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Abstract In the last decade, Neural Networks (NNs) have come to the fore as one
of the most powerful and versatile approaches to many machine learning tasks. Deep
Learning (DL), the latest incarnation of NNs, is nowadays applied in every scenario
that needsmodels able to predict or classify data. From computer vision to speech-to-
text, DL techniques are able to achieve super-human performance inmany cases. This
chapter is devoted to give a (not comprehensive) introduction to the field, describing
the main branches and model architectures, in order to try to give a roadmap of this
area to the reader.

1 A Brief History

In the last decades, the use of Neural Networks (NNs) has become one of the most
effective approaches for solving classification and regression tasks. This is principally
due to their capability of identifying and modeling complex correlations. They have
been proposed for the first time in the 40s in order to try to achieve two main
objectives: to study the functioning of the human brain by defining models able
to simulate its neuro-physiological phenomena, and to use such models to extract
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the principles guiding human reasoning in terms of mathematical calculations, to
develop artificial systems able to reason as a human but possibly faster and more
efficiently.

The concept of NN, as the name explicitly says, was originally used to define
networks simulating the neurons and their interactions in the human brain. The first
theory was developed by McCulloch and Walter Pitts [31] and was very simple and
effective. They defined the neuron as a computational unit that applies a function
to the inputs implementing a binary classification. The inputs were multiplied by
weights fixed apriori and static. In 1958, this first definition was at the basis of
the implementation of the first model of neural network, called Perceptron [39],
allowing the training of a single neuron. From the work of those years, besides the
Perceptron, a second learning algorithm also emerged, which was a special case of
the Stochastic Gradient Descent (SGD) technique, which is at the basis of most
learning algorithms now. This learning algorithm was used to train the weights of
the ADAptive LINear Element (ADALINE) model [48], used for linear regression.
Basically, SGD needs an error function that returns, for a given output of the model,
how far the output is from the label of the input. SGD takes the error function and
computes the gradient of this error on the weights. In this way, it is possible to update
the weights moving along the gradient in order to reduce the error. Performing these
operations iteratively allows minimizing the error. Nowadays, this idea has been
declined in many ways, considering for example also the second derivative or the
derivative of the previous iterations to better guide the tuning of theweights.However,
a single neuron is not effective for even the simplest classification and regression task
because it implements a too simple function. For this reason, this idea was abandoned
at that time.

In the second half of the eighties, Rumelhart et al. [40] used the back-propagation
mechanism to train larger networks, giving new life to the study of the topic. The
idea was simple but effective: using more neurons means combining more functions,
defining a model able to represent more complex scenarios. Unfortunately, at that
time, developing and experimenting with these ideas was difficult due to hardware
limitations thatmade the training unfeasiblewith the increase of the complexity of the
model. However, the idea of deep networks dates back to these years. Deep networks
are networks with many layers of neurons, the internal layers are called hidden and
the depth of the network is the number of layers. Moreover, the eighties saw the first
theorization of Convolutional Neural Networks (CNN) by Yan LeCun [27], whose
work resulted in the definition of the well-known LeNet5 model [26]. This model
was one of the first effective CNN as it was able to achieve super-human results in
the task of handwritten digit recognition.

Nowadays, the idea of NNs is that of extremely complex networks with many
neurons organized in many layers. The concept of depth is stressed even further,
partly thanks to the advances in hardware. Other important aspects that helped to
increase the importance of thesemodels are the increase of the size of the data and the
availability of powerful (and in many cases user-friendly) systems and frameworks
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for the design, the implementation and the use of these models. Frameworks such as
Tensorflow,1 PyTorch2 and Caffe3 allow a better user friendliness and consequently
a easier prototyping of models.

The classical definition of a NN, a set of neurons grouped in different layers
where a neuron in a layer communicates with all the neurons of the next layer, is now
usually called Fully Connected (Deep) Neural Network, Artificial Neural Network,
Multilayer Perceptron, or Deep Feedforward Network [1, 13], and has been later
extended in order to define more complex models.

Alongside this definition, new models have gained increasing importance in the
field. On one hand, the already mentioned convolutional networks, mainly used in
the field of computer vision, and on the other hand Recurrent Neural Networks [40],
defined for input data in the form of sequences, such as written text. Their great
innovation is that they allow the network to maintain a memory of previous data,
enabling the management of such sequences.

