
Quantum-Dot Spin Chains

John M. Nichol

Abstract Semiconductor quantum dots are a promising platform for quantum sim-
ulation and computing. This chapter will review the fundamentals of semiconductor
quantum dots and the Heisenberg exchange coupling that occurs between neighbor-
ing quantum dots. Despite directly coupling only nearest-neighbor quantum dots,
exchange coupling underlies a great many approaches for quantum information
processing, quantum state transfer, and the simulation of spin chain dynamics. This
chapter will review recent progress and future work along these directions.

1 Introduction

Semiconductor quantum dots are three-dimensional confining potentials for elec-
trons. They enable trapping, manipulating, and measuring the charge and spin states
of single electrons in semiconductors. As a result of these capabilities, semiconduc-
tor quantum dots are a leading platform for quantum computing and simulation. A
unique feature of electrons in semiconductor quantum dots is Heisenberg exchange
coupling between neighboring electrons, which results from the interplay of the
Pauli exclusion principle, the electrostatic confinement potential, the Coulomb
interaction between electrons, and the external magnetic field. The possibility of
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exchange coupling between electrons together with the capabilities of single-charge
and single-spin control and readout means that semiconductor quantum dots offer a
natural environment in which to explore both tunnel-coupled and exchange-coupled
spin chains. Indeed, significant progress has been made in recent years in simulating
and exploring different aspects of the Hubbard and Heisenberg models in quantum-
dot spin chains, finally bringing to fruition several decades of previous theoretical
work.

This chapter will describe recent progress in this field. We begin with an overview
of gate-defined semiconductor quantum dots and how they work. We then describe
the origins of exchange coupling in quantum-dot spin chains and some of the many
uses of exchange coupling in quantum computing with semiconductor spin qubits.
Then, we discuss recent advances in the experimental realization and exploration
of quantum-dot spin chains, including simulation of the Hubbard model and the
Heisenberg model. A recurring theme in this chapter is that technological advances
driven primarily by potential applications in quantum computing have also created
new opportunities in quantum simulation. In turn, advances in quantum simulation
have also enabled new capabilities for quantum computing. A notable example is
that the studies of Hubbard and Heisenberg physics in quantum-dot spin chains
have enabled advances in methods for quantum state transfer in spin chains, which
are beneficial for quantum computing.

The experimental and theoretical development of quantum-dot spin chains has
remained an active area of research for several decades at institutions around the
world. The interested reader is encouraged to consult the references herein for
further information. Portions of this chapter are reprinted from Kandel et al., App.
Phys. Lett., 119, 030501 (2021) with the permission of AIP Publishing.

2 Gate-Defined Quantum Dots

Although different experimental platforms exist that feature exchange coupling [2,
3], and although different types of quantum dots exist, this chapter focuses on gate-
defined quantum dots in semiconductors [4–8], one of the most promising systems
for the creation and exploration of spin chains. In this section, we will discuss the
basic operation of quantum dots, how tunneling and exchange coupling can occur
in quantum dots, and experimental demonstrations of exchange.

2.1 Quantum-Dot Fabrication

Gate-defined quantum dots are usually created using a layered semiconductor
heterostructure, such as GaAs/AlGaAs, Si/SiGe, Si/SiO2, or Ge/SiGe [4–10]. Such
heterostructures are often grown by advanced material growth techniques, like
molecular beam epitaxy or chemical vapor deposition. A common feature of all
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of these material platforms is that they enable the creation and control of two-
dimensional electron or hole systems, called two-dimensional electron (or hole)
gasses. In GaAs/AlGaAs and Si/SiO2 systems, electrons are confined to the interface
between two materials, while in Si/SiGe or Ge/SiGe quantum wells, the electrons or
holes are confined within a thin semiconductor layer, called a “quantum well.” In all
cases, the confinement is enabled by the band gap mismatch between the various
materials involved, and the two-dimensional electron or hole system typically
resides within tens of nanometers of the semiconductor surface. Lithographically
defined metal wires, or “gates,” are typically fabricated on top of the heterostructure.
Voltages applied to these gates generate electrostatic potentials that fully confine
the electrons. The magnitude and sign of the voltages depend on the details of
the heterostructure and device design. For example, GaAs/AlGaAs heterostructures
usually feature a layer of Si dopants in the heterostructure to create a nonzero density
of electrons in the two-dimensional electron gas without any applied voltages
to the gates. Therefore, to create electrostatic confinement, negative voltages are
applied to the gates to “deplete” various regions of the two-dimensional electron
gas. Heterostructures based on Si are typically undoped, and positive voltages must
generally be applied to the gates to “accumulate” electrons. In addition to the dots
themselves, the gates can also define electronic reservoirs, from which the dots are
loaded or unloaded, and tunnel barriers between dots or between dots and reservoirs.
Figure 1 illustrates typical quantum-dot designs.

The growth, characterization, and optimization of two-dimensional electron or
hole systems are the focus of significant research worldwide. The development
of high-quality Si/SiO2 transistors underlies the modern microelectronics industry.
Si/SiGe and Ge/SiGe quantum wells are also the focus of significant development
for transistor applications, and GaAs/AlGaAs heterostructures find significant use
in optical and solar applications. The development of quantum-dot spin qubits and
related systems has thus benefited tremendously from advances in the fabrication of
semiconductor devices.

Early gate-defined quantum dots were fabricated in GaAs/AlGaAs heterostruc-
tures [4–8]. This material features extremely high electron mobilities and corre-
spondingly long mean free paths. (Gate-defined quantum dots cannot usually be
formed in materials with low mobilities, because the associated strong disorder
typically means that electrons will localize around defect sites instead of the
desired electrostatic potential.) However, all nuclear isotopes of Ga and As have
nuclear spin I = 3/2. These nuclear spins generate an effective magnetic field
experienced by electrons in the quantum dots through the hyperfine interaction [11].
On the one hand, hyperfine fields generally increase dephasing rates and decrease
coherence times of electrons [11]. On the other hand, nuclear spins can create a
convenient source of magnetic disorder [12], which is potentially useful for quantum
simulation, as discussed further below.

Si/SiGe and Ge/SiGe quantum wells and Si/SiO2 systems partly solve the
challenge of hyperfine fields because both Si and Ge can be isotopically purified
to select isotopes with zero nuclear spin [9]. However, Si two-dimensional electron
systems generally feature larger conduction band effective masses than carriers in
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Fig. 1 Quantum-dot spin chains. (a) Schematic of a typical depletion-mode quantum-dot device in
GaAs. Electrons from metal Ohmic contacts populate the two-dimensional electron gas (light blue)
and are confined with tunneling and plunger gates. (b) Eight-quantum-dot linear array in GaAs,
Volk et al., Nat. Comm., 5, 29 (2019). Copyright the Authors, licensed under a Creative Commons
Attribution (CC BY) license. (c) Four-quantum-dot square array in GaAs/AlGaAs. Reprinted with
permission from Deholain et al., Nature, 579, 528–533 (2020). Copyright Springer Nature (2020).
(d) Schematic of a typical overlapping-gate device in Si/SiGe. Here, positive voltages applied to
accumulation gates define the electronic reservoirs. (e) Nine-dot linear array in Si/SiGe. Mills et
al., Nat. Comm., 10, 1063 (2019). Copyright the Authors, licensed under a Creative Commons
Attribution (CC BY) license. (f) Four-dot linear array with the overlapping gate architecture in
GaAs/AlGaAs. Reprinted from Kandel et al., App. Phys. Lett., 119, 030501 (2021) with the
permission of AIP Publishing. In all panels, circles denote the locations of the electrons

