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Abstract Quantum entanglement is a unique physical property that distinguishes
quantum systems from classical systems. Entanglement in spin chain models
has potential application in quantum information processing. Studying quantum
phase transitions of such models from the quantum information point of view
is the foundation of quantum physics and an effective means in understanding
and applying quantumness. This method achieves extensive research and rapid
development because no a priori knowledge of symmetry of the system is needed.
However, some key issues have not been effectively addressed, such as the determi-
nation of order parameters and the effectiveness and universality of each detector.
Therefore, we focus on the performance of entanglement and its related quantum
correlations in the characterization of quantum phase transitions under different
conditions. The natural connection between quantum correlation and quantum phase
transitions is mainly discussed, and a general context and the possible direction
of its development are sorted out to provide help for the deep understanding of
quantumness and the improvement of research methods of quantum phase transition.
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1 Introduction to Quantum Entanglement

1.1 Quantum Entanglement and Quantum Phase Transitions

An essential feature that discriminates quantummechanics from classical mechanics
is quantum entanglement. Entanglement is a pure quantum phenomenon that has
no classical counterpart. It describes a state of a system with multiple particles or
multiple degrees of freedom that may not be written as a product of the states of
its component systems [1]. In such an entangled state, the change of one particle
is immediately reflected on other entangled particles, no matter how far away they
are. Understanding this nonlocality that seems not limited by the speed of light has
puzzled the scientific community [2–4]. However, the majority of experiments that
have been done thus far are in favor of the nonlocality of quantum entanglement [5].
On the contrary, the fundamentally related property described by entanglement is
considered an important resource in quantum information processing [6, 7]. Well-
entangled states are the carriers of information; thus, the preparation of these states
has always been an important issue in quantum computation and communication
[8, 9]. Entanglement is the key to understanding quantum systems and future
technological breakthroughs.

However, the essence of quantum entanglement still lacks a thorough under-
standing. Researchers are looking for the hidden variable behind entanglement
and quantum theory [10–13]. Moreover, as the core of an information carrier, the
stability of an entanglement state is crucial. However, decoherence in such a state
remains a key to the unsolved problem in quantum information processing. The
understanding of a quantum state and the control of its stability are related to
quantum phase transitions’ research. Therefore, we study quantum phase transition
from the perspective of quantum informatics instead of the traditional order
parameter method by starting from quantum entanglement that is a representative
physical quantity of quantum information theory. Quantum phase transition is also
a pure quantum effect. The divergence of the correlation length is controlled by
quantum correlation, which cannot be described by classical statistical mechanics.
On the one hand, we can fully explore the quantum phases and phase transitions of
different systems from the quantum correlation itself by studying the relationship
between entanglement and quantum phase transition. On the other hand, we can
deeply understand quantum entanglement and explore the origin of quantumness.

In the field of quantum information, spin chain system has always been con-
sidered the best candidate in solid state systems that carry quantum entanglement
information because of its integrability and scalability in quantum communication.
Any logic gate of quantum computing can be realized in such models as long as it
is properly encoded [14, 15]. Many physical systems, such as nuclear spin, electron
spin, molecular spin, quantum dot, and quantum optical lattice, can be modulated
by spin chain models [16, 17]. Spin chain system is a natural quantum system in
quantum information processing and exhibits potential application value in quantum
information science. A spin chain can also be mapped to a fermion chain through
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Jordan-Wigner transformation [18]. Therefore, without loss of generality, we take
the quasi one-dimensional system based on spin chain as the platform and quantum
entanglement as the tool and object in the research of quantum phase transition and
quantum cognition.

Phase transitions are widely used in our daily lives. Examples include the
preparation of glass and ceramic materials and the production of austenitic and
martensitic stainless steel with different flexibility and strength requirements. At
present, many technological developments use phase transitions, for instance, the
application of phase change materials in solar energy storage, waste heat recovery,
engineering insulation, and corrosion-resistant metallic glass and the preparation of
artificial superhard materials [19].

Quantum phase transitions belong to one kind of phase transition. In contrary to
a thermal phase transition [20], which is driven by thermal fluctuations, a quantum
phase transition occurs at absolute zero temperature. At such a temperature, thermal
fluctuations are absent, and quantum effect dominates. According to Heisenberg
uncertainty principle arising from the wave-particle duality in quantum mechanics,
the momentum and the position of quantum particles cannot be determined precisely
at the same time. These particles still possess zero-point energy even at absolute
zero temperature, thereby leading to quantum fluctuations in the ground state of
the system. Let us take a simple spin-1/2 system as an example. The principle
of superposition indicates that any state of the system can be written as a linear
combination of the spin up | ↑〉 and the spin down | ↓〉, i.e.,

|ψ〉 = α |↑〉 + β |↓〉 , (1)

where α and β are complex numbers, and they satisfy the normalization condition
|α|2 + |β|2 = 1. The above equation shows that the arbitrary quantum state |ψ〉 can
be regarded as a fluctuation between | ↑〉 and | ↓〉. A quantum phase transition
is caused by such kind quantum fluctuations and a purely quantum mechanical
process. In a general system, the energy spectrum of the system suffers an abrupt
change when a slight change of a parameter λ near a so-called quantum critical
point is added to the Hamiltonian. This scenario leads to a macroscopic change
in the system’s properties, resulting in a quantum phase transition. In this work,
λ is usually called the driving term. It can be a coupling constant or an external
parameter, such as external magnetic or pressure.

The study of quantum phase transitions plays an important role in understanding
quantum many-body systems. It not only reveals the relationship of microscopic
energy spectrum and electronic structure with the macroscopic properties of
materials from the viewpoint of condensed matter physics [21] but also helps us
to understand quantumness deeply from the viewpoint of quantum information.
A typical example of quantum phase transition is the superfluid-Mott insulator
transition. It is observed experimentally in the trapped cold atoms in optical lattices
by tracking the velocity distribution of runaway molecules [22]. When the potential
barrier of the optical lattice is small, the cold atoms can shuttle freely in each
potential well, and the system is in superfluid phase. The cold atoms are confined
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in the wells and cannot hop between different lattice sites when the barrier is raised
above a certain threshold. The system becomes an insulator in this case [23]. In
addition to the superfluid-Mott insulator transition, other examples of quantum
phase transitions include the magnetic phase transitions in spin systems [24–26],
charge density wave–superconducting phase transition in fermion systems [27, 28],
and superconducting-insulator phase transition [29].

