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Abstract In the era of pervasive artificial intelligence (AI) and internet of things
(IoT), achieving a high energy efficiency is at the top of priority for computing
systems. In this scenario, in-memory computing is gaining momentum as a new
methodology to overcome the von Neumann architecture and the related memory
bottleneck. One of the most promising device for in-memory computation is the
resistive switching memory (RRAM), also known as memristor, thanks to control-
lable conductance, good scaling and relatively low energy consumption. However,
to achieve the promised benefits of in-memory computing with RRAM in terms of
performance and power consumption, it is necessary to address a number of open
challenges at the device, architecture and algorithm levels. This chapter presents
the status of in-memory computing with RRAM, including the device concept and
characteristics, the computing architectures and the applications. The perspective
of analogue computing is analyzed with reference to both matrix vector multipli-
cation (MVM) and inverse MVM to accelerate linear algebra problems that are
generally executed with iteration schemes, highlighting the advantages in terms of
performance, energy consumption and computational complexity.

1 Introduction

The computing industry has been always driven by an urge for an exponential growth.
The microprocessor performance has increased substantially in the last 50 years
thanks to aggressive scaling in the transistor channel size which led to a doubling of
the number of transistors per square mm every 18month, as predicted by theMoore’s
Law [1]. However, this scaling trend has been slowing down due to technological,
physical and process related issues [2]. On the other hand, a similar exponential law
is emerging in the recent years, namely the performance (measured in FLOPS, or
Floating Point Operations per Second), required by artificial intelligence (AI) and
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scientific computing which have been observed to double every 3.4 months [3]. It
is then clear that, on the one hand, new devices are needed for continuing with the
Moore’s Law trend, while from the other one an architectural design effort is desired
to keep the pace of the required performance of modern AI algorithms.

From the architectural standpoint, the von Neumann architecture [4], which
constitutes the mainstream architecture of most digital computers, suffers from the
memory bottleneck. In fact, the memory and the central processing unit (CPU) are
physically separated, thus most of the time is spent for data movement between
memory and processing chips [5–7]. On the opposite, in-memory computing aims at
executing all operationswithin thememory chipwithout any need for datamovement
[6, 7]. A promising memory technology for in-memory computing is the class of the
resistive memory devices [8], often dubbed memristors [9, 10], featuring low energy
operation, high speed, high density and compatibilitywith the complementary-metal-
oxide-semiconductor (CMOS) technology [8, 11]. In-memory computing concepts
based on resistive memories have been demonstrated with several memory technolo-
gies, including the resistive switching random access memory (RRAM), the phase
changememory (PCM), the ferroelectric random access memory (FERAM) [12] and
the magnetic random access memory (MRAM) [8, 13]. Different computing concept
can be executed inside the memory such as logic computing [7, 14], neuromorphic
computing [15–19], stochastic operations [20] and analog computing [21]. In partic-
ular, analogue computing allows to accelerate several computing operations thanks to
physical computation, where multiplication and summation are executed by physical
laws in the analogue domain. Also, the unique architecture of the crosspoint memory
array allows to parallelize computing, thus enabling a reduction of computational
complexity with respect to the conventional digital computing. At the same time,
in-memory computing is prone to errors and inaccuracies due to noise and device
variations, which should be carefully taken into account for a fair comparison with
the floating-point precision in digital circuits.

This chapter aims at reviewing the recent advances of analog in-memory
computing with RRAM devices. First, we present the device properties and char-
acteristics, in particular discussing the device requirements for analogue memory.
Then we present the main analogue computing architectures with RRAM, focusing
on matrix-vector-multiplication (MVM) for neural networks and optimization algo-
rithms. Finally, we present the inverse-matrix-vector-multiplication (IMVM) archi-
tecture and illustrate the main applications and their advantages and drawbacks in
terms of energy efficiency, time complexity and precision.

2 Resistive Switching Memories

Various types of nanoelectronic devices have been proposed in the latest years to
replace or complement the conventional CMOS memory technologies at various
levels of the hierarchy. Most of these memories rely on the concept of changing
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Fig. 1 RRAM devices. a RRAM are made by a dielectric material inserted between two metallic
top electrode (TE) and bottom electrode (BE). In the pristine state they show a high resistance state
(HRS). bBy applying a positive forming voltage at the TE a filament grows from TE to BE resulting
in low resistance state (LRS). c To retrieve the HRS it is possible to apply a reset voltage. d Typical
I-V curve of a RRAM device in 1T1R configuration showing the ability of analog programming
through different compliance current (or gate voltage VG) and different reset voltages. Reprinted
from [31] under Creative Commons License