GaAs/AlGaAs. Because orbital energy splittings generally scale inversely with the
effective mass of the carriers, typical quantum dots in Si must be smaller than GaAs
dots to compensate for the increased effective mass. An additional complication
results from the fact that Si is an indirect gap semiconductor, and there are multiple
equivalent valleys in the conduction band near the edges of the Brilluoin zone [9].
Thus, electrons in Si quantum dots have an additional valley degree of freedom
that must typically be accounted for. Germanium quantum wells, which support
two-dimensional hole systems can potentially overcome these two obstacles, with
relatively small effective masses and a valence band maximum at the center of
the Brillouin zone, eliminating the valley degeneracy of Si systems [10]. In the
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following, we will primarily discuss quantum-dot spin chains in the context of
electrons in GaAs- and Si-based systems, because most of the advances have
occurred in these material platforms. The exploration of spin chains in Ge/SiGe
systems is an exciting prospect for future work.

2.2 Quantum-Dot Operation

Individual quantum dots are typically operated at cryogenic temperatures, where
the thermal energy of the environment is much less than the charging energy (the
energy to overcome the Coulomb repulsion and add another electron to the dot) and
the orbital energy spacings of the quantum dots. In such a regime, quantum dots are
frequently connected via tunnel barriers to source and drain reservoirs, which are
held at fixed potential via galvanic contacts to external voltage sources. The physics
of electrons in quantum dots is reviewed in Refs. [4–8], and the interested reader is
encouraged to consult these references.

When the electrochemical potential of a quantum-dot state lies between the
electrochemical potential of the source and drain reservoirs, current can flow
through the quantum dot, as a result of tunneling from the source, through the dot,
and into the drain. When the electrochemical potential of the dot is not between
those of the source and drain reservoirs, the current flow is blocked, and the dot
is the Coulomb blockade regime. By tuning the gate voltages to be less positive
or more negative, the number of electrons in the dot reduces, until all electrons
are gone, resulting in no further current peaks. Thus, the Coulomb blockade allows
one to concretely identify the number of electrons in a quantum dot. The detection
of quantum-dot charge states most often relies on a proximal charge sensor, such
as a quantum point contact or quantum dot, whose electrical conductance depends
sensitively on local electric fields, including those from nearby charged quantum
dots [16–19]. Quantum dots may be tunnel coupled, usually in series, between
reservoirs [6]. A prototypical example is a double quantum dot, with two dots
coupled in series between two reservoirs.

Many studies of individual and few quantum-dot systems have occurred over the
last several decades, leading to significant advances in quantum information pro-
cessing with semiconductor quantum dots [20]. As spin-based quantum information
processors scale up, a primary challenge in creating many-qubit systems is the dif-
ficulty in “tuning up” devices with many quantum dots. Typically, an experimenter
must spend time tuning the gate voltages to achieve the right potential landscape. A
major difficulty in achieving the proper potential for many dots simultaneously is the
effect of defects in the semiconductor. Indeed, a major effort in the development of
quantum dots in recent decades has been to improve the tunability of the potential
landscape to overcome this challenge. For example, the first quantum dots used a
vertical architecture, in which the parameters of the confinement potential were set
by the growth of the heterostructure [21, 22]. To promote better in-situ tunability,
early lateral quantum dots featured a “stadium-style” architecture [23], in which
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electric fields from nearby metal gates create the confinement potential (Fig. 1a–c).
Such an architecture features significantly improved tunability over earlier vertical
architectures. Recently, a new generation of quantum dots with an “overlapping-
gate” architecture has emerged [24–26] (Fig. 1d–f). In contrast to the stadium-style
architecture, the overlapping-gate architecture involves voltages applied to gates
directly above the quantum-dot location. These devices feature strong electrostatic
confinement and tight control over nearly all of the relevant parameters of the
quantum-dot confinement. Additional advances that have enabled the creation of
extended spin chains are various procedures for computer automated tuning and
independent control of the quantum-dot potential parameters [27–35].

2.3 Exchange Coupling in Quantum Dots

Electrons are fermions. Thus, according to the Pauli exclusion principle, no two
electrons can have the same quantum numbers. In nanoscale quantum systems, a
direct manifestation of the Pauli exclusion principle is the Heisenberg exchange
coupling between two electrons H = JS1 · S2 − 1/4, where S1 and S2 are spin-1/2
operators associated with the spins of the two electrons [36–38].

Although a detailed calculation of the exchange coupling J presents a substan-
tial challenge, the following heuristic picture illuminates the mechanism behind
exchange coupling in semiconductor quantum dots. Consider two electrons in
a single quantum dot. The overall wavefunction of the two electrons must be
antisymmetric under particle exchange. If the two electrons occupy the spin
singlet state |S〉 = 1√

2
(|↑↓〉 − |↓↑〉), the spin component of the wavefunction is

antisymmetric under exchange. Therefore, the orbital part of the wavefunction must
be symmetric in order to guarantee that the overall wavefunction is antisymmetric
under exchange. In particular, both electrons can occupy the ground state orbital
of the quantum dot. Similarly, if the two electrons have any of the triplet states
{|T0〉 = 1√

2
(|↑↓〉 + |↓↑〉) , |T−〉 = |↓↓〉 , |T+〉 = |↑↑〉}, the electrons must have

an antisymmetric orbital wavefunction to guarantee the overall antisymmetry of
the total wavefunction. In particular, both electrons cannot occupy the ground state
orbital of the quantum dot, and the triplet states will have a higher energy than the
singlet. The energy splitting between the singlet and triplet states is the exchange
coupling energy.

The phrase “Pauli spin blockade” is also used to describe a related phenomenon.
Similar to the Coulomb blockade, where the presence of an electron in a quantum
dot prevents the addition of further electrons until the Coulomb repulsion is
overcome, the Pauli spin blockade describes a scenario in which the presence of
a spin in a quantum dot prevents the addition of another spin in a symmetric spin
configuration until the exchange energy can be overcome.

It is straightforward to show that the singlets and triplets are eigenstates of the
Heisenberg Hamiltonian discussed above, and when J > 0, the singlet has a lower
energy than the triplets. To understand some of the important physical mechanisms
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underlying exchange coupling, let us consider the following Hubbard model for
electrons in N quantum dots:

HHub =
N∑

i=1

[
Ũ

2
ni(ni − 1) + Vini

]

+
∑

〈i,j 〉
UCninj +

∑

〈i,j 〉
t

∑

σ=↑↓
(c

†
i,σ cj,σ + h.c.). (1)

Here, c
†
i,σ is a fermionic operator that creates an electron in dot i with spin σ , and

ni = ∑
σ ci,σ c

†
i,σ is the number operator for dot i. Vi is the gate-controlled energy

of dot i, Ũ is the on-site Coulomb energy, UC is the nearest-neighbor Coulomb
energy, 〈i, j 〉 indicates a sum over nearest neighbors, and t is the hopping energy
between dots. It can be shown that when the number of electrons in the system is
the same as the number of quantum dots, this Hamiltonian can be transformed to
the Heisenberg Hamiltonian in certain parameter regimes [39].

