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Foreword

Rino Micheloni is a prolific author and editor of books and papers on the latest
storage-related technologies. With this new book, Machine Learning and Non-
volatile Memories, Rino and Dr. Cristian Zambelli (University of Ferrara, Italy)
continue the success in identifying the most important developing technologies,
explaining the state-of-the-art clearly, and pointing the direction for the next big
advances. Artificial intelligence and machine learning (AI/ML) are still in the early
stages of practicality. However, it seems clear that adding AI/ML capabilities close
to where the data are generated or stored will yield the most efficient solutions.

The breadth of applications covered in this book reflects AI/ML’s adoption in
practically all fields. Similar to PCs, the Internet, or cloud computing, it seems
evident that it is not a question of which fields will embrace AI/ML, but which will
do it most quickly and extract the biggest benefit. As AI/ML is used in more products
and services, the industry will converge on the most-effective, efficient architectures.
This is typical in technology development lifecycles in which all practitioners see the
samephysics and face the same economic realities. This book enables researchers and
designers to more quickly arrive at efficient, effective storage solutions, accelerating
the pace of advancement of this important technology.

My company, Channel Science, is building-in machine learning to technology we
are currently developing for a US Department of Energy project. We are recovering
irreplaceable scientific data from deteriorating 1960s and 70s magnetic tapes.We are
using ML as an integral part of reading signal waveforms to identify signal-quality
issues with the tapes, apply the proper mitigation techniques, and determine the type
of data being recovered. Our experience shows that machines that have context for
the streams of bits and bytes they are sensing are able to do more with them and do
it better.

This new book explains how designers and architects are making AI/ML compu-
tations more efficient. The authors look closely at the matrix and vector multiplica-
tions at the core of the neural networks running AI/ML algorithms, both for training
and inference. These calculations are not well suited for general purpose CPUs
(central processing units), but they have beenmore efficiently implemented on GPUs
(graphics processing units). However, the growing usefulness of very large models
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viii Foreword

means some high-value applications require the training of millions of parameters,
and eventually billions or more. This greatly magnifies any inefficiency in the calcu-
lations. Tensor processing units (TPUs) are purpose-built for AI/ML calculations and
provide a valuable resource in the data center. However, they are too power intensive
to support AI/ML in mobile applications, the edge, or IoT.

These applications require new approaches to power efficiency.Machine Learning
and Non-volatile Memories explains the unique options for analog computing of
matrixmultiplications in emergingmemory technologies.Chapters of this bookdetail
how Phase ChangeMemory (PCM) and resistive RAM (RRAM) can be programmed
to a range of resistance values, acting as weights in an analog implementation of
Multiply-Accumulate (MAC) operations. It is widely believed that these emerging
memory technologies will be especially important for practical implementations of
neuromorphic computing.

AI/ML will also help improve yields, lower costs, and increase performance and
reliability in a wide range of applications and systems.Machine Learning and Non-
volatile Memories highlights AI/ML’s flash management role in Solid-State Drives
(SSDs). In particular, the 100+ layers of the latest 3D NAND flash chips can each
have custom settings, optimized by AI/ML algorithms running on the controller of
an SSD. This is especially important when using NAND chips that support four bits
per cell (QLC—Quad Level Cell). Manufacturers are developing NAND capable of
storing five bits per cell (PLC—Penta Level Cell) or more, for which such fine-tuning
of parameters will be essential.

Machine Learning and Non-volatile Memories will join Rino Micheloni’s
previous books on storage and memory technologies as a trusted resource for
professionals and academics. Anyone seeking clear, useful knowledge on the latest
advances and next directions in storage for AI/ML will find them here. Thank you,
Rino and all the contributing authors, for creating yet another valuable reference and
guide for our industry.

January 2022 Charles H. Sobey
Chief Scientist, Channel Science, LLC

Plano, Texas, US
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Machine Learning and Non-volatile Memories: Why
Together?

At a first sight, Machine Learning and Non-volatile memories seem very far away
from each other. Machine Learning implies mathematics, algorithms, and a lot of
computation; non-volatile memories are solid-state devices used to store informa-
tion, having the amazing capability of retaining the information even without power
supply. This book will help the reader understand how these two worlds can work
together, bringing a lot of value to each other. In particular, we can identify two main
fields of application: analog Neural Networks (NNs) and Solid-State Drives (SSDs).