The rest of this chapter is organized as follow. Section2 discusses Multilayer Per-
ceptrons, Sect. 3 introduces Convolutional Neural Networks, and Sect. 4 Recurrent
Neural Networks. Section5 discusses the problem of tuning the hyper-parameters to
guide the training. Finally, Sect. 6 concludes the chapter.

2 Multilayer Perceptrons

The objective of a Multilayer Perceptron (MLP) is that of approximating a func-
tion f̂ : RN×M → R

K by means of other functions such that f̂ (X) = fn( fn−1(. . .

( f1( f0(X))))), where X is a tensor4 of size N × M representing the input. The corre-
sponding model is a network of n layers, each representing the function fi with i the
number of the layer. Figure1 shows an example of MLP with 4 layers. Layer 0 is the
input layer, the leftmost one, then layers 1 and 2 are internal layers, also called hidden
layers. Finally, the last layer is the output one, returning the results of the computa-
tion of the network. The output function is Ŷ = f̂ (X) = f3( f2( f1( f0(X))))), with
f̂ : R3×1 → R

3. This network is developed to solve a multiclass classification where
each input x can be labelled with three different classes, associated with different
neurons of the output layer. Before describing the overall flow, let us concentrate on a
single neuron, e.g., neuron h1 in Fig. 1. Figure2 shows the computation performed in
each single neuron. Basically, each neuron takes as input the output of each neurons
of the previous layer, for the case of h1, it takes X = [x1, x2, x3]� as input. More-
over, each neuron has another input value, the bias, a constant term set to 1 which
represents background noise. Thus, toghether with the weight matrixW1, containing
one weight w1

i for each xi , another weight b11 is considered, associated to the bias.

1 https://www.tensorflow.org/.
2 https://pytorch.org/.
3 https://caffe.berkeleyvision.org/.
4 Generally, a tensor is a n-dimensional array with n ∈ N.

https://www.tensorflow.org/
https://pytorch.org/
https://caffe.berkeleyvision.org/
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Fig. 1 Example of a MLP
with four layers: the input,
two hidden and the output
layers. The input
X = [x1, x2, x3]� represents
a tensor of size 3× 1. The
output Y = [y1, y2, y3]�
represents the 3 possible
classes to be assigned to the
input, one class for each
value in Y

Fig. 2 Computation of
neuron h1 in Fig. 1

This weight is usually automatically added to the neuron by the frameworks used to
model the MLP, thus it is not necessary to explicitly add it to the model, as shown
in Fig. 1, where the bias terms are not represented.

In detail, first of all, the neuron computes the network input, i.e., the input it takes
by the network. So, z11 = b11 + ∑n

i=1 xiw
1
i or, in matrix notation z11 = b11 + X�W1,

with n = 3 the size of X , i.e., the number of input from the previous layer. Then, z11
is given to the activation function fact that computes the output of the neuron, which
is given as input to the neurons of the next layer. Thus, f 11 (X) = fact (b11 + X�W1).

There are many possible activation functions, varying from hyperbolic tangent
tanh to the sigmoid or to Rectified Linear Unit (ReLU) [24]. In particular, the last
two functions are the most used. Given Z the input of a neuron, the sigmoid function
σ(Z) = 1

1+e−Z , shown in Fig. 3a, is used as the activation function of the output layers
in case of binary classification. It returns a value between 0 and 1, thus the output
layer is designed to have one neuron returning the probability of the input to belong
to the positive class (one of the two classes). On the other hand, the ReLU activation
function, shown in Fig. 3b, is the most used for the neurons of the hidden layers. It
was introduced to improve the performance in terms of training time and defined as
ReLU (H) = max(0, Z).

Therefore, the overall flow is as follow. The input data is multiplied by weights
matrix W1 and given to the neurons of the first layer. Here, every neuron takes the
result of this multiplication and applies the activation function, returning the output
of the neuron. This value is intended as an indicator of the level of activation of the
neuron, the higher the value, the most active that neuron.
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Fig. 3 Sigmoid a and ReLU b activation functions

This process is then repeated sequentially for the next layers until the output layer
is reached. Thus, for example, the output of the neuron h2 in Fig. 1 is f 21 (X) =
fact (b21 + Z�

1 W2) where b21 is the bias weight of neuron h2, and Z1 is the tensor
containing the output of the neurons of the previous layer.

