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Abstract In this chapter, we discuss recent advances in the hardware acceleration of
deep neural networks with analogmemory devices. Analogmemory offers enormous
potential to speed up computation in deep learning. We study the use of Phase-
Change Memory (PCM) as the resistive element in a crossbar array that allows the
multiply-accumulate operation in deep neural networks to be performed in-memory.
With this promise comes several challenges, including the impact of conductance
drift on deep neural network accuracy. Here we introduce popular neural network
architectures and explain how to accelerate inference using PCM arrays. We present
a technique to compensate for conductance drift (“slope correction”) to allow in-
memory computing with PCM during inference to reach software-equivalent deep
learning baselines for a broad variety of important neural network workloads.

1 Introduction

Today’s world has a high demand for an ability to quickly make sense of a rapidly
expanding flow of data [1]. In this context, machine learning techniques have become
widely popular to help extract meaningful information from a variety of data such as
images, text and speech [2]. In the last decade, the confluence of large amounts
of labelled datasets, reliable algorithms such as stochastic gradient descent and
increased computational power from CPUs (Central Processing Units) and GPUs
(Graphics Processing Units) has enabled deep learning, a branch of machine learn-
ing, to revolutionize many fields, from image classification to speech recognition to
language translation [3–6].

Neural networks typically have input and output layers, with many hidden layers
in between. Each layer contains many neurons, where the output of each neuron

K. Spoon · S. Ambrogio (B) · P. Narayanan · H. Tsai · C. Mackin · A. Chen · A. Fasoli · A. Friz ·
G. W. Burr
IBM Research-Almaden, 650 Harry Road, San Jose, CA 95120, USA
e-mail: stefano.ambrogio@ibm.com

K. Spoon
e-mail: katherine.spoon@colorado.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Micheloni and C. Zambelli (eds.), Machine Learning and Non-volatile Memories,
https://doi.org/10.1007/978-3-031-03841-9_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-03841-9_3&domain=pdf
http://orcid.org/0000-0002-5467-9341
http://orcid.org/0000-0002-5475-4209
http://orcid.org/0000-0002-3176-0059
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-5717-2549
mailto:stefano.ambrogio@ibm.com
mailto:katherine.spoon@colorado.edu
https://doi.org/10.1007/978-3-031-03841-9_3


44 K. Spoon et al.

2 

3 

8 

9 

0 

… 

784
input

neurons

10
output

neurons

125
hidden

neurons

250
hidden

neurons

x784

x2 

x3 

x1 

y1 

y250

z1 

z125

MNIST
images 

1 

w1,1

w1,2

w1,250

Forward 
inference

Fig. 1 A simple task is to classify images of handwritten digits from theMNIST dataset, where the
network’s goal is to output the number the image contains. The input layer has 784 input neurons,
the number of pixels in a 28× 28 image. In the network shown, there are two hidden layers with
250 and 125 neurons, and a final layer with 10 output neurons, one for each possible classification
(digits 0 through 9). There are connections between every pair of neurons in one layer to the next:
w1,1 is the weight from x1 to y1, w1,2 is the weight from from x1 to y2, and so on. During forward
inference, given an image, e.g. an image of a “one”, the example proceeds through the trained
network, which should select the output “1” out of the 10 choices. Adapted with permission from
[7]. Copyright 2017 IEEE

is determined by the weights feeding into that neuron, passed through a non-linear
activation function [1]. The simplest neural network is a fully connected network,
where every neuron in one layer is connected to every neuron in the next layer, as
shown in Fig. 1. This is also referred to as a Multi-Layer Perceptron (MLP). In this
particular example, a very simple dataset is used: the MNIST (Modified National
Institute of Standards and Technology) database of handwritten digits [6]. Here, the
goal is to train the network to recognize input digits using what is called a training
dataset, followed by testing the network’s ability to classify previously unseen images
from the test dataset [2].

While MNIST classification provides limited challenges, more complicated net-
work architectures and datasets have recently been used in computer vision to solve
more interesting and challenging tasks. One of the best-known is the ImageNet prob-
lem, where the goal is to classify real-world images into one thousand categories
(cat, dog, etc.) based on their content [8]. By 2015, the best deep neural network was
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making so few classification errors that it had effectively surpassed human ability,
as shown in Fig. 2. This was largely due to the accelerated training of a large con-
volutional neural network using high performance GPUs [9]. The main advantage
of GPUs resides in the highly parallel and efficient vector-matrix multiplication,
which constitutes the core of neural network computations. This improvement has
recently enabled the training of increasingly larger networks with millions or even
billions of adjustable weights, providing increasingly higher accuracy classification
and recognition performances [3, 10].

