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1 Introduction

The systems we encounter most often in condensed matter physics generally exhibit
effective local interactions in regular 3D, 2D, or 1D structures. In these systems,
correlations tend to spread and entanglement builds up in a way constrained by a
so-called Lieb–Robinson bound—where the development of correlations in time is
strong within a lightcone (often determined away from criticality by the maximum
group velocity for quasiparticles in a system), and correlations tend to decay
exponentially outside that lightcone. This constrains (or delays) the development
of entanglement, especially between distant regions in such systems.

With quantum simulators in atomic, molecular, and optical physics, we now have
opportunities to go beyond this paradigm. In non-relativistic settings, we can obtain
effective long-range interactions, ranging from direct dipole–dipole interactions in
polar molecules, to genuine long-range interactions for experimental setups such as
chains of trapped ions (mediated by the collective motional modes of the trapped
ions) or atoms in optical cavities (mediated by light in the cavity). Experiments
with neutral atoms in tweezer arrays (where interactions are mediated by exciting
atoms to a Rydberg level with high principal quantum number) typically give us
short-ranged Van der Waals interactions, but we can generate effective long-range
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interaction graphs by moving atoms in the traps. This gives us the opportunity to ask
how the build-up of entanglement changes in these unusual systems with long-range
interactions.

In this chapter, we give an introduction to these concepts, beginning in Sect. 2
by describing techniques that can be used to analyze these systems (including
Lieb–Robinson bounds, quasiparticle techniques, and numerical methods), before
discussing examples of spin chains with interactions decaying with distance R as
R−α for some α ≥ 0 in Sect. 3, and then sparse coupling graphs in Sect. 4. Such
sparse graphs could be used to realize fast scrambling of information, in which we
build up entanglement on timescales growing as t∗ ∝ log(N) with the system size,
N . In Sect. 5, we then briefly discuss the implementations of each of the classes
of models that we treat in the chapter, across trapped ions, neutral atoms in optical
cavities, and tweezer arrays for neutral atoms with Rydberg excitations.

2 Quantifying Entanglement and Information Spreading

2.1 Measures of Entanglement Entropy

Let us consider a quantum system Q defined on a Hilbert space H, which we split
into two sub-Hilbert spaces A and B, H = HA ⊗ HB with dimensions DA,B =
dim(HA,B). By definition, entanglement between A and B implies that a state |ψ〉
cannot be written in a product state form, i.e.,

|ψ〉 �= |ψ〉A ⊗ |ψ〉B , (1)

where the states |ψ〉A,B are defined on the sub-Hilbert spaces HA,B , respectively.
The amount of entanglement can now be analyzed by constructing the reduced
density matrix of either the sub-system A or B; w.l.o.g., focusing on sub-system
A, it is defined as

ρA = trB(|ψ〉 〈ψ |), (2)

where the trace is taken over sub-system B. In case of a product state |ψps〉 =
|ψps〉A ⊗ |ψps〉B , the reduced density matrix trivially becomes ρ

ps
A = |ψps〉A 〈ψps|A

and is thus pure quantum states. This implies that all information about the state of
sub-system A is contained in ρA and thus readily available through experimental
probes of this sub-system. For a general entangled state that fulfills inequality (1),
however, this is not true. The presence of entanglement implies that ρA will be
a mixed density matrix. Now, information on the quantum state is encoded also
in quantum correlations between A and B. Therefore, the entropy of ρA, i.e., the
lack of information in ρA, provides a way to directly quantify the amount of such
correlations.
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Arguably, the most prominent definition for entropy is the von Neumann entropy,

SA = SVN(ρA) = −tr(ρAlog2ρA) = −
DA∑

α

λαlog2λα, (3)

where in the last step we have introduced the positive eigenvalues of ρA, λα ≥ 0
that must fulfill

∑
α λα = 1. Note that the base of the logarithm in the definition

varies throughout the literature, however for spin-1/2 models or qubits log2 is a
convenient choice. For product states, it is easy to see that SVN(ρ

ps
A ) = 0 since the

reduced density matrix only has one eigenvalue λ1 = 1. The largest possible entropy
occurs for maximally mixed states, for which all eigenvalues are λα = 1/DA, and
thus for a bipartition of dimension DA, the von Neumann entropy ranges between
0 ≤ SVN(ρA) ≤ log2(DA).

For example, considering a maximally entangled Bell state between two spin-1/2
particles, |φ+〉 = (|↑〉 ⊗ |↑〉 + |↓〉 ⊗ |↓〉)/√2, the reduced density matrix for the
first spin becomes ρ1 = (|↑〉 〈↑| + |↓〉 〈↓|)/2 corresponding to the largest possible
von Neumann entropy of SVN(ρA) = −log2(1/2) = 1.

Unfortunately, computing von Neumann entropies typically requires the knowl-
edge of all eigenvalues of the reduced density matrix, i.e., knowledge of the full
density matrix. Experimentally measuring full density matrices in experiments
can be extremely cumbersome and becomes very difficult with increasing DA. A
quantity for measuring the “mixed-ness” of a reduced density matrix that can be
experimentally more easily accessible is the purity tr(ρ2

A), or more generally, non-
linear functionals of the form tr(ρn

A) with integer n > 1 [1, 2]. Those are directly
connected to the Rényi entropy of order n, which is defined as

S
(n)
A = Sn(ρA) = 1

1 − n
log2tr(ρn

A). (4)

Formally, taking n as an arbitrary real-valued number, the Rényi entropy becomes
equivalent to the von Neumann entropy in the limit SVN(ρA) = limn→1 Sn(ρA).
Furthermore, the second-order Rényi entropy provides a lower bound to the von
Neumann entropy, SVN(ρA) ≥ S2(ρA), and combinations of different Rényi
entropies can be constructed to yield stronger bounds such as SVN(ρA) ≥ 2S2(ρA)−
S3(ρA) ≥ S2(ρA), see Fig. 1.

In practical settings, entanglement entropies can be used to analyze the time-
dependent growth of entanglement in spin chains after a quench both in experiments
and theory. To avoid boundary effects and to accommodate as much entanglement
as possible, it is common to split a chain of N spins into two halves of N/2 spins
and to compute SVN or Sn for the reduced density matrix of half of the chain. The
time-dependent growth behavior of the entropy can then give important insight into
the entanglement spreading and the correlation build-up in the chain. For example,
a linear growth of SVN or Sn can be a consequence of entangled quasiparticles with
a linear dispersion relation (see below). Furthermore, linear entanglement growth
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Fig. 1 Entanglement entropy, operator growth, and Lieb–Robinson Bounds. (a) The time-
dependent growth of various entanglement entropies in a soft- and hard-core Bose–Hubbard model
(hopping rate J ). The hard-core model is equivalent to an XY spin chain. The Rényi entropies Sn

can be experimentally more easily accessible than the von Neumann entropy SVN. The Rényi
entropies Sn for n > 2 constitute lower bounds to the von Neumann entropies SVN and can be used
in combination to construct tight bounds (dashed black line: 2S2 − S3). Here, all entropies exhibit
a growth behavior linear in time. Reprinted from [2]. (b) Growth of the operator Oi (t) (purple)
in the Heisenberg picture on a sparse nonlocal graph G. (c) Lieb–Robinson bounds for 2-local
Hamiltonians. Top: The bound is obtained by summing over contributions from connected chains
linking vertices i, j . Each new “link” in the chain need not be added at the end of the chain; it may
be added anywhere along the chain as illustrated by the “dead end” link marked a. Bottom: Linear
lightcone for a one-dimensional, nearest-neighbor spin chain (reproduced from [3])

can be connected to a computational complexity increasing exponentially in time
(see Sect. 2.4) and is therefore of general interest for validating analog quantum
simulation applications.

Note that in any realistic experiment, there will remain small but finite couplings
to an environment. Then, the definition of entanglement as entropy in a bipartition
becomes more delicate since a bipartition of the chain into two blocks is effectively
a tripartition with the environment acting as third party. Then, entropy in sub-
system A can originate from entanglement with the other chosen block B, or
from entanglement with the environment. In such cases, statements about true
entanglement in the chain can still be made in scenarios where the entropy of the full
chain density matrix ρ remains sufficiently small, i.e., smaller than the sub-system
entropies SVN(ρ) < SVN(ρA) [or Sn(ρ) < Sn(ρA)].

Finally, what is the maximum amount of entanglement that a system of N degrees
of freedom can support? Quantum states in which every particle is maximally
entangled are referred to as volume-law or scrambled states and feature a von
Neumann entropy SVN ∝ |A| that grows like the number of degrees of freedom
in region A for any bipartition Q = A ∪ B of the system (with |A| < N/2).
Although such a high degree of entanglement is difficult to engineer in practice due
to the destructive effects of decoherence, these volume-law states are actually quite
generic, in the sense that a pure quantum state chosen uniformly at random from the
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many-body Hilbert space will have, on average, volume-law entanglement entropy

SVN(ρA) = −m − 1

2n
+

mn∑

k=n+1

1

k
≈ ln m − m

2n
(5)

so long as 1 � m ≤ n, where |A| = log2m and |B| = log2n [4].

2.2 Lieb–Robinson Bounds and OTOCs

In the previous section, we quantified entanglement growth by looking at the entropy
of a local region A, quantified by the von Neumann entropy of the reduced density
matrix ρA. Complementary to this state-centric notion of entanglement based on the
Schrödinger picture, one can alternatively formulate an operator-centric notion of
entanglement growth based on the Heisenberg picture. In many cases, this operator
growth picture provides a more intuitive description for the growth of correlations
in the system. It also naturally leads to discussion of fundamental Lieb–Robinson
(LR) bounds and out-of-time-order correlators (OTOCs) that diagnose the spread of
quantum information in the system.