The last layer will output a probability distribution among the classes considered
in the data in the case of classification, or a real value predicting the output label of
the example in the case of regression.

During learning, this output distribution is used to compute a loss measure rep-
resenting how far the predicted output of the network is from the actual label of the
input examples. The gradient of this loss measure is calculated w.r.t. the weights.
These are then updated by taking a step in the opposite of the direction given by the
gradient by means of the gradient descent algorithm or one of its evolutions. This
approach is called back-propagation and it is at the basis of the training of each
neural network, with some variants due to the different architectures adopted.

The need of calculating the gradient guided the search for good activation func-
tions for all the layers. What one would like to have is a function easy to derivate,
able to maintain the output values of each neuron in a range that is functional for the
training and, at the same time, that does not reduce the information passing through
the neuron. Values in the range [0, 1] are the easiest to manage because they avoid
an explosion of the weights’ values. The counterpart is that multiplying many values
lesser than 1 makes the output close to 0, making its gradient close to 0 as well. This
problem is called vanishing gradient. To try to avoid this problem, the choice of the
value of the update step for the weights must be wisely chosen and, in many cases,
it must be changed during the training as well.

3 Convolutional Neural Networks

When the input data presents some spatial structure, i.e., each value of the input
is connected in some way with other values, MLP may have problems to represent
these spatial relations, that usually connect smaller portions of the input example and
may appear in different positions and numbers. MLPs need a neuron for each value
of the input example, which is a tensor, thus they may require too many neurons
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to effectively handle the problem. Input data with spatial structure are, e.g. images,
where each pixel is connected with the pixels surrounding it, or time series, where
each value is connected with the previous and the following value in the series. If we
consider a picture of a person, the set of pixels representing an eye are related and
the same relation appears in two different places inside the picture. Moreover, the
eye is related to the face of the subject but not, for example, to a car passing behind
the person in the background. In these cases, if a MLP is considered, the input layer
should have a neuron for each value of the input, i.e., one neuron for each pixel in case
of a greyscale image or three neurons for each pixel in case of an RGB picture (one
for each channel). This may force the network to have an extremely large number
of weights to tune. Consider, for example, a greyscale image with a resolution of
256 × 256 pixels. The input layer has 65,536 neurons. If the first hidden layer has
100 neurons, which is usually a number too small to be effective given the input size,
the network needs 65,536·100=6,553,600 weights to connect the two layers. This
number will increase even further adding more layers, resulting in a hard to train
network.

Convolutional Neural Networks (CNNs) [27] have come to the fore to solve
problems where data presents spatial and/or topological structure as in the previous
example. CNNs are built using convolutional layers, performing convolutions on the
data they receive and extracting features from it, typically followed by some fully
connected layers to carry out the classification by considering only the extracted
features instead of the entire input data. Thus, considering the previous example, the
convolutional part checks which features are present in the picture, e.g., if eyes or
a mouth or wheels are present. Then, the fully connected part considers the set of
features identified in the image and decides which label to assign.

The convolution operation is the integration of two functions x and w, and it is
denoted as x ∗ w. Function x is called input while functionw is the kernel. The result
is called feature map, or simply feature. Convolution is defined as

(x ∗ w)(t) =
∫ ∞

−∞
x(τ )w(t − τ)dτ

or, in the discrete case

(x ∗ w)(t) =
∞∑

τ=−∞
x(τ )w(t − τ)

In practical scenarios, the input and the kernel functions are tensors, i.e., multidi-
mensional arrays, such as a 2D grid of pixels for an image or a 1D vector for a time
series. The kernel scrolls all the input, moving in the directions given by the size
of the input itself (in one direction in the case of 1D input, in two directions in the
case of 2D input, etc.). Good surveys on the application of CNNs to images and time
series are respectively [20, 36].
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The result of a convolution operation represents the features extracted from the
input. The advantage of using CNNs is that the kernel is used on the entire input. The
only weights to train are the values of the kernel, therefore, if we consider a single
kernel of size 5 × 5, the convolutional layer has only 25 weights to train irrespective
of the size of the input of the layer. Even if the input has size 256 × 256, the number
of weights to train will be always 25.