the active material properties by the application of voltage or current program-
ming pulses, thus storing the memory states as a specific material configuration.
Several technologies for two terminal devices, such as resistive switching memory
(RRAM) [11, 22], PCM [23, 24], FERAM [12, 25, 26] and MRAM [27], have been
proposed. Among them, RRAMhave attractedwidespread research interest thanks to
its low energy [28], high speed [29] and high density, combined with the ability of 3-
dimensional integration [30]. Figure 1 shows the RRAM device structure, operation
and switching characteristics. Typically, the device consists of a metal–insulator-
metal (MIM) structure in its pristine state (Fig. 1a), which is a high resistance due
the dielectric insulating layer. The device is generally initialized by the forming
operation, consisting of the application of a relatively high voltage between the top
electrode (TE) and bottom electrode (BE). During the forming process, the device
undergoes a soft breakdown event with a local variation of the material composition,
consisting of a low-resistivity filament which is responsible for the low resistance
state (LRS, Fig. 1b). Then, it is possible to recover a high resistance state (HRS) by
the application of a reset negative voltage between TE andBEwhich forms a depleted
gap in the filament (Fig. 1c) that can be controlled by the maximum applied negative
voltage. A set positive voltage pulse causes the device to switch back to the LRS
with a continuous filament connecting the TE to the BE. The filament size is gener-
ally controlled by the maximum current flowing during the set operation, known as
compliance current IC and usually regulated by a series transistor. Figure 1d shows
a typical current–voltage (I–V) curve of a RRAM device in a one-transistor-one-
resistor (1T1R) structure with HfO2 switching layer [31], highlighting the various
states obtained by the modulation of the compliance current, which depends on the
gate voltageVG of the series transistor. Note that different resistive states are achieved
at increasing IC, thus demonstrating that RRAM can be used not only as a digital
memory storing a ‘1’ in the LRS and a ‘0’ in the HRS, but also as a continuous
analog memory with multiple states corresponding to different resistive values. The
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first advantage is that multiple levels, hence multiple bits, can be stored in a single
memory element, thus increasing the bit density in a memory array. Secondly, novel
computing applications harnessing the analogue tuning of RRAM device can be
unleashed to perform analogue in-memory computing [7, 21].

2.1 Memory Array Structures

RRAM devices can be arranged in various memory array structures for both as
memory and computational unit, as shown in Fig. 2. Themost straightforward config-
uration is passive crosspoint array where the RRAM device displays a simple one-
resistor (1R) structure (Fig. 2a). In the crosspoint array each RRAMdevice is located
at the intersection between a row line and a column line connecting the BE and TE
of the device, respectively [32] By programming a conductance Gi j in the RRAM
device connected between row i and column j of the crosspoint array and applying
an input voltage vector V = (V1, V2, . . . , VN ) at the column terminals by keeping
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Fig. 2 Memory structures. a 1R crosspoint array where every device with conductance Gij is
connected between each row and column. b V /2 programming scheme in 1R crosspoint array,
where only the selected cell (blue) receive the whole V voltage necessary for programming while
the undesired selected cells (red) receive only V /2. c 1S1R crosspoint array, where a two terminal
select device is inserted in series with every RRAM to mitigate the sneakpaths problem. d 1T1R
array, where a transitory is used as select device and to regulate the compliance current during the
set operation enabling analog programming. Reprinted with permission from [21] under Creative
Commons License
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the rows at ground, the resulting current is given by the matrix vector multiplication
(MVM) formula:

Ii =
N∑

j=1

Gi j Vj (1)

where N is the size of the crosspoint array. Note that the MVM operation naturally
arises in the crosspoint array thanks to physical laws, namely the Ohm’s law for the
multiplication I = GV and the Kirchhoff’s law for the summation of individual
currents incurring at the same row. Since MVM is a basic algebra operation, the
crosspoint array structure is widely using in most analogue in-memory computing
applications [7, 21, 33, 34]. The crosspoint array structure also takes advantage of
a high memory density due to a memory cell area occupation of only 4F2, where
F is the lithographical feature. Array organization in 3D arrays usually results in
even smaller cell effective area, which is highly favorable for computing with large
amounts of data [35].However, the crosspoint array structure has the strong drawback
of the difficult programmability and read disturb induced by sneak-path effect [36].
In fact, while selecting cell Gi j for set, reset or read operation, the cell row i and
column j are biased, which results in unwanted current flows even if the unselected
terminals are left floating, resulting in read disturb or possible set or reset operations
at the unselected devices. Disturbs and sneak paths can be mitigated by suitable bias
schemes, such as the V/2 biasing scheme in Fig. 2b [37, 38], where a voltage V/2
is applied to column j and −V/2 is applied to row i with all other rows/columns
grounded. As a result, the voltage across all unselected cells is zero, except for the
half-selected cells along row i and column j, where the voltage is reduced by a factor
2 thus minimizing the probability of undesired set or reset events. During the read
operation, a voltage VR is applied to the selected column while all the other columns
and rows are connected to ground, which allows for reading all cells of the selected
column in parallel [38].

However, due to the strong variation of set and reset voltages and to the limited
set/reset resistance window, the passive crosspoint array with 1R structure can only
be used with small array size, while becoming unpractical for the most typical array
size for memory and computation.

2.1.1 1S1R Structure

To enable large crosspoint array size, a two terminal select device should be add,
resulting in a one-selector/one-resistor structure (1S1R) [39–41] as shown in Fig. 2c.
Selector devices should display a strong non-linear characteristic to prevent any
current flowing in half selected devices with V/2 < Vt , where Vt is the selector
device threshold voltage. Also, the select device should display large current at rela-
tively large voltages to enable set and reset processes within the selected device.
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The nonlinear characteristic should also be bidirectional, i.e., operable at both posi-
tive and negative voltages for set and reset processes, respectively. 1S1R crosspoint
arrays are extremely promising for memory application, in particular for storage
class memories to fill the performance/cost gap between DRAM and Flash memory.
On the other hand, in-memory computing applications of 1S1R structures are yet to
be unveiled, the main challenge being the contribution of the non-linear selector to
the MVM operation.