To see how exchange coupling can occur in the Hubbard model, we consider
two electrons in a double quantum dot, and we consider the matrix elements of this
Hamiltonian in the following basis:

|T0(1, 1)〉 = 1√
2
(c

†
1,↑c

†
2,↓ + c

†
1,↓c

†
2,↑) |0〉 (2)

|S(1, 1)〉 = 1√
2
(c

†
1,↑c

†
2,↓ − c

†
1,↓c

†
2,↑) |0〉 (3)

|S(2, 0)〉 = c
†
1,↑c

†
1,↓ |0〉 (4)

|S(0, 2)〉 = c
†
2,↑c

†
2,↓ |0〉 , (5)

where |0〉 indicates the state with no electrons, and the numbers in parentheses
give the numbers of the electrons in both quantum dots. In this basis, the Hubbard
Hamiltonian has the following form:

HHub =

⎛

⎜⎜⎝

0 0 0 0
0 0

√
2t

√
2t

0
√

2t U + ε′ 0
0

√
2t 0 U − ε′

⎞

⎟⎟⎠ , (6)

up to an overall energy shift, and where U = Ū − UC , and ε′ = V1 − V2. Below,
we refer to ε′ as the detuning of the double quantum dot. We set ε = U + ε′ [i.e.,
we set the zero of the detuning to the (1,1)-(2,0) charge transition], and then we
diagonalize the subspace spanned by |S(1, 1)〉 and |S(2, 0)〉 to give new effective
singlet states |S−〉 and |S+〉. We isolate the subspace spanned by {|T0(1, 1)〉, |S−〉,
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Fig. 2 Exchange coupling in double quantum dots. (a) Energies of the effective single-triplet
Hamiltonian Eq. (7). The different states and the exchange coupling are labelled. (b) Schematic
of detuning-controlled exchange oscillations. (c) Detuning-controlled exchange oscillations in
a GaAs quantum dot. Reprinted from Petta et al., Phyisca E, 35, 2, 251–256 (2006) with the
permission of Elsevier. (d) Schematic of barrier-controlled exchange oscillations. (e) Barrier-
controlled exchange oscillations in a Si/SiGe quantum dot. Reed et al., Phys. Rev. Lett., 116,
110402 (2016). Copyright the Authors, licensed under a Creative Commons Attribution (CC
BY) license. (f) Barrier-controlled exchange oscillations in a GaAs quantum dot. Reprinted with
permission from Martins et al., Phys. Rev. Lett, 116, 116801 (2016). Copyright (2016) by the
American Physical Society

and |S+〉}. In this basis, and in the absence of magnetic fields, the effective singlet–
triplet Hamiltonian is

HST =

⎛

⎜⎜⎝

0 0 0

0 1
2

(
ε − √

ε2 + 8t2
)

0

0 0 1
2

(
ε + √

ε2 + 8t2
)

⎞

⎟⎟⎠ . (7)

One can see that |S−〉 has a lower energy than the |T0〉 state. This difference

in energy is the exchange coupling J (ε, t) = 1
2

(
ε − √

ε2 + 8t2
)

. The energies

of this Hamiltonian are shown in Fig. 2a. More detailed methods of calculating
exchange couplings in quantum-dot systems involve using the actual eigenfunctions
of the quantum-dot confinement potentials through the Heitler–London and Hund–
Mulliken approaches [40] and various configuration interaction techniques [41, 42].
These approaches generally rely on a detailed knowledge of the quantum-dot
confinement potential.

The previous discussion shows that the two main tools an experimenter has at
their disposal to control exchange couplings include the detuning ε and the interdot
tunnel coupling t (Fig. 2). Historically, exchange couplings in semiconductor quan-
tum dots were manipulated through detuning control [43] (Fig. 2b,c), in part because
experimental manipulation of electron states in quantum dots typically requires
rapid control of electrochemical potentials, and detuning-controlled exchange oscil-
lations require no extra experimental overhead. A downside to detuning-controlled
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exchange coupling is that this method increases the exposure of the spin system to
charge noise, and the quality factor of exchange oscillations induced in this way
tends to be on the order of 10 [46].

An alternate method to create exchange coupling, which has gained traction in
recent years, is to rapidly modify the tunnel barrier between two quantum dots
by pulsing the voltage applied to a barrier gate [44, 45] (Fig. 2d–f). This method,
called “barrier-controlled,” or “symmetric” exchange involves fully separating the
electrons into the (1,1) charge configuration and then applying a rapid, positive
voltage pulse to the barrier gate. This voltage pulse both lowers the potential
barrier between the dots and causes the electron wavefunctions to move closer
toward each other [42, 47]. Both effects increase the exchange coupling between
electrons. Perhaps most importantly, barrier-controlled exchange coupling is first-
order insensitive to charge noise associated with the electrochemical potentials of
the dots, leading to significantly improved exchange-oscillation quality factors, at
least compared with detuning-controlled exchange.

In principle, both barrier- and detuning-controlled exchange are possible to
implement in extended systems of quantum dots. A significant challenge in this
regard, however, is that the action of voltages applied to barrier gates modifies
not only the tunnel barriers and locations of the dots but also their electrochem-
ical potentials. Likewise, the action of a plunger gate will change not only the
electrochemical potential of its associated dot but also all of the other parameters
of the confinement potential. The development of “virtual gates” has allowed
experimenters to overcome this problem and adjust parameters of quantum-dot spin
chains independently [13, 15, 28, 32, 48]. This concept involves measuring how
voltages applied to all gates affect all the electrochemical potentials in a system
of quantum dots. Assuming that the electrochemical potentials vary linearly with
the gate voltages, the exact gate voltages required to create an arbitrary change
to the electrochemical potentials may be computed. Recent advances exploiting
this concept have demonstrated controlled multiple nonzero exchange couplings
in extended arrays of quantum dots [47, 49], as well as charge displacement
through multiple quantum dots in series [15]. In addition to the notion of virtual
gates, various computer-automated and machine learning tuning approaches have
undergone rapid progress in recent years and will no doubt provide a key enabling
technology for the exploration of quantum-dot spin chains [27, 32, 34].

3 Quantum Information Processing with Exchange-Coupled
Quantum-Dot Spins

Spin qubits based on gate-defined quantum dots are an excellent platform for
quantum information processing [20]. Individual electrons can possess extremely
long coherence times [50, 51], and semiconductor quantum dots are compatible with
advanced semiconductor manufacturing techniques [52, 53]. Exchange coupling
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underlies a host of different mechanisms for quantum information processing with
semiconductor quantum-dot spin qubits. In this section, we review the different
ways in which exchange coupling can facilitate quantum information processing
with spins in semiconductor quantum dots.

3.1 Single-Spin Qubits

Conceptually, the simplest spin qubit consists of a single electron, which can either
point up or down with respect to an external magnetic field [59] (Fig. 3a). Single-
qubit rotations can be driven by applying a real or effective alternating magnetic
field perpendicular to the quantizing field. Individual single-spin qubits can have
extremely high gate fidelities, far exceeding 99% [50, 60].