In practice, every convolutional layer applies many kernels at a time, extracting
many features from the same image, one for each kernel. For example, one of the
first CNN, LeNet5 [26], was defined to train 10 kernels of size 28 × 28 in the first
convolutional layer. Later, Simonyan and Zisserman [42] showed that it is possible
to further reduce the number of weights by maintaining the same receptive field by
reducing the size of the kernel and adding more convolutional layers, as shown in
Fig. 4.

The receptive field is the number of values of the input affecting a single value
of the output of a convolution operation. Considering a single convolutional layer
having 5 × 5 kernels, the receptive field of the output of this layer is 25 (Fig. 4a).
Consider now replacing this single layer with two convolutional layers having 3
kernels each, as depicted in Fig. 4b. After the second convolutional layer, every
value of the output depends on 25 values of the input given to the first convolutional
layer, i.e., the receptive field of each value of the output of the second layer is a
square 3 × 3, so 9 values, of the output of the first layer. In the output of the first
layer, each value has a receptive field of 3 × 3 values of the input. By considering
these two layers as a single black-box, the receptive field of the output combines
those of the two layers, becoming, as said before, a square of 5 × 5 values of the
input. This is true if we consider a stride equal to 1. The stride indicates by how
many pixels the kernel moves in a certain direction to calculate the feature map. The
advantage of using more layers is that, while with a single 5 × 5 convolutional layer
there are 25 weights to train, with two 3 × 3 convolutional layers there are 2 · 9 = 18
weights to train. If we consider a single layer having a 7 × 7 kernel and replace it
with three layers having 3 × 3 kernel and using stride 1, the same receptive field is
achieved with 3 · 9 = 27 weights instead of 7 · 7 = 49. Since every convolutional
layer contains several different kernels, the gain in terms of number of weights to
train increases fast. By exploiting this approach, it is possible to extract hundreds of
features by maintaining the number of weights to train feasible.

However, with the increase of layers, the problem of vanishing gradient will pop
up. For this reason, He et al. [16] introduced ResNet where the configuration of layers
combines the output of sets of convolutional layers with the input of the first layer in
the sets creating a short-circuit between the input and the output of the set of layers,
as shown in Fig. 5. This configuration of layers is called Residual Block and presents
an output function that is H(X) = F(X) + X , where F(X) is the output of the set
of convolutional layers. Moreover, the increase of complexity of a layer in terms of
operations performed also implies an increase of the number of weights. To reduce
their number, a possibility is to resort to 1 × 1 kernels, as in GoogLeNet [46]. Basi-
cally, 1 × 1 convolution is used to reduce the number of features computed by the
previous convolutional layer by combining them in a meaningful way. This combi-
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Fig. 4 Comparison between
1 convolution operation with
kernel 5 × 5 (a) and 2
convolution operations with
kernel 3 × 3 (b)

Fig. 5 The architecture of a
Residual Block as defined in
ResNet

nation is learned automatically during the training phase to maintain the information
of the features taken as input by the 1 × 1 convolutional layer while reducing their
number. GoogLeNet also introduced the concept of inception, i.e., the design of a
good local convolutional network architecture, usually with parallel branches, and
its use as a new layer.
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In the last years, many other different architectures have been presented. Most
of them combine and extend the ideas presented for GoogLeNet and ResNet by
including MLP networks inside layers. An example is the well-known Network-
in-Network model [28], combining the idea of residual blocks and inception [49],
creating fractal architectures [25], where the model is no more defined by means
of layers but by means of a fractal function which is defined recursively, or heavily
using 1 × 1 convolution [19] or short-circuits [18].

Another important operation used byCNNs to reduce featuremaps is pooling, also
called sub-sampling, which usually follows convolution operations. This is used to
reduce the size of a feature map by summarizing its information. This summarization
can be performed by, e.g., averaging neighbour values or extracting from them the
maximum value. The use of convolution and pooling operations allows the extraction
of the important features contained in the input data X , representing them by smaller
tensors. These features can be used to help classification, or the recognition of certain
patterns contained in the data, irrespectively of their position or scale.