2.1.2 1T1R Structure

The RRAM device can be connected in series with a transistor selector resulting in a
one-transistor/one-resistor (1T1R) structure, as shown in Fig. 2d. To select a memory
cell within an array for a set operation, the corresponding transistor gate line should
be biased to turn on the transistor enough such that the applied TE voltage developed
across the selected RRAM exceeds the set voltage. The transistor can be used for
controlling IC during the set operation, thus tuning the filament size hence the RRAM
conductance, which makes the 1T1R structure ideal for analogue programming [42,
43].During the reset or read operation, the selected gate line should be biased at a high
voltage, such that all the TE voltage applied across the selected RRAM drops across
the device, since the transistor resistance is negligible. Due to the excellent control
of analogue state and lack of sneak paths, the 1T1R structure is by far the preferred
configuration to demonstrate analogue-type in-memory computing functions [34,
44]. For the same reasons, we will restrict our focus on 1T1R structures in the
following.

2.2 Requirements for Analogue Memory

The 1T1R structure allows to gradually control the conductance both during the set
operation (via IC ) and the reset operation (via Vstop). In fact, the multilevel capa-
bility is a key requirement for analogue computing, making the memory able of
representing multiple states in a single cell. In principle, if the available memory
have only a few (or even two) possible resistance states, it is possible to memorize
different slices of the analogue information in multiple devices [45], but the area
occupation increases significantly. Another important requirement is the linearity of
the I–V curve, so that by applying increasing input voltages, the cell current response
increases linearly, thus satisfying Ohm’s law for analogue multiplication. Note that,
in most applications, this requirement can be circumvented by applying the input
as a train of digital pulses with a simple unary or a more compact shift and add
[45] encoding, and then reconstruct the analogue output by properly integrating the
current in the time domain.

In general, partial HRS configurations obtained by the reset operation tend to
show a non-linear characteristic, due the non-ohmic conduction in the depleted gap
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Fig. 3 Analog RRAM programming non-idealities. a Measured RRAM conductance as function
of the gate voltage VG, showing an average linear dependence (blue), while single traces show large
variations (grey). b Distribution of 7 levels of LRS obtained by modulating VG and 1 level of HRS
(inset) showing a conductance independent standard deviation. c Five analog levels programmed in
a 4 kB RRAM array showing the both cell-to-cell and cycle-to-cycle variability. d Fluctuations of a
programmed state on a RRAM device in HRS, showing different phenomena such as random walk
and random telegraph noise. Reprinted with permission from [31, 43] under Creative Commons
License. Reprinted with permission from [47]. Copyright 2015 IEEE

along the filament [11]. For this reason, it is most common to adopt IC -controlled
LRS configurations by set operation for preparing analogue states with variable
conductance. Figure 3a shows the conductance as function of gate voltage in a 1T1R
structure for 100 cycles and the median value [31]. At every cycle, the device was
first prepared in the HRS, then a train of set pulses with fixed TE voltage VTE = 3 V
above the threshold for set voltage and increasing gate voltage VG was applied. As
expected, the median value increases linearly withVG −VT , where VT = 0.7V is the
transistor threshold voltage. However, one cannot solely rely on VG (or equivalently
IC ) for precisely controlling the device in a desired conductance, due to the cycle-to-
cycle variations of the traces in Fig. 3a. These variations are generally attributed to the
stochastic ionic migration during the set operation, which leads to variations in the
shape and volume of the conductive filament [46, 47]. Figure 3b shows the resulting
Gaussian distributions of conductance for 7 programmed LRS levels, indicating a
standard deviation σG=3.8µS. In addition to the cycle-to-cycle variability, a device-
to-device variability arises as different devices in an array usually present different
characteristics due to variation in the fabrication process causing specific geometry
and material composition within the RRAM cell. Figure 3c shows distributions of
currents for a read voltage Vread = 0.5V of 4 analogue levels programmed on a
4 kB RRAM array [43]. The observed variation includes contribution due both to
cycle-to-cycle and device-to-device variability. To mitigate both cycle-to-cycle and
device-to-device variability, it is possible to adopt program and verify algorithm. For
instance, given a certain conductance G target that should be approximately reached in
the RRAM device, one can gradually increase the gate voltage as shown in Fig. 3b
until the conductance G reaches a value between G target − G tol and G target + G tol,
where G tol is the acceptable tolerance. If G exceeds G target +G tol, then a reset pulse
can be applied to reduce Gwithin the acceptable range. IfG goes belowG target−G tol

then another set pulse can be applied, until convergence into the [48, 49]. In principle,
program-verify techniques allow to reach any desired conductance states within an
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arbitrary tolerance range at the cost of increasing circuit complexity, programming
energy and time. Also program-verify techniques tend to result in accelerated wear
out of the memory device. In fact, after multiple set-reset operations the RRAM can
be found in a non-ideal state, such as a stuck-off or stuck-on state [50]. One should
carefully tune themaximumnumber of iterations during a program and verify routine
to balance precision and device degradation.

After the RRAM device is programmed, the conductance state is also prone to
time-dependent variations which may lead to conductance G to drift out of the toler-
ance range. In fact, RRAM suffers from resistance fluctuations over time, as shown
in Fig. 3d for a HfOx RRAM device [51]. The RRAM initially programmed at
a given resistance might either increase or decrease its value, due to intermittent
random telegraph noise (RTN) and random walk, which makes deterministic analog
programming extremely challenging.