Suppose we consider a system of N qubits, and we store information in a
localized region A using an operator OA. In particular, one can imagine starting
from a particular reference state ρ and perturbing it by some local operator OA

that encodes some information in the perturbed state. The subsequent growth of
correlations in the system can be completely captured by the evolution of the
operator OA in the Heisenberg picture:

OA(t) = UtOAU
†
t =

∑

r

ar(t)σ
r. (6)

In the last expression, we have expanded the operator in the orthonormal basis of
many-body Pauli strings σ r = σ

r1
1 σ

r2
2 . . . σ

rN
N , where σ

0,1,2,3
i are the Pauli matrices

on site i (with σ 0
i = Ii) and r = r1r2 . . . rN is a N -component string encoding which

Pauli operators are present on each site. The time-dependent coefficients ar(t) can
be viewed as the “wavefunction” of the operator OA(t) when expanded in the Pauli
string basis and can be obtained by taking an operator inner product

ar(t) = Tr
[OA(t)σ r] . (7)

These coefficients are real and normalized
∑

ar(t)
2 = 1 when OA is Hermitian and

normalized.
Under generic scrambling dynamics, the initially localized operator OA(0)

rapidly grows into a complicated operator OA(t), where the operator wavefunc-
tion ar(t) acquires significant weight on large many-body Pauli strings. We can



290 G. S. Bentsen et al.

characterize this growth and simultaneously characterize the coefficients ar(t), by
considering commutators [OA, σα

j ] between the growing operator OA and localized
Pauli operators σα

j , which we refer to as “probe” operators. A judicious choice of
probe operators allows one to quantitatively map out the growth of the operator
OA(t). In particular, at t = 0, probe operators σα

j localized on sites outside
of the region A must necessarily commute with OA: [OA(0), σα

j ] = 0. As the
operator OA(t) grows in time, however, it builds up nonzero weight on operators
outside of A, causing the probe operators to fail to commute with OA(t): C(t) =
[OA(t), σα

j ] > 0. The size of this commutator, as measured by the operator norm

||C(t)|| =
√

Tr
[
C†C

]
, tells us “how much” of the operator OA is present on

site j (i.e., what fraction of OA acts nontrivially on site j ) (see Fig. 1b). These
commutators provide direct evidence of entanglement growth in the system via a
nonstandard correlation function called the out-of-time-order correlator (OTOC)
[5–7].

Analysis of these commutators can be used to place fundamental bounds on the
spread of information in the quantum system.

Historically, Lieb–Robinson bounds have been used to show the existence of
an emergent “lightcone” in lattice systems that limits the speed of information
propagation, similar to the speed of light in special relativity. Various forms of
Lieb–Robinson bounds have been established for systems featuring both short-range
[8, 9] and long-range [10–13] interactions. Here, we present generalized Lieb–
Robinson bounds that apply to arbitrary 2-local Hamiltonians defined on any graph
G, regardless of its connectivity or locality. In doing so, we demonstrate how the
growth of operators Oi (t) is intimately tied to the structure of the interaction graph.
The beauty of this approach is that it expresses the spread of quantum information in
terms of standard results from graph theory, a well-developed branch of mathematics
for which many powerful techniques and results are readily available [14–16]. We
therefore begin by introducing the requisite graph theory terminology.

For simplicity, we will consider here only 2-local Hamiltonians. Similar results
for the more general k-local case are derived in Appendix B of Ref. [17]. To any
2-local Hamiltonian

H =
∑

(i,j)∈E

Hij , (8)

we may associate a discrete, undirected graph G = (V ,E), where degrees of
freedom live on the vertices i ∈ V and interact pairwise via couplings Hij if and
only if the pair i, j is connected by an edge e = (i, j) ∈ E. The connectivity of the
graph G is described by the adjacency matrix

Aij =
{

1 (i, j) ∈ E

0 (i, j) /∈ E
(9)
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and the degree matrixDij = kiδij , where the degree ki = ∑
j Aij of a given vertex

i counts the number of vertices it is connected to. To be concrete, a familiar model
of this form is the 2-dimensional Heisenberg spin model

H = J
∑

〈i,j 〉
Si · Sj , (10)

with interaction graph G given by a regular D-dimensional square lattice where the
sum is over nearest neighbors 〈i, j 〉. The spin-1/2 degrees of freedom Si reside on
the vertices i of the lattice and interact via nearest-neighbor SU(2)-symmetric 2-
body terms Hij = JSi · Sj represented by the edges e of the graph, such that all
vertices have degree ki = 4 (assuming an infinite lattice).

We derive Lieb–Robinson bounds for 2-local models of the form (8) by
expanding the commutator C(t) in powers of t and bounding each term in the sum.
For probe operators Oi ,Oj on vertices i �= j , we have

∥∥[Oj ,Oi (t)]
∥∥ ≤ ∥∥[Oj ,Oi]

∥∥ + t
∥∥[Oj , [H,Oi]]

∥∥ + t2

2!
∥∥[Oj , [H, [H,Oi]]]

∥∥ + · · · ,

(11)

where we have used the Baker–Campbell–Hausdorff formula to expand the expo-
nentials in terms of nested commutators, and the triangle inequality to bound
the commutator norm. The nested commutators on the right-hand side simplify
considerably when we observe that commutators on disjoint sets vanish so that,
for instance, [Oj , [H,Oi]] = [Oj , [Hij ,Oi]]. As a result, the only nested com-
mutators that survive are those corresponding to connected chains of 2-body terms
(Hjx,Hxy, . . . , Hzi) on the interaction graph G that begin on vertex j and end on
vertex i, as illustrated in Fig. 1c. Note that the consecutive links of these chains
need not connect end-to-end: new links are allowed to be connected anywhere
along the existing chain. For simplicity, we have also ignored all onsite terms
(which can always be absorbed into the two-site terms in (8)). The fact that the
bound can be written in terms of connected chains on the graph clearly illustrates
that the structure of the interaction graph G plays a central role in our bounds on
OTOC growth. We further simplify the right-hand side by applying the inequality
‖[A,B]‖ ≤ 2 ‖A‖ ‖B‖ recursively to the nested commutators to obtain

∥∥[Oj ,Oi (t)]
∥∥

2
∥∥Oj

∥∥ ‖Oi‖ ≤ 1 + 2t
∥∥Hij

∥∥ + (2t)2

2!
∑

x

∥∥Hjx

∥∥ ‖Hxi‖ + · · · (12)

Finally, we choose a constant c that bounds all 2-body terms in the Hamiltonian

c

K
≥ ∥∥Hij

∥∥ , (13)
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where K = 1
N

∑
i ki is the mean degree of the graph G and c is a constant

independent of N such that the Hamiltonian is extensive [10, 17]. Substituting
the constant c/K into Eq. (12) and resuming the right-hand side, we obtain the
normalized out-of-time-ordered correlator (OTOC):

Cij (t) ≡
∥∥[Oj ,Oi (t)]

∥∥

2
∥∥Oj

∥∥ ‖Oi‖ ≤ exp

[
2c |t |
K

(D + A)

]

ij

, (14)

which depends only on the graph-theoretic quantities Aij ,Dij and time t in units
of the constant c/K [17].

As a simple example, we can consider a one-dimensional chain with closed
boundary conditions. In this case, the matrix A + D is simply a circulant matrix:

A + D =

⎡

⎢⎢⎢⎢⎢⎣

2 1 0 0 . . . 1
1 2 1 0 0
0 1 2 1 0
...

. . .

1 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎦
(15)

that can be easily diagonalized. From this result, we recover a linear lightcone,
plotted in Fig. 1c, as originally predicted by Lieb and Robinson [8]. The generalized
Lieb–Robinson bound in Eq. (14), however, is more powerful than the original result
of Lieb and Robinson because it applies not only to regular lattice systems but
also to quantum systems defined on arbitrary interaction graphs G. Moreover, the
generalized bound contains detailed information about the graph structure, encoded
in the matrices A,D.

Because the result in Eq. (14) bounds the operator norm ‖·‖, the bound character-

izes operator growth at infinite temperature since ‖O‖2 = Tr
[
ρ∞O†O

]
, where ρ∞

is the infinite-temperature ensemble. At finite temperature, operators necessarily
grow more slowly; obtaining tighter bounds at finite temperature is still an open
problem [17–20]. We generally expect the spreading of information to slow down at
finite temperature since the system has a much smaller probability of exciting high-
energy modes. Roughly speaking, another way to say this is that at finite temperature
the effective Hilbert space is reduced to a subspace consisting of eigenvectors
whose energies are comparable to or less than the temperature. Because of this
reduced Hilbert space, there are fewer accessible states and therefore fewer ways
for information to propagate.
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2.3 Quasiparticle Approaches

The spreading of correlations through a system and its limitations in terms of
Lieb–Robinson bounds is connected to the growth of entanglement entropies after
quenches. This connection can be made by means of quasiparticle excitations in
situations where a quadratic Hamiltonian can be brought to a diagonal form in
second quantization. To illustrate the concept, let us take a long-range transverse
Ising spin chain with interactions decaying as a power law. The Hamiltonian can be
written as

HLRTI =
∑

i<j

J̄

|i − j |α σ x
i σ x

j + B
∑

i

σ z
i . (16)

Here, J̄ is the nearest-neighbor interaction strength, α is the power-law decay
exponent, B is the transverse field strength, and σ

x,z
i are the usual Pauli matrices. In

one dimension, the Pauli matrices can be mapped to fermionic field operators ci by
a Jordan–Wigner transformation. Then, in the nearest-neighbor limit α → ∞ after a
transformation to quasimomentum space, the fermionic model is quadratic and can
be diagonalized with a Bogoliubov transformation [21] giving rise to a Hamiltonian
of the form (up to constants)

Hα→∞
LRTI =

∑

q

εqγ †
q γq. (17)

Here, γ
†
q are creation operators for fermionic quasiparticle excitations with quasi-

momentum q. They are superpositions of the fermionic field operators cq with
opposite quasimomenta γ

†
q = uc

†
q − vc−q , where u and v are the Bogoliubov

expansion coefficients, which depend on J̄ and B. The dispersion relation for the

quasiparticles is given by εq = 2
√

(J̄ − B)2 + 4J̄B sin2(q/2). In a quench setup,
the initial state is a highly excited state, which is not an eigenstate of the diagonal
quasiparticle Hamiltonian. This gives rise to the following picture for entangle-
ment build-up in the dynamics after the quench [22] (see illustration in Fig. 2a):
The initially highly excited state serves as reservoir for producing quasiparticle
excitations. Those quasiparticles are entangled superpositions of excitations with
opposite momentum and spread through the system. The speed of their propagation
is given by the group velocity vg = dεq/dq. For example, in the case of the
nearest-neighbor transverse Ising model, their speed is limited by the maximum
group velocity max |vg| = 2J . The propagating entangled pairs lead to a build-up of
entanglement between blocks of the chain. A constant arrival rate of quasiparticles
in the right half of the chain (R) that originated in the left half (L) therefore leads to
a linear growth of entanglement entropies between L and R with time [22].