Let’s start with the first field. Neural Networks are built to mimic the behavior of
the human brain; to accomplish this result, NNsmust perform a specific computation
called Vector-by-Matrix (VbM)multiplication (Chapter “Neural Networks andDeep
Learning Fundamentals”), which is particularly power hungry. In the digital domain,
VbM is implemented bymeans of logic gates, which dictate both the area occupation
and the power consumption; the combination of the two poses serious challenges to
the hardware scalability, thus limiting the size of the neural network itself, especially
in terms of the number of processable inputs and outputs. Non-volatile memories
(PCM in chapter “Accelerating Deep Neural Networks with Phase-Change Memory
Devices”, RRAM in chapter “Analogue In-Memory Computing with Resistive
Switching Memories”, and Flash in chapter “Deep Neural Network Engines Based
on Flash Technology”) enable the analog implementation of the VbM (also called
“neuromorphic architecture”), which can easily beat the equivalent digital implemen-
tation in terms of both speed and energy consumption. In 30 years of development
[1], researchers have proven that the analog implementation, by adopting nanoscale
solid-state devices, can even approach the power efficiency of the human brain
[2–5].

The second field includes SSDs and the optimization of NAND flash memories in
all their applications. Flash memories are extremely prone to errors; essentially, they
are analog in nature because their ability of retaining the stored information is based
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on the capability of “locking” few electrons; just the temperature by itself is a good
reason for electrons to leak away.Moreover, with themost recent 3D scaling (Chapter
“Introduction to 3D NAND Flash Memories”), NAND Flash has become extremely
difficult to handle as memory layers don’t behave uniformly. As such, optimizing
each single layer in terms of both electrical performances and reliability has become
a real challenge as the number of parameters to be adjusted literally exploded. When
looking at NAND components, the first usage model forMachine Learning is exactly
the optimization of the available knobs, by learning from experiments on real silicon
devices; for instance, Machine Learning can help grouping layers together, such that
the same “recipe” can be applied to all layers within a group, thus reducing the overall
design effort. The second model is related to SSDs. In fact, inside solid-state drives,
NANDmemories aremanaged by amicrocontrollerwhohas the task to execute all the
necessary Flash management algorithms designed to extend the life of each NAND
device. For a storage designer, it is difficult to directly access the internal architecture
of the drive; therefore, going to a higher abstraction level (i.e., algorithms handling
the data from/to the drive) is the only viable solution to improve the reliability and
the performance of the drive; these algorithms are usually referred to as prognostics
tools. Machine learning has emerged as a very promising candidate in the prognos-
tics context because it offers advanced techniques to improve latency, throughput,
reliability, and many other SSD’s parameters with a minimal system overhead. Both
usagemodels are covered in great detail in chapter “Machine Learning for 3DNAND
Flash and Solid State Drives Reliability/Performance Optimization”.

Let’s now briefly take a closer look at the content of each chapter of this book.
Chapter “Introduction to Machine Learning” helps the reader understand the

basics of machine learning, by analyzing some of the most popular learning models
such as decision trees, random forest, and support vector machines. In a nutshell,
chapter “Introduction to Machine Learning” introduces the concept of programming
a computer to optimize one ormore criteria, by using examples frompast experiences.

When looking at machine learning tasks, Neural Networks, especially in the form
of Deep Learning are the superstar. Chapter “Neural Networks and Deep Learning
Fundamentals” provides a great introduction to the field, starting with a brief histor-
ical overview. Multilayer Perceptrons, Convolutional Neural Networks, and Recur-
rent Neural Networks are first explained and then used to show how they can mimic
the human brain by looking at practical examples.

Given how ubiquitous deep Neural Networks are, the topic of accelerating their
performances is of primary importance. In this context, analog computation, by
means of analog memory devices, has shown an outstanding potential and, therefore,
it is considered a research field of paramount importance. Chapter “Accelerating
Deep Neural Networks with Phase-Change Memory Devices” describes how the
multiply-accumulate operation (at the heart of NNs) can be performed in-memory,
by using a Phase-Change Memory (PCM) as the resistive element within a crossbar
array. Of course, nothing comes for free, and chapter “Accelerating Deep Neural
Networks with Phase-ChangeMemory Devices” addresses the challenges associated
with the usage of PCMs, including the impact of conductance drift on deep neural
network accuracy.
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PCM is not the only available option for analog computing. In chapter “Analogue
In-memory Computing with Resistive Switching Memories”, authors make use of
a Resistive Switching Memory (RRAM), also known as memristor, to implement
the in-memory computation. Controllable conductance, good scaling, and relatively
low energy consumption are considered the key advantages of this technology.
Chapter “Analogue In-Memory Computing with Resistive Switching Memories”
provides a great overviewof theRRAM-based implementation, going from thedevice
level description to its electrical characteristics, and from the suitable computing
architectures to the end applications.