In recent decades, quantum computing and quantum communication based on
quantumness have become an important research field in the frontier of science and
technology with the improvement of the stability of quantum bit control and the con-
tinuous development of quantum algorithm. The discoveries of new phases of matter
promoted by quantum phase transitions, such as unconventional superconductivity
in a heavy-fermion system [30], and the close relationship between criticality and
decoherence in the quantum computation and quantum communication [31] have
greatly aroused scientists’ enthusiasm of studying quantum phase transitions.

As an analogy to thermal phase transitions, quantum phase transitions can also
be understood as a result of the reconstruction in Hamiltonian’s energy spectrum
[32]. In particular, the ground state or the low-lying energy spectra determines the
quantum state of the system. From this point of view, the structure of the low-energy
spectra changes when the driving parameter crosses the critical point, leading to
a different quantum phase with quite different macroscopic properties. According
to the reconstruction mechanisms, quantum phase transitions can be divided into
different types and are incarnated in the nonanalytic behavior of the derivative of the
ground-state properties at the transition point. The first type is the first-order phase
transition corresponding to a level crossing in the ground state, in which the first
derivative of the ground-state energy with respect to the driving parameter is usually
discontinuous. The second one is the continuous phase transition, including the
second-order and higher-order types, in which the energy levels of the ground state
and the first excited state become infinitely close to one another with the increase of
the system size. However, the occurrence of interlacing is always avoided. This type
of phase transition usually corresponds to a low-lying excited state reconstruction
and possesses discontinuity in an order higher than one in the derivative of the
ground-state energy [33]. Figure 1 shows the illustration of the two cases [21].

1.2 Methodologies from the Viewpoint of Quantum
Information Theory

The traditional method for studying quantum phase transitions belongs to the
category of Landau–Ginzburg–Wilson spontaneous symmetry-breaking theory.
Researchers use local order parameters to characterize different quantum phases.
However, quantum phase transitions, such as the topological phase transitions [34,
35] and Berezinskii-Kosterlitz-Thouless phase transitions [36], occur between
phases that are not characterized by any local order parameter or symmetry-
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Fig. 1 (a) When the energy levels of the ground state and the excited state intersect at a certain
point in the parameter space, the properties of the ground state of the system change; (b) the
situation in which the energy levels of the ground state and the excited state avoid the intersection

breaking description. Moreover, conducting a complete phase diagram analysis for
a multistate system is usually difficult because each quantum state needs a specific
characteristic order. Obtaining all possible orders of the system is a challenge,
particularly for systems with unknown symmetry. Therefore, the traditional research
on the quantum phase of multibody system has made slow progress for a long time.

The new method to study quantum phase transitions from the perspectives
of quantum information begins from Ref. [31], where the entanglement concept
from quantum information theory is originally borrowed to study quantum phase
transitions in condensed matter physics. The authors determined the close rela-
tionship between quantum phase transition and entanglement through the scale
analysis of entanglement near the critical point of the system. In this approach,
no a priori knowledge of the symmetry of a system is needed, and the phase
diagram of the system is obtained by studying this single quantity. The simplicity
and effectiveness of this method have attracted a wide range of research enthusiasm.
Along this direction, the research of quantum phase transition has made rapid and
long-term development. Subsequently, many new concepts borrowed from quantum
information theory have been successfully used to characterize quantum phase
transition.

These concepts mainly include quantum entanglement [31], quantum fidelity
(QF) [37], quantum discord (QD) [38], and quantum coherence (QC) based on
Wigner and Yanase skewed information [39]. Quantum entanglement approach
including the use of various measures, such as concurrence, von Neumann entropy,
and negativity [40, 41], has been successfully applied to various systems, including
interacting spin models [42], fermion models [38], and Bose Hubbard model [43].
This approach has been recently used to calibrate the superconducting phase
and metal phase of one-dimensional fermion wire [44]. The connection between
geometric Berry phase and quantum phase transitions for the case of a spin-XY

model has also been studied [45]. Quan et al. showed a remarkable relationship
between Loschmidt echo and quantum phase transitions [37, 46]. Based on this
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finding, a simple quantity QF and its related fidelity susceptibility [26, 47] have
been successfully applied to different types of quantum phase transitions, such
as topological type [48, 49], and verified experimentally by a nuclear magnetic
resonance quantum simulator [50]. Time correlations, Leggett-Garg inequalities,
and Loschmidt echo have also been recently introduced into the study of static
quantum phase transition and time domain dynamic quantum phase transition in
multibody quantum systems [51, 52].

1.3 Open Questions

Although each of the above-mentioned quantum phase transition detectors has its
successful examples, it also has limitations. The effectiveness and universality of
these examples are not fully analyzed. Although fidelity reflects the quantum phase
transition of Bose Hubbard model more clearly than quantum entanglement [43],
it is ineffective in detecting Berezinskii-Kosterlitz-Thouless (BKT) quantum phase
transition, such as the XXZ model [25], and QD can effectively describe this phase
transition [38]. Our recent research determined that QC cannot only effectively
detect such a BKT type quantum phase transition but also avoid the singularity of
QD in nonquantum-critical points [53]. Determining whether QC is a more generic
indicator for quantum phase transition than QD needs further exploration.

Moreover, absolute zero cannot be achieved in reality. Thus, the study of quantum
phase transition at finite temperature has a high experimental value. However,
research in this field is still insufficient. We showed that quantum entanglement
and its temperature scaling behavior can be used to detect the quantum critical
point of a spin system [42]. Similar works have also been done in Refs. [54, 55].
However, temperature has a great influence on the entanglement detection of
quantum phase transition, and the influence degree can vary different for different
detectors. For example, QD is more robust to thermal fluctuations than quantum
entanglement [38]. Recent finding has indicated that QC spectrum is more robust
to thermal fluctuations than QD and QC, and it is expected to be a powerful tool
to detect quantum phase transitions [53]. The response to thermal fluctuations or
the expression intensity of the quantum properties of the detected quantum states
directly affects the ability of each detector to characterize the phase transition at
finite temperature. The research in this area is still immature and lacks comprehen-
sive and systematic analysis.

Although quantum information measures can clearly demarcate the quantum
phase boundary, they cannot directly reveal the information of the order param-
eter for each of the quantum phases of the system. This scenario hinders us
from understanding further the specific properties of quantum states. Therefore,
developing a method to derive the order parameters from the same perspective of
quantum information is urgently needed. The order parameters for some simple
spin and fermion systems were constructed starting from the mutual information
involved in entanglement and correlation through the spectral analysis of the
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reduced density matrix [56–58]. Magnifico et al. have further applied recently
the order parameter we obtained to characterize the quantum phase transition in
the topological Schwinger model [59]. This method is still in its infancy. Further
investigations on its applicability to characterize different types of quantum phase
transitions, such as those that involve low-lying excited energy levels or different
topological phases, are required.

