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Preface

The study of spin chains has played a pivotal role in furthering our understanding
of quantum many-body systems. Maybe most important, spin chain models have
served as a theoretical laboratory for developing novel concepts and methods in this
endeavor. A well-known example is the early attempt by Hans Bethe to diagonalize
the Hamiltonian of the Heisenberg chain, bringing forth the Bethe Ansatz [1] and,
as an offshoot, the notion of quantum integrability. Another example is the use
of the transverse-field Ising chain as a paradigm for systems exhibiting quantum
phase transitions [2]. More recently, work on the integer-spin Heisenberg chains [3]
and their generalizations [4] has become a pillar of our conception of symmetry-
protected topological quantum matter, as acknowledged by the 2016 Nobel Prize in
Physics awarded Duncan Haldane.

Even more recently, the notions of quench dynamics and relaxation in integrable
models, ergodicity, thermalization, as well as the breaking of ergodicity in certain
circumstances have also been captured by spin chain models [5–8]. In short, by
allowing for multiple strongly anharmonic quantum systems (spins) with local
physical interactions, albeit within a reduced spatial dimensionality, spin chains can
be a toy universe: much of the emergent principles of the physical world around us
can be seen in a fully quantum setting through spin chains.

Entanglement is perhaps the most striking feature of general states of multiple
interacting quantum particles. Thus, spin chains offer a most natural arena to study
entanglement, as it provides states that should be physically accessible in nature,
in equilibrium or through dynamics. Motivated by that, almost as soon as one of
the earliest measures of quantum entanglement between two qubits in mixed states,
namely the concurrence, was formulated by Wootters [9], he, and others [10, 11],
applied it to ground and thermal states of spin chains. Using this measure, the
behavior of entanglement at quantum phase transitions was first characterized [12,
13]. A practical application of spin chains as a quantum communication channel was
also quantified using concurrence [14]. It was understood that to characterize the
more global aspects of entanglement, one would need to calculate the von Neumann
entropy [15] between the complementary parts of a many-body system [16, 17], and
field theoretical methods to compute the same were formulated [18]. Entanglement
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between non-complementary parts of a spin chain, as quantified by the negativity
[19–21], were also studied [22–24].

Another reason for the renewed interest in spin chains in the last two decades
has been their realization using experimental quantum simulators, based on, e.g.,
ultracold atoms [25], trapped ions [26, 27], superconducting circuits [28], electrons
in solid state spin arrays [29, 30], and NMR systems [31]. This interest has been
further fueled by a remarkable cross-fertilization between condensed matter physics
and quantum information theory, some of which has been noted in the preceding
paragraph. Work has flowed in two directions, mostly centered around the very
concept of quantum entanglement: “How to better understand quantum many-
body systems by exploiting various entanglement measures (with spin chains being
arguably the simplest such systems)?” and, conversely, “How to use spin chains for
practical purposes; analyzing, drafting, and eventually building working quantum
information devices drawing on entanglement resources?” These are the two circles
of problems addressed by the contributors to this volume.

We envision two categories of readers. First, the volume will be useful for
graduate students at the start of their PhDs as an up to date and comprehensive
review on the rich and highly diverse area that the field of entanglement in spin
chains has now become. Secondly, active researchers knowledgeable in some
aspects of the field can acquire a quick insight into other topics of interest to
which they can potentially contribute. In this way, our volume is intended to
serve as a bridge between condensed matter theorists, quantum information and
quantum computation theorists, and experimentalists working on spin chain systems
in various platforms.

The first four chapters are on the simplest scenario—that of static (equilibrium)
phases of spin chains and the various measures of quantum entanglement one can
use to understand their strongly correlated character. We begin with Chap. 1 by
Thomale, which, after a pedagogic introduction to entanglement in spin chains,
introduces one of the most fundamental quantities that characterize the many-body
quantum correlated aspects of a spin chain, namely its entanglement spectrum. It is
described how the entanglement spectrum, when computed for various cuts of a spin
chain, in both position and momentum space, reveals aspects of a spin chain such as
its topological features, as well as the nature of its low energy excitations. Next, in
Chap. 2, we present a contribution by Li, Yu, and Lin, which again, starts pedagog-
ically by introducing the concept of quantum phase transitions in spin chains, and
the simplest quantities such as concurrence, entanglement entropy, quantum discord,
and measures of quantum coherence, which can be used to characterize them and
their quantumness. In Chap. 3, we include a contribution by Roy and Saleur which
brings about the area of computation of entanglement entropies in conformal field
theories (CFTs) through which spin chains are generically described near the critical
point. In particular, spin chains may have boundaries and defects; the authors discuss
the contribution of these to the entanglement entropy. Next, in Chap. 4, Laflorencie
provides a contribution on entanglement measures for phases of disordered spin
chains, starting with free fermion models and then advancing to interacting fermions
and models of many-body localization.
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We next proceed to include research on spin chains at the interface of quantum
information processing and quantum computation. We start by Chap. 5, which
contains a contribution by Wei, Raussendorf, and Affleck. This chapter first
introduces the background on the AKLT models of gapped integer spin chains
and important topics such as tensor networks and matrix product states in this
context. Subsequently, their applications in the study of topological order and in
measurement-based quantum computation are discussed among other topics. In
Chap. 6, Banchi discusses the application of machine learning in measuring the
entanglement negativity in spin chains. In this chapter, first an efficient method for
estimating the moments of partially transposed density matrices is introduced, then,
by feeding these moments into a neural network, the entanglement negativity is
measured. Next, in Chap. 7, Amico, Korepin, Hamma, Giampaolo, and Franchini
discuss the local convertibility in spin systems just by means of local operations
and classical communication with respect to a given bipartition of the system.
They show that the absence of differential local convertibility is an indicator of a
higher computational power of the system’s quantum phase, which is also usually
connected with the existence of long-range entanglement, topological order, or edge
states. In Chap. 8, Rattacaso, Passarelli, Lucignano, and Fazio address the inverse
problem of finding a parent Hamiltonian for a given quantum state. In particular, the
scaling of complexity for reconstructing the parent Hamiltonian with respect to the
system size is investigated.

The emergence of quantum simulators in various physical platforms have put
spin chains at the forefront of quantum simulation. Two chapters of the book
are devoted to this important subject. In Chap. 9, Potter and Vasseur review the
dynamics of quantum information in ensembles of random quantum circuits from
a statistical mechanics perspective. The chapter first explores universal features
for entanglement growth, operator spreading, thermalization, and chaos in unitary
random quantum circuits. The text then goes through the dynamics of monitored
random circuits and exhibits new types of measurement-induced phases and
criticality. Proceeding to Chap. 10, Lunt, Richter, and Pal investigate the quantum
simulation in noisy quantum circuits. Two classes of dynamics and their phase tran-
sitions are studied using random-circuit models. First, hybrid circuits consisting of
unitary gates interspersed with nonunitary projective measurements are investigated.
Second, random-circuit sampling experiments are considered and the usefulness of
random quantum states for simulating quantum many-body dynamics are discussed.

The dynamics of spin chains have been the subject of many studies, and thus
four chapters of this book have been dedicated to this topic. In Chap. 11, Bentsen,
Daley, and Schachenmayer investigate the dynamics of entanglement in spin chains
with long-range interaction. Several types of long-range interacting systems, such
as sparse coupling graphs and spin chains with algebraically decaying interactions,
are discussed. In Chap. 12, Lorenzo, Plastina, Consiglio, and Apollaro provide
a formalism for describing quantum state transfer and multi-qubit entanglement
distribution and generation in spin networks. Next, in Chap. 13, Papic presents a
pedagogical introduction to weak ergodicity breaking phenomena, including Hilbert
space fragmentation and quantum many-body scars, through the lens of quantum
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entanglement. In such systems, while most initial states quickly equilibrate, certain
initial conditions may lead to slow relaxation. In Chap. 14, Murciano, Alba, and
Calabrese provide a conformal field theory perspective to the quench dynamics of
the moments of the partially transposed density matrices and their corresponding
Renyi negativities. While these results are generic to interacting integrable systems,
numerical simulations are provided for free-fermionic and bosonic lattices.

Thanks to the advancement of quantum technologies, spin chains can now be
tested in several experimental platforms. The first such system discussed in the
book is cold atoms. In Chap. 15, Sengupta provides a review on accessible phases
and the dynamics of ultracold bosons in tilted optical lattices. Quenches, ramps,
and periodic drives for inducing Floquet dynamics are investigated in this chapter.
Next, in Chap. 16, Cappellaro, Peng, and Ramanathan focus on NMR systems
for realization of spin chains. In particular, Hamiltonian engineering tools and
metrics of correlation and entanglement are discussed through several paradigmatic
examples of integrable and non-integrable dynamics in large nuclear spin systems.
Finally, in Chap. 17, Nichol provides a review on the fundamental aspects of
semiconductor quantum dots and the Heisenberg exchange coupling that occurs
between neighboring quantum dots. Such couplings allow for quantum information
processing, quantum state transfer, and the simulation of spin-chain dynamics.

Chengdu, China Abolfazl Bayat
London, UK Sougato Bose
Göteborg, Sweden Henrik Johannesson
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Entanglement Spectra of Spin Chains

Ronny Thomale

Abstract We discuss the use of entanglement spectra in analysing spin chains. First
discovered in the context of many-body ground states in fractional quantum Hall
effect, entanglement spectra facilitate the resolution of the phenomenology of a spin
chain. In particular, this includes its nature of low-energy excitations and topological
classification.

1 Entanglement Spectra of Many-Body Ground States

Quantum entanglement encodes the essence of quantum mechanical phenomenol-
ogy. It allows to describe aspects of interconnectivity of quantum systems which go
beyond the notion of correlations and sets the basis for potential future technological
applications of quantum systems for communication, information processing and
computation. Entanglement also helps a great deal to analyse and classify quantum
systems. This particularly applies to the entanglement entropy, which has appeared
as a useful tool in a broad and diverse range of theoretical physics [4, 17]. By
comparison, the computation of entanglement spectra is a rather new approach
added to the theorist’s toolkit to analyse quantum many-body systems, which was
initiated in the context of fractional quantum Hall effect [14]. There, an important
observation was made for the entanglement analysis of a fractional quantum Hall
ground state with an excitation gap on a spherical geometry [8]. The entanglement
spectrum resulting from a decomposition of the Hilbert space into an upper and
lower hemisphere allowed to read off the state counting and quantum numbers of
elementary edge excitations the same quantum Hall state would exhibit on a disc
geometry, which thus gives way to resolving the topological order of a given ground
state wave function. The analysis of entanglement spectra has ever since become an
indispensable approach to analyse wave functions in different many-body contexts,
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Institute for Theoretical Physics and Astronomy, University of Würzburg, Würzburg, Germany
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including spin chains. Among other pioneering findings resulting from there, it is
the perspective of entanglement spectra which has allowed for a fairly complete
understanding of interacting topological phases in one spatial dimension [21].

The purpose of this chapter is to introduce the reader to the principal topic,
through discussing a selection of key ideas that have proven pivotal to our today’s
understanding of entanglement spectra in spin chains. This synopsis does neither
intend to be complete nor self-contained but hopes to encourage the reader to deepen
their understanding by following up on it via the additional literature within and
beyond the chapter. The chapter is organised as follows. In Sect. 2, we provide
a principal definition of entanglement spectra for the context in which we intend
to discuss it. This means that we highlight those Hilbert space decompositions,
and their descendant entanglement spectra, which so far have been considered in
the context of spin chains. In order to present the material in a concise way, it
proves useful to classify spin chains by the existence or absence of an excitation
gap. Section 3 focusses on entanglement spectra for gapped spin chains, which
is explicated by a discussion of the Haldane phase from multiple perspectives.
Section 4 discusses entanglement spectra for gapless spin chains at the example
of the spin-1/2 Heisenberg chain. In Sect. 5, we conclude that entanglement spectra
will continue to establish a vital tool for future research on spin chains.

It is assumed that the reader will be triggered by many interesting connections to
other chapters in this book. In order to avoid overlap, we intend to sharply constrain
ourselves to the topic of entanglement spectra, with only occasional highlighting of
connections drawn to other subfields of quantum spin chains.

2 Decomposition of Spin Chain Hilbert Spaces

In the following, we assume a zero-temperature density operator ρ, which is
determined by a spin chain ground state |�0〉, i.e., ρ = |�0〉〈�0|. Assuming a
tensor product decomposition of the spin chain Hilbert space into a region A and B
according to H =HA ×HB , we define the reduced density matrix

ρA := TrBρ. (1)

Since TrB represents a partial trace, ρA is not invariant under a unitary transforma-
tion of |�0〉 in H . Stated differently, ρA is basis-dependent and hence crucially
depends on how H is decomposed. Assuming a Schmidt decomposition according
to

|�0〉 =
∑

α

λα |αA〉 |αB〉 , (2)
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the eigenvalues of ρA are λ2
α . Following a form-invariant Boltzmann-type definition

according to ρ, we define an entanglement Hamiltonian

ρA =: exp(−HE), (3)

where the temperature scale is set to unity. The entanglement spectrum {ξα} is
defined as the spectrum of HE, which relates to the spectrum of ρA, and hence
the Schmidt decomposition (2), via ξα = −2logλα .

Since the early days of quantum entanglement, these quantities have been
known and appear in any definition of quantum information measures such as
the entanglement entropy SA = −TrρAlogρA, which will likely be extensively
covered in other chapters of this book. Furthermore, properties of the entanglement
spectrum for non-interacting problems have likewise been studied previously [18].
The key insight put forward in [14] in the context of quantum many-body physics
is to analyse the block diagonal structure or, equivalently, the symmetries of ρA.
Obviously, this depends on the chosen cut as much as on |�0〉. If a real space cut is
chosen and |�0〉 is a spin singlet, we find [SγA, ρA] = 0, where SγA =

∑
i∈A S

γ

i , γ =
x, y, z, which yields an SU(2) multiplet structure [S2

A, ρA] = 0, characterised by the
eigenvalues sA(sA+1). For a finite-size spin chain and periodic boundary conditions
(Fig. 1a up), the decomposition of a compact state always yields two bonds subject
to the subdivision into regions A and B. (Note that this will constrain sA to SO(3)
multiplets.) For a non-compact semi-infinite real space cut (Fig. 1a down), the
decomposition reduces to a single bond. In general, all those symmetries of |�0〉
are projectively inherited by ρA that allow for a symmetry operator decomposition
which is commensurate with the chosen cut. For the rung cut of a spin ladder
(Fig. 1b), for instance, all symmetries are accordingly retained that concern one
individual chain of the ladder. In particular, if we assume a spin ladder ground state

Fig. 1 Typical entanglement cuts for spin chains. (a) Real space cut. For finite-size and periodic
boundary conditions, the partition into subregions yields two cuts (marked dashed red). In a quasi-
infinite real space representation such as for matrix product states, a single cut is performed. (b)
Rung cut. A spin ladder ribbon is divided into subregions of individual chains. (c) Momentum cut.
All momentum modes are split into two different subregions of momenta
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for periodic boundary conditions, this includes translation symmetry along the spin
chain. For any momentum cut (Fig. 1c) of a spin chain, the details of which will be
described later, a representation of |�0〉 is required in terms of momentum modes,
which are then grouped into different regions A and B.

There are in principle several other entanglement cuts which have been used in
the context of many-body ground states and which might acquire scientific relevance
for spin chains in the future. Among others, this includes the particle cut [26], where
a reduced density matrix is reached by integrating out particle modes while leaving
the single particle Hilbert space unspoiled. Such a particle cut would promise a
particular use in combination with the momentum cut.

3 Gapped Spin Chains

For a spin chain spectrum with an energy gap, ρ = |�0〉 〈�0| is rigorously defined
in the thermodynamic limit. Furthermore, due to locality and the exponential decay
of correlation functions due to the gap, a real space cut suggests itself as a natural
choice.

In order to elucidate the power of an entanglement spectrum analysis of
gapped spin chains, we choose the Haldane phase as a textbook example to
illustrate the concepts. The Haldane phase [7, 9] found its first realisation in SU(2)
symmetric spin-1 chains and is a symmetry protected topological phase in one
spatial dimension [24]. Before a rigorous entanglement spectral analysis had been
formulated, the necessary and sufficient symmetry conditions for the Haldane phase
had not been completely resolved. The issue had been that while certain topological
classifications such as through a non-local string order parameter [13] proved to
be the correct indicator in the presence of certain other supporting symmetries, the
parametric realisation range of the Haldane phase exceeded the one of the string
order. Similarly, the Haldane phase seemed to transcend the regime in which a
ground state realisation of the Haldane phase for open boundary conditions would
show degenerate edge states in line with the bulk-boundary correspondence of
topological phases.

We start by employing a Haldane phase ground state realisation from the
bilinear-biquadratic (bb) SU(2) spin-1 Hamiltonian class Hbb =∑

i cos θSiSi+1 +
sin θ(SiSi+1)

2, where the Haldane phase is found for −π/4 ≤ θ ≤ π/4. As
shown in Fig. 2a and explained above, the entanglement spectrum reveals an SO(3)
multiplet structure according to sA [30]. The dominant entanglement weight is
carried by a singlet and a triplet state, while the rest of the entanglement levels
appear to be separated by a gap. Note that for the AKLT point [1], the triplet and
singlet level would be the only non-zero weights λ, i.e., the only finite entanglement
spectral eigenvalues.

If we were to diagonalise Hbb on an open chain, we would obtain a similar low-
energy spectrum. By analogy to the lessons from entanglement spectra for fractional
quantum Hall effect, this observation provokes the hypothesis that the entanglement
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Fig. 2 Entanglement cuts in the Haldane phase. (a) Finite-size real space cut for an N = 12 site
ground state of Hbb against the multiplet index sA [30]. (b) Semi-infinite real space cut of Hju as a
function of Uzz/J [21]. (c) Rung cut for a ground state of Hsl plotted against the chain momentum
and offset by the lowest entanglement level ξ0 [20]

spectrum of a spin-1 chain ground state for periodic boundary conditions relates to
the low-energy spectrum of the same Hamiltonian for open boundaries [23]. More
careful finite-size scaling shows that this is indeed true. For a topological phase
with dimensionally reduced edge mode excitations, it is suggestive that such a real
space entanglement cut induces entanglement eigenstates of dominant weight λ (and
hence the lowest value ξ ) which feature related properties to energy edge modes of
the open chain.

Further information beyond the compact real space cut can be retrieved from
a semi-infinite real space cut [21]. This is conveniently obtained through a matrix
product state (MPS) representation of |�0〉:

|�0〉 = lim
N→∞

∑

{m}
Tr
m1�
m2� . . . 
mN� |m1m2 . . . mN 〉 , (4)

where mi denotes the Szi = −1, 0, 1 eigenvalue for a spin-1 chain. A gapped spin
chain allows for a finite matrix representation of 
mi and �, where the eigenvalues
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of � are the λα’s in (2). Furthermore, in anticipation of resolving the Haldane
phase according to its core topological structure free from overlaying superfluous
symmetries, we investigate the MPS ground state representation of the Hamiltonian
Hju = ∑

i JSiSi+1 + Uzz(S
z
i )

2. Here, starting from the spin-1 Heisenberg chain,
the Uzz term breaks the SU(2) symmetry. (A complete symmetry analysis with
additional terms is discussed in [21, 22]). By monitoring the eigenvalues of 
, the
semi-infinite real space cut (Fig. 1a down) is realised. The core insight of [21] is
that the entanglement spectrum provides us with a necessary and sufficient criterion
for the Haldane phase: as visible in Fig. 2b, the Haldane phase is characterised by
an even multiplicity of Schmidt eigenvalues for the entire entanglement spectrum.
This roots in the fact that the irreducible projective symmetry representations in
the Haldane phase must be higher dimensional, which accordingly brings about the
spectral degeneracy. As a side remark, one readily observes that departing from
Uzz/J = 0, the breaking of SU(2) symmetry shows no spectral relevance for the
Haldane phase. It is already suggestive from here that the successful entanglement
spectrum classification of the Haldane phase generalises to other gapped topological
phases in one dimension [31].

Spin chain spectra can also emerge as the entanglement Hamiltonian of spin
ladders [20]. We investigate a spin-1/2 ladder ribbon given by the Hamiltonian
Hsl = ∑

i J‖(SIi SIi+1 + SIIi SIIi+1) + J⊥SIi SIIi , where J‖ (J⊥) denotes the coupling
along the chains (between the chains I and II). For J‖ > 0 and J⊥ < 0, this
yields another realisation of the Haldane phase. Performing a rung cut according to
Fig. 1c, along with spin rotation symmetry, the reduced density matrix keeps trans-
lation symmetry along the chain, which allows the resolution of the entanglement
spectrum with respect to chain momentum (Fig. 2c). Both in terms of spectral and
eigenstate structure, the entanglement Hamiltonian resulting from the rung cut of
the ground state of Hsl is similar to the energy spectrum of a spin-1/2 Heisenberg
spin chain.

4 Gapless Spin Chains

Our assumed hitherto definition of ρ as a projector onto a spin chain ground state
appears particularly reasonable for the case of a gapped spin chain in the zero-
temperature limit. It is less transparent how to go about a gapless spin chain,
where ρ should be susceptible to arbitrarily weak perturbations. The hallmark
results from entanglement entropy for real space cuts, however, suggest a different
perspective [2]. The entanglement entropy exhibits a scaling law SA ∝ (c/3)logl,
where l is the length of the real space interval A and c is the central charge of
the associated conformal field theory. Due to this result, the entanglement entropy
has become one of the paradigmatic parameters to retrieve from the finite-size
realisation of a given spin chain Hamiltonian, which is particularly amenable to
numerical observability [5, 19]. While no strong spectral resemblance is expected
between the energy spectrum and the associated entanglement spectrum as we
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encountered for gapped spin chains, a lesson from real space cuts of gapless spin
chains is that fundamental features of the physical systems can still be extracted
from the entanglement spectrum and its derivative quantities.

An extended momentum cut (Fig. 1c) performed on the ground state of a
gapless spin chain Hamiltonian helps to resolve a universal fingerprint of its critical
theory [16, 27]. To illustrate this hypothesis, we consider spin-1/2 spin chains on
even-membered rings with periodic boundary conditions. The N sites are placed
on a circle of radius unity and are thus described by the N th roots of unity:
zj = exp(2πij/N); j ∈ {1, . . . , N}. Any singlet ground state of an SU(2)-invariant
Hamiltonian in hardcore boson notation takes the form

|�0〉 =
∑

j1,...,jK

ψ(zj1, . . . , zjK )S
−
j1
. . . S−jK |F 〉 , (5)

where |F 〉 = |↑ . . . ↑〉 is a polarised reference state. The sum extends over all ways
to distribute K = 1

2N down-spins on the ring, and the weights ψ(zj1, . . . , zjK )
depend only on the position of the spin ↓ sites. We Fourier transform the spin
operators on each site according to S̃−m = 1

N

∑
j z
m
j S

−
j so that

|�0〉 =
∑

m1,...,mK

ψ̃(m1, . . . , mK)S̃
−
m1
. . . S̃−mK |F 〉 , (6)

where

ψ̃(m1, . . . , mK) = N−K
∑

j1,...,jK

zmj1 . . . z
mK
jK
ψ(zj1, . . . , zjK ). (7)

This extended momentum monomial basis is non-orthogonal and represented by
bosonic occupation numbers nm for crystal momentum m, yielding a total state
momentum M = ∑

m mnm. The total particle number is given by K = ∑
m nm

and the physical crystal momentum byQ = MmodN . The regions A and B for the
extended momentum cut are decomposed with respect to the number of particles and
total momentum according to NA + NB = N and MA +MB = M . The extended
momentum hence bears close resemblance to the entanglement cut on a quantum
Hall sphere, where the momentumMA is replaced by the angular momentum on the
hemisphere LA [14]. The entanglement spectrum for a spin-1/2 Heisenberg chain is
plotted in Fig. 3.

To better understand the relation between the extended momentum cut entan-
glement spectra and the critical theory of a gapless spin chain, it is best to start
from the viewpoint of the Haldane–Shastry (HS) model [10, 25], a spin-1/2 chain
which, due to its Yangian quantum group structure [11], resolves the Wess–Zumino–
Witten (WZW) SU(2)1 field theory at finite size without logarithmic corrections.
Furthermore, the HS ground state wave function, aside from a gauge factor to ensure
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Fig. 3 Extended momentum entanglement cut for the spin-1/2 Heisenberg spin chain [27].
A low entanglement energy manifold is separated from higher level contributions through an
entanglement gap  which persists in the thermodynamic limit (left inset). The state counting
of the low-lying levels matches that of a bosonic U(1) state counting (right inset)

its singlet property, matches the form of the bosonic Laughlin fractional quantum
Hall state at magnetic filling ν = 1/2:

ψHS =
K∏

i<j

(zi − zj )2
K∏

i=1

zi . (8)

One finds that the entanglement spectrum of the HS ground state is composed of
only few eigenstates of ρA with finite entanglement weight and a large remainder
part with zero entanglement weight, i.e., ξ → ∞. Furthermore, the state count per
sector MA reads 1, 1, 2, 3, 5, 7, . . . and thus agrees with the U(1) bosonic state
counting which matches the low-energy excitations of this universality class of
gapless spin chains. (Note that such state countings are subtle and necessitate a
significant system size for unambiguous resolution. This is because, for instance, a
counting 1, 1, 2, 3, 5, 8, . . . would have hinted at a Fibonacci state counting.) The
upshot of the extended momentum cut is that for the entire spin-1/2 fluid phase
including the Heisenberg spin chain, which is described by SU(2)1 WZW field
theory, these levels serve as the low entanglement Hamiltonian spectral fingerprint.
Figure 3 depicts the extended momentum cut entanglement spectrum for the spin-
1/2 Heisenberg chain. The low-energy part is the universal component, which in
terms of state counting and eigenstates is identical to the HS point. All other
entanglement levels are higher up in entanglement energy and separated by an
entanglement gap  which appears to persist in the thermodynamic limit. While
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the U(1) state counting can only conveniently be resolved through the extended
momentum cut with respect toM , the entanglement gap would still be visible for a
crystal momentum cut with respect toQ. This entanglement gap frames a notion of
topological adiabaticity, where two spin chain models are defined to be topologically
connected if the entanglement gap from their ground state momentum cut persists
along the interpolation [28]. To which extent this hypothesis is applicable to
arbitrary gapless models in one spatial dimension, or in fact the predictive power
of entanglement spectra in general still is a subject of debate [3, 15].

The extended momentum cut appears suitable to resolve deconfined spinon
excitations of gapless spin chains. The HS model, which can be thought of as the
free spinon gas related to SU(2)1 WZW field theory where the spinons only interact
through their fractional statistics, plays a similar role for the extended momentum
cut entanglement spectra as the AKLT point does for the real space cut entanglement
spectra of the Haldane phase. Subsequent studies of gapless spin chains with other
critical theories such as the SU(2)2 and SU(3)1 WZW field theory [16] suggest
that the extended momentum cut indeed serves as a way to resolve the low-energy
critical theory of spin chains from the entanglement analysis of finite-size ground
state wave functions. Here, the analogue to the HS Point for SU(2)k WZW field
theories is formed by the Greiter S = k/2 spin chain Hamiltonians [6, 29].

5 Conclusion

The strong dependence of entanglement spectra on the chosen cut inhibits advan-
tages and drawbacks at the same time. We could witness the former in this chapter,
where the right cut adjusted to the spin chain at hand would allow one to learn
in tremendous detail about the spin chain properties solely from the ground state
wave function. Regarding the latter, it is still a matter of ongoing research to
determine under which conditions there is reliable universality extractable from
entanglement spectra [3, 15]. Furthermore, due to its manifest basis-dependent, i.e.,
gauge-dependent character, it is a subtle question whether any of these entanglement
spectra immediately relate to observable quantities. As one promising sign in this
direction, the measurement of entanglement entropy has at least been successfully
performed in a highly tunable and accessible environment of ultra-cold gases
deposited into an optical lattice [12], while the knowledge of all Renyi entropies
would in principle allow to reconstruct the entanglement spectrum.

Despite these open questions, it is evident that entanglement spectra have become
an indispensable diagnosis tool for quantum many-body systems in general and spin
chains in particular. It should be considered likely that further fundamental insights
will be gained from future entanglement spectral analyses of spin chains.
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Detecting Quantum Phase Transitions in
Spin Chains

Yan-Chao Li, Wing Chi Yu, and Hai-Qing Lin

Abstract Quantum entanglement is a unique physical property that distinguishes
quantum systems from classical systems. Entanglement in spin chain models
has potential application in quantum information processing. Studying quantum
phase transitions of such models from the quantum information point of view
is the foundation of quantum physics and an effective means in understanding
and applying quantumness. This method achieves extensive research and rapid
development because no a priori knowledge of symmetry of the system is needed.
However, some key issues have not been effectively addressed, such as the determi-
nation of order parameters and the effectiveness and universality of each detector.
Therefore, we focus on the performance of entanglement and its related quantum
correlations in the characterization of quantum phase transitions under different
conditions. The natural connection between quantum correlation and quantum phase
transitions is mainly discussed, and a general context and the possible direction
of its development are sorted out to provide help for the deep understanding of
quantumness and the improvement of research methods of quantum phase transition.

Y.-C. Li
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and
Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China

Beijing Computational Science Research Center, Beijing, China
e-mail: ycli@ucas.ac.cn

W. C. Yu
Department of Physics, City University of Hong Kong, Kowloon, Hong Kong

City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
e-mail: wingcyu@cityu.edu.hk

H.-Q. Lin (�)
Beijing Computational Science Research Center, Beijing, China

Department of Physics, Beijing Normal University, Beijing, China
e-mail: haiqing0@csrc.ac.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bayat et al. (eds.), Entanglement in Spin Chains, Quantum Science
and Technology, https://doi.org/10.1007/978-3-031-03998-0_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-03998-0_2&domain=pdf
mailto:ycli@ucas.ac.cn
mailto:wingcyu@cityu.edu.hk
mailto:haiqing0@csrc.ac.cn
https://doi.org/10.1007/978-3-031-03998-0_2


14 Y.-C. Li et al.

1 Introduction to Quantum Entanglement

1.1 Quantum Entanglement and Quantum Phase Transitions

An essential feature that discriminates quantum mechanics from classical mechanics
is quantum entanglement. Entanglement is a pure quantum phenomenon that has
no classical counterpart. It describes a state of a system with multiple particles or
multiple degrees of freedom that may not be written as a product of the states of
its component systems [1]. In such an entangled state, the change of one particle
is immediately reflected on other entangled particles, no matter how far away they
are. Understanding this nonlocality that seems not limited by the speed of light has
puzzled the scientific community [2–4]. However, the majority of experiments that
have been done thus far are in favor of the nonlocality of quantum entanglement [5].
On the contrary, the fundamentally related property described by entanglement is
considered an important resource in quantum information processing [6, 7]. Well-
entangled states are the carriers of information; thus, the preparation of these states
has always been an important issue in quantum computation and communication
[8, 9]. Entanglement is the key to understanding quantum systems and future
technological breakthroughs.

However, the essence of quantum entanglement still lacks a thorough under-
standing. Researchers are looking for the hidden variable behind entanglement
and quantum theory [10–13]. Moreover, as the core of an information carrier, the
stability of an entanglement state is crucial. However, decoherence in such a state
remains a key to the unsolved problem in quantum information processing. The
understanding of a quantum state and the control of its stability are related to
quantum phase transitions’ research. Therefore, we study quantum phase transition
from the perspective of quantum informatics instead of the traditional order
parameter method by starting from quantum entanglement that is a representative
physical quantity of quantum information theory. Quantum phase transition is also
a pure quantum effect. The divergence of the correlation length is controlled by
quantum correlation, which cannot be described by classical statistical mechanics.
On the one hand, we can fully explore the quantum phases and phase transitions of
different systems from the quantum correlation itself by studying the relationship
between entanglement and quantum phase transition. On the other hand, we can
deeply understand quantum entanglement and explore the origin of quantumness.

In the field of quantum information, spin chain system has always been con-
sidered the best candidate in solid state systems that carry quantum entanglement
information because of its integrability and scalability in quantum communication.
Any logic gate of quantum computing can be realized in such models as long as it
is properly encoded [14, 15]. Many physical systems, such as nuclear spin, electron
spin, molecular spin, quantum dot, and quantum optical lattice, can be modulated
by spin chain models [16, 17]. Spin chain system is a natural quantum system in
quantum information processing and exhibits potential application value in quantum
information science. A spin chain can also be mapped to a fermion chain through
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Jordan-Wigner transformation [18]. Therefore, without loss of generality, we take
the quasi one-dimensional system based on spin chain as the platform and quantum
entanglement as the tool and object in the research of quantum phase transition and
quantum cognition.

Phase transitions are widely used in our daily lives. Examples include the
preparation of glass and ceramic materials and the production of austenitic and
martensitic stainless steel with different flexibility and strength requirements. At
present, many technological developments use phase transitions, for instance, the
application of phase change materials in solar energy storage, waste heat recovery,
engineering insulation, and corrosion-resistant metallic glass and the preparation of
artificial superhard materials [19].

Quantum phase transitions belong to one kind of phase transition. In contrary to
a thermal phase transition [20], which is driven by thermal fluctuations, a quantum
phase transition occurs at absolute zero temperature. At such a temperature, thermal
fluctuations are absent, and quantum effect dominates. According to Heisenberg
uncertainty principle arising from the wave-particle duality in quantum mechanics,
the momentum and the position of quantum particles cannot be determined precisely
at the same time. These particles still possess zero-point energy even at absolute
zero temperature, thereby leading to quantum fluctuations in the ground state of
the system. Let us take a simple spin-1/2 system as an example. The principle
of superposition indicates that any state of the system can be written as a linear
combination of the spin up | ↑〉 and the spin down | ↓〉, i.e.,

|ψ〉 = α |↑〉 + β |↓〉 , (1)

where α and β are complex numbers, and they satisfy the normalization condition
|α|2 + |β|2 = 1. The above equation shows that the arbitrary quantum state |ψ〉 can
be regarded as a fluctuation between | ↑〉 and | ↓〉. A quantum phase transition
is caused by such kind quantum fluctuations and a purely quantum mechanical
process. In a general system, the energy spectrum of the system suffers an abrupt
change when a slight change of a parameter λ near a so-called quantum critical
point is added to the Hamiltonian. This scenario leads to a macroscopic change
in the system’s properties, resulting in a quantum phase transition. In this work,
λ is usually called the driving term. It can be a coupling constant or an external
parameter, such as external magnetic or pressure.

The study of quantum phase transitions plays an important role in understanding
quantum many-body systems. It not only reveals the relationship of microscopic
energy spectrum and electronic structure with the macroscopic properties of
materials from the viewpoint of condensed matter physics [21] but also helps us
to understand quantumness deeply from the viewpoint of quantum information.
A typical example of quantum phase transition is the superfluid-Mott insulator
transition. It is observed experimentally in the trapped cold atoms in optical lattices
by tracking the velocity distribution of runaway molecules [22]. When the potential
barrier of the optical lattice is small, the cold atoms can shuttle freely in each
potential well, and the system is in superfluid phase. The cold atoms are confined
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in the wells and cannot hop between different lattice sites when the barrier is raised
above a certain threshold. The system becomes an insulator in this case [23]. In
addition to the superfluid-Mott insulator transition, other examples of quantum
phase transitions include the magnetic phase transitions in spin systems [24–26],
charge density wave–superconducting phase transition in fermion systems [27, 28],
and superconducting-insulator phase transition [29].

In recent decades, quantum computing and quantum communication based on
quantumness have become an important research field in the frontier of science and
technology with the improvement of the stability of quantum bit control and the con-
tinuous development of quantum algorithm. The discoveries of new phases of matter
promoted by quantum phase transitions, such as unconventional superconductivity
in a heavy-fermion system [30], and the close relationship between criticality and
decoherence in the quantum computation and quantum communication [31] have
greatly aroused scientists’ enthusiasm of studying quantum phase transitions.

As an analogy to thermal phase transitions, quantum phase transitions can also
be understood as a result of the reconstruction in Hamiltonian’s energy spectrum
[32]. In particular, the ground state or the low-lying energy spectra determines the
quantum state of the system. From this point of view, the structure of the low-energy
spectra changes when the driving parameter crosses the critical point, leading to
a different quantum phase with quite different macroscopic properties. According
to the reconstruction mechanisms, quantum phase transitions can be divided into
different types and are incarnated in the nonanalytic behavior of the derivative of the
ground-state properties at the transition point. The first type is the first-order phase
transition corresponding to a level crossing in the ground state, in which the first
derivative of the ground-state energy with respect to the driving parameter is usually
discontinuous. The second one is the continuous phase transition, including the
second-order and higher-order types, in which the energy levels of the ground state
and the first excited state become infinitely close to one another with the increase of
the system size. However, the occurrence of interlacing is always avoided. This type
of phase transition usually corresponds to a low-lying excited state reconstruction
and possesses discontinuity in an order higher than one in the derivative of the
ground-state energy [33]. Figure 1 shows the illustration of the two cases [21].

1.2 Methodologies from the Viewpoint of Quantum
Information Theory

The traditional method for studying quantum phase transitions belongs to the
category of Landau–Ginzburg–Wilson spontaneous symmetry-breaking theory.
Researchers use local order parameters to characterize different quantum phases.
However, quantum phase transitions, such as the topological phase transitions [34,
35] and Berezinskii-Kosterlitz-Thouless phase transitions [36], occur between
phases that are not characterized by any local order parameter or symmetry-
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Fig. 1 (a) When the energy levels of the ground state and the excited state intersect at a certain
point in the parameter space, the properties of the ground state of the system change; (b) the
situation in which the energy levels of the ground state and the excited state avoid the intersection

breaking description. Moreover, conducting a complete phase diagram analysis for
a multistate system is usually difficult because each quantum state needs a specific
characteristic order. Obtaining all possible orders of the system is a challenge,
particularly for systems with unknown symmetry. Therefore, the traditional research
on the quantum phase of multibody system has made slow progress for a long time.

The new method to study quantum phase transitions from the perspectives
of quantum information begins from Ref. [31], where the entanglement concept
from quantum information theory is originally borrowed to study quantum phase
transitions in condensed matter physics. The authors determined the close rela-
tionship between quantum phase transition and entanglement through the scale
analysis of entanglement near the critical point of the system. In this approach,
no a priori knowledge of the symmetry of a system is needed, and the phase
diagram of the system is obtained by studying this single quantity. The simplicity
and effectiveness of this method have attracted a wide range of research enthusiasm.
Along this direction, the research of quantum phase transition has made rapid and
long-term development. Subsequently, many new concepts borrowed from quantum
information theory have been successfully used to characterize quantum phase
transition.

These concepts mainly include quantum entanglement [31], quantum fidelity
(QF) [37], quantum discord (QD) [38], and quantum coherence (QC) based on
Wigner and Yanase skewed information [39]. Quantum entanglement approach
including the use of various measures, such as concurrence, von Neumann entropy,
and negativity [40, 41], has been successfully applied to various systems, including
interacting spin models [42], fermion models [38], and Bose Hubbard model [43].
This approach has been recently used to calibrate the superconducting phase
and metal phase of one-dimensional fermion wire [44]. The connection between
geometric Berry phase and quantum phase transitions for the case of a spin-XY
model has also been studied [45]. Quan et al. showed a remarkable relationship
between Loschmidt echo and quantum phase transitions [37, 46]. Based on this
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finding, a simple quantity QF and its related fidelity susceptibility [26, 47] have
been successfully applied to different types of quantum phase transitions, such
as topological type [48, 49], and verified experimentally by a nuclear magnetic
resonance quantum simulator [50]. Time correlations, Leggett-Garg inequalities,
and Loschmidt echo have also been recently introduced into the study of static
quantum phase transition and time domain dynamic quantum phase transition in
multibody quantum systems [51, 52].

1.3 Open Questions

Although each of the above-mentioned quantum phase transition detectors has its
successful examples, it also has limitations. The effectiveness and universality of
these examples are not fully analyzed. Although fidelity reflects the quantum phase
transition of Bose Hubbard model more clearly than quantum entanglement [43],
it is ineffective in detecting Berezinskii-Kosterlitz-Thouless (BKT) quantum phase
transition, such as the XXZ model [25], and QD can effectively describe this phase
transition [38]. Our recent research determined that QC cannot only effectively
detect such a BKT type quantum phase transition but also avoid the singularity of
QD in nonquantum-critical points [53]. Determining whether QC is a more generic
indicator for quantum phase transition than QD needs further exploration.

Moreover, absolute zero cannot be achieved in reality. Thus, the study of quantum
phase transition at finite temperature has a high experimental value. However,
research in this field is still insufficient. We showed that quantum entanglement
and its temperature scaling behavior can be used to detect the quantum critical
point of a spin system [42]. Similar works have also been done in Refs. [54, 55].
However, temperature has a great influence on the entanglement detection of
quantum phase transition, and the influence degree can vary different for different
detectors. For example, QD is more robust to thermal fluctuations than quantum
entanglement [38]. Recent finding has indicated that QC spectrum is more robust
to thermal fluctuations than QD and QC, and it is expected to be a powerful tool
to detect quantum phase transitions [53]. The response to thermal fluctuations or
the expression intensity of the quantum properties of the detected quantum states
directly affects the ability of each detector to characterize the phase transition at
finite temperature. The research in this area is still immature and lacks comprehen-
sive and systematic analysis.

Although quantum information measures can clearly demarcate the quantum
phase boundary, they cannot directly reveal the information of the order param-
eter for each of the quantum phases of the system. This scenario hinders us
from understanding further the specific properties of quantum states. Therefore,
developing a method to derive the order parameters from the same perspective of
quantum information is urgently needed. The order parameters for some simple
spin and fermion systems were constructed starting from the mutual information
involved in entanglement and correlation through the spectral analysis of the
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reduced density matrix [56–58]. Magnifico et al. have further applied recently
the order parameter we obtained to characterize the quantum phase transition in
the topological Schwinger model [59]. This method is still in its infancy. Further
investigations on its applicability to characterize different types of quantum phase
transitions, such as those that involve low-lying excited energy levels or different
topological phases, are required.

Quantum phase transitions and quantum entanglement have a close connection.
Although open questions exist, quantum entanglement is an effective and promising
method to reveal quantum phase transitions from the perspective of quantum
correlations. Therefore, we try to establish a possible connection among various
correlation detectors and quantum phase transition. We hope that this work will help
to find an effective and universal quantum phase transition detector and improve and
perfect the research method of quantum phase transition. Furthermore, we also hope
that it will enlighten the understanding of the nature of quantumness and contribute
in bridging condensed matter physics and quantum information science.

2 Concurrence and Quantum Phase Transitions in Spin
Chains

Entanglement, which is absent in classical systems, is regarded as a purely quantum
correlation. It serves as the resource to enable quantum computation and quantum
communication and thus plays a core role in quantum informatics [8]. It can also
be a good detector for quantum phase transitions in multibody system. The main
idea is that the quantum phase transition changes the quantum correlation of the
system, and the degree of entanglement inside the system is also changed, resulting
in the extreme value of the quantum entanglement or its derivative near the phase
transition point.

In 2002, Osterloh et al. studied the entanglement behavior near the critical point
ofXY spin chain by using concurrence measure. The Hamiltonian of theXY model
reads

H = −
N∑

j=1

(
1+ γ

2
σxj σ

x
j+1 +

1− γ
2
σ
y
j σ

y

j+1 + λσzj
)
, (2)

where the parameter N is the number of spins in the chain, γ describes the
anisotropy of the system arising from the spin–spin interaction, λ is external mag-
netic field, σα (α = x, y, z) are the Pauli matrices. When γ = 1, the Hamiltonian
corresponds to the transverse-field Ising model.

For a given local reduced density matrix ρab = T rab |ψ〉 〈ψ |, where T rab stands
for tracing the overall sites except the two arbitrary sites a and b in the chain, the
quantum concurrence is defined as Cρab = max{0, λ1 − λ2 − λ3 − λ4}, where λ1,
λ2, λ3, and λ4 are the square roots of the eigenvalues of ρabρ̃ab in descending order.
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Here, ρ̃ab = (σ ya ⊗ σyb )ρ∗ab(σ ya ⊗ σyb ) is the time-reversed matrix of ρab. ρ∗ab is the
complex conjugation of ρab.

The authors found by analyzing the behaviors of the concurrence in the vicinity
of the transition that the first derivative of concurrence with respect to λ shows
a minimum at λm near the critical point. The minimum becomes increasingly
considerable, and its position gradually approaches the true critical value λc = 1
as N increases. Although the concurrence itself does not show a singular behavior
at the critical point, its first-order derivative is divergent in the thermodynamic limit.
Similar phenomena were also observed for other critical points in the system. These
results supplied direct evidences for the validity of concurrence in quantum phase
transition detection.

The relationship between concurrence and quantum phase transitions is further
studied in Refs. [60, 61]. At the quantum phase transition point  = 1 of the
spin XXZ chain model, the ground-state concurrence shows a maximum behavior
instead of the singularity behavior for the XY model in Ref. [31]. This conclusion
is also suitable for the dimensionality d ≥ 2 cases [61]. Different behaviors of
quantum phase transition for different systems seem to indicate a certain nontrivial
relationship between quantum concurrence behavior and phase transition types.
Further study evidently is needed.

The types of the quantum phase transitions in several well-known spin systems
were clarified by comparing the analyses of low-lying excited state spectra and
quantum entanglement behaviors [33]. The different behaviors of the correspond-
ing quantum concurrence were explained, and the relationship between quantum
entanglement and phase transition types was tried to be established. According to
the continuity and extremum of quantum concurrence, quantum phase transitions
can be divided into three categories: The first one is the first-order quantum
phase transition, which is caused by the level crossing of the ground state.
The concurrence as a measure of ground-state entanglement information shows
discontinuous behavior because of the change of ground state at the phase transition
point. The second type is the case in which both sides of the corresponding phase
transition point are in order or disorder usually because of the level crossing in low
excited states, leading to a maximum behavior of the concurrence. The third kind
of quantum phase transition corresponds to the transition from order to disorder
with an energy gap opening, where the concurrence is continuous, but its high-
order derivative shows extremum at the phase transition point. This work reveals
that quantum entanglement and quantum phase transition are not only related to the
ground state of the system but also affected by the excited states. Their relationship
can be reflected by the behaviors of concurrence.

Concurrence can reflect the quantum phase transition of a system by measuring
the entanglement between the two spins embedded in the system. However,
some quantum information related to multiparticles is not reflected completely
by concurrence because of the limitation of the definition itself. In particular,
the quantum information in the two local spins may be too limited to reflect the
quantum information of the whole system. For example, compared with physical
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quantities, such as the von Newman entropy and QD, the concurrence as a measure
of entanglement eventually loses the ability to detect quantum phase transition with
temperature disturbance [38, 62].

3 von Neumann Entropy and Quantum Phase Transitions

3.1 Single-Site Entanglement

Gu et al. introduced a different entanglement measure, namely von Neumann
entropy, to study the quantum phase transition of the one-dimensional extended
Hubbard model [40]. The corresponding Hamiltonian of the model reads

H =
∑

i,σ

(
c

†
i,σ ci+1,σ + c†

i+1,σ ci,σ

)
+ U

∑

i

ni↑ni↓ + V
∑

i

nini+1, (3)

where i = 1, . . . , N ; σ =↑,↓; c†
i,σ and ni are the creation and number operators at

site i, respectively; U and V define the on-site and the nearest-neighbor Coulomb
interactions. The von Neumann entropy for a single site is then defined by the
ground-state |ψ〉 of the system as

Ev(ρj ) = −T rρj ln ρj , (4)

where ρj is the reduced density matrix of the ground state for the j th site.
The authors calculated the one-site entropy Ev as functions of U and V . They
determined that the extreme point of the von Neumann entropy corresponds to the
phase transition point of the system, and the ground-state phase diagram of the
system can be easily captured by the single quantity.

3.2 Multisite Entanglement

The success of the entanglement method has attracted researchers’ attention. Legeza
et al. found that the one-site von Neumann entropy is not suitable for some
quantum phase transitions, such as the phase transitions between the dimerized state,
Haldane state, quantum spin-nematic state in spin-1 spin chain, the Ising-like phase
transition, and BKT phase transition in the ionic Hubbard model. Therefore, they
proposed to use two-site entropy, namely the reduced density matrix in Eq. (4) is
taken for two neighboring sites instead of for one single site, to study the quantum
phase transition. They found that compared with the single-site entanglement, the
two-site entanglement entropy better reflects many phase transitions that cannot
be recognized by the single-site entanglement entropy [41]. The phase information
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of the one-dimensional isotropic spin-1 chain presented by the two-site entropy is
better than that presented by one-site entropy.

The block–block entanglement measured by the von Neumann entropy was also
studied based on the above findings; its structure is richer than that of the local
site entanglement for the one-dimensional extended Hubbard model because the
nonlocal correlation is included [63]. Multisite entropy was also used to analyze
quantum phase transitions in the frustrated spin ladder with next-nearest-neighbor
(NNN) interactions [64]. The system is sketched in Fig. 2. Its Hamiltonian reads

H =
N∑

α=1,2,i

[(
J1Sα,i · Sα,i+1 + J2Sα,i · Sα,i+2

)+ J⊥S1,i · S2,i + J×
(
S1,i · S2,i+1 + S1,i+1 · S2,i

)]
,

(5)

where Sα,i denotes spin-1/2 operators at site i of the αth leg of the ladder, and N
is the number of rungs; the other parameters J1, J2, J⊥, and J× correspond to the
interactions between different spins, as indicated in Fig. 2.

Given the spin alignment frustration, materials with the spin-ladder structure
exhibit rich quantum states, and many of them are still not fully understood. A good
example is the highly controversial intermediated columnar dimer (CD) state in the
frustrated antiferromagnetic state. The introduction of the in-chain NNN interaction
further increases frustration among spins and may induce new quantum phases
of great interest. Such in-chain NNN interaction does exist in real materials, e.g.,
BiCu2PO6 [65]. Therefore, studying the quantum phase diagram of the spin ladder
with the in-chain NNN interaction is necessary and insightful. In such a system, the
four-site entropy E4_L (the subscript represents the four spins in the middle of the
chain, as circled by the wine square marked L in Fig. 2) contains richer quantum
information than the two-site entropy E13 does because of the symmetry of the
system. As shown in Fig. 3, E4_L presents a clearer indication than E13 does at
the phase boundary of II and III. The controversial CD phase was confirmed by
analyzing the four-site entropy combined with the correlation function, and an exotic

Fig. 2 (Color online) Schematic diagram of the two-leg spin-1/2 ladder with diagonal and in-
chain NNN interactions. Circles denote spin-1/2 sites coupled by exchange constants J1 (black
solid lines), J2 (blue dashed lines), J⊥ (red solid lines), and J× (green dashed lines). The wine-
pane L represents the four spins at the middle of the chain, and the dashed-pane R circles the four
spins at its right side, where α = 1, . . . , 6 denotes the number of spins on L and R
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Fig. 3 E4_L and E13 as a function of J× at J2 = 0.4, J1 = −1.0, and J⊥ = −0.5 for rung
number N=320. Dramatic changes in E4_L show a clearer indicator than those in E13 do in
delimiting the three phases I, II, and III

tetramer phase was found. Finally, the quantum phase diagram of the system was
obtained [64].

In addition, two difficult issues related to quantum phase transition were solved
using quantum entanglement: (I) the BKT type critical point at J2/J1 ≈ 0.241
in the J1 − J2 model, which corresponds to a transition from spin fluid to
dimerized phase and is difficult to be detected because of the problem of logarithmic
correction [24, 66]; (II) the controversy—whether the bond-order-wave (BOW) state
at a narrow strip along the U � 2V line exists in the half-filled one-dimensional
extended Hubbard model [67].The BKT phase transition in the J1 − J2 model [68]
and the intermediated BOW and superconducting states in the half-filled one-
dimensional extended Hubbard model were successfully detected with the help of
the two-site and block-site entanglement measured by von Neumann entropy and
density matrix renormalization group (DMRG) numerical technique [63, 69].

Given that the local entanglement can be conveniently obtained by the exact
diagonalization or density matrix renormalization group algorithms, the method can
be applied to much complex systems that cannot be exactly solved. Many related
studies on entanglement and phase transition of different quantum systems under
different conditions can be performed [9].

Furthermore, the entanglement spectrum can also be used to study quantum
phase transitions. Compared with the entanglement entropy, which is just a single
number, entanglement spectrum can reveal much more information on quantum
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phase transition [70]. Some related works on different types of quantum phases can
be found in Refs. [71–73].

The concurrence and the von Neumann entropy are the two main entanglement
measures used in detecting quantum phase transitions. Although both of them can
measure the degree of entanglement, they possess different physical natures. The
concurrence describes the entanglement between the two sites constructing the
reduced density matrix, whereas von Neumann entropy measures the entanglement
of states on the selected sites with that on the remaining sites in the chain. The
concurrence and the von Neumann entropy actually reflect different entanglement
information in the system. Different abilities can detect quantum phase transitions
for different detectors [62]. The main reason might be that the detectors actually
contain different degrees of correlation. Further discussion about this topic is
provided in Sects. 3.4 and 4.

3.3 Entanglement and Quantum Phase Transitions at Finite
Temperatures

When the temperature is not too high to destroy the quantum order, the system is
still dominated by quantumness, and quantum phase transitions still exist. The study
on quantum phase transition at finite temperature has a high experimental value
because absolute zero cannot be achieved in an actual experiment. However, related
research in this field is sparse. The transfer matrix renormalization group (TMRG)
technique [74], which is based on the Trotter-Suzuki decomposition of the partition
function of a system and can directly handle infinite chains, is used in calculating
the two-site thermal entanglement of the S = 1/2 distorted diamond chain model to
avoid the finite-size effect [42]. The model is sketched in Fig. 4. Its Hamiltonian is
written as follows:

H =
N∑

i=1

(J1(S2i−1 · S2i,a + S2i,b · S2i+1)

+J2(S2i−1 · S2i,b + S2i,a · S2i+1)+ J3S2i,a · S2i,b, (6)

where Si are spin-1/2 operators at site i , and Ji with i = 1, 2, 3 denote exchange
integrals along different directions.

The definition of the thermal entanglement Et is the same as that in Eq. (4), but
the reduced density matrix is obtained from the thermodynamical average values
of some correlation functions (see Ref. [42]). The results are shown in Fig. 5 for
J2 = J1 antiferromagnetic spin frustrated case. As temperature T decreases, two
dramatic changes appear near the two critical points J3 = 1.0 and J3 = 2.0 for
T = 0.67, as shown in Fig. 5a. The derivative of Et peaks near the two critical
points, and the peak is pronounced as T decreases, as shown in Fig. 5b. The scaling
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Fig. 4 (Color online) Schematic diagram of the spin-half distorted diamond chain model, where
the black circle represents the spin. J1 (black solid lines), J2 (green dashed lines), and J3 (red
dashed lines) indicate the exchange constants between spins

Fig. 5 (Color online) (a) The thermal entanglement Et for the antiferromagnetic case as a
function of J3 at J1 = J2 = 1.0 and T = 0.067. (b) The derivative of Et with respect to J3 under
different values ofM , whereM is the Trotter number in the TMRG calculation, and T = 1/(Mε)
with ε = 0.1

behavior for the peak illustrates that it diverges at zero temperature [42]. The
peak behavior of Et reflects the quantum phase transition of the system at finite
temperature. Therefore, we conclude that detecting quantum phase transitions at
finite temperature by entanglement is possible and provides theoretical guidance for
the experimental study of quantum phase transition.

3.4 Entanglement and Quantum Correlations

The essence of entanglement is a kind of quantum correlation, which plays a
role in detecting quantum phase transition. However, it does not include all types
of quantum correlations, and some quantum states have quantum correlations
without quantum entanglement. For example, the authors pointed out that quan-
tum correlations still exist in separable mixed states where the entanglement is
absent [75]. Entanglement may fail to detect the quantum phase transitions in
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such a system [25, 38]. Correlation among different parts of a system is the main
information to obtain in many-body physics and is believed to play a key role in
quantum phase transitions detection. From this point of view, a quantity that can
measure a larger amount of quantum correlation of a state may present an excellent
performance.

An alternative measure of quantum correlations is the QD. The existing results
showed that QD can detect the quantum correlations present in certain separable
mixed states [76, 77] and may be responsible for the speeding up of a mix-
state-based quantum computation [78, 79]. The related researches confirmed its
advantage in detecting quantum phase transitions: QD can be more robust against
temperature and shows more detailed information than entanglement does [38, 80].
The main reason could be that QD reflects the changes of quantum correlation in
which entanglement is absent in such quantum phase transitions. In Refs. [83],
the authors established the hierarchical relationship of different manifestations of
quantum correlations on the basis of quantum relative entropy. Three kinds of
quantum correlations measured by quantum entanglement, QD, and QC are mainly
considered. The authors confirmed the above viewpoint and further determined that
the amount of information contained in QC, QD, and entanglement decreases in
turn. Given that QC contains the most correlation information, it can seem to be the
best in detecting quantum phase transitions. Therefore, compared with the potential
advantages of quantum entanglement, the potential advantages of QD and QC on
quantum phase transition detections are focused in the later parts.

4 Quantum Discord, Quantum Coherence, and Quantum
Phase Transitions

4.1 Quantum Discord

Introduced by Ollivier and Zurek [76], QD presents an alternative measure of quan-
tum correlations. Given its application prospect in mixed state quantum computing,
much attention has been focused on the properties of QD [81]. The relation between
QD and quantum phase transition is an important aspect. One important finding is
that QD is more robust against thermal fluctuations than entanglement is, and it can
detect quantum phase transitions at finite temperatures [38].

The quantum discord is related to mutual information. Two equivalent mutual
information expressions, I (ρab) and C(ρab), exist in classical information theory to
describe the correlation between two arbitrary parts, a and b. However, they become
unequal when the quantum nature dominates, and the minimum of their difference
is called QD [76]:

D(ρab) = I (ρab)− C(ρab) (7)
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with

I (ρab) = S(ρa)+ S(ρb)− S(ρab), (8)

C(ρab) = S(ρa)−min{bk} S̃(ρab|{bk}), (9)

where S(ρ) is von Neumann entropy and S̃(ρab|{bk}) is the conditional entropy and
can be written as

S̃(ρab|{bk}) =
∑

k

pkS(ρ
k
ab), (10)

with ρkab = 1
pk
(I ⊗ bk) ρab (I ⊗ bk) and pk = Tr [(I ⊗ bk) ρab (I ⊗ bk)]. The

minimum in Eq. (9) is achieved from a complete set of projective measures {bk}
on site b. With the spin system as an example, the projectors in Eq. (10) can be
written as

bk = V |k〉 〈k|V †, (11)

where {|k〉} is the standard basis {|↑〉 , |↓〉} of any two selected spins, and the
transform matrix V is parameterized as [81]

V =
(

cos θ sin θe−iϕ
sin θeiϕ − cos θ

)
. (12)

Then, the minimum of condition entropy S̃(ρr ) only depends on θ and ϕ (traversing
from 0 to π ). We can determine from the definition that I (ρab) should be the total
correlation, and C(ρab) corresponds to the classical correlation. The QD reflects the
quantum part included in the mutual information [38, 81].

The entanglement of formation (EOF) is a monotonically increasing function of
the concurrence Cρab defined in Sect. 2. It can be written as follows [38]:

EOF(ρab) = −f (Cρab )log2f (Cρab )−
[
1− f (Cρab )

]
log2

[
1− f (Cρab )

]
,

(13)

where f
(
Cρab

) = (1 +
√

1− C2
ρab
)/2. It satisfies the criteria for entanglement

monotone. Thus, we use it as a measure of entanglement instead of the concurrence
itself.

In Ref. [38], one-dimensional spin XXZ model is used as an example model to
demonstrate well the advantages of QD in quantum phase transition detection. The
Hamiltonian of the model reads as

HXXZ =
N∑

j

σ xj σ
x
j+1 + σyj σ yj+1 +σzj σ zj+1 , (14)
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where N is the number of spins in the chain,  describes the anisotropy of
the system arising from the spin–spin interactions, and σxj , σyj , and σzj are the
usual Pauli matrices of the j -th spin. This model has two critical points at zero
temperature: an infinite-order phase transition at  = 1 and a first-order transition
caused by the level crossing of ground state at  = −1 [82]. The continuous
critical point at  = 1 is hardly detected by most detectors, such as the fidelity
and the entanglement entropy [25, 53]. However, QD presents a clear signature for
this critical point.

The advantages of QD in detecting quantum critical phenomena, particularly at
finite temperatures, were further explored in theXY spin chain model in a transverse
field with three-spin interaction (XYT) [80]. The Hamiltonian is given by

H =−
N∑

j=1

(
1+ γ

2
σxj σ

x
j+1 +

1− γ
2
σ
y
j σ

y

j+1 + λσzj
)

−
N∑

j=1

α
(
σxj−1σ

z
j σ
x
j+1 + σyj−1σ

z
j σ
y

j+1

)
,

(15)

where N is the number of spins in the chain, γ describes the anisotropy of the
system arising from the spin-spin interaction, λ is the external magnetic field, and α
denotes the three-spin interaction.

This system can be diagonalized in momentum space by introducing Jordan-
Wigner transformation. Thus, it is a good experimental model. The capabilities
of QD and entanglement in detecting quantum phase transitions at both zero and
finite temperatures were analyzed. The pairwise QD of two neighboring spins
is more reliable than entanglement in identifying quantum phase transitions. We
obtained the quantum phase diagram of the system by the derivative of QD and
further confirmed the robustness of QD against thermal fluctuations compared with
entanglement (see Fig. 6). At T = 0, the vanishing EOF clearly detects the critical
points at α = ±0.5. However, the EOF deviates from the critical points as T
increases and tends to zero in the whole parameter region when T is larger than
1.0, as shown in Fig. 6a. Entanglement cannot detect the quantum phase transition

Fig. 6 (Color online) (Left) EOF and (Right) QD as functions of λ and T for γ = 0.5 and λ = 0.0
at N = 2001
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when thermal fluctuation is added. On the contrary, even when T is as high as 2.0,
QD is not zero (see Fig. 6b), and the peak structure of its derivative still points
to the position of the phase transition point. Therefore, QD is more robust than
quantum entanglement in resisting thermal disturbance and can be used to detect
quantum phase transition at finite temperature. The advantage of QD in quantum
phase transition detection fits the conclusion in Refs. [83] that QD contains more
quantum correlation than entanglement.

4.2 Quantum Coherence and Quantum Coherence Spectrum

Based on Wigner and Yanase skew information (WYSI), the simplified alternative
version of K-coherence of a quantum state can be written as [84, 85]

IL(ρ,K) = −1

4
T r

[
[ρ,K]2

]
, (16)

where ρ is the density matrix of a quantum state, K is an observable, and [. . .]
denotes the commutator. This definition satisfies all the criteria for coherence mono-
tones and can be used as an efficient measure to quantify QC [84]. For a subsystem
with two sites, A and B, if we choose A as the observable, then K is written as
KA

⊗
IB . Thus, IL(ρ,K) is written as ILAB(ρAB,KA

⊗
IB), which quantifies the

QC between A and B. The effectiveness of the WYSI-based QC and its derivatives
in detecting different types of quantum phase transitions is carefully analyzed based
on the one-dimensional Hubbard model, XY spin model, and Su-Schrieffer-Heeger
(SSH) model. QC is more robust than quantum entanglement in resisting thermal
fluctuation. It can effectively characterize quantum phase transitions of the system
at a relatively high temperature, where entanglement is not competent anymore. The
main results are as follows. First, QC clearly shows the existence of the BOW state
of the one-dimensional extended Hubbard model (see Eq. (3) for the Hamiltonian),
which is not detected easily by entanglement [40] and fidelity [62]. QC results
as a function of V at U = 2.0 under different system sizes N , plotted in Fig. 7.
For a given N , an obvious difference exists between the two neighboring two-site
QDs, namely ILi,i+1 for i = N/2 and i = N/2 + 1. The difference becomes clear
as N increases and does not disappear in the thermodynamic limit. This scenario
corresponds to the BOW state that possesses the dimerized property (details see
Ref. [62]). Second, QC shows the same effectiveness as QD in detecting quantum
phase transition at finite temperatures, where the entanglement becomes incapable
(see Fig. 8). The thermal fluctuation weakens the EOF when the temperature is
added. For example, when T = 0.5, the turning point from zero to nonzero shifts
away from the critical point at α = 0.5. EOF becomes zero in the whole parameter
range when the temperature T increases to 1.0. EOF cannot reflect the continuous
quantum phase transition at α = 0.5 of the XY spin model in a transverse field
with three-spin interaction (see Eq. 14 for its Hamiltonian). However, QC shows



30 Y.-C. Li et al.

Fig. 7 (Color online) QC for neighboring two sites i = N/2 and i = N/2 + 1 of the extended
Hubbard model at U = 2.0 under different system sizes N

Fig. 8 (Color online) (a) The EOF, (b) QD, and (c) QC as a function of α under specific
temperatures at λ = 0.0 and γ = 0.5 with N = 1001 for the XYT model. (d) and (e) show
the derivative of QD and QC, respectively, with respect to α at T = 1.2. The dashed line on the
left panel indicates the turning point at α = 0.4 for EOF under T = 0.5
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similar effectiveness as QD under such condition: the increment with α for them
shows a turning point at the critical point α = 0.5 (see Fig. 8b,c for T = 0.5), and
their derivative can still reflect the quantum phase transition even at a relative high
temperature T = 1.2, as shown in Fig. 8d,e.

QC is indeed more prominent than entanglement in detecting quantum phase
transitions. However, its performance is not better than QD. Moreover, it cannot
detect the BKT type critical point of the XXZ model. Given the correlation
information theory proposed in Ref. [83] and as mentioned in Sect. 3.4 that QC
contains the most amount of correlation information compared to quantum discord
and entanglement, we attempt to reveal further its internal relationship with quantum
phase transitions. We showed its advantages in characterizing quantum phase
transitions by analyzing the spectrum of QC [53].

The definition of QC in Eq. (16) is a single number. Some information may be
covered up by neutralization in the process of summation. Therefore, we turned to
the basic source of information, that is, its construction spectrum. We defined two
quantities to determine the change of information in each coherence energy level
and reflect the distribution property of the spectrum. The two quantities, namely
coherence entropy SQC and logarithm of the spectrum LQC , are as follows:

SQC = −∑4
n=1 αn lnαn, (17)

LQC = −∑4
n=1 lnαn, (18)

where αn with n = 1, 2, 3, and 4 is the four eigenvalues of I in Eq. (16), which
consists of the four components in its spectrum.

Using the TMRG technique, we calculated the QD for the infinite XXZ spin
chain, and the analytical method was used to deal with the XY and Ising models. The
results for the XXZ model are shown in Fig. 9. The BKT type critical point at = 1
is clearly detected by the sharp peaks of LQC at different temperatures, whereas QD
(considered the only effective detector for this critical point at present) tends to zero
at a relatively high temperature. The two critical points are also characterized by
the minimum point in SQC (see Ref. [53]). Compared with QC, which is a single
number, coherent spectrum contains complete coherent information. LQC here
acquires the disappearance of coherence information in some specific coherence
energy levels by analyzing the spectrum. SQC possesses the form of information
entropy. It reflects the distribution property of the coherence spectrum and presents
more considerable correlation information than QC itself. The conclusion is also
suitable for the quantum phase transitions in the XY and the topological-type
quantum phase transition in the spin Kitaev models [53].

However, SQC for the one-dimensional spin Kitaev model does not seem to be
as robust against temperature as that for the other quantum phase transitions. The
Hamiltonian of this model is as follows:

H =∑N
j

(
J1σ

x
2j−1σ

x
2j + J2σ

y

2j σ
y

2j+1

)
, (19)
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Fig. 9 (Color online) (a) QD and (b) LQC as functions of  under different temperature T .
QD tends to zero, and its cusp signature of CP disappears at a relative high T . (Reproduced from
Ref. [53])

where J1 and J2 describe the spin–spin interactions alternatively along the chain.
A topological critical point occurs at J2/J1 = 1.0 in this model [86]. The peak
moves away from the critical point at a low temperature T = 0.25. The weak
robustness may come from the detector or the detected quantum state itself. The
phase transition at J2 = 1.0 here belongs to the topological type. No symmetry-
breaking behaviors occur for such phase transition; thus, it cannot be characterized
by a local order parameter [21, 34, 86]. Therefore, we considered that the weak
robustness probably comes from the weak ability against thermal fluctuations of the
state itself. This conclusion was verified by the specific heat result. The thermal
excitation peak in the specific heat for Kitaev model is considerably lower than
that in XXZ model, representing an easily destroyed quantum order by thermal
fluctuation in Kitaev model. Therefore, the relatively weak robustness against the
temperature behavior of SQC for the Kitaev model should not be attributed to SQC .
Moreover, SQC is more accurate in detecting the critical point than other detectors
in this case (details see Ref. [53]).
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In summary, for a detector, the more information about the quantum correlation
it contains, the more effective it is in resisting thermal fluctuations. Qc is considered
the most important physical quantity in quantifying the quantum correlation con-
tained in the system thus far. Therefore, it possesses natural advantages in signaling
the quantum phase transitions. The above-mentioned results further proved this
claim.

5 Deducing Order Parameters from Entanglement Based
Method

The quantum information methods introduced in the previous sections have suc-
ceeded in detecting the quantum phase transition points. However, a challenge still
remains: they can only detect the phase boundaries and give us little information
about the corresponding phase property, which is a core issue in understanding the
phase diagram of a system. Therefore, deducing the potential order parameters for
various phases, particularly the topological phases, from the quantum information
point of view can help us to learn about the phases’ properties in unknown systems.

Several independent proposals to derive the order parameter exist. Furukawa
et al. proposed a method by investigating a set of low-energy “quasi-degenerate”
states that lead to the symmetry breaking in the thermodynamic limit [87]. Cheong
and Henley [88] suggested to study the singular-value decomposition of the
correlation density matrix to obtain the order parameter. Gu et al. [56] proposed
a nonvariational and relatively more intuitive approach than the above-mentioned
methods. Moreover, this approach may help establish the connection between the
quantum phase transition detectors and the order parameters.

The main idea of Gu et al.’s approach is as follows. The order parameter
is usually described by an operator. If an operator has a nonzero long-range
expectation value, then a symmetry-breaking phase exists in the system. This
operator can be used as an order parameter to describe the characteristic order of
the quantum phase. The order parameter is usually expressed by the correlation
function. For example, one can analyze the magnetic order of the system through
the spin correlation to study the magnetic characteristics of a system. For one-
dimensional case, the zero mode represents ferromagnetism, whereas the π mode
predicts the antiferromagnetic order. The reduced density matrix, which is the
core in the definition of each quantum phase transition detector, can be expressed
by correlation function. Therefore, one can analyze the structure of the reduced
density matrix to deduce the order parameter for a given unknown state. Along
this direction, Gu et al. [56] proposed that if and only if the mutual information
is nonvanishing at a long distance, then a long-range order exists in the system.
One only needs to find the minimum block with the nonzero mutual information.
Then, obtaining diagonal and off-diagonal long-range orders is possible depending
on the reduced density matrix of the block (see Ref. [56] for detail). The method



34 Y.-C. Li et al.

was applied analytically on several imaginary simple examples in Ref. [56]. We
applied the method using DMRG and exactly diagonalization numerical techniques
to a practical and relative complex model, namely the SSH model with interactions,
to verify and develop the method further.

This model is given by the Hamiltonian

H = − t
∑

j

[
(1+ η)c†

j,Bcj,A + (1+ η)c†
j,Acj,B

+ (1− η)c†
j+1,Acj,B + (1− η)c†

j,Bcj+1,A

]

+ U
∑

j

nj,Anj,B + V
∑

j

nj,Bnj+1,A. (20)

The operator cj,α destroys a spinless fermion at the unit cell j of type α = A,B.
The amplitude t is the hopping strength, η describes the dimerization, and U and V
are local Hubbard-like term coupling fermions from the same unit cell and from the
adjacent unit cells, respectively. This model initially describes a dimerized chain
of spinless fermions hopping in a tight-binding band. Given the dimerization, the
unit cell indexed by j contains two atoms of types A and B. We add the interaction
terms. For the noninteracting case, a phase transition exists between the topological
and topological-trivial phases at η = 0.

The mutual information or correlation entropy defined in Eq. (8) should be
calculated to implement the method. The subsystem is taken as a single unit
cell consisting of two atoms of type A and B. The mutual information and the
reduced density matrix spectrum are calculated. The results showed that, for η〈0,
nonzero long-range mutual information exists, indicating that we can use Gu
et al.’s method to deduce the order parameter. On the basis of

∣∣nj,A, nj,B
〉 =

{|00〉 , |01〉 , |10〉 , |11〉}, the eigenstates denoted by |A〉 , |B〉 , |C〉 , and |D〉 are
equally weighted. According to the scheme, the order parameter can be defined as

O− = wA|A〉〈A| + wB |B〉〈B| + wC |C〉〈C| + wD|D〉〈D|. (21)

However, all four unknown coefficients must be fixed. This scenario is too much
to deal with, because only the traceless and cut-off conditions exist. Therefore,
we transformed the basis to the diagonal expression with the Majorana fermion
operators to decrease the number of dominated states. In the transformed basis, the
Hamiltonian is diagonalized, and the ground state is given by the vacuum state of the
number operators nf and nd . The reduced density matrix is solely contributed by the
state

∣∣nf = 0, nd = 0
〉
. Thus, the order parameter can be defined byO− = |00〉〈00|

in the diagonal basis. Then, we transformed the diagonal operators back to the
original spinless fermion operators and obtained a quasi-local order parameter that
characterizes the topological phase in the model [57].

For the topological-trivial phase for η > 0, we took the block consisting of a
B atom at site j and an atom A at site j + 1 instead of the single-site block with
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Fig. 10 (Color online) Single-site entanglement entropy and its contour map for η = 0.6 as a
function of U and V . In each region, the dominant order parameters are shown (Reproduced from
Ref. [57])

atoms A and B at the same site. The mutual information is also nonzero in this case,
and only one dominating eigenstate of the reduced density matrix exists. The order
parameter O+ for the topological-trivial phase can be deduced directly without a
basis transformation [57].

The order parameters were deduced for all the phases when U and V in
Eq. (20) were added. Together with the entanglement entropy results and electronic
configuration analysis, the order parameters results were verified, and the ground-
state phase diagram of the system was obtained. Figure 10 shows the entanglement
results where the confirmed phases are marked on its contour map. The deduced
order parameter O− that characterizes the topological state in the interacting SSH
model was further used to study the quantum phases in the Schwinger model (the
model introduces gauge bosons to regulate the interaction between fermions) and
successfully characterize the topological quantum phases in that model [59].

The SSH model described in Eq. (20) (without U and V terms) becomes the
SSH-Kiteav model by adding triplet TS pairing. A new Kitaev order topological
phase is present in this system. The Hamiltonian is written as follows:

H = −t∑
j

[
(1+ η)c†

j,Bcj,A + (1+ η)c†
j,Acj,B + (1− η)c†

j+1,Acj,B + (1− η)c†
j,Bcj+1,A

]

+∑
j

[
(1+ η)c†

j,Bc
†
j,A + (1+ η)cj,Acj,B + (1− η)c†

j+1,Ac
†
j,B + (1− η)cj,Bcj+1,A

]
.

(22)
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The phase diagram needs four order parameters to be described. We further
deduced the order parameters OK+ and OK− of the Kiteav-type topological states by
using the operator basis transformation similar to the Majorana fermion operators,
as mentioned above (see Ref. [89]). Under the transformed basis, the Hamiltonian
of the system is diagonalized at the parameter value that is taken deep inside each
phase, and its ground state is the vacuum state of the corresponding operator. Thus,
the order parameter can be simply written as the expectation value of the projection
operator on a subset of the system’s ground state. For example, at η = 0, the order
parameters can be written as follows:

OKj,+ = |0〉〈0| = 1− nd

= 1

2
− 1

2
Hj(t =  = 1) (23)

and

OKj,− =
1

2
− 1

2
Hj(t = − = 1), (24)

where Hj is the contribution from site j to the Hamiltonian. This observation
indicates that the local Hamiltonian Hj itself may be used as the order parameter.
The Hamiltonian of the system is expressed as H = ∑

j Hj . Thus, Hj from deep
inside each of the four phases can serve as the corresponding quantum state order
parameters of the system. We verified the conclusion by comparing the results of
local Hj for different phases with the deduced order parameters from the reduced
density matrix approach. This method is simple and expected to be useful in
deducing the order parameters for complex quantum states.

6 Summary and Outlook

Entanglement and its related quantum correlations are the cornerstones of quantum
mechanics. The quantum effects encoded in entanglement are the essence of high-
performance quantum computing and high-efficiency quantum communication in
the future. Studying quantum phase transition in spin chain systems from the
perspective of quantum correlation not only paves a way to detect the entire
critical regions of a system without empirical knowledge but also contributes to the
understanding of quantum property and its application in spin chain-based quantum
processing.

In this chapter, we present a brief but comprehensive introduction about the
gradual development of the related research methods. We focus on the success
of each relevant work, while the possible problems are also collected. From the
correlation point of view, the more quantum correlation that the detector can capture,
the more useful it is in detecting the quantum phase transition. Therefore, among
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the three concepts, QC seems to be the best potential detector for quantum phase
transitions because of its capability in detecting multiple types of phase transitions
and its resistance to thermal fluctuations. Nevertheless, the research on QC are still
far from complete. Its universality still needs further studies.

Another issue focuses on the systematic construction of the potential order
parameters. We briefly introduce an approach to derive the order parameters starting
from the reduced density matrix closely related to entanglement and quantum
correlation. On this basis, we extend the approach to deal with the system with
the relatively complex reduced density matrix spectrum by transforming the basis
to the diagonalized basis of the Hamiltonian at specific values of the driving
parameter. The connection between the order parameter and the reduced density
matrix spectrum is established preliminarily, but the direct connection between the
order parameter and the quantum phase transition detectors needs further analysis.
A comprehensive method for the derivation of order parameters is constructive not
only for the understanding of the properties of quantum states and quantum phase
diagram construction but also for understanding of the performance of quantumness
in quantum information science.

In addition, quantum simulators can successfully study the real-time dynamics
of quantum many-body systems with the development of quantum level control
technology. In recent years, the studies on dynamical quantum phase transitions
have increased. Dynamical quantum phase transition studies have been developed to
try to understand the dynamical behavior of quantum many-body systems by intro-
ducing the concept of phase transition in the time domain. At present, the research
has two approaches: one is the order parameter method [90, 91], and the other is the
nonresolution of the physical quantity, which mainly includes the Loschmidt echo
and its correlation [52, 92] and the out-time-ordered correlation [93]. Dynamical
quantum phase transitions in the case of quantum quench have been experimentally
realized recently [92, 94]. For a detailed introduction, one can see the review article
in Ref. [95]. In addition, the quantum phase transition of an equilibrium system
is also studied from the dynamical correlation point of view [51]. The study of
dynamic quantum phase transition is just at its beginning. The related work, such
as definition understanding, phase transition classification, detection methods, and
dynamical behaviors, must be further developed. In addition, the previous study of
order parameter derivation has just been applied to equilibrium systems, whether it
can be extended to such non-equilibrium systems is also an important issue.

Finally, finding efficient and universal quantum phase transition detectors and
developing the methods for constructing the potential order parameters exhibit a
lot of hope and challenge from the perspective of quantum information. Moreover,
the essential relationship between entanglement and quantum phase transition still
needs to be further explored. Further research on this topic is not only constructive to
the improvement of the method itself but also expected to promote the development
and utilization of quantumness in this process. We take this introductory text to
sort out the relevant research and provide insights for future research. We hope that
this work can stimulate advance ideas in building a real bridge between condensed
matter physics and quantum informatics.
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Entanglement Entropy in Critical
Quantum Spin Chains with Boundaries
and Defects

Ananda Roy and Hubert Saleur

Abstract Entanglement entropy (EE) in critical quantum spin chains described by
1+1D conformal field theories contains signatures of the universal characteristics
of the field theory. Boundaries and defects in the spin chain give rise to universal
contributions in the EE. In this work, we analyze these universal contributions for
the critical Ising and XXZ spin chains for different conformal boundary conditions
and defects. For the spin chains with boundaries, we use the boundary states for
the corresponding continuum theories to compute the subleading contribution to the
EE analytically and provide supporting numerical computation for the spin chains.
Subsequently, we analyze the behavior of EE in the presence of conformal defects
for the two spin chains and describe the change in both the leading logarithmic and
subleading terms in the EE.

1 Introduction

Entanglement, one of the quintessential properties of quantum mechanics, plays
a central role in the development of long-range correlations in quantum-critical
phenomena. Thus, quantification of the entanglement in a quantum-critical system
provides a way to characterize the universal properties of the critical point. The von
Neumann entropy of a subsystem serves as a natural candidate to perform this task.
For zero-temperature ground states of 1+1D quantum-critical systems described by
conformal field theories (CFTs), the von Neumann entropy [equivalently in this
case, entanglement entropy (EE)] for a subsystem exhibits universal logarithmic
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scaling with the subsystem size [1, 2]. The coefficient of this scaling determines a
fundamental property of the bulk CFT: the central charge, which quantifies, crudely
speaking, the number of long-wavelength degrees of freedom. The aforementioned
scaling, together with strong subaddivity property of entropy [3] and Lorentz
invariance, leads to an alternate proof [4] of the celebrated c-theorem [5] in 1 + 1
dimensions. At the same time, the scaling of EE in these gapless systems [6] and
their gapped counterparts [7] lies at the heart of the success of numerical techniques
like density matrix renormalization group (DMRG) [8, 9] in simulating 1+ 1D
quantum systems.

Given the widespread success of EE in characterizing bulk properties of
quantum-critical points, it is natural to ask if EE also captures signatures of
boundaries and defects in gapless conformal-invariant systems. Consider CFTs
on finite systems with conformal boundary conditions. For these systems, the EE
receives a universal, subleading, boundary-dependent contribution, the so-called
boundary entropy [10, 11]. The latter, related to the “ground-state degeneracy” of
the system, plays a central role in a wide range of problems both in condensed matter
physics [12, 13] and in string theory [14]. The boundary contribution in the EE is
a valuable diagnostic for identifying the different boundary fixed points of a given
CFT [15–17].

Conformal defects or interfaces comprise the more general setting. In the
simplest case, a CFT, instead of being terminated with vacuum, is glued to another
CFT [18]. In general, the two CFTs do not have to be the same and have not even
the same central charges [19]. Unlike the case of boundaries, conformal defects
can affect not just the subleading terms in the EE but also the leading logarithmic
scaling [20–22]. Of particular interest are the (perfectly transmissive) topological
defects which can glue together CFTs of identical central charges [18, 23–26].
These defects commute with the generators of conformal transformations and, thus,
can be deformed without affecting the values of the correlation functions as long
as they are not taken across field insertions (hence the moniker topological). They
reflect the internal symmetries of the CFT and relate the order-disorder dualities
of the CFT to the high-low temperature dualities of the corresponding off-critical
model [24, 27, 28]. They also play an important role in the study of anyonic chains
and in the correspondence between CFTs and three-dimensional topological field
theories [29]. For these topological defects, the EE receives nontrivial contributions
due to zero-energy modes of the defect Hamiltonian [30, 31], which in turn can be
used to identify the different defects [31]. Note that although the EE of a subsystem
in the presence of a defect contains information about the latter [20, 32, 33], the
exact behavior of the EE depends on the geometric arrangement of the subsystem
with respect to the defect.

The goal of this work is to describe the behavior of the EE for the Ising and
the free, compactified boson CFTs in the presence of boundaries and defects. First,
we compute the boundary entropy for these two models for free (Neumann) and
fixed (Dirichlet) boundary conditions for the continuum theory using analytical
techniques. This is done by computing the corresponding boundary states [34, 35].
We compare these analytical predictions with numerical computations of the EE for
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suitable lattice regularizations. Subsequently, we investigate EEs in the two CFTs in
the presence of defects when the defect is located precisely at the interface between
the subsystem and the rest. For the Ising model, we consider the energy and duality
defects. The computation of EE is performed by mapping the defect Hamiltonian
to a free-fermion Hamiltonian and computing the ground-state correlation function.
Finally, we analyze the EE across a conformal interface of two free, compactified
boson CFTs. The numerical computation is done using DMRG for two coupled
XXZ chains with different anisotropies.

2 Entanglement Entropy in CFTs with Boundaries

Consider the ground state, |�〉, of a many-body system described by a CFT at zero
temperature. Then, the EE of a spatial region, A, is the von Neumann entropy:

SA = −TrA
(
ρA ln ρA

) = − lim
n→1

∂

∂n
TrρnA. (1)

Here n is the replica index and ρA = TrB(|�〉〈�|). Furthermore, B denotes the
rest of the system. The density matrix ρA can be computed using the path-integral
formalism in Euclidean space-time cut open at the intersection of the region A (for
a detailed derivation, see Ref. [11]). In particular, the EE can be obtained from a
computation of the partition function Z1 on the surface and Zn on its n−sheeted
cover TrAρnA = Zn/Z

n
1 . For the geometries and models under consideration, this

amounts to computation of the partition functions on annuli after suitable conformal
transformations [16]. We directly state the results for the EE for three different
geometries (see Fig. 1) and refer to the reader to Ref. [16] for the derivations. In

Fig. 1 Schematic of the three different geometries considered: (a) a finite region (A) of length r in
an infinite system, (b) a finite region of length r in a periodic ring of lengthL, and (c) a finite region
of length r in a finite system of length L. In the last case, one end of the subsystem coincides with
the end of the system. The cuts separating A from B are denoted by κ1,2. Note that in panel (c), one
of the entanglement cuts coincides with the physical termination of the total system, resulting in
the geometry having only one entanglement cut. This leads to a different leading order dependence
of the EE [see Eqs. (3,4)]
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particular, for a finite region of length r within an infinite system (Fig. 1a), the EE
is given by

SA = c
3

ln
r

a
+ s1 + s2 + · · · , (2)

where c is the central charge of the CFT and a is the non-universal constant related
to the UV cutoff. Furthermore, s1,2 = ln g1,2 are O(1) contributions to the EE
that arise due to the ‘entanglement cuts’, κ1,2, at the junction of the subsystem (A)
and the rest (B). The g1,2 are the corresponding g-functions [10, 12]. For identical
regularization procedures for the two cuts κ1 and κ2, s1 = s2. The dots correspond
to subleading corrections [16, 17]. Analogous results hold for a region within a
periodic ring of length (L) (Fig. 1b), where the EE for subsystem A is given by:

SA = c
3

ln

[
L

πa
sin

(πr
L

)]
+ s1 + s2 + . . . , (3)

where the various variables are interpreted as before. Finally, we consider the case
of a finite system of length L with identical boundary conditions1 at the two ends,
with one end of the subsystem coinciding with physical boundary of the total
system (Fig. 1c). In this case, the EE is given by

SA = c
6

ln

[
2L

πa
sin

(πr
L

)]
+ s1 + s2 + . . . . (4)

Note that the coefficient of the leading logarithmic term is c/6 as opposed to c/3 of
the previous cases. This accounts for the difference in the number of entanglement
cuts in this case compared to the previous two. In particular, while the O(1)-term
s2 arises from the entanglement cut κ , s1 arises due to the physical boundary
condition of the system. For generic systems, the boundary condition arising out
of the entanglement cut is free boundary condition [17, 36, 37].

Below, we describe the two cases of the Ising and the free, compactified boson
CFTs with different boundary conditions for the geometry in Fig. 1c.

2.1 Ising Model

The Ising model is the unitary, minimal model M(4, 3) with central charge c = 1/2
(see, for example, Chapters 7 and 8 of Ref. [38]). It contains three primary fields,
I, σ, ε, with conformal dimensions: hI = 0, hσ = 1/16, and hε = 1/2. We will
consider two cases: (i) free/Neumann (N) boundary conditions at both ends and (ii)

1 See Ref. [16] for discussion on different boundary conditions at the two ends.
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fixed/Dirichlet (D) boundary conditions at both ends. The boundary states for the
different boundary conditions are given by Cardy [35]

|0̃〉 = 1√
2
|0〉 + 1√

2
|ε〉 + 1

21/4 |σ 〉,
∣∣∣
1̃

2

〉
= 1√

2
|0〉 + 1√

2
|ε〉 − 1

21/4
|σ 〉,

∣∣∣
1̃

16

〉
= |0〉 − |ε〉, (5)

where the first two correspond to Dirichlet boundary conditions and the last
corresponds to Neumann boundary condition (see Chap. 11 of Ref. [38] for further
details). The corresponding g−functions are

gN =
〈
0
∣∣∣

1̃

16

〉
= 1, gD = 〈0|0̃〉 =

〈
0
∣∣∣
1̃

2

〉
= 1√

2
. (6)

This straightforwardly reveals the change in boundary entropy as the boundary
condition is changed from Neumann to Dirichlet:

S = sN − sD = ln
gN

gD
= 1

2
ln 2. (7)

Next, we compute using DMRG, the EE in a critical transverse field Ising chain
and compare with the analytical CFT predictions derived above. The Neumann
condition is implemented by a spin chain with open boundaries. The lattice
Hamiltonian is given by

HNTFI = −
1

2

L−1∑

i=1

σxi σ
x
i+1 −

1

2

L∑

i=1

σzi . (8)

The Dirichlet boundary condition is implemented by adding a small longitudinal
boundary field at the two ends of the chain:

HDTFI = HNTFI − hb(σ x1 + σxL). (9)

The boundary field sets a correlation length-scale. By looking at the change in the
EE for a subsystem size much larger than this correlation length, we can extract the
boundary entropy contribution in the scaling limit. In our simulations, we chose the
system size to be L = 1600 and a bond-dimension of 600 to keep truncation errors
below 10−12. We verify the central charge (c) to be�1/2. This is done by evaluating
the entanglement entropy S for a finite block (of length r) within the system (of
length L) and fitting to Eq. (4) for Neumann and Dirichlet boundary conditions at
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Fig. 2 DMRG results for the critical transverse field Ising chain. The system size L = 1600.
Entanglement entropy S as a function of the subsystem size r for Neumann (green) and Dirichlet
(maroon) boundary conditions. The central charge was verified to be �1/2 by fitting the data for
Neumann boundary conditions to Eq. (4). As the boundary condition changes from Neumann to
Dirichlet, the entanglement entropy changes by 0.3464 which is close to the expected change in
the boundary entropy given by (ln 2)/2

both ends of the chain. By changing the boundary conditions, we obtain a change in
entropy that is very close to the expected value of (ln 2)/2 (see Fig. 2).

2.2 The Free, Compactified Boson Model

Consider the free, compactified boson CFT with a compactification radius R over
an interval [0, L] with either Neumann or Dirichlet boundary conditions. The
Euclidean action is given by

A0 = 1

2

∫ β

0
dt

∫ L

0
dx
[
(∂tφ)

2 + (∂tφ)2
]
, (10)

where β is the inverse temperature. At the boundary, Neumann boundary condition
corresponds to ∂xφ = 0, while Dirichlet corresponds φ = φ0, where φ0 is a
constant. The boundary states for this model are well-known [39, 40]. They are

|N(φ̃0)〉 =
√
R
√
π
∑

m

e
− imφ̃0R

2
√
π exp

[
+
∑

k>0

ã
†
−kã

†
k

]
|0,m〉, (11)

|D(φ0)〉 = 1√
2R
√
π

∑

n

e
− inφ0
R
√
π exp

[
−
∑

k>0

ã
†
−kã

†
k

]
|n, 0〉. (12)



Entanglement Entropy in Critical Quantum Spin Chains with Boundaries and Defects 47

Note the duality between Neumann and Dirichlet boundary conditions: R ↔
2/R and φ̃0 is the field dual to φ0. Recall that the integers m, n determine the
winding number and the quantization of the zero-mode momenta, respectively. The
normalizations for the boundary states directly yield the corresponding g-functions
leading to the following change in the boundary entropies:

gN =
√
R
√
π, gD = 1√

2R
√
π
⇒ S = ln

gN

gD
= 1

2
ln
(

2R2π
)
. (13)

Next, we provide numerical verification of the above result. To that end, we
consider a finite XXZ spin chain. The open spin chain realizes the Neumann
boundary condition:

HNXXZ = −
1

2

L−1∑

i=1

[
σxi σ

x
i+1 + σyi σ yi+1 +σzi σ zi+1

]
, (14)

where  is the anisotropy parameter. As is well-known, the long-wavelength
properties of this spin chain, in the paramagnetic regime, −1 ≤  ≤ 1, are
well-described by the free, compactified boson CFT [see Eq. (10)] [41, 42]. The
compactification radius is related to the Luttinger parameter (K) in the following
way:

R = 1√
πK

, K = 2

π
cos−1. (15)

The Dirichlet boundary condition is realized by adding a small-transverse field
along the σx direction at the boundaries:

HDXXZ = HNXXZ − hb(σ x1 + σxL), (16)

where hb is the boundary field strength. Bosonizing the Hamiltonian with boundary
fields leads to the boundary sine-Gordon Hamiltonian [43, 44] with massless
bulk [45] in the scaling limit (we follow the bosonization rules of Ref. [46]):

AbSG = A0 +Mb
∫
dt

[
cos

βφ(x = 0)

2
+ cos

βφ(x = L)
2

]
, (17)

where β = √
4πK and Mb is the boundary potential strength which depends on

the lattice parameter hb. A nonzero Mb (equivalently, a nonzero hb) induces the
boundary RG flow from Neumann to Dirichlet boundary conditions. In terms of the
Luttinger parameter, the corresponding change in the boundary entropy is given by

S = 1

2
ln

2

K
. (18)
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Fig. 3 DMRG results for the XXZ chain. The anisotropy parameters are  = cos(π/4) (left),
cos(π/2) (center) and cos(3π/4) (right). The corresponding Luttinger parameters areK = 0.5, 1.0
and K = 1.5. The system size L = 1000. Entanglement entropy, S, as a function of the subsystem
size r for Neumann (green) and Dirichlet (maroon) boundary conditions. The central charge was
verified to be �1 by fitting to Eq. (4). As the boundary condition changes from Neumann to
Dirichlet, the EE changes by 0.6931, 0.3467, and 0.1468, respectively. The obtained results are
close to the expected changes in the boundary entropy: ln 2, (ln 2)/2, and [ln(4/3)]/2, respectively

Figure 3 shows the results of the computation of the EE for the various bipartition-
ings of the system for = cos(π/4), cos(π/2), and cos(3π/4). The corresponding
Luttinger parameters are given byK = 1/2, 1, and 3/2. The change in the boundary
entropy is computed by taking the difference of the EE values near the center of the
chain. The obtained [expected] values of S are � 0.6931 [ln 2], 0.3467 [(ln 2)/2],
and 0.1468 [{ln(4/3)}/2] for the chosen values of the .

3 Entanglement Entropy in CFTs with Defects

In this section, we consider the more general setting of two CFTs glued together
by a defect and investigate the behavior of the interface EE, i.e., the EE across
the defect. The latter measures the amount of entanglement between the two CFTs
glued together at the defect as long as the state of the total system remains pure.
Intuitively, the presence of the defect leads to back-scattering of the information-
carrying modes of the system. This leads to a diminishing of entanglement between
the left and right halves of the system connected at the defect compared to the case
when there is no defect. In particular, we concentrate on those defects which are
marginal perturbations around fixed point without any defects. For these models, the
interface EE exhibits still the logarithmic scaling characteristic of the CFT without
defects. However, unlike the case without defects, the coefficient of the logarithmic
scaling yields a continuously varying “effective central charge”—a manifestation
of the well-known effect that marginal perturbations lead to continuously varying
scaling exponents [47, 48]. In fact, the central charge depends continuously on the
transmission coefficient, t , of the scattering matrix in the scattering picture.

Next, we describe the behavior of the interface EE for the Ising and the free,
compactified boson models in the presence of such defects. We will always consider
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the case where the defect lies at the center of a chain with open boundary conditions
and compute the interface EE for a subsystem extending from the left end of the
system up to the defect. Then, the interface EE (SI ) for a total system size L scales
as:

SI [t (b)] = ceff[t (b)]
6

ln
L

a
+ s1 + s2[t (b)] + · · · , (19)

where ceff[t (b)] is a continuously varying “effective central charge” and b is the
defect strength. It occurs with a factor 1/6 since there is effectively only one
entanglement cut for a system with open boundary conditions (see discussion in
Sect. 2). The subleading term has two contributions: s1 arises from the boundary
condition on the left and s2[t (b)] from the defect. Finally, the dots indicate terms
that are smaller than O(1). The explicit dependence of the ceff on the defect strength
is nontrivial and has been analytically obtained for the free, real fermion [21, 32] and
the free, compactified boson [20, 22]. They are provided below.

3.1 The Ising Model

In this section, we describe the two defect classes: energy and duality of the Ising
model.

3.1.1 Energy Defect

The energy defect for the Ising model arises due to a ferromagnetic coupling with
an altered strength bε [40, 49]. The Hamiltonian is given by

HεTFI = −
1

2

L−1∑

j=1

σxj σ
x
j+1 −

1

2

L∑

j=1

σzj +
1− bε

2
σxi0σ

x
i0+1, (20)

where i0 = L/2 (for definiteness, we take L even). For our purposes, it is sufficient
to consider bε ∈ [−1, 1]. In particular, bε = 1 corresponds to the case when
there is no defect, while bε = 0 splits the chain in two halves.2 Finally, bε = −1
corresponds to an antiferromagnetic bond in the middle of the chain. Note that for an
open chain, unlike for a periodic chain, any defect Hamiltonian with defect strength
−bε can be transformed to one with defect strength bε under a nonlocal unitary
transformation. The latter involves flipping all the spins on one half of the chain. In
this way, a bε = −1 defect can be transformed away to the case without a defect.

2 Note that the open chain can be obtained from the periodic Ising chain by introducing an energy
defect between the sites L and 1 with strength bε = 0.
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As is evident from Eq. (20), the defect part of the Hamiltonian is indeed a
marginal perturbation by the primary operator ε at a point in space (recall that the
conformal dimensions of ε are hε = h̄ε = 1/2). This model can be mapped, using
standard folding maneuvers [13, 40], to a boundary problem of the Z2 orbifold of
the free-boson. This allows computation of relevant spin-spin correlation functions
across the defects [40]. Since our interest is in the interface EE, we use a different,
exact, solution of the problem by mapping it to a fermionic model. The Hamiltonian
of the latter model is bilinear in fermionic creation and annihilation operators
and can be diagonalized semi-analytically [50, 51]. This leads to very efficient
computation of EE from the ground-state correlation matrix using techniques of
Refs. [52–54].

This is done using the Jordan-Wigner (JW) transformation:

γ2k−1 = σxk
k−1∏

j=1

σj , γ2k = σyk
k−1∏

j=1

σj , (21)

where γj -s are real, fermion operators obeying {γj , γk} = 2δj,k . Note that
−iγ2k−1γ2k = σzk . The resulting fermionic Hamiltonian is given by

H
ε,f

TFI =
i

2

L−1∑

j=1

γ2j γ2j+1 + i
2

L∑

j=1

γ2j−1γ2j − i(1− bε)
2

γ2i0γ2i0+1. (22)

Now, we diagonalize this Hamiltonian numerically and compute the EE for
different bipartitionings of the system by computing the ground-state correlation
matrix (similar results have been obtained in Ref. [55]). Figure 4(left) shows the EE
for varying bε from 0 to 1.0 in steps of 0.2. The interface EE is obtained by choosing
r = L/2. The scaling of the interface EE with L for bε = 0.2 is shown on the top
right panel. Fitting to Eq. (19) leads to a ceff = 0.112. The analytical prediction for
the effective central charge is [21, 32]

ceff(t) = |t |
2
− 1

2
− 3

π2

[
(|t | + 1) ln(|t | + 1) ln(|t |)+ (|t | − 1)Li2(1− |t |)+ (|t | + 1)Li2(−|t |)

]
,

(23)

where t = sin[2(cot−1 bε)] and Li2 is the dilogarithm function [56]. The results
obtained by the free-fermion technique are compatible with that predicted by
Eq. (23) up to the third decimal place. Figure 4 shows a comparison of the effective
central charges (top right panel) and the corresponding offsets (bottom right panel).
We compute the offsets normalized with respect to the case of no defect and plot
s2[t (bε)]− s2[t (bε = 1)] for different values of bε . We do not know of an analytical
expression for the normalized offsets.
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Fig. 4 Results for EE (S) for an open Ising chain with an energy defect. The defect strength is
varied from 0 to 1 in steps of 0.2. (Left) The EE for different bipartitionings of the in a system,
with a total system size, L = 500. The dip around the center of the chain for the EE is due
to the defect. (Top right) Effective central charge from the scaling of the interface EE (SI ) for
varying system sizes from L = 100 to L = 500. Fitting to Eq. (19) yields the corresponding ceff-s,
which are plotted in the top right panel. For comparison, the analytical predictions from Eq. (23)
are shown with crosses of the corresponding color. The corresponding offsets, normalized with
respect to the case of no defect: δs2 = s2[t (bε)] − s2[t (bε = 1)], are obtained from the linear fit
and are plotted in the bottom right panel. We do not know of an analytical expression for the δs2-s

3.1.2 Duality Defect

The duality defect [26, 57] of the Ising model between the sites at i0 and i0 + 1
arises due to an interaction of the form σxi0σ

y

i0+1 instead of the usual ferromagnetic
coupling. Equally important, there is no transverse field at the site i0 + 1. The
resulting defect Hamiltonian is given by

HσTFI = −
1

2

L−1∑

j=1,
j �=i0

σxj σ
x
j+1 −

1

2

L∑

j=1,
j �=i0+1

σzj −
bσ

2
σxi0σ

y

i0+1. (24)

The duality defect for bσ = 1 (equivalently bσ = −1, which is related by a local
unitary rotation) is the topological defect for the Ising CFT. Note that this duality
defect Hamiltonian is related by a local unitary rotation on the (i0 + 1)th spin to
the one considered in Refs. [40], which has σxi σ

z
i0+1 interaction. We do not use

this alternate form since it no longer leads to a bilinear Hamiltonian under JW
transformation and cannot be solved by the free-fermion technique.



52 A. Roy and H. Saleur

The fundamental difference between the duality and the energy defect Hamil-
tonians is best captured by the JW transformation. In the fermionic language, the
defect Hamiltonian is given by

H
σ,f

TFI =
i

2

L−1∑

j=1,
j �=i0

γ2j γ2j+1 + i
2

L−1∑

j=1,
j �=i0+1

γ2j−1γ2j + ibσ
2
γ2i0γ2i0+2. (25)

Note that the operator γ2i0+1 does not occur in Hσ,fTFI . It commutes with the

Hamiltonian: [γ2i0+1,H
σ,f

TFI ] = 0 and anticommutes with the conserved Z2 charge:
{γ2i0+1,Q} = 0, where Q = ∏L

j=1 σ
z
j = 1. Thus, it is a zero mode of the model

which is perfectly localized in space. It has a partner zero mode which is completely
delocalized:

�(bσ ) = bσ
i0∑

k−1

γ2k−1 +
L∑

k=i0+1

γ2k. (26)

Note that the zero modes exist for all values of bσ and are not special features of
the topological point. The fermionic Hamiltonian also reaffirms a CFT result [57,
58]: Hσ,fTFI describes a chain of 2L− 1 Majorana fermions or equivalently, L− 1/2
spins. This is important for quantifying finite-size effects.

Now, we compute the EE for different bipartitionings of the system from the
ground-state correlation matrix. However, unlike the energy defect for an open
chain, as was just described, there are zero-energy states of the defect Hamiltonian.
The existence of these states raises the question: are the zero-energy states empty or
occupied in the ground state? Yet another possibility is to consider an incoherent
superposition of filled and empty states. The latter possibility leads to the total
system being in a mixed state but is appropriate when taking the zero-temperature
limit of a thermal ensemble [59]. The question is crucial to the computation since
zero-energy modes nontrivially affect the EE. In fact, for a periodic chain of free,
real fermions, when the total system is in a mixed state, the zero modes give rise
to nontrivial corrections to the EE of a subsystem of size r within a total system of
size L [30, 59]. The correction is given by

S
( r
L

)
= πr
L

∫ ∞

0
tanh

(πrh
L

)
[coth(πh)− 1]. (27)

For r � L, the EE is oblivious to the existence of the two nonlocal zero modes
spread throughout the system:S � π2r2/12L2 → 0. The situation changes as the
subsystem occupies appreciable fraction of the total system (r ∼ L) culminating in
S(r = L) = ln 2, the latter being the entropy of the two-fold degenerate ground
state of a periodic chain of free, real fermions. Similar corrections occur for the Ising
chain with the duality defect for different choices of the total system being pure or
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Fig. 5 Results for EE (S) for an open Ising chain with a duality defect. The defect strength is
varied from 0 to 1 in steps of 0.2. (Left) The EE for different bipartitionings of the in a system,
with a total system size, L = 500. The dip around the center of the chain for the EE is due to the
defect. (Top right) Effective central charge from the scaling of the interface EE (SI ) for varying
system sizes from L = 100 to L = 500. Fitting to Eq. (19) yields ceff, which are plotted in the
top right panel. For comparison, the analytical predictions from Eq. (23) are shown with crosses of
the corresponding color. The difference in offsets [δs2 = s2(bσ ) − s2(bε = 1)] from the linear fit
are plotted in the bottom right panel. Only for bσ = 1, the δs2 is known exactly and is given by
S(1/2)/2 = −1/4+ (ln 2)/2 [31]

mixed [31]. Below, we describe the results for the case when the total system is in a
pure state and refer the reader to Ref. [31] for the mixed state results.

Figure 5 (left) shows the results for the EE for various bipartitionings of the
system of size 500. The strength of the defect (bσ ) is varied from 0.0 to 1.0 in steps
of 0.2. The scaling of the interface EE with different system sizes L yields, as for
the energy defect, the effective central charge [see Eq. (19)]. The obtained values of
ceff are shown in the top right panel, with the expected values from Eq. (23). The
offsets from this fit, normalized with respect to the case bε = 1, are shown in the
bottom right panel. Analytical result for the offset is known only for bσ = 1, when
δs2 = S(1/2)/2 = −1/4+ (ln 2)/2 [31].

3.2 The Free, Compactified Boson Model

In this section, we describe conformal interfaces of two free, compactified boson
CFTs with different compactification radii RA and RB [18, 60]. Unlike the Ising
case, the “defect” is extended throughout one half of the system (see below for a
lattice realization). For RA �= RB , the EE across the interface is lower compared
to the case RA = RB . This can be again understood due to the reflections of the
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incident wave at the interface for RA �= RB . The relevant quantity is the scattering
matrix which can be derived by a variety of methods [18]. Below, we present an
intuitive explanation based on elementary notions of electrical engineering.

The free, compact boson model with compactification radiusRα can be viewed as
describing a quantum transmission line [17, 37, 61, 62], where the impedance (Zα)
of the αth line is related to the compactification radius as: Zα ∼ 1/R2

α . At
the interface of two transmission lines with impedances ZA,ZB , the reflection
coefficient for incoming waves is given by Pozar [63], Clerk et al. [64]

r = ZB − ZA
ZB + ZA =

R2
A − R2

B

R2
A + R2

B

= cos(2θ), θ = tan−1 RB

RA
. (28)

The corresponding transmission coefficient is given by t = sin(2θ)with |r|2+|t |2 =
1. As for the Ising model, the interface EE is determined by the transmission
coefficient t [see Eq. (19)]. However, the explicit form of the central charge is
different from the Ising case and is given by Sakai and Satoh [20], Peschel and
Eisler [22]:

ceff(|t |) = 1

2
+ |t | + 3

π2

[
(|t | + 1) ln(|t | + 1) ln |t | + (|t | − 1)Li2(1− |t |)+ (|t | + 1)Li2(−|t |)

]
.

(29)

This conformal interface is realized on the lattice by two XXZ chains with
anisotropies A and B on the two sides of the interface. Thus, the defect
Hamiltonian is given by

HI
XXZ = −

1

2

L−1∑

i=1

[
σxi σ

x
i+1 + σyi σ yi+1 +iσ zi σ zi+1

]
, i = Aθ(i0 − i)+Bθ(i − i0),

(30)

where θ is the Heaviside theta function. The role of the impedance is played the
Luttinger parameter times the impedance quantum (6.5k�). Thus,

r = KB −KA
KB +KA , θ = tan−1

√
KA

KB
. (31)

As expected, for KA = KB , which corresponds to A = B , the interface
disappears with r = 0, t = 1 and ceff(1) = 1. On the other hand, for A �= B ,
either A = 1 or B = 1 corresponds to r = 1, t = 0 and ceff(0) = 0.

Figure 6 shows the EE for different bipartitionings of the system for a total
system size L = 2000. The Luttinger parameter for the left half of the chain is
fixed to K1 = 0.6, while that for the right half is varied from 0.1 to 0.6 in steps of
0.1. For K1 = K2, we recover the standard expression for EE [see Eq. (4)] which
leads to a central charge of � 0.992. Note that we use much larger system sizes
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Fig. 6 Results for interface EE (S) for an open XXZ chain with an interface defect. The left half
of the chain has a Luttinger parameter K1 = 0.6, while the same for the right half (K2) is varied
from 0.1 to 0.6 [see Eq. (15) for relation to the anisotropy parameters]. (Left) The EE for different
bipartitionings of the in a system, with a total system size, L = 2000. The dip around the center
of the chain for the EE is due to the defect. (Top right) Scaling of the interface EE (SI ) with the
system size for varying system sizes from L = 1000 to L = 2000. (Bottom right panel) Effective
central charge, ceff, obtained by fitting to Eq. (19). For comparison, the analytical predictions from
Eq. (23) are shown with crosses of the corresponding color. Note the deviation from the predicated
central charge value for K2 < 0.3. This manifests itself in both the top and bottom right panels.
This is due to finite-size effects as the isotropic point (K2 = 0) is approached for the right half of
the chain

compared to the Ising chain due to larger finite-size effects in the current model. As
K2 is lowered, the interface is clearly apparent in the EE (see left panel). The scaling
of the interface EE for different system sizes [see Eq. (19)] is shown in the top right
panel. The effective central charge obtained from the scaling is plotted in the bottom
right panel. Note that as K2 approaches the value 0 (the isotropic point for the right
half of the XXZ chain), we start seeing deviations from the predicted central charge
value due to the finite size of the system. This is manifested in both the top right and
the bottom right panels. It will be interesting to provide an analytical prediction for
this finite-size effect.

4 Conclusion

In this work, we have described the behavior of EE in the CFTs with boundaries and
defects. First, we considered the Ising and the free, compactified boson models with
Neumann and Dirichlet boundary conditions and computed the change in universal,
boundary-dependent contribution to the EE. Next, we computed the behavior of
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the EE in these models in the presence of conformal defects. In particular, we
considered the energy and the duality defects of the Ising model and the interface
defect of the free, boson theory. We showed that defects and interfaces, unlike
boundaries, manifest themselves in both the leading logarithmic scaling and the
O(1) term in the EE.

Here, we concentrated on the von Neumann entropy as the measure of
entanglement. However, entanglement measures like mutual information [65] and
entanglement spectrum [66, 67] have seen much use in the characterization of CFTs
with boundaries [17, 68–70] and defects [71] for certain geometric arrangements
of the subsystem with respect to the boundary or the defect. A particularly simple
situation arises for the entanglement Hamiltonian (HA) of a subsystem (A) after
bipartitioning a CFT with identical boundary conditions on the two ends [16]. Then,
HA is related to the CFT Hamiltonian with appropriate boundary conditions α, β:

HA = − 1

2π
ln

e−2πHαβ

Tr e−2πHαβ
, (32)

where the denominator inside the logarithm originates from the fact that the reduced
density matrix ρA should be normalized. The above align is to be understood
as an equality of the eigenvalues of the two sides the align up to overall shifts
and rescalings, which can be absorbed by rescaling the velocity of sound in the
corresponding boundary CFT. The first boundary condition α is inherited from the
original system, while the second β originates from the entanglement cut and is
the free/Neumann boundary condition. Then, the partition function of the CFT on
a cylinder with appropriate boundary conditions leads directly to the entanglement
Hamiltonian spectrum [17].

Consider the case when α = Neumann for the Ising CFT. Then, the correspond-
ing partition function can be written as a sum over characters of the Ising CFT [see
Eq. (5)]:

ZNN(q) = Tre−2πHNN =
∑

j=0,σ,ε

∣∣∣
〈 1̃

16

∣∣∣j
〉∣∣∣

2
χj (q̃) = χ0(q̃)+ χε(q̃) = χ0(q)+ χε(q).

(33)

Here the parameter q is defined as:

q = e−2π2/L̄, q̃ = e−2L̄, L̄ = ln
(2L

πa
sin
πr

L

)
, (34)

r is the subsystem size and we have used the explicit form of the modular S-matrix
of the Ising CFT [35]. Thus, we find that the partition function gets contribution
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from two primary fields: I, ε. We use the explicit formulas for the characters (see
Chapter 8 of Ref. [38]):

χ0(q) = 1

η(q)

∑

n∈Z

[
q(24n+1)2/48 − q(24n+7)2/48

]
, (35)

χε(q) = 1

η(q)

∑

n∈Z

[
q(24n+5)2/48 − q(24n+11)2/48

]
, (36)

where η(q) is the Dedekind function defined as

η(q) = q1/24ϕ(q) = q1/24
∏

n>0

(1− qn). (37)

Expanding in q, we get

χj (q) = q−1/48+hj ∑

n≥0

pj (n)q
n, j = 0, ε, (38)

where p0,ε(i) are obtained to be

p0(n) = 1, 0, 1, 1, 2, 2, 3, . . . , (39)

pε(n) = 1, 1, 1, 1, 2, 2, 3, . . . . (40)

Thus, the entanglement energies, labeled by two indices: (j, n), are given by

εN(j, n) = − 1

2π
ln

q−1/48+hj+n

q̃−1/48
∑
k=0,ε

∑
m≥0

pk(m)q̃hk+m

= L̄

48π
+ π
L̄

(
− 1

48
+ hj + n

)

+ 1

2π
ln
∑

k=0,ε

∑

m≥0

pk(m)e
−2L̄(hk+m) (41)

with degeneracy at the level (j, n) being given by pj (n). The lowest entanglement
energy level is given by

εN(0, 0) = L̄

48π
− π

48L̄
+ 1

2π
ln
∑

k=0,ε

∑

m≥0

pk(m)e
−2L̄(hk+m). (42)
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With respect to this lowest level, the entanglement energies are given by

εN(j, n) ≡ εN(j, n)− εN(0, 0) = π
L̄

(
hj + n

)
, (43)

and, thus, occur at integer (half-integer) values in units of π/L̄ for j = 0(ε). Similar
computations can be done for α = Dirichlet [17]. It will be interesting to generalize
this computation to the case of CFTs with defects.
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Entanglement Entropy and Localization
in Disordered Quantum Chains

Nicolas Laflorencie

Abstract This chapter addresses the question of quantum entanglement in disor-
dered chains, focusing on the von-Neumann and Rényi entropies for three important
classes of random systems: Anderson localized, infinite randomness criticality, and
many-body localization (MBL). We review previous works and also present new
results for the entanglement entropy of random spin chains at low and high energy.

1 Introduction

1.1 Generalities

Random impurities, disorder, and quantum fluctuations have the common tendency
to conspire, destroy classical order, and drive physical systems toward new states of
matter. Whether intrinsically present, chemically controlled via doping materials, or
explicitly introduced via a random potential (as in ultra-cold atomic setups) of for
instance by varying 2D film thickness, randomness can lead to dramatic changes
in many properties of condensed matter systems, as exemplified by Anderson
localization phenomena [1, 2], the Kondo effect [3, 4], or spin-glass physics [5].
In such a context, the introduction of quantum entanglement witnesses provides
new tools to improve our understanding of quantum disordered systems. Among the
numerous entanglement estimates, one of the simplest is the so-called von-Neumann
entropy, which will be described in this chapter for various one-dimensional
disordered localized states of matter.
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1.2 Random Spin Chain Models

1.2.1 Disordered XXZ Hamiltonians

(i) Models Several spin systems will be discussed along this chapter. The first
(prototypical) example is the U(1) symmetric disordered spin-1/2 XXZ model

Hs =
∑

i,j

Jij

(
Sxi S

x
j + Syi Syj +Szi Szj

)
+
∑

i

hiS
z
i , (1)

where the total magnetization is conserved
[
H,

∑
i S
z
i

] = 0. This Hamiltonian is
quite generic as it can also describe bosonic or fermionic systems. Indeed, using the
Matsubara–Matsuda mapping [6] b†

i = S+i bi = S−i , and ni = Szi + 1/2, the above
spin problem, Eq. (1), equally describes hard-core bosons

Hb =
∑

i,j

Jij

2

(
b

†
i bj + b†

j bi + 2ninj
)
+
∑

i

hini + constant. (2)

A fermionic version can also be obtained from the Jordan–Wigner transforma-
tion [7], which maps hard-core bosons onto spinless fermions through:

c� = exp

⎡

⎣iπ
�−1∑

j=1

b
†
j bj

⎤

⎦ b� and c
†
� = b†

�exp

⎡

⎣−iπ
�−1∑

j=1

b
†
j bj

⎤

⎦ . (3)

The Jordan–Wigner string, although making the transformation nonlocal, ensures
that c� and c†

� satisfy anticommutation relations and are indeed fermionic operators.
In one dimension, if hopping terms are restricted to nearest neighbor, the original
XXZ spin model, Eq. (1), takes the simple spinless fermion form

Hf =
∑

i

Ji

2

(
c

†
i ci+1 + c†

i+1ci + 2nini+1

)
+ hini . (4)

(ii) Ground-State Phase Diagram in the Presence of Disorder Building on field
theory and renormalization group (RG) results [8–10], as well as numerical
investigations [11–14], the global zero-temperature phase diagram of the above
disordered XXZ chain is depicted in Fig. 1a with 3 parameters.  is the (non-
random) interaction strength, repulsive ( > 0), or attractive ( < 0),  = 0
being the free-fermion point; WJ controls the randomness in the antiferromagnetic
exchanges Ji > 0, which can be drawn from a power-law P(J ) ∼ J−1+1/WJ (while
the precise form of the distribution is irrelevant); Wh is the disorder strength of the
random fields hi , often chosen to be a uniform box P(h) = Box[−Wh ,Wh], but
again its precise form is not relevant. In Fig. 1a, one sees three main regimes:
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Fig. 1 Schematic phase diagrams for the three different systems considered. (a) Ground-state
phase diagram of the disordered XXZ chain model Eq. (1).  ∈ [−1, 1] is the interaction
parameter, andWJ ,Wh are the disorder strengths for couplings and fields (see text). Three phases
are expected. In the attractive regime  ∈ [−1,−1/2], a small pocket is robust against weak
disorder, showing quasi-long-range order (QLRO). In the absence of random field (Wh = 0)
random bonds induce a random singlet phase. In the largest part of the diagram, a localized
phase is expected. (b) The random one-dimensional TFIM Eq. (5) displays two localized phases
(disordered PM and topological ordered) surrounding an infinite randomness fixed point (IRFP) at
δ = ln J − lnh = 0. (c) Energy-resolved MBL diagram for the random-field Heisenberg chain, the
standard model for 1D MBL (this panel is adapted from Luitz et al. [15])

(1) In the absence of randomness, and inside a small pocket (blue region), the
quasi-long-range order (QLRO) is stable, with Luttinger-liquid-like critical
properties [16], such as power-law decaying pairwise correlations at long
distance.

(2) At zero random field (Wh = 0), random antiferromagnetic couplings can drive
the ground-state to the random singlet phase (RSP) [10]: a critical glass phase
controlled by an infinite randomness fixed point (IRFP) [17], having power-law
(stretched exponential) average (typical) correlations.

(3) IRFP and RSP are destabilized by nonzero (random) fields, driving the systems
to a localized ground-state, also known as the Bose glass state [18]. This
localized regime is directly connected to the non-interacting limit.

1.2.2 Random Transverse Field Ising Chains

Another class of disordered spin chain models is given by the famous transverse-
field Ising model (TFIM)

HTFI =
∑

i

Jiσ
x
i σ

x
i+1 + hiσ zi , (5)
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which can also be recasted into a free-fermion model

HTFI =
L∑

i=1

[
Ji

(
c

†
i c

†
i+1 + c†

i ci+1 − cic†
i+1 − cici+1

)
+ hi

(
1− 2c†

i ci

)]
. (6)

This system is equivalent to the celebrated Kitaev chain [19], but here with equal
pairing and hopping terms, and in the presence of disorder. Despite the great tour de
force achieved by Kitaev who showed the non-trivial topological properties of the
TFIM Eq. (5) (with edge Majorana zero modes, also discussed by Fendley [20]),
many of the properties of Eq. (6) were studied several decades before (in the
disorder-free case) by Lieb, Schultz, Mattis [21], and Pfeuty [22].

The random case, also discussed for a long time [17, 23–25], has been deeply
understood by D. S. Fisher [17, 25] who solved the strong disorder renormalization
group (SDRG) method for the critical point of the random TFIM at δ = ln J −
lnh = 0, which also exhibits an IRFP. This (non-interacting) quantum glass displays
marginal localization for single-particle fermionic orbitals [26], while a genuine
Anderson localization is observed for δ �= 0, with the following physical phases:
a disordered paramagnet (PM) when δ < 0 and a topological ordered magnet if
δ > 0. Physical properties of the 1D random TFIM have been studied numerically
using free-fermion diagonalization techniques [27–29], but most of these studies
have focused on zero-temperature properties. Below we will address entanglement
for low- and (very) high-energy states.

1.2.3 Many-Body Localization

Here, we briefly discuss the main properties of many-body localization (MBL)
physics, while referring the interested reader to recent reviews on this broadly
discussed topic [30–33]. The excitation spectrum of disordered quantum interacting
systems has been a fascinating subject for more than two decades now [34–40].
While the very first analytical studies focused on the effect of weak interac-
tions [35, 36], the majority of the subsequent numerical studies then addressed
strongly interacting 1D systems, such as the random-field spin-1/2 Heisenberg
chain model [15, 38]

H =
L∑

i=1

(�Si · �Si+1 − hiSzi
)
, (7)

for which there is now a general consensus in the community for an infinite-
temperature MBL transition [15, 41–45]. The very existence of MBL has also
been mathematically proven (under minimal assumptions) [40] for random inter-
acting Ising chains, and there is a growing number of experimental evidences
in 1D [46–49]. MBL physics is reasonably well-characterized, mostly thanks to
exact diagonalization (ED) techniques [15, 50] probing Poisson spectral statistics,
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low (area-law) entanglement of eigenstates and its out-of-equilibrium logarithmic
spreading, eigenstates multifractality. In Fig. 1c, we show the energy-resolved MBL
phase diagram, as obtained in Luitz et al. [15], for the “standard model” Eq. (7),
where hi are independently drawn from a uniform distribution [−Wh,Wh], and
ε = (E − Emin)/(Emax − Emin) is the energy density above the ground-state.

1.3 Chapter Organization

The rest of the chapter will be organized as follows. We start in Sect. 2 with perhaps
the simplest case of Anderson localized chains, through the study of the XX spin-
1/2 chain model in a random-field. We first briefly discuss its localization properties
in real space and then present numerical (free-fermion) results for the entanglement
entropy of many-body (at half-filling) eigenstates, for both the ground-state and at
high energy. Upon varying the intensity of the random-field, we observe interesting
scaling behaviors with the localization length, as well as remarkable features in
the distribution of von-Neumann entropies. We then move to infinite randomness
physics in Sect. 3 with the celebrated logarithmic growth of entanglement entropy
for random-bond XX chains where we unveil an interesting crossover effect and
also for the quantum Ising chain that is studied at all energies. We then provide a
short review of the existing results beyond free-fermions, e.g., random singlet phases
with higher spins, and also discuss the cases of engineered disordered systems
with locally correlated randomness or the so-called rainbow chain model. We then
continue in Sect. 4 with the entanglement properties for the many-body localization
problem. Eigenstates entanglement entropies at high energy will be discussed for the
standard random-field Heisenberg chain model, paying a particular attention to the
shape of the distributions in both regimes and at the transition. Finally, concluding
remarks will close this chapter in Sect. 5.

2 Entanglement in Non-interacting Anderson Localized
Chains

2.1 Disordered XX Chains and Single-Particle Localization
Lengths

Before discussing the entanglement properties, we first focus on the Anderson
localization in real space which occurs in disordered XX chains. In the easy-plane
limit ( = 0) of Eq. (1), the XX chains are equivalent to free fermions

H =
L−1∑

i=1

[
Ji

2

(
c

†
i ci+1 + c†

i+1ci

)
−

L∑

i=1

hini

]
+HB, (8)
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Fig. 2 Exact diagonalization results for Anderson localization in one dimension Eq. (8). Panels
(a, b): exponentially localized orbitals for a single L = 32 sample (with Wh = 5). Two examples
of L/2 = 16 occupied orbitals for (a) the many-body ground-state (ε = 0) and (b) a random
high-energy many-body state (ε ≈ 0.5). Panel (c): color map of the single-particle localization
length, computed for L = 512 from the PR Eq. (10) and averaged over thousands of disordered
samples and small single-particle energy windows. Single-particle energies are normalized, such
that for each sample εsp = (E − Emin)/(Emax − Emin), where E are the single-particle energies.
Panels (d), (e) show typical and average single-particle localization lengths, computed for various
chain lengths L from the PR Eq. (10) and averaged over all single-particle states and thousands
of random independent samples. Limiting cases of large and weak localization lengths are shown
with open symbols. Black dashed lines show 1/W 2

h divergences. Insets: logarithmic divergence of
the inverse localization length at strong disorder, Eq. (11) (green lines) with W0 ≈ 2.46 for the
average (d) and W0 ≈ 1.82 for the typical (e). Overall, typical and average localization lengths
display similar behaviors in the Anderson localized regime

HB being a boundary term.1 This quadratic Hamiltonian takes the diagonal form
H = ∑L

m=1 Emb
†
mbm, using new operators bm = ∑L

i=1 φm(i)ci . For nonzero
random field, all single-particle orbitals φm(i) are exponentially localized in real
space, as exemplified in Fig. 2a,b for a small chain of L = 32 sites.