1.1 The Promise of Analog AI

Deep neural networks are attractive to hardware designers due to the nature of the
core operation in a neural network: the vector-matrix product. Today this operation
is typically performed by digital accelerators (i.e. GPUs), which are set up as shown
in Fig. 3a, with the processor on one side and memory on the other, connected by a
bus. This is known as the Von Neumann Architecture [11]. The bus can become a
bottleneck since the data is sent back and forth from memory to processor, therefore
a limited amount of data can be moved at any time in the communication bus [3,
10, 12]. Analog accelerators, on the other hand, perform computations directly in
memory (Fig. 3b), which also behaves as a processor [13–19]. In the context of neural
networks, analog accelerators offer amore natural implementation of fully connected
layers. Since non-volatile memory (NVM) devices are organized in crossbar arrays,
which provide a full connection between every input and every output, themapping of
fully connected layers into memory arrays becomes straightforward, thus increasing
the density of programmable weights, the computation efficiency and the processing
speed [13, 20].

How is the network mapped into memory? There are many different choices
for the resistive element of the crossbar array, and in this work we use Phase Change
Memory (PCM) [21, 22]. The fully connected neural network in Fig. 1 can bemapped
onto crossbars arrays with the neurons stored in peripheral circuitry and the weights
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Fig. 3 Suppose we need to multiply two numbers, a and b. a In a typical setup, a and b start sitting
in memory. They are both sent to the processor, and the answer c is computed and sent back to
the memory. This consumes a lot of energy in data movement. Additionally, the bus can become a
bottleneck. b Analog accelerators perform the computation in memory by storing a in the memory
(crossbar array) and sending b in as a voltage, producing the answer c in-place

Fig. 4 The simple MLP from Fig. 1 has an input layer, two hidden layers, and an output layer.
These can be mapped onto crossbar arrays of size 512× 512, for example. Since the input layer is
784× 250, two arrays are needed for the first layer, with 784 input neurons representing the rows
and 250 hidden neurons representing the columns. There is an additional crossbar array for the
250× 125 hidden layer, and a final array for the 125× 10 output layer. The arrows represent the
signal propagation through the network during forward inference
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Fig. 5 a To compute the output of a neuron, for example, y1, the inputs x times the weights w are
summed, then an activation function f is applied. This function could be the sigmoid mentioned in
the discussion of the LSTM network in Sect. 1.2, or any other number of functions. b Ohm’s law is
used to multiply x ∗ w, where x is represented as a voltage V (t), and (c) Kirchoff’s law is used to
accumulate (sum) the results along the columns

of the neural network stored in the crossbar array (Fig. 4). During forward inference,
the signal propagates through the crossbar arrays all the way to the output [16].

Figure5 shows how a single crossbar array (for example, the first layer) is imple-
mented in analog hardware. The essential calculation is the multiply-accumulate
operation as shown in Fig. 5a. To perform this operation in hardware, the weights of
the network are encoded as the difference between a pair of conductances G+ and G-
[13], which are analog tuned using proper programming schemes [20, 23]. Values
of the input neuron x are encoded as voltages V (t) and applied to the elements in a
row. The multiplication operation between the x and w terms is performed through
Ohm’s law (Fig. 5b). There are two possible ways to implement the input x , either by
keeping the pulse-width constant and tuning the voltage amplitude, or by encoding
the x value in the pulse duration and keeping the voltage amplitude constant. While
the first scheme allows better time control since all pulses show identical duration,
the second scheme helps counteract the read voltage non-linearity that all NVM
devices experience, and prevents unwanted device programming for excessive read
amplitudes. By Kirchoff’s current law, all of the product terms generated on a single
column by all devices are accumulated in terms of aggregate current (Fig. 5c) to pro-
duce the final result at the bottom of the array in the form of an accumulated charge
on a peripheral capacitor. Through this process, the multiply-accumulate operation,
which is the most computationally expensive operation performed in a neural net-
work, can be done in constant time, without any dependence on neural network layer
size [13].