3 In-Memory Computing Architecture for Matrix-Vector
Multiplication

The RRAM crosspoint array allows to execute the MVM operation simultaneously,
in one step and in the analogue domain, thanks to physical Ohm’s law multiplication
and Kirchhoff’s law summation of currents in (1) [33]. Figure 4a illustrates the basic
MVM operation while Fig. 4b shows the correlation plot of the measured output
currents as a function of the ideal MVM results obtained for a crosspoint array [48].
Motivated by the ubiquitous importance of MVM operations in data analytics and
computing workloads, RRAM crosspoint for analogueMVM acceleration have been
demonstrated formultiple applications [21, 32], such as neural networks acceleration
[34, 52–55], image processing [44, 56], optimization algorithms [57–60], hardware
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Fig. 4 MVM in crosspoint arrays. a A crosspoint array can be used for accelerating MVM. By
programming a matrix A into the crosspoint conductance and applying a voltage vector V on the
columns, the resulting current flowing into the rows tied to ground is I = AV. b MVM output
current as function of α given an input voltage V = αV0. Reprinted with permission from [48],
under Creative Commons License
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security [38, 61, 62] and accelerated solution of differential equations [63]. Integrated
circuit comprising CMOS mixed-signal circuits and RRAM arrays fabricated in the
back end of the line have already been realized for several applications [64–67]. The
most promising applications of MVM are probably neural network and optimization
acceleration.

3.1 In-Memory Neural Network Accelerators

Analogue in-memory MVM has been widely used for feed-forward operation in
neural network acceleration [21]. Figure 5a shows a conceptual illustration of a three-
layer perceptron neural network [68]. Input data are applied on the left side, evaluated
by the network layers from left to right, until reaching the output layer. At each layer
in this forward transition, every neuron ni emits a signal xi which is multiplied by
the synaptic weight wi j before reaching the output neuron m j . The evaluation of
the output state y j corresponding to neuron m j consists of the summation of all the
contributions from the previous layer, according to the formula y j = ∑

i xiwi j , which
is analogous to (1) where y j is replaced by a physical output current, xi is an input
voltage andwi j is the RRAMconductance. The forward operation of neural networks
can thus be evaluated by an analogueMVM operation within a crosspoint array, with
a throughput improvement up to 104 compared with multiply-accumulate (MAC)
operations executed on a traditional digital computer [69]. Note that a RRAM device
can only store positive weights whereas wi j generally comprise both positive and
negative values. Figure 5b–c show twopossible techniques to enablemapping relative
numbers as weights in a crosspoint neural network. In general, two RRAM devices
can be used in parallel, each being biased with opposite polarity voltages to represent
both negative and positive weights. For instance, a reference fixed conductance Gref
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error is backpropagated for training the network. b representation of positive and negative weights
with a single programmable RRAM and a fixed reference conductance. c a more flexible bipolar
weight representation with two programmable RRAM devices. Reprinted with permission from
[21] under Creative Commons License
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with applied negative bias can be used in parallel to a programmable RRAM with
conductance G+ with applied positive bias such that the equivalent conductance is
given by G = G+ − Gref, thus the modulation of G+ allows to obtain both positive
and negative weights, as shown in Fig. 5(b). A more flexible and granular approach
is to use two programmable RRAM devices biased with opposite polarities with
conductanceG+ andG− to represent the overall weights asG = G+−G−, as shown
in Fig. 5(c). In this way, it is possible to program independently both conductance
thus increasing the number of programmable weights in the 2-RRAM structure [70,
71].

In-memory computing can not only accelerate the feed-forward processing, also
known as the inference phase, but also the training phase of neural networks [52,
53, 64]. In this case, after the forward evaluation of a single or multiple elements
of a dataset, the weights are updated based on a learning rule [68]. A typical super-
vised training algorithm is backpropagation, where the output state of a neuron y j is
compared with its ideal result o j and an error ε j = y j −o j is computed. This error is
then back-propagated to the weights that are updated by an amount �wi j = ηxiε j ,
where η is the learning rate that controls the speed on which weights are updated
and can be an important parameter for controlling convergence and overfitting. In
the training operation, to compete with conventional digital hardware, the weight
update should be both fast and precise [72], thus the requirements for computational
memory are more aggressive. To enable both fast and precise training, an important
feature is the linearity of the weight update [73].

The device characterization procedure to demonstrate the feasibility of online
network training usually consists of the application of a train of programming pulses
with a constant amplitude and shape for the increase and decrease of conductance.
The ideal expected result is shown in Fig. 6a, where the weight value as a function of
the number of programming pulse increases linearly under applied positive voltage
pulses until reaching a maximum value (i.e., 1 on the relative axis of the figure), then
returns to 0 under applied negative voltage pulses. The weight update �G should be
independent of the starting conductance value, thus allowing the weight update even
without reading the initial conductance thus speeding up the training process. As
shown in Fig. 6b, RRAM devices generally show non-linear potentiation (increase
of G) and depression (decrease of G), where the set/reset pulses have an abrupt
effect of the conductance change followed by a saturation after a few pulses [71].
RRAM may also have an asymmetrical weight update, as shown in Fig. 6(c), due
to different update rates in the potentiation and depression processes. Asymmetric
update translates in a larger number of pulses needed for a positive update �G than
a negative update −�G, or vice versa. Usually, there is a characteristic conductance
valueGsym where the positive and negative increments have the same amplitude [74].
In this case, it is possible to use the scheme of Fig. 5(b) with Gref = Gsym, so that a
symmetric potentiation/depression response is obtained [74, 75].