Importantly, the study of quasiparticle spectra can also be a useful approach
for understanding entanglement growth in the presence of long-range interactions.
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Fig. 2 (a) Illustration of entanglement distribution by propagation of entangled quasiparticles.
Entangled quasiparticles spread through the system in opposite directions with group velocities
±vg . Finite size effects become important when the fastest quasiparticles reach the boundary, here
at time t∗. This picture remains valid for relatively short-ranged interactions. (b) Quasiparticle
propagation seen in the evolution of the mutual information I between distant spins i = 1 and
j = 8 (here for a quench in a transverse Ising model with interactions decaying as a power law with
distance ∼ J̄ /|i − j |α). For relatively short-ranged interactions (α = 2), the distant spins suddenly
become entangled by a quasiparticle arrival at a time tJ ∼ 2. For longer-ranged interactions α < 2,
this picture breaks down. (c) Entanglement growth can be analyzed by means of quasiparticle
spectra. Here, quasiparticle dispersion relations ε(k) and the corresponding densities of states D(k)

are shown for an exactly solvable long-range fermionic hopping model (power-law exponent α,
see [23]). Shorter-range interactions (large α) lead to smooth ε(k) and thus quasiparticles with
well-defined group velocities. Long-range hoppings (small α) can lead to cusps and divergences in
ε(k). ((a) and (b) reproduced from [24], (c) reproduced from [23])

While in general a Bogoliubov diagonalization is not possible for Hamiltonians such
as (16), exceptions exist. For example in certain limits, linear spin-wave theories
remain a valid approximation [23, 25, 26], or for related models with long-range
fermionic hopping, also exact diagonalizations are sometimes possible [23, 27, 28].

We will exemplify the linear spin-wave approach for Hamiltonian (16), which
is based on Holstein–Primakoff transformation. Traditionally defined for spin-S
operators, this transformation reads

Sz
i = a

†
i ai − S (18)

S−
i =

√
2S − a

†
i aiai (19)

S+
i = a

†
i

√
2S − a

†
i ai . (20)

Here, the spin operators for a spin at site i are expressed in terms of bosonic field
operators a

†
i . We assume a quench setup, where the initial state is given by the fully

polarized state |ψ(t = 0)〉 = ∏
i |↓〉i with Sz

i |↓〉i = −S |↓〉i . For short enough
times where the state remains sufficiently close to |ψ(t = 0)〉, one can linearize
the Holstein–Primakoff transformation using the assumption of small occupation
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number of the bosonic modes, 〈a†
i ai〉 � 2S. Then,

S−
i ≈ √

2Sai (21)

S+
i ≈ √

2Sa
†
i . (22)

Using σz
i = 2a

†
i a

†
i − 1 and σx

i ≈ ai + a
†
i in this limit, Hamiltonian (16) becomes

quadratic (constants are dropped):

HLRTI ≈
∑

i<j

J̄

|i − j |α
(
aiaj + a

†
i aj + aia

†
j + a

†
i a

†
j

)
+ 2B

∑

i

a
†
i a

†
i . (23)

A discrete Fourier transform into quasimomentum space for a spin chain with N

spins, bq = ∑
j exp(−iqj)/

√
N for N discrete momentum values −π/2 < q ≤

π/2, leads to

HHP ≈
∑

q

J(q)
(
b−qbq + b†

qb
†
−q

)
+

∑

q

(
J(q) + B

2

) (
b†
qbq + b−qb

†
−q

)
.

(24)

Here a crucial quantity is the Fourier transform of the power-law decaying function

J(q) = J̄
∑

d

e−idq

|d|α
N→∞−−−−→ 2J̄Re

(
Liα(eiq )

)
, (25)

where in the first term the distance d runs over all pairwise distances from −N+1 <

d < N −1 and the last term is an analytical expression in terms of the polylogarithm
Lin(z) of order n in the infinite system size limit N → ∞.

Using a bosonic Bogolioubov transformation [23], the Hamiltonian can again be
transformed into a diagonal form with new bosonic field operators that are a super-
position of the Holstein–Primakoff bosons b±q of opposite momenta. Crucially, the
dispersion relation of the new quasiparticle excitations can be computed to be

ε(q) = 2B

√
1 + J(q)

B
. (26)

It is important to re-emphasize that this quasiparticle dispersion result is only valid
in the limit 〈b†

qbq〉 � 1, which is true for sufficiently short times, i.e., sufficiently
few quasiparticle excitations. It is clear that the timescale of validity increases with
B since for B → ∞ the initial state |ψ(t = 0)〉 becomes an eigenstate and remains
constant in time. The constraint of the validity of the Holstein–Primakoff ansatz is
also visible in Eq. (26), which requires B > J(q) for ε(q) to remain real.



296 G. S. Bentsen et al.

In the limit of its validity, Eq. (26) allows to make statements about the
quasiparticle nature of the entangling dynamics after the quench. For example,
considering the limit of long-wavelength excitations |q| → 0, one can derive that
the limiting behavior of the dispersion relation for α < 0 is given by

ε(q) ∝ q
α−1

2 . (27)

The negative exponent implies that for α < 1, there are quasiparticle excitations
with infinite group velocities that ultimately have to lead to a breakdown of the
picture of propagating entangled quasiparticles. Furthermore, from this analytical
ansatz, one can deduce that for 1 < α < 2 a cusp at q = 0 appears in the
dispersion relation ε(q). This means that the group velocity vg = dε(q)/dq is
already starting to diverge for α � 2 [25]. In contrast, in general for α � 2,
the quasiparticle propagation picture remains to be valid, as e.g. demonstrated in
Fig. 2b. There we show the propagation of correlations between spins at two distant
sites i = 1 and j = 8 of a chain. Here this correlation is quantified by the mutual
information Ii,j = SVN(ρi) + SVN(ρj ) − SVN(ρij ) with SVN(ρi) and SVN(ρij ) the
von Neumann entropies of reduced density matrices on single- and two-spin Hilbert
spaces, respectively. For the case of a clear entangled quasiparticle propagation
(α = 2), the correlation between distant sites suddenly starts to establish at a
“quasiparticle” arrival time of t J̄ ∼ 2. In contrast, for α < 2, the distant sites
become entangled immediately.

Finally, we want to point out that in a quasiparticle analysis, it is important to
not only consider quasiparticle dispersion relations, but also to analyze the density
of states at the respective quasimomenta. In Fig. 2c, we show the dispersion relation
ε(k) and the density of states D(k) for Bogoliubov excitations with quasimomentum
k for a long-range fermionic hopping model [23] that can be computed exactly.
Interestingly, qualitatively, this model has very similar features as the long-range
interacting transverse Ising model in the linear spin-wave limit. Importantly, one
finds that while the group velocity diverges for α < 2 and k → 0, here one also finds
that D(k) → 0 is even more strongly suppressed, leading to an effective overall
suppression of the correlation build-up.

2.4 Matrix Product States (MPS)

In one dimension, the study of entanglement growth in spin models can be assisted
by very powerful numerical methods based on the so-called matrix product states
(MPS). Let us consider the general time-evolved state of a chain with N spin-D
particles and focus on pure Hamiltonian dynamics. The state at time t can be written
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in the basis of the local spin Hilbert spaces:

|ψ(t)〉 =
∑

i1,i2,...,iN

ci1,i2,...,iN (t) |i1〉 |i2〉 . . . |i3〉 . (28)

Here, in = 1, . . . , d are the local indices for an orthogonal basis of spin n, |in〉,
with dimension d = 2S + 1. The difficulty of numerically simulating Hamiltonian
dynamics of a spin chain on a classical computer stems from the exponential
growth of the size of the complex states tensor ci1,i2,...,iN with system size N ,
dim(ci1,i2,...,iN ) = dN . Importantly, the size of this state tensor can be drastically
reduced by restricting the amount of entanglement. For example, let us consider the
most extreme scenario and restrict the state tensor to product states only, which by
definition excludes any entanglement. Then,

cPS
i1,i2,...,iN

(t) ≈ c
[1]
i1

(t)c
[2]
i2

(t), . . . , c
[N ]
iN

(t), (29)

and the state representation only requires Nd normalized complex amplitudes,∑
in

|c[n]
in

(t)| = 1. Choosing for example some sub-system block A with indices
{i1, . . . , ic}, the reduced density matrix is

ρPS
A (t) =

∑

i1,...,ic
j1,...,jc

c∗
j1

(t)ci1(t) . . . c∗
jc

(t)cic (t) |i1〉 . . . |ic〉 〈j1| . . . 〈jc| . (30)

This is a pure density matrix since tr
{[

ρPS
A (t)

]2
}

= 1, and therefore, the entangle-

ment entropy (see Sect. 2.1) vanishes, SVN(ρPS
A (t)) = 0, for all times. Therefore,

by choosing the product state ansatz (29), the numerical memory requirement is
drastically reduced from O(dN) to O(dN), which however comes at the cost of
neglecting entanglement entropies entirely.

