrix ρA(u, v)

for all possible subsystems A and superposition amplitudes u and v, we are equipped
to investigate the nature of quantum ground states for their properties of classicality
and quantumness.

5.1 Two-Body Quantum Correlations

Among all the different possibilities, in the present section, we focus on the analysis
of the behavior of one-way discord-type correlations and entanglement between
any two spins for different ground states. One-way discord-type correlations are
properties of quantum states more general than entanglement. Operationally, they
are defined in terms of state distinguishability for the so-called classical-quantum
states. The latter are quantum states that, besides being separable, i.e., not entangled,
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remain invariant under the action of at least one nontrivial local unitary operation.
In geometric terms, a valid measure of quantum correlations must quantify how
much a quantum state discords from classical-quantum states and must be invariant
under the action of all local unitary operations. A computable and operationally
well-defined geometric measure of quantum correlations is then the discord of
response [91, 92]. The pairwise discord of response DR for a two-spin reduced
density matrix is defined as

DR(ρ
(r)
ij (u, v)) ≡ 1

2
min
Ui

dx

(
ρ

(r)
ij (u, v), ρ̃

(r)
ij (u, v)

)2
, (21)

where ρ
(r)
ij (u, v) is the state of two spins i and j at a distance r , obtained by taking

the partial trace of the ground state |g(u, v)〉 with respect to all other spins in the
system, ρ̃

(r)
ij (u, v) ≡ Uiρ

(r)
ij (u, v)U

†
i is the two-spin state transformed under the

action of a local unitary operation Ui acting on spin i, and dx is any well-behaved,
contractive distance (e.g., Bures, trace, Hellinger) of ρ

(r)
ij from the set of locally

unitarily perturbed states, realized by the least-perturbing operation in the set. The
trivial case of the identity is excluded by considering only unitary operations with
harmonic spectrum, i.e., the fully nondegenerate spectrum on the unit circle with
equispaced eigenvalues.

For pure states, the discord of response reduces to an entanglement monotone,
whose convex-roof extension to mixed states is the so-called entanglement of
response [93–95]. Therefore, the entanglement and the discord of response quantify
different aspects of bipartite quantum correlations via two different uses of local
unitary operations. The discord of response arises by applying local unitaries
directly to the generally mixed state, while the entanglement of response stems from
the application of local unitaries to pure states. Under their common origin, it is thus
possible to perform a direct comparison between these two quantities.

In terms of the trace distance, which will be relevant in the following, the two-
qubit entanglement of response is simply given by the squared concurrence [91, 96],
whereas the two-qubit discord of response relates nicely to the trace distance-based
geometric discord [97], whose closed formula is known only for a particular class
of two-qubit states [98], although it can be computed for a more general class of
two-qubit states through a very efficient numerical optimization.

Symmetry-Preserving Ground States
We first compare the two-body entanglement of response and the two-body discord
of response in symmetry-preserving ground states. For two neighboring spins, these
two quantities are plotted in Fig. 17 as functions of the external field h and for
different values of the anisotropy γ . For any intermediate value of γ , the nearest-
neighbor entanglement of response E1 exhibits the following behavior. If h < hf ,
E1 decreases until it vanishes at the factorizing field h = hf . Otherwise, if h > hf ,
E1 first increases until it reaches a maximum at some value of h higher than the
critical point hc = 1, and then it decreases again until it vanishes asymptotically for
very large values of h in the paramagnetic phase (saturation). Overall, E1 features
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Fig. 17 Nearest-neighbor trace distance-based discord of response (left panel) and nearest-
neighbor trace distance-based entanglement of response (right panel) for symmetry-preserving
ground states, in the thermodynamic limit, as functions of the external field h, and for different
values of the anisotropy γ . Solid blue curve: γ = 0.2; dashed red curve: γ = 0.4; dot-dashed
green curve: γ = 0.6; double-dot-dashed black curve: γ = 0.8; and dotted orange curve: γ = 1.
In the lower panel, to each of these curves, there corresponds a vertical line denoting the associated
factorizing field hf . In the upper panel, the solid vertical line denotes the critical field hc = 1

two maxima at h = 0 and h > hc and two minima at h = hf (factorization) and
h → ∞ (saturation). For the Ising model (γ = 1), the point h = 0 corresponds
instead to a minimum, since it coincides with the factorizing field hf = √

1 − γ 2.
On the other hand, regardless of the value of γ , the nearest-neighbor discord

of response Q1 always features a single maximum. Depending on the value of γ ,
such maximum can be either in the ordered phase h < hc or in the disordered
(paramagnetic) phase h > hc, moving toward higher values of h with increasing
γ . Remarkably, Q1 never vanishes at the factorizing field, except in the extreme
case of γ = 1. Indeed, at the factorizing field h = hf , and for any γ 
= 0, 1,
the symmetry-preserving ground state is not completely factorized but rather is
a coherent superposition with equal amplitudes of the two completely factorized
MSBGSs. Consequently, while the two-body entanglement of response must vanish
by the convex roof extension, the two-body discord of response remains always
finite.