RRAMdevices also usually display a limited conductance window spanning from
Gmin > 0 to Gmax < 1 where the device can be programmed. This result is an offset
from the ideal case as shown in Fig. 6d. In such a case, the weight configuration of
Fig. 5b can help reaching the desired conductance by carefully tuning G+ and G−.
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Fig. 6 Weight update characteristics. a Ideal weight update characteristics, with the conductanceG
linearly increasing and decreasing with positive and negative voltages pulses, respectively. b Non-
linearweight update characteristicwithG that after a steep increase saturates. cAsymmetricalweight
update, with a different response to positive and negative pulses. dweight update characteristic with
a limited conductance window. e Variability in weight update due to cycle-to-cycle variability. f
Weight update with binary device. Reprinted with permission from [21] under Creative Commons
License

In particular, programming the same conductance in G+ and G− devices allows to
reproduce the case wi j = 0, which is among the most probable values within the
distribution of synapses in typical neural networks. As already discussed, RRAM
also shows stochastic variations in the set and reset processes, which can lead to an
unpredictableweight change during training as shown inFig. 6e, thus affecting signif-
icantly the convergence operation. Stuck-on and -off states, where the conductance
cannot be updated, further complicates the scenario.

In an extreme case RRAM devices could show only two conductance states (HRS
and LRS) [76, 77] resulting in a binary weight update scheme as shown in Fig. 6f.
Thismakes the weight encoding inherent digital which is suitable for the acceleration
of a binary neural network (BNN). Training a BNN can be challenging due to the
abrupt change of conductance. Figure 7a illustrates a stochastic approach for training
BNNs using binary RRAM devices with an internal parameter controllable with the
application of multiple programming pulses [76]. Two different weights value can
be associated with the RRAM device, namelyWint andWext corresponding to a non-
observable internal variable and the externally measured weight, respectively. Wint

may correspond to the defect density and filament configuration within the device
whileWext corresponds to themeasured conductance, as shown in Fig. 7a. The binary
weight Wext can only assume two values, 0 if the defects do not connect TE and BE,
and 1 otherwise. By the application of multiple set and reset pulses it is possible
to change the filament configuration, hence the continuous update of Wint, while
Wext only changes after a certain threshold is reached. This hybrid binary/analogue
update can be adopted within a conventional backpropagation algorithm for training
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Fig. 7 Using binary devices for training neural networks. a Stochastic weight updated, where the
state variable is represented by an internal weights which is updated by positive/negative pulses
(top) and it is not measurable, and an external binary weight which is updated after multiple
positive/negative pulses (center). The internal weight update represents a modification in the defect
configuration while the external weight changes if a connection is created or broken from TE to BE
(bottom). bMultiple binary devices used as synapse to represent an analog weight. Reprinted with
permission from [76, 78]. Copyright 2017, 2015 IEEE

a BNN as if it was an analogue neural network. Similarly,Wext can be calculated after
measuring a Wint value, making it possible to use an analogue memory for training
a BNN which usually shows high precision [77]. Another approach is illustrated
in Fig. 7b, where multiple binary RRAM devices are used for training a conven-
tional neural network [78]. In this procedure, multiple devices are connected in
parallel to represent multiple weights. Every time an individual binary RRAMdevice
increases/decreases its conductance, the overall weight experiences a corresponding
incremental step. As the number of devices increases, the synaptic weight becomes
increasingly analogue, thus making the characteristic similar to the ideal one. This
comes at the cost of an increased area occupation. However, multiple devices in
parallel can also be used to mitigate the effect of non-idealities and stochastic weight
update [79] thus serving as a regularization of individual variations to achieve a more
gradual weight update response in the presence of particularly unprecise devices.

RRAM devices have also been shown to be able of brain-inspired spike-based
neural network implementation [18, 19, 80, 81]. In this case, information is usually
encoded in spikes similarly to our brain,where learning takes place according to unsu-
pervised weight update rules depending on the spike timing, such as the spike timing
dependent plasticity (STDP) [18], the spike-rate dependent plasticity (SRDP) [80, 81]
or semi-supervised training approaches implementing a teacher signal [19]. In most
practical implementations, RRAM devices are used as artificial synapses, although
fully-memristive architecture with RRAM-based synapses and neurons have also
been presented [82].
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3.2 In-Memory Optimization Accelerators

MVM is also at the core of many optimization algorithms, such as linear or quadratic
programming techniques [83]. Specifically-designed neural networks can be imple-
mented for searching the minimum of an energy landscape, usually relying on
Hopfield neural networks (HNN) [84], namely recurrent neural networks where each
neuron is connected to all the others with symmetric links (wi j = w j i ) and no self-
connection (wi i = 0). This brain-inspired recurrent connectivity offers interesting
cognitive functions, such as attractor learning/recall and associative memory [85],
that have also been demonstrated with in-memory computing hardware [86–88].