A challenge for single-spin qubits, however, is the implementation of a robust
multi-qubit operation. The magnetic dipole–dipole coupling between electrons
is weak and not usually strong enough to implement high-fidelity two-qubit
operations. However, the exchange coupling between two electrons provides a
natural route for a two-qubit gate. Specifically, when two spins i and i + 1 evolve
under exchange Ji for a time T = 1

2Ji
, the exchange coupling generates a SWAP

gate (Fig. 4a). Evolution for T
2 produces a

√
SWAP gate, which can entangle the

two electrons. Together with single-qubit gates, a
√

SWAP gate is sufficient for
universal quantum computing [59, 61, 62]. These facts illustrate on a basic level
the potential of exchange coupling for quantum computing and information transfer
and motivated initial proposals for quantum computing architectures based on
semiconductor quantum dots [55, 59, 63].

In the presence of magnetic gradients between electrons, exchange coupling can
enable other two-qubit gates for single spins, such as controlled-phase (CPHASE)
(Fig. 4c) or controlled-not (CNOT) (Fig. 4b) gates [64, 65], both of which are also
sufficient for universal quantum computing. In spin chains, magnetic gradients are
routinely employed to provide single-spin addressability, making the realization
of these gates a natural goal [66–69]. The principles of two-qubit gates based on
exchange have been experimentally developed in the past decades [43, 50, 61],
culminating recently in the demonstration of a CPHASE gate with fidelity exceeding
99%. Such an achievement is a significant milestone for quantum-dot-based quan-
tum information processing [70] because it corroborates the feasibility of operating
spin qubits with gate fidelities above the threshold for quantum error correction [71].

Beyond two-qubit gates, exchange coupling can also enable three-qubit opera-
tions, such as a Toffoli gate [72] and entangling operations [47].
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3.2 Two-Spin Qubits

Although the basic spin qubit consists of an individual electron spin, the ability to
manipulate exchange opens up the possibility to form new qubits out of multiple-
spin states, as shown in Fig. 3. The potential advantage of such a qubit is the
possibility of electrical spin-state control [55] and the potential to operate qubits
in decoherence-free subspaces [73], which feature long-lived coherence even in the
presence of environmental noise.

Perhaps the simplest exchange-enabled multi-spin qubit is the singlet–triplet (ST)
qubit [43, 54], formed from two electrons in a double quantum dot (Fig. 3b). The ST
qubit Hamiltonian is HST = J (ε, t)Sz + �BzSx , in the {|S〉 , |T0〉} subspace, where
J (ε, t) is the exchange coupling between the two dots, and �Bz is the difference

Fig. 3 Comparison between different types of spin qubits. In each panel, the number of spins
involved in each qubit is shown. Relevant exchange couplings are highlighted in red, and entangled
states are shown with gray arrows. Solid lines on the Bloch sphere indicate exchange-based qubit
control axes, and dashed arrows indicate magnetic control axes. (a) Single-spin qubit, requiring
two magnetic control axes. (b) Singlet–triplet qubit, requiring one magnetic control axis [43, 54].
(c) Exchange-only qubit with two exchange-based control axes [55]. (d) Exchange-only qubit with
four (or more electrons) with two orthogonal exchange-based control axes [56–58]. Primed states
involve excited levels, such as orbitals or valley states. Reprinted from Kandel et al., App. Phys.
Lett., 119,030501 (2021) with the permission of AIP Publishing

Fig. 4 Exchange coupling in single-spin qubits. (a) Top: truth table of a SWAP gate between
single spins in GaAs quantum dots driven by exchange. Bottom: truth table of a 2π exchange
rotation, from Ref. [61]. (b) Evidence for a CNOT gate between single spins in Si/SiO2 quantum
dots driven by exchange. Reprinted with permission from Veldhorst et al., Nature, 526, 410–414
(2015). Copyright Springer Nature (2015). (c) Gate-set tomography of a CPHASE gate between
single spins in a Si/SiGe quantum well driven by exchange. Xue et al., Nature 601, 343–347 (2022).
Copyright the Authors, licensed under a Creative Commons Attribution (CC BY) license
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in longitudinal magnetic field between the dots (Fig. 5a). This system occupies a
decoherence-free subspace with respect to global magnetic fields that couple to the
spin of the electron, because the energies of the |S〉 and |T0〉 states do not depend
on the external magnetic field, in contrast to the energies of single-spin states. In
addition, the Sz term in HST depends on electric fields (both ε and t depend on
electrostatic potentials), which are often easier to generate than pulsed magnetic
fields in cryogenic environments. A final benefit of exchange coupling for ST qubits
is the possibility of spin-to-charge conversion via the Pauli spin blockade, which
enables fast, high-fidelity electrical measurement of spin states [19]. Singlet–triplet
qubits, and variations thereof, have been the subject of significant theoretical and
experimental research [43, 74, 75, 77–88].

Exchange coupling also enables significant enhancements in the coherence
time in ST qubits through dynamical decoupling. Early experiments demonstrated
inhomogeneously broadened coherence times of �Bz rotations of around 10 ns, due
to the fluctuating hyperfine field in GaAs quantum dots [43]. By using dynamical
decoupling sequences, with periodic exchange pulses interspersed during the qubit
evolution, the coherence time of an ST qubit can be extended to nearly 1 ms [51, 75]
(Fig. 5b,c), 4 orders of magnitude larger than the inhomogeneously broadened
coherence time.

Exchange coupling also enables two-qubit gates between ST qubits [89–92].
This operation can be intuitively understood in the following picture. Although the
ST qubit eigenstates are commonly expressed as the set {|S〉 , |T 0〉}, an alternative

Fig. 5 Exchange coupling in singlet–triplet qubits. (a) Exchange coupling, together with con-
trolled magnetic gradients, enables universal quantum control of ST qubits. Reprinted with
permission from Foletti et al., Nature Physics, 5, 903–908 (2009). Copyright Springer Nature
(2009). (b) Exchange coupling also enables decoupling ST qubits from hyperfine noise, extending
the coherence time to several hundred μs. Reprinted with permission from Bluhm et al., Nature
Physics, 7, 109–113 (2011). Copyright Springer Nature (2011). (c) Carefully optimized decoupling
pulses can further reduce magnetic fluctuations resulting from the Larmor precession of the
individual Ga and As nuclei, resulting in coherence times approaching the millisecond range.
Reprinted with permission from Malinowski et al., Nature Nanotechnology, 12, 16–20 (2017).
Copyright Springer Nature (2017). (d) Evidence of the effective Ising coupling predicted to emerge
between exchange-coupled ST qubits. Qiao et al., Nat. Comm., 12, 2142 (2021). Copyright the
Authors, licensed under a Creative Commons Attribution (CC BY) license
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basis consists of the set {|↑↓〉 , |↓↑〉}. Considering a chain of four electrons (two ST
qubits) with a nonzero exchange coupling between the second and third electrons,
one can see that the state |↑↓〉 ⊗ |↑↓〉 will have a lower energy than the state
|↑↓〉 ⊗ |↓↑〉, which leads to an effective Ising coupling between ST qubits, though
care must be taken to prevent leakage. Recently, evidence of this effective Ising
coupling has been observed [76] (Fig. 5d).