A matrix product state (MPS) can be thought of as a generalization of the product
state ansatz (29) to states with finite entanglement. An MPS is a decomposition of
the state tensor of the form

cMPS
i1,i2,...,iN

= �
[1]
i1

�
[2]
i2

. . . �
[N ]
iN

=
χ1∑

α1

χ2∑

α2

· · ·
χN+1∑

αN+1



[1];α1α2
i1



[2];α2α3
i2

. . . 

[N ];αNαN+1
iN

.

(31)

Here we introduced N three-dimensional tensors, 

[n];αnαn+1
in

, which can be thought

of as χn × χn+1 matrices where the matrix elements are local kets on site n, �
[n]
in

.

The state tensor is decomposed into a matrix multiplication of the �
[n]
in

matrices
on different sites, hence the name matrix product state. A common diagrammatic
depiction of an MPS is shown in Fig. 3a: There, each colored box denotes an MPS
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tensor �
[n]
in

. Each line represents an index, and each line connecting the colored
boxes implies a summation over that index. A tensor at site n connects to the
tensors at sites n − 1 and n + 1, and the connecting indices αn are also known
as “bond indices.” Note that at the edge we kept two “dummy indices” for which
(assuming the case of box boundary conditions) we will choose χ1 = χN+1 = 1.
Note that if we restrict all virtual “bond” indices to a dimension of χn = 1, the
MPS decomposition (31) becomes equivalent to the product state form (29) and
again neglects entanglement. The core idea behind MPS simulations of quantum
states is to increase the matrix size to a manageable magnitude, thereby allowing
for enough entanglement in the dynamics to keep the simulation of the system
exact. In a key approximation step, we therefore can limit the bond dimensions
of all bipartitions in the chain to a numerically manageable value, χn � χ . One can
then show [29] that in an MPS with maximum bond dimension χ we can at most
capture an entanglement entropy of

SVN(ρ
MPS,χ
A ) ≤ log2(χ). (32)

Generalizing the result for the product state ansatz, an MPS with maximum bond
dimension χ reduces the memory requirement for storing a quantum state from
O(dN) to O(Ndχ2). This comes at the cost of limiting von Neumann entanglement
entropy across any bipartition to log2(χ). Note again that the product state ansatz is
equivalent to χ = 1 for which SVN(ρ

MPS,χ=1
A ) = 0.

The MPS representation (31) has been an extremely useful tool for both
analyzing ground states of quantum many-body systems, e.g., the famous density
matrix renormalization algorithm (DMRG) [30] is based on MPS, and studying non-
equilibrium dynamics. Focusing on quench dynamics, typically, the initial states
of interest are either in a trivial product state form (e.g., the fully polarized state,
|ψ(t = 0)〉 = ∏

i |↓〉i) or they are the ground state of a Hamiltonian that can
be computed using DMRG. To then compute the time evolution of a many-body
quantum state over a time step, �t , one needs an algorithm to update the MPS
tensors time dependently such that (h̄ ≡ 1)

|ψ(t + �t)〉 = e−iĤ�t |ψ(t)〉 . (33)

Several algorithms exist (for sketches of the concepts, see Fig. 3b–d).
For example, algorithms can be devised on the concept of “gate applications.”

In particular, since most spin Hamiltonians of interest are based on two-body
terms, i.e., Hamiltonians are of the form Ĥ = ∑

i>j Ĥi,j , one can use a Trotter

decomposition of the full matrix exponential e−iĤ�t into two-site gates Ûi,j =
e−iĤi,j �t up to an controllable error depending on a small time-step size �t [31]. For
example, commonly a 2-nd- or 4-th-order decomposition is used with errors O(�t3)

or O(�t5), respectively. Then time evolution can be simulated by applying the two-
site gates Ûi,j to an MPS. Note that this approach is equivalent to the concept of
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Fig. 3 (a) Sketch of an MPS decomposition of the state tensor in a system with N = 6 spins.
Limiting the virtual indices αn to a maximum bond dimension αn ≤ χ , the von Neumann
entanglement entropy for a bipartite splitting across the bond n is limited to log2(χ). (b–
d) Sketches of various algorithms for time-evolving an MPS. (b) The TEBD algorithm is a
prescription for updating two tensors of the MPS after application of a gate. An approximation
is made in the final step when after a singular value decomposition of the tensor � the new virtual

index is truncated to αn ≤ χ . Using a Trotter decomposition of the time-evolution operator e−iĤ�t

into two-site gates in combination with swap gates can be used to simulate time evolution under
Hamiltonians with long-range interactions. (b) Another class of MPS time-evolution algorithms
makes use of a matrix product operator (MPO) description of the Hamiltonian, using, e.g., the
time-dependent variational principle (TDVP) or Runge–Kutta. They rely on variational algorithms
to find an MPS approximation for the state Ĥ |ψ(t)〉. (d) When the time-evolution operator can be

constructed in MPO form, variational algorithms to find an MPS approximation for e−iĤ�t |ψ(t)〉
can be used

digital quantum simulation [32], where the gates would be applied in a quantum
circuit. An algorithm to apply two-site gates between neighboring spins is known
as time-evolving block decimation algorithm (TEBD) [33] or time-dependent
DMRG [34]. The scheme is sketched in Fig. 3b. It relies on straightforward tensor
contraction, followed by a singular value decomposition. Crucially, the final step
consists of a truncation of the bond dimension to χ , which introduces a gate error
depending on the truncated weight,

∑dχ
α=χ+1 λ2

αc+1
. One main disadvantage of the

TEBD approach is that an error is made in each gate application. For treating
systems with long-range couplings, it is also required to apply swap gates that
interchange the physical indices between sites, which again result in an additional
error for each swap operations.

To avoid such consecutive errors, it is also possible to construct the Hamiltonian
in a matrix product form. In general, the matrix product operator (MPO) form is
a full description of operators on a many-body Hilbert space analogous to MPS,
but with two physical indices per site (see Fig. 3c, d for a sketch). There exist
variational algorithms that, for an MPO (Ô) and an MPS |ψ〉, find an optimal
new MPS |φ〉 with bond dimension χ such that |φ〉 ≈ Ô |ψ〉 with a known
minimal error ε = | 〈φ|ψ〉 |2 � 1. Typically, such algorithms make use of sweeps,
consecutively updating the tensors on single or neighboring sites [29]. For nearest-
neighbor Hamiltonians, it is straightforward to construct Ĥ in an exact MPO form.
For systems with long-range interactions, this can usually be done approximately.
In particular, systems with power-law interactions allow to approximation Ĥ with
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an MPO of moderate MPO bond dimension by utilizing an expansion of the power-
law decay into a sum of exponentials (see, e.g., [35]). Having an algorithm that can
apply a Hamiltonian MPO to a state (Fig. 3c) approximately, one can then rely on
standard time-evolution algorithms making use of such Hamiltonian applications,
such as Runge–Kutta. A popular algorithm making use of Hamiltonian applications
is for example based on the time-dependent variational principle (TDVP), which in
addition to the Hamiltonian application also relies on an application of a tangent
space projection operator, see e.g., [36]. Lastly, an alternative way for simulating
time evolution of an MPS is to directly compute an MPO expression of the time-

evolution operator over a small time step Û = e−iĤ�t and to use an MPO
application algorithm directly. Several ways have been proposed to construct a
time-evolution MPO, e.g., based on Taylor expansions of the matrix exponential
(e.g., notably the so-called W I,II representations [37] or methods based on “MPO
doubling” [38]). In general, the computational complexity for evolving an MPS in
time with one of the algorithms described above is bottle-necked by the tensor
constructions and in general the computational timescales as ∼ χ3. For a recent
review summarizing MPS time-evolution algorithms, see e.g., [39].

Finally, let us emphasize again that MPSs provide an ideal tool to study
entanglement growth after quenches. The eigenvalues of reduced density matrices
of bipartitions, λ2

αn
, are readily available from an MPS, and entanglement entropies

can be computed through Eqs. (3) and (4) (see Fig. 1 for an example MPS result of
entanglement growth). MPS methods make it also possible to directly connect the
entanglement entropy growth behavior after a quench to a numerical complexity for
simulating the quench dynamics on a classical computer. For example, in the case
of a linear entropy growth as shown in Fig. 1, we can conclude that since SVN ∝ t

and since for an MPS with bond dimension χ , SVN ≤ log2(χ) as a function of time
χ needs to grow as χ ∝ exp(t), and therefore, this scenario is computationally hard
to simulate with an MPS.

3 Power-Law Interacting Models

Here, we will focus on spin models with long-range interactions that decay as a
function of the distance between spins with a power law, i.e., with interactions of
the form

Jij ∝ 1

|ri − rj |α . (34)

Here, ri are the spin position vectors, and α ≥ 0 is the power-law exponent.
The main motivation for considering such interactions is that they are realized in
nature, e.g., in the case of electromagnetic interactions (Coulomb: α = 1, dipole–
dipole: α = 3, van der Waals: α = 6). Furthermore, they allow to arrive at
mathematical conclusions depending on only a single parameter, α. The fact that
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interactions always decay as a function of distance allows to also keep a notion of
“dimensionality.” With respect to the dimensionality d, one can classify the range of
interactions into “true” long-range interactions for α < d, in which case interaction
energy of the system diverges in the infinite system limit, and to scenarios where
α > d and the interaction energy remains finite.

In a very general form, we can define our power-law interacting spin models of
interest as

Ĥ =
∑

i>j

(
J x

ij S
x
i Sx

j + J
y
ij S

y
i S

y
j + J z

ij S
z
i S

z
j

)
+

∑

i

hi · Si with J
x,y,z
ij = J̄ x,y,z

|ri − rj |α .