Quantum phase transitions and quantum entanglement have a close connection.
Although open questions exist, quantum entanglement is an effective and promising
method to reveal quantum phase transitions from the perspective of quantum
correlations. Therefore, we try to establish a possible connection among various
correlation detectors and quantum phase transition. We hope that this work will help
to find an effective and universal quantum phase transition detector and improve and
perfect the research method of quantum phase transition. Furthermore, we also hope
that it will enlighten the understanding of the nature of quantumness and contribute
in bridging condensed matter physics and quantum information science.

2 Concurrence and Quantum Phase Transitions in Spin
Chains

Entanglement, which is absent in classical systems, is regarded as a purely quantum
correlation. It serves as the resource to enable quantum computation and quantum
communication and thus plays a core role in quantum informatics [8]. It can also
be a good detector for quantum phase transitions in multibody system. The main
idea is that the quantum phase transition changes the quantum correlation of the
system, and the degree of entanglement inside the system is also changed, resulting
in the extreme value of the quantum entanglement or its derivative near the phase
transition point.

In 2002, Osterloh et al. studied the entanglement behavior near the critical point
of XY spin chain by using concurrence measure. The Hamiltonian of the XY model
reads

H = −
N∑

j=1

(
1 + γ

2
σx

j σ x
j+1 + 1 − γ

2
σ

y
j σ

y

j+1 + λσz
j

)
, (2)

where the parameter N is the number of spins in the chain, γ describes the
anisotropy of the system arising from the spin–spin interaction, λ is external mag-
netic field, σα (α = x, y, z) are the Pauli matrices. When γ = 1, the Hamiltonian
corresponds to the transverse-field Ising model.

For a given local reduced density matrix ρab = T rab |ψ〉 〈ψ |, where T rab stands
for tracing the overall sites except the two arbitrary sites a and b in the chain, the
quantum concurrence is defined as Cρab

= max{0, λ1 − λ2 − λ3 − λ4}, where λ1,
λ2, λ3, and λ4 are the square roots of the eigenvalues of ρabρ̃ab in descending order.
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Here, ρ̃ab = (σ
y
a ⊗ σ

y
b )ρ∗

ab(σ
y
a ⊗ σ

y
b ) is the time-reversed matrix of ρab. ρ∗

ab is the
complex conjugation of ρab.

The authors found by analyzing the behaviors of the concurrence in the vicinity
of the transition that the first derivative of concurrence with respect to λ shows
a minimum at λm near the critical point. The minimum becomes increasingly
considerable, and its position gradually approaches the true critical value λc = 1
as N increases. Although the concurrence itself does not show a singular behavior
at the critical point, its first-order derivative is divergent in the thermodynamic limit.
Similar phenomena were also observed for other critical points in the system. These
results supplied direct evidences for the validity of concurrence in quantum phase
transition detection.

The relationship between concurrence and quantum phase transitions is further
studied in Refs. [60, 61]. At the quantum phase transition point 	 = 1 of the
spin XXZ chain model, the ground-state concurrence shows a maximum behavior
instead of the singularity behavior for the XY model in Ref. [31]. This conclusion
is also suitable for the dimensionality d ≥ 2 cases [61]. Different behaviors of
quantum phase transition for different systems seem to indicate a certain nontrivial
relationship between quantum concurrence behavior and phase transition types.
Further study evidently is needed.

The types of the quantum phase transitions in several well-known spin systems
were clarified by comparing the analyses of low-lying excited state spectra and
quantum entanglement behaviors [33]. The different behaviors of the correspond-
ing quantum concurrence were explained, and the relationship between quantum
entanglement and phase transition types was tried to be established. According to
the continuity and extremum of quantum concurrence, quantum phase transitions
can be divided into three categories: The first one is the first-order quantum
phase transition, which is caused by the level crossing of the ground state.
The concurrence as a measure of ground-state entanglement information shows
discontinuous behavior because of the change of ground state at the phase transition
point. The second type is the case in which both sides of the corresponding phase
transition point are in order or disorder usually because of the level crossing in low
excited states, leading to a maximum behavior of the concurrence. The third kind
of quantum phase transition corresponds to the transition from order to disorder
with an energy gap opening, where the concurrence is continuous, but its high-
order derivative shows extremum at the phase transition point. This work reveals
that quantum entanglement and quantum phase transition are not only related to the
ground state of the system but also affected by the excited states. Their relationship
can be reflected by the behaviors of concurrence.

Concurrence can reflect the quantum phase transition of a system by measuring
the entanglement between the two spins embedded in the system. However,
some quantum information related to multiparticles is not reflected completely
by concurrence because of the limitation of the definition itself. In particular,
the quantum information in the two local spins may be too limited to reflect the
quantum information of the whole system. For example, compared with physical
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quantities, such as the von Newman entropy and QD, the concurrence as a measure
of entanglement eventually loses the ability to detect quantum phase transition with
temperature disturbance [38, 62].

3 von Neumann Entropy and Quantum Phase Transitions

3.1 Single-Site Entanglement

Gu et al. introduced a different entanglement measure, namely von Neumann
entropy, to study the quantum phase transition of the one-dimensional extended
Hubbard model [40]. The corresponding Hamiltonian of the model reads

H =
∑

i,σ

(
c
†
i,σ ci+1,σ + c

†
i+1,σ ci,σ

)
+ U

∑

i

ni↑ni↓ + V
∑

i

nini+1, (3)

where i = 1, . . . , N ; σ =↑,↓; c
†
i,σ and ni are the creation and number operators at

site i, respectively; U and V define the on-site and the nearest-neighbor Coulomb
interactions. The von Neumann entropy for a single site is then defined by the
ground-state |ψ〉 of the system as

Ev(ρj ) = −T rρj ln ρj , (4)

where ρj is the reduced density matrix of the ground state for the j th site.
The authors calculated the one-site entropy Ev as functions of U and V . They
determined that the extreme point of the von Neumann entropy corresponds to the
phase transition point of the system, and the ground-state phase diagram of the
system can be easily captured by the single quantity.