3.3 Three-Spin Qubits

Three electrons in a triple quantum dot create an “exchange-only” qubit [55, 93,
95–99] (Figs. 3d, 6). In contrast to ST qubits, which feature one electrical control
axis and one magnetic control axis (single-spin qubits require two magnetic control
axes), exchange-only qubits enable complete electrical control, and the two control
axes correspond to exchange coupling between the two nearest-neighbor pairs of
electrons in the triple dot. The eigenstates of a three-electron exchange-only qubit
usually consist of spin states with fixed total spin and triplet- or singlet-like states on
one of the outer pairs of spins [55, 93, 96]. In addition to conventional exchange-only
qubits, resonant exchange qubits [94, 100] (Fig. 6b) and hybrid qubits [101, 102]
leverage exchange couplings to enable control of systems with three electrons [39].
Extending this approach, qubits can also be formed with more than three electrons
in three or more quantum dots, and exchange couplings provide complete control
over the qubit dynamics [56–58] (Fig. 3d). Such “singlet-only” qubits are predicted
to be robust against magnetic field noise. Exchange coupling between triple dots
in various configurations can also lead to multi-qubit operations, including CNOT
gates [55, 103–105] and CPHASE gates [106].

Since the initial demonstrations by Medford et al. [93, 94] in GaAs quantum
dots (Fig. 6a,b), the development of exchange-only qubits has steadily continued,

Fig. 6 Exchange coupling in three-electron spin qubits. (a) Coherent oscillations in a three-
electron exchange only qubit. Reprinted with permission from Medford et al., Nature Nan-
otechnology, 8, 654–659 (2013). Copyright Springer Nature (2013). (b) Rabi oscillations of
a resonant-exchange qubit. Reprinted with permission from Medford et al., Phys. Rev. Lett,
111, 050501 (2013). Copyright (2013) by the American Physical Society. (c) Randomized
benchmarking of an exchange-only qubit. Reprinted with permission from Andrews et al., Nature
Nanotechnology, 14, 747–750 (2019). Copyright Springer Nature (2019)
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with a recent demonstration of high-fidelity single-qubit gates through randomized
benchmarking [95] (Fig. 6c) and advanced device architectures compatible with
scaling up systems of exchange-only qubits [53].

4 Quantum Simulation with Quantum-Dot Spin Chains

In addition to uses for quantum information processing, chains of semiconductor
quantum dots have great potential for quantum simulation, which is the experimental
realization of Hamiltonians that are difficult or impossible to simulate on classical
computers, using quantum systems. For example, the Hubbard model, which
we discussed above in Sect. 2.3, is a fundamental model of condensed matter
physics, and it is thought to underlie phenomena as important as high-temperature
superconductivity [107]. In different experimental platforms, especially cold-atom
systems [108], simulating the Hubbard phase diagram remains the focus of intense
research. While other platforms, like cold-atom systems have made significant
progress in understanding different features of the Hubbard model, semiconductor
quantum dots also provide an attractive platform in which to study the Hubbard
model [109], because they can access parameter regimes not easily accessible
to cold-atom systems, including the ultra-low temperature regime. Quantum-
dot systems also provide a natural way to study Hubbard physics in solid-state
environments. Since the Hubbard model is predicted to underlie important solid-
state phenomena, such as high-temperature superconductivity, the study of such
models in condensed matter environments seems especially worthwhile.

In another example, the Heisenberg spin chain is predicted to exhibit a host of
interesting phenomena, ranging from quantum magnetism [107] and spin chain
dynamics [110] to non-equilibrium physics like many-body localization [111].
Semiconductor quantum dots also provide a natural platform in which to explore
this model, given the ease of implementing exchange coupling between neighboring
spins, together with the capabilities of single-spin control and readout.

In this section, we review recent efforts to explore different aspects of the Hub-
bard and Heisenberg models. These exciting results show that this is a promising
avenue of research, with more exciting results yet to come in the future.

4.1 Charge Physics in the Hubbard Model

Single and double quantum dots are mainstays of semiconductor spin-qubit tech-
nology. The tune-up of double quantum-dot systems into the single-charge regime
is a routine occurrence in research laboratories throughout the world and the
starting point for many quantum-information processing experiments. In some
sense, double-quantum-dot systems serve as small-scale simulations of the Hubbard
model. For example, the Hubbard model can be used to provide a phenomenological
quantum-mechanical description of charge-stability diagrams [113].
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Fig. 7 Quantum simulation of charge physics in the Hubbard model. (a) Landau–Zener–
Stückelberg interferometry of a single charge tunneling back and forth between distant dots.
Reprinted with permission from Braakman et al., Nature Nanotechnology, 8, 432–437 (2013).
Copyright Springer Nature (2013). (b) Transition from collective to conventional Coulomb
blockade in a linear array of three dots. Reprinted with permission from Hensgens et al., Nature,
528, 70–73 (2017). Copyright Springer Nature (2017)

Going beyond double-dot systems, semiconductor quantum dots provide an
appealing platform for the simulation of Hubbard physics involved in systems
of more than two sites. Early work in this direction was reported by Singha
et al. in Ref. [114]. In a GaAs/AlGaAs heterostructure, the authors created an
artificial honeycomb lattice by etching the surface of the heterostructure [115]. The
resulting pattern created an attractive, periodic potential for electrons, with about
8 electrons per site in an area of about 104μm2. A characteristic prediction of the
Hubbard model for this system is that the on-site energy Ū should scale inversely
with the square root of the in-plane magnetic field strength [114]. Inelastic light-
scattering experiments revealed both the expected conventional cyclotron mode
(with a frequency that scales linearly with the magnetic field), in addition to a
mode with the predicted sublinear behavior. This low-frequency mode was taken
to represent evidence that Hubbard physics in this artificial honeycomb lattice can
be engineered and behaves as expected.

Although such large-scale arrays of quantum dots seem attractive for quantum
simulation of many-particle systems [109], recent research has focused on building
up such systems one site at a time. In 2013, Braakman et al. presented evidence for
the coherent tunneling of an electron between the outer dots of a three-dot linear
array [112] (Fig. 7a). Such long-distance coupling between quantum dots can be
understood as a second-order tunneling effect within the context of the Hubbard
model. The coherence of this tunneling effect was verified through Landau–Zener–
Stückleberg interferometry of the charge states near the tunneling transition between
the outer dots.

Further exploration of charge physics in the Hubbard model was presented by
Hensgens et al. in Ref. [28] (Fig. 7b). The authors studied the transition between
individual and collective charge transitions in a series of three quantum dots, as the
chemical potentials and tunnel barriers between dots varied. In the limit of high
barrier potentials between dots, the three dots acquire charges separately, analogous
to a Mott insulating solid. However, when the tunnel barriers are lowered, the three
separate dots effectively merge to form a large dot, and the large dot acquires charges
one at a time [28].
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Although such three-site Hubbard experiments can still be simulated on classical
computers without much difficulty, the transition from simulating the Hubbard
physics of more than two electrons required significant experimental advances
that have set the stage for further developments in this direction. Specifically, an
important driver of these results was the ability to tune the chemical potentials and
barriers in the linear array simultaneously and independently [13, 15, 28, 32, 48].
This involved establishing a set of virtual plunger and barrier gates, together with
computer automated tuning of the device [27, 32, 34]. Such an advance marked an
important shift in thinking toward the use of computer automated tuning procedures
to aid in the operation of large-scale quantum-dot devices. These advances also
paved the way for the exploration of spin effects in the Hubbard and Heisenberg
models, as we discuss in the next sections.

