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Abstract. Particle swarm optimization (PSO) is a population-based stochastic
search algorithm that has been widely used to solve many real-world problems.
However, like other evolutionary algorithms, PSO also suffers from premature
convergence and entrapment into local optima when addressing complex multi-
modal problems. In this paper, we propose a chaos-embedded particle swarm opti-
mization algorithm (CEPSO). In CEPSO, the chaos-based swarm initialization is
first applied to yield high-quality initial particles with better stability. Afterwards
the chaotic inertia weight and the chaotic sequence based random numbers are
introduced into the velocity update scheme for PSO to improve its global and
local search capabilities. In addition, two different mutation strategies (chaos and
levy) are utilized to enhance the swarm diversity without being trapped in local
optima. Finally, the CEPSO proposed in this work is compared with several clas-
sical PSOs on a set of well-known benchmark functions. Experimental results
show that CEPSO can achieve better performance compared to several other PSO
variants in terms of the solution accuracy and convergence rate.

Keywords: Particle swarm optimization - Chaos - Swarm diversity - Inertial
weight - Premature convergence - Local optima - Mutation strategy

1 Introduction

Particle swarm optimization (PSO) is a stochastic population-based method motivated
by the intelligent collective behaviour of some animals such as flocks of birds and
schools of fish [1]. Due to the advantages of PSO include fast convergence toward the
global optimum, easy implementation and fewer parameters to adjust. All of these make
it as a potential method to solve different optimization problems in a wide variety of
applications, such as text mining [2], data clustering [3], image processing [4], optimal
scheduling [5] and machine learning [6], etc. Meanwhile, an numerous number of dif-
ferent PSO variants have been proposed by researchers in the literature, and most of
them can achieve encouraging results and impressive performance. However, PSO still
suffers from the issues of premature convergence and entrapment into local optima like
other stochastic search techniques, especially in the context of the complex multimodal
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optimization problems. To tackle the above issues, a huge number of PSOs have been
developed to enhance the performance. From the literature, these previous works can be
roughly divided into the following categories: (i) swarm initialization. Note that in (i),
some PSO variants are initialized with chaos sequence [4, 7], opposition-based learning
[2, 8], and some other initialization strategies [9] instead of the purely random mecha-
nism to improve PSO performance. In particular, the chaos based swarm initialization
has been extensively studied in our prior works [10, 11] with significantly improved
performance. (ii) Parameter selection. The parameters inertia weight [4], acceleration
coefficients [10], and random numbers [2] attract much more attention and have become
focus of research in the area of PSO in recent years. (iii) Non-parametric update. In
this paradigm, there is no need to tune any algorithmic parameters in PSO by removing
all the parameters from the standard particle swarm optimization [12, 13]. (iv) Multi-
swarm scheme. In (iv), the whole swarm in PSO can be divided into several sub-swarms
during the search process so as to explore different sub-regions of the solution space
with different search strategies [14, 15]. (v) Hybrid mechanism. As for (v), different
evolutionary algorithms (such as genetic algorithm [8], cuckoo search [16], differential
evolution [17], simulated annealing [ 18], artificial bee colony [19], firefly algorithm [20])
and evolutionary operators (like crossover [21], mutation [11]) are integrated together
to improve the performance of PSO.

Motivated by the above PSO researches, we put forward a chaos-embedded particle
swarm optimization (CEPSO). On the one hand, the chaos-based swarm initialization
is applied to yield high-quality initial particles with better stability. On the other hand,
the chaotic inertia weight and chaotic sequence based random numbers are introduced
into the velocity update scheme for PSO to balance the exploration and exploitation
and thus result in a better optimal solution. In addition, two different mutation operators
(Gaussian and chaos) are utilized to enhance the swarm diversity and avoid the premature
convergence of the CEPSO. Conducted experiments validate that the proposed PSO
outperforms several state-of-the-art PSOs regarding their effectiveness and efficiency in
the task of numerical function optimization. The rest of this paper is organized as follows.
Section 2 introduces the standard PSO. In Sect. 3, the CEPSO is elaborated from three
aspects of swarm initialization, parameter selection and mutation strategies adopted in
this work, respectively. Experimental results on a set of well-known benchmark functions
are reported in Sect. 4. At length, the concluding remarks and future work are provided
in Sect. 5.