2.1.1 Localization Length from the Participation Ratio (PR)

Assuming exponentially localized orbitals φm of the simple (normalized) form

|φm(i)|2 = tanh

(
1

2ξm

)
exp

(
−|i − i

m
0 |

ξm

)
, (9)

1 HB = − JL2 e−iπNf
(
c

†
Lc1 + c†

1cL

)
is the boundary term for PBC (HB = 0 for OBC), with Nf

the number of fermions (Nf = Sztot + L/2).
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the participation ratio (PR) [51, 52] is given by

PRm = 1∑
i |φm(i)|4

=
tanh

(
1
ξm

)

tanh2
(

1
2ξm

) . (10)

In the limit ξm � 1, one recovers the fact that the PR is a good estimate of the
actual localization length: here PRm ≈ 4ξm. The opposite limit (ξ � 1) is more
tricky. For large disorder Wh, a perturbative expansion of the wave function in the
vicinity of its localization center im0 yields amplitudes vanishing ∼ W−2r

h , where r
is the distance from im0 . Therefore, for strong randomness, the localization length
slowly vanishes, following

1/ξ ∝ 2 lnWh (Wh � 1), (11)

and thus ξ can become formally smaller (and even much smaller) than the lattice
spacing (which has been set to unity). However, in the case of a perfectly localized
orbital with ξ → 0, the PR will saturate to one, since by definition PR ≥ 1. There-
fore, in order to quantify very small localization lengths, one has to slightly modify
the way we estimate ξm. Coming back to the above definition of the PR, Eq. (10), ξ

will be solution of a cubic equation X3 + X = 2PR−1, where X = tanh
(

1
2ξ

)
,

thus yielding (using Cardano’s formula) X =
(

PR−1 +
√

1
27 + PR−2

)1/3

+
(

PR−1 −
√

1
27 + PR−2

)1/3

. At strong disorder (when PR → 1), we get ξ ≈
1/ln

(
4

PR−1

)
, while in the other limit (PRm � 1) we recover ξ ≈ PR/4.

2.1.2 Numerical Results for the Localization Lengths

Building on Eq. (10) and the above cubic equation, we have numerically evaluated
the average and typical localization lengths for disordered XX chains with constant
couplings Ji = 1 and random fields uniformly distributed in [−Wh ,Wh]. In
Fig. 2d,e, we report the disorder dependence of ξavg/typ, where average is done over
all single-particle states and 104 independent samples. At weak disorder, we observe
the expected divergence ξ ∼ 1/W 2

h [53], while at strong disorder the perturbative
result Eq. (11) is nicely recovered. In Fig. 2c, the energy-resolved single-particle
localization length ξsp (here averaged over disorder and small energy windows) is
shown against Wh as a color map (collected for L = 512 sites) where we clearly
observe an interesting (albeit weak) delocalization effect at the spectrum edges upon
increasing the disorder, a tendency already discussed by Johri and Bhatt [54].

As we will see below, this localization length is an important quantity for the
entanglement properties, as ξ will show up in the entanglement entropy.
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2.2 Entanglement Entropy for Many-Body (Anderson
Localized) Eigenstates

In the non-interacting case, many-body eigenstates are straightforwardly built
by filling up a certain number νL of single-particle states |m〉 = b

†
m|vac.〉

(in the following, we will work at half-filling ν = 1/2). Two types of eigen-
states will be considered: the ground-state, occupying the L/2 lowest energy
states |GS〉 = ∏L/2

m=1 b
†
m|vac.〉, and high-energy randomly excited states |ES〉 =∏L

m=1 θmb
†
m|vac.〉, where θm = 0 or 1, with probability 1/2 but with the global

constraint
∑
θm = L/2.

2.2.1 Free-Fermion Entanglement Entropy

The free-fermion entanglement entropy of a subsystem A (i = 1, . . . , � ∈ A) is
easy to compute [55] using the �× � correlation matrix CA, defined by

CA =

⎛

⎜⎜⎜⎜⎝

〈c†
1c1〉 〈c†

1c2〉 · · · 〈c†
1c�〉

〈c†
2c1〉 〈c†

2c2〉
. . .

...
...

. . .

〈c†
�c�〉

⎞

⎟⎟⎟⎟⎠
, (12)

with matrix elements 〈c†
i cj 〉 evaluated in a given many-body (ground or excited)

eigenstate. The von-Neumann entanglement entropy is then given by

SvN = −
∑

n

[
λn ln λn + (1− λn) ln(1− λn)

]
, (13)

where the λn are the eigenvalues of CA.

2.2.2 Low and High Energy

(i) Zero Temperature In the absence of disorder, the T = 0 entanglement entropy
of a periodic XX chain follows the famous log scaling [56–58]

S
Wh=0
vN (�) = c

3
ln �+ constant, (14)

with the central charge c = 1. For Anderson localized chains, the log growth is
cutoff by the finite localization length, as clearly visible in Fig. 3a for periodic
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Fig. 3 Von-Neumann entanglement entropies (with half-chain entanglement cuts) for Anderson
localized chains [periodic XX chains in a random field, Eq. (8)]: ED results for ground-state
(ε = 0, left panels) and randomly excited states (ε = 0.5, right panels), averaged over thousands of
independent disordered samples. (a, b) Entanglement scaling SWhvN (L) shown for various disorder
strengths Wh. The black lines are fits to the clean case forms: Eq. (14) with c = 1 and constant =
0.344 for the ground-state (a), and Eq. (17) with s0 ≈ 0.1845, and constant ≈ −0.476 for
high energy (b). Panels (c) and (d) show data collapses using the scaling forms, Eqs. (15) and
(18). Lines are the asymptotic forms, indicated on the plots. Inset: log-log plot of the disorder
dependence of the different length scales: ξ0 and ξ∞ are shown together with the average single-
particle localization length ξavg (see also Fig. 2). They all display the same W−2

h divergence at
weak disorder, while the strong disorder behavior is nonuniversal (see text)
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systems with a half-chain entanglement cut (� = L/2). Perhaps more interestingly,
the following scaling behavior emerges:

S
Wh=0
vN − SWhvN ∝ 1

3
ln

(
L

ξ0

)
if L� ξ0 (15)

→ 0 if L� ξ0, (16)

as visible in panel (c) of Fig. 3. The extracted length scale ξ0 is plotted againstWh in
the inset of Fig. 3 together with the average single-particle localization length ξavg

(also previously shown in Fig. 2). The W−2
h divergence at weak disorder is clearly

observed, while at stronger disorder the behavior is nonuniversal (see below for a
discussion).

(ii) Infinite Temperature The high-energy case is also very interesting, see Fig. 3b,d.
In the absence of disorder, the following volume-law entanglement entropy is
observed:

S
Wh=0
vN (�) = s0L+ constant, (17)

with a volume-law coefficient s0 ≈ 0.1845, which clearly departs from Page’s
law [59] (as clearly understood in Ref. [60]), and an additive constant ≈ −0.476.
As for the zero-temperature situation, as soon as Wh �= 0 Anderson localization
leads to the saturation of the von-Neumann entropy, even at infinite temperature. In
addition, we also observe in Fig. 3d a scaling behavior for

S
Wh=0
vN /S

Wh
vN ∼ L/ξ∞ if L� ξ∞ (18)

→ 1 if L� ξ∞. (19)

The extracted length scale ξ∞, visible in Fig. 3 (inset), also diverges ∼ W−2
h at

weak disorder and equally coincides with ξ0 and ξavg.

2.2.3 Strong Disorder Limit

It is worth briefly discussing the strong disorder situation, which may also be
relevant for the MBL problem (see Sect. 4). Despite their similar weak disorder
properties, the three length scales ξavg, ξ0, and ξ∞ (inset of Fig. 3) display distinct
behaviors at strong Wh, and neither ξ0 nor ξ∞ shows the logarithmic divergence
Eq. (11) of ξavg. This is in fact easy to understand from the strong disorder limit of
SvN.

(i) Ground-State At T = 0, the average is dominated by rare singlet pairs yielding
SvN = ln 2, appearing only if two neighbors have weak disorder, which occurs
with a very low probability ∼1/W 2

h . We therefore expect for the strong disorder-
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Fig. 4 Strong disorder behavior of the half-chain entanglement entropies for Anderson localized
chains. ED results for ground-state (ε = 0, left panels) and randomly excited states (ε = 0.5, right
panels). Top panels (a), (b) show histograms of SvN/ ln 2 collected for L = 32, 64 over several
hundred thousands of independent random samples for varying disorder strengths, as indicated
on the plot. One clearly sees significant peaks at integer values, thus signaling anomalously weak
disordered sites at the entanglement cut (see text). Bottom panels (c), (d) show the strong disorder
behavior of the average entropy, consistent with power-law decay (see text) with distinct exponents
between ground and excited states. Note also the strong finite-size effects at ε = 0 are almost
absent at high energy. The strong disorder scaling of SvN is dominated by the probability ρ1 =
P(|SvN/ ln 2− 1| ≤ 0.05)

average entropy SvN ∼ W−2
h , and hence a non-vanishing localization length

ξ ∼ exp
(
AW−2

h

)
, even at very strong disorder. This simple argument can be

numerically confirmed. In Fig. 4a, the histograms P(SvN) clearly show a peaked
structure with a dominant peak at 0 and a secondary one at ln 2. This is further
checked in Fig. 4c where the disorder-average entanglement entropy, together with
the probability to observe ln 2, ρ1 = P(|SvN/ ln 2 − 1| ≤ 0.05) both show a clear
W−2
h decay at large disorder, thus validating the above scenario. Note that non-

negligible finite-size effects are present for the ground-state, while randomly excited
states (discussed below) shown in panels (b, d) are much less spoiled by finite chain
effects.
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(ii) Excited-States In the same spirit, one can also make some predictions for the
high-energy behavior. Indeed, at high temperature thermalization, is expected for
each individual site having locally a weak disorder, which occurs with a higher
probability ∼1/Wh. We therefore expect SvN ∼ W−1

h at strong disorder, thus
implying that ξ∞ ∼ W−1

h , a behavior nicely observed in Fig. 3 (inset). Again,
such a simple strong disorder argument is numerically confirmed in Fig. 4b where
the histograms P(SvN) also have a peaked structure with a dominant peak at 0
and a richer secondary peak arrangement, with one at ln 2 and another visible at
2 ln 2. This is further checked in panel (d) where the disorder-average von-Neumann
entropy, together with the probability ρ1, both display a nice W−1

h decay at large
disorder, almost size-independent contrasting with the ground-state. The third peak
at 2 ln 2 can also be tracked with ρ2 = P(|SvN/2 ln 2 − 1| ≤ 0.05), which agrees
with a ∼ W−2

h decay, while it reaches the limit of numerics.

3 Entanglement and Infinite Randomness Criticalities

In the context of random quantum magnets, the strong disorder renormalization
group (SDRG) method [25, 61, 62] has proven to be very useful, in particular for the
celebrated infinite randomness fixed point (IRFP) physics, which has been deeply
described by D. S. Fisher in a series of seminal papers for d = 1 [10, 17, 25], then
later extended to d > 1 [63–65], and applied to a broad range of systems [62, 66].

3.1 Entanglement in Disordered XXZ and Quantum Ising
Chains

3.1.1 Random Singlet State for Disordered S = 1/2 Chains

Building on the SDRG framework for random-exchange antiferromagnetic XXZ
chains [10] (Eq. (1) with hi = 0), or for the random d = 1 TFIM [25] at criticality
(Eq. (5) with δ = ln J − lnh = 0), Refael and Moore [67, 68] have shown
that infinite randomness criticality is accompanied by a logarithmic scaling for the
disorder-average entanglement entropy, of the form

S(�) = ceff

3
ln �+ constant, (20)

thus contrasting with the previously discussed Anderson localization case where S
is bounded by the finite localization length. In the above form, the coefficient ceff =
c ln 2 has been reduced by a factor ln 2 as compared to the disorder-free (conformally
invariant) case in Eq. (14). This result is a direct consequence of the random singlet
structure of the ground-state of the random XXZ chain [10] where the probability to
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form a singlet between two sites at distance � is ∝ �−2 [10, 69] (see also the recent
work by Juhász [70] for an SDRG analysis of subleading corrections).

(i) Large-Scale Numerics for Random XX Chains The SDRG analytical prediction
Eq. (20) with ceff = c ln 2 has been numerically confirmed using free-fermion exact
diagonalization calculations at the XX point for large chains [69, 71–74]. Here, in
this work, we will discuss new numerical results (see Fig. 5) for random XX chains,
governed by

Hrandom XX =
L∑

i=1

Ji

(
Sxi S

x
j + Syi Syj

)
(21)

Fig. 5 Exact diagonalization results for the (half-chain) ground-state von-Neuman entropy of
S = 1/2 XX chains with random bonds, Eq. (21), with power-law distributed couplings P(J ) ∝
J−1+1/D , averaged over several thousands of disordered samples. (a) Logarithmic scaling Eq. (20)
shown for many disorder strength D = 0, . . . , 8 (indicated on the plot), thus emphasizing the
crossover between clean and RSP behaviors. The prefactor ceff of the logarithmic growth, extracted
from fits to the form Eq. (20) over sliding 7-point windows, is shown for D ∈ [0.01, 3] in panel
(c) and by rescaling the system size L → L/ξ in panel (d) where a reasonable data collapse is
obtained. Inset (d): the extracted crossover length scale diverges ∼ D−2 (we have fixed ξ = 1 for
D = 1). Panel (b) shows histograms of SvN/ ln 2 collected for L = 128, 256 over several hundred
thousands of independent random samples for varying disorder strengths, as indicated on the plot.
The random singlet structure (see also the schematic picture on top right) clearly develops upon
increasing disorder and/or system size, with peaks at even integer values
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with power-law distributed AF couplings P(J ) ∝ J−1+1/D . Note that such a
distribution allows to describe a broad range of disorder strengths: from clean
physics D→ 0 to the infinite randomness fixed point distribution where D→∞.

Figure 5a shows the finite-size behavior of the disorder-average von-Neumann
entropy SvN(L) (here again we focus on half-chain cuts), for a broad range of initial
disorder strengths D = 0.01, . . . , 8. We clearly observe the logarithmic scaling
Eq. (20), with a smooth finite-size crossover from clean physics ceff = 1 to the
SDRG asymptotic result [67] ceff = ln 2 observed at large enough D or L.

(ii) Crossover Phenomenon This crossover is controlled by a disorder-dependent
length scale ξ , as studied in panels (c, d). There, the prefactor of the logarithmic
growth has been extracted from simple fit to the form Eq. (20) over sliding windows
containing 7 points. The disorder and size-dependent crossover for the “effective
central charge” ceff(L,D) (between 1 and ln 2) exhibits a “universal” scaling form
ceff(L/ξ), as extracted in Fig. 5d. Moreover, ξ plotted in panel (d) inset is found to
diverge ∝ D−2 at weak disorder. This remarkable behavior is in perfect agreement
with a crossover already identified for the average correlation functions [75–77]. As
a matter of fact, ξ gives a simple quantitative scale beyond which asymptotic results
from SDRG can be expected. For instance, on finite chains, the random singlet
structure (depicted in Fig. 5b inset) becomes effectively visible, either when the
initial disorder D is strong enough or for increasing system size, as clearly visible
in Fig. 5b.

(iii) Random Singlets: Significant Others The situation is also very interesting for
higher Rényi indices, as discussed by Fagotti et al. [73]. Depending on how the
averaging over disorder is performed, one should expect the different scalings

Sq = ln TrρqA
1− q = ln 2

3
lnL+ constq, (22)

S̃q = ln TrρqA
1− q = fq ln 2

3
lnL+ const

′
q, (23)

with the non-trivial prefactor fq =
3
(√

5+23−q−3
)

2 ln 2(1−q) ≤ 1, vanishing at large q and
fq → 1 in the von-Neumann (or Shannon) limit q → 1. This peculiar dependence
on the disorder averaging is one of the hallmarks of infinite randomness physics, as
deeply discussed by D. S. Fisher for correlations functions [10, 25].

It is also worth mentioning how the works on entanglement in the RSP (given
by a rather simple counting of singlet bonds crossing the entanglement cut) led
to the emergence of the idea of a valence bond entanglement entropy [78–83].
This alternative entanglement witness turns out to be much easier to access within
quantum Monte Carlo frameworks, as compared to the von-Neumann or Rényi
entanglement entropies [84–90], despite some recent impressive progresses [91, 92].
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Random singlet physics has also recently triggered new studies, such as the
investigation of the entanglement negativity in Refs. [93, 94] or the extension of
the concept of symmetry-resolved entanglement equipartition [95–98] to the RSP
by Turkeshi et al. in Ref. [99].

3.1.2 Infinite Randomness Criticality at High Energy

As expected from high-energy SDRG approaches [100–103], the zero-temperature
quantum criticality of the disordered quantum Ising chain, Eq. (5), must remain
unchanged at all energies, so far only confirmed by a single numerical study [104].
Here, we present and discuss our numerical results obtained for the 1D random
TFIM in Fig. 6. First, at criticality when δ = ln J − ln h = 0, we check in the
inset of Fig. 6 the logarithmic scaling for the disorder-average entropy with open
boundary conditions with a cut at half-chain (see schematic picture in Fig. 6, top
right)

SvN(L/2, ε, δ = 0) = ln 2

12
lnL+ const(ε), (24)

Fig. 6 Exact diagonalization results for the random TFIM Eq. (5) with open boundary conditions.
Results are averaged over several thousands of samples for various system lengths L, as indicated
on the plot. The half-chain von-Neumann entropy (see schematic picture, top right) is plotted
against the control parameter δ for (zero-temperature) ground-state (ε = 0, blue symbols) and
infinite-temperature (ε = 0.5, red symbols), in both cases showing qualitatively similar behaviors
(see text). Inset: the critical scaling at δ = 0 takes the expected logarithmic form, Eq. (24). Note
also the crossover between the clean case (ε = 0, green symbols) and the asymptotic behavior
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where the only dependence on the energy density ε comes in the nonuniversal
additive constant. We remind that ground-state is at ε = 0, while ε = 0.5 corre-
sponds to infinite-temperature states. Interestingly, we also remark that const(0.5) ≈
2 × const(0). In a way similar to the previously discussed crossover from clean to
IRFP for the random-bod XX chain, we also observe the same effect here. However,
we will not vary the disorder strength, but instead vary the control parameter δ =
ln J − ln h = 2 lnW , keeping couplings and fields drawn from box distributions:
PJ/h = Box[0 ,WJ/h] uniform between 0 andWJ/h, withWJ = W−1

h = W .
In the main panel of Fig. 6, upon varying δ, the von-Neumann entropy displays

qualitatively similar behaviors for zero and infinite temperature: (i) area-law
entanglement, even at high temperature, (ii) SvN → ln 2 for positive δ, signaling
localization protected quantum order [105] with a “cat-state” structure for the
eigenstates, and (iii) IRFP log scaling Eq. (24) at criticality (see inset).

3.2 Other Systems Showing Infinite Randomness Criticality

3.2.1 Higher Spins, Golden Chain, and RG Flows

Back to zero temperature, infinite randomness physics also occurs for higher spin
systems with S > 1/2 chains [106–109], for which it was shown [110, 111] that

SvN = ln(2S + 1)

3
lnL+ constant. (25)

Non-abelian RSP is also expected for disordered chains of Majorana or Fibonacci
anyons [112–114], with a logarithmic von-Neumann entropy whose “effective
central charge” prefactor is given by lnD, where D is the quantum dimension,
e.g., D = √

2 for a Majorana chain (quantum Ising chain at criticality), and
D = (1+√5)/2 for Fibonacci anyons.

There is an important issue concerning the entanglement gradient along RG
flows. In the absence of disorder, the famous Zomolodchikov’s c-theorem [115]
implies a decay of entanglement along RG flows. The observation of decreasing
entropies along infinite randomness RG flows [67, 71, 110] then raised a similar
question for random systems. However, two clear counter examples have ruled out
such a scenario, due to Santachiara [116] for generalized quantum Ising chains
including the N -states random Potts chain and later by Fidkowski et al. [113] for
disordered chains of Fibonacci anyons. The RG flow phase diagram of disordered
golden chains from Ref. [113] is given in Fig. 7, see also Ref. [68].
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Fig. 7 RG flow diagram of
pure and random golden
chains. In the clean case,
Zamolodchikov’s c-theorem
is verified, while this is not
necessarily true in the
disordered case. Figure taken
from Fidkowski et al. [113]

3.2.2 d > 1 Infinite Randomness

Infinite randomness physics is not restricted to d = 1, but also occurs for d ≥ 2
random quantum Ising models [63, 65, 117, 118], while d > 1 random-exchange
antiferromagnets do not host random singlet physics since the T = 0 Néel order is
very robust against disorder [64, 119].

There has been some controversy regarding the precise scaling of the von-
Neumann entropy for higher dimensional IRFP in the random TFIM, in particular
for the d = 2 square lattice [120, 121]. Building on an improved SDRG algorithm,2

Kovács and Iglói [65, 117] unambiguously found a pure area-law scaling with
additive (negative) logarithmic corrections [121, 122], coming from the subsystem
corners:

SvN = αL+ 4�1(π/2) lnL+ const. (26)

with �1(π/2) ≈ −0.03. These logarithmic corrections, induced by sharp subsystem
boundaries, only occur at the infinite randomness criticality [122]. Interestingly, they
are of the same order of magnitude as the corner terms which show up in (disorder-
free) 2+ 1 CFT [123–125].

3.3 Engineered Disorders

In this part, we discuss a class of disordered spin chains where some local
correlations have been included, thus making the systems not entirely random. Two
main examples will be addressed: (i) a simple TFIM with purely local correlations

2 In Refs. [65, 117], the O(N3) CPU time scaling of the simplest SDRG approaches was scaled
down to O(N lnN) for arbitrary dimension, allowing to study the entanglement of d = 2, 3, 4
disordered quantum Ising models up to N ∼ 106 spins, see also Ref. [122].
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between random couplings and fields [126, 127] and (ii) the so-called “rainbow
model” introduced in Ref. [128] and its subsequent extensions.

(i) Random Quantum Ising Chains with Locally Correlated Disorder Binosi et
al. [126] first proposed the following quantum Ising chain model with a very simple
purely local correlation in the disorder parameters:

H = −
∑

i

Ji
(
σxi σ

x
i+1 + σzi

)
, (27)

as an example that exhibits growing entanglement upon increasing disorder. In the
above Hamiltonian, it is remarkable to see that the very same (random) number Ji
acts on a site i as a field as well as a coupling on its adjacent bond, such that a perfect
correlation (while purely local, with a minimal correlation length) is achieved.
Building on field theory, SDRG, and free-fermion numerics, this model was studied
by Hoyos et al. in Ref. [127]. First, it was found that any tiny breaking of the
perfect coupling-field correlation drives the system to IRFP physics. However, when
the perfect correlation in the Hamiltonian Eq. (27) is maintained, weak disorder is
irrelevant for the clean critical point, and quite large disorder is required to drive the
system toward a non-trivial line of critical points, where unusual properties emerge,
such as an increase of the entanglement entropy with the disorder strength. These
numerical results from Ref. [127] are reproduced in Fig. 8a.

Model Eq. (27) is an interesting example whereby construction of the disordered
system is always strictly critical at the local level, satisfying the condition Ji = hi
in Eq. (5), and thus naturally yielding δ = 0. This apparent suppression of local
randomness protects the clean physics against small disorder D, but at strong

Fig. 8 Left (a): random TFIM with local correlations, Eq. (27). Disorder-averaged entanglement
(von-Neumann) entropy plotted against subsystem lengths � for the ground-state of Eq. (27) with
various disorder strengths D, couplings being power-law distributed P(J ) ∝ J−1+1/D , for L =
1024 sites and 5000 disorder realizations. Inset: the disorder dependence of the effective central
charge exhibits a transition for Dc ≈ 0.3. Figure taken from Ref. [127]. Right: sketch of the three
regimes of the Randbow chain model Eq. (28) with randomness in the couplings Ji . (b) RSP when
h� 1. (c) Rainbow phase h→∞. (d) Randbow regime h ∼ 1. Figure taken from Ref. [130]
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enough D a new physics appears where entanglement increases with D. The
effective central charge, extracted from the logarithmic growth in the main panel of
Fig. 8a, is shown in the inset. Note that an extension to an interacting XXZ version
was studied in Ref. [129], reaching similar conclusions as compared to the above
non-interacting situation.

(ii) Rainbow and Randbow States There is another family of engineered disordered
models which has motivated an important number of works: the so-called rainbow
model [130, 131] and its extensions, in particular the “Randbow” XX chain [128]

HRandbow XX =
L+1∑

i=−L
Ji e−h|i|

(
Sxi S

x
i+1 + Syi Syi+1

)
. (28)

For the disorder-free (Ji = constant) case, the spatial structure of its inhomogeneity,
exponentially decaying from the center of the chain, allows to apply the SDRG
rule and construct the ground-state: the concentric singlet phase depicted in Fig. 8c.
Analyzing its entanglement properties [131–133], a volume-law scaling emerges
with the entropy proportional to the number of sites inside the subsystem. This
remains true for any nonzero value of the exponentially decaying parameter h, with
the particularly interesting volume-law asymptotic scaling [133], in the limit h� 1
and h�� 1

SvN(h, �) ≈ 1

6
ln

(
e�h − 1

h

)
∼ h

6
�. (29)

The introduction of a true randomness in the couplings Ji (on top of this
exponentially decaying pattern) has led Alba et al. [130] to the so-called Randbow
case, with the following results for the asymptotic forms, at large �:

SvN(�) ∝
⎧
⎨

⎩

ln 2
6 ln � if h = 0 (RSP)
� ln 2 if h→∞ (Rainbow)√
� otherwise (Randbow).

(30)

It is remarkable to observe that the RSP scaling only survives in the limit h = 0
of no decaying couplings. In the opposite limit, the rainbow concentric singlet
phase can only overcome the effect of disorder in Ji for a “vertically decaying”
inhomogeneity h → ∞. Finally, the entire regime 0 < h < ∞ falls in the
intermediate situation, the so-called “Randbow” phase, see Fig. 8d, with an unusual√
� area-law violation. This exotic scaling is a direct consequence of the ground-

state structure: exponentially rare “rainbow” regions having long-distance singlets,
coexist with “bubble” regions (made of short-range singlets) having a power-law
decaying probability [130].

Let us finally comment on the effect of interactions in the XXZ version of the
Randbow chain. While irrelevant for the RSP physics, here there very structure of
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the SDRG iterations lead to the fact that the above area-law violation appears to be
specific to the free-fermion point. From SDRG calculation, attraction is found to
restore the volume-law scaling, while repulsive interactions induce a strict area-law
scaling [130].

4 Many-Body Localization Probed by Quantum
Entanglement

4.1 Area vs. Volume-Law Entanglement for High-Energy
Eigenstates

Entanglement is a key concept to gain some insight on many-body localization
(MBL) physics, briefly described in Sect. 1.2.3, see also Refs. [30–33] for recent
reviews. In isolated quantum systems, thermalization implies that the system acts
as its own heat bath. This is the case for the so-called ergodic regime, adjacent
of the MBL phase, see Fig. 1c where the eigenstate thermalization hypothesis
(ETH) [134, 135] is expected to hold. In this delocalized phase, the reduced density
matrix of a high-energy eigenstate can be interpreted as an equilibrium (high-
temperature) thermal density matrix. Therefore, the entanglement entropy of such
a highly excited eigenstate must be very close to the thermodynamic entropy of
the subsystem at high temperature, thus exhibiting a volume-law scaling. Such
delocalized infinite-temperature eigenstates are usually well described by random
states having a maximal entanglement entropy [59].

Volume-law entanglement at high temperature has been clearly observed for
clean quantum spin chains [60, 136–139], as well as in the ergodic side of weakly
disordered chains [15, 140–142]. In contrast, the MBL regime violates ETH and
eigenstates display a much weaker area-law entanglement, quantitatively closer to
the entanglement entropy of a ground-state [143, 144]. Such qualitatively distinct
properties have been observed numerically in various studies [15, 141, 145, 146].
In order to illustrate this, Fig. 9 shows exact diagonalization results for the half-
chain von-Neumann entanglement entropy, obtained together with D. Luitz and F.
Alet in Ref. [15] for the random-field Heisenberg chain model Eq. (7). When SvN
is normalized by the system size, the transition from volume- to area-law is clearly
visible around hc ∼ 2.5 (random fields are drawn from a box [−h, h]) at this energy
density ε = 0.8, see also the scaling plot in panel (b). Our numerical data are
compatible with a volume-law entanglement at criticality [147], and with a strict
area-law scaling in the MBL regime, shown as a dashed line in Fig. 9b. Note that in
the MBL phase, Bauer and Nayak [140] reported a weak logarithmic violation of the
area law for the maximum entropy, obtained from the (sample-dependent) optimal
cut, see also [144, 148].
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Fig. 9 Entanglement entropy density SvN/L for the MBL problem at high energy. Shift-invert
exact diagonalization results for half-chain cuts performed over periodic Heisenberg chains with a
random field Eq. (7), obtained for high-energy (ε = (E−Emin)/(Emax−Emin) = 0.8) eigenstates
with various chain lengths L = 12, . . . , 22. In panel (a), a clear qualitative change is visible upon
increasing disorder h, from volume-law (black line shows Page’s law [59]) to area-law, with a
critical point observed for hc ∼ 2.5. Panel (b) shows a scaling plot obtained with hc = 2.27 and
ν = 1. The dashed line ∼ 1/L represents the strict area-law situation. Figure adapted from Luitz
et al. [15]

4.2 Distributions of Entanglement Entropies

4.2.1 Distribution Across the ETH-MBL Transition

In order to go beyond the disorder and eigenstate average entropies, a systematic
study of their distributions turns out to be extremely instructive, as first discussed
in Refs. [15, 140, 141, 149]. An enhancement of the variance with increasing
system sizes L was reported when approaching the critical region, thus providing
a quantitative tool, see, for instance, Fig. 10 (left). Another very thorough and
exhaustive study was provided by Yu et al. [150] for the standard model Eq. (7),
see Fig. 10 (right) where the four panels show a remarkable qualitative change in
the distributions of entanglement slopes upon increasing the disorder. In addition,
a bimodal structure was found at criticality, a feature surprisingly observed also
for a single disorder realization (see inset, where the distribution is computed from
eigenstates in the same disorder sample). As argued by Khemani et al. [146, 151],
a key for understanding the MBL transition may come from the differences
between fluctuations of entanglement coming from different eigenstates in the same
disordered sample, as compared to fluctuations coming from different samples, see
Fig. 10 (right) taken from Ref. [146].
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Fig. 10 Entanglement entropy distributions across the ETH-MBL transition. Left: from Khemani
et al. [146], (normalized) standard deviation of the von-Neumann entropy S/ST plotted against
disorder strength W for the standard model Eq. (7) with additional second neighbor exchange
(yielding a critical disorder strength Wc ∼ 7). In the critical region, S is dominated by sample-
to-sample fluctuations. Figure taken from Ref. [146]. Right: distribution of entanglement slopes,
from Yu et al. [150], for model Eq. (7). Upon increasing the disorder strength h, there is a clear
qualitative change in the distributions. When the transition is approached, a bimodal shape is
identified, a structure also observed at the level of a single disordered sample (inset) for 6000
eigenstates. Figure taken from Ref. [150]

4.2.2 Strong Disorder Distributions

At strong disorder, deep in the MBL regime the entanglement entropy is obviously
very small. However, following our previous discussion for the non-interacting
case (Sect. 2.2.3 and Fig. 4), it is also instructive to take a look at the histograms
in the interacting case at large disorder. Figure 11 displays several panels for
P(SvN) at various disorder strengths h = 5, 10, 15, 20, 30, 50, computed for
L = 12, 14, 16, 18, 20 at infinite temperature ε = 0.5. One can observe the
following remarkable effects:

(i) Finite-size effects are almost absent, confirming the fact that the localization
length is very small deep in the MBL phase [152, 153].

(ii) Upon increasing h, the influence of interactions becomes gradually less visible,
clearly noticeable when comparing the MBL data (symbols) with the non-
interacting case (full lines, data from panel (b) of Fig. 4). A qualitative
difference is only apparent below h ≈ 10, when more pronounced at h = 5
when the MBL-ETH transition is approached.

(iii) The peaked structure is also clearly present, signaling anomalously weakly
disordered sites. We have also checked that the probability ρ1 = P(|SvN/ ln 2−
1| ≤ 0.05) decays ∼ h−1, like in the non-interacting case. One can therefore
anticipate that the entanglement entropy will be dominated by such “rare”
events.
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Fig. 11 Strong disorder behavior of the half-chain entanglement entropy distributions for the
random-field Heisenberg chain model Eq. (7), deep in the MBL regime. Shift-invert ED results
for highly excited states at ε = 0.5. Different panels (a)–(f) show histograms of SvN/ ln 2 collected
for L = 12, 14, 16, 18, 20 (different symbols) over several thousands of independent random
samples for varying disorder strengths h = 5, 10, 15, 20, 30, 50, as indicated on the plot. The
non-interacting (free-fermions) case for L = 32 is also shown (lines) for comparison. One sees
the peaked structure gradually developing when h increases. Note the quasi-absence of finite-size
effects

5 Concluding Remarks

In this chapter, the entanglement properties of various disordered quantum chains
have been discussed, with a global focus on the von-Neumann entanglement entropy
SvN for three different classes of random spin chains. Extensive numerical results
have been presented and reviewed together with an important literature on this topic.

For Anderson localized XX chains in a random magnetic field, SvN exhibits
universal scaling with different forms which depends on the energy. Nevertheless,
it was shown that there is a unique length scale which controls the real space
localization of single-particle states and the scaling functions of the many-body
entanglement entropy. For very strong randomness, the behavior of the distributions
is also remarkable, showing some peculiar features that clearly capture some salient
low- and high-energy properties.

A second set of systems that we discussed concerns infinite randomness physics.
For random-bond XX chains at zero temperature, we unveiled a nice finite-size
crossover for the effective central charge, controlling the logarithmic scaling of the
von-Neumann entropy, from the clean behavior to the random singlet asymptotic
form. As another example of infinite randomness, the quantum Ising chain was
studied at and away from criticality, for both zero and infinite temperatures. The
logarithmic critical scaling is similar (and therefore universal) at all energies, with
only a nonuniversal constant which depends on the energy.

We have also reviewed on the existing results beyond free fermions, e.g., random
singlet phases with higher spins, and also discuss the cases of engineered disordered
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systems with locally correlated randomness or the so-called rainbow/randbow chain
models.

Finally, the strongly debated problem of many-body localization has also been
discussed through the properties displayed by eigenstates entanglement entropies at
high energy. Going beyond the volume-law to area-law paradigm for the ETH-MBL
transition, the shape of the distributions has been investigated and discussed for all
regimes, including strong disorder where Anderson and MBL insulator displays
almost similar entanglement structure, despite their clearly different dynamical
response [37, 39, 154–156].
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Some Aspects of
Affleck–Kennedy–Lieb–Tasaki Models:
Tensor Network, Physical Properties,
Spectral Gap, Deformation, and
Quantum Computation

Tzu-Chieh Wei, Robert Raussendorf, and Ian Affleck

Abstract Affleck, Kennedy, Lieb, and Tasaki constructed a spin-1 model that
is isotropic in spins and possesses a provable finite gap above the ground state
more than three decades ago. They also constructed models in two dimensions.
Their construction has impacted subsequent research that is still active. In this
review article, we review some selected progresses, such as magnetic ordering of
the AKLT models, emerging phases under deforming the AKLT Hamiltonians,
symmetry-protected topological order in several AKLT models, their spectral gap,
and applications for quantum computation.

1 Introduction

The Affleck–Kennedy–Lieb–Tasaki (AKLT) model [1] gave important confirmation
of the Haldane conjecture [2, 3] via an exactly solvable model which can be shown
to have an excitation gap and exponentially decaying correlation functions. The
simplest example is for a spin-1 chain. The Hamiltonian is

HS=1
AKLT =

∑

j

P S=2(�Sj+�Sj+1) = 1
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Fig. 1 (a) Sketch of the S = 1 AKLT chain. (b) One example term that contributes to the norm
square of the AKLT state: 〈�AKLT|�AKLT〉. The two parallel vertical lines and the two cross lines
connecting the upper and lower sites come from, respectively, the first and second terms in the
expression: 〈{α, β}|{γ, δ}〉 = δαγ δβδ + δαδδβγ . Each dashed line represents an antisymmetric
tensor arising from the singlet shared between neighboring virtual qubits. The overlap is a sum of
all possible terms

where PS=2 denotes projection onto spin-2, and we shall for convenience denote
PS=2
j,j+1 ≡ PS=2(�Sj + �Sj+1). Using �Sj · �Sj = 2 for spin-1, this can be rewritten as

HS=1
AKLT =

∑

j

P S=2
j,j+1 =

1

2

∑

j

[ �Sj · �Sj+1 + (1/3)(�Sj · �Sj+1)
2 + 2/3]. (2)

The ground state must not have a spin-2 state for any pair of neighboring spins. The
simplest way of visualizing the ground state |�AKLT〉 is to decompose the spin-1
into 2 spin-1/2’s which are combined into the spin-1 state. A pair of spin-1/2’s (or
qubits) is then combined into a singlet state on every link as in Fig. 1. (We call
these valence bonds.) This implies that on two neighboring sites the net spin can
only be 0 or 1, and hence such a wave function is annihilated any term PS=2

j,j+1 in

the above Hamiltonian: PS=2
j,j+1|�AKLT〉 = 0. That the ground satisfies the lowest

possible energy of each term in the Hamiltonian is called being frustration-free. For
N sites with open boundary conditions, the ground state |�AKLT〉 can be written
explicitly as

|�AKLT〉 = εα2α3εα4,α5 . . . εα2n,α2n+1 . . . εα2N−2α2N−1 (3)

|{α1, α2}; {α3, α4}; . . . ; {α2n−1α2n}; . . . ; {α2N−1α2N }〉,

where αi = 0, 1 is used to denote the two levels of a spin-1/2 entity, repeated indices
are summed over, and |{α2k−1, α2k}〉 ≡ (|α2k−1〉 ⊗ |α2k〉 + |α2k〉 ⊗ |α2k−1〉)/

√
2

denotes an un-normalized triplet state formed by two virtual qubits on the same
physical site k. Note that α1 and α2N are uncontracted. This implies effective S =
1/2 degrees of freedom at the two ends of the chain. These can be combined into a
singlet or triplet state which are degenerate for the AKLT model. It turns out that the
basic Heisenberg model also has S = 1/2 edge states although they have a coupling
which drops off exponentially with the system size. If a spin-1 chain contains some
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random spin=0 defects, then pairs of S = 1/2 states occur on each side of the
defect [4]. If they are weakly coupled together (but much more strongly coupled
than between the 2 edges of each chain), then we get random S = 0 and S = 1
states at each defect. These have been observed [5]. Experimental confirmation of
the Haldane gap in spin-1 chains was provided by Buyers et al. [6] and Renard et
al. [7] in two different quasi-one-dimensional materials.

This model has various generalizations. For a spin chain with spin S (an integer),
we may form n valence bonds on every link where n = S. This is the ground state
of the Hamiltonian:

H =
∑

j

S∑

S′=1

αS′P
S′(�Sj + �Sj+1), (4)

where αS′ > 0. In the rest of the article, we will mostly be concerned with the
AKLT model defined in the original paper, i.e., the magnitude of the spin S at a site
is determined by the number z of its neighbors: S = z/2.

The exact ground state correlation function was calculated for the S = 1 case in
[1] and is

〈0|Sαj Sβk |0〉 =
4

3
(−1)k−j3−|k−j |δαβ. (5)

We shall see below the alternative approach using matrix-product states (MPSs) [8,
9] other than that in the original work. Such an exponential decay in the correlation
function suggests the existence of a gap. A rigorous proof of the gap between
the ground state and first excited state for periodic boundary conditions was also
given in [1]. (We shall also see other approaches for one and two dimensions
below.) Therefore, this spin-1 model has SO(3) rotational symmetry and possesses
a unique magnetically disordered ground state (in the thermodynamic limit) and a
nonzero energy gap. This model is recognized as an example of symmetry-protected
topological order (SPTO) [10–12]. It is manifested in the fractionalization (from
spin-1 to spin-1/2) of gapless excitations at the boundary. Their response to the
symmetry action is SU(2), a projective representation of the original SO(3). We
refer the readers to the review article [13] on the relation of the Haldane gap to
the vanishing of a topological theta term with θ = 2πs, i.e., equivalent to zero for
integer s spins, and the Lieb–Schultz–Mattis theorem for half-odd integer s to the
existence of the θ term in the nonlinear sigma model, whose Lagrangian is

L = 1

2g
∂μ�n · ∂μ�n+ θ

8π
εμν �n · ∂μ�n× ∂ν �n, (6)

where �n(x, t) is the vector order parameter with unit length.
The AKLT states can be extended to two and three dimensions. The simplest

extension, relevant to the quantum computing applications discussed below, is the
honeycomb lattice with spin-3/2. Each site has 3 nearest neighbors. We decompose
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Fig. 2 Sketch of valence-bond construction for (a) the S = 3/2 AKLT state on the honeycomb
lattice and (b) the S = 2 AKLT state on the square lattice

the spin-3/2 into 3 spin-1/2’s and form a valence bond on every link, as illustrated
in Fig. 2. The above 1D spin-1 wave function provides one of the earliest examples
of matrix-product states, and the 2D spin-3/2 AKLT wave function is an example of
projected entangled pair states (PEPSs) [14]. These tensor-network representations
turn out to give a useful tool. For example, the wave function (3) can be normalized
in a diagrammatic way, using the property of the triplet 〈{α, β}|{γ, δ}〉 = δαγ δβδ +
δαδδβγ , and observables and correlation functions can also be evaluated by summing
various diagrams; see, e.g., Fig. 1. By employing MPS, these can be evaluated using
elementary transverse matrix calculation.

An alternative way of studying the AKLT states was developed in [15]. We may
introduce 2 bosons on every site, a and b with

Sz = (1/2)(a†a − b†b), S+ = a†b, S− = b†a. (7)

The AKLT state, for a general lattice, then becomes

|ψ〉 =
∏

ij

(a
†
i b

†
j − b†

i a
†
j )
M |0〉, (8)

where M is the number of valence bonds on each link. The wave function by
using the coherent state representation gives rise to a classical partition function
of antiferromagnets. The magnetic ordering of the corresponding AKLT state can
be studied via the classical partition function.

The remaining structure of this book chapter is as follows. In Sect. 2, we describe
AKLT states using tensor-network representations, including matrix-product states
MPS and PEPS. In Sect. 3, we describe the magnetic ordering of AKLT models. In
Sect. 4, we describe some understanding of symmetry-protected topological order
in several AKLT states. In Sect. 5, we describe certain hidden orders in AKLT
states; one of this is related to symmetry-protected topological order, and the other
is related to cluster states and is useful for quantum computation. In Sect. 6, we
give an explanation of how AKLT states can be used for quantum computation,
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in particular, via the scheme of measurement-based quantum computation. AKLT
states are among a few spin systems being explored for such a measurement-based
approach [16]. In Sect. 7, we explain techniques that lead to rigorous establishment
of some two-dimensional AKLT models, such as the one on the hexagonal lattice.
In Sect. 8, we discuss the scenario beyond the AKLT models by deforming them
locally. We conclude this chapter in Sect. 9.

2 Tensor-Network Picture: MPS and PEPS

A modern perspective of AKLT states is that they can be represented by tensor-
network states, such as the matrix-product states (MPSs) in one dimension and
the projected entangled pair states (PEPSs) in one and higher dimensions. To
describe these states, one places certain number of virtual qudits on each lattice
sites according to the lattice coordination number, and the two qudits associated
with an edge form a maximally entangled states. Then, one maps the Hilbert space
of the qudits on a site to that of a physical spin.

2.1 1D AKLT Chain

Each virtual qubit is entangled with a virtual qubit on its neighboring site in the
form of a spin-singlet (un-normalized and conveniently expressed in a product of a
row vector of kets with a column vector of kets):

|01〉 − |10〉 = ( |0〉 |1〉 )
( |1〉
−|0〉

)
, (9)

where the virtual qubit on the right side of a site is represented by the row vector and
the one on the left side of the next site is represented by a column vector. Combining
the two virtual qubits on each site, we have

( |1〉
−|0〉

) ( |0〉 |1〉 ) =
( |10〉 |11〉
−|00〉 −|01〉

)
, (10)

which is the local matrix whose product represents pairs of singlets, with the
boundary condition unspecified.

The local mapping from two virtual qubits to a single spin 1 (with basis states
|S = 1, Sz = +1〉, |S = 1, Sz = 0〉, |S = 1, Sz = −1〉) is given by (omitting the S
and Sz labels)

Pv = | + 1〉〈00| + |0〉(〈01| + 〈10|)/√2+ | − 1〉〈11|, (11)
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where |0〉 on the second term is |S = 1, Sz = 0〉. The action of Pv on the two virtual
qubits yields

Pv

(
|10〉 |11〉
−|00〉 −|01〉

)
=
(
|0〉/√2 | − 1〉
−| + 1〉 −|0〉√2

)
= |0〉 1√

2
σz + | + 1〉(−σ−)+ | − 1〉σ+.

(12)

Thus, we derive the three matrices corresponding to the three physical degrees |0〉,
| + 1〉, and | − 1〉, i.e.,

A0 = σz/
√

2, A+1 = −σ−, A−1 = σ+. (13)

These matrices describe the system in the bulk, and one can specify the boundary
condition. For example, for the open boundary condition, we can specify the left
and right vectors �vL/R applied to the product of matrices:

|ψopen〉 =
∑

s=0,±1

vTLAs1As2 · · ·AsN vR|s1, s2, . . . , sN 〉, (14)

which represents the ground state of the spin-1 AKLT chain with open boundary
(i.e., the first spin is not coupled to the last spin H = ∑N−1

j=1 P
S=2
j,j+1); see Fig. 3a.

The boundary spin-1/2 degrees of freedom are seen from the two-component vectors
vL and vR being arbitrary.

To describe the ground state of the periodic AKLT chain, we simply take the
trace of the matrix product,

|ψperiodic〉 =
∑

s=0,±1

Tr(As1As2 · · ·AsN )|s1, s2, . . . , sN 〉. (15)

This is illustrated in Fig. 3b. The Hamiltonian such that |ψperiodic〉 is the ground

state is H = ∑N
i=1 P

[S=2]
i,i+1 , with site N + 1 identified with site 1. We will discuss

the degeneracy of the ground states, calculations of observables and correlations,
and the proof of gap below.

Fig. 3 Schematic of
matrix-product states: (a)
open boundary condition and
(b) periodic boundary
condition
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2.2 Two Dimensions

Here, we review the AKLT states on the hexagonal and square lattices and their
Hamiltonians.

2.2.1 Honeycomb/Hexagonal Lattice

Each site contains three virtual qubits, each forming a singlet with its neighboring
virtual qubit; see Fig. 2a. The local projection is from that of three virtual qubits
to their symmetric subspace, which is identified as the Hilbert space of a physical
spin-3/2 site. The projection is given as

Pv = |Sz = +3/2〉〈000| + |Sz = −3/2〉〈111| + |Sz = +1/2〉〈W | + |Sz = −1/2〉〈W̄ |,
(16)

where we have defined for convenience

|W 〉 ≡ 1√
3
(|001〉 + |010〉 + |100〉), (17)

|W̄ 〉 ≡ 1√
3
(|110〉 + |101〉 + |011〉). (18)

One can generalize the representation of the matrix-product states to 2D and in this
case is the tensor product. Here, we can choose two different types of sites, labelled
A and B, respectively, to write the nonzero components of a tensor corresponding to
a physical index s for tensor As or s′ for tensor Bs′ . There are three virtual indices
for each As and Bs′ , whose structure is illustrated in Fig. 4. The nonzero elements
in tensor A can be read off from Pv in Eq. (16). For example, A[3/2]000 = 1,
A[−3/2]111 = 1, etc. Those in tensor B can be obtained from

Pv (iσy)⊗ (iσy)⊗ (iσy) (19)

= |Sz = +3/2〉〈111| − |Sz = −3/2〉〈000| − |Sz = +1/2〉〈W | + |Sz = −1/2〉〈W̄ |.

The parent Hamiltonian can also be straightforwardly obtained from the projector
onto the join spin-3 subspace of two neighboring sites i and j : H =∑

〈i,j 〉 P
(S=3)
i,j

as there are 6 virtual qubits with two forming a singlet, indicating that the total spin
magnitude cannot exceed S = 2. Thus, the constructed AKLT state is the ground
state of this Hamiltonian composed of a sum of projectors. Translating it to the
spin-3/2 operators, we have

H
S=3/2
AKLT =

∑

edge 〈i,j〉
P̂
(S=3)
i,j = 27

160

∑

edge 〈i,j〉

[�Si · �Sj + 116

243
(�Si · �Sj )2 + 16

243
(�Si · �Sj )3 + 55

108

]
.

(20)
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Fig. 4 Schematic of tensors for AKLT ground states on (a) the hexagonal lattice and (b) the square
lattice. The double lines represent physical degrees of freedom, whereas the thin lines represent the
virtual indices. For a fixed set of physical indices, the amplitude for the component is proportional
to the value given by the tensor contraction of all virtual indices

The original paper [1] uses a different representation (i.e., a polymer representa-
tion) via links and shows that the correlation function C(r) is bounded above by an
exponential decaying function.

2.2.2 Square Lattice

We refer to see Fig. 2b for the schematic of the construction. For S = 2 case, the
local mapping from 4 virtual qubits to S = 2 Hilbert space is as follows:

P [S=2]
v = | +2〉〈0000| + | −2〉〈1111| + | +1〉〈S(4, 1)| + | −1〉〈S(4, 3)| + |0〉〈S(4, 2)|,

(21)

where |S(n, k)〉 is the Dicke state with superposition of k 1’s and (n − k) 0’s. Due
to the singlets along edges, we can choose to have two types of tensors on A and B
sublattices, with tensorA being readily read off from P [S=2]

v . The tensor on the other
sublattice (B) is related to that ofA via P [S=2]

v σy⊗σy⊗σy⊗σy . We note that it is also

possible to choose the tensors uniformly for each site, e.g., P [S=2]
v σy ⊗ σy ⊗ I ⊗ I .

The parent Hamiltonian for S = 2 AKLT model is obtained from the two-site
projector onto the joint S = 4 subspace,

HS=2
AKLT =

∑

edge 〈i,j〉
P̂
(S=4)
i,j = 1

28

∑

〈i,j〉

[�Si · �Sj + 7

10
(�Si · �Sj )2 + 7

45
(�Si · �Sj )3 + 1

90
(�Si · �Sj )4

]
.

(22)

The tensors in the PEPS representation can be read off from P
[S=2]
v , and the

schematic picture is given in Fig. 4b. Similar to previous arguments, the AKLT
state above is a ground state of the Hamiltonian (22). The correlation function in
its ground state was shown in Ref. [17] to be bounded by an exponentially decay
function.
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Fig. 5 Illustration of how to compute expectation values (such as the correlation functions) using
the MPS formalism. (a) The diagram represents the normal square of the wavefunction 〈ψ |ψ〉. (b)
The local transfer matrix E(I ) ≡ ∑

s A[s] ⊗ A∗[s]. (c) The correlation function 〈ψ |Sαi Sβi+r |ψ〉,
which should be normalized by the expression in (a). (d) The local transfer matrix associated with
a spin operator Sα : E(Sα) ≡∑

s,s′ (S
α)s′,sA[s] ⊗ A∗[s]

2.3 Boundary Conditions and Degeneracy of AKLT Models

Kennedy, Lieb, and Tasaki used the polynomial representation (in terms of “spinors”
uj and vj , see Sect. 3) of Arova, Auerbach, and Haldane and showed that the AKLT
model on any lattice has its ground state wave function written as [17]

� = �
∏

i,j |〈i,j 〉edge

(uivj − ujvi), (23)

where � is a unique polynomial of those u’s and v’s on the boundary. This means
that if there is degeneracy, it can only come from the boundary via�. In particular, in
the periodic boundary condition, � = 1, and hence, the finite-volume ground state
is unique. One may naively think that in the infinite-volume limit, AKLT models
have a unique ground state. This would be correct if one can show that there is no
Néel order or alternatively that the correlation functions are exponentially decaying,
as done by KLT [17].

Pomata and Wei showed the degeneracy of open boundary condition is related to
the number of open legs at the boundary; see Supplemental Materials of Ref. [18].
In particular, any boundary site that has k dangling virtual qubits (not forming
singlets with other sites) contributes to a degeneracy of k + 1. In terms of the
tensor-network description, by symmetrizing these dangling tensors, the resultant
tensor that maps from these uncontracted bonds to the degenerate ground state is a
bijective tensor. Their proof uses induction by beginning with a disjointed subgraph
(which is bijective) and then showing that bijectivity is preserved when edges are
added.
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Fig. 6 Examples of n = 1 decorated lattices on the original: (a) Bethe lattice with z = 3, (b)
honeycomb lattice, and (c) square lattice. Smaller dots represented the inserted S = 1 sites on
every edge of the original lattice

3 Magnetic Ordering

The valence-bond construction of AKLT states seems to imply that there is no
magnetic ordering. It turns out that this issue is slightly complicated as one needs
to consider the thermodynamic limit. For the one-dimensional AKLT state, it was
shown in Ref. [1] that there is no magnetic ordering, i.e.,

∑
i (−1)i〈Sαi 〉/N = 0

or 〈Sαi Sαi+r 〉 = (−1)r4/3r+1 → 0 as r → ∞. This can be calculated using the
MPS formalism, illustrated in Fig. 5. We note that in the infinite system limit, one
only needs to use the eigenvector of the transfer matrix corresponding to the largest
eigenvalue in magnitude when evaluating the expectation value from both the left
and right boundaries. We leave the details for readers to work out on their own.
Although there is no Néel order, we do see the weak antiferromagnetic correlation
from the factor (−1)r .

However, antiferromagnetic ordering does occur on the Bethe lattice (or the
Cayley tree) with coordination number z = 5 or larger as shown in the original
work of AKLT [1]. It seems that zc = 4 is the critical coordination number. We note
that recently Pomata considered decorating each edge in the Bethe lattice by adding
n spin-1 sites (i.e., a spin-1 chain with n sites; see, e.g., Fig. 6a) and showed that
the critical coordination number zc(n) = 3n+1 + 1 [19]. This is consistent with the
picture that smaller spin-S has larger quantum fluctuations than large spin-S; for the
coordination number z, the spin magnitude is S = z/2 and decoration of n S = 1
sites on each edge pushes the ordering to occur at a larger coordination zc(n).

One useful approach to tackle the issue of ordering is to use the Schwinger-boson
representation by Arovas, Auerbach, and Haldane and consider the wavefunction
in the coherent state basis |n̂〉 = 1√

(2S)! (uâ
† + vb̂†)2S |vacuum〉. The AKLT

wavefunction becomes �({u, v}) = 〈{n̂}|ψAKLT〉 = ∏
〈i,j 〉(uivj − ujvi)M , where

M is the number of singlets on an edge (which is 1 for the original AKLT states).
One maps the norm square of the wavefunction to a classical O(3) antiferromagnetic
model, i.e.,
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�∗� = e−Hcl({n̂})/T , (24)

where T = 1/M and

Hcl = −
∑

〈i,j 〉
ln

1− n̂i · n̂j
2

. (25)

This is essentially an antiferromagnetic interaction, as one can see from expanding
the logarithm: Hcl ∼ ∑

〈i,j 〉 n̂·n̂j − (n̂·n̂j )3/3 + . . . . On a bipartite lattice, this is

equivalent to a ferromagnetic model by setting n̂′j = (−1)j n̂j .
Using the Mermin–Wagner theorem, one readily sees that there is no magnetic

ordering for AKLT models on 1D and 2D regular lattices [20]. However, it was
shown by Monte Carlo simulations that there is an antiferromagnetic ordering
for the AKLT model on the 3D cubic lattice, but not on the 3D diamond lattice.
The ordering implies spontaneous symmetry breaking and shows that the AKLT
model has ground state degeneracy greater than one on the cubic lattice in the
thermodynamic limit [20].

4 Symmetry-Protected Topological Order

In this section, we examine several AKLT models from the perspective of symmetry-
protected topological order.

4.1 SPT Order of 1D AKLT State

AKLT is a symmetry-protected topological (SPT) state, e.g., by Z2 ×Z2 symmetry
(generated by rotation around x or z by 180◦), a discrete subgroup of SO(3). We
can examine the action of these group elements on the local matrices of MPS. The
symmetry group is generated by the two rotations on the physical spin basis (|x〉,
|y〉, and |z〉),

Ux(π) =
⎛

⎝
0 0 −1
0 −1 0
−1 0 0

⎞

⎠ , Uy(π) =
⎛

⎝
0 0 1
0 −1 0
1 0 0

⎞

⎠ , Uz(π) =
⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ .

(26)

By directly applying their actions on the local matrices in Eq. (13), we have, for
examples,

∑

β

[Ux(π)]α,βAβ = σx · Aβ · σx,
∑

β

[Uz(π)]α,βAβ = σz · Aβ · σz. (27)
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We see that σx , σy , and σz form a projective representation of Ux , Uy , and
Uz, respectively. They generate the single-qubit Pauli group and represent the
symmetry action on the boundary degree of a semi-infinite chain, which exhibits
fractionalization. Thus, the 1D AKLT state exhibits a nontrivial SPT order [10–12].
Such an SPT order can also be detected by the string order parameter [21, 22]; see
Eq. (31) below.

Another approach to understand the SPTO in this 1D AKLT chain is the
topological theta term in Eq. (6) with θ = 2π , and the ground state wave function
of the SPT phase described the nonlinear sigma model can be expressed as
superposition of these spin vectors decorated by a local phase given by a Wess–
Zumino–Witten term [23],

|�〉 ∼
∫

Sd
ddx e

− 1
g
(∇�n)2−WZWd [�n]|�n(x)〉, (28)

where the 1D WZW term is related to the theta term in 6,

WZW1[�n] =
∫ 1

0
du
i2π

8π
εμν �n · ∂μ�n× ∂ν �n, with μ, ν = x, u, (29)

where u extends the space to an additional dimension. Based on this picture, You et
al. propose a strange correlator [24],

C(�r, �r ′) = 〈�|φ(�r)φ(�r ′)|�〉
〈�|�〉 (30)

for some local operator φ(�r), to detect the presence of SPTO in the state of concern
|�〉, where |�〉 is a product trivial state. According to You et al., this strange
correlator for SPT states is either constant or polynomially decaying. Using the
MPS formalism illustrated in Fig. 5, one can easily calculate this and obtain that
C(r, r ′) = 2 for |�〉 being the 1D spin-1 AKLT wave function and |�〉 = |00 . . . 0〉.

4.2 Two Dimensions: Honeycomb and Square Lattices

Here, we will also examine the symmetry action in terms of virtual degrees of
freedom using the PEPS formalism, we will find that it forms only a projective
representation, and this seems to imply weak SPT order for both the 2D AKLT
models on both the honeycomb lattice and square lattices. However, the study of
the strange correlator shows the difference between the two models, indicating the
AKLT state on the square lattice exhibits nontrivial SPTO.

First, theUx ,Uy , andUz of rotations around the three respective axes by an angle
of π in the spin-3/2 representation are
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Ux(π) =

⎛

⎜⎜⎝

0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

⎞

⎟⎟⎠ , Uy(π) =

⎛

⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞

⎟⎟⎠ , Uz(π) =

⎛

⎜⎜⎝

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

⎞

⎟⎟⎠ ,

which does not give a faithful representation of Z2 × Z2, as, e.g., Ux(π)Uz(π) =
−Uz(π)Ux(π) and Ux(π)2 = −I . It is actually a representation of the quaternion
group. One can check that, similar to the 1D case, the symmetry action on the
physical index can be replaced by action on the virtual indices with Pauli matrices,
up to a global phase. This shows that the action on the boundary is at best a
projective representation of Z2 ⊗ Z2, but for the strong SPTO, the symmetry
actions on the boundary need to be a manifestation of third group cohomology
group [25, 26]. Hence we conclude that the 2D AKLT state on the honeycomb lattice
is only a weak SPT order. This is confirmed by the strange correlator calculations
by Wierschem and Beach [27], which display exponential decay.

One can perform a similar analysis for the square-lattice case and find that the
symmetry action of Uα(π) on the physical index is equivalent to applying Pauli σα
on all four virtual indices, which is a projective representation of Z2 ⊗ Z2. This
suggests that the AKLT state on the square lattice is also weak SPT ordered in terms
of cohomology. However, the issue of the SPT order for the square-lattice AKLT
model is tricky. You et al. calculated the strange correlator for the AKLT state on
the square-lattice AKLT state and found that it is power-law decaying, as opposed
to the exponential decay in the former. This shows that there is strong SPT order in
the 2D AKLT state on the square lattice [24].

We also mention that a work by Haldane in 1988 [28] on an O(3) nonlinear
sigma model study for 2D quantum Heisenberg antiferromagnets shows that certain
tunneling processes between states of different topology have amplitudes sensitive
to whether the microscopic spin is a half integer, odd integer, or even integer. The
AKLT model on the square lattice is such an example of even integer S, which has
a unique disordered ground state, likely with a gap.

5 Hidden Order in AKLT States

5.1 String Order Parameter

The 1D AKLT state such as in Eq. (14) written in the MPS form allows us to see the
hidden antiferromagnetic ordering in the state. The components in the wavefunction
cannot have two equal Sz = 1 (or Sz = −1) spaced by any number of Sz = 0.
The allowed ones are . . . (+1)0 . . . 0(−1) . . . or . . . (−1)0 . . . 0(+1) . . .. The spin
configuration after stripping off the 0’s should be antiferromagnetic. This result can
be understood by the MPS picture, as σ±(σz)nσ∓ = 0.
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This hidden ordering can also be probed by a string order parameter [21, 22]

�αi,i+r = Sαi eiπ
∑i+r−1
j=i+1 S

α
j Sαi+r , α = x, y, z. (31)

Den Nijs and Rommelse argued that this order parameter is nonzero in the Haldane
phase and can be used to distinguish from other gapped phases [21]. Kennedy and
Tasaki found a nonlocal unitary transformation U that takes −�α to Sαi S

α
i+r , and

thus the latter detects ferromagnetic ordering in the transformed Hamiltonian H̃ =
UHU−1. The essential symmetry of concern is the Z2 ×Z2 of H̃ , and the Haldane
phase corresponds to complete breaking of Z2×Z2 in H̃ . Note that Oshikawa found
that the nonlocal unitary can be written as [29]

U =
∏

j<k

e
iπSzj S

x
k . (32)

This string order parameter is now understood as one of the order parameters to
detect nontrivial SPT order in one dimension [30], and it can be computed using
the MPS representation and examining how local tensors are transformed, along the
line discussed in Sect. 4.1.

5.2 Hidden Cluster Order

There is another kind of hidden order in AKLT states. Consider local projectors of
rank 2: Fα = |Sα = S〉〈Sα = S| + |Sα = −S〉〈Sα = −S|. It was shown that AKLT
state can be converted to the so-called cluster state [31] by the action of appropriate
local projector [32],

|ψcluster〉 = c
∏

v∈A

∏

u∈B
F [v]x F [u]z |ψAKLT〉, (33)

where c is a normalization constant and the effective qubit is defined by the two
levels |Sx = +S〉 and |Sx = −S〉 on the A sublattice and |Sz = +S〉 and |Sz = −S〉
on the B sublattice. In fact, one can place F ’s arbitrarily and randomly on a bipartite
lattice that hosts the AKLT model, this will convert the AKLT state to some random
graph state, and this was used in the measurement-based quantum computation with
AKLT states [32]; see also below in Sect. 6.
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5.3 Hidden Frustration on Frustrated Lattices

If the lattice is not bipartite, there is some frustration that is only revealed by
considering these F ’s. It turns out that on any loop with odd number of sites, one
cannot place Fα with the same label α along such a loop. Product of such operators
will annihilate the AKLT state [33]. This is due to the singlet construction of the
AKLT wave function and the frustration of antiferromagnetism on such a loop.
The simplest example is a periodic three-site spin-1 chain (i.e., a triangle). Another
nontrivial example is the triangles on the star lattice, which hosts a spin-3/2 AKLT
state.

6 Applications in Quantum Computation

AKLT states play a role in a scheme of universal quantum computation, the so-called
measurement-based quantum computation (MBQC) [34]. Therein, the process of
quantum computation is driven by local measurements; no unitary evolution ever
takes place. The computation begins in an appropriately entangled state such as a
cluster state. What the cluster state is to MBQC is what a blank sheet of paper is to
the artist: a great number of possibilities. Every quantum circuit can be imprinted on
it by the local measurements. Because of this property, cluster states are universal
resources for measurement-based quantum computation.

One may now ask: are cluster states the only universal resource states? If not,
how rare are universal resource states in Hilbert space?—Both questions have in
fact been answered. Universal resource states are very rare [35], but the cluster states
are not the only ones. In fact, AKLT states on various lattices in 2D are universal
[16, 32, 33, 36–38]. The purpose of this section is to explain why this is so. To
prepare for the main argument, we review the simpler but nonuniversal case of one
dimension first.

6.1 One Dimension

From the perspective quantum computation, our main interest is in the two-
dimensional scenario—quantum computationally universal. However, the basic
techniques that MBQC employs with AKLT states are easier to understand in 1D
than in 2D. We therefore start out with the one-dimensional case.
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6.1.1 Logical Identity and One-Qubit Gates

We explain the computational power of the AKLT chain in terms of its matrix-
product representation. This method is intuitive and has the added benefit of
preparing for the stronger result that the MBQC power found at the AKLT point
is uniform across the entire surrounding symmetry-protected phase with Z2 × Z2-
symmetry [39].

We have derived earlier the matrix-product form for the 1D spin-1 AKLT state
as shown in Eq. (16), where we have used the basis defined by+1, 0, and−1. If we
define a different orthonormal basis for the spin-1 states via

|0〉 ≡ |z〉, | + 1〉 ≡ −(|x〉 + i|y〉)/√2, | − 1〉 ≡ (|x〉 − i|y〉)/√2.

Then, we obtain the matrix-product representation in this new basis:

Pv

( |10〉 |11〉
−|00〉 −|01〉

)
= 1√

2
(|x〉σx + |y〉σy + |z〉σz).

Thus, measuring the physical degrees of freedom in the orthonormal basis B0 =
{|x〉, |y〉, |z〉} has the effect of applying sequences of Pauli matrices on the virtual
space. The “virtual” quantum register, initialized in the state described by the right
boundary condition vR , is thus propagated across the chain [40],

vR → σαN vR → σαN−1σαN vR · · · →
N∏

i=1

σαi vR. (34)

This is the simplest conceivable quantum protocol—a quantum wire. The Pauli
matrices applied to the virtual quantum register are random but known, as in
quantum teleportation.

To progress from wire to logical quantum gates, one simply changes the
measurement basis. For example, a measurement in the basis

B(φ) = {|xφ〉 = cosφ|x〉 + sinφ|y〉, |yφ〉 = − sinφ|x〉 + cosφ|y〉, |z〉}

produces a logical gate

U(φ) =
⎧
⎨

⎩

σxe
iφσz , if outcome xφ,

σye
iφσz , if outcome yφ,
σz, if outcome z.

This is a probabilistic heralded rotation about the z-axis. When the outcome z is
obtained, the gate fails; but it can be reattempted as often as needed. By similar
deviations from the basis B(0), logical rotations about the x- or y-axis can be
realized, together forming a one-qubit universal set of quantum gates.
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It has been observed by Else et al. [41] that the capability for teleportation is
not only a property of the AKLT state but also of the entire Haldane phase. It is a
manifestation of symmetry-protected topological order. Namely, the generic state in
the Haldane phase can be written in the MPS form with

Aα = σα ⊗ Bα, (35)

where Bα’s are not fixed by symmetry. One may now divide the correlation space
into a logical system on which the Pauli operators act and a “junk subsystem” on
which the unknown matrices Bα act. The former supports wire as before, and the
latter is simply not used.

As it turns out, the capability to enact logical gates also extends beyond the AKLT
state to the entire surrounding SPT phase with Z2 × Z2 symmetry. See [39, 42] for
the techniques by which this is accomplished; here, we merely point out what the
additional difficulty is. Namely, to do more than wire, the spins in the chain need to
be measured in bases other than B(0). But then the factorization property Eq. (35)
no longer holds. As a consequence, the logical and the junk subsystem become
entangled, which leads to decoherence on the logical subsystem. This decoherence
must be very carefully managed.

6.1.2 Reduction to the 1D Cluster State

We now provide a second proof of the usefulness of 1D AKLT states as computa-
tional resources in measurement-based quantum computation, by mapping them to
1D cluster states under local operations. It is this argument that will generalize to
lattice dimension two and also to higher spins.

To simplify the discussion, we consider both the 1D AKLT state and the 1D
cluster state on rings rather than chains. This does not affect quantum computational
power.

The one-dimensional AKLT state can be understood within the valence-bond
picture, as illustrated in Fig. 1a. Therein, the spin-1 particle at each site v on a ring
is viewed as a pair of virtual spin-1/2 particles, or qubits, to which a projection Pv
onto the spin-1 subspace is applied. The projector takes the explicit form

P = |Sz = 1〉〈00| + |Sz = −1〉〈11| + |Sz = 0〉〈ψ+|,

where |ψ+〉 = (|01〉+|10〉)/√2, and |Sz〉 denote the eigenstates of the z-component
Ŝz of the spin operator. The virtual spin-1/2 particles form spin singlets (Bell states)
|ψ−〉 = (|01〉 − |10〉)/√2 between neighboring sites. Denoting the edges between
neighboring sites by e, the 1D AKLT state thus takes the form

|AKLT1D〉 =
⊗

v

Pv
⊗

e

|ψ−〉e. (36)
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Our task is to convert this AKLT state to the 1D cluster state by local operations.
The latter is already known to be a computational resource [34].

The 1D cluster state is a multi-qubit state, one qubit on each site i = 1, ..., N of
a ring. Up to a global phase, the cluster state is uniquely specified by the stabilizer
relations

|C1D〉 = Zi−1XiZi+1 |C1D〉, (37)

where here and below X ≡ σx , Y ≡ σy , and Z ≡ σz.
The local reduction from the AKLT state to the cluster state proceeds by a

generalized measurement, or POVM, with the three elements

Fz = (|Sz = 1〉〈Sz = 1| + |Sz = −1〉〈Sz = −1|) /√2,
Fx = (|Sx = 1〉〈Sx = 1| + |Sx = −1〉〈Sx = −1|) /√2,
Fy =

(|Sy = 1〉〈Sy = 1| + |Sy = −1〉〈Sy = −1|) /√2.
(38)

These POVM elements satisfy the required completeness relation

∑

α∈{x,y,z}
F †
αFα = IS=1. (39)

Denoting by sv ∈ {x, y, z} the POVM outcome at v, for all sites v, the post-POVM
states are

|�({sv})〉 :=
⊗

v

Fv,sv |AKLT1D〉. (40)

In the following, we identify the spin-1 Hilbert space with the symmetric subspace
of the pairs of the virtual spin-1/2 particles, e.g., |Sz = 1〉 = |00〉, |Sz = −1〉 = |11〉.
Up to this identification, we have FαP = F̃α , α = x, y, z, with

F̃z = (|00〉〈00| + |11〉〈11|) /√2,
F̃x = (| + +〉〈+ + | + | − −〉〈− − |) /

√
2,

F̃y = (|i, i〉〈i, i| + | − i,−i〉〈−i,−i|) /
√

2.
(41)

Therein, |±〉 = (|0〉±|1〉)/√2 and |±i〉 = (|0〉+i|1〉)/√2. Thus, Eq. (40) simplifies
to

|�({sv})〉 =
⊗

v

F̃v,sv

⊗

e

|ψ−〉e. (42)

We observe that the POVM elements F̃α all have rank 2. Therefore, after the POVM
Eq. (38), we remain with one qubit worth of Hilbert space per site.
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Fig. 7 Conversion of the AKLT state to the cluster state in 1D. (a) 1D cluster state with stabilizer
generator. (b) Bell measurement on the virtual qubits of a given site leads to entanglement
swapping. (c) Element of the stabilizer of the state |�̃({sv})〉. For explanation, see the text

We now show that, irrespective of the set of POVM outcomes {sv, v = 1..N},
the post-POVM states |�({sv})〉 are indeed 1D cluster states, up to local unitary
equivalence and an encoding. Related to the encoding—the precise form of which
depends on the POVM outcomes {sv}—we first need to discuss “domains” and how
to shrink them to individual qubits. As a remark, there is actually an alternative
measurement scheme that converts the 1D AKLT state into a 1D cluster state [43].

Domains Ring segments of nearest-neighboring sites on which the same POVM
outcome was obtained are called “domains.” We extract one cluster qubit per
domain, undoing the encoding mentioned above. This proceeds by measuring all
but one site in each domain in the basis

Bz =
{
|z,±〉 := (|00〉 ± |11〉)/√2

}
if s = z,

Bx =
{
|x,±〉 := (| + +〉 ± | − −〉)/√2

}
if s = x,

By =
{
|y,±〉 := (|i, i〉 ± | − i,−i〉)/√2

}
if s = y.

It is easily checked that all 〈α,±|F̃α are Bell states (bras). Therefore, after the
local POVM with the outcome s = α, the measurement in the basis Bα amounts
to the projection onto a Bell state, regardless of its outcome. We thus implement
entanglement swapping, disentangling the measured site, and otherwise leaving the
entanglement structure intact. See Fig. 7b for a graphical illustration. In this way, we
can eliminate all redundant sites in a domain. The result is a state very similar to that
of Eq. (40), but with three differences: (a) there are fewer qubits than initially, (b)
now all pairs of neighboring sites the POVM outcomes differ, and (c) the Bell states
in the PEPS representation are not necessarily spin singlets |ψ−〉 anymore but can
be either Bell state due to the measurement outcomes invoked in the entanglement
swapping. Properties (a) and (b) are important for the subsequent argument, and (c)
poses no obstacle. To summarize, the state after shrinking the domains is

|�̃({sv})〉 =
⊗

v

F̃v,sv

⊗

e

|Bell(e)〉e. (43)

Cluster States We now show that the state resulting from shrinking the domains
is an encoded cluster state, with the encoding depicted in Table 1. We observe that
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Table 1 Encoding of graph
state qubits, resulting from
the POVM Eq. (38) on a 1D
AKLT state. The site label
“v : 1” means left virtual
qubit in site v, etc.

POVM outcome z x y

Stabilizer generator Zv:1Zv:2 Xv:1Xv:2 Yv:1Yv:2
X Xv:1Xv:2 Zv:1Zv:2 Zv:1Zv:2
Z Zv:1 −Xv:1 Yv:1
Y Yv:1Xv:2 Yv:1Zv:2 −Xv:1Zv:2

(σα)v:1(σα)v:2F̃v,α = F̃v,α , for all α = x, y, z, and with Eq. (43), the operators in
the first line of Table 1 do indeed stabilize the state |�̃({sv})〉.

Now. the various combinations of distinct POVM outcomes on three adjacent
sites need to be considered on three consecutive sites u, v, and w. For illustration,
here we consider the POVM outcomes (su = x, sv = y, sw = z). The
state

⊗
e |Bell(e)〉 is an eigenstate of the Pauli observable (Xu:2Xv:1)(Zv:2Zw:1),

irrespective of the precise Bell state we find on the edges e = (u, v) and e′ = (v,w).
The latter affects only the eigenvalue ±1. Since Xv:1Zv:2 commutes with F̃v,y ,
the state |�̃({sv})〉 of Eq. (43) is also an eigenstate state of (Xu:2Xv:1)(Zv:2Zw:1).
Consulting Table 1, we find

(Xu:2Xv:1)(Zv:2Zw:1) ∼= Xu:1(Xv:1Zv:2)Zw:1) = ZuY vZw.

Therein, “∼=” means equivalent up to stabilizer. See Fig. 7c for a graphical illustra-
tion.

All that remains to be considered is the other five orderings of x, y, z. The
argument and result for them are analogous. In all cases, we find stabilizers of the
form ±ZuY vZw or ±ZuXvZw. Thus, the state |�̃({sv})〉 is, up to local z-rotations,
a 1D cluster state as defined in Eq. (37).

6.2 Two Dimensions: Universal Computation

Spin-3/2 AKLT states on a two-dimensional honeycomb lattice are universal
resources for MBQC. This result has been established independently by Miyake
[36] and Wei et al. [32].

Here, we explain the method employed in [32]. The overall strategy of quantum
computation is the same as in the 1D case discussed in Sect. 6.1.2, namely, to
reduce the AKLT state to a cluster 2D state by suitable local measurements. The
construction is probabilistic, with a success probability approaching unity in the
thermodynamic limit. At the center of the proof is a percolation argument that
involves random planar graph states.

We thus begin by explaining graph states [44], which are a generalization of the
cluster states we already discussed. Both cluster and graph states belong to the class
of stabilizer states [45], which are eigenstates of maximal sets of commuting Pauli
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operators. Specifically, a graph state |G〉 corresponding to the graph G with vertex
set V (G) and edge set E(G) is the unique stabilizer state defined by the constraints
Kv |G〉 = |G〉, ∀v ∈ V (G), with

Kv := Xv
⊗

w∈V (G)| (v,w)∈E(G)
Zw.

A graph state becomes a cluster state when the underlying graphG is that of a lattice
in some spatial dimension. Cluster states in dimension 2 are universal for MBQC.

The universality proof [32] consists of three steps: (i) the reduction of the honey-
comb AKLT state to a random planar graph state by local POVM measurement, with
the resulting graph state depending on the measurement outcomes,1 (ii) showing
that the computational power only hinges on simple connectivity properties of the
resulting graph states and is thus a percolation problem, and (iii) demonstrating by
Monte Carlo simulation that the typical graph states resulting from initial POVM
satisfy these connectivity properties. Here, we only give an outline of the proof,
drawing on the analogy with the 1D case described in Sect. 6.1.2, and pointing
to differences where they arise. The complete technical argument can be found in
[32, 46].

Step 1: Mapping to Graph States by a POVM The first operation in MBQC on spin-
3/2 AKLT states defined through Eq. (16) is a generalized measurement (a POVM).
One such measurement is applied on each site v of the honeycomb lattice L, and it
consists of 3 rank 2 elements Fv,α . We denote | ± 3/2, α〉 as the state of the highest
(+) or lowest (−)magnetic quantum number, in the direction α = {x, y, z}. In close
analogy to the one-dimensional case of Eq. (41), the POVM elements then are

F̃v,z =
√

2

3
(|000〉〈000| + |111〉〈111|),

F̃v,x =
√

2

3
(| + ++〉〈+ + +| + | − −−〉〈− −−|),

F̃v,y =
√

2

3
(|i, i, i〉〈i, i, i| + | − i,−i,−i〉〈−i,−i,−i|),

(44)

where |0/1〉, |±〉 = (|0〉 ± |1〉)/√2, and | ± i〉 = (|0〉 ± i|1〉)/√2 are eigenstates of
the Pauli operators X, Y , and Z respectively.

The linear operators F̃v,z, F̃v,x , and F̃v,y do indeed form a POVM on the
symmetric subspace projected onto by Pv (cf. Eq. (16),

∑
α=x,y,z F̃ †

v,αF̃v,α =
Pv . Every POVM element is proportional to a projector onto a two-dimensional
subspace, and the resulting state

1 This operation is in fact the starting point of both proofs [36] and [32].
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|�(A)〉 =
⊗

v∈V (L)
F̃v,αv |�AKLT〉,

with A = {αv, v ∈ V (L)} the measurement record, is therefore a state of qubits—
one for every vertex v.

Up to local unitaries, the resulting state |�(A)〉 is an encoded graph state |G(A)〉,
where the graph G(A) is a function of the measurement record A. The effect of
the randomness of the measurement outcomes is more severe now than it was in
1D. Like in dimension one, we find domains, i.e., connected regions of lattice sites
on which the same POVM outcome was obtained. As before, each domain gives
rise to one encoded cluster qubit, and the encoding is undone in a similar way as
before. The new feature in dimension two is that the cluster qubits resulting from the
domains are connected in a random planar fashion. The graph G(A), depending on
the random measurement record A and describing the resulting graph state |G(A)〉,
is obtained from the honeycomb lattice L and the measurement record A via the
following two rules:

(R1) [Edge contraction]: Contract all edges e ∈ E(L) that connect sites with the
same POVM outcome.

(R2) [Edge deletion]: In the resulting multigraph, delete all edges of even multi-
plicity, and convert edges of odd multiplicity in standard edges of multiplicity
1.

For the general proof of correctness of the rules (R1) and (R2), see [32]. See Fig. 8
for graphical illustration.

Step 2: The Percolation Problem The next step is to show that the random graph
state |G(A)〉 can be converted to a standard 2D cluster state by further local
measurement, if the following two conditions hold for typical graphs resulting from
Step 1: (C1) The domain size is microscopic, i.e., the size of the largest domain
scales at most logarithmically with |V (L)|. (C2) A left–right traversing path through
G(A) exists.

Condition (C1) ensures that the graph G(A) is macroscopic if L is, which is
required for the resulting graph state to have computational power. Condition (C2)
ensures that the resulting graph states are sufficiently long-range connected. It also
illustrates that we are dealing with a percolation problem. We will comment on this
observation further below.

(C1) and (C2) are natural conditions to invoke; however, we still need to
show that they are sufficient for universality. The basic argument is as follows.
In the supercritical phase, where a macroscopic spanning cluster exists with high

Fig. 8 Graphical illustration
of rules (R1) and (R2)
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probability, this spanning cluster contains a subgraph that is topologically equivalent
to a coarse-grained 2D lattice structure. Essentially, if one left–right traversing path
exists, then very many such paths exist, and by symmetry of the honeycomb lattice,
also very many top–bottom traversing paths exist. The coarse-grained 2D subgraph
can be carved out, cleaned from imperfections, and finally contracted to a standard
2D grid by further local Pauli measurements on |G(A)〉. For details, see [46].

We remarked above that the reduction of the AKLT state to a random planar
graph state is a percolation problem, but what kind of percolation problem is it?—
It resembles site percolation in as far as the random variables (POVM outcomes)
live on the sites. However, it is not site percolation because no site is ever deleted.
Furthermore, the present problem resembles bond percolation in as far as edges are
switched on and off (rule R2). But it is not exactly bond percolation because whether
or not an edge persists is decided not simply by a probability associated with that
edge. Rather, it is decided by random processes associated with the nearby sites.
Thus, we conclude that our percolation problem defies simple characterization, and
we defer its classification to further study.

Step 3: Testing the Conditions (C1) and (C2) To complete the argument for
quantum computational universality, it needs to be checked whether the typical
graph state resulting from the POVM Eq. (44) satisfies the conditions (C1) and (C2).
This is done numerically.

By rotational symmetry, for any site, all three possible POVM outcomes are
equally likely. However, these outcomes are correlated with outcomes on neigh-
boring sites, and this represents a complication. For a reliable simulation, these
correlations need to be taken into account. Fortunately, the joint probability for any
given configuration A of POVM outcomes on all sites can be efficiently calculated
exactly [32]. Monte Carlo simulation is thus viable, and the results are shown in
Fig. 9. Conditions (C1) and (C2) are satisfied. This concludes the argument for
computational universality of spin-3/2 AKLT states.

We conclude this section with a brief description of related work on ground
states of lattice Hamiltonians as MBQC resources and the role of symmetry.
First, the argument above has been generalized to AKLT states on lattices other
than honeycomb, including spin-2 [33, 37, 38]. For most lattices, but not all,
computational universality persists.

Furthermore, for a one-dimensional manifold of deformed AKLT Hamiltonians
with reduced symmetry, the known transition from disorder to Neél order [47] was
reinvestigated. It was found numerically that the location of the physical phase
transition coincides with the transition in computational power [48]. This gave
early support to the notion of “computational phase of quantum matter,” which
refers to the property of certain quantum phases—for example, symmetry-protected
phases—to have uniform computational power. Any ground state in such a phase is
equally as good a resource for MBQC as any other ground states.

The phenomenon of computational phases of matter was conceived in [49],
where for a hybrid of measurement-based and adiabatic quantum computation, it
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Fig. 9 (a) [Top panel] Statistics of the average domain size, average width of domain size
distribution, average degree of a vertex, and the largest domain size (inset) in the typical graphs as
a function of the linear size L. (b) [Bottom panel] Site percolation study by deleting randomly any
vertex on typical random graphs and measuring the probability of a spanning cluster. The crossing
represents the location of the percolation phase transition in the thermodynamic limit. Figures were
reproduced from the data of the work [32]

was shown that proper operation only relies on the presence of symmetry. Detailed
knowledge of the Hamiltonian or its ground state is not required. The connection
with symmetry-protected topological order was already recognized and emphasized
in this work. Subsequently, uniformity of MBQC power in symmetry-protected
phases was established for one-dimensional [39, 41, 42, 50] and two-dimensional
systems. In particular, 2D computationally universal phases have been identified
[51–54].
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7 Spectral Gap for AKLT Models

The 1D spin-1 AKLT model was proven to be gapped in the original AKLT
paper [1]. The significance of the result was the first proved gapped integer-value
spin chain that is both isotropic in spin symmetry and gapped in the spectrum.
This model differs from the spin-1 Heisenberg spin chain by the biquadratic spin–
spin interaction (�Si · �Si+1)

2. Till now, the spectral gap of the spin-1 Heisenberg
model has not been rigorously established, despite accurate numerics from DMRG.
The proof in the original work of AKLT analyzes in detail the ground spaces in
successively increasing regions, including those being ground states in a smaller
region but orthogonal to the ground space in a larger region. In the end, they were
able to upper bound the projector PL to the complement of the ground space in a
whole chain of size L by some additive constant and a term proportional to the total
Hamiltonian [1], which we quote here,

PL ≤ 16(l + 1)ε(l)+
(

2(l + 1)

el+1
+ 1

el

)
H1,L, (45)

where el is the gap of the chain with size l and ε(l) is an exponentially small
quantity, i.e., ε(l) ≤ c·3−l . The finite gap exists as 16(l+1)ε(l) can be made smaller
than 1 as long as l is sufficiently large. The infinite chain result was generalized from
the finite chain by considering a chain with sites from −L to L and taking L→∞.

The technique of proving the gap in 1D had also been generalized by Knabe [55]
and Fannes, Natchtergaele, and Werner [8]. There were also more recent works [56–
58], not necessarily limited to 1D. Instead of directly bounding the Hamiltonian H ,
many of the latter developments consider bounding H 2, and we will discuss two
variations below, which also apply to two dimensions.

Beyond one dimension, the correlation functions with respect to the ground
state wave function from the hexagonal and square lattices were shown to decay
exponentially [1, 17], suggesting that the models are gapped. There were some
prior numerics with tensor network [59, 60] that estimate the gap values in the
thermodynamic limit. Several 2D AKLT models were recently shown to be gapped
rigorously [18, 61–63] and one breakthrough came from the work of Abdul-Rahman
et al. on decorated hexagonal lattices [61], where a certain number n of spin 1
sites are added to each edge of the hexagonal lattice; see, e.g., Fig. 6b. For n ≥ 4,
they showed analytically that the decorated hexagonal lattices host AKLT models
that possess a finite gap. This analytic result was generalized to other decorated
lattices [62], including decorated square lattices and beyond two dimensions; see,
e.g., Fig. 6c.

AKLT Hamiltonians belong to the so-called frustration-free models, for which
the ground state satisfies the lowest energy of each local term. One can simply shift
the ground state energy to be zero for convenience (which is already the case for
AKLT models by the construction of projectors),

HAKLT|�AKLT〉 = H̃ |�AKLT〉 = 0.
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Fig. 10 (a) Two overlapping regions used to demonstrate the gap of the hexagonal AKLT model
in Ref. [18]. One elementary cell consists of four hexagons, e.g., indicated by the red dots (or
separately the blue dots). It overlaps with z = 6 neighboring cells. (b) The finite-size problem
of weighted AKLT model used to demonstrate the nonzero gap of the hexagonal AKLT model in
Ref. [63]. The symbols a’s are used to indicate the weights of the Hamiltonian terms that are not
unity

For the purpose of proving the spectral gap, one can also replace each local term by
a projector. We can thus consider the following Hamiltonian, H̃ = ∑

i H̃i , where
H̃ 2
i = H̃i and H̃i |GS〉 = 0. If one can show that H̃ 2 > εH̃ for ε > 0, then
H̃ has a nonzero gap (at least ε) above the ground state(s). Thus, one squares the
Hamiltonian:

(H̃ )2 =
∑

i

H̃i +
∑

i �=j
H̃iH̃j = H̃ +

∑

i&j overlap

H̃iH̃j

︸ ︷︷ ︸
Q type

+
∑

i,j no overlap

H̃iH̃j

︸ ︷︷ ︸
R type

.

(46)

There are at least two main different approaches that one can proceed from here.

Approach (i) First, the product of two non-overlapping projectors is still positive
semi-definite, H̃iH̃j ≥ 0 (if the two supports do not overlap), one can drop them to
obtain a lower bound:

(H̃ )2 ≥ H̃ +
∑

〈i,j 〉
{H̃i, H̃j }. (47)

For the two projectors that overlap, their anticommutator {H̃i, H̃j } can have negative
eigenvalues. However, one can also find a positive η > 0 such that {H̃i, H̃j } ≥
−η(H̃i+H̃j ), and if this η is small enough (i.e., η < 1/z, where z is the coordination
number), then we have

(H̃ )2 ≥ H̃ +
∑

〈i,j 〉
(H̃i + H̃j ) = (1− zη)H̃ . (48)
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We note that it is necessary to choose H̃i to be supported nontrivially on a region
larger than just nearest two neighboring sites, e.g., consecutive n sites in one
dimension and, e.g., a few sites in small patches, which union cover all lattice sites.
This method was recently used to demonstrate the existence of the gap for AKLT
models on various degree-3 lattices, in particular the hexagonal lattice, and other
decorated lattices, see, e.g., Fig. 6, such as the singly decorated hexagonal, square,
and diamond lattices, as well as two other planar degree-4 lattices [18, 64]. One
key ingredient is to choose an appropriate tiling with a unit cell that contains a
sufficiently large (but not too large) number of sites. Figure 10a shows a particular
choice of two unit cells and their overlap for the hexagonal lattice. There are 30
spin-3/2 sites involved, with the Hilbert space dimension being 260. By employing
tensor-network methods, this is substantially (numerically exact) reduced to 226, for
which the computation of η can be made with high precision. That the obtained
η = 0.1445124916 is less than 1/z = 1/6 demonstrates the existence of a nonzero
gap for the AKLT model in the thermodynamic limit.

Approach (ii) A second method is to consider additionally a subset of terms in
H̃ and the relation of its square to that of H̃ . Let us first illustrate it with one-
dimensional model: H̃ =∑

i H̃i,i+1 and define

hn,i =
n+i−1∑

j=i
H̃j,j+1, (49)

where H̃j+N,j+1+N = H̃j,j+1. Let us assume the gap of this finite system of size n
is εn, i.e., h2

n,i ≥ εnhn,i . Equation (46) in this one-dimensional case becomes

(H̃ )2 = H̃ +
∑

|i−j |=1

H̃i,i+1H̃j,j+1 +
∑

|i−j |>1

H̃i,i+1H̃j,j+1. (50)

We will seek to lower bound it in the form

(H̃ )2 ≥ α
N∑

i=1

(hn,i)
2 − βH̃ . (51)

By inspection, we find that the choice with α = 1/(n−1) and β = 1/(n−1) works.
This leads to

(H̃ )2 ≥
(
nεn

n− 1
− 1

n− 1

)
H̃ ≥ n

n− 1

(
εn − 1

n

)
H̃ . (52)

If the finite-size gap εn is greater than 1/n, the system with periodic boundary
condition is gapped for any size greater than n. Knabe calculated that ε4 = 0.3333 >
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1/4, and thus by checking just a simple four-site problem, the existence of a nonzero
gap in the 1D spin-1 AKLT chain is established. This method by Knabe [55] can be
generalized to two dimensions, and one can even allow projectors in the n-size unit
cell F to have different weights, e.g., hF =

∑
j∈F wjH̃j with a gap γF ({w}).

One then considers A =∑
F h

2
F and can derive two relations [63],

A ≥ f ({w})γF ({w})H̃ , (53)

A ≤ f ({w2})H̃ + g({w})(Q+ R). (54)

From these, one obtains that

(H̃ )2 ≥ f ({w})
g({w})

(
γF ({w})− f ({w

2})− g({w})
f ({w})

)
H̃ . (55)

One has the freedom to adjust the positive weights wj ’s, and if the finite-size gap
γF ({w}) for such a choice of weights is larger than the threshold

TH({w}) ≡ f ({w
2})− g({w})
f ({w}) , (56)

then the Hamiltonian H̃ is gapped. By using this latter approach and DMRG
numerical method for computing the finite-size gap, such as that shown in Fig. 10b,
Lemm, Sandvik, and Wang showed the existence of a gap for the honeycomb
lattice AKLT model [63]. The Numerical DMRG method was used to compute
the finite-size gap for the problem involving 36 spin-3/2 sites, and they found that
the numerically obtained gap at a = 1.4 is γF (a = 1.4) ≈ 0.14599, within
sufficient accuracy, being greater than the threshold TH(a = 1.4) = 0.138.
This demonstrates that the AKLT model on the hexagonal lattice is gapped in the
thermodynamic limit.

Let us mention some numerical estimates of the gap value for a few AKLT
models: 1D ≈ 0.350, Hex ≈ 0.10, Sq ≈ 0.015 [59, 60]. Both kinds of
approaches described above have been successfully applied to showing the existence
of the gap in the particular AKLT model on the honeycomb lattice. However,
rigorous establishment of the gap on the square-lattice AKLT model is still missing.

8 Deformed AKLT Models and Phase Transitions

In this section, we describe examples beyond the original AKLT models by certain
form of deformation. We will first discuss a one-dimensional example and then
describe a few two-dimensional deformed models.
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8.1 1D Deformed AKLT Chain

In a work by Verstraete, Martín-Delgado, and Cirac [65], they consider deforming
the 1D AKLT Hamiltonian,

HVMC(φ) =
∑

k

hk,k+1(φ) =
∑

k

(�φ)
−1 ⊗�φ PS=2

k,k+1 (�φ)
−1 ⊗�φ, (57)

where

�φ =
⎛

⎝
eφ 0 0
0 1 0
0 0 e−φ

⎞

⎠ . (58)

The ground state can also be represented by a translation-invariant MPS, via
As(φ) = AAKLT

s Vφ , where AAKLT
s ’s are matrices shown in Eq. (13) and

Vφ ≡
(
eφ 0
0 e−φ

)
. (59)

The point φ = 0 is the original 1D AKLT chain. The action �θ on a local spin can
be translated to that on the virtual degrees of freedom,

∑

s′
(�θ)ss′As′(φ) = V−θ/2As(φ)Vθ/2, (60)

which represents a symmetry in the MPS. We can easily see that hk,k+1(φ)

annihilates
∑
s,s′ AsAs′ |s, s′〉k,k+1, and thus the claim of the MPS represents the

ground state of HVMC(φ) is verified; see Fig. 11. As φ → ±∞, the ground state
of HVMC(φ) is a product state |..000..〉, having zero correlation length and zero
entanglement length. As φ decreases its magnitude toward 0 (which represents the
AKLT state), the correlation increases and reaches the maximum at the AKLT point
(φ = 0). However, the so-called entanglement length [66], i.e., the largest distance
between any two sites that entanglement can be concentrated via measurement on
all other sites, increases and approaches infinity at φ = 0. The deformed model does
not possess any conventional phase transition but has a transition in the localizable
entanglement [65].

8.2 2D Deformed AKLT Models and Their Phase Transitions

Niggemann, A. Klümper, and J. Zittartz consider deformation from the original
AKLT states on hexagonal and square lattices [47, 68], and they find that using
an approximate mapping to classical vertex models, there is a transition to a Neél
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Fig. 11 1D deformed AKLT state: (a) relation of the local matrix to that of the undeformed AKLT
state, (b) symmetry of the matrix under the action of �φ , and (c) the illustration of how the
individual term in the Hamiltonian annihilates the local two-site MPS. We use hAKLT to denote
a Hamiltonian term PS=2

k,k+1 in the spin-1 AKLT chain

ordered state. Numerics using tensor-network methods also confirm this [67, 69, 70].
In the case of the square lattice, the deformation such that the weights of |S =
2, Sz = ±2〉 and |S = 2, Sz = ±1〉 are small relative to that of |S = 2, Sz = 0〉
gives rise to an XY phase [67], which was unexpected.

Hexagonal and Other Trivalent Lattices The deformation Niggemann, A. Klüm-
per, and J. Zittartz found of the AKLT state on trivalent lattices, including the
hexagonal lattice, can be achieved by the following operator:

�S=3/2(a) = a√
3

(| + 3/2〉〈+3/2| + | − 3/2〉〈−3/2|)+ (| + 1/2〉〈+1/2| + | − 1/2〉〈−1/2|),
(61)

and applying this operator on all sites to the AKLT state gives rise to the following
deformed wave function:

|ψdeformed(a)〉 ∼ �S=3/2(a)⊗N |ψAKLT〉. (62)

The coefficients (a/
√

3, a/
√

3, 1, 1) correspond to local rescaling of the wave-
function on Sz = ±3/2 and Sz = ±1/2, respectively. They also constructed a
(5-parameter) family of parent Hamiltonians such that |ψdeformed(a)〉 is the ground
state. We refer the readers to their paper for the details of the Hamiltonians [47].
As far as the ground states are concerned, we can define the parent Hamiltonian as
(when a �= 0)
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H
[S=3/2]
deformed(a) =

∑

〈i,j〉
�S=3/2(a)−1

i ⊗�S=3/2(a)−1
j hAKLT

ij �S=3/2(a)−1
i ⊗�S=3/2(a)−1

j ,

(63)

in a way similar to the deformed Hamiltonian in one dimension.
By approximating the norm square 〈ψdeformed(a)|ψdeformed(a)〉 to a classical 8-

vertex model, Niggemann, A. Klümper, and J. Zittartz were able to show that the
weights of the vertex model satisfy the free-fermion condition, and thus there is

an Ising-type transition at ac =
√

3+√12 ≈ 2.54 from the valence-bond solid
phase to a Néel phase a increases. The existence of the Néel order at large a’s
can be understood easily, as in this limit local Sz components are dominated by
Sz = ±3/2, and due to the singlet construction in the AKLT wavefunction, the
neighboring sites cannot share the same Sz value, and hence there is the Néel order.
The transition was later confirmed by Huang, Wagner, and Wei [70] using a tensor-
network method without the approximation used by Niggemann, A. Klümper, and
J. Zittartzto a vertex model.

Similar consideration was applied to the square-octagon lattice (still a spin-
3/2 model) and Niggemann and Zittartz [71] used an 8-vertex model analysis and
found the VBS-Néel transition at ac ≈ 2.65158. The tensor-network methods by
Huang, Wagner, and Wei yield some improvement at ac ≈ 2.6547, and they also
found a different vertex model that gives a value close to 2.6547. They additionally
discussed other trivalent lattices, such as the cross or star lattices, and calculated
spontaneous magnetization.

We note that construction of AKLT states via spin triplet valence bonds can also
be used and their deformation can be considered. On bipartite lattices, models with
other valence bonds are equivalent under local transformations, but those that are
not bipartite can have different phase diagrams under deformation. For example,
using the two types of triplet |φ±〉 = (|00〉 ± |11〉)/√2 on the star lattice, as the
deformation parameter a varies, there is a ferromagnetic phase for a ≤ ac1 ≈
0.5850, a VBS phase for ac1 ≤ a ≤ ac2 ≈ 3.0243, and another ferromagnetic
phase for a ≥ ac2 for the deformed AKLT model on the star lattice [70]. The
two ferromagnetic phases differ in the axis of magnetization, e.g., x vs. y axis for
different triplet bonds |φ±〉.
Square Lattice Different from the trivalent lattices, the AKLT model on the
square lattice is spin-2. Niggemann, Klümper, and Zittartz consider the following
deformation on the original AKLT wave function [68]:

D(a1, a2) = a2√
6

(| + 2〉〈+2| + | − 2〉〈−2|)+ a1√
3/2

(|+〉〈+1| + |−〉〈−| + |0〉〈0|).
(64)

They also constructed a family of parent Hamiltonians such that

|ψ [S=2](a1, a2)〉 ∼ D(a1, a2)
⊗N |ψAKLT〉 (65)
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Fig. 12 Phase diagram of deformed AKLT model on the square lattice, reproduced from the data
of the work [67]. In the region between green dashed line and the XY phase, there is a large
correlation length. But there is no phase transition across the green dashed line

is the ground state. The parent Hamiltonian, as far as the ground states are
concerned, can be defined as (for a1 �= 0 and a2 �= 0)

H(a1, a2)
[S=2] =

∑

〈i,j〉
D(a1, a2)

−1
i ⊗D(a1, a2)

−1
j hS=2 AKLT

ij D(a1, a2)
−1
i ⊗D(a1, a2)

−1
j .

(66)

Using a classical vertex model and solving it via a Monte Carlo method, Niggemann,
Klümper, and Zittartz found transitions from VBS to Néel phase across a transition
line defined approximated by a2

2 ≈ 3.0a2
1 + 3.7. With tensor-network methods, the

precise boundary between the VBS phase (which was referred to as the AKLT phase
in Ref. [67]) and the Néel phase was obtained. Furthermore, an XY phase was found,
which is gapless and has infinite correlation. Close to the XY boundary but inside
the AKLT-VBS phase, there is a region of finite but large correlation length; see
Fig. 12. Such a pseudo quasi-long-range region also occurs in the deformed AKLT
model on the honeycomb lattice, but there does not exist an XY phase [67].

Quantum Computation with Deformed AKLT States For these states, it is also
interesting to ask whether they are also useful for quantum computation away from
the exact AKLT point. This was first studied by Darmawan, Brennen, and Bartlett on
the honeycomb case [48]. We have seen in Sect. 6 that POVMs {F †

x Fx, F
†
y Fy, F

†
z Fz}

applied to all sites convert the AKLT state to a random graph that depends on the
measurement outcomes. What Darmawan, Brennen, and Bartlett found is essentially
a modified set of POVMs that undoes the operation�S=3/2(a) and at the same time
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applies the above POVM, which is possible for a ≥ 1. However, for a large enough,
there is a transition to the Néel phase, and they found that the ability for universal
quantum computation disappears at this transition. This makes sense, as we do not
expect a quantum Néel state has the entanglement necessary for MBQC. This result
was generalized to other trivalent lattices with spin-3/2 AKLT states and the square
lattice with a spin-2 AKLT state [38, 70].

9 Conclusion

The AKLT model was invented [1] as a concrete example of Haldane’s conjecture
on the spectral gap of isotropic spin chains [2, 3]. The construction of the wave
functions in both one and two dimensions was a precursor of modern matrix-
product states [8, 9] and projected entangled pair states [14]. Their short-ranged
entanglement in the presence of symmetry is also a manifestation of symmetry-
protected topological order [10–12]. In low dimensions such as one and two,
AKLT states are disordered, possessing no local magnetization [1, 20]. However,
in the cubic lattice [20] and in the Bethe lattice with a large enough coordination
number [1], AKLT states display Néel order. In deformed AKLT models, the
valence-bond solid phase can turn into a Néel phase as model parameters vary that
locally favor maximal magnitude of Sz components [47, 68, 70, 71]. Surprisingly,
a gapless XY-like phase can emerge in such a deformed model [68] on the square
lattice at a region where the Sz = 0 component is locally favored [67].

The 2D hexagonal AKLT model was conjectured to be gapped in the original
work more than three decades ago [1]. AKLT models on other lattices have also been
proved, such as other degree-3 2D lattices and their decorated version lattices [18,
61, 62, 64]. But the existence of the gap for the models on the square and kagomé
lattices remains unproved. Interestingly, the proof was recently established with two
different methods [18, 63], both utilizing techniques of tensor network, combining
analytic reduction and high-precision numerics. Perhaps the most surprising aspect
of AKLT states is that many of them can be used as a resource to realize universal
quantum computation [32, 33, 36–38].

In terms of experiments, we mentioned earlier that the S = 1/2 edge degrees of
a Heisenberg ferromagnet was observed [5], and confirmation of the Haldane gap
was made previously [6, 7]. A short AKLT chain was created in the photonic [72]
and trapped-ion systems [73]. Very recently, fractional excitations were observed in
nanographene spin chains, which were modeled as an S = 1 bilinear-biquadratic
spin chain [74], to which the AKLT chain is a special case. There are other
theoretical proposals for the 1D AKLT spin, such as using measurement-induced
steering on quantum spin systems [75] and driven-dissipative control of cold atoms
in tilted optical lattices [76]. Realization of two-dimensional AKLT states is more
challenging. We mention that there is a theoretical work by Sela et al. on AKLT on
solid state material [77]. Using 2D AKLT states for universal quantum computation
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may still be years ahead. But knowing that they are in principle a useful resource is
intriguing, as it is a somewhat unexpected development from AKLT models.
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Machine Learning-Assisted
Entanglement Measurement in Quantum
Many-Body Systems

Leonardo Banchi

Abstract Measuring entanglement in quantum many-body systems is a challenging
task, especially for mixed states. All known computable entanglement measures
depend non-linearly on the state, so the standard approach to quantify entanglement
would require a complete state tomography, a highly demanding and not scalable
experimental procedure, followed by complex manipulations of matrices whose
dimension increases exponentially in the number of qubits. Here, we review a
different method, first proposed in Gray et al. (Phys Rev Lett 121(15):150503,
2018) and then expanded in Elben et al. (Phys Rev Lett 125(20):200501, 2020);
Zhou et al. (Phys Rev Lett 125(20):200502, 2020), based on the reconstruction
of the partially transposed moments of a quantum many-body mixed state. The
experimental procedure for such reconstructions scales linearly in the number of
qubits and has already been demonstrated in different physical setups, such as
quantum dot arrays and cold atoms in optical lattice. The method first proposed in
Gray et al. (Phys Rev Lett 121(15):150503, 2018) is based on the observation that
the mapping between partially transposed moments to the logarithmic negativity is
basically smooth, so that it can be learnt by machine learning interpolation methods,
e.g. based on neural networks. More precisely, a neural network model trained
using just measurement outcomes from random quantum states, with no knowledge
of the underlying physical systems, is able to accurately estimate the logarithmic
negativity for different states, e.g. ground states of physical Hamiltonians or states
appearing in the quench dynamics of quantum many-body systems.
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1 Introduction

Quantum entanglement is one of the most striking properties of microscopic
systems, which is of paramount importance for both technological applications
[1–8] and understanding quantum many-particle systems [9–17]. Unlike for pure
quantum states, where bipartite entanglement can be uniquely quantified via the
entropy of either subsystems, for mixed quantum states, different entanglement
measures have been proposed [18–20]. In experiments, it is almost impossible to
deal with pure states, so it is very important to be able to detect and quantify
entanglement of mixed states [21, 22]. Very few measures of entanglement can
be actually efficiently computed, and some of these are restricted to two qubit
states [23] or bosonic Gaussian states [24, 25]. The only measure of bipartite
entanglement that can be, in principle, explicitly computed for arbitrary bipartite
quantum states is the (logarithmic) negativity [26–30]. From the practical point of
view, the (logarithmic) negativity can be used to bound the distillable entanglement
and the teleportation capacity [28], and it has important applications in quantum
information theory [18, 19, 31] and for understanding strongly interacting systems
in condensed matter [32].

The (logarithmic) negativity is a non-linear function of the quantum state,
whose computation and experimental estimation become very challenging for
many-particle systems. Indeed, on the one hand, there is no direct observable to
measure it, thus requiring full-state tomography, a highly demanding experimental
procedure whose complexity increases exponentially in the system size. On the
other hand, being a non-linear function of the quantum state, it requires the explicit
manipulation of operators acting on exponentially large Hilbert spaces. Moreover,
both the logarithmic negativity and many other entanglement measures are not
continuous [20], so even if the tomographically reconstructed state approximates the
true state closely, the two may have significantly different logarithmic negativities.

In this chapter, we review a different method, first proposed in Ref. [33], for
estimating the logarithmic negativity in realistic experimental settings. This is
based on two central ideas: the first one is that the mapping from the moments of
the partially transposed density matrix to the (logarithmic) negativity is generally
smooth, so it can be learnt using machine learning techniques, e.g. based on
neural networks. The second one is that such moments can be estimated efficiently
with a number of measurements that scale linearly in the number of qubits.
The neural network-based entanglement estimator represents a new front in the
application of classical machine learning to quantum problems [10, 34–38], and
it is remarkably accurate for highly entangled states, which are exactly those states
where approximate tomographic reconstruction methods generally fail.

This chapter is structured as follows: in Sect. 2, we review the PPT criterion
and introduce the logarithmic negativity and then study the relationship between
moments and negativity in a few analytical cases. In Sect. 3, we introduce an
efficient scheme to measure the moments, and in Sect. 4, we show how to learn
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the mapping from moments to negativity using neural networks. Numerical results
are shown in Sect. 5, and conclusions are drawn in Sect. 6.

2 PPT Criterion and Entanglement Measurement

Consider a generic mixed state ρAB that describes the collective state of two
subsystems A and B. The PPT criterion [39, 40], which stands for positive partial
transpose, states that the subsystems A and B are separable in ρAB if ρTAAB and ρTBAB
are positive operators, where the operation TX is a partial transposition with respect

to subsystem X only. In other terms, if ρ
TA/B
AB has negative eigenvalues, then the

subsystems A and B must be entangled. However, there exist some entangled states
(called bound entangled) with positive partial transpose. It is possible to turn the
PPT criterion into an entanglement measure called negativity. Here, we will focus
on the logarithmic negativity [26–29], which is defined as

E = log2

∣∣∣ρTAAB
∣∣∣ = log2

∣∣∣ρTBAB
∣∣∣ = log2

∑

k

|λk|, (1)

where | · | is the trace norm, and {λk} are the eigenvalues of ρTXAB , which are
equal for both X = A or X = B. Since the logarithmic negativity is a non-
linear functional of ρAB , there is no state-dependent observable that can measure
it: one has to first reconstruct ρAB with full-state tomography, a highly demanding
and generally inefficient experimental procedure, and then numerically compute the
negativity through Eq. (1). A different method was proposed in Ref. [33], based on
the observation that the full information about {λk} is contained in the moments of
the partially transposed density matrix (hereafter called PT moments), which are
defined as

μm = Tr
[(
ρ
TB
AB

)m] =
∑

k

λmk . (2)

Different methods for extracting the moments were proposed in [33, 41–45], which
will be discussed in the next section. The first PT moment is trivial since μ1 =
Tr[ρAB ] = 1, while μ0 is the dimension of the Hilbert space. Additionally, it can
be easily shown that the second PT moment is equal to the purity of the state μ2 =
Tr
[
ρ2
AB

]
, which is not enough to study the entanglement in mixed states. As such,

at least the third PT moment is required for such purpose [33]. From the moments,
it is possible to readily check whether the PPT criterion is satisfied or not by the
following test [44]:

μ3 < μ
2
2 #⇒ ρAB is entangled, (3)
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which is independent on the state, unlike entanglement witnesses [46, 47]. While,
in general, this criterion can only be used in one direction, it provides a necessary
sufficient condition for detecting entanglement for certain classes of quantum states,
such as the so-called Werner states [44]. However, violation of (3) cannot be used
to rigorously certify how much entanglement is present in a system. To do that, in
Ref. [33], before the discovery of condition (3), we proposed the use of a heuristic
method based on machine learning and on the estimation of the first M moments
{μm : m ≤ M}. Remarkably, it was found that neural networks were able to
accurately predict the logarithmic negativity from the first three moments, namely
with M = 3, and that more accurate predictions were possibly with slightly larger
values ofM .

In this way, one completely sidesteps the estimation of the {λk} that are necessary
for the exact computation via Eq. (1). The latter is problematic for two reasons: on
the one hand, the problem of extracting {λk} from the moments is notoriously ill-
conditioned, since this is closely related to general Hausdorff moment problem in
statistics [48], which is known to be unstable from a numerical perspective [49].
On the other hand, an exponential number of moments respective to the size of AB
are needed to exactly solve the equations. The central idea in [33] is that a precise
knowledge of all λk is not required to estimate the logarithmic negativity. Indeed,
since− 1

2 ≤ λk ≤ 1 for all k [50] and
∑
k λk = 1, in general, |μm| quickly decreases

with m, so the first few moments carry the most information.

2.1 Werner States

In order to motivate the above predictions, let us consider an important class of states
for which analytic arguments can be obtained. We focus on the d2×d2 Werner states
[51] defined as

ρWAB =
p

d(d + 1)
(I+ S)+ 1− p

d(d − 1)
(I− S), (4)

where the dimension of both Hilbert spaces A and B is equal to d, S is the SWAP
operator, exchanging A and B, and 0 ≤ p ≤ 1. Werner states are invariant under
local transformationsU⊗U for any unitaryU . Moreover, for these states, the partial
transpose can be easily computed since

STB = STA =
∑

ij

|ii〉〈jj | , (5)

and we find the simple expression for the logarithmic negativity

EW = log

[
1+ 2(1− 2p)

d

]
if p <

1

2
, (6)
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Fig. 1 Functional
relationship between
logarithmic negativity E and
the moments, μ2 and μ3, for
different Werner states (4)
with p ∈ [0, 1] and
d ∈ [2, 20]. Each continuous
line corresponds to a single
value of d and multiple p.
Higher values of d have
generally lower
entanglement. Only values
with μ3 > 0 have been
plotted

while EW = 0 for p > 1/2. Similar expressions for μj are not shown, since they
are more complex, though we get

μ3 − μ2
2 = (2p − 1)

(d − 2p + 1)(1− 2dp + d)2
d2
(
d2 − 1

)2
. (7)

From the above equation, we see that, according to the condition (3), for p < 1/2,
the Werner state must be entangled irrespective of d. The amount of entanglement
can be obtained from Eq. (6), where we see that, with the same p, higher dimen-
sional states have lower entanglement.

For this particular class of states, one can reconstruct p and d from the
measurement of μ2 and μ3 and hence reconstruct the amount of entanglement.
Moreover, as shown in Fig. 1, the dependence of E on the moments can be embedded
in a smooth surface, even though not all possible pairs μ2, μ3 are physically
possible. In Ref. [33], this idea was fully exploited with more general states, showing
that a neural network can be trained in order to reliably map the non-trivial moments
(μ0, μ2, μ3) to an accurate prediction of E. More precisely, since μ0 is a discrete
quantity, if we are interested in states with fixed dimension, we can train a surface
function f (μ2, μ3) in order to reproduce the logarithmic negativity. When different
dimensions are considered, we may also put μ0 as an extra input for the neural
network.

We also focus on the following U ⊗ U∗ invariant states:

ρ
W∗
AB = p |�〉〈�| +

1− p
d2 I, (8)

where |�〉 = d−1/2 ∑
j |jj〉. For this state, we may write

ρ
W∗
AB
TB = λ+P+ + λ−P−, λ± = p ± d(1− p)

d2
, (9)
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Fig. 2 Functional
relationship between
logarithmic negativity E and
the moments, μ2 and μ3, for
different invariant states (8)
with p ∈ [0, 1] and
d ∈ [2, 20]. Each continuous
line corresponds to a single
value of d and multiple p.
Only values with μ3 > 0
have been plotted

where P± = (I ± S)/2 are the projectors onto the symmetric or antisymmetric
subspaces, whose dimension is, respectively, d± = d(d ± 1)/2. From the above
equations, we see that entanglement is present for p < d

d+1 , with logarithmic
negativity given by

EW∗ = log
(
d + p

d
− dp

)
if p <

d

d + 1
. (10)

The functional relationship between the logarithmic negativity and the moments, μ2
and μ3, is then shown in Fig. 2.

3 Measuring the PT Moments

There are three different protocols for measuring the PT moments. The first proposal
for measuring μm uses m copies of the state and controlled swap operations [41],
while a simpler protocol, for 4 moments only, was provided in [43]. However, con-
trolled swap operations require 3-body interactions and thus must be compiled into
simpler 2-body gates. A different procedure, still involving m copies, was proposed
in [33], generalizing another procedure for estimating Renyi entropies [17]. A third
procedure, based on randomized gates, has been proposed in Refs. [44, 45].

Here, we review the procedure proposed in [33], providing extra details. This
procedure starts with the simple observation that each moment can be written as an
expectation value of permutation operators acting on m copies of ρTBAB , similar to
Ref. [52, 53], by mapping the partial transposition onto the observable one gets

μm = Tr

[(
m⊗

c=1

ρ
TBc
AcBc

)
P
m

]
= Tr

[(
m⊗

c=1

ρAcBc

)
(Pm)TB

]
, (11)
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where Pm is any linear combination of cyclic permutation operators of order m, and

in the second equality, we use of the identity Tr
(
ρ
TB
ABO

)
=Tr

(
ρABO

TB
)
, valid for

any operatorO. Extra care must be used in choosing Pm in such a way that (Pm)TB is
Hermitian and hence observable without other ancillary qubits. In the next sections,
we consider two operational measures that provide different choices of P, which
can be neatly implemented in spin or bosonic systems, e.g. optical lattices. For both
platforms, our procedure requires O(NA + NB) measurements for each m, where
NX is the number of particles in X. This is in stark contrast with full tomographic
methods that require a number of measurements that grow exponentially with NA
and NB .

Remarkably, even though partially transposed density matrices are generically
unphysical, the measurement of their moments is possible. Our procedure was
inspired by recent operational methods for measuring Renyi entropies in spin
and bosonic lattices [17, 54, 55] but differs in many ways. The most important
difference is that Renyi entropies do not provide a measure of entanglement for
mixed states. Moreover, while for entropies, the operations are only performed on
a single subsystem, for the PT moments, one must perform both ‘forward’ and
‘backward’ operations on two subsystems at once, as we explain in the next more
technical sections.

3.1 Measurement in Spin Systems

In spin systems, the measurement of the PT moment μm involves the following
steps:

1. Prepare m copies of the state ρAB .
2. Sequentially measure a ‘forward’ sequence of adjacent swaps, Sc,c+1

A

between neighbouring copies (c, c+1) of system A from c = 1 to m− 1.
3. Sequentially measure a ‘backward’ sequence of adjacent swaps, Sc,c−1

B

between neighbouring copies of system B from c = m to 2.
4. Repeat these steps in order to yield an expectation value.

Step 2 of the above procedure is depicted in Fig. 3 for m = 3, where each swap
measurement can be effectively implemented via singlet–triplet measurements [17].

We now give a proof of the above procedure, by first showing how to measure
Tr[ρm] and then the PT moments. Let Sc,dX be the operator that swaps copies c and

d on subsystem X, which can be written as Sc,dX = ∏
j∈X �

c,d
j , where �c,dj =

(I+ σ j,c·σ j,d )/2, and σ j,d is a vector of Pauli matrices acting on spin j in copy d.
The projective measurement of �c,dj corresponds to a singlet–triplet measurement
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x

A3

A2

A1

B1

B2

B3

Fig. 3 One step for the measurement of the PT moment μm with m = 3, using m copies of the
same many-particle mixed state ρAB . The particles in each copy are arranged into a spin chain,
where each spin in the chain is either part of A (yellow spins) or B (blue spins). The measurement
involves sequential swap measurements between pair of spins in neighbouring chains. Reprinted
from [17]

(ST measurement) between spins sitting at the same site j , but different copies c
and d. Indeed, �c,dj has an outcome −1 for the singlet state and 1 for the triplet

states. In view of this, we write Sc,dX =�c,d+ −�c,d− , where �c,d± correspond to the
eigen-projections with corresponding eigenvalues ±1. We first focus on m=3 and
then generalize the procedure to arbitrary m. For m = 3, we perform a sequential
set of ST measurements on copies (1, 2), with outcome β1, and then do the same
measurement on copies (2, 3), with outcome β2. In the following, we write S2,3

X ◦
S

1,2
X to describe this process. After the first measurement, the (non-normalized) state

of the system will be �1,2
β1
ρ⊗3�

1,2
β1

, while after the two sets of measurements, it is

�
2,3
β2
�

1,2
β1
ρ⊗3�

1,2
β1
�

2,3
β2

. Therefore,

〈
S

2,3
X ◦ S1,2

X

〉
=
∑

β2

∑

β1

β1β2 Tr
[
�

2,3
β2
�

1,2
β1
ρ⊗3�

1,2
β1
�

2,3
β2

]

=
∑

β1

β1 Tr
[
�

1,2
β1
S

2,3
X �

1,2
β1
ρ⊗3

]

= 1

2

(
Tr
[
S

1,2
X S

2,3
X ρ

⊗3
]
+ Tr

[
S

2,3
X S

1,2
X ρ

⊗3
])
= Tr

(
ρ3
)
, (12)

where we used the identity �c,d± =(I±Sc,dX )/2. The above equality shows how to
effectively measure Tr

[
ρ3
]

with a series of SWAP measurements.
We now generalize the above argument for higher values ofm. We apply sequen-

tial ST measurements on neighbouring copies, using the notation Sm,m−1
X ◦ · · · ◦

S
2,3
X ◦S1,2

X , meaning that we first perform S
1,2
X , and so forth. Taking the averages,
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one then finds that
〈
S
m−1,m
X ◦· · ·◦S1,2

X

〉
=Tr

[
Pm−1,m[· · ·P23[P12[ρ⊗m]]] · · ·

]
,

where Pj,j+1[ρ]=∑βj
βj�

j,j+1
βj

ρ�
j,j+1
βj

. We define the operators Sa,b,c,...X recur-

sively as Pj+1,j [Sj,a,b,...X ] = [Sj+1,j,a,...
X +Sj,j+1,a,...

X ]/2. Then, using the cyclic

property of the trace, one finds that
〈
S
m−1,m
X ◦· · ·◦S1,2

A

〉
=22−m∑

κ

〈
SκX

〉
, where the

κ is 2m−2 different cyclic permutation of the elements 1, . . . , m. For instance, for
m=3, one has κ={123, 132}.

In summary, when X is equal to both A and B, one can use a set of
sequential ST measurements to implement the operator PmX = 22−m∑

κ S
κ
X such

that Tr
[
ρ⊗mX P

m
X

] = Tr
[
ρmX

]
. Indeed, for each cyclic permutation, Tr

[
ρ⊗mX SκX

] =
Tr
[
ρmX

]
. In view of the above derivation, such Hermitian operator can also

be written via the following recursion relations (see also Ref. [17]): Pm =(
S
m,m−1
A S

m,m−1
B P

m−1 + h.c.
)
/2. Moreover, the effect of the partial transpose on

the recursion relation is as follows:

(Pm)TB =
(
S
m,m−1
A (Pm−1)TB S

m,m−1
B + h.c.

)
/2. (13)

We takem = 3 as an example to get (P3)TB =
(
S

3,2
A S

2,1
A ⊗ S2,1

B S
3,2
B + h.c.

)
/2. The

above equation shows that, as described in the operational steps at the beginning of
the section, for measuring the PT moments, the order of measurements on A and B
is reversed. Indeed, forA, the ST measurement is performed between copies 1 and 2
and then 2 and 3, whereas for B, the ST measurement is performed for copies 2 and
3 and then 1 and 2. Because of the non-commutative nature of these measurements,
this ordering is crucial to estimate μ3.

From the above derivation, we find that μm = Tr
[
ρ⊗mAB Pm

]
. The variance of the

above measurement can be found by noting the SWAP measurements satisfy S2 = I.
More formally,

(μm)
2 =

⎛

⎝
∑

βm

· · ·
∑

β1

β2
1 · · ·β2

m Tr
[
�
m−1,m
βm−1

· · ·�1,2
β1
ρ⊗m�1,2

β1
· · ·�m−1,m

βm−1

]
⎞

⎠− μ2
m

=
⎛

⎝
∑

βm

· · ·
∑

β1

Tr
[
�
m−1,m
βm−1

· · ·�1,2
β1
ρ⊗m�1,2

β1
· · ·�m−1,m

βm−1

]
⎞

⎠− μ2
m

= 1− μ2
m,
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where we used the fact that β2
i = 1 and

∑
βi
(�
i,i+1
βi

)2 =∑
βi
�
i,i+1
βi

= I. Repeating
the experiment R times, we find the standard deviation

Rμm =
√

1− μ2
m

R
. (14)

3.2 Measurement in Bosonic Systems

In bosonic systems, the procedure for measuring the PT moment μm involves the
following steps:

1. Prepare m copies of the state ρAB .
2. Perform ‘forward’ Fourier transforms between modes in different copies

for each site in A, e.g. using a series of beam splitters [56].
3. Perform ‘backwards’ (reverse) Fourier transform between modes in differ-

ent copies for each site in B, via reverse beam splitter transformations.
4. Measure the boson occupation numbers nj,c on all sites j ∈ {A,B} and all

copies c to compute φ = ei
∑
j∈{A,B},c 2πcnj,c/m.

5. Repeat these steps to obtain the expectation value μm as an average of φ

μm = 〈ei
∑
j∈{A,B},c 2πcnj,c/m〉. (15)

The proof of Eq. (15) goes as follows: unlike in spin systems, we directly choose
the operator Pm as a product of a specific non-Hermitian permutations π , such that

P
TB
m =

⊗

j∈A
Vj,π

⊗

j∈B
V Tj,π , (16)

where Vj,π = ∑
{nj,c} |nj,1, . . . , nj,m〉 〈π(nj,1), . . . , π(nj,m)|, and nj,c =

0, . . . ,∞ labels the number of bosons in copy c and physical site j . We can write
this operator in second quantized form as

Vj,π = :e
∑
c a

†
j,caj,π(c)−a†

j,caj,c :, (17)

where :O: denotes the normal ordering of the operator O, and aj,c denotes the
annihilation operator acting on site j and copy c. We choose π as the shift
permutation such that π(c) = c + 1 and note that V Tj,π = Vj,π−1 . In order to
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diagonalize Vj,π , we introduce independent Fourier transforms for each site j as

ãj,c = 1√
m

m−1∑

c′=0

e+
i2π
m
cc′aj,c′ , for j ∈ A,

ãj,c = 1√
m

m−1∑

c′=0

e−
i2π
m
cc′aj,c′ , for j ∈ B. (18)

After such a transformation, both the operators Vj,π for j ∈ A and Vj,π−1 for j ∈ B
take the form :e

∑
c(e

i2π
m c−1)ã†

j,cãj,c :. The normal ordering can be removed by using
the identity [57] :e(eλ−1)a†a : = eλa†a bringing Eq. (16) to the form:

P
TB
m =

∏

j∈{A,B},c
e
i2πc
m
ã

†
j,cãj,c . (19)

This shows that the expectation value can be measured according to the procedure
introduced at the beginning of this section and summarized by Eq. (15): firstly, we
need to perform the Fourier (inverse Fourier) transform between copies at the sites
belonging toA (B), as written in Eq. (18). Secondly, we need to measure the bosonic
occupation number with outcome nj,c at every site and compute the outcome of

the permutation operator as φ = e
∑
j∈{A,B},c i2πcm nj,c . The final step involves the

computation of the expectation value as an average over many repetitions of the
above steps.

The standard deviation can be obtained from the fact that φ∗ = φ. As such
(μm)

2 = 〈φφ∗〉 − 〈φ〉2 = 1−μ2
m and after R repetitions, we find the same result

of Eq. (14).

4 Neural Network Entanglement Estimator

We have seen that for some particular classes of states, the mapping from the first
few moments μm to the logarithmic negativity E ≈ f (μ0, . . . , μM) is mostly
smooth. One may hence employ different interpolation methods to approximate f
from a few known examples. A different approach based on numerical extrapolation,
first proposed in the quantum field theory literature [32, 58], uses the odd moments
up to high orders and, as such, necessitates many copies.