3.2 Multisite Entanglement

The success of the entanglement method has attracted researchers’ attention. Legeza
et al. found that the one-site von Neumann entropy is not suitable for some
quantum phase transitions, such as the phase transitions between the dimerized state,
Haldane state, quantum spin-nematic state in spin-1 spin chain, the Ising-like phase
transition, and BKT phase transition in the ionic Hubbard model. Therefore, they
proposed to use two-site entropy, namely the reduced density matrix in Eq. (4) is
taken for two neighboring sites instead of for one single site, to study the quantum
phase transition. They found that compared with the single-site entanglement, the
two-site entanglement entropy better reflects many phase transitions that cannot
be recognized by the single-site entanglement entropy [41]. The phase information
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of the one-dimensional isotropic spin-1 chain presented by the two-site entropy is
better than that presented by one-site entropy.

The block–block entanglement measured by the von Neumann entropy was also
studied based on the above findings; its structure is richer than that of the local
site entanglement for the one-dimensional extended Hubbard model because the
nonlocal correlation is included [63]. Multisite entropy was also used to analyze
quantum phase transitions in the frustrated spin ladder with next-nearest-neighbor
(NNN) interactions [64]. The system is sketched in Fig. 2. Its Hamiltonian reads

H =
N∑

α=1,2,i

[(
J1Sα,i · Sα,i+1 + J2Sα,i · Sα,i+2

) + J⊥S1,i · S2,i + J×
(
S1,i · S2,i+1 + S1,i+1 · S2,i

)]
,

(5)

where Sα,i denotes spin-1/2 operators at site i of the αth leg of the ladder, and N

is the number of rungs; the other parameters J1, J2, J⊥, and J× correspond to the
interactions between different spins, as indicated in Fig. 2.

Given the spin alignment frustration, materials with the spin-ladder structure
exhibit rich quantum states, and many of them are still not fully understood. A good
example is the highly controversial intermediated columnar dimer (CD) state in the
frustrated antiferromagnetic state. The introduction of the in-chain NNN interaction
further increases frustration among spins and may induce new quantum phases
of great interest. Such in-chain NNN interaction does exist in real materials, e.g.,
BiCu2PO6 [65]. Therefore, studying the quantum phase diagram of the spin ladder
with the in-chain NNN interaction is necessary and insightful. In such a system, the
four-site entropy E4_L (the subscript represents the four spins in the middle of the
chain, as circled by the wine square marked L in Fig. 2) contains richer quantum
information than the two-site entropy E13 does because of the symmetry of the
system. As shown in Fig. 3, E4_L presents a clearer indication than E13 does at
the phase boundary of II and III. The controversial CD phase was confirmed by
analyzing the four-site entropy combined with the correlation function, and an exotic

Fig. 2 (Color online) Schematic diagram of the two-leg spin-1/2 ladder with diagonal and in-
chain NNN interactions. Circles denote spin-1/2 sites coupled by exchange constants J1 (black
solid lines), J2 (blue dashed lines), J⊥ (red solid lines), and J× (green dashed lines). The wine-
pane L represents the four spins at the middle of the chain, and the dashed-pane R circles the four
spins at its right side, where α = 1, . . . , 6 denotes the number of spins on L and R
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Fig. 3 E4_L and E13 as a function of J× at J2 = 0.4, J1 = −1.0, and J⊥ = −0.5 for rung
number N=320. Dramatic changes in E4_L show a clearer indicator than those in E13 do in
delimiting the three phases I, II, and III

tetramer phase was found. Finally, the quantum phase diagram of the system was
obtained [64].

In addition, two difficult issues related to quantum phase transition were solved
using quantum entanglement: (I) the BKT type critical point at J2/J1 ≈ 0.241
in the J1 − J2 model, which corresponds to a transition from spin fluid to
dimerized phase and is difficult to be detected because of the problem of logarithmic
correction [24, 66]; (II) the controversy—whether the bond-order-wave (BOW) state
at a narrow strip along the U � 2V line exists in the half-filled one-dimensional
extended Hubbard model [67].The BKT phase transition in the J1 − J2 model [68]
and the intermediated BOW and superconducting states in the half-filled one-
dimensional extended Hubbard model were successfully detected with the help of
the two-site and block-site entanglement measured by von Neumann entropy and
density matrix renormalization group (DMRG) numerical technique [63, 69].

Given that the local entanglement can be conveniently obtained by the exact
diagonalization or density matrix renormalization group algorithms, the method can
be applied to much complex systems that cannot be exactly solved. Many related
studies on entanglement and phase transition of different quantum systems under
different conditions can be performed [9].

Furthermore, the entanglement spectrum can also be used to study quantum
phase transitions. Compared with the entanglement entropy, which is just a single
number, entanglement spectrum can reveal much more information on quantum
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phase transition [70]. Some related works on different types of quantum phases can
be found in Refs. [71–73].

The concurrence and the von Neumann entropy are the two main entanglement
measures used in detecting quantum phase transitions. Although both of them can
measure the degree of entanglement, they possess different physical natures. The
concurrence describes the entanglement between the two sites constructing the
reduced density matrix, whereas von Neumann entropy measures the entanglement
of states on the selected sites with that on the remaining sites in the chain. The
concurrence and the von Neumann entropy actually reflect different entanglement
information in the system. Different abilities can detect quantum phase transitions
for different detectors [62]. The main reason might be that the detectors actually
contain different degrees of correlation. Further discussion about this topic is
provided in Sects. 3.4 and 4.

3.3 Entanglement and Quantum Phase Transitions at Finite
Temperatures

When the temperature is not too high to destroy the quantum order, the system is
still dominated by quantumness, and quantum phase transitions still exist. The study
on quantum phase transition at finite temperature has a high experimental value
because absolute zero cannot be achieved in an actual experiment. However, related
research in this field is sparse. The transfer matrix renormalization group (TMRG)
technique [74], which is based on the Trotter-Suzuki decomposition of the partition
function of a system and can directly handle infinite chains, is used in calculating
the two-site thermal entanglement of the S = 1/2 distorted diamond chain model to
avoid the finite-size effect [42]. The model is sketched in Fig. 4. Its Hamiltonian is
written as follows:

H =
N∑

i=1

(J1(S2i−1 · S2i,a + S2i,b · S2i+1)

+J2(S2i−1 · S2i,b + S2i,a · S2i+1) + J3S2i,a · S2i,b, (6)

where Si are spin-1/2 operators at site i , and Ji with i = 1, 2, 3 denote exchange
integrals along different directions.