Indeed, CNNs’ final layers are usually classical fully connected layers that per-
form classification on the features extracted by previous layers. Therefore, roughly
speaking, a CNN can be divided into two subnetworks, where the first subnetwork
processes the input data by means of convolution operations. The output of these
operations is then passed to the second subnetwork, which is a fully connected
network used to classify the input data. Figure6 shows the architecture of LeNet5
(Fig. 6a) [26] and of ResNet (Fig. 6b) [16]. From this figure it is possible to see that
while the overall architecture has remained the same, i.e., a convolutional part that
feeds a set of features to a fully connected part, the depth has increased significantly,
going from 6 layers of LeNet5 to 152 layers of ResNet.

Considering images as input, besides the classification task, CNNs are also used
to solve more specialized tasks, for example, semantic and instance segmentation, or
object detection. The first task consists of identifying which part of the image each
pixel belongs to. For example, consider a picture having two dogs in the foreground
and a grassland with sky as background, semantic segmentation’s objective is that
of “classifying” each pixel as sky, grass and dog, while instance segmentation adds
the capability of discriminating among the two dogs. Thus, the difference is that
semantic segmentation does not discriminate between different subjects, the pixels
representing the two dogs are all classified as “dog”, while in instance segmentation
the pixels representing the first dog are kept separated from those representing the
second dog. This task is performed by superimposing a mask on the initial image that
colours each pixel depending on how it is classified. This task is usually performed
by applying convolution and deconvolution to the image so that the fully connected
part of the network is replaced by a sequence of deconvolutional layers [30, 32,
41]. In particular, deconvolution is the dual of convolution, i.e., instead of extracting
features from an image, reducing its size, it is aimed at recreating an image starting
from a set of features, also possibly increasing its size.

Object detection allows to locate and surround with a box the objects represented
in the image. Therefore, given an image, the objective is to identify which objects
the image contains, classify them and spatially locate them in the image. This task
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Fig. 6 The architecture of LeNet5 (a) and ResNet (b)

is performed by defining and training the fully connected layers at the end of the
model so that they also output the coordinates of the box highlighting each object.
This approach can be used also to estimate the pose of the subject of the image [47],
for example to identify if a person is sitting or walking. Object detection and pose
estimation can be done by iteratively selecting portions of the image randomly sam-
pled and using this portion as input of the CNN. In this way, the model can extract
the information contained in each portion and thus in the entire image [12].

4 Recurrent Neural Networks

If we must process sequential data, the architectures seen before are not the best
choice. Sequential data may have different length and be very long, however the
model needs to be able to analyse the sequence as a whole. MLPs and CNNs take
as input data of fixed size and are designed to handle different characteristics in the
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data, such as grid-like topology for the CNNs. When sequential data needs models
having a memory of what they have seen previously in the sequence, Recurrent
Neural Networks (RNNs) [40] may come in handy. An example of an application of
the RNNs can be text translation, where given a sentence, the system has to produce
a different sentence, which is the translation of the input in a different language. The
vanilla RNN is composed of a single neuron that takes as input a single value of the
sequence at a time and a value representing its previous state, i.e., the state, usually
the output or a function of the output, obtained considering the previous values of the
sequence. In a sequence, every individual value represents the value of the sequence
at a certain time step t , therefore, the output of a RNN is ht (xt ) = f (ht−1, xt ) for
t ≥ 0, ht is the output of the recurrent layer at time t , f the function computed by
the layer, and xt the input at time t . The function f can vary a lot and different types
of functions have been defined to manage the process memory in different ways, by
replacing the single neuron of the vanilla version with sub-networks containing more
neurons. Each version of f uses weights that are learned during the training phase.
An important thing to note is that the network is composed by a single neuron/sub-
network applying function f , therefore, the weights are tuned by considering the
whole sequences, while the network needs less memory than the other types of
network discussed in this chapter.