2 Standard PSO

Particle swarm optimization [1] is a population based meta-heuristic algorithm. The
basic principle of PSO mimics the swarm social behaviour such as bird flocking and fish
schooling. In PSO, the population is called a swarm and each individual in the swarm
is referred as a particle. Each particle in the swarm represents a potential solution to an
optimization problem. Specifically, the position of the ith particle can be expressed as a
D-dimensional vector X; = [x;;,Xj2,....xip] where xj; € [Xin,Xmax] denotes the position
of the jth dimension of the ith particle, and the corresponding velocity can be shown
as Vi = [vi1,vi2,...,vip] where vj € [Viin,Vmax] is used to reduce the likelihood of the
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particles flying out of the search space. The best previous position (the position giving the
best fitness value) of the ith particle is denoted by pbest; = (pbest;j,pbest;z,..., pbestip),
while the global best position of the whole swarm found so far is indicated as gbest
= (gbestj,gbest,,....gbestp). To start with, the particles are randomly distributed over
the search space with random velocity values. Followed by each particle’s velocity is
updated using its own previous best experience known as the personal best experience
(pbest) and the whole swarm’s best experience known as the global best experience
(gbest) until a global optimal solution is found. In PSO, each particle is associated with
two properties (velocity vector V and position vector X) and it moves in the search space
with a velocity that is dynamically adjusted according to pbest and gbest simultaneously.
Mathematically, velocity and position of particles are updated according to the following
formula:

Vit + 1) = o x vjj(t) + c1 x rl x [pbest;j(t) — x;;()] + c2 x 12
X [gbest;(t) — x;;(1)] (L

xij(t + 1) = x; (1) + vt + 1) 2)

where o is the inertia weight used for balancing the global and local search. In general,
a large inertia weight facilitates the global exploration while a small inertia weight
tends to facilitate the local exploitation. c; and c; are positive constants and called the
acceleration coefficients reflecting the weight of the stochastic acceleration terms that
pull each particle toward pbest; and gbest positions, respectively. r/;; and r2;; denote
two random numbers uniformly distributed in the interval [0,1].

Algorithm 1: Pseudocode of the standard PSO algorithm

Input: wy: inertia weight, ¢;, ¢,: acceleration factors, N: swarm size,
D: swarm dimension.
Process:
Randomly initialize the particles of swarm.
while number of iterations or the stopping criterion is not met do
Update the inertia weight.
for n=1 to Ndo
Find pbest .
Find gbest.
for d=1 to D do
Update velocity of particles by Eq.(1)
Update position of particles by Eq.(2)
10. end for
11. end for
12. end while
Qutput: ghest particle as the final optimal solution.
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3 Proposed CEPSO

3.1 Swarm Initialization

Swarm initialization plays a crucial role in any population based evolutionary algo-
rithms as it affects the convergence speed and quality of the final solution. In general,
random initialization is the most frequently used method to generate initial swarm in
absence of any information about the solution. From the literature, it can be seen that
different initialization strategies have been tested with PSO to improve its performance.
Particularly, the chaotic sequence rather than random sequence based initialization is
a powerful strategy to diversify the particles of swarm and improve the performance
of PSO by preventing the premature convergence [7]. Moreover, it is reported that the
stability of PSOs and the quality of final solution can also be improved to some extent [4,
10]. Based on this argument, the commonly used logistic map is employed to generate
the initial position instead of the uniform position, which can be described as follows:

Chiy1 =u xChi x (1 —=Chy),i=0,1,2,--- (3)

where Ch; denotes the ith chaotic variable in the interval (0,1), such that the initial Chg
€ (0,1) and Chy ¢ (0,0.25,0.5,0.75,1). w is a predetermined constant called bifurcation
coefficient. When u increases from zero, the dynamic system generated by Eq. (3)
changes from one fixed-point to two, three,..., and until 2/. During this process, a large
number of multiple periodic components will locate in narrower and narrower intervals
of  asitincreases. This phenomenon is obviously free from constraint. But x has a limit
value p; = 3.569945672. Note that when p approaches the u;, the period will become
infinite or even non-periodic. At this time, the whole system evolves into the chaotic
state (behavior). On the other hand, when p is greater than 4, the whole system becomes
unstable. Hence the range [1,,4] is considered as the chaotic region of the whole system.
Its bifurcation diagram is illustrated in Fig. 1.

Fig. 1. Bifurcation diagram of logistic map
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As described above, the pseudocode of logistic map can be described as below, which
is able to generate chaotic sequence and avoid plunging into the small periodic cycles
effectively.

Algorithm 2: Pseudocode of logistic map for chaotic sequence

Input: 4 bifurcation coefficient.