If these multiply-accumulate operations needed to be done with 32-bit or even
16-bit floating-point precision, this approach would probably not be feasible due to
intrinsic noisy operations such as PCM read or write, exact weight programming or
peripheral circuit conversion precision. But research on deep neural networks has
shown that we can reduce the precision of weights and activations down to 8-bit
integers, or even lower, without significant consequence to network accuracy [24].
For this reason, analog AI is a promising approach for these multiply-accumulate
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Fig. 6 The goal is to train a neural network in software, then encode those trained weights of the
network onto a chip, then implement the chip for low-power applications, such as in a self driving
car

computations in the context of deep neural networks, due to the intrinsic resilience
that such networks provide to noisy operations [14].

There are two main stages of any deep learning pipeline: training and inference.
During training, the network’s weights are updated, via back-propagation [2, 6], to
better distinguish between different labeled data examples. Once themodel is trained,
it can be used to predict the labels of new examples during forward inference. There
are hardware opportunities for both training and inference, but in this chapter we
focus on the design of forward inference chips that can run quickly at low power
(Fig. 6).

1.2 Two Common Neural Network Architectures

There are many applications of deep learning and, among those, computer vision and
natural language processing are two of the most notable. It is helpful to use different
types of neural networks depending on the structure of the input data, and, as an
example, images and text have very different structures. Additionally, the MNIST
handwritten digit task in Fig. 1 is very simple, and the most interesting problems
today are difficult, requiring larger and more sophisticated networks. In this section
we briefly review two of the most popular neural networks used in each of these two
areas [25].

Computer Vision: Convolutional Neural Networks (CNNs) A slightly more chal-
lenging task than classifyinghandwritten digits is image classification into categories,
like birds and dogs. A convolutional neural network (CNN) differs from the fully
connected network in Fig. 1 by using convolutions to better process the image data.
The network utilizes a set of filters that scan across the image, taking in a small
amount of information at a time. The CNN shown in Fig. 7 has one convolutional
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Fig. 7 In this example, the goal is to classify an image of a dog correctly out of the ten classes
of images in the CIFAR10 dataset [26]. The input to the network is a tensor of 3 dimensions:
[image-width, image-height, color-depth]. For instance, a single color image can be considered as
three closely-related 2D images, one each for the red, green, and blue channels. The output from
the network is a 1D vector, with one element for each class (dog, cat, horse, and so on)

layer followed by a max-pooling layer that reduces the dimensionality and deter-
mines the most important information from the previous layer, followed by another
convolutional layer and a fully connected layer at the end to classify the image.

Each filter can be thought of as a feature identifier. For example, the earlier features
might be the lines and colors of the dog, whereas later filters may represent very
specific features, like noses or ears. It is important to note that these filters are not
designed by humans; in a deep neural network, these filters are learned, as the
filter weights are slowly updated during repeated exposure to the very large training
dataset. These filters allow CNNs to successfully capture the spatial and temporal
dependencies in the image, loosely mimicking the human vision system.

In reality, much deeper CNNs are used for challenging tasks. For example, ResNet
[27] still has filter sizes of 3× 3, however instead of only 4 filters in the first layer,
there are 64 filters for the first layer, 64 for the next, and so on (see Fig. 8).

Natural Language Processing: Recurrent Neural Networks (RNNs) To recognize
text, different strategies are adopted, given the sequential nature of the input data.
For example, assume we want to build a chatbot, that, given a query, will route
the user to the correct category of answers. If a user asks “How do I request an
account?”, the chatbot should classify the question as a “new account” question.
This is a very different application from image classification. CNNs could be used
for this problem, but it makes more sense to use a network that took advantage of
the sequential nature of text as the input.

First, the sentence is split into words (tokens) to be sent through the network one
by one (Fig. 9a). The first word is the first input to the hidden layer (Fig. 9b). This
produces an output, similar to the fully connected network in Fig. 1. The second
word is where the recurrence comes in. When “do” is sent into the network, the
output is calculated using both the current hidden state as well as the output of the
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Fig. 8 ResNet is a much deeper network than the standard CNN in Fig. 7, so information can
sometimes be lost in deeper layers. The arrows show residual connections, designed to help the
information stay relevant deeper in the network (hence the “Res” in “ResNet”). One of the 64 early
filters could be a “yellow” identifier, and one of the later filters could be a “ear” identifier, for
example

Fig. 9 An unrolled recurrent neural network (RNN) processing a single input sequence query is
shown. a The sequence is split into words or tokens and they are sent into the network sequentially,
starting by b sending the first word “How” through the hidden state and producing an output o1.
On the next word, “do”, the previous hidden state and the current input produce the next output.
This continues until the entire sequence has been processed, then c the final output though the fully
connected layer produces the output class. The network has determined that this query, “How do I
request an account?” is a “new account” question. d Currently the network is unrolled, but it can
be represented rolled up, with an arrow representing the hidden state feeding back into itself before
finishing the sequence. e Recurrent neural networks are useful for processing sequential data, but
they can lose information over time. For example, in the last hidden state, information from the first
hidden state is only represented by a small sliver

previous hidden state. This continues throughout inference of the sequence, until the
final hidden state output is fed to a fully connected layer that classifies the query as
a “new account” question (Fig. 9c).