Over the last few years, Solid-State-Drives (SSDs) have gained a lot of traction in
the market, especially if equipped with very high-speed interfaces like PCIe/NVMe.
At the beginning, SSDs spread into the consumer market, from laptops to tablets and
smartphones. Now we can find SSDs in all sorts of enterprise applications, the SSD
being one of the key storage elements in the most modern data centers.

In a nutshell, a Solid-State-Drive is made of a Flash microcontroller plus many
NAND Flash memories; in high-speed applications, we are easily talking about
hundreds of NAND dies soldered on a single SSD board. All these bits must be
properly handled by the Flashmicrocontrollermaking the bridge between the System
Host (i.e., a CPUwith anOperating System) and the non-volatilememory subsystem.

Nowadays, as a matter of fact, NAND Flash memories are the key driver in the
silicon process technology race. Today, we are talking about a 2TbmonolithicNAND
die, i.e., 2 billion bits in less than 150 mm2 of silicon. As always, this outstanding
achievement is not coming for free. By nature, in fact, NAND Flash memories are
very unreliable; considering how packed the memory cells are, this should not come
as a surprise. To make NAND reliable enough, the Flash microcontroller runs a lot
of signal processing algorithms (e.g., Error Correction Code, wear leveling, random-
ization, etc.), which require a lot of know-how during the design phase and consume
time and power in the user’s application.

Since 2016 the NAND complexity has grown even more, mainly because of the
3D architecture, which is the subject of chapter “Introduction to 3D NAND Flash
Memories”. Identifying the right way for going 3D was not so easy though and the
chapter provides an overview of the main options for vertical scaling. 3D arrays can
leverage either Floating Gate (FG) or Charge Trapping (CT) technologies and they
are both reviewed in chapter “Introduction to 3D NAND Flash Memories”.

With a good understanding of how Flash memories work, the reader will be ready
to appreciate how they can be used to implement the Vector-by-Matrix (VbM) multi-
plication, which is the core of the hardware implementation of a Neural Network.
Chapter “Deep Neural Network Engines Based on Flash Technology” deals with
both NOR and NAND Flash memories, showing how they can be effectively used
to build NNs in the analog domain. Indeed, the reader will understand how Flash
memory cells, thanks to their tunable threshold voltage, can replicate the behavior
of a synapse inside the human brain.

As already mentioned, SSDs and Flash memories are strictly coupled together
and this is true in many applications, from consumer electronics to exa-scaled data
centers; therefore, they must work together at their best capabilities. However, as 3D
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Flash scales, there is a significant amount of work that must be done in order to opti-
mize the overall performances of SSDs. Machine learning has emerged as a viable
solution in many stages of this process. After introducing the main Flash reliability
issues, chapter “Machine Learning for 3DNANDFlash and Solid State Drives Relia-
bility/Performance Optimization” shows both supervised and unsupervised machine
learning techniques used to identify homogeneous areas inside the Flash array, thus
enabling an optimization of the storage system performance by means of a fine-
tuned Error Correction Code. In addition, chapter “Machine Learning for 3D NAND
Flash and Solid State Drives Reliability/Performance Optimization” deals with algo-
rithms and techniques for a proactive reliability management of SSDs. Last but not
least, chapter “Machine Learning for 3D NAND Flash and Solid State Drives Relia-
bility/Performance Optimization” The last section of the chapter discusses the next
challenge for machine learning in the context of SSDs for enterprise applications,
namely the Computational Storage (CS) paradigm.

To conclude this introduction, let’s get back to the questions we asked ourselves
a few years ago.

Which problems Machine Learning could solve when looking at NAND Flash?
There is a plethora of algorithms out there: which are the good ones for Flash?
Machine learning or deep learning? How much can we gain in terms of useful
memory lifetime by using Machine Learning? Can neuromorphic memories help?
Can Machine Learning and Error Correction Codes work together in a more effi-
cient way? And then the question with the capital Q: is it possible to develop an
autonomous SSD, i.e., a drive that can optimize itself as working conditions in the
field change?