HNNs also have shown the ability of solving constraint satisfaction problems
(CSP) [89],which are ubiquitous inmanydifferent applicationfields [90]. In this case,
every neuron has a highly nonlinear activation function and represents a state of the
network, while connectivity between neurons define the constraints. By initializing
a random input state, the network can gradually update its states and converge to an
optimized final state by minimizing the energy landscape cost function given by:

E = −1

2

N∑

i, j

wi jviv j (2)

where N is the total number of neurons and νi represents the state of neuron i . The
binary neuron state is updated depending on the evaluation of the input function
ui = ∑

i �= jwi jv j compared with a given threshold θ i. Figure 8a shows an example
of a convex energy cost function, which can be explored by the HNN to find the
minimum, i.e. the optimization problem solution. Convex problems can be computed
straightforwardly by conventional gradient descent techniques. However, when the
the problem size and difficultymay quickly increase in typical CSP, which are known
to become aggressively difficult as in the case of non-deterministic polynomial (NP)
or NP-hard problems. This is due to the increase of the number of local minima in
the energy landscape, where the the HNN state can be stuck as illustrated in Fig. 8b.

(a) (b)

E = 0 E = 0

Fig. 8 Energy landscapes of optimization problems. a Search of the minimum of a convex energy
landscape with a Hopfield neural network. The solution (blue) can reach it efficiently. b Search
of the global minimum of a non-convex energy landscape with the deterministic solution (blue)
being stuck in a local minimum. By adding noise (red) the solution can efficiently reach the global
minimum
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Non-convex CSPs can be solved by the simulated annealing technique [91].
By stimulating the HNN with random noise, it is possible to ‘heat’ the system,
thus helping the state in escaping from the local minima and eventually reaching
the correct solution in the global minimum of the energy function. Simulated
annealing accelerators have been demonstrated by conventional CMOS circuits [92–
95], quantum computing technologies [96, 97], optical computing technologies [98]
and analogue in-memory computing [57–60, 99–102]. In the latter, memory devices
can act both as MVM accelerators for the inference of the HNN and annealers by
the generation of intrinsic random noise.

Figure 9a shows a conceptual circuit schematic of aHNNfor accelerated annealing
[59],which is based on anMVMcurrentwhich is then fed back into the input neurons.
The feedback is obtained by sampling the columns currents with an analogue-to-
digital converter (ADC), post-processing it to obtain the neuron states and applying it
to the crosspoint rows in either digital or analoguemode. The constraints are encoded
in the weight matrix of the crosspoint conductance, while the intrinsic noise to stim-
ulate the annealing can be generated by various techniques. For instance, one can
leverage RRAM inherent stochasticity such as RTN [103] and 1/f noise [104], which
can automatically stimulate the simulated annealing [102]. An additional crosspoint
column can be used to program RRAM devices appropriately and then harvest noise

Fig. 9 In-memory simulated annealing techniques. a an extra column of a crosspoint array can be
used to generate noise which is summed to the MVM response to perform simulated annealing.
b Hopfield energy as function of iteration cycles for different noise levels. c stochastic switching
of a RRAM device to generate random flip of a neuron state. The probability of switching can be
finely tuned by regulating the set pulse width. d Hopfield network working in the chaotic regime
by inserting diagonal connection that are gradually reduced in weight cooling the overall annealing
procedure. Reprinted with permission from [58, 60, 66]. Copyright 2019, 2020 IEEE
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with the desired figure to speed up optimization [59]. In fact, noise should be modu-
lated based on the annealing scheme and should also change its characteristic during
the annealing procedure, ideally reducing its magnitude while reaching the global
minimum. Figure 9b shows the Hopfield energy to solve a 60-nodeMax-Cut problem
as a function of iteration cycles for different noise levels [59]. A noise-free calcu-
lation results in a higher energy compared to noisy calculations, thus supporting
the fundamental contribution of noise for the annealing. Also note that noise with
large amplitude might be inefficient for reaching the energy minimum, since the
state might also escape from the energy global minimum in this case. The tradeoff
between exploratory and greedy strategies should be therefore carefully considered.
A second approach is to use the RRAM stochasticity in its switching to generate a
flip of one or more neurons with a given probability as shown in Fig. 9c [58]. In fact,
the probability of setting a RRAM device can be controlled with the set pulse itself
either by the voltage pulse amplitude [20] or the pulse width [58]. In this way, after
a careful characterization of the set statistics of the RRAM device, it is possible to
create naturally a stochastic, e.g., Gaussian, distribution from the device physics. A
third approach is to operate the HNN in its chaotic behavior [105], by violating one of
its definitions, namelywi i = 0 by connecting each neuron in a self-feedback to itself
as shown in Fig. 9d [57, 60]. By gradually resetting the self-feedback RRAM device
the chaos can be reduced to let the system effectively reach the global minimum.

Optimizer circuits based on hardware HNN accelerated by RRAM crosspoint
arrays have been shown to have better performance than traditional, optical and
quantum computing [59], thanks to the low energy MVM operation and intrinsic,
compact noise generators.

4 In-Memory Computing Architecture for Inverse MVM

MVM can be used to accelerate algebraic problems, such as the solution of linear
systems and partial differential equations [63, 106]. However, this is usually done
by iteratively performing the MVM operation, digitalize the currents with an ADC,
post-process them and apply the correct output vector as input for the following
MVM.WhileMVM can indeed accelerate the algebraic problem, solution compared
with digital approaches, the number of iterations for reaching the convergence can
be extremely large. To further accelerate the problem solution, the feedback opera-
tion can be obtained within the analog domain, by operational amplifiers connected
between rows and columns of crosspoint arrays [31, 48, 107] as shown in Fig. 10a.
Given a crosspoint array programmed with a conductance matrix G, by injecting a
current vector I to its rows connected to the negative input of an operational amplifier
(OA) with the positive input connected to ground, the columns connected to the OA
outputs will adjust to a voltage V such that the overall current flowing within the
OA is zero due to its high input impedance and negative feedback effect, namely
I + GV = 0 [48]. This leads to:
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Fig. 10 In-memory solution of linear systems with IMVM. a IMVM circuit where a current is
injected in a crosspoint programmed with conductance G rows which are connected to the virtual
ground of operational amplifiers whose output is connected to the crosspoint columns. The result
givesV =G−1 I. An example ofmeasured 3× 3 programmedmatrix (inset).bCircuit output voltage
as function of β with an input current I = βI0. c representation of a 1-dimensional Fourier heat
equation problem. d Fourier equation encoded in a crosspoint array. e Circuit simulation (circles)
results comparedwith analytical solution showing good agreement. Reprintedwith permission from
[48] under Creative Commons License