This simple architecture can be used for different purposes, given an input
sequence the model could return as output a different sequence or a single value,
or else, the model could take a single value as input instead of a sequence and use
only its previous state to create a sequence from scratch. This can be easily done by
deciding when to return an output, either at each time step, at the end of the input
sequence, or every intermediate solution.

The training method used for this type of network is called back-propagation
through time and in its basic definition is computed for each time step. The difference
is that in this case, at each time step, the number of times the weights of the network
are considered increases. In fact, at time 1 the output considers the weights of the
neuron only once, at time 2 the output is the output of time 1 multiplied by the
weights, so they are considered twice, and this holds for every time step until the end
of the sequence.

Wecan alsodefineBidirectional-RNN,where for each time step theoutput depends
also on the future values of the sequence, thus the whole sequence must be read for-
ward and backward in order to return the output. It is worth noting that the possibility
of reading the sequence bidirectionally opens to the possibility of taking as input not
only sequences but also input that have more dimensions, such as images. This can
be done by considering different directions for each dimension, e.g., in the case of
an image the network should consider 4 directions.

With the combination of RNNs and CNNs it is also possible to solve the image
captioning problem, i.e., given an image, generate a caption describing the content
of the image [22]. This can be done by exploiting a CNN trained for solving object
recognition task. This network returns a set of labels telling what the image contains.
A RNN is then fed with these labels to generate a caption, i.e., a sequence of words,
for the image.
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Fig. 7 Long Short Term
Memory architecture

The main problem of vanilla RNNs is that the network tends to forget the most
distant parts of the sequence. Thus, as seen before, more complex architectures have
been proposed to improve the memory of the network. One of the most important
architecture is called Long Short Term Memory RNN (LSTM) [17]. LSTMs replace
the single neuron of the vanilla RNNwith four gates (basically four neurons) that, for
each time step, take as input the current value of the input sequence, and the previous
output and state, as shown in Fig. 7. One gate decides which parts of the previous
stateCt−1 to remember by checking the previous output ht−1, another gate computes
which parts of the current input xt to remember, a third gate decides how these two
parts are combined together to compute the current state Ct and so to manage what
to keep in memory, and the fourth gate computes the current output ht .

As can be seen in Fig. 7, an LSTM is a network containing several MLP neurons,
called gates. To compute the output and the state of the LSTM, it is necessary to
compute the output of each gate.

The output of gate f at time t , called forget gate, telling what to forget from the
previous state is

ft = σ(W f · [ht−1, xt ] + b f )

where σ(·) is the sigmoid function, W f and b f are the weights matrix and the bias
weight of gate f ,and [ht−1, xt ] is the concatenation of the two tensors ht−1 and xt .

The output of gate i at time t , called input gate and telling which values to update,
is

it = σ(Wi · [ht−1, xt ] + bi )

where Wi and bi are the weights matrix and the bias weight of gate i .
The output of gate g at time t , called gate gate and creating a vector of new

candidate values, is
gt = tanh(Wg · [ht−1, xt ] + bg)

where tanh(·) is the hyperbolic tangent, Wg and bg are the weights matrix and the
bias weight of gate g.
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Now, it is possible to compute Ct as

Ct = ft × Ct−1 + it × gt

where × is the element-wise multiplication.
To find the output ht , the output of the gate o, called output gate,must be computed

as:
ot = σ(Wo · [ht−1, xt ] + bo)

where Wo and bo are the weights matrix and the bias weight of gate o. Finally, the
output of the LSTM at time t can be computed as

ht = ot × tanh(Ct )

Starting from LSTM, a plethora of new models have been proposed. Some of
them combine or replace gates to simplify the training, such as the well-known
Gated Recurrent Unit (GRU) [7], or introduce spyholes [11] giving also the previous
state as input to (some) of the four gates of a standard LSTM.

The idea of adding sub-networks has also been applied in the case of RNNs
[14, 33]. For example, the current state may be passed as input to an MLP whose
output is considered as the previous state from the recurrent part [14].