We (editors and co-authors) tried our best to answer the above questions
throughout the book. In some cases, answers are now clear, in some others, there
is still a lot of work to be done. We do hope that this book can provide a good
overview of the basic concepts and applications, helping engineers, data scien-
tists, and researchers to bring the collaboration between Machine Learning and
Non-volatile memories to the next level.

Enjoy!

Rino Micheloni
Cristian Zambelli
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Introduction

Perhaps the most important revolution in the human history is the introduction of
large-scale artificial intelligence. This revolution is having an incredible impact,
beyond any imagination. Artificial intelligence will change howwe design, conceive,
make, and bring products to the market. Artificial intelligence and its applications
will be able to change our life in many ways.

What is artificial intelligence, and why is it so revolutionary?
Let’s start by saying that there are different types of artificial intelligence. The

weak AI, the general AI, and the super AI called “superintelligence”. All these types
of artificial intelligence have in common the use of machines to think and act like
human beings by identifying models and finding the description of the problem to
be solved emulating cognitive processes similar to those used by humans in carrying
out the same tasks.

As early as the 1600s, the English empiricist philosopher Thomas Hobbes said:
“Reasoning is nothing but calculating” and Artificial Intelligence demonstrated that
he was right. Even if the concept to use machine to emulate human brain capabil-
ities is very old, we had to wait until 1956 before properly speaking of “Artificial
Intelligence”. The term was first coined and used by the American mathematician
John McCarthy, during a seminar held in Dartmouth College, New Hampshire. The
founders of this newdiscipline, JohnMcCarty,MarvirMinsky,AllanNewell, Herbert
Simon, and Claude Shannon (one of the fathers of cybernetics), believed that it was
possible to use machines for voice recognition, understanding of natural language,
identification of objects, deductive reasoning, discovering new mathematical theo-
rems, and many other activities, previously a prerogative of the human mind only.
The revolution started!

Today, the field of artificial intelligence is very broad and pervades various sectors:
Games, Robotics, Images, Language Systems, Chatbots, Anti-Fraud Systems, Indus-
trial Maintenance, Failure Prediction Systems, Cybersecurity Systems. Predictive
medicine, advanced diagnostics, study of new drugs, advanced design, such as
architecture, mechanics, electronics, and automotive.

But how does it work and why do we identify this type of machine behavior as
intelligent? First of all, Artificial Intelligence is not a programming activity done
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xvi Introduction

by a programmer but a learning process performed by the machine itself. Artificial
intelligence is based on a statistical comparison between “what it seems to be and
what it is”. It’s a simple statistical comparison that can give rise to spectacular
results that enable the reproduction of mechanisms related to the cognitive faculties
of human beings by computer systems. A simple operation repeated many and many
times makes computers learn the world around them!

If we think about how humans learn, in most cases, we discover that it is the
statistical comparison that guides our knowledge, our intuition, our way of thinking.
Indeed, there are entire disciplines of human knowledge that are based almost exclu-
sively on this simple principle of statistical comparison. Let’s think, for example,
to medicine where causes and effects are associated trying to identify which are the
components that most likely lead to a certain effect. Or we can talk about history,
experimental physics, business, and military strategies. Everything, if we think about
it, is based on a continuous comparison between causes and effects: we take the
elements that we have identified as key points, we relate them to known effects, and
from these analog and iterative processes, we formulate a theory that explains what
we have observed.

On the same principle, it is possible to teach a machine to think and make deci-
sions, with the simple operation of comparing reality and hypotheses, making the
machine understand the hidden correlations and generate new hypotheses. When the
hypothesis generated by the machine approaches or even coincides with what we
know to be correct, it means that the machine has found a way to interpret what
is happening correctly. To get more specific and understand the challenges to face
when implementing artificial intelligence in the real world, we must understand the
importance of computing power and computing architecture.

Computing power and architecture are two facts that must not be overlooked,
comparable to the concept of having a gifted brain that works well, and having
sufficient data or having access to knowledge to learn from. The above concepts
work from the basic methods based on pure statistics, to the more advanced and
complex ones based on neural networks and deep learning, also known as Machine
Learning.

A neural network is, in substance, a concatenated series of identical operations
based on simple functions, called artificial neurons, carried out on data. The neural
networks take their name from the analogy with the human brain, where neurons
are supposed to always perform the same type of operation. In both cases, the brain
and the neural network, the connections between the various neurons determine
the thought. The connections inside a neural network are the values assigned to
the internal links. It is evident that, although each operation is relatively simple,
having billions of linked operations is not a trivial situation, especially in terms of
the required computing power.