(35)

Here, Si = (Sx
i , S

y
i , Sz

i ) is a vector of the three spin-S operators S
x,y,z
i . The long-

range coupling constants are denoted as J
x,y,z
ij , and they quantify the interaction

energy of two spins at distance |ri −rj | when they are both aligned along the x, y, z

direction, respectively. J̄
x,y,z
ij quantifies the energy at unit distance |ri − rj | ≡ 1.

In the following, we will focus on models on a lattice, for which we define a lattice
constant a ≡ 1, and thus J̄

x,y,z
ij reduces to the nearest-neighbor coupling strengths.

In addition, we allow for local “magnetic” fields along the different dimensions
given by the vector hi = (hx

i , h
y
i , h

z
i ).

The general Hamiltonian (35) includes for example a long-range Heisenberg
model, for which J x

ij = J
y
ij = J z

ij or a long-range XY model with J z
ij = 0.

Both are special cases of an XXZ model with J x
ij = J

y
ij �= J z

ij . XY couplings are,
e.g., realized for systems interacting with dipole–dipole far-field interactions for
which α = 3. Such a model describes pairwise coherent energy exchange between
the spins since (Sx

i Sx
j + S

y
i S

y
j ) ∝ (S+

i S−
j + S−

i S+
j ). Note that true dipole–dipole

couplings typically also feature an interaction anisotropy, i.e., an interaction energy
term depending on the relative dipole orientation; however, we will here be mostly
interested in 1D scenarios and aligned dipoles. In ultra-cold atom physics, dipole–
dipole couplings appear for example in systems with polar molecules [40] or with
magnetic atoms [41, 42]. In the case where in Eq. (35) only the spin couplings
for a single particular dimension remain finite, e.g., J

y
ij = J z

ij = 0 �= J x
ij ,

the model reduces to an Ising model. Since in this case all the interaction terms
in the Hamiltonian commute with each other, the addition of a non-commuting
transverse field typically leads to a richer quantum non-equilibrium entanglement
dynamics and therefore long-range transverse Ising models of the form of (16),
i.e., J

y
ij = J z

ij = 0 �= J x
ij and hx

i = h
y
i = 0 �= hz

i have been intensively
studied [43, 44]. The Ising interaction is, e.g., relevant for van der Waals-type
interactions for which α = 6. In ultra-cold atom physics, such interactions appear,
e.g., for interacting Rydberg atom setups [45, 46]. They also play a crucial role
in effective spin model implementations with trapped ions, which feature a unique
possibility for Ising models with widely tunable interaction range, α � 2 [47, 48].
Additionally, coupling to cavity modes allows to also realize spin models of the
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form of (35) with infinite range interactions (α = 0). See Sect. 5 for more details on
experimental realizations.

The potential for harnessing long-range interactions of the form (35) to rapidly
generate many-body entanglement between distant degrees of freedom has inspired
a large body of the literature establishing fundamental bounds on the propagation of
information in systems with power-law interactions [11–13, 49–53]. Recent work
has established a hierarchy of Lieb–Robinson bounds in systems with power-law
interactions [12] as well as concrete protocols for exploiting the resulting long-
distance entanglement for quantum state transfer [54, 55].

In the following, we will summarize results for the entanglement growth
dynamics in a long-range interacting transverse Ising model, as defined in Sect. 2.3:

HLRTI =
∑

i<j

J̄

|i − j |α σ x
i σ x

j + B
∑

i

σ z
i . (36)

We will focus on the results in a 1D chain of M spins. Note that the entanglement
evolution is usually most interesting in lower-dimensional systems. For example,
in equilibrium statistical physics, it is well known that mean-field theories that are
equivalent to the product state ansatz from (29) become a very good approximation,
as quantum fluctuations are typically argued to become less important if the spins
couple to an increasing amount of neighbors. This is to some extent equivalent to a
limit of very long-ranged interactions α → 0. In such a limit, the system can also be
imagined as being high-dimensional since every spin couples equally to a very large
number of “neighbors.” Below we will indeed see that with an increasing range
of interactions the bipartite entanglement entropies in quench dynamics become
generally suppressed when increasing the range of the power-law interactions.

We introduce three different regimes of power-law interaction ranges, for which
one finds that entanglement growth exhibits qualitatively very different behavior: (i)
The short-range regime for power-law exponents α > 2; (ii) the intermediate-range
regime for power-law exponents 1 < α < 2; and (iii) the long-range regime for
α < 1.

3.1 Short-Range Regime, α > 2

In the case of S = 1/2 and in the limit of nearest-neighbor interactions,
α → ∞, Hamiltonians for Heisenberg, XY, XXZ or Ising models are generally
integrable [56]. This means that they can be solved by Bethe ansatz solutions, which
allows to understand the system dynamics in terms of elementary excitations. In
some cases, easy analytical solutions for the dispersion relations and the shape of
elementary excitations can be given, e.g., for the XY or transverse Ising model,
where a Jordan–Wigner transformation can be used to map the chain to a quadratic
fermionic Hamiltonian as shown above. As described in Sect. 2.3, in such a scenario,
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the dynamics of the quasiparticles after a quench leads to a linear growth of
entanglement as a function of time until a saturation value depending on the
system size. In particular, taking the fully polarized state |ψ(t = 0)〉 = ∏

i |↓〉i
as input state for the transverse Ising Hamiltonian (36) with α = ∞ (note that this
corresponds to a quench of the field strength from ∞ → B since |ψ(t = 0)〉 is the
ground state for B → ∞), one finds that [22]

SVN(ρA, t) = ct t + MAc∞ (37)

with constants ct and c∞ and MA the number of spins in the sub-system state
ρA. The two constants ct and c∞ are largest for the scenario where B = J̄ [22].
This means the entanglement growth is fastest for parameters that correspond to the
transition point from a paramagnetic to an anti-ferromagnetic phase in the ground
state of the Hamiltonian.

Remarkably, the same linear entanglement growth behavior is also observed for
finite range interactions ∞ > α > 2 in the long-range transverse Ising model (36).
This is for example shown in Fig. 4a that plots the time-dependent growth of the
von Neumann entanglement entropy, SVN, for half the chain as sub-system (from
[24]). To compute dynamics, we utilize numerically exact MPS simulations of a
chain with M = 50 spins and also compare them to an exact diagonalization
simulation (ED) in a smaller system with M = 20 spins. Focusing on the results
with α > 2, strikingly, while the entanglement growth rate is reduced with the
range of interactions, the linear behavior persists. This hints to the conclusion that
for α ≥ 2 the quasiparticle picture known for the nearest-neighbor case also survives
for finite range interactions in the α > 2 regime. This conclusion is furthermore
strengthened by the observation that the M = 50 and M = 20 simulations perfectly
agree with each other. As explained in Sect. 2.3 (see Fig. 2), in the quasiparticle
picture, the entanglement entropy growth is independent of the system size until
entangled quasiparticles reach the edges of the chain. On the timescale considered
in Fig. 4a (∼ five inverse spin interaction energies), quasiparticles cannot reach the
boundary for both system sizes. It is also worth pointing out that in [24] it was
shown that the linear growth rate of entanglement (constant ct in Eq. 37) remains to
be largest at the point of the ground-state phase transition, which with decreasing
values of α shifts to values of B(J ) < 1.

To better analyze the quasiparticle picture, it is instructive to analyze the
evolution of correlations between two distant spins (summarized, e.g., by the mutual
information in Fig. 2b). In Fig. 4b, c, we analyze the time evolution of the spin–spin
correlations Cd(t) = |〈σ+

i σ−
i+d〉|, averaged over several starting sites i, as a function

of the distance between spins, d (exact results from an MPS simulation, from [23]).
Panel (b) shows the simulations for α = 3. The color-coded logarithmic scale shows
that there is a clear linear lightcone effect, within which Cd evolves, whereas outside
Cd is strongly suppressed.

Analytically, this lightcone behavior can be rationalized by the dispersion
relation of the linearized Holstein–Primakoff quasiparticles from Eq. (26). As long
as α > 2, this dispersion remains a smooth function of the quasimomentum, and
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Fig. 4 (a) Time-dependent growth of the von Neumann entanglement entropy in a transverse Ising
chain with M spins, for an initially fully polarized state, |ψ(t = 0)〉 = ∏

i |↓〉i and B = J̄ .
Shown are results for M = 20 (solid lines) and M = 50 (dashed lines), which are obtained from
exact diagonalization and numerically exact MPS simulations, respectively. Various power-law
exponents are compared (α = ∞, 3.0, 2.5, 2.0, 1.5). (b, c) Corresponding time evolution of the
spin–spin correlation Cd(t) = |〈σ+

i σ−
i+d 〉| as a function of distance d (the color scale corresponds

to log10[Cd(t)]). The three white markers correspond to log10[Cd(t)] = −4,−3.5,−3 in (b) and
to log10[Cd(t)] = −3.25,−3,−2.75 in (c) (triangle, square, star, respectively). Panel (b) is for
the short-range regime (α = 3), and panel (c) for the intermediate-range regime (α = 1.5). ((a)
reproduced from [24], (b) and (c) reproduced from [23]))

therefore, elementary excitations with well-defined and maximum possible group
velocities will be excited in the dynamics. It is however important to re-emphasize
that the linearization of the Holstein–Primakoff transformation (22) only remains
valid for states that fulfill 〈a†

i ai〉 � 2S and thus for low-energy quenches or
for short times. In the low-energy quench limit, the quasiparticle dynamics can
be verified [25]. Surprisingly also for high-energy quenches, one finds that the
qualitative spreading of correlations is still very well captured when comparing
the Holstein–Primakoff ansatz to exact MPS simulations [23]. We also want to
note again that the Holstein–Primakoff dispersion has the same features as the
quasiparticle dispersion of a fermionic long-range hopping shown in Fig. 2c that
remains exact for arbitrary high-energy quenches and times. In this model, exact
calculations of correlation functions in very large systems can be performed, which
furthermore allows for a clear characterization of the lightcone boundaries for
α > 2 [23]. Finally, it is worth remarking that while here we focused on results
for a S = 1/2 model, the same conclusions of the Holstein–Primakoff solution
also hold for larger spins. In fact, one may expect that the validity of the model is
extended to higher energies and longer times, since 〈a†

i ai〉 � 2S can be more easily
fulfilled for larger S.