A generalization of RNNs are the Recursive Neural Networks [5, 35]. In this case,
themodel presents a tree-like structure, as shown in Fig. 8. Themain advantage is that
the number of operations necessary to compute the output given an input sequence
is reduced to be logarithmic in the length of the sequence. The drawback is that to
achieve the best results the structure of the tree should be tailored to the input. This
structure is usually computed by analysing the task. For example, for natural language
processing, one can exploit some parsers to get a parse tree to be transformed into
the recursive network [44, 45], or define a learner able to automatically create the
structure of the tree [5]. However, given the difficulties to correctly identify the best
architecture, recursive neural networks are rarely used.

Fig. 8 Recursive neural
network
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5 Hyper-parameter Optimization

An important aspect to consider for each machine learning approach is the choice
of good hyper-parameters. These can be the number of neurons in each layer, the
number of layers, the size of the kernels or the number of iterations to perform
during training. As seen in the previous sections, with the increasing sophistication
of Deep Learning systems, the hyper-parameters and the possible configurations of
the network architectures become more and more complex. Furthermore, due to the
pervasiveness of Deep Learning systems, the tuning process of the hyper-parameters
and the choice of the best neural architecture needs to be addressed even by non-
experts.

In the automationofDeepLearning,we candistinguish two families of algorithms:
Hyper-Parameters Optimization (HPO) and Neural Architecture Search (NAS) algo-
rithms [9].With HPO algorithmswemodify only the hyper-parameters of themodels
while with NAS we act only on the architecture of the neural networks.

The four main HPO approaches are Grid Search, Random Search, Bayesian Opti-
mization and with Genetic algorithm. Grid search [51] performs exhaustive search
on the specified hyper-parameters space. This algorithm performs a new indipen-
dent training session for each combination of the hyper-parameters. This algorithm
ensures that the optimal configuration is found as long as sufficient resources are
provided. This method is guided by a performance metric that decides which of the
tested configurations is the best, measuring the performance of the neural model
in the training or validation phase. However, due to the fact that the computational
resources increase exponentially with the number of hyper-parameters to set, Grid
Search suffers from the curse of dimensionality [51].

Random Search [3] searches randomly in the user-defined hyper-parameters
space. Random search leads to better results than Grid Search, especially when
only a small number of hyper-parameters affect the final performance of the learning
algorithm [3]. Unlike Grid Search, this algorithm is not guaranteed to achieve the
optimum, but may require less computation time while finding a reasonably good
model inmost cases [3] because themaximum computation time is set before starting
the search. With Random Search, it is also possible to include prior knowledge by
specifying the distribution from which to sample the hyper-parameter values.

BayesianOptimization aims tofind the global optimumwith theminimumnumber
of trials. It is a probabilisticmodel-based approach for optimizing objective functions
which are very expensive or slow to evaluate [8]. Bayesian Optimization builds a
probabilistic model (called surrogate model) of the objective function and quantifies
the uncertainty in this surrogate using a regressionmodel. Then, it uses an acquisition
function to decide where to sample the next set of hyper-parameters values [10]. Its
effectiveness in optimizing the hyper-parameters of NNs derives from the fact that it
limits the number of training sessions by spending more time choosing the next set
of hyper-parameters to try. In the literature, there are many examples of application
of this kind of HPO to NNs [4, 23, 43].
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A genetic algorithm (GA) is a metaheuristic based on Charles Darwin’s evolu-
tion theory [50] frequently used to generate high-quality solutions to optimization
problems. This algorithm tries to imitate the process of natural selection where the
fittest individuals are selected for reproduction to produce the population of the next
generation. Evolution starts with a randomly generated population of individuals
(each individual is a solution to the optimization problem). One of the key points of
GA is the fitness function. The fitness function determines the fitness score of each
individual. Fitness score represents the probability that an individual will be selected
for reproduction. At each iteration of the algorithm, with the selection phase, the
fittest individuals are selected so that they pass on their genes to the next generation.
Individuals with high fitness score have more chance to be selected for reproduc-
tion. Through the crossover phase (also called recombination), for each new solution
to be produces, a pair of parent solution of the actual generation are selected and
their genetic information are combined to create new child solution. In addition to the
crossover, tomaintain the genetic diversity, there is also themutation. Mutation alters
one or more gene values in an individual from its initial state and occurs during the
creation of the new population, according to a user-definable mutation probability.
The algorithm terminates where the population has converged (GA does not produce
new population that are significantly different from the previous generation).