To better understand what we are talking about, we can represent the simplest
neural network model with three levels of processing: In the first, the input data
are provided, in the second, data are processed by applying the aforementioned
functions, and in the last level, the solutions are presented. Such a network does not
have interesting intellectual abilities, it would be, so to speak, comparable to a brain
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with very few neurons, which, as we know, does not have great skills. By increasing
the number of intermediate layers, called “hidden layers”, you will get more neurons
and obtain an enormously greater complexity which corresponds to the ability to
be “more” intelligent and carry out much more complex thinking tasks. This kind
of network requires a giant computational effort that was impracticable, due to lack
of computing capacity, until a few years ago; other than that, this network requires
having a vast and, above all, variegated database available to train the links of the
network. In essence, the architecture and its related computing power are, therefore,
crucial factors in obtaining satisfactory results.

The need for computing power opens up two paths for the future. First, the creation
of new devices that allow to reach ever-higher computing powers, improve the data
access speed, including newmemory architectures, and deliver muchmore efficiency
in data storing and loading. Second, the improvement of the computing performances
will allow building increasingly sophisticated networks and algorithms. These next
generations of algorithms will be capable of carrying out incredibly advanced tasks
such as designing and managing complex systems creatively, using evolutionary
genetic algorithms to define the best characteristics of a product, predicting complex
future scenarios inmany fields, from business tomedicine, thus reaching unthinkable
results with human intelligence alone.

In a very close future, we can imagine machines that design machines. Artificial
Intelligence systems, soon,will be able to invent and design components used to build
even better and more efficient machines. We can imagine new algorithms making
the machines work more efficiently, and helping us to save money and resources.

This book opens the way to understanding the principles on which we build
machine learning-based applications. It makes us understand the importance of deci-
sive aspects in the architecture of this revolutionary discipline. The book helps us
understand “Machine Learning” and its related challenges, scenarios, and opportu-
nities, especially in the context of non-volatile memories. It’s a must-read book for
those who want to be a protagonist of the future and not a simple spectator.

Emilio Billi
A3Cube CTO and AI Guru
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Introduction to Machine Learning

Elena Bellodi , Riccardo Zese , Fabrizio Riguzzi , and Evelina Lamma

Abstract Machine learning is programming computers to optimize a performance
criterion using example data or past experience. We need learning in cases where we
cannot directly write a computer program to solve a given problem, but need example
data or experience. Another case is when the problem to be solved changes in time,
or depends on the particular environment. In this Chapter we introduce the basic
components of machine learning and focus on a few very popular machine learning
models: decision trees, random forest (tree models) and support vector machines
(geometric and linear models).

1 Overview

Machine learning (ML) is the systematic study of algorithms and systems that
improve their knowledge or performance with experience. Experience may take dif-
ferent forms, such as labelled training data, corrections of mistakes, rewards when
a certain goal is reached, among many others. Machine learning algorithms may be
directed at improving performance on a certain task, typically their ability to rec-
ognize future data, but may more generally result in improved knowledge.The main

E. Bellodi (B) · R. Zese · E. Lamma
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
e-mail: elena.bellodi@unife.it

E. Lamma
e-mail: evelina.lamma@unife.it

R. Zese
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via
Luigi Borsari, n. 46, 44121 Ferrara, Italy
e-mail: riccardo.zese@unife.it

F. Riguzzi
Department of Mathematics and Computer Science, University of Ferrara, Via Saragat 1, 44122
Ferrara, Italy
e-mail: fabrizio.riguzzi@unife.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Micheloni and C. Zambelli (eds.), Machine Learning and Non-volatile Memories,
https://doi.org/10.1007/978-3-031-03841-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-03841-9_1&domain=pdf
http://orcid.org/0000-0002-3717-3779
http://orcid.org/0000-0001-8352-6304
http://orcid.org/0000-0003-1654-9703
http://orcid.org/0000-0003-2747-4292
mailto:elena.bellodi@unife.it
mailto:evelina.lamma@unife.it
mailto:riccardo.zese@unife.it
mailto:fabrizio.riguzzi@unife.it
https://doi.org/10.1007/978-3-031-03841-9_1


2 E. Bellodi et al.

Fig. 1 An overview of how
machine learning is used to
address a given task [1]. A
task (solid-line box) requires
an appropriate mapping—a
model—from data described
by features to outputs.
Obtaining such a mapping
from training data is what
constitutes a learning
problem (dashed-line box)

ingredients of machine learning are: tasks, models and features [1]. What is called a
ML application is the construction of a model that solves a practical task, by means
of machine learning methods, using data from the task domain.