When increasing the inter-spin distance r , the pairwise entanglement of response
Er and discord of response Qr behave even more differently (see Fig. 18). Due
to the monogamy of the squared concurrence [99, 100], Er dramatically drops to
zero as r increases, except in a small region around the factorizing field h = hf

that gets smaller and smaller as r increases, in agreement with the findings of
Ref. [101]. On the other hand, while in the disordered and critical phases, Qr

vanishes as r increases, in the ordered phase Qr survives even in the limit of infinite
r . Indeed, in both the disordered and critical phases, and when r goes to infinity, the
only nonvanishing one-body and two-body correlation functions in the symmetry-
preserving ground states are 〈σz

i 〉 and 〈σz
i σ z

i+r 〉, so that the two-body reduced state
can be written as a classical mixture of eigenvectors of σz

i σ z
i+r . On the other hand, in

the ordered phase, also the two-body correlation function 〈σx
i σ x

i+r 〉 appears, while
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Fig. 18 Two-body trace distance-based discord of response (left panel) and two-body trace
distance-based entanglement of response (right panel) for symmetry-preserving ground states, in
the thermodynamic limit, as functions of the external field h, in the case of γ = 0.4, for different
inter-spin distances r . Solid blue curve: r = 2; dashed red curve: r = 3; dot-dashed green curve:
r = 8; and dotted black curve: r = ∞. In both panels, the two solid vertical lines correspond,
respectively, to the factorizing field (left) and to the critical field (right)

Fig. 19 Nearest-neighbor trace distance-based discord of response (left panel) and nearest-
neighbor trace distance-based entanglement of response (right panel) in MSBGSs as functions of
the external field h, for different values of the anisotropy γ . Solid blue curve: γ = 0.2; dashed red
curve: γ = 0.4; dot-dashed green curve: γ = 0.6; double-dot-dashed black curve: γ = 0.8; and
dotted orange curve: γ = 1. In both panels, to each of these curves, there corresponds a vertical
line denoting the associated factorizing field hf . The rightmost vertical line denotes the critical
point

〈σx
i 〉 vanishes due to symmetry preservation, thus preventing the two-body marginal

of the symmetry-preserving ground state from being a mixture of classical states.

Maximally Symmetry-Breaking Ground States
In this section, we move the focus of the comparison between two-body entangle-
ment of response and discord of response from symmetry-preserving to MSBGSs.
Spontaneous symmetry breaking manifests itself in the thermodynamic limit, in the
ordered phase h < hc = 1 and for any nonzero anisotropy γ , so that hereafter we
will restrict the region of the phase space under investigation accordingly.

Figure 19 shows that, as soon as symmetry breaking is taken into account,
only the discord of response is affected by symmetry breaking at the critical point
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hc = 1. In fact, according to Ref. [102], the concurrence and, consequently, the
two-body entanglement of response attain the same value for any h ≥ hf both in
the symmetry-preserving and in MSBGSs. Otherwise, if h < hf , there is a slight
enhancement in the pairwise entanglement of response in the MSBGSs compared to
the corresponding symmetry-preserving ones. Conversely, in general, the pairwise
discord of response undergoes a dramatic suppression in the entire ordered phase
h < hc when moving from symmetry-preserving to MSBGSs.

Considering the dependence on the inter-spin distance, we observe that the
pairwise discord of response loses its long-range nature when moving from
symmetry-preserving to MSBGSs (see Fig. 20). More precisely, both the pairwise
entanglement of response and the pairwise discord of response vanish asymptoti-
cally with increasing inter-spin distance. In the case of the pairwise entanglement of
response, this result is again due to the monogamy of the squared concurrence [99,
100]. In the case of the pairwise discord of response, it is instead due to the fact
that not only the correlation function 〈σx

i σ x
i+r 〉 but also 〈σx

i 〉 and 〈σx
i σ z

i+r 〉 are
nonvanishing in the limit of infinite inter-spin distance r . This feature allows writing
any two-spin reduced density matrix obtained from the MSBGSs as a classical
mixture of eigenvectors of OiOi+r , where Oi is an Hermitian operator defined on

the ith site as Oi = cos βσz
i + sin βσx

i with tan β = 〈σx
i 〉

〈σz
i 〉 .