4.2 Spin Physics in the Hubbard Model

In addition to charge physics, semiconductor quantum-dot arrays also enable
exploring different spin effects in the Hubbard model. The advances described in the
previous section focusing on tuning large quantum-dot systems have also translated
to advances in the simulation of spin physics in the Hubbard model.

Building on the advances presented by Braakman et al. in Ref. [112], which
demonstrated coherent coupling between charge states in distant dots, Baart et
al. demonstrated coherent spin interactions between distant dots in Ref. [48]. As
discussed above, in the presence of tunnel coupling between two quantum dots (in
this case, between the outer dots of a linear three-dot array), one generally expects
exchange coupling between spins in those dots to occur. Baart et al. observed
evidence for this effect, by initializing and measuring a pair of spins in an outer
quantum dot using Pauli spin blockade (Fig. 8a). After allowing the electrons to

Fig. 8 Quantum simulation of spin physics in the Hubbard model. (a) Superexchange between
distant electron spins, mediated by an empty quantum dot. Reprinted with permission from Baart et
al., Nature Nanotechnology, 12, 26–30 (2017). Copyright Springer Nature (2017). (b) Interactions
between distant electrons measured in a Si triple dot. Reprinted with permission from Chan et al.,
Nano Letters, 21, 3, 1517–1522 (2021). Copyright (2021) by the Amperican Chemical Society. (c)
Signatures of Nagaoka ferromagnetism in a square array of four dots. Reprinted with permission
from Deholain et al., Nature 579, 528–533 (2020). Copyright Springer Nature (2020)
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evolve when separated, the electrons were recombined and measured via Pauli
spin blockade in the same dot. Such an experiment is analogous to experiments
demonstrating singlet–triplet exchange oscillations in double quantum dots [43],
except that in this case, the electrons were in distant dots.

Similar effects have also been observed in Si triple quantum dots [116] (Fig. 8b),
where an effective coupling between electrons in the outer dots of a three-dot
array mediated by an occupied quantum dot was observed. By observing how the
resonance frequencies of the electron spins in the outer dots changed with detuning,
Chan et al. observed an effective nonzero coupling between electrons in the outer
two quantum dots.

Collectively, such effects, which create an effective exchange coupling between
distant spins, are usually known as superexchange. While many different types of
superexchange exist, nearly all rely on virtual excitation of an intermediate entity,
such as an empty, singly occupied, or multiply occupied quantum dot. Below, we
will discuss superexchange in a spin chain, where an effective coupling between
electrons separated by more than one site can be achieved.

A step forward for quantum simulation of spin physics in the Hubbard model
in quantum dots occurred with a recent demonstration of Nagaoka ferromag-
netism [14]. Working with a 2x2 quantum-dot array [29], Dehollain et al. presented
evidence for this phenomenon in Ref. [14]. The theory of Nagaoka [117] provides a
prediction for itinerant ferromagnetism in metals for the case of a nearly half-filled
band. In the 2x2 quantum-dot array, Dehollain et al. created a nearly half-filled band
by filling the array with only three electrons. As in Nagaoka’s original theory, the
absence of an electron at one of the locations stabilizes the ground state where all
of the spins have the same orientation. Experimentally, the system of three electrons
was initialized and readout using the Pauli spin blockade associated with a pair
of electrons in one dot and an electron with a random spin in another dot. After
separating the two electrons in the singlet state via tunneling, the gate voltages were
pulsed to different configurations. After allowing the system of three electrons to
evolve for a period of time, the researchers measured the system by projecting two of
the electrons onto the singlet/triplet basis with a Pauli spin-blockade measurement.
The researchers observed an enhanced triplet return probability in the range of gate
voltages predicted to demonstrate the ferromagnetic ground state (Fig. 8c).

4.3 Spin Physics in the Heisenberg Model

A special case of the Hubbard model occurs when each site or quantum dot contains
only one electron. When the occupancy of each dot remains fixed, the effective
Hamiltonian for the spin degrees of freedom can be expressed as the Heisenberg
Hamiltonian:



522 J. M. Nichol

HH =
N∑

i=1

JiSi · Si+1 + Bi · Si , (8)

where Si is an operator that corresponds to electron i, and Bi is the magnetic field
experienced by that electron.

In contrast to the Hubbard model, which contains parameters that describe the
tunnel couplings and on-site energies, the Heisenberg Hamiltonian involves only
the exchange couplings and magnetic fields. While advances in the independent
control of chemical potentials have enabled progress in simulating Hubbard physics,
the independent control of exchange couplings, which is required to simulate the
Heisenberg model, has remained challenging, though recent advances have taken
steps toward overcoming this obstacle.

The primary challenge is that exchange couplings depend on both the electro-
chemical potentials and tunnel couplings. Moreover, tunnel couplings generally
depend in a highly nonlinear and nonlocal way on gate voltages [47]. Heuristically,
exchange coupling depends on the degree of overlap between electronic wavefunc-
tions, and such overlaps depend sensitively on the barrier potentials and positions of
the wavefunctions. A final complication is that when multiple exchange couplings
are present, one cannot simply extract the exchange couplings from the measured
oscillation frequencies, because the energy gaps in the spectrum of a spin chain do
not usually correspond to the bare exchange couplings themselves. These challenges
make it difficult to use trial-and-error or interpolation approaches [28–33], which
have been used to control tunnel couplings in quantum dots, to modulate exchange
couplings.

Qiao et al. overcame this problem and demonstrated coherent exchange coupling
between multiple spins in a linear four-dot array. Through a combination of

Fig. 9 Quantum simulation of Heisenberg spin chains. (a) Coherent multi-spin exchange cou-
pling. Qiao et al., Phys. Rev. X, 10, 031006 (2021). Copyright the Authors, licensed under a
Creative Commons Attribution (CC BY) license. (b) Preparation of the Heisenberg antiferromag-
net. Van Diepen et al., Phys. Rev. X, 11, 041025 (2021). Copyright the Authors, licensed under
a Creative Commons Attribution (CC BY) license. (c) Adiabatic quantum state transfer. Kandel
et al., Nat. Comm. 12, 2156 (2021). Copyright the Authors, licensed under a Creative Commons
Attribution (CC BY) license. (d) Superexchange between distant electron spins. Reprinted with
permission from Qiao et al., Phys. Rev. Lett, 126, 017701 (2021). Copyright (2021) by the
American Physical Society
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theoretical calculations and electrostatic modeling, they showed that a primary
cause of this difficulty is the electronic wavefunction shifts that occur during
exchange pulses [42, 47]. For example, during a typical barrier-gate pulse, the
electrons on either side of the barrier move closer to or farther away from each
other, depending on the sign of the voltage pulse. This motion of the electronic
wavefunctions has a significant impact on the magnitude of the exchange coupling.
Electrostatic modeling of the potential during a barrier-gate pulse confirmed this
picture [47]. Qiao et al. also showed that two models based on the Heitler–London
formalism [40, 120] could be used to predict the barrier-gate voltages given a set of
desired exchange couplings (Fig. 9a). The model parameters, which describe how
much the electrons move in response to voltage pulses, were found by measuring
how each of the exchange couplings depended on all of the barrier gate voltages.
These models were sufficient to enable the generation of coherent three- and four-
spin exchange oscillations within a reasonably wide range of exchange-coupling
values [47]. This approach is also extensible to longer arrays of quantum-dot spin
qubits.

