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Abstract Quantum information processing protocols are efficiently implemented
on spin- 1

2 networks. A quantum communication protocol generally involves a
certain number of parties having local access to a subset of a larger system, whose
intrinsic dynamics are exploited in order to perform a specific task. In this chapter,
we address such a scenario with the quantum dynamical map formalism, where the
intended protocol is cast into the form of a map acting on the local subset of spins.
We reformulate widely investigated protocols, such as one-qubit quantum state
transfer and two-qubit entanglement distribution, with the quantum map formalism
and demonstrate its usefulness in exploring less investigated protocols such as multi-
qubit entanglement generation.

1 Introduction

Due to their formal analogy to quantum registers, quantum spin- 1
2 networks

have become the ideal testbed for many quantum information processing (QIP)
protocols, ranging from quantum key distribution to quantum computation [1].
The availability of accurate theoretical models governing their dynamics, being
amenable to solutions through either analytical techniques (especially for one-
dimensional systems [2]) or powerful numerical techniques, such as those based
on tensor network algorithms [3], allows for the investigation of various and distinct
protocols. These include, on the one hand, standard QIP protocols such as one-qubit
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quantum state transfer or bipartite Bell-type entanglement generation, taking place
in a Hilbert space having dimensionality higher than that generally accessible via
exact diagonalisation techniques. On the other hand, new QIP protocols are being
introduced, aimed at exploring the complexity of the geometry of high-dimensional
Hilbert spaces [4], such as in particular quantum state transfer [5]. At the same
time, remarkable progress has been made in order to experimentally verify these
QIP protocols and communication processes on a variety of experimental platforms,
with which the simulation of some quantum spin networks has been successfully
achieved, using: cold atoms [6–8], Rydberg atoms [9–11], integrated photonic
chips [12], trapped ions [13–15], atom–cavity systems [16, 17], and superconducting
circuits [18, 19], among others.

In the realm of the QIP tasks implementable with spin systems, a series of basic
operations have been identified falling into the class of quantum communication
protocols [20], which includes both the distribution and the generation of quantum
resources at different space-time locations. A common communication scenario,
depicted in Fig. 1, is represented by the circumstance in which a certain number of
parties Pi, i = 1, . . . n, each one having access to only a relatively small subset Si

of a larger physical system S (e.g., to a limited number of sites of a spin network),
are required to receive/transfer quantum information from/to the others. Each party
is then allowed to perform only local quantum operations; that is, Pi is able to act
on Si only, with the complementary system, S̄i : S \ Si , being inaccessible to any
quantum operation it can carry out. Additionally, one can also allow for classical
communication, i.e., the exchange of classical information among the parties. This
combination is referred to as LOCC (local operations and classical communication),

Fig. 1 Sketch of a generic
quantum spin- 1

2 network S,
where each party Pi has
access to the subset Si

(i = 1, 2, 3), on which local
quantum operations are
allowed. In addition, the
parties can exchange classical
communication among them.
The shaded area encloses the
subsets Si , the dashed lines
indicate quantum correlations
between the spins entering
the QIP protocol, and the
black continuous lines are the
interactions among the spins
in the network
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and the properties of LOCC operations determine to a large extent the fundamental
limits for the performance of QIP protocols [21].

In this chapter, we will employ the quantum dynamical map formalism, typically
used in the theory of open quantum systems [22], to illustrate QIP protocols for
quantum state transfer, entanglement distribution, and generation on a homogeneous
system, made up of a spin- 1

2 network. We will assume that each party i has access
to a subset of ni spins of the network and has control over the interactions of the
spins of this subset with the complementary system. Our aim is to derive the form
of the dynamical map and, whenever possible, its analytical expression, in order
to determine which LOCC operations maximise the efficiency of the investigated
QIP protocols. We will focus, in particular, on the case of quantum dynamical
maps obtained from spin Hamiltonians exhibiting U(1) symmetry and, in order to
obtain analytical results, investigate specific instances where the spin Hamiltonian
is integrable.

The chapter is organised as follows: in Sect. 2, we review the quantum dynamical
map formalism and apply it to U(1)-symmetric Hamiltonians in Sect. 3. In Sect. 4,
we illustrate the use of the formalism for case of single-qubit quantum state transfer
and Bell-state distribution; in Sect. 5, we derive the two-qubit map for entanglement
generation and distribution; in Sect. 7, we explore the use of a 4-qubit dynamical
map for investigating multipartite entanglement; and, finally, in Sect. 8, we draw
our conclusions and provide some outlooks.