Overall, the quantum correlations between any two spins decrease significantly
in the entire ordered phase when symmetry breaking is taken into account and
are almost entirely made up by contributions due to entanglement. In particular,
at the factorizing field hf , both the entanglement of response and the discord of
response vanish. Indeed, we recall that the factorizing field hf owes its name to the
two MSBGSs that are completely separable (product) at such value of the external
magnetic field.

Fig. 20 Two-body trace distance-based discord of response (left panel) and two-body trace
distance-based entanglement of response (right panel) in MSBGSs as functions of the external
field h, at γ = 0.4, for different inter-spin distances r . Solid blue curve: r = 2; dashed red curve:
r = 3; dot-dashed green curve: r = 8; and dotted black curve: r = ∞. In both panels, the two
solid vertical lines correspond, respectively, to the factorizing field (left) and to the critical field
(right)
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5.2 Global Properties: Local Convertibility and Many-Body
Entanglement Sharing

We now investigate the nature of quantum ground states in the ordered phase
concerning the properties of local convertibility of the global ground states and the
many-body entanglement distribution.

Local Convertibility of Many-Body Quantum Ground States
We begin by studying the property of the local convertibility of quantum ground
states in an ordered phase. It was previously shown that symmetric ground states
are always locally convertible among themselves for hf < h < hc and never
for h < hf < hc [103]. Here, thanks to the general methods developed before,
we can investigate the local convertibility property of all quantum ground states
in the ordered phase. In Fig. 21, we report the behavior of the Rényi entropies
Sα as functions of the different ground states for a bipartition of the system in
which subsystem A is made of � contiguous spins, while in Fig. 22 we report it
for subsystem A made of two spins with various inter-spin distances.

We observe that the MSBGSs are the ground states characterized by the smallest
value of all Rényi entropies, independently of the size � of the subsystem and the
inter-spin distance r . Therefore, all elements in the ground space are always locally
convertible to a MSBGS, while the opposite is impossible. This first quantitative
criterion for classicality is thus satisfied only by MSBGSs.

5.3 Many-Body Entanglement Distribution

We now compare symmetry-breaking and symmetry-preserving ground states with
respect to entanglement distribution. The monogamy inequality quantifies in a
simple and direct way the limits that are imposed on how bipartite entanglement
may be shared among many parties [99, 100]. For a given many-body system of N

1/2-spins, it reads

τ(i|N − 1) ≥
∑

j 
=i

τ (i|j) , ∀ i . (22)

In the above expression, τ = C2 is known as the tangle, where C is the
concurrence [96, 104], and the sum in the r.h.s. runs over all N − 1 spins excluding
spin i. The l.h.s. quantifies the bipartite entanglement between one particular,
arbitrarily chosen, spin in the collection (reference spin i) and all the remaining
N − 1 spins. The r.h.s. is the sum of all the pairwise entanglements between the
reference spin and each of the remaining N − 1 spins. The inequality implies that
entanglement cannot be freely distributed among multiple quantum parties N ≥ 3,
a constraint of quantum origin with no classical counterpart.
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Fig. 21 Behavior of the Rényi entropies Sα(ρA) as functions of the different ground states in the
ordered phase, h < hc, in the case of a subsystem A� made of � contiguous spins. Each line
stands for a different value of α. Black dotted line: α = 0.5. Green solid line: α → 1+ (von
Neumann entropy). Blue dot-dashed line: α = 3. Red dashed line: α → ∞. The different ground
states are parameterized by the superposition amplitudes u = cos(θ) and v = sin(θ). The two
vertical lines correspond to the two MSBGSs, respectively, obtained for θ = π/4 and θ = 3π/4.
The Hamiltonian parameters are set at the intermediate values γ = 0.5 and h = 0.5. Analogous
behaviors are observed for different values of the anisotropy and external field