The definition of the thermal entanglement Et is the same as that in Eq. (4), but
the reduced density matrix is obtained from the thermodynamical average values
of some correlation functions (see Ref. [42]). The results are shown in Fig. 5 for
J2 = J1 antiferromagnetic spin frustrated case. As temperature T decreases, two
dramatic changes appear near the two critical points J3 = 1.0 and J3 = 2.0 for
T = 0.67, as shown in Fig. 5a. The derivative of Et peaks near the two critical
points, and the peak is pronounced as T decreases, as shown in Fig. 5b. The scaling
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Fig. 4 (Color online) Schematic diagram of the spin-half distorted diamond chain model, where
the black circle represents the spin. J1 (black solid lines), J2 (green dashed lines), and J3 (red
dashed lines) indicate the exchange constants between spins

Fig. 5 (Color online) (a) The thermal entanglement Et for the antiferromagnetic case as a
function of J3 at J1 = J2 = 1.0 and T = 0.067. (b) The derivative of Et with respect to J3 under
different values of M , where M is the Trotter number in the TMRG calculation, and T = 1/(Mε)

with ε = 0.1

behavior for the peak illustrates that it diverges at zero temperature [42]. The
peak behavior of Et reflects the quantum phase transition of the system at finite
temperature. Therefore, we conclude that detecting quantum phase transitions at
finite temperature by entanglement is possible and provides theoretical guidance for
the experimental study of quantum phase transition.

3.4 Entanglement and Quantum Correlations

The essence of entanglement is a kind of quantum correlation, which plays a
role in detecting quantum phase transition. However, it does not include all types
of quantum correlations, and some quantum states have quantum correlations
without quantum entanglement. For example, the authors pointed out that quan-
tum correlations still exist in separable mixed states where the entanglement is
absent [75]. Entanglement may fail to detect the quantum phase transitions in
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such a system [25, 38]. Correlation among different parts of a system is the main
information to obtain in many-body physics and is believed to play a key role in
quantum phase transitions detection. From this point of view, a quantity that can
measure a larger amount of quantum correlation of a state may present an excellent
performance.

An alternative measure of quantum correlations is the QD. The existing results
showed that QD can detect the quantum correlations present in certain separable
mixed states [76, 77] and may be responsible for the speeding up of a mix-
state-based quantum computation [78, 79]. The related researches confirmed its
advantage in detecting quantum phase transitions: QD can be more robust against
temperature and shows more detailed information than entanglement does [38, 80].
The main reason could be that QD reflects the changes of quantum correlation in
which entanglement is absent in such quantum phase transitions. In Refs. [83],
the authors established the hierarchical relationship of different manifestations of
quantum correlations on the basis of quantum relative entropy. Three kinds of
quantum correlations measured by quantum entanglement, QD, and QC are mainly
considered. The authors confirmed the above viewpoint and further determined that
the amount of information contained in QC, QD, and entanglement decreases in
turn. Given that QC contains the most correlation information, it can seem to be the
best in detecting quantum phase transitions. Therefore, compared with the potential
advantages of quantum entanglement, the potential advantages of QD and QC on
quantum phase transition detections are focused in the later parts.

4 Quantum Discord, Quantum Coherence, and Quantum
Phase Transitions

4.1 Quantum Discord

Introduced by Ollivier and Zurek [76], QD presents an alternative measure of quan-
tum correlations. Given its application prospect in mixed state quantum computing,
much attention has been focused on the properties of QD [81]. The relation between
QD and quantum phase transition is an important aspect. One important finding is
that QD is more robust against thermal fluctuations than entanglement is, and it can
detect quantum phase transitions at finite temperatures [38].

The quantum discord is related to mutual information. Two equivalent mutual
information expressions, I (ρab) and C(ρab), exist in classical information theory to
describe the correlation between two arbitrary parts, a and b. However, they become
unequal when the quantum nature dominates, and the minimum of their difference
is called QD [76]:

D(ρab) = I (ρab) − C(ρab) (7)
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with

I (ρab) = S(ρa) + S(ρb) − S(ρab), (8)

C(ρab) = S(ρa) − min{bk} S̃(ρab|{bk}), (9)

where S(ρ) is von Neumann entropy and S̃(ρab|{bk}) is the conditional entropy and
can be written as

S̃(ρab|{bk}) =
∑

k

pkS(ρk
ab), (10)

with ρk
ab = 1

pk
(I ⊗ bk) ρab (I ⊗ bk) and pk = Tr [(I ⊗ bk) ρab (I ⊗ bk)]. The

minimum in Eq. (9) is achieved from a complete set of projective measures {bk}
on site b. With the spin system as an example, the projectors in Eq. (10) can be
written as

bk = V |k〉 〈k| V †, (11)

where {|k〉} is the standard basis {|↑〉 , |↓〉} of any two selected spins, and the
transform matrix V is parameterized as [81]

V =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
. (12)

Then, the minimum of condition entropy S̃(ρr ) only depends on θ and ϕ (traversing
from 0 to π ). We can determine from the definition that I (ρab) should be the total
correlation, and C(ρab) corresponds to the classical correlation. The QD reflects the
quantum part included in the mutual information [38, 81].

The entanglement of formation (EOF) is a monotonically increasing function of
the concurrence Cρab

defined in Sect. 2. It can be written as follows [38]:

EOF(ρab) = −f (Cρab
)log2f (Cρab

) − [
1 − f (Cρab

)
]
log2

[
1 − f (Cρab

)
]
,

(13)

where f
(
Cρab

) = (1 +
√
1 − C2

ρab
)/2. It satisfies the criteria for entanglement

monotone. Thus, we use it as a measure of entanglement instead of the concurrence
itself.

In Ref. [38], one-dimensional spin XXZ model is used as an example model to
demonstrate well the advantages of QD in quantum phase transition detection. The
Hamiltonian of the model reads as

HXXZ =
N∑

j

σ x
j σ x

j+1 + σ
y
j σ

y

j+1 + 	σz
j σ z

j+1 , (14)
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where N is the number of spins in the chain, 	 describes the anisotropy of
the system arising from the spin–spin interactions, and σx

j , σ
y
j , and σz

j are the
usual Pauli matrices of the j -th spin. This model has two critical points at zero
temperature: an infinite-order phase transition at 	 = 1 and a first-order transition
caused by the level crossing of ground state at 	 = −1 [82]. The continuous
critical point at 	 = 1 is hardly detected by most detectors, such as the fidelity
and the entanglement entropy [25, 53]. However, QD presents a clear signature for
this critical point.