3.2 Intermediate Range Regime, 1 < α < 2

The dynamics of entanglement build-up starts to qualitatively change when the
interactions become longer-ranged, i.e., for α < 2. For example, while for a large
system simulation with M = 50 and α = 1.5 in Fig. 4a, the entanglement entropy
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growth still looks linear with additional small oscillations, now strikingly the growth
dynamics strongly depends on the system size. Large differences in comparison
with the M = 20 simulation appear, already at short times. This implies that distant
parts of the chain must already become entangled at very short times, and thus in
a quasiparticle picture, there must be entangling quasiparticle excitations with very
large group velocities.

Analytically, this is justified by the fact that the dispersion relation for Holstein–
Primakoff excitations (26) [25], or for the related fermionic long-range hopping
model (Fig. 2c), starts to feature a cusp for α < 2, which implies the existence of
elementary excitations with diverging group velocity. However, it is important to
emphasize that whether such excitations can be created or not crucially depends on
the initial state and on the density of states in the vicinity of the diverging group
velocities in quasimomentum space (see Fig. 2c). There, one for example finds
crucial differences in the correlation build-up between the long-range interacting
transverse Ising model and the long-range fermionic hopping model [23]. For the
Ising model, in Fig. 4c, we show the evolution of Cd(t) for α = 1.5. There, it is
clearly visible that it becomes impossible to define a clear edge of the lightcone.
Instead, the decay of the correlations as a function of the distance is significantly
broadened and is not fully linear anymore.

To summarize, in the intermediate regime, entanglement and correlation build-up
still exhibit certain features of a lightcone propagation leading to a linear long-time
entanglement entropy growth, but on the other hand the existence of quasiparticles
with diverging group velocity already leads to significant beyond lightcone features.
It is important to note that those features have been experimentally measured in ion
trap setups, both after single-spin flip quenches [47] and for fully polarized initial
states [48].

3.3 Long-Range Regime, α < 1

Another drastic qualitative change in the entanglement growth dynamics can be
observed when the power-law interaction decays more slowly than α < 1. Note that
in this regime the overall interaction energy starts to diverge in the infinite system
limit, and therefore, the bare interaction energy J̄ has to be re-scaled with M for
meaningful statements in the M → ∞ limit. Strikingly, the change in behavior
at α = 1 is displayed in the quasiparticle dispersion of the Holstein–Primakoff
excitations (26) (or equivalently in the dispersion relation for the long-range
fermionic hopping model in Fig. 2c). For q → 0, one finds that the energy of the
elementary excitations is diverging. Therefore, for initial states where the quench
excites significant excitations near q = 0, the dynamics of such quasiparticles
dominates the entanglement spreading. This is for example seen in the evolution
of the spin–spin correlations, which lose any type or lightcone features [23]. For
example, in Fig. 2b, we find that the mutual information between distant spins is
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Fig. 5 (a) Time-dependent growth of the von Neumann entanglement entropy in a transverse Ising
chain with M spins, for an initially fully polarized state, |ψ(t = 0)〉 = ∏

i |↓〉i and B = J̄ . Shown
are results for M = 20. Various power-law exponents are compared (α = ∞, 3.0, 2.0, 1.5). Rapid
entropy at short times and sub-linear increase at later times are observed for α < 1. (b) Same
plot as in (a) for α = 0.5 on a logarithmic timescale, and for various initial states. Initial states
without full permutation symmetry lead to stronger entropy growth at later times. (c) Evolution for
infinite-range interactions α = 0 and the fully polarized symmetric state (M = 50). SVN remains
bounded by the constant log2(M/4 + 1) due to the reduced dimension of the symmetric Hilbert
subspace. ((a, b) reproduced from [23], (c) reproduced from [24])

building up immediately after the quench, and any feature indicating a quasiparticle
arrival at later times vanishes for α < 1.

Also the time-dependent growth of the von Neumann entanglement entropy
changes characteristically at α < 1. As shown in Fig. 5a, one finds in general
(here α = 0.5) a sub-linear oscillatory growth, which for the fully polarized initial
state exhibits a logarithmic increase. However, it is important to point out that
the growth behavior now also strongly depends on the initial state, as shown in
Fig. 5b. In particular, states that do not have permutation symmetry feature a faster
increase rate of the entanglement entropy for t J̄ > 1. On the one hand, this is
again plausible since also excited quasiparticle states around q ∼ 0 do possess
permutation symmetry and thus can be more directly excited in the dynamics.
Another intuitive explanation of this observation can be made in the infinite-range
limit of α → 0.

For α = 0, Hamiltonian (36) becomes

Hα=0
LRTI = J̄

∑

i<j

σ x
i σ x

j + B
∑

i

σ z
i (38)

= J

2
(Sx)2 + BSz − J̄

2
M. (39)

In the second line, we have defined the collective spin operators Sx,z = ∑
i σ

x,z
i .

The collective model in Eq. (39) is also known as Lipkin–Meshkov–Glick (LMG)
Hamiltonian, and its entanglement properties can be analytically studied [57]. Due
to the permutation symmetry of the problem, a complete basis for Hamiltonian (39)
can be constructed in terms of collective spin states, the M + 1 symmetric Dicke
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states:

|S = M

2
,mS = n↑ − M

2
〉 = S |{n↑}〉 . (40)

These states are eigenstates of the collective operator spin-S = M/2 operator Sz

with quantum number mS = −M/2, . . . ,M/2, and they can be written as the
symmetrized superposition of all states with a certain number of spins, n↑, pointing
“up.” Here, S denotes a symmetrization operator, and |{n↑}〉 are all states with n↑
spins in the state |↑〉, and consequently M − n↑ spins in the state |↓〉. The bipartite
von Neumann entropy for a sub-system density matrix containing half of the spins
can be straightforwardly computed from simple combinatorial factors [24, 58]:

SLMG
VN = −

∑

l

pl(n↑)log2[pl(n↑)] with pl(n↑) =
(
M/2

l

)(
M/2
n↑−l

)

(
M/2
n↑

) (41)

with 0 ≤ l ≤ M/2. Importantly, since the sum in (41) only features a maximum
of M/2 + 1 terms, the entanglement entropies in symmetric Dicke states are
fundamentally limited to a quantity only growing logarithmic in the system size
SLMG

VN ≤ log2(M/2 + 1). It is therefore also easy to see that in our quench
evolution on the small symmetric Hilbert space, entanglement entropies will remain
limited to this bound. Note that since the quadratic term in Sx in (39) only couples
Dicke states with mS ↔ mS ± 2, the bound can furthermore be tightened to
SLMG

VN (t) ≤ log2(M/4 + 1) [24]. In Fig. 5c, the evolution is demonstrated in an
example simulation for M = 50. We again point out that for initial states that
are outside of the symmetric Dicke manifold, a much larger Hilbert space can be
accessed, which can lead to much larger von Neumann entanglement entropies,
consistent with our observation of the initial-state dependence of the growth rate
in Fig. 5c for α = 0.5.

4 Fast Scrambling and Sparse Models

In previous section, we explored how naturally occurring long-range interactions
could be leveraged to generate many-body entanglement in spin chains. We now
consider pushing this process of entanglement growth to its extremes. In particular,
is there a “speed limit” on how rapidly entanglement can build up in any given
system? The fast scrambling conjecture places a fundamental upper bound on
the rate of entanglement growth in arbitrary quantum systems. Below we present
explicit spin chain models that saturate this bound and highlight the central role
played by nonlocal interactions. Systems that saturate these bounds and generate
maximal entanglement in the shortest possible time are known as fast scramblers.
Such systems share key properties with the dynamics of black holes [59] and
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show prospects for efficient entanglement generation in near-term experiments [60].
In studying these fast scrambling models, we will also find that the pattern of
entanglement developed in these systems can determine the effective geometry of
the underlying dynamics, which may differ substantially from the linear geometry
of the original spin chain.

4.1 Sparse Nonlocal Interactions for Fast Scrambling

What kinds of physical systems are capable of generating such rapid entanglement
growth? We can get a good handle on this question by first studying the Lieb–
Robinson bounds derived in Sect. 2.2. Because these bounds are completely general,
we can use them to characterize the growth of entanglement on any arbitrary
coupling graph G. First, consider averaging Eq. (14) over all vertices i, j in the
graph G,

∑

i,j

1

N2

‖[Oj ,Oi (t)]‖
2‖Oj‖‖Oi‖ ≤ 1

N
exp

[
4ckmax

K
|t |

]
, (42)

where kmax is the maximal degree in the graph. Whenever kmax/K is finite, we see
that operator growth is constrained to be exponentially fast. In particular, for chaotic
systems that exhibit Lyapunov growth

∥∥[Oj ,Oi (t)]
∥∥2 ∼ 1

N
eλLt , the bound (42)

establishes that the Lyapunov exponent λL can be no larger than

λL ≤ 4ckmax

K
, (43)

thereby placing a bound on quantum many-body chaos at infinite temperature.
Note that this bound on the Lyapunov exponent is distinct from the chaos bound
of Maldacena et al, which places a bound on the Lyapunov exponent at finite
temperature [61]. Moreover, since scrambling cannot occur until almost all OTOCs
have grown to be order unity [6], the result (42) establishes that scrambling cannot
occur before a time

t∗ ≥ K

4ckmax
logN. (44)

This therefore provides a proof of the fast scrambling conjecture on any graph for
which kmax/K is finite.