Van Diepen et al. have also reported the creation of multiple nonzero exchange
couplings by adjusting the detunings, instead of the barrier heights, in a linear array
of four quantum dots [49]. In addition to demonstrating coherent exchange coupling
between all four spins in the array, van Diepen et al. also demonstrated the creation
of the ground state of the Heisenberg Hamiltonian, by adiabatically manipulating
the exchange couplings beginning from a state composed to two separated singlets
(Fig. 9b).

Building on the possibility of precise control of exchange couplings in a
quantum-dot array, Kandel et al. demonstrated adiabatic quantum state transfer
(AQT) in a chain of four quantum dots [118]. Adiabatic quantum state transfer
(AQT), sometimes referred to as adiabatic quantum teleportation [121], is a process
that is reminiscent of stimulated Raman adiabatic passage, a time-honored technique
from the optical physics community [122]. The basic process of AQT involves
a chain of three spins. By starting from a configuration with a strong exchange
coupling between two spins, say 2 and 3, and by adiabatically modulating the
exchange couplings to a final configuration with a strong coupling between dots
1 and 2, the initial state of dot 1 can be transferred to dot 3, and the joint state of
spins 2 and 3 is transferred to dots 1 and 2. Although it has been studied in great
detail theoretically over the past decades [121, 123–132], it has only recently been
achieved experimentally, despite its great potential for use in quantum information
processing experiments.

Kandel et al. implemented AQT in a GaAs/AlGaAs quadruple quantum-dot
array [118] (Fig. 9c). To transfer a spin eigenstate from dot 3 to dot 1, a singlet
was prepared in dots 1 and 2, by electron exchange with the reservoirs in the
presence of large exchange coupling J1. Then, J1 was decreased to zero, while
J2 was simultaneously increased. During this process, the spin state of dot 3 was
transferred to dot 1, and the singlet state of dots 1 and 2 was transferred to dots 2
and 3. For spin eigenstates, the simulated fidelity of this process in GaAs quantum
dots is about 0.95. The simulated fidelity for the transfer of arbitrary quantum states
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in GaAs quantum dots is lower, because of the nuclear hyperfine noise. Crucially,
the precise fidelity of this operation does not depend on the details of the pulses. This
process could also be cascaded to enable long-distance transfer of both single-spin
states and spin singlet states.

Another possibility enabled by the ability to independently control exchange
couplings in spin chains is long-distance superexchange. As mentioned above,
superexchange is an effective coupling between distant spins [110, 133–138],
unlike conventional exchange, which only couples nearest-neighbor spins. Gen-
erally, superexchange involves an intermediate set of quantum dots that may be
empty [139], singly [116], or multiply [140] occupied. One of the most frequently
studied systems predicted to exhibit superexchange is a spin chain, consisting of two
qubits weakly coupled to the ends of a strongly coupled spin chain [134, 135, 137].

To explore superexchange mediated by a spin chain, Qiao et al. implemented the
following Hamiltonian in a system of four quantum dots [119]: H = jS1 · S2 +
JS2 · S3 + jS3 · S4. When j 	 J , superexchange between spins 1 and 4 can occur
when spins 2 and 3 have the singlet state, via virtual excitation to the polarized

triplet configurations, and at an oscillation frequency of J ′ = j2

2J

(
1 + 3j

2J

)
, up to

third order in j (Fig. 9d). If spins 2 and 3 have any of the triplet states, which are
nominally degenerate, those spins will evolve in time at a frequency scale of j , and
superexchange between the end spins cannot occur with a reasonable fidelity. To
realize this scenario, where the chain is prepared as a singlet, Qiao et al. harnessed
the AQT process described above to transfer a spin singlet, originally prepared in
one of the outer dots, to the interior of the array. After implementing the exchange
couplings discussed above, the AQT process was reversed to transfer the end spins
to one of the outer pairs of dots, which could be read out with Pauli spin blockade.
End-spin oscillations were observed with the expected dependence on the J and j

(Fig. 9d).
In addition to pure Heisenberg spin chains, disordered Heisenberg spin chains,

[e.g. those with random Bi in Eq. (8)] are also systems of great interest. Because
of the naturally occurring nuclear hyperfine fluctuations, quantum-dot spin qubits
enable a straightforward realization of this model. One interesting feature of dis-
ordered Heisenberg spin chains is the possibility of many-body localization [111],
a phase of matter that seems to violate conventional assumptions about statistical
mechanics. In a many-body localized system, despite the presence of interactions,
disorder in the system prevents a subset of the system from fully entangling or
thermalizing with the rest. The prototypical system thought to exhibit many-body
localization is the disordered Heisenberg spin chain. Although many experiments in
other platforms have presented evidence for many-body localization [141–145], few
have been able to reproduce this seminal model and instead involve longer-range
interactions. Because quantum dots enable an exact realization of the disordered
Heisenberg spin chain model, semiconductor quantum dots present an attractive
platform in which to realize this phenomenon and related effects [12].

The time crystal is another phase of matter that can occur in disordered spin
chains [146–150]. In a time crystal, a parent non-thermalizing phase, such as a
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many-body localized phase, can stabilize a subharmonic response of the system to a
periodic drive indefinitely. The prototypical model for a time crystal is a disordered
Ising spin chain. As in the case of many-body localization, the exact realization of
this model has evaded implementation, though evidence of phases related to time
crystals has been observed in different systems [151–154]. Although disordered
Heisenberg spin chains do not enable creating a time crystal [150], it is possible to
convert the Heisenberg interaction to an Ising form, through various mechanisms,
including magnetic gradients [64, 155] and control pulses [150]. Recent experi-
mental work has suggested that exchange-coupled singlet–triplet qubits can also
realize a form of discrete time-crystalline behavior [76, 91]. Although the practical
applications of the many-body localized and time-crystal phases are not yet entirely
clear, they may be useful in quantum information processing applications as ways
to stabilize many-body quantum states [12, 156].

5 Quantum State Transfer in Spin Chains

Some of the features of Heisenberg spin chains we have discussed above, especially
superexchange and AQT, have potential applications in quantum computing for
the transfer of quantum states between qubits. Transferring quantum information
between qubits is essential for quantum error correction [160], and quantum pro-
cessors with high connectivity can perform more efficiently than those with lower
connectivity [161]. Recent years have seen significant progress in this direction.
Building on the advances discussed above relating to quantum-dot architectures
and fabrication, as well as the independent control of chemical potentials, single
electrons can now be shuttled through extended arrays of quantum dots. Mills et al.
demonstrated the ability to pump a single charge through an array of nine quantum
dots in Si [15]. Depending on the number of charges involved and the repetition
rate, this charge pump generated a measurable current that agreed with predictions
(Fig. 10a). These experiments demonstrated the high degree of control over charge
states afforded by modern quantum-dot architectures.

When electrons move to different dots during tunneling, the spin state of the
electron can also be preserved. Initially demonstrated through the preservation of the
coherence of a spin singlet during tunneling [43], the preservation of spin coherence
has also been demonstrated during tunneling between distant quantum dots [48,
162, 163], in square arrays of quantum dots [157] (Fig. 10b), and in Si quantum
dots [164].