The advantages of QD in detecting quantum critical phenomena, particularly at
finite temperatures, were further explored in theXY spin chain model in a transverse
field with three-spin interaction (XYT) [80]. The Hamiltonian is given by

H = −
N∑

j=1

(
1 + γ

2
σx

j σ x
j+1 + 1 − γ

2
σ

y
j σ

y

j+1 + λσz
j

)
−

N∑

j=1

α
(
σx

j−1σ
z
j σ x

j+1 + σ
y

j−1σ
z
j σ

y

j+1

)
,

(15)

where N is the number of spins in the chain, γ describes the anisotropy of the
system arising from the spin-spin interaction, λ is the external magnetic field, and α

denotes the three-spin interaction.
This system can be diagonalized in momentum space by introducing Jordan-

Wigner transformation. Thus, it is a good experimental model. The capabilities
of QD and entanglement in detecting quantum phase transitions at both zero and
finite temperatures were analyzed. The pairwise QD of two neighboring spins
is more reliable than entanglement in identifying quantum phase transitions. We
obtained the quantum phase diagram of the system by the derivative of QD and
further confirmed the robustness of QD against thermal fluctuations compared with
entanglement (see Fig. 6). At T = 0, the vanishing EOF clearly detects the critical
points at α = ±0.5. However, the EOF deviates from the critical points as T

increases and tends to zero in the whole parameter region when T is larger than
1.0, as shown in Fig. 6a. Entanglement cannot detect the quantum phase transition

Fig. 6 (Color online) (Left) EOF and (Right) QD as functions of λ and T for γ = 0.5 and λ = 0.0
at N = 2001
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when thermal fluctuation is added. On the contrary, even when T is as high as 2.0,
QD is not zero (see Fig. 6b), and the peak structure of its derivative still points
to the position of the phase transition point. Therefore, QD is more robust than
quantum entanglement in resisting thermal disturbance and can be used to detect
quantum phase transition at finite temperature. The advantage of QD in quantum
phase transition detection fits the conclusion in Refs. [83] that QD contains more
quantum correlation than entanglement.

4.2 Quantum Coherence and Quantum Coherence Spectrum

Based on Wigner and Yanase skew information (WYSI), the simplified alternative
version of K-coherence of a quantum state can be written as [84, 85]

IL(ρ,K) = −1

4
T r

[
[ρ,K]2

]
, (16)

where ρ is the density matrix of a quantum state, K is an observable, and [. . .]
denotes the commutator. This definition satisfies all the criteria for coherence mono-
tones and can be used as an efficient measure to quantify QC [84]. For a subsystem
with two sites, A and B, if we choose A as the observable, then K is written as
KA

⊗
IB . Thus, IL(ρ,K) is written as IL

AB(ρAB,KA

⊗
IB), which quantifies the

QC between A and B. The effectiveness of the WYSI-based QC and its derivatives
in detecting different types of quantum phase transitions is carefully analyzed based
on the one-dimensional Hubbard model, XY spin model, and Su-Schrieffer-Heeger
(SSH) model. QC is more robust than quantum entanglement in resisting thermal
fluctuation. It can effectively characterize quantum phase transitions of the system
at a relatively high temperature, where entanglement is not competent anymore. The
main results are as follows. First, QC clearly shows the existence of the BOW state
of the one-dimensional extended Hubbard model (see Eq. (3) for the Hamiltonian),
which is not detected easily by entanglement [40] and fidelity [62]. QC results
as a function of V at U = 2.0 under different system sizes N , plotted in Fig. 7.
For a given N , an obvious difference exists between the two neighboring two-site
QDs, namely IL

i,i+1 for i = N/2 and i = N/2 + 1. The difference becomes clear
as N increases and does not disappear in the thermodynamic limit. This scenario
corresponds to the BOW state that possesses the dimerized property (details see
Ref. [62]). Second, QC shows the same effectiveness as QD in detecting quantum
phase transition at finite temperatures, where the entanglement becomes incapable
(see Fig. 8). The thermal fluctuation weakens the EOF when the temperature is
added. For example, when T = 0.5, the turning point from zero to nonzero shifts
away from the critical point at α = 0.5. EOF becomes zero in the whole parameter
range when the temperature T increases to 1.0. EOF cannot reflect the continuous
quantum phase transition at α = 0.5 of the XY spin model in a transverse field
with three-spin interaction (see Eq. 14 for its Hamiltonian). However, QC shows
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Fig. 7 (Color online) QC for neighboring two sites i = N/2 and i = N/2 + 1 of the extended
Hubbard model at U = 2.0 under different system sizes N

Fig. 8 (Color online) (a) The EOF, (b) QD, and (c) QC as a function of α under specific
temperatures at λ = 0.0 and γ = 0.5 with N = 1001 for the XYT model. (d) and (e) show
the derivative of QD and QC, respectively, with respect to α at T = 1.2. The dashed line on the
left panel indicates the turning point at α = 0.4 for EOF under T = 0.5
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similar effectiveness as QD under such condition: the increment with α for them
shows a turning point at the critical point α = 0.5 (see Fig. 8b,c for T = 0.5), and
their derivative can still reflect the quantum phase transition even at a relative high
temperature T = 1.2, as shown in Fig. 8d,e.

QC is indeed more prominent than entanglement in detecting quantum phase
transitions. However, its performance is not better than QD. Moreover, it cannot
detect the BKT type critical point of the XXZ model. Given the correlation
information theory proposed in Ref. [83] and as mentioned in Sect. 3.4 that QC
contains the most amount of correlation information compared to quantum discord
and entanglement, we attempt to reveal further its internal relationship with quantum
phase transitions. We showed its advantages in characterizing quantum phase
transitions by analyzing the spectrum of QC [53].

The definition of QC in Eq. (16) is a single number. Some information may be
covered up by neutralization in the process of summation. Therefore, we turned to
the basic source of information, that is, its construction spectrum. We defined two
quantities to determine the change of information in each coherence energy level
and reflect the distribution property of the spectrum. The two quantities, namely
coherence entropy SQC and logarithm of the spectrum LQC , are as follows:

SQC = −∑4
n=1 αn lnαn, (17)

LQC = −∑4
n=1 lnαn, (18)

where αn with n = 1, 2, 3, and 4 is the four eigenvalues of I in Eq. (16), which
consists of the four components in its spectrum.

Using the TMRG technique, we calculated the QD for the infinite XXZ spin
chain, and the analytical method was used to deal with the XY and Ising models. The
results for the XXZ model are shown in Fig. 9. The BKT type critical point at 	 = 1
is clearly detected by the sharp peaks of LQC at different temperatures, whereas QD
(considered the only effective detector for this critical point at present) tends to zero
at a relatively high temperature. The two critical points are also characterized by
the minimum point in SQC (see Ref. [53]). Compared with QC, which is a single
number, coherent spectrum contains complete coherent information. LQC here
acquires the disappearance of coherence information in some specific coherence
energy levels by analyzing the spectrum. SQC possesses the form of information
entropy. It reflects the distribution property of the coherence spectrum and presents
more considerable correlation information than QC itself. The conclusion is also
suitable for the quantum phase transitions in the XY and the topological-type
quantum phase transition in the spin Kitaev models [53].