The generalized Lieb–Robinson bound also constrains which graphs G are
capable of supporting fast scrambling. Further manipulations to (14) (see Appendix
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B of Ref. [17]) lead to

exp

[
2c|t |
K

(D + A)

]

ij

< exp

[
4eckmax

K
|t | − rij

]
, (45)

where e ≈ 2.718 and the graph distance rij is the minimal path length between
vertices i and j , i.e.,

rij = min {n ∈ N s.t. [An]ij = 1}. (46)

Equation (45) is the classic Lieb–Robinson bound [8]. From this expression, we
see that the timescale required for an arbitrary operator to spread throughout the
entire system is limited by the path length between the two most distant sites r ≡
maxi,j (rij ), or the graph diameter. We immediately conclude that only graphs with
diameter r � logN can support fast scrambling [10, 17]. Fast scrambling is therefore
impossible for all systems defined on a regular lattice in D dimensions, which have
graph diameter r = N1/D .

4.2 Sparse Nonlocal Fast Scramblers

We argued above that nonlocal interactions are crucial to engineering fast scram-
bling; in particular, square lattices in any dimension D have diameter N1/D � logN

and therefore are incapable of supporting fast scrambling dynamics even in princi-
ple. Here, we introduce sufficiently nonlocal spin models that feature a logarithmic
graph diameter and are also sufficiently chaotic to generate strong scrambling
dynamics. These models feature sparse couplings that can be implemented in near-
term cold atom experiments employing trapped Rydberg atoms or neutral atoms
coupled to an optical cavity, as we review in Sect. 5.

Here we consider sparse nonlocal Hamiltonians of the form

H = 1

2S

∑

i,j

J (i − j)S+
i S−

j , (47)

with translation-invariant couplings J (i − j) defined on a sparse graph where sites
i, j are coupled if and only if they are separated by a power of two,

J (i − j) =
{

Js2�s when |i − j | = 2�, � = 0, 1, 2, 3 . . .

0 otherwise,
(48)

as illustrated in Fig. 6a. The couplings in Eq. (48) are normalized by setting Js = J0
when s ≤ 0 and Js = J0(N/2)−s for s > 0, such that the largest coupling is always
a constant J0. Here, by tuning the exponent s from −∞ to +∞, we interpolate
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Fig. 6 Sparse nonlocal spin models with tunable geometry. (a) In the power-of-2 model, pairs of
spins in a 1D chain are coupled if and only if they are separated by an integer power of 2. (b) By
varying the envelope exponent s, we can tune the sparse model from a linear limit for s → −∞
to a treelike limit for s → +∞. Between these two limits s = 0, the sparse couplings form
an “improved hypercube” graph that allows for fast scrambling. (c) The quasiparticle dispersion
relation for s = −2, 0, 2 as a function of real-space momentum k (top) and as a function of
Monna-mapped momentum kM (bottom). (d) Quasiparticle density 〈nj 〉 in the power-of-2 model
for s = −2, 0, 2 (i–iii). The clear lightcone present in the linear regime (i) breaks down in the
fast scrambling and treelike regimes (ii, iii). A lightcone re-emerges when the system is organized
either by graph distance (iv) or by 2-adic treelike distance (v). (Reproduced from [62])

between a linear limit (s → −∞) where the physics resembles a nearest-neighbor
spin chain, and a treelike limit (s → +∞) in which the underlying geometry is
radically reorganized as illustrated in Fig. 6b [62]. In between these two limits,
with s = 0, all nonzero couplings are equal and the coupling graph is highly
nonlocal. These nonlocal couplings permit information to spread exponentially
quickly throughout the system because the number of pairwise interactions required
for a particle to hop between any two sites i, j is never more than the Hamming
distance |i − j |Hamming < log2N when the site indices i, j are written in binary.
The rapid spreading of information afforded by the nonlocal couplings at s = 0
allows this model to generate fast scrambling dynamics.

The primary features of the model can already be observed by considering
quasiparticle dynamics described by a nonlocally coupled harmonic Hamiltonian
similar to the discussion in Sect. 2.3. Because the couplings J (i−j) are translation-
invariant, we can easily diagonalize this harmonic model by performing a Fourier
transform of the creation and annihilation operators a, a†. This yields a single-
particle dispersion relation

εk =
∑

d

J (d)eikd = 2Js

log2(N/2)∑

l=0

2ls cos
(

2lk
)
. (49)

We plot this dispersion relation as a function of momentum k in Fig. 6c for
exponents s = −2, 0, 2 (blue, black, red). For s < 0, the dispersion relation
is smooth and resembles the dispersion relation for a free particle in a chain
with nearest-neighbor interactions. By contrast, for s > 0, the dispersion relation
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becomes jagged and consists of features on the scale of the inverse lattice spacing
2π/N . When s = 0, the dispersion relation appears to have a fractal structure.

Using the dispersion relation, we may immediately compute the particle density
〈nj 〉(t), which we plot in Fig. 6d. For s < 0, the system exhibits a clear linear
lightcone as the initially localized excitation spreads ballistically through the
system. By contrast, for s > 0, the excitation jumps discontinuously between distant
sites, and a lightcone is not immediately apparent. It is tempting to interpret the
absence of an obvious lightcone at s > 0, along with the discontinuities in the
dispersion relation εk , as indicating the absence of any notion of locality in this
regime. Instead, we find that a new version of locality emerges in the limit s → ∞
based on the treelike structure shown in Fig. 6b.

A dramatic reconception of geometry—where we significantly alter the defini-
tion of which spins are “close” to one another and which are “far apart”—allows
us to recover a sense of locality from the apparently discontinuous hopping we
observe for s > 0. Specifically, we may restore a sensible notion of spatial locality
by defining distance in terms of the 2-adic norm |x|2 = 2−v(x), where 2v(x)

is the largest power of 2 that divides x. The distance |i − j |2 between sites i

and j is called ultrametric because the distance of the sum of two steps is never
greater than the larger of the two steps’ distance; by contrast, the usual distance
|i − j | is called Archimedean because many small steps can be combined into a
large jump. We can understand the 2-adic norm as a treelike measure of distance
because |i − j |2 = 2dtree(i,j)/2/N , where dtree(i, j) is the number of edges between
sites i and j along the regular tree in Fig. 6b. The leaves are numbered in order
of increasing M(i), where the discrete Monna map M reverses the bit order in
the site number. For example, for N = 8 sites, M(1) = 4 because in binary,
M(0012) = 1002. Noting that Nk/2π is an integer, we may likewise define a
Monna-mapped wavenumber kM by

N
kM
2π

= M
(

N
k

2π

)
. (50)

For large positive s, we rearrange the spins according to the Monna map and find
that a lightcone reappears (Fig. 6d(v)) and the dispersion relation is smoothed out
(Fig. 6c, bottom), corroborating the transformation to the treelike geometry defined
by the 2-adic norm.

At the crossover point s = 0 where all nonzero couplings are of equal
strength, neither the linear nor the treelike geometries are suitable for describing
the spread of quantum information. Instead, the sparse nonlocal couplings facilitate
rapid spreading of information throughout the entire system on a logarithmic
timescale t∗ ∼ logN , as demonstrated already in the single-particle dynamics
shown in Fig. 6d(ii). In this limit, the coupling graph is equivalent to the “improved
hypercube” illustrated in Fig. 6b, consisting of edges from a regular hypercube plus
a few extra diagonal couplings to ensure the system is translationally invariant.
The improved hypercube has graph diameter � 1

2 log2N� and is therefore capable
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of hosting fast scrambling dynamics by the graph-theoretic arguments presented in
Sect. 4.1.

To examine the structure of entanglement naturally generated by the nonlocal
power-of-2 couplings (48), we numerically simulate the evolution of the system
using exact diagonalization for a system of N = 16 spins with S = 1/2 and compute
the resulting entanglement entropy between a variety of sub-systems. We initialize
the system in a polarized state along Sx , evolve the system for a time t , then partition
the system into (not necessarily sequential) sub-systems Q = A ∪ B, and compute
the von Neumann entanglement entropy SA of sub-system A.

Figure 7 shows the resulting entanglement entropy for bipartitions A,B as a
function of the partition size L = |A| and time. We partition spins into sub-
systems A,B either according to their physical position in the linear chain (top)
or their Monna-mapped ordering (bottom). When |s| is large, we observe that there
is a natural way to partition the system such that the entanglement entropy is low
regardless of the length L of the partition. That is, for s < 0, we minimize the
entanglement entropy by cutting the system between nearest neighbors in the linear
chain, while for s > 0 we must cut the system between branches of the Bruhat–Tits
tree. By contrast, if we use the “wrong” partitioning (e.g., Monna-mapped partition
for s < 0), we find a very large entanglement entropy that depends sensitively on
the region’s length L.

At the crossover point s = 0, however, we find that entanglement entropy
is large no matter how we partition the system. As shown in Fig. 7b, both the
linear ordering (blue dotted) and the Monna-mapped ordering (red dash-dotted)
give bipartitions with large entanglement entropy at s = 0. Moreover, we can
consider the entanglement entropy across bipartitions A,B without regard to any
sort of locality. In Fig. 7b, we also consider all possible bipartitions of size L = |A|

Fig. 7 Entanglement entropy as a probe of geometry. (a) Entanglement entropy for contiguous
subregions of length L in the linear (top) or treelike (bottom) geometry. When s = −2, a
linear partitioning of the system yields area-law entanglement at short times, whereas a treelike
partitioning yields spurious volume-law entanglement; this suggests that a linear geometry is
a suitable description for the dynamics. When s = 2, a treelike partitioning yields area-law
entanglement, suggesting a treelike geometry. When s = 0, neither geometry produces area-law
entanglement. In fact, at s = 0, every partition of the system has volume-law entanglement, as
demonstrated in (b). This indicates that the s = 0 model is a fast scrambler. (Reproduced from
[62])
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and choose the bipartition with the smallest entanglement entropy at each value of
s. Even so, we still find that the entanglement entropy is large at s = 0. In fact, at
s = 0, we find that the entanglement entropy grows linearly with the partition size L,
indicating a volume law in which entanglement extends into the bulk of the region
A. These results indicate that there really is no notion of locality at the crossover
point s = 0: all spins are equally “close” to one another, and there is entanglement
between all pairs of spins.