2 Quantum Dynamical Maps

A quantum dynamical map between two systems associated to the Hilbert spaces
H1, H2 can be identified with a linear homomorphism � : D(H1)→D(H2)

mapping the space of density matrices acting on the input Hilbert space, into the
space of density matrices acting on the output Hilbert space. Therefore, any �

preserves the basic properties of the quantum states:

• Self-adjointness: �(ρ†)† = �(ρ)

• Complete positivity: �(ρ) > 0
• Normalisation condition: Tr(ρ) = 1
• Linearity: �(aρA + bρB) = a�(ρA) + b�(ρB)

For the purpose of our investigation, we consider, from now on, finite-dimensional
Hilbert spaces. For such finite-dimensional case, the space of linear maps L(Cn)

can be identified with the algebra of n × n complex matrices, Mn. Any orthonormal
basis |i〉 : i=1, . . . , n in C

n allows to define the orthonormal basis of elementary
matrices in Mn:

eα = eij = |i〉〈j | , (1)
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and any map can be expressed as

�(ρ) =
∑

α,β

Aβ
αTr{eβρ}eα . (2)

In this basis, the matrix A satisfies the following properties:

Aβ
α ≡ Anm

ij ,

⎧
⎪⎪⎨

⎪⎪⎩

(
Anm

ij

)∗ = Amn
ji ,

Anm
ii = δmn ,

Anm
ij ρnm > 0 .

(3)

The map � is completely positive if there exists a family of N operators Ki :
i=1, . . . , N in Mn, which satisfy the condition

∑
i K

†
i Ki = 1, and such that �

can be decomposed as [23–25]

�(ρ) =
N∑

k=1

EkρE
†
k . (4)

By explicitly writing the matrix elements, we immediately find the relationship
between map and Kraus operators:

(� (ρ))ij =
N∑

k=1

∑

nm

(Ek)in (ρ)nm

(
E

†
k

)

mj
=

∑

nm

Anm
ij (ρ)nm . (5)

Note that, from Eq. (4), it is evident that for N = 1 the map � represents a unitary
map U = UρU†.

In this chapter, we are interested in entanglement generation and transfer
between two sub-parties that we dub sender and receiver, each of them taking care,
controlling and possibly making measurements on a subset of the system’s spins.
We denote the states of the subsystems pertaining to sender and receiver as ρ

S
and

ρ
R

, respectively, and assume that these are the marginals obtained from the state of
a larger system σ , whose time evolution is dictated by a Hamiltonian generating a
unitary map, i.e., σ(t) = U(t) (σ (0)). We assume that the initial state of this larger
system, σ(0), is a product state between ρ

S
and a reference pure state |�〉

S
. In other

words, we are concerned with maps of the following form:

ρ
R

= �(ρ
S
) = Tr

R
{U(ρ

S
⊗ |�〉

S
〈�|)}, (6)

where we indicate with Tr
R

the partial trace over all but R degrees of freedom.
Denoting with |r〉

R
an orthonormal basis of H

R
, we have

ρ
R

= �(ρ
S
) =

∑

r

(
R
〈r| U |�〉

S

)
ρ

S

(
S
〈�| U† |r〉

R

)
=

∑

r

ErρS
E†

r . (7)
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It is important to remember that the Kraus operators Er are time-dependent and
that they depend on the choice of the basis in HR and, more generally, on the
choice of sender and receiver subsets themselves. The matrix representation of the
corresponding map can be found according to Eq. (5).

3 U(1)-Symmetric Hamiltonians

In this section, we will derive the general form of the quantum dynamical map
in Eq. (5) when the unitary evolution operator entering Eq. (6) exhibits U(1)

symmetry. Without loss of generality, we focus on spin- 1
2 Hamiltonians with

isotropic Heisenberg-type interactions in the XY plane:

Ĥ =
∑

i,j

(
Jij

(
σ̂ x

i σ̂ x
j + σ̂

y
i σ̂

y
j

)
+ 	ij σ̂

z
i σ̂ z

j

)
+

∑

i

hi σ̂
z
j , (8)

where σ̂ α
i (α = x, y, z) are the usual Pauli matrices, i denotes the index of the site,

Jij and 	ij are, respectively, the two-qubit interaction terms in the XY plane and
along the Z-axis, and hi is the magnetic field along the Z-axis. In fact, the class of
Hamiltonians exhibiting the U(1) symmetry is larger than that described by Eq. (8)
and encompasses Hamiltonians with Dzyaloshinskii–Moriya [26] and XY isotropic
cluster interaction terms [27], among others.