However, SQC for the one-dimensional spin Kitaev model does not seem to be
as robust against temperature as that for the other quantum phase transitions. The
Hamiltonian of this model is as follows:

H = ∑N
j

(
J1σ

x
2j−1σ

x
2j + J2σ

y

2j σ
y

2j+1

)
, (19)
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Fig. 9 (Color online) (a) QD and (b) LQC as functions of 	 under different temperature T .
QD tends to zero, and its cusp signature of CP disappears at a relative high T . (Reproduced from
Ref. [53])

where J1 and J2 describe the spin–spin interactions alternatively along the chain.
A topological critical point occurs at J2/J1 = 1.0 in this model [86]. The peak
moves away from the critical point at a low temperature T = 0.25. The weak
robustness may come from the detector or the detected quantum state itself. The
phase transition at J2 = 1.0 here belongs to the topological type. No symmetry-
breaking behaviors occur for such phase transition; thus, it cannot be characterized
by a local order parameter [21, 34, 86]. Therefore, we considered that the weak
robustness probably comes from the weak ability against thermal fluctuations of the
state itself. This conclusion was verified by the specific heat result. The thermal
excitation peak in the specific heat for Kitaev model is considerably lower than
that in XXZ model, representing an easily destroyed quantum order by thermal
fluctuation in Kitaev model. Therefore, the relatively weak robustness against the
temperature behavior of SQC for the Kitaev model should not be attributed to SQC .
Moreover, SQC is more accurate in detecting the critical point than other detectors
in this case (details see Ref. [53]).



Detecting Quantum Phase Transitions in Spin Chains 33

In summary, for a detector, the more information about the quantum correlation
it contains, the more effective it is in resisting thermal fluctuations. Qc is considered
the most important physical quantity in quantifying the quantum correlation con-
tained in the system thus far. Therefore, it possesses natural advantages in signaling
the quantum phase transitions. The above-mentioned results further proved this
claim.

5 Deducing Order Parameters from Entanglement Based
Method

The quantum information methods introduced in the previous sections have suc-
ceeded in detecting the quantum phase transition points. However, a challenge still
remains: they can only detect the phase boundaries and give us little information
about the corresponding phase property, which is a core issue in understanding the
phase diagram of a system. Therefore, deducing the potential order parameters for
various phases, particularly the topological phases, from the quantum information
point of view can help us to learn about the phases’ properties in unknown systems.

Several independent proposals to derive the order parameter exist. Furukawa
et al. proposed a method by investigating a set of low-energy “quasi-degenerate”
states that lead to the symmetry breaking in the thermodynamic limit [87]. Cheong
and Henley [88] suggested to study the singular-value decomposition of the
correlation density matrix to obtain the order parameter. Gu et al. [56] proposed
a nonvariational and relatively more intuitive approach than the above-mentioned
methods. Moreover, this approach may help establish the connection between the
quantum phase transition detectors and the order parameters.

The main idea of Gu et al.’s approach is as follows. The order parameter
is usually described by an operator. If an operator has a nonzero long-range
expectation value, then a symmetry-breaking phase exists in the system. This
operator can be used as an order parameter to describe the characteristic order of
the quantum phase. The order parameter is usually expressed by the correlation
function. For example, one can analyze the magnetic order of the system through
the spin correlation to study the magnetic characteristics of a system. For one-
dimensional case, the zero mode represents ferromagnetism, whereas the π mode
predicts the antiferromagnetic order. The reduced density matrix, which is the
core in the definition of each quantum phase transition detector, can be expressed
by correlation function. Therefore, one can analyze the structure of the reduced
density matrix to deduce the order parameter for a given unknown state. Along
this direction, Gu et al. [56] proposed that if and only if the mutual information
is nonvanishing at a long distance, then a long-range order exists in the system.
One only needs to find the minimum block with the nonzero mutual information.
Then, obtaining diagonal and off-diagonal long-range orders is possible depending
on the reduced density matrix of the block (see Ref. [56] for detail). The method
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was applied analytically on several imaginary simple examples in Ref. [56]. We
applied the method using DMRG and exactly diagonalization numerical techniques
to a practical and relative complex model, namely the SSH model with interactions,
to verify and develop the method further.

This model is given by the Hamiltonian

H = − t
∑

j

[
(1 + η)c

†
j,Bcj,A + (1 + η)c

†
j,Acj,B

+ (1 − η)c
†
j+1,Acj,B + (1 − η)c

†
j,Bcj+1,A

]

+ U
∑

j

nj,Anj,B + V
∑

j

nj,Bnj+1,A. (20)

The operator cj,α destroys a spinless fermion at the unit cell j of type α = A,B.
The amplitude t is the hopping strength, η describes the dimerization, and U and V

are local Hubbard-like term coupling fermions from the same unit cell and from the
adjacent unit cells, respectively. This model initially describes a dimerized chain
of spinless fermions hopping in a tight-binding band. Given the dimerization, the
unit cell indexed by j contains two atoms of types A and B. We add the interaction
terms. For the noninteracting case, a phase transition exists between the topological
and topological-trivial phases at η = 0.

The mutual information or correlation entropy defined in Eq. (8) should be
calculated to implement the method. The subsystem is taken as a single unit
cell consisting of two atoms of type A and B. The mutual information and the
reduced density matrix spectrum are calculated. The results showed that, for η〈0,
nonzero long-range mutual information exists, indicating that we can use Gu
et al.’s method to deduce the order parameter. On the basis of

∣∣nj,A, nj,B

〉 =
{|00〉 , |01〉 , |10〉 , |11〉}, the eigenstates denoted by |A〉 , |B〉 , |C〉 , and |D〉 are
equally weighted. According to the scheme, the order parameter can be defined as

O− = wA|A〉〈A| + wB |B〉〈B| + wC |C〉〈C| + wD|D〉〈D|. (21)

However, all four unknown coefficients must be fixed. This scenario is too much
to deal with, because only the traceless and cut-off conditions exist. Therefore,
we transformed the basis to the diagonal expression with the Majorana fermion
operators to decrease the number of dominated states. In the transformed basis, the
Hamiltonian is diagonalized, and the ground state is given by the vacuum state of the
number operators nf and nd . The reduced density matrix is solely contributed by the
state

∣∣nf = 0, nd = 0
〉
. Thus, the order parameter can be defined by O− = |00〉〈00|

in the diagonal basis. Then, we transformed the diagonal operators back to the
original spinless fermion operators and obtained a quasi-local order parameter that
characterizes the topological phase in the model [57].