5 Implementation in Experiments

Here, we briefly survey some of the state-of-the-art experimental platforms that can
be used to explore entanglement growth in spin chains with structured long-range
interactions using cold atoms and ions. This list is not exhaustive and represents
only a small fraction of the experimental platforms available for controlled studies
of entanglement growth.

5.1 Long-Range Interactions with Trapped Ions

Important motivation for studying information propagation with structured long-
range interactions has come from experiments with trapped ions, in which the spin
states are encoded on long-lived internal states of trapped ion chains in 1D Paul traps
or 2D Penning traps [63]. In these experiments, controllable spin–spin interactions
that decay algebraically with distance can be realized by using laser driving of spin
transitions that couple also to the collective motional modes of the ions. Coupling
off-resonantly to many motional modes produces effective Hamiltonians such as
that in Eq. 16, with an algebraic decay exponent that can in principle vary from
α = 0 to α = 3, and typically ranges in experiments from 0.5 � α � 2.5.

There have been extensive experiments on information spreading [47, 48] and
recent experimental work exploring the growth of entanglement and scrambling in
these systems [64]. Future combinations with gate operations typical of quantum
computing setups open the possibility for flexible programmable quantum simula-
tion, which could access a broad variety of spin models with structured long-range
interactions in these experiments [63].

5.2 Long-Range Interactions with Rydberg Atoms

Hydrogen-like alkali atoms whose outermost electron has been excited to a Rydberg
state |r〉 with very high principal quantum number n are extremely sensitive to
external electric fields due to the Rydberg state’s large electric susceptibility. This
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Fig. 8 Experimental platforms for studying entanglement growth in quantum spin chains with
long-range interactions. (a) Rydberg atoms in 1D optical lattices interact via long-range Van der
Waals forces that shift the doubly occupied Rydberg state |rr〉ij for nearby atoms, leading to a
Rydberg blockade effect. Repeated tweezer-assisted shuffling can be used to engineer effective
pairwise interactions on a nonlocal hypercube coupling graph amenable to fast scrambling.
(Reproduced from [60]). (b) Atoms coupled to the optical mode of a high-finesse cavity interact
pairwise via a four-photon scattering process. Applying a linear magnetic field gradient along
the cavity axis and driving the cavity with a multi-frequency drive field, we may engineer sparse
nonlocal spin–spin interactions whose strengths are individually tuned by the relative strengths of
the drive sidebands. Using this flexible drive scheme, we may engineer sparse interactions that
either decay (i) or grow (ii) with distance. (Reproduced from [62])

sensitivity leads to long-range van der Waals forces between pairs of Rydberg atoms
that decay as a power law 1/

∣∣ri − rj

∣∣6; these interactions can be harnessed to
process quantum information [65]. In modern experiments, an ensemble of atoms
i = 0, . . . , N −1 are typically prepared in a stable ground state |g〉i and trapped in a
lattice of optical tweezers as shown in Fig. 8a [66–76]. To generate interactions, the
atoms are then optically excited by an applied drive laser to the Rydberg state |r〉i .
The pairwise Van der Waals interactions strongly shift the doubly excited Rydberg
state |rr〉ij , prohibiting nearby pairs of atoms i, j from being simultaneously excited
(Fig. 8a). This “Rydberg blockade” effect yields an effective Hamiltonian

H =
∑

i<j

Jij ninj −
∑

i

�iσ
z
i +

∑

i

�i

2
σx

i , (51)

where �i,�i are the Rabi frequency and detuning of the drive laser from the
Rydberg state |r〉i , and where the couplings Jij = C/

∣∣ri − rj

∣∣6 are naturally long-
ranged. Additional optical and magnetic fields can be used to engineer a variety of
additional non-commuting terms in this Hamiltonian or to simulate non-equilibrium
(time-dependent) dynamics, and Rydberg dressing schemes or other state and field
choices can be used to generate alternative long-range interaction models.

While these Rydberg interactions are naturally long range, they are ultimately
still constrained by the D-dimensional geometry of flat spacetime and are therefore
incapable of executing fast scrambling dynamics by the arguments of Sect. 4.1.
We can get around this problem by significantly altering the effective geometry
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of the interactions using tweezer-assisted shuffling [60]. Stretching and interleaving
tweezer operations [77–80] can be used to rapidly shuffle the atom positions, as
shown in Fig. 8b, thereby generating effective nonlocal interactions. For example,
repeated interleaving of the atoms rapidly generates an m-regular hypercube graph
Qm [81, 82], a highly nonlocal, sparsely connected coupling graph shown in Fig. 8b.
Many-body entanglement can be rapidly and efficiently built up on this graph using
far fewer Rydberg interaction layers than would be needed in strictly 1D systems
without shuffling.

5.3 Long-Range Interactions in Cavity Quantum
Electrodynamics

Cavity QED systems can be engineered to mediate highly nonlocal spin–spin
interactions between pairs of atoms trapped in the optical mode of the cavity [3, 83–
85]. This coupling allows the atoms to exchange excitations with the cavity mode
with an effective Hamiltonian:

H = ωc c†c +
∑

i

(
ωZ |↑〉 〈↑|i + ωa |e〉 〈e|i

) +
∑

i

(
gic |e〉 〈↑|i + gic |e〉 〈↓|i + h.c.

)
,

(52)

where c is the annihilation operator for the cavity mode with resonance frequency
ωc and gi is the atom–cavity coupling. Here, each atom i is a three-level system
with ground states |↑〉i , |↓〉i separated by a ground-state energy splitting ωZ , and
excited state |e〉i with energy ωa as illustrated in Fig. 8b.

By optically driving the cavity at a large detuning � = ωc − ωa � gi〈c†c〉
from atomic resonance, the cavity mode c and the atomic excited state |e〉i are
unlikely to be populated and can be integrated out of the dynamics via standard
perturbation theory [86]. In this case, the dominant processes are four-photon
scattering transitions in which a pair of atoms i, j mutually flip their spins
|↓〉i |↑〉j → |↑〉i |↓〉j by exchanging a cavity photon as illustrated in Fig. 8b. These
four-photon scattering processing generate effective spin–spin interactions between
the atoms with effective Hamiltonian:

Heff ∝
∑

ij

ξiξj S
+
i S−

j + h.c., (53)

which describes all-to-all spin-exchange interactions between all pairs of atoms,
where the coefficients ξi are determined by the local couplings gi [3].

By applying a linear magnetic field gradient along the cavity axis and driving
the cavity with multiple drive fields, as shown in Fig. 8b, it is possible to impose
a further structure on the natural all-to-all couplings and realize sparse nonlocal
interactions [62, 85, 87]. The linear magnetic field gradient along the length of
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the chain splits the |↓〉i , |↑〉i energies of the spins in a staircase pattern, where
the ground-state energy splitting ωZ,i is now a function of atomic position i and
increases linearly with atomic position. As a result of this energy splitting, the four-
photon process introduced above is off-resonant and the interactions are shut off.
However, by driving the cavity with two or more frequencies simultaneously, we
may selectively reintroduce interactions between pairs of atoms that are separated
by a particular distance d. That is, driving the system at the resonant frequency
�νd = ωi+d − ωi generates pairwise spin flip processes |↓〉i |↑〉i+d → |↑〉i |↓〉i+d

only between spins that are separated by exactly d = j − i sites, and all other
pairs are off-resonant to this drive. We can then build up additional interaction
terms by adding more frequencies to our drive. As a result, we obtain a highly
tunable set of distance-dependent interactions between atoms controlled by the
spectrum of the drive light. With this flexible driving scheme in hand, we are able to
implement a large class of nonlocal spin-exchange models including the translation-
invariant sparse models (47) studied in Sect. 4.2. This drive scheme has recently
been demonstrated in cavity experiments where it was used to engineer a variety
of exotic coupling patterns that are not accessible in any other experimental system
[85].

6 Outlook and Further Connections

In summary, experimental systems available in experiments with trapped ions,
atoms in cavities, and tweezer arrays motivate an interesting new area where we
can look at dynamics well beyond what we usually see in local interacting systems.
In this chapter, we have only begun to introduce a wide range of possibilities
to explore many-body physics in these systems, solely focusing on entanglement
growth without disorder. There are large sub-fields discussing phenomena such as
many-body localization [88, 89] in these systems, as well as topological effects.
Long-range interactions occur in many systems in addition to those discussed here,
including systems of polar molecules [40, 90], or harmonically trapped gases [91].
Dressed Rydberg excitations can also provide another way to generate controlled
long-range interactions [65, 92].

The entanglement build-up discussed here can also be used as a building block
for wider applications. Fast scrambling circuits like those described here can be
leveraged to generate nearly random many-body matrices U , which are valuable
resources in a variety of information processing contexts. For example, random
matrices naturally generate random error-correcting codes, which can be used to
protect quantum information from the effects of dissipation [93]. Random matrices
can also be used to directly probe entanglement entropies in experiments without the
need to introduce SWAP operators between multiple copies [64]. Finally, these fast
scrambling circuits can be harnessed to teleport quantum information via Hayden–
Preskill-type protocols, which rely on the fast scrambling dynamics to successfully
teleport information [94–96].
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