In terms of spin operators, the U(1) symmetry implies that the total magnetisa-
tion along the Z-axis,

〈
M̂

〉 = ∑N
i=1

〈
σ̂ z

i

〉
, is a conserved quantity and the operator

M̂ commutes with U . Hence, it is possible to divide the whole Hilbert space into
invariant subspaces, labelled by the eigenvalues of M̂ , with each subspace having
the dimension determined by the degeneracy of the eigenvalue,

(
N
i

)
, where i denotes

the number of flipped spins. Indeed, by writing the spectral decomposition of M̂ as

M̂ =
∑

k

∑

d

λk

∣∣∣φd
k

〉 〈
φd

k

∣∣∣ , (9)

we know that U
∣∣φd

k

〉
is an eigenstate of M̂ with eigenvalue λk , i.e.,

〈
φd ′

k′
∣∣∣U

∣∣∣φd
k

〉
=

〈
φd ′

k′
∣∣∣U

∣∣∣φd
k

〉
δkk′ = (fk)

d ′
d δkk′ . (10)

Thus, we can then write U as a direct sum of unitary operators acting in each
subspace

U = U0 ⊕ U1 ⊕ U2 ⊕ . . . (11)
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If we now observe the elements of the Kraus operators entering in Eq. (7), they take
the form

(Er)in =
R
〈i| Er |n〉

S
=

R
〈i|

R
〈r| U |�〉

S
|n〉

S
. (12)

This inherently places some constraints on the elements of the Kraus operators and
consequently on the map elements. Indeed, if the state |�〉

S
|n〉

S
belongs in a given

subspace, then
R
〈i|

R
〈r| must belong to that subspace as well in order for the above

equation to be non-zero. Without loss of generality, we take |�〉
S
|n〉

S
as living in the

n-th supspace, implying that i+r = n. In the following, we will assume |�〉
S

= |0〉,
i.e., a fully polarised state.

4 One-Qubit Map

To begin our analysis, let us consider the simplest case: a map from qubit i (the
sender) to qubit j (the receiver): ρ̂j (t) = �(t)ρ̂i(0), where i and j are (possibly
identical) positions in a spin network. In this case, we have two possible values of
r = 0, 1 and, consequently, two Kraus operators:

E0 =
(

1 0
0 f

j
i

)
, Ek

1 =
(

0 0
f k

i 0

)
with k 
= j . (13)

By using Eq. (5), we can write the map as

⎛

⎜⎜⎝

ρ00

ρ01

ρ10

ρ11

⎞

⎟⎟⎠

j

=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 −
∣∣∣f j

i

∣∣∣
2

0 f
j
i 0 0

0 0
(
f

j
i

)∗
0

0 0 0
∣∣∣f j

i

∣∣∣
2

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎝

ρ00

ρ01

ρ10

ρ11

⎞

⎟⎟⎠

i

, (14)

where we use the completeness relation
∑

n

∣∣f n
i

∣∣2 = 1.

In this simple case, perfect state transfer, i.e., ρ̂
j
nm = ρ̂i

nm, entails f
j
i =

(
f

j
i

)∗ = 1.

A considerable amount of research has been performed in order to investigate the
conditions that allow to maximise the transition amplitude [28].

In Bose’s original protocol [29], this is achieved by a local magnetic field acting
on the spins. The map in Eq. (14) is also informative about remote state preparation
protocols: the coherence (in the computational basis) of spin j cannot increase with
respect to that of spin i under the action of this map as the off-diagonal elements of
the output density matrix can only be suppressed, or, at most, maintain their initial
amplitude.
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Fig. 2 A schematic picture of an entanglement distribution protocol. Initially, the external qubit 0
is entangled with qubit i, and the aim is to exploit the map in Eq. (16) to entangle the former with
qubit j

Apart from quantum state transfer protocols, the map in Eq. (14) can be used to
analyse entanglement distribution protocols, like the one reported in Refs. [29, 30]
and sketched in Fig. 2. Explicitly, the map is given by

ρ̂(t)0j = (10 ⊗ �i(t)) ρ̂(0)0i , (15)

where 10 is the 4-dimensional identity map acting on qubit 0 and �i(t) is given by
the map in Eq. (14) acting on qubit i. The map reads

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0,j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1−|f |2 0 0 0 0 0 0 0 0 0 0

0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1−|f |2 0 0 0 0 0 0 0 0

0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 f ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 |f |2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 f ∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 |f |2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1−|f |2 0 0

0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1−|f |2
0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 f ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 f ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0,i

. (16)
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In the original entanglement distribution protocol given in Ref. [29], the entangle-
ment encoded in a singlet state on sites 0 and i is distributed to sites 0 and j resulting

in a concurrence C =
∣∣∣f j

i (t)

∣∣∣. From the map in Eq. (16), it is evident that the same

holds true for any Bell state. On the other hand, for X-type density matrices [31],
the distributed entanglement does not increase linearly with the (modulus of the)
transition amplitude f but instead reads

C = 2 max [0, C1, C2] , (17)

where

C1 = |f |
(

|ρ12| −
√

ρ33
(
ρ00 + ρ11

(
1 − |f |2))

)
, (18)

C2 = |f |
(

|ρ03| −
√

ρ11
(
ρ22 + ρ33

(
1 − |f |2))

)
(19)

denote the so-called anti-parallel and parallel concurrences, respectively [32].
Looking carefully at the map, one can see that the ratio of transferred entanglement
over initial entanglement depends only on the transition amplitude and not on the
fact that entanglement is of the parallel or anti-parallel type. The dependence on |f |
is not linear, as in the pure Bell-state scenario, and in Fig. 3, we show the ratio of the
transferred concurrence vs. the initial concurrence (C = 3p−1

2 ) for an initial Werner
state

ρ̂W = p |�B〉 〈�B | + (1 − p)
1

4
, (20)

where |�B〉 is any Bell state.