For the topological-trivial phase for η > 0, we took the block consisting of a
B atom at site j and an atom A at site j + 1 instead of the single-site block with
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Fig. 10 (Color online) Single-site entanglement entropy and its contour map for η = 0.6 as a
function of U and V . In each region, the dominant order parameters are shown (Reproduced from
Ref. [57])

atoms A and B at the same site. The mutual information is also nonzero in this case,
and only one dominating eigenstate of the reduced density matrix exists. The order
parameter O+ for the topological-trivial phase can be deduced directly without a
basis transformation [57].

The order parameters were deduced for all the phases when U and V in
Eq. (20) were added. Together with the entanglement entropy results and electronic
configuration analysis, the order parameters results were verified, and the ground-
state phase diagram of the system was obtained. Figure 10 shows the entanglement
results where the confirmed phases are marked on its contour map. The deduced
order parameter O− that characterizes the topological state in the interacting SSH
model was further used to study the quantum phases in the Schwinger model (the
model introduces gauge bosons to regulate the interaction between fermions) and
successfully characterize the topological quantum phases in that model [59].

The SSH model described in Eq. (20) (without U and V terms) becomes the
SSH-Kiteav model by adding triplet TS pairing. A new Kitaev order topological
phase is present in this system. The Hamiltonian is written as follows:

H = −t
∑
j

[
(1 + η)c

†
j,Bcj,A + (1 + η)c

†
j,Acj,B + (1 − η)c

†
j+1,Acj,B + (1 − η)c

†
j,Bcj+1,A

]

+	
∑
j

[
(1 + η)c

†
j,Bc

†
j,A + (1 + η)cj,Acj,B + (1 − η)c

†
j+1,Ac

†
j,B + (1 − η)cj,Bcj+1,A

]
.

(22)
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The phase diagram needs four order parameters to be described. We further
deduced the order parameters OK+ and OK− of the Kiteav-type topological states by
using the operator basis transformation similar to the Majorana fermion operators,
as mentioned above (see Ref. [89]). Under the transformed basis, the Hamiltonian
of the system is diagonalized at the parameter value that is taken deep inside each
phase, and its ground state is the vacuum state of the corresponding operator. Thus,
the order parameter can be simply written as the expectation value of the projection
operator on a subset of the system’s ground state. For example, at η = 0, the order
parameters can be written as follows:

OK
j,+ = |0〉〈0| = 1 − nd

= 1

2
− 1

2
Hj(t = 	 = 1) (23)

and

OK
j,− = 1

2
− 1

2
Hj(t = −	 = 1), (24)

where Hj is the contribution from site j to the Hamiltonian. This observation
indicates that the local Hamiltonian Hj itself may be used as the order parameter.
The Hamiltonian of the system is expressed as H = ∑

j Hj . Thus, Hj from deep
inside each of the four phases can serve as the corresponding quantum state order
parameters of the system. We verified the conclusion by comparing the results of
local Hj for different phases with the deduced order parameters from the reduced
density matrix approach. This method is simple and expected to be useful in
deducing the order parameters for complex quantum states.

6 Summary and Outlook

Entanglement and its related quantum correlations are the cornerstones of quantum
mechanics. The quantum effects encoded in entanglement are the essence of high-
performance quantum computing and high-efficiency quantum communication in
the future. Studying quantum phase transition in spin chain systems from the
perspective of quantum correlation not only paves a way to detect the entire
critical regions of a system without empirical knowledge but also contributes to the
understanding of quantum property and its application in spin chain-based quantum
processing.

In this chapter, we present a brief but comprehensive introduction about the
gradual development of the related research methods. We focus on the success
of each relevant work, while the possible problems are also collected. From the
correlation point of view, the more quantum correlation that the detector can capture,
the more useful it is in detecting the quantum phase transition. Therefore, among
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the three concepts, QC seems to be the best potential detector for quantum phase
transitions because of its capability in detecting multiple types of phase transitions
and its resistance to thermal fluctuations. Nevertheless, the research on QC are still
far from complete. Its universality still needs further studies.

Another issue focuses on the systematic construction of the potential order
parameters. We briefly introduce an approach to derive the order parameters starting
from the reduced density matrix closely related to entanglement and quantum
correlation. On this basis, we extend the approach to deal with the system with
the relatively complex reduced density matrix spectrum by transforming the basis
to the diagonalized basis of the Hamiltonian at specific values of the driving
parameter. The connection between the order parameter and the reduced density
matrix spectrum is established preliminarily, but the direct connection between the
order parameter and the quantum phase transition detectors needs further analysis.
A comprehensive method for the derivation of order parameters is constructive not
only for the understanding of the properties of quantum states and quantum phase
diagram construction but also for understanding of the performance of quantumness
in quantum information science.

In addition, quantum simulators can successfully study the real-time dynamics
of quantum many-body systems with the development of quantum level control
technology. In recent years, the studies on dynamical quantum phase transitions
have increased. Dynamical quantum phase transition studies have been developed to
try to understand the dynamical behavior of quantum many-body systems by intro-
ducing the concept of phase transition in the time domain. At present, the research
has two approaches: one is the order parameter method [90, 91], and the other is the
nonresolution of the physical quantity, which mainly includes the Loschmidt echo
and its correlation [52, 92] and the out-time-ordered correlation [93]. Dynamical
quantum phase transitions in the case of quantum quench have been experimentally
realized recently [92, 94]. For a detailed introduction, one can see the review article
in Ref. [95]. In addition, the quantum phase transition of an equilibrium system
is also studied from the dynamical correlation point of view [51]. The study of
dynamic quantum phase transition is just at its beginning. The related work, such
as definition understanding, phase transition classification, detection methods, and
dynamical behaviors, must be further developed. In addition, the previous study of
order parameter derivation has just been applied to equilibrium systems, whether it
can be extended to such non-equilibrium systems is also an important issue.

Finally, finding efficient and universal quantum phase transition detectors and
developing the methods for constructing the potential order parameters exhibit a
lot of hope and challenge from the perspective of quantum information. Moreover,
the essential relationship between entanglement and quantum phase transition still
needs to be further explored. Further research on this topic is not only constructive to
the improvement of the method itself but also expected to promote the development
and utilization of quantumness in this process. We take this introductory text to
sort out the relevant research and provide insights for future research. We hope that
this work can stimulate advance ideas in building a real bridge between condensed
matter physics and quantum informatics.
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