Process:

1. Randomly initialize chaotic variables.
2. while number of maximal iterations is not met do

3 if chaotic variable plunges into fixed points or small periodic cycles do
4 Implement a very small positive random perturbation.

5 Map them by Eq.(3).

6. else

7 Update chaotic variables by Eq.(3) directly.

8 end if

9. end while

Output: the generated chaotic variables.

3.2 Parameter Selection

Proper selection of PSO parameters can significantly affect the performance of particle
swarm optimization. It is generally believed that a larger inertia weight facilitates global
exploration while a smaller inertia weight tends to facilitate local exploitation to fine-
tune the current search space. By changing the inertia weight dynamically, the search
capability of PSO can be dynamically adjusted. This is a general statement about the
impact of w on PSO’s search behavior shared by many other researchers. Based on
the nature of ergodicity and non-repetition of the chaos mentioned in Sect. 3.1, the
chaotic inertia weight [22] is applied in this work to strike a better balance between the
exploration and exploitation, which is defined by adding a chaotic term to the linearly
decreasing inertia weight as follows:

tmax - t
w(t) = Wmax — Wmin) X ———— =+ Wmin X ch €]
max
where ch € (0,1) is a chaotic number, w,,,, and w,,;, denote the initial value and final
value of inertia weight respectively. 7 is the current iteration of the algorithm and ¢,y is
the maximum number of iterations the PSO is allowed to continue.
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Note that the random numbers r; and r; are the key components affecting the conver-
gence behavior of PSO. It is reported that the convergence of PSO is strongly connected
to its stochastic nature and PSO uses random sequence for its parameters during a run. In
particular, it has been shown that the final optimization results may be very close but not
equal when different random sequences are used during the PSO search process [23].
Thus the chaotic sequence generated by Eq. (3) is used to substitute the random numbers
r; and r; in the velocity update equation (the value of Ch varies between 0 and 1) [2].

vijt + 1) = w x v;j(t) + c1 x Ch x [pbest;j(t) — x;;(t)] + c2 x (1 — Ch)
x [gbestj(t) — x;(1)] ®)

3.3 Mutation Strategy

Mutation strategy is an important part of evolutionary computation technique, which can
effectively prevent the loss of population diversity and allow a greater region of the search
space to be covered. Based on this fact, different mutation operators, such as wavelet
[4], gaussian [11], cauchy [11] and levy [24], have been widely used in evolutionary
computation, especially for PSO to enhance its global search ability. However, these
mutation techniques are not suitable for all kinds of problems, that is to say, most of
them are problem-oriented. Thus the two most commonly used mutation strategies,
gaussian and chaos, are alternately exploited to mutate the pbest and gbest based on the
swarm diversity defined below, which is expected to well guide the search process of
the particle swarm.

. . D —2
Div(t) = = ;‘ \/ Zj:l (i () — x;(1)) (6)
I P
(0 =+ > x) )
i=1

where N is the swarm size, D denotes the space dimension, x;;(¢) is the jth value of ith
particle in the rth iteration and W is the average value of the jth dimension over all the
particles in the swarm.

So far, the procedure of CEPSO can be succinctly described as follows.



Comparative Study of Chaos-Embedded Particle Swarm Optimization 21

Algorithm 3: Pseudocode of the proposed CEPSO algorithm

Input: ¢;=c,=2, Div(0)=0, swarm size N, swarm dimension D,
the threshold of swarm diversity Divy,.

Process:

1. Initialize the particles of swarm by Algorithm 2.

2. while maximum number of iterations (t<t,,,) is not met do

3 Calculate w by Eq.(4).

4. Calculate 7; and 7, by Eq.(3).

5. for n=1 to Ndo

6

7

8

Find pbest .
Find gbest.
. for d=1 to D do
9. Update velocity of the particles by Eq.(5).
10. Update position of the particles by Eq.(2).
11. end for
12.  end for

13.  Calculate Div(¢) according to Eq.(6).
14. if (Div(¢) < Divy) do

15. Update pbest and gbest by Gaussian mutation.
16. else

17. Update pbest and gbest by Chaos mutation.
18. endif

19.  end while
OQutput: ghest particle as the final optimal solution.

4 Experimental Results and Discussion

To evaluate the performance of the proposed CEPSO, extensive experiments are con-
ducted on a set of well-known benchmark functions consisting of four global optimiza-
tion problems. Particularly, the performance of PSO with different swarm initialization
and different inertia weights are completely compared and investigated respectively.
Note that all the test functions are to be minimized, they are numbered f1—f4 given in
Table 1, including their expression, dimension, allowable search space, global optimum
and property, respectively.