The simplest interpolation method is based on a polynomial functional approx-
imation. Gray et al. [33] proposed the polynomial approximation of the absolute
value function in order to estimate the moments. More precisely, considering that
E = log2 Tr g(ρTBAB) with g(x) = |x|, if we can find a polynomial expansion
g(x) ≈ ∑M

m=0 αmx
m, then by linearity of the trace, E = log2

∑M
m=0 αmμm,
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with μm as given in Eq. (2). Since the absolute value function is non-analytic, the
Taylor expansion cannot be used. Gray et al. [33] used an interpolation method
based on Chebyshev polynomials, for which the coefficients αm can be analytically
computed, together with some analytical estimations of the approximation error.
The Chebyshev expansion becomes exact in the limit M → ∞. However, it was
numerically observed that machine learning methods based on neural networks
were significantly more accurate with a smaller number of moments. The reason
is that the Chebyshev expansion is based on a linear mapping between the moments
and the negativity, despite this relationship being inherently non-linear. Due to the
universal approximation theorem, neural networks with suitable number of neurons
can approximate any non-linear mapping and thus should be more optimal for
smallerM , namely fewer copies. In what follows, we therefore review the machine
learning approach first proposed by Gray et al. [33].

Following the supervised learning paradigm, we consider a parametric approx-
imation fθ (μ0, . . . , μM), e.g. using a neural network, of the mapping from the
moments to the logarithmic negativity and train the parameters θ in order to mini-
mize some distance ||E−fθ (μ0, . . . , μM)|| for some chosen norm. Since the above
distance cannot be computed for all possible values of inputs and outputs, one uses
a training set made of different tuples of data T = {(E, μ0, . . . , μM)}, where each
tuple contains both the moments, as inputs, and the true corresponding logarithmic
negativity, as output. Training is then performed by finding the parameters θ that
minimize the empirical distance

∑

(E,μ0,...,μM)∈T
||E− fθ (μ0, . . . , μM)||. (20)

The model fθ generalizes if it is able to predict the true logarithmic negativity
for moments that do not belong to the training set. See Ref. [59] for a description
of generalization using the language of quantum information theory. Some of the
most accurate machine learning algorithms for non-linear interpolation are based
on support vector machines [60], random decision forests [61], and deep neural
networks [62, 63]. We studied all of these algorithms and found that, using the same
training set, neural networks are superior when it comes to predicting logarithmic
negativity for a wide range of states beyond the training set. Indeed, for this
particular problem, it was found that neural networks show higher generalization
capabilities with as few asM = 3 copies.

In a deep neural network, the function fθ is represented as a directed graph
organized in layers, where the first layer is the input data and the last one is the
output. As already mentioned, the first moment μ0 depends only on the dimension
of the Hilbert space. In reality, we assume to know both the dimensions of each of
the subsystems A and B, which for simplicity here are considered as qubit systems
with NA and NB qubits. We use NX in place of μ0, and, since μ1 = 1 does not
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provide any information, we consider the numbers (NA,NB,μ2, . . . , μM) as inputs
for our neural network. We call s(�)k the value of the kth node in layer �, which

is updated in a feed-forward way via the equation s(�)k =A�
[∑

j w
(�−1)
kj s

(�−1)
j

]
,

where A� is the so-called activation function and w(�−1)
kj is the weight between

node k in layer � and node j in �−1. Therefore, the parameters θ are made of
all possible weights, which are optimized during training in order to minimize
Eq. (20). In the numerical experiments performed in Ref. [33], the network structure,
e.g. number and connectivity of hidden layers, was not fixed a priori, but rather
optimized via the Hyperopt [64] and Keras [65] packages. It was found that, for
example, when M = 3, the resulting optimal network consists of two hidden
layers, both with rectified linear unit (ReLU) activation functions, with 100 and
56 neurons, respectively. For a larger number of moments, M = 10, the resulting
optimal network was found with three hidden layers, with, respectively, exponential
linear unit (ELU), ReLU and linear activation functions, with 61, 87 and 47 neurons
respectively.

After training with given M , the resulting model EML
M can be used to predict E

from a set of experimentally measured moments. The machine learning predictions,
using a trained neural network with moments up to M = 3, are shown in Fig. 4
as a smooth surface (aside from the non-analyticity due to enforced constraint E ≥
0), while real data are represented as discrete points. As shown in the Figure, the
predictions from the neural network are very accurate and interpolate very well
the real mapping. In that figure, we consider fixed Hilbert space dimensions, with
NA = NB qubits in A and B, so the first moment μ0 is the same for all data, unlike
what has been shown in Figs. 1 and 2.

Fig. 4 Logarithmic
negativity as a function of μ2
and μ3 for a random set of
density matrices with
NA = NB = 5. The green
points represent the real
logarithmic negativities,
while the surface shows the
neural network’s predictions
for the whole space.
Reprinted from [33].
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4.1 Choice of the Training Set

Training is performed by taking a large set of states for which μm and E can be
computed on a classical computer. The experimental system of interest motivates
the choice of the states to generate the training data. For instance, one may use
states that share similar entanglement features to the ones that can be obtained in
experiments.

We can always think of the mixed state ρAB as being the reduced density matrix
of a tripartite pure state |�ABC〉. Without loss of generality, we assume that each
subsystem is made of NA, NB and NC qubits, respectively. From an entanglement
perspective, relevant states in condensed matter physics can be classified as either
area-law or volume-law. In area-law states, the entanglement of a subsystem A

with the rest is proportional to the number of qubits along their boundary, while in
volume-law states, this entanglement is proportional to NA. Area-law states arise as
low-energy eigenstates of local gapped Hamiltonians, with logarithmic corrections
in critical systems. Volume-law states, however, are associated with the eigenstates
found in the mid-spectrum and as such arise in non-equilibrium dynamics, such as
quantum quenches [66, 67].

In the numerical experiments performed in Ref. [33], the training set consisted
of very general classes of random states, constructed in such a way to contain
both area- and volume-law states. More precisely, such random mixed states were
generated by first obtaining a random pure state |�ABC〉 according to the different
protocols described below, for different values of NA, NB , and NC , and then
performing a partial trace over C. The random pure states were generated either
as

RGPS Random Generic Pure States, obtained by generating random vectors with
complex elements distributed according to the normal distribution. RGPSs
obtained by sampling from the Haar measure have also been considered,
though they are numerically more demanding, and provided the same
results. Both of these states typically have volume-law entanglement [68,
69].

RMPS Random Matrix Product States with fixed bond dimension D, which
satisfy an area-law by construction [10]. These can be obtained by writing

|ψ〉 =
∑

{ij }
Tr
[
A(1),i1A(2),i2 . . . A(N),iN

]
|i1, i2, . . . , iN 〉 (21)

for random tensor components A(j),ikl drawn from a normal distribution,
where the indices run as j = 1, . . . , N , i = 0, 1, and k, l = 1, . . . , D.
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Generation of the Training Set
In order to generate a training set with a wide range of entanglement features,
subsystem sizes, and mixedness, the following procedure can be performed:

1. For a fixed number of qubits N , take either an RGPS or RMPS with bond
dimension D.

2. Take different tri-partitions such that N = NA + NB + NC , and for each
calculate μm and E for ρAB .

3. Repeat for different random instances, while separately varying N and D.

4.2 Sensitivity and Error Analysis

In an experimental setting predicting the expected logarithmic negativity is not
enough, as it is also important to estimate eventual error bars. Although error
estimates in neural networks are a theoretical open problem, one can infer the errors
from training statistics, as discussed in Ref. [33], for example, by calculating the
standard deviation in the error of the neural network predictions for unseen test
data. Another important aspect is what happens when the input moments {μm}
given to the trained neural network are inaccurate, for instance, due to imperfect
measurements of finite sample statistics. For the latter point, small errors will only
produce small changes to the estimate, since neural networks produce a smooth
interpolating function. More precisely, the error in the entanglement estimation is
given by the gradient of the neural network estimator with respect to the set of input
moments {μm}, multiplied by the measurement error, namely,

E ≈
∑

m

μm∂E/∂μm, (22)

where the partial derivative denotes the neural network sensitivity. With the
procedure described in the previous sections, measuring the moments requires a
number of operations that scale linearly with the system size. Moreover, in Ref. [33],
it has been shown that the standard error (14) scales efficiently and that the number
of repetitions R to have a good estimate of the moments scales sub-exponentially in
the system size.
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4.3 Comparison with Approximate State Reconstruction
Methods

We now briefly compare our procedure with approximate state reconstruction
scheme with a polynomial number of measurements. For instance, those based on
tensor networks [31, 70] or neural network states [71, 72] are normally focused
on finding an approximate representation of a state that accurately reproduces
experimental observables. To state this in a mathematically precise way, let ρr be
the experimentally reconstructed state from a polynomial number of measurements
and suppose that the expectation values predicted by this state are ‘close enough’
to those predicted by the true state ρ, namely that Tr[ρrA] ≈ Tr[ρA]. Because
of Helstrom’s theorem [20], if the states ρ and ρr are close with respect to
the trace distance, ‖ρ − ρr‖1 ∼ O(ε), any expectation value obtained from
the reconstructed state is ε-close to the true value. We may therefore assume
that for a ‘good reconstruction’, such distance is small. Although this is true
for any expectation value, entanglement measures are non-analytic functions of
expectation values and, as such, may display a higher sensitivity to small errors
in the reconstruction. Indeed, many entanglement measures are not continuous and,
in particular, the entanglement negativity does not even satisfy the requirement of
asymptotic continuity1 (see Table 15.2 in [20]). As a consequence of the lack of
this property, the entanglement of two ‘close’ many-body states can diverge O(N)
for large N ; namely, the negativity computed from an approximate reconstruction
of the state may be significantly different from the true one. Moreover, even if
ρr is approximated with a polynomial number of measurements, since its Hilbert
space grows exponentially with N and the negativity is a non-linear function of
ρr , it is unclear whether the negativity can be obtained efficiently. In contrast,
our method sidesteps all these problems by not trying to reconstruct the state, but
rather accessing a single quantity, the logarithmic negativity from carefully designed
measurements.

5 Numerical Results

The difference between the true logarithmic negativity E and the machine learning
prediction EML

M was extensively studied in Ref. [33], both for random states and
for states generated in physical evolutions. For instance, for random states, the
distribution of EML

M − E was found to have a sharp peak in zero, with standard
deviations ∼0.09 for M = 3 and ∼0.07 for M = 10. Although a higher number
of copies were particularly good in diminishing outliers, they did not increase too

1 Consider two N qubit states ρ and σ such that ‖ρ − σ‖ → 0 for large N (many particles). A
measure is asymptotically continuous if ‖ρ − σ‖1 → 0 implies |E(ρ) − E(σ )|/log(dN ) → 0,
where dN = 2N is the Hilbert space dimension.
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much the accuracy of the average prediction, which was remarkably good already
with a maximum ofM = 3 copies. Moreover, the following central observation was
found:

The machine learning entanglement estimator works particularly well for
highly entangled states with large logarithmic negativity. This is particularly
important since approximate state reconstruction methods normally fail in this
regime.

In the following sections, we demonstrate the ability of our machine learning
estimator, which we remind is trained only with random states and no underlying
knowledge of any physical evolution, to predict the amount of entanglement in
different classes of physical states. Some of the considered states have particular
symmetries and structure that is completely unknown to the machine learning model
and not present in the training set made with random states. It is therefore possible
that these predictions can be significantly enhanced by using a training set where
the states possess all the symmetries of the physical model of interest.

5.1 Ground States Through a Quantum Phase Transition

We consider a paradigmatic model of many-particle spin systems whose ground
state has interesting entanglement content, namely the one-dimensional isotropic
XY spin chain with transverse field

HXX =
L−1∑

i=1

(
σXi σ

X
i+1 + σYi σYi+1

)
+ BZ

L∑

i=1

σZi , (23)

where BZ is the strength of the transverse field, L is the length of the chain and σαj
are the Pauli matrices acting on site j . The above model displays a quantum phase
transition at BZ = 1, above which the system enters a phase with a separable ground
state.

The true and predicted logarithmic negativities are shown in Fig. 5 as a function
of BZ for a variety of configurations and different number of moments M = 3, 6.
The different configurations are obtained by dividing the chain of length L = NA+
NB +NC into three adjacent blocks of sizes NA, NB and NC , respectively. For each
value of BZ , one first calculates the ground state of HXX and then generates ρAB by
tracing out system C. For entangled ground states, in general, ρAB is mixed as long
as NC > 0. As clearly shown in Fig. 5, the machine learning model, trained solely
with random states, is able to accurately reproduce the amount of entanglement
and to clearly spot both the phase transition point and the different entanglement
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Fig. 5 Entanglement estimation in the ground state of the XX model phase across the phase
transition driven by transverse field, BZ . The ground state of total length L = 20 is tri-partitioned,
with two adjacent subsystems of size NA = NB and environment size NC = L − NA + NB .
The entanglement between A and B is then computed and estimated from ρAB . The blue, orange
and green lines show the true logarithmic negativity, the neural network estimated quantity with 3
copies, and the neural network estimated quantity with 6 copies, respectively. Reprinted from [33]

content in the two phases. The model withM = 3 displays some small fluctuations
for NA ≥ 4 that are significantly suppressed by the model trained with M = 6.
It is remarkable that the neural network can capture the entanglement properties of
these highly symmetric ground states despite having only been trained with random
states.

5.2 Quench Across a Phase Transition

In this section, we study the states generated by a quantum quench in a many-
body system. In strongly interacting many-body systems, the eigenstates of the
Hamiltonian typically change if the model parameters are changed. A quantum
quench exploits this mathematical fact to generate interesting quantum dynamics,
often with a high amount of entanglement. More precisely, in a quantum quench,
the evolution starts at t = 0 in the ground state of the model Hamiltonian with
certain parameters, and then for t > 0, the state is let to evolve according to the
same Hamiltonian but with different parameters. Here, we consider the transverse
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Fig. 6 Estimated entanglement when quenching across the Ising phase transition at BX = 1. The
initial state is the ground state at BX = 1+, and dynamics are generated by quenching with the
Hamiltonian at 1 − , taking  = 0.2. The total size is L = 20 and the tri-partition is chosen
so that subsystems A and B are adjacent and of equal size. The blue and orange lines show the
true logarithmic negativity and the neural network estimated quantity with 3 copies, respectively.
Reprinted from [33]

field Ising chain, whose Hamiltonian is

HIsing(BX) =
L−1∑

i=1

σZi σ
Z
i+1 + BX

L∑

i=1

σXi , (24)

where BX is the strength of the magnetic field and L is the chain length. This model
displays a second-order phase at the critical point BX = 1. As in the previous
section, we divide the chain into three adjacent blocks and study the entanglement
between blocks A and B, here generated during the quench dynamics. We initially
set the system in the ground state of HIsing(1 + ) and then consider its evolution
under the Hamiltonian HIsing(1 − ) for different times t . The true and predicted
logarithmic negativities as a function of t are shown in Fig. 6 for different block
lengths. Only results withM = 3 are shown since they already have good accuracy.
This numerical test shows that our method is particularly accurate in predicting the
logarithmic negativity of highly entangled states, such as those typically occurring
in quantum quenches.
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5.3 W-State

In this section, we try to stress our machine learning model, by using states with very
different properties than those used in the training set, which is made of random
states with no symmetries and typically large amounts of entanglement. Here, on
the other hand, we focus on the so-called W-states, a class of lowly entangled and
highly symmetric states defined as

|WL〉 = 1√
L
(|100 · · · 0〉 + |010 · · · 0〉 + · · · + |000 · · · 1〉) , (25)

for L qubits. This state can be exactly represented as a matrix product state with
bond dimension 2, making it a non-trivial many-body state with basically lowest
entanglement. Moreover, it is fully symmetric upon qubit permutations and is
therefore very different from the random states in the training set. Similarly to the
previous sections, the L qubits are partitioned into three adjacent blocks, where
block C is traced out and the entanglement between A and B is studied. The
resulting state ρAB is mixed for NC > 0. Since the state is fully symmetric, the
choice of the partition is irrelevant.

The true and predicted logarithmic negativities are shown in Fig. 7 for some
representative combinations of sizes and for two different neural network models
built with either M = 3 or M = 6. In Fig. 7, we see that good accuracy is
provided by the 6-copy scheme, while the 3-copy scheme is only able to capture
the overall trend. As previously mentioned, these states were expected to be among
the most difficult, given our choice of the training set. It is likely that better results
can be obtained by training the machine learning model with data generated by
highly symmetric and lowly entangled states. Nonetheless, we remark that, as also
more extensively discussed in Ref. [33], the machine learning prediction based on
moments works better for highly entangled states, while for lowly entangled states,
it would be feasible to use MPS-tomography [31], which is efficient for low levels
of entanglement.

6 Conclusions

The measurement of entanglement in quantum many-body systems is a challenging
task, especially for mixed states. All known computable entanglement measures
depend non-linearly on the state, so the standard approach to quantify entanglement
would require a complete state tomography, a highly demanding and not scalable
experimental procedure, followed by complex manipulations of matrices whose
dimension increases exponentially in the number of qubits. Here, we have reviewed
a different method, first proposed in Ref. [33], based on the reconstruction of the
‘PT moments’, namely the moments of the partially transposed density matrix
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Fig. 7 Entanglement estimation in the W-state. We show here a representative sample of the
entanglement estimation in the W-state for various lengths (L = NA+B + NC ) and partitions,
as a function of subsystem A size, NA. The blue, orange and green lines show the true logarithmic
negativity, the neural network estimated quantity with 3 copies, and the neural network estimated
quantity with 6 copies, respectively. Reprinted from [33]

of a quantum many-body mixed state, using efficient experimental procedures.
Related experimental techniques have already been demonstrated with different
physical platforms such as quantum dot arrays [73, 74] and cold atoms in optical
lattices [21, 75]. Our method is based on the observation that the relation between
PT moments and logarithmic negativity is basically smooth, so that it can be learnt
by machine learning interpolation methods. By extensive numerical simulations,
it was found that neural networks, trained with outcomes coming from random
quantum states, generally provide the most accurate and generalizable results. Here,
the neural network-based approach has been reviewed and applied to different states
that appear either in the ground state or in the dynamics of quantum many-body
systems. We find quite remarkable that a model trained using random quantum
states, with no knowledge of the underlying physical system, is able to accurately
estimate the logarithmic negativity for all checked bipartitions and with as few as
three copies of the physical system. We finally note that although different schemes
are needed to measure the moments in fermionic and bosonic systems, once these
are obtained, there should be no difference in extracting the logarithmic negativity,
since the random data used for training the neural network could either represent
spins or hard-core bosons.
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Local Convertibility in Quantum Spin
Systems

Luigi Amico, Vladimir Korepin, Alioscia Hamma, Salvatore
Marco Giampaolo, and Fabio Franchini

Abstract Local Convertibility refers to the possibility of transforming a given state
into a target one, just by means of LOCC with respect to a given bipartition of
the system, and it is possible if and only if all the Rényi entropies of the initial
state are smaller than those of the target state. We apply this concept to adiabatic
evolutions and ask whether they can be rendered through LOCC in the sense
above. We argue that a lack of differential local convertibility (dLC) signals a
higher computational power of the system’s quantum phase, which is also usually
connected with the existence of long-range entanglement, topological order, or edge
states. Remarkably, dLC can detect these global properties already by considering
small subsystems. Moreover, we connect dLC to spontaneous symmetry breaking
by arguing that states with finite order parameters must be the most classical ones
and thus be locally convertible.

Entanglement is one of the primary resources for quantum technology [1–7], as it
encodes the possibility of storing a large amount of information on a registry on
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one side and to change a state even in parts that are not directly manipulated[8, 9].
However, it is also clear that it is not the mere amount of entanglement, which
is important, but rather how it is distributed and how effectively it can be used
citealgorithm, gottesman, vidal2003a, vandernest2007, Briegel08, winter, eisert,
Briegel09, vandernest2013, Raussendorf13.

The quantum adiabatic algorithm provides a good paradigm to test the properties
of a given phase of matter, as it has been proven to provide a universal platform for
quantum computation [20]. It is based on the idea that starting from a simple system
with a known ground state, through a suitable adiabatic evolution, the final ground
state can encode the result of a computation or the state of a quantum system one
aims at simulating. Since the closing of the gap forces a dramatic slowdown in the
rate at which the Hamiltonian can be changed and the system expected to remain
in its instantaneous ground state, crossing a phase transition through the evolution
typically impairs the efficacy of an adiabatic algorithm. Hence, for this algorithm to
provide a nontrivial advantage, the choice of the initial quantum phase is crucial.

A criterion for this choice is provided by the concept of differential Local Con-
vertibility (dLC), which addresses the question of whether it is possible to reproduce
the adiabatic evolution of a bipartite quantum system through Local Operations and
Classical Communications (LOCCs) [21, 22]. Namely, upon partitioning a many-
body system into two blocks A and B, one questions whether the response of
the ground state |0〉 to an external perturbation can be rendered through LOCC
restricted to A and B individually? If affirmative, the ground state can be moved
around within a given quantum phase by LOCC. If negative, the adiabatic evolution
induced by the perturbation cannot be captured classically (due to the long-range
coherence present in the system). Quantitatively, it accounts for the response of the
Rényi entropy

Sα
.= 1

1− α log Tr ραA (1)

to the changing of a control parameter g in the Hamiltonian. Here, ρA
.= Tr B |0〉〈0|

is the reduced density matrix of the block A and α is a free parameter which tunes
different entanglement measures [23]. For instance, while low α’s weight more
evenly all eigenvalues of ρA, higher values of α enhance the role of the larger
eigenvalues. If all the Rènyi entropies decrease along a given path, this evolution
can also be rendered through LOCC (at least concerning the chosen partition of
A and B) [24, 25], and thus the adiabatic algorithm cannot provide a significant
improvement. This observation was at the heart of [26, 27].

Naïvely, one expects entanglement to always grow moving toward a phase
transition. In particular, S0 = logR, where R is the Schmidt rank of the state, i.e.,
the number of nonzero eigenvalues of ρA (while S1 is the von Neumann entropy
measuring the entanglement entropy for the subsystem A). Generically, R and thus
S0 increase with ξ because more degrees of freedom get entangled by increasing the
range of correlations. Nonetheless, the study of Local Convertibility shows that the
picture is more complex when higher α entropies are considered. Certain systems
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can support other forms of entanglement not captured by local correlation, which
are referred to as long-range entanglement (LRE) [28]. If the latter would decrease
approaching a phase transition, the competition between the different forms of
entanglement could be detected as a lack of dLC in all directions.

A simple form of LRE is connected to the existence of edge states at distant
boundaries of a system [29, 30]. Furthermore, these edge states are usually the
reflection of the existence of some sort of topological order. Interestingly, upon
partitioning a system into two, new pairs of edge states are created also at the
boundaries of the partitions. While for thermodynamic systems, the LRE connecting
the edge states is maximal, when the size of one of the partitions becomes
comparable with the correlation length, the edge state can undergo a process of
recombination which reduces their LRE. Through this mechanism, higher Rènyi
entropies can decrease as the correlation length increases, thus destroying dLC in
any directions of the adiabatic evolution. The behavior of dLC in relation to quantum
phase transitions and at criticality has been analyzed, respectively, in [31] and [32].

In addition to shedding new light on the role of edge states in providing a key
advantage in a universal quantum computational platform, dLC also proves useful in
identifying phases characterized by LRE. LRE is defined as that entanglement that
cannot be destroyed by reducing the state to a trivial (factorized) one through a finite
depth quantum circuit [28]. As such, it is usually revealed through nonlocal string
order parameters whose lengths exceed the order of usual correlations. Remarkably,
dLC can detect LRE using partitions of the order of the correlation length, thus
providing a somewhat local probe of an elusive long-range property [33–37]. We
will analyze a few examples of models displaying topological order in light of their
local convertibility. Topological phases have attracted a lot of attention for their
ability to defy the Ginzburg–Landau paradigm by not having any finite local order
parameter, but rather a topological one [38, 39].

However, dLC has also been connected to the usual spontaneous symmetry
breaking mechanism responsible for the ensuing of local order [40]. In particular,
on the whole, the complete understanding of the physical mechanism that selects
the symmetry-breaking ground states in the thermodynamic limit remains an open
problem [41, 42]. In complete analogy with the case of classical phase transitions
driven by temperature, the common explanation of this phenomenon invokes the
unavoidable presence of some local, however small, perturbing external field that
selects one of the maximally symmetry-breaking ground states (MSBGSs) among
all the elements of the quantum ground space [43]. Crucially, in this type of
reasoning, it is assumed that the MSBGSs are the most classical ones and thus the
ones that are selected in real-world situations, under the effect of decoherence that
quickly destroys macroscopic coherent superpositions.

At first glance, this notion appears to be obvious. For instance, in the paradig-
matic case of the quantum Ising model, the ground space of the ferromagnetic
phase at zero transverse fields h is spanned by two orthogonal product states
|0〉⊗N and |1〉⊗N which are in the same class of pointer states of the typical
decoherence argument, while the symmetric states �± = 1/

√
2(|0〉⊗N ± |1〉⊗N)

realize macroscopic coherent superpositions (Schrodinger cats) that are not stable
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under decoherence [44, 45]. Therefore, at zero transverse fields h, the situation is
very clear: the only stable states are those that maximally break the symmetry of
the Hamiltonian and at the same time those that feature vanishing macroscopic total
correlations, including entanglement, between spatially separated regions.

On the other hand, as we turn on the external field h, we have a whole range
of values, below the critical field h = hc, where it remains a finite magnetic order
associated with spontaneous symmetry breaking [46], which implies an application
of the decoherence argument within the entire, globally ordered phase. This means
that, again, the only stable states are those that maximally break the Hamiltonian
symmetry. However, now the symmetry-breaking states are entangled, and their
mixed-state reductions on arbitrary subsystems possess in general nonvanishing
pairwise entanglement [1, 48, 49], as well as pairwise quantum [50–52] and classical
correlations [46]. It is thus now unclear if and in what sense the MSBGSs are the
most classical among all quantum ground states.

Below we will provide a general conjecture on the nature of ordered quantum
phases and the origin of spontaneous symmetry breaking, by comparing various
quantifiers of local and global quantum correlations in symmetry-breaking and
symmetry-preserving quantum ground states. We will first compare measures of
local, pairwise quantum correlations and show that in symmetry-preserving ground
states the two-body entanglement captures only a modest portion of the local, two-
body quantum correlations, while in maximally symmetry-breaking ground states
it accounts for the largest contribution. Next, we will introduce proper criteria and
quantifiers of the degree of classicality of quantum states for their global contents
of macroscopic entanglement and quantum correlations. Finally, we will show that,
within the quantum ground space corresponding to macroscopically ordered phases
with nonvanishing local order parameters, the MSBGSs are the most classical
ground states in the sense that they are the only quantum ground states that satisfy
the following two criteria for each set of Hamiltonian parameters consistent with an
ordered quantum phase in the thermodynamic limit:

• Local convertibility—All global ground states are convertible into MSBGSs
applying only local operations and classical communication (LOCC transforma-
tions), while the reverse transformation is impossible.

• Entanglement distribution—The MSBGSs are the only global ground states that
minimize the residual tangle between a dynamical variable and the remainder
of a macroscopic quantum system. Stated otherwise, the MSBGSs are the
only ground states that satisfy the monogamy inequality—a strong constraint,
with no classical counterpart, on the shared bipartite entanglement between
all components of a macroscopic quantum system—at its minimum among all
other possible ground states and thus minimize the macroscopic multipartite
entanglement as measured by the residual tangle.

Verification of these two features amounts to proving that the mechanism of
spontaneous symmetry breaking selects the most classical ground states associated
with globally ordered phases of quantum matter with nonvanishing local order
parameters.
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This chapter is organized as follows: in Sects. 1, 2, and 3, we will analyze the
dLC of the Cluster-Ising chain, of the λ−D model and of the two-dimensional toric
code with different perturbative terms, to show how all these models, characterized
by different types of topological order, are not locally convertible. In Sect. 4, we will
use the paradigmatic example of the Quantum Ising Chain to elucidate the role of
edge states in dLC and thus to provide a picture of how LRE prevents convertibility
and why small partitions can detect it. In Sect. 5, we detail the conjecture on the
characterization of MSBGS as the most classical ones. Finally, we draw some
conclusions in Sect. 6.

1 The Cluster-Ising Model

The first Hamiltonian we consider is

H(g) = −
N∑

j=1

σxj−1σ
z
j σ
x
j+1 + g

N∑

j=1

σ
y
j σ

y

j+1, (2)

where σαi and α = x, y, z, are the Pauli matrices, and, except otherwise stated, we
take open boundary conditions σαN+1 = σα0 = 0. The phase diagram of (2) has
been investigated in [53, 54]. For large g, the system is an Ising antiferromagnet
with a finite local order parameter. For g = 0, the ground state is a cluster state.
It results that the correlation pattern characterizing the cluster state is robust up to
a critical value of the control parameter, meaningfully defining a “cluster phase”
with vanishing order parameter and string order [53, 54]. Without symmetry, the
cluster phase is a (non-topological) quantum spin liquid since there is a gap and
no symmetry is spontaneously broken. Protected by a Z2 × Z2 symmetry, the
cluster phase is characterized by a topological fourfold ground state degeneracy,
reflecting the existence of edge states and fanning out from g = 0 where 4 Majorana
fermions are left free at the ends of the chain [53, 55]. In the DMRG, we resolve
the ground state degeneracy, by adding a small perturbation σx1 σ

z
2 ± σzN−1σ

x
N

to the Hamiltonian. The Cluster and Ising phases are separated by a continuous
quantum phase transition with central charge c = 3/2. Let us also note that the
Hamiltonian (2) can be mapped to three decoupled Ising chains [53, 54].

Through a Jordan–Wigner transformation σ+k = c†
k

∏
j<k σ

z
j , σ−k = ck

∏
j<k σ

z
j ,

σzk = 2c†
kck − 1, the Hamiltonian of the Cluster-Ising model can be written as

H(g) = −i
∑

k

[
f
(2)
k f

(1)
k+2 − gf (1)k f

(2)
k+1

]
, (3)

where f (1)k = ck + c†
k and f (2)k = −i(ck − c†

k) are two types of Majorana fermion
operators. Although no local order parameters exist to characterize the topological
phase, the topological order in the Cluster-Ising model can be detected, see Fig. 1,
by the edge states (a1) and string order parameters (a3).
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Fig. 1 The edge state, correlation length, and the string order parameter of the Cluster-Ising
model. (a1) shows that there is edge state in the cluster phase, whereas there is no edge state
in Ising antiferromagnetic phase. (a2) shows the correlation length of 〈σnσn+3〉 − 〈σn〉〈σn+3〉
displaying a critical behavior. (a3) is the string order parameter Oz = (−)N−2〈σy1

∏N−1
j=1 σ

z
j σ
y
N 〉

We find that the symmetric partition A|A displays local convertibility, Fig. 2:
(a1), (a2). This is indeed a fine-tuned phenomenon since the cluster phase results
nonlocally convertible, for a generic block of spins, both of the type A|B and the
B|A|B, Fig. 2. We remark that such a property holds even for size region A smaller
than the correlation length. Indeed, the entanglement spectrum is doubly degenerate
in all the cluster phases, as far as the size of the blocks A and B is larger than the
correlation length, see Fig. 3. In contrast, the antiferromagnet is locally convertible,
with nondegenerate entanglement spectrum.

2 The λ − D Model

In this section, we study the local convertibility of the λ − D model Hamiltonian
describing an interacting spin-1 chain with a single-ion anisotropy

H =
∑

i

[(
Sxi S

x
i+1 + Syi Syi+1

)+ λSzi Szi+1 +D
(
Szi

)2
]
, (4)

where Su and u = {x, y, z} are spin-1 operators: Sz|±〉 = ±|±〉 and Sz|0〉 = 0. The
phase diagram has been investigated by many authors [56–58]. The Hamiltonian
above enjoys several symmetries, including time reversal Sx,y,z → −Sx,y,z, parity
Sx,y → −Sx,y , Sz → Sz generating Z2 × Z2, and the link inversion symmetry
Suj → Su−j+1.

We only consider λ > 0. For small/large D and fixed λ, the system is in a
polarized state along |+〉±|−〉 or |0〉, respectively. For large λ and fixedD, the state
displays antiferromagnetic order. At intermediate D and λ, the state is a “diluted
antiferromagnet” with strong quantum fluctuations, defining the Haldane phase,
which cannot be characterized through any local order parameter. With symmetry
protection, the topological order in the Haldane phase can be detected by the edge
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Fig. 2 The local
convertibility and the
entanglement spectrum of the
Cluster-Ising model Eq. (2).
We characterize the
differential local
convertibility in terms of the
slopes of the Rényi entropies.
Panel (a) is for bipartition
A|A, A = 50. There is
differential local
convertibility throughout the
two different phases because,
for fixed g, ∂gSα does not
change sign with α. Panel (b)
is for bipartition A|B, A = 3,
B = 97. Panel (c) is for
A|B|C, being one block
A ∪ C with A = 48, C = 49,
and B = 3. Panels
(a3, b3, c3) and (a4, b4, c4)
display respectively the
reduced density matrix
eigenvalues xn and the
entanglement spectrum. The
larger and the smaller
eigenvalues of reduced
density matrix xn,
respectively;
ES

.= {− log xn}. In
convertible phases, we
observe that the change in the
largest eigenvalues is “faster”
than the rate at which the
smallest eigenvalues are
populated. In contrast, the
non-differential local
convertibility arises because
the sharpening of the first part
of the spectrum is
over-compensated by the
increasing of the smallest xn
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Fig. 3 The local convertibility and the entanglement spectrum of the Cluster-Ising model with
bipartition 45|10|45. We characterize the differential local convertibility in terms of the slopes of
the Rényi entropies. ∂gSα changes sign in the cluster phase. (a3) and (a4) display the largest and
the smaller eigenvalues of reduced density matrix xn, respectively;ES

.= {− log xn}. In convertible
phases, we observe that the change in the largest eigenvalues is “faster” than the rate at which
the smallest eigenvalues are populated. In contrast, the non-differential local convertibility arises
because the sharpening of the first part of the spectrum is over-compensated by the increasing of
the smallest xn

states and string order parameters defined in Fig. 4 (see [59]). Without symmetry,
the ground state is gapped and no symmetry is spontaneously broken, making the
Haldane phase a quantum spin liquid. In fact, for open boundary conditions (which
we apply in the present analysis), the Haldane ground state displays a fourfold
degeneracy, which cannot be lifted without breaking the abovementioned symmetry
of the Hamiltonian. This is the core mechanism defining the Haldane phase as a
symmetry-protected topological ordered phase [60, 61].

In Fig. 5, we display the schematic phase diagram of the λ−D model. We sweep
through the phase diagram in the following two ways: (1) fix λ = 1 and change
D; the Haldane phase is approximately located in the range −0.4 � D � 0.8. (2)
Fix D = 0, varying on λ; the Haldane phase is located in the range 0 � λ � 1.1
(see Fig. 5). We analyzed the four states separately adding the perturbation to the
Hamiltonian∼ (Sz1±SzN) with a small coupling constant to resolve the ground state
degeneracy.
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Fig. 4 The edge states, correlation lengths, and string order parameters of the λ −D model. The
sweep (1) through the λ−D phase diagram is considered (see text). In (a1), we show the Haldane
phase edge states; we do not find edge states in the other phases. In (a2), the string order parameters
Ou = (−)N−2〈Su1

∏N−1
j=1 e

iπSuj SuN 〉. In (a3), the correlation length of 〈Suj Suj+n〉 − 〈Suj 〉〈Suj+n〉

Fig. 5 We sweep through the phase diagram in the following two ways: (1) fix λ = 1 and change
D; the Haldane phase is approximately located in the range −0.4 � D � 0.8. (2) Fix D = 0,
varying on λ; the Haldane phase is located in the range 0 � λ � 1.1

We find that the Néel, ferromagnetic, and the large D phases are locally
convertible (see Fig. 6: (a1), (a2)). Consistently with [62], all of the Haldane
ground states are characterized by doubly degenerate entanglement spectrum for the
symmetric A|B partitions with A = B, for both sweep ways (Fig. 6: (a3) and (a4))
(see [63] for an understanding of doubly degenerate entanglement spectrum). Such
a property is not recovered in the cases of asymmetric A|B and A|B|A partitions:
in these cases, the entanglement spectrum is not found doubly degenerate, because
we broke the link inversion symmetry [62] (Fig. 6: (b3), (b4)). See also [64] for an
analysis of the entanglement spectrum close to the quantum phase transitions.

We find that the Haldane phase is not locally convertible (see Figs. 6: (b1),
(b2), 7, and 8). We remark that for both ways to partition the system the nonlocal-
convertibility phenomenon is found even in the case of sizes of B smaller than the
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Fig. 6 The local convertibility for the partition A|B. The sweep (1) through the λ − D phase
diagram is considered (see also Fig. 5 for the schematic phase diagram).The upper panels display
the results for the symmetric case A|A. The bottom panels refer to the antisymmetric case
A = 96, B = 4. The Rényi entropies are presented in (a1), (b1). The sign distributions of the
entropies’ derivatives are shown in (a2), (b2). The eigenvalues of reduced density matrix xn and the
entanglement spectrum are shown in (a3), (a4), (b3), (b4) as in Fig. 2. The features of differential
local convertibility are characterized by the slopes of the Rényi entropies and correspond to specific
features of the entanglement spectrum as explained in Fig. 2
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Fig. 7 Sweep (1) through the λ − D model: λ = 1, D ∈ {−1, 1}. The sign distribution of
the derivative of the Rényi entropies ∂DSα for partitions A|B|A, A = 48 and B = 4 (upper
panels) and A = 45 and B = 10 (lower panels); both with N = 100 are presented in (a2). The
features of differential local convertibility are characterized by the slopes of the Rényi entropies
and correspond to specific features of the entanglement spectrum as explained in Fig. 2. The Sα’s
are presented in (a1) for α = 0.5, 100 decreasing from top to low. All such quantities are calculated
for the ground state in Stotz = 1 sector

correlation length ξ . As for the model Eq. (2), we find that the symmetric bipartition
A = B displays local convertibility as a fine-tuned effect, which is broken for
generic partitions, see Figs. 7 and 8.

3 The Perturbed Toric Code

We now study a set of spin-1/2 localized at the edges of a 2D square lattice with
periodic boundary conditions in presence of a perturbation V :

H = −
∑

s

∏

i∈s
σ xi −

∑

p

∏

i∈p
σ zi + V (λ), (5)

where s and p label the vertices and plaquettes of the lattice, respectively, while
σxi and σzi are Pauli operators of the spin living at the edge i. For V (λ) = 0 the
Hamiltonian above is the celebrated toric code, a paradigmatic model for topological
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Fig. 8 Sweep (2) through the λ−D model: D = 0, λ ∈ {0, 1.5} (see Fig. 5 for a schematic phase
diagram). The sign distribution of the derivative of the Rényi entropies ∂λSα for partitions A|B|A,
A = 48 and B = 4 (upper panels) and A = 45 and B = 10 (lower panels); both with N = 100 are
presented in (a2). The features of differential local convertibility are characterized by the slopes of
the Rényi entropies and correspond to specific features of the entanglement spectrum as explained
in Fig. 2. The Sα’s are presented in (a1) for α = 100, 0.2 increasing from low to top. All such
quantities are calculated for the ground state in Stotz = 1 sector

order [65]. For the analysis below, we remark that in this case, the ground state
of this model features ξ = 0. We consider different V (λ) (see Table 1), where λ
stands for {λ1, . . . , λN } which are the parameters controlling the perturbation. The
perturbation in (5) is such that the correlation length is increasing with λi until it
divergences at a critical point λc. For a discussion of this criticality, see [66].

For λ < λc, these systems are topologically ordered, while for λ > λc, they are
trivial paramagnets. In both phases, there is no local order parameter. This model
belongs to a class of so-called quantum double models that correspond to those
phases whose low-energy theory is a lattice gauge theory [65]. We demonstrate that
one can distinguish the topological from the paramagnetic phases of (5) using dLC,
even when small subsystems A are considered.

For each V (λ), we compute the ground state wavefunction |ψ(λ)〉 and its reduced
density matrix ρA(λ). For some V (λ), we can apply exact analytical approach;
for the generic perturbation Vxz(λ) = ∑

i (λzσ
z
i + λxσxi ), we resort to numerical

analysis.
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Table 1 List of the various perturbation used in the topological toric code and some of their
properties. dLC, i.e., no splitting of the Rényi entropies, only occurs if the perturbation is fine
tuned in order to keep the system with ξ = 0. The left column shows the type of perturbation
studied. The first column details whether the considered model is gauge invariant. The second
column indicates whether dLC occurs. For certain perturbations, the ground state of the system is
accessible exactly (third column). The last column provides the information on ξ

Perturbation V (λ) G.I. DLC Exact ξ
∑
s e
−λs∑i∈s σ zi ✓ ✓ ✓ 0

λh
∑
i∈H σ

z
i ✓ ✗ ✓ �= 0

λz
∑
i σ
z
i ✓ ✗ ✗ �= 0

λz
∑
i σ
z
i + λx

∑
j σ

x
j ✗ ✗ ✗ �= 0

Fig. 9 Cylinder of infinite
length and width Ly = 5 used
in 2D DMRG calculation. (a)
Subsystems on which Rényi
entropies are calculated:
As—one star and
As,p—composition of star
and plaquette. Loops lz1 and lx2
used to distinguished between
topological sectors are also
depicted. (b) Subsystem Ch.i.
that contains half of the
infinite cylinder

The numerical method employed here is an infinite DMRG algorithm [67] in two
dimensions. The method provides Matrix Product State (MPS) representation of a
complete set of ground states on a cylinder of infinite length and finite width Ly
(Fig. 9) for a given Hamiltonian that realizes topological order. As argued in [68],
each ground state has a well-defined flux threading through the cylinder. The flux is
measured by (in general) dressed Wilson loop operators that enclose the cylinder in
the vertical direction.

In the case of fixed-point toric code (Eq. (5) with V = 0), these loops are given
by lz1 and lx2 (Fig. 9a). Four topological sectors are then distinguished by 〈lz1〉, 〈lx2 〉 =±1. Once the perturbation is present, Wilson loops may change, but as long as the
perturbation is small, 〈lz1〉 and 〈lx2 〉 can still be used to identify topological sectors
because 〈lz1〉, 〈lx2 〉 � ±1.

Simulations are carried out with cylinders of width up toLy = 5 for
√
λ2
x + λ2

z ≤
0.05 and 0 ≤ λ < 0.7 as shown in Figs. 10 and 11 respectively. In the topological
phase, the outcome of each simulation is four quasi-degenerate ground states, from
which the one with 〈lz1〉, 〈lx2 〉 � +1 is chosen for further investigation. This is done
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Fig. 10 The splitting phenomenon. The figure displays the splitting with opposite slopes between
the small and large α Rényi entropies. We see the splitting occurring around α � 0.6. The Rényi
entropies are calculated for the partition As,p of Fig. 9a for the ground state of H = HT C + Vxz

Fig. 11 Rényi entropies as a function of λ for the ground state of H = HT C + Vxz with λx = λ
and λz = λ/2. Here, Ly = 5. The reduced system A consists of As and Ch.i. in panels A and B,
respectively. As λ increases, the correlation length increases. The Schmidt rank R and the low α <
α0-Rényi entropies increase as well. The value of α0 is 0.4 and 0.6 in panels A and B, respectively.
Nevertheless, the total entanglement S1 and all the higher Rényi entropies are decreasing with ξ .
Notice the spike in panel B marking the quantum phase transition to the paramagnetic phase at
λc ∼ 0.35

to ensure that finite size effects have the least possible impact on results. In the
limit Ly →∞ all four ground states become locally indistinguishable. The results
are converged in bond dimension of MPS which acts as a refinement parameter.
A reduced density matrix of a half-infinite cylinder Ch.i. (Fig. 9b) is calculated
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throughout the simulation. The bond dimension is increased until convergence of
its spectrum is reached.

In Fig. 10, we can see the behavior of the Sα Rényi entropies as we span
the parameter space λx, λz for the perturbation Vxz. We see clearly that in the
topologically ordered phase a splitting of Sα’s occurs: ∂λSα ≶ 0 at a given value
of α = α0; we found α0 � 0.6 (see the caption of Fig. 10). We will henceforth refer
to this phenomenon as α splitting. In the paramagnetic phase, all the Rényi entropies
are monotones with λ. This behavior is generically independent of the size and shape
of the subsystem A, as long as A contains some bulk [35]. Below, we explain the
phenomenon. The topologically ordered phase we consider is characterized by the
presence of a state (at λ = 0) with ξ = 0 and a flat entanglement spectrum (and
an area law) [69]. The flat entanglement spectrum implies that small perturbations
result in decreasing Sα for α > α0 being α0 < 1, because the distribution becomes
less flat in the most represented eigenvalues in the entanglement spectrum. In
contrast, S0 must increase with ξ as an effect of the perturbation (new degrees of
freedom are involved in the entanglement spectrum). So the α splitting results from
the insertion of a finite ξ in the state evolving from a state with a flat spectrum and
zero ξ . We also observe that such property is shared with the so-called G-states
that include all the topologically ordered quantum double models and states like the
cluster states [70], and therefore our findings apply to this class of models as well
[69] (see [71] for a discussion of the cluster phase diagram). Here, we remark that
the splitting effectively distinguishes a class of quantum spin liquids (states with
finite correlation length and no local order parameter), which are notoriously very
difficult to detect, since one cannot measure correlation functions of all the possible
local observables. To further distinguish non-topologically ordered quantum spin
liquids like the cluster states from topologically ordered states, we need to measure
the degeneracy of the ground state, since the former have a unique ground state,
while topological states possess a degeneracy protected by topology.

Moreover, notice that the splitting occurs no matter how we perturb in the plane
λx, λz, and it is, therefore, a robust property of the phase. Note again that in the
paramagnetic phase, all the ∂λSα have the same sign and no splitting ever occurs,
which is easily understood from the presence (at very large λ) of a completely
factorized state, see Fig. 11.

We remark that the splitting phenomenon effectively distinguishes the topolog-
ically ordered state from a topologically trivial ordered state (like a ferromagnet).
As discussed above, the latter states have typically Sα increasing with ξ and no
splitting occurs. Summarizing, we can distinguish between the topological phase
and the paramagnet of (5); furthermore, we can distinguish between the topological
phase and a symmetry-breaking phase.

To corroborate our findings, we resort to exact analysis for suitable perturbations
V (λ)’s. We consider two cases: (i) Vh = λz

∑
i∈h σ

z
i , corresponding to placing

the external field ∝ σz only along the horizontal links of the lattice; and (ii)
V (λ) =∑

s e
−λ∑i∈s σ zi leading to the Castelnovo–Chamon model [72]. Since these

perturbations commute with the plaquette operators of Eq. (5), the ground state of
these models can be written as the superposition of loop states |g〉 with amplitudes
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α(g). A loop state |g〉 is obtained from the completely polarized state in the z
direction, by flipping down all the spins intersected by a loop drawn on the lattice.
The corresponding loop operators g form a groupG called the gauge group of these
theories.

In case (i), the star operators
∏
i∈s σ xi interact only along the rows of the lattice.

The model maps onto the product of arrays of Ising chains by the duality As → τ zμ,

σzi → τxμτ
x
μ+1: HT C + Vh %→ Hff = ⊕L

i=1(−λ
∑
μ τ

x
μτ
x
μ+1 −

∑
μ τ

z
μ) [73, 74].

The relevant correlators in the variables σ can be obtained through the correlators in
the dual variables τ that can be accessed exactly [46]. In the following, we sketch a
proof that the splitting phenomenon does occur in this model (see [35] for additional
details). We consider the star As = {i1, i2, i3, i4} as subsystem A (see Fig. 9); ρAs
is block diagonal with 2× 2 blocks labeled by |i1i2i3i4〉 and As |i1i2i3i4〉. It results
that ρA has maximum rank unless α(g) = α(g1)α(g2), implying there is a zero
eigenvalue in each block. In the dual picture, this is equivalent to require 〈τiτj 〉 =
〈τi〉〈τj 〉. Such condition holds at λ = 0 only, and therefore R increases at λ �= 0.
The factorization of the amplitudes also proves that both α = 1, 2-Rényi entropies
decrease at small λ [35].

The case (ii) is important to test the argument of the interplay between splitting
and increasing of the correlation length. This argument implies that a perturbation
for which ξ(λ) = const does not lead to a splitting in the Rényi entropies. The
model of Castelnovo–Chamon features exactly this since spin–spin correlation
functions 〈σxi σ xj 〉 are vanishing for every value of λ. The exact ground state is

made of loops with amplitudes α(g) = e−λ/2
∑
i∈s σ zi (g), where σzi (g) = 〈g| σzi |g〉.

The topological phase is (λ < λc ≈ 0.44). A lengthy calculation leads to
Sα(ρA) = (1 − α)−1 logZ−α(λ)

∑
g∈G e−λLgwα−1(λ, g), where Z = ∑

g e
−λLg

and w(λ, g) := ∑
h∈GA,k∈GB e

−λLhgk , and Lm is the length of the loop m of the
gauge group G; here, GA and GB are the gauge groups of the subsystems A and B,
respectively. The analysis of small and large λ expansions reveals that ∂λSα(λ) ≤ 0
[35]. As a particular case, S0 is constant for every value of λ. Accordingly, for this
fine-tuned perturbation, all Rényi entropies decrease, and therefore no splitting is
observed. This is consistent with the fact that also in this model, the amplitudes
α(g) factorize as discussed in (i).

4 The Quantum Ising Chain

To better extract the effect of edge states on local convertibility, it is desirable to
have a model with three properties: (i) it should support edge states, (ii) quasi-
particle excitations should be identifiable, and (iii) there should be a mechanism
for destroying the edge states and observing the different behavior. The one-
dimensional transverse field Ising model fulfills these requirements [46, 75]. It is



Local Convertibility in Quantum Spin Systems 167

defined by the Hamiltonian

HI = −
N∑

j=1

(
t σ xj σ

x
j+1 + h σzj

)
, (6)

where t is a hopping amplitude (which we can set to t = 1) and h is the control
parameter for the external magnetic field. A quantum phase transition for h = t = 1
happens in the thermodynamic limit of N → ∞. This QPT’s signatures have been
recently observed experimentally [76].

The Hilbert space of (6) can be described in terms of eigenstates of the string
operator μxN = ∏N

j=1 σ
z
j , which generates the Z2 symmetry of (6). For h > 1,

the system is paramagnetic with 〈σx〉 = 0. For h < 1, the spectrum of the Ising
model becomes doubly degenerate. A ground state that is also an eigenstate of
μxN has a vanishing order parameter 〈σx〉 = 0. This ground state is known as
the “thermal ground state.” This is the state employed in the 2-Sat problem and
adiabatic quantum computation protocols for finite N [20]. In the thermodynamic
limit (N →∞), σx can acquire a nonzero expectation value. The symmetry will be
broken spontaneously and the ground state will be given by the (anti)symmetric
combination of the two eigenstates of μxN . For h < 1, we consider both the
ferromagnetic ground state (MSBGS) with nonvanishing order parameter 〈σx〉 and
the thermal one enjoying the same Z2 symmetry as the Hamiltonian.

The quantum Ising model (6) can be mapped exactly, although nonlocally, to a
system of free spinless fermions {cj , c†

j }, see [75]. We remark that this mapping
preserves the entanglement between A and B [77, 78] and generates the Kitaev
chain. As emphasized in [79], this formulation highlights the presence of Majorana
edge states as emergent degrees of freedom. Majorana fermions are the elusive
particles (coinciding with their own anti-particles), proposed by E. Majorana. Many
research groups are trying to find and manipulate them [29, 30]. Each Dirac fermion
of the chain can be used to define two Majorana fermions:

f
(1)
j ≡

⎡

⎣
∏

l<j

σ zl

⎤

⎦ σxj = c†
j + cj , f

(2)
j ≡

⎡

⎣
∏

l<j

σ zl

⎤

⎦ σyj = i
(
c

†
j − cj

)
(7)

We represent this mapping pictorially in Fig. 12. In the paramagnetic phase
(h > 1), the Hamiltonian pairs predominantly Majoranas on the same site j (this
correlation is drawn as a double line in the picture). In the ferromagnetic phase
(h < 1), the dashed line connecting different sites is dominant. In Kitaev’s approach,
the double degeneracy of this phase emerges as the first and last Majoranas are left
unpaired and can be combined into a complex fermion (the occupancy/vacancy of
this fermion costs no energy). We will see that the same picture applies when the
system is divided into two partitions: in the ferromagnetic phase, this operation cuts
the dominant link and leaves unpaired Majorana edge states on each side of the cut.
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Fig. 12 Top: the Ising chain is mapped into a system of Majorana fermions by doubling the lattice
sites. Middle and bottom: a schematic cartoon of the quasi-particle excitations in the two phases of
the model and the effect of bipartitioning the system; for small h, edge states form at the opposite
boundaries of the subsystem A. The property of local convertibility depends on the correlations
between such edge states

This is a key many-body feature that renders phases supporting boundary states
more “quantum” than other systems and hence more powerful when employed as
simulators. Since any subsystem develops its edge states, in these phases, q-bits
of information are stored nonlocally between the sites, and we will see that this is
mirrored by the nontrivial entanglement behavior, yielding nonlocal convertibility.
Such phenomenology, which can hardly be implemented in a classical setting, must
be a fundamental ingredient of a machine aimed at simulating a generic quantum
system, and this is the reason for which nonlocal convertibility is a strong indicator
of a higher computational power.

4.1 The Rényi Entropies

An advantage of working with a quadratic theory such as the Ising chain is
that many-body states can be constructed exactly out of individual quasi-particle
excitations. The latter can be found as the linear combination of the fermionic
operators {cj , c†

j }, which diagonalizes the Hamiltonian. Doing so, we define a new

set of operators {c̃j , c̃†
j } so that the ground state |0〉 is annihilated by all c̃j . On top of

it, one can excite quasi-particles by progressively applying all possible combinations
of c̃†

j , giving a total of 2N states in the Hilbert space.
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To calculate the entanglement between the subregions A and B, we use the
Schmidt decomposition of the ground state

|0〉 =
∑

l

√
λl |ψ(A)l 〉 |ψ(B)l 〉 , (8)

where |ψ(A,B)l 〉 span the Hilbert space of block A and B, respectively [23]. We are
after the eigenvalues λl , which can be found, for instance, as

λl = 〈0|ψ(A)l 〉〈ψ(A)l |0〉 , (9)

where a tracing over the B degrees of freedom is implicitly assumed. Similarly to
what is done for the whole system, the states |ψ(A)l 〉 can be constructed in terms of
individual excitations. However, these are different from those of the whole chain,
as they are completely contained inside the block. If A consists of L consecutive
sites, these block excitations {dj , d†

j } are the linear combinations of the c-operators
within the block, which diagonalize the correlation matrix constructed out of all
their two-point correlation functions, as shown below. Each state |ψ(A)l 〉 of this 2L-
dimensional Hilbert space can thus be characterized by the occupation number 0
or 1 of each block excitation. Moreover, the eigenvalues νj of the aforementioned
correlation matrix provide us with the expectation values

〈0|djd†
j |0〉 =

1+ νj
2

, 〈0|d†
j dj |0〉 =

1− νj
2

, (10)

all other correlations being zero. Note that νj � 1 indicates that dj annihilates the
vacuum |0〉. It follows that certain quasi-particle excitations of the Hamiltonian are
completely contained within the block, since dj |0〉 = 0 implies that dj is just a
superposition of c̃j ’s. Since dj is defined just within the block, it follows that these
c̃j ’s are also contained in the block. Conversely, smaller values of νj are related to
excitations lying only partially within a subregion. In turn, djd

†
j acts on the ground

state as a projection operator which selects the component with 0 occupation number
for the lth block excitation, while d†

j dj projects it on an occupied lth excitation.
Hence, (9) can be written as the expectation value of a string of operators of this
type. Using (10) as the building blocks of these correlators, we have

{λl} =
L∏

j=1

(
1± νj

2

)
, (11)

with all the possible combinations of plus/minus signs, corresponding to the
occupation/unoccupation of the different block excitations.
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Finally, the Rényi entropies read [77, 78]

Sα(ρA) = 1

1− α
L∑

j=1

log

[(
1+ νj

2

)α
+
(

1− νj
2

)α]
. (12)

4.2 The Correlation Matrix

As we just discussed, the Rényi entropies are accessed through the “eigenvalues” of
the reduced density matrix of a block of L consecutive spins for the thermal ground
state [77, 78]. Such “eigenvalues” can be obtained from the diagonalization of the
2L× 2L correlation matrix: 〈f (a)k f

(b)
j 〉 = δj,kδa,b + i (BL)(a,b)(j,k) , with

BL ≡

⎛

⎜⎜⎜⎜⎝

�0 �1 . . . �L−1

�−1 �0
...

...
. . .

...

�1−L . . . . . . �0

⎞

⎟⎟⎟⎟⎠
, (13)

where j, k specifies the entry �j−k ≡
(

0 gj−k
−gk−j 0

)
, which is itself a 2 × 2

matrix whose a, b entries are defined as

gj ≡ 1

2π

∫ 2π

0

cos θ − h+ i sin θ√
(cos θ − h)2 + sin2 θ

eijθ dθ . (14)

The antisymmetric matrix B can be brought into a block-diagonal form by a
SO(2L) rotation, with each block of the form

�̃j = νj
(

0 1
−1 0

)

This rotation defines a new set of Majorana fermions f̃ (a)j with only pair-wise
correlations. This rotated operator basis can be used to introduce the new set of

complex operators: dj =
(
f̃
(1)
j + if̃ (2)j

)
/2 (and their Hermitian conjugated). The

matrix (13) contains all the information to completely solve the model. By taking
L = N , i.e., extending the correlation matrix to the whole system, the d-modes
coincide with the c̃-operators, one would obtain from the diagonalization of the
Hamiltonian.
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For L = 2, the two eigenvalues of the correlation matrix are easily found to be

ν± =
√(

g1 − g−1

2

)2

+ g2
0 ±

g1 + g−1

2
, (15)

which allows for a complete analytical study of the entanglement entropy and its
derivative (see Fig. 14).

4.3 The Z2 Symmetric Ground State

Thus, in the Ising chain, the 2L states within a block of L consecutive sites can
be constructed in terms of individual quasi-particle excitations, which can be either
occupied or empty. These excitations are in general delocalized, with a typical size
set by the correlation length. However, a Z2 symmetric state possesses one special
excitation, with support lying at the opposite edges of the block and formed by
two Majorana edge states [79]. When the block is extended to the whole system
(L = N ), the block excitations coincide with the system’s excitations, including the
boundary states.

The entanglement between two subsystems A and B can be extracted from the
2L eigenvalues±iνj of the correlation matrix Eq. (13) incorporating the correlations
of the excitations within the spin block. Here, L is the number of lattice sites in
A. The eigenvalues of the reduced density matrix can then be constructed out of
the νj ’s, using (11) in the method section. The ν’s can be interpreted as sort of
occupation numbers, since they capture the overlaps between each block quasi-
particle excitation and the ground state, according to (10): νj = 0 means that this
block excitation is half-filled and half-empty in the ground state, while νj = 1
indicates that the excitation is either completely occupied or not present at all.

In Fig. 13, we plot these eigenvalues νj as a function of the magnetic field for
L = 2 and L = 10. Notice that in both cases only one block excitation has a

Fig. 13 Plot of the occupation number νj obtained from the correlation matrix (13) as a function
of h for L = 2 (left) and L = 10 (right). For L = 2, the explicit form of the eigenvalues ν± is
given in (15). Notice that only one of the ν’s shows a nontrivial behavior: it corresponds to the
boundary state, which is only partially contained in the subregion
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Fig. 14 Left: plot of the four eigenvalues of ρA for L = 2, as a function of h. The solid lines are
the analytical results, while the crosses show the numerical ones with N=200 (notice the different
scales in the vertical axis between the top and bottom panels). Right: contour plot of the sign of
the derivative by h of the Rényi entropy for different values of h and α

nontrivial behavior, while the other eigenvalues stay approximately constant around
unity in all phases. Significant deviations happen only close to the QPT (as the
correlation length diverges). As discussed, the modes with νj � 1 define bulk states.
In contrast, the nontrivial eigenvalue is close to zero for h � 0 and rises rapidly
toward 1 crossing the QPT at h = 1: in the ferromagnetic phase, it corresponds to
a block excitation which is neither occupied nor empty. By cutting the chain into
two subregions, we severed the dominant inter-site correlation and hence generated
two unpaired Majorana edge states (see Fig. 12). We noticed, however, that as h
increases, the occupation number of this edge excitation increases, indicating edge
state recombination.

Having discussed the behavior of the eigenvalues νj ’s and the role of the
boundary states, it is straightforward to analyze the Rényi entropy and address the
issue of differential local convertibility. It is interesting to concentrate on the two
extreme limits: L = 2 and L→∞.

The two occupation numbers ν± for L = 2 are shown in the left panel of Fig. 13,
and the resulting four eigenvalues of the reduced density matrix, according to (11),
are plotted in the left panel of Fig. 14. While in locally convertible phases, the
largest eigenvalue(s) decrease approaching the QPT, indicating an increase of the
entanglement; here, we see that the edge state recombination results in a growing
larger eigenvalue. The right panel of Fig. 14 presents the sign of the entanglement
entropy derivative, to be considered with dLC. We see that in the paramagnetic
phase, the Rényi entropy always decreases. Instead, in the doubly degenerate phase,
the entropy derivative vanishes at some value of α and changes sign, indicating
that local (differential) convertibility is lost in this phase (as already observed
numerically for small N and larger L in [26]). It is important to notice here that
these results imply that classical local gates operating on two sites project out the
half-occupied state and hence lose the edge state entanglement.

For the L → ∞ limit, we can take advantage of the results of [80–82], where
the full spectrum (eigenvalues and multiplicities) of the reduced density matrix and
the Rényi entropies were calculated analytically. Figure 15 shows a plot of the first
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Fig. 15 Left: plot of the first few eigenvalues of ρA, for an infinite size block, as a function of
h. The eigenvalues’ multiplicities are not shown (for instance, the highest eigenvalue is doubly
degenerate for h < 1 and unique for h > 1, see [82]). Right: plot of the derivative of the Rényi
entropy with respect to the magnetic field h, as a function of α, for two different values of h in the
ferromagnetic region

few eigenvalues of ρA and a plot of the entropy derivative as a function of α for
h = 0.6 and h = 0.9. We see that the largest eigenvalue (doubly degenerate in
the ferromagnetic phase) decreases monotonously toward the QPT, while smaller
eigenvalues are allowed to grow, yielding a monotonous increase of all the Rényi
entropies. It is thus clear that local convertibility is restored in the infinite L limit.

We checked these results numerically for systems up to N = 200 and with
different partitions. We considered different block sizes and move the blocks within
the chain. The qualitative picture does not change significantly as one varies (A|B),
but the location of the curve where the entropy derivative vanishes moves in the
(h, α) space. It tends toward the phase transition line h = 1 as the block sizes grow
bigger, confirming our expectation on the role of the boundary excitations. Namely,
we see that as long as the edge states from different boundaries do not overlap, their
occupation number eigenvalue stays constant and vanishes. It starts increasing only
once the correlation length grows comparable to one of the block sizes, indicating
the recombination of the edge states and a decrease in the entanglement contribution
from the edge states.

4.4 Symmetry Broken Ground State

To further confirm our interpretation on the role of boundary modes, in the ordered
phase h < 1, we also considered the ferromagnetic ground state for which 〈σx〉 �= 0.
Since this state does not support well-defined Majorana edge states, we expect a
restoration of local convertibility. We calculate the Rényi entropy of this symmetry
broken ground state numerically. Namely, we add a very small perturbation ε(σ x1 +
σxN) to Hamiltonian (6) and apply the variational MPS routine to obtain the ground
state [47]. In this work, the converge tolerance is 10−6. Figure 16 shows the plots
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Fig. 16 Numeric results of differential local convertibility for the ferromagnetic (symmetry
broken). On the left, a partition 200 = 2|198 and on the right 200 = 50|100|50

of the sign of the entropy derivative for two possible partitions (small and large A
block) and validates our expectation that both phases are locally convertible. We
considered several partitioning choices and the results are not distinguishable from
those in Fig. 16.

In conclusion, we see that for h > 1, the disordered ground state is always locally
convertible. In the ordered phase, the ferromagnetic ground state, i.e., with broken
symmetry, is also locally convertible for any chosen partition. For the thermal
ground state, however, the convertibility depends on the interplay between the size
of the partitions (A|B) and the correlation length of the system. This phenomenon is
a manifestation of edge state recombination. These entangled pairs lie on opposite
boundaries of the partition (see Fig. 12), but with finite support intruding in the
bulk about the order of the correlation length. For sufficiently large block sizes,
the entanglement between boundary states does not depend on the correlation
length and remains constant throughout the phase. However, as this length increases
approaching a QPT, the edge states effectively grow closer to one another. If either
of the subregions A and B is sufficiently small, the tails of these states can overlap,
and we see their occupation number increasing and their entanglement decreasing,
yielding nonlocal convertibility.

5 Classical nature of ordered quantum phases and origin
of spontaneous symmetry breaking

To discuss the differences among different ground states of a model with a
degenerate lowest energy manifold, we take as an example the ferromagnetic one-
dimensional spin-1/2XY in the presence of a transverse field and periodic boundary
conditions. The Hamiltonian of such model reads [46, 75, 83, 84]

H = −
N∑

i=1

[(
1+ γ

2

)
σxi σ

x
i+1 +

(
1− γ

2

)
σ
y
i σ

y

i+1 + hσzi
]
, (16)
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where γ is the anisotropy parameter in the xy plane, h is the transverse local field,
and the periodic boundary conditions σμN+1 ≡ σμ1 ensure a perfect invariance under
spatial translations.

For this class of models, the phase diagram can be determined exactly in great
detail [75, 84, 85]. In the thermodynamic limit, for any γ ∈ (0, 1], a quantum phase
transition occurs at the critical value hc = 1 of the transverse field. For h < hc,
the system is characterized by a bidimensional ground state manifold in which two
elements are living in both parity sectors. As a consequence, in such a manifold, it
is possible to define elements showing a ferromagnetic order along the x axis which
highlights the fact that they violate the Z2 parity symmetry. Indeed, given the two
symmetric ground states, the so-called even |e〉 and odd |o〉 states belonging to the
two orthogonal subspaces associated with the two possible distinct eigenvalues of
the parity operator, any symmetry-breaking linear superposition of the form

|g(u, v)〉 = u|e〉 + v|o〉 (17)

is also an admissible ground state, with the complex superposition amplitudes u
and v constrained by the normalization condition |u|2 + |v|2 = 1. Taking into
account that the even and odd ground states are orthogonal, the expectation values of
operators that commute with the parity operator are independent of the superposition
amplitudes u and v. On the other hand, spin operators that do not commute with the
parity may have nonvanishing expectation values on such linear combinations and
hence break the symmetry of the Hamiltonian (16).

Consider observables OS that are arbitrary products of spin operators and anti-
commute with the parity. Their expectation values in the superposition ground
states (17) are of the form

〈g(u, v)|OS |g(u, v)〉 = uv∗〈o|OS |e〉 + vu∗〈e|OS |o〉 . (18)

Both 〈o|OS |e〉 and 〈e|OS |o〉 are real and independent of u and v, and hence the
expectation (18) is maximum for u = ±v = 1/

√
2 [84]. These are the values of the

superposition amplitudes that realize the maximum breaking of the symmetry and
identify the order parameter as well as the MSBGSs.

Besides the quantum critical point, there exists another relevant value of the
external magnetic field, that is, hf =

√
1− γ 2, the factorizing field. Indeed, at this

value of h, the system admits a twofold degenerate, completely factorized ground
state [86–90].

To discuss the entanglement and discord-type correlations of quantum ground
states, we consider arbitrary bipartitions (A|B) such that subsystem A =
{i1, . . . , iL} is any subset made of L spins, and subsystem B is the remainder. Given
any global ground state of the total system, the reduced density matrix ρA (ρB ) of
subsystem A (B) can be expressed in general in terms of the n-point correlation
functions [48]:
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ρA(u, v) = 1

2L
∑

μ1,...,μL

〈g(u, v)|σμ1
i1
· · · σμLiL |g(u, v)〉σ

μ1
i1
· · · σμLiL (19)

and analogously for ρB . All expectations in Eq. (19) are associated with spin
operators that either commute or anti-commute with the parity along the spin-z
direction. Therefore, the reduced density matrix ρA can be expressed as the sum
of a symmetric part ρ(s)A , i.e., the reduced density matrix obtained from |e〉 or |o〉,
and a traceless matrix ρ(a)A that includes all the terms that are nonvanishing only in
the presence of a breaking of the symmetry:

ρA(u, v) = ρ(s)A + (uv∗ + vu∗)ρ(a)A . (20)

Both ρ(s)A and ρ(a)A are independent of the superposition amplitudes u and v,
while the reduced density matrix depends on the choice of the ground state. This
implies that the elements of the ground space are not locally equivalent. Explicit
evaluation of expectations and correlations in symmetry-breaking ground states
in the thermodynamic limit is challenging even when the exact solution for the
symmetric elements of the ground space is available.

We will now sketch a method that allows overcoming this difficulty and whose
general validity is not in principle restricted to the particular model considered. To
obtain ρ(s)A , it is sufficient to transform the spin operators into fermionic ones and
then apply Wick’s theorem. Such algorithm cannot be applied to spin operators
OA, acting on subsystem A, that anti-commute with the parity. To treat this case,
we first introduce the symmetric operator OAOA+r , for which, by applying the
previous procedure, we can evaluate 〈e|OAOA+r |e〉. Then, the desired expectation
〈e|OA|o〉 can be computed by exploiting the property of asymptotic factorization of
products of local operators at infinite separation [41, 43, 84] that yields 〈e|OA|o〉 =√

lim
r→∞〈e|OAOA+r |e〉, where the root’s sign is fixed by imposing positivity of the

density matrix ρA(u, v). Having obtained the exact reduced density matrix ρA(u, v)
for all possible subsystemsA and superposition amplitudes u and v, we are equipped
to investigate the nature of quantum ground states for their properties of classicality
and quantumness.

5.1 Two-Body Quantum Correlations

Among all the different possibilities, in the present section, we focus on the analysis
of the behavior of one-way discord-type correlations and entanglement between
any two spins for different ground states. One-way discord-type correlations are
properties of quantum states more general than entanglement. Operationally, they
are defined in terms of state distinguishability for the so-called classical-quantum
states. The latter are quantum states that, besides being separable, i.e., not entangled,
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remain invariant under the action of at least one nontrivial local unitary operation.
In geometric terms, a valid measure of quantum correlations must quantify how
much a quantum state discords from classical-quantum states and must be invariant
under the action of all local unitary operations. A computable and operationally
well-defined geometric measure of quantum correlations is then the discord of
response [91, 92]. The pairwise discord of response DR for a two-spin reduced
density matrix is defined as

DR(ρ
(r)
ij (u, v)) ≡

1

2
min
Ui
dx

(
ρ
(r)
ij (u, v), ρ̃

(r)
ij (u, v)

)2
, (21)

where ρ(r)ij (u, v) is the state of two spins i and j at a distance r , obtained by taking
the partial trace of the ground state |g(u, v)〉 with respect to all other spins in the
system, ρ̃(r)ij (u, v) ≡ Uiρ

(r)
ij (u, v)U

†
i is the two-spin state transformed under the

action of a local unitary operation Ui acting on spin i, and dx is any well-behaved,
contractive distance (e.g., Bures, trace, Hellinger) of ρ(r)ij from the set of locally
unitarily perturbed states, realized by the least-perturbing operation in the set. The
trivial case of the identity is excluded by considering only unitary operations with
harmonic spectrum, i.e., the fully nondegenerate spectrum on the unit circle with
equispaced eigenvalues.

For pure states, the discord of response reduces to an entanglement monotone,
whose convex-roof extension to mixed states is the so-called entanglement of
response [93–95]. Therefore, the entanglement and the discord of response quantify
different aspects of bipartite quantum correlations via two different uses of local
unitary operations. The discord of response arises by applying local unitaries
directly to the generally mixed state, while the entanglement of response stems from
the application of local unitaries to pure states. Under their common origin, it is thus
possible to perform a direct comparison between these two quantities.

In terms of the trace distance, which will be relevant in the following, the two-
qubit entanglement of response is simply given by the squared concurrence [91, 96],
whereas the two-qubit discord of response relates nicely to the trace distance-based
geometric discord [97], whose closed formula is known only for a particular class
of two-qubit states [98], although it can be computed for a more general class of
two-qubit states through a very efficient numerical optimization.

Symmetry-Preserving Ground States
We first compare the two-body entanglement of response and the two-body discord
of response in symmetry-preserving ground states. For two neighboring spins, these
two quantities are plotted in Fig. 17 as functions of the external field h and for
different values of the anisotropy γ . For any intermediate value of γ , the nearest-
neighbor entanglement of response E1 exhibits the following behavior. If h < hf ,
E1 decreases until it vanishes at the factorizing field h = hf . Otherwise, if h > hf ,
E1 first increases until it reaches a maximum at some value of h higher than the
critical point hc = 1, and then it decreases again until it vanishes asymptotically for
very large values of h in the paramagnetic phase (saturation). Overall, E1 features
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Fig. 17 Nearest-neighbor trace distance-based discord of response (left panel) and nearest-
neighbor trace distance-based entanglement of response (right panel) for symmetry-preserving
ground states, in the thermodynamic limit, as functions of the external field h, and for different
values of the anisotropy γ . Solid blue curve: γ = 0.2; dashed red curve: γ = 0.4; dot-dashed
green curve: γ = 0.6; double-dot-dashed black curve: γ = 0.8; and dotted orange curve: γ = 1.
In the lower panel, to each of these curves, there corresponds a vertical line denoting the associated
factorizing field hf . In the upper panel, the solid vertical line denotes the critical field hc = 1

two maxima at h = 0 and h > hc and two minima at h = hf (factorization) and
h → ∞ (saturation). For the Ising model (γ = 1), the point h = 0 corresponds
instead to a minimum, since it coincides with the factorizing field hf =

√
1− γ 2.

On the other hand, regardless of the value of γ , the nearest-neighbor discord
of response Q1 always features a single maximum. Depending on the value of γ ,
such maximum can be either in the ordered phase h < hc or in the disordered
(paramagnetic) phase h > hc, moving toward higher values of h with increasing
γ . Remarkably, Q1 never vanishes at the factorizing field, except in the extreme
case of γ = 1. Indeed, at the factorizing field h = hf , and for any γ �= 0, 1,
the symmetry-preserving ground state is not completely factorized but rather is
a coherent superposition with equal amplitudes of the two completely factorized
MSBGSs. Consequently, while the two-body entanglement of response must vanish
by the convex roof extension, the two-body discord of response remains always
finite.

When increasing the inter-spin distance r , the pairwise entanglement of response
Er and discord of response Qr behave even more differently (see Fig. 18). Due
to the monogamy of the squared concurrence [99, 100], Er dramatically drops to
zero as r increases, except in a small region around the factorizing field h = hf
that gets smaller and smaller as r increases, in agreement with the findings of
Ref. [101]. On the other hand, while in the disordered and critical phases, Qr
vanishes as r increases, in the ordered phaseQr survives even in the limit of infinite
r . Indeed, in both the disordered and critical phases, and when r goes to infinity, the
only nonvanishing one-body and two-body correlation functions in the symmetry-
preserving ground states are 〈σzi 〉 and 〈σzi σ zi+r 〉, so that the two-body reduced state
can be written as a classical mixture of eigenvectors of σzi σ

z
i+r . On the other hand, in

the ordered phase, also the two-body correlation function 〈σxi σ xi+r 〉 appears, while
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Fig. 18 Two-body trace distance-based discord of response (left panel) and two-body trace
distance-based entanglement of response (right panel) for symmetry-preserving ground states, in
the thermodynamic limit, as functions of the external field h, in the case of γ = 0.4, for different
inter-spin distances r . Solid blue curve: r = 2; dashed red curve: r = 3; dot-dashed green curve:
r = 8; and dotted black curve: r = ∞. In both panels, the two solid vertical lines correspond,
respectively, to the factorizing field (left) and to the critical field (right)

Fig. 19 Nearest-neighbor trace distance-based discord of response (left panel) and nearest-
neighbor trace distance-based entanglement of response (right panel) in MSBGSs as functions of
the external field h, for different values of the anisotropy γ . Solid blue curve: γ = 0.2; dashed red
curve: γ = 0.4; dot-dashed green curve: γ = 0.6; double-dot-dashed black curve: γ = 0.8; and
dotted orange curve: γ = 1. In both panels, to each of these curves, there corresponds a vertical
line denoting the associated factorizing field hf . The rightmost vertical line denotes the critical
point

〈σxi 〉 vanishes due to symmetry preservation, thus preventing the two-body marginal
of the symmetry-preserving ground state from being a mixture of classical states.

Maximally Symmetry-Breaking Ground States
In this section, we move the focus of the comparison between two-body entangle-
ment of response and discord of response from symmetry-preserving to MSBGSs.
Spontaneous symmetry breaking manifests itself in the thermodynamic limit, in the
ordered phase h < hc = 1 and for any nonzero anisotropy γ , so that hereafter we
will restrict the region of the phase space under investigation accordingly.

Figure 19 shows that, as soon as symmetry breaking is taken into account,
only the discord of response is affected by symmetry breaking at the critical point
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hc = 1. In fact, according to Ref. [102], the concurrence and, consequently, the
two-body entanglement of response attain the same value for any h ≥ hf both in
the symmetry-preserving and in MSBGSs. Otherwise, if h < hf , there is a slight
enhancement in the pairwise entanglement of response in the MSBGSs compared to
the corresponding symmetry-preserving ones. Conversely, in general, the pairwise
discord of response undergoes a dramatic suppression in the entire ordered phase
h < hc when moving from symmetry-preserving to MSBGSs.

Considering the dependence on the inter-spin distance, we observe that the
pairwise discord of response loses its long-range nature when moving from
symmetry-preserving to MSBGSs (see Fig. 20). More precisely, both the pairwise
entanglement of response and the pairwise discord of response vanish asymptoti-
cally with increasing inter-spin distance. In the case of the pairwise entanglement of
response, this result is again due to the monogamy of the squared concurrence [99,
100]. In the case of the pairwise discord of response, it is instead due to the fact
that not only the correlation function 〈σxi σ xi+r 〉 but also 〈σxi 〉 and 〈σxi σ zi+r 〉 are
nonvanishing in the limit of infinite inter-spin distance r . This feature allows writing
any two-spin reduced density matrix obtained from the MSBGSs as a classical
mixture of eigenvectors of OiOi+r , where Oi is an Hermitian operator defined on

the ith site as Oi = cosβσzi + sinβσxi with tanβ = 〈σxi 〉
〈σzi 〉 .

Overall, the quantum correlations between any two spins decrease significantly
in the entire ordered phase when symmetry breaking is taken into account and
are almost entirely made up by contributions due to entanglement. In particular,
at the factorizing field hf , both the entanglement of response and the discord of
response vanish. Indeed, we recall that the factorizing field hf owes its name to the
two MSBGSs that are completely separable (product) at such value of the external
magnetic field.

Fig. 20 Two-body trace distance-based discord of response (left panel) and two-body trace
distance-based entanglement of response (right panel) in MSBGSs as functions of the external
field h, at γ = 0.4, for different inter-spin distances r . Solid blue curve: r = 2; dashed red curve:
r = 3; dot-dashed green curve: r = 8; and dotted black curve: r = ∞. In both panels, the two
solid vertical lines correspond, respectively, to the factorizing field (left) and to the critical field
(right)
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5.2 Global Properties: Local Convertibility and Many-Body
Entanglement Sharing

We now investigate the nature of quantum ground states in the ordered phase
concerning the properties of local convertibility of the global ground states and the
many-body entanglement distribution.

Local Convertibility of Many-Body Quantum Ground States
We begin by studying the property of the local convertibility of quantum ground
states in an ordered phase. It was previously shown that symmetric ground states
are always locally convertible among themselves for hf < h < hc and never
for h < hf < hc [103]. Here, thanks to the general methods developed before,
we can investigate the local convertibility property of all quantum ground states
in the ordered phase. In Fig. 21, we report the behavior of the Rényi entropies
Sα as functions of the different ground states for a bipartition of the system in
which subsystem A is made of � contiguous spins, while in Fig. 22 we report it
for subsystem A made of two spins with various inter-spin distances.

We observe that the MSBGSs are the ground states characterized by the smallest
value of all Rényi entropies, independently of the size � of the subsystem and the
inter-spin distance r . Therefore, all elements in the ground space are always locally
convertible to a MSBGS, while the opposite is impossible. This first quantitative
criterion for classicality is thus satisfied only by MSBGSs.

5.3 Many-Body Entanglement Distribution

We now compare symmetry-breaking and symmetry-preserving ground states with
respect to entanglement distribution. The monogamy inequality quantifies in a
simple and direct way the limits that are imposed on how bipartite entanglement
may be shared among many parties [99, 100]. For a given many-body system of N
1/2-spins, it reads

τ(i|N − 1) ≥
∑

j �=i
τ (i|j) , ∀ i . (22)

In the above expression, τ = C2 is known as the tangle, where C is the
concurrence [96, 104], and the sum in the r.h.s. runs over all N − 1 spins excluding
spin i. The l.h.s. quantifies the bipartite entanglement between one particular,
arbitrarily chosen, spin in the collection (reference spin i) and all the remaining
N − 1 spins. The r.h.s. is the sum of all the pairwise entanglements between the
reference spin and each of the remaining N − 1 spins. The inequality implies that
entanglement cannot be freely distributed among multiple quantum parties N ≥ 3,
a constraint of quantum origin with no classical counterpart.
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Fig. 21 Behavior of the Rényi entropies Sα(ρA) as functions of the different ground states in the
ordered phase, h < hc, in the case of a subsystem A� made of � contiguous spins. Each line
stands for a different value of α. Black dotted line: α = 0.5. Green solid line: α → 1+ (von
Neumann entropy). Blue dot-dashed line: α = 3. Red dashed line: α →∞. The different ground
states are parameterized by the superposition amplitudes u = cos(θ) and v = sin(θ). The two
vertical lines correspond to the two MSBGSs, respectively, obtained for θ = π/4 and θ = 3π/4.
The Hamiltonian parameters are set at the intermediate values γ = 0.5 and h = 0.5. Analogous
behaviors are observed for different values of the anisotropy and external field

Fig. 22 Behavior of the Rényi entropies Sα(ρA) as functions of the different ground states in the
ordered phase, h < hc, in the case of a subsystem Ar made by two spins, for different inter-spin
distances r . Each line stands for a different value of α. Black dotted line: α = 0.5. Green solid
line: α → 1+ (von Neumann entropy). Blue dot-dashed line: α = 3. Red dashed line: α → ∞.
The different ground states are parameterized by the superposition amplitudes u = cos(θ) and
v = sin(θ). The two vertical lines correspond to the two MSBGSs, respectively, obtained for
θ = π/4 and θ = 3π/4. The Hamiltonian parameters are set at the intermediate values γ = 0.5
and h = 0.5. Analogous behaviors are observed for different values of the anisotropy and external
field



Local Convertibility in Quantum Spin Systems 183

The residual tangle τ̃ is the positive semi-definite difference between the l.h.s.
and the r.h.s. in Eq. (22). It measures the amount of entanglement not quantifiable
as elementary bipartite spin–spin entanglement. Its minimum value compatible with
monogamy provides yet another quantitative criterion for classicality.

Specializing, for simplicity but without loss of generality, to translationally
invariant XY spin systems in magnetically ordered phases, since the expectation
value of σyi vanishes on every element of the ground space, the expressions of the
tangle τ and the residual tangle τ̃ for any arbitrarily chosen spin in the chain read,
respectively,

τ = 1−m2
z − (u∗v + v∗u)2m2

x , (23)

τ̃ = τ − 2
∞∑

r=1

C2
r (u, v) ≥ 0 , (24)

where mz = 〈e|σzi |e〉 = 〈o|σzi |o〉 is the on-site magnetization along z, the order

parameter mx = 〈e|σxi |o〉 =
√

lim
r→∞〈e|σ

x
i σ

x
i+r |e〉, and Cr(u, v) stands for the

concurrence between two spins at a distance r when the system is in any one of
the possible ground states |g(u, v)〉, Eq. (17).

As already mentioned, by comparing the symmetric ground states with the
MSBGSs, the spin–spin concurrence is larger in the MSBGSs [102] if h < hf < hc,
where hf =

√
1− γ 2 is the factorizing field, while for hf < h < hc they are equal.

We have verified that these two results are much more general. We have compared
all ground states (symmetric, partially symmetry breaking, and MSBGSs), and we
have found that for h < hf < hc the spin–spin concurrences are maximum in the
MSBGSs for all values of the inter-spin distance r , while for hf < h < hc and
for all values of r they are independent of the superposition amplitudes u and v and
thus acquire the same value irrespective of the chosen ground state.

Finally, it is immediate to see that the third term in the r.h.s. of Eq. (23) is
maximized by the two MSBGSs. Collecting all these results, it follows that the
many-body, macroscopic multipartite entanglement, as quantified by the residual
tangle, is minimized by the two MSBGSs and therefore also this second quantitative
criterion for classicality is satisfied only by the MSBGSs among all possible
quantum ground states.

6 Conclusions

We have shown that phases characterized by topological order or systems prepared
in a ground state supporting edge states lack differential global convertibility, due
to the long-range entanglement that these conditions entail. Moreover, the breaking
of dLC is detectable even more clearly when small partitions are considered. This
means that dLC constitutes a semi-local probe to detect LRE, which is instead an



184 L. Amico et al.

inherently nonlocal property, usually accessible through string operators stretching
for distances much larger than the correlation length ξ .

We also argue that the competition between ξ and LRE is the reason for the lack
of dLC, because when the size of a partition becomes comparable with ξ , local
correlations reduce the LRE between the farthest point of the partition. Thus, as
ξ increases, bulk entanglement increases, but LRE decreases, thus creating a non-
monotonous behavior in the Rènyi entropies as α is varied.

Since LRE is an intrinsic property of a quantum phase that cannot be created
or destroyed, except by passing through a phase transition, our analysis highlighted
once more the higher computational power phase with LRE is endowed. The lack
of dLC renders them more quantum that phases that are locally convertible.

This intuition was then used to investigate the classical nature of globally
ordered phases associated with nonvanishing local order parameters and sponta-
neous symmetry breaking. We have put on quantitative grounds the long-standing
conjecture that the maximally symmetry-breaking ground states (MSBGSs) are
macroscopically the most classical ones among all possible ground states. We have
proved the conjecture by introducing and verifying two independent quantitative
criteria of macroscopic classicality. The first criterion states that all global ground
states in the thermodynamic limit are locally convertible to MSBGSs, while the
opposite is impossible. The second criterion states that the MSBGSs are the ones
that satisfy at its minimum the monogamy inequality for globally shared bipartite
entanglement and thus minimize the macroscopic multipartite entanglement as
quantified by the residual tangle. We have thus verified that, according to these two
criteria, the MSBGSs are indeed the most classical ones among all possible quantum
ground states.
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Optimal Parent Hamiltonians for
Many-Body States

Davide Rattacaso, Gianluca Passarelli, Procolo Lucignano, and Rosario Fazio

Abstract After presenting the main features and challenges of the quantum inverse
problem, we illustrate numerous results of recent literature, with a particular focus
on the different Parent Hamiltonian reconstruction methods and on the scaling of
their complexity with the system size.

1 Introduction

Many-body quantum systems possess a large spectrum of features that can be
exploited to efficiently solve classically exponentially complex problems [1–3].
Topic of the present chapter is to give a brief review of a problem that has recently
attracted attention, the so-called quantum inverse problem. Given a quantum
state how can we determine a physically meaningful Hamiltonian—called Parent
Hamiltonian (PH)—that captures the physics of the system, i.e., a Hamiltonian
having such state as an eigenstate (or ground state) [4–13]. In the case of time-
dependent states, the problem can be recast in the form of finding a Hamiltonian
that can generate the observed time evolution [14–16].

A physically meaningful (realistic) Hamiltonian is an arbitrary Hamiltonian that
is compatible with some fundamental constraints. For example, we can consider as
physical any Hamiltonian that is the span of interactions involving only particles
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within a certain distance, e. g., nearest-neighboring spins, or among a limited
number of particles, e. g., only two-body interactions. Anyway, we can also consider
a stronger constraint on the space of the realistic Hamiltonians, for example, we can
consider only Hamiltonians that are the span of elementary interactions that can
be engineered on a given synthetic quantum system. While the search for a parent
Hamiltonian that is just a Hermitian operator always has a solution, the constraint of
locality drastically increases the difficulty of the inverse problem. Moreover, while
a solution to this problem always exists in the space of all the Hermitian operators,
a local solution may not exist. In this case, one defines a so-called Optimal Parent
Hamiltonian (OPH), that is a realistic Hamiltonian that optimizes a figure of merit
designed to estimate how close the OPH is to being the real PH.

The inverse problem is relevant in several different contexts, touching both fun-
damental aspect of quantum theory as well as quantum technological applications.
Some of the questions that can be answered by solving this problem are: (1) How
many possible models are compatible with our observation on a quantum system?
(2) How many and which observables do we need to measure in order to identify
the physical laws that govern a quantum system? (3) Can we deduce the high energy
behavior of a quantum system from its low-energy behavior or from its stationary
behavior [17]? (4) Which state evolutions are possible and which ones are not in a
world governed by local interactions [18]? (5) All these questions can be recast in
terms of the inverse problem: how many solutions does the problem have for a given
quantum state? (6) How many observables do we need to measure in order to have
enough information to reconstruct the PH? In which cases is the PH associated with
a ground state unique? (7) In which cases is there no exact PH? We will address
several of these questions in the following sections.

The technological impact of the inverse problem is a consequence of our
increasing capability of engineer and dynamically control many-body Hamiltonians.
Indeed, quantum state preparation and quantum state control [19–28] are based
on our ability to prepare and control Hamiltonians. The resolution of the inverse
problem gives us a recipe to implement and manipulate states, for example,
by cooling down a system in which the PH has been engineered [29–32] or
by performing a quantum annealing [33–36]. Moreover, we can use an optimal
Hamiltonian to follow the ground state of a parametric family of Hamiltonians [16],
defining new shortcuts to adiabaticity [37–44]. Finally, the search for PHs is also
useful for quantum verification, in which one has to verify that the synthetic
quantum system prepared in the laboratory is effectively governed by some target
Hamiltonian [3, 45–49]. In particular, learning the Hamiltonian that governs our
system under some constraint on the tunable interactions [50–53] is the most direct
way to verify what is really happening in a quantum device.

Motivated by all these reasons, in the last years several papers have proposed
different methods to attack the inverse problem. Among these proposals we can
identify three different, but related, classes:

1. In the first class, one tries to reconstruct a local PH starting from one of its
eigenstates [4–9]. We call this kind of PH symmetry of the state. Section 2 of
this work is devoted to discussing this topic.
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2. In the second class, one tries to reconstruct a local PH from one of its ground
states [10–13]. We refer to this class of PHs as proper PHs (PPH). We discuss
them in Sect. 3. PPHs for a given state are, of course, a subset of the symmetries
of the state.

3. In the latter class, one tries to reconstruct a PH for a time-dependent state.
Since the state is not stationary, it cannot be an eigenstate of the PH, which
must be thought as the generator of its evolution. This generator could be in
principle time-independent or time-dependent; therefore, one can search for a
time-independent PH [14, 15], or for a time-dependent PH [16]. The methods to
reconstruct this kind of PHs and the resources needed, in terms of measurements
on the state, are analyzed in Sect. 4.

Even if in this paper we focus our attention only on the inverse problem
for unitary evolutions, that is the search for a PH, clearly one can extend this
investigation to open quantum systems and search for a parent Lindbladian. Many
proposals in this direction are a direct extension of a corresponding reconstruction
method for closed system [54, 55]. Even if this chapter has some focus on our
contribution to this problem, the aim is to give an overview of the different directions
explored in the existing literature together with its main achievements.

2 The Space of Symmetries

An important problem in this area is the search for the space of symmetries:
given the state |ψ〉 we look for the realistic parent Hamiltonians for which |ψ〉 is
an eigenstate. This approach is relevant in quantum Hamiltonian learning, whose
goal is reconstructing the interactions governing a quantum system performing
local measurements on a stationary pure state, instead of employing an exponential
amount of resources to perform process tomography. There are two main different
approaches to this problem. One of them [4–7] exploits the knowledge of the
local correlation functions of the state |ψ〉, while the other [8, 9] only requires the
knowledge of local expectation values.

Both of these approaches are based on the assumption that the space of realistic
Hamiltonians is a vector space, spanned by a set L = {Li} of local interactions.
For qubit systems, interactions in L are tensor products of the Pauli operators {σμi }
acting on the i-th spin of a lattice, where σμ ∈ {1, σ x, σ y, σ z}. As a consequence
of the algebraic properties of the Pauli operators, elements in L are orthogonal
with respect to the inner product (A,B) ≡ Tr (AB), and, therefore, they form an
orthogonal basis for the space of realistic Hamiltonians:

H =
∑

i

hiLi. (1)
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Since if |ψ〉 is an eigenstate for H1 and H2 it is also an eigenstate for αH1 + βH2,
the symmetries for a state form a vector subspace of the space of linear operators;
therefore, the most general solution to the problem consists in finding a basis {Sk}
for the space of symmetries.

As shown in [4–7], the space of symmetries of a state |ψ〉 can be reconstructed
starting from the knowledge of correlation functions of local operators 〈ψ |LiLj |ψ〉.
In general, these are not easily accessible; however, they can be efficiently estimated
in some significant contexts, such as the Hamiltonian learning, when the state is
already implemented on a quantum device and correlations can be measured, or
for some classes of states, like MPS [56] or ground states of the Ising model in
transverse field where an exact solution can be expressed in terms of fermions [57].

Early results in this direction have been obtained in Refs. [4, 5]. In these works,
the authors start by observing that a realistic Hamiltonian H = ∑

i hiLi is a
symmetry for the state |ψ〉 if and only if the variance of H on |ψ〉 is zero:

〈H 2〉 − 〈H 〉2 = 0, (2)

where, from now on, 〈O〉 = 〈ψ |O|ψ〉. Replacing H = ∑
i hiLi in the latter

equation, we obtain

∑

ij

hihj
(〈LiLj 〉 − 〈Li〉〈Lj 〉

) = 0, (3)

that is equivalent to

∑

ij

hihjCij = 0, (4)

where

Cij := 〈{Li, Lj }〉 − 2〈Li〉〈Lj 〉 (5)

is a semi-definite positive matrix called Quantum Covariance Matrix (QCM). We
will show in Sect. 4 that this matrix also has a central role in the search for time-
dependent parent Hamiltonians. Clearly, if the coefficients hi of a Hamiltonian are
in the kernel of the QCM, the variance is zero and the Hamiltonian is a symmetry.
Therefore, given a basis n(k)i for the kernel of the QCM, the local operators Sk :=∑
i n
(k)
i Li are a basis for the space of symmetries, which can be written as

S =
∑

k

skSk. (6)
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Moreover, if the vectors n(k)i are orthogonal with respect to the standard scalar
product, {Sk} is an orthogonal basis, indeed

Tr (SkSl) =
∑

ij

n
(k)
i n

(l)
j Tr

(
LiLj

) ∝
∑

ij

n
(k)
i n

(l)
j δij ∝ δkl . (7)

One of the most successful aspects of this approach is that the size of the QCM and
the number of local operators inL are polynomial in the system size. This makes the
search for symmetries very efficient once the local correlations are known. Another
important advantage of looking for symmetries through the kernel of the QCM is
that, in absence of null eigenvalues, we can also consider as optimal symmetries
the local Hamiltonians associated with the minimum eigenvalue of the QCM. In the
stationary case these optimal symmetries can correspond to exact solutions when,
for example, correlation functions contain a measurement error.

Studying the kernel of the QCM is not the only way to proceed. For example,
in Ref. [6], it has been shown how parent Hamiltonians can be recovered from a
different QCM containing non-connected correlations. Another possible approach
has been proposed in Ref. [7], in which one starts from the Ehrenfest equation for
the evolution of the local expectation values 〈Li〉 generated by the Hamiltonian
H =∑

i hiLi :

∂t 〈Li〉 = i
∑

j

hj 〈[Lj ,Li]〉. (8)

This equation can be written as

∂t 〈Li〉 =
∑

j

hjKij (9)

if we define the correlation matrix Kij = −i〈[Lj ,Li]〉. When a state is stationary
for the Hamiltonian H the expectation values of local operators do not evolve
and the LHS of the last equation becomes zero. Therefore, the coefficients of
each symmetry correspond to zero-eigenvalue eigenvectors of the matrix K . More
generally, optimal solutions can be obtained by looking at the minimum-eigenvalue
eigenvectors of the correlation matrix M ≡ KTK . In this method, there is a
caveat: Hamiltonians that only affect the mean values of non-local operators are
in the kernel of M even though they are not symmetries. Anyway, the authors of
Ref. [7] have shown for some relevant examples that, when the set of measured
observables is sufficiently enlarged, this approach is able to effectively distinguish
real symmetries without requiring the measurement of non-local observables. It is
remarkable that, when all the possible expectation values are taken into account, the
matrixM becomes the previously introduced QCM.

We have shown how the local correlations can be efficiently exploited to
determine the symmetries of a quantum state. However, as shown by Bairey et
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al. [7], local expectation values may contain sufficient information to reconstruct
a symmetry. As stressed in Ref. [8], the possibility of using local expectation values
instead of correlation to reconstruct symmetries is strictly related to the quantum
marginal problem [10, 58, 59], that is, the reconstruction of a quantum state starting
from a set of local expectation values. In this context, it is known that some quantum
states are fully determined by local expectation values. As a consequence, one might
expect that for some states it is possible, though possibly computationally hard, to
solve the inverse problem by only knowing the expectation values of the operators
in L. This was proposed and analyzed in Refs. [8, 9].

In Ref. [8], the authors start from noticing that, if |ψ〉 is the unique ground state
of some local Hamiltonian H , then one can define a thermal density matrix that, for
a sufficiently large inverse temperature β:

|ψ〉〈ψ | = e−βH

Tr
(
e−βH

) . (10)

As a consequence, the state is directly related to the Hamiltonian and, since
the free parameters of the Hamiltonian are only the coefficients hi associated with
local operators, the expectation values of local operators on |ψ〉 can be sufficient to
determineH . This approach can be easily extended to the symmetry search problem,
where one starts from an arbitrary eigenstate instead of the ground state. In this case,
if H = ∑

i hiLi is a symmetry for |ψ〉, |ψ〉 is the ground state of the non-local
Hamiltonian H̃ 2, with

H̃ (h) =
∑

i

hiLi − 〈H 〉1 =
∑

i

hi(Li − 〈Li〉1). (11)

Therefore, one can reconstruct H looking for the vector h of local couplings such
that |ψ〉 is the Gibbs state of H̃ 2 for a sufficient large inverse temperature:

|ψ〉〈ψ | = e−βH̃ 2(h)

Tr
(
e−βH̃ 2(h)

) . (12)

Since the free parameters that determine H̃ are local couplings, the convergence of
the Gibbs state to |ψ〉〈ψ | is verified through the convergence of local expectation
values:

lim
β→∞

Tr
(
Lie

−βH̃ 2(h)
)

Tr
(
e−βH̃ 2(h)

) = 〈Li〉. (13)
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This condition can be formulated as an optimization problem: we can indeed define
the optimal symmetries as the minimum of the cost function

fβ(h) ≡
∑

i

⎛

⎝〈Li〉 −
Tr
(
Lie

−βH̃ 2(h)
)

Tr
(
e−βH̃ 2(h)

)

⎞

⎠
2

+ Tr

⎛

⎝ H̃
2(h)e−βH̃ 2(h)

Tr
(
e−βH̃ 2(h)

)

⎞

⎠ (14)

for large values of β. The first term of fβ encodes the condition in Eq. (13). While
the second term ensures that the Gibbs state is the ground state of H̃ 2.

The limit of fβ for β → ∞ can be impractical in numerical simulations hence
the trick proposed in Ref. [8] is to fix β = 1 and amplify the spectral gaps.

Supervised learning with a neural network have been also adopted in Ref. [9],
where the authors have shown that the more excited is the initial state |ψ〉 for its
symmetry H , the more difficult it is for a neural network to reconstruct H from
local expectation values. The neural network can be trained with the coefficients hi
of randomly chosen Hamiltonians of the form

H =
∑

i

hiLi, (15)

and with the corresponding expectation values ai on the k-th level eigenstate |ψk〉
of H :

ai = 〈ψk|Li |ψk〉. (16)

Finally, in Ref. [8], the authors show that supervised learning can be used to select
appropriate initial points of the minimization technique of Ref. [9].

To summarize, the space of symmetries can be efficiently reconstructed starting
from the knowledge of the correlation functions [4–7] but also using only local
expectation values. The price to pay, in the second case, is a greater computational
cost because we need to either minimize an extremely complicated cost function [9]
or train a neural network with the results obtained from the diagonalization of
exponentially large Hamiltonian matrices [8].

These results help us answer two of the theoretical questions posed in the
introduction.

• The possible models—local Hamiltonians—that are compatible with a stationary
state are in general a vector space. The dimension of this space is larger than one
for several physically significant states [5].

• The PH of a stationary state can be determined only by the local expectation
values. The complexity of this approach is unlikely to present an affordable
scaling in the system size compared with methods assuming the knowledge of
correlations functions. This is consistent with the quantum marginal problem:
correlation functions, for some state, are determined by local expectation values,
but these correlations can be hard to achieve. [10, 58, 59]
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3 From Ground States to Parent Hamiltonians

In the previous section, we have described how to search local symmetries of a
given quantum state. However, in some cases it is more desirable to find a parent
Hamiltonian such that the state |ψ〉 is its ground state. Such a Hamiltonian, when
it exists, can be a precious tool in quantum state preparation, for example, if we
want to implement |ψ〉 by cooling down a device in which the PPH has been
implemented, or by adiabatically driving states by implementing the corresponding
PHs. Analogously, the capability of reconstructing the PPH can be exploited to learn
the Hamiltonian of a low-temperature system through measurements on its state.

This version of the inverse problem, of course, is harder than the search for
symmetries. In principle, a solution can be obtained by exploiting the thermody-
namic approach in Sect. 2, replacing H̃ with H in the cost function of Eq. (13) in
order to select only Hamiltonians having |ψ〉 as their ground state. The locality
of H simplifies the evaluation of the cost function fβ , however, the exponential
complexity of the problem is generally maintained. In this section, we present the
relevant features of the inverse problem in exam and we show an efficient method
to attack the problem in some particular cases [12, 13].

The search for PHs does not generally have a unique solution. For an interacting
spin system, a trivial example is given by the product state | ↑ . . . ↑〉, whose PH
can either be the single-particle Hamiltonian H1 = −∑i σ

z
i or the ferromagnetic

Ising-like HamiltonianH2 = −∑i σ
z
i σ
z
i+1. As symmetries form a vector space, we

can linearly combine many solutions of the inverse problem in order to obtain a new
solution. The question, here, is whether that can be done for PHs.

First of all, PPHs are a subset of symmetries, thus the search for PHs can be
simplified by first reconstructing the space of symmetries.

In Ref. [5], the authors have identified PPH among symmetries via exact
diagonalization, an approach that requires a huge computational cost for large
systems.

The main problem is that the set of PPHs is not a vector space. As a simple
example we may notice that if H is a PPH for |ψ〉, the same does not hold for −H .
As a consequence, we cannot identify a vector basis for this set. In particular, it can
be shown that the set in exam is a convex cone, that is if H1 and H2 are PPHs, also

H(α, β) = α[βH1 + (1− β)H2] (17)

is a PPH for each α > 0 and β ∈ [0, 1]. The fact that the set of PPHs is a convex
cone gives an important insight about the difficulty of its reconstruction: while the
identification of the space of symmetries is obtained by finding a finite number of
vectors—a basis—a convex cone is identified by its extremal points that can be
infinite even if the cone lies in a finite-dimensional space.

Let us consider a local Hamiltonian H . To check if this Hamiltonian is a parent
Hamiltonian for |ψ〉, it is sufficient to measure the expectation value 〈ψ |H |ψ〉 and
compare it with the minimum eigenvalue of H . Since 〈ψ |H |ψ〉 =∑

i hi〈ψ |Li |ψ〉,
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it is sufficient to measure local expectation values to verify that H is a PPH for |ψ〉.
Moreover if |ψ〉 is the unique ground state for some local Hamiltonian H , it has to
be the unique pure state for which the expectation values of the Li’s are 〈ψ |Li |ψ〉.
We can conclude that:

• Local expectation values of a state fully determine its PPHs.
• States that cannot be distinguished by local measurements are degenerate ground

states of the same PPHs. GHZ states |GHZ〉± = | ↑ . . . ↑〉 ± | ↓ . . . ↓〉 are an
example in this direction: one can easily check that all the 1 and 2-spins operator
have the same expectation values for these states, as a consequence there is no
PPH spanned by these operators such that |GHZ〉+ is the unique ground state.

In Ref. [10], the authors have shown a Hamiltonian reconstruction method for
PPHs. They have shown how to find, if they exist, frustration free (FF) PPHs for a
given state. A FF PPH is a local Hamiltonian

H =
∑

X

HX, (18)

where HX is a local Hamiltonian acting non-trivially only on a fixed-size connected
subset X of the lattice—for example, only on pairs of neighboring spins—such that
|ψ〉 is a ground state for each HX. FF parent Hamiltonians can be identified as the
convex cone spanned by all the HX. The Hamiltonians HX for the state |ψ〉 are
the projectors on the null space of the reduced density matrices of |ψ〉 on X. This
condition is equivalent to system of three equations for HX. First of all one needs
that HX acts non-trivially only on X, in equations:

HX = TrX(HX)⊗ 1X, (19)

where TrX is the partial trace with respect the complement of X. Moreover HX has
to be a projector, hence

H 2
X = HX. (20)

In this way we can be sure that the eigenvalues of HX are 0 or 1. At this point |ψ〉
is a ground state for HX only if

〈ψ |HX|ψ〉 = Tr
(
TrX(HX)TrX(|ψ〉〈ψ |)

) = 0. (21)

The conditions above, and then the FF proper PH, can be checked easily also for a
large quantum system once one knows the local expectation values, that is equivalent
to know the reduced density matrices. On the other hand, this approach has two
important limitations. The first one is that when a state is sufficiently entangled
its reduced density matrices have all nonzero eigenvalues, so the null space of these
matrices is empty and there are no FF proper PHs. This makes this approach suitable
only for states with small entanglement such as MPSs, for which an analogous
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method has been proposed [11]. The second limit is that many physically significant
local Hamiltonians, for example, the Ising Hamiltonian in transverse field, are not
FF proper PHs for their ground states.

A promising approach to find PPHs has been recently proposed in Refs. [12, 13],
where the idea is to approximate the reduced density matrix of the ground state of a
trial Hamiltonian using the Bisognano-Wichmann theorem and minimize a distance
between this matrix and the reduced density matrix of the input state |ψ〉. When this
distance goes to zero the trial Hamiltonian is a PPH for |ψ〉.

The authors start from the Bisognano-Wichmann (BW) theorem, which holds in
the context of relativistic quantum field theories, and use this theorem to propose
an ansatz for the reduced density of the ground state of the trial Hamiltonian.
As a consequence, it is particularly interesting for trial Hamiltonians whose low-
energy physics is well described by a relativistic theory. Remarkably, some of these
Hamiltonians generate physically relevant phenomena such as quantum criticality,
topological matter, and quantum ferromagnets [12].

In order to exploit the ansatz for spin models, local operators {Li} are written as
{Or,α}, where r points to the lattice site and α labels the local spin operator - e.g.,
σxr σ

x
r+1 or σyr σ

y

r+1-. The trial Hamiltonian is written as

H =
∑

r,α

hr,αOr,α. (22)

In short, the BW ansatz states that the reduced density matrix of the Hamiltonian
H on a half space—for example, the sites with r > 0 in a linear lattice—is

σBW(H) = e−HBW

Tr
(
e−HBW

) , (23)

with

HBW = β
∑

r>0,α

rhr,αOr,α, (24)

for some value of β called inverse entanglement temperature. This ansatz is very
similar to Gibbs representation of the state given in Eq. (10), where here β is an
inverse entanglement temperature. However, the state σBW is a reduced density
matrix and it is related to the Hamiltonian acting only on a given region of the
lattice, as expressed in Eq. (24).

The inverse method consists in exploring the space of local Hamiltonians, defined
by their couplings hr,α , in order to minimize the relative entropy

f (h) = Tr (ρlog (ρ))− Tr (ρlog (σBW(H))) (25)

between the BW state σBW(H) and the reduced density matrix of the input state
|ψ〉 on the half space. When this entropy vanishes, the reduced density matrix ρ
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of |ψ〉 is equal to σBW(H) and, if the BW ansatz holds, |ψ〉 is a ground state for
H . The minimization of f (h) can be performed via gradient descent, so one has to
evaluate the derivatives ∂f

∂hr,α
, which only depend on the expectation values of the

local operators for ρ and σBW(H).
One of the most promising aspects of this method is that in some cases [13]

the BW ansatz can be used to evaluate the density matrix of a sub-lattice whose
extension does not depend on the size of the entire system, instead of the density
matrix of the half space. For these cases, the difficulty of performing the gradient
descend on f (h) does not increases with the system size.

In this section, we have seen that given a state, the corresponding local parent
Hamiltonian, if it exists, is generally not unique. As a consequence, the full
spectral properties of the Hamiltonian are encoded in its low-energy behavior. More
specifically, the set of PPHs is a convex cone and is a subset of the vector space
of symmetries. We have also shown that all the information that one needs about a
quantum state in order to determine a PPH is contained in local expectation values.
If two states cannot be distinguished through local expectation values, they are
degenerate ground states for a possible PPH.

Promising reconstruction methods are capable of determining only FF PPHs [10,
11] or can be applied under the restriction that the state mimics the low-energy
behavior of some relativistic theory [12, 13]. It is remarkable that the efficient
techniques developed in the context of symmetries reconstruction and based on
quantum correlations [4–7] have not been extended until now to this inverse
problem.

4 The Time-Dependent Inverse Problem

There are several physical situations in which one may want to know the Hamilto-
nian that is responsible for the dynamics of the system. For example, when one
wants to learn the time-independent parent Hamiltonian of a synthetic quantum
system by looking at the evolution of expectation values [14, 15], or when one wants
to find an engineerable time-dependent parent Hamiltonian that can drive a quantum
state along a target evolution [16].

The capability of reconstructing a parent Hamiltonian from the evolution of
local expectation values is an important resource for quantum analog device
verification [15]. A possible problem consists in verifying if the Hamiltonian that
is effectively evolving the system corresponds to the Hamiltonian that we are
trying to implement in a quantum device. For this purpose, a time-independent
PH identification method has been presented in a recent paper [15] for a super-
conducting quantum processor system and successfully exploited to benchmark the
implementation precision of the Google Sycamore processor. There is a crucial
difference between this inverse method and the ones illustrated in the previous
sections. The inverse problem in the form we are considering in this paper consists
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in finding all the possible PHs for a single state. Yet, when the goal is to perform
Hamiltonian learning for an engineered system, we need to find a way to select a
single parent Hamiltonian within that set. In most cases, this goal is achieved by
considering different input states and looking for simultaneous parent Hamiltonians
through the methods that we have illustrated until now [7]. In this way these
methods, originally intended as solutions to the inverse problem for a single state,
are extended to multiple states. In Ref. [15], the PH reconstruction exploits the
algebraic properties of the bosonic operators to design a condition for the parent
Hamiltonian that takes simultaneously into account the evolution of a set of input
states.

In this section we examine recent papers proposing solutions to this inverse
problem, stressing on the relationship between these inverse methods, the search
for symmetries, and other related topics in the literature such as adiabatic and
counterdiabatic driving [33, 60, 61].

In Sect. 2, we have shown how measurement of correlation can be exploited to
find the symmetries of a stationary state. Here, we extend this approach exploiting
correlation functions and derivatives of time-dependent expectation values to infer
the instantaneous PH that generates the evolution of the state |ψ(t)〉.

Our starting point is the Schrödinger equation for the density operator ρ(t) =
|ψ(t)〉〈ψ(t)|:

∂tρ(t) = −i[H(t), ρ(t)]. (26)

Given the time-dependent state ρ(t), our goal is to find the couplings of the local
Hamiltonian H(t)—if it exists—for which the Schrödinger equation holds.

To reach this goal, we exploit a vector representation of the state and of the
Hamiltonian. Since the Hamiltonian is local, given the basisL = {Li}. For the local
Hermitian operators, we have

H(t) =
∑

i

hi(t)Li. (27)

On the other hand, a generic state is not a local operator, so we need a basis B =
{Bγ } for the space of all the Hermitian operators. We choose both L and B to be
orthonormal bases with respect to the operator scalar product. For spin systems, a
convenient choice for construct these basis is formed by products of Pauli operators
(appropriately normalized). For example, one can choose L as an orthonormal basis
of Pauli operators representing one-spin and two-neighboring-spins interactions

L = {σμi } ∪ {σμi σ νi+1}, (28)

and B as an orthonormal basis of generic strings of Pauli operators

B = {σμ1
1 σ

μ2
2 · · · σμNN }. (29)
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At this point, using the resolution of the identity, the state can be written as

ρ(t) =
∑

γ

oγ Bγ , (30)

where the oγ ’s are the time-dependent expectation values Tr
(
Bγ ρ(t)

)
of the

operators in B. Replacing Eqs. (30) and (27) in Eq. (26), after some algebra [16],
we obtain the following system of equations:

∂toγ =
∑

i

hi(t)Kiγ (t), (31)

where Kiγ (t) ≡ −i〈ψ(t)|[Bγ ,Li]|ψ(t)〉. Once the correlations in Kiγ at time t
have been measured, and the derivatives of the expectation values oγ have been
reconstructed from their evolution, Eq. (31) can be solved to find the couplings hi(t)
of the parent Hamiltonian at time t .

Equation (31) forms an inhomogeneous linear system, hence all the PHs
correspond to a single solution of the equations plus an arbitrary element of the
kernel of the matrix Kiγ (t). This kernel coincides with the kernel of the QCM for
the state |ψ(t)〉 at time t [7, 16], and, therefore, with the space of instantaneous
local symmetries for the state. We can conclude that, at fixed time, the space of
possible PHs for a time-dependent state inherits its degeneracy from the space of
symmetries. From this point of view, each PH H(t) can be considered as the sum of
an adiabatic potentialHA(t), for which |ψ(t)〉 is an eigenstate, and a counterdiabatic
potential [37–43, 60–67] that counteracts the Landau–Zener transitions in order to
constraint the state |ψ(t)〉 to remain an eigenstate of HA(t) [16].

A significant application of Eq. (31) has been shown in Ref. [7], where the
authors reconstruct the time-independent Hamiltonian of a synthetic quantum
system. Since the parent Hamiltonian is considered to be time-independent, one
only needs to measure correlations at the time t0 at which the state is implemented,
and expectation values at times t0 and t0+ dt in order to extract the time derivatives
∂toγ and calculate the time-independent couplings hi of the parent Hamiltonian.

Equation (31) has two important limitations: it has multiple solutions and it
requires the measurement of non-local observables. The first difficulty can be
overcome by simultaneously solving the system for different initial states |ψn〉,
while the second one by measuring only local operators Li and correlations
−i[LiLj ]. In this way, the matrix Ki,γ reduces to the local correlation matrix Ki,j
defined in Sect. 2. Through this approach the authors prove two points that are
significant for the dynamical inverse problem in general:

• If the initial states are separable, local expectation values and local correlations
are sufficient to solve the inverse problem.

• The number of initial separable states necessary to identify the Hamiltonian of
the system through this approach is independent of the system size.
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These features could be ultimately related to the fact that local correlations spread
out at finite velocity when the Hamiltonian is local and initial connected local
correlations of separable states are null [68].

In the previous section, we have introduced a system of equations that relates the
instantaneous evolution of state, that is the state and its derivative at time t , with the
local PH H(t) that generates this evolution. When a time-dependent state has been
effectively implemented in a quantum system, as in the cases examined in Refs. [14,
15], this PH always exists. This is not true for a generic quantum states |ψ(t)〉,
whose evolution could be impossible to generate through a local Hamiltonian. When
this is the case, we need to look for an optimal time-dependent PH, that is a local
Hamiltonian that generates an evolution as close as possible to the target |ψ(t)〉.
Following Ref. [16], in this section we present an inverse method to find this optimal
Hamiltonian.

We represent the target state through its density matrix ρ(t) = |ψ(t)〉〈ψ(t)| and
consider as a cost function the difference between the instantaneous evolution of the
target state, expressed through its derivative ∂tρ, and the instantaneous evolution
−i[H(t), ρ(t)] generated by a trial Hamiltonian H(t). For a time-dependent state
in a time interval [0, T ], a cost functional that estimates this difference is

F[H(t)] ≡
∫ T

0
dt‖∂tρ(t)+ i[H(t), ρ(t)]‖, (32)

where ‖A‖ ≡ √
Tr(A2) is the Frobenius norm. Since this cost functional does not

depend on the derivative of the Hamiltonian, the optimal PH at time t is

MinH(t)f (H(t)), (33)

where f (H(t)) = ‖∂tρ(t) + i[H(t), ρ(t)]‖2 is an instantaneous cost function.
To find this minimum we introduce the operators li (t) = −i[Li, ρ(t)]. Since
−i[H(t), ρ(t)] = ∑

i hi(t)li(t), these operators are a basis for all the infinitesimal
evolutions that can be generated by a local Hamiltonian, that we call local tangent
space for ρ(t). The vector of the local tangent space that optimally approximates
the infinitesimal evolution ∂tρ(t) can be obtained through a projection of ρ(t) on
this space. In this way, we obtain a linear system of equations for the couplings hi
of the optimal time-dependent PH [16]:

Tr(la(t)∂tρ(t)) =
∑

b

Tr(la(t)lb(t))hb(t), (34)

where the matrix Tr(la(t)lb(t)) can be shown to correspond to the QCM introduced
in Sect. 2, so that this last equation is the time-dependent generalization of Eq. (4).

In analogy with Eq. (31), the homogeneous and inhomogeneous solutions of
Eq. (34) can be, respectively, considered as a local adiabatic Hamiltonian and the
corresponding optimal counterdiabatic potential. From this point of view, one could
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ask if this optimal counterdiabatic potential is equivalent to the one introduced by
Sels and Polkovnikov [61] in the context of shortcuts to adiabaticity, in which the
target state |ψ(t)〉 that has to be generated is an eigenstate of a local Hamiltonian. In
this regard, it has been shown [16] that the difference between the inhomogeneous
solution of Eq. (34) and the counterdiabatic potential in Ref. [61] consists in the fact
that, while the former is suited to exploit all the available local resources to drive the
target state |ψ(t)〉 alone, the latter tries to simultaneously drive all the eigenstates of
the adiabatic Hamiltonian.

In Ref. [16], Eq. (34) has been exploited in order to find time-dependent optimal
parent Hamiltonians for three classes of time-dependent states: ground states
of an Ising chain in a tunable transverse field [57], ground states of a p-spin
Hamiltonian in a tunable transverse field [69], and linear superpositions of two
states in different phases of the p-spin Hamiltonian. As a paradigmatic example, let
us briefly summarize the results obtained for the Ising model in a time-dependent
transverse field λ(t), where the optimal PH is analytically calculated thanks to the
Jordan–Wigner transformations [57]. In this case, the target state |ψ(λ(t))〉 is the
instantaneous ground state of the Hamiltonian

HI(λ(t)) = −
L∑

i=1

σxi σ
x
i+1 − λ(t)

L∑

i=1

σzi , (35)

with periodic boundary conditions σμL+1 = σ̂
μ
1 . An exact parent Hamiltonian for

|ψ(λ(t))〉 is [16, 70]:

Hparent(t) = λ̇

2L

∑

j ′>j

⎛

⎝
∑

k∈K+

sin(k) sin[k(j ′ − j)]
1+ λ2 − 2λ cos(k)

⎞

⎠Sjj ′ , (36)

where

Sjj ′ = σxj σ zj+1 . . . σ
z
j ′−1σ

y

j ′ + σyj σ zj+1 . . . σ
z
j ′−1σ

x
j ′

is a string of Pauli operators acting on the spins from i to j , in which the dots
represent a string of σz operators, and K+ = { (2i−1)π

L
, with i = 1, . . . , L/2} is the

momentum spectrum for the Ising model. This exact PH, as well as any other one
for |ψ(λ(t))〉, is the span of non-local operators. We want to find an optimal PH that
only involves one-spin and two-adjacent-spins interactions in

L = {σμi , σμi ⊗ σνi+1}. (37)

This goal is reached by solving Eq. (34). Taking advantage of the Ising Hamiltonian
symmetries and of the Jordan–Wigner transformations, we can show [16] that a



204 D. Rattacaso et al.

Fig. 1 Evolution of the (rescaled) optimal coupling h/λ̇ for different system sizes. λ ∈ [0, 3] is an
arbitrary smooth function of time. Adapted from [16]

solution for this equation is the optimal PH

Hopt = h(λ(t))
∑

i

(σ xi σ
y

i+1 + σyi σ xi+1), (38)

with

h(λ(t)) = −λ̇
∑
k∈K+

sin2(k)

1+λ2−2λ cos(k)

8
∑
k∈K+ sin(k)2

. (39)

The optimal coupling h(λ(t)) is shown in Fig. 1 for different system sizes. We can
see that the magnitude of this coupling does not depend on the size of the system,
and its behavior is different for states in the ordered and disordered quantum phases.
In Fig. 2, we show the instantaneous cost f (Hopt(λ(t))) of the optimal PH, that is the
distance between the derivative of the state and the infinitesimal evolution generated
by Hopt(λ(t)). We can see that this cost scales with the square root of the system
size and diverges at the critical point, where it is impossible to generate the state
evolution with a local Hamiltonian. The behavior of the instantaneous cost of the
optimal solution is reflected in the behavior of the instantaneous fidelity between

the target state and the state |ψ ′(λ(t))〉 ≡ Te−i
∫ t

0 Hopt(λ(t
′))dt ′ |ψ(0)〉 generated by

the optimal evolution. This fidelity indeed is close to one before the critical point
λ = 1, where the peak of the instantaneous cost is reflected in a drastic drop of
fidelity (see Fig. 3).

More generally, results in [16] for both the Ising and p-spin models ground
states show that the possibility of finding a low-cost optimal time-dependent PH,
and, therefore, the possibility of exploiting that Hamiltonian to prepare |ψ(t)〉 with
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Fig. 2 Evolution of the (rescaled) optimal cost f (Hopt)/(
√
Lλ̇) for different system sizes. λ ∈

[0, 3] is an arbitrary smooth function of time. Adapted from [16]

Fig. 3 Evolution of the fidelity between the target state and the state evolved through the optimal
parent Hamiltonian for different system sizes. λ ∈ [0, 3] is an arbitrary smooth function of time.
Adapted from [16]

high fidelity is related to the behavior of correlation functions: we obtain low cost
and large fidelity in correspondence with states that do not become critical in the
thermodynamic limit, while for critical states the cost of the optimal solution has a
peak and the fidelity drops irreversibly.

We have shown different solutions to the time-dependent inverse problem, which
can be exploited both to learn the Hamiltonian governing the evolution of a synthetic
quantum system [14, 15] or to find possible Hamiltonians to drive a target time-
dependent state [16]. We have seen that the solution to a dynamical inverse problem
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is generally non-unique, and its degeneracy in directly inherited from the degeneracy
of the space of symmetries.

The analyzed results demonstrate that the behavior of correlation functions of
the target state plays an important role in the dynamical inverse problem: on the
one hand, PHs can be reconstructed from the observation of local expectation
values and correlations for separable states [14], on the other hand, the capability of
driving the evolution of a state through local operators is negatively influenced by
the emergence of long-range correlations [16]: long-range correlated states of the
Hilbert space seem harder to be reached through a realistic evolution.

5 Conclusions

In this paper, we have analyzed different kinds of parent Hamiltonians: symme-
tries [4–9], PPHs [10–13], and dynamical PHs [14–16]. Reconstruction methods
proposed until now have been presented with their computational cost and with
the measurements that one has to perform on the state in order to identify the
solutions to the inverse problem. These methods have been related to important
technological goals such as the verification of analog quantum devices and quantum
state preparation and control.

The solution to the inverse problem, when it exists, is generally not unique [4–
7, 16]. For this reason, one cannot reconstruct the entire physical behavior of a
system from measurements on a single state. We have also seen that the knowledge
of local correlations is sufficient to efficiently solve the inverse problem [4–7]. In
most cases, the PH is uniquely determined by local expectation values and can be
extrapolated by these values with computational resources that scale exponentially
with the system size [8, 9]. Finally, the relationship between the capability of driving
a quantum state through local operators and the behavior of its correlation can shed
a new light on the accessibility of the Hilbert space under the constraint of realistic
interactions [16].

Inverse methods have been extended to reconstruct a realistic Lindbladian
for open quantum systems [55]. This version of the inverse problem has some
significant applications as it could be used to identify the sources of decoherence
or to verify a target dissipative dynamics for an engineered environment, or can be
exploited to design a recipe to control a time-dependent mixed quantum state.

Regarding closed quantum systems, some important challenges remain open, in
particular, the definition of efficient algorithms to reconstruct PPHs. The design
of such an algorithm would also give a significant boost to the related field of
quantum marginal problems: once one can design a PH for a state from its local
expectation values, such a Hamiltonian could then be used to efficiently prepare the
state and measure correlation functions. Finally, until now the possibility of solving
the inverse problem through quantum mechanics, for example, via a quantum circuit
algorithm or a quantum annealer, remains unexplored.
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Entanglement Dynamics in Hybrid
Quantum Circuits

Andrew C. Potter and Romain Vasseur

Abstract The central philosophy of statistical mechanics (stat-mech) and random-
matrix theory of complex systems are that while individual instances are essentially
intractable to simulate, the statistical properties of random ensembles obey simple
universal “laws.” This same philosophy promises powerful methods for studying
the dynamics of quantum information in ideal and noisy quantum circuits—for
which classical description of individual circuits is expected to be generically
intractable. Here, we review recent progress in understanding the dynamics of
quantum information in ensembles of random quantum circuits, through a stat-
mech lens. We begin by reviewing discoveries of universal features of entanglement
growth, operator spreading, thermalization, and chaos in unitary random quantum
circuits, and their relation to stat-mech problems of random surface growth and
noisy hydrodynamics. We then explore the dynamics of monitored random circuits,
which can loosely be thought of as noisy dynamics arising from an environment
monitoring the system, and exhibit new types of measurement-induced phases and
criticality. Throughout, we attempt to give a pedagogical introduction to various
technical methods and to highlight emerging connections between concepts in stat-
mech, quantum information, and quantum communication theory.