Fig. 3 Ratio of transferred
entanglement vs. |f | for a
Werner state for different
values of p in Eq. (20). The
curves, from bottom to top,
are drawn for
p = 0.4, 0.5, 0.7, 0.9, 1
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Fig. 4 A schematic picture of an entanglement distribution protocol. Initially, qubit i is entangled
with qubit ν, and the aim is to exploit the map in Eq. (16) to entangle qubit j with qubit μ

Now we consider the case where the entanglement distribution protocol is
designed in order to send to sites (n, μ) (the receiver sites), and the entanglement
initially shared between sites (i, ν) (sending sites) using two independent spin
networks. A particular instance of this setup is given in Fig. 4, and both there and in
the setting of the problem above, Latin (Greek) letters are used to denote the sites
on the first (second) chain. This protocol is reminiscent of the dual-rail encoding
protocol for sending a single-qubit state [33].

The map is given by

ρ̂(t)jμ = (�i(t) ⊗ �ν(t)) ρ̂(0)iν (21)
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and reads

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1−|g|2 0 0 0 0 1−|f |2 0 0 0 0
(
1−|f |2) (1−|g|2)

0 g 0 0 0 0 0 0 0 0 0 g
(
1−|f |2) 0 0 0 0

0 0 f 0 0 0 0 f
(
1−|g|2) 0 0 0 0 0 0 0 0

0 0 0 fg 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 g∗ 0 0 0 0 0 0 0 0 0
(
1−|f |2) g∗ 0

0 0 0 0 0 |g|2 0 0 0 0 0 0 0 0 0
(
1−|f |2) |g|2

0 0 0 0 0 0 fg∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 f |g|2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 f ∗ 0 0 0 0
(
1−|g|2) f ∗ 0 0

0 0 0 0 0 0 0 0 0 gf ∗ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 |f |2 0 0 0 0 |f |2 (1−|g|2)

0 0 0 0 0 0 0 0 0 0 0 g|f |2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 f ∗g∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 |g|2f ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2g∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2|g|2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

where we have used the short-hand notation f = f
j
i and g = f

μ
ν . If we assume that

the two spin networks are identical and that the locations of the initially correlated
sites and of the receiving ones are also the same on the two networks, the matrix
above simplifies as f = g. Again, this is the same settings adopted in the dual-rail
protocol [34] to attain perfect state transfer. In such a case, with ρ̂iν being an X-type
state, the anti-parallel and parallel concurrences reported in Eq. (17) are given by

C1 = |f |2
(

|ρ12| −
√

ρ33
(
ρ00 + (

1 − |f |2) (ρ11 + ρ22 + (
1 − |f |2) ρ33

)))

(23)

C2 = |f |2
(

|ρ03| −
√(

ρ11 + (
1 − |f |2) ρ33

) (
ρ22 + (

1 − |f |2) ρ33
))

. (24)

Due to the use of two channels, as depicted in Fig. 4, the ratio of transferred
over initial entanglement depends, this time, not only on the transition amplitude,
but also on the type of entanglement (whether parallel or anti-parallel). This is also
the case when investigating the effect of the spin environment on the entanglement,
which has been carried out in Ref. [35], by analysing the properties of the map
ρ̂(t)jμ = (�i(t) ⊗ �ν(t)) ρ̂(0)jμ.

As one can expect, the anti-parallel entanglement C1 attains larger values with
respect to C2 at fixed transition amplitude |f |. Intuitively, this is due to the fact
that in the former case, only one excitation is present in the system, whereas, in the
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Fig. 5 Ratio of transferred over initial entanglement vs. |f | for a Werner state for different values
of p in Eq. (20). The curves, from bottom to top, are drawn for p = 0.4, 0.5, 0.7, 0.9, 1. The left
plot corresponds to a Werner state with maximally entangled component given by |�B 〉 = ∣∣�+〉

,
whereas for the right plot we have chosen |�B 〉 = ∣∣�+〉

latter, two excitations enter the dynamics. This leads to an increase in the effects
of decoherence due to the dispersion of the extra excitation all over the network.
A figure of merit describing the amount of transferred entanglement is reported in
Fig. 5, in the case of initial Werner states (Eq. 20).