Unfortunately, RNNs lose information in long sequences - they have “short-term
memory”. The last hidden state illustrates this: it contains only a small sliver of the
earlier words of the sentence, largely depending instead on the last word or symbol,
in this case the question mark (Fig. 9e).
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Fig. 10 An LSTM network is still a recurrent neural network (RNN), with the only difference
being the structure of the hidden state. Here a closeup of the cell shows the various gates the input
goes through before exiting the hidden state. For example, the first input x is “How”, for time step
t = 0. The next word, “do” is xt=1. There are three gates: a the forget gate, determining which
information from the previous hidden state should be forgotten based on the current input, b the
input gate, deciding which values to update in the cell state (maintained along the top), and finally
c the output gate, producing the final hidden state value

To solve this problem, a modified RNN called a Long Short-Term Memory
Network (LSTM) is often used. The hidden state is replaced by amore sophisticated
cell that still unrolls for each new word, however, it also contains a sequence of gates
that determine which information from the new input token and the old cell state
are relevant and which should be thrown out. This adjustment has allowed for major
advancements in natural language processing applications.

In a closeup of this cell in Fig. 10, instead of weighting both the current input and
the old hidden state equally, three gates determine how much to keep or throw away.

Information is maintained along the top, in what is called the cell state, or ct . The
different gates determine how to update the cell state. The first gate is the forget gate
(Fig. 10a), which uses a sigmoid function to process the input and previous hidden
state and determinewhich information in the cell state should stay andwhat should be
forgotten. For example, it could be that during training, the network has determined
that the word “account” is really important for prediction, in which case the forget
gate would output a 1, indicating to fully keep that information.

In general, the sigmoid function outputs numbers between zero and one, identi-
fying which elements should be let through. A value of zero means “keep nothing”,
whereas one means “keep everything”. A tanh function outputs numbers between
−1 and 1 and is used to help regulate the values flowing through the network.

The input gate (Fig. 10b) determines which values to add to the cell state, and a
tanh function applied to the same input generates the new candidate values that could
be added based on the current input. To update the cell state, first the previous cell
state ct−1 is multiplied by the forget gate output. Then the result is added to the input



52 K. Spoon et al.

gate times the candidate values provided by the tanh function. Last, the output gate
(Fig. 10c) determines the output of the cell.

Unlike the multi-dimensional tensors in the image application, the cell-state,
hidden-state, inputs and outputs are all one-dimensional vectors, and the multiplies
and adds within the LSTM are performed in an element-wise fashion. As a result, a
natural language processing system will often include an encoder—to turn words in
English or another language into a vector of floating-point numbers—and a decoder,
to convert each output vector into a set of predicted probabilities identifying what
the most probable next word in the sentence is. By choosing the right encoder and
decoder with careful training, an LSTM can be used for machine translation from
one language to another.

2 Software-Equivalent Accuracy in Analog AI

While the implementation of CNNs and LSTMs using crossbar arrays of PCM
devices can potentially provide fast and energy efficient operations, Phase Change
Memory also presents many non-idealities that need to be corrected in order to reach
software-equivalent accuracy with analog hardware.

2.1 Programming Strategies

To accurately perform neural network inference, weights must be precisely pro-
grammed by tuning the conductance of the devices. Write and read noise affect
all NVM types, while PCM also experiences an additional non-ideality, conduc-
tance drift, namely a reduction of conductance over longer times, which degrades
the computation precision, eventually decreasing the classification accuracy [28,
29]. Even small changes from the trained weights to the weights programmed on
the chip can have a crucial impact on accuracy. Ideally, the relationship between
programming pulse and achieved conductance state should be predictable, where a
certain number and shape of pulses will always program a certain conductance value
G. However, actual programming traces show a large variability, as can be seen
from simulated traces in Fig. 11, with each device behaving slightly differently from
the others (inter-device variability). Even a single device experiences different con-
ductance traces under the same programming conditions (intra-device variability),
potentially causing a drop in neural network accuracy [30].