1 Introduction

While many-body physics has traditionally focused on the properties of cold matter
in equilibrium, emerging atomic, molecular, optical, and qubit platforms allow
access to far from equilibrium dynamics with local space and time control over
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interactions. A key challenge is to identify universal features of non-equilibrium
quantum dynamics and approach to thermalization. The dynamics of the scrambling
of local quantum information into non-local degrees of freedom by many-body
unitary dynamics plays a central role in addressing those questions. The growth
of entanglement is not only important to diagnose thermalization (or lack thereof),
but also characterizes the complexity of tensor network descriptions of quantum
dynamics. Of particular interest are universal properties that do not depend on
particular microscopic details and hold for generic quantum systems.

Insights into generic non-equilibrium dynamics can be gained by considering
minimally structured models, such as random unitary circuits [1–8], which capture
the salient ingredients of generic quantum systems, namely unitarity of the dynam-
ics and locality of the interactions. Using random quantum circuits, the growth of
entanglement in one-dimensional system was elegantly mapped to the celebrated
Kardar–Parisi–Zhang universality class [9] of random surface growth [7]. This
mapping also uncovered deep connections to the Ryu–Takayanagi formula in in
holographic AdS/CFT correspondences [10, 11], by establishing a relation between
entanglement dynamics and a geometric minimal-cut picture. Random unitary
circuits were also used to characterize exactly the local spreading of operators in the
Heisenberg picture [8, 12], providing a complementary picture on chaotic dynamics
and scrambling from the perspective of operator growth. Other probes of many-body
quantum chaos, e.g., related to level statistics, have also been computed exactly in
Floquet (time-periodic) circuits [13–18]. In turn, those exact results led to a coarse-
grained, “hydrodynamic” description of operator spreading that was conjectured
to universally apply to non-integrable quantum systems in one dimension. Since
then, random quantum circuits have become part of the standard toolbox to study
chaotic quantum dynamics and provided crucial insights into, e.g., the emergence
of irreversible hydrodynamics from unitary evolution in the presence of a conserved
charge [19, 20].

Motivated by the advent of noisy intermediate-scale quantum simulators [21],
random quantum circuits have also been used to study the dynamics of entan-
glement in open quantum systems, which are continuously “monitored” by their
environments. Non-unitary random circuits provide a natural tool to study the
competition between unitary dynamics, which leads to chaotic evolution and rapid
entanglement growth, and non-unitary operations resulting from measurements and
noisy couplings to the environment, which tend to irreversibly destroy quantum
information by revealing it [22, 23]. More generally, non-unitary circuits and ran-
dom tensor networks [24–29] can exhibit a variety of “phases” and phase transitions
with different entanglement scalings. The most studied representative example
of such an entanglement transition that results from the competition between
unitary dynamics and non-unitary processes is the so-called measurement-induced
phase transition [22, 23]. This transition occurs in monitored random quantum
circuits (MRCs) made up of random unitary gates, combined with local projective
measurements occurring at a fixed rate, separating two phases with very different
entanglement properties. Importantly, such measurement-induced phase transitions
(MIPTs) are only visible in an individual quantum trajectory (i.e., the pure state
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of the system conditional on a set of measurement outcomes) and in trajectory
averages of quantities that are non-linear functions of the density matrix. When
measurements are frequent enough, they are able to efficiently extract quantum
information from any initial state, and Zeno collapse it into a weakly entangled state
with area-law entanglement. In contrast, for a small enough measurement rate, the
unitary dynamics scrambles quantum information into non-local degrees of freedom
that can partly evade local measurements. In this entangling phase (volume law),
initial product states become highly entangled over time, while initial mixed states
remain mixed for extremely long times [30]. There are different perspectives on this
measurement-induced transition, either as a purification transition [30] or from the
language of quantum communication and error correction. In the volume-law phase,
the unitary dynamics is effectively able to hide non-local degrees of freedom that
span a decoherence-free subspace in which the dynamics is effectively unitary [30–
33]: this subspace can be regarded as the code space of a quantum error-correcting
code.

Measurement-induced transitions have been investigated numerically and the-
oretically in various contexts, dimensionality, geometries, with different families
of gates [22, 23, 26, 27, 30–72], establishing that it is a generic property of
quantum trajectories of open quantum systems. A particularly fruitful approach
to understand the phenomenology and universality class of measurement-induced
transitions is to use exact mappings onto effective statistical mechanics models
that emerge from using a replica trick to deal with the intrinsic non-linearities of
the problem, and after averaging over the random gates. This systematic statistical
mechanics approach based on replica permutation “spins” was first developed in the
context of random tensor networks [24, 25] and then extended to deal with random
unitary [73] and monitored [39, 40] circuit dynamics. Such stat-mech mappings
provide an appealing picture of the entanglement transition in terms of a (replica)
symmetry-breaking transition, where the volume-law coefficient of entanglement
has a simple interpretation as a domain wall surface tension. In turn, these recent
theoretical developments raise the intriguing prospect of using well-developed
statistical mechanics tools to study quantum communication channel capacity and
error-correction thresholds [30–33, 64, 74], and computational complexity [75, 76].
Finite-size evidence for such an entanglement MIPT was even recently observed
experimentally in trapped-ion chains [77]. The phase structure and dynamics of non-
unitary circuits are being actively explored at the time of writing of this chapter.

The outline of this chapter is as follows: in Sect. 2, we introduce random
quantum circuit dynamics and derive exact results on entanglement growth and
operator spreading in such circuits. We also comment on the role of symme-
tries in the dynamics. In Sect. 3, we introduce measurements and describe the
phenomenology of measurement-induced entanglement transitions from different
perspectives. Section 4 derives exact statistical mechanics mappings for random
unitary circuits with and without measurements, using a replica trick. Various
consequences for entanglement dynamics and criticality are discussed. Finally,
in Sect. 5, we discuss progress in understanding measurement-induced symmetry-
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breaking and topological orders and related criticality, which would be forbidden in
equilibrium and are stabilized by dissipation.

2 Random Unitary Quantum Circuits

We begin by studying entanglement growth in ensembles of unitary random quan-
tum circuit (RC) dynamics. The growth of entanglement is an important metric to
diagnose dynamical thermalization and distinguish this behavior from other dynam-
ical universality classes such as many-body localization. Entanglement growth also
reflects the complexity of matrix-product state (MPS) and tensor network state
(TNS) descriptions of quantum dynamics. Just as in the statistical mechanics of
many interacting particles, or random-matrix theory of complex Hamiltonians, the
statistical properties of random ensembles of circuits can often be captured with a
far-simpler theoretical description than the (generically exponentially difficult) task
of computing the detailed output of a given circuit instance. In this section, we
review two equivalently complementary perspectives of entanglement growth and
thermalization in RCs; first we work in the “Schrödinger” picture and examine the
growth of bipartite entanglement in the evolution of quantum states, and second, we
adopt a “Heisenberg” picture and examine the evolution and spreading of operators
under RC dynamics. These two descriptions are elegantly united [7] in a mapping
of the entanglement growth problem onto Kardar–Parisi–Zhang (KPZ) dynamics
of random surface growth [9]. We recount the connection of surface growth to an
equivalent picture in terms of directed random polymers, which has a geometrical
interpretation closely analogous to the Ryu–Takayanagi relation between geometry
and entanglement in holographic AdS/CFT correspondences [10, 11].

2.1 Entanglement Growth

For this discussion, we adopt the model of [7], which consists of a length L chain of
d-level qudits, in which, at every time step a randomly selected pair of neighboring
qubits is subjected to a random two-qudit entangling gate drawn uniformly from the
Haar distribution on U(d2). To study entanglement growth, consider the bipartite
von Neumann entropy: S(x, t) = −trρ[x+1,∞)logdρ[x+1,∞), for bipartitioning the
system across the bond (x, x + 1), where ρ[x,x′] is the reduced density matrices for
sites in the interval [x, x′].
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2.1.1 Mapping to KPZ Dynamics of Random Surface Growth

Due to the subadditivity property of entanglement, the entanglement entropy for
neighboring cuts is bounded by

|S(x, t)− S(x + 1, t)| ≤ 1, (1)

i.e., if S behaves like a “surface” with bounded slope. The stochastic dynamics of
this “surface” can be understood by a simple heuristic rule. When a gate acts on
bond (x, x + 1), the corresponding entanglement grows as

S(x, t + 1) = min{S(x − 1, t), S(x + 1, t)} + 1, (2)

which turns out to be exact (almost surely) in the limit of large onsite dimension
d → ∞, but which is believed to capture the universal aspects of RC dynamics
for any finite-d. This rule can be understood as follows: if S(x, t) = S(x − 1, t)
or S(x − 1, t) − 1, i.e., implying that site x + 1 is unentangled with (−∞, x] at
time t , then the gate increases the entanglement by an amount that is generically
proportional to 1 and becomes precisely 1 (almost surely) in the large-d limit. If
on the other hand, S(x, t) = S(x − 1, t) + 1, this implies that site x + 1 is already
maximally entangled with (−∞, x] and the gate is very unlikely to disentangle it, so
S(x, t) remains unchanged. We can see that since S(x, 0) = 0 ∀x, and since S(x, t)
changes by quantized amounts (at d → ∞), then S(x, t) is always an integer, and
these cases exhaust the possibilities. Concrete examples of updates are shown in
Fig. 1a,b. Notice that locally flat parts of the surface tend to grow (top left of Fig. 1b,
while bonds with negative local curvature get converted to having local positive
curvature (bottom left of Fig. 1b), and regions with positive slope of s do not grow
(bottom right of Fig. 1b).

To study the long-time dynamics, it is useful to “zoom-out” and coarse-grain
the spatial lattice and integral step of the circuit by introducing an average entropy
s(x, t) over blocks of sites of size � � 1 (similar to moving from a lattice
description of magnetic moments, to a continuum description of coarse-grained
average magnetization), and coarse-grain our time step by L so that a finite density
of gates is applied in a coarse-grained time step. The continuum limit of the “update
rule” Eq. (2) can then be written in the form of a KPZ equation:

∂s

∂t
= ν∂2

x s −
λ

2
(∂xs)

2 + η(x, t)+ c, (3)

where c reflects the average rate of growth of entanglement, η(x, t) is a random
noise (capturing the stochastic placement of gates in space and time in the RC
model), the ν term suppresses local curvature reflecting suppression of negative
curvature from processes like the one shown in the bottom left of Fig. 1b, and
finally the λ term reflects that the entanglement growth is slower in regions with
non-zero slope of s as described above. Other terms with more derivatives or higher
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non-linearities are irrelevant in the renormalization group sense, so that this KPZ
equation captures the universal aspects of the coarse-grained entanglement growth.

The overall trend of Eq. (3) is that entanglement grows linearly in time
〈s(x, t)〉 ∼ vEt + . . . with constant “entanglement-velocity” vE , and (. . . ) reflects
subleading contributions that grow more slowly than ∼ t . Universal scaling of
fluctuations about this average trend is governed by the exactly solved KPZ
universality class. Measurable quantities at distance x and time t scale as universal
functions of the ratio x/ξ(t)with correlation length ξ(t) ∼ t1/z where the dynamical
exponent z = 3

2 . For example, the difference in entanglement for cuts separated by
distance r at equal times t scales like 〈(S(x + r, t)− S(x, t))2〉 ∼ rαg (r/ξ(t)),
where g is a universal function and α = 1

2 . Another important critical exponent, β,

characterizes the RMS fluctuations in entanglement:
√〈(s(x, t))2〉 − 〈s(x, t)〉2 ∼

tβ with β = 1
3 and similarly controls the dominant subleading correction to the

entanglement growth: 〈s(x, t)〉 ∼ vEt + Btβ .

2.1.2 Directed Polymer and Minimal-Cut Interpretation

KPZ dynamics arises in a wide variety of problems besides random surface
growth. A prominent example is the dynamics of a directed polymer in a random
environment, i.e., a sequence of monomer segments arranged along one direction:
(“time”), which can be inclined but not turn back on itself. This directed polymer
perspective on KPZ dynamics has a natural geometric interpretation in the RC
dynamics. To estimate S(x, t), consider the following geometric construction: draw
a curve through the random circuit starting from bond (x, x + 1) at time t and
moving back through the circuit to time t = 0 without crossing any gates. The
length of this upper-bounds the Schmidt rank of the bipartition across bond (x, x+1)
(see Fig. 1) and hence also upper-bounds the entropy S(x, t). The best upper-bound
estimate for S(x, t) from this procedure is therefore given by the length of the
minimal such cut through the circuit. Reference [7] showed that this upper-bound
is in fact saturated in the large-d limit. Identifying the cut line with the shape of a
directed polymer, and the constraints imposed by the constraint that the line does
not cross the (randomly placed) gates as a random environment, then the problem
of finding minimum length cut is equivalent to minimizing the free energy of this
directed polymer in said random environment. This picture led to a more general and
universal “entanglement membrane” formalism to compute entanglement in chaotic
quantum systems [7, 78, 79].

This geometric interpretation of entanglement of a quantum state output by a RC
via the geometry of a minimal surface through the circuit is strikingly reminiscent
of the Ryu–Takayanagi formula relating the entanglement of a spatial region of a
conformal field theory ground-state to the surface area of a spanning geodesic the
dual bulk gravity description [10, 11], and to similar relation in high-bond dimension
tensor networks which can in a sense be viewed as lattice discretizations of the
gravity/CFT correspondence [24].
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Fig. 1 KPZ dynamics of entanglement growth in random circuits. In a random circuit model
consisting of randomly placed nearest-neighbor two-site gates (c), the entanglement dynamics as a
random surface growth where each gate on a bond tends to increase the height at that bond by one
block (a). (b) shows the surface growth steps for a gate acting on a bond with different pre-existing
entanglement configurations. (c) Shows an alternative, but equivalent picture of entanglement
growth in terms of a minimal cut: entanglement is upper-bounded by the minimal number of bonds
cut by a line that bipartitions the circuit without cutting through any gates. This minimal cut can be
viewed as the minimal free-energy configuration of a directed polymer in a random medium, which
is well-known to be equivalent to the random surface growth model. Reproduced from Ref. [7]

2.2 Operator Spreading

Examining the evolution of operators under RC dynamics provides a complemen-
tary perspective on thermalization and chaos. The spreading of operators in the
Heisenberg picture can be computed exactly for random quantum circuits [8, 12].
Let us focus on the case of d = 2 (qubits) for simplicity, although the concepts will
extend straightforwardly to arbitrary d, and consider the dynamics of an initially
local operator O, which we take to be a Pauli matrix. Under unitary time evolution,
this operator is going to become more complicated, and we expand it onto the basis
of Pauli strings S

O(t) = U†(t)O(0)U(t) =
∑

S
aS(t)S, (4)

where S are any product of Pauli matrices on distinct sites. Unitarity as well as the
normalization of the initial operator implies the conservation law:

∑
S |aS(t)|2 =∑

S |aS(0)|2 ≡ 1. The average evolution of the weights |aS |2 under random Haar
evolution is particularly easy to work out. Let us consider a single gate, acting on
two sites for simplicity. There are two cases: if the string S happens to be the identity
I at time t , then it is unchanged by the unitary gate and remains identity at time t+1.
On the other hand, if the string S is any other operator in the operator Hilbert space,
the random Haar evolution evolves it to any other non-identity string with equal
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probability. This means that the string weights obey the Markov process:

|aS(t + 1)|2 =
∑

S ′
WS,S ′ |aS ′(t)|2 , (5)

with the Markov operator

WS,S ′ = δS,IδS ′,I + (1− δS,I)(1− δS ′,I)
d4 − 1

. (6)

Instead of keeping track of the dL coefficients aS , it is convenient to focus on
simpler quantities. Here we follow Refs. [8, 12] and focus on the right weight
ρ(x, t), defined as the fraction of strings ending at position x

ρ(x, t) =
∑

S ending at x

|aS(t)|2 . (7)

Intuitively, the right weight keeps track of the “operator front” and can also be
related to out-of-time ordered correlators [8, 12] that are used in diagnostics of
quantum chaos. Because the right weight is locally conserved,

∑
x ρ(x, t) = 1,

we expect it to obey a coarse-grained (hydrodynamic) continuity equation

∂tρ + ∂xj = 0. (8)

The dynamics of the right weight can be readily understood from the Markov
process (5). Consider the action of a random unitary gate acting on sites x and x+1,
on a string at ending at position x at time t . There are only d2 − 1 operators out of
d4−1 non-identity operators that the random evolution can generate with an identity
operator at position x. We conclude that with probability p = (d2 − 1)/(d4 − 1),
the operator front does not move and remains at position x (on average), whereas
it moves right with probability 1 − p. This immediately implies that the right
weight follows a biased random walk: the operator front moves ballistically to
the right since p < 1/2 and will broaden diffusively with time as ∼ √

t . Using
standard results, this implies that the current in the hydrodynamic equation (8) can
be expressed within a gradient expansion as

j = vBρ −D∂xρ + . . . , (9)

with vB = 1 − 2p = d2−1
d2+1

, and D = 2p(1 − p) = 2d2

(1+d2)2
. This right weight thus

behaves as ρ(x, t) ∼ 1√
t
e−(x−vB t)2/(4Dt) at long times, and as d → ∞, the front

becomes sharp sinceD→ 0, and vB → 1. This diffusive broadening of the operator
front is believed to be a generic feature of chaotic (non-integrable) quantum systems
in one dimension. (The operator front also broadens diffusively in interacting
integrable systems through a very different physical mechanism [80]). Note that
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one-dimensional hydrodynamics is known to be unstable in one dimension [81]:
sound waves that would naively broaden diffusively acquire some anomalous KPZ
scaling in fluctuating hydrodynamics due to non-linearities. This does not happen
in the context of operator spreading as the butterfly velocity vB does not depend
linearly on the right weight, and the operator front is believed to generically broaden
diffusively rather than with KPZ dynamics.

2.3 U(1) Symmetric Circuits

Random quantum circuits can be enriched by including global symmetries [19, 20],
for example, adding a conserved Q = ∑

x q(x), and demanding that random gates
decompose into Haar random operations within each block of the total charge in
order to ensure charge conservation. There are several ways to enforce charge
conservation: following [19], we can consider a one-dimensional chain in which
each site hosts a two-level system (“qubit”) whose computational basis states
{|0〉, |1〉} have charge q = 0, 1, respectively, and an auxiliary d-level system
(“qudit”) of charge-neutral degrees of freedom, i.e., with onsite Hilbert space
C

2⊗C
d . The dynamics will consist of local unitary gates and measurements, which

are chosen to conserve the U(1) charge associated with the z component of the
qubits. As before, the symmetry-preserving two-site unitary gates are arranged in a
brickwork geometry but now take the form:

Ui,i+1 =
⎛

⎜⎝
U0
d2×d2 0 0

0 U1
2d2×2d2 0

0 0 U2
d2×d2

⎞

⎟⎠ , (10)

where i labels a site, UqD×D is a unitary matrix of size D ×D acting on the charge
q1 + q2 = q ∈ {0, 1, 2} sector (a local charge is defined to take values 0 and 1),
and D is the dimension of the Hilbert space of the charge sector. Each matrix is
drawn independently from the Haar random ensemble of unitary matrices of the
appropriate size.

Those random unitary gates spread the charge uniformly with equal probability,
so the charge performs a random walk

q(x, t + 1) = q(x + 1, t + 1) = 1

2
(q(x, t)+ q(x + 1, t)) , (11)

independently of the onsite Hilbert space dimension d. Upon coarse-graining, this
naturally leads to a diffusion equation for the local charge

∂tq = Dq∂2
xq, (12)
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with the diffusion constant Dq = 1/2 for all d. Charge diffusion has some
interesting consequences on operator spreading that we will not discuss here; we
refer the reader to the original references [19, 20].

Charge conservation has particularly dramatic consequences on the dynamics
of entanglement [82–86]: the charge contributions to the Renyi entropies grow
diffusively, Sn>1 ∼ √

t , while the von Neumann entropy remains ballistic as in
the absence of symmetry Sn=1 ∼ t . This phenomenon arises from rare fluctuations
that leave a region empty (or maximally filled). Consider for concreteness d = 1
(no neutral degree of freedom), corresponding to the onsite charge states q = 0
and q = 1. We are interested in the entanglement across a cut at L/2 following
the dynamics of an initial product state for the qubit such as |ψ〉 = ⊗Li=1|+〉i ,
where |+〉 = 1√

2
(|0〉 + |1〉) (the generalization to other initial states will be readily

apparent). We can divide the system into three regions: a central region of radius
� = √

Dt centered at the entanglement cut, and regions to the left and right. We
then define a configuration to have a “dead-region” of size � if the spins in a region
of size∼ � are either all 0, or all 1, e.g., |ψdead〉 = |· · · + + + 00 . . . 00+++ . . . 〉.
The amplitude for this state in the initial configuration is generically exponentially
small in � (e.g., for the particular initial and dead-region states mentioned above, it
is∼2−�/2). So one might be tempted to ignore contributions from large dead regions
with �� 1. However, a crucial point is that these rare dead regions make an outsized
contribution to Renyi entropies with Renyi index n > 1. To see this, consider the
evolution for time t of an amplitude in the initial state having a dead region of
size � � t2/Dq . In this time, particles begin to diffuse into the dead region from
the edge but do not have time to fluctuate across the entanglement cut. Hence, the
time-evolved state is still separable into left- and right-Schmidt states. The Schmidt
weight for such rare dead regions is given by their probability to occur in the initial
state, which is ≈ 2−� ≈ 2−

√
Dt . By contrast, typical configurations without dead

regions all evolve into highly entangled states with much smaller Schmidt weight
≈ 2−vEt , where vE is the entanglement velocity. All Rényi entropies with n > 1
are dominated by the log of the largest Schmidt coefficient and grow as

√
t . The

von Neumann entropy S1 is dominated instead by typical Schmidt coefficients: the
number of these grows exponentially in t , but they are also exponentially small in t
and are therefore subleading for n > 1. We note that, in systems with both charged
and neutral degrees of freedom (such as the qubit×qudit model mentioned above),
this diffusive charge contributions to Renyi entropy add to a dominant ballistic (∼ t)
growth from neutral degrees of freedom. However, in a purely charged models with
bounded maximal or minimal charge on each site, Renyi entropies will always grow
diffusively.
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3 Measurement-Induced Phase Transitions

The random circuit dynamics discussed above represents the unitary evolution
of an ideal closed quantum system. In practice, no system is truly isolated, and
understanding the interplay of unitary operations with environmental noise and
decoherence is a key challenge for quantum computing. Environmental decoherence
can be modeled as the environment “monitoring” (i.e., effectively measuring) the
system, which we will idealize as strong projective measurements that collapse the
qubits in the measured basis removing their entanglement with the rest of the system
that had been generated by the unitary gates (extensions of this to weak/partial
measurements are also possible [38, 70]). While there has been a resurgence of
investigation of this question, the idea of quantum to classical phase transitions
driven by noise has a long history going back to an early work by Aharonov [87]
from over 20 years ago. Specifically, we consider the model introduced by [22, 23]
consisting of alternating circuit layers with random unitary gates and measurement
layers in which each qubit is projectively measured with probability p, which
reduces to random circuit dynamics for p = 0. In the other extreme limit, p = 1,
the system’s state is repeatedly collapsed to an unentangled product state.

At first glance, one might expect that any non-vanishing measurement probability
0 < p ≤ 1 would eventually collapse the system into a short-range entangled
after sufficient time evolution. For example, bipartite entanglement SA between a
region A and its complement Ac is generated only by local gates that straddle the
boundary ∂A and is generated at rate ∼ |∂A|, whereas the rate of measurement-
induced collapse is extensive ∼ p|A| [35]. However, this naive argument ignores a
critical feature of the random circuit evolution: scrambling. Namely, random circuit
evolution tends to obscure the information stored in a single qubit by encrypting it in
a random highly entangled superposition of many qubits. Consequently, measuring
any single qubit inA does not reveal one qubit’s worth of information about the state
of Ac (as for measuring half of a simple EPR pair), but rather only reveals partial
information that roughly scales with the mutual information between the measured
qubit and Ac: I(x) = Sx + SAc − Sx∪Ac , where x denotes the distance of the
measured qubit from the boundary ∂A. In the highly entangled states generated by
random circuit evolution with local gates, this mutual information generically falls
to zero at large distances.

Considering a 1d circuit with A = (−∞, 0] for concreteness, a back-of-the-
envelope estimate suggests that if I(x) falls off faster than 1/x, then the rate that
measurements reduce SA is ∼ p

∫ 0
−∞ I(x)dx, which is a finite constant. Some

approximate mean-field-like arguments suggest I(x) ∼ x−3/2 in this context [32,
33], and numerically, one finds I(x) ∼ x−1.25 compatible with the interpretation
of this quantity in terms of the return probability of a directed polymer in a random
environment [88]. Therefore, despite the extensive fraction ∼ p of qubits measured
after each circuit layer, only measurements close to the boundary of A remove an
appreciable amount of entanglement, and the rate of entanglement production by
circuit dynamics and entanglement loss due to measurement collapse both scale
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like |∂A|, such that the outcome of their competition depends on p. These simple
arguments predict the existence of a sharp measurement-induced phase transition
(MIPT) at critical measurement probability 0 < pc < 1, with the scrambling
dynamics producing highly-entangled states for p < pc, and measurements
collapsing the system into short-range entangled states for p > pc. Indeed, clear
numerical evidence for such a measurement-induced entanglement phase transition
has been observed in this model for large-scale random Clifford circuits, and
smaller-scale circuits with Haar random gates via exact diagonalization [34].

3.1 Entanglement Transition

The hallmark of the entanglement MIPT in this model is a singular change in the
“average” entanglement entropy, S(�), for a continuous region of size � of the typical
state produced by the monitored random circuit from volume law, S(�) ∼ � for
infrequent measurements (p < pc) to area law (p > pc). Specifically, referring to
the output, |ψm(t)〉, of a particular instance of the random circuit with measurement
outcomes m as a trajectory, we define the trajectory-averaged (Renyi) entanglement
entropies for region A as

S
(n)
A = EU,m

[
1

1− n log trA
(
ρnA,m(t)

)]
, (13)

where n is the Renyi index (von Neumann entropy is defined through the limit
n→ 1), Em denotes averaging over measurement outcomes (weighted by the Born
probability of obtaining that outcome) and measurement locations, and ρA,m(t) =
trAc |ψm(t)〉〈ψm(t)| is the reduced density matrix for the trajectory.

To be specific, consider the trajectories produced by evolving initially unentan-
gled product states by monitored random circuit evolution with 1+1d connectivity,
and choose entanglement interval A to be a single contiguous interval of length
�. Numerical simulations [34] (Fig. 2b) show that for p < pc S̄(�, t) grows
linearly (∼ t) until a time scale of t � � where it saturates to a volume-law
behavior S̄(�) ∼ s(p)� + . . . , with volume-law coefficient log 2 ≥ s(p) > 0,
and where (. . . ) denotes further subleading-in-� terms, including universal �1/3

corrections [88]. By contrast, for p > pc, the entanglement quickly saturates to
an area-law behavior S̄A ∼ |∂A| in O(1) time. Precisely at the transition, p = pc,
the entanglement appears to grow logarithmically in time S̄A(t) ∼ log t , saturating
to S̄A(t � |A|) ∼ log �.

The collapse of numerical data for bipartite entropy � = L/2 over a range of p
and system size L is consistent with a universal scaling function:

S̄(�) = G
[
(p − pc)L1/ν, t/Lz

]
+ S̄non-universal, (14)
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Fig. 2 Measurement-induced entanglement phase transition . (a) in a monitored random circuit
(MRC). (b) Finite-size scaling of measurement-trajectory-averaged bipartite entanglement entropy,
SA for region of size |A| = L/2, for random Clifford circuits at long times, shows a continuous
phase transition at critical measurement rate pc ≈ 0.16, with volume-law entanglement S ∼ L for
p < pc, and area-law entanglement S ∼ const. for p > pc. At criticality, long-time entanglement
grows logarithmically in L (and also builds up logarithmically with time). Reproduced from
Ref. [34]

with scaling exponents z ≈ 1, and ν ≈ 1.3 for random Clifford circuits and uni-
versal scaling function G(x, τ) coexists with a non-universal area-law background
S̄non-universal that evolves smoothly across the transition. For eL � t � L, the
entanglement saturates to a steady-state value with scaling form:

G(x, τ � 1) ∼

⎧
⎪⎪⎨

⎪⎪⎩

|x|ν x →−∞ (entangling-phase)

αlog(|x|) x � 1 (critical-regime)

0 x →+∞ (collapsed-phase)

(15)

Critical phenomena aficionados may notice that the critical exponents ν, z are
suspiciously close to those of a 1+1d bond percolation transition νpercolation = 4/3,
zpercolation = 1. Indeed, the entanglement for monitored random circuits can be
mapped to percolation-like statistical mechanical models (see below); however, the
transition is believed to be generically different from simple percolation except in
the limit of infinite onsite Hilbert space dimension. For completeness, we note that
a distinct but related entanglement transition between thermalizing and many-body
localized (MBL) arises in the purely unitary dynamics (no measurements) generated
by a constant or time-periodic Hamiltonians without temporal randomness [89–91].
In this context, percolation-type entanglement critical phenomena have also been
observed in random Clifford models [92].

A subtle, but crucial point is that the entanglement transition is only visible if one
first computes the entanglement of a trajectory and then averages over trajectories.
By contrast, the trajectory-averaged state ρ = Em(ρm) is generically volume law
entangled for any p (including p = 1!). As a corollary, the entanglement transition
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is not visible in averages of local operators: Em [〈O〉] = trρO, but only in their
higher moments such as: Em [〈O1〉〈O2〉]. This poses a significant challenge to
experimentally observing measurement-induced phase transitions: since computing
non-linear functions of a trajectory (entanglement, higher moments of observables,
etc.) requires measuring many copies of the same trajectory |ψm〉. Since we cannot
simply copy this state (no-cloning theorem!), one must instead sample many times
from the circuit to obtain multiple copies with the same measurement outcomes m.
For such non-linear functions of state, this post-selection on measurement outcomes
generically adds sampling overhead that is exponential in the space-time volume of
the circuit: ∼ exp(pLt) for a circuit of depth t acting on L qubits.

We will discuss below a possible route to avoiding post-selection through
measuring different types of observables involving an ancillary reference qubit
initially entangled with the system, designing a classical decoder to avoid the need
to prepare multiple copies of a trajectory to detect the area-law phase. Using this
strategy, moderate-scale experiments have been successfully performed on trapped-
ion experiment [77] by identifying a model in which the MIPT occurs at very
low measurement density. We note that these methods are currently specific to
Clifford circuits, and it is not clear what their overhead would be for MRCs with
computationally universal gate sets. We also note that in recently investigated space-
time duals of RC dynamics [54] (or equivalently in random tensor network states
in which the tensors are generated by random circuits [93, 94]), a closely related
entanglement transition arises, which can be observed by post-selection only on the
final measurements of physical qubits in the Bell basis [54], incurring exponential
overhead only in spatial volume (∼ eL cost) rather than space-time volume (∼ epLT
cost).

3.2 Alternative Perspectives on MIPTs

Above, we considered a setup where initially unentangled states were evolved
under MRC dynamics resulting in either extensive entanglement production (p <
pc) or continuation of short-range entanglement due to measurement collapse
(p < pc). A fruitful alternative perspective if we instead consider feeding mixed
states into MRCs (or equivalently states that initially share entanglement with
other degrees of freedom), which will expose intriguing connections between the
entanglement transition with themes from quantum information, communication,
and error correction.

3.2.1 Purification Transition

First consider the trajectories arising from inputting a maximally mixed (“infinite
temperature”) state ρ∞ = 1

2L
1 with entanglement S = −trρlog ρ = Llog 2 into

an MRC. For p = 1, every qubit is measured, and the state immediately “purifies”
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the maximally mixed into a pure quantum state with vanishing total entanglement
entropy. By contrast, for p = 0, the purely unitary RC evolution does not affect S,
and the state remains maximally mixed at all times. Given our experience with pure-
state inputs, it is natural to expect that there is a critical measurement probability
pc, where MRC dynamics undergoes a phase transition between regimes where
densely repeated measurements purify any mixed initial state (p > pc) or fail to
do so due to scrambling dynamics that obscure whether the measured qubit is in
a mixed state due to environmental entanglement or entanglement of other qubits
in the system (p < pc). A priori it might not be obvious that the purification
transition [30] for mixed state inputs should coincide precisely with entanglement
transitions; however, numerically, they appear to do so [30], and we will see below
in the context of statistical mechanical mappings that these transitions have a unified
“dual” interpretation as the same bulk-ordering transition of a replica-spin model.

An important caveat to the purification interpretation is that at ultra-long time
scales (t ∼ expL), MRCs for any non-zero measurement fraction (p > 0) will
eventually purify an arbitrary input state. Hence, the purification transition is only
evident in the limit eL � t � L� 1.

3.2.2 Ancilla Probe of Purification Transition

We can view the maximally mixed input state ρ∞ as arising from having each
qubit in the system being entangled with an ancilla qubit that does not participate
in the circuit dynamics. The purification perspective then suggests a useful way
to characterize the entanglement/purification transition via examining whether the
mutual information between ancillas and the system (S) survives to long times or is
killed by measurement collapse (Fig. 3).

In fact, to observe the transition, it suffices to examine just a single “reference”
ancilla, R, and look at the trajectory average of the reference ancilla [41]:

SR = EU,m [SR] ≡ EU,m

[−trR ρRlog ρR
]
. (16)

Measured at times 2L � t � L, and in the limit L → ∞, SR exhibits
a discontinuous jump across the transition. This jump provides a convenient
numerical signature that precisely locates the transition via a crossing in curves
of SR versus p for different L.1 This single-ancilla feature has been referred to as
a scalable probe of MIPT, in the sense that it avoids the exponential-in-L cost of
measuring many-body entanglement of a trajectory.

1 As an aside, we note that if the ancilla qubit, R, is initially entangled non-locally with the system,
e.g., by applying a scrambling unitary before undergoing MRC dynamics, then in the L → ∞
limit, SR precisely jumps from log2 for p < pc to 0 for p > pc. On the other hand, if the
ancilla qubit is locally entangled with a single system qubit, SR is not quantized (for example, with
probability p that qubit could immediately get measured even for p < pc) and its jump across the
transition is non-universal.
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Fig. 3 Quantum information perspectives on the MIPT entanglement transition— adapted from
[30]. (a) Entanglement transition as a purification transition for entangled reference ancilla qubits
(R). The entanglement entropy of the reference, SR , serves as an order parameter for the transition.
When a pre-scrambling unitary is included before the MRC dynamics, SR jumps from log(2)
to 0 in the infinite size limit as evidenced by finite-size scaling shown in (b) for random Clifford
circuits. (c) Shows an alternative quantum communications perspective of this setup, where the pre-
scrambling circuit is viewed as a random encoding of the quantum information between R and the
system (S), the MRC channel N represents a communications channel, including monitoring by an
environment E, and then one attempts to decode the information at the output (with a hypothetical
optimal decoder). The entanglement transition represents a phase transition in the quantum channel
capacity of this communications setup (c)

3.2.3 Experimental Observation of MIPT in Trapped Ions

Using a standard method of measuring the reference qubit entanglement entropy
(e.g., using tomography to determine its density matrix) would still require many
copies of a given trajectory that would incur a much larger post-selection overhead.
However, Refs. [30, 77] highlight a method to potentially avoid post-selection. In the
purifying phase, the measurements collapse the reference ancilla into a pure state
disentangled from the system. This pure state may be in a random basis determined
by various measurement outcomes, so that further measurements of the ancilla in
a fixed (e.g., computational) basis would generally see a large-entropy mixture of
0 and 1 outcomes. However, if this basis can be determined using the knowledge
extracted from the measurement outcomes in the circuit, then one could observe
the purity of the entangled state without preparing multiple copies of the same
trajectory. This idea can be carried out for Clifford circuits [77], whose classically
efficient simulations permit one to design a feedforward circuit using quantum
logic to transform the ancillas into the computational basis when they are purified.
Using this technique, Ref. [77] was able to observe finite-size signatures of a MIPT
in a trapped-ion chain without post-selection (Fig. 4). While this experiment was
relatively small scale, involving 8 system qubits and one reference qubit and a
variable small number (≤ 4) of measurements, clear signs of the limiting behavior
in the large- and small-measurement regime were observed, and the methods
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Fig. 4 Finite-size evidence of MIPT entanglement transition in trapped-ion chain—adapted from
[77]. (a) Circuit schematic of experiment: a reference qubit R is entangled with the system S
through an entangling XX gate (unitary uXX = eiπ/4X⊗X). The information is then scrambled
with scrambling circuit UC and subjected to random Clifford MRC dynamics. Four ancillas A
hold the intermediate measurement outcomes, deferring measurement to the end of the circuit.
Before measurement, a feedback decoding circuit UF is then applied to the R and A to attempt
to disentangle the reference and measurement ancilla and place the reference in the computational
basis (which will be successful if the ancilla is purified). (b) Quantum entanglement SQ of R
determined through tomography and averaged over ∼103−4 shots for two trajectories where R
stays mixed (top) or is purified (bottom). (c) Classical entropy of R after a thresholding procedure,
〈SC,T 〉, for various system sizes and measurement rates show a qualitative change in system-size
dependence across the MIPT (determined by simulation to occur at p ≈ 0.72)

developed pave the way for larger-scale experiments (e.g., in architectures where
mid-circuit measurements can be performed to avoid the need to sacrifice ancilla
qubits as a classical register to hold measurement outcomes). Recent work [95]
further shows that related ideas can allow detection of the scrambling phase without
post-selection through entanglement distillation methods.

We emphasize that the efficient measurement-decoding implementations in
these works are special to Clifford circuits and exploited their efficient classical
simulability. While Clifford circuits are an interesting important class of quantum
circuits that play an important role in many areas of quantum information such
as stabilizer codes (among others), they are also in a sense fine-tuned and non-
generic in that they are not capable of universal quantum computation and that small
deviations from Cliffordness ultimately spoil their efficient simulation. It remains
an important open question whether similar decoding strategies can be used to
reduce the overhead associated with post-selection to observe MIPTs in MRCs with
universal gate sets.

3.2.4 Connection to Quantum Channel Capacity and Quantum Error
Correction

The purification perspective also suggests intriguing connections between MIPTs
to quantum communication and error correction [30, 31]. Specifically, one can
view the MRC as a communication channel transmitting input mixed state ρin
initially entangled with reference systemR through the MRC dynamics to an output.
A key metric for the quality of a quantum communication channel is quantum
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channel capacity (QCC), which is roughly speaking the number of qubits’ worth
of information that can be transmitted through a noisy channel, optimized over all
possible encoding and decoding protocols. A famous result [96] of Lloyd, Shor,
and Devetak [LSD] relates the QCC for a channel N to the coherent information:
IC[N , ρin] = SA′ − SA′R , where SX is the von Neumann entanglement entropy
of subsystem X, ρin is the input state of system A, A′ denotes the system qubits
after transmission through the channel, and R is the reference ancilla system with
which A is initially entangled, and which does not undergo any dynamics. This
quantity can be understood as the amount of entanglement that survives from
input to output by subtracting off “incoherent” entanglement with the environment
responsible for information loss in the channel. To see this, note that we can purify
the channel as a unitary interaction between the system and an environment E, and
SA′R = SE , where E is the environment that from the output. Namely, LSD showed
that the quantum channel capacity is equal to the stabilizing limit of the coherent
information maximized over input state:

QCC = lim
n→∞

1

n
maxρ∈IC

[
N⊗n, ρin

]
. (17)

Intuitively, taking a large number of copies reflects that channel capacity character-
izes the ability to transmit long sequences of communications rather than a single
message. For a certain class of the so-called degradable quantum channels, which
generalize dephasing and erasure error channels, and which were shown [31] to
include MRCs, the coherent information is simply additive, Ic(N⊗n) = nIc(N ),
and it suffices to consider just a single copy of the channel. Further, the average
coherent information for MRCs was shown [31] to be precisely equal to SR .

This strongly suggests that the entanglement/purification transition in MIPTs can
also be regarded as a phase transition in quantum channel capacity (QCC) between
a high-capacity phase where the MRC channel transmitting an extensive number of
qubits (p < pc) and a low-capacity phase where with vanishing fraction of qubit
information transmitted (p > pc).

Strictly speaking, SR is not precisely the same as QCC, but rather reflects a sort of
“average” QCC. Namely, the typical formal definition of QCC involves optimizing
over input state ρin for each random circuit instance (the encoding of the input
may exploit specific knowledge of the circuit gates and measurement locations,
e.g., to avoid encoding information near positions that are heavily measured), and
average QCC would be obtained by averaging each optimized result over circuit
configuration. Instead, SR captures a different order of limits, where averaging over
the MRC ensemble is performed before optimization over inputs (it can be shown
that the optimal input to the average channel is the maximally mixed state ρ∞ [31]).
We note however that optimal communication capacity is rarely if ever achieved in
practice, and a more physically relevant question is whether there exists a threshold
error rate below which one can communicate encoded information at a finite rate.
The above results (see also further detailed arguments and numerical simulations
in [30, 31]) show that MRCs indeed have such a threshold.
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The measurement-induced entanglement transition can also be understood as
a quantum error-correction (QEC) threshold [31, 74]. Indeed, the QCC problem,
which involves encoding information into a quantum state, and subjecting it to a
noisy and error-prone channel before attempting to recover it using a decoder, is a
form of QEC.

3.2.5 Information Gained by the Observer

A closely related perspective of the MIPT can be formulated in terms of the ability
of the observer to extract information about the state of the system. In the volume-
law phase, information scrambling by the unitary evolution hides information into
highly non-local degrees of freedom that are hidden from the local measurements.
As a result, in that phase, the observer would require a time scaling exponentially
with the system size in order to extract all the information about the system. In
contrast, in the area-law phase, the observer can learn everything about the state
of the system in a time of order one. The amount of information extracted by the
measurements about the initial state of the system can be quantified by the Fisher
information [39], which is non-analytic at the MIPT.

4 Replica Statistical Mechanics Models

Most of the phenomenology of measurement-induced phase transitions described
above relied on numerical results, either on small (L ∼ 20 qubits) Haar circuits or
larger (∼103 qubits or qudits) Clifford circuits. To understand the scaling properties
and phase structure of monitored quantum circuits on a firmer ground, we now turn
to an analytic approach by deriving an exact mapping onto a statistical mechanics
model. Using a replica trick, entanglement properties can be mapped onto the free
energy cost of a boundary domain wall in a classical “spin” model [25, 39, 40, 73],
with the entanglement transition corresponding to a simple (replica) symmetry-
breaking transition. This replica approach to performing statistical mechanics
mappings for entanglement transitions was first introduced in the context of random
tensor network states [25], which turn out to be very closely related to MIPTs in
MRCs.

4.1 Replica Trick

Our goal is to compute the Renyi entropies of such individual quantum trajectories,
averaged over measurement outcomes and random unitary gates. Each trajectory is
weighted by the Born probability pm = trρm, where ρm = |ψm〉〈ψm| is the (pure)
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density matrix of the system:

S
(n)
A = EU

∑

m

pm
1

1− n log

[
trρnA,m
(trρm)n

]
, (18)

where EU refers to the Haar average over random unitary gates, and
∑

m denotes
averaging over quantum trajectories (i.e., over measurement outcomes). Here, it
will turn out to be convenient to work without an explicitly normalized density
matrix in computing time evolution, and so we include the factors of ∼ trρ in
the denominator to explicitly enforce normalization of the density matrix when

computing observables. We will denote S(n)A the Renyi entropy averaged over
measurement locations.

On the face of it, computing the Renyi entropies (19) might seem like a daunting
task: entanglement properties are usually hard to access analytically, and the non-
equilibrium time evolution combined with the non-linearity of the measurements
makes the problem even harder. However, following Refs. [25, 39, 40, 73], we can
use the replica trick to compute (19). As in the field of classical random spin models
and spin glasses, the basic idea is to rely on the simple identity:

log x = lim
k→0

xk − 1

k
. (19)

This equation is exact, but the “trick” is to compute the average of the logarithm
log x (here over random unitaries and measurement outcomes), which is a hard
task in general, using the average of the moment xk , where k is an integer, which
is usually a lot easier. This step involves analytic continuation in k, which can be
subtle in some cases. Using this replica trick, we can write the Renyi entropies as

S
(n)
A = lim

k→0
EU

∑

m

pm

(1− n)k
(
(trρnA,m)

k − (trρ⊗knm )
)
. (20)

We will writeQ = nk+1 to denote the total number of replicas, where the additional
replica comes from the Born probability pm = trρm weighting different quantum
trajectories. Within this replicated state, we can write

S
(n)
A = lim

k→0

1

(1− n)kEU
∑

m

(
tr
[
S⊗kA,nρ

⊗Q
m

]
− tr

[
ρ⊗Qm

])
, (21)

where SA,n is a permutation “swap” operator implementing the partial trace in
the region A, acting on each of the first k replicas (which are themselves n-fold
replicated states) as

SA,n =
∏

x

χgx , gx =
{
(12 · · · n), x ∈ A,
identity = e, x ∈ Ā. (22)
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gx labels the permutation on site x, and χgx =
∑
[i]
∣∣igx(1)igx(2) · · · igx(n)

〉〈i1i2 · · · in|
is its representation on the replicated onsite Hilbert space, i.e., on its n-fold tensor
product. As indicated in the equation above, gx is the cyclic (identity) permutation
when x is in the region A (when x is in the region Ā). Here, we use standard
cycle notation to denote permutations, for example, (123)4 refers to the cyclic
permutation 1234 → 2314.

4.2 Haar Calculus and Boltzmann Weights

The next step is to perform the average over the (replicated) random unitary gates,
using the Haar measure (see [97] for a nice physicist-accessible review of some
technical aspects of Haar averages over the unitary group). The average over each
gate can be evaluated using the formula

EU∈U(D)
(
U∗Q ⊗ UQ

)
=

∑

σ,τ∈SQ
WgD(g

−1
1 g2)Xv(g1)⊗ Xv(g2), (23)

where g1, g2 are permutations of the replicas, Wg are called Weingarten functions,
and D = d2, Xv(g1) = X (g1) ⊗ X (g1) permutes the output legs of U by g1
and contracts them with the corresponding legs of U∗, and similarly for Xv(g2)

acting on the input legs. The reason the average EU∈U(D)
(
U∗Q ⊗ UQ) can be

expanded onto permutations of the replicas is that such permutations commute with
the action of the unitaries, which are the only terms surviving the Haar average.
The commuting actions of the unitary and permutation groups on a tensor product
Hilbert space is a mathematical statement known as Schur–Weyl duality. This step
can be generalized to other subgroups of the unitary groups, see Ref. [98]. Using
standard tensor network notations [99], we will write Eq. (23) as [40]

(24)

Here WgD(g) denotes the Weingarten function of the permutation g,

WgD(g) =
1

Q!
∑

λ'Q

χλ(e)χλ(g)∏
(i,j)∈Y (λ)(D − i + j)

, (25)

where the sum is taken over all integer partitions λ of Q [denoted in the above
equation by the notation λ ' Q, such that λ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ · · · ,
λi ∈ N and

∑
i λi = Q], and the product is taken over all cells (i, j) in the Young

diagram Y (λ) of the shape λ. Here e denotes the identity group element, and χλ(g)
is the irreducible character of the symmetric group SQ indexed by the partition λ.
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Those Weingarten coefficients WgD(g) can also be computed by contracting the
unitaries within each replica in the left-hand side of Eq. (23) to obtain a trivial result
using U†U = 1. This yields

Xv(e) =
∑

g1,g2∈SQ
WgD(g

−1
1 g2) (trXv(g1))Xv(g2), (26)

where e is the identity permutation. The trace of X (g) simply counts the number of
cycles in the permutation g,

trXv(g) = DC(g), (27)

where C(g) is the number of cycles in the permutation g. We thus find

∑

g1∈SQ
WgD

(
g−1

1 g2

)
DC(g2) = δg2 , (28)

where δg is equal to 1, that is g = e, and 0 otherwise. This equation can be used
to define the Weingarten coefficients WgD , as the inverse of DC . Equation (23)
applied to the brick-wall pattern of unitary gates defines a statistical model on the
honeycomb lattice, where permutations live on vertices. Contracting unitary gates
can be done by assigning a weight to links connecting unitaries given by

W(g1, g2) = tr
[
X †(g1)X (g2)

] = dC(g−1
1 g2). (29)

Note the factor of d here, instead of D, since we are focusing on a single leg of the
unitary (Xv = X⊗X ). This weight is associated to all links that were not measured.
If a link was measured instead, all replicas are constrained to be in the same state,
and the weight is instead d after averaging over possible measurement outcomes.
Those equations fully determine the weights of the statistical model in monitored
Haar random circuits. Upon averaging over measurement locations and outcomes,
the weight assigned to a link is therefore given by [40]

Wp(g1, g2) = (1− p)dC(g−1
1 g2) + pd. (30)

Putting these results together and ignoring for the moment boundary conditions, we
obtain an anisotropic statistical mechanics model defined on the honeycomb lattice,

Z =
∑

{gi∈SQ}

∏

〈ij 〉∈Gs
Wp(g

−1
i gj )

∏

〈ij 〉∈Gd
WgD(g

−1
i gj ), (31)

where Gs (Gd ) denotes the set of solid (dashed) links on the lattice. In Fig. 5, the
vertical (dashed) links on the honeycomb lattice represent the Weingarten functions
that originated from averaging the two-site unitary gates, and the solid links keep
track of the link weights originating from averaging over measurements.
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Fig. 5 Statistical mechanics model (a) Geometry of the statistical mechanics model of SQ spins.
The red sites correspond to the boundary spins to be pinned by the boundary condition. (b) In the
d = ∞ limit, the model reduces to a Potts model on a square lattice. Reproduced from Ref. [40]

4.3 Boundary Conditions and Domain Wall Free Energy

By imposing different boundary conditions corresponding to fixing permutations at
the boundary, the statistical mechanics model results in different partition functions

ZA = EU,mtr
[
S⊗kA,nρ

⊗Q
m

]
,

Z0 = EU,mtr
[
ρ⊗Qm

]
,

(32)

from which the averaged nth Rényi entropy S(n)A can be obtained in the replica limit
via

S
(n)
A = n

1− n lim
Q→1

ZA − Z0

Q− 1
. (33)

Using the fact that ZA = Z0 = 1 in the replica limit k → 0 (Q → 1), this can
be rewritten in a more intuitive form as the free energy cost of the domain wall
associated with changing the boundary condition in the entanglement region:

S
(n)
A = lim

k→0

FA − F0

k(n− 1)
, (34)

with FA = − log ZA and F0 = − log Z0. The SQ “spins” on the boundary, which
are permutation group elements gx ∈ SQ for boundary sites x, are pinned by the
boundary condition that is uniform and set to gx = e for Z0, corresponding to a
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trivial contraction. The partial trace in ZA is implemented as follows:

gx =
{
gSWAP ≡ (12 · · · n)⊗k, x ∈ A,
identity = e, x ∈ Ā. (35)

This equation follows immediately from k copies of (22).
Now that we have mapped the calculation of the entanglement entropies of the

random circuit with projective measurements onto a (replica) statistical mechanics
model, and many qualitative features of the entanglement transition can be under-
stood naturally. At small p, the Boltzmann weights give a ferromagnetic interaction
favoring group elements on neighboring sites to be equal, and we thus expect an
ordered phase of the statistical mechanics model. In that phase, the free energy cost
FA − F0 in (34) associated with changing the boundary conditions in the region
A, and thus of creating a domain wall, scales with the size of the interval LA of

A at long times, corresponding to volume-law entanglement S(n)A ∼ LA. As the
measurement rate p gets closer to 1, the effective temperature of the statistical
mechanics model is increased, leading to a disordered phase. The domain wall
condensate present in this phase can freely absorb the domain wall at the boundaries
of the entanglement interval, such that, for a distance exceeding the correlation
length from the boundary, there is no additional free energy cost from the boundary
domain. In this limit, the free-energy cost of the boundary domain will scale like the

boundary of A, corresponding to area-law scaling of entanglement S(n)A ∼ const.

4.4 Symmetry and Conformal Invariance

A crucial property of the statistical mechanics model derived above (Eq. (31)) is that
the Boltzmann weights are invariant under global right- and left-multiplication of all
group elements

gi → hLgih
−1
R , gj → hLgjh

−1
R , where hL, hR ∈ SQ. (36)

This follows from the fact that both the cycle counting function and the Weingarten
functions (which are inverse of each other) are class functions, that is, they depend
only on the conjugacy class of the permutation group elements. Physically, the two
factors of SQ symmetry correspond to the separate invariance under permuting the
replicas in the forward (U ) and backward (U∗) time contours. This structure will be
important in the next section and in the discussion of MRCs with symmetry below.

This general mapping indicates that the measurement-induced transition corre-
sponds to a simple ordering, (replica) symmetry-breaking transition. In general,
assuming that the transition is of second order, it should be described by a two-
dimensional conformal field theory (CFT) with central charge c = 0 in the replica
limitQ→ 1. (Recall that c measures the way the free energy changes when a finite
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scale is introduced; since here the partition function Z0 = 1 is trivial in the replica
limit, we have c = 0.) Such CFTs at central charge c = 0 are non-unitary and
are especially complicated even in two dimensions. However, there are a number
of general properties that follow from general scaling considerations and conformal
invariance.

Since the bulk properties of the transition only depend onQ, the statistical model
approach naturally explains why all Rényi entropies with n ≥ 1 have a transition at
the same value of pc, as observed in the numerics. Conformal invariance also allows
us to derive the general scaling form of the entanglement entropy near criticality, by
noting that the ratio of partition functions ZA/Z0 that appears in (34) corresponds
in the CFT language to the two-point function of a boundary condition changing
(BCC) operator φBCC [100, 101]

ZA/Z0 = 〈φBCC(LA)φBCC(0)〉, (37)

where the operators are inserted at the boundary of the entanglement interval A.
Near criticality, this two-point function scales as ∼ 1/L2h(n,m)

A fn,m(LA/ξQ) with
ξQ ∼ |p − pc(Q)|−ν(Q) the correlation length of the statistical mechanics model,
and fn,m are universal scaling functions that depend on n and m independently.
Plugging this expression into the replica formula (34), we find the general scaling
of the entanglement entropy (up to non-universal additive terms)

S
(n)
A = αnlog LA + fn

(
LA

ξ

)
, (38)

with ξ ∼ |p − pc|−ν the correlation length in the limit Q → 1, and αn =
2
n−1

∂h
∂m

∣∣
m=0 is a universal prefactor. Note that αn is unrelated to the central charge

of the theory and instead is a boundary critical exponent. In particular, conformal

invariance predicts that S(n)A ∼ log LA at criticality p = pc, with a universal
prefactor that depends on the Rényi index n.

4.5 Large Hilbert Space Dimension Limit

4.5.1 Mapping Onto Classical Percolation

In the limit of large onsite Hilbert space dimension, d → ∞, the SQ model above
reduces to a Potts model with Q! colors defined on the square lattice. To see this,
we evaluate the partition function weight Jp(gi, gj ; gk) associated with each down
triangle in Fig. 5, integrating out the middle spin:

Jp
(
gi, gj ; gk

) =
∑

gl∈SQ
Wp

(
g−1
i gl

)
Wp

(
g−1
j gl

)
WgD

(
g−1
l gk

)
. (39)
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The partition function can then be equivalently written in terms of the triangle
weight Jp as

Z =
∑

{gi∈SQ}

∏

〈ijk〉
Jp(gi, gj ; gk), (40)

subject to the appropriate boundary conditions that distinguish Z0 from ZA. In the
d → ∞ limit, we have dC(g) ∼ dQδg , where δg is the delta function that gives
1 if and only if g = e is the identity element in the permutation group SQ and
gives 0 otherwise. This follows from the fact that the number of cycles C(g) is
maximized by the trivial permutation: C(g) = Q. Since the Weingarten weights
are defined as the inverse of DC(g) with D = d2, we immediately find that in the
d → ∞ limit, we have WgD(g) = D−Qδg . Substituting into the triangle weight,
the triangle weight (39) and after some straightforward algebra, one finds [40]

Jp(gi, gj ; gk) = ((1− p)δg−1
i gk

+ p)((1− p)δ
g−1
j gk

+ p), (41)

which further factorizes into partition function weights defined separately on the
bonds 〈ik〉 and 〈jk〉. The partition function weight across the bond 〈ik〉 equals 1 if
gi = gk and p if gi �= gk , and an analogous weight is assigned to the bond 〈jk〉.
If we treat each onsite group element gi ∈ SQ as a state (color) in a spin model,
the partition function weight precisely matches that of a Q!-state Potts model on a
square lattice, whose links are between sites i and k, and between sites i and j in
each unit cell.

In order to analytically continue Q → 1, we rewrite the partition function
of this Potts model in terms of the so-called Fortuin–Kasteleyn (FK) cluster
expansion [102]. We expand the partition function as a product over links with
weight (1−p)δ

g−1
i gk

+p, by assigning an “occupied” link to the term (1−p)δ
g−1
i gk

,

while an empty link corresponds to picking the trivial term p in the product. The
occupied links form clusters, where the permutation spins are forced to be the
same due to the Kronecker delta functions. One can then perform the sum over
permutations

∑
{gi∈SQ} in the partition function (40) exactly, which allows us to

rewrite it as a sum over FK clusters:

Z =
∑

clusters

p#empty links(1− p)#occupied links (Q!)#clusters . (42)

Using this exact rewriting of the partition function, we can now readily take the
replica limit Q → 1 since Q only appears in the Boltzmann weight of the clusters
in that formulation. In the replica limit, all clusters carry a trivial weight, and
the partition function (42) describes a classical bond percolation problem, where
links are occupied with probability 1 − p (no measurement) and are empty with
probability p (corresponding intuitively to a local measurement cutting the circuit).
This percolation picture of the transition is rather appealing and natural and predicts
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critical exponents that are close to the ones measured even for finite d (d = 2 in
most numerical simulations). For example, it predicts a diverging correlation length
ξ ∼ |p − pc|−4/3, with pc = 1/2 in this percolation limit.

4.5.2 Entanglement and Minimal-Cut Picture

To compute the scaling of entanglement in this limit, it turns out to be more con-
venient to consider configurations with mixed measurement locations. Averaging
over measurement outcomes and over Haar gates for a such given configuration
of measurement locations, the statistical model mapping described above still goes

through, with the link weight now being either Vl(g
−1
i gj ) = dC(g

−1
i gj if that link

is not measured, or Vl(g
−1
i gj ) = d if that link coincides with a measurement. Now

in the limit d � 1, we have Vl(g
−1
i gj ) ∼ dQδ

g−1
i gj

as before so the statistical

mechanics model for such fixed measurement locations is a fully ordered (zero
temperature) ferromagnet on a lattice diluted by the measurements: each bond that is
measured is effectively cut, while all other weights constrain the statistical model’s
spins to be the same in this limit. This is consistent with the percolation picture
derived above.

As we show next, a frustrated link costs a large energy ∼ log d, leading to an
effective minimal-cut picture in that limit [23]. To see this, recall that computing
entanglement requires computing two different partition functions ZA and Z0,
which differs only by their boundary condition on the top boundary of the circuit.
The boundary condition for the calculation of ZA forces a different boundary
condition in region A and thus introduces a domain wall (DW) near the top
boundary. In the limit d →∞, the DW is forced to follow a minimal cut, defined as
a path cutting a minimum number of unmeasured links (assumed to be unique for
simplicity). Due to the uniform boundary condition in Z0, all vertex elements in Z0
are equal, so Z0 is trivial and given by a single configuration of spins. ZA differs
from Z0 due to the fact the DW will lead to frustrated links that contribute different
weights to ZA. Each frustrated unmeasured link contributes a very large energy cost
associated with this domain wall between g = gSWAP and g = e

E = (n− 1)m log d, (43)

using the energy weight on each link El = −log d C(g). Since this energy
cost is very large as d � 1, the domain wall will follow a path through the
circuit minimizing the number of unmeasured links it has to cut. This leads to the
expression ZA = p(1−n)m�DWZ0, with �DW the number of unmeasured links that
the DW crosses along the minimal cut [23, 63]. In the replica limit, this leads to a
simple expression for the Renyi entropies

S
(n)
A = �DW log d, (44)
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where this equation is valid for any given configuration of measurement locations.
We will use �DW to denote the average of �DW over measurement locations,
which are simply percolation configurations. This quantity has a simple scaling in
percolation: it is extensive �DW ∼ LA (volume law) for p0 < p0,c = 1/2, and
constant �DW ∼ O(1) (area law) for p0 > p0,c = 1/2. At criticality, this implies a
logarithmic scaling of the entanglement entropy [23, 103, 104]

S
(n)
A ≈

d�1

√
3

π
log d log LA. (45)

Strictly speaking, this minimal-cut formula only applies for d = ∞, while for d
large but finite, it is only valid up for distances smaller than a crossover length
LA � ξ(d) that we briefly discuss in the next section.

4.6 Finite d Universality Class

The infinite onsite Hilbert space dimension limit discussed above has an accidentally
enlarged symmetry. The Potts model has a symmetry group SQ! that is much larger
than the SQ × SQ symmetry of the generic Boltzmann weights at finite d. (Note
that SQ × SQ is a subgroup of SQ!: the left and right actions of SQ on itself have
a permutation g ∈ SQ! representation—this is known as Cayley’s theorem.) The
leading perturbation implementing this symmetry breaking in the Potts model was
identified in Refs. [25, 40] and turns out to be relevant, with scaling dimension
 = 5

4 . For any large but finite onsite Hilbert space dimension d, we thus expect a
crossover from percolation criticality for length scales �� ξ(d) ∼ d4/3 [23], to the
finite d universality class (which does not depend on d) at long distances �� ξ(d).
The boundary and bulk conformal spectrum of this theory were recently studied
numerically [36, 42, 62], and a Landau–Ginzburg action was proposed in Ref. [27].
In the case of Clifford circuits, the universality class of the transition depends in a
more subtle way on the onsite Hilbert space dimension [29, 98].

5 Symmetry and Topology in Measurement-Induced Phases
and Criticality

Looking beyond featureless Haar-random two-qubit gates and single-site mea-
surements, there is a huge variety of possible variations on a theme, including
considering circuits and measurements that obey symmetry constraints, including
multi-site measurements that “collapse” into interesting, entangled states rather
than featureless product states, and many others. Here, we briefly describe a small
selection of these enrichments to give a flavor of the possibilities.
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5.1 Symmetric Monitored Random Circuits

A simple extension of the MRC models described above is to include symmetry
constraints in the random gates and measurement operations, i.e., demand that
these preserve a symmetry group G. The appropriate symmetry depends on the
microscopic realization of the qubits in question. For example, trapped-ion and
Rydberg atom systems natural have interactions that respect a discrete Ising sym-
metries (G = Z2), superconducting qubit and cavity-QED systems typically have
U(1)-conserving interactions, and quantum dot spin-qubits often interact by SU(2)-
invariant spin-exchange (absent spin–orbit coupling). Of these, so only simpler
Abelian symmetries such as G = Z2 [43, 45, 46, 59, 64] and G = U(1) [63, 70]
have been studied theoretically.

The inclusion of symmetry naturally begs two questions: (i) are the univer-
sal properties of the entanglement transition modified by the symmetry? and
(ii) are there additional measurement-induced phases or critical phenomena that
arise with symmetry [analogous to how symmetry distinguishes spontaneous-
symmetry-broken and symmetry-protected topological (SPT) or symmetry-enriched
topological (SET) phases in equilibrium]? So far, the answer to the question (i)
appears to be negative [63]; at least in the limit of large onsite dimension d and
small-scale numerics for d = 2, it appears that the entanglement transition occurs
in a regime where the charge degrees of freedom are frozen by measurements and
do not affect the entanglement transition bulk criticality. However, the answer to
question (ii) is affirmative, and numerous examples of transitions in both the area-
law and volume-law phases have been constructed in a wide range of universality
classes.

To set the stage, let us consider the general symmetry structure of the statistical
mechanics replica models. As detailed in [59] (see also [27]), in replicated statistical
mechanics models, a symmetry group G of the circuit dynamics is incorporated
into the Q-fold replicated theory as a separate G symmetry separately for each
replica and, within each replica, separately for both each forward (U ) and backward
(U∗) “contours” of the time evolution. These symmetry factors are, respectively,
permuted by the left (forward time contour) and right (backward time contour)
replica-permutation symmetry of the permutation “spins” in the stat-mech descrip-
tion. Finally, hermiticity of the density matrix implies that exchanging the forward
and backward contours and complex conjugating the coefficients are a symmetry.
Since doing this Hermitian conjugation twice is trivial, this gives an extra Z2
factor to the symmetry group, but which acts non-trivially on the other replicated
symmetry groups [27]. Combined, this gives the overall symmetry group:

G =
[(
G
×Q
L � SQ,L

)
×
(
G
×Q
R � SQ,R

)]
� Z

H

2 , (46)

where � indicates that the replica permutation action of the symmetric group SQ
also permutes the associated G symmetries for each replica, and hence, these two
factors do not generally commute, the left (L) and right (R) subscripts refer to the
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forward and backward contours, respectively, and the H superscript on the final Z2
factor reminds that this is associated with hermiticity. It is not yet clear whether or
how the Z

H

2 factor plays a role in determining the structure of MIPTs, so we ignore
it in the following, but simply mention it for completeness.

5.2 Area-Law Phases

As described above, the area-to-volume-law entangled transition is a transition
between phases in which the replica permutation symmetry, respectively, remains
intact or becomes spontaneously broken (Fig. 6).

Since the short-range entanglement structure of the area-law phase is identical
to that found in ground states of local Hamiltonians, it is natural to guess that
the area-law MRC phases with symmetry G coincide with equilibrium phases
(i.e., paramagnetic, spontaneous-symmetry-broken, SPT, or SET) with the same
symmetry.

Indeed, for discrete symmetries, it is straightforward to design models that
achieve a large class of symmetry-breaking and topological orders in the
measurement-dominated regime. To be specific, consider Ising-symmetric random
Clifford circuits (G = Z2), with (space-time-random) measurements drawn from
local generators of a stabilizer group S (i.e., a group of mutually commuting
Pauli strings). In the extreme limit of measurement-only dynamics, these stabilizer
measurements project into a state specified by eigenvalues of s = ±1 for each s ∈ S .
Such stabilizer states can support a large class of interesting many-body orders

Fig. 6 Measurement-induced stabilizer orders. Phase diagram (a) and circuit model (b) of Ising-
symmetric MRCs exhibiting area-law phases with- and without-order reproduced from Ref. [46].
The model in (a) consists of measurements with probability p or random two-qubit Clifford gates
with probability 1−p. Measurements are randomly chosen asZ⊗Zmeasurements with probability
r or single-qubit X ⊗ 1 or 1⊗ Z measurements with probability 1− r . The phase diagram in (b)
includes a critical fan (center region) that would shrink to a phase boundary line for an infinite
system. (c)-(d) are reproduced from Ref. [45] and show a model (c) that includes measurements of
either X ⊗ Z ⊗ X stabilizers for a cluster state (a 1d SPT protected by a pair of Z2 symmetries
generated by

∏
i Z2i and

∏
i Z2i+1, respectively), single-site Z operators, and random Clifford

gates with probabilities pt , ps, pu, respectively. In the measurement-dominated regime (dashed
box), ps tunes between area-law phases with trivial or SPT order. These give way to volume-law
entangled phases at sufficiently large pu



Entanglement Dynamics in Hybrid Quantum Circuits 241

including discrete symmetry-breaking and symmetry-protected topological (SPT)
orders, and non-chiral-topological or fracton orders (i.e., toric code like orders but
not fractional quantum Hall effect with chiral edge modes).

5.2.1 Measurement-Induced Symmetry-Breaking Order in 1 + 1d

For example, in a qubit chain with symmetry generated by X = ∏
i Xi , measuring

s ∈ {ZiZi+1} on every bond projects into random spin-glass state(s) with frozen but
random spin texture si,i+1 = ZiZi+1 = ±1∀i. Here, a fixed set of measurement
outcomes si actually correspond to two possible states. For example, for a 3-site
chain states with {s12, s23} = {+1,−1} form a two-dimensional subspace with
basis states {| ↑↑↓〉, | ↓↓↑〉} that each spontaneously break the Z2 symmetry (or
equivalently, we can form cat-like superpositions of | ↑↑↓〉 ± | ↓↓↑〉 that have
definite overallX = ±1, but have long-range mutual information between all spins).
Thus, we see that the states stabilized by this measurement-only dynamics have the
same form as the spontaneous-symmetry-breaking ground space of an ideal Ising
magnet with couplings that are ferromagnetic or antiferromagnetic depending on
si,i+1 = ±1.

We note that different trajectories have different random frozen configurations,
so that the trajectory average of long-range symmetry-breaking correlations such
as lim|i−j |→∞ Em,U 〈ZiZj 〉 = 0 strictly vanishes (this could be anticipated on
general grounds since such linear averages always behave like infinite-temperature
averages), but where higher moments of symmetry-breaking correlations such as the
Edwards–Anderson (EA)-type order parameter χ(2) = lim|i−j |→∞ Em,U |〈ZiZj 〉|2
are non-vanishing.

So far, we have considered an idealized limit with only measurements. Numerical
simulations [45, 46, 59] that perturb away from this fine-tuned point by including
random unitary dynamics (e.g., by random Clifford circuits, which can be efficiently
simulated) or by competing stabilizer measurements (e.g., of non-commuting
observables such as {Xi} that stabilize trivial symmetric product states) show
clear evidence that these area-law orders survive over a finite range of couplings
in thermodynamically large systems and extend to generic area-law phase with
symmetry-breaking order in trajectories with area-law entanglement. We note that,
generically, the spin-glass pattern found in the ordered trajectories is not frozen
in time but undergoes (classical) stochastic fluctuations induced by competing
measurements or unitary gates between each time step.

5.2.2 Measurement-Induced Topological Orders

The above recipe can be straightforwardly extended to produce models of area-
law phases with more complicated measurement-induced orders including: SPT
orders [45], intrinsic topological or SET order, and fracton orders—essentially any
phase describable by stabilizer states. As for the measurement-induced spontaneous-
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symmetry-breaking phase discussed above, these phases are characterized by glassy
order in each trajectory, which can be diagnosed by various non-local analogs of
the EA order parameter described above. Due to its relation to error correction, we
briefly elaborate on a particular example: measurement-induced Z2 (a.k.a. “toric”
or “surface” codes) topological order [105] in 2+ 1d MRCs.

Following [105], consider a standard model of the surface code consisting of
a qubit array on a chess board (square lattice with two-site unit cell consisting
of alternating “black” and “white” squares), whose dynamics are dominated by
measurements of stabilizers consisting of product of X or Z operators, respectively,
over the corners of the white and black squares or “plaquettes” (P), sP ∈
{∏i∈Pwhite

Xi,
∏
i∈Pblack

Zi}. In the measurement-dominated regime, measurements
then collapse the state into one adiabatically connected to a stabilizer state sP ∈
{±1}. If this model is defined on closed manifold, then specifying sP for all
plaquettes, P uniquely specifies a state. However, if the model is defined on a
topologically non-trivial manifold, M , with genus g, e.g., a torus (g = 2), then
the stabilizers only fix a ground space of dimension 4g , which can be seen by
noting that for each non-trivial cycle c ∈ π1(M), around a handle of M , one
can define a pair of additional stabilizers, Xc,Zc = ∏

i∈M Xi, Zi , which are
independent from, but commute with the measured stabilizers s.Xc andZc′ operator
loops that intersect but wrap different cycles anticommute and hence cannot have
simultaneous eigenstates. This topological ground space has been proposed as a
promising quantum memory for fault-tolerant computation, since its states cannot be
distinguished by local noise, but rather, only by measuring non-local string operators
(X,Z)c.

This gives rise to the topological degeneracy in the measurement-stabilized
trajectories. In Ref. [105], it was shown that by tuning the fraction of surface-code
stabilizer measurements with competing random circuit evolution or trivial product-
state stabilizer measurements, one can obtain phase transitions between trajectories
with and without Z2 topological order. Unlike for the symmetry-breaking example
above, this distinction cannot be probed by any local measurement. Instead, one can
diagnose topological order either by two alternative routes. Each trajectory would
exhibit a quantized entanglement entropy γ = log 2 [105–107] defined via the
subleading constant part of the entanglement of a region A: SA = a|∂A|−γ , where
a is a non-universal constant, and |∂A| is the length of the perimeter of region A.

Alternatively, one could consider the dynamics of a maximally mixed state: here,
in the area-law phase, the measurements tend to purify the state. However, in the
topologically ordered phase, measurements only purify the local degrees of freedom
and leave an equal-weighted mixture over the 4g states of the topological ground
space resulting in entanglement S ∼ 2g log 2 in the steady state.

The model of Ref. [105] also exhibits an unconventional critical point with non-
relativistic dynamics (dynamical exponent z �= 1), and logarithmic violations of
area-law scaling in 2d, possibly related to emergent subsystem symmetries. This
highlights the potential for novel types of critical phenomena arising in MRC
dynamics, which do not naturally arise in more familiar equilibrium settings.
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5.3 Volume-Law Phases

The prospect of measurement-induced orders in the area-law phase could be
anticipated based on our knowledge of ground-state phases of equilibrium matter,
which also exhibit area-law entanglement. Perhaps more surprising is the prospect
of additional phases arising within the volume-law entangled regime, where the
entanglement structure of trajectories is similar to that of finite-temperature equilib-
rium states, which do not support any quantum orders and rule out even classical
orders in low dimensions.

5.3.1 Volume-Law Phases with Order—Stat-Mech Perspective

In the statistical mechanics language, the volume-law regime corresponds to
spontaneously broken SQ,L × SQ,R replica permutation symmetry. However, the
residual G×QL,R symmetries remain and could conceivably be spontaneously broken,
or protect or enrich topology. These various possibilities are discussed in detail in
Ref. [59], which provided a particularly simple argument (supported by numerics)
for volume-law phases with order: Consider stacking (and weakly coupling) two
subsystems that, before coupling, respectively, form an ordered area-law phase,
and a featureless volume-law phase of degrees of freedom with trivial symmetry
properties. Since each of these systems corresponds to gapped phases in the
stat-mech variables, weak coupling between the two will not destroy the symmetry-
breaking or topological properties of the first subsystem, nor the volume-law
entangled (replica-permutation-breaking order) of the second subsystem, and will
therefore result in an ordered and volume-law entangled phase. While “obvious”
in the stat-mech language, this predicts a highly non-trivial result in terms of
the original degrees of freedom in the MRC. Namely, that it is possible to have
stable phases with quantum-coherent orders in the highly entangled and scrambled
trajectories of a quantum circuit! The coexistence of volume-law entanglement and
symmetry-breaking spin-glass order (below the classical lower critical dimension)
was also observed numerically in symmetric Clifford circuits in Refs. [46, 64].

5.3.2 Charge Sharpening Transitions in the Volume-Law Phase

Beyond the possibility of stabilizing ground-state orders in volume-law entangled
trajectories, it turns out that there are additional phases and associated critical
phenomena within the volume-law regime of symmetric MRCs that cannot be
understood by any ground-state order parameter, but rather are distinguished by
sharply distinct dynamics of symmetry quantum numbers (which we henceforth
refer to as “charges”).

For concreteness, let us consider augmenting the U(1)-symmetric RC model
described above in Sect. 2.3, by adding random measurements of each site with
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Fig. 7 Schematic phase diagram of 1+ 1d U(1) Symmetry MRCs for the U(1) symmetric MRC
model described in the text (reproduced from Ref. [63]), includes both a volume-law entanglement
(red) to area-law entanglement (blue) transition at critical measurement rate p = pc, and a charge
sharpening transition within the volume-law phase at p = p#. The diffusive growth of Renyi
entropies, Sn, associated with diffusive dynamics and rare dead-region physics, for random unitary
circuit evolution p = 0, immediately converts into ballistic growth for any non-zero measurement
rate p > 0. t# denotes the time scale for measurements to sharpen an initial state that is a
superposition of different charge sectors into one with definite charge. The purification time for
an initially mixed state to collapse into a pure state due to measurements is denoted by tπ . L
denotes system size

probability p in the charge basis of the qubit and in any basis of the neutral large-
d qudit [63]. This model can be analyzed by generalizing the statistical mechanics
model to incorporate symmetry, which results in hardcore charge degrees of freedom
that undergo a random walk on the replicated circuit network, and which are coupled
to the replica-permutation spins by the measurements [63]. In the large-d limit,
it is possible to take the replica limit exactly and analyze the charge dynamics
as a classical stochastic evolution. In the large-d limit, standard Haar averaging
formulas immediately imply that off-diagonal coherences between density matrix
elements of different charges are strictly vanishing, i.e., this model does not support
any spontaneous breaking of U(1) symmetry. Nevertheless, two distinct phases are
observed [63] within the volume-law entangled regime, separated by an apparently
continuous phase transition at critical measurement probability p# < pc, which
precedes the entanglement transition at pc (pc = 1/2 in the large-d limit).

For p < p#, the measurements fail to collapse an initial superposition of different
total charges into a given charge sector (Fig. 7), i.e., the global symmetry quantum
number (“charge”) remains “fuzzy” up to a time scale t � L that diverges with
system size L. By contrast, for p > p#, measurements collapse the system into a
state with sharp total charge in finite time independent of system size (for t � L

measurements always sharpen the total charge). In 1 + 1d models, these charge
“sharp” and charge “fuzzy” phases are distinguished by the behavior of charge
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fluctuations [63, 108]:

C(r) = Em,U

[〈σz(r)σ z(0)〉 − 〈σz(r)〉〈σz(0)〉] ∼
{

1/r2 p ≤ p#

e−r/ξ p > p#
, (47)

where the power-law decay for p < p# is expected to become truly long-
ranged limr→∞ C(r) ∼ const. in higher dimensions, or with discrete Abelian
symmetries [108]. In addition, this work reveals that even a small amount of
measurements singularly change the dynamics of entanglement growth and charge
fluctuations from the diffusive (dynamical exponent z = 2) motion for p = 0, to
ballistic (z = 1) for 0 < p ≤ p#, and eventually to exponentially fast relaxation
(z→∞, massive dynamics) for p > p#.

We emphasize that unlike the measurement-induced symmetry-breaking and
topological orders described above, which are smoothly connected to equilibrium
ground-state orders,2 this charge sharpening transition (like the entanglement
transition) is a purely dynamical effect that is special to non-equilibrium MRC
dynamics. While these examples give an idea of the possibilities for new types
of non-equilibrium measurement-induced orders, at present, a rigorous/exhaustive
classification of measurement-induced orders remains an open challenge.

6 Discussion

The examples reviewed above highlight the promise for using well-developed
statistical mechanics tools to investigate universal aspects of emerging quantum
dynamics and quantum information theory concepts and to uncover new regimes
of measurement-induced non-equilibrium orders.

Despite rapid progress, several open challenges remain. The statistical mechanics
model mapping of MRC dynamics onto a classical spin model establishes the
existence of these transitions through convergence of strong- and weak- coupling
expansions, establishes an equivalence between the entanglement- and purification-
transition perspectives, and strongly suggests that the 1+1d entanglement transition
is described by a (non-unitary) conformal field theory (CFT). However, a detailed
analytic understanding of the precise universality class and CFT content remains
unsolved (though these questions are being explored numerically [36, 42, 62]).
To gain analytic insight into this question, and particularly to study measurement-
induced criticality and orders in 2d and 3d circuits and incorporate more complex

2 For example, by continuously turning off the coupling between the stabilizer-state qubits and
volume-law entangled trivial degrees of freedom in the above construction, and then dialing
the stabilizer measurement probability to unity, which, in the replicated statistical mechanics
description corresponds to disentangling two gapped degrees of freedom and then smoothly
changing couplings within a gapped phase, respectively, and does not produce a phase transition.
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features such as multiple types of non-commuting measurements, it may be
desirable to develop continuum quantum field theory methods for treating quan-
tum circuits (see [70] for preliminary efforts along these lines for free-fermion
circuits). The study of different classes of circuits, including e.g., Gaussian free-
fermion circuits and tensor networks [37, 56, 65, 70, 109, 110], or self-dual unitary
circuits [17, 18], might also help addressing some of those questions, as well as
revealing new measurement-stabilized phases. Looking beyond these more detailed
aspects, a natural question is whether there are other paradigms for obtaining
universal phenomena in quantum circuit dynamics, for example, which do not
require post-selection on measurement outcomes to observe and could be explored
experimentally as well as theoretically.

Early studies have also suggested intriguing possibility of gaining universal
insights into fundamental limits of quantum communication. However, there is
significant room to put these suggested connections on more rigorous footing and
to explore other connections between statistical mechanics of random circuits to
random quantum error-correcting codes, or possibly even to fundamental quantum
complexity theory. One could even imagine that studies of noise and error prop-
agation in random circuits might yield practical design principles for optimizing
aspects (e.g., dimensionality, connectivity, etc. . . ) of qubit architectures in order
to maximize their ability to generate complicated entangled states or minimize the
impact of noise on quantum algorithms.
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Quantum Simulation Using Noisy
Unitary Circuits and Measurements

Oliver Lunt, Jonas Richter, and Arijeet Pal

Abstract Many-body quantum systems are notoriously hard to study theoretically
due to the exponential growth of their Hilbert space. It is also challenging to probe
the quantum correlations in many-body states in experiments due to their sensitivity
to external noise. Using synthetic quantum matter to simulate quantum systems
has opened new ways of probing quantum many-body systems with unprecedented
control, and of engineering phases of matter which are otherwise hard to find
in nature. Noisy quantum circuits have become an important cornerstone of our
understanding of quantum many-body dynamics. In particular, random circuits act
as minimally structured toy models for chaotic nonintegrable quantum systems,
faithfully reproducing some of their universal properties. Crucially, in contrast to
the full microscopic model, random circuits can be analytically tractable under a
reasonable set of assumptions, thereby providing invaluable insights into questions
which might be out of reach even for state-of-the-art numerical techniques. Here, we
give an overview of two classes of dynamics studied using random-circuit models,
with a particular focus on the dynamics of quantum entanglement. We will espe-
cially pay attention to potential near-term applications of random-circuit models
on noisy-intermediate scale quantum (NISQ) devices. In this context, we cover
hybrid circuits consisting of unitary gates interspersed with nonunitary projective
measurements, hosting an entanglement phase transition from a volume-law to an
area-law phase of the steady state entanglement. Moreover, we consider random-
circuit sampling experiments and discuss the usefulness of random quantum states
for simulating quantum many-body dynamics on NISQ devices by leveraging the
concept of quantum typicality. We highlight how emergent hydrodynamics can be
studied by utilizing random quantum states generated by chaotic circuits.
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1 Introduction

Recent developments in quantum many-body physics have highlighted the impor-
tance of entanglement in understanding phases of matter in and out of equilibrium
[1–3]. Even limited control of entanglement in quantum circuits has provided
an opportunity for the fusion of ideas from quantum information science and
condensed matter physics, and an exciting platform for testing our knowledge of
quantum many-body physics [4, 5]. This has been particularly constructive for
understanding phenomena far away from the ground state of quantum many-body
systems such as quantum chaos [6–10] and many-body localization [11–16]. The
quantum simulation of complex quantum phenomena exploring the exponentially
large Hilbert space have been enriched by using entanglement as a probe. Entan-
glement provides a nontrivial parametrization of the many-body states which has
ramifications for their simulability [17–19]. For non-equilibrium phenomena the
dynamics of entanglement can exhibit universal features characterizing the phase of
matter and its coarse-grained properties, which can be a useful tool for visualizing
macroscopic quantum coherence.

Realizations of unitary quantum gates and fast measurements achieved in several
physical systems, such as superconducting circuit QED systems [20–22] and
trapped ions [23–25], have opened new avenues for quantum simulation. The low
error rates in these unitary gates allow coherent evolution of many-body states over
relatively long time scales enabling the study of quantum correlations in the form
of entanglement. This experimental effort is in its early stages with 10s of qubits,
but nonetheless is already in the realm of providing an advantage for simulating
quantum systems compared to classical supercomputers. The quantum control of
the microscopic degrees of freedom has also opened the avenue to realize exotic
entangled states stabilized by non-equilibrium effects [26–29]. Digital quantum
simulation using a gate-based architecture complements the earlier achievements in
analogue quantum simulation using ultra-cold atoms [30–36] due to its connections
to quantum error correction and complexity and provides a new lens for classifying
quantum phases of matter [37–40].

The study of quantum circuits has enriched our understanding of quantum chaos,
providing a toy model for describing entanglement dynamics in these systems
[7, 41]. In contrast to the eigenstate thermalization hypothesis which is applicable
to Hamiltonian and Floquet systems [1, 42, 43], where one is often limited to exact
diagonalization to evaluate eigenstates, unitary circuits comprising of randomly
chosen gates offer a simplified effective description for chaos. For a certain class
of circuits, known as dual-unitary circuits [28, 44–46], constrained to be unitary
along dual directions of space and time, the dynamics in the circuit are further
simplified for certain observables while retaining their quantum chaotic properties.
On introducing global conservation laws, the random unitary prescription naturally
lends itself to describing the emergent hydrodynamics of the conserved quantities
opening a new platform for studying quantum hydrodynamics.
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These circuits are also fertile playground for studying dynamics induced by
measurements on the qubits [47–49]. It opens a new regime for probing dynamics
of entanglement of open quantum systems far from equilibrium. Despite measure-
ments, the quantum trajectories of a many-body system for weak measurements
can become highly entangled and far from a classical product state. In the strong
measurement regime the trajectories become unentangled and lose their quantum
correlations. Many questions related to the nature of the phase transitions between
these two phases continue to be actively investigated [50–59]. The entanglement
preserving phase can have error-correcting properties and is being considered for
stabilizing novel many-body states with multipartite entanglement by monitoring
local degrees of freedom [60–62].

In this chapter, we give an overview of random-circuit models, with a particular
focus on the dynamics of quantum entanglement. We will especially pay attention
to potential near-term applications of random-circuit models on noisy-intermediate
scale quantum (NISQ) devices. To this end, consider a quantum many-body systems
with physical degrees of freedom defined on discrete lattice sites. The degrees of
freedom can, for instance, be quantum spins, in which case the local Hilbert-space
dimension is d = 2s+1 with s being the spin quantum number, but also fermionic or
bosonic particles. In case of an isolated quantum system, its time evolution is unitary
and governed by the time-dependent Schrödinger equation. Specifically, given some
out-of-equilibrium initial state |ψ(0)〉, the time-evolved state at a later time t follows
as, cf. Fig. 1a,

|ψ(t)〉 = e−iHt |ψ(0)〉 , (1)

where H denotes the Hamiltonian of the system. In practice, however, the evaluation
of Eq. (1) is challenging due to the exponentially growing Hilbert space with
increasing system size L (D = dL = 2L for quantum spins with s = 1/2, i.e.,
qubits). Even though significant progress has been achieved in solving Eq. (1) also
for large quantum systems due to the development of sophisticated numerical meth-
ods, especially matrix-product state techniques (see, e.g., [63]), such approaches are

Fig. 1 (a) Given a (chaotic) quantum many-body system described by a Hamiltonian H, the
continuous time evolution of a quantum state |ψ〉 is generated by the unitary operator exp(−iHt).
(b) Random circuits act as minimal models to describe the properties of chaotic quantum many-
body systems, with local gates acting on the degrees of freedom, with the time evolution now being
discrete
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typically limited by the growth of quantum entanglement during the time evolution,

S(t) = −tr[ρA ln ρA] , ρA = TrB(|ψ(t)〉 〈ψ(t)|) , (2)

where ρA denotes the reduced density matrix for a bipartition of the system into
subsystems A and B. In particular, S(t) is typically expected to increase linearly
in time, S(t) ∝ t [64], which causes the computational requirements to faithfully
describe the state |ψ(t)〉 to grow exponentially. Note, however, that there are also
cases where S(t) builds up slower such as disordered models exhibiting many-body
localization [3].

While the out-of-equilibrium dynamics of quantum many-body systems are
hard to analyze, random circuits provide minimally structured models to describe
their properties. The circuits consist of unitary gates acting locally on the degrees
of freedom, for instance, in a brick wall pattern akin to well-known Trotter
decompositions, see Fig. 1b. The gates are not chosen to reproduce the properties
of a particular Hamiltonian but rather to capture the universal aspects of quantum
chaotic dynamics. In particular, the gates are drawn at random, for instance, the two-
site gates in Fig. 1b are d2 × d2 matrices, which could be drawn from the unitarily
invariant Haar measure or from the Clifford group [6]. Moreover, it is possible to
consider the impact of symmetries, such as conservation of total magnetization
or dipole moment, as well as kinetic constraints, by suitably choosing the gates
(e.g., Haar-random matrices that are block-diagonal) [7, 8, 65]. In contrast to the
intrinsically continuous time evolution of quantum systems [cf. Eq. (1)], the time
evolution in circuit models is discrete,

|ψ(t + 1)〉 = U |ψ(t)〉 , (3)

where U is the full unitary operator of one layer of the circuit. Nevertheless,
analogous to the Hamiltonian time evolution, the entanglement entropy S(t) is found
to grow very rapidly in random-circuit models [6, 7]. Crucially, random circuits
not only capture the essential features of chaotic quantum many-body dynamics
but in some cases also allow for analytical solutions of the dynamics. The latter
makes these models very valuable to gain important insights that are out of reach
for currently available numerical approaches.

In this chapter, we especially focus on two particular kinds of circuit models: In
Sect. 2, we consider monitored circuits, where unitary gates are interspersed with
local projective measurements. These circuits can be understood as toy models
to describe the interaction of quantum systems with their environment, which
constantly “measures” the system leading to decoherence. In particular, it has been
found that the competition between unitary gates and projective measurements
leads to a dynamical phase transition between a volume-law phase of S(t) and
an area-law phase of S(t). Furthermore, in Sect. 3, we consider pseudo-random
circuits consisting of one- and two-qubit gates drawn from a set of elementary gates
available on today’s NISQ devices. These circuits have recently gained importance
to demonstrate a quantum computational advantage, i.e., to perform a computational
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task with a quantum computer that is out of reach for classical machines. We will
discuss the main ideas of the random-circuit sampling task that was implemented
and also describe how such circuits can be useful in the context of simulations of
quantum many-body dynamics on NISQ devices.

2 Measurement-Induced Entanglement Transitions
in Hybrid Quantum Circuits

In a many-body quantum system, the entanglement entropy typically follows a
scaling law, where the entropy S(A) of a contiguous subsystem A scales with some
geometric property of A. There are several examples of scaling laws. A volume-law
means the entropy S(A) ∝ |A| + · · · scales to leading order with the size of A,
whereas an area-law means the entropy S(A) ∝ |∂A| + · · · scales with the size
of the boundary of A. The highly entangled volume-law states can be found, for
example, as the steady states of chaotic quantum dynamics [1], while an area-law is
often found in states with fast decay of correlations [66], such as the ground states of
gapped Hamiltonians [67]. There are also scaling laws intermediate between volume
and area laws; for example, the entropy of the ground state of a 1+1D conformal
field theory scales logarithmically as S(A) ∝ log |A| + · · · [68].

An entanglement transition is then a phase transition in which the scaling
behavior of the entanglement entropy changes in some state of interest, such as an
energy eigenstate or the steady state of some quantum dynamics. In this section we
will mainly be interested in a particular class of entanglement transitions, known as
measurement-induced transitions [17, 26, 27, 37–40, 47–56, 58–60, 69–106]. These
occur in the steady state of nonunitary dynamics, where the nonunitarity is a result
of quantum measurements being applied to the system at a constant rate. This setup
can emerge quite naturally as a model for the interaction between a system and
its environment. When the overall dynamics includes a mixture of measurements
and also unitary dynamics, such as Hamiltonian time evolution representing a
system’s internal dynamics, we will refer to this as “hybrid quantum dynamics.”
Unitary dynamics often provides a natural route to generating entanglement, which
is typically (though not always!) destroyed by measurements. However, it is known
that entanglement transitions can also occur in measurement-only models [26, 54,
82, 85, 94], where the entanglement is generated as a result of frustration between
the measurements.

2.1 Quantum Trajectories

When modeling the effect of an external environment on a quantum system, there
are several complementary approaches. In the “mixed state approach,” we take
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into account the fact that some information about the system will leak into the
environment by modeling the state of the system with a density matrix. The mixed
state ρ(t)will then evolve in time according to some master equation. An alternative
viewpoint is the “quantum trajectories approach,” where we model the system with
a pure state and treat the effect of the environment through repeated measurements
of the state. These approaches are equivalent in the sense that one can map
between the two pictures: averaging over the possible quantum trajectories recovers
the master equation for the density matrix ρ, and one can “unravel” the master
equation to focus on individual quantum trajectories. Note that this unraveling is in
general not unique; for example, consider the following trajectory equations, both
describing Hamiltonian evolution of a fermionic chain undergoing continuous weak
measurements [56]. The first class of trajectories, known as quantum state diffusion,
is described by

d|ψ〉 =
[
−iHdt +

∑

l

(γ
2
M̂2
l,tdt + ξl,t M̂l,t

)]
|ψ〉 , (4)

where ξl,t is a real-valued Gaussian variable with zero mean and covariance
ξl,t ξm,t ′ = γ dtδl,mδ(t− t ′), and M̂l,t = nl−〈nl〉t with nl the local fermion occupa-
tion number. We could also consider the class of “quantum jump” trajectories, given
by

d|ψ〉 =
[
−iHdt +

∑

l

ξl,t

(
nl√〈nl〉t − 1

)]
|ψ〉 (5)

for a state with conserved particle number, where now the noise is defined by ξ2
l,t =

ξl,t and ξl,t = γ dt〈nl〉t . Upon averaging the state |ψ〉 〈ψ | over the noise {ξl,t } to get
the density matrix ρ = |ψ〉 〈ψ |, both of these models give rise to the same master
equation

∂tρ = −i[H, ρ] + γ
∑

l

(
2nlρnl − {n2

l , ρ}
)
. (6)

However, that is not to say that these two forms of trajectory are completely
equivalent. In particular, some quantities do not commute with the average over
states; in particular, if they are a nonlinear function of the state — in other words,
we can have functions f of the state with

E
i

[f (|ψi〉 〈ψi |)] �= f
(

E
i

[|ψi〉 〈ψi |]
)
. (7)

For our purposes the main example of such a quantity will be the entanglement
entropy S(A) = −tr [ρA ln ρA], but the same is also true for connected correlation
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functions of observables, 〈OAOB〉c ≡ 〈OAOB〉 − 〈OA〉〈OB〉. One surprising
aspect of measurement-induced transitions is that there can be phase transitions
in quantities calculated along individual quantum trajectories that are completely
invisible if one only looks at linear functions of the state. In particular, this means
that for these phase transitions there can be no order parameter 〈O〉 = tr [Oρ] given
by an expectation value taken with the average state. In the rest of this section, we
will always average over trajectories only after first calculating the entanglement
entropy or any other relevant quantities that can witness the phase transition.

2.2 Monitored Quantum Circuits

As a minimal model, consider the quantum circuit shown in Fig. 2a. This is a
“hybrid” quantum circuit, consisting of rounds of nearest-neighbor unitary gates,
followed by a round of measurements, where at each time step each spin has
probability p of being measured. For each spin that is measured, the probability of
each outcome is determined by the Born rule, and the state is subsequently updated
via a projection on to the corresponding state.

The case with the least structure, retaining only locality and unitarity, is when the
unitary gates are drawn uniformly (according to the Haar measure) from the unitary
group U(q2), where q is the local Hilbert-space dimension. Haar-random unitaries
are highly chaotic, generating entanglement ballistically [6, 7] and forming unitary
designs in polynomial time [107]. For circuits with Haar-random gates on qubits,
q = 2, there is a phase transition in the steady state entanglement from volume-law
to area-law at measurement probability pc ≈ 0.17 [47, 53], where we can interpret
p as the density of measurements in spacetime, cf. Fig. 2c. That this probability is
nonzero may be surprising, given that naively local unitaries can only generate O(1)
entanglement per time step, whereas local measurements can potentially destroy an
extensive amount of entanglement. The resolution is that the local unitaries may
“scramble” quantum information, such that the information about the state of a given
subsystem is spread out over global degrees of freedom, with the effect that local
measurements cannot learn much about the overall state of the system. This is very
much in the spirit of quantum error correction, and indeed it has been argued that
measurement-induced transitions can be viewed as phase transitions in the quantum
channel capacity densityQ/N , where the volume-law phase corresponds toQ/N >
0 [60].

2.3 Purification Transition

While the discussion in the previous section couched the measurement-induced
transition in the language of an entanglement transition, it turns out that there is
an alternative viewpoint in terms of a purification transition [60]. Imagine keeping
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Fig. 2 A monitored quantum circuit starting from a product state, consisting of rounds of nearest-
neighbor unitary gates (light blue rectangles), followed by rounds of projective measurements (red
circles). Each spin independently has probability p of being measured at a given time step. (b)
The purification picture uses the same hybrid circuit as in (a) but starts from the maximally mixed
density matrix ρmax = 1/tr [1]. (c) Entanglement dynamics in monitored quantum circuits. For
p < pc the entropy S(t) grows ballistically before saturating to a volume-law. At criticality p = pc
this is replaced by logarithmic growth, while in the area-law phase p > pc the entropy saturates in
O(1) time. (d) Purification dynamics in monitored quantum circuits. Starting from the maximally
mixed state, the purity tr

[
ρ2
]

becomes O(1) in time tp ∼ O(L) in the purifying phase (p > pc)
and at criticality, whereas this takes time tp ∼ exp(O(L)) in the mixed phase p < pc

the same hybrid quantum circuit, but rather than using a product state as the
initial state, using the maximally mixed state ρmax = 1/tr [1] instead, as shown
in Fig. 2b. The action of the hybrid circuit will then be to purify the initial state,
eventually reaching a pure state in the steady state. However, it turns out that
there can be a phase transition in the time tp taken for this purification—from
exponential to polynomial in system size, as shown in Fig. 2d—and further that
this transition seems to generically coincide with the entanglement transition for
that class of hybrid quantum dynamics [55, 60]. Since in an experiment the effect
of the environment is such that the state is generically mixed, unlike the pure-
state setting of the entanglement transition, the purification transition may provide
a more robust lens through which to observe measurement-induced transitions in
experiments [60].
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The purification picture also permits the introduction of an “order parameter”
via coupling the system to an auxiliary system R [76]. In the simplest case, we can
take R to be a single qubit. We maximally entangle R with a subset of the system
at time t0, and then let the system evolve in time — the hybrid circuit acts only on
the main system, so any dynamics in R are induced solely through its entanglement
with the system. The purification dynamics of R then serve as a local probe of the
measurement-induced phase structure [76]. By varying with which subsystem R is
entangled, and the time t0 at which it is entangled, we can probe different critical
exponents, as will be discussed further in Sect. 2.6.

2.4 Transitions in the Rényi Entropies

There are many quantities that can characterize the entanglement of a quantum state.
Focusing on pure states, the most common choice is the von Neumann entropy,
S(A) = −tr

[
ρAlog ρA

]
, where ρA is the reduced density matrix for subsystem

A. But the von Neumann entropy turns out to be very difficult to measure in a
large-scale experiment since it requires something like full state tomography [108],
whose resource cost scales exponentially with system size. Happily, there is a related
family of entropies, the Rényi entropies, which are more amenable to experimental
access. Given a non-negative number n, the n-Rényi entropy Sn(A) is defined as

Sn(A) = 1

1− n log tr
[
ρnA
]
, (8)

with the von Neumann entropy recovered in the limit n → 1. For integer values
of n — the easiest being n = 2 — the n-Rényi entropy can be measured in
an “interferometry”-like experiment, where one prepares n identical copies of
the quantum state in question, and then measures the Rényi entropy through
the expectation value of a certain observable. While this remains a considerable
challenge, it has already been demonstrated experimentally [109], and so provides
a possible route to accessing entanglement transitions in an experimental setting.

Given the experimental relevance of the Rényi entropies, it is natural to ask
whether each Rényi entropy undergoes an entanglement transition at the same
critical point. It turns out that while in general not all the Rényi entropies will
transition at the same critical point, it follows from some basic properties of the
Rényi entropies that many of them will in fact undergo the same entanglement
transition. By differentiating with respect to n the definition in Eq. (8) for the n-
Rényi entropy, one can show that

dSn(A)

dn
= −1

(1− n)2D (σ ‖ λ) , (9)
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where D(σ ‖ λ) = ∑
i σi log(σi/λi) is the relative entropy, taken between the

probability distributions λ = {λi}, given by the eigenvalues of ρA, and σ ≡
{λni /

∑
j λ
n
j }. As a consequence of the non-negativity of the relative entropy, this

implies that

dSn(A)

dn
≤ 0. (10)

In other words, the n-Rényi entropies are non-increasing as a function of n. In terms
of the measurement-induced transition, this has the consequence that an area-law
in the n-Rényi entropy implies an area-law in the (m > n)-Rényi entropies, and
a volume-law in the n-Rényi entropy implies a volume-law in the (m < n)-Rényi
entropies. Note, however, that we do not necessarily have the converse, which would
imply that pc is equal for all Rényi entropies.

However, we do have the converse for m, n > 1. This is a consequence of the
following inequality, valid only for n > 1,

S∞ ≤ Sn ≤ n

n− 1
S∞, (11)

which implies that all the (n > 1)-Rényi entropies must have the same scaling
behaviors. This inequality can be proven by using monotonicity of the Rényi
entropies and the fact that S∞(A) is the largest eigenvalue of ρA.

2.5 Analytically Tractable Limits

To determine the universality class of a phase transition, it is useful to have
an analytic treatment. For measurement-induced transitions, such a treatment is
currently available in a few select limits. A particularly simple treatment is
available for the 0-Rényi entropy S0, also known as the Hartley entropy. S0(A)

simply gives the logarithm of the number of nonzero eigenvalues of the reduced
density matrix ρA. It can be accessed through an adaptation of the “minimal cut”
prescription for calculating the entanglement entropy [48], which first appeared in
the context of random unitary circuits [6], and provides a “coarse-grained” picture
for entanglement growth. The upshot is that the measurement-induced transition in
the Hartley entropy in d-dimensional hybrid quantum circuits with Haar-random
gates is in the universality class of (d + 1)-dimensional percolation, where the
extra dimension comes from the time direction of the quantum circuit. Furthermore,
the critical measurement probability is precisely the bond percolation threshold for
percolation on a lattice determined by the geometry of the quantum gates.

Percolation also appears in a different limit, corresponding to the transition in
the (n ≥ 1)-Rényi entropies strictly in the limit of infinite local Hilbert-space
dimension q = ∞. Here the connection to percolation is more subtle: it appears
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only in a replica limitQ→ 1 of aQ!-state Potts model obtained by averaging over
unitary gates and measurements in a system where the gates are drawn from the Haar
distribution over the unitary group [70]. This treatment indicates that all the (n ≥ 1)-
Rényi entropies undergo a phase transition at the same critical point, consistent with
the discussion in Sect. 2.4. Interestingly, it turns out that the q = ∞ fixed point is
unstable in the sense that finite q explicitly breaks an emergent symmetry, allowing
for the presence of an RG-relevant perturbation that drives the system away from
the percolation fixed point. At the time of writing, the ultimate fate of that new fixed
point is unknown but remains a focus of current research.

2.6 Critical Properties of Measurement-Induced Transitions

In Sect. 2.5 we saw that in certain limits the measurement-induced transition was
in the percolation universality class. However, both of these limits are somewhat
unphysical: realistic quantum spin systems typically have finite local Hilbert-space
dimension, and the 0-Rényi entropy can change discontinuously under arbitrarily
small perturbations to the density matrix. Away from these limits, we turn to
numerical probes to determine the relevant universality classes.

The critical exponents determining a universality class are typically obtained
in numerics through finite-size scaling. In the rest of this section, we will mainly
focus on numerics performed on Clifford circuits, where the unitary gates are drawn
uniformly from the Clifford group. Clifford circuits are convenient to look at in
the context of measurement-induced entanglement transitions because they can be
efficiently simulated classically [110], while still being able to rapidly generate
entanglement. Their classical simulability is important in enabling sufficiently large
system sizes that finite-size scaling provides good estimates of critical exponents.
Furthermore, Clifford operations often turn out to be relatively easy to implement on
current quantum computing devices, so hybrid Clifford circuits may be some of the
first to be simulated in experiments. Box 1 outlines a method to classically simulate
Clifford circuits using a graph-state based algorithm which is particularly suitable
in the context of entanglement phase transitions.

To extract the critical point numerically, a natural quantity to look at in 1+1D
is the half-chain entanglement entropy S(L/2) (all Rényi entropies are equal in
Clifford circuits). However, this has the disadvantage that it appears to scale
logarithmically with system size L, as in a 1+1D conformal field theory [68]. This
means that at the critical point the entanglement entropy for different system sizes
does not coincide, so one cannot simply “read off” the critical point by looking
at the data. Furthermore, if one attempts to extract the critical point pc and other
critical exponents using standard finite-size scaling, these can have correlated errors
depending on the extracted value of pc. For a better estimator of the critical point,
we turn to the tripartite information I3, defined as

I3(A : B : C) ≡ I2(A : B)+ I2(A : C)− I2(A : BC), (12)
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Fig. 3 (a) The steady state tripartite information I3 as a function of (p − pc)L1/ν , where pc ≈
0.158 and ν ≈ 1.33. The inset shows the uncollapsed data. This dataset consists of 104 circuit
realizations. (b) The partition used for the tripartite information I3 on a chain of length L with
periodic boundary conditions. (c) Critical exponents of the measurement-induced phase transition
in 1+1D and 2+1D Clifford circuits, taken from Refs. [53, 55]

where I2(A : B) ≡ S(A)+S(B)−S(AB) is the mutual information. One can show
that for pure states, given a partition into four subsystems, the tripartite information
of three of the subsystems does not depend on the choice of subsystems, so we will
simply write I3 ≡ I3(A : B : C) from now on, with the partition in Fig. 3b in mind.
One can then argue using the “minimal cut” prescription of Ref. [48] that for this
choice of partition, I3 cancels out the “boundary” contributions that give rise to the
logarithmic scaling of the entanglement entropy at criticality [53], resulting in the
scaling

I3(p, L) ∼

⎧
⎪⎪⎨

⎪⎪⎩

O(L), p < pc,

O(1), p = pc,
0, p > pc.

(13)

Notably, this means that at the critical point I3(pc, L) should coincide for different
system sizes L, providing a much more accurate estimator of the critical point.
Figure 3a shows a data collapse of I3 calculated in the steady state of 1+1D random
Clifford circuits, which yields the estimate pc ≈ 0.158 for the critical point and
ν ≈ 1.33 for the correlation length exponent. Notably, the latter is still very near
the value of ν = 4/3 for 2D percolation, despite the discussion in Sect. 2.5 that for
finite local Hilbert-space dimension (here q = 2) we should expect the universality
class to be distinct from percolation.

To measure other critical exponents, we turn to the “auxiliary system” method
discussed in Sect. 2.3. For example, to extract the bulk exponent β, we initialize
the system for a time t0 = 2L and then entangle a reference qubit R with the
system qubit at position x = L/2, i.e., in the bulk. We then evolve the system for
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a further time t = 2L and measure the entanglement entropy of R. Close to the
phase transition, the circuit-averaged entropy should scale as S(R) ∼ (pc − p)β ,
reaching zero in the area-law phase. This yields the values β = 0.14(1) in 1D [53]
and β = 0.40(1) in 2D [55]. Again both of these values are reasonably close to
the corresponding values for 2D and 3D percolation, β2D = 5/36 ≈ 0.139 and
β3D ≈ 0.43. However, there is increasing evidence that, despite these similarities,
the measurement-induced transition in Clifford circuits is indeed in a different
universality class to percolation [53, 55, 71, 97].

We can also extend this method to measure correlation function exponents. We
introduce two auxiliary systems, R1 and R2, which are entangled with separate
subsystems at a time t0, and then subject to dynamics again only through their
entanglement with the main system. We can extract correlation function exponents
by studying their mutual information I2(R1 : R2), which serves as an upper bound
on all connected correlation functions of local observables [111]. For example, the
exponent η governs the power-law decay of bulk correlation functions

|〈ArB0〉 − 〈Ar 〉〈B0〉| ∼ 1

rd−2+η , (14)

for local observables Ar and B0 supported at sites r and 0, respectively. We can
extract this exponent by initializing the system for time t0 = 2L, entangling
auxiliary qubits R1 and R2 with the bulk qubits at positions x = L/4 and x = 3L/4,
and then letting the system evolve for a further time t = 2L. The mutual information
should then decay as I2(R1 : R2) ∼ 1/Lη in 1+1D, so we can extract η by
optimizing for a data collapse of LηI2(R1 : R2) for different system sizes L. We
could also extract the corresponding surface correlation length exponents η⊥ and η‖
by choosing to entangle one or both of R1 and R2 to a surface qubit instead of a bulk
qubit. In Fig. 3c we reproduce from Refs. [53, 55] the current numerical estimates
of the critical exponents of the measurement-induced transition in 1+1D and 2+1D
Clifford circuits, which were determined using the methods described here.

Box 1 | Simulating Clifford Circuits with Graph States
The Clifford group Cn on n qubits is defined as the group that preserves the
corresponding Pauli group Pn under conjugation, modulo global phases. To
be concrete, we focus on models with nearest-neighbor unitary gates drawn
uniformly from the two-qubit Clifford group C2, akin to the sketch in Fig. 2a,
and with projective measurements in the σz basis. The two-qubit Clifford
group can be generated by the gates {H, S,CZ}, where CZ is a two-qubit
controlled-Z gate, and H and S are the single-qubit Hadamard and phase
gates given in the computational basis by

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (15)

(continued)
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Box 1 (continued)
Ignoring overall phases, the resulting group has 11520 elements, which is
sufficiently small that it can be hardcoded as a lookup table decomposing each
group element into a product of the generators. This allows for simulations of
random Clifford circuits using a graph-state based algorithm [112], which
makes use of the fact that all stabilizer states resulting from a Clifford circuit
can be written as a graph state, up to the action of some one-qubit Clifford
gates [113]. Alternative simulation methods exist, most notably one based
on storing a “stabilizer tableau” of the stabilizers fixing the quantum state,
and then updating the tableau based on the action of Clifford gates [114].
However, the graph-state method is particularly well suited to the study of
measurement-induced transitions, because its time complexity scales with the
typical vertex degree of the graph storing the quantum state. This degree is
generically reduced by the presence of measurements, such that it is possible
to simulate very large system sizes in the area-law phase and near the critical
point.
Graph States and Stabilizer States
The graph-state algorithm relies on a fortunate connection between graph
states and stabilizer states, the latter being the states generated by Clifford
circuits acting on the |0〉⊗N initial state. Namely, all stabilizer states can
be written as a graph state, up to the action of some one-qubit Clifford
gates [113]. Given a graph G = (V ,E), the graph state |G〉 is defined by

|G〉 =
⎛

⎝
∏

(i,j)∈E
CZij

⎞

⎠ |+〉⊗N , (16)

where |+〉 = (|0〉 + |1〉)/√2, and N is the total number of qubits. That is,
starting from the initial state |+〉⊗N , we perform a controlled-Z gate between
all pairs of qubits (i, j) connected by an edge in the graph. Thus, to represent
the graph state |G〉 we just need to store the graph G, which only takes O(N2)

memory. We can then write any stabilizer state as

|G; {Ci}〉 =
(
N⊗

i=1

Ci

)
|G〉 , (17)

where the Ci are drawn from the one-qubit Clifford group C1. This group has
only 24 elements up to phase, so this additional information is only an O(N)
overhead.
The entanglement in a graph state is completely fixed by the graph G.
Suppose we wanted to calculate the entanglement entropy of a subsystem A.

(continued)
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Box 1 (continued)
Partitioning the adjacency matrix 
 of G into the block form


 =
(

AA 
AB


T
AB 
BB

)
, (18)

where B is the complement of A, the entanglement entropy SA is given by

SA = rankF2
(
AB), (19)

the rank over the binary field F2 of the subadjacency matrix 
AB characteriz-
ing connections between A and B [115].
Implementing Clifford Operations
Note that there is some “gauge freedom” in writing stabilizer states this way,
so different combinations (G; {Ci}) can correspond to the same quantum
state. This freedom turns out to be useful in implementing two-qubit Clifford
operations on the quantum state. Here we will summarize how one performs
Clifford gates and Pauli measurements on stabilizer states represented in this
way — for the full details we refer the reader to Ref. [112]. The relevant time
complexities of the different operations are shown in Table 1.
One-qubit Clifford gates are trivial to perform since they leave the graph
invariant — we merely have to update the one-qubit CliffordCi corresponding
to the site i of the gate, which takes  (1) time. This can be done with a
lookup table of size |C1|2 = 242. Two-qubit Clifford gates are more technical,
since they involve both the graph and the one-qubit Cliffords. We only need
to focus on implementing CZ gates, since this is the only two-qubit gate
in the generating set of the two-qubit Clifford group. There are two cases
in implementing CZ on a given pair of qubits (i, j). The easy case is if
the corresponding one-qubit Cliffords Ci and Cj commute with CZi,j . In
this case, the CZ leaves the one-qubit Cliffords unchanged, and toggles the
edge (i, j) in the graph. The harder case is if CZi,j does not commute with
the one-qubit Cliffords, and it is here that the “gauge freedom” becomes
useful. The goal is to move to a gauge where the problem is reduced to the

Table 1 Time complexity of
different Clifford operations.
d is the maximum vertex
degree of the qubits involved
in the gate, whose scaling
with system size depends on
the entanglement phase

Clifford operation Time complexity

One-qubit gate  (1)

Two-qubit gate O(d2)

Pauli Z measurement O(d)

(continued)
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Box 1 (continued)
easy case previously described. We do this using an operation called “local
complementation,” which toggles all the edges in the subgraph induced by
the neighborhood of a given vertex, say i, and then modifies the one-qubit
Cliffords of site i and its neighbors. In this way, one can obtain Ci and
Cj which commute with CZi,j . The local complementation is the dominant
cost, taking time O(d2), where d is the maximum vertex degree of qubits
i and j . This scaling with d rather than system size N means the runtime
of this algorithm depends strongly on the connectedness of the graph, and
hence, roughly speaking, that less entangled states are quicker to simulate.
This is especially pertinent in the context of entanglement phase transitions.
In principle, d can be as large as O(N), and this scaling is relevant in the
volume-law phase. However, in the area-law phase and near the critical point,
the typical vertex degree can be O(1), so that even two-qubit gates are easy to
implement.

Finally we describe how to perform single-site Pauli measurements. The
basic idea is to reduce the measurement on the stabilizer state |G; {Ci}〉
to a measurement on the underlying graph state |G〉 without the one-qubit
Cliffords. Suppose we measure Pauli Pa on site a, with outcome λ ∈ {±1}.
The stabilizer state will be updated to

1+ λPa
2

|G; {Ci}〉 =
⎛

⎝
∏

b∈V \{a}
Cb

⎞

⎠ 1+ λPa
2

Ca |G〉 (20)

=
⎛

⎝
∏

b∈V \{a}
Cb

⎞

⎠Ca
1+ λC†

aPaCa

2
|G〉 , (21)

where we inserted a factor of 1 = CaC
†
a in the last step. Since Ca is a

Clifford operator and preserves spectra, P
′
a ≡ C†

aPaCa ∈ {±Xa,±Ya,±Za}.
Hence the effect of measuring Pauli Pa on the stabilizer state |G; {Ci}〉 can
be modelled by measuring Pauli P

′
a on the graph state |G〉. Relegating full

details of graph-state measurements to Refs. [112, 113], we note that Pauli Z
measurements are particularly simple: they simply remove all edges from the
graph connected to the measured site, which takes O(d) time.
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2.7 Entanglement Transitions in Experiments

2.7.1 Scalability Issues

As discussed in Sect. 2.4, it is very difficult to experimentally measure the von
Neumann entropy, but this can possibly be ameliorated by instead measuring a
Rényi entropy, such as the 2-Rényi entropy S2 (related to the purity via tr

[
ρ2
] =

exp[−S2]). However, before one can get to that point one has to reliably and
repeatedly prepare a given steady state for which the entropy is to be calculated,
and it is here that the probabilistic nature of the measurements can present an issue
of scalability. Even if we fix the measurement locations for simplicity, their random
outcomes mean that for T rounds of measurements with probability p, in a system of
N spins with local Hilbert-space dimension q, the number of repetitions required to
get O(1) samples of a given trajectory is of the order qpNT , which is exponential in
the system size. To make things worse, the equilibration time T is typically at least
linear in the system size N , so the sampling overhead can be doubly exponential in
N . In principle, this presents a severe barrier to scaling up these experiments to the
large system sizes where phase transitions are most apparent.

There are several options to try to avoid this particular issue of postselection.
One option is to relate entanglement entropy to a quantity which can be more easily
measured. In particular, this is possible by relating a given hybrid quantum circuit
to its spacetime dual. Given a unitary matrix U acting on a pair of spins, we denote
its matrix elements by [U ]ioutjout

iinjin
. This matrix is unitary in the “time” direction,

expressed by the condition
∑
kl[U ]kliinjin[U∗]klioutjout

= δiinjin,ioutjout . However, we
could decide to swap the space and time directions: viewing the unitary U as a
tensor with four legs, two for input and two for output, we form an associated tensor
Ũ , where one of the original output legs of U becomes an input leg of Ũ , and one
of the original input legs of U becomes an output leg of Ũ . The resulting Ũ is
generically nonunitary, and can be interpreted as a unitary gate followed by a weak
measurement [17]. Thus by taking the spacetime dual we have a relation between
a hybrid quantum circuit and an associated unitary circuit. It turns out that one can
relate the 2-Rényi entropy in the hybrid circuit to a correlation function in the unitary
circuit [93], which is typically much easier to measure in an experiment.

Another option is to consider a modification of the measurement protocol,
where instead of having random measurements with outcomes distributed according
to the Born rule, we consider a nonunitary but deterministic time evolution,
such as that resulting from a non-Hermitian Hamiltonian [96]. In effect one can
think of this as being similar to “forcing” certain measurement outcomes [77].
Non-Hermitian Hamiltonians can emerge quite naturally in certain open quantum
systems undergoing continuous measurement. However, it is worth noting that
the measurement-induced transition in these systems may be somewhat differ-
ent in character to that in random quantum circuits with Born rule projective
measurements—in replica treatments of the phase transition (see Sect. 2.5), the
Born rule factor necessitates an additional replica compared to the case of forced
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measurements [70], so the latter in fact appears to be more like closely related
transitions in random tensor networks [116]. Additionally, the lack of quenched
randomness with forced measurements may give rise to qualitatively different
behavior of the entanglement domain walls that arise in statistical mechanical
models describing these transitions.

2.7.2 Measurement-Induced Transition in a Trapped-Ion Experiment

Ref. [25] presented the first experimental observation of a measurement-induced
transition. They studied a chain of 13 trapped 171Yb+ ions, with relatively high
gate fidelities of 99.96% for single-qubit gates and 98.5–99.3% for two-qubit
gates. Instead of directly measuring the entanglement entropy, they focused on
the measurement-induced transition in the purification picture, as discussed in
Sect. 2.3, since this is typically more robust to experimental imperfections, and
also made use of the following simplification. In this system certain operations
are easier to perform than others: the “native” two-qubit gate they employ is an
“Ising” XX gate of the form U(θ) = exp(−iθσ xi σ xj ), where the value of θ is
controlled by the duration of a control pulse. The use of this gate implies that
if measurements are performed in the σx basis then we will quickly approach
a σx-basis product state, since the XX Ising gates cannot generate entanglement
from σx basis states. Exploiting this fact, the authors consider a modification of
the usual purification protocol, fixing the overall measurement probability p, but
performing the measurements in two different bases, the σx and σz bases. There is
an additional parameter px that controls the probability that a given measurement is
performed in the σx basis. With p fixed to a small value to limit the overall number
of measurements, there is a phase transition as a function of px between the slow-
and fast-purifying phases.

3 Random Circuits on Noisy-Intermediate Scale Quantum
Devices

As outlined so far, random circuits with different designs have proven extremely
useful to understand the properties of quantum many-body systems and the dynam-
ics of entanglement. Recently, random circuits have found a new application in
quantum information science. In particular, they have been used to demonstrate
“quantum supremacy” or, in other words, a quantum computational advantage,
which refers to the fact that a quantum device can perform a task that is unfeasible
for its classical counterpart [4]. Such a demonstration of a quantum advantage is
especially nontrivial given the eponymous noise of today’s NISQ devices. This is not
least the reason why, as a computational problem to achieve “quantum supremacy,”
it was chosen to sample from the output probability distribution of a random circuit,
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which is believed to be a hard task for classical supercomputers. In Sect. 3.1, we will
provide an introduction to the main ideas of random-circuit sampling. Moreover,
in Sect. 3.2, we will discuss that random circuits on NISQ devices are not just
abstract tools to outperform classical computers, but are useful in a wider range
of applications. To this end, we will leverage the concept of quantum typicality (see
Box 2) and focus on the results reported in Ref. [117].

3.1 Random-Circuit Sampling for Achieving a Quantum
Computational Advantage

Random circuits are natural candidates when striving to outperform classical
computers. On the one hand, random circuits seem more appealing than some
arithmetic calculation in view of the noise of today’s NISQ devices. On the other
hand, these circuits are challenging for classical machinery due to the lack of
structure and the quick generation of entanglement. The main idea of random-circuit
sampling is as follows [118, 119]. Given a random circuit R, apply R to theL qubits
of the system and measure all qubits afterwards, which yields a bitstring |k〉 =
|010110 · · ·〉 according to Born’s rule with probability z = |〈k|R|0〉|2. Repeating
this experiment many times then yields a set of bitstrings |k1〉 , |k2〉 , |k3〉 , . . . , which
allows to draw conclusions on the underlying probability distribution. In particular,
for random circuits that are sufficiently deep, it is expected that the resulting state
is Haar-random [118, 120–124], i.e., it is a realization drawn from the uniform
distribution on the 2D-dimensional unit sphere, where D = 2L is the dimension
of the Hilbert space. In practice, this implies that the complex coefficients ck of the
wave function R |0〉 = ∑

k ck |k〉 are drawn from a Gaussian distribution and that
the probability distribution of z = |ck|2 follows as [118, 125],

p(z) = (D − 1)(1− z)D−2 ≈ e−Dz , (22)

where the approximation on the right hand side of Eq. (22) applies to large Hilbert-
space dimensions D and is sometimes referred to as Porter-Thomas law [126].

In order to demonstrate a quantum computational advantage using random-
circuit sampling, several key points have to be addressed [125]. First of all, it
is important to execute the random circuit on a large system that surpasses the
capacities of classical computers (currently the best supercomputers can evaluate
circuits with L ≈ 45 [127]). However, for such large systems, the corresponding
Hilbert space is huge and reconstructing the probability distribution p(z) would
require an impracticably high number of bitstrings (experimental repetitions).
Moreover, how can one verify that the quantum device indeed samples from the
correct probability distribution if classical verification is impossible? An important
step to overcome these difficulties has been achieved by the introduction of
cross-entropy benchmarking (XEB) [118]. To understand XEB, consider an ideal



270 O. Lunt et al.

(quantum) computer that can execute R and thus provides the probabilities p(|k〉)
of all 2L bitstrings. Now, let a NISQ device execute R and we collect N samples
S = {|k1〉 , . . . , |kN 〉}. If N is large enough, we could reconstruct the corresponding
probability distribution pNISQ(|k〉) and compare it with the ideal distribution p(|k〉)
using standard statistical tools. However, even for a smaller number of samples, it
was shown that conclusions on the quality of the NISQ device can be drawn based
on an approximation of the cross entropy [118, 125],

SXEB = −
D∑

k=1

pNISQ(|k〉)logp(|k〉) ≈ − 1

N

∑

|k〉∈S
logp(|k〉) , (23)

where the second part results from replacing the sum over all D bitstrings by the
sample average justified by the central limit theorem. In practice, the probabilities
p(|k〉) to perform XEB are obtained numerically by simulating the quantum circuit
on a supercomputer. Obviously, this is not possible in the regime of system sizes
and circuit depths where a quantum computational advantage occurs. Nevertheless,
various sophisticated techniques have been developed (e.g., considering elided
circuits with fewer entangling gates [119]) to estimate the cross entropy in Eq. (23)
also in such cases. For more details on XEB, we refer to [118, 119, 125].