Then, in the case of DL hyper-parameters optimization, the Genetic algorithm
starts with an initial population of N DL models with some predefined hyper-
parameters. Then, we can calculate the accuracy (or loss) of the models and uses
that as a fitness score. Finally, we can generate a new offspring of DL models. This
method is slow (at each iteration, new neural networks are generated which need to
be trained) and not guaranteed to find the optimal solution.

NAS is a technique for automating the design of NNs architectures strictly corre-
lated to HPO. NAS methods have already been shown to be capable of overcoming
manually designed architectures [37, 52]. The three main elements on which NAS
are based are: Search Space, Search Strategy and Performance Estimation Strategy
as can be seen in Fig. 9. Search Space refers to all possible architectures that can
be generated during the optimization process. Search Strategy refers to the methods
for exploring all possible architectures that can be generated by NAS. Performance
Estimation Strategy are the methods for measuring the quality of the generated NN
[9]. There are different search strategies that can be used to explore the search space
of neural architectures. These strategies include: random search, Bayesian Optimiza-

Fig. 9 Components of NAS with their interactions
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tion [21], reinforcement learning [34], gradient-basedmethods [29] and evolutionary
algorithms [9, 38]. NAS approaches can be categorized in two groups: classical NAS
and one-shot NAS [2]. The first group follows the traditional search approach also
used by Grid Search, where each generated NN is trained independently. One-shot
NAS algorithms use weight sharing among models in the search space to train a
super-net and use this to select better models. This type of algorithms reduces com-
putation resources compared to the classical NAS algorithm. Therefore, a super-net
is a single large network that contains every possible operation in the search space.
All possible network architecture in the super-net can be considered as a sub-net
with shared weights between common edges. Then, rather than training thousands
of separate models from scratch like in the classical NAS, one can train a single large
network (super-net) capable of emulating any architecture in the search space. Once
the super-net is trained, it is used for evaluating the performance of many different
architectures sampled at random by zeroing out or removing some operations.

The state-of-the-art of one-shot NAS are: Efficient Neural Architecture Search
(ENAS) [34], Differentiable Architecture Search (DARTS) [29], Single Path One-
Shot (SPOS) [15] and ProxylessNAS [6]. Nowadays, different software libraries
implement this kind of algorithms. We can cite Autokeras5 [21] and Neural Network
Intelligence (NNI).6 Autokeras implements one-shot NAS with Bayesian Optimiza-
tion-like search strategy and NNI implements both HPO algorithms and classical
and one-shot NAS algorithms.

6 Conclusions

This chapter illustrates the main concepts of the Deep Learning field. In particular,
it discusses the most important architectures, i.e., Multilayer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
While MLPs are a necessary component for performing classification or regression,
the other two types are more tailored to specific input types.

CNNs are extremely useful when dealing with input that shows a grid-like topol-
ogy, such as images and, to some extent, time series. These types of input data are
multi-dimensional tensors where each value is connected with the neighbouring val-
ues. CNNs owe their success to their capability of extracting features from the input
data.

RNNs are well suited for sequential data, such as sentences. Indeed, this kind of
architecture is often used for natural language processing, both for reading sentences
as input, and generating sentences as output. The main feature of RNNs, absent in
CNNs and MLPs, is that they are designed to keep memory of the (most important
parts of the) whole input sequence. Therefore, unlike CNNs, RNNs can consider the
sequence as a whole instead of considering only a bunch of neighbouring values.

5 https://autokeras.com/.
6 https://www.microsoft.com/en-us/research/project/neural-network-intelligence/.

https://autokeras.com/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
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All these architectures can be combined to create powerful tools. For example,
to classify images given their content, a CNN needs to send its output to a MLP,
whichwill use the extracted features to perform the classification.Another interesting
combination is between CNNs and RNNs to label images. In this case, the extracted
features are given as input to a RNN to compose a sentence describing the content
of the image.

The architecture of the networks and the algorithms used to train the networks
depend on many hyper-parameters, that must be optimized to obtain good results.
Since the number of these hyper-parameters can be high, we need mechanisms to
automatically tune their values. For this reason, in this chapter we have surveyed the
relevant literature about hyper-parameters’ optimization.
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