In order to make the programming process more precise, a closed-loop tuning
(CLT) procedure can be adopted, and a more complex unit cell is often used that
contains not only one most significant pair (MSP) of conductances G+ and G-, but
also includes a least significant pair g+ and g- (see Fig. 12) [14, 23, 30]. This CLT
operation consists of tuning the weights in four phases, one for each of the four
conductances G+, G-, g+ and g-. To accelerate the write speed, programming can be
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Fig. 11 Each simulated curve represents a different device programming behavior. Ideally we
want to be able to predict and better control these trajectories. Adapted with permission from [23].
Copyright 2019 John Wiley and Sons

Fig. 12 The unit cell contains four conductance values, two for the most significant pair (MSP): G+
and G-, and two for the least significant pair (LSP): g+ and g-. The programming strategy focuses on
each one of these values in turn, iteratively updating the weight value depending on how close it is
to the target weight (the goal weight). Each column additionally contains two pieces of information:
whether or not the current weight is above or below the target weight, along with whether or not
this column will participate in the current programming phase. Adapted with permission from [23].
Copyright 2019 John Wiley and Sons

performed in a row-wise parallel fashion, tuning all weights in one row at the same
time. To enable this, each weight is checked against the target after each read step.
If a weight reaches, or overcomes, the target weight, further programming needs to
be prevented. Each column contains a sign bit and a participation bit. The sign bit
represents whether or not the full weight W is above or below the target weight in
the current stage, and the participation bit represents whether that column should
participate in the current phase or stop [23].

The error is defined as the difference between the actual programmed weight and
the target weight. The error should go to 0 throughout the four phases. For positive
(negative) targetweights, Phase 1 starts by applying pulses toG+ (G-) until theweight
exceeds the threshold. Then the process is repeated for G- (G+), this time applying
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Fig. 13 a Iterative programming strategy that successively tunes the four conductance in a weight,
b leading to c a strong correlation between the desired programmed weights and the actual pro-
grammed weights. Adapted with permission from[23]. Copyright 2019 John Wiley and Sons

Fig. 14 Experimental comparison between single PCM (a) and full weight (b) closed-loop tun-
ing. Top figures show the target conductances and weights, together with the achieved programmed
results. Bottomfigures show the corresponding cumulative distribution functions (CDF) for variable
targets. While single-device CDFs (a) reveal increasingly broadened distributions due to program-
ming error and device saturation for increasingly larger targets, weight CDFs (b) reveal steeper
curves, which is a consequence of the improved programming precision, and reduced saturation
due to increased weight dynamic range. Adapted with permission from [29]. Copyright 2019 IEEE

pulses until it drops below the threshold. This successive approximation technique
continues for the LSP (Fig. 13a). In this case, since the contribution from g+ and g-
is reduced by a constant factor F around 2–4, the program precision increases. By
simulating this process, Fig. 13b shows that ∼98% of weights can be programmed
effectively using this strategy, with only∼2% of weights out of target, thus providing
a very strong correlation between the programmed and target weights (Fig. 13c).

To verify the impact of MSP and LSP pairs on write precision, actual experiments
are shown in Fig. 14. The lower conductance values are easier to reach, but as the
target value gets higher, the PCMs less reliably program the desired value (Fig. 14a)
due to variability in the maximum achievable conductance for each device [29]. This
can also be seen by studying the cumulative distribution functions (CDF), which
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show that the percentage of PCM devices that reach a certain conductance target
decreases for increasing target values. In addition, CDF curves are not very steep
due to programming errors that limit the precision we can achieve in tuning a single
PCM device.

When the weights are split into four conductances with a simplified version of the
programming strategy described, more of the PCMs reach the desired conductance
values (Fig. 14b) due to an increased dynamic range. In addition, CDF distributions
are steeper, revealing a better control of the weight programming, leveraging both
MSP and LSP conductance pairs [29]. Using this programming strategy, software-
equivalent accuracy was demonstrated, with a mixed software-hardware experiment,
on LSTM networks similar to the one introduced in Sect. 1.2 [29].

2.2 Counteracting Conductance Drift Using Slope Correction

Additionally, even after programming the desired values, phase change memory
exhibits another non-ideality called conductance drift, where the device conductance
decays with increasing time due to the structural relaxation of the amorphous phase
[28]. Since weights are encoded in the conductance state of PCM devices, drift
degrades the precision of the encoded weight, and needs to be counteracted [31, 32].