A quantum computational advantage based on random-circuit sampling has
been announced for the first time using Google’s NISQ device Sycamore [119].
In the experiment, the Josephson junction-based processor executed a random
circuit consisting of layers of one-qubit and two-qubit gates. We will discuss
such types of circuits in more detail in Sect. 3.2. Due to imperfections in the
execution, it was found in [119] that the cross entropy decays exponentially with
the number of qubits and the depth of the circuit. Nevertheless, a nonzero SXEB was
established even for the largest circuits with 53 qubits and 20 cycles of one-qubit
and two-qubit gate layers, implying that the processor samples from a nontrivial
probability distribution. In particular, according to Google’s estimate at that time,
a classical supercomputer would require 10,000 years for the same task (albeit
significantly lower estimates have been suggested subsequently [128, 129]). In
more recent experiments, a team from China used their superconducting quantum
processor Zuchongzhi to perform random-circuit sampling for even larger qubit
numbers and circuit depths, which impressively substantiate the fact that a quantum
computational advantage has indeed been achieved [130, 131]. Eventually, it is
important to note that a quantum computational advantage is of course a moving
target since both quantum and classical hardware as well as algorithms are expected
to further improve in the future [132].
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3.2 Applications of Random Circuits in Quantum Many-Body
Physics

While sampling the outcome of random circuits is arguably a rather abstract task, it
is an intriguing question to what extent the current capabilities of NISQ devices can
be leveraged to study a wider class of problems. In this context, we specifically refer
to questions in quantum many-body dynamics, which are generally challenging
for classical computers due to the exponentially large Hilbert space. Simulations
on NISQ devices might provide an opportunity to tackle these challenges and,
moreover, to open up novel directions of research. In particular, it is important to
note that today’s NISQ devices, with of the order of 50 qubits, already operate in
Hilbert spaces that are competitive to or even go beyond what is possible with the
best supercomputers, as also demonstrated recently [133–135]

In this section, we discuss a recent proposal to simulate hydrodynamics in
quantum many-body systems on NISQ devices using random circuits [117], which
emphasizes that random circuits are not just useful to demonstrate “quantum
supremacy,” but they in fact form tailor-made building blocks to study questions in
quantum many-body physics. The two key points in this context are that (i) random
circuits swiftly generate random highly entangled quantum states, and (ii) the
properties of such random states can be exploited for efficient simulations by relying
on the concept of quantum typicality [136–139] (see Box 2). More specifically,
Ref. [117] presented a scheme to compute the infinite-temperature spatiotemporal
correlation function C�,�′(t),

C�,�′(t) =
tr[Sz�(t)Sz�′ ]

2L
, (24)

where Sz� is a spin-1/2 operator at lattice site �, Sz�(t) = eiHt Sz�e−iHt is the time-
evolved operator with respect to a Hamiltonian H (although, in principle, evolutions
with respect to other unitaries U(t) are conceivable as well), and L denotes the
numbers of spins (qubits). The algorithm to simulate C�,�′(t) is sketched in Fig. 4a.
First, all qubits are initialized in the |0〉 state. (We identify |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉
in the following.) A random circuit R then acts on L− 1 qubits (except for site �′).
The resulting state |ψR,�′ 〉 = |0〉�′ ⊗ R |0〉⊗L−1 is evolved in time, |ψR,�′(t)〉 =
e−iHt |ψR,�′ 〉, and the measurement at site � yields the spatiotemporal correlation
function according to (see [117] for a derivation),

C�,�′(t) = 1

2
〈ψR,�′(t)| Sz� |ψR,�′(t)〉 +O(2−L/2) , (25)

where the statistical error of the quantum-typicality approximation vanishes expo-
nentially with increasing system size [125]. In this context, quantum typicality can
be interpreted as a form of “quantum parallelism” [140, 141], as the time evolution
of a single random state |ψR,�′ 〉 already captures the full ensemble average. This
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Fig. 4 (a) Algorithm to simulate dynamical spin-spin correlation function. A random circuit R
acts on L−1 qubits (except site �′), followed by a time evolution U(t) on all L sites. Measurement
on site � then yields C�,�′ (t). (b) We here consider a two-dimensional geometry. Similar to [118,
119], R consists of layers of one-qubit and two-qubit gates, cf. Fig. 5c. The patterns A–D indicate
the position of the two-qubit gates in different cycles. (c) For reference site �′ = 1, the expectation
value 〈ψR,�′ (t)| Sz� |ψR,�′ (t)〉 yields 2C�,�′ (t). Data is shown for the Heisenberg chain with L =
25, where the dynamics of the one-dimensional system can be simulated by considering a snake-
like path through the two-dimensional grid. Figure adapted from Ref. [117]

typicality-based approach to simulate dynamical two-point correlation functions
such as C�,�′(t) on a quantum computer is complementary to other established
schemes [142–144] and operates without an overhead of bath or ancilla qubits.
Crucially, it is a direct extension of the random-circuit experiments already realized
on today’s NISQ devices [119, 130, 131].

We now discuss the individual components of the algorithm in more detail.
As in [118, 119], we consider a two-dimensional grid of qubits. The random
circuit R then consists of individual cycles, each composed of a layer of one-qubit
gates and a layer of two-qubit gates, where we denote the total number of cycles
with d. The two-qubit gates generate entanglement between different parts of the
system, and different choices are possible such as CZ or CNOT gates [117, 145],
or other hardware-specific gates [119, 133]. As shown in Fig. 4b, they are aligned
in one of the patterns A–D, and the sequence ABCD· · · is repeated in subsequent

cycles throughout R. After d cycles, |ψR,�′ 〉 =
∑2L
k=1 ck |k〉 is a superposition of

computational basis states. In particular, even for moderately shallow R, |ψR,�′ 〉
will approximate the properties of a full Haar-random state (we will discuss this
fact further below in the context of Fig. 5), i.e., the coefficients ck are approximately
distributed according to a Gaussian distribution with zero mean. As a consequence,
these states can be used within the typicality approach to calculate C�,�′(t).

As a numerical example, we here consider the dynamics with respect to the
paradigmatic spin-1/2 Heisenberg chain, H = ∑

�

(
Sx� S

x
�+1 + Sy� Sy�+1 + Sz�Sz�+1

)
,

where the one-dimensional model can be readily studied using a snake-like path
through the two-dimensional grid, see Fig. 4c. The time evolution with respect to
H is then evaluated by decomposing U(t) = exp(−iHt) into discrete Trotter steps
[146, 147],

U(t) =
(
e−iHδt

)N ≈
(
e−iHeδt e−iHoδt

)N +O(δt2) , (26)
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Fig. 5 (a, b) Buildup of randomness of |ψR,�′ 〉 versus the depth d of R (cf. panel (c)), measured
by (a) Spk and (b) SvN. Both quantities reach their corresponding random-state values already at
moderate d. The displayed values of L correspond to two-dimensional geometries 4 × 3, 4 × 4,
5 × 4, and 5 × 5. Data is averaged over 100 realizations of R. (c) Sketch of the random circuit
with depth d = 3, which consists of layers of one-qubit gates and two-qubit gates. CNOT gates are
chosen as two-qubit entangling gates. (d) Expectation value 〈ψR,1(t)| Sz1 |ψR,1(t)〉 ≈ 2C1,1(t) for
random circuits R with different depths d = 5, 10, 15, 20. For sufficiently large d, data becomes
independent of d and fluctuations around the exact dynamics of C1,1(t) vanish. Data is shown for
the one-dimensional Heisenberg chain with system size L = 25 and Trotter time step δt = 0.5.
Figure adapted from Ref. [117]

where He (Ho) denotes the even (odd) bonds of H and δt = t/N is a (short) time
step.

The spatiotemporal correlation function C�,�′(t) can be interpreted as a spin
excitation moving in front of an infinite-temperature background. As shown in
Fig. 4c, using �′ = 1, the excitation created at the edge spreads through the system
under time evolution. In particular, as the total magnetization is conserved by H,
i.e., [H,∑� S

z
� ] = 0, C�,�′(t) is expected to show hydrodynamic behavior at long

times [148, 149]. This hydrodynamic behavior can be conveniently analyzed either
by inspecting the decay of the autocorrelation function C1,1(t) or by studying the

spatial variance of the full density profile,!2(t) =∑
� �

2C̃�,1(t)−
[∑

� �C̃�,1(t)
]2,

where C̃�,1(t) = C�,1(t)/
∑L
�=1 C�,1(t) with

∑
� C̃�,1(t) = 1. Specifically, their

respective power-law exponents reflect the type of hydrodynamic transport, α(t) =
−d lnC1,1(t)/d ln t , β(t) = d ln!2(t)/d ln t , where for one-dimensional systems
α = 0.5 corresponds to normal diffusion, α = 1 indicates ballistic transport, and
0 < α < 0.5 (0.5 < α < 1) signal anomalous subdiffusion (superdiffusion) [148].

After having outlined the general principle of the algorithm, it is insightful to
go back one step and study the buildup of randomness of |ψR,�′ 〉 due to the action
of R. Such an analysis is presented in Fig. 5a and b in terms of the participation
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entropy Spk (|ψR,�′ 〉) and the von Neumann entanglement entropy SvN(|ψR,�′ 〉),

Spk (|ψR,�′ 〉) = −
2L∑

k=1

pk lnpk , SvN(|ψR,�′ 〉) = −tr[ρA ln ρA] , (27)

with pk = |ck|2, and ρA = TrB |ψR,�′ 〉 〈ψR,�′ | being the reduced density matrix
for a half-system bipartition. As already mentioned above, R consists of one-qubit
and two-qubit gates, cf. Fig. 5c. For the simulations shown here, the one-qubit
gates are drawn at random from the set {X1/2, Y 1/2, T }, where X1/2 (Y 1/2) are
π/2 rotations around the x-axis (y-axis) of the Bloch sphere and T is the non-
Clifford gate T = diag(1, eiπ/4). Similar to [118, 119], gates on a given site
have to be different in subsequent cycles. As two-qubit gates, we here consider
CNOT gates. As shown in Fig. 5a and b, both Spk (|ψR,�′ 〉) and SvN(|ψR,�′ 〉)
saturate towards their analytically known random-state values already for moderate
depth d of R. Specifically, Spk (|ψR,�′ 〉) approaches ln

(
2L−1

) − 1 + γ with Euler
constant γ ≈ 0.577 [118] already at d � 10, with no major dependence on L.
Likewise, SvN(|ψR,�′ 〉) approaches the “Page value” ln

(
2L/2

)−1 [150] appropriate
for a random state on L − 1 sites, albeit the depth d to reach this value appears
to grow slightly with L. It is important to stress that the design of R chosen
here is by no means optimized but already sufficient to create highly random and
entangled states. In Fig. 5d, we analyze the dependence of the expectation value
〈ψR,1(t)| Sz1 |ψR,1(t)〉 on the depth d of R. While this expectation value converges
to the exact autocorrelation function 2C�,�′(t) for sufficiently large d, we find in
Fig. 5d that even for rather shallow circuits with d = 10, the resulting dynamics is
almost indistinguishable from the dynamics for d = 20. Thus, even for states with
entanglement below the Page value, cf. Fig. 5b, the resulting dynamics is still a good
approximation to C1,1(t) and captures the correct hydrodynamic behavior.

Finally, let us comment on the accuracy of the typicality approach. In Fig. 6a,
we compare the dynamics of two states that result from different realizations of
the random circuit, R1 and R2. Moreover, we also show data obtained from exact
diagonalization. Even for the rather small system size L = 16 chosen here, we
find that the dynamics obtained from |ψR1,�

′ 〉 and |ψR2,�
′ 〉 closely follow the

exact result with only minor fluctuations. In particular, these residual fluctuations
can be further suppressed by averaging over multiple random realizations of R.
As shown in Fig. 5a, the dynamics obtained by averaging over 102 realizations is
indistinguishable from ED. Note that for larger system sizes (i.e., significantly larger
Hilbert-space dimensions) quantum typicality becomes more and more accurate
such that such an averaging is not necessary anymore and a single realization of
R is sufficient [125].

While we have so far focused on the full expectation value
〈ψR,�′(t)| Sz� |ψR,�′(t)〉, this expectation value cannot be obtained on a quantum
computer in a single run. In particular, |ψR,�′(t)〉 will generally be a superposition

of computational basis states, |ψR,�′(t)〉 =
∑2L
k=1 ak |k〉, and the coefficients ak can
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Fig. 6 Accuracy of the typicality approach in comparison with exact diagonalization for a one-
dimensional Heisenberg chain with L = 16. (a) The full expectation value 〈ψR,�′ (t)| Sz� |ψR,�′ (t)〉
for two different individual realizations of the random circuit (R1, R2) shows visible fluctuations,
while averaging the expectation value over 100 random instances of R yields results indistinguish-
able from ED. (b) Reconstructed expectation value from sampling the output of the circuit Ns
times as required in an actual experiment, cf. Eq. (28). Note that Ns here denotes the number of
samples for each individual realization of R. In particular, averaging over R and sampling overNs
can be combined with each other. Figure adapted from Ref. [117]

be reconstructed by repeating the experiment multiple times and averaging the final
measurements of the qubits. More specifically, C�,�′(t) can be reconstructed as,

2C�,�′(t) = 1

2

⎛

⎝
∑

|k〉,�=↑
|̃ak|2 −

∑

|k〉,�=↓
|̃ak|2

⎞

⎠ , (28)

where |̃ak|2 is the experimentally obtained probability of the state |k〉, and the two
sums in (28) run over all states for which the spin � is up or down, respectively.
The accuracy can be systematically improved by increasing the number of samples
Ns such that |̃ak|2 → |ak|2. Crucially, as we show in Fig. 6b, the sampling of
the distribution of the |ak|2 can be combined with the averaging over random
realizations of R. Specifically, Fig. 6b compares the dynamics obtained from one
realization of R with Ns = 105 repetitions to the dynamics obtained from 102

realizations of R with Ns = 103 repetitions each, i.e., the total number of runs is
the same in both cases. While the noise level is found to be similar in both cases,
we observe that the data averaged over multiple R agrees better with ED. In this
context, we note that varying R on a NISQ device is straightforward experimentally.

Box 2 | Quantum Typicality
The notion of quantum typicality refers to the fact that the overwhelming
majority (Haar measure) of quantum states within some energy shell yields
expectation values of observables very close to the full microcanonical ensem-

(continued)
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Box 2 (continued)
ble [136–139]. Speaking differently, given a single pure quantum state, drawn
at random from a high-dimensional Hilbert space, the expectation values of
observables with respect to this state will be effectively indistinguishable
from their thermodynamic equilibrium values. As such, quantum typicality
has been put forward as an important concept to explain the emergence of
thermodynamic behavior in closed quantum systems [151, 152]. Here, we
focus on the implications of typicality for efficient simulations (see [125, 153]
for reviews).
Quantum Typicality as a Numerical Tool
The key idea in this context is that random quantum states are highly accurate
trace estimators [154, 155]. To demonstrate this fact, let |ψ〉 be a random
state, drawn from the unitarily invariant Haar measure,

|ψ〉 =
D∑

k=1

(ak + ibk) |k〉 , (29)

where the coefficients ak and bk are Gaussian-distributed with zero mean and
unit variance, and |k〉 denote a set of orthogonal basis states of the Hilbert
space with dimensionD. Given an observable O, its trace can then be written
as [125],

tr[O] = D〈ψ |O |ψ〉〈ψ |ψ〉 , tr[O] ≈ D 〈ψ |O |ψ〉〈ψ |ψ〉 , (30)

where the overline means averaging over random realizations of |ψ〉. Impor-
tantly, the second equation in (30) emphasizes that for sufficiently large
Hilbert-space dimensions, even a single realization of |ψ〉 provides an
accurate approximation of tr[O]. In particular, given some mild assumptions
on the spectral properties of O, the statistical error of the approximation
vanishes for D → ∞ (see, e.g., [125] for details on error bounds). It is
straightforward to extend the scheme in Eq. (30) to equilibrium expectation
values of O at temperature T = 1/β [156],

〈O〉eq = tr[Oe−βH]
tr[e−βH] =

〈ψβ |O |ψβ〉
〈ψβ |ψβ〉 + ε , |ψβ〉 = e−βH/2 |ψ〉 , (31)

where |ψβ〉 is sometimes referred to as thermal pure quantum state [156]
and the standard deviation of the statistical error scales as σ(ε) ∝ 1/

√
deff,

with deff = tr[exp(−β(H − E0))] being an effective dimension, and E0 is
the ground-state energy of H [125, 156]. Furthermore, quantum typicality

(continued)
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Box 2 (continued)
also carries over to time-dependent situations (see, e.g., [152, 157–160]),
which has been particularly exploited in the context of dynamical two-point
correlation functions, which can be approximated as [161–164],

〈O1(t)O2〉eq = tr[O1(t)O2e
−βH]

tr[e−βH] ≈ 〈ψβ(t)|O1 |ϕβ(t)〉
〈ψβ(0)|ψβ(0)〉 , (32)

where |ϕβ(t)〉 = e−iHtO2e
−βH/2 |ψ〉, |ψβ(t)〉 = e−iHt e−βH/2 |ψ〉. The

crucial ingredient why the pure-state approximations in Eqs. (31) and (32) are
useful is given by the fact that the temperature- and time-dependence can be
efficiently evaluated by using well-established sparse-matrix techniques [165]
(e.g., Krylov-subspace methods [166], or Chebyshev-polynomial expansions
[167–169]). These methods essentially rely on matrix-vector multiplications
which can be carried out both time and memory efficient. In particular, no
exact diagonalization of H is required such that significantly larger Hilbert
spaces can be handled.
Quantum Typicality Versus Eigenstate Thermalization Hypothesis
(ETH)

The ETH asserts that the diagonal matrix elements of observables written in
the eigenbasis of chaotic nonintegrable Hamiltonians are a smooth function
of energy and agree with the corresponding microcanonical expectation
value [1],

Onn = 〈n|O |n〉 ≈ Omc(E) , Omc(E) = 1

NE

∑

En≈E
〈n|O |n〉 . (33)

While the ETH has been numerically confirmed for a variety of models
and observables, it is known to break down, for instance, in strongly
disordered models exhibiting many-body localization [3]. In this case, the
diagonal matrix elements show pronounced eigenstate-to-eigenstate fluctua-
tions, Onn �= O(n+1)(n+1) �= Omc(E). In contrast, the concept of typicality
remains valid irrespective of the ETH being fulfilled. Specifically, consider a
state |ψE〉 that is constructed as a random superposition of eigenstates |n〉 in
an energy shell with mean energy E. Then, the expectation value of O with
respect to |ψE〉 will again be very close to the microcanonical expectation
value as long as the energy window contains sufficiently many eigenstates to

(continued)
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Box 2 (continued)
reduce statistical errors,

〈ψE |O |ψE〉
〈ψE |ψE〉 ≈ Omc(E) ,

|ψE〉 =
∑

En≈E
cn |n〉 , where cn are Gaussian random numbers. (34)

As a consequence, quantum typicality can be exploited as a numerical tool to
study the properties of integrable or many-body localized systems where the
ETH breaks down [170–173], as well as to verify the validity of the ETH for
system sizes beyond the range of exact diagonalization [174, 175].

4 Conclusion

The goal of this chapter was to give a brief overview of certain aspects of random
quantum circuits. Such random circuits have recently gained increased attention
as minimally structured models for quantum many-body systems, providing new
insights into challenging questions, e.g., regarding the dynamics of entanglement or
the emergence of hydrodynamics. In view of the vast literature, we here deliberately
refrained from giving an in-depth review of all actively pursued directions but rather
refer the interested reader to the pertinent references included in Sects. 1–3. Instead,
we here focused in more detail on two particular topics, i.e., (i) entanglement
transitions in monitored circuits, where random unitary gates are interspersed with
measurements, and (ii) random quantum circuits recently implemented on noisy
intermediate-scale quantum devices to achieve a quantum computational advantage.

In the context of monitored circuits, we have given an introduction to the notion
of quantum trajectories and reviewed the equivalent pictures of a measurement-
induced pure-state transition from volume-law to area-law scaling of the entangle-
ment entropy and a purification transition from mixed to pure states with increasing
measurement rate. We have particularly discussed the critical properties of the
transition in one and two dimensions and explained how Clifford circuits, especially
in combination with graph states, provide a powerful approach to explore this type
of physics numerically. Moreover, we have touched on the challenges to realize and
observe entanglement transitions in monitored circuits in actual experiments. While
our understanding of measurement-induced criticality has increased substantially
over the last couple of years, a variety of open questions still remain. For example,
the exact nature of the critical point in realistic limits remains open, despite recent
progress [77]. It has also been shown that it is possible to stabilize phases of
matter using specific measurement protocols [26, 27, 94], which would otherwise
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be unstable in thermal equilibrium. However, it is not yet clear what restrictions,
if any, apply to the phases realizable in this way. Similar protection against
equilibration can be afforded by many-body localization [176], but this is not
possible in the presence of non-Abelian symmetries [177], for example, so it would
be interesting if monitored quantum circuits could provide a route to avoiding
these restrictions. Finally, it would be interesting to see if the quantum error-
correcting properties of the volume-law phase, which have provided a useful lens
on the phenomenology [37–39, 60, 178], could be put to practical use in quantum
computers. While the hybrid dynamics encode quantum information, and a decoder
is known to exist in the volume-law phase [60], it is not clear whether in general a
“good” decoder exists which could efficiently detect and correct errors [61].

Regarding random circuits on NISQ devices, we have provided a brief intro-
duction to the ideas of random-circuit sampling and cross-entropy benchmarking
to achieve a quantum computational advantage. Furthermore, we have focused on
a recently proposed random-circuit based algorithm to simulate hydrodynamics on
NISQ devices [117], which emphasizes that random circuits are not just abstract
tools to outperform classical computers for a specific computational problem,
but are relevant also for a wider range of applications. In this context, we have
demonstrated that random circuits can efficiently generate random and highly
entangled quantum states. Importantly, we have explained that such random states
are immediately useful for simulations, both on quantum and classical computers,
by leveraging the concept of quantum typicality. Exploring in more detail the
potential applications of random quantum states and quantum typicality on NISQ
devices will be an interesting direction of future research. Such applications are
particularly appealing from a complexity point of view as random states can be
prepared on NISQ devices by random circuits of moderate depth. However, due to
their high entanglement, they are usually not amenable to concepts such as matrix-
product states, which makes classical representations very costly. Applications of
random states thus fall naturally into a category that is classically hard, but might
be accessible by NISQ devices. Let us note that quantum typicality has in fact
been recently exploited in experiments on actual quantum hardware. In [133], a
scheme very similar to that outlined in Sect. 3.2 was used to calculate dynamical
spin-spin correlation functions in a driven Floquet spin chain in order to verify
the occurrence of discrete time-crystalline eigenstate order. Moreover, in [179],
quantum typicality was used to evaluate thermodynamic expectation values at finite
temperature (cf. Box 2), which involved the approximation of the imaginary time
evolution of random states on a NISQ device [180].
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Entanglement Dynamics in Spin Chains
with Structured Long-Range Interactions

Gregory S. Bentsen, Andrew J. Daley, and Johannes Schachenmayer

1 Introduction

The systems we encounter most often in condensed matter physics generally exhibit
effective local interactions in regular 3D, 2D, or 1D structures. In these systems,
correlations tend to spread and entanglement builds up in a way constrained by a
so-called Lieb–Robinson bound—where the development of correlations in time is
strong within a lightcone (often determined away from criticality by the maximum
group velocity for quasiparticles in a system), and correlations tend to decay
exponentially outside that lightcone. This constrains (or delays) the development
of entanglement, especially between distant regions in such systems.

With quantum simulators in atomic, molecular, and optical physics, we now have
opportunities to go beyond this paradigm. In non-relativistic settings, we can obtain
effective long-range interactions, ranging from direct dipole–dipole interactions in
polar molecules, to genuine long-range interactions for experimental setups such as
chains of trapped ions (mediated by the collective motional modes of the trapped
ions) or atoms in optical cavities (mediated by light in the cavity). Experiments
with neutral atoms in tweezer arrays (where interactions are mediated by exciting
atoms to a Rydberg level with high principal quantum number) typically give us
short-ranged Van der Waals interactions, but we can generate effective long-range
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interaction graphs by moving atoms in the traps. This gives us the opportunity to ask
how the build-up of entanglement changes in these unusual systems with long-range
interactions.

In this chapter, we give an introduction to these concepts, beginning in Sect. 2
by describing techniques that can be used to analyze these systems (including
Lieb–Robinson bounds, quasiparticle techniques, and numerical methods), before
discussing examples of spin chains with interactions decaying with distance R as
R−α for some α ≥ 0 in Sect. 3, and then sparse coupling graphs in Sect. 4. Such
sparse graphs could be used to realize fast scrambling of information, in which we
build up entanglement on timescales growing as t∗ ∝ log(N) with the system size,
N . In Sect. 5, we then briefly discuss the implementations of each of the classes
of models that we treat in the chapter, across trapped ions, neutral atoms in optical
cavities, and tweezer arrays for neutral atoms with Rydberg excitations.

2 Quantifying Entanglement and Information Spreading

2.1 Measures of Entanglement Entropy

Let us consider a quantum system Q defined on a Hilbert space H, which we split
into two sub-Hilbert spaces A and B, H = HA ⊗ HB with dimensions DA,B =
dim(HA,B). By definition, entanglement between A and B implies that a state |ψ〉
cannot be written in a product state form, i.e.,

|ψ〉 �= |ψ〉A ⊗ |ψ〉B , (1)

where the states |ψ〉A,B are defined on the sub-Hilbert spaces HA,B , respectively.
The amount of entanglement can now be analyzed by constructing the reduced
density matrix of either the sub-system A or B; w.l.o.g., focusing on sub-system
A, it is defined as

ρA = trB(|ψ〉 〈ψ |), (2)

where the trace is taken over sub-system B. In case of a product state |ψps〉 =
|ψps〉A ⊗ |ψps〉B , the reduced density matrix trivially becomes ρps

A = |ψps〉A 〈ψps|A
and is thus pure quantum states. This implies that all information about the state of
sub-system A is contained in ρA and thus readily available through experimental
probes of this sub-system. For a general entangled state that fulfills inequality (1),
however, this is not true. The presence of entanglement implies that ρA will be
a mixed density matrix. Now, information on the quantum state is encoded also
in quantum correlations between A and B. Therefore, the entropy of ρA, i.e., the
lack of information in ρA, provides a way to directly quantify the amount of such
correlations.



Entanglement Dynamics in Spin Chains with Structured Long-Range Interactions 287

Arguably, the most prominent definition for entropy is the von Neumann entropy,

SA = SVN(ρA) = −tr(ρAlog2ρA) = −
DA∑

α

λαlog2λα, (3)

where in the last step we have introduced the positive eigenvalues of ρA, λα ≥ 0
that must fulfill

∑
α λα = 1. Note that the base of the logarithm in the definition

varies throughout the literature, however for spin-1/2 models or qubits log2 is a
convenient choice. For product states, it is easy to see that SVN(ρ

ps
A ) = 0 since the

reduced density matrix only has one eigenvalue λ1 = 1. The largest possible entropy
occurs for maximally mixed states, for which all eigenvalues are λα = 1/DA, and
thus for a bipartition of dimension DA, the von Neumann entropy ranges between
0 ≤ SVN(ρA) ≤ log2(DA).

For example, considering a maximally entangled Bell state between two spin-1/2
particles, |φ+〉 = (|↑〉 ⊗ |↑〉 + |↓〉 ⊗ |↓〉)/√2, the reduced density matrix for the
first spin becomes ρ1 = (|↑〉 〈↑| + |↓〉 〈↓|)/2 corresponding to the largest possible
von Neumann entropy of SVN(ρA) = −log2(1/2) = 1.

Unfortunately, computing von Neumann entropies typically requires the knowl-
edge of all eigenvalues of the reduced density matrix, i.e., knowledge of the full
density matrix. Experimentally measuring full density matrices in experiments
can be extremely cumbersome and becomes very difficult with increasing DA. A
quantity for measuring the “mixed-ness” of a reduced density matrix that can be
experimentally more easily accessible is the purity tr(ρ2

A), or more generally, non-
linear functionals of the form tr(ρnA) with integer n > 1 [1, 2]. Those are directly
connected to the Rényi entropy of order n, which is defined as

S
(n)
A = Sn(ρA) = 1

1− n log2tr(ρnA). (4)

Formally, taking n as an arbitrary real-valued number, the Rényi entropy becomes
equivalent to the von Neumann entropy in the limit SVN(ρA) = limn→1 Sn(ρA).
Furthermore, the second-order Rényi entropy provides a lower bound to the von
Neumann entropy, SVN(ρA) ≥ S2(ρA), and combinations of different Rényi
entropies can be constructed to yield stronger bounds such as SVN(ρA) ≥ 2S2(ρA)−
S3(ρA) ≥ S2(ρA), see Fig. 1.

In practical settings, entanglement entropies can be used to analyze the time-
dependent growth of entanglement in spin chains after a quench both in experiments
and theory. To avoid boundary effects and to accommodate as much entanglement
as possible, it is common to split a chain of N spins into two halves of N/2 spins
and to compute SVN or Sn for the reduced density matrix of half of the chain. The
time-dependent growth behavior of the entropy can then give important insight into
the entanglement spreading and the correlation build-up in the chain. For example,
a linear growth of SVN or Sn can be a consequence of entangled quasiparticles with
a linear dispersion relation (see below). Furthermore, linear entanglement growth
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Fig. 1 Entanglement entropy, operator growth, and Lieb–Robinson Bounds. (a) The time-
dependent growth of various entanglement entropies in a soft- and hard-core Bose–Hubbard model
(hopping rate J ). The hard-core model is equivalent to an XY spin chain. The Rényi entropies Sn
can be experimentally more easily accessible than the von Neumann entropy SVN. The Rényi
entropies Sn for n > 2 constitute lower bounds to the von Neumann entropies SVN and can be used
in combination to construct tight bounds (dashed black line: 2S2 − S3). Here, all entropies exhibit
a growth behavior linear in time. Reprinted from [2]. (b) Growth of the operator Oi (t) (purple)
in the Heisenberg picture on a sparse nonlocal graph G. (c) Lieb–Robinson bounds for 2-local
Hamiltonians. Top: The bound is obtained by summing over contributions from connected chains
linking vertices i, j . Each new “link” in the chain need not be added at the end of the chain; it may
be added anywhere along the chain as illustrated by the “dead end” link marked a. Bottom: Linear
lightcone for a one-dimensional, nearest-neighbor spin chain (reproduced from [3])

can be connected to a computational complexity increasing exponentially in time
(see Sect. 2.4) and is therefore of general interest for validating analog quantum
simulation applications.

Note that in any realistic experiment, there will remain small but finite couplings
to an environment. Then, the definition of entanglement as entropy in a bipartition
becomes more delicate since a bipartition of the chain into two blocks is effectively
a tripartition with the environment acting as third party. Then, entropy in sub-
system A can originate from entanglement with the other chosen block B, or
from entanglement with the environment. In such cases, statements about true
entanglement in the chain can still be made in scenarios where the entropy of the full
chain density matrix ρ remains sufficiently small, i.e., smaller than the sub-system
entropies SVN(ρ) < SVN(ρA) [or Sn(ρ) < Sn(ρA)].

Finally, what is the maximum amount of entanglement that a system ofN degrees
of freedom can support? Quantum states in which every particle is maximally
entangled are referred to as volume-law or scrambled states and feature a von
Neumann entropy SVN ∝ |A| that grows like the number of degrees of freedom
in region A for any bipartition Q = A ∪ B of the system (with |A| < N/2).
Although such a high degree of entanglement is difficult to engineer in practice due
to the destructive effects of decoherence, these volume-law states are actually quite
generic, in the sense that a pure quantum state chosen uniformly at random from the
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many-body Hilbert space will have, on average, volume-law entanglement entropy

SVN(ρA) = −m− 1

2n
+

mn∑

k=n+1

1

k
≈ lnm− m

2n
(5)

so long as 1 � m ≤ n, where |A| = log2m and |B| = log2n [4].

2.2 Lieb–Robinson Bounds and OTOCs

In the previous section, we quantified entanglement growth by looking at the entropy
of a local region A, quantified by the von Neumann entropy of the reduced density
matrix ρA. Complementary to this state-centric notion of entanglement based on the
Schrödinger picture, one can alternatively formulate an operator-centric notion of
entanglement growth based on the Heisenberg picture. In many cases, this operator
growth picture provides a more intuitive description for the growth of correlations
in the system. It also naturally leads to discussion of fundamental Lieb–Robinson
(LR) bounds and out-of-time-order correlators (OTOCs) that diagnose the spread of
quantum information in the system.

Suppose we consider a system of N qubits, and we store information in a
localized region A using an operator OA. In particular, one can imagine starting
from a particular reference state ρ and perturbing it by some local operator OA
that encodes some information in the perturbed state. The subsequent growth of
correlations in the system can be completely captured by the evolution of the
operator OA in the Heisenberg picture:

OA(t) = UtOAU†
t =

∑

r

ar(t)σ
r. (6)

In the last expression, we have expanded the operator in the orthonormal basis of
many-body Pauli strings σ r = σ r11 σ

r2
2 . . . σ

rN
N , where σ 0,1,2,3

i are the Pauli matrices
on site i (with σ 0

i = Ii) and r = r1r2 . . . rN is aN -component string encoding which
Pauli operators are present on each site. The time-dependent coefficients ar(t) can
be viewed as the “wavefunction” of the operator OA(t) when expanded in the Pauli
string basis and can be obtained by taking an operator inner product

ar(t) = Tr
[
OA(t)σ r

]
. (7)

These coefficients are real and normalized
∑
ar(t)

2 = 1 when OA is Hermitian and
normalized.

Under generic scrambling dynamics, the initially localized operator OA(0)
rapidly grows into a complicated operator OA(t), where the operator wavefunc-
tion ar(t) acquires significant weight on large many-body Pauli strings. We can
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characterize this growth and simultaneously characterize the coefficients ar(t), by
considering commutators [OA, σαj ] between the growing operator OA and localized
Pauli operators σαj , which we refer to as “probe” operators. A judicious choice of
probe operators allows one to quantitatively map out the growth of the operator
OA(t). In particular, at t = 0, probe operators σαj localized on sites outside
of the region A must necessarily commute with OA: [OA(0), σαj ] = 0. As the
operator OA(t) grows in time, however, it builds up nonzero weight on operators
outside of A, causing the probe operators to fail to commute with OA(t): C(t) =
[OA(t), σαj ] > 0. The size of this commutator, as measured by the operator norm

||C(t)|| =
√

Tr
[
C†C

]
, tells us “how much” of the operator OA is present on

site j (i.e., what fraction of OA acts nontrivially on site j ) (see Fig. 1b). These
commutators provide direct evidence of entanglement growth in the system via a
nonstandard correlation function called the out-of-time-order correlator (OTOC)
[5–7].

Analysis of these commutators can be used to place fundamental bounds on the
spread of information in the quantum system.

Historically, Lieb–Robinson bounds have been used to show the existence of
an emergent “lightcone” in lattice systems that limits the speed of information
propagation, similar to the speed of light in special relativity. Various forms of
Lieb–Robinson bounds have been established for systems featuring both short-range
[8, 9] and long-range [10–13] interactions. Here, we present generalized Lieb–
Robinson bounds that apply to arbitrary 2-local Hamiltonians defined on any graph
G, regardless of its connectivity or locality. In doing so, we demonstrate how the
growth of operators Oi (t) is intimately tied to the structure of the interaction graph.
The beauty of this approach is that it expresses the spread of quantum information in
terms of standard results from graph theory, a well-developed branch of mathematics
for which many powerful techniques and results are readily available [14–16]. We
therefore begin by introducing the requisite graph theory terminology.

For simplicity, we will consider here only 2-local Hamiltonians. Similar results
for the more general k-local case are derived in Appendix B of Ref. [17]. To any
2-local Hamiltonian

H =
∑

(i,j)∈E
Hij , (8)

we may associate a discrete, undirected graph G = (V ,E), where degrees of
freedom live on the vertices i ∈ V and interact pairwise via couplings Hij if and
only if the pair i, j is connected by an edge e = (i, j) ∈ E. The connectivity of the
graph G is described by the adjacency matrix

Aij =
{

1 (i, j) ∈ E
0 (i, j) /∈ E (9)
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and the degree matrixDij = kiδij , where the degree ki =∑
j Aij of a given vertex

i counts the number of vertices it is connected to. To be concrete, a familiar model
of this form is the 2-dimensional Heisenberg spin model

H = J
∑

〈i,j 〉
Si · Sj , (10)

with interaction graph G given by a regular D-dimensional square lattice where the
sum is over nearest neighbors 〈i, j 〉. The spin-1/2 degrees of freedom Si reside on
the vertices i of the lattice and interact via nearest-neighbor SU(2)-symmetric 2-
body terms Hij = JSi · Sj represented by the edges e of the graph, such that all
vertices have degree ki = 4 (assuming an infinite lattice).

We derive Lieb–Robinson bounds for 2-local models of the form (8) by
expanding the commutator C(t) in powers of t and bounding each term in the sum.
For probe operators Oi ,Oj on vertices i �= j , we have

∥∥[Oj ,Oi (t)]
∥∥ ≤ ∥∥[Oj ,Oi]

∥∥+ t ∥∥[Oj , [H,Oi]]
∥∥+ t

2

2!
∥∥[Oj , [H, [H,Oi]]]

∥∥+ · · · ,
(11)

where we have used the Baker–Campbell–Hausdorff formula to expand the expo-
nentials in terms of nested commutators, and the triangle inequality to bound
the commutator norm. The nested commutators on the right-hand side simplify
considerably when we observe that commutators on disjoint sets vanish so that,
for instance, [Oj , [H,Oi]] = [Oj , [Hij ,Oi]]. As a result, the only nested com-
mutators that survive are those corresponding to connected chains of 2-body terms
(Hjx,Hxy, . . . , Hzi) on the interaction graph G that begin on vertex j and end on
vertex i, as illustrated in Fig. 1c. Note that the consecutive links of these chains
need not connect end-to-end: new links are allowed to be connected anywhere
along the existing chain. For simplicity, we have also ignored all onsite terms
(which can always be absorbed into the two-site terms in (8)). The fact that the
bound can be written in terms of connected chains on the graph clearly illustrates
that the structure of the interaction graph G plays a central role in our bounds on
OTOC growth. We further simplify the right-hand side by applying the inequality
‖[A,B]‖ ≤ 2 ‖A‖ ‖B‖ recursively to the nested commutators to obtain

∥∥[Oj ,Oi (t)]
∥∥

2
∥∥Oj

∥∥ ‖Oi‖ ≤ 1+ 2t
∥∥Hij

∥∥+ (2t)
2

2!
∑

x

∥∥Hjx
∥∥ ‖Hxi‖ + · · · (12)

Finally, we choose a constant c that bounds all 2-body terms in the Hamiltonian

c

K
≥ ∥∥Hij

∥∥ , (13)



292 G. S. Bentsen et al.

where K = 1
N

∑
i ki is the mean degree of the graph G and c is a constant

independent of N such that the Hamiltonian is extensive [10, 17]. Substituting
the constant c/K into Eq. (12) and resuming the right-hand side, we obtain the
normalized out-of-time-ordered correlator (OTOC):

Cij (t) ≡
∥∥[Oj ,Oi (t)]

∥∥

2
∥∥Oj

∥∥ ‖Oi‖ ≤ exp

[
2c |t |
K
(D+A)

]

ij

, (14)

which depends only on the graph-theoretic quantities Aij ,Dij and time t in units
of the constant c/K [17].

As a simple example, we can consider a one-dimensional chain with closed
boundary conditions. In this case, the matrixA+D is simply a circulant matrix:

A+D =

⎡

⎢⎢⎢⎢⎢⎣

2 1 0 0 . . . 1
1 2 1 0 0
0 1 2 1 0
...

. . .

1 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎦
(15)

that can be easily diagonalized. From this result, we recover a linear lightcone,
plotted in Fig. 1c, as originally predicted by Lieb and Robinson [8]. The generalized
Lieb–Robinson bound in Eq. (14), however, is more powerful than the original result
of Lieb and Robinson because it applies not only to regular lattice systems but
also to quantum systems defined on arbitrary interaction graphs G. Moreover, the
generalized bound contains detailed information about the graph structure, encoded
in the matricesA,D.

Because the result in Eq. (14) bounds the operator norm ‖·‖, the bound character-

izes operator growth at infinite temperature since ‖O‖2 = Tr
[
ρ∞O†O

]
, where ρ∞

is the infinite-temperature ensemble. At finite temperature, operators necessarily
grow more slowly; obtaining tighter bounds at finite temperature is still an open
problem [17–20]. We generally expect the spreading of information to slow down at
finite temperature since the system has a much smaller probability of exciting high-
energy modes. Roughly speaking, another way to say this is that at finite temperature
the effective Hilbert space is reduced to a subspace consisting of eigenvectors
whose energies are comparable to or less than the temperature. Because of this
reduced Hilbert space, there are fewer accessible states and therefore fewer ways
for information to propagate.
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2.3 Quasiparticle Approaches

The spreading of correlations through a system and its limitations in terms of
Lieb–Robinson bounds is connected to the growth of entanglement entropies after
quenches. This connection can be made by means of quasiparticle excitations in
situations where a quadratic Hamiltonian can be brought to a diagonal form in
second quantization. To illustrate the concept, let us take a long-range transverse
Ising spin chain with interactions decaying as a power law. The Hamiltonian can be
written as

HLRTI =
∑

i<j

J̄

|i − j |α σ
x
i σ

x
j + B

∑

i

σ zi . (16)

Here, J̄ is the nearest-neighbor interaction strength, α is the power-law decay
exponent, B is the transverse field strength, and σx,zi are the usual Pauli matrices. In
one dimension, the Pauli matrices can be mapped to fermionic field operators ci by
a Jordan–Wigner transformation. Then, in the nearest-neighbor limit α→∞ after a
transformation to quasimomentum space, the fermionic model is quadratic and can
be diagonalized with a Bogoliubov transformation [21] giving rise to a Hamiltonian
of the form (up to constants)

Hα→∞LRTI =
∑

q

εqγ
†
q γq. (17)

Here, γ †
q are creation operators for fermionic quasiparticle excitations with quasi-

momentum q. They are superpositions of the fermionic field operators cq with
opposite quasimomenta γ †

q = uc
†
q − vc−q , where u and v are the Bogoliubov

expansion coefficients, which depend on J̄ and B. The dispersion relation for the

quasiparticles is given by εq = 2
√
(J̄ − B)2 + 4J̄B sin2(q/2). In a quench setup,

the initial state is a highly excited state, which is not an eigenstate of the diagonal
quasiparticle Hamiltonian. This gives rise to the following picture for entangle-
ment build-up in the dynamics after the quench [22] (see illustration in Fig. 2a):
The initially highly excited state serves as reservoir for producing quasiparticle
excitations. Those quasiparticles are entangled superpositions of excitations with
opposite momentum and spread through the system. The speed of their propagation
is given by the group velocity vg = dεq/dq. For example, in the case of the
nearest-neighbor transverse Ising model, their speed is limited by the maximum
group velocity max |vg| = 2J . The propagating entangled pairs lead to a build-up of
entanglement between blocks of the chain. A constant arrival rate of quasiparticles
in the right half of the chain (R) that originated in the left half (L) therefore leads to
a linear growth of entanglement entropies between L and R with time [22].

Importantly, the study of quasiparticle spectra can also be a useful approach
for understanding entanglement growth in the presence of long-range interactions.
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Fig. 2 (a) Illustration of entanglement distribution by propagation of entangled quasiparticles.
Entangled quasiparticles spread through the system in opposite directions with group velocities
±vg . Finite size effects become important when the fastest quasiparticles reach the boundary, here
at time t∗. This picture remains valid for relatively short-ranged interactions. (b) Quasiparticle
propagation seen in the evolution of the mutual information I between distant spins i = 1 and
j = 8 (here for a quench in a transverse Ising model with interactions decaying as a power law with
distance∼ J̄ /|i− j |α). For relatively short-ranged interactions (α = 2), the distant spins suddenly
become entangled by a quasiparticle arrival at a time tJ ∼ 2. For longer-ranged interactions α < 2,
this picture breaks down. (c) Entanglement growth can be analyzed by means of quasiparticle
spectra. Here, quasiparticle dispersion relations ε(k) and the corresponding densities of statesD(k)
are shown for an exactly solvable long-range fermionic hopping model (power-law exponent α,
see [23]). Shorter-range interactions (large α) lead to smooth ε(k) and thus quasiparticles with
well-defined group velocities. Long-range hoppings (small α) can lead to cusps and divergences in
ε(k). ((a) and (b) reproduced from [24], (c) reproduced from [23])

While in general a Bogoliubov diagonalization is not possible for Hamiltonians such
as (16), exceptions exist. For example in certain limits, linear spin-wave theories
remain a valid approximation [23, 25, 26], or for related models with long-range
fermionic hopping, also exact diagonalizations are sometimes possible [23, 27, 28].

We will exemplify the linear spin-wave approach for Hamiltonian (16), which
is based on Holstein–Primakoff transformation. Traditionally defined for spin-S
operators, this transformation reads

Szi = a†
i ai − S (18)

S−i =
√

2S − a†
i aiai (19)

S+i = a†
i

√
2S − a†

i ai . (20)

Here, the spin operators for a spin at site i are expressed in terms of bosonic field
operators a†

i . We assume a quench setup, where the initial state is given by the fully
polarized state |ψ(t = 0)〉 = ∏

i |↓〉i with Szi |↓〉i = −S |↓〉i . For short enough
times where the state remains sufficiently close to |ψ(t = 0)〉, one can linearize
the Holstein–Primakoff transformation using the assumption of small occupation
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number of the bosonic modes, 〈a†
i ai〉 � 2S. Then,

S−i ≈
√

2Sai (21)

S+i ≈
√

2Sa†
i . (22)

Using σzi = 2a†
i a

†
i − 1 and σxi ≈ ai + a†

i in this limit, Hamiltonian (16) becomes
quadratic (constants are dropped):

HLRTI ≈
∑

i<j

J̄

|i − j |α
(
aiaj + a†

i aj + aia†
j + a†

i a
†
j

)
+ 2B

∑

i

a
†
i a

†
i . (23)

A discrete Fourier transform into quasimomentum space for a spin chain with N
spins, bq = ∑

j exp(−iqj)/
√
N for N discrete momentum values −π/2 < q ≤

π/2, leads to

HHP ≈
∑

q

J(q)
(
b−qbq + b†

qb
†
−q
)
+
∑

q

(
J(q)+ B

2

)(
b†
qbq + b−qb†

−q
)
.

(24)

Here a crucial quantity is the Fourier transform of the power-law decaying function

J(q) = J̄
∑

d

e−idq

|d|α
N→∞−−−−→ 2J̄Re

(
Liα(e

iq )
)
, (25)

where in the first term the distance d runs over all pairwise distances from−N+1 <
d < N−1 and the last term is an analytical expression in terms of the polylogarithm
Lin(z) of order n in the infinite system size limit N →∞.

Using a bosonic Bogolioubov transformation [23], the Hamiltonian can again be
transformed into a diagonal form with new bosonic field operators that are a super-
position of the Holstein–Primakoff bosons b±q of opposite momenta. Crucially, the
dispersion relation of the new quasiparticle excitations can be computed to be

ε(q) = 2B

√
1+ J(q)

B
. (26)

It is important to re-emphasize that this quasiparticle dispersion result is only valid
in the limit 〈b†

qbq〉 � 1, which is true for sufficiently short times, i.e., sufficiently
few quasiparticle excitations. It is clear that the timescale of validity increases with
B since for B →∞ the initial state |ψ(t = 0)〉 becomes an eigenstate and remains
constant in time. The constraint of the validity of the Holstein–Primakoff ansatz is
also visible in Eq. (26), which requires B > J(q) for ε(q) to remain real.
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In the limit of its validity, Eq. (26) allows to make statements about the
quasiparticle nature of the entangling dynamics after the quench. For example,
considering the limit of long-wavelength excitations |q| → 0, one can derive that
the limiting behavior of the dispersion relation for α < 0 is given by

ε(q) ∝ q α−1
2 . (27)

The negative exponent implies that for α < 1, there are quasiparticle excitations
with infinite group velocities that ultimately have to lead to a breakdown of the
picture of propagating entangled quasiparticles. Furthermore, from this analytical
ansatz, one can deduce that for 1 < α < 2 a cusp at q = 0 appears in the
dispersion relation ε(q). This means that the group velocity vg = dε(q)/dq is
already starting to diverge for α � 2 [25]. In contrast, in general for α � 2,
the quasiparticle propagation picture remains to be valid, as e.g. demonstrated in
Fig. 2b. There we show the propagation of correlations between spins at two distant
sites i = 1 and j = 8 of a chain. Here this correlation is quantified by the mutual
information Ii,j = SVN(ρi)+ SVN(ρj )− SVN(ρij ) with SVN(ρi) and SVN(ρij ) the
von Neumann entropies of reduced density matrices on single- and two-spin Hilbert
spaces, respectively. For the case of a clear entangled quasiparticle propagation
(α = 2), the correlation between distant sites suddenly starts to establish at a
“quasiparticle” arrival time of t J̄ ∼ 2. In contrast, for α < 2, the distant sites
become entangled immediately.

Finally, we want to point out that in a quasiparticle analysis, it is important to
not only consider quasiparticle dispersion relations, but also to analyze the density
of states at the respective quasimomenta. In Fig. 2c, we show the dispersion relation
ε(k) and the density of statesD(k) for Bogoliubov excitations with quasimomentum
k for a long-range fermionic hopping model [23] that can be computed exactly.
Interestingly, qualitatively, this model has very similar features as the long-range
interacting transverse Ising model in the linear spin-wave limit. Importantly, one
finds that while the group velocity diverges for α < 2 and k→ 0, here one also finds
that D(k) → 0 is even more strongly suppressed, leading to an effective overall
suppression of the correlation build-up.

2.4 Matrix Product States (MPS)

In one dimension, the study of entanglement growth in spin models can be assisted
by very powerful numerical methods based on the so-called matrix product states
(MPS). Let us consider the general time-evolved state of a chain with N spin-D
particles and focus on pure Hamiltonian dynamics. The state at time t can be written



Entanglement Dynamics in Spin Chains with Structured Long-Range Interactions 297

in the basis of the local spin Hilbert spaces:

|ψ(t)〉 =
∑

i1,i2,...,iN

ci1,i2,...,iN (t) |i1〉 |i2〉 . . . |i3〉 . (28)

Here, in = 1, . . . , d are the local indices for an orthogonal basis of spin n, |in〉,
with dimension d = 2S + 1. The difficulty of numerically simulating Hamiltonian
dynamics of a spin chain on a classical computer stems from the exponential
growth of the size of the complex states tensor ci1,i2,...,iN with system size N ,
dim(ci1,i2,...,iN ) = dN . Importantly, the size of this state tensor can be drastically
reduced by restricting the amount of entanglement. For example, let us consider the
most extreme scenario and restrict the state tensor to product states only, which by
definition excludes any entanglement. Then,

cPS
i1,i2,...,iN

(t) ≈ c[1]i1 (t)c
[2]
i2
(t), . . . , c

[N ]
iN
(t), (29)

and the state representation only requires Nd normalized complex amplitudes,∑
in
|c[n]in (t)| = 1. Choosing for example some sub-system block A with indices

{i1, . . . , ic}, the reduced density matrix is

ρPS
A (t) =

∑

i1,...,ic
j1,...,jc

c∗j1(t)ci1(t) . . . c
∗
jc
(t)cic (t) |i1〉 . . . |ic〉 〈j1| . . . 〈jc| . (30)

This is a pure density matrix since tr
{[
ρPS
A (t)

]2
}
= 1, and therefore, the entangle-

ment entropy (see Sect. 2.1) vanishes, SVN(ρ
PS
A (t)) = 0, for all times. Therefore,

by choosing the product state ansatz (29), the numerical memory requirement is
drastically reduced from O(dN) to O(dN), which however comes at the cost of
neglecting entanglement entropies entirely.

A matrix product state (MPS) can be thought of as a generalization of the product
state ansatz (29) to states with finite entanglement. An MPS is a decomposition of
the state tensor of the form

cMPS
i1,i2,...,iN

= �
[1]
i1

�
[2]
i2
. . .�

[N ]
iN
=

χ1∑

α1

χ2∑

α2

· · ·
χN+1∑

αN+1



[1];α1α2
i1



[2];α2α3
i2

. . . 

[N ];αNαN+1
iN

.

(31)

Here we introduced N three-dimensional tensors, 
[n];αnαn+1
in

, which can be thought

of as χn × χn+1 matrices where the matrix elements are local kets on site n, �
[n]
in

.

The state tensor is decomposed into a matrix multiplication of the �
[n]
in

matrices
on different sites, hence the name matrix product state. A common diagrammatic
depiction of an MPS is shown in Fig. 3a: There, each colored box denotes an MPS
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tensor �
[n]
in

. Each line represents an index, and each line connecting the colored
boxes implies a summation over that index. A tensor at site n connects to the
tensors at sites n − 1 and n + 1, and the connecting indices αn are also known
as “bond indices.” Note that at the edge we kept two “dummy indices” for which
(assuming the case of box boundary conditions) we will choose χ1 = χN+1 = 1.
Note that if we restrict all virtual “bond” indices to a dimension of χn = 1, the
MPS decomposition (31) becomes equivalent to the product state form (29) and
again neglects entanglement. The core idea behind MPS simulations of quantum
states is to increase the matrix size to a manageable magnitude, thereby allowing
for enough entanglement in the dynamics to keep the simulation of the system
exact. In a key approximation step, we therefore can limit the bond dimensions
of all bipartitions in the chain to a numerically manageable value, χn � χ . One can
then show [29] that in an MPS with maximum bond dimension χ we can at most
capture an entanglement entropy of

SVN(ρ
MPS,χ
A ) ≤ log2(χ). (32)

Generalizing the result for the product state ansatz, an MPS with maximum bond
dimension χ reduces the memory requirement for storing a quantum state from
O(dN) to O(Ndχ2). This comes at the cost of limiting von Neumann entanglement
entropy across any bipartition to log2(χ). Note again that the product state ansatz is
equivalent to χ = 1 for which SVN(ρ

MPS,χ=1
A ) = 0.

The MPS representation (31) has been an extremely useful tool for both
analyzing ground states of quantum many-body systems, e.g., the famous density
matrix renormalization algorithm (DMRG) [30] is based on MPS, and studying non-
equilibrium dynamics. Focusing on quench dynamics, typically, the initial states
of interest are either in a trivial product state form (e.g., the fully polarized state,
|ψ(t = 0)〉 = ∏

i |↓〉i) or they are the ground state of a Hamiltonian that can
be computed using DMRG. To then compute the time evolution of a many-body
quantum state over a time step, t , one needs an algorithm to update the MPS
tensors time dependently such that (h̄ ≡ 1)

|ψ(t +t)〉 = e−iĤt |ψ(t)〉 . (33)

Several algorithms exist (for sketches of the concepts, see Fig. 3b–d).
For example, algorithms can be devised on the concept of “gate applications.”

In particular, since most spin Hamiltonians of interest are based on two-body
terms, i.e., Hamiltonians are of the form Ĥ = ∑

i>j Ĥi,j , one can use a Trotter

decomposition of the full matrix exponential e−iĤt into two-site gates Ûi,j =
e−iĤi,jt up to an controllable error depending on a small time-step sizet [31]. For
example, commonly a 2-nd- or 4-th-order decomposition is used with errorsO(t3)
or O(t5), respectively. Then time evolution can be simulated by applying the two-
site gates Ûi,j to an MPS. Note that this approach is equivalent to the concept of
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Fig. 3 (a) Sketch of an MPS decomposition of the state tensor in a system with N = 6 spins.
Limiting the virtual indices αn to a maximum bond dimension αn ≤ χ , the von Neumann
entanglement entropy for a bipartite splitting across the bond n is limited to log2(χ). (b–
d) Sketches of various algorithms for time-evolving an MPS. (b) The TEBD algorithm is a
prescription for updating two tensors of the MPS after application of a gate. An approximation
is made in the final step when after a singular value decomposition of the tensor  the new virtual

index is truncated to αn ≤ χ . Using a Trotter decomposition of the time-evolution operator e−iĤt

into two-site gates in combination with swap gates can be used to simulate time evolution under
Hamiltonians with long-range interactions. (b) Another class of MPS time-evolution algorithms
makes use of a matrix product operator (MPO) description of the Hamiltonian, using, e.g., the
time-dependent variational principle (TDVP) or Runge–Kutta. They rely on variational algorithms
to find an MPS approximation for the state Ĥ |ψ(t)〉. (d) When the time-evolution operator can be

constructed in MPO form, variational algorithms to find an MPS approximation for e−iĤt |ψ(t)〉
can be used

digital quantum simulation [32], where the gates would be applied in a quantum
circuit. An algorithm to apply two-site gates between neighboring spins is known
as time-evolving block decimation algorithm (TEBD) [33] or time-dependent
DMRG [34]. The scheme is sketched in Fig. 3b. It relies on straightforward tensor
contraction, followed by a singular value decomposition. Crucially, the final step
consists of a truncation of the bond dimension to χ , which introduces a gate error
depending on the truncated weight,

∑dχ
α=χ+1 λ

2
αc+1

. One main disadvantage of the
TEBD approach is that an error is made in each gate application. For treating
systems with long-range couplings, it is also required to apply swap gates that
interchange the physical indices between sites, which again result in an additional
error for each swap operations.

To avoid such consecutive errors, it is also possible to construct the Hamiltonian
in a matrix product form. In general, the matrix product operator (MPO) form is
a full description of operators on a many-body Hilbert space analogous to MPS,
but with two physical indices per site (see Fig. 3c, d for a sketch). There exist
variational algorithms that, for an MPO (Ô) and an MPS |ψ〉, find an optimal
new MPS |φ〉 with bond dimension χ such that |φ〉 ≈ Ô |ψ〉 with a known
minimal error ε = | 〈φ|ψ〉 |2 � 1. Typically, such algorithms make use of sweeps,
consecutively updating the tensors on single or neighboring sites [29]. For nearest-
neighbor Hamiltonians, it is straightforward to construct Ĥ in an exact MPO form.
For systems with long-range interactions, this can usually be done approximately.
In particular, systems with power-law interactions allow to approximation Ĥ with
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an MPO of moderate MPO bond dimension by utilizing an expansion of the power-
law decay into a sum of exponentials (see, e.g., [35]). Having an algorithm that can
apply a Hamiltonian MPO to a state (Fig. 3c) approximately, one can then rely on
standard time-evolution algorithms making use of such Hamiltonian applications,
such as Runge–Kutta. A popular algorithm making use of Hamiltonian applications
is for example based on the time-dependent variational principle (TDVP), which in
addition to the Hamiltonian application also relies on an application of a tangent
space projection operator, see e.g., [36]. Lastly, an alternative way for simulating
time evolution of an MPS is to directly compute an MPO expression of the time-

evolution operator over a small time step Û = e−iĤt and to use an MPO
application algorithm directly. Several ways have been proposed to construct a
time-evolution MPO, e.g., based on Taylor expansions of the matrix exponential
(e.g., notably the so-called W I,II representations [37] or methods based on “MPO
doubling” [38]). In general, the computational complexity for evolving an MPS in
time with one of the algorithms described above is bottle-necked by the tensor
constructions and in general the computational timescales as ∼ χ3. For a recent
review summarizing MPS time-evolution algorithms, see e.g., [39].

Finally, let us emphasize again that MPSs provide an ideal tool to study
entanglement growth after quenches. The eigenvalues of reduced density matrices
of bipartitions, λ2

αn
, are readily available from an MPS, and entanglement entropies

can be computed through Eqs. (3) and (4) (see Fig. 1 for an example MPS result of
entanglement growth). MPS methods make it also possible to directly connect the
entanglement entropy growth behavior after a quench to a numerical complexity for
simulating the quench dynamics on a classical computer. For example, in the case
of a linear entropy growth as shown in Fig. 1, we can conclude that since SVN ∝ t
and since for an MPS with bond dimension χ , SVN ≤ log2(χ) as a function of time
χ needs to grow as χ ∝ exp(t), and therefore, this scenario is computationally hard
to simulate with an MPS.

3 Power-Law Interacting Models

Here, we will focus on spin models with long-range interactions that decay as a
function of the distance between spins with a power law, i.e., with interactions of
the form

Jij ∝ 1

|ri − rj |α . (34)

Here, ri are the spin position vectors, and α ≥ 0 is the power-law exponent.
The main motivation for considering such interactions is that they are realized in
nature, e.g., in the case of electromagnetic interactions (Coulomb: α = 1, dipole–
dipole: α = 3, van der Waals: α = 6). Furthermore, they allow to arrive at
mathematical conclusions depending on only a single parameter, α. The fact that
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interactions always decay as a function of distance allows to also keep a notion of
“dimensionality.” With respect to the dimensionality d, one can classify the range of
interactions into “true” long-range interactions for α < d, in which case interaction
energy of the system diverges in the infinite system limit, and to scenarios where
α > d and the interaction energy remains finite.

In a very general form, we can define our power-law interacting spin models of
interest as

Ĥ =
∑

i>j

(
J xij S

x
i S
x
j + J yij Syi Syj + J zij Szi Szj

)
+
∑

i

hi · Si with J
x,y,z
ij = J̄ x,y,z

|ri − rj |α .

(35)

Here, Si = (Sxi , Syi , Szi ) is a vector of the three spin-S operators Sx,y,zi . The long-
range coupling constants are denoted as J x,y,zij , and they quantify the interaction
energy of two spins at distance |ri−rj | when they are both aligned along the x, y, z
direction, respectively. J̄ x,y,zij quantifies the energy at unit distance |ri − rj | ≡ 1.
In the following, we will focus on models on a lattice, for which we define a lattice
constant a ≡ 1, and thus J̄ x,y,zij reduces to the nearest-neighbor coupling strengths.
In addition, we allow for local “magnetic” fields along the different dimensions
given by the vector hi = (hxi , hyi , hzi ).

The general Hamiltonian (35) includes for example a long-range Heisenberg
model, for which J xij = J

y
ij = J zij or a long-range XY model with J zij = 0.

Both are special cases of an XXZ model with J xij = J yij �= J zij . XY couplings are,
e.g., realized for systems interacting with dipole–dipole far-field interactions for
which α = 3. Such a model describes pairwise coherent energy exchange between
the spins since (Sxi S

x
j + Syi Syj ) ∝ (S+i S−j + S−i S+j ). Note that true dipole–dipole

couplings typically also feature an interaction anisotropy, i.e., an interaction energy
term depending on the relative dipole orientation; however, we will here be mostly
interested in 1D scenarios and aligned dipoles. In ultra-cold atom physics, dipole–
dipole couplings appear for example in systems with polar molecules [40] or with
magnetic atoms [41, 42]. In the case where in Eq. (35) only the spin couplings
for a single particular dimension remain finite, e.g., J yij = J zij = 0 �= J xij ,
the model reduces to an Ising model. Since in this case all the interaction terms
in the Hamiltonian commute with each other, the addition of a non-commuting
transverse field typically leads to a richer quantum non-equilibrium entanglement
dynamics and therefore long-range transverse Ising models of the form of (16),
i.e., J yij = J zij = 0 �= J xij and hxi = h

y
i = 0 �= hzi have been intensively

studied [43, 44]. The Ising interaction is, e.g., relevant for van der Waals-type
interactions for which α = 6. In ultra-cold atom physics, such interactions appear,
e.g., for interacting Rydberg atom setups [45, 46]. They also play a crucial role
in effective spin model implementations with trapped ions, which feature a unique
possibility for Ising models with widely tunable interaction range, α � 2 [47, 48].
Additionally, coupling to cavity modes allows to also realize spin models of the
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form of (35) with infinite range interactions (α = 0). See Sect. 5 for more details on
experimental realizations.

The potential for harnessing long-range interactions of the form (35) to rapidly
generate many-body entanglement between distant degrees of freedom has inspired
a large body of the literature establishing fundamental bounds on the propagation of
information in systems with power-law interactions [11–13, 49–53]. Recent work
has established a hierarchy of Lieb–Robinson bounds in systems with power-law
interactions [12] as well as concrete protocols for exploiting the resulting long-
distance entanglement for quantum state transfer [54, 55].

In the following, we will summarize results for the entanglement growth
dynamics in a long-range interacting transverse Ising model, as defined in Sect. 2.3:

HLRTI =
∑

i<j

J̄

|i − j |α σ
x
i σ

x
j + B

∑

i

σ zi . (36)

We will focus on the results in a 1D chain of M spins. Note that the entanglement
evolution is usually most interesting in lower-dimensional systems. For example,
in equilibrium statistical physics, it is well known that mean-field theories that are
equivalent to the product state ansatz from (29) become a very good approximation,
as quantum fluctuations are typically argued to become less important if the spins
couple to an increasing amount of neighbors. This is to some extent equivalent to a
limit of very long-ranged interactions α→ 0. In such a limit, the system can also be
imagined as being high-dimensional since every spin couples equally to a very large
number of “neighbors.” Below we will indeed see that with an increasing range
of interactions the bipartite entanglement entropies in quench dynamics become
generally suppressed when increasing the range of the power-law interactions.

We introduce three different regimes of power-law interaction ranges, for which
one finds that entanglement growth exhibits qualitatively very different behavior: (i)
The short-range regime for power-law exponents α > 2; (ii) the intermediate-range
regime for power-law exponents 1 < α < 2; and (iii) the long-range regime for
α < 1.

3.1 Short-Range Regime, α > 2

In the case of S = 1/2 and in the limit of nearest-neighbor interactions,
α → ∞, Hamiltonians for Heisenberg, XY, XXZ or Ising models are generally
integrable [56]. This means that they can be solved by Bethe ansatz solutions, which
allows to understand the system dynamics in terms of elementary excitations. In
some cases, easy analytical solutions for the dispersion relations and the shape of
elementary excitations can be given, e.g., for the XY or transverse Ising model,
where a Jordan–Wigner transformation can be used to map the chain to a quadratic
fermionic Hamiltonian as shown above. As described in Sect. 2.3, in such a scenario,
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the dynamics of the quasiparticles after a quench leads to a linear growth of
entanglement as a function of time until a saturation value depending on the
system size. In particular, taking the fully polarized state |ψ(t = 0)〉 = ∏

i |↓〉i
as input state for the transverse Ising Hamiltonian (36) with α = ∞ (note that this
corresponds to a quench of the field strength from ∞→ B since |ψ(t = 0)〉 is the
ground state for B →∞), one finds that [22]

SVN(ρA, t) = ct t +MAc∞ (37)

with constants ct and c∞ and MA the number of spins in the sub-system state
ρA. The two constants ct and c∞ are largest for the scenario where B = J̄ [22].
This means the entanglement growth is fastest for parameters that correspond to the
transition point from a paramagnetic to an anti-ferromagnetic phase in the ground
state of the Hamiltonian.

Remarkably, the same linear entanglement growth behavior is also observed for
finite range interactions ∞ > α > 2 in the long-range transverse Ising model (36).
This is for example shown in Fig. 4a that plots the time-dependent growth of the
von Neumann entanglement entropy, SVN, for half the chain as sub-system (from
[24]). To compute dynamics, we utilize numerically exact MPS simulations of a
chain with M = 50 spins and also compare them to an exact diagonalization
simulation (ED) in a smaller system with M = 20 spins. Focusing on the results
with α > 2, strikingly, while the entanglement growth rate is reduced with the
range of interactions, the linear behavior persists. This hints to the conclusion that
for α ≥ 2 the quasiparticle picture known for the nearest-neighbor case also survives
for finite range interactions in the α > 2 regime. This conclusion is furthermore
strengthened by the observation that theM = 50 andM = 20 simulations perfectly
agree with each other. As explained in Sect. 2.3 (see Fig. 2), in the quasiparticle
picture, the entanglement entropy growth is independent of the system size until
entangled quasiparticles reach the edges of the chain. On the timescale considered
in Fig. 4a (∼ five inverse spin interaction energies), quasiparticles cannot reach the
boundary for both system sizes. It is also worth pointing out that in [24] it was
shown that the linear growth rate of entanglement (constant ct in Eq. 37) remains to
be largest at the point of the ground-state phase transition, which with decreasing
values of α shifts to values of B(J ) < 1.

To better analyze the quasiparticle picture, it is instructive to analyze the
evolution of correlations between two distant spins (summarized, e.g., by the mutual
information in Fig. 2b). In Fig. 4b, c, we analyze the time evolution of the spin–spin
correlations Cd(t) = |〈σ+i σ−i+d〉|, averaged over several starting sites i, as a function
of the distance between spins, d (exact results from an MPS simulation, from [23]).
Panel (b) shows the simulations for α = 3. The color-coded logarithmic scale shows
that there is a clear linear lightcone effect, within whichCd evolves, whereas outside
Cd is strongly suppressed.

Analytically, this lightcone behavior can be rationalized by the dispersion
relation of the linearized Holstein–Primakoff quasiparticles from Eq. (26). As long
as α > 2, this dispersion remains a smooth function of the quasimomentum, and
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Fig. 4 (a) Time-dependent growth of the von Neumann entanglement entropy in a transverse Ising
chain with M spins, for an initially fully polarized state, |ψ(t = 0)〉 = ∏

i |↓〉i and B = J̄ .
Shown are results for M = 20 (solid lines) and M = 50 (dashed lines), which are obtained from
exact diagonalization and numerically exact MPS simulations, respectively. Various power-law
exponents are compared (α = ∞, 3.0, 2.5, 2.0, 1.5). (b, c) Corresponding time evolution of the
spin–spin correlation Cd(t) = |〈σ+i σ−i+d 〉| as a function of distance d (the color scale corresponds
to log10[Cd(t)]). The three white markers correspond to log10[Cd(t)] = −4,−3.5,−3 in (b) and
to log10[Cd(t)] = −3.25,−3,−2.75 in (c) (triangle, square, star, respectively). Panel (b) is for
the short-range regime (α = 3), and panel (c) for the intermediate-range regime (α = 1.5). ((a)
reproduced from [24], (b) and (c) reproduced from [23]))

therefore, elementary excitations with well-defined and maximum possible group
velocities will be excited in the dynamics. It is however important to re-emphasize
that the linearization of the Holstein–Primakoff transformation (22) only remains
valid for states that fulfill 〈a†

i ai〉 � 2S and thus for low-energy quenches or
for short times. In the low-energy quench limit, the quasiparticle dynamics can
be verified [25]. Surprisingly also for high-energy quenches, one finds that the
qualitative spreading of correlations is still very well captured when comparing
the Holstein–Primakoff ansatz to exact MPS simulations [23]. We also want to
note again that the Holstein–Primakoff dispersion has the same features as the
quasiparticle dispersion of a fermionic long-range hopping shown in Fig. 2c that
remains exact for arbitrary high-energy quenches and times. In this model, exact
calculations of correlation functions in very large systems can be performed, which
furthermore allows for a clear characterization of the lightcone boundaries for
α > 2 [23]. Finally, it is worth remarking that while here we focused on results
for a S = 1/2 model, the same conclusions of the Holstein–Primakoff solution
also hold for larger spins. In fact, one may expect that the validity of the model is
extended to higher energies and longer times, since 〈a†

i ai〉 � 2S can be more easily
fulfilled for larger S.

3.2 Intermediate Range Regime, 1 < α < 2

The dynamics of entanglement build-up starts to qualitatively change when the
interactions become longer-ranged, i.e., for α < 2. For example, while for a large
system simulation with M = 50 and α = 1.5 in Fig. 4a, the entanglement entropy
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growth still looks linear with additional small oscillations, now strikingly the growth
dynamics strongly depends on the system size. Large differences in comparison
with theM = 20 simulation appear, already at short times. This implies that distant
parts of the chain must already become entangled at very short times, and thus in
a quasiparticle picture, there must be entangling quasiparticle excitations with very
large group velocities.

Analytically, this is justified by the fact that the dispersion relation for Holstein–
Primakoff excitations (26) [25], or for the related fermionic long-range hopping
model (Fig. 2c), starts to feature a cusp for α < 2, which implies the existence of
elementary excitations with diverging group velocity. However, it is important to
emphasize that whether such excitations can be created or not crucially depends on
the initial state and on the density of states in the vicinity of the diverging group
velocities in quasimomentum space (see Fig. 2c). There, one for example finds
crucial differences in the correlation build-up between the long-range interacting
transverse Ising model and the long-range fermionic hopping model [23]. For the
Ising model, in Fig. 4c, we show the evolution of Cd(t) for α = 1.5. There, it is
clearly visible that it becomes impossible to define a clear edge of the lightcone.
Instead, the decay of the correlations as a function of the distance is significantly
broadened and is not fully linear anymore.

To summarize, in the intermediate regime, entanglement and correlation build-up
still exhibit certain features of a lightcone propagation leading to a linear long-time
entanglement entropy growth, but on the other hand the existence of quasiparticles
with diverging group velocity already leads to significant beyond lightcone features.
It is important to note that those features have been experimentally measured in ion
trap setups, both after single-spin flip quenches [47] and for fully polarized initial
states [48].

3.3 Long-Range Regime, α < 1

Another drastic qualitative change in the entanglement growth dynamics can be
observed when the power-law interaction decays more slowly than α < 1. Note that
in this regime the overall interaction energy starts to diverge in the infinite system
limit, and therefore, the bare interaction energy J̄ has to be re-scaled with M for
meaningful statements in the M → ∞ limit. Strikingly, the change in behavior
at α = 1 is displayed in the quasiparticle dispersion of the Holstein–Primakoff
excitations (26) (or equivalently in the dispersion relation for the long-range
fermionic hopping model in Fig. 2c). For q → 0, one finds that the energy of the
elementary excitations is diverging. Therefore, for initial states where the quench
excites significant excitations near q = 0, the dynamics of such quasiparticles
dominates the entanglement spreading. This is for example seen in the evolution
of the spin–spin correlations, which lose any type or lightcone features [23]. For
example, in Fig. 2b, we find that the mutual information between distant spins is
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Fig. 5 (a) Time-dependent growth of the von Neumann entanglement entropy in a transverse Ising
chain withM spins, for an initially fully polarized state, |ψ(t = 0)〉 =∏

i |↓〉i and B = J̄ . Shown
are results forM = 20. Various power-law exponents are compared (α = ∞, 3.0, 2.0, 1.5). Rapid
entropy at short times and sub-linear increase at later times are observed for α < 1. (b) Same
plot as in (a) for α = 0.5 on a logarithmic timescale, and for various initial states. Initial states
without full permutation symmetry lead to stronger entropy growth at later times. (c) Evolution for
infinite-range interactions α = 0 and the fully polarized symmetric state (M = 50). SVN remains
bounded by the constant log2(M/4 + 1) due to the reduced dimension of the symmetric Hilbert
subspace. ((a, b) reproduced from [23], (c) reproduced from [24])

building up immediately after the quench, and any feature indicating a quasiparticle
arrival at later times vanishes for α < 1.

Also the time-dependent growth of the von Neumann entanglement entropy
changes characteristically at α < 1. As shown in Fig. 5a, one finds in general
(here α = 0.5) a sub-linear oscillatory growth, which for the fully polarized initial
state exhibits a logarithmic increase. However, it is important to point out that
the growth behavior now also strongly depends on the initial state, as shown in
Fig. 5b. In particular, states that do not have permutation symmetry feature a faster
increase rate of the entanglement entropy for t J̄ > 1. On the one hand, this is
again plausible since also excited quasiparticle states around q ∼ 0 do possess
permutation symmetry and thus can be more directly excited in the dynamics.
Another intuitive explanation of this observation can be made in the infinite-range
limit of α→ 0.

For α = 0, Hamiltonian (36) becomes

Hα=0
LRTI = J̄

∑

i<j

σ xi σ
x
j + B

∑

i

σ zi (38)

= J
2
(Sx)2 + BSz − J̄

2
M. (39)

In the second line, we have defined the collective spin operators Sx,z = ∑
i σ
x,z
i .

The collective model in Eq. (39) is also known as Lipkin–Meshkov–Glick (LMG)
Hamiltonian, and its entanglement properties can be analytically studied [57]. Due
to the permutation symmetry of the problem, a complete basis for Hamiltonian (39)
can be constructed in terms of collective spin states, the M + 1 symmetric Dicke
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states:

|S = M
2
,mS = n↑ − M

2
〉 = S |{n↑}〉 . (40)

These states are eigenstates of the collective operator spin-S = M/2 operator Sz

with quantum number mS = −M/2, . . . ,M/2, and they can be written as the
symmetrized superposition of all states with a certain number of spins, n↑, pointing
“up.” Here, S denotes a symmetrization operator, and |{n↑}〉 are all states with n↑
spins in the state |↑〉, and consequentlyM − n↑ spins in the state |↓〉. The bipartite
von Neumann entropy for a sub-system density matrix containing half of the spins
can be straightforwardly computed from simple combinatorial factors [24, 58]:

SLMG
VN = −

∑

l

pl(n↑)log2[pl(n↑)] with pl(n↑) =
(
M/2
l

)(
M/2
n↑−l

)

(
M/2
n↑
) (41)

with 0 ≤ l ≤ M/2. Importantly, since the sum in (41) only features a maximum
of M/2 + 1 terms, the entanglement entropies in symmetric Dicke states are
fundamentally limited to a quantity only growing logarithmic in the system size
SLMG

VN ≤ log2(M/2 + 1). It is therefore also easy to see that in our quench
evolution on the small symmetric Hilbert space, entanglement entropies will remain
limited to this bound. Note that since the quadratic term in Sx in (39) only couples
Dicke states with mS ↔ mS ± 2, the bound can furthermore be tightened to
SLMG

VN (t) ≤ log2(M/4 + 1) [24]. In Fig. 5c, the evolution is demonstrated in an
example simulation for M = 50. We again point out that for initial states that
are outside of the symmetric Dicke manifold, a much larger Hilbert space can be
accessed, which can lead to much larger von Neumann entanglement entropies,
consistent with our observation of the initial-state dependence of the growth rate
in Fig. 5c for α = 0.5.

4 Fast Scrambling and Sparse Models

In previous section, we explored how naturally occurring long-range interactions
could be leveraged to generate many-body entanglement in spin chains. We now
consider pushing this process of entanglement growth to its extremes. In particular,
is there a “speed limit” on how rapidly entanglement can build up in any given
system? The fast scrambling conjecture places a fundamental upper bound on
the rate of entanglement growth in arbitrary quantum systems. Below we present
explicit spin chain models that saturate this bound and highlight the central role
played by nonlocal interactions. Systems that saturate these bounds and generate
maximal entanglement in the shortest possible time are known as fast scramblers.
Such systems share key properties with the dynamics of black holes [59] and
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show prospects for efficient entanglement generation in near-term experiments [60].
In studying these fast scrambling models, we will also find that the pattern of
entanglement developed in these systems can determine the effective geometry of
the underlying dynamics, which may differ substantially from the linear geometry
of the original spin chain.

4.1 Sparse Nonlocal Interactions for Fast Scrambling

What kinds of physical systems are capable of generating such rapid entanglement
growth? We can get a good handle on this question by first studying the Lieb–
Robinson bounds derived in Sect. 2.2. Because these bounds are completely general,
we can use them to characterize the growth of entanglement on any arbitrary
coupling graph G. First, consider averaging Eq. (14) over all vertices i, j in the
graph G,

∑

i,j

1

N2

‖[Oj ,Oi (t)]‖
2‖Oj‖‖Oi‖ ≤ 1

N
exp

[
4ckmax

K
|t |
]
, (42)

where kmax is the maximal degree in the graph. Whenever kmax/K is finite, we see
that operator growth is constrained to be exponentially fast. In particular, for chaotic
systems that exhibit Lyapunov growth

∥∥[Oj ,Oi (t)]
∥∥2 ∼ 1

N
eλLt , the bound (42)

establishes that the Lyapunov exponent λL can be no larger than

λL ≤ 4ckmax

K
, (43)

thereby placing a bound on quantum many-body chaos at infinite temperature.
Note that this bound on the Lyapunov exponent is distinct from the chaos bound
of Maldacena et al, which places a bound on the Lyapunov exponent at finite
temperature [61]. Moreover, since scrambling cannot occur until almost all OTOCs
have grown to be order unity [6], the result (42) establishes that scrambling cannot
occur before a time

t∗ ≥ K

4ckmax
logN. (44)

This therefore provides a proof of the fast scrambling conjecture on any graph for
which kmax/K is finite.

The generalized Lieb–Robinson bound also constrains which graphs G are
capable of supporting fast scrambling. Further manipulations to (14) (see Appendix
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B of Ref. [17]) lead to

exp

[
2c|t |
K
(D+A)

]

ij

< exp

[
4eckmax

K
|t | − rij

]
, (45)

where e ≈ 2.718 and the graph distance rij is the minimal path length between
vertices i and j , i.e.,

rij = min {n ∈ N s.t. [An]ij = 1}. (46)

Equation (45) is the classic Lieb–Robinson bound [8]. From this expression, we
see that the timescale required for an arbitrary operator to spread throughout the
entire system is limited by the path length between the two most distant sites r ≡
maxi,j (rij ), or the graph diameter. We immediately conclude that only graphs with
diameter r � logN can support fast scrambling [10, 17]. Fast scrambling is therefore
impossible for all systems defined on a regular lattice in D dimensions, which have
graph diameter r = N1/D .

4.2 Sparse Nonlocal Fast Scramblers

We argued above that nonlocal interactions are crucial to engineering fast scram-
bling; in particular, square lattices in any dimensionD have diameterN1/D � logN
and therefore are incapable of supporting fast scrambling dynamics even in princi-
ple. Here, we introduce sufficiently nonlocal spin models that feature a logarithmic
graph diameter and are also sufficiently chaotic to generate strong scrambling
dynamics. These models feature sparse couplings that can be implemented in near-
term cold atom experiments employing trapped Rydberg atoms or neutral atoms
coupled to an optical cavity, as we review in Sect. 5.

Here we consider sparse nonlocal Hamiltonians of the form

H = 1

2S

∑

i,j

J (i − j)S+i S−j , (47)

with translation-invariant couplings J (i − j) defined on a sparse graph where sites
i, j are coupled if and only if they are separated by a power of two,

J (i − j) =
{
Js2�s when |i − j | = 2�, � = 0, 1, 2, 3 . . .

0 otherwise,
(48)

as illustrated in Fig. 6a. The couplings in Eq. (48) are normalized by setting Js = J0
when s ≤ 0 and Js = J0(N/2)−s for s > 0, such that the largest coupling is always
a constant J0. Here, by tuning the exponent s from −∞ to +∞, we interpolate
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Fig. 6 Sparse nonlocal spin models with tunable geometry. (a) In the power-of-2 model, pairs of
spins in a 1D chain are coupled if and only if they are separated by an integer power of 2. (b) By
varying the envelope exponent s, we can tune the sparse model from a linear limit for s → −∞
to a treelike limit for s → +∞. Between these two limits s = 0, the sparse couplings form
an “improved hypercube” graph that allows for fast scrambling. (c) The quasiparticle dispersion
relation for s = −2, 0, 2 as a function of real-space momentum k (top) and as a function of
Monna-mapped momentum kM (bottom). (d) Quasiparticle density 〈nj 〉 in the power-of-2 model
for s = −2, 0, 2 (i–iii). The clear lightcone present in the linear regime (i) breaks down in the
fast scrambling and treelike regimes (ii, iii). A lightcone re-emerges when the system is organized
either by graph distance (iv) or by 2-adic treelike distance (v). (Reproduced from [62])

between a linear limit (s → −∞) where the physics resembles a nearest-neighbor
spin chain, and a treelike limit (s → +∞) in which the underlying geometry is
radically reorganized as illustrated in Fig. 6b [62]. In between these two limits,
with s = 0, all nonzero couplings are equal and the coupling graph is highly
nonlocal. These nonlocal couplings permit information to spread exponentially
quickly throughout the system because the number of pairwise interactions required
for a particle to hop between any two sites i, j is never more than the Hamming
distance |i − j |Hamming < log2N when the site indices i, j are written in binary.
The rapid spreading of information afforded by the nonlocal couplings at s = 0
allows this model to generate fast scrambling dynamics.

The primary features of the model can already be observed by considering
quasiparticle dynamics described by a nonlocally coupled harmonic Hamiltonian
similar to the discussion in Sect. 2.3. Because the couplings J (i−j) are translation-
invariant, we can easily diagonalize this harmonic model by performing a Fourier
transform of the creation and annihilation operators a, a†. This yields a single-
particle dispersion relation

εk =
∑

d

J (d)eikd = 2Js

log2(N/2)∑

l=0

2ls cos
(

2lk
)
. (49)

We plot this dispersion relation as a function of momentum k in Fig. 6c for
exponents s = −2, 0, 2 (blue, black, red). For s < 0, the dispersion relation
is smooth and resembles the dispersion relation for a free particle in a chain
with nearest-neighbor interactions. By contrast, for s > 0, the dispersion relation
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becomes jagged and consists of features on the scale of the inverse lattice spacing
2π/N . When s = 0, the dispersion relation appears to have a fractal structure.

Using the dispersion relation, we may immediately compute the particle density
〈nj 〉(t), which we plot in Fig. 6d. For s < 0, the system exhibits a clear linear
lightcone as the initially localized excitation spreads ballistically through the
system. By contrast, for s > 0, the excitation jumps discontinuously between distant
sites, and a lightcone is not immediately apparent. It is tempting to interpret the
absence of an obvious lightcone at s > 0, along with the discontinuities in the
dispersion relation εk , as indicating the absence of any notion of locality in this
regime. Instead, we find that a new version of locality emerges in the limit s →∞
based on the treelike structure shown in Fig. 6b.

A dramatic reconception of geometry—where we significantly alter the defini-
tion of which spins are “close” to one another and which are “far apart”—allows
us to recover a sense of locality from the apparently discontinuous hopping we
observe for s > 0. Specifically, we may restore a sensible notion of spatial locality
by defining distance in terms of the 2-adic norm |x|2 = 2−v(x), where 2v(x)

is the largest power of 2 that divides x. The distance |i − j |2 between sites i
and j is called ultrametric because the distance of the sum of two steps is never
greater than the larger of the two steps’ distance; by contrast, the usual distance
|i − j | is called Archimedean because many small steps can be combined into a
large jump. We can understand the 2-adic norm as a treelike measure of distance
because |i − j |2 = 2dtree(i,j)/2/N , where dtree(i, j) is the number of edges between
sites i and j along the regular tree in Fig. 6b. The leaves are numbered in order
of increasing M(i), where the discrete Monna map M reverses the bit order in
the site number. For example, for N = 8 sites, M(1) = 4 because in binary,
M(0012) = 1002. Noting that Nk/2π is an integer, we may likewise define a
Monna-mapped wavenumber kM by

N
kM
2π

=M
(
N
k

2π

)
. (50)

For large positive s, we rearrange the spins according to the Monna map and find
that a lightcone reappears (Fig. 6d(v)) and the dispersion relation is smoothed out
(Fig. 6c, bottom), corroborating the transformation to the treelike geometry defined
by the 2-adic norm.

At the crossover point s = 0 where all nonzero couplings are of equal
strength, neither the linear nor the treelike geometries are suitable for describing
the spread of quantum information. Instead, the sparse nonlocal couplings facilitate
rapid spreading of information throughout the entire system on a logarithmic
timescale t∗ ∼ logN , as demonstrated already in the single-particle dynamics
shown in Fig. 6d(ii). In this limit, the coupling graph is equivalent to the “improved
hypercube” illustrated in Fig. 6b, consisting of edges from a regular hypercube plus
a few extra diagonal couplings to ensure the system is translationally invariant.
The improved hypercube has graph diameter ( 1

2 log2N) and is therefore capable
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of hosting fast scrambling dynamics by the graph-theoretic arguments presented in
Sect. 4.1.

To examine the structure of entanglement naturally generated by the nonlocal
power-of-2 couplings (48), we numerically simulate the evolution of the system
using exact diagonalization for a system ofN = 16 spins with S = 1/2 and compute
the resulting entanglement entropy between a variety of sub-systems. We initialize
the system in a polarized state along Sx , evolve the system for a time t , then partition
the system into (not necessarily sequential) sub-systems Q = A ∪ B, and compute
the von Neumann entanglement entropy SA of sub-system A.

Figure 7 shows the resulting entanglement entropy for bipartitions A,B as a
function of the partition size L = |A| and time. We partition spins into sub-
systems A,B either according to their physical position in the linear chain (top)
or their Monna-mapped ordering (bottom). When |s| is large, we observe that there
is a natural way to partition the system such that the entanglement entropy is low
regardless of the length L of the partition. That is, for s < 0, we minimize the
entanglement entropy by cutting the system between nearest neighbors in the linear
chain, while for s > 0 we must cut the system between branches of the Bruhat–Tits
tree. By contrast, if we use the “wrong” partitioning (e.g., Monna-mapped partition
for s < 0), we find a very large entanglement entropy that depends sensitively on
the region’s length L.

At the crossover point s = 0, however, we find that entanglement entropy
is large no matter how we partition the system. As shown in Fig. 7b, both the
linear ordering (blue dotted) and the Monna-mapped ordering (red dash-dotted)
give bipartitions with large entanglement entropy at s = 0. Moreover, we can
consider the entanglement entropy across bipartitions A,B without regard to any
sort of locality. In Fig. 7b, we also consider all possible bipartitions of size L = |A|

Fig. 7 Entanglement entropy as a probe of geometry. (a) Entanglement entropy for contiguous
subregions of length L in the linear (top) or treelike (bottom) geometry. When s = −2, a
linear partitioning of the system yields area-law entanglement at short times, whereas a treelike
partitioning yields spurious volume-law entanglement; this suggests that a linear geometry is
a suitable description for the dynamics. When s = 2, a treelike partitioning yields area-law
entanglement, suggesting a treelike geometry. When s = 0, neither geometry produces area-law
entanglement. In fact, at s = 0, every partition of the system has volume-law entanglement, as
demonstrated in (b). This indicates that the s = 0 model is a fast scrambler. (Reproduced from
[62])
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and choose the bipartition with the smallest entanglement entropy at each value of
s. Even so, we still find that the entanglement entropy is large at s = 0. In fact, at
s = 0, we find that the entanglement entropy grows linearly with the partition sizeL,
indicating a volume law in which entanglement extends into the bulk of the region
A. These results indicate that there really is no notion of locality at the crossover
point s = 0: all spins are equally “close” to one another, and there is entanglement
between all pairs of spins.

5 Implementation in Experiments

Here, we briefly survey some of the state-of-the-art experimental platforms that can
be used to explore entanglement growth in spin chains with structured long-range
interactions using cold atoms and ions. This list is not exhaustive and represents
only a small fraction of the experimental platforms available for controlled studies
of entanglement growth.

5.1 Long-Range Interactions with Trapped Ions

Important motivation for studying information propagation with structured long-
range interactions has come from experiments with trapped ions, in which the spin
states are encoded on long-lived internal states of trapped ion chains in 1D Paul traps
or 2D Penning traps [63]. In these experiments, controllable spin–spin interactions
that decay algebraically with distance can be realized by using laser driving of spin
transitions that couple also to the collective motional modes of the ions. Coupling
off-resonantly to many motional modes produces effective Hamiltonians such as
that in Eq. 16, with an algebraic decay exponent that can in principle vary from
α = 0 to α = 3, and typically ranges in experiments from 0.5 � α � 2.5.

There have been extensive experiments on information spreading [47, 48] and
recent experimental work exploring the growth of entanglement and scrambling in
these systems [64]. Future combinations with gate operations typical of quantum
computing setups open the possibility for flexible programmable quantum simula-
tion, which could access a broad variety of spin models with structured long-range
interactions in these experiments [63].

5.2 Long-Range Interactions with Rydberg Atoms

Hydrogen-like alkali atoms whose outermost electron has been excited to a Rydberg
state |r〉 with very high principal quantum number n are extremely sensitive to
external electric fields due to the Rydberg state’s large electric susceptibility. This
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Fig. 8 Experimental platforms for studying entanglement growth in quantum spin chains with
long-range interactions. (a) Rydberg atoms in 1D optical lattices interact via long-range Van der
Waals forces that shift the doubly occupied Rydberg state |rr〉ij for nearby atoms, leading to a
Rydberg blockade effect. Repeated tweezer-assisted shuffling can be used to engineer effective
pairwise interactions on a nonlocal hypercube coupling graph amenable to fast scrambling.
(Reproduced from [60]). (b) Atoms coupled to the optical mode of a high-finesse cavity interact
pairwise via a four-photon scattering process. Applying a linear magnetic field gradient along
the cavity axis and driving the cavity with a multi-frequency drive field, we may engineer sparse
nonlocal spin–spin interactions whose strengths are individually tuned by the relative strengths of
the drive sidebands. Using this flexible drive scheme, we may engineer sparse interactions that
either decay (i) or grow (ii) with distance. (Reproduced from [62])

sensitivity leads to long-range van der Waals forces between pairs of Rydberg atoms
that decay as a power law 1/

∣∣ri − rj
∣∣6; these interactions can be harnessed to

process quantum information [65]. In modern experiments, an ensemble of atoms
i = 0, . . . , N−1 are typically prepared in a stable ground state |g〉i and trapped in a
lattice of optical tweezers as shown in Fig. 8a [66–76]. To generate interactions, the
atoms are then optically excited by an applied drive laser to the Rydberg state |r〉i .
The pairwise Van der Waals interactions strongly shift the doubly excited Rydberg
state |rr〉ij , prohibiting nearby pairs of atoms i, j from being simultaneously excited
(Fig. 8a). This “Rydberg blockade” effect yields an effective Hamiltonian

H =
∑

i<j

Jij ninj −
∑

i

iσ
z
i +

∑

i

�i

2
σxi , (51)

where �i,i are the Rabi frequency and detuning of the drive laser from the
Rydberg state |r〉i , and where the couplings Jij = C/

∣∣ri − rj
∣∣6 are naturally long-

ranged. Additional optical and magnetic fields can be used to engineer a variety of
additional non-commuting terms in this Hamiltonian or to simulate non-equilibrium
(time-dependent) dynamics, and Rydberg dressing schemes or other state and field
choices can be used to generate alternative long-range interaction models.

While these Rydberg interactions are naturally long range, they are ultimately
still constrained by the D-dimensional geometry of flat spacetime and are therefore
incapable of executing fast scrambling dynamics by the arguments of Sect. 4.1.
We can get around this problem by significantly altering the effective geometry
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of the interactions using tweezer-assisted shuffling [60]. Stretching and interleaving
tweezer operations [77–80] can be used to rapidly shuffle the atom positions, as
shown in Fig. 8b, thereby generating effective nonlocal interactions. For example,
repeated interleaving of the atoms rapidly generates an m-regular hypercube graph
Qm [81, 82], a highly nonlocal, sparsely connected coupling graph shown in Fig. 8b.
Many-body entanglement can be rapidly and efficiently built up on this graph using
far fewer Rydberg interaction layers than would be needed in strictly 1D systems
without shuffling.

5.3 Long-Range Interactions in Cavity Quantum
Electrodynamics

Cavity QED systems can be engineered to mediate highly nonlocal spin–spin
interactions between pairs of atoms trapped in the optical mode of the cavity [3, 83–
85]. This coupling allows the atoms to exchange excitations with the cavity mode
with an effective Hamiltonian:

H = ωc c†c +
∑

i

(
ωZ |↑〉 〈↑|i + ωa |e〉 〈e|i

)+
∑

i

(
gic |e〉 〈↑|i + gic |e〉 〈↓|i + h.c.

)
,

(52)

where c is the annihilation operator for the cavity mode with resonance frequency
ωc and gi is the atom–cavity coupling. Here, each atom i is a three-level system
with ground states |↑〉i , |↓〉i separated by a ground-state energy splitting ωZ , and
excited state |e〉i with energy ωa as illustrated in Fig. 8b.

By optically driving the cavity at a large detuning  = ωc − ωa � gi〈c†c〉
from atomic resonance, the cavity mode c and the atomic excited state |e〉i are
unlikely to be populated and can be integrated out of the dynamics via standard
perturbation theory [86]. In this case, the dominant processes are four-photon
scattering transitions in which a pair of atoms i, j mutually flip their spins
|↓〉i |↑〉j → |↑〉i |↓〉j by exchanging a cavity photon as illustrated in Fig. 8b. These
four-photon scattering processing generate effective spin–spin interactions between
the atoms with effective Hamiltonian:

Heff ∝
∑

ij

ξiξj S
+
i S

−
j + h.c., (53)

which describes all-to-all spin-exchange interactions between all pairs of atoms,
where the coefficients ξi are determined by the local couplings gi [3].

By applying a linear magnetic field gradient along the cavity axis and driving
the cavity with multiple drive fields, as shown in Fig. 8b, it is possible to impose
a further structure on the natural all-to-all couplings and realize sparse nonlocal
interactions [62, 85, 87]. The linear magnetic field gradient along the length of
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the chain splits the |↓〉i , |↑〉i energies of the spins in a staircase pattern, where
the ground-state energy splitting ωZ,i is now a function of atomic position i and
increases linearly with atomic position. As a result of this energy splitting, the four-
photon process introduced above is off-resonant and the interactions are shut off.
However, by driving the cavity with two or more frequencies simultaneously, we
may selectively reintroduce interactions between pairs of atoms that are separated
by a particular distance d. That is, driving the system at the resonant frequency
νd = ωi+d − ωi generates pairwise spin flip processes |↓〉i |↑〉i+d → |↑〉i |↓〉i+d
only between spins that are separated by exactly d = j − i sites, and all other
pairs are off-resonant to this drive. We can then build up additional interaction
terms by adding more frequencies to our drive. As a result, we obtain a highly
tunable set of distance-dependent interactions between atoms controlled by the
spectrum of the drive light. With this flexible driving scheme in hand, we are able to
implement a large class of nonlocal spin-exchange models including the translation-
invariant sparse models (47) studied in Sect. 4.2. This drive scheme has recently
been demonstrated in cavity experiments where it was used to engineer a variety
of exotic coupling patterns that are not accessible in any other experimental system
[85].

6 Outlook and Further Connections

In summary, experimental systems available in experiments with trapped ions,
atoms in cavities, and tweezer arrays motivate an interesting new area where we
can look at dynamics well beyond what we usually see in local interacting systems.
In this chapter, we have only begun to introduce a wide range of possibilities
to explore many-body physics in these systems, solely focusing on entanglement
growth without disorder. There are large sub-fields discussing phenomena such as
many-body localization [88, 89] in these systems, as well as topological effects.
Long-range interactions occur in many systems in addition to those discussed here,
including systems of polar molecules [40, 90], or harmonically trapped gases [91].
Dressed Rydberg excitations can also provide another way to generate controlled
long-range interactions [65, 92].

The entanglement build-up discussed here can also be used as a building block
for wider applications. Fast scrambling circuits like those described here can be
leveraged to generate nearly random many-body matrices U , which are valuable
resources in a variety of information processing contexts. For example, random
matrices naturally generate random error-correcting codes, which can be used to
protect quantum information from the effects of dissipation [93]. Random matrices
can also be used to directly probe entanglement entropies in experiments without the
need to introduce SWAP operators between multiple copies [64]. Finally, these fast
scrambling circuits can be harnessed to teleport quantum information via Hayden–
Preskill-type protocols, which rely on the fast scrambling dynamics to successfully
teleport information [94–96].
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Quantum Map Approach
to Entanglement Transfer
and Generation in Spin Chains

Salvatore Lorenzo, Francesco Plastina, Mirko Consiglio,
and Tony J. G. Apollaro

Abstract Quantum information processing protocols are efficiently implemented
on spin- 1

2 networks. A quantum communication protocol generally involves a
certain number of parties having local access to a subset of a larger system, whose
intrinsic dynamics are exploited in order to perform a specific task. In this chapter,
we address such a scenario with the quantum dynamical map formalism, where the
intended protocol is cast into the form of a map acting on the local subset of spins.
We reformulate widely investigated protocols, such as one-qubit quantum state
transfer and two-qubit entanglement distribution, with the quantum map formalism
and demonstrate its usefulness in exploring less investigated protocols such as multi-
qubit entanglement generation.

1 Introduction

Due to their formal analogy to quantum registers, quantum spin- 1
2 networks

have become the ideal testbed for many quantum information processing (QIP)
protocols, ranging from quantum key distribution to quantum computation [1].
The availability of accurate theoretical models governing their dynamics, being
amenable to solutions through either analytical techniques (especially for one-
dimensional systems [2]) or powerful numerical techniques, such as those based
on tensor network algorithms [3], allows for the investigation of various and distinct
protocols. These include, on the one hand, standard QIP protocols such as one-qubit
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quantum state transfer or bipartite Bell-type entanglement generation, taking place
in a Hilbert space having dimensionality higher than that generally accessible via
exact diagonalisation techniques. On the other hand, new QIP protocols are being
introduced, aimed at exploring the complexity of the geometry of high-dimensional
Hilbert spaces [4], such as in particular quantum state transfer [5]. At the same
time, remarkable progress has been made in order to experimentally verify these
QIP protocols and communication processes on a variety of experimental platforms,
with which the simulation of some quantum spin networks has been successfully
achieved, using: cold atoms [6–8], Rydberg atoms [9–11], integrated photonic
chips [12], trapped ions [13–15], atom–cavity systems [16, 17], and superconducting
circuits [18, 19], among others.

In the realm of the QIP tasks implementable with spin systems, a series of basic
operations have been identified falling into the class of quantum communication
protocols [20], which includes both the distribution and the generation of quantum
resources at different space-time locations. A common communication scenario,
depicted in Fig. 1, is represented by the circumstance in which a certain number of
parties Pi, i = 1, . . . n, each one having access to only a relatively small subset Si
of a larger physical system S (e.g., to a limited number of sites of a spin network),
are required to receive/transfer quantum information from/to the others. Each party
is then allowed to perform only local quantum operations; that is, Pi is able to act
on Si only, with the complementary system, S̄i : S \ Si , being inaccessible to any
quantum operation it can carry out. Additionally, one can also allow for classical
communication, i.e., the exchange of classical information among the parties. This
combination is referred to as LOCC (local operations and classical communication),

Fig. 1 Sketch of a generic
quantum spin- 1

2 network S,
where each party Pi has
access to the subset Si
(i = 1, 2, 3), on which local
quantum operations are
allowed. In addition, the
parties can exchange classical
communication among them.
The shaded area encloses the
subsets Si , the dashed lines
indicate quantum correlations
between the spins entering
the QIP protocol, and the
black continuous lines are the
interactions among the spins
in the network
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and the properties of LOCC operations determine to a large extent the fundamental
limits for the performance of QIP protocols [21].

In this chapter, we will employ the quantum dynamical map formalism, typically
used in the theory of open quantum systems [22], to illustrate QIP protocols for
quantum state transfer, entanglement distribution, and generation on a homogeneous
system, made up of a spin- 1

2 network. We will assume that each party i has access
to a subset of ni spins of the network and has control over the interactions of the
spins of this subset with the complementary system. Our aim is to derive the form
of the dynamical map and, whenever possible, its analytical expression, in order
to determine which LOCC operations maximise the efficiency of the investigated
QIP protocols. We will focus, in particular, on the case of quantum dynamical
maps obtained from spin Hamiltonians exhibiting U(1) symmetry and, in order to
obtain analytical results, investigate specific instances where the spin Hamiltonian
is integrable.

The chapter is organised as follows: in Sect. 2, we review the quantum dynamical
map formalism and apply it to U(1)-symmetric Hamiltonians in Sect. 3. In Sect. 4,
we illustrate the use of the formalism for case of single-qubit quantum state transfer
and Bell-state distribution; in Sect. 5, we derive the two-qubit map for entanglement
generation and distribution; in Sect. 7, we explore the use of a 4-qubit dynamical
map for investigating multipartite entanglement; and, finally, in Sect. 8, we draw
our conclusions and provide some outlooks.

2 Quantum Dynamical Maps

A quantum dynamical map between two systems associated to the Hilbert spaces
H1, H2 can be identified with a linear homomorphism � : D(H1)→D(H2)

mapping the space of density matrices acting on the input Hilbert space, into the
space of density matrices acting on the output Hilbert space. Therefore, any �
preserves the basic properties of the quantum states:

• Self-adjointness: �(ρ†)† = �(ρ)
• Complete positivity: �(ρ) > 0
• Normalisation condition: Tr(ρ) = 1
• Linearity: �(aρA + bρB) = a�(ρA)+ b�(ρB)
For the purpose of our investigation, we consider, from now on, finite-dimensional
Hilbert spaces. For such finite-dimensional case, the space of linear maps L(Cn)
can be identified with the algebra of n× n complex matrices,Mn. Any orthonormal
basis |i〉 : i=1, . . . , n in C

n allows to define the orthonormal basis of elementary
matrices inMn:

eα = eij = |i〉〈j | , (1)
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and any map can be expressed as

�(ρ) =
∑

α,β

AβαTr{eβρ}eα . (2)

In this basis, the matrix A satisfies the following properties:

Aβα ≡ Anmij ,

⎧
⎪⎪⎨

⎪⎪⎩

(
Anmij

)∗ = Amnji ,
Anmii = δmn ,
Anmij ρnm > 0 .

(3)

The map � is completely positive if there exists a family of N operators Ki :
i=1, . . . , N in Mn, which satisfy the condition

∑
i K

†
i Ki = 1, and such that �

can be decomposed as [23–25]

�(ρ) =
N∑

k=1

EkρE
†
k . (4)

By explicitly writing the matrix elements, we immediately find the relationship
between map and Kraus operators:

(� (ρ))ij =
N∑

k=1

∑

nm

(Ek)in (ρ)nm

(
E

†
k

)

mj
=
∑

nm

Anmij (ρ)nm . (5)

Note that, from Eq. (4), it is evident that for N = 1 the map � represents a unitary
mapU = UρU†.

In this chapter, we are interested in entanglement generation and transfer
between two sub-parties that we dub sender and receiver, each of them taking care,
controlling and possibly making measurements on a subset of the system’s spins.
We denote the states of the subsystems pertaining to sender and receiver as ρ

S
and

ρ
R

, respectively, and assume that these are the marginals obtained from the state of
a larger system σ , whose time evolution is dictated by a Hamiltonian generating a
unitary map, i.e., σ(t) = U(t) (σ (0)). We assume that the initial state of this larger
system, σ(0), is a product state between ρ

S
and a reference pure state |�〉

S
. In other

words, we are concerned with maps of the following form:

ρ
R
= �(ρ

S
) = Tr

R
{U(ρ

S
⊗ |�〉

S
〈�|)}, (6)

where we indicate with Tr
R

the partial trace over all but R degrees of freedom.
Denoting with |r〉

R
an orthonormal basis ofH

R
, we have

ρ
R
= �(ρ

S
) =

∑

r

(
R
〈r|U |�〉

S

)
ρ
S

(
S
〈�|U† |r〉

R

)
=
∑

r

ErρSE
†
r . (7)
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It is important to remember that the Kraus operators Er are time-dependent and
that they depend on the choice of the basis in HR and, more generally, on the
choice of sender and receiver subsets themselves. The matrix representation of the
corresponding map can be found according to Eq. (5).

3 U(1)-Symmetric Hamiltonians

In this section, we will derive the general form of the quantum dynamical map
in Eq. (5) when the unitary evolution operator entering Eq. (6) exhibits U(1)
symmetry. Without loss of generality, we focus on spin- 1

2 Hamiltonians with
isotropic Heisenberg-type interactions in the XY plane:

Ĥ =
∑

i,j

(
Jij

(
σ̂ xi σ̂

x
j + σ̂ yi σ̂ yj

)
+ij σ̂ zi σ̂ zj

)
+
∑

i

hi σ̂
z
j , (8)

where σ̂ αi (α = x, y, z) are the usual Pauli matrices, i denotes the index of the site,
Jij and ij are, respectively, the two-qubit interaction terms in the XY plane and
along the Z-axis, and hi is the magnetic field along the Z-axis. In fact, the class of
Hamiltonians exhibiting the U(1) symmetry is larger than that described by Eq. (8)
and encompasses Hamiltonians with Dzyaloshinskii–Moriya [26] and XY isotropic
cluster interaction terms [27], among others.

In terms of spin operators, the U(1) symmetry implies that the total magnetisa-
tion along the Z-axis,

〈
M̂
〉 = ∑N

i=1

〈
σ̂ zi

〉
, is a conserved quantity and the operator

M̂ commutes with U . Hence, it is possible to divide the whole Hilbert space into
invariant subspaces, labelled by the eigenvalues of M̂ , with each subspace having
the dimension determined by the degeneracy of the eigenvalue,

(
N
i

)
, where i denotes

the number of flipped spins. Indeed, by writing the spectral decomposition of M̂ as

M̂ =
∑

k

∑

d

λk

∣∣∣φdk
〉 〈
φdk

∣∣∣ , (9)

we know that U
∣∣φdk

〉
is an eigenstate of M̂ with eigenvalue λk , i.e.,

〈
φd

′
k′
∣∣∣U

∣∣∣φdk
〉
=
〈
φd

′
k′
∣∣∣U

∣∣∣φdk
〉
δkk′ = (fk)d ′d δkk′ . (10)

Thus, we can then write U as a direct sum of unitary operators acting in each
subspace

U = U0 ⊕ U1 ⊕ U2 ⊕ . . . (11)
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If we now observe the elements of the Kraus operators entering in Eq. (7), they take
the form

(Er)in = R
〈i|Er |n〉S = R

〈i|
R
〈r|U |�〉

S
|n〉

S
. (12)

This inherently places some constraints on the elements of the Kraus operators and
consequently on the map elements. Indeed, if the state |�〉

S
|n〉

S
belongs in a given

subspace, then
R
〈i|

R
〈r| must belong to that subspace as well in order for the above

equation to be non-zero. Without loss of generality, we take |�〉
S
|n〉

S
as living in the

n-th supspace, implying that i+r = n. In the following, we will assume |�〉
S
= |0〉,

i.e., a fully polarised state.

4 One-Qubit Map

To begin our analysis, let us consider the simplest case: a map from qubit i (the
sender) to qubit j (the receiver): ρ̂j (t) = �(t)ρ̂i(0), where i and j are (possibly
identical) positions in a spin network. In this case, we have two possible values of
r = 0, 1 and, consequently, two Kraus operators:

E0 =
(

1 0
0 f ji

)
, Ek1 =

(
0 0
f ki 0

)
with k �= j . (13)

By using Eq. (5), we can write the map as

⎛

⎜⎜⎝

ρ00

ρ01

ρ10

ρ11

⎞

⎟⎟⎠

j

=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 1−
∣∣∣f ji

∣∣∣
2

0 f ji 0 0

0 0
(
f
j
i

)∗
0

0 0 0
∣∣∣f ji

∣∣∣
2

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎝

ρ00

ρ01

ρ10

ρ11

⎞

⎟⎟⎠

i

, (14)

where we use the completeness relation
∑
n

∣∣f ni
∣∣2 = 1.

In this simple case, perfect state transfer, i.e., ρ̂jnm = ρ̂inm, entails f ji =
(
f
j
i

)∗ = 1.

A considerable amount of research has been performed in order to investigate the
conditions that allow to maximise the transition amplitude [28].

In Bose’s original protocol [29], this is achieved by a local magnetic field acting
on the spins. The map in Eq. (14) is also informative about remote state preparation
protocols: the coherence (in the computational basis) of spin j cannot increase with
respect to that of spin i under the action of this map as the off-diagonal elements of
the output density matrix can only be suppressed, or, at most, maintain their initial
amplitude.
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Fig. 2 A schematic picture of an entanglement distribution protocol. Initially, the external qubit 0
is entangled with qubit i, and the aim is to exploit the map in Eq. (16) to entangle the former with
qubit j

Apart from quantum state transfer protocols, the map in Eq. (14) can be used to
analyse entanglement distribution protocols, like the one reported in Refs. [29, 30]
and sketched in Fig. 2. Explicitly, the map is given by

ρ̂(t)0j = (10 ⊗�i(t)) ρ̂(0)0i , (15)

where 10 is the 4-dimensional identity map acting on qubit 0 and �i(t) is given by
the map in Eq. (14) acting on qubit i. The map reads

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0,j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1−|f |2 0 0 0 0 0 0 0 0 0 0

0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1−|f |2 0 0 0 0 0 0 0 0

0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 f ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 |f |2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 f ∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 |f |2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1−|f |2 0 0

0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1−|f |2
0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 f ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 f ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0,i

. (16)



328 S. Lorenzo et al.

In the original entanglement distribution protocol given in Ref. [29], the entangle-
ment encoded in a singlet state on sites 0 and i is distributed to sites 0 and j resulting

in a concurrence C =
∣∣∣f ji (t)

∣∣∣. From the map in Eq. (16), it is evident that the same

holds true for any Bell state. On the other hand, for X-type density matrices [31],
the distributed entanglement does not increase linearly with the (modulus of the)
transition amplitude f but instead reads

C = 2 max [0, C1, C2] , (17)

where

C1 = |f |
(
|ρ12| −

√
ρ33

(
ρ00 + ρ11

(
1− |f |2))

)
, (18)

C2 = |f |
(
|ρ03| −

√
ρ11

(
ρ22 + ρ33

(
1− |f |2))

)
(19)

denote the so-called anti-parallel and parallel concurrences, respectively [32].
Looking carefully at the map, one can see that the ratio of transferred entanglement
over initial entanglement depends only on the transition amplitude and not on the
fact that entanglement is of the parallel or anti-parallel type. The dependence on |f |
is not linear, as in the pure Bell-state scenario, and in Fig. 3, we show the ratio of the
transferred concurrence vs. the initial concurrence (C = 3p−1

2 ) for an initial Werner
state

ρ̂W = p |�B〉 〈�B | + (1− p) 1

4
, (20)

where |�B〉 is any Bell state.

Fig. 3 Ratio of transferred
entanglement vs. |f | for a
Werner state for different
values of p in Eq. (20). The
curves, from bottom to top,
are drawn for
p = 0.4, 0.5, 0.7, 0.9, 1
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Fig. 4 A schematic picture of an entanglement distribution protocol. Initially, qubit i is entangled
with qubit ν, and the aim is to exploit the map in Eq. (16) to entangle qubit j with qubit μ

Now we consider the case where the entanglement distribution protocol is
designed in order to send to sites (n, μ) (the receiver sites), and the entanglement
initially shared between sites (i, ν) (sending sites) using two independent spin
networks. A particular instance of this setup is given in Fig. 4, and both there and in
the setting of the problem above, Latin (Greek) letters are used to denote the sites
on the first (second) chain. This protocol is reminiscent of the dual-rail encoding
protocol for sending a single-qubit state [33].

The map is given by

ρ̂(t)jμ = (�i(t)⊗�ν(t)) ρ̂(0)iν (21)
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and reads

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1−|g|2 0 0 0 0 1−|f |2 0 0 0 0
(
1−|f |2) (1−|g|2)

0 g 0 0 0 0 0 0 0 0 0 g
(
1−|f |2) 0 0 0 0

0 0 f 0 0 0 0 f
(
1−|g|2) 0 0 0 0 0 0 0 0

0 0 0 fg 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 g∗ 0 0 0 0 0 0 0 0 0
(
1−|f |2) g∗ 0

0 0 0 0 0 |g|2 0 0 0 0 0 0 0 0 0
(
1−|f |2) |g|2

0 0 0 0 0 0 fg∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 f |g|2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 f ∗ 0 0 0 0
(
1−|g|2) f ∗ 0 0

0 0 0 0 0 0 0 0 0 gf ∗ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 |f |2 0 0 0 0 |f |2 (1−|g|2)

0 0 0 0 0 0 0 0 0 0 0 g|f |2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 f ∗g∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 |g|2f ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2g∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |f |2|g|2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

where we have used the short-hand notation f = f ji and g = f μν . If we assume that
the two spin networks are identical and that the locations of the initially correlated
sites and of the receiving ones are also the same on the two networks, the matrix
above simplifies as f = g. Again, this is the same settings adopted in the dual-rail
protocol [34] to attain perfect state transfer. In such a case, with ρ̂iν being anX-type
state, the anti-parallel and parallel concurrences reported in Eq. (17) are given by

C1 = |f |2
(
|ρ12| −

√
ρ33

(
ρ00 +

(
1− |f |2) (ρ11 + ρ22 +

(
1− |f |2) ρ33

)))

(23)

C2 = |f |2
(
|ρ03| −

√(
ρ11 +

(
1− |f |2) ρ33

) (
ρ22 +

(
1− |f |2) ρ33

))
. (24)

Due to the use of two channels, as depicted in Fig. 4, the ratio of transferred
over initial entanglement depends, this time, not only on the transition amplitude,
but also on the type of entanglement (whether parallel or anti-parallel). This is also
the case when investigating the effect of the spin environment on the entanglement,
which has been carried out in Ref. [35], by analysing the properties of the map
ρ̂(t)jμ = (�i(t)⊗�ν(t)) ρ̂(0)jμ.

As one can expect, the anti-parallel entanglement C1 attains larger values with
respect to C2 at fixed transition amplitude |f |. Intuitively, this is due to the fact
that in the former case, only one excitation is present in the system, whereas, in the
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Fig. 5 Ratio of transferred over initial entanglement vs. |f | for a Werner state for different values
of p in Eq. (20). The curves, from bottom to top, are drawn for p = 0.4, 0.5, 0.7, 0.9, 1. The left
plot corresponds to a Werner state with maximally entangled component given by |�B 〉 =

∣∣�+
〉
,

whereas for the right plot we have chosen |�B 〉 =
∣∣�+

〉

latter, two excitations enter the dynamics. This leads to an increase in the effects
of decoherence due to the dispersion of the extra excitation all over the network.
A figure of merit describing the amount of transferred entanglement is reported in
Fig. 5, in the case of initial Werner states (Eq. 20).

5 Two-Qubit Map

In this section, we derive the expression of � for the case of two sender qubits
located at arbitrary positions i and j in a spin network. For a generic two-qubit
receiver at sites n,m, it is instructive to write the map in matrix form.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i,j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00
00 0 0 0 0 A11

00 A
12
00 0 0 A21

00 A
22
00 0 0 0 0 A33

00

0 A01
01 A

02
01 0 0 0 0 A13

01 0 0 0 A23
01 0 0 0 0

0 A01
02 A

02
02 0 0 0 0 A13

02 0 0 0 A23
02 0 0 0 0

0 0 0 A03
03 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 A10
10 0 0 0 A20

10 0 0 0 0 A31
10 A

32
10 0

0 0 0 0 0 A11
11 A

12
11 0 0 A21

11 A
22
11 0 0 0 0 A33

11

0 0 0 0 0 A11
12 A

12
12 0 0 A21

12 A
22
12 0 0 0 0 A33

12

0 0 0 0 0 0 0 A13
13 0 0 0 A23

13 0 0 0 0

0 0 0 0 A10
20 0 0 0 A20

20 0 0 0 0 A31
20 A

32
20 0

0 0 0 0 0 A11
21 A

12
21 0 0 A21

21 A
22
21 0 0 0 0 A33

21

0 0 0 0 0 A11
22 A

12
22 0 0 A21

22 A
22
22 0 0 0 0 A33

22

0 0 0 0 0 0 0 A13
23 0 0 0 A23

23 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A30
30 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 A31
31 A

32
31 0

0 0 0 0 0 0 0 0 0 0 0 0 0 A31
32 A

32
32 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A33
33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ01

ρ02

ρ03

ρ10

ρ11

ρ12

ρ13

ρ20

ρ21

ρ22

ρ23

ρ30

ρ31

ρ32

ρ33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n,m

(25)
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The map in Eq. (25) can be written in a more compact form defining the Kraus
operators in all of magnetisation sectors, as illustrated in Sect. 3, where Eq. (12) has
elements

A = E0 ⊗ E∗0 + E1 ⊗ E∗1 + E2 ⊗ E∗2 , (26)

and

E0 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0

0 fm
j
fm
i

0

0 f n
j
f n
i

0

0 0 0 f nm
ij

⎞

⎟⎟⎟⎟⎠
, E

k �=i,j
1 =

⎛

⎜⎜⎜⎜⎝

0 f k
j
f k
i

0

0 0 0 f km
ij

0 0 0 f nk
ij

0 0 0 0

⎞

⎟⎟⎟⎟⎠
, E

k,l �=i,j
2 =

⎛

⎜⎜⎜⎝

0 0 0 f kl
ij

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎠ .

(27)

This explicit form of the map shows, for example, that ρ03(t) = A03
03ρ03(0). As

a consequence (and analogously to the impossibility of amplifying coherence in the
single-qubit case), the Bell states

∣∣�±
〉
cannot be generated by this map, irrespective

of the initial state of the qubits. On the other hand, the Bell states
∣∣�±

〉
can be

generated by LOCC as the coherences ρ12 can be build up starting from ρ11, ρ22,
and/or ρ33, i.e., by locally flipping the spins on the sender and/or receiver sites.

From Ref. [36], we can borrow the following two-qubit map’s elements for
the case in which the receiver coincides with the sender (so that, in fact, we are
evaluating how good is information storage at sites i, j ), ρ̂ij (t) = �t ρ̂ij (0)

A00
00 = 1 , A11

00 = 1−
∣∣∣f ii

∣∣∣
2 −

∣∣∣f ji
∣∣∣
2
, A22

00 = 1−
∣∣∣f ij

∣∣∣
2 −

∣∣∣f jj
∣∣∣
2
,

A33
00 = 1−

∣∣∣f miij
∣∣∣
2 −

∣∣∣f mjij
∣∣∣
2 −

∣∣∣f ijij
∣∣∣
2
, A12

00 = −f ii
(
f ij

)∗ − f ii
(
f ij

)∗
,

A21
00 = −f ij

(
f ii

)∗ − f jj
(
f
j
i

)∗
,

A01
01 =

(
f
j
i

)∗
, A02

01 =
(
f
j
j

)∗
, A13

01 = f mi
(
f
mj
ij

)∗
, A23

01 = f mj
(
f
mj
ij

)∗
,

A01
02 =

(
f ii

)∗
, A02

02 =
(
f ij

)∗
, A13

02 = f mi
(
f miij

)∗
, A23

02 = f mj
(
f miij

)∗
,

A03
03 =

(
f
ij
ij

)∗
,

A11
11 =

∣∣∣f ji
∣∣∣
2
, A12

11 = f ji
(
f ij

)∗
, A21

11 = f jj
(
f
j
i

)∗
, A22

11 =
∣∣∣f jj

∣∣∣
2
, A33

11 =
∣∣∣f mjij

∣∣∣
2
,

A11
12 = f ji

(
f ii

)∗
, A12

12 = f ji
(
f ij

)∗
, A21

12 = f jj
(
f ii

)∗
, A22

12 = f jj
(
f ij

)∗
, A33

12 = f mjij
(
f miij

)∗
,

A13
13 = f ji

(
f
ij
ij

)∗
, A23

13 = f jj
(
f
ij
i

)∗
,
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A33
22 =

∣∣∣f miij
∣∣∣
2
, A11

22 =
∣∣∣f ii

∣∣∣
2
, A22

22 =
∣∣∣f ij

∣∣∣
2
, A12

22 = f ii
(
f ij

)∗
, A21

22 = f ij
(
f ii

)∗
,

A13
23 = f ii

(
f
ij
ij

)∗
, A23

23 = f ij
(
f
ij
ij

)∗
, A33

33 =
∣∣∣f ijij

∣∣∣
2
, (28)

where, whenever the index m appears, a summation over all m �= S,R is intended.
For the general case describing the transfer of a given two-qubit state from the

sending pair i, j to the receiving pair n,m, ρ̂nm(t) = �t ρ̂ij (0), the matrix elements
read

A00
00 = 1 , A11

00 = f kj
(
f kj

) ∗ , A12
00 = f kj

(
f ki

) ∗,

A21
00 = f ki

(
f kj

) ∗ , A22
00 = f ki

(
f ki

) ∗ , A33
00 = f klij

(
f klij

) ∗ ,

A01
01 =

(
f mj

) ∗ , A02
01 =

(
f mi

) ∗ , A13
01 = f kj

(
f kmij

) ∗ , A23
01 = f ki

(
f kmij

) ∗ ,

A01
02 =

(
f nj

) ∗A02
02 =

(
f ni
) ∗ , A13

02 = f kj
(
f nkij

) ∗ , A23
02 = f ki

(
f nkij

) ∗ ,

A03
03 =

(
f nmij

) ∗ ,

A10
10 = f mj , A20

10 = f mi , A31
10 = f kmij

(
f kj

) ∗ , A32
10 = f kmij

(
f ki

) ∗ ,

A11
11 = f mj

(
f mj

) ∗ , A12
11 = f mj

(
f mi

) ∗ , A21
11 = f mi

(
f mj

) ∗,

A22
11 = f mi

(
f mi

) ∗ , A33
11 = f kmij

(
f kmij

) ∗ ,

A11
12 = f mj

(
f nj

) ∗ , A12
12 = f mj

(
f ni
) ∗ , A21

12 = f mi
(
f nj

) ∗A22
12 = f mi

(
f ni
) ∗,

A33
12 = f kmij

(
f nkij

) ∗ ,

A13
13 = f mj

(
f nmij

) ∗ , A23
13 = f mi

(
f nmij

) ∗ ,

A10
20 = f nj , A20

20 = f ni , A31
20 = f nkij

(
f kj

) ∗ , A32
20 = f nkij

(
f ki

) ∗ ,

A11
21 = f nj

(
f mj

) ∗ , A12
21 = f nj

(
f mi

) ∗ , A21
21 = f ni

(
f mj

) ∗A22
21 = f ni

(
f mi

) ∗,

A33
21 = f nkij

(
f kmij

) ∗ ,

A11
22 = f nj

(
f nj

) ∗ , A12
22 = f nj

(
f ni
) ∗ , A21

22 = f ni
(
f nj

) ∗A22
22 = f ni

(
f ni
) ∗ ,

A33
22 = f nkij

(
f nkij

) ∗ ,

A13
23 = f nj

(
f nmij

) ∗ , A23
23 = f ni

(
f nmij

) ∗ ,
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A30
30 = f nmij ,

A31
31 = f nmij

(
f mj

) ∗ , A32
31 = f nmij

(
f mi

) ∗ ,

A31
32 = f nmij

(
f nj

) ∗ , A32
32 = f nmij

(
f ni
) ∗ ,

A33
33 = f nmij

(
f nmij

) ∗ . (29)

6 Two-Qubit Entanglement Generation

In the simplest setting, Alice and Bob aim at generating entanglement between
the qubits in their possession, respectively, A and B, located at some positions in
the spin network, by performing local operations on their qubits and exchanging
classical communication between them. By definition, LOCC by itself does not
allow for neither the increase nor the generation of entanglement between qubits A
and B; but the presence of the spin network can give rise to an effective interaction
between these qubits, resulting in the possible generation of quantum correlation. In
Fig. 6, an instance of such an entanglement generation protocol is depicted, where
Alice and Bob have access to one spin at each end of a 1D spin chain. In Ref. [37],
it has been shown that, by weakly coupling the end qubits to the wire, their state
evolves into a Bell state at half of the transfer time of the excitation between the
edges. This result has been extended in Ref. [38] to the generation of a Bell state
between two users coupled at arbitrary positions in a spin network, provided control
over the local magnetic field is allowed on the sites chosen to be entangled. Results
similar to the weak-coupling scheme can be obtained by strong local magnetic fields
on neighbouring spins both for one- and two-qubit quantum state transfer [39, 40].

In Ref. [41], the authors showed that initialising the system in |�〉AB =
|+〉A |+〉B |ψ〉W , where |+〉 = 1√

2
(|0〉 + |1〉) and |ψ〉W is an arbitrary state with

fixed parity of the wire, and a maximally entangled state between qubits A and B
can be achieved in a ballistic time, provided Alice and Bob can tune the strength of
the couplings of their qubits to the wire to an optimal value [42].

Fig. 6 Alice and Bob have access, respectively, to qubitsA and B, located at the two ends of a spin
chain (wire). Entanglement between the two qubits can be generated by exploiting the dynamics
of the quantum wire, whose Hamiltonian includes a nearest-neighbour interaction term
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7 Four-Qubit Entanglement Generation

In Sect. 5, we have analysed the case where Alice and Bob each have access to
one qubit in the spin network. Here, instead, we consider the case where they each
have access to two qubits. An instance where each pair of qubits is located at an
edge of a spin chain is depicted in Fig. 7. A general analysis of the entanglement
generated in an arbitrary four-qubit state has not yet been performed, except for pure
states [43, 44], due to the complexity of defining entanglement quantifiers for an
arbitrary four-qubit mixed state (as a result of the mixed state being in the presence
of infinitely many SLOCC classes [45]).

Restricting only to the A|B partition, in Ref. [46], it is shown that starting from
|�〉AB = |1100〉 and |�〉AB = |1010〉 (or their mirror-symmetric states |�〉AB =
|0011〉 and |�〉AB = |0101〉), a product of two Bell states, i.e., |�〉AB = |�〉A1B2

⊗
|�〉A2B1

or |�〉AB = |�〉A1B1
⊗ |�〉A2B2

, is attained at specific times during the
evolution for g � J . On the other hand, the initial state |1001〉 (and its mirror-
symmetric state |0110〉) does not generate any entanglement in the A|B partition at
any time.