5 Two-Qubit Map

In this section, we derive the expression of � for the case of two sender qubits
located at arbitrary positions i and j in a spin network. For a generic two-qubit
receiver at sites n,m, it is instructive to write the map in matrix form.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i,j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00
00 0 0 0 0 A11

00 A12
00 0 0 A21

00 A22
00 0 0 0 0 A33

00

0 A01
01 A02

01 0 0 0 0 A13
01 0 0 0 A23

01 0 0 0 0

0 A01
02 A02

02 0 0 0 0 A13
02 0 0 0 A23

02 0 0 0 0

0 0 0 A03
03 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 A10
10 0 0 0 A20

10 0 0 0 0 A31
10 A32

10 0

0 0 0 0 0 A11
11 A12

11 0 0 A21
11 A22

11 0 0 0 0 A33
11

0 0 0 0 0 A11
12 A12

12 0 0 A21
12 A22

12 0 0 0 0 A33
12

0 0 0 0 0 0 0 A13
13 0 0 0 A23

13 0 0 0 0

0 0 0 0 A10
20 0 0 0 A20

20 0 0 0 0 A31
20 A32

20 0

0 0 0 0 0 A11
21 A12

21 0 0 A21
21 A22

21 0 0 0 0 A33
21

0 0 0 0 0 A11
22 A12

22 0 0 A21
22 A22

22 0 0 0 0 A33
22

0 0 0 0 0 0 0 A13
23 0 0 0 A23

23 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A30
30 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 A31
31 A32

31 0

0 0 0 0 0 0 0 0 0 0 0 0 0 A31
32 A32

32 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A33
33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n,m

(25)
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The map in Eq. (25) can be written in a more compact form defining the Kraus
operators in all of magnetisation sectors, as illustrated in Sect. 3, where Eq. (12) has
elements

A = E0 ⊗ E∗
0 + E1 ⊗ E∗

1 + E2 ⊗ E∗
2 , (26)

and

E0 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0

0 f m
j

f m
i

0

0 f n
j

f n
i

0

0 0 0 f nm
ij

⎞

⎟⎟⎟⎟⎠
, E

k 
=i,j
1 =

⎛

⎜⎜⎜⎜⎝

0 f k
j

f k
i

0

0 0 0 f km
ij

0 0 0 f nk
ij

0 0 0 0

⎞

⎟⎟⎟⎟⎠
, E

k,l 
=i,j
2 =

⎛

⎜⎜⎜⎝

0 0 0 f kl
ij

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎠ .

(27)

This explicit form of the map shows, for example, that ρ03(t) = A03
03ρ03(0). As

a consequence (and analogously to the impossibility of amplifying coherence in the
single-qubit case), the Bell states

∣∣�±〉 cannot be generated by this map, irrespective
of the initial state of the qubits. On the other hand, the Bell states

∣∣�±〉 can be
generated by LOCC as the coherences ρ12 can be build up starting from ρ11, ρ22,
and/or ρ33, i.e., by locally flipping the spins on the sender and/or receiver sites.

From Ref. [36], we can borrow the following two-qubit map’s elements for
the case in which the receiver coincides with the sender (so that, in fact, we are
evaluating how good is information storage at sites i, j ), ρ̂ij (t) = �t ρ̂ij (0)