Table 1. Dimensions, search ranges, global optimum values and properties of test functions

Test functions Dimensions () Search range Global optimum Properties
Sphere (f;) 10/30 [—10,10]" 0 Unimodal
Schwefel (f2) 10/30 [—100,100]" 0 Unimodal
Rastrigin (f3) 10/30 [-5.12,5.12]" 0 Multimodal
Ackley (f4) 10/30 [—32,32]" 0 Multimodal
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(1) Sphere function
n
minfi(x) = lez
i=1

where the global optimum xX'=0 andf(x*) =0for —10 < x; < 10.
(2) Schwefel function

n n
minfy(x) = Y bl + [ 1l
i=1 i=1

where the global optimum x* = 0 and f(x*) = 0 for —100 < x; < 100.
(3) Rastrigin function

minf3(x) = » [ — 10 cos(2x;) + 10]
i=1

where the global optimum x™ = 0 and f(x") = 0 for —5.12 < x; < 5.12.
(4) Ackley function

minfy(x) = —20exp| —0.2

1 & 1 <
Z lez — exp(— E cos(2nxi)> +20+e
n n

i=1 i=1

where the global optimum X=0 andf(x*) =0for —32 <x; < 32.

Figure 2 depicts the 2-dimensional graphical shows of the four well-known
benchmark functions.

Toillustrate the effect of different initialization methods, inertia weights and mutation
strategies mentioned above, different combinations of PSO with random/chaos swarm
initialization, standard/chaotic parameters, and without/chaos mutation are tested respec-
tively. For readability, note that different PSO paradigms are specified in Table 2 by their
acronyms, respectively.

Consider the following given conditions: the swarm size N = 40, the standard param-
eters include wy,q = 0.9, wyi, = 0.4 and the acceleration coefficients ¢; = ¢p = 2 for all
the related PSO variants. The threshold of the swarm diversity is predetermined Divy,
= 2.8e—20 by trial and error. For each test function, 30 independent runs are performed
by each PSO, and each run is with 1000 iterations. The algorithm terminates when it
reaches the maximum number of allowed iterations.

From Table 3, it can be clearly observed that CEPSO evidently outperforms other
PSO variants on all the four test functions. Taking f; and f» for example, note that
under the same conditions of the swarm initialization and related parameters, the PSOs
with mutation strategies markedly surpass those without mutations. This validates the
importance of mutation operators to sustain the swarm diversity without being trapped
in local optima. In particular, it is worth noting that the performance of PSO with chaos
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(c) Rastrigin function (f3)

(b) Schwetfel function (f3)

(d) Ackley function (f)

Fig. 2. Graphical shows of the benchmark test functions

Table 2. Acronyms of different PSO variants

23

Initialization Parameters Mutation Acronym
Random Standard Without PSO-Rnd-S-W
Gaussian/chaos PSO-Rnd-S-M
Chaos-based Without PSO-Rnd-C-W
Gaussian/chaos PSO-Rnd-C-M
Chaos Standard Without PSO-Chs-S-W
Gaussian/chaos PSO-Chs-S-M
Chaos-based Without PSO-Chs-C-W
Gaussian/chaos PSO-Chs-C-M
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Table 3. Results of PSO with different configurations (d = 10)