Let us now characterise the type of entanglement these initial states achieve
during the evolution of the dynamical map. Starting from the state |�〉AB = |1100〉
results in the evolution

|�(t)〉AB = 1

2

[(
1− cos

g2t

J

)
|0011〉 + i sin

g2t

J
|0101〉 ,

−i sin
g2t

J
|1010〉 +

(
1+ cos

g2t

J

)
|1100〉

]
, (30)

which can be written in a biseparable form

|�(t)〉AB =
∣∣∣∣sin

g2t

2J

∣∣∣∣

[(
|01〉 + −i cot

g2t

2J
|10〉

)

A1B2

,

⊗
(
|01〉 + i cot

g2t

2J
|10〉

)

A2B1

]
, (31)

Fig. 7 Alice and Bob have access to qubits A1, A2 and B1, B2, respectively, located at the two
ends of a spin chain (wire), which is capable of generating an entangled state by exploiting its
intrinsic dynamics
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implying that the concurrence in each two-qubit state is equal to CA1B2 = CA2B1 =∣∣∣sin g
2t
J

∣∣∣. This means that a product of two Bell states is created after a time t =
πJ
2g2 . It is also noteworthy to consider the four-tangle [47], a measure of multipartite
entanglement, which is defined for pure states as

τ4(|ψ〉) =
∣∣〈ψ | σy ⊗ σy ⊗ σy ⊗ σy

∣∣ψ∗
〉∣∣2 . (32)

In this case, the calculation can be carried out explicitly, and we get that

τ4(|�(t)〉AB) ≡ τA1A2B1B2 =
∣∣∣sin g

2t
J

∣∣∣
4
. This means that even though the state (31)

is biseparable, the four-tangle is non-zero when the two-qubit concurrences are
non-zero, implying that the four-tangle is not a measure of exclusive four-way
entanglement per se. One can also consider the three-tangle [48] of the three-qubit
partitions, which contrary to the four-tangle, is exclusively a measure of three-way
entanglement. The caveat of this measure is that it is only defined for pure states,
while the generalisation to mixed states is described via the convex roof extension.
Thus, the three-tangle of a mixed state ρ is given as the average pure state three-
tangle minimised over all possible pure state decompositions:

τ3(ρ) = min{pi,|ψi 〉}
∑

i

piτ3 (|ψi〉) , (33)

which for a pure state

τ3(|ψ〉) = C2
A(BC) − C2

AB − C2
AC , (34)

and CA(BC) =
√

2
(
1− Tr

(
ρ2
A

))
. If we now consider taking the Eigendecomposi-

tions of the partial trace of state (31) with respect to every qubit, we find that the
three-tangle of each decomposed pure state for each traced out qubit is equal to zero.
This means that we have found a minimal pure state decomposition so that the three-
tangle of state (31), with respect to any partition involving three qubits, is equal to
zero, implying there is no three-way entanglement generation between the senders
and receivers at any time t . This is a consequence of the fact that the initial state
does not exhibit any coherence between states having support in the magnetisation
sectors with zero and three excitations, and the dynamics are not able to generate
any. Clearly, multipartite entanglement distribution protocols are feasible whenever
the initial state contains some amount of entanglement, as shown in Ref. [49] for
the case of the three-tangle when the sender’s state is GHZ-like.
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Let us now move to analyse the evolution of the state generated from |�〉AB =
|1010〉. We get that the evolution results in

|�(t)〉AB = 1

2

[(
cos 2J t + cos

g2t

J

)
|1010〉 +

(
cos 2J t − cos

g2t

J

)
|0101〉 ,

−i sin 2J t (|1001〉 + |0110〉)− i sin
g2t

J
(|1100〉 − |0011〉)

]
.

(35)

To characterise the different types of entanglement in Eq. (35), we need to look
towards a new entanglement measure further to the two-qubit concurrence and three-
and four-tangles. We will specifically use the four-qubit concurrence given in Ref.
[50], which is defined for a pure state as

C1234 =
(
C1(234)C2(134)C3(124)C4(123)C(12)(34)C(13)(24)C(14)(23)

) 1
7 , (36)

where CA(BCD) =
√

2
(
1− Tr

(
ρ2
A

))
and C(AB)(CD) =

√
4
3

(
1− Tr

(
ρ2
AB

))
. The n-

partite concurrence is essentially the geometric mean of the concurrence over the set
of all possible bipartitions, which is similar to the GME concurrence [51], although
the latter is defined as the minimum value of the concurrence over all bipartitions.
This inherently implies that the four-qubit concurrence is zero if and only if the four-
qubit pure state is separable to some degree. Plotting the four-qubit concurrence
CA1A2B1B2 along with the two-qubit concurrences CA1B2(= CA2B1) and CA1A2(=
CB1B2), and the four-tangle τA1A2B1B2 , for J

2

g2 = 104, we obtain Fig. 8.
The two-qubit concurrences CA1B1 and CA2B2 are equal to zero at all times t .

We make a note that at time t = πJ
2g2 we acquire a product of two Bell states

similar to when we use state (31). Once again, by taking the Eigendecompositions
of the partial trace of state (35) with respect to every qubit, we find that the three-
tangle is zero at all times t for every partition consisting of three qubits. Combining

Fig. 8 Plot of the two- and the four-qubit concurrences and of the four-tangle for the state (35)

with t in units of J/g2. The three panels are at t = [0, π ] (left), t =
[
π

4g2 ,
π

4g2 + π
]

(centre), and

t =
[
π

2g2 ,
π

2g2 + π
]

(right), corresponding, respectively, to the beginning, a quarter and an half of

the period of the longest time-scale dictated by g−2
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this with the fact that at certain times t , we have that the only non-zero two-qubit
concurrences are CA1A2 and CB1B2 and that the four-qubit concurrence CA1A2B1B2

is also non-zero, meaning that the state is fully inseparable, implies that there must
be some non-zero value of exclusive four-way entanglement shared between the
senders and the receivers.

8 Conclusion

In this chapter, we have adopted the general framework of quantum dynamical
maps in order to investigate some instances of controlled quantum information
dynamics on spin networks. Specifically, we considered those maps emerging from
the dynamics of a subset of spin- 1

2 particles embedded in a larger network that
we divided into sender and receiver parts for convenience. Focusing on the case
of a U(1)-symmetric Hamiltonian governing the dynamics of the network, we
have derived the explicit form of the dynamical map in terms of the excitation
transfer amplitude and applied it to review both single-qubit quantum state transfer
and two-qubit transfer and corresponding entanglement generation. Finally, we
have considered a specific topology of the network where analytical solutions are
available for the transfer amplitude and have shown that the quantum map formalism
allows the analysis of more complex scenarios such as multi-qubit entanglement
generation. It is interesting to note that Ref. [52] provides another means of
investigating entanglement generation in quantum state transfer protocols that has
not been investigated in this chapter.

The range of applicability of the illustrated approach goes well beyond the cases
investigated in this chapter, as it can be easily extended to include classical com-
munication feedback, constraints on the achievable quantum information protocols
stemming from the symmetries of the Hamiltonian reflected in the quantum map,
and spin networks exposed to external noise.
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Weak Ergodicity Breaking Through the
Lens of Quantum Entanglement

Zlatko Papić

Abstract Recent studies of interacting systems of quantum spins, ultracold atoms,
and correlated fermions have shed a new light on how isolated many-body systems
can avoid rapid equilibration to their thermal state. It has been shown that many
such systems can “weakly” break ergodicity: they possess a small number of
non-thermalising eigenstates and/or display slow relaxation from certain initial con-
ditions, while the majority of other initial states equilibrate fast, like in conventional
thermalising systems. In this chapter, we provide a pedagogical introduction to
weak ergodicity breaking phenomena, including Hilbert space fragmentation and
quantum many-body scars. Central to these developments have been the tools based
on quantum entanglement, in particular matrix product states and tangent space
techniques, which have allowed to analytically construct non-thermal eigenstates in
various non-integrable quantum models, and to explore semiclassical quantisation
of such systems in the absence of a large-N or mean-field limit. We also discuss
recent experimental realisations of weak ergodicity breaking phenomena in systems
of Rydberg atoms and tilted optical lattices.

1 Introduction

Experimental progress in cold atoms, trapped ions, and superconducting circuits [1,
2] has generated a flurry of interest into foundational questions of many-body
quantum mechanics, such as how a statistical-mechanics description emerges in
isolated quantum systems comprising many degrees of freedom. In experiments
with quantum simulators, the process of thermalisation can be conveniently probed
in real time by quenching the system: one prepares a non-equilibrium initial state
|ψ(0)〉, typically a product state of atoms, and observes its fate after time t , see
Fig. 1a.
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Fig. 1 Strong vs. weak breakdown of thermalisation. (a) Experiments probe thermalisation of
isolated many-body systems using a quantum quench: the system is prepared in a simple initial
state |ψ(0)〉, and the dynamics of some local observable O and entanglement entropy S are
measured during unitary evolution. (b) Strong breakdown of ergodicity caused by (many-body)
localisation leads to qualitatively different dynamical behaviours compared to an ergodic system.
This difference persists for broad classes of initial states. (c) In contrast to (b), weak ergodicity
breaking results in strikingly different dynamical behaviour when different initial states evolve
under the same thermalising Hamiltonian. Quantum scarred systems, discussed in Sect. 6, are
an important class of systems where such behaviour has been experimentally observed. (d)
Manifestations of weak ergodicity breaking in entanglement and expectation values of local
observables in the system’s eigenstates. Red dots correspond to eigenstates of a weakly non-ergodic
system, where enhanced fluctuations and outlier states (red diamonds) are visible, compared
to typical eigenstates of conventional thermalising systems (black dots) whose properties vary
smoothly with energy E. This chapter focuses on the mechanisms and physical realisations of the
phenomenology summarised in (c, d)

Well-isolated systems can be assumed to evolve according to the Schrödinger
equation for the system’s Hamiltonian H . Thermalisation can be characterised
by the time evolution of local observables, 〈O(t)〉, or entanglement entropy,
S(t)=−trρA(t) ln ρA(t). The latter is defined as the von Neumann entropy for the
reduced density matrix, ρA, of the subsystem A. Here we assume that the entire
system is bipartitioned into A and B subsystems, and ρA(t)=trB |ψ(t)〉 〈ψ(t)| is
obtained by tracing out the degrees of freedom belonging to B. Entanglement
entropy quantifies the spreading of quantum correlations between spatial regions
as the entire system remains in a pure state.

The results of measurements described above are schematically illustrated in
Fig. 1b, which contrasts the behaviour of two large classes of physical systems:
quantum-ergodic systems [3, 4] and many-body localised (MBL) systems [5–7]. In
the first case, parts of the system act as heat reservoirs for other parts, and an initial
non-equilibrium state relaxes to a thermal equilibrium, with some well-defined
effective temperature. This behaviour is reminiscent of classical chaotic systems,
which effectively “forget” their initial condition in the course of time evolution. In
contrast, in MBL systems, local observables reach some stationary value that is non-
thermal, retaining the memory of the initial state. As a result, systems with strong
ergodicity breaking can sustain much longer quantum coherence. For example, the
information stored in certain local observables would not decay in MBL systems,
while it would rapidly decohere in an ergodic system (Fig. 1b, bottom panel). The
behaviour of local observables is mirrored by that of quantum entanglement: in
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thermalising systems, entanglement typically grows linearly with time, S(t)∼t ,
corresponding to quasiparticles moving at a finite speed [8]. In MBL systems,
quasiparticles are localised, with residual, exponentially decaying interactions that
lead to slow, logarithmic increase of entanglement, S(t)∝logt [9–11], see the top
panel of Fig. 1b.

The generic behaviour of quantum-chaotic systems sketched in Fig. 1b is
expected to hold irrespective of the chosen initial state. This is a consequence
of the eigenstate thermalisation hypothesis (ETH) [3, 4], a powerful conjecture
governing the behaviour of quantum-ergodic systems—see Box 1. In contrast, the
present chapter focuses on recent theoretical works and experiments that pointed
to the existence of a new class of behaviours, which can be loosely thought of
as “intermediate” between thermalisation in fully chaotic systems and strong-ETH
breakdown like in MBL systems. In such weakly non-ergodic systems, certain initial
states show relaxation to thermal ensembles, yet other states exhibit non-stationary
dynamics including persistent oscillations, illustrated in Fig. 1c. Moreover, such
systems also weakly violate the ETH in their eigenstate properties: e.g., they exhibit
a few “outlier” states with anomalously low-entropy and local observable matrix
elements that do not vary smoothly with energy, see Fig. 1d.

This new regime of ergodicity breaking attracted broader attention after the
experimental observation of dynamical revivals in large-scale Rydberg atom
quantum simulators [12]. Weak ergodicity breaking observed in such systems
was subsequently named quantum many-body scarring [13, 14], highlighting its
analogy with chaotic stadium billiards, which had been known to host non-ergodic
eigenfunctions bearing “scars” of classical periodic orbits [15]. The discovery
of many-body quantum scars fuelled a broader quest to understand physical
consequences of weak ergodicity breaking. Importantly, during this quest, it came
to light that some examples of weak ergodicity breaking had previously been
known. For example, non-integrable models, such as the Affleck–Kennedy–Lieb–
Tasaki (AKLT) spin chain, had been rigorously proven to possess non-thermal
eigenstates [16, 17], which are now understood to share a similar algebraic structure
with the non-thermal eigenstates in Rydberg atom systems. Other, more general,
mechanisms of weak ergodicity breaking, such as Hilbert space fragmentation [18,
19] and “embedding” constructions [20], have also come into light and are being
experimentally probed [21].

This chapter provides a pedagogical introduction to weak ergodicity breaking
phenomena, expanding upon a recent short overviewed in Ref. [22]. As will become
clear from the many physical examples presented below, the phenomenology of
weak ergodicity breaking is quite rich and still rapidly evolving as this chapter is
being written. Instead of giving an exhaustive review of all these developments,
the aim is to highlight common themes between currently known examples of
non-thermal dynamics, in particular focusing on the insights obtained by studying
quantum entanglement in such systems. In Sect. 2, we start by introducing the
relevant methodology based on matrix product states that has successfully been used
in recent works to analytically construct non-thermal eigenstates and to define the
semiclassical limit of non-integrable many-body systems. In Sect. 3, we discuss
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in detail three main mechanisms of weak ergodicity breaking and highlight their
realisations in physical systems. Section 4 introduces the so-called PXP model
that has played one of the key roles in understanding weak ergodicity breaking
in Rydberg atom experiments. In Sect. 5, we relate the semiclassical quantisation
of many-body systems with the time-dependent variational principle applied to
manifolds spanned by tensor network states. In Sect. 6, we explain how these
ideas allow to explore parallels between weak ergodicity breaking in many-body
systems and quantum scars in few-body systems. Finally, in Sect. 7, we discuss two
experimental platforms—Rydberg atoms and cold atoms in tilted optical lattices—
that have recently observed signatures of weak ergodicity breaking. Conclusions
and some open questions are presented in Sect. 8.

Box 3 : Eigenstate Thermalisation Hypothesis (ETH)
Eigenstate thermalisation hypothesis (ETH) [3, 4] governs the process of
thermalisation in closed quantum systems in the absence of coupling to a
thermal bath. For present purposes, the following three consequences of
the ETH are most relevant (for more information, see one of the recent
reviews [23–25]):

1. The expectation values of physical observables in individual, highly
excited eigenstates of ergodic systems are “thermal”, i.e., they are identical
to those evaluated using the microcanonical ensemble. Thus, highly excited
states of ergodic systems can be intuitively viewed as random vectors
in the Hilbert space, and expectation values of local observables in
such eigenstates are a smooth function of energy, independent of other
microscopic details.

2. By postulating the form of the off-diagonal matrix elements, the ETH
makes predictions for the temporal fluctuations of local observables:
independent of the initial state, an observable approaches its equilibrium
value and then remains near that value most of the time, with fluctuations
exponentially suppressed by the thermodynamic entropy.

3. For a large finite subsystem A of an infinite ETH system, the reduced
density matrix ρA is equal to the thermodynamic density matrix at the
effective temperature set by the energy of the corresponding eigenstate.

The equality between thermal and reduced density matrices (3) implies
that the entanglement entropy scales as the volume of region A. For example,
in one spatial dimension, volume law implies S∝LA. This reflects the fact
that ergodic eigenstates are highly entangled, and agrees with the intuition
that the ETH eigenstates are similar to random vectors. In some physical
systems considered below, we will encounter global kinetic constraints,
similar to those occurring in classical glasses [26]. In such systems, the
Hilbert space is globally constrained, and a “random” vector is understood

(continued)
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Box 3 (continued)
to be one compatible with the constraints. Consequently, the entropy of such
constrained random vectors can differ [27] from the so-called Page value
attained by random qubit states [28].

In systems that obey the so-called strong ETH [29], the above properties
are expected to hold for all states [30]. On the other end, maximal violation of
ETH is known to occur in integrable systems [31] and MBL systems [32],
both of which have macroscopic numbers of conservation laws. Between
these extremes lie the weak ergodicity breaking phenomena discussed in
this chapter, where the majority of eigenstates follows the predictions of
the ETH, while a smaller number of eigenstates (e.g., polynomially many in
system size) violate these properties. Similarly, out-of-equilibrium dynamics
from most initial conditions results in fast relaxation, consistent with ETH
expectations, while special initial conditions can lead to non-stationary
dynamics at relatively long times.

2 Matrix Product State Methods

The investigation of weak ergodicity breaking in non-integrable quantum systems
has greatly benefited from matrix product states (MPS) [33], a formalism designed
to compactly represent and perform algebraic manipulations on a class of quantum
states that are weakly entangled. These methods are naturally suited to capture
aspects of weak ergodicity breaking, as the main signatures of the latter are
the suppression of entanglement or its growth rate compared to conventional
thermalising systems. Recent works have demonstrated the utility of MPS methods
in two new settings: (i) the MPS have allowed to exactly construct highly excited
eigenstates (i.e., eigenstates at finite-energy density above the system’s ground state)
of a wide class of physical systems; (ii) the MPS have been used to effectively
define the system’s semiclassical dynamics by projecting the Schroödinger time
evolution into the manifold of MPS states while conserving the total energy of the
system. In this section, we provide a brief overview of this methodology that yielded
much of the physical insights into weak ergodicity breaking phenomena presented
in subsequent sections.

2.1 Towers of Quasiparticles

Consider a one-dimensional quantum chain with a d-dimensional Hilbert space on
each of the L sites. The many-body basis of the system is formed by tensor products
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of single-site Hilbert spaces, |σ1, σ2, · · · , σL〉. Any state can be decomposed in this
basis as

|ψ〉 =
∑

σ1,σ2,...,σL

cσ1σ2...σL |σ1, σ2, . . . , σL〉 (1)

by specifying its dL coefficients cσ1σ2...σL . This illustrates the “exponential barrier”
to studying many-body systems: one must specify ∼ exp(L) coefficients to fully
describe a generic state of a system of size L.

The idea of MPS is that each of the coefficients in Eq. (1) can be viewed as
resulting from a product of matrices A[σi ]i of dimensions χ × χ ,

cσ1σ2...σL = bTl A[σ1]
1 A

[σ2]
2 . . . A

[σL]
L br . (2)

The matrices A are defined over the so-called auxiliary space with dimension χ ,
but they also depend on the physical degrees of freedom σi . Moreover, for open
boundary conditions, the matrices also vary from site to site in general; hence,
they carry a label i. The boundary χ -dimensional vectors, bl and br , determine
the boundary conditions for the wave function. Thus, we have re-expressed a dL-
dimensional tensor cσ1σ2...σL in terms of d × χ × χ tensors Ai .

If the system is translation-invariant, the matrices are the same on every site (or
between different unit cells, more generally), and the boundary vectors are replaced
with a trace over the auxiliary space,

cσ1σ2...σL = Tr
(
A
[σ1]
1 A

[σ2]
2 . . . A

[σL]
L

)
. (3)

Equations (2)–(3) furnish an MPS representation for the wave function in Eq. (1).
Intuitively, χ controls the degree of entanglement in the wave function. When

χ=1, we have a mean-field description where degrees of freedom on different
sites are independent of each other; increasing χ builds in quantum correlations
between different sites. For a general state, rewriting the coefficients cσ1σ2...σL in
MPS form would require χ to be exponentially large in L. However, for states
in one spatial dimension that obey the “area law” [34], i.e., whose entanglement
entropy obeys S ≤ const, χ is also bounded by a constant. This results in a major
simplification when describing such states using the MPS. Moreover, the same
language also offers a complete algebraic framework to manipulate the MPS, for
example, we can efficiently add two MPS states or calculate expectation values
of local observables sandwiched between MPS states. The latter is achieved by
expressing local operators in a similar representation known as “matrix product
operator” (MPO) [35].

Ground states of many important condensed-matter systems are known to possess
elegant MPS representations. A notable example is the Affleck–Kennedy–Lieb–
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Tasaki (AKLT) [36] quantum spin-1 model:

H =
L∑

j=1

(
1

3
+ 1

2
�Sj · �Sj+1 + 1

6
(�Sj · �Sj+1)

2
)
, (4)

where �S are the spin-1 operators, and we assume periodic boundary condition, i.e.,
L+1 ≡ 1. The ground state of this model has an exact MPS representation, Eq. (3),
with

A[+] =
√

2

3
σ+, A[0] = − 1√

3
σz, A[−] = −

√
2

3
σ−, (5)

where the labels +, 0, and − denote the Sz= + 1, 0, and −1 spin-1 basis states,
respectively, and σ±, σz are the spin-1/2 Pauli operators. Thus, for the AKLT state,
the physical dimension d=3, and the bond dimension is only χ=2. This state and
the model in Eq. (4) played an important role in establishing the existence of the
Haldane gap in integer-spin chains [37].

Beyond examples such as AKLT, where the MPS exactly describe certain states,
it has been shown more generally that the ground-state wave functions of gapped
local Hamiltonians can be approximated by an MPS with a small bond dimension
χ [38]. This result can be intuitively understood from the fact that the ground
states of gapped local Hamiltonians are necessarily weakly entangled [39] and
hence well-represented by the MPS. However, this intuition does not immediately
extend to highly excited states at a finite-energy density above the ground state.
As previously discussed in Sect. 1, in a generic quantum many-body system,
finite-energy-density states are expected to be governed by the ETH; hence, their
entanglement is expected to be high (i.e., scaling with the volume of the subsystem),
so their MPS representation would not be efficient (as mentioned above, it would
require χ ∝ exp(L)).

Recent work by Moudgalya et al. [17] on the AKLT model has shown that the
MPS can nevertheless capture some ETH-violating eigenstates of a non-integrable
model, regardless of how high in the energy spectrum such states occur. The
technique used in these works is the construction of quasiparticle excitations above
the ground state, originally introduced in works on tangent space methods [40–42].
Following Ref. [17], a single-site quasiparticle excitation with momentum k on top
of a general MPS state, |ψA〉, is given by

|ψA (B, k)〉 =
L∑

j=1

eikj
∑

{σj }
Tr
(
· · ·A[σj−1]B[σj ]A[σj+1] · · ·

)
|σ1σ2 · · · σL〉 , (6)

where B[σj ] is a χ × χ matrix with physical dimension d and k denotes the
momentum, see Fig. 2a. In the framework of the single-mode approximation [43],
the quasiparticles are usually described in terms of a single-site “quasiparticle
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Fig. 2 MPS methods for weak ergodicity breaking. (a) Constructions of exact, highly excited
eigenstates using MPO-MPS techniques from Ref. [17]. This method allows to construct a tower of
quasiparticle states |ψn〉 by acting with a local operator on the MPS ground state |ψ0〉, as in Eq. (6)
and (10). (b) Time-dependent variational principle captures the optimal projection of quantum
dynamics onto a given variational manifold M, here parametrised by MPS. Limiting the bond
dimension of the MPS to be low, this approach defines a semiclassical limit for quantum dynamics.
The corresponding classical system is formed by equations of motions for the coefficients xa ,
which parametrise the projection of the wave function into the MPS manifold. The equations of
motions follow from minimising the leakage outside the manifold, i.e., the deviation of−iH |ψ(t)〉
from ẋa∂xa |ψ(t)〉, see Eq. (14)

creation operator” Ô, such that B[σ ] = ∑
σ,σ ′ Ôσ,σ ′A

[σ ′], which we denote in
shorthand as |B〉 = Ô |A〉. Note that this is a special case, as for example Ô could
act on several neighbouring sites—such states have been considered in Ref. [44].

To illustrate Eq. (6), some examples of low-lying excited eigenstates of the AKLT
include the Arovas “A” and “B” states [45]:

|A〉 =
L∑

j=1

(−1)j �Sj · �Sj+1 |ψ0〉 , (7)

|B〉 =
L∑

j=1

(−1)j { �Sj−1 · �Sj , �Sj · �Sj+1} |ψ0〉 , (8)

where |ψ0〉 is the AKLT ground state, {. . .} denotes the anticommutator, and we
have omitted the normalisation factors. Another exact excited state, as shown by
Moudgalya et al. [17], is the spin-2 magnon state with momentum π ,

|ψ2−magnon〉 =
L∑

j=1

(−1)j (S+j )
2 |ψ0〉 . (9)

All of these states can be written in the form of Eq. (6). For example, the state in
Eq. (9) can be expressed in such a form using the ground-state matrices A[σ ] in

Eq. (5) and the B[σ ] matrices given by B[+] = −
√

2
3σ
−, B[0] = B[−] = 0. Note

B[+] is the only non-trivial matrix, a direct consequence of the (S+)2 operator acting
on spin-1.

In addition to single quasiparticles, multiple quasiparticle states can be described
in the MPS formalism using multiple tensors. For example, a state with two
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quasiparticles described by tensor B with momentum k is given by [17]

|ψA
(
B2, k

)
〉 ≡

⎛

⎝
∑

j

eikj Ôj

⎞

⎠
2

|ψ0〉 . (10)

Expanding the square, we see that we can have two cases: when Bs act on the same
site or different sites. Since in the AKLT chain we have Ô = (S+)2, we will have
Ô2 |ψ0〉 = 0 and the expression simplifies

|ψA(B2, k)〉 =
∑

j1 �=j2
eik(j1+j2)

×
∑

{mj }
Tr
(
· · ·A[σj1−1]B[σj1 ]A[σj1+1] · · · · · ·A[σj2−1]B[σj2 ]A[σj2+1] · · ·

)

|σ1σ2 · · · σL〉 . (11)

Extending this formally to more quasiparticles appears straightforward. However,
the difficulty that arises is that the successive applications of the quasiparticle
operator increase the bond dimension of the resulting state. Thus, one needs to
find a way to compress this state and compute its properties. These advances have
been made in Ref. [17], allowing to evaluate the entanglement properties of highly
excited states in the AKLT model, obtained by acting with Ô on the ground state
an extensive number of times n∼L/2. The physical consequences of this for weak
ergodicity breaking will be discussed further in Sect. 3.1 below.

Finally, while the emphasis in this section has been on analytical constructions
of exact eigenstates containing finite density of quasiparticle excitations, one could
envision employing similar methods to variationally construct quasiparticle towers
in other models that are less tractable than the AKLT. Indeed, such studies have
been used to numerically characterise dynamical properties of quantum spin systems
such as the XXZ model, including quasiparticle dispersion relations and dynamical
structure factor, albeit at much lower energies than the phenomena discussed
here [46].

2.2 Time-Dependent Variational Principle

In the previous subsection, we mentioned that some non-integrable quantum spin
chains have highly excited energy eigenstates with a particularly simple structure,
encoded in a local MPO acting on the ground state written as MPS. “Simple”
structure means that such eigenstates have sub-volume-law entanglement, i.e., they
are much less entangled than random vectors in the Hilbert space (cf. Box 1).
Now we ask a complementary question: if the system undergoes anomalously slow
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unitary dynamics, e.g., the spreading of correlations is inhibited compared to a
thermalising system, could we compactly describe such dynamics using the MPS?

The natural framework to address the previous question is the time-dependent
variational principle (TDVP), originally formulated by Dirac [47], which yields the
optimal projection of quantum dynamics onto a given variational manifold, M =
span{|ψ(x)〉}, parametrised by some parameters x ≡ {xa} ∈ R

N , Fig. 2b. TDVP
equations of motion are obtained by extremising the action

∫
dt L, with an effective

Lagrangian [48]

L = i

2
(〈ψ |ψ̇〉 − 〈ψ̇ |ψ〉)− 〈ψ |H |ψ〉. (12)

In the present case, we assume thatM is spanned by the MPS of some given bond
dimension, i.e., by matrices Aσ (x) like in Eq. (3) with bond dimension χ , and the
matrices depend on variational parameters, x∈RN . These parameters can be given
an interpretation in terms of pairs of coordinate and momenta (we assume N is
even). In Box 2, we motivate this approach using a very simple example of a single
spin.

Extremising the action in Eq. (12) results in Euler–Lagrange equations of motion
for the x variables [48, 49]:

∑

a

ẋaIm〈∂xbψ |∂xaψ〉 = −
1

2
∂xb 〈ψ |H |ψ〉. (13)

This set of equations constitutes an effective mapping of quantum dynamics onto a
classical non-linear dynamical system.

While TDVP has been successfully applied to manifolds spanned by the
MPS [49] and finite tensor tree states [50], in cases when it is possible to analytically
calculate 〈ψ |ψ̇〉 and 〈ψ |H |ψ〉, further insights can be obtained from studying the
non-linear system using the tools of classical dynamical systems [51] and few-body
chaos [52]. In practice, such studies are naturally limited to sufficiently simple
manifolds that have low bond dimensions. Nevertheless, this approach proved
extremely valuable in establishing an analogy between non-thermal eigenstates
in Rydberg atom chains and their counterparts in few-body systems, justifying
the name “quantum many-body scars”—these developments will be the subject of
Sects. 5 and 6.

We note that there are some caveats to mapping quantum dynamics onto low-
dimensional manifolds M. At late times, the error of the TDVP approximation
necessarily grows because the exact quantum dynamics generally brings the system
out of the variational manifold—see Fig. 2b. Intuitively, the TDVP error for a given
initial state is linked to the rate of entanglement growth for that state, since the
MPS with low bond dimension can only successfully capture weakly entangled
states. When the entanglement grows significantly, the state starts to require an MPS
description with a bond dimension that extends beyond the variational manifold.
This discrepancy is the error of the TDVP approximation, also known as quantum
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leakage [14, 49]:

γ 2({xa}) = lim
L→∞

1

L
||(iH + ẋb∂xb ) |ψ({xa})〉 ||2. (14)

This is the instantaneous rate at which the exact quantum wave function leaves
the variational manifold. Equations of motion can be obtained by minimising the
discrepancy between exact quantum dynamics and its projection ontoM. Explicit
computation of γ 2 is possible within the TDVP framework, but since it involves
the square of the Hamiltonian operator, it contains information that goes beyond
the TDVP equations of motion. Understanding γ 2 is key to understanding the
relation between quantum dynamics and its classical counterpart. We postpone a
more extensive discussion of the subtleties of the TDVP approach to many-body
systems to Sect. 5.

Box 4 : TDVP for a Single Spin
To illustrate the TDVP way of thinking, consider the simplest example of
a quantum spin prepared in a product state |(ψ(θ, φ))〉 = cos θ |↑〉 +
sin θeiφ |↓〉, parametrised by angles θ and φ on the Bloch sphere. For
concreteness, we can think of the spin Hamiltonian asH=εσx , corresponding
to the magnetic field along the x-direction. Our aim is to find the equations of
motion for the angles, θ(t) and φ(t), as the spin evolves under the influence
of the magnetic field.

The expectation value of the Hamiltonian in the given state is 〈H 〉 =
ε sin(2θ) cosφ. Moreover, we have 〈ψ |ψ̇〉 = −iφ̇ sin2 θ . Plugging this into
Eq. (12), our Lagrangian takes the form L = φ̇ sin2 θ − 〈H 〉. We see
that we can identify the canonical “position” and “momentum” variables
as φ → q and sin2 θ → p. Thus, we have mapped the quantum spin
dynamics onto a classical dynamical system described by the equations of
motion φ̇ = 2ε cot(2θ) cosφ and θ̇ = −ε sinφ. Notice that the line φ=π/2 is
stationary—this corresponds to the simple precession dynamics, θ̇ = −ε,
which in this case is easy to derive directly by solving the Schrödinger
equation.

This example of a single spin can also be viewed as a particularly
simple mean-field picture for the dynamics. This approach is generally
insufficient to describe dynamics in more complex many-body systems,
and, as discussed in Sect. 5, recent works have been exploring gen-
eralisations to variational manifolds beyond the mean field using MPS
states.



352 Z. Papić

3 Mechanisms of Weak Ergodicity Breaking

ETH-violating eigenstates have recently been theoretically identified in a variety of
non-integrable quantum models, revealing a complex landscape of weak ergodicity
breaking phenomena. The common feature of these models is the emergence of a
decoupled subspace within the many-body Hilbert space, in general without any
underlying symmetry. In this section, we focus on idealised models where such
a subspace is perfectly decoupled from the rest of the spectrum, resulting in a
decomposition of the Hamiltonian

H = Hnon−ETH

⊕
Hthermal, (15)

where Hnon−ETH is the non-thermalising subspace, exactly decoupled from the
thermalising bulk of the spectrum,Hthermal. The eigenstates that inhabit the subspace
Hnon−ETH violate the ETH and have different properties compared to the majority
of thermal eigenstates residing in Hthermal. Below we elucidate three commonly
encountered mechanisms that produce such decoupled subspaces. We would like to
point out that in much of the recent literature, the non-thermalising eigenstates that
span Hnon−ETH are commonly referred to as “quantum many-body scars”. We will
discuss the precise meaning of quantum many-body scarring in Sect. 6.

3.1 Spectrum Generating Algebra

Using the MPS techniques introduced in Sect. 2, Moudgalya et al. [17], building on
the early work by Arovas [45], analytically constructed a tower of exact eigenstates
in the AKLT model in Eq. (4), which were shown to have sub-volume entanglement
entropy, thus providing the first rigorous demonstration of the strong-ETH violation.
Later on, Schecter and Iadecola [53] introduced a tower of exact eigenstates in a
family of non-integrable spin-1 XY models as well in a particular non-integrable
spin-1/2 model that conserves the number of domain walls [54]. In these and many
other similar examples that followed, the non-thermal eigenstates form a so-called
spectrum generating algebra (SGA), first introduced in the context of high-energy
physics [55] and subsequently applied to the Hubbard model [56, 57].

To define the SGA, we follow the presentation given by Mark, Lin and
Motrunich [58]. Suppose we have a Hamiltonian H ; a linear subspace W ; a state
|�0〉 ∈ W , which is an eigenstate of H with energy E0; and an operator Q† such
thatQ†W ⊂ W and

([
H,Q†

]
− ωQ†

)
W = 0 . (16)
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Then it can be easily proven that the family of states

|Sn〉 = (Q†)n |�0〉 , (17)

as long as they are non-vanishing vectors, are eigenstates of H with eigenvalues
E0+nω. The non-thermalising nature of these states becomes non-trivial when
W is not the entire Hilbert space and Q† is not associated with a symmetry of
the Hamiltonian. The latter crucially distinguishes these non-thermal states from
somewhat similar “eta-pairing” states in the Hubbard model [56, 57], a point
discussed further at the end of this subsection.

As an example, in the AKLT model, one of the possible SGA operators is a spin-2
magnon excitation that we have previously seen in Eq. (9), with

Q† =
L∑

j=1

(−1)j (S+j )
2. (18)

This generates the tower of states in Eq. (17) for n = 0, . . . , L/2, which extend
from the ground state (n=0) up to the ferromagnetic state |1, 1 . . . , 1〉 (n=L/2),
and the state in Eq. (9) is a member of this family. It is also worth noting that these
states are not unique, as they have total spin s = 2n; hence, we can obtain equivalent
spin-rotated versions of these states by applying the SU(2) spin-lowering operator.

Generally, it is clear that states of the form in Eq. (17) can be non-thermal,
provided |�0〉 is sufficiently “simple” (e.g., the ground state of H if the latter is
gapped) and Q̂† is a local operator. The AKLT tower of states in Eqs. (17)–(18) is
the first example of a rigorous construction of non-thermal states in a non-integrable
model that are not protected by a global symmetry. Any Hamiltonian with the SGA
property explicitly decomposes as in Eq. (15), where Hnon−ETH contains the tower
of states obtained by the action of Q̂†. Note that this algebraic structure is not
powerful enough to fully diagonalise H ; indeed, H could well be a non-integrable
Hamiltonian with an energy spectrum obeying the Wigner–Dyson statistics.

Physically, Q̂† creates a wave packet corresponding to a “quasiparticle” excita-
tion (e.g., a magnon), and repeated applications of Q̂† create a condensate of such
quasiparticles. In a class of frustration-free models that include the AKLT [44], the
quasiparticle condensates are non-thermal, e.g., their entanglement entropy scales
logarithmically with the subsystem size:

S ∝ logLA. (19)

Another important clue when looking for non-thermalising SGA states is that they
appear at energies that are integer multiples of ω. Thus, SGA eigenstates can be
detected as regularly spaced entropy outliers, with entanglement much lower than
the ETH volume law, as depicted in Fig. 1d. Perhaps more practically, the SGA
states also have very low entanglement rank, i.e., many eigenvalues of ρA strictly
vanish, which is how these states were originally identified numerically in Ref. [17].
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We mentioned that the SGA traces back to the so-called eta-pairing states in the
Hubbard model [56, 57]. For eta-pairing states, the subspaceW is the entire Hilbert
space, and Q† essentially corresponds to a symmetry of the Hamiltonian [59].
However, it is possible to perturb the Hubbard model [60, 61] in a way that destroys
the aforementioned symmetry and makes these states similar to the SGA states
in the AKLT model discussed above. Note that the high degree of symmetry in
Hubbard-type models can also lead to disconnected subspaces that host free-particle
eigenstates with ballistic dynamics [62]. This “fragmentation” of the Hilbert space is
a much more general phenomenon beyond just the Hubbard model, as we discuss in
the following section. Finally, we note that generalisations of the SGA construction
can be found in a number of models in various dimensions [54, 58, 63–68] (see
Box 3). It has also been pointed out that the SGA can arise in open quantum systems
in the presence of dissipation or driving [69, 70].

Box 5 : Constructions of Non-Thermal Towers of Eigenstates
Towers of non-thermal eigenstates can be systematically constructed using
the “tunnels-to-towers” approach in Ref. [68] based on generators of the Lie
algebra of a symmetry group G. For simplicity, consider the case when G is
SU(2), and we have a model defined by an SU(2)-symmetric Hamiltonian,
Hsym. The generators of the symmetry {Q+,Q−,Qz} are associated with
the corresponding su(2) algebra. The spectrum of Hsym is organised into
“tunnels” of degenerate eigenstates, with the same eigenvalue for the Casimir
Q2 but different eigenvalues for Qz. One can “move” between states in a
tunnel usingQ± (Fig. 3).

Now imagine perturbing the model by adding HSGA ∝ Qz. This pertur-
bation preserves the eigenstates but breaks the degeneracy of the tunnels.
Instead, states in each tunnel get promoted to “towers” and acquire an evenly
spaced harmonic spectrum because of the SGA, [Qz,Q±] = ±Q±. Finally,
we can further add a symmetry-breaking term HSB, such that it annihilates
a specific tower of states but generically breaks all symmetries and mixes
between the other states so as to make the rest of the spectrum thermal. In
the full model, H = Hsym + HSGA + HSB, our chosen tower of states is
a collection of non-thermalising eigenstates, evenly distributed throughout
the spectrum but not protected by a global symmetry; hence, we arrive at
a similar phenomenology to the AKLT model discussed in the main text.
Various extensions of this construction to non-Abelian groups and their q-
deformed versions are possible [68].

(continued)
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Box 5 (continued)
To illustrate the tunnels-to-towers construction, consider the spin-1 XY-

like model introduced in Ref. [53]:

H =
∑

i

J (Sxi S
x
i+1 + Syi Syi+1)+ J3(S

x
i S
x
i+3 + Syi Syi+3)+

∑

i

hSzi +D(Szi )2. (20)

A tower of non-thermalising states is built by the action of the same Q† as in
the AKLT model [58]:

|SXYn 〉 = (
Q+

)n |�〉 , Q+ =
∑

j

(−1)j
(
S+j
)2
, (21)

Fig. 3 Tunnels-to-towers scheme for constructing non-thermal eigenstates from Ref. [68]

where |�〉 is the fully polarised down state |�〉 = | − − − · · · −〉. Note that
Q+ (and the corresponding Q−), together with Qz = 1

2 [Q+,Q−], form an
su(2) algebra, but they are distinct from the spin-su(2) operators. The first
term ∝ J breaks Q-SU(2) symmetry and annihilates the tower, the term hSz

acts as HSGA and gives energy to the states in the tower, while the term ∝ D
commutes with Qz and Q+. The third neighbour term is added to break a
non-local SU(2) symmetry for which the states belonging to the tower are the
only states in their symmetry sector.

3.2 Hilbert Space Fragmentation

Spectrum generating algebra relies on the tower operator Q† to construct the
non-thermalising subspace. We now describe a related mechanism that produces
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exactly embedded subspaces but does not require a priori knowledge of Q†. For
a Hamiltonian H and some arbitrary vector in the Hilbert space, |ψ0〉, the Krylov
subspace, S, is defined as the set of all vectors obtained by repeated action of H on
|ψ0〉,

S (H, |ψ0〉) ≡ span{|ψ0〉 ,H |ψ0〉 ,H 2 |ψ0〉 , · · · }. (22)

Readers familiar with numerical linear algebra will recall the same subspace S is
used in iterative methods for finding extremal eigenvalues of large matrices, such as
the Arnoldi and Lanczos algorithms. By definition, S is closed under the action of
H . While |ψ0〉 in Eq. (22) can in principle be an arbitrary state, in physics one is
primarily interested in initial product states (also called the “root” states), which are
more easily preparable in experiment. For a generic non-integrable Hamiltonian H
without any symmetries, one expects that S (H, |ψ0〉) for any initial product state
|ψ0〉 is the full Hilbert space of the system. If H has some symmetry (and assuming
|ψ0〉 an eigenstate of the symmetry), S (H, |ψ0〉) is expected to span all states with
the same symmetry quantum number as |ψ0〉.

Surprisingly, it has been shown that in many cases the system can exhibit
fragmentation, i.e., even after resolving the symmetries, S (H, |ψ0〉) does not span
all states with the same symmetry quantum numbers as |ψ0〉 [18, 19, 71, 72].
Following the notations in Ref. [72], we can formally state this as

H =
⊕

s

H(s), H(s) =
#(s)⊕

i=1

S
(
H, |ψ(s)i 〉

)
, (23)

where s labels the distinct symmetry quantum numbers, #(s) denotes the number of
disjoint Krylov subspaces generated from product states with the same symmetry
quantum numbers, and |ψ(s)i 〉 are the root states generating the Krylov subspaces.
Note that the root states in Eq. (23) are chosen such that they generate distinct
disconnected Krylov subspaces (the same subspace can be generated by different
root states). If one (or more) Krylov sector is non-thermalising, we recognise
Eq. (23) is of the same form as our previous Eq. (15).

Fragmentation as in Eq. (23), where the total number of Krylov subspaces is
exponentially large in the system size, was recently shown to always exist in Hamil-
tonians and random-circuit models with conservation of dipole moment (see Box 4).
Before illustrating this for a particular model, we note that, generally, one can
distinguish between “strong” and “weak” fragmentation, depending, respectively,
on whether or not the ratio of the largest Krylov subspace to the Hilbert space within
a given global symmetry sector vanishes in the thermodynamic limit. Strong (resp.
weak) fragmentation is associated with the violation of weak (resp. strong) ETH
with respect to the full Hilbert space. Moreover, different fragments can exhibit
vastly different dynamical properties. For example, some fragments (even though
exponentially large in system size) may be integrable, while others may be non-
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integrable. Among the non-integrable ones, more subtle ETH-breaking phenomena
are also possible [73].

To illustrate fragmentation, consider the following model of fermions hopping
on an open 1D chain while preserving their centre of mass position [72]:

H =
∑

j

(
c

†
j c

†
j+3cj+2cj+1 + h.c.

)
, (24)

where c†
j , cj are the standard fermion creation/annihilation operators on site j . This

model has a variety of physical realisations, which we discuss at the end of this
section. We now demonstrate the dynamical fragmentation in this model, closely
following the presentation in Ref. [72].

At filling factor ν = 1/2, i.e., with half as many fermions as sites in the chain L,
it is convenient to split the chain into 2-site cells assuming L is even. For each cell,
define the new degrees of freedom:

|↑〉 ≡ |01〉 , |↓〉 ≡ |10〉 |+〉 ≡ |11〉 , |−〉 ≡ |00〉 . (25)

It is fruitful to name these composite degrees of freedom: |+〉, |−〉 are called
“fractons”, |+−〉, |−+〉 are “dipoles”, and |↑〉, |↓〉 are “spins”. By inspecting the
possible action of the Hamiltonian in Eq. (24) on these states, we find several types
of allowed processes. For example, the following processes can be interpreted as
free propagation of dipoles when separated by spins:

|↓ +−〉 ↔ |+− ↓〉 , (26)

|−+ ↑〉 ↔ |↑ −+〉 . (27)

Similarly, the following processes imply that a fracton can only move through the
emission or absorption of a dipole:

|↓ + ↑〉 ↔ |+ −+〉 , (28)

|↑ − ↓〉 ↔ |− +−〉 . (29)

Here, Eqs. (26)–(29) resemble the rules restricting the mobility of fracton phases
of matter [74]. However, in contrast to the usual fracton phenomenology, here the
movement of fractons is also sensitive to the background spin configuration. For
example, the fracton in the configuration |· · · ↓ + ↑ · · ·〉 can move by emitting a
dipole (see Eq. (28)), while that in the configuration |· · · ↑ + ↓ · · ·〉 cannot.

The model in Eq. (24) has several symmetries; most notably the total charge (the
number of fermions) and the total dipole moment are conserved,

Q̂ =
∑

j

Q̂j , D̂ ≡
∑

j

jQ̂j , (30)
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with Q̂j ≡ n̂2j−1 + n̂2j − 1, where j is the unit cell index and 2j − 1, 2j are the
site indices of the original configuration.

Exponentially many of Krylov subspaces in the model in Eq. (24) are one-
dimensional frozen configurations. For instance, the Hamiltonian vanishes on any
product state that does not contain the patterns “ · · · 0110 · · ·′′ or “ · · · 1001 · · ·′′ since
those are the only configurations on which terms of H act non-trivially. The state

|1111000011110000 . . . . . . 1111000011110000〉

is one example of a static configuration that is an eigenstate. In terms of the
composite degrees of freedom, we can equivalently consider configurations with
only +, −, and no spins, such as

|· · · + + −−++−− · · ·〉 ,

with a pattern that alternates between + and − with “domain walls” that are at least
2 sites apart. Once again, it is easy to see that all terms of the Hamiltonian vanish
on these configurations: since there are exponentially many such patterns, there are
equally many one-dimensional Krylov subspaces.

In Ref. [72], it was found that large fragments (with dimension exponential in
system size L) can be integrable (mappable to spin-1/2 XX spin model) as well as
non-integrable. See Fig. 4 for an illustration of some of the disconnected sectors
of the Hilbert space. The dynamics initialised in any of the states, e.g., in Fig. 4a
cannot reach any of the states in plots (b) and (c).

Fig. 4 Hilbert space fragmentation in the pair-hopping model in Eq. (24) studied in Ref. [72].
Plots (a), (b), and (c) show graphs of three disconnected sectors of the Hilbert space for a small
chain with N=6 electrons at filling factor ν=1/2. Each vertex represents a Fock basis state, and
vertices are connected by an edge if the Hamiltonian matrix element is non-zero between those
basis states. This type of graph is known as the adjacency graph of the Hamiltonian. In this case,
because all the matrix elements of the Hamiltonian are equal in magnitude, the adjacency graph is
unweighted. The graph has been coloured according to the vertex degree (with red colour indicating
high connectivity)
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We previously announced that the pair-hopping model in Eq. (24) arises in
a number of different physical contexts: (i) it arises as the dominant hopping
process for electrons in the regime of the fractional quantum Hall effect in a quasi-
1D limit [73]; (ii) it arises in the Wannier–Stark problem, i.e., spinless fermions
hopping on a one-dimensional lattice, subject to a large electric field [75]; (iii)
it can be mapped to the following spin-1 fractonic model studied in Ref. [19]:
H4 = −∑n

(
S+n S−n+1S

−
n+2S

+
n+3 + h.c.

)
; (iv) at filling factor ν=1/3, one of

the Krylov sectors can be mapped to the so-called PXP model, introduced in
Eq. (35) below, which describes a chain of strongly interacting Rydberg atoms.
Note that in realisations (i), (ii), there are usually additional diagonal terms in the
Hamiltonian that are of the same order as the hopping. While this does not affect
the fragmentation, it may significantly impact other dynamical properties within
the fragments. The realisation (ii) has recently been investigated as a platform for
many-body localisation without disorder [76, 77].

Signatures of fragmentation have been observed in other models including, e.g.,
the Fermi–Hubbard model and its cousins [59, 62], various constrained models [78–
80], and bosons in optical lattices [81, 82]. In the latter case, the Krylov subspaces
are only approximately exact in the sense that there exist non-zero matrix elements
that connect different Krylov subspaces, but their magnitude is much smaller than
the matrix elements within a given Krylov subspace. Finally, we mention that
Krylov fragmentation may also arise as a consequence of measurements performed
on a system, e.g., in Ref. [83], it was shown that the analogue of Eq. (22) occurs
when a quantum walk is interrupted by repeated projective measurements.

Box 6 : Fragmentation in Quantum Circuits
Beyond Hamiltonian systems, fragmentation generally arises in models of 1D
random unitary circuit dynamics, constrained to conserve both U(1) charge
and its dipole moment [18, 71]. Consider a model from Ref. [71] with a chain
of S=1 quantum spins, with the local z-basis |+〉, |−〉, |0〉, and unitary gates
that locally conserve charge Q̂ = ∑

j S
z
j and dipole moment D̂ = ∑

j jS
z
j .

These intertwined conservation laws greatly restrict the allowed movement of
charges, e.g., a single + or − charge on site x has dipole moment D= ± x.
Such a charge cannot hop to the left or right because this would change the
net dipole moment by one unit. On the other hand, bound states of charges
or “dipoles” of the form (−+) have net charge zero and net dipole moment
D= ± 1 independent of position, and these can move freely. Additionally,
dipoles can enable the movement of charges because a charge can move if it
simultaneously emits a dipole to keep D unchanged: |0+ 0〉 → | + −+〉.

The above phenomenology is very similar to the pair-hopping model
discussed in the main text, but following Ref. [18], we realise it using Floquet
circuits composed of �-site unitary gates, which locally conserve Q and

(continued)
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Box 6 (continued)
D. These �-site gates are therefore block-diagonal, and they are applied
periodically in time. Assuming for simplicity �=3, we tile the chain by
3-site unitaries, staggered across three layers, i.e., UF = U1U2U3, with
U1 ≡ U1

1,2,3U
1
4,5,6 · · · illustrated in blue colour in Fig. 5 below (and similarly

for U2, U3 in red and green colours, respectively). The complete circuit
consists of repeatedly applying UF some number of times. Note that U1, U2,
and U3 can be chosen at random for a given realisation but then remain fixed
throughout the circuit (Fig. 5).

Fig. 5 Illustration of the Floquet operator UF = U1U2U3, staggered across three layers,
from Ref. [18]

Reference [18] showed that local fractonic circuits of this type must have
exponentially many Krylov sectors. To see this, note that any pattern that
alternates between locally “all plus” and locally “all minus”, with domain
walls in between at least � sites apart, must be inert. These are states of the
form | + + + + − − − − − + + + + · · · 〉. The argument is similar to
the one given in the main text for the Hamiltonian system. One can then
lower bound the size of the disconnected subspace by dividing the system
up into blocks of length � and allowing each block to be either “all plus” or
“all minus”. This yields an inert subspace of dimension at least 2L/� = cL,
where c = 21/�. This bound is not tight [18], but it proves the existence of an
exponentially large, localised subspace for any finite gate size. We emphasise
that the exponentially large number of sectors goes beyond simple symmetry
considerations, which would only predict ∝ L3 sectors, since the allowed
values of quantum numbers are −L ≤ Q ≤ L and −L(L − 1)/2 ≤ D ≤
L(L− 1)/2, where L is the length of the chain.
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3.3 Projector Embedding

At the highest level of abstraction, we can ask if one could embed an arbitrary
subspace into the spectrum of a thermalising system? For concreteness, assume
we are given an arbitrary set of states |ψi〉 that span our target non-thermalising
subspace Hnon−ETH = span{|ψi〉}, which we wish to embed into a thermalising
Hamiltonian H as in Eq. (15). This can be achieved via the “projector embedding”
construction first introduced by Shiraishi and Mori [20].

Our target states |ψi〉 are assumed to be non-thermal; hence, we furthermore
assume there exists a set of local projectors, Pi , which annihilate these states,
Pi |ψj 〉 = 0, for any i ranging over lattice sites 1, 2, . . . , L. Next, consider a lattice
Hamiltonian of the form

H =
L∑

i=1

PihiPi +H ′, (31)

where hi are arbitrary operators that have support on a finite number of sites around
i, and [H ′, Pi] = 0 for all i. It follows

PiH |ψj 〉 = PiH ′|ψj 〉 = H ′Pi |ψj 〉 = 0, (32)

and thus [H,∑i Pi] = 0. Therefore, H takes the desired block-diagonal form in
Eq. (15). The target eigenstates can in principle be embedded at arbitrarily high
energies for a suitably chosen H ′, which also ensures that the model is overall non-
integrable [20]. However, there is no guarantee that the embedded states must be
equidistant in energy, and they may even be degenerate, such that this scheme could
clearly result in a model without an SGA property discussed in Sect. 3.1.

Physical applications of projector embedding include various topologically
ordered systems [84, 85] and models with lattice supersymmetry [86], which are
themselves defined in terms of local projectors (see Box 5). While the projector
construction allows to embed general classes of states into a thermalising spectrum,
in practice one is often more interested in the reverse question: given a Hamiltonian
H belonging to some known physical system, can one identify non-thermal
embedded states |ψi〉? Although this task is obviously much harder, for some
physical models such as the PXP model, introduced in Sect. 4 below, this question
has been answered affirmatively for a single target state at zero energy in the
middle of the spectrum, which has been identified with the AKLT ground state in
Eq. (5) [87]. However, for the AKLT non-thermal eigenstates constructed via the
SGA in Sect. 3.1, in particular for the tower of states in Eqs. (17)–(18), at present,
it is not known whether it is possible to find a set of local projectors and cast the
entire tower of AKLT states in the Shiraishi–Mori form. This suggests there may be
broader classes of models with non-thermal eigenstates that extend beyond the form
in Eq. (31). Indeed, in a very recent work [88], a scheme based on a double copy of
the system has been proposed for embedding eigenstates with high entanglement.
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Box 7 : Physical Realisations of Projector Embedding
To illustrate constructions of non-thermal eigenstates via projector embed-
ding, we consider a class of topological lattice models defined in terms of
local projectors, following Ref. [84]. A typical Hamiltonian of such models
has the form

H(β) =
∑

p

αp Qp(β), (33)

where p labels, e.g., elementary plaquettes of a lattice, such as in toric
code [89]. The operators Qp(β) are Hermitian, positive-semidefinite, and
local. They contain only sums of products of operators defined within the
bounded region labelled by p, e.g., at the Rokhsar–Kivelson point of the
quantum dimer model on the square lattice [90], Qp(β) are projectors that
encode both the potential and kinetic (plaquette flip) terms. The dimensionless
parameter β is used to deform solvable models and break integrability.

The operators Qp(β) are built so as to share a common null state |�(β)〉,
i.e., for every p, we have Qp(β) |�(β)〉 = 0. If all the couplings αp are
positive, the state |�(β)〉 is the ground state of H(β). If, instead, αp takes
both positive and negative values, then it is not guaranteed that |�(β)〉 is a
ground state. Nevertheless, |�(β)〉 is still an eigenstate with energy E=0.
When this state is a high-energy eigenstate of H(β), it is an atypical state in
that it displays area-law entanglement entropy since it is also a ground state
of a different local Hamiltonian:

H ′(β) =
∑

p

|αp|Qp(β). (34)

Hence, |�(β)〉 is a non-thermal state, ifH(β) is non-integrable. By deforming
exactly solvable models—the toric code, for instance—one can break inte-
grability while retaining the E=0 state [84]. The construction outlined here
can be shown to be equivalent to the embedding construction in Eq. (31) by
diagonalising the operatorsQp(β) and separating the terms belonging to zero
eigenvalues (which must exist by construction) from other eigenvalues.

4 PXP Model

In the previous section, we introduced several mechanisms of weak ergodicity
breaking, realised by diverse physical systems. While these mechanisms are
mutually independent and different systems may only exhibit some of them, we
next show how these mechanisms “co-exist” within a paradigmatic model of weak



Weak Ergodicity Breaking Through the Lens of Quantum Entanglement 363

ergodicity breaking known as the PXP model. This model arises as the effective
description of Rydberg atoms in the regime of a strong Rydberg blockade, and its
experimental realisation will be the topic of Sect. 7. As we explain below, the PXP
model realises much of the weak ergodicity breaking phenomenology discussed
previously; in particular, its Hilbert space is fragmented, and it contains non-thermal
eigenstates that form an approximate SGA.

4.1 The Model

The PXP model describes a chain of coupled two-level systems, where each system
can be in one of the two possible states, |◦〉 and |•〉. In the Rydberg atom realisation,
these states correspond to an atom being in its ground state or in the excited Rydberg
state, respectively. However, for present purposes, we can view these two states as
↓, ↑ projections of a spin-1/2 degree on the given site. We consider a 1D chain of
such two-level systems coupled according to the “PXP” Hamiltonian [91],

HPXP =
∑

i

Pi−1σ
x
i Pi+1, (35)

where σxi ≡ |◦i〉 〈•i | + |•i〉 〈◦i | is the standard Pauli x-matrix on site i and Pi =
|◦i〉 〈◦i | is the projector on the ground state at site i. Equivalently, the projectors can
be defined as Pi = 1

2 (1− σzi ), with σzi ≡ |◦i〉 〈◦i | − |•i〉 〈•i | .
Without projectors, the Hamiltonian in Eq. (35) is that of a free paramagnet: each

spin would independently process with the Rabi frequency set to 1. P introduces
a kinetic constraint: it allows a spin to flip only if both of its nearest neighbours
are in ◦ state. For example, the process · · · ◦ ◦ ◦ · · · ↔ · · · ◦ • ◦ · · · is allowed,
while · · · • ◦ ◦ · · · ↔ · · · • • ◦ · · · is forbidden. This makes the model intrinsically
interacting, as it is no longer possible to describe the state of each spin independently
of other spins. Numerical simulations based on exact diagonalisation of the PXP
model with up toL=32 spins have demonstrated that the statistics of its energy-level
spacings approaches the prediction of random matrix theory [13] as the system size
is increased. Hence, despite its very simple form, we expect the PXP model cannot
be fully “solved” using the known integrability techniques [31].

Another consequence of projectors is the fragmentation of the PXP Hamiltonian:
HPXP splits into sectors corresponding to different numbers of adjacent spin
excitations. The largest connected component of the Hilbert space is one that
excludes any configurations with adjacent excitations, . . . •• . . .. The number of
classical configurations that satisfy such a constraint is still exponentially large—
more precisely, it scales asymptotically

DL ∝ ϕL, ϕ = 1+√5

2
, (36)
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where ϕ is the golden ratio. This unusual scaling is a manifestation of the global
constraint. Similar type of constraints can arise due to emergent gauge fields and
have been used to model interactions between anyon excitations in topological
phases of matter [92]. Apart from this largest sector, there are further sectors that
contain some number of nearest-neighbour spin flips; however, in the remainder of
this section, we will focus on the largest connected component of the Hilbert space,
which already displays non-trivial weak ergodicity breaking phenomenology.

4.2 Ergodicity Breaking in the PXP Model

While the PXP model is quantum-chaotic, numerical simulations of its quench
dynamics [13, 93–95] have revealed surprising non-ergodic behaviour. For example,
the return probability in global quenches with the PXP Hamiltonian is shown in
Fig. 6a [13, 95]. “Global quench” means that the system is prepared in a highly non-
equilibrium initial state, |ψ0〉, at time t=0, and the system is subsequently evolved
with the many-body Hamiltonian, HPXP in Eq. (35). Since the PXP Hamiltonian is
purely off-diagonal in the standard z-basis, any classical product state has an average
energy equal to zero and extensive energy variance, thus effectively playing the role
of an “infinite temperature” ensemble. In Fig. 6a, three choices of density wave
states were considered for |ψ0〉: |Z2〉 ≡ |· · · •◦•◦ · · ·〉, |Z3〉 ≡ |· · · •◦◦•◦◦ · · ·〉 and
|Z4〉 ≡ |· · · •◦◦◦•◦◦◦ · · ·〉. We note that these states can be prepared in Rydberg
atom experiments by modulating the so-called detuning term introduced below in
Eq. (45).

As the system evolves following the quench, one can characterise its behaviour
by the return probability, also known as many-body fidelity, which quantifies the
probability of observing the initial state after unitary dynamics,

F(t) = |〈ψ0|ψ(t)〉|2 = |〈ψ0|e−iH t |ψ0〉|2. (37)

Intuitively, thermalising dynamics leads to a quick spreading of the many-body wave
function over the full Hilbert space. According to Fig. 1b, fidelity is expected to
rapidly decrease to an exponentially small value, F ∝ 1/DL, and remain near
that value at late times. The numerical result in Fig. 6a defies this expectation
for certain initial states. In particular, the Z2 and Z3 density wave states show
pronounced revivals at certain times, F(nT ) ∼ O(1). In contrast, quench dynamics
from Z4 (and many other initial product states not shown) displays fast relaxation
without revivals. We note that the dynamics of local observables, such as the density
of domain walls nucleated in Z2, i.e., the number of · · · ◦◦ · · · patterns, is very
similar to the fidelity dynamics. In particular, the frequency of revivals in local
observables is the same as that of fidelity for the initial state |Z2〉. Below we focus
on understanding the dynamics for this initial state.
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Fig. 6 (a) Numerical simulation of quantum fidelity in a large PXP model with L=30 atoms
reveals strong atypicality with respect to the initial state [95]. For period-2 and -3 density waves,
the fidelity features robust revivals, while period-4 density wave shows no revivals. (b,c): Non-
thermal eigenstates violate the ETH by their anomalously large projection on |Z2〉 state, and by
their low entanglement entropy, S [95]. Each point represents a single eigenstate with energyE in a
large PXP chain with L=30 atoms. Scarred eigenstates have been numbered by 0, 1, . . . , 7. Colour
scale represents the density of data points. Panels reproduced with permission from Ref. [95] APS,
under a Creative Commons licence CC BY 4.0

In order to understand the origin of the atypical dynamical behaviour in the PXP
model, we write the return amplitude as

〈Z2|e−itH |Z2〉 =
∑

n

e−itEn |〈En|Z2〉|2, (38)

where En, |En〉 denote the eigenenergies and eigenvectors of HPXP, respectively.
Thus, quantum evolution is fully determined by the eigenenergies, {En}, and
overlaps of energy eigenstates with the initial state, {|〈En|Z2〉|2}. Any special
features in the dynamics translate into atypical properties of these overlaps.
Indeed, Fig. 6b reveals a set of eigenstates that have strongly enhanced overlaps
with Z2 state, |〈E|Z2〉|2. These eigenstates violate the ETH [3, 4, 30] since we
expect that individual eigenstates of thermalising systems should behave like
thermal ensembles. By contrast, Fig. 6b demonstrates that special eigenstates
have strongly enhanced overlaps with a particular product state, and thus they
are anomalously concentrated in the Hilbert space and do not resemble random
vectors.

Note that violations of the ETH are traditionally probed by studying the matrix
elements of local observables [96]. The overlaps with |Z2〉 state indeed probe the
matrix elements of the alternating magnetic field operator,

∑
j (−1)j σ zj , for which

|Z2〉 is the highest weight state. The higher the overlap with |Z2〉, the stronger the
violation of the ETH—thus, the special eigenstates are the “most” ETH-violating
states in the spectrum of the PXP model. Intriguingly, the highest overlaps with |Z2〉
are achieved in the middle of the spectrum, i.e., at the highest effective temperature
in this system.

The total number of special states in Fig. 6b scales with the number of spins
as L+1 [95]. Moreover, the special states are equidistant in energy, especially
near the middle of the spectrum. Along with their large overlap with |Z2〉 state,
this explains the existence of fidelity revivals. However, as seen from the coloured
density of data points in Fig. 6b, while the majority of other states in the spectrum
has vanishingly small overlap with |Z2〉, there is still a considerable number of
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states forming “towers” that cluster around the energy of the special eigenstates.
Towers of scarred eigenstates are also found in the PXP model in the presence of
periodically driven detuning [97], and in a two-dimensional PXP model [98], where
the overlap is computed with a charge-density wave state having a checkerboard
pattern [99, 100].

Furthermore, the same L+1 special eigenstates show anomalously low entan-
glement entropy as seen in Fig. 6c. For a thermalising eigenstate, the bipartite
entanglement entropy of a subsystem of length LA is expected to scale extensively
with the volume of the subsystem, S ∝ LA. In contrast, the entanglement entropy
of special eigenstates is found to scale approximately with the logarithm of the
subsystem size, as in Eq. (19) [95]. This is another evidence of ETH violation
as it shows that special eigenstates are not uniformly spread over the Hilbert
space.

Recall that the logarithmic scaling of entanglement entropy is commonly found
in other models with SGA, Eq. (19). Indeed, approximations to special eigenstates
can be constructed starting from an approximate ground state of the PXP model
and creating spin wave excitations on top of it [101]. Although the accuracy of
this scheme deteriorates for special eigenstates near the middle of the spectrum, the
scheme provides an intuitive picture of special eigenstates as condensates of weakly
interacting magnons, similar to models with an SGA. An alternative approach in
Ref. [102] focused on the middle of the energy spectrum of the PXP model, where
a few exact eigenstates can be constructed, thus rigorously demonstrating the ETH
violation (see Box 6). While exact MPS constructions similar to Ref. [102] can be
generalised to other models, e.g., a transverse Ising ladder [103] and the Floquet
versions of the PXP model [104, 105], they remain limited to a small number of
states in the middle of the spectrum, and in particular, they do not capture the top
states in the towers, which are not simple MPS due to having larger-than-area-law
entanglement.

Finally, we note that the model in Eq. (35) with the addition of a few diagonal
terms can be made integrable [92, 106, 107], and it has a very rich phase diagram in
its the ground state. However, these terms that render the PXP model integrable
have magnitude O(1), i.e., they are strong perturbations and are not expected
to be relevant for explaining the physics presented in this section. Furthermore,
several studies explored the effect of (generally, weaker) perturbations on the
PXP model [95, 108, 109]. While non-thermal eigenstates are generally not
robust to perturbations, some aspects of atypical dynamical behaviour are found
to persist, including in the presence of disorder [110]. Finally, we mention that
similar phenomenology of weak ergodicity breaking has also been found in the
two-dimensional PXP model [99, 100], and in related models of transverse Ising
ladders [103] and the periodically driven PXP model [97, 104, 105].
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Box 8 : Ergodicity Breaking in Null Spaces
Among the special properties of the PXP model is the existence of an
exponentially large number of states that are exactly annihilated by the PXP
Hamiltonian in Eq. (35). This null space contains states with energy E=0
that reside in the middle of the spectrum [13, 95, 111]. This exponential zero-
energy degeneracy is a consequence of the combined action of particle-hole
transformation C = ∏

i σ
z
i , which anticommutes with the PXP Hamiltonian,

and spatial inversion that maps site j to L−j+1 [112, 113].
Among the exponentially many E=0 eigenstates in the PXP model, there

are also a few weakly entangled states that have been analytically constructed
by Lin and Motrunich [102]. Such states are compactly written as MPS in
Eq. (3) with χ=2:

A◦◦ =
(

0 −1
1 0

)
, A◦• =

(√
2 0

0 0

)
, A•◦ =

(
0 0
0 −√2

)
. (39)

The local Hilbert space on which these matrices are defined is a 2-site block
of the chain; due to the constraint, this block can be in three states, (◦◦), (•◦),
and (•◦). The constraint automatically prevents configurations with (◦•)(•◦)
on consecutive blocks since A◦•A•◦ = 0. Using the block representation, it
can be proven [102] that such an MPS state is exactly annihilated by the PXP
Hamiltonian in Eq. (35).

In fact, from the state defined in Eq. (39), we can construct its partner
translated by one site, also atE= 0. These two states thus display translational
symmetry breaking with a period-2 bond-centred pattern, despite being in 1D
and at an infinite temperature. They also manifestly violate the ETH via their
entanglement entropy, which must obey the area law due to their explicit MPS
form. We note that Ref. [114] has recently shown that MPS states such as the
one in Eq. (39) can arise more generally in random quantum networks due to
connectivity bottlenecks.

In Ref. [115], the null spaces were investigated more generally in models of
Abelian lattice gauge theories. In Ref. [116], a systematic exploration of null
spaces was performed by applying a “subspace disentangling” algorithm in
order to construct the least entangled state belonging to E=0 subspace. It was
numerically demonstrated on several examples that this least entangled null
state obeys area-law entanglement scaling, and as such, violates strong ETH.
Thus, although protected by symmetry, null spaces provide another non-trivial
mechanism for realising non-thermal states.
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4.3 The Origin of Non-thermal Eigenstates and Quantum
Revivals

In quantum physics, the simplest system that exhibits non-trivial dynamics and
revivals is an elementary spin: a spin pointing along the z-direction precesses when
the magnetic field is turned on in the x-direction, causing the spin to periodically
return to its initial orientation as time passes. The revivals in the PXP model can
also be understood as precession of a spin with magnitude s=L/2. The latter
spin, however, is a collective degree of freedom representing L atoms [117]. More
precisely, the L+1 scarred eigenstates identified in Fig. 6 form an approximate
representation of an su(2) algebra for spin-L/2. This perspective brings the PXP
model in line with other models discussed in Sect. 3.1, with the main difference
being that the SGA in the PXP model is only approximate.

Specifically, the spin picture follows from the mapping of the PXP model to
a tight-binding chain—see Box 7. For the initial |Z2〉 state, the “big spin”-raising
operator

H+ =
∑

i∈even
σ̃+i +

∑

i∈odd

σ̃−i (40)

excites an atom anywhere on the even sublattice and deexcites an atom on the odd
sublattice, where σ̃±i = Pi−1σ

±
i Pi+1 are the on-site raising and lowering operators

that respect the constraint [13]. Similarly, the spin-lowering operator H− performs
the same process with the sublattices exchanged.

The reason for this choice ofH± is that their commutator defines the z projection
of spin, Hz ≡ 1

2 [H+,H−], for which |Z2〉 plays the role of the extremal weight
state. Now the analogy with spin precession is almost complete because the PXP
Hamiltonian in Eq. (35) is given by the sum HPXP = H+ + H−, i.e., it plays
the role of an x-component of spin. Thus, preparing the atoms in |Z2〉 state is
equivalent to initialising the spin along the z-axis, and the state revives because
the PXP Hamiltonian acts like a transverse magnetic field.

If the above spin picture were exact, the revivals in the PXP model would be
perfect, with fidelity in Eq. (37) reaching 1 at certain late times. This is not seen,
either in experiments discussed below or in the numerical simulations of the PXP
model—recall Fig. 6a. The reason is that the mentioned su(2) spin algebra is only
approximate,

[
Hz,H±

] ≈ ±H± [117, 118], where “≈” means there are additional
operators on the right-hand side with smaller numerical prefactors from the leading
H±.

It has been realised that the structure of the su(2) algebra and the robustness
of the revivals can be significantly improved by small deformations of the PXP
model [117, 119]. The inclusion of deformations completely arrests the entangle-
ment growth, resulting in the band of scarred eigenstates nearly fully separated from
the rest of the spectrum. We note that a similar procedure can be used to enhance
revivals from other initial states, such as |Z3〉 and |Z4〉, for suitably redefined H±
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operators [118]. Thus, the PXP model could be deformed to stabilise different
embedded su(2) algebras. The deformations of the PXP model that enhance the
su(2) algebra and improve the |Z2〉 revival fidelity suggest the existence of an
idealised parent model that hosts “perfect” many-body scars. Unfortunately, the
parent model is defined by a long-ranged Hamiltonian with exponentially decaying
tails [117], and it remains unknown whether it can be expressed in a more compact
(short-range) form.

Box 9 : Forward Scattering Approximation
A free paramagnet is an example of a perfectly reviving system: any product
state of spins pointing along the z-axis exhibits periodic dynamics under the
magnetic field along the x-direction. Alternatively, the free paramagnet can
be viewed as a hypercube graph of dimension L, where each of the 2L spin
product states represents a vertex, while the edges connect vertices that can be
reached by flipping one spin. This picture helps to understand the PXP model,
which is a partial cube, i.e., a hypercube where all the vertices violating the
constraint have been removed—see Fig. 7. The resulting PXP graph contains
two smaller hypercubes of dimension L/2, with |Z2〉 and |Z′2〉 states as
extremal vertices, and the polarised state |◦◦ . . .〉 at the intersection point of
the two hypercubes. Additionally, there are also “bridges” that connect the
two hypercubes, e.g., in Fig. 7, one such configuration is ◦•◦◦•◦.

Fig. 7 Graph representation of the PXP Hamiltonian for L=6 spins. Vertices represent
all states compatible with the constraint, while lines connect states related by a single
spin flip. The FSA models the non-thermal eigenstates and revivals from |Z2〉 state by
compressing the graph to a one-dimensional ladder of states, which are identified with basis
states of a large spin of magnitude s = L

2 (red arrows). The states are labelled by their z
projection of spin or, equivalently, by their Hamming distanceDZ2 from the leftmost vertex

(continued)
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Box 9 (continued)
Quantum walk on the PXP graph starting in the |Z2〉 vertex can be accurately
modelled by assuming the wave function spreads only in the forward direc-
tion, a scheme known as the forward scattering approximation (FSA) [13].
The FSA compresses the partial cube down to a one-dimensional chain,
where each site |n〉 is a superposition of states with the same number of
excitations relative to |Z2〉 vertex. Thus, for L atoms, the chain contains L+1
sites. The FSA interprets each site |n〉 as an eigenstate of a big spin with
magnitude s=L/2 and pointing at an angle πn/L with respect to the z-axis.
As mentioned in the text, the spin-raising and -lowering operators directly
follow from a decomposition of the PXP Hamiltonian [13]. The FSA not
only allows to construct remarkably accurate approximations to the exact
eigenstates of the PXP and several other models [13, 73, 95, 120], but it
also provides the foundation for the elegant interpretation of the revivals as
precession of an emergent spin.

5 Semiclassical Dynamics

Quantum-classical correspondence has been at the heart of quantum mechanics
since the early 20th century. Parallels between the behaviour of a quantum system
and its classical counterpart have been extensively studied in the context of few-
body systems, such as the free propagating particle in a bounded domain (stadium
billiard being a particular example), coupled harmonic oscillators, and a rotor
subject to periodic driving [52]. In all these cases, the semiclassical limit can
be taken by sending h̄ → 0, and the behaviour of the quantum system is
often found to closely parallel its classical counterpart. For instance, quantum
counterparts of classically chaotic systems can be typically described by random
matrix theory [121].

Intrinsically many-body systems, such as the PXP chain in Eq. (35), present
challenges for the semiclassical description based on the conventional large-N limit
or the mean-field approximation. The latter, for example, ignores any correlations
between different spatial degrees of freedom and thus violates the constraint in the
PXP model in Eq. (35). The constraint introduces non-local correlations: if a given
spin is in |•〉 state, its neighbours must be in |◦〉 state. Such correlations build in
quantum entanglement, which cannot be ignored unless one relaxes the constraint.

The MPS methods discussed in Sect. 2 allow to incorporate entanglement in a
systematic way that goes beyond mean field [49]. For the PXP model, it has been
first shown by Ho et al. [14] that this approach can be tailored to capture dynamics
from the initial |Z2〉 state. This state is a period-2 density wave, which can be
described using a 2-atom unit cell. Hence, the variational MPS state is parametrised
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by two sets of angles, xi=(θi, φi), i=1, 2, that describe the state of spins on odd and
even sites in the lattice. The MPS matrices can be taken to be [98]

A•(θi, φi) =
(

0 ie−iφi
0 0

)
, A◦(θi, φi) =

(
cos θi 0
sin θi 0

)
, (41)

where we notice that A•∝σ+ satisfies the condition A•(θ, φ)A•(θ ′, φ′) = 0, which
effectively imposes the constraint that no two adjacent spins are in |•〉 state. The
special points (θ1, θ2) = (0, π/2) and (θ1, θ2) = (π/2, 0) correspond to |Z2〉 =
|•◦•◦ . . .〉 product state and its partner shifted by one lattice site, |Z′2〉 = |◦•◦• . . .〉.

By projecting quantum dynamics onto the MPS manifold spanned by Eq. (41)
using TDVP, as outlined in Sect. 2.2, one obtains a classical non-linear system
for θi(t), φi(t). The derivation is cumbersome, and the final equations are also
rather complicated (many useful technical details can be found in the Supplementary
Material of Ref. [14]). To give an idea, we quote the final equations of motion from
Ref. [98]

θ̇1 = tan θ2 sin θ1 cos2 θ1 cosφ1 + cos θ2 cosφ2, (42a)

φ̇1 = −μz + 2 tan θ1 cos θ2 sinφ2 − 1

2
tan θ2 cos θ1

(
2 sin−2 θ2 + cos 2θ1 − 5

)
sinφ1,

(42b)

which were derived for the PXP model in the presence of a chemical potential,
μz

∑
j nj , where nj ≡ 1

2 (1 + σzj ). The equations for θ2, φ2 can be obtained by
substitution 1 ↔ 2.

Before discussing the solutions of the equations of motion (42), we note that the
expectation value of the Hamiltonian is a conserved quantity, provided the equations
of motion are satisfied. This conservation law effectively reduces the dimensionality
of the phase space from four down to three dimensions, as it restricts the dynamics
to constant energy surfaces. However, when μz=0 the system in Eqs. (42) actually
has a class of solutions with two angles being stationary, φ1,2=0 [14]. This class of
solutions corresponds to a flow-invariant subspace, here arising due to particle-hole
symmetry and time-reversal invariance of the PXP Hamiltonian in Eq. (35) [98].

Restricting to the flow-invariant subspace φi=0 (with μz=0), we plot the flow
diagram in θ1-θ2 plane in Fig. 8a. Shown in red colour is the periodic trajectory first
identified in Ref. [14]. This trajectory is intimately linked with quantum revivals
for the initial Neél state |Z2〉 in Fig. 6a, since this state is represented by the
point (θ1, θ2)=(π/2, 0) on the trajectory. We note that the variational description
in Fig. 8a is not accurate at long times: the fidelity in the full quantum evolution in
Fig. 6a shows a visible decay, which is in contrast with the variational description
that implies perfect oscillations. As we mentioned in Sect. 2.2, this discrepancy
between the exact quantum evolution and its projection onto the variational manifold
can be quantified via quantum leakage in Eq. (14). The leakage measures the
instantaneous disagreement between exact dynamics and its projection onto the
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Fig. 8 (a) Flow diagram obtained from the variational ansatz with two degrees of freedom reveals
an unstable periodic trajectory (red line), which is responsible for the fidelity revivals from the
period-2 density wave state in the quantum case [14]. The periodic trajectory passes through the
Néel states, |Z2〉 and |Z′〉, shown by red dots and avoids the polarised state, |0〉 ≡ |◦◦◦ . . .〉, located
at (0, 0). As shown in Ref. [14], quantum leakage outside the variational manifold is minimised
in the vicinity of the periodic orbit, thus explaining the relevance of this trajectory in the fully
quantum dynamics. (b) In the presence of the chemical potential μz �=0, the dynamical system
develops mixed phase space containing large regular regions, as shown in Ref. [98]. The plot
shows the associated Poincaré section for μz=0.325 at fixed (θ∗1=1.25π, θ̇1 < 0)

variational manifold. Remarkably, the periodic trajectory is located entirely in the
low leakage region [14], thus providing a posteriori justification for the coherent
quantum dynamics when the system is prepared in |Z2〉 state.

Two-dimensional phase space, however, is special as it precludes chaos. Dynam-
ical systems with phase spaces higher than two-dimensional are known to display
both classical chaos as well as regions of stable motion—the so-called Kolmogorov–
Arnold–Moser (KAM) tori [122]. These features are prominent in Fig. 8b that
shows the Poincaré section of the dynamical system in Eq. (42) when the chemical
potential is present (μz=0.325) and the variables φi cannot be fixed to zero. To
obtain such a graph, we follow the standard recipe: we choose some value for θ1
and follow the successive intersections of the flow with the chosen section. This
produces a discrete mapping known as the Poincaré map—this maps a given point
(θ∗1 , φ1, θ2, φ2) on the chosen hyperplane to a position (θ∗1 , φ′1, θ ′2, φ′2), where the
trajectory intersects this plane again. Periodic trajectories correspond to stationary
points of the Poincaré map, while a chaotic system returns to the same plane at
a location that is generally far away from the previous encounter. This procedure
for evaluating the Poincaré sections can be conveniently implemented, e.g., in
Mathematica using the built-in NDSolve routine.

Figure 8b illustrates a typical example of mixed phase space [52]: there exist (in
general, multiple) KAM tori with stable periodic orbits in their centres, surrounded
by the chaotic sea. Energy conservation results in complicated surfaces in the space
(φ1, θ2, φ2) that cannot be globally projected. Therefore, the figure shows a small
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part of the Poincaré section in the vicinity of the stationary point, (φ1, θ2) ≈
(2.92, 2.98), corresponding to a stable periodic trajectory [98]. This periodic
trajectory is surrounded by circle-shaped contours that are the intersections of KAM
tori by our section plane. Unlike the pure PXP model (μz=0) where the periodic
orbit passes through a product state (|Z2〉), in this case, the states on the trajectory
are entangled in general (though entanglement is necessarily small, since the orbit
passes through MPS states of low bond dimension).

5.1 Discussion: Benefits and Pitfalls of TDVP

To summarise, the TDVP discussed above allows to obtain classical equations
of motion and analyse parallels between the dynamics of a quantum system and
its projection onto the variational manifold. The presence of (stable or unstable)
classical periodic trajectories with small quantum leakage leads to slow relaxation
in the full many-body dynamics.

There are several useful insights we glean from TDVP. (i) The KAM tori
inform us about special features of quantum dynamics in the underlying model.
For example, when dynamics is initialised precisely on the periodic orbit, there is
slower relaxation of local observables and slower entanglement growth in quench
dynamics [98]. Furthermore, initialising the dynamics in the centre of a big KAM
torus results in slower entanglement growth. This highlights the role of quantum
leakage in determining which of the trajectories give rise to slow thermalisation
in exact quantum dynamics. (ii) Revivals in the PXP model are robust to various
deformations of the Hamiltonian, provided that in the course of the deformation one
follows the periodic trajectory that is influenced by the deformation [98]. (iii) The
TDVP approach has also been fruitful in obtaining a more complete understanding
of the PXP dynamics in manifolds with more degrees of freedom. In particular,
this approach can describe the dynamics from the period-3 density wave state,
|Z3〉, which also shows revivals of fidelity, as seen in Fig. 6a. The corresponding
variational ansatz for this state includes three angles θi , i=1, 2, 3, which parametrise
the state of three atoms within a unit cell (the corresponding φi once again can be
fixed to zero in the flow-invariant subspace). While the equations of motion are
considerably more complicated than ones in Eq. (42), their numerical solution also
generally gives rise to mixed phase space, similar to Fig. 8b.

At the same time, one must beware some caveats to the TDVP approach. First,
the variational manifold is not unique—one can always enlarge the MPS ansatz
by including additional parameters that build in longer-range entanglement. This
leads to potential ambiguities in the definition of the trajectory. While some TDVP
ansätze may find unstable periodic trajectories, more generic embeddings may result
in mixed phase space. Second, at present, there is no understanding under which
conditions the quantum leakage is small. Hence, even if one recovers a large number
of periodic trajectories, they may all have strong leakage and not lead to any revivals
in quantum dynamics, e.g., as in the chaotic Ising model in Ref. [98].
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Finally, many questions remain about quantum-classical correspondence in
TDVP as a function of bond dimension χ . Complementing the study of weak-
ergodicity breaking at small χ , TDVP has been used to study thermalisation at larger
χ . In particular, Ref. [123] demonstrated that physical properties saturate in the case
of the transverse field Ising model for bond dimensions χ>2. In addition, Ref. [124]
studied the spectrum of Lyapunov exponents in the case of a high bond dimension
TDVP. The work in Ref. [98] shows that in the case of low bond dimensions one
may encounter non-chaotic behaviour in the TDVP dynamics, limiting the utility of
the Lyapunov exponent. On the one hand, one may expect that mixed phase space
does not persist for large bond dimensions, as increasing χ increases the dimension
of the phase space where the TDVP dynamics occurs, making it more susceptible to
chaos. On the other hand, for local Hamiltonians, the Lieb–Robinson bound [125]
suggests that a small bond dimension is sufficient to capture quantum dynamics at
early times. Thus, it is important to understand how the mixed phase space evolves
upon including additional MPS parameters that describe longer-range entanglement.

6 Quantum Many-Body Scars

In Sect. 3, we discussed different mechanisms that lead to the emergence of non-
thermal eigenstates in highly excited energy spectra of non-integrable systems. In
the past few years, the name quantum many-body scars has been widely adopted
as an umbrella term for such non-thermal eigenstates, regardless of the underlying
mechanism of ergodicity breaking. In this section, we explain in more detail the
reasons why this name was adopted by Turner et al. [13]. The inspiration was the
PXP model and its many parallels with a single particle confined to a stadium-
shaped billiard. In the latter case, the particle’s eigenfunctions can concentrate
around certain periodic orbits in the limit h̄→ 0, a phenomenon Heller [15] called
quantum scarring in the early 1980s. In the remainder of this section, we discuss the
semiclassical aspects of the PXP physics that make it the many-body analogue of
quantum scarring.

6.1 Scars in Few-Body Systems

What can we learn about the behaviour of a quantum system by looking at
its classical counterpart? The Bohr–Sommerfeld quantisation demonstrates that
classical integrable systems, such as the harmonic oscillator or hydrogen atom,
have rather special quantum spectra and eigenstates. For classically chaotic systems,
e.g., the Bunimovich stadium, the traditional quantisation methods do not work.
Typically, quantum counterparts of classically chaotic systems display level repul-
sion in their spectrum and their eigenstates look random. However, short unstable
periodic orbits may leave a strong imprint on the system’s quantum dynamics
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and eigenstate properties—this influence of classical periodic orbits is known as
“quantum scarring” [15]:

Definition (From Ref. [126]) A quantum eigenstate of a classically chaotic system
has a “scar” of a periodic orbit if its density on the classical invariant manifolds near
the periodic orbit is enhanced over the statistically expected density.

Utilising this definition, one can detect scars by visualising the wave function
probability density, which can be seen to concentrate around certain periodic
classical orbits, e.g., the diamond-shaped “bow tie” orbit in the Bunimovich
stadium [126]. Moreover, scars leave an imprint on the dynamics: when a wave
packet is launched in the vicinity of an unstable periodic orbit, it will tend to
cluster around the orbit at later times, displaying a larger return probability than
a wave packet launched elsewhere in the phase space. Furthermore, such a wave
packet can be expanded over a small number of eigenstates that have approximately
similar energy spacing, in contrast to an arbitrary wave packet. Much of this
phenomenology was originally acquired through numerical solutions of quantum
billliard problems since the latter are non-integrable and do not admit analytical
solution.

Nevertheless, rigorous proofs [127–129] have established that individual eigen-
states of the billiard are “almost always” ergodic since the phase space area affected
by scarring vanishes in the semiclassical limit h̄→ 0, shrinking around the periodic
orbit. These proofs of scarring have been based on constructions of approximate
eigenstates or “quasimodes”, i.e., special states designed to be strongly localised
around a classical periodic orbit. For example, in the Bunimovich stadium, some
of the quasimodes have the form ψ(x, y) = φ(x) sin(nπy), i.e., they represent a
standing wave in one direction with a suitably chosen envelope function in the other
direction. By carefully controlling the density of states, it was possible to show that
there exist eigenstates with an anomalously high overlap with a small number of
quasimodes, hence “inheriting” their scarring properties [126].

Although the above suggests that scars are “rare” anomalies, they do have
physical significance. For example, scars provide an important counterexample
to the intuitive expectation that every eigenstate of a classically chaotic system
should locally look like a random superposition of plane waves [130]. Furthermore,
also counterintuitively, a scarred quantum system appears more “regular” than its
classical counterpart since in the latter case there is no enhancement of density
along the periodic orbit in the long-time limit. Finally, scars play a role in
many experiments, including microwave cavities [131], semiconductor quantum
wells [132], and the hydrogen atom in a magnetic field [133].

6.2 Quasimodes in the PXP Model

In few-body systems, the understanding of quantum scars rests on two pillars: the
existence of unstable classical periodic orbits and the quasimodes that leave a scar
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upon some of the eigenfunctions. The main difficulty in passing to the many-body
case is how to give precise meaning to this terminology: the physics now takes
place in the many-particle Hilbert space, precluding “easy” visualisation of the
classical trajectory. In Sects. 2.2 and 5, we introduced one way of defining the
classical trajectory via TDVP, wherein many-body dynamics is projected onto a
restricted space of MPS states. This approach systematically builds in entanglement,
controlled by the MPS bond dimension; thus it forms a natural framework to
define the semiclassical limit of the PXP model that does have an obvious h̄ → 0
limit.

The application of the TDVP method to the PXP model successfully captures
the revivals following quenches from specific product states; hence, it is natural
to suggest that this approach defines an effective “semiclassical” description of
the quantum dynamics and holds the same relation with the exact PXP model as
expected from the Bohr correspondence principle. However, in order to complete the
analogy with single-particle scars, it is necessary to show that this limit also gives
rise to quasimodes that, in turn, accurately approximate the quantum eigenstates of
the PXP model.

In Ref. [134], this correspondence was achieved by constructing a subspace K,
which is fully symmetric over permutations within each of the two sublattices,
comprising even and odd sites in the PXP chain—see Box 8. This forms a
mean-field approximation for the PXP model wherein one describes the dynamics
in terms of numbers of excitations on even or odd sites while discarding any
detailed local information (such as the precise positions of excitations within a
sublattice). This approximation reduces the exponential complexity of the many-
body problem down to polynomial in system size, and the quasimodes are
obtained by simply diagonalising the Hamiltonian projected into the symmetric
subspace, KHPXPK. As can be seen in Fig. 9a, these quasimodes are excellent
approximations to the exact eigenstates of the PXP model; in particular, they
capture the L+1 non-thermal eigenstates with the largest projection on |Z2〉 state
in Fig. 6a.

It turns out that the symmetric subspace K has an intimate relationship with
the subspace M of MPS states discussed in Sect. 5, which can be viewed as a
Gutzwiller projection of spin coherent states with a unit cell of two sites [14].
The states in M are parametrised by two angles that represent probabilities for
a site of each sublattice to hold an excitation, while K consists of states with
definite occupation numbers for each sublattice. In this sense, there is a direct
relationship between the two subspaces, reminiscent of the relationship between
canonical and grand canonical ensembles in statistical mechanics. More formally,
it can be proven that the linear span of M is equal to the symmetric subspace
K, for every fixed system size L [134]. This implies that the dynamics within K
necessarily includes all quantum fluctuations on top of the equations of motion in
Eq. (42).
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The correspondence between the classical system M and the quantum system
in its linear span (K) finally allows us to view the quasimodes |ψ〉 ∈ K as wave
functions ψ(θ, φ):

ψ(θ, φ) = 〈�(θ, φ)|S−1/2
μ |ψ〉 . (43)

Here �(θ, φ) ∈M is the MPS state parametrised by Eq. (41), and Sμ is the frame
operator [134]. This operator is needed because we need to equip the classical state
space with an integration measure μ in order to have a well-defined quantisation. In
the more familiar manifolds of quantum states, such as spin coherent states [135]
or unconstrained MPS [136], the measure μ is simply given by the Haar measure
for a transitive group action. However, for the subspace K with angles θi , φi
having 2-site periodicity, the measure is non-trivial, and one must use the frame
operator.

Using the above correspondence Eq. (43), the real part of the quasimode wave
functions is plotted in Fig. 9b,c. For one of the top-band quasimodes near the middle
of the spectrum (denoted by a cross in Fig. 9a), we observe enhanced concentration
around the |Z2〉 classical trajectory (shown by the black line in Fig. 9b). This
behaviour is strikingly reminiscent of wave function scarring in quantum billiards.
In particular, following the classical trajectory, the phase of the wave function winds,
and integrality of this winding number leads to the quasimodes’ approximately
equal spacing in energy. We recognise this behaviour from quantisation of regular
trajectories [52]: in the old quantum theory, this underpins Sommerfeld–Wilson
quantisation and leads to the de Broglie standing-wave condition for the Bohr

Fig. 9 (a) Scatter plot showing energies of all eigenstates of the PXP model vs. their overlap with
|Z2〉 state. Red crosses denote top-band quasimodes, and blue pluses are the remaining quasimodes.
Both of types of quasimodes are obtained by projecting the PXP model into the symmetric
subspaceK defined in the text. Colour indicates the density of data points. (b,c) Viewing a selected
top-band (b) and non-top-band (c) quasimode as wave functions over θ1 and θ2 for L=128. Colour
scale represents the real part of the wave function. Top-band quasimodes concentrate around the
classical periodic orbit (black line), displaying quantum scarring. The other quasimodes avoid this
periodic trajectory and concentrate around the corners of the square. Note that the |Z2〉 and its
translated partner correspond to (θ1, θ2)=(π, 0) and (0, π) in the notation of this figure. Due to
the MPS parametrisation, the wave function in (b) visibly spreads out towards the boundary and
becomes completely delocalised at the edges, θi = ±π , where the points are indistinguishable in
the transverse direction. Panels reproduced from Ref. [134] under a Creative Commons licence CC
BY 4.0
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model. These features are inherited by the exact scarred eigenstates given their
strong overlap with the quasimodes. In contrast, Fig. 9c shows one of quasimodes
deeper in the bulk of the spectrum. Such quasimodes are typically found around
the orbits connecting corners of the manifold, where quantum leakage is large (see
Sect. 5). It is expected that these quasimodes would not survive the “injection” into
the full Hilbert space, i.e., while the top-band quasimodes accurately approximate
the true eigenstates of the full PXP model, this is not the case for the other
quasimodes.

Box 10 : Mean-Field Approximation for the PXP Model
The essence of mean-field theory is the erasure of unnecessary local infor-
mation. For example, to describe a free paramagnet, which is obtained by
dropping the projectors in the PXP Hamiltonian in Eq. (35), we only need
to know the total number of excitations relative to some reference state, not
their precise positions in the lattice. This idea has been generalised to describe
the reviving dynamics in the PXP model where the important information is
the number of excitations on each of the two sublattices, comprising even and
odd sites in the chain [134]. Such an approach is reminiscent of the symmetric
subspaces in studies of fully connected models [137, 138]. However, the key
difference is that in the PXP model the permutation symmetry is broken
to the sublattice level, and many of the permutation shuffles violate the
constraint and therefore have to be excluded, which makes the analysis more
involved.

To illustrate the approach, the symmetric subspaceK is defined by forming
a set of equivalence classes (n1, n2), where integers n1, n2 label the number
of excitations on the two sublattices, encompassing the odd and even sites,
respectively. Elements in these classes are equivalent under the action of
the product of two symmetric groups SL/2 that “shuffle” the sites in each
sublattice. For example, states |•◦•◦◦•◦◦◦◦〉 and |◦◦•◦◦◦•◦◦•〉 belong to
the same class as they both have two excitations in the first sublattice
and one in the second. An example of the construction of K for the PXP
model of size L=8 is presented in Fig. 10. The orthonormal basis for K is
built from symmetric combinations of members of each class, |(n1, n2)〉 ∝∑
x∈(n1,n2)

|x〉, where the sum runs over all product states |x〉 that are
members of the class (n1, n2). Class sizes and matrix elements of the PXP
Hamiltonian projected to K can be calculated using combinatorics [134],
allowing for a highly efficient description of the PXP model and its dynamical
properties.

(continued)
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Box 10 (continued)

Fig. 10 Construction of the symmetric subspace K in the PXP model for L=8
spins. Each blue dot represents an allowed product state compatible with the con-
straint. The states are grouped into equivalence classes, denoted by ellipses. Each
class is labelled by a representative state, e.g., the class (0, 3) contains the represen-
tative state ◦•◦•◦•◦◦ and all other obtained by permuting sites in each of the two
sublattices. Reproduced from Ref. [134] under a Creative Commons licence CC BY
4.0

6.3 Discussion: Scars or Not?

The results presented in this section and Sect. 5 provide justification for referring to
the non-thermal eigenstates in the PXP model as a many-body analogue of single-
particle scars. One of the crucial ingredients that allows to make such a connection is
the quantum-classical correspondence. At the same time, in Sect. 3, we introduced a
number of other models that also feature non-thermal eigenstates, quite reminiscent
of those in the PXP model. Here we briefly discuss the main similarities and
differences of these models.

The PXP model, with its generalisations to higher spins [14] and clock mod-
els [120], is broadly similar to models whose non-thermal eigenstates form an SGA.
The main difference is that the SGA in the PXP model is only approximate, and the
subspace has weak residual couplings to the thermal bulk. In addition, the PXP
model also realises an approximate Krylov subspace built upon |Z2〉 root state.
The Krylov subspace becomes exact when generated by H+ in Eq. (40). Finally,
a single PXP eigenstate at zero energy in the middle of the spectrum can be viewed
as projector-embedded AKLT ground state [87]. While similar connections between
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scarring mechanisms may be anticipated in other models mentioned in Sect. 3, their
demonstration remains an open problem.

In particular, the existence of classical periodic trajectories underlying quantum
revivals in the PXP model calls for exploration of semiclassical dynamics in other
scarred models discussed in Sect. 3. For example, in the spin-1 XY model [53] in
Eq. (20), the initial state with perfect revivals was identified to be

|ψ0〉 =
⊗

j

1√
2

(
|1〉j − (−1)j |−1〉j

)
. (44)

This state is a superposition of the scar tower states |SXYn 〉 in Eq. (21), and it can
be prepared as the ground state of the Hamiltonian H = Q†+Q ∝ J x . Since these
states are equally spaced in energy with spacing 2h [see Eq. (20)], time evolving
|ψ0〉 gives perfect revivals with frequency 2h. For the AKLT tower of scars, such
“rotations” in the space of scar states do not seem to produce a very simple initial
state. However, as shown in Ref. [58], the AKLT scar tower can be compressed into
a state with finite MPS bond dimension (e.g., bond dimension equal to 8 in a system
with periodic boundary conditions).

We expect that similar constructions of reviving initial states can be performed
for other models with an SGA using the properties of Q†. By contrast, for
non-thermal eigenstates produced via the projector-based embedding scheme, we
generally do not expect underlying periodic trajectories. Similarly, models with
Krylov fragmentation (Sect. 3.2) are not guaranteed to have revivals, even if the
root state |ψ0〉 is experimentally preparable. This is because general tridiagonal
matrices do not support revivals, unless their matrix elements are tuned to special
values [139]. Thus, the study of classical periodic trajectories in a broader family of
models could be helpful as a finer classification scheme for models displaying weak
ETH violation in their eigenstate properties, in particular as a way of distinguishing
many-body scarring from more generic embeddings of non-thermal eigenstates.

7 Weak Ergodicity Breaking in Experiment

The experiments that opened the door to the investigation of weak ergodicity break-
ing discussed above were performed using quantum simulators based on Rydberg
atom arrays [12, 140]. Here, we provide a brief overview of these experiments,
focusing on the work by Bernien et al. [12] that reported the first experimental
observation of quantum many-body scarring. Following this, we discuss more recent
experiments realising the tilted Fermi–Hubbard in optical lattices, where signatures
of non-ergodicity due to Hilbert space fragmentation have been detected [21].
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7.1 Rydberg Atoms

An individual Rydberg atom may be viewed as an effective two-level system, where
the two states |◦〉, |•〉 correspond, respectively, to an atom in the ground state and an
atom in the so-called Rydberg state, i.e., with a highly excited electron in the outer
shell, see Fig. 11a. The state of an individual Rydberg atom may be manipulated
via coupling to circularly polarised radiation that causes Rabi oscillations with
frequency �. The relative detuning  of the Rydberg state off-resonance can
also be controlled, leading to an effective single-atom Rydberg Hamiltonian H =
(�/2)σ x + n̂, where the operator σx = |◦〉〈•| + |•〉〈◦| is the Pauli matrix that
describes Rabi oscillations, and n̂ = |•〉〈•| measures the population of the Rydberg
state.

Atoms in Rydberg states interact via dipole–dipole interactions; thus the many-
body Hamiltonian describing this system is given by

H = �
2

∑

i

σ xi −
∑

i

n̂i +
∑

i<j

Vij n̂i n̂j , (45)

where Vi,j = 1/r6
ij and rij is the distance between the atoms. By tuning rij , one can

achieve the regime of the Rydberg blockade, as illustrated in Fig. 11a. In this regime,
the shift of an energy level with two excited Rydberg atoms is so strong that the state
|••〉 is off-resonant and cannot be reached from the ground state. Rydberg blockades
with varying radii were demonstrated experimentally [140, 141] via the frequency
renormalisation of the Rabi oscillations. Coherent dynamics was observed in small
arrays of Rydberg atoms in both 1D and 2D when the blockade radius exceeded the
linear size of the chain.

More recent experiments [12] have studied Rydberg arrays in a qualitatively
different regime with a relatively short radius of the Rydberg blockade. In particular,
long Rydberg chains, containing up to 51 atoms with the nearest-neighbour block-
ade, were quenched from a period-2 density wave initial state, |Z2〉 ≡ |•◦•◦ . . .〉,
corresponding to the state with the maximal possible number of Rydberg excitations
allowed by the blockade. The dynamics of the domain-wall density, where domain
walls are defined as adjacent |◦◦〉 or |••〉 configurations (the latter is excluded in the
regime of perfect blockade), revealed long-time oscillations, similar to Fig. 6a.

The density revivals observed in Ref. [12] were challenging to explain theo-
retically, for the following reasons. First, the density wave state |Z2〉 forms an
infinite-temperature ensemble for the atoms in the Rydberg blockade; thus it should
display fast equilibration. Indeed, for other initial states at infinite temperature, such
as |0〉 ≡ |◦◦◦ . . .〉, the domain-wall density was found to relax quickly to the steady-
state value. Second, the persistence of crystalline order far from equilibrium was
surprising because the Rydberg atom system was not known to have any conserved
quantities other than the total energy. Finally, the frequency of domain-wall density
oscillations did not coincide with

√
2�, which would be naïvely expected for

collective oscillations of two atoms in the Rydberg blockade regime, signalling
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Fig. 11 (a) Rydberg atom as a two-level system, where the empty circle corresponds to the ground
state and the filled circle denotes the excited Rydberg state. The Rabi frequency is denoted as �,
and the detuning of the |•〉 state from resonance is . The Rydberg blockade (shaded) leads to a
shift of the energy level where both atoms are in the |•〉 state, bringing it strongly off-resonance.
(b) When the Rydberg blockade is strong (V � � � ), excitations of neighbouring atoms are
energetically suppressed. In this limit, the effective model describing the Rydberg atom chain is the
PXP model in Eq. (35). (c) Fermi–Hubbard model realised in an optical lattice [21], with nearest-
neighbour hopping J and on-site interaction U . Tilt of the lattice is controlled by the parameter 
(with a different meaning from the detuning  in (a,b) and Eq. (45)!)

that many-body effects played an important role. As we have already seen, these
puzzles are now understood based on the studies of the PXP model summarised in
Sect. 4. The PXP model arises as the effective model for the Hamiltonian in Eq. (45)
when Vi,i is infinite and interactions beyond nearest neighbour are set to zero [91].
An important step towards the explanation of the observed oscillations was made
by identifying the non-thermalising eigenstates in the spectrum of the PXP model
in Fig. 6b. The core phenomenology of the PXP model—the small number of
ETH-violating eigenstates within the thermalising spectrum and the presence of
many-body revivals and slow relaxation in quenches from specific initial states—
led to the identification of the phenomenon in Ref. [12] with a many-body analogue
of quantum scarring [15].

We note that since the experiment in Ref. [12], there have been further advances
in similar Rydberg platforms. In Ref. [142], it was shown that coherent revivals
associated with quantum many-body scars can be enhanced via periodic driving,
which generates a robust subharmonic response akin to discrete-time-crystalline
order [143]. The driving is realised by modulation of the detuning term, (t) =
0 + m cos(ωmt), and the enhancement is found in the non-perturbative regime
of m,0, ωm ∼ �. It was found that such time-dependent detuning can lead
to a five-fold increase of scar lifetime compared to the fixed-detuning case [142].
Notably, parametric driving not only delays thermalisation, but also alters the actual
trajectory being stabilised, which can be used to effectively “steer” complex dynam-
ics in many-body systems [144]. This opens the door to robust creation and control
of complex entangled states in the exponentially large Hilbert spaces of many-body
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systems, with intriguing potential applications in areas such as quantum metrology.
Other fundamental phenomena recently realised in the same Rydberg platform
include dynamical phase transitions and Kibble–Zurek scaling [145] and topological
spin liquids [146] (see also Ref. [147] for a realisation in superconducting qubits).

7.2 Tilted Optical Lattices

Another platform for probing weak ergodicity breaking are ultracold atoms in tilted
optical lattices, which realise the 1D Fermi–Hubbard model [21]:

H = −J
∑

j, σ=↑,↓
ĉ

†
j,σ ĉj+1,σ + h.c.+

∑

j,σ

j n̂j,σ + U
∑

j

n̂j,↑n̂j,↓, (46)

where ĉ†
j,σ denotes the usual electron creation operator on site j with spin projection

σ , n̂j,σ ≡ ĉ
†
j,σ ĉj,σ , and J and U are the hopping and on-site interaction terms,

respectively. Compared to the standard Hubbard model, Eq. (46) includes the tilt
potential , which has the form of a dipole term, ∼ j n̂j .

The experimental setup in Ref. [21] consists of a degenerate Fermi gas of 40K
atoms that is prepared in an equal mixture of two spin components. The atoms
are loaded into a 3D optical lattice from which 1D chains are isolated along x
direction with the length of about 290 lattice sites. The on-site interaction strength
U is controlled by a Feshbach resonance, and a magnetic field gradient is used to
create the tilt  (approximately independent of spin). We note, however, that linear
potentials similar to the tilt one in Eq. (46) can also be realised in other platforms
such as trapped ions [148] and superconducting qubits [149], where signatures of
strong ergodicity breaking have been recently observed and attributed to “Stark
many-body localisation” [76, 77].

The model in Eq. (46) is a natural setting for exploring Hilbert space fragmenta-
tion. Ignoring the spin degree of freedom, in the limit of large tilt,  � U, J , the
leading-order off-diagonal term [72] is precisely the pair-hopping Hamiltonian in
Eq. (24). With spin included, the effective Hamiltonian in the limit of large tilt (at
third order) comprises an off-diagonal term [21]

T̂3 =
∑

i,σ

ĉi,σ ĉ
†
i+1,σ ĉ

†
i+1,σ̄ ĉi+2,σ̄ + h.c., (47)

whose strength is proportional to J (3) = J 2U/2 (σ̄ denotes the opposite spin of
σ ). At the same order, the effective Hamiltonian also contains another off-diagonal
term,∝ 2J (3)T̂XY , where T̂XY =∑

i,σ ĉ
†
i,σ̄ ĉi+1,σ̄ ĉ

†
i+1,σ ĉi,σ , as well as two diagonal

terms, U
(

1− 4J 2

2

)∑
i n̂i,↑n̂i,↓ and 2J (3)

∑
i,σ n̂i,σ n̂i+1,σ̄ .
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The effective model in Eq. (47) conserves the dipole moment,
∑
i,σ in̂i,σ . The

fact that the hopping rate J (3) is proportional to the interaction strength highlights
that interactions are necessary to generate dipole-conserving processes [21]. For
initial states that are products of singlons, the connected dynamical sector S only
represents a vanishing fraction of the whole (effective) symmetry sector, thus
severely restricting the dynamics of the system. The dipole-conserving processes
in general involve the generation of doublons. This is, however, penalised by the
Fermi–Hubbard on-site interaction, and therefore, we expect a slowing down of
the dipole-conserving dynamics. The additional spin exchange T̂XY increases the
connectivity but cannot fully connect the whole dipole symmetry sector, and the
system remains fragmented.

In experiment, ergodicity breaking was probed by quenching the system from
an initial state chosen to be a charge-density wave of singlons on even sites (filling
factor ν=1/2), which is prepared using a bichromatic optical superlattice. The initial
state can be described as an incoherent mixture of site-localised particles with
random spin configuration. The subsequent evolution is monitored by extracting
the spin-resolved imbalance Iσ = (Nσe − Nσo )/Nσ , where Nσe(o) denotes the total
number of spin-σ atoms on even (odd) sites and Nσ = Nσe + Nσo . A non-zero
steady-state imbalance signals a memory of the initial state, where Iσ (t=0) = 1.
In the regime  � J, |U |, the effective Hamiltonian is dipole-conserving up to
third order in J/, which was argued [21] to be responsible for the non-ergodic
behaviour of imbalance I, which did not decay to its thermal value at moderate
times. At much later times, higher-order processes, beyond the ones in Eq. (47), are
expected to reconnect the different Krylov sectors.

Tilted Fermi–Hubbard model is a promising platform to investigate a range of
ergodicity breaking beyond fragmentation. Although experimentally challenging
due to finite evolution times, it would be interesting to reconcile the phenomenon
of Stark MBL and Hilbert space fragmentation, by studying the impact of weak
disorder or residual harmonic confinement on the long-time dynamics. Moreover, it
would be interesting to explore the connection between lattice gauge theories and
Hilbert space fragmentation, which could be addressed experimentally in a similar
system [150]. Finally, recent work [151] has proposed that quantum many-body
scars could also be realised in the same model, albeit at a different filling factor
compared to Ref. [21]—see Box 9.

Box 11 : Proposal for Scars in the Fermi–Hubbard Model
In the regime ≈U�J , the tilted Fermi–Hubbard model in Eq. (46) was
argued to host many-body scars at filling factor ν=1 [151]. In this case,
the sum of the dipole moment and the number of doublons are effectively

(continued)
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Box 11 (continued)
conserved, giving rise to the effective Hamiltonian

Heff = −J
∑

j,σ

ĉ
†
j,σ ĉj+1,σ n̂j,σ (1− n̂j+1,σ )+ h.c., (48)

where hopping to the left (which decreases the total dipole moment by 1) is
only allowed if it increases the number of doublons by the same amount (σ̄ is
opposite spin from σ ).

The action of the Hamiltonian in Eq. (48) within the ν=1 sector fragments
the Hilbert space beyond the simple conservation of U+. The largest
connected component of the Hilbert space is the one containing the state with
alternating ↑ and ↓ fermions. In such large sectors, after resolving all the
symmetries, the model can be shown to be non-integrable [151].

The proposal for many-body scars in the effective Hamiltonian in Eq. (48)
is based on the existence of a regular subgraph that has the form of the
hypergrid—a Cartesian product of line graphs (in our case, of length 3), i.e.,
the hypergrid is isomorphic to an adjacency graph of a free spin-1 paramagnet,
as illustrated below (Fig. 12).

Fig. 12 Adjacency graph of the model in Eq. (48) for L=6. Red vertices denote the states
belonging to the hypergrid, with the black vertices corresponding to |−+〉, |+−〉 states
defined in the text. Green vertices are the isolated states |↓ 2 ↑〉, |↑ 2 ↓〉 that live on the
tails of the graph

The mapping to the hypergrid follows from analysing pairs of sites, which
can be in states “−′′ ≡ (↓↑), “2′′ ≡ (-0) or “+′′ ≡ (↑↓), leading to a
three-level system. Note that the configuration (0-) is omitted, as doublons
can only be formed by hopping to the left. Inside the hypergrid, there are
two states for which the cell alternates between − and +. These are the
state |−+〉 ≡ |−+−+ . . .〉 = |↓↑↑↓↓↑↑↓ . . .〉 and its spin-inverted partner,

(continued)
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Box 11 (continued)
|+−〉 = |+−+− . . .〉 ≡ |↑↓↓↑↑↓↓↑ . . .〉. The states |−+〉 and |+−〉 are
shown in black colour in Fig. 12. These two states are the only corners of the
hypergrid (state with only+ and− cells) with no edges going out of it. When
the system is initialised in either of these states, it was numerically shown
to exhibit persistent oscillations in the quench dynamics and other scarring
phenomenology similar to the PXP model discussed in Sect. 4.

8 Conclusions

The goal of this chapter was to present a pedagogical introduction to the new
kind of dynamical behaviour in many-body systems—weak ergodicity breaking.
While we refrained from giving a formal definition, weak ergodicity breaking
was intuitively introduced as a strong dependence of relaxation dynamics on the
system’s initial configuration. We contrasted this behaviour against conventional
ergodic systems, by showing that certain many-body states can be long-lived and
they exhibit parametrically slow relaxation, unlike other initial configurations that
quickly reach thermal equilibrium. Many recent studies discussed above, theoretical
as well as experimental, have revealed that a number of familiar physical systems
do not conform to the expectations of the ETH in its strong form, in that such
systems can host non-thermal eigenstates and exhibit long-time coherent dynamics.
The common pattern that arises in these diverse physical systems is an emergent
non-thermalising subspace, which is dynamically decoupled from the rest of the
many-body Hilbert space. Quantum entanglement, in particular, has been the vital
tool for identifying such non-thermal subspaces in different models.

At this stage, a complete classification of non-thermal subspaces and their
underlying mechanisms is still lacking. In particular, more work is needed to
understand the connection between many-body scarring and two broad classes of
weak ergodicity breaking phenomena: theories with confinement [152–156] and
lattice gauge theories [157–159]. The latter, in particular, the one-dimensional
quantum link model—which has recently been realised in a Bose–Hubbard quantum
simulator [150]—have intriguing connections with the PXP model [160]. It would
be interesting to explore possible connections with PXP in higher dimensions [161],
as well as to understand the relation with kinetic constraints, which can generally
lead to slow glassy-like dynamics [79, 162–165].

On the theory side, many questions remain about the quantum-classical corre-
spondence in the physical systems discussed above. The TDVP variational approach
complements recent efforts in understanding parallels between classical chaos
measures, on the one hand, and thermalising quantum dynamics and its underlying
transport coefficients on the other hand [123, 124]. While many-body scarred
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models are quantum-chaotic, their properties deviate from other chaotic models
such as the Sachdev–Ye–Kitaev (SYK) model [166, 167], which has attracted much
attention as the fastest scrambler of quantum information [168]. Such deviations
could be identified and studied more systematically using the variational approach
and its resulting mixed phase portraits, which appear to be a generic feature of local
Hamiltonians. One of the outstanding challenges is to bring together this approach to
real-time dynamics with approaches that target the many-body eigenstates, possibly
using quantum entanglement and other quantum information techniques as a way of
linking quantum revivals and eigenstate properties [169].

Finally, there is strong experimental and practical interest in weak ergodicity
breaking. For example, many-body scarred revivals provide a mechanism for
maintaining coherence, despite the presence of interactions that normally scramble
local quantum information. In particular, scars in Rydberg chains have already
been utilised for the preparation of specific entangled states [170]. This application
made use of quantum control based on the variational TDVP approach and its
identification of entangled periodic trajectories that simultaneously have small
quantum leakage. Thus, scars may have a wider range of applications, for example
in protected state transfer on quantum networks or in quantum sensing [171]. Such
applications require deeper theoretical understanding of the effects that protect the
coherence of scars, as well as the development of general experimental techniques
for creating them on demand, e.g., using periodic driving in Rydberg arrays [142],
pumping protocols in dipolar Bose gases [172], or by tilting the Fermi–Hubbard
model [21].
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Quench Dynamics of Rényi Negativities
and the Quasiparticle Picture

Sara Murciano, Vincenzo Alba, and Pasquale Calabrese

Abstract The study of the moments of the partially transposed density matrix
provides a new and effective way of detecting bipartite entanglement in a many-
body mixed state. This is valuable for cold-atom and ion-trap experiments, as well
as in the general context of quantum simulation of many-body systems. In this
work we study the time evolution after a quantum quench of the moments of the
partial transpose, and several related quantities, such as the Rényi negativities. By
combining Conformal Field Theory (CFT) results with integrability, we show that,
in the space-time scaling limit of long times and large subsystems, a quasiparticle
description allows for a complete understanding of the Rényi negativities. We test
our analytical predictions against exact numerical results for free-fermion and free-
boson lattice models, even though our framework applies to generic interacting
integrable systems.

1 Introduction

During the last decades, the study of entanglement became a powerful tool to
explore the out-of-equilibrium dynamics of quantum systems. The simplest and
most broadly studied protocol is the quantum quench [1, 2]: a system is prepared
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in the ground state of a translationally invariant Hamiltonian, and at a given time a
sudden change modifies the Hamiltonian. In integrable systems, the entanglement
dynamics after a quench is captured by a well-known quasiparticle picture [3–6].
The key tenet of the quasiparticle picture is that the entanglement dynamics is
described by the ballistic propagation of pairs of entangled excitations, which are
produced after the quench (see Fig. 1). An intense theoretical activity was accom-
panied by a remarkable experimental progress, e.g., to measure the many-body
entanglement of non-equilibrium states [7–10]. For closed bipartite systems, the von
Neumann and the Rényi entropies of reduced density matrices can be used as bona
fide measures of the entanglement shared between the two complementary parts.
On the other hand, neither the entropies nor the associated mutual information can
be used to quantify the entanglement between two noncomplementary subsystems
(see Fig. 1 for the situation with two disjoint sets in a one-dimensional system).
The reason is that the state of the two subsystems is in general a mixed one. In
this situation, the entanglement can be understood via the partial transpose of
the reduced density matrix (RDM) which is defined as follows. Given the RDM
ρA of a subsystem A = A1 ∪ A2 (see Fig. 1), obtained after tracing out the rest
of the system B as ρA ≡ TrBρ, the partial transpose ρT1

A is obtained by taking
the matrix transposition with respect to the degrees of freedom of one of the two
subsystems (say A1). The key point now is that the presence of negative eigenvalues
in the spectrum of ρT1

A is a sufficient condition for A1 and A2 to be entangled
[11, 12]. These negative eigenvalues are witnessed by the (logarithmic) negativity
E ≡ ln Tr|ρT1

A | [13] which turns out also to be an entanglement monotone [14].
Unfortunately, computing the negativity or measuring it experimentally in

quantum many-body systems is a daunting task. This fact sparked a lot of activity
aiming at finding alternative entanglement witnesses for mixed states always
starting from the partially transposed RDM. To this aim, several protocols to
measure the moments Tr(ρT1

A )
n of the partial transpose have been proposed [15–

18] culminating with the actual experimental measure in an ion-trap setting using
shadow tomography [15, 16]. However, these moments are not direct indicators of
the sign of the eigenvalues of ρT1

A and hence of entanglement. Nevertheless, some
linear combinations of them are sufficient conditions (known as pn-PPT conditions,
see below) for the presence of negative eigenvalues in the spectrum [15, 16] and

Fig. 1 Quasiparticle picture for the time evolution after a quench of the entanglement between
two disjoint intervals (A1 = [u1, u2] and A2 = [u3, u4]) embedded in the infinite line. Pairs of
entangled quasiparticles are emitted from every point in space at t = 0. At a given time t the
entanglement between A and the remainder is proportional to the number of pairs shared between
A and its complement. Similarly, the entanglement between A1 and A2 is proportional to the pairs
that are shared between them, and not between A1 (or A2) with the rest separately
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so are witnesses of entanglement in mixed states. However, in contrast with the
logarithmic negativity, for which a quasiparticle picture was derived in Ref. [19],
results for the dynamics of the moments of the partial transpose are available only
for Conformal Field Theories (CFTs) [20–22].

Here, by combining CFT and integrability, we derive the quasiparticle picture
describing the dynamics of the moments of the partial transpose, and several related
quantities, after a quantum quench in integrable systems. Specifically, we consider
the Rényi negativities En defined as

En = ln
(

Tr(ρT1
A )

n
)
. (1)

Note that En are not proper entanglement measures, although the limit lim
ne→1

Ene ,
with ne an even integer, defines the logarithmic negativity. We also consider the
ratios Rn as

Rn = Tr(ρT1
A )

n

TrρnA
. (2)

The ratios Rn are studied in CFT [23–27], due to their universality. Recently, they
were studied at finite-temperature critical points [28], and to probe thermaliza-
tion [29, 30] (note that the authors of Ref. [29] refer to the ratios Rn as Rényi
negativities, unlike here). Here we derive the quasiparticle picture for both En and
Rn, focusing on the situation in which the subsystem A is made of two equal-
length intervals at distance d. The formulas that we derive hold in the space-time
scaling limit of t, �, d → ∞, with the ratios t/�, d/� fixed. Furthermore, these
results allow us to obtain predictions for all the pn-PPT conditions introduced in
Refs. [15, 16]. Interestingly, we argue that the ratios Rn in the space-time scaling
limit become proportional to the Rényi mutual information. Finally, we provide
numerical benchmarks of our results for both free-fermion and free-boson models,
although they are expected to hold for generic integrable systems.

The paper is organized as follows. In Sect. 2 we review the definitions of some
entanglement measures, i.e., Rényi entropy, mutual information, Rényi negativity.
In particular, in Sect. 2.1 we introduce the moments of the partial transpose and the
negativities. In Sect. 2.2 we introduce the pn-PPT conditions. In Sect. 3 we review
the CFT predictions for the out-of-equilibrium behavior of the Rényi negativities.
Specifically, in Sect. 3.1 we review the representation of the Rényi negativities
in terms of twist fields. In Sect. 3.2 we derive the out-of-equilibrium behavior
of the Rényi negativities and the ratios Rn in CFTs. In Sect. 4 we introduce the
quasiparticle picture (in Sect. 4.1) for the spreading of entanglement and negativity,
generalizing it to the moments of the partial transpose in Sect. 4.2. In Sect. 5 we
present numerical benchmarks for free bosonic (in Sect. 5.1) and fermionic theories
(in Sect. 5.2). In Sect. 5.3 we discuss the quasiparticle predictions for the pn-PPT
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conditions. Finally, in Sect. 6 we draw our conclusions and we discuss some possible
extensions of our work.

2 Entanglement Measures for Mixed States

The Rényi entanglement entropies are the most successful way to characterize
the bipartite entanglement of a subsystem A of a many-body quantum system
prepared in a pure state (see, e.g., the reviews [31–34]), also from the experimental
perspective [7–10, 35, 36]. Given the reduced density matrix (RDM) ρA of a
subsystem A, the Rényi entropies are defined as

S
(n)
A = 1

1− n lnTrρnA. (3)

From these, the von Neumann entropy is obtained as the limit n→ 1 of Eq. (3) and
also the entire spectrum of ρA can be reconstructed [37]. The Rényi entropies in
Eq. (3) can be very conveniently computed in field theory because for integer n, in
the path-integral formalism, TrρnA is the partition function on an n-sheeted Riemann
surface Rn obtained by joining cyclically the n sheets along the region A [38–40].

For a mixed state, the entanglement entropies are no longer good measures of
entanglement because they mix classical and quantum correlations (e.g., in a high
temperature state, S(n)A gives the extensive result for the thermal entropy that has
nothing to do with entanglement). In this respect, a useful quantity to consider is the
Rényi mutual information

I
(n)
A1:A2

≡ S(n)A1
+ S(n)A2

− S(n)A1∪A2
, (4)

which is not a measure of the entanglement between A1 and A2, but for n → 1
it quantifies the amount of global correlations between the two subsystems (we
mention that for n �= 1, I (n)A1:A2

can be also negative [41] and a more complicated
definition of mutual information must be employed [42]).

As anticipated, we are interested here in the entanglement between two different
regions, and the goal of the following section is to define the tools to compute it.

2.1 Entanglement in Mixed States and Logarithmic Negativity

A very useful starting point to quantify mixed state entanglement is the Peres
criterion [11, 12], also known as PPT condition. It states that given a system
described by the density matrix ρA, a sufficient condition for the presence of
entanglement between two subsystems A1 and A2 (with A = A1 ∪ A2) is that the
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partial transpose ρT1
A with respect to the degrees of freedom in A1 (or equivalently

A2) has at least one negative eigenvalue. Let us introduce the partial transpose
operation as follows. We can write down the density matrix as

ρA =
∑

ijkl

〈e1
i , e

2
j |ρA|e1

k, e
2
l 〉 |e1

i , e
2
j 〉 〈e1

k, e
2
l | , (5)

where |e1
j 〉 and |e2

k〉 are orthonormal bases in the Hilbert spaces H1 and H2
corresponding to the A1 and A2 regions, respectively. The partial transpose of a
density matrix for the subsystem A1 is defined by exchanging the matrix elements
in the subsystem A1, i.e.,

ρ
T1
A =

∑

ijkl

〈e1
k, e

2
j |ρA|e1

i , e
2
l 〉 |e1

i , e
2
j 〉 〈e1

k, e
2
l | , (6)

In terms of its eigenvalues λi , the trace norm of ρT1
A can be written as

Tr|ρT1
A | =

∑

i

|λi | =
∑

λi>0

|λi | +
∑

λi<0

|λi | = 1+ 2
∑

λi<0

|λi |, (7)

where in the last equality we used the normalization
∑
i λi = 1. Here Tr|O| ≡

Tr
√
O†O denotes the trace norm of the operator O. This expression makes evident

that the negativity measures “how much” the eigenvalues of the partial transpose
of the density matrix are negative, a property which is the reason for the name
negativity. Therefore, starting from the Peres criterion, a measure of the bipartite
entanglement for a general mixed state can be naturally defined as [13]

E ≡ lnTr|ρT1
A |, (8)

which is known as logarithmic negativity. By considering the moments of the partial
transpose RDM, one can define the Rényi negativities En as

En ≡ lnTr
(
ρ
T1
A

)n
. (9)

The logarithmic negativity E is given by the following replica limit [23, 24]

E = lim
ne→1

Ene , (10)

where ne denotes an even number ne = 2m with m integer. For future convenience,
we also introduce the ratios

Rn ≡
Tr
(
ρ
T1
A

)n

TrρnA
. (11)
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The Rényi negativities En with integer n ≥ 2 can also be measured in experi-
ments [15, 17, 18], but they are not entanglement monotones. The entanglement
negativity and Rényi negativities have been used to characterize mixed states
in various quantum systems such as in harmonic oscillator chains [43–51],
quantum spin models [25, 26, 52–63], (1 + 1)d conformal and integrable field
theories [18, 23–27, 64–75], out-of-equilibrium settings [15, 19–21, 29, 30, 49, 76–
80].