One potential drawback to the transfer of spin states through tunneling is that
empty quantum dots between the starting and ending locations are required. A route
to overcoming this obstacle is to exploit the exchange coupling between neighboring
quantum dots. An especially simple way to transfer quantum states with exchange
coupling involves pulsed SWAP gates [158]. Although straightforward in concept,
this idea had evaded implementation in a system of more than two dots until
recently. Kandel et al. demonstrated this approach in a GaAS/AlGaAs quadruple
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dot device with overlapping gates, transferring both single-spin eigenstates and
entangled states back and forth across the array of four quantum dots through
different sequences of SWAP operations [158] (Fig. 10c). Before and after each
step, the two pairs of electrons were read out using spin-to-charge conversion
techniques associated with Pauli spin blockade [43, 74]. A limiting factor in the
previous experiment was the hyperfine interaction between the electron and nuclear
spins in the GaAs/AlGaAs heterostructure. As discussed above, the hyperfine-
induced dephasing can be minimized by working in Si quantum dots. Sigillito et
al. demonstrated the transfer of quantum spin states using “resonant” SWAP gates
in the presence of a large magnetic gradient [30] in Si quantum dots. Such gates are
generated by an oscillating exchange coupling [80, 83].

An exciting illustration of how exchange coupling can enable long-distance state
transfer involves quantum teleportation [165]. Teleportation involves distributing
two members of an entangled pair to two experimenters, Alice and Bob. To teleport
an unknown qubit state to Bob, Alice should measure the unknown state together

Fig. 10 State transfer in quantum-dot spin chains. (a) Current generated by shuttling single
electrons through a nine-dot array. Mills et al., Nat. Comm., 10, 1063 (2019) Copyright the
Authors, licensed under a Creative Commons Attribution (CC BY) license. (b) Motional narrowing
of a pair of electron spins shuttled through a square array. Flentje et al., Nat. Comm., 8, 501
(2017). Copyright the Authors, licensed under a Creative Commons Attribution (CC BY) license.
(c) Entangled state transfer via SWAP operations. Reprinted with permission from Kandel et al.,
Nature, 573, 553–557 (2019). Copyright Springer Nature (2019). (d) Quantum teleportation of
entangled states. Qiao et al., Nat. Comm. 11, 3022, (2020). Copyright the Authors, licensed under
a Creative Commons Attribution (CC BY) license
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with her member of the entangled pair in the Bell-state basis. This measurement
projects Bob’s member of the entangled pair onto the unknown state, up to a single-
qubit rotation that depends on Alice’s measurement. Creating the long-distance
entangled pair had presented the most challenging obstacle to teleportation in
quantum dots [88, 166] and has been the focus of intense research [157, 162, 163].
However, spin-state transfer via Heisenberg exchange [158] solved this challenge.
In Ref. [159], Qiao et al. leveraged this advance to perform teleportation in quantum
dots (Fig. 10d). To implement teleportation in quantum dots, Qiao et al. created an
entangled pair of electrons via Pauli spin blockade in dots 3 and 4 of a four-dot array.
The entangled pair was distributed through the array via exchange-based SWAP
gates such that it occupied dots 2 and 4. To teleport a state from dot 1 to dot 4, a
joint measurement was performed on dots 1 and 2 together via Pauli spin blockade.
When this measurement yielded a singlet, which is a maximally entangled Bell state,
the state of spin 1 was teleported to spin 4. This procedure was conditional because
teleportation occurs only when the measurement of qubits 1–2 yielded a singlet.
(A triplet result from this measurement could be any one of the three other Bell
states and thus does not provide enough information for complete teleportation.) The
experiments of Ref. [159] demonstrated the essence of this procedure by teleporting
a classical spin state and entangled states (Fig. 10d).

6 Future Directions and Outlook

In this chapter, we have described the exciting advances and great potential
associated with quantum-dot spin chains. In addition to enabling different promising
qubits for quantum computing, quantum-dot spin chains also facilitate studying
different aspects of the Hubbard and Heisenberg models. In large part, advances
along these directions have been driven by parallel developments in the technology
of gate-defined semiconductor quantum-dot spin qubits. Today, extended chains of
quantum dots can be fabricated and operated with controlled occupancy, and these
capabilities directly enable exploring the different features of spin chains that we
have described in this chapter.

Despite the significant advances in controlling and exploiting quantum-dot spin
chains in recent years, much exciting work remains to be done. On a fundamental
level, continuing to understand, model, and predict parameters like tunnel couplings
and exchange couplings will continue to drive forward progress in this field. In
particular, understanding how to control multiple exchange couplings independently
and simultaneously in larger spin chains for many-body quantum simulation
or multi-qubit algorithms will create important and exciting opportunities and
capabilities for both quantum computing and simulation. It is likely that computer-
automated and machine learning approaches [27, 32, 34] for extended quantum-dot
systems will become increasingly important.

On the device level, most of the results we have discussed have involved one-
dimensional chains. The creation and operation of two-dimensional quantum-dot
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arrays [29, 157, 167] is an exciting and active area of research. In addition, the use of
materials like Si-based quantum dots [9], which feature lower electron-spin-induced
dephasing rates compared with GaAs/AlGaAs quantum dots, may offer new routes
to exploring coherent spin phenomena. Further work to understand and minimize
effects like charge noise [46, 168, 169] will also become increasingly important.

These expected advances in device design and operation will directly benefit
single- and multi-qubit gates driven by exchange. In addition to the theoretical and
model-based approaches mentioned above, methods to design and implement noise-
resistant exchange pulses [170–172] will likely become increasingly important as
gate fidelities and device architectures mature. The possibility of two-dimensional
arrays opens up the possibility of efficient error correction schemes [71], as well as
dense arrays of qubits with high connectivity [161].

Different multi-spin qubit types also have yet to be experimentally investigated.
In general, increasing the number of electrons in multi-spin qubits opens up
pathways for reduced sensitivity to noise, at the expense of more complex device
designs or control. Whether or not these multi-spin qubits can offer an improvement
for quantum computing applications remains to be seen, but they deserve to be
explored. In fact, the great variety of potential qubits that can be formed from
electrons in quantum dots is one of the unique features of the platform.

As quantum dots continue to mature, new avenues in quantum simulation become
available. In particular, it may become possible to explore the Hubbard model in
the ultra-low temperature regime [109], where electron–electron interactions are
expected to dominate, and which is hypothesized to underlie phenomena like high-
temperature superconductivity [109]. Improvements in single-qubit initialization,
control, and readout, which will occur through developments in quantum comput-
ing, will also benefit simulation efforts.

Besides benefiting from the same technological advances, quantum simulation
in spin chains and quantum information processing overlap in the area of long-
distance coupling between qubits. We have discussed multiple routes for quantum
state transfer, including spin-state transfer via Heisenberg exchange, teleportation,
adiabatic state transfer, and superexchange, which exploit some of the unique
features of spin chains, mostly in GaAs/AlGaAs quantum dots. The implementation
and exploration of these techniques in Si quantum dots, which have longer electron
spin coherence times, will be necessary to precisely quantify and benchmark the
performance of these techniques and to explore how they might be useful for
quantum computing experiments. Although the use of spin chain physics in quantum
computing is still in early stages, methods to transfer quantum states between qubits
are generally helpful for error correction [160], and it may be that these techniques
can enable progress in this direction. In the coming years, it is likely that this
exploration will continue and that connections to quantum information science will
become stronger and more apparent.
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