V = −G−1 I (3)

which corresponds to the solution of a linear system. In fact, by encoding in G a
problem A and injecting a current−I corresponding to a known term b, the resulting
output voltage will be equal to x = A−1b as shown in Fig. 10a. This operation
can also be referred as inverse MVM (IMVM), as the solution is the vector which
must be multiplied to the given matrix to yield a certain output vector. Figure 10b
shows an experimental demonstration of this circuit, where a 3 × 3 crosspoint array
of RRAM devices was connected in feedback with OAs on a printed circuit board
(PCB) [48]. By applying an input current vector with amplitude I = βI0, where I0 is
a normalized vector and β represents the magnitude of the input vector, the measured
voltage at the OA output displays a linear dependence on β as expected from the
linearity of the system of equation, thus demonstrating the feasibility of the circuit
in the solution of the linear system. Interestingly, the solution of a linear system is
obtained in just one step by the circuit, without any iteration. Moreover, the time
to solution does not depend on the matrix size, thus making the time complexity of
the circuit constant, i.e., O(1) complexity [108, 109]. This is extremely attractive in
comparison with traditional algorithms such as conjugate gradient [110] or quantum



Analogue In-Memory Computing with Resistive Switching Memories 77

computing algorithms such as the Harrow-Hassidim-Lloyd (HHL) algorithm [111],
which show a time complexity of O(N ) and O(log(N )), respectively. Figure 10c
shows a real word problem, the solution of a 1-dimensional steady-state Fourier
equation for heat diffusion encoded in a crosspoint array and solved by the IMVM
circuit.MatrixG in Fig. 10d represents the systemof linear equationswhich describes
the differential Fourier equation in the discrete domain by the finite differencemethod
(FDM). Note that G displays both positive and negative coefficients, which can be
encoded with a method similar to Fig. 5c, where the output voltage of the OAs are
inverted and applied to a second crossbar representing the negative entries [48]. The
known term encoded in the input currents correspond to the dissipated power in the
one-dimensional structure and the output voltage represents the temperature profile
along the 1-dimensional structure. Figure 11e shows the results obtained by a SPICE
simulation of the IMVM circuit compared with the analytical solution for different
voltage applied to the 1-dimensional structure, highlighting a accuratematch between
the ideal analytical solution of the equation and the circuit simulations.

Fig. 11 In-memory eigenvectors calculation with IMVM. a IMVM circuit for eigenvector calcu-
lation, where no input is given and a conductance corresponding to the maximum eigenvalue Gλ

is programmed in the TIA conductance. Inset shows a programmed measured matrix. b measured
eigenvectors as function of the analytical calculation showing good agreement. cGraph ofwebpages
used for Pagerank problem, where every circle is a webpage and the arrows represent citations. d
Corresponding stochastic link matrix. e Simulated circuit result as function of the ideal scores
showing good agreement. Reprinted with permission from [48] under Creative Commons License
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4.1 In-Memory Eigenvector Calculation

By slightly modifying the topology of the analogue circuit in Fig. 10a, it is possible
to calculate the principal eigenvector of the matrix programmed in the crosspoint
[31, 48]. This is shown in Fig. 12a, where the matrix G is mapped in one crosspoint
array and the principal eigenvalue λ of matrix G is mapped in the feedback resistor
of the trans-impendence amplifier (TIA)s. A set of inverting OAs is then added
in the feedback loop to compensate for the minus sign arising from the current–
voltage conversion V = −I/Gλ of the TIAs in Fig. 11a. The circuit is described by
(3) with zero input current, thus leading to (G − Gλ I )V = 0, which corresponds
to the non-trivial solution of the eigenvector problem for G. Figure 11b shows an
experimental demonstration of the eigenvector circuit, showing the correlation plot
of experimental components as a function of the ideal analytical values, for the
eigenvectors corresponding to themaximum (principal) and theminimumeigenvalue
[48].