Crucially, while for free-boson models the Rényi negativities for arbitrary real n
can be efficiently computed from the two-point correlation function [43], this is not
the case for free-fermion systems. The main problem is that the partial transpose
in Eq. (8) is not a gaussian operator, although it can be written as the sum of two
gaussian (non-commuting) operators O± as [81]

ρ
T1
A = 1− i

2
O+ + 1+ i

2
O−. (12)

From this observation a procedure to extract the Rényi negativities of integer order
was proposed [81] and was also used in many subsequent studies [82–88]. Still,
proceeding in this way, it is not possible to perform the replica limit ne → 1,
implying that the negativity, i.e., the only genuine measure of entanglement, is
not accessible. To overcome this problem, an alternative estimator of mixed state
entanglement for fermionic systems has been introduced based on the time-reversal
partial transpose (a.k.a partial time reversal) [22, 89–95]. The new estimator has
been dubbed fermionic negativity. It has been shown that the fermionic negativity
is an entanglement monotone [91] and it is also an upper bound for the standard
negativity. In the following, we denote E (b)n the standard negativity in Eq. (9) (that
is an entanglement monotone for both bosonic and fermionic systems) and E (f )n
the fermionic one (that exists only for fermionic models). The (fermionic) Rényi
negativities can be defined as [92]

E (f )n =
{

ln[Tr(O+O− . . . O+O−], n even,

ln[Tr(O+O− . . . O+)], n odd,
(13)

from which E (f ) = lim
ne→1

E (f )ne . Specifically, E (f ) reads as

E (f ) = lnTr
√
O+O−, (14)

with O± as defined implicitly in Eq. (12). The products involving O+ and O−
are still gaussian fermionic operators, so all the above quantities can be efficiently
computed, including the negativity (14).
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2.2 Entanglement Detection Through Partial Transpose
Moments

Despite several sufficient conditions for entanglement in mixed states have been
developed in the literature, many of them cannot be straightforwardly implemented
experimentally since they require the knowledge of the full density matrix [31].
This is, for instance, the case of the PPT condition. To overcome this difficulty, it
was shown in [15] that the first few moments of the partial transpose can be used
to define some simple yet powerful tests for bipartite entanglement. Given ρT1

A (cf.
Eq. (6)), we denote its k-th order moment as

pk ≡ Tr
(
ρ
T1
A

)k
, (15)

with p1 = Tr(ρT1
A ) = 1 and p2 equal to the purity p2 = Trρ2

A. The p3-PPT
condition states that any positive semi-definite partial transpose satisfies [15]

p3p1 > p
2
2, (16)

or, in other words, if p3 < p2
2, then ρA violates the PPT condition and must,

therefore, be entangled. The condition in Eq. (16) belongs to a more general set
of conditions, dubbed Stieltjesn, involving inequalities among the moments pk of
order up to n. They were introduced in [16] together with a set of experimentally
accessible conditions for detecting entanglement in mixed states. The condition
Stieltjes3 is equivalent to p3−PPT, and so we rename here the Stieltjesn-conditions
as pn-PPT. As examples, p5-PPT and p7-PTT read, respectively [16]

D5 ≡ det

⎛

⎝
p1 p2 p3

p2 p3 p4

p3 p4 p5

⎞

⎠ ≥ 0, D7 ≡ det

⎛

⎜⎜⎝

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

p4 p5 p6 p7

⎞

⎟⎟⎠ ≥ 0, (17)

from which one deduces easily the rationale for higher order condition.

3 Quench Dynamics of Rényi Negativities in Conformal
Field Theory

In this section we review the CFT calculation of the temporal evolution of the Rényi
negativities between two intervals after a global quench in CFT as derived in Ref.
[20]. We considerA = A1∪A2, where the intervalsA1 andA2 can be either adjacent
or disjoint (see Fig. 1).
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3.1 Rényi Negativities from Twist Field Correlation Functions

A powerful method to calculate the Rényi negativities is based on a particular type of
twist fields in quantum field theory that are related to branch points in the Riemann
surface Rn [40, 96]. We denote twist and anti-twist fields by Tn and T̃n, respectively.
One can show that the moments of the reduced density matrix Tr(ρA)n can be
written as correlators of twist fields [40]. For example, whenA = [u1, u2]∪[u3, u4]
(see Fig. 1), one has that

TrρnA = 〈Tn(u1)T̃n(u2)Tn(u3)T̃n(u4)〉 . (18)

Notice that the twist and anti-twist fields are inserted at the endpoints of A. The
expectation value in Eq. (18) is taken with respect to the action living on a plane.
As shown in [24], if we take the partial transpose ρT1

A with respect to the degrees

of freedom living on the interval A1 = [u1, v1], Tr(ρT1
A )

n can be written as a twist
field correlator as in Eq. (18), the only difference being that the twist fields Tn and
T̃n at the endpoints of A1 are exchanged while the remaining ones stay untouched,
i.e., [23, 24]

Tr(ρT1
A )

n = 〈T̃n(u1)Tn(u2)Tn(u3)T̃n(u4)〉 . (19)

This procedure can be generalized straightforwardly to the case whereA is the union
of more than two intervals, and the partial transposition involves more than two
intervals.

The situation in which the two intervals are adjacent can be obtained
from Eq. (19) by taking the limit u3 → u2 in Eq. (19), giving Tr(ρT1

A )
n =

〈T̃n(u1)T 2
n (u2)T̃n(u4)〉. In a generic CFT characterized by a central charge c, the

expectation values (18) and (19) are evaluated straightforwardly by knowing the
scaling dimensions of Tn, T̃n, T 2

n , and T̃ 2
n . The scaling dimensions of T 2

n and T̃ 2
n

are equal and depend on the parity of n as [23]

(2)n ≡
{
n odd n

2n/2 even n
, n = c

12

(
n− 1

n

)
, (20)

where n are the scaling dimensions of Tn, T̃n.

3.2 Out-of-Equilibrium Dynamics of the Rényi Negativities

Before discussing the out-of-equilibrium dynamics after a quantum quench of the
Rényi negativities in CFTs, it is useful to recall the imaginary time formalism for
the description of quantum quenches [1–3]. The family of initial states that are easy
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to work with in CFT have the form e−τ0H |ψ0〉, with |ψ0〉 being a boundary state.
The expectation value of a local operator O is then

〈O(t, x)〉 = Z−1 〈ψ0| eiHt−τ0HO(x)e−iH t−τ0H |ψ0〉 , (21)

where the damping factors e−τ0H have been introduced to make the path integral
absolutely convergent (see below), and Z = 〈ψ0|e−2τ0H |ψ0〉 is the normalization
factor. The correlator in Eq. (21) may be represented by a path integral in imaginary
time τ as [2]

〈O(t, x)〉 = Z−1
∫
[dϕ(x, τ )]O(x, τ = τ0 + it)e−

∫ τ2
τ1
Ldτ 〈ψ0|φ(x, τ2)〉〈φ(x, τ1)|ψ0〉 ,

(22)

where L is the (Euclidean) Lagrangian corresponding to the dynamics induced by
H , τ1 can be identified with 0 and τ2 with 2τ0. As shown in [1, 3], the computation
of the path integral in Eq. (22) can be done considering τ real and only at the end
analytically continuing it to the complex value τ = τ0 + it .

In this way, the problem of the dynamics is mapped to the thermodynamics of
a field theory in a strip geometry of width 2τ0 and boundary condition |ψ0〉 at the
two edges of the strip in the imaginary time direction. At this point we have all the
ingredients to derive the dynamics of the Rényi negativities after a global quench in
CFT. To calculate the time-dependent Tr(ρT1

A )
n one has to compute the correlator

Tr(ρT1
A )

n = 〈T̃n(ω1)Tn(ω2)Tn(ω3)T̃n(ω4)〉 , (23)

where the expectation value has to be calculated in the field theory confined in a
strip, and where we denoted by ωi = ui + iτ the complex coordinate on the strip
(ui ∈ R and 0 < τ < 2τ0). It is convenient to employ the conformal transformation
z = eπω/(2τ0), which maps the strip onto the half plane, where the four point
correlation functions of the twist fields can be computed by knowing that they
behave as primary fields with scaling dimensions n (cf. (20)). After the analytic
continuation to real time, in the space-time scaling limit t, |ui − uj | � τ0, from
Eq. (23), the Rényi negativities En (cf. Eq. (9)) read [20]

En = − π
τ0

[
2nt +n

(
�1 + �2

2
−max(t, �1/2)−max(t, �2/2)

)
+ ((2)n /2−n)

× (max(t, (�1 + �2 + d)/2)+max(t, d/2))−max(t, (�1+d)/2)−max(t, (�2+d)/2)
]
,

(24)

where (2)n is in Eq. (20), and we defined �1 = |u1 − u2|, �2 = |u3 − u4|, and
d = |u3 − u2| (see Fig. 1). In deriving Eq. (24) we neglected an additive time-
independent constant that originates from the correlation function of the twist fields
and that depends on the details of the CFT under consideration. This is justified
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Fig. 2 Time dependence of the Rényi negativities for quasiparticles with linear dispersion. We
consider two disjoint subsystems with equal length � at distance d = 0 (a), d < � (b), d ≥ � (c).
The piecewise linear behavior is described by Eq. (24)

because Eq. (24) holds in the scaling limit �1, �2, d, t → ∞ with their ratios
fixed, and it describes only the leading behavior of the Rényi negativities En in
that limit. Crucially, Eq. (24) depends on both n and (2)n . Notice that even for
finite d, En exhibits a linear behavior at short times, due to the first term in Eq. (24).
This signals that En are not good measures of the entanglement or the correlation
between A1 and A2. The reason is that for t � d no correlation can be shared
between A1 and A2 because the maximum velocity in the system is finite (see
Fig. 2). We stress that Eq. (24) is not directly applicable to microscopic integrable
models: Eq. (24) is only valid for CFT, in which there is a perfect linear dispersion,
i.e., only one velocity. This is not the case in integrable lattice models, where the
excitations have a nonlinear dispersion. In the next sections, we will show how to
adapt Eq. (24) to describe the dynamics of the Rényi negativities after a quantum
quench in microscopic integrable systems.

Finally, the dynamics of the ratio Rn in Eq. (11) can be derived combining
Eq. (24) with the results for TrρnA in [3]. The final result reads [20]

lnRn = π
(2)
n

τ0
× (−max(t, (�1 + �2 + d)/2)−max(t, d/2))+max(t, (�1 + d)/2)

+max(t, (�2 + d)/2). (25)

In contrast with Eq. (24), Eq. (25) does not depend explicitly on n, but only on

(2)
n .
Before concluding, it is useful to discuss the qualitative behavior of E (f/b)n and

− ln
(
R
(f/b)
n

)
. The typical behavior of the Rényi negativities, as obtained from

Eq. (24), is reported in Fig. 2 for three typical values of the distance d between
the two intervals of equal length �. En is always a piecewise linear function and it is
negative at any time. For d = 0 one has a two-slope linear behavior followed by a
saturation to a volume-law scaling at long times. At intermediate distance 0 < d < �
the behavior is more complicated with a change in the sign of the slope. For d > �,
E (f/b)n exhibits an initial linear decrease followed by a saturation, and a dip-like
feature at d/2 ≤ t ≤ d/2+ �.
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Fig. 3 Illustration of the dynamics of −lnR(f/b)n for two disjoint subsystems with equal length �
at distance d. On the left we report the shape of −lnR(f/b)n with a single velocity of quasiparticles.
On the right, there is a graphical representation for the quasiparticle spreading of entanglement
(for the case with all quasiparticles having the same velocity v = 1 as in a CFT). Horizontal slices
of the dark orange region count the quasiparticles shared between the two disjoint sets at a given
time

The dynamics of −ln(R(f/b)n ) (cf. Eq. (25)) is shown in Fig. 3 for two equal-
length intervals. For t < d/2, it vanishes; for d/2 ≤ t ≤ (d + �)/2 it linearly
increases, then it linearly decreases with the same (in absolute value) slope until
t ≤ (d + 2�)/2, when it vanishes and stays zero for all larger times. Therefore, at
a given time t , it is proportional to the width of the intersection between the two
shaded areas starting from A1 ∪ A2 and showed in Fig. 3b. In other words, it is
proportional to the total number of entangled pairs shared between A1 and A2. This
property suggests that in the scaling limit, Rn becomes an indicator of the mutual
entanglement between the intervals, although in general it is not an entanglement
monotone.

Let us remark that Eq. (25) is identical to the evolution of the Rényi mutual
information in Eq. (4) apart from the prefactor. We will come back to the connection
between these two quantities in the following sections.

4 Quasiparticle Picture for the Rényi Negativities in
Integrable Systems

The goal of this section is to adapt Eq. (24) and Eq. (25) to describe the dynamics
of the Rényi negativities and the ratios Rn after a quantum quench in integrable
systems. The main observation is that Eq. (24) and Eq. (25) admit an interpretation
in terms of a simple hydrodynamic picture, a.k.a. the quasiparticle picture.

4.1 Quasiparticle Picture

The quasiparticle picture for the entanglement dynamics after a global quantum
quench has been proposed in Ref. [3]. The underlying idea is that the pre-quench
initial state has very high energy with respect to the ground state of the Hamiltonian
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governing the dynamics; hence it can be seen as a source of quasiparticle excitations
at t = 0. We assume that quasiparticles are uniformly created in uncorrelated pairs
with quasimomenta (k,−k) and traveling with opposite velocities v(k) = −v(−k)
(for free models the uncorrelated pair assumption can be released, see [97–100];
for interacting integrable models it has been argued that the pair structure is what
makes the quench integrable [101]). Quasiparticles produced at the same point in
space are entangled, whereas quasiparticles created far apart are incoherent. The
quasiparticles travel through the system as free-like excitations. At a generic time
t , the von Neumann entropy and the Rényi entropies between a subsystem A and
the rest are proportional to the total number of quasiparticles that were created at
the same point at t = 0 and are shared between A and its complement at time t
(see Fig. 2a). Let us focus on the quasiparticle picture for the Rényi entropies in
free models (the quasiparticle picture has been derived rigorously for free-fermion
models in Ref. [102]). In formulas it reads as

S
(n)
A (t) =

∫
dk

2π
s
(n)
GGE(k)min(2|v(k)|t, �). (26)

Here � is the length of subsystem A, and v(k) is the group velocity of the fermionic
excitations. Importantly, in Eq. (26) s(n)GGE(k) is the density (in momentum space) of
the Rényi entropies of the GGE thermodynamic state [103–105] that describes the
steady state after the quench. Eq. (26) predicts a linear growth for t ≤ �/(2vmax),
with vmax ≡ maxk(v(k)) the maximum velocity in the system, and then saturates to
an extensive value at t →∞.

For n = 1, i.e., for the von Neumann entropy the validity of Eq. (26) for a
generic interacting integrable model has been conjectured in Ref. [4, 5]. Eq. (26)
remains essentially the same. Precisely, the contribution of the quasiparticles to the
von Neumann entropy s(1)GGE is the density of GGE thermodynamic entropy. The
group velocities of the quasiparticles are obtained as particle-hole excitations over
the GGE thermodynamic macrostate [5, 106]. This conjecture has been explicitly
worked out in several cases [4, 5, 107, 108] and tested against numerics in several
interacting integrable models [4, 5, 109, 110]. Eq. (26) has been generalized to
describe the steady-state value of the Rényi entropies [111–113]. On the other
hand, the full-time dynamics of the Rényi entropies is still an open problem,
with the exception of one model [114, 115]. Eq. (26) can be straightforwardly
generalized to describe the dynamics of the mutual information between two
intervals. This allows to reveal how quantum information is scrambled in integrable
systems [116, 117]. Remarkably, the quasiparticle picture for the logarithmic
negativity has been derived in Ref. [66]. By combining the quasiparticle picture
with the framework of the Generalized Hydrodynamics [118, 119] it is possible
to describe the entanglement dynamics after quenches from inhomogeneous initial
states [120–125]. The quasiparticle picture for the entanglement dynamics has been
also tested in the rule 54 chain, which is believed to be a representative “toy model”
for generic interacting integrable systems [114, 115]. Very recently, the quasiparticle
picture has been generalized to take into account dissipative effects, at least in
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free-fermion and free-boson models [126–129], to describe the evolution of the
symmetry-resolved entanglement entropies [130, 131], and for the characterization
of the prethermalization dynamics [132].

To proceed it is useful to compare Eq. (26) with the CFT prediction for the
dynamics of the Rényi entropies [3]

S
(n)
A = − 1

1− n
πn

2τ0
min(2t, �). (27)

A crucial observation is that Eq. (26) can be formally obtained from the CFT
result in Eq. (27) by replacing t → |v(k)|t , integrating over the quasiparticles with
quasimomentum k, and replacing −πn/(2τ0)→ s

(n)
GGE .

4.2 The Quasiparticle Description for Rényi Negativities

The quasiparticle picture described above can be adapted to describe the Rényi

negativities E (f/b)n and the ratios ln
(
R
(f/b)
n

)
, in integrable systems after a global

quench.
Indeed, similarly to the Rényi entropies, from Eqs. (24) and (25), by using

Eq. (20), after replacing −πn/(2τ0) → s
(n)
GGE , and by integrating over k, one

obtains that

E (f/b)n =
∫
dk

2π

[
4εn|v|t + 2εn

(
�1 + �2

2
−max(|v|t, �1/2)−max(|v|t, �2/2)

)

− (2εn − ε(2)n )
(
max(|v|t, (�1 + �2 + d)/2)+max(|v|t, d/2)

−max(|v|t, (�1 + d)/2)−max(|v|t, (d + �2)/2)
)]
, (28)

while the ratios R(f/b)n read

ln(R(f/b)n ) =
∫
dk

2π
ε(2)n

(
max(|v|t, d/2)−max(|v|t, (�1 + d)/2)

−max(|v|t, (�2 + d)/2)+max(|v|t, (�1 + �2 + d)/2)
)
. (29)

We defined

ε(2)n (k) ≡
{
εn(k) odd n

2εn/2(k) even n
, εn(k) = s(n)GGE(k). (30)
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Clearly, Eq. (30) mirrors the structure of Eq. (20). Here sGGE(k) is the density of
GGE thermodynamic entropy.

It is interesting to remark that by comparing Eq. (29) with the quasiparticle
picture for the Rényi mutual information [5] I (n)A1:A2

, one obtains

ln
(
R
(f/b)
n

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(1− n/2)I (n/2)A1:A2
n even

(1− n) I
(n)
A1 :A2

2 , n odd.

(31)

Moreover, by taking the replica limit ne → 1 in E (f/b)ne , we recover the quasiparticle
prediction for the negativity [19]

E (f/b) =
∫
dk

2π
ε1/2(k)

(
max(2|v|t, d)−max(2|v|t, �1 + d)

−max(2|v|t, �2 + d)+max(2|v|t, �1 + �2 + d)
)
. (32)

It was pointed out in [19] that Eq. (32) is the same as for the Rényi mutual
information (of any index) by replacing ε1/2 with the density of Rényi entropy. We
stress that the same prediction is valid for both standard (bosonic) partial transpose
and for the fermionic one.

Finally, it is useful to observe that Eq. (31) can be derived by using that if A1 ∪
A2 is in a pure state, then Tr((ρT1

A )
n) can be expressed in terms of Tr(ρnA1

). More
precisely, one can prove that [24]

Tr(ρT1
A )

n =
{

TrρnA1
n odd

(Trρn/2A1
)2 n even

, (33)

where ρA1 = TrA2ρA. Now, one can recover Eq. (31) by using Eq. (33), and the

definition in Eq. (4), and that if A1 ∪A2 is in a pure state, S(n)A1
= S(n)A2

. The fact that
the result of the quasiparticle picture (24) is not sensitive to A1 ∪ A2 not being in
a pure state reflects that the initial state has low entanglement and that during the
dynamics the entanglement is transported ballistically.

Finally, for Eq. (28) and Eq. (29) to be predictive one has to fix the function
sGGE(k) (cf. Eq. (30)). Here we focus on out-of-equilibrium protocols for free-
fermion and free-boson models. In this situation, sGGE(k) is determined from the
population of the modes ρ(k) of the post-quench Hamiltonian in the stationary state
(see Refs. [6, 133] for a pedagogical review). Actually, since ρ(k) are conserved
they can be equivalently computed in the initial state, without solving the dynamics.
Specifically, one has that

s
(n,f/b)

GGE (k) = ± ln
(±ρ(k)n + (1∓ ρ(k))n), (34)
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where the upper and lower signs are for fermionic and bosonic systems, respectively
(and not to fermionic and bosonic negativity). We remark that, although the
quasiparticle prediction in Eqs. (28) and (29) is expected to be valid also for
interacting integrable models, the full quasiparticle picture for the Rényi entropies
is not known.

5 Time Evolution of Rényi Negativities in Free Models:
Numerical Results

In this section we provide numerical benchmarks for the results of Sect. 4.2. As an
example of free-bosonic system, we consider the harmonic chain. Our results for
free-fermion systems are tested against exact numerical data for a fermionic chain.

5.1 Mass Quench in the Harmonic Chain

Let us start discussing the dynamics of the Rényi negativities after a mass quench in
the harmonic chain. The harmonic chain is described by the Hamiltonian

H = 1

2

L−1∑

n=0

p2
n +m2q2

n + (qn+1 − qn)2, q0 = qL, p0 = pL, (35)

where L is the number of lattice sites, qn and pn are canonically conjugated
variables, with [qn, pm] = iδnm, and m is a mass parameter. The harmonic chain
can be diagonalized in Fourier space and is equivalent to a system of free bosons.
The dispersion relation of the bosons is given by [6]

e(k) = [m2 + 2(1− cos(k))]1/2. (36)

The group velocities are obtained from the single-particle energies e(k) as

v(k) = de(k)
dk

= sin(k)[m2 + 2(1− cos(k))]−1/2, (37)

and the maximum one is vmax = maxkv(k). In the mass quench protocol, the system
is prepared in the ground state |ψ0〉 of the Hamiltonian (35) with m = m0. At t = 0
the mass parameter is quenched from m0 to a different value m and the system
unitarily evolves under the new HamiltonianH(m), namely |ψ(t)〉 = e−iH(m)t |ψ0〉.
The density ρ(k) (cf. Eq. (34)) of the bosons is written in terms of the pre- and post-
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quench dispersions e0(k) and e(k) as [2, 3, 6]

ρ(k) = 1

4

(
e(k)

e0(k)
+ e0(k)

e(k)

)
− 1

2
. (38)

For free-bosonic systems the Rényi negativities can be constructed from the two-
point correlation functions 〈qiqj 〉, 〈pipj 〉, and 〈qipj 〉. Indeed, given a subsystem A
containing �̃ sites, which could be either all in one interval or in disjoint intervals,
the reduced density matrix for A can be studied [20, 134] by constructing the �̃× �̃
matrices QAij = 〈qiqj 〉 , PAij = 〈pipj 〉 and RAij = Re 〈qipj 〉, where the superscript
A means that the indices i, j are restricted to subsystem A. Crucially, a similar
strategy can be used to construct the Rényi negativities (for the details we refer to
Ref. [20]). The main idea is that the net effect of the partial transposition with respect
to a subinterval A1 is the inversion of the signs of the momenta corresponding to the
sites belonging to A1.

For the following, we restrict ourselves to the physical situation with A made
of two disjoint parts, i.e., A = A1 ∪ A2, with A1, A2 two equal-length intervals
of length �. We denote as d the distance between A1 and A2 (see Fig. 1). We only

discuss the ratios − ln
(
R
(b)
n

)
(cf. Eq. (11)). The results are shown in Fig. 4. Panels

(a) and (b) show the quantities − ln
(
R
(b)
n

)
/� for adjacent intervals, i.e., d = 0. The

data are for several values of the intervals’ length � up to � = 80. Since we are
interested in the scaling limit, we plot −ln(R(b)n )/� versus the rescaled time t/�.
For two adjacent intervals, the ratio exhibits a linear growth for t/� ∼ 1.25, which
reflects the maximum velocity being vmax ∼ 0.4. For larger times we observe a
slow decrease toward zero for t/� → ∞. This slow decay is due to the slower
quasiparticles with v < vmax. The solid line is the theoretical prediction in Eq. (29).
At finite � and t the data exhibit some small corrections from Eq. (29), which is
recovered in the scaling limit t, �→∞ with their ratio fixed.

It is also useful to investigate directly the validity of Eq. (31), which establishes a
relationship between R(f/b)n and the mutual information. To this aim, we introduce
the difference d(f/b)n as

d
(f/b)
n =

⎧
⎪⎨

⎪⎩

ln
(
R
(f/b)
n

)
− (1− n)I (n/2)A1:A2

n even

ln
(
R
(f/b)
n

)
− (1− n) I

(n)
A1 :A2

2 , n odd.
(39)

As it is clear from the insets in Fig. 4, d(b)n is very small in the region of linear
growth, i.e., for 2vmaxt/� ≤ 1 (an obvious fact, since in the scaling limit it is just
0 − 0). At fixed �, in the nontrivial region, i.e., for larger values of the scaling
variable 2vmaxt/�, d

(b)
n is larger. However, at fixed t/�, the deviations d(b)n decrease

with increasing �, and in the scaling limit �→∞ one recovers Eq. (31). Precisely,
the data suggest a behavior d(b)n ∝ 1/�.
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Fig. 4 Logarithms of the moments of the (bosonic) partial transpose after the mass quench from
m0 = 1 to m = 2 in the harmonic chain. The quantity −ln(Rbn)/� is plotted versus rescaled
time t/�, with � the intervals’ length. The analytical predictions represented by continuous lines
correspond to Eq. (29). The insets represent Eq. (39) and they prove the validity of Eq. (31), i.e.,
the connection between the ratio Rn and the Rényi mutual information

5.2 Quench in a Free-Fermion Chain

We now discuss numerical results for free-fermion systems described by the
Hamiltonian

H =
L∑

j=1

(
1

2
[c†
j c

†
j+1 + cj+1cj + c†

j cj+1 + c†
j+1cj ] − hc†

j cj

)
, (40)

where {ci, c†
j } = δij are anti-commuting fermionic operators, h is a coupling

parameter, e.g., a magnetic field, and we neglect boundary terms (we are interested
in the thermodynamic limit L → ∞). A Jordan–Wigner transformation maps the
Hamiltonian to the well-known transverse field Ising chain. However, the spin RDM
is not simply mapped to the fermion RDM for two disjoint intervals [135, 136].
Instead, for the case of adjacent intervals they are mapped into each other and so the
following results for fermions apply also to the spin variables.

In terms of the momentum space Bogoliubov fermions the Hamiltonian is
diagonal and the single-particle energies are

e(k) = [h2 − 2hcos(k)+ 1]1/2. (41)

We consider the non-equilibrium unitary dynamics that follows from a quench of
the field h at t = 0 from h0 to h �= h0. In order to parametrize the quench it is useful
to introduce the angle (k) as [2]

cos((k)) = 1+ hh0 − (h+ h0)cos(k)

e(k)e0(k)
. (42)
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As for free bosons, the central object to obtain the quasiparticle prediction is the
density ρ(k) of the Bogoliubov fermions. This is given by [137, 138]

ρ(k) = 1

2
(1− cos((k))). (43)

The reduced density matrix can be completely characterized [134] by the two-
point correlation functions restricted to the subsystem A. From the covariance
matrix associated with ρA, one can build the covariance matrix corresponding to
the partial time reversal ρR1

A (see Ref. [89–94]). The fermionic Rényi negativities

E (f )n introduced in Eq. (13) can be efficiently computed in terms of the eigenvalues
of the covariance matrix.

We discuss the numerical results for both E (f )n andR(f )n for two adjacent intervals
in Fig. 5, for the quench with h0 = 10 and h = 2. We first discuss the Rényi
negativities E (f )n in Fig. 4(top) plotting E (f )n /� versus t/�. We consider only the
geometry with two adjacent intervals. The numerical data exhibit the expected
behavior as in Fig. 2a. One has E (f )n ≤ 0 at all times. The negatives exhibit a
two-slope decrease at short times, which is followed by a saturation at long times.
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Fig. 5 Logarithms of the moments of the (fermionic) partial transpose after a quench in the
fermionic chain (with h0 = 10 and h = 2) for two adjacent intervals. Both −ln(R(f )n )/� and
E(f )n /� are plotted versus rescaled time t/�, with � the intervals’ length. The analytical predictions
represented by continuous lines correspond to Eq. (28) (top panels) and (29) (bottom panels). The
insets investigate the finite-size scaling corrections: the symbols are for the fermionic negativity at
fixed t/� = 0.5; the crosses are the theoretical results in the thermodynamic limit; the solid lines
are linear fits
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In contrast with the CFT case, the saturation is not abrupt due to the fact that
the quasiparticles have a nontrivial dispersion. The different symbols in the figure
denote different subsystem size �. In the thermodynamic limit �→∞ the numerical
data approach the prediction of the quasiparticle picture (continuous line in the

figure). We discuss the behavior of the ratios − ln
(
R
(f )
n

)
in Fig. 4(bottom). Again,

we consider only the case of adjacent intervals. The data for −ln(R(f )n ) exhibit a
linear behavior up to t/� ∼ 0.5, reflecting that vmax ∼ 1. Similar to the bosonic
case, finite-size corrections are present, although the analytical prediction in Eq. (25)
is recovered in the scaling limit. In the inset, we also investigate these scaling
corrections. The symbols are the data at fixed t/� = 0.5 while the x-axis shows
1/�. The crosses are the theoretical results in the scaling limit. The solid lines are
fits to the behavior 1/� and are clearly consistent with the data.

We now remind that for free-fermion systems (see Sect. 2) it is not straightfor-
ward to compute the standard negativity defined from the partial transpose ρT1

A . On
the other hand, the Rényi negativities can be computed effectively. The reason is
that the powers of ρT1

A can be written as sum of products of gaussian operators
(cf. Eq. (12)). Since each term of the sum is a gaussian operator, its trace can be
effectively computed [81, 136]. For instance, for the Rényi negativity E (b)3 , we have
to compute

Tr(ρT1
A )

3 = −1

2
Tr(O3+)+

3

2
Tr(O2+O−). (44)

By using Eq. (44) the ratio − ln
(
R
(b)
3

)
can be calculated and, for the quench with

h0 = 0.1 → h = 2, is reported in Fig. 6. The symbols in the figure are numerical

results for − ln
(
R
(b)
3

)
for two adjacent intervals of length �. The line is the

quasiparticle prediction in Eq. (25). The good agreement between the data and the

analytic curve confirms that − ln
(
R
(b)
n

)
and − ln

(
R
(f )
n

)
are the same in the space-

time scaling limit. Interestingly, we observe that the fermionic Rényi negativity E (f )3
corresponds to the term Tr(O2+O−) in Eq. (44), as can be read in Eq. (13). The
fact that the quasiparticle description correctly describes both Tr(O2+O−) and the
weighted sum in Eq. (44) suggests that the terms in Eq. (44) become the same in the
space-time scaling limit.

Finally, let us shortly discuss the connection between the reduced density
matrices of fermionic and spin models that are connected by the Jordan–Wigner
transformation. Due to the non-locality of this transformation, the reduced density
matrices corresponding to A1 ∪ A2 in a spin chain model and its fermionic
counterpart are usually not equivalent unless A1 and A2 are adjacent intervals
[81, 88]. The same holds also for the (standard) transposed density matrices, for
which the identity in Eq. (12) should be slightly modified to take into account the
Jordan–Wigner string along the interval of length d connecting the two blocks in
spin models.
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Fig. 6 Standard Rényi negativity for n = 3 after a quench in the free-fermion chain (with h0 = 0.1
and h = 2). The numerical data (symbols) have been obtained by expanding the third power of ρT1

A

as in Eq. (44) while the solid red line corresponds to Eq. (29). The inset represents Eq. (39) and it
proves the validity of Eq. (31) in the space-time scaling limit

5.3 Quasiparticle Prediction for the pn-PPT Conditions

Using the quasiparticle predictions obtained in the previous sections for the Rényi
negativity, one can write down the quasiparticle formulas for the pn-PPT conditions
introduced in Sect. 2.1, see Eq. (17). For instance, the p3-PPT condition quantifies
the violation of Eq. (16). Specifically, the condition D3 ≡ p3 − p2

2 < 0 signals
the presence of quantum entanglement. As explained in Sect. 2.1, other conditions
Dn ≥ 0 can be obtained by considering higher moments of the partial transpose.

We numerically investigate the pn-PPT conditions in Fig. 7 for n = 3, 5, 7, and
for quenches in both the fermionic and harmonic chains. We focus on the situation
with two adjacent intervals and we are interested in understanding how the pn-
PPT conditions are violated as a function of time. The results in Fig. 7 are obtained
by using the quasiparticle picture prediction. As it is clear from the figure, all pn-
PPT conditions are violated at short times in both models. At infinite times all the
pn-PPT conditions give zero. These results are consistent with the behavior of the
logarithmic negativity [19].

Also the fine structure of these pn-PPT conditions is very interesting. In the short-
time region with a lot of entanglement (compare with the previous figures for Rn)
all the conditions are violated. As the time increases and the entanglement becomes
much less, the first condition to be satisfied is p3 (i.e., D3 > 0) and only after the
other one (the panel on the left is particularly clear in this respect). This implies that
higher and higher pn-PPT conditions are necessary to detect the very little amount
of entanglement present at large time. This fact is not surprising, but it is remarkable
that it is captured so neatly by the quasiparticle picture.
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Fig. 7 The pn-PPT conditions for n = 3, 5, 7 for the quasiparticle predictions of the moments of
the partial transpose introduced in Eq. (15). The quench parameters are h0 = 10, h = 2 for the
fermionic chain andm = 2,m0 = 0.1 for the harmonic chain. We plot the quantityDn in Eq. (17).
The pn-PPT condition is Dn ≥ 0. To compare data for different n we multiply the D5 by 10 and
D7 by 106 for bosons (� = 30). For fermions theD5 is multiplied by 107 andD7 by 1019 (� = 50).
The violation of these conditions for at least one value of n reveals the presence of entanglement
between A1 and A2

6 Conclusions

In this paper, we derived the quasiparticle picture for the dynamics of the moments
of the partially transposed reduced density matrix after a quantum quench in
integrable systems, and several related quantities such as the Rényi negativities
En (cf. Eq. (9)) and the ratios Rn (cf. Eq. (11)). An interesting result is that the
ratio Rn is proportional to the Rényi mutual information. Furthermore, this ratio
is qualitatively similar to the negativity and so it is then an indicator of the
entanglement barrier for the quench dynamics at intermediate time [19, 139–141].
Moreover, our results allow us to derive the behavior of the pn-PPT conditions,
which in contrast with standard entanglement measures for mixed states, such as
the logarithmic negativity, are easily computable and experimentally measurable
for quantum many-body systems [15, 16]. We tested our predictions against exact
numerical results for both free-fermion and free-boson systems.

We now discuss future research directions. The first natural follow-up of the
results presented here is to test numerically the equality between Rényi mutual
information and the ratiosRn for interacting integrable models. A possible extension
to this work would be to study the dynamics of negativity and the moments of
the partial transpose in the presence of a globally conserved charge. While it is
known that the negativity of two subsystems may be decomposed into contributions
associated with their charge imbalance [18, 75], it would be interesting to understand
whether a quasiparticle prediction similar to the one presented for the entropy in
Ref.[130] could be worked out. Another important research direction is to investi-
gate the Rényi negativities and the ratios Rn in the presence of dissipation [128].
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Phases and Dynamics of Ultracold
Bosons in a Tilted Optical Lattice

Krishnendu Sengupta

Abstract We present a brief overview of the phases and dynamics of ultracold
bosons in an optical lattice in the presence of a tilt. We begin with a brief summary
of the possible experimental setup for generating the tilt. This is followed by a
discussion of the effective low-energy model for these systems and its equilibrium
phases. We also chart the relation of this model to the recently studied system of
ultracold Rydberg atoms. Next, we discuss the non-equilibrium dynamics of this
model for quench, ramp, and periodic protocols with emphasis on the periodic
drive which can be understood in terms of an analytic, albeit perturbative, Floquet
Hamiltonian derived using Floquet perturbation theory (FPT). Finally, taking
cue from the Floquet Hamiltonian of the periodically driven tilted boson chain,
we discuss a spin model which exhibits Hilbert space fragmentation and exact
dynamical freezing for wide range of initial states.

1 Introduction

The physics of ultracold bosonic atoms in an optical lattice has attracted tremendous
attention in recent years [1–5]. This enthusiasm stemmed from the fact that such a
boson system acts as one of the simplest emulator of the Bose-Hubbard model [6].
Thus the study of the low-energy physics of these bosons allows one to access the
superfluid-insulator quantum phase transition for ultracold bosons which is well-
known to be present in the phase diagram of a clean Bose-Hubbard model [7–12].

The Mott phase of the bosons in this system, at integer filling, constitutes
a localized state with no broken symmetry. It was long realized that additional
broken translational or other discrete symmetries may lead to interesting strongly
interacting phases of matter within the Mott phase. To this end, several theoretical
suggestions have been put forth. These include study of bosons with nearest-
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neighbor repulsive interaction leading to the possibility of different competing
density-wave ground states at half-filling due to broken translational symmetry.
The precise nature of these states depends on the geometry of the underlying
lattice leading to a projective symmetry group (PSG) based classification of the
possible Mott phases [13–15]. In addition, systems with multiple species and/or
spinor bosons have also been studied; the low-energy physics of their Mott phases
are mostly controlled by effective models arising out of an order-by-disorder
mechanism. The effective Hamiltonians obtained for such bosons may be described
in terms of interacting spins which may represent either real spin or species
degrees of freedom. These Hamiltonians lead to several spin (or species) ordered
bosonic ground states [16–21]. However, experimental realization of such strongly
correlated states of bosonic systems has not been yet achieved.

Instead, such a symmetry broken Mott phase was experimentally realized
through a slightly unexpected route. The key idea was to generate an “electric
field” for these neutral bosons [1, 3, 4]. As shall be detailed later, such a field may
be generated experimentally by shifting the center of the trap which confines the
bosons leading to a linear potential term in their Hamiltonian. Alternatively, it can
also be realized by application of a linearly spatially varying Zeeman magnetic field
to spinor bosons. The presence of such a field leads to the realization of bosonic
Mott ground states with broken Z2 symmetry [3, 22]. In addition, it has recently
been realized that the model used [22] to describe such systems can also describe
the physics of Rydberg chains [23–26]. The study of non-equilibrium dynamics
of these Rydberg atoms has shown that they may host several anomalous features
[27–35] including scar-induced dynamics [27–32, 36–39] and possibility of drive
induced tuning of ergodicity properties [33–35]. The main aim of this chapter is
to provide a summary of some of the theoretical and experimental aspects of this
rapidly developing field.

The rest of this chapter is organized as follows. In Sect. 2, we provide a brief
discussion of the experimental platforms that lead to the realization of such tilted
bosons. This is followed by Sect. 3 where we describe a low-energy model which
describes the ground states phases of these system and discuss its relation with
models describing a chain of ultracold Rydberg atoms. This is followed by Sect. 4
where we discuss non-equilibrium dynamics of the model. Next in Sect. 5 we
discuss possible related models with interesting properties which may be realized
using such boson platforms. Finally, we conclude in Sect. 6.

2 Experimental Platforms

In this section, we shall describe the essential ingredients of three experimental
setups. The first two involves generating a tilt for ultracold bosons in an optical
lattice while the third involves Rydberg atoms in one-dimensional (1D) lattice.

The first experiment on tilted bosons in an optical lattice was carried out in Ref.
[1]. In this experiment, spinor 87Rb atoms in their angular momenta F = 2 and
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mF = 2 state (where F is the total and mF is the azimuthal angular momenta)
were cooled in a trap. The trap was chosen to be a cigar shaped magnetic trap
with radial and axial frequencies νradial = 240 Hz and νaxial = 24 Hz. The trap
included 2 × 105 bosonic atoms. After the condensate was the formed, the radial
trapping frequency was relaxed to 240 Hz over a time period of 500ms. This led to
a spherically symmetric condensate.

To generate an optical lattice, six orthogonal lasers with wavelength λ = 852nm
were applied. This resulted in a potential of

V (x, y, z) = V0(sin2kx + sin2ky + sin2kz), (1)

where k = 2π/λ and λ is the wavelength of light used for the lasers. For such
optical lattices, all energies are typically measured in terms of the recoil energy
given by Er = h̄2k2/(2m); this is the basic energy scale in the problem which can
be created out of the wavelength λ of the laser and mass m of the atoms. It can be
shown that in such a lattice, the atoms see an approximately harmonic potential with
strength V ′ � √V0Er leading to a trapping frequency νr � V ′/h � 30 kHz. In the
experimental setup of Ref. [1], the strength of the trapping potential could be up to
V ′ = 22Er . These values of parameters were sufficient to obtain a Mott insulating
state of bosons with one boson per site of the optical lattice.

In addition, to apply the tilt, the center of the trap confining the bosons was
shifted. This led to a shifted harmonic potential. The bosons thus see a linear
gradient since Vshifted = K0(x − x0)

2/2 � Vx0=0 − cx, where c = K0x0, x0 is the
shift of the trap center, and we have ignored an irrelevant constant term. Thus the
shift is analogous to having an electric field for the neutral bosons with eE = K0x0;
the magnitude of the field can be controlled by controlling the shift. It was found
in Ref. [1] that in the Mott phase, the presence of such a shift leads to resonant
energy absorption at special values of electric field eE (or shift x0) which satisfies
eE = nU where U is the on-site interaction between the bosons and n is an integer.

The measurement which confirmed this resonant absorption in the experiments
of Ref. [1] involved several steps. First, the condensate was subjected to optical
lattice potential whose amplitude was slowly ramped up (over a period of 80ms) to
the final value. This value is chosen (V ′ = 22Er ) such that the system would be in
its Mott state with one boson per site. Second, the system is allowed to equilibrate in
this potential for a period of 20ms. During this time, the tilt of a fixed magnitude is
applied to the system. Third the optical lattice potential is reduced to V ′ = 9Er
(for which the bosons are in a superfluid state) within a short time interval of
3ms. Finally, the trap and lattice are turned off, and the real space imaging of the
flying out bosons are carried out. It is to be noted that after turning off the trap
and the lattice, the bosons undergo a free flight. Thus their position distribution
during the flight provides information about their momentum distribution (or initial
velocity distribution) inside the trap just before it was turned off. Consequently,
in the superfluid phase, the position distribution of the bosons would have a large
central peak signifying the presence of a large number of bosons in the state �k = 0
inside the trap. The experiment in Ref. [1] further noted that if the system absorbed
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energy when the tilt is applied, it is not going to equilibrate to the superfluid ground
state when the lattice potential is reduced. Instead, it will be in an excited state where
the boson wavefunction has larger weight in the �k �= 0 states in the trap. This will
broaden their position distribution leading to a broader central peak during imaging.
A large width of the central peak of the image, therefore, is a signature of large
energy absorption due to the perturbation; such a large width is observed around
eE = nU .

The measurement technique of Ref. [1] did not allow for a direct measurement
of the number distribution of the bosons within the lattice in the Mott phase. This
is clearly desirable if one wanted to distinguish between several competing ground
states in the Mott regime. The later experiments, performed in Ref. [3, 4], made
significant progress in this direction. In these experiments, which also used 87Rb
atoms, lasers with wavelength of λ = 680 nm were used to generate the optical
lattice. The trap used to confine the bosons was also optical. The maximum allowed
lattice depth achieved in these experiments were V ′ = 45Er which brought the
bosons close to their Mott state in the atomic limit. The lattice obtained was a 2D
lattice; however, the experiment had separate control over the lattice depth in the x
(along the chain) and the y (between the chains) direction. The inter-chain lattice
depth could be ramped to very high to achieve an effectively 1D optical lattice
(almost disconnected chains).

The tilt generated in these experiments were carried out via application of
Zeeman magnetic field which varied linearly in space. Such a Zeeman field leads
to a potential term H1 = −gμBB0

∑
j j n̂j where μB is the Bohr magneton, g is

the gyromagnetic ratio, B0 is the amplitude of the field on the first site (j = 1) and
n̂j is the number operator for the bosons. Such a field, therefore, creates an effective
electric field for the bosons with eE = gμBB0. Note that the intensity of this field
can be controlled by tuning the magnetic field which is experimentally much more
convenient than shifting the trap center.

To measure the density distribution of the bosons inside a trap, the experiments
in Ref. [3, 4] used an ingenious fluorescence imaging technique. In this technique,
the depth of the lattice potential is suddenly increased just before the measurement
so that the bosons within the lattice freeze for a long time scale. Then fluorescent
light is applied to the bosons; the frequency of this light is chosen in such a way that
any boson pair on a lattice site can scatter via light assisted collision and move out
of the trap. Thus such a fluorescent light leaves behind an empty lattice site if there
were, initially, an even number of bosons on that site; in contrast, if there are odd
number of bosons, at least one boson remains on the site. Thus an imaging of the
bosons after the fluorescent light is applied provides information about their parity
of occupation in the Mott state. If a boson remains on a lattice site, it may scatter
several photons leading to bright spots. Thus it provides a direct distinction between
Mott states with even and odd occupations (for example, between 0− 2− 0− 2 . . .
and 1 − 1 − 1 − 1 . . . occupations) of bosons; the sites with even occupations lead
to dark spots while that with odd occupation appear bright. This proves to be very
useful while measuring boson occupation in the presence of a tilt.
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Finally we briefly discuss some experiments on ultracold bosonic Rydberg atoms
in a 1D optical lattice [23–26]. The atoms used for such experiments are again
87Rb. These atoms are confined in a 1D optical lattice as discussed earlier. In these
experiments, the atoms are subjected to a Raman laser which induces a transition
between the ground (|g〉 = |5S1/2;F = 2;mF = −2〉) and the Rydberg excited
(|r〉 = |70S1/2;F = 1/2;mF = −1/2〉) state of the atoms via an intermediate
state (|p〉 = |6P3/2;F = 3,mF = 3〉). The experiment used two lasers with
wavelength 420 nm and 1024 nm (corresponding to single photon Rabi frequencies
of �B = 2π × 36 and �R = 2π × 60 MHz, respectively) so that there is a detuning
δ between the |g〉 and the |p〉 levels: h̄�B = δ+ (Ep −Eg). Similarly the detuning
 between the |r〉 and the |g〉 levels are given by  = h̄(�B +�R)− (Er − Eg).
For  = 0 the atoms would be in an equal linear superposition of |g〉 and |r〉
states. can be tuned in experiments to have either positive or negative values. The
effective coupling between the atoms in the ground and Rydberg state is given by
� = h̄2�B�R/(2δ). Further experimental details regarding the setup can be found
in Ref. [23].

The atoms experience a strong repulsive dipolar interactions (V (r) ∼ 1/|r|6)
when excited in the Rydberg state. This interaction can be tuned by controlling
the relative position of the atoms in the lattice; in particular, a regime can be
reached which precludes two Rydberg excited atoms within a certain length R. This
phenomenon is called the dipole blockade and R is termed as the blockade radius.
In experiments, it is possible to control the dipolar interaction strength between
the atoms leading to an effective tuning of the blockade radius. Such a tuning of
the blockade radius may lead to translational symmetry broken phases as follows.
In experiments the blockade radius can be tuned to next neighbor; moreover, the
parameters are so adjusted that it is energetically favorable for each individual atom
to be in its Rydberg excited state. A competition between these two phenomenon
leads to a state where atoms in every alternate site can be in the state |r〉 leading to
a symmetry broken state. Similarly states with blockade radius of two lattice sites
can be achieved; these states, for large negative , shall have a Rydberg excited in
every three sites. In the next section, we shall find that the physics of such a system
can be understood in terms of a model which has several common features with the
tilted Bose-Hubbard model.

3 Model and Phases

The low-energy effective model for the bosons in a tilted 1D optical lattice has
been derived in Ref. [22]. An extension of this model has been studied in Ref. [40].
In the first part of this section, we briefly sketch the method of derivation of this
model from the microscopic. In the next part, we shall discuss the similarity of the
model with a spin model appropriate for describing the Rydberg atoms discussed in
the previous section. The extension of this model to higher dimension [41–43], its
application to tilted dipolar bosons [44, 45], tilted spin chains [46], and other models
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with modified constraint [47] has also been worked out; however, in the rest of this
work, we shall restrict ourselves to the initial 1D model proposed in Ref. [22].

In the presence of a tilt, the Hamiltonian of ultracold bosons in a 1D optical
lattice is given by

Hb = −w
∑

〈jj ′〉
(b

†
j bj ′ + h.c.)− μ

∑

j

n̂j + U
2

∑

j

n̂j (n̂j − 1)− E
∑

j

j n̂j , (2)

where bj denotes the boson annihilation operator at site j , n̂j = b
†
j bj is the

boson number operator, w is their nearest-neighbor hopping amplitude, U is the
amplitude of the on-site interaction between the bosons, and μ denotes their
chemical potential. In Eq. 2, 〈jj ′〉 indicates that j and j ′ are nearest neighbors, and
E denotes amplitude of the applied electric field in units of energy. In absence of
the field, the bosons are in the in Mott state so that μ,U � w; moreover in what
follows, we shall address the physics of the system for U, E � w, |U − E |.

Before embarking on the description of the ground state of this model, it is
useful to think about the limit U = 0. In this case the model represents Wannier-
Stark ladder for the bosons. The single-particle Schrodinger equation for such
non-interacting bosons is given by (with energies ε = E + μ)

εψj = −Ejψj − w
[
ψj−1 + ψ(j + 1)

]
. (3)

The solution to this problem is well-known [48]. The energy of the bosons are given
by εm = Emwherem denotes integers ranging from−∞ to∞. Note that the energy
is not bounded from below and this arises from the fact that the potential is also not
bounded on an infinite lattice. The eigenfunctions of the bosons are given by

ψm(j, t) = Jj−m(2w/E)exp[−iEmt/h̄], (4)

where Jn(x) denotes the Bessel function. Note that the wavefunction returns to
its original value at regular time intervals t0 = 2πh̄/E which indicates Bloch
oscillations. The bosons are strongly localized to their respective site for w � E .
This behavior can also be understood from the fact that Jj−m(x) has appreciable
weight at j = m for x � 1 leading to more than exponentially localized
wavefunctions [22]. This behavior is in contrast to the classical expectation where
an electric field shall accelerate the bosons to the end of the chain causing an
electric breakdown. This feature shall be a key component in constructing the
effective theory in the limit E � w. Such a breakdown can happen in realistic
quantum systems due to electric field assisted tunneling to higher single-particle
bands; however, for ultracold bosons, such bands are well separated in energy from
the lowest bands. This leads to a tunneling time which is larger than the typical
system lifetime and allows us to ignore such electric breakdown. In the absence
of such breakdown, the system remains in the metastable parent state |ψ(t = 0)〉.
Thus the strategy adapted in Ref. [22] for finding out the equilibrium phase of the
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Fig. 1 (a) Schematic representation of the parent Mott state with n0 = 1. (b) The state with a
single dipole. (c) A state with two neighboring dipoles which is equivalent to a single dipole of
length two and is not a part of the low-energy subspace. (d) A state with maximal number of
dipoles which is also a part of the low-energy subspace

tilted bosons was to start from the metastable parent Mott state and find out the
manifold of states whose energies are close to the parent Mott state in the regime
E, U � w, |E − U |.

To understand the nature of the effective theory of the interacting bosons, we,
therefore, start from the parent Mott state (the Mott ground state in the absence of
the electric field) with n0 bosons on every lattice site (see Fig. 1a) and ask how the
electric field may destabilize such a bosonic system. A possibility is that this can be
achieved by addition of an extra particle or hole in over the parent Mott state. The
energy cost of adding a particle to the Mott state is Ep = U(n0 + 1) − μ while
that for a hole is Eh = μ − Un0. Note that Ep,Eh > 0 as long as the system is
in the Mott ground state. However, once added, the particle[hole] sees the electric
field and is thus described by an effective Hamiltonian which is identical to Eq. 3
with μ = 0 and w → w(n0 + 1)[wn0]. They are, therefore, localized and cannot
reduce their energy via hopping (which would have been the case if E was absent).
Thus such excitations are not effective in destabilizing the Mott states. This situation
is, therefore, different from that of bosons without the tilt, where such additional
particles or holes destabilize the Mott state to bring about the superfluid-insulator
transition [10, 11].

The excited states which are part of the low-energy manifold around the parent
Mott state correspond to dipole excitations where a particle hops from a lattice site
to the next (Fig. 1b) [22]. Such an excitation creates an additional particle on the site
j + 1 and a hole at site j and thus have an energy cost

Edipole = E(n0 + 1)+ E(n0 − 1)− 2E(n0)− E = U − E . (5)

A state with one or multiple dipoles thus become a part of the low energy manifold
for U � E . These states are schematically represented in Fig. 1d. These dipoles live
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on the link � between two adjacent lattice site j and j+1. Identifying the parent Mott
state as the dipole vacuum, the operators describing the creation of such dipoles can
be written in terms of the boson operators as

d
†
� |vac〉 = 1√

n0(n0 + 1)
bj b

†
j+1|Mott.〉 (6)

We note the following properties of the dipoles. First, there can be at most one dipole
on any given link. This is seen by noting that creating another dipole on the same
link cost an energy E2 = 4U − 2E (for n0 > 1). Thus a state with two dipoles
on the same link is not a part of the low-energy manifold. Second, two dipoles on
adjacent links cost an energy U − 2E (Fig. 1c) (this is equivalent to a length two
dipoles where a boson hops two sites as shown in Fig. 1c) and thus such states are
also not a part of this manifold. In fact it can be shown that all longer length dipoles
do not play a role [22]. This leads to an effective dipole Hamiltonian supplemented
by the constraints

Hd = −w′
∑

�

(d� + d†
� )+ λ

∑

�

n̂�, n̂� ≤ 1, n̂�n̂�+1 = 0, (7)

where n̂� = d†
� d�, λ = U − E , and w′ = w√n0(n0 + 1). We note that the model

does not conserve dipole numbers since spontaneous hopping of bosons leads to
formation/annihilation of dipoles. Moreover, the model is non-integrable due to the
presence of the second constraint. The number of states in the Hilbert space of this
Hamiltonian does not scale as 2L (as that of hardcore bosons or spins); it can be
shown that they scale as ϕL for large L where ϕ = (1+√5)/2 is the golden ratio. It
was shown that it is possible to write down a recursion relation for the Hilbert space
dimension, NL, of the constrained dipole system with periodic boundary condition:
NL = NL−1 + NL−2. This relates NL to Fibonacci numbers FL for integer L:
NL = FL [33].

It is easy to see that Hd admits a representation in terms of spin-half Pauli
matrices due to the constraint n̂� ≤ 1. Indeed the mapping

σz� = 2n̂� − 1, σ x� = (d� + d†
� ), σ

y
� = i(d� − d†

� ) (8)

leads to the spin Hamiltonian [29, 49] (up to an irrelevant constant)

Hs =
∑

�

(−w′σ̃ x� + λσz� /2), σ̃ a� = P�−1σ
a
� P�+1, P� = (1− σz� )/2. (9)

Here we have implemented the constraint n̂�n̂�+1 = 0 by using a local projection
operator P� and it is understood that Hspin operates in the constrained Hilbert
space where one cannot have two up-spins on the neighboring link. The projection
operator P� ensures that this constraint is obeyed byHs . We note here that the model,
at λ = 0, has been dubbed as the PXP model [27–32].
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Next, we note that addition of longer-range density–density interaction to Hd
leads to the Hamiltonian [40]

H ′d = Hd + V
∑

�

n̂�n̂�+2. (10)

We shall not discuss the details of the phases or the dynamics of this model here
but refer the readers to Refs. [40, 50–52] for details. The model displays a rich
phase diagram and supports non-Ising quantum phase transition. Moreover, this also
serves the low-energy effective model for the Rydberg atoms discussed in the last
section in certain limit; we shall detail this point towards the end of this section.

The ground phase diagram ofHd can be understood in a straightforward manner.
For λ � w′(U � E + w′), the dipole excitations are energetically costly and the
ground state is the dipole vacuum |vac〉 (the parent Mott state |Mott〉). In contrast,
for |λ| � 0 with λ < 0 (E � U + w′), the ground state is clearly a state with
maximal number of dipoles. However, due to the constraint, there are two such
maximal dipole states. The first consists of dipoles that are formed on the even links
of the 1D lattice while the second where they are formed on the odd links. These
states, for a chain of length 2L whose links are labeled from 0 to 2L − 1, are (see
Fig. 1d)

|Z2〉 = d†
0d

†
2 . . . d

†
2L−2|vac〉, |Z̄2〉 = d†

1d
†
3 . . . d

†
2L−1|vac〉. (11)

The ground state chooses one of the two states and hence breaks Z2 symmetry.
This implies that it must be separated from the dipole vacuum ground state by a
transition; this quantum phase transition belongs to the Ising universality class and
occurs at [22]

Ec = U + 1.31
√
n0(n0 + 1)w. (12)

Such a transition can be understood to be the result of competition between the
dipole number fluctuation arising from the first term in Eq. 7 and the effect of the
electric field in the second term which makes such fluctuation energetically costly. A
rough estimate of Ec can also be obtained from a variational wavefunction approach.
The ordered state which breaks the Z2 symmetry is characterized by an Ising order
parameter. In the dipole language this order parameter can be written as

O = 1

2L

2L−1∑

�=0

(−1)�n̂� (13)

which is the dipole density at k = π signifying the broken translational symmetry
of the ground state.

The presence of such a translational symmetry broken state was directly verified
in the experiment carried out in Ref. [3] using the fluorescence imaging technique
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discussed earlier. The experiment started with a Mott state having n0 = 1 bosons
per lattice site and generated a tilt using a linearly varying Zeeman field. Thus the
parent Mott state corresponds to an odd number of bosons per site and provided
bright patterns in an imaging measurement. In contrast, the maximal dipole state,
which constitutes an even number of states per site, would provide a dark image.
It was found that an increase of the strength of the magnetic field providing the tilt
indeed led to a dark pattern; moreover, one could coherently interpolate between
such bright and dark imaging patterns by tuning the strength of the magnetic field.
This constituted the realization of the symmetry broken Mott state for ultracold
bosons in an optical lattice.

Before ending this section, we briefly comment on the Rydberg atom experiments
and the relation of the Hamiltonian of such Rydberg atoms with the model
developed here. The low-energy effective Hamiltonian of these atoms describes the
physics of the system for times which is smaller compared to typical decay scales of
Rydberg excited atoms. The Hamiltonian involves two states |g〉 and |r〉. Defining
τα (α = x, y, z) to be standard Pauli matrices in the space of these two states, one
can write

HRyd = −
∑

j

(�τxj +τzj )+
∑

jj ′
Vjj ′ n̂

′
j n̂
′
j ′ , (14)

where  and � has been defined in Sect. 2, Vjj ′ is the dipolar interaction between
two Rydberg excited atoms. Here n̂′j = (1 + τ zj )/2 denotes the number operator
for Rydberg excitations. We note that for Vj,j+1 � �, || and Vj,j+n � �, ||
for n > 2, Eq. 14 reduces to Eq. 10 with � → −w√n0(n0 + 1),  → λ and
Vj,j+2 → V . Moreover if V � �, ||, Eq. 14 reduces to Eq. 7 (and hence to Eq. 9).
It is, therefore, expected that the ground state phase diagram of Rydberg atoms
would also reflect translational symmetry broken states for  < 0 and || � �.

In experiments carried out in Ref. [23], could be tuned to large negative values
to achieve the translational symmetry broken states. Such states had a period 2 when
Vj,j+1 � �, || and Vj,j+n � �, || for n > 1, in accordance with the prediction
of the dipole model. In addition, it was possible to tune the strength of the Rydberg
interaction such that Vj,j+1, Vj,j+2 � �, || and Vj,j+n � �, || for n > 2. In
this case, the ground state broke Z3 symmetry and led to a period 3 density-wave
in accordance with that found in Ref. [40] by analyzing the Hamiltonian given in
Eq. 10.

4 Non-equilibrium Dynamics

In this section, we shall discuss the non-equilibrium dynamics of the tilted bosons in
the presence of an optical lattice. The quench and the ramp dynamics of the bosons
shall be discussed in Sect. 4.1 while the periodic dynamics will be addressed in
Sect. 4.2.
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4.1 Quench and Ramp Protocols

It is well-known that ultracold atoms provide a perfect platform for studying non-
equilibrium dynamics of closed quantum systems [5, 53–57]. One of the simplest
protocol for such dynamics is the quench, where a parameter in the Hamiltonian of
the system is changed suddenly. Consequently, the state of the system does not have
time to react. The old ground state of the system (or any initial state the system might
be in when the quench is performed) evolves according to the new Hamiltonian.
Since the old state is no longer an eigenstate of the new Hamiltonian, it displays non-
trivial dynamics. For non-integrable systems, such dynamics is expected to be led to
a thermal steady state at long times. This follows from the eigenstate thermalization
hypothesis (ETH) [58–61] which predicts eventual thermalization of a typical many-
body state under unitary dynamics. At short times, the system is expected to display
transient oscillations.

For the tilted boson system, such oscillations were studied in Ref. [62]. The
bosons were initially assumed to a state of dipole vacuum |0〉. At t = 0, the electric
field E is changed from its initial value Ei < U to its final value Ef . The state of the
system at time t can then be described by

|ψ(t)〉 =
∑

n

cne
−iEnt/h̄|n〉, H(Ef )|n〉 = En|n〉, cn = 〈n|0〉. (15)

Under such evolution, the dipole order parameter given by Eq. 13 oscillates as

O(t) =
∑

m,n

cmcnOmn cosωmnt, Omn = 〈m|O|n〉, ωmn = (Em − En)/h̄, (16)

where we have used the fact that cm could be chosen to be real. A numerical
evaluation of O(t), carried out in Ref. [62] (left panel of Fig. 2), showed that the

Fig. 2 Left panel: Plot of O(t) as a function of time for several representative values of Ef /w.
For all plots U/w = 40 and initial state is the dipole vacuum ground state |0〉. Right panel: Plot of
Ō ≡ 〈O〉t as a function of Ef /w showing a peak near the critical point. In the figs N represents
the chain length in units of lattice spacing. This figure is adapted from Ref. [62]
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transient oscillations have maximal amplitude when Ef = U near the critical point;
they are tiny deep inside both the maximal dipole and dipole vacuum phases as
shown in the left panel of Fig. 2. Thus transition can act as a qualitative marker for
change in state of the system.

To understand why the amplitude peaks around U = Ef , we focus on the time
averaged value of these oscillations

Ō = lim
T→∞

1

T

∫ T

0
O(t) =

∑

m

c2
mOmm. (17)

The amplitude of these oscillations is maximal when the product of overlap cm
and order parameter expectation Omm is large. When Ef is deep inside the dipole
vacuum, cm ∼ 1 when m correspond to the old ground state. However, Omm → 0
for this state leading to a small Ō. In contrast, when Ef corresponds to deep inside
the maximal dipole ground state, Omm is large for the new ground state; however,
cm ∼ 0 for this ground state leading, once again, to a small Ō. In between, near the
critical point, Ō could be large since both cm and Omm can be non-zero for several
m. This leads to a peak of Ō near the critical point as shown in the right panel of
Fig. 2.

More recently, the quench dynamics of Rydberg atoms has been studied exper-
imentally starting from the |Z2〉 state [23]. It was found that the evolution of such
a state, following a quench of the parameter  → 0, displays long-lived coherent
oscillations. Since the system is non-integrable, ETH predicts that such dynamics
will lead to an eventual thermal steady state; however, such a steady state was not
observed in experiments for dynamics starting from |Z2〉. In contrast, dynamics
starting from the all spin-down state (|0〉 or the dipole vacuum state) showed
expected, ETH predicted, thermalization. This phenomenon, therefore, constituted
a weak (initial-state dependent) violation of ETH in such finite-sized chains.

The theoretical explanation of this phenomenon followed soon [27–32]. The
details of this has been summarized in Ref. [27] and the references therein. It was
found at  = 0, or in the PXP limit, the eigenspectrum of Hs (or equivalently
HRyd for large Vi,i+1) supports a special class of eigenstates called quantum scars
[27–32, 36–39]. These states have finite energy density but anomalously low half-
chain entanglement entropy [27]. Being anomalous, they have very little overlap
with the thermal band of mid-spectrum eigenstates. Consequently, they form an
almost closed subspace. It was also found that they have a strong overlap with the
|Z2〉 state; thus dynamics starting from the |Z2〉 state is almost confined within the
closed subspace formed by the scars leading to coherent long-lived oscillations.
This does not happen for dynamics starting from the |0〉 state since it has very little
overlap with the scar states. Further details of this phenomenon and properties of
quantum scars are summarized in Ref. [27].

Next, we discuss the ramp dynamics of such a system addressed in Ref. [49]. In
this case, one ramps the electric field via a linear protocol from its initial value Ei at
t = 0 to a final value Ef at t = τ with a rate τ−1: E(t) = Ei + (Ef − Ei )t/τ . The
values of Ef and Ei are so chosen so that the system starts from the dipole vacuum
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state (ground state for E = Ei < U ) and reaches the critical point at E = Ef = Ec. It
is well-known that such a passage to the critical point leads to excitation production;
the density of these excitations, for slow ramp rates, scales with τ according to the
Kibble-Zurek (KZ) scaling law nex ∼ τ−νd/(zν+1), where ν and z are the correlation
length and dynamical critical exponents and d is the spatial dimension of the system
[53–57, 63–69]. However, such scaling laws are strictly appropriate when the system
size is large. For finite-sized systems such as the Rydberg chain, the system size L
provides a length scale which restrict the applicability of the scaling laws.

To understand why the presence of a finite-system size changes things, let us
consider that the length scale L leads to an energy scale ε0(L). When the ramp rate
τ−1 ≤ ε0(L)/h̄, the system does not see the critical point; instead the dynamics is
similar to a two-level system (the two states correspond to the instantaneous ground
and first excited states near the transition where excitations are formed) with avoided
level crossing, where the minimum gap is O(ε0(L)). In this case, the excitation
density scales as nex ∼ τ−2 and is independent of the critical exponents; this is
known as Landau-Zenner (LZ) scaling [70]. Also, when τ−1 is large, i.e., for fast
drives, nex saturates and KZ scaling is not obeyed. In between, there is a finite
window of drive rates for which one finds KZ scaling law. This behavior can be
summed up by noting that for finite-sized system, the scaling of excitation density
is described by

nex = Ndτ−νd/(zν+1)f (N1/ν+zτ−1), (18)

where N = L/a, a is the lattice spacing, and the scaling function f (x) satisfies
f (x) = x2−νd/(zν+1) for x � 1 and f (x) = 1 for x � 1. Note that nex crosses over
from LZ to KZ scaling regime with decreasing τ around x � 1τ ∼ N2−νd/(zν+1).

The dynamics of dipole chain for such ramps have been numerically studied
using exact diagonalization (ED) and time-dependent matrix product states (tMPS)
methods. For ED, the analysis involves finding the instantaneous eigenvalues and
eigenvectors of the driven chain at t = tf = τ ; H [t = τ ]|n〉 = εn|n〉. One can then
expand the time-dependent state |ψ(t)〉 = ∑

n cn(t)|n〉, where cn(t) = 〈n|ψ(t)〉.
The Schrodinger equation for the driven system can thus be written as coupled
differential equations for the coefficients cn(t) given by

i
dcn(t)

dt
= εncn(t)+

∑

m

λmn(t)cm(t), cn(0)=〈n|ψ(0)〉, λmn(t)= (Ef − Ei)(t/τ − 1)〈m|
∑

j

n̂j |n〉. (19)

These equations need to be solved numerically to obtain |ψ(t)〉. Having obtained
|ψ(t)〉, one may compute several quantities such as residual energy Q, log fidelity
F (which is same as the excitation density), the dipole density nd and the defect
density D given by

Q = 〈ψ(τ)|H(τ)|ψ(τ)〉 − ε0, F = ln |〈ψ(τ)|0〉〉|, C��′ = 〈ψ(τ)|Sz�Sz�′ |ψ(τ)〉
nd = 〈ψ(τ)|

∑

�

n̂�|ψ(τ)〉, D = nd − 〈0|
∑

�

n̂�|0〉, (20)
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where |0〉 and ε0 denote the wavefunction and energy of the final ground state at
t = τ and Sz� = 2n̂� − 1.

A plot of these quantities is shown in Figs. 3 and 4 for several representative
values of L. It was found that they exhibit KZ scaling (with exponent νd/(zν+1) =
1/2 for d = z = ν = 1) within a finite window of ramp rate which depends on L.
As L increases the KZ regime holds for slower ramp rates; the crossover between
the LZ and the KZ regime is shown by the sharp drops in the figures. Thus these
ramped boson chains can provide experimental platform for testing KZ scaling.

Before ending this section, we would like to note that the ramp dynamics for
H ′d (Eq. 10) has also been studied in details [51, 52]. Ref. [52] found KZ scaling
consistent with the presence of a 3-state Potts transition in these chains. However,
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work of Ref. [51], which accessed larger chain lengths, has predicted the existence
of non-Ising like critical points with z �= 1 (where z is the dynamical critical
exponent) in such chains. Since H ′d with large V is easily reproduced in Rydberg
chains, these chains can also act as platform for hosting such non-Ising quantum
critical points. We shall not discuss this issue further in this article but refer the
interested reader to Refs. [40, 51, 52]. Furthermore, the dynamics of tilted bosons in
the presence of a two-rate protocol [71] has also been discussed; it was found that
such protocols may aid suppression of excitation formation in these systems [72].

4.2 Periodic Protocols

In this section, we shall discuss the periodically driven tilted boson chains [33–35].
For the rest of this article, we shall explicitly use the spin representation and work
with Hs (Eq. 9). The connection of the spins with the original dipoles is given by
Eq. 8. The methods used shall be briefly discussed in Sect. 4.2.1 while the main
results shall be presented in Sect. 4.2.2.

4.2.1 Methods

The properties of a periodically driven system are best described in terms of its
Floquet Hamiltonian HF which is related to the unitary time evolution operator U
by U(T , 0) = exp[−iHFT /h̄], where T = 2π/ωD is the time period of the drive,
ωD is the drive frequency, and the wavefunction of the driven system at any time t is
related to the initial wavefunction by |ψ(t)〉 = U(t, 0)|ψ(0)〉. Thus the stroboscopic
dynamics of the system at t = nT , where n is an integer, is completely controlled
by its Floquet Hamiltonian [73–75].

The Floquet Hamiltonian of any periodically can be computed by comparing two
equivalent expressions for U(T , 0)

U(T , 0) = Tt
{

exp

[
−i

∫ T

0
dtH(t)/h̄

]}
= exp [−iHFT /h̄] . (21)

For an interacting many-body system, it is usually not possible to obtain HF
exactly. This has led to several approximation schemes for such computations [75].
In what follows, we shall mostly use one of these schemes, namely the Floquet
perturbation theory (FPT) [75–78], to obtain the Floquet Hamiltonian for the driven
dipole chain. This method involves a perturbation in drive amplitude; the term in
H(t) with the largest amplitude is treated exactly, while the other terms are treated
using standard time-dependent perturbation theory [75]. In contrast to the Magnus
expansion technique, the drive period T need not be a small parameter here; thus, the
method allows us to access the intermediate drive-frequency regime which cannot
be accessed using Magnus expansion.



440 K. Sengupta

To study the properties of the periodically driven chain, we choose to vary the
electric field according to the square pulse protocol such that

λ(t) = −(+)λ0/2 for t ≤ (>)T /2, (22)

where λ0 denotes the amplitude of the drive. In what follows, we shall address the
regime where λ0 � w. In this regime, the drive term is the one which has the largest
amplitude. Thus we write

Hs(t) = Hs0(t)+Hs1, Hs0(t) = λ(t)
∑

j

σ zj , Hs1 = −w
∑

j

σ̃ xj (23)

and treat Hs0(t) exactly. Noting that Hs0 is diagonal in the spin basis, we consider
a complete set of states in the constrained Hilbert space which has m up-spins and
denotes these states as |m〉. Note that the positions of these spins (as long as they
are not nearest neighbors) do not change their instantaneous energy under action of
Hs0; thus each |m〉 represents a degenerate manifold of states. Using these states as
basis states one finds

U0(t, 0) = eiλ0t
∑
j σ

z
j /(2h̄) for t ≤ T/2

= eiλ0(T−t)∑j σ
z
j /(2h̄) for t ≥ T/2 (24)

so that 〈m|U0|n〉 ∼ δmn. We also note that for t = T , U0(T , 0) = I (where I is
the identity matrix); thus H(0)F = 0 for this protocol. This is a consequence of the
symmetric nature of the drive (Eq. 22) which leads to a vanishing average of λ(t)
over a drive cycle.

The first order perturbative correction to the evolution operatorU can be obtained
using standard time-dependent perturbation theory. This is given by

U1(T , 0) = −i
h̄

∫ T

0
dtU

†
0 (t, 0)Hs1U0(t, 0). (25)

We note that σ̃ xj flips a spin on the j th site, 〈m|Hs1|n〉 ∼ δm,n±1. Denoting a state

|m+ (−) ↑j 〉 to be the one with one additional (less) spin-up residing at the j th site,
we can, therefore, write [33–35]

U1(T , 0) =
∑

m

∑

j

∑

sj=±1

c(1)sj |m〉〈m+ sj |, c(1)s = 4iw

λ0
eiλ0T s/(4h̄)sinλ0T/(4h̄), (26)

where s = ±1. Noting that σ̃±|m〉 = |m± 1, and using Eq. 21 we get, to first order
in w/λ0

H
(1)
F = −w sinγ

γ

∑

j

(
cos γ σ̃ xj + sinγ σ̃ yj

)
, γ = λ0T/(4h̄). (27)
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We note that for T → 0, γ → 0, and in this limitH(1)F = −w∑j σ̃
x
j = HPXP. This

is also consistent with the Magnus result for HF which demands that HF shall be
average Hamiltonian given by

H
magnus
F = 1

T

∫ T

0
H(t)dt = HPXP. (28)

Also, at this order, H(1)F represents a PXP like Hamiltonian up to a rotation and an
overall renormalization by a factor sinγ /γ ; it was noted in Ref. [33] that this result
constitutes a resummation of a class of terms in the Magnus expansion.

The higher order terms in the Floquet Hamiltonian can also be computed. This
has been carried out systematically in Ref. [35] and leads to H(2)F = 0 at second
order. This null result for HF to second order owes it existence to the fact that there
exists an operator C = ∏

j σ
z
j which satisfies CU(T , 0)C = U−1(T , 0) leading to

{HF ,C} = 0. As shown in Refs. [27, 33], such anti-commutation only allows for
odd orders in the Floquet Hamiltonian. At third order, a straightforward but tedious
calculation [35]

H
(3)
F = −α0

∑

j

[(
σ̃+j+1σ

+
j−1 + σ̃+j−1σ̃

+
j+1

)
σ̃−j − 6σ̃+j

]
+ h.c.,

α0 =
[
e3iλ0T/(2h̄) + 3eiλ0T/(2h̄)(1+ iλ0T/h̄)+ 2(1− 3eiλ0T/h̄)

] h̄w3e−iλ0T/h̄

3iλ3
0T

. (29)

The first term in H(3)F involves three spin on neighboring sites. We note that the
form of this term, i.e., the order in which the σ̃± operators appear, is dictated by
the presence of the constraint; the order of appearance ensures that two neighboring
sites can never have two up-spins. The second term of the Floquet Hamiltonian
provides a shift to H(1)F and renormalizes its coefficients. In what follows, we shall
use this perturbative Floquet Hamiltonian to understand the numerical results.

The numerical approach to this problem, carried out in Ref. [33, 35], used
exact diagonalization(ED). The first step in this direction involves numerical
diagonalization of H [±λ0]. We denote the corresponding energy eigenvalues and
eigenvectors by

H [±λ0]|p±〉 = ε±p |p±〉. (30)

In terms of this, the evolution operator can be written as

U(T , 0) = e−iH [λ0]T/(2h̄)e−iH [−λ0]T/(2h̄) =
∑

p,q

c−+pq e
−i(ε−p +ε+q )T /(2h̄)|p−〉〈q+|,

c−+pq = 〈p−|q+〉. (31)



442 K. Sengupta

Thus one has a finite-dimensional matrix (for finite-sized L) which can then be
diagonalized. Since U is an unitary operator, its eigenvalues are unimodular. Thus
one can express it in term of its eigenspectra as

U(T , 0) =
∑

α

e−iεFα T /h̄|α〉〈α|, HF |α〉 = εFα |α〉, (32)

where |α〉 are the eigenfunctions of U(T , 0), εFα are the eigenvalues of the
corresponding Floquet Hamiltonian, and the last equation follows from Eq. 21. This
procedure thus allows access to the exact Floquet quasienergies and eigenfunctions
for finite-sized systems. The stroboscopic evolution, at t = nT ( where n is an
integer), for any operator O, can thus be computed as [33]

On = 〈ψ(0)|(U†(T , 0))nOUn(T , 0)|ψ(0)〉 =
∑

α,β

c∗βcαe
−i(εFα −εFβ )T /h̄〈β|O|α〉, (33)

where |ψ(0)〉 is the initial state and cα = 〈ψ(0)|α〉.
In what follows, we shall also be computing the half-chain entanglement entropy

of the Floquet eigenstates. The procedure for this is as follows. First, corresponding
to any eigenstate |ψn〉, we construct a density matrix ρn = |ψn〉〈ψn| which is
defined on the full chain with periodic boundary condition. Next we divide the
chain into two equal halves, A and B, with open boundary condition and trace out
the contribution of states residing in B. Thus each matrix element of the reduced
density matrix ρAn after tracing out B can be written as [33]

〈ρAn 〉αβ =
NB∑

μ∈B=1

〈α;μ|ρn|β;μ〉, (34)

where NB denotes the Hilbert space dimension corresponding to states residing in
B with open boundary condition and the states |α〉 and |β〉 have weights in region A
[33]. While carrying out this procedure, one has to be careful in excluding states
where the right end of A and the left end of B both have spin-up (or dipoles)
since these states were not part of the Hilbert space of the full chain owing to
the constraint. The half-chain entanglement S(n)L/2 can then be obtained numerically
using

S
(n)
L/2 = −

NA∑

j=1

qj ln qj , (35)

where qj denotes the eigenvalues of ρAn obtained via numerical diagonalization. We

shall use S(n)L/2 to distinguish between states with volume- and area-law entanglement
entropies in the rest of this article.
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4.2.2 Results

To study the physics of the driven dipole chain, we concentrate on half-chain
entanglement SL/2 (Eq. 35) of the Floquet eigenstates and the density–density
correlator 〈Oj2〉 = 〈ψ(nT )|n̂j n̂j+2|ψ(nT )〉, where n̂j = (1 + σzj )/2. In what
follows, we shall discuss the property of the stroboscopic evolution of 〈O22〉 (i.e.,
choosing j = 2) starting from either the |Z2〉 (antiferromagnetic state with up-spins
on even sites) or the |0〉 (ferromagnetic all spin-down state) state. The evolution of
〈Ojj+2〉 for other values of j is identical as long as j is chosen to be even [33–35].

We first consider the dynamics starting from the |Z2〉 initial state. For this state,
for λ0/(h̄ωD) � 1, the dynamics is similar to that of quench studied in Ref. [27].
In this regime, we expect scar-induced coherent oscillations with a frequency which
is determined by the energy separation between the quantum scar eigenstates. In the
opposite limit, w/(h̄ωD) � 1 (where FPT and Magnus expansion both fail) it is
expected that the system shall heat up due to the drive and reach the thermal steady
state as predicted by ETH. This expectation is verified from the behavior of 〈O22〉
shown for high and low frequencies in the plots shown at the top of the left panel in
Fig. 5. The bottom plots of the left panel of Fig. 5 show the half-chain entanglement
entropies of the Floquet eigenstates at these drive frequencies; the high frequency
eigenstates clearly show the presence of athermal scars separated from the thermal
band of states. No such athermal states are seen at low drive frequency; in this
regime, all the states fall within the thermal band. The red dots indicate eigenstates
with large overlap with the initial |Z2〉 state. These are the states which primarily
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drive the dynamics. At high frequency, these states are athermal and lie well outside
the thermal band. Thus the dynamics exhibit coherent oscillations since it involves
a small, O(L), subspace of the full Hilbert space. In contrast, at low frequency, the
eigenstates having large overlap with |Z2〉 are part of the thermal band leading to
thermalization.

Naively, one would expect a crossover between these two regimes at some
intermediate drive frequency. In contrast, as shown, in the right panel Fig. 5,
the system exhibits non-monotonic reentrant behavior at multiple intermediate
frequencies. This is most easily noted by comparing the four plots in the right
panel of Fig. 5. Clearly, ETH predicted thermalization is restored around h̄ωD �
7.75w; however, scar-induced oscillations take over at a lower drive frequency
h̄ωD � 7.5w. The corresponding half-chain entanglement entropies, shown in the
left panels of Fig. 6, indicate the presence of scars at h̄ωD = 7.5w and their absence
at h̄ωD = 7.75w. Further studies, carried out in Ref. [33], demonstrate multiple
crossovers between ETH predicted ergodic and scar-induced coherent oscillatory
behaviors at intermediate frequencies leading to the phase diagram shown in the
right panel of Fig. 6. The density of the ergodic regimes increases with lower
frequency and they completely cover the phase diagram at low drive frequencies
leading to ergodic behavior in this regime. However, at intermediate frequencies, as
shown in Ref. [33], it is possible to tune into and out of such ergodic regimes by
tuning the drive frequency. This leads to the possibility of drive-frequency induced
tuning of ergodicity in a driven non-integrable system.

This tunability of ergodicity can be qualitatively understood from the analytical
Floquet Hamiltonian (Eqs. 27 and 29) as follows. For h̄ωD � λ0, sinγ ∼ γ and
H
(1)
F � HPXP. Moreover since w/λ0 � 1, H(3)F is negligible compared to H(1)F in
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this limit. Thus the Floquet Hamiltonian is of the PXP form and supports quantum
scars. For an initial state |Z2〉, the dynamics gets maximal contribution from the
scar subspace leading to coherent oscillation [27]. In contrast around γ � mπ

(where m is a non-zero integer), H(1)F → 0 and H(3)F dominates. The Floquet
Hamiltonian is then not of the PXP form anymore and does not support scar states
with large overlap with |Z2〉. Consequently, the dynamics becomes ergodic around
ωD = ωcD = γ0/(2mh̄); the width of the ergodic regime depends on the relative

magnitudes of H(1)F and H(3)F as we move away ωcD . Of course, this estimate of

ωcD does not take into account the renormalization of H(1)F from the higher order

terms (such as the one from H
(3)
F ) and is thus not exact. However, since these

terms are typically small in the intermediate frequency regime by a factor of at
least w3/λ3

0 � 1, this estimate turns out to be qualitatively correct.
Next, we consider the stroboscopic dynamics of 〈O22〉 starting from the |0〉 state.

We note that for h̄ωD/λ0 � 1, the dynamics exhibits thermalization consistent with
the ETH prediction as can be seen from the left panel of Fig. 5. Thus in the quench
limit, scars do not play a role in the dynamics since they have negligible overlap with
the |0〉 state. As the drive frequency is lowered, however, the situation changes as
can be seen from left panel of Fig. 7. Around h̄ωD = 8.5w, we find the presence of
long-time coherent oscillations while at h̄ωD = 7.88w, 〈O22〉 remains completely
frozen to its initial value. The latter behavior constitutes dynamic freezing in an
otherwise ergodic non-integrable system. Finally, for h̄ωD = 7.26w, we find that
〈O22〉 reaches a steady state value which is lower than the ETH predicted value
(shown by the blue dotted line). This constitutes a qualitatively different violation
of ETH since coherent scar-induced oscillatory dynamics (such as the one seen
for h̄ωD = 8.5w) usually leads to superthermal steady state values in contrast to
the subthermal value found in the present case. The steady state behavior of 〈O22〉
starting from |0〉 initial state is shown in the right panel of Fig. 7. We find that the
steady state reaches its thermal value, shown by the dotted line, at large ωD . As the
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frequency is lowered, it reaches superthermal steady state value. Here the dynamics
indicates coherent long-time stroboscopic oscillation. Just below h̄ωD < 8w, the
steady state value of 〈O22〉 drops and reaches zero at h̄ωD � 7.88w. This constitutes
an example of dynamical freezing [79, 80]. This is followed by a wide range of
frequency at which the steady state value remains subthermal. We also note the
presence of a second freezing point at around h̄ωD � 3.95w. These steady state
values ofO22 seem to be independent of system size within the range ofL accessible
within ED.

The oscillatory behavior ofO22 starting from |0〉 can be understood by observing
the nature of the Floquet eigenstates as shown in the leftmost panel of Fig. 8. The
plot shows the presence of a different set of athermal states (indicated by red circles)
which has large overlap with the |0〉. These states are different from the scars which
has large overlap with |Z2〉 shown by green circles. Thus the Floquet Hamiltonian at
these frequencies supports at least two separate set of scar states; this phenomenon
has no analog in scars of the PXP model. Indeed, as the frequency is increased,
the set of scar states which has large overlap with |0〉 merge into the continuum of
thermal states leaving behind only athermal |Z2〉 scars. This brings out the central
role of higher order terms in the Floquet Hamiltonian for generation of such scars.
The presence of such scars leads to coherent oscillatory dynamics ofO22. Its steady
state value turns out to be superthermal which can be seen from the left-center panel
of Fig. 8. This is due to the fact that for most scar eigenstates that have large overlap
with |0〉 (shown as red circles in the left-center panel of Fig. 8), 〈O22〉 is larger than
the ETH predicted thermal value.

Similar scar states with large overlap with |0〉 are shown by red circles in
the right-center panel of Fig. 8 for h̄ωD = 7.26w. Here in contrast to the case
h̄ωD = 8.5, the initial state |0〉 turns out to have relatively large overlap (>0.01)
with a few scars states as shown in the figure and small overlap with a large number
of thermal states. The presence of these thermal states do not allow for long-time
coherent oscillations. However, the steady state value of 〈O22〉 is controlled by the
athermal scar states since they have relatively large overlap with |0〉. It turns out that
these athermal scar states have a subthermal value of 〈O22〉 (as can be seen from
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the rightmost panel of Fig. 8). Thus 〈O22〉 quickly decays to a subthermal steady
state value leading to violation of ETH. We note that such a violation does not
involve oscillatory dynamics and thus constitutes a separate route of scar-induced
ETH violation in finite boson chains which has no analogue in chains subjected to
quench. [35].

Finally, we discuss the phenomena of dynamic freezing at h̄ωD � 7.88 for
w = √

2 and λ = 15. Qualitatively, the existence of such freezing is easy to
understand by noting that the state |0〉 is annihilated by all non-PXP higher order
terms of the Floquet Hamiltonian. This follows from the fact that such terms
necessarily involve σ̃−j operator which annihilates the state |0〉. Thus for drive

period, where the coefficient of H(1)F vanishes, U(T , 0) → I and one encounters
freezing. This argument, in conjunction with the first order perturbative Floquet
Hamiltonian, suggests that the freezing would occur at frequencies for which
wr = 0: h̄ωD = λ/(2n). This predicts a freezing frequency of h̄ωD = 7.5 which
differs quite a bit with the exact result.

This discrepancy can be understood by noting that the first order Floquet
Hamiltonian neglects the normalization of wr due to contribution of higher order
term such as the one fromH(3)F (Eq. 29). To see this, we consider an exact analytical
calculation ofHF for L = 3. Here the exact analytic calculation is feasible since the
Hilbert space consists of just two states in the zero momentum sector; this reduces
the problem to a driven two-state problem [35]. These two states are |0〉 = | ↓,↓,↓〉
and |1〉 = (| ↓,↑,↓〉 + | ↑,↓,↓〉 + | ↓,↓,↑〉)/√3. The Hamiltonian, the space of
these two states, reads

H2(t) =
(

0 −√3w
−√3w λ(t)

)
. (36)

For the square pulse protocol given by Eq. 22 the Floquet Hamiltonian H ′F
corresponding toH2(t) can be exactly computed [35]. A straightforward calculation
shows that

〈0|H ′F T |1〉 = cos−1

[
1− 12w2

2
0

{1− cos(0T/2)}
]
, 0 =

√
λ2

0 + 12w2. (37)

This matrix element, which needs to be finite for the driven system to evolve,
vanishes for 0T = 4mπ (where m is an integer). For λ = 15 and w = √

2,
h̄ωD � 7.86 for m = 1, and this provides a near exact match to the observed
freezing frequency. Moreover, it also predicts the second freezing point at h̄ωD �
3.93 which correspond to m = 2. We note that for λ � w, this frequency will
reduce to that predicted by first order Floquet theory (h̄ωD = λ/2m) as expected.
The reason for the accuracy of the result obtained with this simplistic calculation
is that the higher order multiple spin terms in HF do not contribute to the freezing
phenomenon as discussed earlier. We note that at the freezing point the state |0〉 is
disconnected from all other states in the Hilbert space of the system; this constitutes
an example of (weak) fragmentation of the Hilbert space of HF .
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Before ending this section, we note that the periodic dynamics of Rydberg atoms
has been studied experimentally in Ref. [26]. The experiment used a continuous
drive protocol using a damped cosine drive and starting from |Z2〉; it was found that
the system exhibits a robust subharmonic response to the drive. It was noted that
this response depended on the initial state and its relation to quantum scars in the
system was discussed. However, the dynamics of the system starting from |0〉 state
or that in the presence of a square pulse protocol has not been studied in this work.

5 Hilbert Space Fragmentation: A Minimal Model

It has been recently pointed out that the presence of dynamical constraints in a
many-body system may lead to fragmentation of its Hilbert space into several
disconnected sectors. This phenomenon, termed as Hilbert space fragmentation
(HSF), provides yet another route to violation of ETH in non-integrable quantum
systems [81–90]. This phenomenon naturally arises in constrained systems where
the presence of additional conservation laws provide the constraint [81–89]. The
resulting physics has close similarity with those of fractons [91, 92]. The realization
of such constrained systems using circuit models whose Hilbert space is identical
to that of a S = 1 spin chain of length L provides a neat example in this
context [83]. In this case, it was shown that the presence of two simultaneous
U(1) conserved quantities, namely Q = ∑

j S
z
j (which is analogous to total

charge in a fractonic model) and P = ∑
j jS

z
j (dipole moment of a fractonic

model), provides the necessary constraints for fragmentation. Typically, in most
of the models studied, such conservation comes from the commutation [Q,H ] =
[P,H ] = 0 and remains valid for all states in the Hilbert space; moreover, they lead
to an exponentially large number of inert zero-energy states in the Hilbert space.
We note here such fragmentation may even separate states with same symmetry
into different, disconnected, segments within the Hilbert space. Such fragmentation
is dubbed as “strong” if the Hilbert space is fragmented in exponentially many
separate sectors; in this case, the number of states that leads to violation of ETH
increases exponentially with system size [81, 84]. If this condition is not satisfied,
the fragmentation is termed as weak; in this sense, scars constitute an example of
weak fragmentation of Hilbert space. A recent experiment involving Fermi-Hubbard
model has observed non-ergodic behavior in a titled Fermi-Hubbard system which
can possibly be attributed to such fragmentation [93]. In the rest of this section,
we shall discuss such fragmentation in a model which was inspired by the Floquet
Hamiltonian of the tilted Bose-Hubbard model; the details of HSF and its realization
in other model can be found in Ref. [81].
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5.1 Model and Fragmentation

The tilted Bose-Hubbard model constitutes an example of a spin-half system in a
constrained Hilbert space. However, the model does not show HSF. The reason for
this becomes clear when one analyzes the connectivity of the states of the model in
the number basis in the PXP limit. It turns out, as noted in Ref. [90], that most states
in the Hilbert space are connected under the action of HPXP via the state |0〉. Thus a
Hamiltonian which would annihilate the state |0〉may lead to HSF. Taking cue from
the structure of the Floquet Hamiltonian for the periodic driven tilted Bose-Hubbard
model, Ref. [90] pointed out that one such possible model involving spin-half Pauli
matrices on a 1D chain is given by

Hfr = w
L∑

j=1

(̃σ+j−1σ̃
+
j+1σ̃

−
j + h.c.), (38)

where w is an arbitrary energy scale which shall be set to unity for the rest of this
section and it is understood that Hfr acts on the constrained Hilbert where two up-
spins cannot be neighbors. We note that Hfr is identical to the three-spin term in
the third order Floquet Hamiltonian (Eq. 29) but with its coefficient set to unity.
Such a term becomes the largest term in HF around the point where renormalized
H
(1)
F (Eq. 27) vanishes. We note that Hfr do not have any simultaneous conserved

quantities and thus differ from a class of earlier studied models [81].
The simplest class of states that demonstrates such fragmentation corresponds to

blocks of length � = 3 with one or two up-spins in a background of down-spins
[90]. These states can be written as

|X1,j 〉 = | . . . 1j−10j , 1j−1 . . .〉, |X2,j 〉 = | . . . 0j−11j , 0j−1 . . .〉, (39)

where we have denoted up- and down-spins by 1 and 0, respectively, and ellipsis
indicates down-spins on all other sites. It is easy to see that under action of Hfr,
these blocks transform to each other: Hfr|X1,j 〉 = |X2,j 〉 and Hfr|X2,j 〉 = |X1,j 〉.
They are connected to any other states in the Hilbert state and thus constitute a
fragment. Their linear combination

|X±,j 〉 = 1√
2
(|X1,j 〉 ± |X2,j 〉) (40)

yields eigenstates of Hfr with eigenvalues ±1 (we have set w = 1). Moreover, if
two such blocks are spaced with at least two down-spins separating them, they act
as non-interacting entities and the total energy of the system becomes a sum of the
energy of the individual blocks. This leads to a class of eigenstates with zero and
integer (in units ofw) energies:E = (n+−n−), where n± are the number of isolated
|X±〉 blocks in the state. We note that these blocks are localized and are dubbed as
“bubbles” in Ref. [90].
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These bubbles develop dispersion when two individual bubbles are allowed to
interact by placing them next to one another. The simplest of these states can be
understood analytically, and they form a closed Hilbert space fragment spanned by
the states [90]

|ψ1,k〉 =
∑

j

eikj Tj | . . . X2, jX2, j+3 . . .〉 ≡
∑

j

eikj Tj | . . . 0j−11j0j+10j+21j+30j+4 . . . .〉

|ψ2,k〉 =
∑

j

eikj Tj | . . . X1, jX2, j+3 . . .〉 ≡
∑

j

eikj Tj | . . . 1j−10j1j+10j+21j+30j+4 . . . .〉 (41)

where Tj denotes the translation operator, the lattice spacing has been set to unity,
and the ellipsis denotes all down-spins. It was shown in Ref. [90] that |ψ1(2),k〉 form
a closed subspace with

Hfr

( |ψ1,k〉
|ψ2,k〉

)
=
(

0 (1+ eik)
(1+ e−ik) 0

)( |ψ1,k〉
|ψ2,k〉

)
. (42)

This leads to a pair of eigenstates in the momentum space given by

Ek = ±2 cos k/2. (43)

It was noted in Ref. [90] that Eq. refenmom provide an analytical explanation for
the presence another class of eigenstates with E = ±2 (for k = 0), E = ±1 (for
k = 2π/3), and E = 0 (for k = π ). Further for L ≥ 8 such that L = 4n (n ∈ Z),
k = π/2 leads to E = ±√2; this provides a natural explanation of such eigenstates
with simple irrational eigenvalues that was found in the spectrum of Hfr.

Apart from such simple fragments, more complicated fragments with much
longer bubbles leading to flat bands were discussed in Ref. [90]. We shall not discuss
them in detail here. However, we would like to point out that the model exhibits a
phenomenon, dubbed as secondary fragmentation in Ref. [90], which was not found
in earlier works. Such secondary fragmentation happens when basis states within a
primary fragments form a further closed subspace under action of Hfr; these states
are constructed out of specific linear combination of a fixed number of basis states
and they turn out to be orthogonal to other states within the same primary fragment.
The eigenvalues corresponding to such eigenstates, for the model discussed in Ref.
[90], are integers, and their number increases with increasing L; importantly, their
existence can not be straightforwardly tied local classical conservation conditions.

5.2 Adding a Staggered Field

In this section, we shall focus on the structure of the zero-energy eigenstates of the
model in the “bubble” sector. To this end, as pointed out in Ref. [90], it is useful to
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add a staggered magnetic field to the model leading to

H = Hfr +H, H = 
2

∑

j

(−1)j σ zj . (44)

We note that there exists two operators

Q =
∏

j

σ zj , C =
∏

j

(σ z2j + σz2j+1). (45)

We note that [H,Q] = 0 so that the spectrum of H is symmetric around E.
Moreover, we note that H anticommutes with C. This allows for presence of zero-
energy modes of H . The details of these zero modes have been worked out in Ref.
[90].

SinceH is diagonal in the number basis, it makes sense to work in the diagonal
basis in |X1(2)〉 states. In the space of these states, it is possible to represent H in
terms of pseudospin operators ταj (α = x, y, z) such that τxj |X1,j 〉 = |X2,j 〉. In
terms of these pseudospin operators, one can write H as [90]

H = ε0
∑

j

∑

α=x,y,z
ηατ̃ αj +



2
(nodd − neven), ε0=

√
1+ 92/4, η = (ηx, ηy, ηz) = (1, 0, 3/2)/ε0 (46)

where nodd/even are the number of bubbles centered on odd or even sites. Here we
have defined τ̃ y,zj = (−1)j τ y,zj and τ̃ xj = τxj for all j , where j denotes the center
of the bubbles and the sum over j indicates sum over number of such bubbles.
Thus we find H reduces to a collection of non-interacting pseudospins (with s =
1/2) on every site. This indicates that the sector will contribute states to the Hilbert
space ofH which has area-law entanglement. Moreover, these states indicate a novel
feature when it comes to out-of-equilibrium dynamics of initial states belonging to
the bubble sector.

To see this, let us consider a square pulse protocol for which(t) = −(+)0 for
t ≤ (>)T /2, where T = 2π/ωD is the driving frequency. We shall assume that we
start the dynamics from a state which belongs to the bubble sector; HSF then ensures
that the dynamics will be controlled by states within the sector. Since H constitutes
non-interacting pseudospins on every center site of a bubble,U(T , 0) corresponding
to a square pulse drive protocol can be found exactly. The reason for this stems
from the fact that here one deals with a s = 1/2 pseudospin on every such site;
this is similar to an analogous problem for Ising or other integrable model where
an analogous structure can be seen in momentum space [56]. A straightforward
analysis yields for nodd = neven [90]

U(T , 0) =
∏

j=1..L

(
pj qj

−q∗j pj

)
, pj = (30/2)2 + cos(ε0T )

ε2
0

,

qj = (−1)j (3/2)[1− cos(ε0T )] − iε0sin(ε0T )

ε2
0

. (47)
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This shows that U(T , 0) = I when ωD = ωf = ε0/n. At these frequencies, the
stroboscopic dynamics of the system, starting from any of the states in the bubble
sector, exhibits dynamical freezing [35, 72, 79, 80]. Such freezing clearly stems from
fragmentation and is a non-perturbative exact phenomenon. Moreover, its existence
shows up in the dynamics of simple initial states in the Fock space (such as |X1,j 〉)
making it experimentally accessible.

5.3 Connection to Lattice Gauge Theories

Finally, we point out the connection of these systems to lattice gauge theories. The
possibility of simulating lattice gauge theories using optical lattice systems has been
a subject of recent interest [94–99]. The reason for this is partly the possibility of
realization of an experimental platform for study of confinement. It is well-known
from the seminal work of Ref. [100] that in 1D quantum electrodynamics, charges
(charge ±e for particles and anti-particles) display the phenomenon of confinement
in the presence of a background of electric field Eb. This confinement stems from
the fact that the energy of these charges increases linearly with the distance between
them. This is characterized by a parameter θ which is proportional to the background
electric fieldEb: θ = 2πEb/e. It was shown for all θ �= π , a pair of charges remains
confined since their energy grows linearly with distance when they are attempted to
be separated. It was also pointed out in Ref. [100] that this form of confinement
holds in d = 1; for higher dimensions, the presence of transverse photons changes
the scenario and leads to deconfinement.

A variant of this phenomenon is expected to be found in possible realization of
U(1) lattice gauge theories, generically termed as quantum link models [94–99],
using optical lattice platforms. Indeed, a recent work on the PXP model in the
presence of an additional staggered magnetic field of strength  showed that such
a model can be mapped to a U(1) lattice gauge theory with  = J (θ/π − 1) [99],
where J is a microscopic energy scale. Thus the absence of  that corresponds to
θ = π in the gauge theory language corresponds to the PXP model that shows
deconfined behavior. In contrast, the presence of a large  leads to confining
behavior whose signature can be picked up in quench dynamics of such system [99].
We note here that an active field of research in this area involves understanding
the role of gauge invariance in the dynamical evolution of these systems both
experimentally [101] and theoretically [102, 103].

To understand the mapping of Hfr to lattice gauge theory, we begin by writing
the spin variables in the language of Kogut-Susskind fermions [104]. This provides
a simple dictionary which relates the Rydberg spins σαj to the fermionic matter

(denoted by fields ψ) and gauge fields (denoted by field Ê) which are the degrees
of freedom in the gauge theory. The gauge (electric) field and the Rydberg spins
live on the link � of the dual 1D lattice (i.e., sites of the original lattice) while the
fermionic matter fields live on the sites j of the dual lattice. The electric fields take
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value ±1/2 and are related to the Rydberg spins via the relation [90]

E� = Sz� = ηjσ z� /2, (48)

where ηj = ±1 refers to the site j at the left of the link � and is 1(−1) if that
site is odd(even). The fermionic matter field ψj is related to the electric field by the
Gauss’s law Gj = 0 where [94]

Gj = E� − E�+1 − n̂j − [1+ (−1)j ]/2, n̂j = ψ†
j ψj . (49)

It turns out that the constraint of having no two up-spins as neighbors is exactly
implemented by this law; moreover, the number of gauge-invariant states for a chain
of length L exactly equals the number of states within the constrained Hilbert space
of the PXP model. In this language, the PXP model, supplemented by the staggered
magnetic field term, can be written as [99]

Hspin = −
∑

j

σ̃ xj +


2

∑

j

(−1)j σ zj ≡ −
∑

i

(ψ
†
i U�ψi+1 + h.c.)+m

∑

i

ψ
†
i ψi, (50)

where U� = S+� leading to [E�,U�] = U� and � joins the dual lattice sites i and
i + 1. Thus the staggered spin term acts as the mass of the fermion fields.

It turns out that Hfr can also be written in the gauge theory language leading to a
Hamiltonian [90]

Hfr =
L∑

i=1

ψ
†
i U�U�+1U�+2ψi+3
i+1
i+2 + h.c., (51)

where � is the link between the sites i and i+1 on the dual lattice and 
i = n̂i for odd
and (1 − n̂i ) for even i, respectively. It was shown in Ref. [90] that [Hfr,Gj ] = 0
which ensures that Hfr obeys Gauss’s law. The key point about the gauge theory
representations of Hfr (Eq. 51) is that the it only conserves local charge. There is
no dipole moment conservation associated with this model unlike most models of
Hilbert space fragmentation (see Refs. [82–85]) studied earlier.

Instead, such fractonic behavior may appear as emergent phenomenon in certain
sectors of theory [90]. This was demonstrated in Ref. [90] in the bubble sector. To
see this let us consider a single bubble state. All the down spin outside this bubble are
annihilated by Hfr. In the gauge theory language, this means that within this sector,
all the fermionic charges outside the bubble are immobile. It was shown that the
dynamics involve only the bubble which, here, constitutes dipoles involving three
lattice sites (length three dipoles). Only these dipoles have significant dynamics
under action of Hfr and this leads to emergent fractonic physics. We note that this
emergence occurs in a fragment of the Hilbert space which is not necessarily a low-
energy sector. Other fragmented sectors may show similar emergence, and this is
discussed in detail in Ref. [90].
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6 Discussion

In this review, we have touched upon several aspects of the tilted boson chain which
can be realized in 1D optical lattices hosting trapped ultracold bosons. It turns out
that the physics of this system has close parallel to that of Rydberg atoms in the
sense that both systems are described by similar effective Hamiltonians in their low-
energy sector.

The ground state phase diagram of such bosonic system provides a route
to realizing translational symmetry broken Mott states. In addition, they also
host a quantum phase transition between Mott states with broken and unbroken
translational symmetries. For the tilted boson chain, this transition belongs to the
Ising universality class and can be understood in terms of a dipole model of the
bosons. A modification of this dipole model may lead to realization of non-Ising
critical points, as has been seen in Rydberg atom arrays.

The quench dynamics of these systems provided the key clue to unraveling the
presence of quantum scars in their Hilbert space. Such states lead to a weak violation
of the eigenstate thermalization hypothesis in finite chain as has been seen in recent
experiments involving these systems. The ramp dynamics of these systems near
their critical point may provide a platform to test Kibble-Zurek scaling law; this is
particularly interesting for the Rydberg arrays where the transition is non-Ising like.

The study of periodic dynamics of such systems shows the possibility of tuning
their ergodicity properties using the drive frequency. It was found that these systems
shows unconventional phenomenon such as the presence of subthermal steady
states, long term coherent oscillations, and dynamical freezing in the presence of
a periodic drive. These effects can be analyzed using the Floquet Hamiltonian of
these driven system; moreover, they occur, in contrast to their quench counterparts,
for both |0〉 and |Z2〉 initial states and constitute different routes to violation of ETH
in finite-sized chains.

The Floquet Hamiltonian of this periodically driven system provides a class
of terms which can act as a minimal model for s = 1/2 spins exhibiting HSF.
This model, unlike some earlier models displaying HSF, does not have simple
conserved quantities which causes the fragmentation; instead, such conservation
emerges in specific sector of the model. Also, the model provides an example of
secondary fragmentation which does not follow from classical conservation laws.
As a consequence of HSF, the model exhibits exact dynamical freezing for an
infinite number of drive frequencies and for an exponentially large number initial
classical Fock states.

Several aspects of this tilted boson chains and/or Rydberg ladders remain to be
studied. These include the effect of staggered detuning term on the driven system,
the physics of multiple interacting Rydberg chains and manifestation of the physics
of these driven system in higher dimensions. These studies are expected to add to
the already large class of the physical phenomenon seen in these systems.
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NMR Experimental Study
of Out-of-Equilibrium Spin Models

Paola Cappellaro, Pai Peng, and Chandrasekhar Ramanathan

Abstract Characterizing many-body quantum systems requires experimental sys-
tems with a large number of (spin-)qubits and with long coherent evolution times.
As the focus in recent years has shifted to out-of-equilibrium dynamics, nuclear
spins at the solid state emerge as an ideal experimental platform. Their potential
to address fundamental questions in many-body physics has indeed a long-history,
harking back to the early days of nuclear magnetic resonance. Building on early
investigation of quantum thermodynamics and on a powerful suite of control
techniques, recent experiments have introduced Hamiltonian engineering tools and
metrics of correlation and entanglement. These experimental techniques allow
bypassing challenges associated with the high temperature of nuclear spin systems
as well as the lack of individual spin addressability and instead exploit these
features to investigate regimes and observables not accessible in other experimental
platforms. We thus focus on an in-depth description of such methods that could be
successfully adopted in other experimental systems, before reviewing paradigmatic
examples of integrable and non-integrable dynamics in large nuclear spin systems.

1 Nuclear Magnetic Resonance

1.1 Nuclear Magnetic Resonance in Condensed Matter

The coherent control of nuclear spins has a long and successful history driven in
large part by the development of nuclear magnetic resonance (NMR) techniques in
biology, chemistry, physics, and medicine [1, 2]. In addition to practical applica-
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tions, (solid-state) NMR has also been a fertile platform for exploring fundamental
condensed matter, quantum thermodynamics, and quantum information questions.
For example, early NMR experiments in LiF [3] produced a state displaying
negative magnetic susceptibility, by a rapid inversion of the magnetic field. This
state was interpreted [4] as having negative temperature, triggering interesting
discussions about thermodynamics. Similarly, early spin echo experiments [5] were
initially suspected to violate the second law of thermodynamics for their apparent
ability to reverse the natural growth of entropy [6, 7]. Initially spin echoes were
believed to only apply to “incoherent” dynamics, due to ensemble averaging over
system inhomogeneities, while the many-body—but closed and thus unitary—
dynamics due to spin-spin interaction was seen as able to drive the system to
thermodynamics equilibrium, as later formalized by the ETH. However, control
sequences able to cancel or even reverse the spin-spin dipolar coupling soon
emerged [8]. The ability to reverse seemingly irreversible processes, such as the
diffusion of spin polarization [9] and even of spin correlations [10], led to a close
inspection of potentially non-ergodic behavior in isolated NMR systems, both via
small numerical simulations [11–13] and with experiments [14–16]. The statistical
mechanics phenomenon of time reversal of a microscopic ensemble was typically
described as arising from the actions of a “Loschmidt demon,” able to invert the local
velocities of each molecule in a gas—or the Hamiltonian sign of each spin in NMR.
Loschmidt echoes [17] were thus introduced to experimentally study this behavior,
giving rise, as we will see, to fruitful investigation of many-body dynamics.

This rich history of theoretical and experimental contributions of NMR to the
understanding of many-body out-of-equilibrium dynamics is based on a few key
advantages. First, the nuclear spin themselves are an ideal testbed, as they provide
well-defined spin qubits (or qudits) with exceptionally long relaxation times. Focus-
ing, as we do in this review, on solid-state systems, the crystalline structures provide
a regular geometry that sets the spin-spin couplings, while their macroscopic size
allows to immediately access a large number of spins (thermodynamic limit). Taking
advantage of these natural properties is a powerful suite of control tools, that have
been refined over the years for spectroscopic applications, but can be adapted not
only for quantum simulations and quantum control with NMR systems, but extended
also to other quantum platforms.

1.1.1 NMR Hamiltonian

In a typical NMR experiment a small (mm-sized) sample is placed in a large, uni-
form magnetic field. A few-tesla field (3-7T) is typical in these experiments, leading
to Larmor frequencies (the Zeeman energy of the spin coupling to the magnetic
field) of a few hundred of MHz’s. The field is generated by superconducting coils
kept at liquid-helium temperatures. A wide bore at room temperature at the center
of the magnet houses the sample.
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The Hamiltonian of a homonuclear solid-state spin system in an external
magnetic field is given by H = HZ + HD , where HZ = (h̄ω0/2)

∑
i σ
i
z is

the Zeeman interaction with the external magnetic field and HD the inter-nuclear
dipolar interaction. In high magnetic fields (ω0/2π ∼ 100s MHz), the Zeeman
interaction is much stronger than the nuclear dipolar interaction (dij /2π ∼10s of
kHz) and most other interactions, such as chemical shifts, quadrupolar interactions,
or indirect dipole-dipole (J-)coupling. The dipolar Hamiltonian is then truncated to
its secular (energy-conserving) part [18]

HD =∑
i<j dij

(
3σ izσ

j
z − σ̄ i · σ̄ j

)
, where dij = γ 2h̄2

8r3
ij

(
1− 3 cos2 θij

)

(1)

with γ the gyromagnetic ratio, rjl the distance between nucleus j and l, and θjl the
angle between rj l and the external magnetic field. Couplings to heteronuclear spins
are further simplified, since the “flip-flop” terms, ∝ σ+σ−, are no longer secular
(energy-conserving) and can be neglected,

H ′D =
∑

k,κ

Jk,κσ
k
z σ

κ
z , (2)

where the indexes k and κ label spins of different species (that is, energy).
While the Zeeman energy determines the thermal equilibrium states that yield the

typical initial states prior to any manipulation, the dynamics of the system can be
observed in the rotating frame set by the Larmor frequency, and it is thus dominated
by the spin-spin couplings and the radio-frequency fields that are applied to control
them.

1.1.2 Equilibrium States

At magnetic fields of a few Tesla, as h̄ω0 � kBT above a few millikelvin, the
thermal equilibrium density operator is highly mixed and the spins are typically
infinitesimally polarized [19]:

ρ = exp(−βHZ)
Z ≈ 1

D

(
1− βh̄ω0

2

∑
i σ
i
z

)
= 1
D
− εδρ, with Z = Tr

(
e−βHZ

)
,

(3)

where β = 1/kBT and given that the Zeeman Hamiltonian dominates all spin-spin
interactions. This small ε (typically smaller than 10−5) is the reason for the relative
insensitivity of NMR experiments, which thus need to perform ensemble averaged
measurements over more than 1011–1013 spins to achieve a detectable signal (the
induction measurement is also a relatively insensitive readout method). Solid-state
samples typically contain on the order of 1018 spins. The low polarization of the
spins also results in the spins evolving in a very large configuration space in most
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experiments (close to infinite temperature). As we will see below, this state can be
advantageous to measure metrics relevant to quantum dynamics. Conversely, the
high temperature is an obstacle to the observation of phenomena, e.g., ground state
phase transition, that require pure states.

In solids with hyperfine-coupled electron and nuclear spins, microwave irra-
diation can enhance the nuclear spin polarization by polarization transfer from
the electron spins, achieving nuclear spin polarizations greater than 90% at 7 T
and about 1 K [20]. Polarizing the spins dramatically reduces the configurational
broadening, potentially constraining the many-body dynamics observed.

1.1.3 Dynamics

While the Zeeman energy dominates the equilibrium state, the spin-interaction
Hamiltonian drives a coherent many-body dynamic. Consider, for example, the
NMR free induction decay (FID) where we observe a rapidly decaying signal
following the application of a 90-degree RF pulse. After the pulse, the system
evolves under the action of the internal interaction, as dictated by the Liouville
equation,

dρ

dt
= i[H, ρ]. (4)

The density operator at a short time t following the RF pulse is given by a short-time
expansion of the Liouville equation, giving the nested commutators,

ρ(t)∝1

2

∑

j

(
σ
j
+ + σ j−

)
+ 3it

2

∑

jk

djk

(
σ
j
z σ

k+ − σ jz σ k−
)

− 3t2

4

∑

jkl

dlkdjk

(
σ
j
z σ

l
zσ
k+ + σ jz σ lzσ k−

)
+ . . . , (5)

where σ± = σx ± iσy . Only the first term contributes to the NMR signal, giving
rise to the observed decay, as the initial polarization is transformed into correlated
states. This simple analysis confirms that the observed decay in local observables is
due not to decoherence, but to the growth of unobserved multi-spin correlations.

Still, the presence of multi-spin correlations can be observed, e.g., using Multiple
Quantum Coherence (MQC) techniques [21], as we will review in Sect. 5.2.

1.1.4 Control by Radio-Frequency Fields

The nuclear spins are controlled by radio-frequency (rf) driving. A field on
resonance with the spin Larmor frequency and transverse to the main magnetic field
can drive the spins out of equilibrium, even if its strength is a few order of magnitude
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smaller than the Zeeman energy. As the field is, however, typically stronger than
spin-spin couplings, it is often enough to apply a delta-pulse approximation, where
short burst of rf fields are assumed to apply a finite-angle rotation instantaneously.
The rf is driven through a coil, which is also used to pick up the signal from the
precessing spin magnetization. Due to the coil and sample size, the rf fields drive
all resonant spins, and thus only collective spin rotation is achievable, precluding
single-spin addressability.

The Hamiltonian describing the interaction of the spins with the rf field can be
written as:

Hrf = e−iφ(t)
∑
k σ

k
z

(
1
2 ωrf(t)

∑
k σ

k
x

)
e iφ(t)

∑
k σ

k
z , (6)

where σka are the usual Pauli matrices and the sum is over all spins. Here
φ(t) = ω0t + ϕ(t) is a time-dependent phase, with ω0 close to the spin resonance
frequency, and ωrf(t) is a time-dependent amplitude. The phase and amplitude
can be controlled with high precision and bandwidth, allowing many controlled
schemes. To improve control precision, NMR experimentalists, also inspired by
quantum information ideas and needs, have developed several advanced techniques,
such as shaped pulses, composite pulses [22], or numerically optimized pulse
shapes [23–25]. As we will show below, multiple-pulse sequences have also been
developed to achieve complex tasks with improved robustness.

1.2 Nuclear Spin Systems

While NMR is maybe best known for its spectroscopic analysis of molecules
in liquid solvents, experiments to explore many-body dynamics are typically
conducted in solid-state (crystalline) samples. Indeed, in such samples the strong,
position dependent dipolar interaction are not canceled out by the random molecular
tumbling that occur in solution. Still, a choice of the material and crystal properties
can give rise to a few dynamic models of interest that we now review.

1.2.1 3D Spin Systems

One of the main advantages of NMR techniques is their ready to access large
numbers of spins that allow probing the thermodynamic limit. This is exemplified
when using bulk 3D crystals, where the geometry of couplings yields fast creation of
spin-spin correlations, with coherences developing over hundreds of spins [26, 27].
Among the systems that have been routinely used are calcium fluoride and
adamantane.

The 100% abundant spin-1/2 19F nuclei of a single crystal sample of calcium
fluoride (CaF2) form a simple cubic lattice (Fig. 1). The only isotope of calcium
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Calcium Fluoride Fluorapatite Adamantane Tetrakis(trimethylsilyl) silane

Fig. 1 Crystal structure of a few spin systems discussed in the text, used to probe quantum many-
body dynamics

with spin is 43Ca that has a natural abundance of 0.135% and a spin of 7/2 and
can be neglected in most situations. The fluorine spins have been used as a testbed
for decoupling sequences, to measure spin [28] and energy [29] diffusion, multiple
quantum coherences [30], and the onset of irreversible dynamics [10, 31]. The strong
couplings among spins also represent a drawback, since it makes experiments (such
as control calibration) more challenging.

A more forgiving system is adamantane (C10H16), a plastic crystal that permits
the generation of extremely large coherence orders at room temperature while
providing slightly weaker couplings. Albeit at the solid state (in crystalline or
powder form), the adamantane molecules still tumble rapidly. The isotropic motion
averages to zero the intramolecular dipolar couplings but retains some inter-
molecular interactions. In practice, the motion reduces each adamantane molecule
to an effective point dipole source located at each point of a face-centered-cubic
lattice. The source contains 16 protons (and 10 Carbons). The 16 protons do not
interact with each-other but only with protons in other molecules, thus giving rise to
a complex network of spins, but with somehow weaker couplings due to the longer
distances involved.

The 13C spins in adamantane (C10H16) can be used to both introduce disorder,
as well as to act as local probes of the many-body dynamics. A similar role can be
played by the 43Ca in the 19F lattice of CaF2, although its natural abundance is even
lower.

Many other crystalline samples have been used over the years, from Silicon [32]
(even with variable isotopic content of Si-29), to Yttria (Y2O7) [33], to ammonium
dihydrogen phosphate (ADP) [34], and to Buckminsterfullerene (C60) crystals.

1.2.2 Quasi-1D Spin Systems

While 3D systems allow for a fast growth of spin correlations, their complex
dynamics makes the analysis more difficult and limits the comparison with known
models or numerical simulations.

Nuclear spin systems in apatite crystals have emerged as a testbed to probe
quasi-one-dimensional (1D) dynamics, including transport and decoherence [35–
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41]. The crystal structure of fluorapatite [Ca5(PO4)3F, FAp] and hydroxylapatite
[Ca5(PO4)3(OH), HAp] presents a favorable geometry where 19F or 1H nuclear
spins are aligned in chains along the crystal c-axis with inter-spin spacing much
shorter than the distance to other parallel chains (Fig. 1). In addition, each 19F(1H)
spin is surrounded by three 31P spin-1/2 nuclei.

The apatite geometry gives a ratio of intra-chain to inter-chain couplings of about
40, allowing the evolution to approximate well the expected 1D dynamics over
sufficiently short-time scales [36].

The heteronuclear dipolar interaction between F and P spins,
∑
j,k hj,kσ

Fj
z s

Pk
z ,

provides additional routes to control the system.
Finally, the coupling to the thermal bath of phonon is extremely low. Relaxation,

mostly mediated by the paramagnetic impurities, is thus slow, ranging from 1s-600s,
much longer than the ms time scale of the evolution.

Crystals of FAp can be obtained easily as they occur naturally. Synthetic single
crystals of FAp can also be grown by the flux method [42–44] that offer much longer
thermal relaxation times and thus a better isolation from the thermal bath. Fluorine
atoms can be introduced as substitutional defects in HAp by ion exchange under
hydrothermal conditions [45–47] to provide access to local probes of the dynamics.

1.2.3 Finite-Size Systems

In addition to large crystalline systems, even smaller systems, e.g., based on
molecules or liquid crystals, can serve as powerful platforms to explore many-
spin dynamics. Smaller molecules in liquid solution have been used since the start
of quantum information processing as testbeds to demonstrate basic principles
of quantum algorithms and quantum control. Such systems allow the individual
control of spin qubits and thus can act as small quantum processors [48]. However,
their size is limited to the number of resolvable chemical shifts and the couplings
among spins are typically weak. If single-spin addressing is not needed, as it is
often the case to explore quantum dynamics, larger molecules can provide useful
properties, for example, in “star” systems, where a central spin is used to probe
the dynamics of an “environment” of coupled spins. This type of geometry has
been explored both in molecules in liquid solution (analyzing systems of increasing
sizes, such as acetonitrile, trimethyl phosphite, and tetrakis(trimethylsilyl) silane,
that containing 4, 10, and 37 spins respectively [49]) and in polycrystalline solid
such as Triphenylphosphine molecules [50], where the couplings among spins can
be stronger, as they are dipolar in nature.
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2 Control Techniques for Hamiltonian Engineering

Nuclear Magnetic Resonance (NMR) has a long tradition of control sequences able
to modify the naturally occurring Hamiltonians into desired operators. The most
prominent application is in the refocusing of unwanted interactions, which further
evolved into the theory of dynamical decoupling (DD) in quantum information
processing. While most of DD is concerned with single qubit operation, NMR also
routinely deals with many-body Hamiltonians. Pioneering work extended the ideas
of “spin echo” [5] to the refocusing of two-body interactions via “solid echoes” [51],
obtained with more complex periodic pulse sequences [52, 53]. These early discov-
eries led to a robust theoretical framework (Average Hamiltonian Theory [54]) that
enabled the discoveries of powerful pulse sequences with increasing performance.
Similar ideas are a current area of active exploration in the context of digital
quantum simulation and programmable quantum emulators [55].

2.1 Average Hamiltonian Design

Early NMR sequences were designed by analyzing the dynamics of piece-wise
constant Hamiltonians and considering the lowest order approximation. While
higher-order corrections were already taken into account using Average Hamil-
tonian Theory (AHT [53]), here we first provide an intuitive introduction to this
Hamiltonian engineering approach.

As it is now common in digital quantum simulation, a desired Hamiltonian can
be built by evolving the system under a sequence of experimentally accessible
Hamiltonians,

HdesT =
∑

k

τkHk, (7)

by considering the first-order approximation of the Trotter expansion,

∏

k

e−iτkHk ≈ e−iHdesT ,
∑

k

τk = T . (8)

The naturally occurring Hamiltonian and the achievable control in NMR further
constrain the set of accessible {Hk}. Indeed, naively the only accessible Hamil-
tonians would be either the dipolar Hamiltonian, Hk=0 = HD , or the dipolar
Hamiltonian with an added collective rf Hamiltonian, Hk = (HD) + Hrf , see
Eq. (6) and (1). Here the parenthesis indicates that one can usually neglect the
effects of the spin interaction during driving. However, not only this description
makes it hard to design protocol for desired (many-body) Hamiltonians, but it
also provides an inaccurate approximation of the real evolution since typically
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Table 1 Spherical tensors for two spin-1/2 (a and b) [56]. σα are the usual Pauli operators

T a10=σaz /2 T b10=σbZ/2 T00=(σ ax σ bx +σay σ by +σaz σ bz )/
√

3

T a11=σa+/
√

2 T b11=σb+/
√

2 T11=(σ a+σbz −σaz σ b+)/2
T a1−1=σa−/

√
2 T b1−1=σb−/

√
2 T1−1=(σ a−σbz −σaz σ b−)/2

T21=(σ a+σbz + σaz σ b+)/2 T2−1=(σ a−σbz + σaz σ b−)/2 T10=(σ a+σb−−σa−σb+)/2
T22=σa+σb+/2 T2−2=σa−σb−/2 T20=(2σzσz−σax σ bx −σay σ by )/

√
6

the driving strength breaks the Trotter approximation. A better strategy is then to
describe the evolution in the toggling frame defined by the rf control. Then, this
gives rise to an (infinite) set of accessible Hamiltonians, Hk = RkHDR†

k , where

Rk = exp
[
−iτk(�xk

∑
j σ

j
x +�yk

∑
j σ

j
y )
]

are collective rotations around an axis

in the x/y plane. As explained below, rotations around the z axis can also be obtained
by either working off-resonance or by phase shifts of the rf drive.

Given that the available transformations are described by (collective) rotations, it
is natural to rewrite the natural Hamiltonian in terms of spherical tensors, in order to
more easily determine the achievable Hk . Consider, for example, spherical tensors
for two spin-1/2 (see Table 1). The coupling between the two spins can be written
in the spherical tensor basis,Hnat =∑

l,m(−1)mAnatl,−mTl,m. In particular, the usual
secular dipolar Hamiltonian is HD ∝ T20. Since collective rotations conserve the
rank l, there are restrictions on what Hamiltonians can be achieved to lowest order.
Using the spherical tensors, Eq. (8) can be rewritten as a set of equations

∑

k,m

(−1)mAnatl,−mD
l
m,n(Rk) = (−1)nAdesl,−n, (9)

whereDlm,n(Rk) is the Wigner matrix associated with the rotation Rk . Group theory
methods can be used to help solving Eq. (9) by reducing the number of conditions
using symmetries.

While these simple construction rules are efficient for finding control protocols,
they do not take into account higher-order terms nor experimental imperfections. A
more refined approach is to analyze the dynamics based on the Magnus expansion
and Floquet theory. This allows, as we see in the next sections, to systematically
analyze the dynamics and devise strategies to improve the control.

2.2 Magnus Expansion and Average Hamiltonian Theory

The dynamics of NMR systems under periodic (rf) driving has been historically
described using the Magnus Expansion (ME) in the toggling frame. Rules that
apply to the typical control sequences and Hamiltonian considered, as well as many
insights into how to treat control imperfections, have been codified into the so-called
Average Hamiltonian Theory [54].
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As explained in the previous section, the system Hamiltonian is divided into the
natural (typically the secular dipolar) Hamiltonian and an external Hamiltonian due
to the rf driving pulses,H = Hnat+Hext. The dynamics is analyzed in the interaction

frame defined by H ′ = Urf
†HnatUrf, where Urf(t) = T exp

[
−i ∫ t0 Hext(t

′)dt ′
]

and T is the time ordering operator. The internal Hamiltonian Hnat then becomes
time-dependent in this toggling frame, but it can be accurately approximated using
a ME to the lowest few orders. Similar to the Trotter approximation considered
above, the ME (compared to other approximation such as the Dyson expansion) is
convenient, since it defines a time-independent effective Hamiltonian, H . Average
Hamiltonian Theory then aims at making such effective Hamiltonian equivalent to
the desired interaction.