Drift typically affects reset and partial reset states, with an empirical power law
describing the time dependence:

G(t) = G0 ∗
(
t

t0

)−ν

,

where G0 is the very first conductance measurement obtained at time t0 after the
programming time. For increasing times t , conductance decays with a power law
defined by a negative drift coefficient ν, indicating the drift rate.

Drift is a very rapid process right after programming but slows down considerably
as time continues. While all PCM devices experience drift, each device drifts at a
slightly different rate. To properly evaluate the drift coefficient distribution across
multiple PCMs, ν coefficients for 20,000 devices were extracted by measuring the
conductances at multiple times over 32h [31]. Figure15a shows the ν distribution
for all 20,000 devices as a function of the initial conductance measurement G(t1).
The corresponding median ν̄ and standard deviation σν are then extracted and shown
in Fig. 15b. As a first approximation, we can consider ν̄ equal to 0.031, and σν equal
to 0.007. These parameters have been implemented in our model to study the impact
of drift on neural network inference [31].

In order to understand how to correct conductance drift, it can be helpful to
look more carefully at the activation function used during the multiply-accumulate
operation discussed earlier. This activation function f (also known as a squashing
function) transforms the data. Different functions will result in different transforms.
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Fig. 15 Experimental drift characterization on 20,000 PCM devices. After PCM programming,
conductances have been measured up to 32h, and corresponding ν have been extracted and plotted
as a function of the initial conductance (a). The extracted median ν̄ and standard deviation σν are
plotted in (b). Adapted with permission from [31]. Copyright 2019 IEEE

Fig. 16 A wide variety of activation functions are used in practice, four examples of which are
shown in (a). The sigmoid function is expanded to better compare to the tanh function. b We can
apply activation amplification factors (“slope correction” factors) to these functions to counteract
drift over time. Adapted with permission from [31]. Copyright 2019 IEEE

Here four main functions are introduced: ReLU (Rectified Linear Unit), clamped
ReLU, rescaled sigmoid, and tanh, as shown in Fig. 16a. Except for ReLU, which
is unbounded, all the other squashing functions are studied here at the same ampli-
tude. As the standard deviation of the drift coefficients approaches 0, the effects
of drift can be factored out of the multiply-accumulate operation as a single time-
varying constant. This allows for the compensation of conductance drift by applying
a time-dependent activation amplification equal to (t/t0)+νcorrection , where the previ-
ously extracted ν̄ is chosen as νcorrection . This factor is applied to the slope of the
activation function (Fig. 16b) [31].

This technique has been evaluated on several networks. Initially, without any
correction, the fully connected network experiences a marked accuracy degradation,
over time, on theMNIST dataset of handwritten digits (Fig. 17a), due to conductance
drift. With slope correction, however, results for all the activation functions studied
improve significantly (Fig. 17b). The technique has also been evaluated on a ResNet-
18 CNN trained on the CIFAR-10 image classification dataset (Fig. 18a) and an
LSTM, trained on the text from the book Alice in Wonderland (Fig. 18b). With these
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Fig. 17 aWith no slope correction, even a small MLP suffers a strong accuracy loss from conduc-
tance drift. b However, with slope correction, accuracy barely degrades over time. The remaining
decay is due to the σν spread. Adapted with permission from [31]. Copyright 2019 IEEE

Fig. 18 Ondeeper,more sophisticated networks, the results still hold and slope correction is vital for
maintaining accuracy over time for both ResNet and LSTM. LSTM results are measured according
to the loss, where a lower loss is better, as a higher accuracy for ResNet is better. Adapted with
permission from [31]. Copyright 2019 IEEE

more complicated networks, without any slope correction, accuracy was found to
dramatically drop. However, slope correction is still highly effective in reducing the
impact of conductance drift, as shown in Fig. 18. It is important to note that slope
correction will not remove the entire impact of drift since the σν is non-zero, meaning
not all PCM devices drift at the same rate. However, even so, slope correction still
shows a large impact, while remaining accuracy degradation can be compensated by
using slightly larger networks [31].

3 Conclusion

In summary, analog hardware accelerators with phase change memory are a promis-
ing alternative to GPUs for neural network inference. Themultiply-accumulate oper-
ation, which is the most computationally expensive operation in a neural network,
can be performed at the location of the data, saving power and time. However,
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with this promise comes some non-idealities. Recent software-equivalent inference
results [23, 29, 30] include strategies to program the weights more precisely using
4 PCM devices, and a slope correction technique can be used to reduce the impact
of resistance drift [31].
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