Functions | PSO algorithm Best solution Average solution Standard deviation
Sphere PSO-Rnd-S-W 5.1001e—003 | 5.8303e—002 5.1901e—002
PSO-Rnd-S-M 2.7594e—126 | 2.4107e—119 4.1704e—119
PSO-Rnd-C-W | 1.3901e—002 | 9.0386e—002 7.0010e—002
PSO-Rnd-C-M | 8.2914e—320 | 6.0543e—313 0.0000e—000
PSO-Chs-S-W 1.1621e—002 | 3.9400e—002 2.5100e—002
PSO-Chs-S-M 1.6636e—132 1.5062e—119 2.1290e—119
PSO-Chs-C-W 1.1666e—315 | 3.2793e—298 0.0000e—000
PSO-Chs-C-M 6.3734e—321 1.4005e—314 0.0000e—000
Schwefel PSO-Rnd-S-W 1.5868¢e—053 | 4.7589¢—053 2.2430e—053
PSO-Rnd-S-M 1.2530e—063 1.4764e—063 1.3052e—063
PSO-Rnd-C-W  |2.0361le—155 |2.1141e—155 2.1141e—155
PSO-Rnd-C-M | 4.7263e—160 | 3.7903e—158 5.1224e—158
PSO-Chs-S-W 3.5786e—057 |3.9307e—057 2.7731e—057
PSO-Chs-S-M 3.4395e—065 |3.5180e—058 4.9752e—058
PSO-Chs-C-W 2.7406e—159 | 5.2705e—159 5.6281e—159
PSO-Chs-C-M 1.6481e—165 | 2.5707e—161 3.5564e—161
Rastrigin PSO-Rnd-S-W 1.0499e+001 1.1238e+001 6.5312e—001
PSO-Rnd-S-M 0.0000e—000 | 0.0000e—000 0.0000e—000
PSO-Rnd-C-W | 6.4490e—000 | 1.0079e+001 2.9940e—000
PSO-Rnd-C-M | 0.0000e—000 | 0.0000e—000 0.0000e—000
PSO-Chs-S-W 9.7562e—000 | 1.4498e+001 3.2530e—000
PSO-Chs-S-M 0.0000e—000 | 0.0000e—000 0.0000e—000
PSO-Chs-C-W 8.8020e—001 6.2974e—000 3.8701e—000
PSO-Chs-C-M 0.0000e—000 | 0.0000e—000 0.0000e—000
Ackley PSO-Rnd-S-W 8.3506e—016 | 7.6226e—007 7.9614e—007
PSO-Rnd-S-M 5.8233e—017 | 7.5088¢—007 5.2016e—006
PSO-Rnd-C-W | 7.6952e—016 | 6.6319¢e—007 3.0892e—008
PSO-Rnd-C-M | 5.5511e—017 | 6.9783e—007 7.6836e—007
PSO-Chs-S-W 7.6952e—016 | 7.1015e—007 7.6836e—007
PSO-Chs-S-M 4.8102e—017 | 6.8769e—009 7.6836e—008
PSO-Chs-C-W | 5.3357e—016 | 8.3361e—008 5.4387e—008
PSO-Chs-C-M 9.2618¢e—018 |5.1679¢e—010 2.3911e—010
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swarm initialization is far superior to those corresponding PSOs with random initial-
ization except for PSO-Chs-S-W and PSO-Rnd-S-W for function f1, which implies
that PSO with the chaos-based initialization can alleviate its inherent defects of low
stability. In other words, just as the conclusions drawn in references [4, 7], this fully
demonstrates the significance of the high-quality initial particles to the convergent per-
formance of PSO algorithm. In addition, note also that PSO with the chaotic parameters
can achieve better performance than those with the standard parameters under the same
other experimental conditions. As for the test function f3, due to it owns a large number
of local optima, thus it is difficult to find the global optimization values. However, it
is interesting to note that its optimal value can be found based on the PSO-Rnd-S-M,
PSO-Rnd-C-M, PSO-Chs-S-M and PSO-Chs-C-M respectively so as to further show the
importance of mutation operation. Likewise, CEPSO is able to get better solutions for
function f4 even though it has one narrow global optimum basin and many minor local
optima. In sum, the promising results obtained by the CEPSO are largely attributed to
the chaos-based swarm initialization, the chaotic inertia weight and chaotic sequence
based random numbers as well as two different mutation strategies (chaos and levy), all
of these are complementary to each other and the appropriate combination makes them
benefit from each other.

To illustrate the particles search process, Fig. 3 depicts the evolution curves of PSO
with different configurations for all the four test functions, which clearly shows that PSO-
Chs-C-M performs much better than the other PSO variants in almost all cases. To be
specific, taking Fig. 3(a) for example, the evolution curve of PSO-Chs-C-M consistently
decreases fastly compared to that of PSO-Rnd-S-W, PSO-Rnd-C-W and PSO-Chs-S-W
respectively. In contrast, the convergence rates of PSO-Rnd-S-M and PSO-Chs-S-M are
not as fast as that of PSO-Chs-C-M, PSO-Chs-C-W and PSO-Rnd-C-M, both of them
evolve slowly as the search proceeds but are better than the PSO-Rnd-S-W, PSO-Rnd-
C-W and PSO-Chs-S-W respectively. On the other hand, it is interesting to note that
PSO-Chs-C-M yields the fastest convergence rate at the early 150 iterations in Fig. 3(c).
Compared to PSO-Rnd-S-W, PSO-Rnd-C-W, PSO-Chs-S-W and PSO-Chs-C-W, the
other three PSOs with mutation also evolve fast in the early 500 iterations and finally
converge to the global optima.