A00
00 = 1 , A11

00 = 1 −
∣∣∣f i

i

∣∣∣
2 −

∣∣∣f j
i

∣∣∣
2

, A22
00 = 1 −

∣∣∣f i
j

∣∣∣
2 −

∣∣∣f j
j

∣∣∣
2

,

A33
00 = 1 −

∣∣∣f mi
ij

∣∣∣
2 −

∣∣∣f mj
ij

∣∣∣
2 −

∣∣∣f ij
ij

∣∣∣
2

, A12
00 = −f i

i

(
f i

j

)∗ − f i
i

(
f i

j

)∗
,

A21
00 = −f i

j

(
f i

i

)∗ − f
j
j

(
f

j
i

)∗
,

A01
01 =

(
f

j
i

)∗
, A02

01 =
(
f

j
j

)∗
, A13

01 = f m
i

(
f

mj
ij

)∗
, A23

01 = f m
j

(
f

mj
ij

)∗
,

A01
02 =

(
f i

i

)∗
, A02

02 =
(
f i

j

)∗
, A13

02 = f m
i

(
f mi

ij

)∗
, A23

02 = f m
j

(
f mi

ij

)∗
,

A03
03 =

(
f

ij
ij

)∗
,

A11
11 =

∣∣∣f j
i

∣∣∣
2

, A12
11 = f

j
i

(
f i

j

)∗
, A21

11 = f
j
j

(
f

j
i

)∗
, A22

11 =
∣∣∣f j

j

∣∣∣
2

, A33
11 =

∣∣∣f mj
ij

∣∣∣
2

,

A11
12 = f

j
i

(
f i

i

)∗
, A12

12 = f
j
i

(
f i

j

)∗
, A21

12 = f
j
j

(
f i

i

)∗
, A22

12 = f
j
j

(
f i

j

)∗
, A33

12 = f
mj
ij

(
f mi

ij

)∗
,

A13
13 = f

j
i

(
f

ij
ij

)∗
, A23

13 = f
j
j

(
f

ij
i

)∗
,
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A33
22 =

∣∣∣f mi
ij

∣∣∣
2

, A11
22 =

∣∣∣f i
i

∣∣∣
2

, A22
22 =

∣∣∣f i
j

∣∣∣
2

, A12
22 = f i

i

(
f i

j

)∗
, A21

22 = f i
j

(
f i

i

)∗
,

A13
23 = f i

i

(
f

ij
ij

)∗
, A23

23 = f i
j

(
f

ij
ij

)∗
, A33

33 =
∣∣∣f ij

ij

∣∣∣
2

, (28)

where, whenever the index m appears, a summation over all m 
= S,R is intended.
For the general case describing the transfer of a given two-qubit state from the

sending pair i, j to the receiving pair n,m, ρ̂nm(t) = �t ρ̂ij (0), the matrix elements
read

A00
00 = 1 , A11

00 = f k
j

(
f k

j

) ∗ , A12
00 = f k

j

(
f k

i

) ∗,

A21
00 = f k

i

(
f k

j

) ∗ , A22
00 = f k

i

(
f k

i

) ∗ , A33
00 = f kl

ij

(
f kl

ij

) ∗ ,

A01
01 =

(
f m

j

) ∗ , A02
01 = (

f m
i

) ∗ , A13
01 = f k

j

(
f km

ij

) ∗ , A23
01 = f k

i

(
f km

ij

) ∗ ,

A01
02 =

(
f n

j

) ∗A02
02 = (

f n
i

) ∗ , A13
02 = f k

j

(
f nk

ij

) ∗ , A23
02 = f k

i

(
f nk

ij

) ∗ ,

A03
03 =

(
f nm

ij

) ∗ ,

A10
10 = f m

j , A20
10 = f m

i , A31
10 = f km

ij

(
f k

j

) ∗ , A32
10 = f km

ij

(
f k

i

) ∗ ,

A11
11 = f m

j

(
f m

j

) ∗ , A12
11 = f m

j

(
f m

i

) ∗ , A21
11 = f m

i

(
f m

j

) ∗,

A22
11 = f m

i

(
f m

i

) ∗ , A33
11 = f km

ij

(
f km

ij

) ∗ ,

A11
12 = f m

j

(
f n

j

) ∗ , A12
12 = f m

j

(
f n

i

) ∗ , A21
12 = f m

i

(
f n

j

) ∗A22
12 = f m

i

(
f n

i

) ∗,

A33
12 = f km

ij

(
f nk

ij

) ∗ ,

A13
13 = f m

j

(
f nm

ij

) ∗ , A23
13 = f m

i

(
f nm

ij

) ∗ ,

A10
20 = f n

j , A20
20 = f n

i , A31
20 = f nk

ij

(
f k

j

) ∗ , A32
20 = f nk

ij

(
f k

i

) ∗ ,

A11
21 = f n

j

(
f m

j

) ∗ , A12
21 = f n

j

(
f m

i

) ∗ , A21
21 = f n

i

(
f m

j

) ∗A22
21 = f n

i

(
f m

i

) ∗,

A33
21 = f nk

ij

(
f km

ij

) ∗ ,

A11
22 = f n

j

(
f n

j

) ∗ , A12
22 = f n

j

(
f n

i

) ∗ , A21
22 = f n

i

(
f n

j

) ∗A22
22 = f n

i

(
f n

i

) ∗ ,

A33
22 = f nk

ij

(
f nk

ij

) ∗ ,

A13
23 = f n

j

(
f nm

ij

) ∗ , A23
23 = f n

i

(
f nm

ij

) ∗ ,
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A30
30 = f nm

ij ,

A31
31 = f nm

ij

(
f m

j

) ∗ , A32
31 = f nm

ij

(
f m

i

) ∗ ,

A31
32 = f nm

ij

(
f n

j

) ∗ , A32
32 = f nm

ij

(
f n

i

) ∗ ,

A33
33 = f nm

ij

(
f nm

ij

) ∗ . (29)

6 Two-Qubit Entanglement Generation

In the simplest setting, Alice and Bob aim at generating entanglement between
the qubits in their possession, respectively, A and B, located at some positions in
the spin network, by performing local operations on their qubits and exchanging
classical communication between them. By definition, LOCC by itself does not
allow for neither the increase nor the generation of entanglement between qubits A

and B; but the presence of the spin network can give rise to an effective interaction
between these qubits, resulting in the possible generation of quantum correlation. In
Fig. 6, an instance of such an entanglement generation protocol is depicted, where
Alice and Bob have access to one spin at each end of a 1D spin chain. In Ref. [37],
it has been shown that, by weakly coupling the end qubits to the wire, their state
evolves into a Bell state at half of the transfer time of the excitation between the
edges. This result has been extended in Ref. [38] to the generation of a Bell state
between two users coupled at arbitrary positions in a spin network, provided control
over the local magnetic field is allowed on the sites chosen to be entangled. Results
similar to the weak-coupling scheme can be obtained by strong local magnetic fields
on neighbouring spins both for one- and two-qubit quantum state transfer [39, 40].