The calculation of the principal eigenvector can be applied to relevant scientific
computing tasks, such as the solution of the Schrödinger equation [48]. However,

Fig. 12 In-memory regression calculation with IMVM. a IMVM circuit for Moore-Penrose pseu-
doinverse with a current I injected in a crosspoint array programmed with conductance G rows
connected to a TIA whose output drives the rows of a second crosspoint array programmed with
GT . The column of the second crosspoint are connected to operational amplifiers whose outputs
close the loop and are connected to the first crosspoint columns. The output voltage gives V = −
(GTG)−1GTI which is the Moore Penrose pseudoinverse result. Inset shows a programmed linear
regression problem. b measured fitting and analytical fitting of a programmed dataset showing
good agreement. c ELM schematic for recognition of MNIST dataset with a random input layer
and an output layer trained with logistic regression. d Circuit simulated weights as function of the
analytical weights for the output layer showing a good agreement. Reprinted with permission from
[107] under Creative Commons License
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scientific computing requires high precision which is relatively difficult for in-
memory computing due to imprecise RRAM programming. This problem can be
circumvented by using IMVM for calculating a seed that is then refined with tradi-
tional computing technologies [106]. On the other hand, machine learning problems
usually are less subject to noise and less sensitive to variations. For example, Pagerank
[112], which is the algorithm that calculates webpage ranking on a search engine,
requires the computation of the principal eigenvector of a link matrix corresponding
to the adjacency between webpages as shown by the graph in Fig. 11c. Interestingly,
the encoded matrix can be pre-processed to obtain a stochastic matrix (Fig. 11d)
where the summation over all the columns is 1 and the principal eigenvalue is 1, thus
making the IMVM circuit ideal for Pagerank calculation. Figure 11e shows a SPICE
simulation of the Pagerank algorithmwith IMVMcompared with the analytical solu-
tion, highlighting the good agreement between the page scores [48]. The Pagerank
problem particularly fits IMVM circuits also because the exact ranking is less impor-
tant than the overall one, in fact users are usually interested in the first 10 webpages
being displayed correctly in the Pagerank response, even if they are not listed in
the correct order. For a more detailed assessment, the problem has been studied for
a relatively large scale implementation with real conductance values programmed
on HfOx RRAM devices, showing a relatively low mismatch once a fine tuning of
the conductance is performed [31]. The eigenvector calculation by IMVM has been
shown to display a O(1) time complexity, with an unprecedented speedup compared
with other technologies [113].

4.2 Pseudoinverse and Regression Accelerators

Manymachine learning problems can bewritten as the over-determined linear system
Xw = y, where X is a rectangular N × M matrix with N > M which encodes the
explanatory variables, y is a N×1 known vector representing the dependent variables
and w it the M × 1 weight vector. Since this equation generally does not have a
solution, its best approximation can be found by the linear regression, namely the
least square error (LSE) algorithm that minimizes the Euclidean norm of the error,
namelymin‖Xw − y‖2. This minimization can be carried out by the pseudo-inverse,
or Moore–Penrose inverse, namely matrix X+ given by X+ = (XT X)

−1
XT , while

the weights are given by w = X+y [114]. Figure 12a shows an analogue IMVM
circuit that can calculate the Moore–Penrose inverse matrix [107]. Two identical
crosspoint arrays are used to map the matrix X in their conductanceG. A vector
of currents I representing the known term y is applied to the first crosspoint rows
which are connected to the negative input of the TIAs with a feedback conductance
GT I . The first crosspoint columns are connected to the output terminals of a second
stage of OAs with output voltageV . The first crosspoint execute the summation of
input currents I and the MVM output GV, thus yielding an overall current I + GV
flowing into the TIAs. The latter develop a voltage across the second crosspoint array
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given by −(I + VG)G−1
T I . The columns of the second crosspoint are connected to

the positive inputs of the second stage of OAs thus must be equal to zero, which
translates in the equation (I + VG)G−1

T I G
T = 0 or equivalently:

V = −(
GTG

)−1
GT I (4)

where the Moore–Penrose inverse matrix G+ is clearly identified [107]. The inset of
Fig. 12a shows the 2 × 6 matrix G which was mapped in a HfOx RRAM crosspoint
array representing the explanatory variables of a linear regression problem with the
experimental solution that gives the best linear fit plotted in Fig. 12b and compared
with the analytical calculation showing a good agreement [107].

This concept can be extended to the logistic regression which is a powerful clas-
sification algorithm. In fact, by properly writing in different columns of matrix G
the coordinates of the data and injecting a relative current 1 or 0 corresponding to
the class, it is possible to obtain the straight line that best separates the input data.
This is a powerful tool in machine learning as it can be used for training the classi-
fication layer of a neural network. Figure 12c shows the conceptual schematic of a
fully-connected, 2-layer neural network according to the Extreme LearningMachine
(ELM) model [107], where all synaptic weights in the first layer are assumed to be
randomweights, while the synaptic weights in the output layer are trained by logistic
regression. SPICE simulations of the IMVM circuit for training the output layer of
the ELM model for classifying handwritten digits of the MNIST dataset [68] are
shown in Fig. 12d and compared with the analytical solution. The results indicate
a good agreement with the ideal solution, thus supporting the feasibility of IMVM
circuits for training neural networks [107].

5 Conclusions

This chapter presents an overview of analogue in-memory computing concepts with
RRAM devices. RRAM displays ideal properties for computing, including high
density, analogue storage and the ability for 3D integration. MVM in the analogue
domain is perhaps the most promising type of in-memory computing function which
is made possible by a RRAM array, typically with 1T1R structure of the individual
memory cell. Experiments and simulations showan unprecedented speed up ofMVM
for neural networks acceleration and CSP optimization, while IMVMdisplays strong
advantages in terms of computational complexity and energy efficiency for algebraic
and machine learning problems. At the same time, the RRAM technology and its
operations should be optimized to fulfil all requirements of multibit operation, fast
switching, controllable noise and long retention time necessary for enabling this
technology in a relevant environment in the edge or cloud. In particular, the RRAM
technology development and computing architecture research should proceed with
strong synergy to fully take advantage of the energy and performance benefits of
in-memory computing.
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