To further validate the effectiveness of the proposed algorithm, CEPSO is compared
with the other seven PSO variants in Table 4, including LPSO [25], FIPSO [26], HPSO-
TVAC [27], DMSPSO [28], CLPSO [29], LFPSO [30] and OPSO [31]. Note that the
dimension of all the functions is set as 30 in this section. The mean best solution (Mean)
and standard deviation (Std.) are applied to measure the performance. From the results
shown in Table 4, we can see that CEPSO gets rank 1 three times in spite of the rank 3 on
function f4. According to the final rank, it is clearly observed that CEPSO can achieve
better performance than the others in terms of the average best solution and standard
deviation. To summarize, the encouraging results obtained by the CEPSO are largely
ascribed to the chaos-based swarm initialization, chaotic parameters and multi-mutation
strategies exploited in this work, respectively.
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Fig. 3. Evolution curves of PSO with different configurations

Table 4. Comparison of CEPSO with other seven PSO variants (d = 30)

Func | Item | CLPSO HPSO-TVAC | FIPSO LPSO DMSPSO | LFPSO OPSO CEPSO

f1 Mean | 1.58e—12 | 2.83e—33 2.42e—13 | 3.34e—14 | 2.65e—31 | 4.69e—31 | 6.45¢—18 | 8.06e—106

Std. | 7.70e—13 | 3.19e—33 1.73e—13 | 5.39e—14 | 6.25e—31 | 2.50e—30 | 4.64e—18 | 3.58e—102

Rank |8 2 7 6 3 4 5 1

f2 Avg. | 2.51e—08 | 9.03e—20 2.76e—08 | 1.70e—10 | 1.57e—18 | 2.64e—17 | 1.26e—10 | 2.62e—49

Std. | 5.84e—09 | 9.58¢—20 9.04e—09 | 1.39¢e—10 | 3.79¢—18 | 6.92e—17 | 5.58e—11 | 5.11e—50

Rank |7 2 8 6 3 4 5 1

f3 Avg. |9.09e—05 | 9.43e—00 6.51e+01 | 3.51e+01 | 2.72e+01 | 4.54e—00 | 6.97e—00 | 0
Std. | 1.25e—04 | 3.48e—00 1.34e+01 | 6.89e—00 | 6.02e—00 | 1.03e—01 | 3.07e—00 | 0

Rank |2 5 8 7 6 3 4 1

fa Avg. | 3.66e—07 | 7.29e—14 2.33e—07 | 8.20e—08 | 1.84e—14 | 1.68e—14 | 6.23e—09 | 6.36e—14

Std. | 7.57e—08 | 3.00e—14 7.19e—08 | 6.73e—08 | 4.35e—15 | 4.84e—15 | 1.87e—09 | 8.09¢e—13

Rank | 8 4 7 6 2 1 5 3

Avg. rank 6.25 3.25 7.50 6.25 3.50 3.00 4.75 1.50

Final rank 6 3 7 6 4 2 5 1
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5 Conclusions and Future Work

In this paper, we propose a chaos-embedded particle swarm optimization algorithm
(CEPSO). On the one hand, the chaos-based swarm initialization is first used to yield
high-quality initial particles with better stability. On the other hand, the chaotic inertia
weight and the chaotic sequence based random numbers are introduced into the velocity
update scheme for PSO to improve its global and local search ability. In the meanwhile,
two different mutation operators (chaos and levy) are used to enhance the swarm diversity
and avoid the premature convergence. At length, extensive experiments on a set of
well-known benchmark functions demonstrate that CEPSO is much more effective than
several other PSOs in dealing with numerical function optimization.

As future work, we plan to compare CEPSO with more state-of-the-art PSO variants
in the task of complex multi-optima and multi-objective problems, or even some real-
world applications from other fields to further investigate the effectiveness of the CEPSO.
More interesting future work is to introduce the other most common chaotic maps, viz.
Tent map, Lozi map, Arnold’s cat map, Sinai map, Burgers map, Dissipative standard
map, Tinkerbell map, Circle map and Sinusoidal map, into the PSO to investigate how
to improve its performance without being trapped in local optima. Meanwhile, we also
intend to delve deeper into the parallelization of CEPSO for large-scale optimization
problems and exploring the use of different chaotic parameters for PSO in different
scenarios simultaneously, especially for the adequate parameter tuning in a wide range of
problems. Lastly, and arguably most importantly, the qualitative relationships between
the chaos-based swarm initialization and the stability of PSO, from the viewpoint of
mathematics, will be elaborated and proved comprehensively.
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