In Ref. [41], the authors showed that initialising the system in |�〉AB =
|+〉A |+〉B |ψ〉W , where |+〉 = 1√

2
(|0〉 + |1〉) and |ψ〉W is an arbitrary state with

fixed parity of the wire, and a maximally entangled state between qubits A and B

can be achieved in a ballistic time, provided Alice and Bob can tune the strength of
the couplings of their qubits to the wire to an optimal value [42].

Fig. 6 Alice and Bob have access, respectively, to qubits A and B, located at the two ends of a spin
chain (wire). Entanglement between the two qubits can be generated by exploiting the dynamics
of the quantum wire, whose Hamiltonian includes a nearest-neighbour interaction term
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7 Four-Qubit Entanglement Generation

In Sect. 5, we have analysed the case where Alice and Bob each have access to
one qubit in the spin network. Here, instead, we consider the case where they each
have access to two qubits. An instance where each pair of qubits is located at an
edge of a spin chain is depicted in Fig. 7. A general analysis of the entanglement
generated in an arbitrary four-qubit state has not yet been performed, except for pure
states [43, 44], due to the complexity of defining entanglement quantifiers for an
arbitrary four-qubit mixed state (as a result of the mixed state being in the presence
of infinitely many SLOCC classes [45]).

Restricting only to the A|B partition, in Ref. [46], it is shown that starting from
|�〉AB = |1100〉 and |�〉AB = |1010〉 (or their mirror-symmetric states |�〉AB =
|0011〉 and |�〉AB = |0101〉), a product of two Bell states, i.e., |�〉AB = |�〉A1B2

⊗
|�〉A2B1

or |�〉AB = |�〉A1B1
⊗ |�〉A2B2

, is attained at specific times during the
evolution for g � J . On the other hand, the initial state |1001〉 (and its mirror-
symmetric state |0110〉) does not generate any entanglement in the A|B partition at
any time.

Let us now characterise the type of entanglement these initial states achieve
during the evolution of the dynamical map. Starting from the state |�〉AB = |1100〉
results in the evolution

|�(t)〉AB = 1

2

[(
1 − cos

g2t

J

)
|0011〉 + i sin

g2t

J
|0101〉 ,

−i sin
g2t

J
|1010〉 +

(
1 + cos

g2t

J

)
|1100〉

]
, (30)

which can be written in a biseparable form

|�(t)〉AB =
∣∣∣∣sin

g2t

2J

∣∣∣∣

[(
|01〉 + −i cot

g2t

2J
|10〉

)

A1B2

,

⊗
(

|01〉 + i cot
g2t

2J
|10〉

)

A2B1

]
, (31)

Fig. 7 Alice and Bob have access to qubits A1, A2 and B1, B2, respectively, located at the two
ends of a spin chain (wire), which is capable of generating an entangled state by exploiting its
intrinsic dynamics
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implying that the concurrence in each two-qubit state is equal to CA1B2 = CA2B1 =∣∣∣sin g2t
J

∣∣∣. This means that a product of two Bell states is created after a time t =
πJ
2g2 . It is also noteworthy to consider the four-tangle [47], a measure of multipartite
entanglement, which is defined for pure states as

τ4(|ψ〉) = ∣∣〈ψ | σy ⊗ σy ⊗ σy ⊗ σy

∣∣ψ∗〉∣∣2 . (32)

In this case, the calculation can be carried out explicitly, and we get that

τ4(|�(t)〉AB) ≡ τA1A2B1B2 =
∣∣∣sin g2t

J

∣∣∣
4
. This means that even though the state (31)

is biseparable, the four-tangle is non-zero when the two-qubit concurrences are
non-zero, implying that the four-tangle is not a measure of exclusive four-way
entanglement per se. One can also consider the three-tangle [48] of the three-qubit
partitions, which contrary to the four-tangle, is exclusively a measure of three-way
entanglement. The caveat of this measure is that it is only defined for pure states,
while the generalisation to mixed states is described via the convex roof extension.
Thus, the three-tangle of a mixed state ρ is given as the average pure state three-
tangle minimised over all possible pure state decompositions:

τ3(ρ) = min{pi,|ψi 〉}
∑

i

piτ3 (|ψi〉) , (33)

which for a pure state

τ3(|ψ〉) = C2
A(BC) − C2

AB − C2
AC , (34)

and CA(BC) =
√

2
(
1 − Tr

(
ρ2

A

))
. If we now consider taking the Eigendecomposi-

tions of the partial trace of state (31) with respect to every qubit, we find that the
three-tangle of each decomposed pure state for each traced out qubit is equal to zero.
This means that we have found a minimal pure state decomposition so that the three-
tangle of state (31), with respect to any partition involving three qubits, is equal to
zero, implying there is no three-way entanglement generation between the senders
and receivers at any time t . This is a consequence of the fact that the initial state
does not exhibit any coherence between states having support in the magnetisation
sectors with zero and three excitations, and the dynamics are not able to generate
any. Clearly, multipartite entanglement distribution protocols are feasible whenever
the initial state contains some amount of entanglement, as shown in Ref. [49] for
the case of the three-tangle when the sender’s state is GHZ-like.
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Let us now move to analyse the evolution of the state generated from |�〉AB =
|1010〉. We get that the evolution results in

|�(t)〉AB = 1

2

[(
cos 2J t + cos

g2t

J

)
|1010〉 +

(
cos 2J t − cos

g2t

J

)
|0101〉 ,

−i sin 2J t (|1001〉 + |0110〉) − i sin
g2t

J
(|1100〉 − |0011〉)

]
.

(35)

To characterise the different types of entanglement in Eq. (35), we need to look
towards a new entanglement measure further to the two-qubit concurrence and three-
and four-tangles. We will specifically use the four-qubit concurrence given in Ref.
[50], which is defined for a pure state as

C1234 = (
C1(234)C2(134)C3(124)C4(123)C(12)(34)C(13)(24)C(14)(23)

) 1
7 , (36)

where CA(BCD) =
√

2
(
1 − Tr

(
ρ2

A

))
and C(AB)(CD) =

√
4
3

(
1 − Tr

(
ρ2

AB

))
. The n-

partite concurrence is essentially the geometric mean of the concurrence over the set
of all possible bipartitions, which is similar to the GME concurrence [51], although
the latter is defined as the minimum value of the concurrence over all bipartitions.
This inherently implies that the four-qubit concurrence is zero if and only if the four-
qubit pure state is separable to some degree. Plotting the four-qubit concurrence
CA1A2B1B2 along with the two-qubit concurrences CA1B2(= CA2B1) and CA1A2(=
CB1B2), and the four-tangle τA1A2B1B2 , for J 2

g2 = 104, we obtain Fig. 8.
The two-qubit concurrences CA1B1 and CA2B2 are equal to zero at all times t .

We make a note that at time t = πJ
2g2 we acquire a product of two Bell states

similar to when we use state (31). Once again, by taking the Eigendecompositions
of the partial trace of state (35) with respect to every qubit, we find that the three-
tangle is zero at all times t for every partition consisting of three qubits. Combining

Fig. 8 Plot of the two- and the four-qubit concurrences and of the four-tangle for the state (35)

with t in units of J/g2. The three panels are at t = [0, π ] (left), t =
[

π
4g2 , π

4g2 + π
]

(centre), and

t =
[

π
2g2 , π

2g2 + π
]

(right), corresponding, respectively, to the beginning, a quarter and an half of

the period of the longest time-scale dictated by g−2
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this with the fact that at certain times t , we have that the only non-zero two-qubit
concurrences are CA1A2 and CB1B2 and that the four-qubit concurrence CA1A2B1B2

is also non-zero, meaning that the state is fully inseparable, implies that there must
be some non-zero value of exclusive four-way entanglement shared between the
senders and the receivers.

8 Conclusion

In this chapter, we have adopted the general framework of quantum dynamical
maps in order to investigate some instances of controlled quantum information
dynamics on spin networks. Specifically, we considered those maps emerging from
the dynamics of a subset of spin- 1

2 particles embedded in a larger network that
we divided into sender and receiver parts for convenience. Focusing on the case
of a U(1)-symmetric Hamiltonian governing the dynamics of the network, we
have derived the explicit form of the dynamical map in terms of the excitation
transfer amplitude and applied it to review both single-qubit quantum state transfer
and two-qubit transfer and corresponding entanglement generation. Finally, we
have considered a specific topology of the network where analytical solutions are
available for the transfer amplitude and have shown that the quantum map formalism
allows the analysis of more complex scenarios such as multi-qubit entanglement
generation. It is interesting to note that Ref. [52] provides another means of
investigating entanglement generation in quantum state transfer protocols that has
not been investigated in this chapter.

The range of applicability of the illustrated approach goes well beyond the cases
investigated in this chapter, as it can be easily extended to include classical com-
munication feedback, constraints on the achievable quantum information protocols
stemming from the symmetries of the Hamiltonian reflected in the quantum map,
and spin networks exposed to external noise.
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