Fig. 22 Behavior of the Rényi entropies Sα(ρA) as functions of the different ground states in the
ordered phase, h < hc, in the case of a subsystem Ar made by two spins, for different inter-spin
distances r . Each line stands for a different value of α. Black dotted line: α = 0.5. Green solid
line: α → 1+ (von Neumann entropy). Blue dot-dashed line: α = 3. Red dashed line: α → ∞.
The different ground states are parameterized by the superposition amplitudes u = cos(θ) and
v = sin(θ). The two vertical lines correspond to the two MSBGSs, respectively, obtained for
θ = π/4 and θ = 3π/4. The Hamiltonian parameters are set at the intermediate values γ = 0.5
and h = 0.5. Analogous behaviors are observed for different values of the anisotropy and external
field
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The residual tangle τ̃ is the positive semi-definite difference between the l.h.s.
and the r.h.s. in Eq. (22). It measures the amount of entanglement not quantifiable
as elementary bipartite spin–spin entanglement. Its minimum value compatible with
monogamy provides yet another quantitative criterion for classicality.

Specializing, for simplicity but without loss of generality, to translationally
invariant XY spin systems in magnetically ordered phases, since the expectation
value of σ

y
i vanishes on every element of the ground space, the expressions of the

tangle τ and the residual tangle τ̃ for any arbitrarily chosen spin in the chain read,
respectively,

τ = 1 − m2
z − (u∗v + v∗u)2m2

x , (23)

τ̃ = τ − 2
∞∑

r=1

C2
r (u, v) ≥ 0 , (24)

where mz = 〈e|σz
i |e〉 = 〈o|σz

i |o〉 is the on-site magnetization along z, the order

parameter mx = 〈e|σx
i |o〉 = √

lim
r→∞〈e|σx

i σ x
i+r |e〉, and Cr(u, v) stands for the

concurrence between two spins at a distance r when the system is in any one of
the possible ground states |g(u, v)〉, Eq. (17).

As already mentioned, by comparing the symmetric ground states with the
MSBGSs, the spin–spin concurrence is larger in the MSBGSs [102] if h < hf < hc,
where hf = √

1 − γ 2 is the factorizing field, while for hf < h < hc they are equal.
We have verified that these two results are much more general. We have compared
all ground states (symmetric, partially symmetry breaking, and MSBGSs), and we
have found that for h < hf < hc the spin–spin concurrences are maximum in the
MSBGSs for all values of the inter-spin distance r , while for hf < h < hc and
for all values of r they are independent of the superposition amplitudes u and v and
thus acquire the same value irrespective of the chosen ground state.

Finally, it is immediate to see that the third term in the r.h.s. of Eq. (23) is
maximized by the two MSBGSs. Collecting all these results, it follows that the
many-body, macroscopic multipartite entanglement, as quantified by the residual
tangle, is minimized by the two MSBGSs and therefore also this second quantitative
criterion for classicality is satisfied only by the MSBGSs among all possible
quantum ground states.

6 Conclusions

We have shown that phases characterized by topological order or systems prepared
in a ground state supporting edge states lack differential global convertibility, due
to the long-range entanglement that these conditions entail. Moreover, the breaking
of dLC is detectable even more clearly when small partitions are considered. This
means that dLC constitutes a semi-local probe to detect LRE, which is instead an
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inherently nonlocal property, usually accessible through string operators stretching
for distances much larger than the correlation length ξ .

We also argue that the competition between ξ and LRE is the reason for the lack
of dLC, because when the size of a partition becomes comparable with ξ , local
correlations reduce the LRE between the farthest point of the partition. Thus, as
ξ increases, bulk entanglement increases, but LRE decreases, thus creating a non-
monotonous behavior in the Rènyi entropies as α is varied.

Since LRE is an intrinsic property of a quantum phase that cannot be created
or destroyed, except by passing through a phase transition, our analysis highlighted
once more the higher computational power phase with LRE is endowed. The lack
of dLC renders them more quantum that phases that are locally convertible.

This intuition was then used to investigate the classical nature of globally
ordered phases associated with nonvanishing local order parameters and sponta-
neous symmetry breaking. We have put on quantitative grounds the long-standing
conjecture that the maximally symmetry-breaking ground states (MSBGSs) are
macroscopically the most classical ones among all possible ground states. We have
proved the conjecture by introducing and verifying two independent quantitative
criteria of macroscopic classicality. The first criterion states that all global ground
states in the thermodynamic limit are locally convertible to MSBGSs, while the
opposite is impossible. The second criterion states that the MSBGSs are the ones
that satisfy at its minimum the monogamy inequality for globally shared bipartite
entanglement and thus minimize the macroscopic multipartite entanglement as
quantified by the residual tangle. We have thus verified that, according to these two
criteria, the MSBGSs are indeed the most classical ones among all possible quantum
ground states.
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