The effective Hamiltonian H can be expanded in successive orders of approxi-
mations in the evolution time, H = H(0) +H(1) + . . . , where according to the ME
the first few terms are given by

H(0) = 1

T

∫ T

0
H ′(t)dt, H (1) = −i

2T

∫ T

0
dt2

∫ t2

0
dt1[H ′(t2),H ′(t1)]. (10)

While the ME is generic, its power in AHT is due to the special construction of the
pulse sequences. Indeed, typically the rf driving is periodic, based on a unit cycle
of period tc repeated n times, T = ntc. In addition, sequences are typically built so
that Urf(tc) = 1, so that the toggling and rotating frame coincide stroboscopically
at every cycle. Then, the ME can be calculated over one cycle, since H ′ inherits
the periodicity of Hrf, keeping the approximation good as ‖Hnat‖tc � 1, and the
evolution over longer times is stroboscopically given by U(ntc) ≈ e−iHntc and the
evolution is only probed at stroboscopic times.

We note, however, that the periodicity of the Hamiltonian is not explicitly
accounted for in this derivation, beyond defining the stroboscopic effective Hamil-
tonian. A slightly different approach is then to use Floquet theory and, in particular,
define a Floquet-Magnus expansion for the problem.

Still, Average Hamiltonian Theory has led to the development of many successful
sequences, in particular, thanks to its ability to systematically take into account
experimental imperfection as well as higher-order terms. The simplest step for
improving the control sequences is to exploit symmetries, in the same way as the
symmetrized Trotter expansion cancel errors to second order. Symmetrized versions
of the simplest sequence are routinely used in NMR experiments [57], as, for
example, they are able to cancel all odd-terms in the ME.

2.3 Floquet-Magnus Expansion

Floquet theory has proven to be a powerful description for quantum systems with
time-periodic Hamiltonians. Here we review some of the basic theory in the context
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of its use as a Hamiltonian engineering tool (that is, as a way to obtain a desired
effective Hamiltonian).

Given a time-periodic Hamiltonian of period tc = 2π/ω, it can be expanded
in a Fourier series, H(t) = ∑∞

k=−∞Hkeikωt . The system dynamics is described
by a unitary propagator U(t) which is the solution to a Schrödinger equation,
dU(t)/dt = −iH(t)U(t),U(0) = 1. Exploiting the periodicity of the Hamiltonian,
a formal solution for U(t) can be written as

U(t) = (∑

k

Uke
ikωt

)
ei�t , (11)

where � is diagonal, while the rest of the operator displays the same periodicity of
the Hamiltonian. To find these operators, it is convenient to work in the Floquet
(Fourier) space, defined by a basis |k〉 of states linked to the kth frequency.
In analogy to harmonic oscillator systems, we introduce the ladder operators
〈k + h|Fh |k〉 = 1 and the number operator 〈k|N |h〉 = δkh. The system is then
represented in the tensor product of the Hilbert and Fourier space, |ψ, k〉 and the
Hamiltonian can be written as a time-independent operator

H(t) =
∞∑

k=−∞
Hke

ikωt → HF =
∞∑

k=−∞
Hk ⊗ Fk + ω (1⊗N). (12)

We can then in principle solve for the Floquet propagator, UF = eiHF t , and project
back to the Hilbert space

U(t) =
∑

k

〈k|UF |0〉 eikωt . (13)

The solution can be cast in the form of Eq. (11) by first diagonalizing HF =
DF�FD

−1
F , where �F is diagonal in the Hilbert-Fourier space, �F = �F0 +ωN ,

and Uk = 〈k|DF |0〉. We thus obtain an explicit form for the propagator,

U(t) =
∑

k

〈k|DFei�F tD−1
F |0〉 eikωt =

∑

k

〈k|DFei�F t
∑

h

|h〉 〈h|D−1
F |0〉 eikωt .

(14)

While this provides an elegant solution, the Floquet matrix HF is an infinite
operator and thus one typically needs to truncate it to numerically obtain a
practical solution. In order to use Floquet theory for Hamiltonian engineering, it is,
however, more convenient to instead directly apply an approximation to the Floquet
Hamiltonian and then project it back to Hilbert space. This approach provides
an effective Hamiltonian that can be used for quantum simulation. The key idea
is to perform a(n approximate) block-diagonalization of the Floquet Hamiltonian,
typically following the Van-Vleck transformation [58].
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The goal is to find, perturbatively, the unitary operator DF = eS . We define
H 0
F = H0F0 + ωN (we drop the explicit tensor product for conciseness) and write
HF = H 0

F +H 1
F . The diagonalization proceeds as

�F = e−SHF eS = HF + [HF , S] + 1

2
[[HF , S], S] + . . . . (15)

By setting

S =
∑

k �=0

Hk

kω
Fk, → [ωN, S] = −

∑

k �=0

HkFk (16)

we have that � = H 0
F + 1

2 [[HF , S], S] + . . . , that is, the lowest order off-diagonal
term is canceled. Keeping only diagonal terms, we obtain the effective (time-
independent) Hamiltonian to first order,1

� ≈ H 0 − 1

2

∑

k �=0

[H−k,Hk]
kω

. (17)

Given U = ∑ 〈k| eS |0〉 eikωt ei�t , we find that the evolution at stroboscopic times
2πn/ω is given by the effective Hamiltonian

H̃ ≈ H0 − 1

2

∑

k �=0

[H−k,Hk]
kω

+
∑

k �=0

[H0,Hk]
kω

. (18)

We can compare this result to the predictions from AHT. The first order is indeed
equivalent to what found before,

H
0 = 1

tc

∫ tc

0
H(t)dt = 1

tc

∫ tc

0

∑

k

Hke
iωt = H0. (19)

Higher-order terms of the stroboscopic Hamiltonians show small differences when
derived from the Magnus vs. the so-called Floquet-Magnus expansion, for example,

H
1 = − i

2tc

∫ tc

0

∫ t2

0
[H(t1),H(t2)]dt1dt2 (20)

= − i

2tc

∑

k,h

[Hk,Hh]
∫ tc

0

∫ t2

0
eiω(kt1+ht2)dt1dt2 (21)

= −1

2

∑

k �=0

[H−k,Hk]
kω

+
∑

k �=0

[H0,Hk]
kω

.

1 See, e.g., [59] for the higher-order terms, as well as for multi-mode Floquet Hamiltonians.
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While the Floquet approach is in principle more powerful, since it can also tackle
the dynamics beyond the stroboscopic time-points, AHT might be more convenient
when tackling piecewise-constant evolutions.

2.3.1 Convergence of the Expansions

The convergence of the Magnus (and Floquet-Magnus) expansion has been analyzed
extensively [60], with improving convergence radii over the years. Criteria have
been found for the ME convergence for both bound and infinite-dimensional Hilbert
spaces. For the time-evolution equation dU

dt
= iHU , the ME convergence is

established for times t ≤ T such that
∫ T

0 ‖H(t)‖dt < π . A similar bound (with a
smaller convergence radius) also holds for the Floquet-Magnus expansion over one
period [61]. A related question links the rate of the Floquet periodic driving with
the absorbed heat and ensuing thermalization of the system [62]. While a generic
interacting Floquet system absorbs energy from the drive and is expected to heat
up to infinite temperature, exceptions to this rule have been extensively studied for
their practical importance in quantum simulation, as we will discuss more in detail
in Sect. 7.2

2.3.2 Examples of Sequences

Hamiltonian engineering have a long tradition in nuclear magnetic resonance
(NMR) and have more recently extensively adopted in quantum information appli-
cations, especially to tackle the problem of decoupling spins from noise (dynamical
decoupling).

A first class of pulse sequences is for dynamical decoupling for single-body inter-
actions, e.g., dephasing noise, “heteronuclear” coupling between qubits (nuclear
spins) with very distinct energies. In principle, a single π pulse (spin echo) would
be sufficient for decoupling in the case of an ideal scenario, as this pulse refocuses a
single-body Hamiltonian (e.g., ωσz is refocused by a σx,y π pulse). However, time
dependence or inhomogeneities in ω and imperfections in the control itself make
the decoupling incomplete. Many sequences have been developed to deal with this
[63], including CPMG [64, 65], XY [66, 67], Uhrig [68], and KDD [69].

A second class of pulse sequences aims at decoupling interactions among the
qubits themselves. In particular, in the context of NMR, this class (homonuclear
decoupling) has focused on decoupling the secular dipolar Hamiltonian—that is,
the part of the magnetic dipole-dipole interaction that commutes with a uniform
Zeeman energy. That decoupling was possible even for spin-spin interaction, even
when it was not possible to separately control each spin, it was first realized with the
introduction of solid echoes [70]. Improved sequences were introduced considering
symmetry properties as well as strategies to reduce control imperfections, from the
celebrated WHH [52] to MREV8, MREV16, BLEW-12, and BR24. We note that
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these sequences should be more properly considered “Hamiltonian engineering”
and not decoupling sequences, as they aim at engineering a pure chemical shift
Hamiltonian (while indeed suppressing interactions). True dynamical decoupling
sequences have also been considered (see, e.g., Cory48 [71] and more recently a
WHH-CPMG combination [32]). We remark that more recent advances in NMR
decoupling have been achieved by combining rotations in spin space (rf control)
with rotations in the physical space, via magic angle spinning [72, 73]. These are
typically combined with continuous-wave (CW) decoupling schemes (CRAMPS),
inspired by early schemes such as the Lee-Goldburg sequence [74] and extended to
numerically optimized schemes (DUMBO [75]).

At the same time, the desire to tailor the spin dynamics in order to extract
further spectroscopic information has also led the NMR community to design pulse
sequences aimed at engineering particular Hamiltonian. A specific example is the
case of multiple quantum coherence (MQC) sequences [76], with pulse sequences
designed to create single quantum [77, 78], double quantum (DQ) [79], and even
higher coherences [80].

More recently, variations of the MQC sequences have been used as decoupling
sequences [81], and even to achieve a broader range of interactions to study
different spin models [82, 83], including non-interacting, interactions, longitudinal
and transverse fields and disorders (see Sect. 7.1). The key idea was to move away
from constant (and constrained) pulse delays that are constant and freely vary the
delay lengths of standard DQ sequence [39, 79] (see Fig. 2).

In the context of Hamiltonian engineering it is also useful to introduce uniform
“fields,” that is, operators that implement collective rotations around a desired
axis. While it is always possible to, e.g., apply the rf driving off-resonance to
introduce an effective z-field, this might reduce the pulse quality. An alternative,
more robust strategy, is to modify the pulse phases of an existing multiple-pulse
sequence. Indeed, by rotating the n-th cycle of the pulse sequence by (n − 1)φ

Fig. 2 Examples of NMR sequences used for decoupling (top row) and Hamiltonian engineering
(bottom). If the last sequences is implemented with all pulses phase shifted by 90◦, it would
implement the opposite DQ Hamiltonian,−(σxσx − σyσy)
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around the Z = ∑
σz operator, which can be accomplished by phase shifting all

the pulse axes in the n-th cycle by (n − 1)φ, the evolution operator is given by

U(ntc) = e−in φ2Ze−iHtntc , with Ht = H − φ
2tc
Z.

We note that Hamiltonian engineering can also be used to implement the opposite
of a Hamiltonian, −H , thus effectively inverting the arrow of time. For certain
sequences, this can be obtained in a robust way by simply appropriately changing
the phase of the (π/2) pulses applied (see Fig. 2). This allows to achieve time
reversal with a fixed amount of experimental errors.

In addition of relying on the well-tested average Hamiltonian theory design,
a recent direction in Hamiltonian engineering is to look for optimal solutions
either numerically [84], in particular, exploiting machine learning [85], or with new
analytical insights [86].

3 State and Observable Preparation

While in typical NMR experiments the initial state and observable are fixed, various
control tools have been developed to broaden the set of achievable operators. Con-
sider, for example, the observable. In the NMR spectrometer, the spin magnetization
is measured inductively by a pick-up coil. The signal is the ensemble average
of the transverse polarization over the whole sample. Indeed, only the portion of
the spin state that is dipolar and oriented along the coil axis will couple and be
detected, although other parts of the density operator might evolve into detectable
states during the measurement evolution time. As the measurement is weak, both
transverse components (x/y) can be effectively measured at the same time.

A simple π/2 pulse just before acquisition can rotate the transverse polarization
observable, e.g.,X =∑

k σ
k
x into an effective longitudinal observable, Z =∑

k σ
k
z .

It is thus easy to detect the magnetization along any axis. More complex evolutions
U before signal acquisition can similarly provide a strategy to detect more complex
operators, O = U†XU . Further combining unitary, incoherent, and decoherent
evolutions can reveal a broader class of initial states and observables.

In the following, we review some of the tools that have been used to access
such operators. We will treat the measurement of Multiple Quantum Coherences to
Sect. 5.1.

3.1 Phase Cycling

Phase cycling is routinely used in magnetic resonance (and other experimental
techniques) to remove background signals and suppress unwanted noise. In the
simplest implementation, by alternating phases of the excitation pulses, followed by
either addition or subtraction of the measured signals, one can amplify the signal of
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interest while canceling noisy background. More advanced phase cycles have also
been used to select particular components of the NMR signal that display special
coherent properties under collective rotations. It is thus possible to select particular
coherence pathways that the spins must follow in order to give rise to a non-zero
signal [87].

Similar ideas can be used to prepare desired initial states by combining signals
arising from two (or more) initialization. Expanding on this method, one can also
devise a strategy to, e.g., create effective pure states (pseudo-pure states) using a
temporal average of many initial, mixed states [88].

3.2 Dipolar Order State

Using the thermalization or adiabatic transfer, it is possible to map the Hamiltonian
to the states. As an example, the dipolar order state δρ ∝ HD can be created using
Jeener-Broekaert pulse pair [89] or adiabatic demagnetization [90, 91].

3.2.1 Jeener-Broekaert Pulse Pair

For simplicity, assume there is only one spin species, so that natural Hamiltonian
contains only the homonuclear dipolar interaction HD . The central idea is that
any state will be locally indistinguishable from a Gibbs state ρeq ∝ e−β̃HD after
evolving underHD for long time, a phenomenon known as eigenstate thermalization
hypothesis [92, 93] (notice that, however, this method was developed well before
the ETH was formulated.) β̃ is determined by the initial state energy density with
respect to HD and can be different to the actual inverse temperature. As any state
in solid-state NMR is always close to totally mixed state I, β̃ is close to zero, then
ρeq ∝ I − β̃HD . The state deviating from the identity is then δρ ∝ HD as long as
β̃ �= 0.

The detailed sequence is shown in Fig. 3a, where the left part shows the creation
sequence and the right part shows the detection sequence. The first π/2 pulse brings
the polarization to the x direction, then the free evolution for time te and π/4 pulse
create a state that has non-zero energy density with respect to HD . The following

Fig. 3 Jeener-Broekaert pulse pair (a) and ADRF (b) for creation and detection of dipolar order
states
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thermalization |HD|tth � 1 leads to the dipolar order state. The reverse sequence
can be used to engineer an observable O ∝ HD . The only difference is that we can
directly measure magnetization along x, so the initial π/2 pulse is not needed.

State preparation via thermalization is very robust, as any error term not
conserved by the Hamiltonian will thermalize into highly nonlocal terms that cannot
be detected in local measurements. One possible contamination is the Zeeman state∑
i σ
i
z , because Z is also conserved by HD . If the state before thermalization

contains a finite Zeeman component, it can survive thermalization and contaminate
the final dipolar order state. Zeeman contamination can be avoided by fine tuning te
such that the state before thermalization does not contain a Zeeman component, or
phase cycling out the Zeeman component after the thermalization.

3.2.2 Adiabatic Demagnetization in the Rotating Frame

The mechanism for adiabatic demagnetization in the rotating frame (ADRF) is that
when slowly tuning the Hamiltonian fromHstart toHend , the eigenstates ofHstart
will evolve into the eigenstates of Hend . Specifically, ADRF evolves the Zeeman
state into the dipolar order state by tuning H = HD + �(t)∑i σ

i
x , where the x-

field arises from resonant RF field whose strength�(t) can be continuously swept in
time. The sequence is shown in Fig. 3b. In the beginning, the state is brought to the
transverse state δρ =∑

i σ
i
x by a π/2 pulse. Immediately after that, a large RF field

(�(0) � |HD|) is turned on, so that the state is a high-temperature Gibbs state of
the instantaneous Hamiltonian (spin-locked state). Then the amplitude � is slowly
decreased to zero. At the end of the sweep, the Hamiltonian only containsHD , thus
the final state should be a high-temperature Gibbs state of this Hamiltonian, δρ ∝
HD , as long as the sweep is adiabatic. The dipolar observable can be engineered
using the reverse sequence, again without the π/2 pulse, where the ramping up of
the rf fields maps the dipolar state onto the observable transverse magnetization.
(this is called adiabatic remagnetization in the rotating frame, ARRF.)

The advantage of ADRF over the Jeener-Broekaert pulse pair is the resulting
magnitude of the dipolar order state. In the ideal case, there is no polarization loss
during ADRF; however, the thermalization part in Jeener-Broekaert pulse pair is a
locally nonunitary process (some part of the initial state evolves into highly nonlocal
state that is not measurable) that leads to a reduced polarization in the end. On the
other hand, Jeener-Broekaert pulse pair does not require continuous modification of
RF power, thus is easier to implement.

3.2.3 Verification and Extension

The correct preparation of the dipolar order state can be verified via MQC
experiments [30] (see also Sect. 5.1). Under encoding along both x and z axes,
any state can be decomposed into a Fourier series ρ = ∑L

qx,qz=−L ρqx,qz with
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e−iφZρqx,qzeiφZ = e−iqzφρqx,qz and e−iθXρqx,qzeiθX = e−iqxφρqx,qz . The 2D MQC
intensities are Iqx,qy = 〈ρ2

qx,qz
〉 and the dipolar state should have I−2,0 = I2,0 =

1.5I0,0 with all other Iqx,qy = 0, where the first (second) subscript is the coherence
number for x (z) encoding. The Zeeman state would have I−1,0 = I1,0 with all other
Iqx,qy = 0.

Combing the dipolar order state creation and phase cycling technique, we can
prepare states and observables δρ = O = H as long as we can engineering H from
Floquet engineering (e.g. H shown in Eq. (76)). For example, a double quantum
state δρDQ ∝ ∑

j,k Jjk(σ
j
x σ

k
x − σ jy σ ky ) can be created by subtracting dipolar state

along x and dipolar state along y, δρDQ ∝ ∑
j,k Jjk(2σ

j
x σ

k
x − σ jy σ ky − σ jz σ kz ) −∑

j,k Jjk(2σ
j
y σ

k
y − σ jx σ kx − σ jy σ ky ).

3.3 Local Observables

In many scenarios it would be interesting to evaluate local correlations, (OTOCs or
two-point correlators), instead of their collective counterparts. That would require
the ability to prepare—and detect—single-spin operators. Unfortunately, collective
control of all the pulses in the system, as given by on-resonance RF pulses, seems to
preclude the preparation and detection of such states. However, exploiting defects
and disorder in the spin system, and combining coherent and incoherent control
of the natural evolution, cannot only prepare [35] but even detect these types of
states [39] with good approximation.

In particular, spin chains in fluorapatite are typically interrupted by defects (e.g.,
substitutional OH terms). Then, even in the absence of frequency addressability,
the dynamics of the end-chain spins under the internal dipolar Hamiltonian is
sufficiently different from the bulk spins, as the end-spins have only one nearest
neighbor, to allow for an approximate state preparation.

Indeed, the transverse polarization σkx of the first and bulk spins evolves at
different rates under the internal dipolar Hamiltonian. The end-spin evolution rate
is slower by a factor ≈ 1/

√
2 as compared to the rest of the chain, due to fewer

numbers of couplings with neighboring spins. Thus, there exists a time t1 when the
state of the end-spins is still mainly σx , whereas the rest of the spins have evolved
to many-body correlations. A second π/2 pulse brings the end-spin magnetization
back to the longitudinal axis, while an appropriate phase cycling scheme cancels out
other terms, thus obtaining the state

δρend ≈ δρ1
z + δρNz . (22)

As the phase cycling does not cancel zero-quantum coherences, they will be the
main source of errors in the initialization scheme [35, 36].

A similar control strategy can be as well used to read out the spins at the end of
the chain. The initialization technique described above was first introduced in [35]
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(see also [36, 94]); Kaur [39] later demonstrated both the initialization and readout
techniques. The effectiveness of the initialization and readout methods was verified
by probing the transport dynamics, as driven by the DQ Hamiltonian, comparing
the end-polarized states and observables with the thermal equilibrium state (see
Sect. 6.2). We note that these transport experiments evolve the system under a non-
interacting Hamiltonian and thus do not evolve the zero-coherence error terms into
observable signal. For more general experiments, these error terms might be more
important and different strategies to access local correlations need to be developed.

4 Time-Ordered Correlations

4.1 Echoes and Fidelity Decay

Spin echoes [5] have long been used, first in NMR and then in other realms, to
study the dynamics of quantum systems while isolating them from external noise.
Well before the emergence of thermodynamic equilibrium from reversible (unitary)
dynamics was codified in the ETH, the NMR community realized that “isolated
systems of many particles often appear to behave irreversibly, though they are
in principle dynamically reversible” [7]. While the original Hahn echo [5] was
a single-spin phenomena, which can be explained from the effects of classical
inhomogeneities (and thus the action of an external, classical noise), the NMR
community soon after developed other pulses control sequence that could reveal
how the irreversible dynamics can be due to intrinsic interactions among the many-
body system spins. When the external control affects such dynamics, the reversible
character of an isolated quantum system is revealed again. Realizing that the
“reversibility can be made evident in ‘echo’ phenomena, in which the system is
literally restored to a dynamical state which existed in the past” [7], led to the
development of one of the first metrics for quantum dynamics, the Loschmidt Echo.

In the context of quantum information, the fidelity of the time evolution was
adopted as a metric of the quality of any experimental implementation in quantum
information devices. The suspicion that practical implementation performance
might be spoiled by the presence of chaotic properties of the evolution led to a
unified picture of Loschmidt echo and fidelity as good indicators of the properties
of the quantum dynamics [95].

Given an evolution under an unperturbed Hamiltonian, H0, the overlap (fidelity)
of the evolved state, |ψ0(t) =〉 e−iH0t |ψ(0)〉 with a state evolving under a perturbed
Hamiltonian, H , |ψ(t) =〉 e−iH t |ψ(0)〉 gives the fidelity or Loschmdit echo,

L(t) = | 〈ψ(t)|ψ0(t)〉|2 = | 〈ψ(0)| eiHt e−iH0t |ψ(0)〉 |2. (23)
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This expression describes an “echo” since it can be interpreted as the attempt to
revert the arrow of time after an evolution under H0 for time t . A divergence from
L = 1 indicates that the time reversal is imperfect.

While the Loschmidt echo is defined with respect to a pure state, related metrics
can be define based on the evolution of mixed states, e.g.,

L = Tr[ρ(t)ρ0(t)] = Tr
[
e−iH tρ(0)eiHt e−iH0t ρ(0)eiH0t

]
. (24)

As a common requirement for many of the metrics used to characterize quantum
dynamics, the measurement of the Loschmidt echo requires, as it is evident from its
expression, to achieve time reversal of the Hamiltonian.

4.2 Two-Point Correlators

The fidelity can be considered as the expectation value of an echo operator, L =
eiHt e−iH0t . In the high-fidelity regime, we can relate the fidelity to a two-point
correlator. Assume that the perturbed Hamiltonian can be written as H = H0 + εV
and work in the interaction picture defined by H0. Then, the fidelity becomes

L̃(t) = | 〈ψ(0)|T
[
e−iε

∫ t
0 Ṽ (t

′)dt ′
]
|ψ(0)〉 |2, (25)

where Ṽ (t) = e−iH0tV eiH0t . Using a Dyson expansion to second order (which is
sufficient for ε � 1 or equivalently high fidelity) we find that

〈T
[
e−iε

∫ t
0
˜̃
V (t ′)dt ′

]
〉 ≈ 1− iε

∫ t

0
〈Ṽ (t ′)〉dt ′ − ε

2

∫ t

0

∫ t

0
〈T[Ṽ (t ′)Ṽ (t ′′)]〉dt ′dt ′′.

(26)

Keeping only terms up to ε2, we find the approximated fidelity

L(t) ≈ 1− ε2
∫ t

0

∫ t

0

[
〈Ṽ (t ′)Ṽ (t ′′)〉 − 〈Ṽ (t ′)〉〈Ṽ (t ′′)〉

]
. (27)

We thus find that the fidelity is approximately related to the 2-point time-correlation
function of the perturbation, C(t, t ′) = 〈Ṽ (t)Ṽ (t ′)〉 − 〈Ṽ (t)〉〈Ṽ (t ′)〉, in the
interaction picture. We can further define the average perturbation,

V =
∫ t

0
Ṽ (t ′)dt ′ (28)
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and rewrite

L(t) ≈ 1− ε2
[
〈V (t)2〉 − 〈V (t)〉2

]
. (29)

We note that in order to measure the Loschmidt echo it is imperative to be able to
invert the arrow of time, in order to implement a time reversal underH . The various
control sequences and echoes schemes described in Sect. 1 provide a strategy to
achieve this goal. The task can be, however, simplified if we restrict to measuring
C(0, t) for a highly mixed state, as it is often the case in NMR experiments.

As introduced in Sect. 1.1.2, the spin systems probed in NMR are typically
initialized in a high temperature, thermal equilibrium state, ρ = e−βH /Tr

[
e−βH

] ≈
1/N − βH/N . In a large magnetic field, the Hamiltonian can be accurately
approximated by the Zeeman energy only, ∝ Z = ∑

k σ
k
z , the total magnetization

in the z-direction. As the NMR observable (the total transverse magnetization,
X =∑

k σ
k
x ) is traceless, the identity can be neglected and the signal is given by

S(t) = Tr
[
U(t)ZU(t)†X

]
. (30)

It is easy to rotate the initial state to the x direction (or to effectively rotate the
observable to z by applying a π/2 pulse to the state before the measurement). Then,
calling V the total magnetization in any direction, the signal can be written as a
two-point correlator at infinite temperature,

S(t) = Tr[V (t)V (0)] ≡ Cβ=0(0, t) = 〈V (0)V (t)〉β=0. (31)

Given the similarity between this expression and the (high-fidelity) Loschmidt echo,
this simpler quantity can be taken as a proxy for the fidelity or Loschmidt echo when
analyzing the quantum many-spin dynamics at high temperature.

5 Out-of-Time-Ordered Correlations

The out-of-time-order (OTO) correlation function for two operators A,B evolving
under a Hamiltonian H is

OTO(t) = 〈ψ |B(t)†A(0)†B(t)A(0)|ψ〉. (32)

We can interpret this expression as the fidelity of the two states B(t)A(0) |ψ〉 and
A(0)B(t) |ψ〉, where the order of applying A and B is inverted. (thus creating an
“out-of-time” order where A at t = 0 is applied after B at time t .)

In contrast, the two-point correlator defined above can be considered as a time-
ordered correlation [96]. Consider the commutator norm between the two operators
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A and B(t), C(t) = 〈[B(t), A)][B(t), A]†〉. This can be expanded as

C = 〈(B(t)A− AB(t))(A†B(t)† − B(t)†A†)〉
= 〈B(t)AA†B(t)† + AB(t)B(t)†A† − 〈B(t)AB(t)†A† + AB(t)A†B(t)†〉,

(33)

where the first two terms correspond to two-point, time-ordered correlators, while
the second two terms are equivalent to the OTO correlator. These relationships can
be made more evident in special cases. For example, consider the average at infinite
temperature for Hermitian operators A,B. Then we have

C = 2[〈A2B(t)2〉 −OTO(t)], (34)

and, in particular, for A = B we have that the time-ordered part is equivalent to the
two-point correlator. Furthermore, when A and B are both unitary and Hermitian,
such as Pauli operators or tensor products of Pauli operators, the time-ordered part
〈A2B(t)2〉 = 1, so that only the OTO correlator contributes non-trivially to the
commutator.

We note that the OTO four-point correlator can be evaluated approximatively in
NMR (with a scheme similar to the two-point correlator) in a scheme that has been
called polarization echo [9, 97]. We combine the description of NMR experiments
in Eqs. (30)–(31) with the (Loschmidt) echo evolution, Eq. (23). The NMR signal
for the polarization echo is

PE(t) = Tr
[
ZeiHte−iH0tZeiH0t e−iH t

]
= Tr[Z0(t)Z(t)], (35)

where Z(0)(t) = e−iH(0)tZeiH(0)t . As done for the two-point correlator, we can work
in the interaction picture defined byH0 and analyze the effects of the perturbation to
second order. We can first write the polarization echo signal using the echo evolution
E = eiHt e−iH0t as

PE(t) = Tr
[
ZEZE†

]
(36)

and expand E using the average perturbation,

E ≈ 1− εV (t)− ε
2

2
V (t)2. (37)

Keeping only terms to second order in the trace, we thus obtain

PE(t) ≈ 1− ε2
(

Tr
[
V (t)2Z2

]
〉 − Tr

[
V (t)ZV (t)Z

]) = 1− ε2 Tr
(
[V (t), Z]2

)
.

(38)
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Quite interestingly, we find that the polarization echo give thus access to a 4-point
correlator (or the expectation value of the commutator square), that is, to OTO
correlations. While this expression is only valid in the limit of weak perturbation, in
the following we present a strategy (based on another NMR technique) that allows
measurement of the out-of-time ordered commutator.

5.1 Multiple Quantum Coherences and Spin Counting

Out-of-time ordered correlators have been proposed to measure the spread of
quantum information and correlations (entanglement) in an interacting many-
body system. A similar task had been developed in NMR for the purpose of
spectrographic reconstruction of complex molecules and crystal structure. In that
context, the complex dynamics of many-spin correlations has been traditionally
explored in NMR with the so-called spin counting experiments [98–100] that
measure Multiple Quantum Coherence (MQC) intensities (see Fig. 4). A quantum
coherence of order k describes the contribution of terms |mn〉〈m′n| in a density matrix
such that mn − m′n = k, with mn the collective σn eigenvalue (n here denote
direction). Then, a state of coherence order q, when rotated around the axis n by an
angle ϕ, will pick up a phase equal to qϕ. This property is used in NMR experiments
to select a particular coherence order, by the so-called phase cycling [87], that
amounts to averaging measurements done with phase-shifted pulse sequences.

This concept might be broadened to quantum coherences with respect to any
operator P satisfying e−2imπP = 1, wherem is an integer. (we assume here P to be
traceless for convenience.) A typical example, easy to implement, is P =∑

j Sj ·n,
the generator of global spin rotations around the n-axis.

We can define q-coherence operators Pq with respect to the operator P that
satisfy the following two equivalent relations:

e−iθPPqeiθP = e−iqθPq, [P,Pq ] = qPq . (39)
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Fig. 4 Multiple Quantum Coherence intensities measured in adamantane. Here the preparation
step was performed using a Double Quantum Hamiltonian engineered with an 8-pulse sequence.
As the preparation time increases (from left to right) the number of coherences that are excited
also increase. The variance of the MQC intensity distribution can reveal the number of correlated
spins, here from ∼ 30 to more than 500 spins
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From the first relation it is evident that P−q = P†
q . In addition, it can also be shown

that different Pq are orthogonal, and they can be normalized such that Tr
[
PqP†

q ′
]
=

Tr
[
PqP−q ′

] = δq(q ′). Then, although the coherence operators do not form a basis,
they can still be used to decompose any traceless Hermitian operator O as

O =
L∑

q=1

pqPq, (40)

where L is the number of unique eigenvalues of P . (for example, L is the number
of spins if P ≡ Z.) This decomposition follows from the properties in Eq. (39) and
can be thought as a Fourier decomposition with respect to P ,

Pq = 1

2pqπ

∫ 2π

0
dθeiqθ e−iθPOeiθP . (41)

Since we are considering discrete operators, we can replace Eq. (41) with a discrete
Fourier transformation:

Pq = 1

2pqL

2L−1∑

m=0

ei
qmπ
L e−i

mπP
L Oei

mπP
L . (42)

We can use this relationship to define multiple quantum coherence intensities, Iq =
pqp−q = |pq |2, which characterize the contribution of each coherence to a given
operator :

1

2L

2L−1∑

m=0

ei
qmπ
L Tr

[
Oe−i

mπP
L Oei

mπP
L

]
= pq Tr

[
OPq

] = Iq . (43)

We can thus extract the quantum coherence intensities of any operator O by
measuring its autocorrelation with the same operator rotated by P .

A typical experimental protocol then comprises four steps. First, a system is let
to evolve under an (engineered) Hamiltonian to be studied. A φm = πm/L rotation
around P is then applied to tag the quantum coherences. The evolution is then
reverted back in time (by engineering the same Hamiltonian with opposite sign).
The signal intensity Sm is then measured and the experiment is repeated L times
while sweeping m from 0 to 2L− 1. A Fourier transform of Sm yields the quantum
coherence intensities. Taking advantage of the high-temperature approximation
already discussed, where ρ(0)− 1/D ∝ Z, this protocols yields the signals

Sm(t) = Tr
[
U(−t)eiπmP/LU(t)ZU(t)†e−iπmP/LU(−t)†Z

]

≡ Tr
[
Z(t)eiπmP/LZ(t)e−iπmP/L

] (44)
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and the MQC intensities are

Iq = 1

2L

2L−1∑

m=0

ei
qmπ
L Sm. (45)

We note that in experiments it might not be possible to probe all coherences, since
L might be too large. The phase step (and L) is thus usually truncated to capture
most of the coherences while keeping the experimental time reasonable.

In traditional NMR experiments, P has been taken as the collective Z operator
(or sometimes as the collective magnetization along a different axis [57]). The
experiment typically involves creating MQC by using, e.g., the so-called double
quantum Hamiltonian,HDQ ∝ σxσx−σyσy (preparation) before letting the system
evolve under the internal Hamiltonian. The preparation Hamiltonian is then applied
back in time to refocus the MQC, after having applied the encoding φm rotation.
The free evolution time then might transport (or scramble) the quantum coherences,
in a manner that reflects the spin-spin interactions and hence the structure of
a molecule [76, 98]. The distribution of Iq has then been traditionally used to
approximate the average number of correlated spins created by the preparation
Hamiltonian, under the assumptions that all correlation are created equally [100].
Indeed, the collective magnetization (the Z-operator) has degenerate eigenvalues;
for L spins, an eigenvalue corresponding to m magnetization has a degeneracy( 2L
L−m

)
. Correspondingly, if all MQC were to be populated, they would follow a

binomial distribution with variance L.

5.2 OTO Commutator and Multiple Quantum Coherences

While the assumptions that all MQC are equally populated according to their
(degeneracy) weight will fail when disorder or perturbations are introduced, and
in 1D or integrable systems, the variance of the MQC distribution can still provide
useful information as it is related to the OTOC.

Consider the signal in Eq. (44) with φm = πm/L. We can expand the signal in
power of φm as

Sφ = Tr
[
Z(t)eiφPZ(t)e−iφP

]
≈ Tr[Z(t)Z(t)]

+ iφ Tr[Z(t)PZ(t)− Z(t)Z(t)P ] (46)

+ φ
2

2
Tr
[
2Z(t)PZ(t)P − Z(t)P 2Z(t)− Z(t)Z(t)P 2

]
+ . . . .

Note that the first term is just the LE (or a constant, if the time inversion were
perfect) and equal to

∑
q Sq(t), while the second term, linear in φ, is zero due to the
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symmetry of coherences. The third order term can be rewritten as

CZP ≡ φ
2

2
Tr
[
[Z(t), P ]2

]
,

which is indeed the desired OTO commutator. Similarly, we can expand the signal
decomposition in MQC intensities to second order, finding

Sφ =
∑

q

e−iφqIq(t) ≈
∑

q

Iq(t)− iφ
∑

q

qIq(t)− φ
2

2

∑

q

q2Iq(t)+ . . . . (47)

We thus find that the OTO commutator at infinite temperature (ρ ∝ 1) is given by
the second moment of the MQC, CZP (t) =

∑

q

q2Sq(t).2 Equation (47) was first

derived in a different context in Ref. [101] for NMR systems. When applied to pure
states, it relates the second moment of the MQC distribution to the quantum Fisher
information [102].

Multiple quantum coherences have also been detected indirectly using a (het-
eronuclear) central spin coupled to a homonuclear spin system [103]. The central
spin is used to probe how the initially local information (encoded in the polarization
of the central spin) spreads into a coupled 15-spin “environment.” The spread is
monitored by measuring the MQC with respect to the x-quantization basis [50, 57],
Cxn . Terms in the coupled spin state with a given coherence are tagged by
a collective rotation of the “environment” around the x-axis. By inverting the
time-evolution operator driving the central spin to environment interaction the
information is mapped to the central spin that is then read out. The variance of the
MQC distribution in the environment is related to the number of correlated spins,
which increases linearly in time in the absence of spin-spin interactions (canceled
by a decoupling sequence). When interactions are turned on, the information is
scrambled in the environment and cannot be recovered anymore.

5.3 Entanglement Measures

Multiple quantum coherences provide a powerful window to the complex correlated
states produced by many-body dynamics. It is natural to search for a relationship
between these quantities and entanglement. Indeed, for pure states, it is possible
to exactly link the second moment of the MQC distribution to the quantum
Fisher information [102], which is itself an entanglement witness. Local control
is typically needed to experimentally estimate entanglement measures [104–106].

2 Notice that exchanging the roles of Z and P will result in a different MQC distribution Iq ;
however, its second moment remains the same.
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Various strategies to overcome NMR limitations in this regard have been taken,
ranging from selecting fully controllable—but small—systems to introducing partial
local control and a combination of several MQCs to devise new entanglement-like
measures in special systems.

5.3.1 OTOC with Full Control to Detect the Rényi Entropy

Universal control provides an alternative method, not relying on MQC, to measure
OTOCs and even gives access to the Rényi entropy. The method has been imple-
mented in a small, liquid-state molecule [107]. In that NMR quantum simulator, full
control of individual spins allows the direct measurement of the OTO correlation,
Eq. (32). Similarly to what described for MQC and echoes, the experiment simulates
a system at infinite temperature, while the initial state at high (but not infinite)
temperature acts as the observable A. The second observable B is chosen to be a
unitary operator implemented as a selective rotation of a single spin. By choosing the
rotation angle to be π , the unitary operator is simply proportional to an (Hermitian)
Pauli matrix, thus effectively simulating a second observable. The evolution of
the system then consists of a period of Hamiltonian evolution (here the Ising
Hamiltonian with a field, HI ), the selective rotation implementing B and another
period of evolution under −HI . The evolved state is then

ρ(t) = eiHI tBe−iHI tρ0e
−iHI tB†eiHI t (48)

and the signal S(t) = Tr[ρ(t)A] with from the initial state ρ(0) = 1/2L+εA yields
the desired OTO correlator

S(t) = Tr
[
B(t)AB†(−t)A

]
= 〈B(t)†A(0)†B(t)A(0)〉β=0. (49)

Even more interesting, preparing the initial state and observable to be A = σ 1
α ,

α = {x, y, z} enables reconstructing the Rényi entropy for qubit 1. Indeed, summing
over a whole basis B for that subsystem, we have [108]

∑

k∈B
〈B(t)†Ak(0)†B(t)Ak(0)〉β=0 = exp

(
−S(2)1

)
. (50)

Unfortunately, scaling up this method to larger system can quickly become pro-
hibitive.

5.3.2 Correlation Rényi Entropies

While the method used for small system to reconstruct the Rényi entropy is
not applicable to large systems where the number of experiments would scale
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exponentially, the idea of combining several OTOCs (or MQCs) experiments is
a fruitful one, especially when combined with systems where the dynamics is
constrained by their properties, such as a central spin system or a 1D geometry, and
the high-temperature approximation further simplifies the analysis of the density
operator. The Rényi entropy of order α for a reduced density operator ρA =
TrB [ρAB ] is given as

Sα(ρA) = 1

1− α log
(
Tr
[
ραA
]) ≡ Sα(ρB). (51)

Measuring the Rényi entropy thus typically entails performing state tomography of
a reduced system. By expanding the state in terms of the Hamiltonian eigenstates,
|�〉 = Cn |n〉, we can also write [50, 109].

Sα = − log

(
∑

n

|Cn|2α
)
. (52)

As already mentioned, the MQC coherences do not provide information about the
occupation of the system eigenstates—or in other words, the number of correlated
spins—but only a proxy to this quantity. Still, for a central spin system coupled to
an “environment” via σCz

∑
i σ
i
z coupling, it is possible to replace the projection of

the environment state on its σz eigenstates, C{1011..}
z = |〈1011...|�(t)〉|2 with the

MQC coherences Cx measured via the central spin (see Sect. 5.2) in the formula for
the Rényi entropies. The resulting metrics, dubbed “correlation Rényi entropies,”
reliably capture the buildup of multi-spin correlations and the loss of information
from the central spin.

5.4 Approximate Rényi Entropy and Average Correlation
Length

A different strategy to approximatively estimate the Rényi entropy takes advantage
of properties of the evolution of 1D (quasi-)integrable system [82].

Consider a generic high-temperature density matrix at time t . It can be decom-
posed using the product operators Bsk composed of tensor products of k Pauli
matrices and L− k identity operators

ρ(t) = 1

2L
− εδρ = 1

2L
− ε

√
L

2L

L∑

k=1

ζk∑

s=1

bsk(t)B
s
k, (53)

where ζk is the number of configurations with exactly k non-identity Pauli operators.
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Taking the partial trace of the state expressed in terms of the traceless operators
Bsk , we obtain the Rényi entropy, S(2)L = − log[Tr

(
ρ2
L

)] for the left half of the spin
chain:

S
(2)
L = − log[ 1

2L/2
+ ε2 Tr

(
δρ2
L(t)

)
] ≈ L

2
log(2)− ε2

2L/2

L/2∑

k=1

ζLk∑

s

(bsk)
2,

where ζLk counts only the configurations in the left half of the chain. We note

that most generally, for k > 1, we have ζLk = L/2−k+1
L−k+1 ζk , where ζk are all

the k-spin configurations in the whole chain. We can define fk = ∑ζk
s=1(b

s
k)

2 as
the contribution of all possible spin correlations with Hamming weight k (with∑L
k=1 fk = 1) to the density operator. For a translationally invariant system, the

coefficients bsk do not depend on the spin position, and thus we have
∑ζLk
s (b

s
k)

2 =
(ζLk /ζk)fk . While this is not exactly true for finite systems with open boundaries
(and generally in the presence of disorder), we can still extract an approximated
Rényi entropy:

S
(2)
L ≈ L

2
log(2)− ε2

2L/2

⎛

⎝
L/2∑

k=1

L/2− k + 1

L− k + 1
fk

⎞

⎠ . (54)

A related quantity that has been used to quantify localization [82] is the average
correlation length

Lc =∑L
k=1 kfk, (55)

describing the average length over which spins have become correlated.
For some density operators—in particular, as emerging from (quasi-)integrable

dynamics—it is possible to extract the coefficients fk from MQC along different
axis. This allows to evaluate the average correlation length and the approximated
Rényi entropy experimentally.

In particular, starting from an initial state at high temperature, ρeq ≈ e−βω0Z ≈
1

2L
(1 − εZ), with ε = βω0, the time-dependent component of the density matrix

δρ(t) ∝ UρeqU
† − 1/2L evolves as

δρ√
L
=
∑

j

2μjjS
j
z + 2

∏

j<l<k

Slz

×
∑

j,k>j

2k−j
[
(η − μ)jkSjy Sky − (η + μ)jkSjx Skx + (ν + χ)jkSjy Skx + (ν − χ)jkSjx Sky

]
,

(56)
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Ιμ = DFTϕ{S1ϕ+S2ϕ+S3ϕ+S4ϕ}

Ιη = DFTϕ{S1ϕ-S2ϕ+S3ϕ-S4ϕ}

Ιχ = DFTϕ{S1ϕ+S2ϕ-S3ϕ-S4ϕ}

H’=e-iπSz/2HeiπSz/2

Ιν = DFTϕ{S1ϕ-S2ϕ-S3ϕ+S4ϕ}

+ = S3ϕ(t)
H HH H

ϕSy ϕSx

H H’

−ϕSxϕSx

= S4ϕ(t)+
H H’

= S1ϕ(t)+
H -HH -H

ϕSy ϕSx

H -H’

−ϕSxϕSx

= S2ϕ(t)H -H’ + η+i νμ+iχ

−μ+i χ−η +iν

δρ =

Fig. 5 Experimental scheme for extracting the correlation length from measurements of the MQC.
For one measurement of Lc, we perform four MQC experiments according to the above to obtain
S1φ , S2φ , S3φ , and S4φ . The MQC intensities for each sector of the density matrix are obtained by
first taking the appropriate linear combinations of Sjφ and Fourier transforming with respect to φ

where μ is real and symmetric, whereas χ , η, ν are real and antisymmetric; they
correspond to the four possible ways to correlate spins in an non-interacting system.
We can express the coefficients fk by using these matrices, finding the relations

f1 = μ̄0, fk>1 = 2(μ̄k−1 + χ̄k−1 + η̄k−1 + ν̄k−1), (57)

where μ̄k =∑
j μ

2
jj+k , and similar expressions hold for χ , η, and ν. Because of the

different symmetry properties of the operators connected with each of the μ, χ, . . .
matrices, we can extract their values by using MQC, following the scheme in Fig. 5.

First, note that the real part of the density operator, Re[ρ], only contains
correlations with an even number of Sy and Sx operators, i.e., operators such as

B(re) ∝ Six
∏j−1
k=i+1 S

k
z S
j
x ± Siy

∏j−1
k=i+1 S

k
z S
j
y . The imaginary part, instead, Im[ρ], is

composed of B(im) operators with Sx, Sy operators (and vice versa) as end-spins.
This thus distinguishes between η,μ and χ, ν. Since ρ(−t) = ρ∗(t), we can obtain
the real and imaginary parts of ρ from ρ(t)±ρ(−t), using time reversal to engineer
ρ(−t).

Next we note that terms ∝ (SySy + SxSx) are zero-quantum coherences, while
terms ∝ (SySy − SxSx) are double quantum coherences. Then, the first terms are
invariant under rotations around z whereas the second terms acquire a minus sign
when rotated by π/2. As similar properties are valid for the other terms in δρ, we can
use phase cycling to single out only the desired terms and extract only contributions
from the four sectors corresponding to μ, η, χ, ν.

Finally, we measure the MQC intensities encoded in the x axis for each of these
four sectors which are given by

Iμq =
δ1|q|

2
μ̄0 +

∑

k=1

[
1

2k+1

(
k + 1
k+1−q

2

)
+ 1

2k−1

(
k − 1
k−1−q

2

)]
μ̄k

I ηq =
∑

k=1

[
1

2k+1

(
k + 1
k+1−q

2

)
+ 1

2k−1

(
k − 1
k−1−q

2

)]
η̄k

Iχq =
∑

k=1

1

2k−1

(
k
k−q

2

)
χ̄k

I νq =
∑

k=1

1

2k−1

(
k
k−q

2

)
ν̄k .

(58)
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I
μ
q and Iηq are defined for k − q ∈ odd, whereas Iχq and I νq are defined for
k−q ∈ even. By inverting these relations we can write fk as a linear combination of
the MQC intensities, fk =∑

jq M
(j)
kq I

j
q , and thus calculate the experimentally mea-

sured average correlation length and the approximate entropy [82]. This powerful
metrics has been used (see Sect. 7.1) to investigate localization in spin chains [82].

6 Integrable Models

6.1 Kicked Evolution

The behavior of systems evolving under a Hamiltonian that is (periodically)
perturbed by strong kicks is of intrinsic interest as it might lead to appearance of
chaos. Conversely, it is also interesting to study the dynamics of integrable kicked
models, such as the XY model kicked by a uniform transverse field. While the XY
model is not directly accessible in dipolarly coupled spins, Hamiltonian engineering
can simulate an analogous system.

In the 1D tight-binding limit the DQ Hamiltonian can be diagonalized by via a
Jordan-Wigner transformation and has been shown to be unitarily equivalent to the
isotropic XY spin chain [35, 110, 111]. The DQ spin chain remains integrable in the
presence of a uniform magnetic field along the z direction

H = J
2

N−1∑

j=1

(
σxj σ

x
j+1 − σyj σ yj+1

)
+

N∑

j=1

σzj . (59)

The eigenenergies of the system are given by

�k = 2
√
J 2 cos2 k +2. (60)

Starting from a thermal initial state ρ0 = 1 − ε∑N
j=1 σ

z
j , only zero and DQ

z-basis coherences are predicted by the analytical model—as was previously shown
for the case  = 0 [35, 110]. The ZQ intensity is given by

J0 =
(

sin2 2θk cos 2φk + cos2 2θk
)2

(61)

while the DQ intensity is given by

J±2 = (sin 2θk cos 2θk(1− cos 2φk))
2 + sin2 2θk sin2 2φk, (62)
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Fig. 6 Evolution of z-basis multiple quantum coherences from the thermal Zeeman initial state
under the double quantum Hamiltonian in fluorapatite. Loss of signal at long evolution times is
compensated by normalizing the data by total signal at each time point. The lines are the ideal
zero- and double quantum intensities (see Eqs. (61)–(62))

where φk = �kt and

tan 2θk = J cos k


. (63)

Figure 6 shows the experimental measurement of z-basis MQCs on a fluorapatite
sample with  = 0. The slow growth of higher-order coherences is due to
long-range couplings in the experimental system that leads to a breakdown of
integrability.

We can experimentally simulate the DQ Hamiltonian in a longitudinal field using
a Trotterized approximation, where we interleave periods of evolution under the
engineered DQ Hamiltonian with evolution under the z-field. The z-field evolution is
performed by selectively shifting the phases of the RF pulses used in the experiment.

If the collective z magnetization (Z = ∑
i σ
z
i ) is used as the observable, the

average signal measured during evolution under this Hamiltonian (starting from the
same thermal initial state) is

S(t) =
∑

k

1

�2
k

(
J 2 cos2 k cos

(
4t
√
2 + J 2 cos2 k

)
+2

)
. (64)
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Fig. 7 Evolution of collective z-magnetization from the thermal Zeeman initial state under the
double quantum Hamiltonian with an external z field in fluorapatite of variable magnitude. The
simulations (lines) use a value of J = 7.6 × 103 rad/s rather than the ideal value of 8.17 × 103

rad/s to give a better fit to the data—indicating a slight mis-alignment of the crystal in the external
static magnetic field

Figure 7 shows a comparison between the experimental results on fluorapatite and
the theoretical model.

6.2 Quantum State Transfer

While the dynamics of spin systems is of intrinsic interest, its direct applications
to quantum information processing beyond quantum simulation are also possible.
Among various tasks, the transfer of a quantum state between (not too) distant
qubits mediated by a chain of spin qubit has been the focus of NMR implemen-
tations [41, 112]. The underlying strategy was first proposed by Bose [113] and
quickly refined to achieve perfect fidelity [114, 115]. Proof-of-principle experiments
were carried out exploiting NMR techniques [35, 39, 112, 116], by taking advantage
of an interesting correspondence between transport of a single excitation (in the pure
state 1-excitation manifold) with state transfer of mixed states.

State transfer can be driven by a ballistic transport induced by an integrable
Hamiltonian such as the XY model,

HXY =
∑

i

b(σ ixσ
i+1
x + σ iyσ i+1

y ). (65)

The goal of state transfer is to map the state α |0〉 + β |1〉 from spin 1 to spin L
of an L-spin chain initially in the ground state |00 . . .〉 using only free evolution
under H . Since the ground state itself does not evolve, the focus is on the dynamics
of the state |ψ(0)〉 = |100 . . .〉 and its overlap with |00 . . . 1〉 at time t , F(t) =
| 〈ψ(t)| 00 . . . 1〉|2, where |ψ(t)〉 = e−iH t |ψ(0)〉. The state evolves thanks to
energy-conserving flip-flops that drive the excitation along the chain.
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More generally, we can consider the transfer from spin i to j and define the
corresponding fidelity, Fij (t) = | 〈i| e−iH t |j 〉 |2, there |j 〉 describes a spin chain in
the ground state with a single excitation on spin j .

Since states are highly mixed in NMR, we can only hope to simulate the pure-
state behavior. We then consider the quantum operator transfer from the operator

δρiz = 1i−1 ⊗ σ iz ⊗ 1L−i (66)

to the operator δρjz . The normalized operator overlap,

Cij (t) = tr
[
δρiz(t)δρ

j
z

]
/tr

[
δρiz(0)

2
]

(67)

can be obtained by evolving an initial state ρi(0) = (1+εδρiz)/2L, since the identity
does not contribute to the signal and does not evolve for any unital dynamics.
This state represents a completely mixed-state chain with a single-spin partially
polarized along the z axis. Notice that the operator in Eq. (66) does not reside in the
lowest excitation manifold, in which quantum state transfer is usually calculated,
and instead involves the dynamics of the transport Hamiltonian in all the manifolds.
However, since transport Hamiltonians, such as the XY Hamiltonian Eq. (65),
should conserve the spin excitation number (or an equivalent excitation number)
in order to enable transport, it is always possible to diagonalize them in separate
excitation subspaces. Then, the eigenfunctions of higher excitation manifolds can
be exactly expressed in terms of Slater determinants of the one-excitation manifold
eigenstates, |Ei〉 and the eigenenergies are the corresponding linear combinations
of 1-excitation eigenvalues.

Consider, for example, 2-excitation states such as |hk〉 and |ij〉 =
|0..1i0..1j ..0〉), with excitations at the spins hk and ij , respectively. Their overlap
after an evolution for a time t can be written by expanding in terms of the 2-
excitation eigenstates, |Enm〉 with energy Enm = En + Em,

〈hk|U(t) |ij〉 =
∑

nm

〈hk〉Enm 〈Enm〉 ijeiωnt eiωmt = 1

2

(
AihAjk − AikAjh

)
,

where we defined the one-excitation transfer amplitudes, Aij = 〈j |U(t) |i〉. Note
that the last expression can be written as the determinant of the 2×2 matrix of trans-
fer amplitudes. Similarly, we can calculate the propagator matrix element between
any two states in the nth excitation manifold, e.g., |j〉 = |0, .., 1j1 , 0, .., 1j2 , . . .〉,
〈j|U(t) |i〉 from the n× n matrix of corresponding single-excitation amplitudes.

〈j|U(t) |i〉 =
∣∣∣∣∣∣

Ai1j1(t) Ai1j2(t) . . .

Ai2j1(t) Ai2j2(t) . . .

. . . . . . . . .

∣∣∣∣∣∣
≡ Ai,j(t). (68)
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We can then evaluate the transfer of any initial mixed state ρa =∑
i,j ai j |i〉 〈j| to

another mixed state ρb by calculating the relevant correlation between the evolved
state and the final desired state,

Tr(ρa(t)ρb) =
∑

h,k,i,j

bhk ai jAi h(t)A∗j k(t). (69)

Note that for the states of interest (δρiz), this can be simplified and we find

Cij (t) = |Aij |2 ≡ Fij . (70)

It is this equivalence that allows for a simple simulation of the pure-state dynamics
with mixed state.

Note that as discussed in Sect. 2.1, there are often limitations to what Hamilto-
nians can be engineered, and indeed the XY Hamiltonian is often not accessible.
Still, state transfer can be simulated using mixed states and the so-called Double
Quantum (DQ) Hamiltonian,

HDQ =
∑

i

b(σ ixσ
i+1
x − σ iyσ i+1

y ). (71)

Note that this Hamiltonian does not conserve the usual excitations linked to the total
magnetization. However, it does conserve analogous excitation for the staggered
magnetization,

∑
j (−1)j σ jz , and thus we can follow a derivation similar to what

outlined above to find the system evolution, as long as we transform the relevant
states |j〉 with the transformation

∏
j∈odd σ

j
x . Note that, in particular, the mixed

state of interest only acquires at most a minus sign under this transformation, and
thus, with the mapping

C
DQ
ij = (−1)j−i |Aij |2 ≡ (−1)j−iFij (72)

we can still simulate the XY state transfer with the DQ Hamiltonian and mixed
states.

These ideas have been applied to simulate quantum state transfer in NMR
systems (see Fig. 8) and extended to the transport of other states [39] and to analyze
the transport velocity [38].
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7 Non-Integrable Models

7.1 Many-Body Localization

The large size and long relaxation times of NMR systems naturally lend itself
to explore questions related to thermalization, and the lack thereof. In particular,
a central issue is the role of disorder and interaction in preventing or driving
thermalization. Many-body localization then describes the regime where disorder
is large enough to make the system an effective insulator, but where interactions
can still drive a (logarithmically slow) growth of entanglement. While probing this
entanglement growth is challenging, insight can come from different metrics, such
as OTOCs and correlation lengths described in Sect. 5, that can witness the same
dynamics even at higher temperatures.

An NMR quantum simulator was used to engineer and characterize localization
in a solid-state nuclear spin system. The system used in the experiment was a single
crystal of fluorapatite (see Sect. 1.2) for its quasi-1D geometry that enabled the
experimental measurement of the average localization length.

The total Hamiltonian of the system is given by the Zeeman interactions of the
F(S) and P(s) spins, HZ = ωF

∑
k S
k
z + ωP

∑
κ s
κ
z and their magnetic dipolar

interactions

Htot = HZ +HFF +HPP +HFP. (73)
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Fig. 8 Ballistic dynamics and transport under the DQ Hamiltonian, first reported in [39]. The two
experiments highlight the different signals arising from the initial state and observables. The end-
polarized state and observable displays a simple decay of the initial state, since because of the
average length chain, the arrival at the other end is not recorded. The collective magnetization state
instead shows characteristic oscillations, since the transport Hamiltonian does not conserves the
uniform magnetization but creates spin-coherences. Data points are the experimental data (Blue:
collective magnetization; Red end of chain magnetization), with error bars obtained from the FID.
The measurement was done using a single scan (collective polarization) and 4 scans (end-polarized
state). The lines are the fits using the analytical model
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Since the Zeeman energies, ωF = γFB = (2π)282.37 MHz and ωP =
γPB = (2π)121.51 MHz, where γF/P are the gyromagnetic ratios, are much larger
than the dipole-dipole interaction among the spins, we can truncate the dipolar
Hamiltonian to its energy-conserving part (secular Hamiltonian). We then obtain
the homonuclear Hamiltonians

HFF = 1

2

∑

j<k

JFjk(2S
j
z S
k
z − Sjx Skx − Sjy Sky ) HPP = 1

2

∑

λ<κ

JPκλ(2s
λ
z s
κ
z − sλx sκx − sλy sκy )

(74)

and the heteronuclear interaction between the F and P spins,

HFP =
∑

k,κ

J FPk,κ S
k
z s
κ
z . (75)

The maximum values of the couplings (for the closest spins) are given, respectively,
by JF = −32.76 krad s−1, JP = 1.21 krad s−1 and JFP = 6.13 krad s−1.

Due to the strong dependence of the dipolar coupling on distance, the couplings
between one chain of fluorine spins to the surrounding ones can be neglected, as
they are 40-times weaker. Similarly, to first approximation, just the nearest-neighbor
couplings can be retained, as they are 8-times stronger than other couplings. Finally,
as the phosphorus spins are never driven, and their dynamics is slower, they can be
considered to always be in a thermal, static state. Thanks to all these approximations
the system can be effectively modeled by a 1D spin chain in the presence of a static
magnetic noise. Indeed, at room temperature the P spins are in an equal mixture of
theirmz=±1/2 states. The heteronuclear interactions can then be approximated by∑
j hjS

j
z , where hj is now a classical random variable representing the disordered

field seen locally by each 19F. The resulting effective Hamiltonian can be then
written as Heff

nat = J
2

∑
j (2S

j
z S
j+1
z − SjxSj+1

x − SjySj+1
y )+∑

j hjS
j
z .

The approximation breaks down at longer time, with a convergence of various
effects: long-range in-chain and cross chain couplings, as well as pulse errors in the
sequences used for Hamiltonian engineering. In addition, the system also undergoes
spin relaxation, although on a much longer time-scale (T1 = 0.8 s for our sample).

Using the tools described in Sect. 2, a broad range of Hamiltonians can be
engineered to explore different behaviors of the spin chains, ranging from integrable,
to single particle and many-body localized. These Hamiltonians can be engineering
by a pulse sequence based on a basic building block consisting of a 4-pulse
sequence [79] originally developed to study MQC. We show the sequence in Fig. 9,
where 8-pulses are used for improved performance [81]. A further extension to 16
pulses, with the 8-pulses repeated but with a 180◦ shift, yields an increase robustness
and was used to engineer a tunable Hamiltonian [82, 83, 117]. Contrary to canonical
pulse sequences in NMR, the delays are tunable and given by

τ1 = τ(1+ 3g − v + w), τ2 = τ(1− u+ v),
τ3 = τ(1+ u− w), τ4 = τ(1− 3g − v + w),
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Fig. 9 Pulse sequence to engineer a tunable Hamiltonian, Eq. (76)

where τ is typically 4 μs. The total time of the sequence, that is, the cycle time tc,
is then tc = 24τ . The range of the adjustable dimensionless parameters u, v, w,
and g is restricted by the requirement that none of the inter-pulse spacings becomes
negative.

The average Hamiltonian H0 to second order approximation, accounting for
finite pulse width, is given by

H0(u, v,w) = 1

2

∑

j<k

Jjk

[
(u− w)σjx σ kx − (u− v)σ jy σ ky − (v − w)σjz σ kz

]

+ g
∑

j

hjσ
j
z , (76)

including non-interacting, interactions, longitudinal and transverse fields and dis-
orders. (Here the first order H1 = 0, thanks to a proper symmetrization of the
sequence.) By properly modifying the timing and the phases of the pulses, it is
also possible to engineering −H0, that is, to invert the arrow of time.

Note that this Hamiltonian includes most element needed to study localization
both in non-interacting systems (Anderson localization) or when interactions are
present (many-body localization).

First, by setting v = 0, the system is non-interacting (and the staggered
magnetization is conserved). The non-interacting Hamiltonian still gives rise to a
growth in the localization length Lc (since local magnetization would transport
ballistically). Increasing the disorder strength (by varying g) results in the saturation
of Lc at increasingly earlier times and lower levels, consistent with Anderson
(single-body) localization. Figure 10a shows the experimental results (symbols) and
numerical simulations (lines).

The many-body localization regime can be explored by turning on the interac-
tions (setting v > 0) while keeping the disorder. The experimental results—shown
in Fig. 10b—reveal that the average correlation length keeps growing (although
slowly) when the interactions are added, even when for v = 0 there is already
saturation.

Due to experimental imperfections it is difficult to explore the transition from
MBL to ergodic behavior. Indeed, when interactions dominate disorder, the correla-
tion length is expected to growth fast, but it is more heavily affected by the saturation
of its value due to the approximation made in extracting Lc from the MQC, as well
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Fig. 10 Experimentally measured average correlation length from Ref. [82]. (a) Correlation length
Lc in a non-interacting system for various strength ∝ g of disordered transverse fields, with u =
0.24 and v = 0 (Eq. 76). Error bars are determined from the noise in the free induction decay. The
lines are numerical simulations using 6 spins, averaged over 126 disorder realizations. (b) Growth
of Lc for interacting spin chains in a log-linear scale for varying interaction strengths v, in the
presence of disorder. Data are for u= 0.24 and g = 0.12. After an initial growth of correlations,
Lc saturates for the non-interacting systems, while it shows a slow growth in the presence of
interactions, indicating MBL

as the challenges to collect higher multiple quantum coherences that would reveal
larger spin correlations.

7.2 Prethermal Regime

Prethermalization refers to a special thermalization process wherein the system stays
in an intermediate state for long time before reaching the final thermal state. Two
commonly studies cases are (i) weakly interacting systems with the intermediate
state being a thermal state of the non-interacting part of the Hamiltonian and (ii)
periodically driven (Floquet) systems with the intermediate state being a thermal
state an effective time-independent Hamiltonian. The first case can be understood
using perturbation theory; while the origin of the second case is more complicated
and is the focus of this section.

As mentioned in Sect. 2.3.1, the Magnus expansion does not converge in generic
many-body systems. The convergence radius is

∫ T
0 ||H(t)||dt < π , but the norm

of a many-body Hamiltonian is extensive ||H(t)|| ∝ L, thus a priori forbidding a
convergent expansion. From a physics point of view, a generic many-body system
has a dense and extensive energy spectrum so that it always possess a pair of eigen-
levels that are h̄ω = 2πh̄/T apart and can thus absorb energy from the drive with
period T . Given that the Magnus expansion diverges, and the system will eventually
heat up, why and how accurately does low-order average Hamiltonian describe
the system dynamics? This question is important to not only for the fundamental
understanding of driven systems but also for the validity of quantum simulations.
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Fig. 11 Typical thermalization process of a Floquet system with large driving frequency. For
short time, the dynamics is governed by a static Hamiltonian Hpre . An out-of-equilibrium state

would first thermalization to a prethermal state ρpre = e−β̃Hpre /Z, with inverse temperature

β̃ and partition function Z = Tr(e−β̃Hpre ). The characteristic time to reach prethermal state is
tpre = 1/|Hpre|. For long time, the small time-dependent part of the Hamiltonian thermalizes the
system to infinite temperature with characteristic time t$ = O(exp(−c/τ))

A series of theory works [118–121] establish that, although the Magnus expan-
sion diverges, a truncation of the series still captures the dynamics of the system
up to a small correction. Specifically, the stroboscopic dynamics is governed by an
effective Hamiltonian Heff (t) = H(n$)F + δH(t). The time-independent part H(n

$)
F ,

also known as prethermal Hamiltonian Hpre, is given by the Magnus series (see
Eq. (10)) truncated at optimal order n$ = O(1/T ). The residual time-dependent
part is exponentially small in driving frequency ||δH(t)|| = O(e−c/T ) for some
constant c. As a result, for time t < 1/||δH(t)||, the dynamics of a Floquet system
is almost identical to a time-independent system Fig. 11. An out-of-equilibrium
state first thermalizes according to the time-independent Hamiltonian Hpre and
reaches an intermediate prethermal state ρpre. At late time t$, the small residual
δH(t) thermalizes the system to infinite temperature. An intuitive understanding is
that, when the energy quantum 2πh̄/T is much larger than the single-spin energy,
absorption of one energy quantum would require changing the state of a large
number of spins, which is a high-order process that takes a very long time. The
prethermalization mechanism states that quantum simulation is accurate up to an
exponentially small correction, and dynamic phases of matter realized by Floquet
engineering can survive thermalization for exponentially long time [122].

Although Floquet Hamiltonian engineering has been used for a long time, the
direct experimental observation of the exponentially slow heating is achieved at a
much later time. The main challenge is to resolve the Floquet heating from trivial
effects, such as decoherence or control errors, as both lead to a signal decay. In solid-
state NMR systems, two groups observed Floquet prethermalization using different
methods—Peng et al. separate the Floquet heating from trivial effects using the
Hamiltonian engineering technique [83]; Beatrez et al. directly reduce the trivial
effects by working with a dilute spin ensemble [123].

Reference [83] observed Floquet prethermalization in fluorapatite, where the 19F

spins form quasi-1D structure. The pulse sequence is shown in Fig. 12a. In the
first part of the sequence, the 16-pulse sequence was adopted to engineer dipolar
interaction along the y axis with tunable interaction strength J . In the second
part, a collective rotation along the z axis is implemented as phase shifts between
consecutive sequences. The rotation angle can also be tuned continuously. The
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(a) (b)

Fig. 12 Floquet sequence studied in Ref. [83] (a) and Ref. [123] (b)

Fig. 13 (a) Autocorrelation of average Hamiltonian H̄ as a function of Floquet periods n for
driving period |Hpre|T from 0.35 (light) to 2.27 (dark) in steps of 0.175. (b) Autocorrelation
decay rate as a function of |Hpre|T (dots). The solid lines show a fitting of the experiment data to
ae−c/(|Hpre |T ) + b. The driving sequence is shown in Fig. 12a

leading order average Hamiltonian is H̄ = JDy +hZ, withDy = 1
2

∑
j<k(S

j
y S
k
y −

1
2S
j
xS
k
x − 1

2S
j
z S
k
z )/(k − j)3 (Fig. 13a). To probe the slow heating to infinite

temperature, the authors measure the autocorrelation of the average Hamiltonian
Tr[H̄ (t)H̄ ] = h2Tr[Z(t)Z] + JhTr[Z(t)Dy] + JhTr[Dy(t)Z] + J 2Tr[Dy(t)Dy].
Each of the four correlators can be measured directly (see Sect. 3.2 for creating
dipolar states and observables). The authors investigate the Floquet system with
different normalized driving period |Hpre|T by varying J and h proportionally
while keeping T fixed. The advantage is that, when comparing signal after given
Floquet sequences, the experiment time and number of pulses are the same for
different |Hpre|T . Therefore, trivial effects, such as decoherence and pulse errors,
stay constant when varying the Floquet period |Hpre|T . As shown in Fig. 13b, the
decay rate is well captured by a constant trivial decay and an exponentially slow
heating.

Reference [123] observed the exponentially slow heating by directly reducing
the trivial effects. The authors worked with 13C spins in diamond that form dilute
spin ensembles, i.e., 13C only occupies a small portion of lattice sites, while the
majority is 12C. The dilute ensembles lead to smaller interaction strength, allowing
for a smaller decoherence and more accurate control (longer pulses). To enhance
the signal from the dilute ensemble, the authors use nitrogen vacancy centers in
the sample to hyperpolarize the 13C spins. The Floquet sequence is shown in
Fig. 12b, where the first part is free evolution under natural HamiltonianHD , and the
second part is a pulse along x with angle close to π/2. The average Hamiltonian is
dipolar interaction along x axis (this can be most easily seen in the toggling frame),
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which conserves the magnetization along x, [H̄ ,∑j σ
j
x ] = 0. The thermalization

to infinite temperature is characterized by the decay of Tr(
∑
i σ
i
x(t)

∑
j σ

j
x ). By

tuning T over one order of magnitude, the authors confirmed the heating rate is
exponentially small over a large parameter range.
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Quantum-Dot Spin Chains

John M. Nichol

Abstract Semiconductor quantum dots are a promising platform for quantum sim-
ulation and computing. This chapter will review the fundamentals of semiconductor
quantum dots and the Heisenberg exchange coupling that occurs between neighbor-
ing quantum dots. Despite directly coupling only nearest-neighbor quantum dots,
exchange coupling underlies a great many approaches for quantum information
processing, quantum state transfer, and the simulation of spin chain dynamics. This
chapter will review recent progress and future work along these directions.

1 Introduction

Semiconductor quantum dots are three-dimensional confining potentials for elec-
trons. They enable trapping, manipulating, and measuring the charge and spin states
of single electrons in semiconductors. As a result of these capabilities, semiconduc-
tor quantum dots are a leading platform for quantum computing and simulation. A
unique feature of electrons in semiconductor quantum dots is Heisenberg exchange
coupling between neighboring electrons, which results from the interplay of the
Pauli exclusion principle, the electrostatic confinement potential, the Coulomb
interaction between electrons, and the external magnetic field. The possibility of
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exchange coupling between electrons together with the capabilities of single-charge
and single-spin control and readout means that semiconductor quantum dots offer a
natural environment in which to explore both tunnel-coupled and exchange-coupled
spin chains. Indeed, significant progress has been made in recent years in simulating
and exploring different aspects of the Hubbard and Heisenberg models in quantum-
dot spin chains, finally bringing to fruition several decades of previous theoretical
work.

This chapter will describe recent progress in this field. We begin with an overview
of gate-defined semiconductor quantum dots and how they work. We then describe
the origins of exchange coupling in quantum-dot spin chains and some of the many
uses of exchange coupling in quantum computing with semiconductor spin qubits.
Then, we discuss recent advances in the experimental realization and exploration
of quantum-dot spin chains, including simulation of the Hubbard model and the
Heisenberg model. A recurring theme in this chapter is that technological advances
driven primarily by potential applications in quantum computing have also created
new opportunities in quantum simulation. In turn, advances in quantum simulation
have also enabled new capabilities for quantum computing. A notable example is
that the studies of Hubbard and Heisenberg physics in quantum-dot spin chains
have enabled advances in methods for quantum state transfer in spin chains, which
are beneficial for quantum computing.

The experimental and theoretical development of quantum-dot spin chains has
remained an active area of research for several decades at institutions around the
world. The interested reader is encouraged to consult the references herein for
further information. Portions of this chapter are reprinted from Kandel et al., App.
Phys. Lett., 119, 030501 (2021) with the permission of AIP Publishing.

2 Gate-Defined Quantum Dots

Although different experimental platforms exist that feature exchange coupling [2,
3], and although different types of quantum dots exist, this chapter focuses on gate-
defined quantum dots in semiconductors [4–8], one of the most promising systems
for the creation and exploration of spin chains. In this section, we will discuss the
basic operation of quantum dots, how tunneling and exchange coupling can occur
in quantum dots, and experimental demonstrations of exchange.

2.1 Quantum-Dot Fabrication

Gate-defined quantum dots are usually created using a layered semiconductor
heterostructure, such as GaAs/AlGaAs, Si/SiGe, Si/SiO2, or Ge/SiGe [4–10]. Such
heterostructures are often grown by advanced material growth techniques, like
molecular beam epitaxy or chemical vapor deposition. A common feature of all
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of these material platforms is that they enable the creation and control of two-
dimensional electron or hole systems, called two-dimensional electron (or hole)
gasses. In GaAs/AlGaAs and Si/SiO2 systems, electrons are confined to the interface
between two materials, while in Si/SiGe or Ge/SiGe quantum wells, the electrons or
holes are confined within a thin semiconductor layer, called a “quantum well.” In all
cases, the confinement is enabled by the band gap mismatch between the various
materials involved, and the two-dimensional electron or hole system typically
resides within tens of nanometers of the semiconductor surface. Lithographically
defined metal wires, or “gates,” are typically fabricated on top of the heterostructure.
Voltages applied to these gates generate electrostatic potentials that fully confine
the electrons. The magnitude and sign of the voltages depend on the details of
the heterostructure and device design. For example, GaAs/AlGaAs heterostructures
usually feature a layer of Si dopants in the heterostructure to create a nonzero density
of electrons in the two-dimensional electron gas without any applied voltages
to the gates. Therefore, to create electrostatic confinement, negative voltages are
applied to the gates to “deplete” various regions of the two-dimensional electron
gas. Heterostructures based on Si are typically undoped, and positive voltages must
generally be applied to the gates to “accumulate” electrons. In addition to the dots
themselves, the gates can also define electronic reservoirs, from which the dots are
loaded or unloaded, and tunnel barriers between dots or between dots and reservoirs.
Figure 1 illustrates typical quantum-dot designs.

The growth, characterization, and optimization of two-dimensional electron or
hole systems are the focus of significant research worldwide. The development
of high-quality Si/SiO2 transistors underlies the modern microelectronics industry.
Si/SiGe and Ge/SiGe quantum wells are also the focus of significant development
for transistor applications, and GaAs/AlGaAs heterostructures find significant use
in optical and solar applications. The development of quantum-dot spin qubits and
related systems has thus benefited tremendously from advances in the fabrication of
semiconductor devices.

Early gate-defined quantum dots were fabricated in GaAs/AlGaAs heterostruc-
tures [4–8]. This material features extremely high electron mobilities and corre-
spondingly long mean free paths. (Gate-defined quantum dots cannot usually be
formed in materials with low mobilities, because the associated strong disorder
typically means that electrons will localize around defect sites instead of the
desired electrostatic potential.) However, all nuclear isotopes of Ga and As have
nuclear spin I = 3/2. These nuclear spins generate an effective magnetic field
experienced by electrons in the quantum dots through the hyperfine interaction [11].
On the one hand, hyperfine fields generally increase dephasing rates and decrease
coherence times of electrons [11]. On the other hand, nuclear spins can create a
convenient source of magnetic disorder [12], which is potentially useful for quantum
simulation, as discussed further below.

Si/SiGe and Ge/SiGe quantum wells and Si/SiO2 systems partly solve the
challenge of hyperfine fields because both Si and Ge can be isotopically purified
to select isotopes with zero nuclear spin [9]. However, Si two-dimensional electron
systems generally feature larger conduction band effective masses than carriers in
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Fig. 1 Quantum-dot spin chains. (a) Schematic of a typical depletion-mode quantum-dot device in
GaAs. Electrons from metal Ohmic contacts populate the two-dimensional electron gas (light blue)
and are confined with tunneling and plunger gates. (b) Eight-quantum-dot linear array in GaAs,
Volk et al., Nat. Comm., 5, 29 (2019). Copyright the Authors, licensed under a Creative Commons
Attribution (CC BY) license. (c) Four-quantum-dot square array in GaAs/AlGaAs. Reprinted with
permission from Deholain et al., Nature, 579, 528–533 (2020). Copyright Springer Nature (2020).
(d) Schematic of a typical overlapping-gate device in Si/SiGe. Here, positive voltages applied to
accumulation gates define the electronic reservoirs. (e) Nine-dot linear array in Si/SiGe. Mills et
al., Nat. Comm., 10, 1063 (2019). Copyright the Authors, licensed under a Creative Commons
Attribution (CC BY) license. (f) Four-dot linear array with the overlapping gate architecture in
GaAs/AlGaAs. Reprinted from Kandel et al., App. Phys. Lett., 119, 030501 (2021) with the
permission of AIP Publishing. In all panels, circles denote the locations of the electrons

GaAs/AlGaAs. Because orbital energy splittings generally scale inversely with the
effective mass of the carriers, typical quantum dots in Si must be smaller than GaAs
dots to compensate for the increased effective mass. An additional complication
results from the fact that Si is an indirect gap semiconductor, and there are multiple
equivalent valleys in the conduction band near the edges of the Brilluoin zone [9].
Thus, electrons in Si quantum dots have an additional valley degree of freedom
that must typically be accounted for. Germanium quantum wells, which support
two-dimensional hole systems can potentially overcome these two obstacles, with
relatively small effective masses and a valence band maximum at the center of
the Brillouin zone, eliminating the valley degeneracy of Si systems [10]. In the
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following, we will primarily discuss quantum-dot spin chains in the context of
electrons in GaAs- and Si-based systems, because most of the advances have
occurred in these material platforms. The exploration of spin chains in Ge/SiGe
systems is an exciting prospect for future work.

2.2 Quantum-Dot Operation

Individual quantum dots are typically operated at cryogenic temperatures, where
the thermal energy of the environment is much less than the charging energy (the
energy to overcome the Coulomb repulsion and add another electron to the dot) and
the orbital energy spacings of the quantum dots. In such a regime, quantum dots are
frequently connected via tunnel barriers to source and drain reservoirs, which are
held at fixed potential via galvanic contacts to external voltage sources. The physics
of electrons in quantum dots is reviewed in Refs. [4–8], and the interested reader is
encouraged to consult these references.

When the electrochemical potential of a quantum-dot state lies between the
electrochemical potential of the source and drain reservoirs, current can flow
through the quantum dot, as a result of tunneling from the source, through the dot,
and into the drain. When the electrochemical potential of the dot is not between
those of the source and drain reservoirs, the current flow is blocked, and the dot
is the Coulomb blockade regime. By tuning the gate voltages to be less positive
or more negative, the number of electrons in the dot reduces, until all electrons
are gone, resulting in no further current peaks. Thus, the Coulomb blockade allows
one to concretely identify the number of electrons in a quantum dot. The detection
of quantum-dot charge states most often relies on a proximal charge sensor, such
as a quantum point contact or quantum dot, whose electrical conductance depends
sensitively on local electric fields, including those from nearby charged quantum
dots [16–19]. Quantum dots may be tunnel coupled, usually in series, between
reservoirs [6]. A prototypical example is a double quantum dot, with two dots
coupled in series between two reservoirs.

Many studies of individual and few quantum-dot systems have occurred over the
last several decades, leading to significant advances in quantum information pro-
cessing with semiconductor quantum dots [20]. As spin-based quantum information
processors scale up, a primary challenge in creating many-qubit systems is the dif-
ficulty in “tuning up” devices with many quantum dots. Typically, an experimenter
must spend time tuning the gate voltages to achieve the right potential landscape. A
major difficulty in achieving the proper potential for many dots simultaneously is the
effect of defects in the semiconductor. Indeed, a major effort in the development of
quantum dots in recent decades has been to improve the tunability of the potential
landscape to overcome this challenge. For example, the first quantum dots used a
vertical architecture, in which the parameters of the confinement potential were set
by the growth of the heterostructure [21, 22]. To promote better in-situ tunability,
early lateral quantum dots featured a “stadium-style” architecture [23], in which
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electric fields from nearby metal gates create the confinement potential (Fig. 1a–c).
Such an architecture features significantly improved tunability over earlier vertical
architectures. Recently, a new generation of quantum dots with an “overlapping-
gate” architecture has emerged [24–26] (Fig. 1d–f). In contrast to the stadium-style
architecture, the overlapping-gate architecture involves voltages applied to gates
directly above the quantum-dot location. These devices feature strong electrostatic
confinement and tight control over nearly all of the relevant parameters of the
quantum-dot confinement. Additional advances that have enabled the creation of
extended spin chains are various procedures for computer automated tuning and
independent control of the quantum-dot potential parameters [27–35].

2.3 Exchange Coupling in Quantum Dots

Electrons are fermions. Thus, according to the Pauli exclusion principle, no two
electrons can have the same quantum numbers. In nanoscale quantum systems, a
direct manifestation of the Pauli exclusion principle is the Heisenberg exchange
coupling between two electrons H = JS1 · S2 − 1/4, where S1 and S2 are spin-1/2
operators associated with the spins of the two electrons [36–38].

Although a detailed calculation of the exchange coupling J presents a substan-
tial challenge, the following heuristic picture illuminates the mechanism behind
exchange coupling in semiconductor quantum dots. Consider two electrons in
a single quantum dot. The overall wavefunction of the two electrons must be
antisymmetric under particle exchange. If the two electrons occupy the spin
singlet state |S〉 = 1√

2
(|↑↓〉 − |↓↑〉), the spin component of the wavefunction is

antisymmetric under exchange. Therefore, the orbital part of the wavefunction must
be symmetric in order to guarantee that the overall wavefunction is antisymmetric
under exchange. In particular, both electrons can occupy the ground state orbital
of the quantum dot. Similarly, if the two electrons have any of the triplet states
{|T0〉 = 1√

2
(|↑↓〉 + |↓↑〉) , |T−〉 = |↓↓〉 , |T+〉 = |↑↑〉}, the electrons must have

an antisymmetric orbital wavefunction to guarantee the overall antisymmetry of
the total wavefunction. In particular, both electrons cannot occupy the ground state
orbital of the quantum dot, and the triplet states will have a higher energy than the
singlet. The energy splitting between the singlet and triplet states is the exchange
coupling energy.

The phrase “Pauli spin blockade” is also used to describe a related phenomenon.
Similar to the Coulomb blockade, where the presence of an electron in a quantum
dot prevents the addition of further electrons until the Coulomb repulsion is
overcome, the Pauli spin blockade describes a scenario in which the presence of
a spin in a quantum dot prevents the addition of another spin in a symmetric spin
configuration until the exchange energy can be overcome.

It is straightforward to show that the singlets and triplets are eigenstates of the
Heisenberg Hamiltonian discussed above, and when J > 0, the singlet has a lower
energy than the triplets. To understand some of the important physical mechanisms
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underlying exchange coupling, let us consider the following Hubbard model for
electrons in N quantum dots:

HHub =
N∑

i=1

[
Ũ

2
ni(ni − 1)+ Vini

]

+
∑

〈i,j 〉
UCninj +

∑

〈i,j 〉
t
∑

σ=↑↓
(c

†
i,σ cj,σ + h.c.). (1)

Here, c†
i,σ is a fermionic operator that creates an electron in dot i with spin σ , and

ni = ∑
σ ci,σ c

†
i,σ is the number operator for dot i. Vi is the gate-controlled energy

of dot i, Ũ is the on-site Coulomb energy, UC is the nearest-neighbor Coulomb
energy, 〈i, j 〉 indicates a sum over nearest neighbors, and t is the hopping energy
between dots. It can be shown that when the number of electrons in the system is
the same as the number of quantum dots, this Hamiltonian can be transformed to
the Heisenberg Hamiltonian in certain parameter regimes [39].

To see how exchange coupling can occur in the Hubbard model, we consider
two electrons in a double quantum dot, and we consider the matrix elements of this
Hamiltonian in the following basis:

|T0(1, 1)〉 = 1√
2
(c

†
1,↑c

†
2,↓ + c†

1,↓c
†
2,↑) |0〉 (2)

|S(1, 1)〉 = 1√
2
(c

†
1,↑c

†
2,↓ − c†

1,↓c
†
2,↑) |0〉 (3)

|S(2, 0)〉 = c†
1,↑c

†
1,↓ |0〉 (4)

|S(0, 2)〉 = c†
2,↑c

†
2,↓ |0〉 , (5)

where |0〉 indicates the state with no electrons, and the numbers in parentheses
give the numbers of the electrons in both quantum dots. In this basis, the Hubbard
Hamiltonian has the following form:

HHub =

⎛

⎜⎜⎝

0 0 0 0
0 0

√
2t

√
2t

0
√

2t U + ε′ 0
0
√

2t 0 U − ε′

⎞

⎟⎟⎠ , (6)

up to an overall energy shift, and where U = Ū − UC , and ε′ = V1 − V2. Below,
we refer to ε′ as the detuning of the double quantum dot. We set ε = U + ε′ [i.e.,
we set the zero of the detuning to the (1,1)-(2,0) charge transition], and then we
diagonalize the subspace spanned by |S(1, 1)〉 and |S(2, 0)〉 to give new effective
singlet states |S−〉 and |S+〉. We isolate the subspace spanned by {|T0(1, 1)〉, |S−〉,
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Fig. 2 Exchange coupling in double quantum dots. (a) Energies of the effective single-triplet
Hamiltonian Eq. (7). The different states and the exchange coupling are labelled. (b) Schematic
of detuning-controlled exchange oscillations. (c) Detuning-controlled exchange oscillations in
a GaAs quantum dot. Reprinted from Petta et al., Phyisca E, 35, 2, 251–256 (2006) with the
permission of Elsevier. (d) Schematic of barrier-controlled exchange oscillations. (e) Barrier-
controlled exchange oscillations in a Si/SiGe quantum dot. Reed et al., Phys. Rev. Lett., 116,
110402 (2016). Copyright the Authors, licensed under a Creative Commons Attribution (CC
BY) license. (f) Barrier-controlled exchange oscillations in a GaAs quantum dot. Reprinted with
permission from Martins et al., Phys. Rev. Lett, 116, 116801 (2016). Copyright (2016) by the
American Physical Society

and |S+〉}. In this basis, and in the absence of magnetic fields, the effective singlet–
triplet Hamiltonian is

HST =

⎛

⎜⎜⎝

0 0 0

0 1
2

(
ε −√ε2 + 8t2

)
0

0 0 1
2

(
ε +√ε2 + 8t2

)

⎞

⎟⎟⎠ . (7)

One can see that |S−〉 has a lower energy than the |T0〉 state. This difference

in energy is the exchange coupling J (ε, t) = 1
2

(
ε −√ε2 + 8t2

)
. The energies

of this Hamiltonian are shown in Fig. 2a. More detailed methods of calculating
exchange couplings in quantum-dot systems involve using the actual eigenfunctions
of the quantum-dot confinement potentials through the Heitler–London and Hund–
Mulliken approaches [40] and various configuration interaction techniques [41, 42].
These approaches generally rely on a detailed knowledge of the quantum-dot
confinement potential.

The previous discussion shows that the two main tools an experimenter has at
their disposal to control exchange couplings include the detuning ε and the interdot
tunnel coupling t (Fig. 2). Historically, exchange couplings in semiconductor quan-
tum dots were manipulated through detuning control [43] (Fig. 2b,c), in part because
experimental manipulation of electron states in quantum dots typically requires
rapid control of electrochemical potentials, and detuning-controlled exchange oscil-
lations require no extra experimental overhead. A downside to detuning-controlled
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exchange coupling is that this method increases the exposure of the spin system to
charge noise, and the quality factor of exchange oscillations induced in this way
tends to be on the order of 10 [46].

An alternate method to create exchange coupling, which has gained traction in
recent years, is to rapidly modify the tunnel barrier between two quantum dots
by pulsing the voltage applied to a barrier gate [44, 45] (Fig. 2d–f). This method,
called “barrier-controlled,” or “symmetric” exchange involves fully separating the
electrons into the (1,1) charge configuration and then applying a rapid, positive
voltage pulse to the barrier gate. This voltage pulse both lowers the potential
barrier between the dots and causes the electron wavefunctions to move closer
toward each other [42, 47]. Both effects increase the exchange coupling between
electrons. Perhaps most importantly, barrier-controlled exchange coupling is first-
order insensitive to charge noise associated with the electrochemical potentials of
the dots, leading to significantly improved exchange-oscillation quality factors, at
least compared with detuning-controlled exchange.

In principle, both barrier- and detuning-controlled exchange are possible to
implement in extended systems of quantum dots. A significant challenge in this
regard, however, is that the action of voltages applied to barrier gates modifies
not only the tunnel barriers and locations of the dots but also their electrochem-
ical potentials. Likewise, the action of a plunger gate will change not only the
electrochemical potential of its associated dot but also all of the other parameters
of the confinement potential. The development of “virtual gates” has allowed
experimenters to overcome this problem and adjust parameters of quantum-dot spin
chains independently [13, 15, 28, 32, 48]. This concept involves measuring how
voltages applied to all gates affect all the electrochemical potentials in a system
of quantum dots. Assuming that the electrochemical potentials vary linearly with
the gate voltages, the exact gate voltages required to create an arbitrary change
to the electrochemical potentials may be computed. Recent advances exploiting
this concept have demonstrated controlled multiple nonzero exchange couplings
in extended arrays of quantum dots [47, 49], as well as charge displacement
through multiple quantum dots in series [15]. In addition to the notion of virtual
gates, various computer-automated and machine learning tuning approaches have
undergone rapid progress in recent years and will no doubt provide a key enabling
technology for the exploration of quantum-dot spin chains [27, 32, 34].

3 Quantum Information Processing with Exchange-Coupled
Quantum-Dot Spins

Spin qubits based on gate-defined quantum dots are an excellent platform for
quantum information processing [20]. Individual electrons can possess extremely
long coherence times [50, 51], and semiconductor quantum dots are compatible with
advanced semiconductor manufacturing techniques [52, 53]. Exchange coupling
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underlies a host of different mechanisms for quantum information processing with
semiconductor quantum-dot spin qubits. In this section, we review the different
ways in which exchange coupling can facilitate quantum information processing
with spins in semiconductor quantum dots.

3.1 Single-Spin Qubits

Conceptually, the simplest spin qubit consists of a single electron, which can either
point up or down with respect to an external magnetic field [59] (Fig. 3a). Single-
qubit rotations can be driven by applying a real or effective alternating magnetic
field perpendicular to the quantizing field. Individual single-spin qubits can have
extremely high gate fidelities, far exceeding 99% [50, 60].

A challenge for single-spin qubits, however, is the implementation of a robust
multi-qubit operation. The magnetic dipole–dipole coupling between electrons
is weak and not usually strong enough to implement high-fidelity two-qubit
operations. However, the exchange coupling between two electrons provides a
natural route for a two-qubit gate. Specifically, when two spins i and i + 1 evolve
under exchange Ji for a time T = 1

2Ji
, the exchange coupling generates a SWAP

gate (Fig. 4a). Evolution for T2 produces a
√

SWAP gate, which can entangle the
two electrons. Together with single-qubit gates, a

√
SWAP gate is sufficient for

universal quantum computing [59, 61, 62]. These facts illustrate on a basic level
the potential of exchange coupling for quantum computing and information transfer
and motivated initial proposals for quantum computing architectures based on
semiconductor quantum dots [55, 59, 63].

In the presence of magnetic gradients between electrons, exchange coupling can
enable other two-qubit gates for single spins, such as controlled-phase (CPHASE)
(Fig. 4c) or controlled-not (CNOT) (Fig. 4b) gates [64, 65], both of which are also
sufficient for universal quantum computing. In spin chains, magnetic gradients are
routinely employed to provide single-spin addressability, making the realization
of these gates a natural goal [66–69]. The principles of two-qubit gates based on
exchange have been experimentally developed in the past decades [43, 50, 61],
culminating recently in the demonstration of a CPHASE gate with fidelity exceeding
99%. Such an achievement is a significant milestone for quantum-dot-based quan-
tum information processing [70] because it corroborates the feasibility of operating
spin qubits with gate fidelities above the threshold for quantum error correction [71].

Beyond two-qubit gates, exchange coupling can also enable three-qubit opera-
tions, such as a Toffoli gate [72] and entangling operations [47].
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3.2 Two-Spin Qubits

Although the basic spin qubit consists of an individual electron spin, the ability to
manipulate exchange opens up the possibility to form new qubits out of multiple-
spin states, as shown in Fig. 3. The potential advantage of such a qubit is the
possibility of electrical spin-state control [55] and the potential to operate qubits
in decoherence-free subspaces [73], which feature long-lived coherence even in the
presence of environmental noise.

Perhaps the simplest exchange-enabled multi-spin qubit is the singlet–triplet (ST)
qubit [43, 54], formed from two electrons in a double quantum dot (Fig. 3b). The ST
qubit Hamiltonian is HST = J (ε, t)Sz+BzSx , in the {|S〉 , |T0〉} subspace, where
J (ε, t) is the exchange coupling between the two dots, and Bz is the difference

Fig. 3 Comparison between different types of spin qubits. In each panel, the number of spins
involved in each qubit is shown. Relevant exchange couplings are highlighted in red, and entangled
states are shown with gray arrows. Solid lines on the Bloch sphere indicate exchange-based qubit
control axes, and dashed arrows indicate magnetic control axes. (a) Single-spin qubit, requiring
two magnetic control axes. (b) Singlet–triplet qubit, requiring one magnetic control axis [43, 54].
(c) Exchange-only qubit with two exchange-based control axes [55]. (d) Exchange-only qubit with
four (or more electrons) with two orthogonal exchange-based control axes [56–58]. Primed states
involve excited levels, such as orbitals or valley states. Reprinted from Kandel et al., App. Phys.
Lett., 119,030501 (2021) with the permission of AIP Publishing

Fig. 4 Exchange coupling in single-spin qubits. (a) Top: truth table of a SWAP gate between
single spins in GaAs quantum dots driven by exchange. Bottom: truth table of a 2π exchange
rotation, from Ref. [61]. (b) Evidence for a CNOT gate between single spins in Si/SiO2 quantum
dots driven by exchange. Reprinted with permission from Veldhorst et al., Nature, 526, 410–414
(2015). Copyright Springer Nature (2015). (c) Gate-set tomography of a CPHASE gate between
single spins in a Si/SiGe quantum well driven by exchange. Xue et al., Nature 601, 343–347 (2022).
Copyright the Authors, licensed under a Creative Commons Attribution (CC BY) license
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in longitudinal magnetic field between the dots (Fig. 5a). This system occupies a
decoherence-free subspace with respect to global magnetic fields that couple to the
spin of the electron, because the energies of the |S〉 and |T0〉 states do not depend
on the external magnetic field, in contrast to the energies of single-spin states. In
addition, the Sz term in HST depends on electric fields (both ε and t depend on
electrostatic potentials), which are often easier to generate than pulsed magnetic
fields in cryogenic environments. A final benefit of exchange coupling for ST qubits
is the possibility of spin-to-charge conversion via the Pauli spin blockade, which
enables fast, high-fidelity electrical measurement of spin states [19]. Singlet–triplet
qubits, and variations thereof, have been the subject of significant theoretical and
experimental research [43, 74, 75, 77–88].

Exchange coupling also enables significant enhancements in the coherence
time in ST qubits through dynamical decoupling. Early experiments demonstrated
inhomogeneously broadened coherence times ofBz rotations of around 10 ns, due
to the fluctuating hyperfine field in GaAs quantum dots [43]. By using dynamical
decoupling sequences, with periodic exchange pulses interspersed during the qubit
evolution, the coherence time of an ST qubit can be extended to nearly 1 ms [51, 75]
(Fig. 5b,c), 4 orders of magnitude larger than the inhomogeneously broadened
coherence time.

Exchange coupling also enables two-qubit gates between ST qubits [89–92].
This operation can be intuitively understood in the following picture. Although the
ST qubit eigenstates are commonly expressed as the set {|S〉 , |T 0〉}, an alternative

Fig. 5 Exchange coupling in singlet–triplet qubits. (a) Exchange coupling, together with con-
trolled magnetic gradients, enables universal quantum control of ST qubits. Reprinted with
permission from Foletti et al., Nature Physics, 5, 903–908 (2009). Copyright Springer Nature
(2009). (b) Exchange coupling also enables decoupling ST qubits from hyperfine noise, extending
the coherence time to several hundred μs. Reprinted with permission from Bluhm et al., Nature
Physics, 7, 109–113 (2011). Copyright Springer Nature (2011). (c) Carefully optimized decoupling
pulses can further reduce magnetic fluctuations resulting from the Larmor precession of the
individual Ga and As nuclei, resulting in coherence times approaching the millisecond range.
Reprinted with permission from Malinowski et al., Nature Nanotechnology, 12, 16–20 (2017).
Copyright Springer Nature (2017). (d) Evidence of the effective Ising coupling predicted to emerge
between exchange-coupled ST qubits. Qiao et al., Nat. Comm., 12, 2142 (2021). Copyright the
Authors, licensed under a Creative Commons Attribution (CC BY) license
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basis consists of the set {|↑↓〉 , |↓↑〉}. Considering a chain of four electrons (two ST
qubits) with a nonzero exchange coupling between the second and third electrons,
one can see that the state |↑↓〉 ⊗ |↑↓〉 will have a lower energy than the state
|↑↓〉 ⊗ |↓↑〉, which leads to an effective Ising coupling between ST qubits, though
care must be taken to prevent leakage. Recently, evidence of this effective Ising
coupling has been observed [76] (Fig. 5d).

3.3 Three-Spin Qubits

Three electrons in a triple quantum dot create an “exchange-only” qubit [55, 93,
95–99] (Figs. 3d, 6). In contrast to ST qubits, which feature one electrical control
axis and one magnetic control axis (single-spin qubits require two magnetic control
axes), exchange-only qubits enable complete electrical control, and the two control
axes correspond to exchange coupling between the two nearest-neighbor pairs of
electrons in the triple dot. The eigenstates of a three-electron exchange-only qubit
usually consist of spin states with fixed total spin and triplet- or singlet-like states on
one of the outer pairs of spins [55, 93, 96]. In addition to conventional exchange-only
qubits, resonant exchange qubits [94, 100] (Fig. 6b) and hybrid qubits [101, 102]
leverage exchange couplings to enable control of systems with three electrons [39].
Extending this approach, qubits can also be formed with more than three electrons
in three or more quantum dots, and exchange couplings provide complete control
over the qubit dynamics [56–58] (Fig. 3d). Such “singlet-only” qubits are predicted
to be robust against magnetic field noise. Exchange coupling between triple dots
in various configurations can also lead to multi-qubit operations, including CNOT
gates [55, 103–105] and CPHASE gates [106].

Since the initial demonstrations by Medford et al. [93, 94] in GaAs quantum
dots (Fig. 6a,b), the development of exchange-only qubits has steadily continued,

Fig. 6 Exchange coupling in three-electron spin qubits. (a) Coherent oscillations in a three-
electron exchange only qubit. Reprinted with permission from Medford et al., Nature Nan-
otechnology, 8, 654–659 (2013). Copyright Springer Nature (2013). (b) Rabi oscillations of
a resonant-exchange qubit. Reprinted with permission from Medford et al., Phys. Rev. Lett,
111, 050501 (2013). Copyright (2013) by the American Physical Society. (c) Randomized
benchmarking of an exchange-only qubit. Reprinted with permission from Andrews et al., Nature
Nanotechnology, 14, 747–750 (2019). Copyright Springer Nature (2019)
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with a recent demonstration of high-fidelity single-qubit gates through randomized
benchmarking [95] (Fig. 6c) and advanced device architectures compatible with
scaling up systems of exchange-only qubits [53].

4 Quantum Simulation with Quantum-Dot Spin Chains

In addition to uses for quantum information processing, chains of semiconductor
quantum dots have great potential for quantum simulation, which is the experimental
realization of Hamiltonians that are difficult or impossible to simulate on classical
computers, using quantum systems. For example, the Hubbard model, which
we discussed above in Sect. 2.3, is a fundamental model of condensed matter
physics, and it is thought to underlie phenomena as important as high-temperature
superconductivity [107]. In different experimental platforms, especially cold-atom
systems [108], simulating the Hubbard phase diagram remains the focus of intense
research. While other platforms, like cold-atom systems have made significant
progress in understanding different features of the Hubbard model, semiconductor
quantum dots also provide an attractive platform in which to study the Hubbard
model [109], because they can access parameter regimes not easily accessible
to cold-atom systems, including the ultra-low temperature regime. Quantum-
dot systems also provide a natural way to study Hubbard physics in solid-state
environments. Since the Hubbard model is predicted to underlie important solid-
state phenomena, such as high-temperature superconductivity, the study of such
models in condensed matter environments seems especially worthwhile.

In another example, the Heisenberg spin chain is predicted to exhibit a host of
interesting phenomena, ranging from quantum magnetism [107] and spin chain
dynamics [110] to non-equilibrium physics like many-body localization [111].
Semiconductor quantum dots also provide a natural platform in which to explore
this model, given the ease of implementing exchange coupling between neighboring
spins, together with the capabilities of single-spin control and readout.

In this section, we review recent efforts to explore different aspects of the Hub-
bard and Heisenberg models. These exciting results show that this is a promising
avenue of research, with more exciting results yet to come in the future.

4.1 Charge Physics in the Hubbard Model

Single and double quantum dots are mainstays of semiconductor spin-qubit tech-
nology. The tune-up of double quantum-dot systems into the single-charge regime
is a routine occurrence in research laboratories throughout the world and the
starting point for many quantum-information processing experiments. In some
sense, double-quantum-dot systems serve as small-scale simulations of the Hubbard
model. For example, the Hubbard model can be used to provide a phenomenological
quantum-mechanical description of charge-stability diagrams [113].
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Fig. 7 Quantum simulation of charge physics in the Hubbard model. (a) Landau–Zener–
Stückelberg interferometry of a single charge tunneling back and forth between distant dots.
Reprinted with permission from Braakman et al., Nature Nanotechnology, 8, 432–437 (2013).
Copyright Springer Nature (2013). (b) Transition from collective to conventional Coulomb
blockade in a linear array of three dots. Reprinted with permission from Hensgens et al., Nature,
528, 70–73 (2017). Copyright Springer Nature (2017)

Going beyond double-dot systems, semiconductor quantum dots provide an
appealing platform for the simulation of Hubbard physics involved in systems
of more than two sites. Early work in this direction was reported by Singha
et al. in Ref. [114]. In a GaAs/AlGaAs heterostructure, the authors created an
artificial honeycomb lattice by etching the surface of the heterostructure [115]. The
resulting pattern created an attractive, periodic potential for electrons, with about
8 electrons per site in an area of about 104μm2. A characteristic prediction of the
Hubbard model for this system is that the on-site energy Ū should scale inversely
with the square root of the in-plane magnetic field strength [114]. Inelastic light-
scattering experiments revealed both the expected conventional cyclotron mode
(with a frequency that scales linearly with the magnetic field), in addition to a
mode with the predicted sublinear behavior. This low-frequency mode was taken
to represent evidence that Hubbard physics in this artificial honeycomb lattice can
be engineered and behaves as expected.

Although such large-scale arrays of quantum dots seem attractive for quantum
simulation of many-particle systems [109], recent research has focused on building
up such systems one site at a time. In 2013, Braakman et al. presented evidence for
the coherent tunneling of an electron between the outer dots of a three-dot linear
array [112] (Fig. 7a). Such long-distance coupling between quantum dots can be
understood as a second-order tunneling effect within the context of the Hubbard
model. The coherence of this tunneling effect was verified through Landau–Zener–
Stückleberg interferometry of the charge states near the tunneling transition between
the outer dots.

Further exploration of charge physics in the Hubbard model was presented by
Hensgens et al. in Ref. [28] (Fig. 7b). The authors studied the transition between
individual and collective charge transitions in a series of three quantum dots, as the
chemical potentials and tunnel barriers between dots varied. In the limit of high
barrier potentials between dots, the three dots acquire charges separately, analogous
to a Mott insulating solid. However, when the tunnel barriers are lowered, the three
separate dots effectively merge to form a large dot, and the large dot acquires charges
one at a time [28].
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Although such three-site Hubbard experiments can still be simulated on classical
computers without much difficulty, the transition from simulating the Hubbard
physics of more than two electrons required significant experimental advances
that have set the stage for further developments in this direction. Specifically, an
important driver of these results was the ability to tune the chemical potentials and
barriers in the linear array simultaneously and independently [13, 15, 28, 32, 48].
This involved establishing a set of virtual plunger and barrier gates, together with
computer automated tuning of the device [27, 32, 34]. Such an advance marked an
important shift in thinking toward the use of computer automated tuning procedures
to aid in the operation of large-scale quantum-dot devices. These advances also
paved the way for the exploration of spin effects in the Hubbard and Heisenberg
models, as we discuss in the next sections.

4.2 Spin Physics in the Hubbard Model

In addition to charge physics, semiconductor quantum-dot arrays also enable
exploring different spin effects in the Hubbard model. The advances described in the
previous section focusing on tuning large quantum-dot systems have also translated
to advances in the simulation of spin physics in the Hubbard model.

Building on the advances presented by Braakman et al. in Ref. [112], which
demonstrated coherent coupling between charge states in distant dots, Baart et
al. demonstrated coherent spin interactions between distant dots in Ref. [48]. As
discussed above, in the presence of tunnel coupling between two quantum dots (in
this case, between the outer dots of a linear three-dot array), one generally expects
exchange coupling between spins in those dots to occur. Baart et al. observed
evidence for this effect, by initializing and measuring a pair of spins in an outer
quantum dot using Pauli spin blockade (Fig. 8a). After allowing the electrons to

Fig. 8 Quantum simulation of spin physics in the Hubbard model. (a) Superexchange between
distant electron spins, mediated by an empty quantum dot. Reprinted with permission from Baart et
al., Nature Nanotechnology, 12, 26–30 (2017). Copyright Springer Nature (2017). (b) Interactions
between distant electrons measured in a Si triple dot. Reprinted with permission from Chan et al.,
Nano Letters, 21, 3, 1517–1522 (2021). Copyright (2021) by the Amperican Chemical Society. (c)
Signatures of Nagaoka ferromagnetism in a square array of four dots. Reprinted with permission
from Deholain et al., Nature 579, 528–533 (2020). Copyright Springer Nature (2020)
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evolve when separated, the electrons were recombined and measured via Pauli
spin blockade in the same dot. Such an experiment is analogous to experiments
demonstrating singlet–triplet exchange oscillations in double quantum dots [43],
except that in this case, the electrons were in distant dots.

Similar effects have also been observed in Si triple quantum dots [116] (Fig. 8b),
where an effective coupling between electrons in the outer dots of a three-dot
array mediated by an occupied quantum dot was observed. By observing how the
resonance frequencies of the electron spins in the outer dots changed with detuning,
Chan et al. observed an effective nonzero coupling between electrons in the outer
two quantum dots.

Collectively, such effects, which create an effective exchange coupling between
distant spins, are usually known as superexchange. While many different types of
superexchange exist, nearly all rely on virtual excitation of an intermediate entity,
such as an empty, singly occupied, or multiply occupied quantum dot. Below, we
will discuss superexchange in a spin chain, where an effective coupling between
electrons separated by more than one site can be achieved.

A step forward for quantum simulation of spin physics in the Hubbard model
in quantum dots occurred with a recent demonstration of Nagaoka ferromag-
netism [14]. Working with a 2x2 quantum-dot array [29], Dehollain et al. presented
evidence for this phenomenon in Ref. [14]. The theory of Nagaoka [117] provides a
prediction for itinerant ferromagnetism in metals for the case of a nearly half-filled
band. In the 2x2 quantum-dot array, Dehollain et al. created a nearly half-filled band
by filling the array with only three electrons. As in Nagaoka’s original theory, the
absence of an electron at one of the locations stabilizes the ground state where all
of the spins have the same orientation. Experimentally, the system of three electrons
was initialized and readout using the Pauli spin blockade associated with a pair
of electrons in one dot and an electron with a random spin in another dot. After
separating the two electrons in the singlet state via tunneling, the gate voltages were
pulsed to different configurations. After allowing the system of three electrons to
evolve for a period of time, the researchers measured the system by projecting two of
the electrons onto the singlet/triplet basis with a Pauli spin-blockade measurement.
The researchers observed an enhanced triplet return probability in the range of gate
voltages predicted to demonstrate the ferromagnetic ground state (Fig. 8c).

4.3 Spin Physics in the Heisenberg Model

A special case of the Hubbard model occurs when each site or quantum dot contains
only one electron. When the occupancy of each dot remains fixed, the effective
Hamiltonian for the spin degrees of freedom can be expressed as the Heisenberg
Hamiltonian:
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HH =
N∑

i=1

JiSi · Si+1 + Bi · Si , (8)

where Si is an operator that corresponds to electron i, and Bi is the magnetic field
experienced by that electron.

In contrast to the Hubbard model, which contains parameters that describe the
tunnel couplings and on-site energies, the Heisenberg Hamiltonian involves only
the exchange couplings and magnetic fields. While advances in the independent
control of chemical potentials have enabled progress in simulating Hubbard physics,
the independent control of exchange couplings, which is required to simulate the
Heisenberg model, has remained challenging, though recent advances have taken
steps toward overcoming this obstacle.

The primary challenge is that exchange couplings depend on both the electro-
chemical potentials and tunnel couplings. Moreover, tunnel couplings generally
depend in a highly nonlinear and nonlocal way on gate voltages [47]. Heuristically,
exchange coupling depends on the degree of overlap between electronic wavefunc-
tions, and such overlaps depend sensitively on the barrier potentials and positions of
the wavefunctions. A final complication is that when multiple exchange couplings
are present, one cannot simply extract the exchange couplings from the measured
oscillation frequencies, because the energy gaps in the spectrum of a spin chain do
not usually correspond to the bare exchange couplings themselves. These challenges
make it difficult to use trial-and-error or interpolation approaches [28–33], which
have been used to control tunnel couplings in quantum dots, to modulate exchange
couplings.

Qiao et al. overcame this problem and demonstrated coherent exchange coupling
between multiple spins in a linear four-dot array. Through a combination of

Fig. 9 Quantum simulation of Heisenberg spin chains. (a) Coherent multi-spin exchange cou-
pling. Qiao et al., Phys. Rev. X, 10, 031006 (2021). Copyright the Authors, licensed under a
Creative Commons Attribution (CC BY) license. (b) Preparation of the Heisenberg antiferromag-
net. Van Diepen et al., Phys. Rev. X, 11, 041025 (2021). Copyright the Authors, licensed under
a Creative Commons Attribution (CC BY) license. (c) Adiabatic quantum state transfer. Kandel
et al., Nat. Comm. 12, 2156 (2021). Copyright the Authors, licensed under a Creative Commons
Attribution (CC BY) license. (d) Superexchange between distant electron spins. Reprinted with
permission from Qiao et al., Phys. Rev. Lett, 126, 017701 (2021). Copyright (2021) by the
American Physical Society
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theoretical calculations and electrostatic modeling, they showed that a primary
cause of this difficulty is the electronic wavefunction shifts that occur during
exchange pulses [42, 47]. For example, during a typical barrier-gate pulse, the
electrons on either side of the barrier move closer to or farther away from each
other, depending on the sign of the voltage pulse. This motion of the electronic
wavefunctions has a significant impact on the magnitude of the exchange coupling.
Electrostatic modeling of the potential during a barrier-gate pulse confirmed this
picture [47]. Qiao et al. also showed that two models based on the Heitler–London
formalism [40, 120] could be used to predict the barrier-gate voltages given a set of
desired exchange couplings (Fig. 9a). The model parameters, which describe how
much the electrons move in response to voltage pulses, were found by measuring
how each of the exchange couplings depended on all of the barrier gate voltages.
These models were sufficient to enable the generation of coherent three- and four-
spin exchange oscillations within a reasonably wide range of exchange-coupling
values [47]. This approach is also extensible to longer arrays of quantum-dot spin
qubits.

Van Diepen et al. have also reported the creation of multiple nonzero exchange
couplings by adjusting the detunings, instead of the barrier heights, in a linear array
of four quantum dots [49]. In addition to demonstrating coherent exchange coupling
between all four spins in the array, van Diepen et al. also demonstrated the creation
of the ground state of the Heisenberg Hamiltonian, by adiabatically manipulating
the exchange couplings beginning from a state composed to two separated singlets
(Fig. 9b).

Building on the possibility of precise control of exchange couplings in a
quantum-dot array, Kandel et al. demonstrated adiabatic quantum state transfer
(AQT) in a chain of four quantum dots [118]. Adiabatic quantum state transfer
(AQT), sometimes referred to as adiabatic quantum teleportation [121], is a process
that is reminiscent of stimulated Raman adiabatic passage, a time-honored technique
from the optical physics community [122]. The basic process of AQT involves
a chain of three spins. By starting from a configuration with a strong exchange
coupling between two spins, say 2 and 3, and by adiabatically modulating the
exchange couplings to a final configuration with a strong coupling between dots
1 and 2, the initial state of dot 1 can be transferred to dot 3, and the joint state of
spins 2 and 3 is transferred to dots 1 and 2. Although it has been studied in great
detail theoretically over the past decades [121, 123–132], it has only recently been
achieved experimentally, despite its great potential for use in quantum information
processing experiments.

Kandel et al. implemented AQT in a GaAs/AlGaAs quadruple quantum-dot
array [118] (Fig. 9c). To transfer a spin eigenstate from dot 3 to dot 1, a singlet
was prepared in dots 1 and 2, by electron exchange with the reservoirs in the
presence of large exchange coupling J1. Then, J1 was decreased to zero, while
J2 was simultaneously increased. During this process, the spin state of dot 3 was
transferred to dot 1, and the singlet state of dots 1 and 2 was transferred to dots 2
and 3. For spin eigenstates, the simulated fidelity of this process in GaAs quantum
dots is about 0.95. The simulated fidelity for the transfer of arbitrary quantum states
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in GaAs quantum dots is lower, because of the nuclear hyperfine noise. Crucially,
the precise fidelity of this operation does not depend on the details of the pulses. This
process could also be cascaded to enable long-distance transfer of both single-spin
states and spin singlet states.

Another possibility enabled by the ability to independently control exchange
couplings in spin chains is long-distance superexchange. As mentioned above,
superexchange is an effective coupling between distant spins [110, 133–138],
unlike conventional exchange, which only couples nearest-neighbor spins. Gen-
erally, superexchange involves an intermediate set of quantum dots that may be
empty [139], singly [116], or multiply [140] occupied. One of the most frequently
studied systems predicted to exhibit superexchange is a spin chain, consisting of two
qubits weakly coupled to the ends of a strongly coupled spin chain [134, 135, 137].

To explore superexchange mediated by a spin chain, Qiao et al. implemented the
following Hamiltonian in a system of four quantum dots [119]: H = jS1 · S2 +
JS2 · S3 + jS3 · S4. When j � J , superexchange between spins 1 and 4 can occur
when spins 2 and 3 have the singlet state, via virtual excitation to the polarized

triplet configurations, and at an oscillation frequency of J ′ = j2

2J

(
1+ 3j

2J

)
, up to

third order in j (Fig. 9d). If spins 2 and 3 have any of the triplet states, which are
nominally degenerate, those spins will evolve in time at a frequency scale of j , and
superexchange between the end spins cannot occur with a reasonable fidelity. To
realize this scenario, where the chain is prepared as a singlet, Qiao et al. harnessed
the AQT process described above to transfer a spin singlet, originally prepared in
one of the outer dots, to the interior of the array. After implementing the exchange
couplings discussed above, the AQT process was reversed to transfer the end spins
to one of the outer pairs of dots, which could be read out with Pauli spin blockade.
End-spin oscillations were observed with the expected dependence on the J and j
(Fig. 9d).

In addition to pure Heisenberg spin chains, disordered Heisenberg spin chains,
[e.g. those with random Bi in Eq. (8)] are also systems of great interest. Because
of the naturally occurring nuclear hyperfine fluctuations, quantum-dot spin qubits
enable a straightforward realization of this model. One interesting feature of dis-
ordered Heisenberg spin chains is the possibility of many-body localization [111],
a phase of matter that seems to violate conventional assumptions about statistical
mechanics. In a many-body localized system, despite the presence of interactions,
disorder in the system prevents a subset of the system from fully entangling or
thermalizing with the rest. The prototypical system thought to exhibit many-body
localization is the disordered Heisenberg spin chain. Although many experiments in
other platforms have presented evidence for many-body localization [141–145], few
have been able to reproduce this seminal model and instead involve longer-range
interactions. Because quantum dots enable an exact realization of the disordered
Heisenberg spin chain model, semiconductor quantum dots present an attractive
platform in which to realize this phenomenon and related effects [12].

The time crystal is another phase of matter that can occur in disordered spin
chains [146–150]. In a time crystal, a parent non-thermalizing phase, such as a
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many-body localized phase, can stabilize a subharmonic response of the system to a
periodic drive indefinitely. The prototypical model for a time crystal is a disordered
Ising spin chain. As in the case of many-body localization, the exact realization of
this model has evaded implementation, though evidence of phases related to time
crystals has been observed in different systems [151–154]. Although disordered
Heisenberg spin chains do not enable creating a time crystal [150], it is possible to
convert the Heisenberg interaction to an Ising form, through various mechanisms,
including magnetic gradients [64, 155] and control pulses [150]. Recent experi-
mental work has suggested that exchange-coupled singlet–triplet qubits can also
realize a form of discrete time-crystalline behavior [76, 91]. Although the practical
applications of the many-body localized and time-crystal phases are not yet entirely
clear, they may be useful in quantum information processing applications as ways
to stabilize many-body quantum states [12, 156].

5 Quantum State Transfer in Spin Chains

Some of the features of Heisenberg spin chains we have discussed above, especially
superexchange and AQT, have potential applications in quantum computing for
the transfer of quantum states between qubits. Transferring quantum information
between qubits is essential for quantum error correction [160], and quantum pro-
cessors with high connectivity can perform more efficiently than those with lower
connectivity [161]. Recent years have seen significant progress in this direction.
Building on the advances discussed above relating to quantum-dot architectures
and fabrication, as well as the independent control of chemical potentials, single
electrons can now be shuttled through extended arrays of quantum dots. Mills et al.
demonstrated the ability to pump a single charge through an array of nine quantum
dots in Si [15]. Depending on the number of charges involved and the repetition
rate, this charge pump generated a measurable current that agreed with predictions
(Fig. 10a). These experiments demonstrated the high degree of control over charge
states afforded by modern quantum-dot architectures.

When electrons move to different dots during tunneling, the spin state of the
electron can also be preserved. Initially demonstrated through the preservation of the
coherence of a spin singlet during tunneling [43], the preservation of spin coherence
has also been demonstrated during tunneling between distant quantum dots [48,
162, 163], in square arrays of quantum dots [157] (Fig. 10b), and in Si quantum
dots [164].

One potential drawback to the transfer of spin states through tunneling is that
empty quantum dots between the starting and ending locations are required. A route
to overcoming this obstacle is to exploit the exchange coupling between neighboring
quantum dots. An especially simple way to transfer quantum states with exchange
coupling involves pulsed SWAP gates [158]. Although straightforward in concept,
this idea had evaded implementation in a system of more than two dots until
recently. Kandel et al. demonstrated this approach in a GaAS/AlGaAs quadruple
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dot device with overlapping gates, transferring both single-spin eigenstates and
entangled states back and forth across the array of four quantum dots through
different sequences of SWAP operations [158] (Fig. 10c). Before and after each
step, the two pairs of electrons were read out using spin-to-charge conversion
techniques associated with Pauli spin blockade [43, 74]. A limiting factor in the
previous experiment was the hyperfine interaction between the electron and nuclear
spins in the GaAs/AlGaAs heterostructure. As discussed above, the hyperfine-
induced dephasing can be minimized by working in Si quantum dots. Sigillito et
al. demonstrated the transfer of quantum spin states using “resonant” SWAP gates
in the presence of a large magnetic gradient [30] in Si quantum dots. Such gates are
generated by an oscillating exchange coupling [80, 83].

An exciting illustration of how exchange coupling can enable long-distance state
transfer involves quantum teleportation [165]. Teleportation involves distributing
two members of an entangled pair to two experimenters, Alice and Bob. To teleport
an unknown qubit state to Bob, Alice should measure the unknown state together

Fig. 10 State transfer in quantum-dot spin chains. (a) Current generated by shuttling single
electrons through a nine-dot array. Mills et al., Nat. Comm., 10, 1063 (2019) Copyright the
Authors, licensed under a Creative Commons Attribution (CC BY) license. (b) Motional narrowing
of a pair of electron spins shuttled through a square array. Flentje et al., Nat. Comm., 8, 501
(2017). Copyright the Authors, licensed under a Creative Commons Attribution (CC BY) license.
(c) Entangled state transfer via SWAP operations. Reprinted with permission from Kandel et al.,
Nature, 573, 553–557 (2019). Copyright Springer Nature (2019). (d) Quantum teleportation of
entangled states. Qiao et al., Nat. Comm. 11, 3022, (2020). Copyright the Authors, licensed under
a Creative Commons Attribution (CC BY) license
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with her member of the entangled pair in the Bell-state basis. This measurement
projects Bob’s member of the entangled pair onto the unknown state, up to a single-
qubit rotation that depends on Alice’s measurement. Creating the long-distance
entangled pair had presented the most challenging obstacle to teleportation in
quantum dots [88, 166] and has been the focus of intense research [157, 162, 163].
However, spin-state transfer via Heisenberg exchange [158] solved this challenge.
In Ref. [159], Qiao et al. leveraged this advance to perform teleportation in quantum
dots (Fig. 10d). To implement teleportation in quantum dots, Qiao et al. created an
entangled pair of electrons via Pauli spin blockade in dots 3 and 4 of a four-dot array.
The entangled pair was distributed through the array via exchange-based SWAP
gates such that it occupied dots 2 and 4. To teleport a state from dot 1 to dot 4, a
joint measurement was performed on dots 1 and 2 together via Pauli spin blockade.
When this measurement yielded a singlet, which is a maximally entangled Bell state,
the state of spin 1 was teleported to spin 4. This procedure was conditional because
teleportation occurs only when the measurement of qubits 1–2 yielded a singlet.
(A triplet result from this measurement could be any one of the three other Bell
states and thus does not provide enough information for complete teleportation.) The
experiments of Ref. [159] demonstrated the essence of this procedure by teleporting
a classical spin state and entangled states (Fig. 10d).

6 Future Directions and Outlook

In this chapter, we have described the exciting advances and great potential
associated with quantum-dot spin chains. In addition to enabling different promising
qubits for quantum computing, quantum-dot spin chains also facilitate studying
different aspects of the Hubbard and Heisenberg models. In large part, advances
along these directions have been driven by parallel developments in the technology
of gate-defined semiconductor quantum-dot spin qubits. Today, extended chains of
quantum dots can be fabricated and operated with controlled occupancy, and these
capabilities directly enable exploring the different features of spin chains that we
have described in this chapter.

Despite the significant advances in controlling and exploiting quantum-dot spin
chains in recent years, much exciting work remains to be done. On a fundamental
level, continuing to understand, model, and predict parameters like tunnel couplings
and exchange couplings will continue to drive forward progress in this field. In
particular, understanding how to control multiple exchange couplings independently
and simultaneously in larger spin chains for many-body quantum simulation
or multi-qubit algorithms will create important and exciting opportunities and
capabilities for both quantum computing and simulation. It is likely that computer-
automated and machine learning approaches [27, 32, 34] for extended quantum-dot
systems will become increasingly important.

On the device level, most of the results we have discussed have involved one-
dimensional chains. The creation and operation of two-dimensional quantum-dot
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arrays [29, 157, 167] is an exciting and active area of research. In addition, the use of
materials like Si-based quantum dots [9], which feature lower electron-spin-induced
dephasing rates compared with GaAs/AlGaAs quantum dots, may offer new routes
to exploring coherent spin phenomena. Further work to understand and minimize
effects like charge noise [46, 168, 169] will also become increasingly important.

These expected advances in device design and operation will directly benefit
single- and multi-qubit gates driven by exchange. In addition to the theoretical and
model-based approaches mentioned above, methods to design and implement noise-
resistant exchange pulses [170–172] will likely become increasingly important as
gate fidelities and device architectures mature. The possibility of two-dimensional
arrays opens up the possibility of efficient error correction schemes [71], as well as
dense arrays of qubits with high connectivity [161].

Different multi-spin qubit types also have yet to be experimentally investigated.
In general, increasing the number of electrons in multi-spin qubits opens up
pathways for reduced sensitivity to noise, at the expense of more complex device
designs or control. Whether or not these multi-spin qubits can offer an improvement
for quantum computing applications remains to be seen, but they deserve to be
explored. In fact, the great variety of potential qubits that can be formed from
electrons in quantum dots is one of the unique features of the platform.

As quantum dots continue to mature, new avenues in quantum simulation become
available. In particular, it may become possible to explore the Hubbard model in
the ultra-low temperature regime [109], where electron–electron interactions are
expected to dominate, and which is hypothesized to underlie phenomena like high-
temperature superconductivity [109]. Improvements in single-qubit initialization,
control, and readout, which will occur through developments in quantum comput-
ing, will also benefit simulation efforts.

Besides benefiting from the same technological advances, quantum simulation
in spin chains and quantum information processing overlap in the area of long-
distance coupling between qubits. We have discussed multiple routes for quantum
state transfer, including spin-state transfer via Heisenberg exchange, teleportation,
adiabatic state transfer, and superexchange, which exploit some of the unique
features of spin chains, mostly in GaAs/AlGaAs quantum dots. The implementation
and exploration of these techniques in Si quantum dots, which have longer electron
spin coherence times, will be necessary to precisely quantify and benchmark the
performance of these techniques and to explore how they might be useful for
quantum computing experiments. Although the use of spin chain physics in quantum
computing is still in early stages, methods to transfer quantum states between qubits
are generally helpful for error correction [160], and it may be that these techniques
can enable progress in this direction. In the coming years, it is likely that this
exploration will continue and that connections to quantum information science will
become stronger and more apparent.
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