Suppose we have a large ‘training set’ of e-mails which have been hand-labelled
spam or ham, and we know the results of all the tests for each of these e-mails.
The goal is now to come up with a weight for every test, such that all spam e-mails
receive a score above 5, and all ham e-mails get less than 5. This is an example of
task. Given this task, we want an algorithm that learns to recognize spam e-mail
from examples and counter-examples. Moreover, the more ‘training’ data is made
available, the better the algorithm will become at this task:

– We call this type of task binary classification, as it involves assigning objects
(e-mails) to one of two classes: spam or ham;

– This task is achieved by describing each e-mail in terms of a number of variables
or features;

– We have to figure out a connection between the features and the class—we call
such a connection amodel—by analyzing a training set of e-mails already labelled
with the correct class.

Fig. 1 shows how these ingredients relate. The model is produced as the output of a
machine learning algorithm applied to training data; there is a wide variety of models
to choose from, and we will investigate some of them in this chapter. No matter what
variety of machine learning models one may consider, they are designed to solve
only a small number of tasks and use only a few different types of features.

In the spam filtering example, the model could be a linear equation of the form∑M
i=1 wi xi > t , where the xi denote the 0–1 valued or ‘Boolean’ features indicating

whether the i-th test succeeded for the e-mail,wi are the feature weights learned from
the training set, and t is the threshold above which e-mails are classified as spam.

This chapter dedicates a section for each of the three ML ingredients. Section2
describes what machine learning means by features’. Section3 presents the types of
problems that can be solved with machine learning (tasks). Sections4 and 5 focus
on two kinds of machine learning models, namely tree models (Decision Trees and
Random Forest) and linear models (in particular Support Vector Machines).
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2 Features

In machine learning, data are often referred to as ‘examples’ or ‘instances’. Features,
also called attributes, are defined as mappings fi : X → Fi from the instance space
X = R

d to the feature domainFi , whereRd is thed-dimensional Euclidean space [1].
We can distinguish features by their domain: common feature domains include

real and integer numbers, but also discrete sets such as colours, Booleans, and so on.
We can also distinguish features by the range of permissible operations. Although
many data sets come with pre-defined features, they can be manipulated in many
ways, a process that is called feature transformation. For example, we can change
the domain of a feature by rescaling or discretization; we can select the best features
from a larger set and only work with the selected ones; or we can combine two or
more features into a new feature. Sometimes data do not come with built-in features
(for instance in text classification), so they need to be constructed by the developer
of the machine learning application: this feature construction process is crucial for
the success of the application.

3 Learning Tasks

Let us give symbols and names to the main components of ML [2]:

– The instance space X , also called input space, is the space of all possible inputs x;
– Y is the output space, the set of all possible outputs of the model;
– There exists an unknown target function g : X → Y , the ideal formula relating
each input to each output;

– There is a data setD of N input examples (x1, ..., xN ): inputs are the training data
available to the machine learning algorithm;

– The learning algorithm uses D to pick a formula ĝ : X → Y that approximates
g. The algorithm chooses ĝ from a set of candidate formulas under consideration,
which we call the hypothesis set H;

– The formula ĝ represents the model that the learning algorithm produces; ĝ is
chosen in order to best match g on the training examples available to the algorithm,
with the hope that it will continue to match g on new ones, called ‘test’ or ‘unseen’
examples.

When the training data contains explicit examples of what the correct output
should be for given inputs, i.e., it contains couples (x1, y1), ..., (xN , yN ) where yn =
g(xn), thenwearewithin the supervised learning task: yn is called the ‘target variable’
or ‘label’. Classification and regression assume the availability of a training set
of examples labelled with true classes or function values respectively, and will be
investigated in Sect. 3.1.

Providing the true labels for a data set is often labour-intensive and expensive.
Semi-supervised learning is the branch of machine learning concerned with using
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labelled as well as unlabelled data: it permits taking advantage of the large amounts
of unlabelled data available in many use cases in combination with typically smaller
sets of labelled data [3]. A large majority of the research on semi-supervised learning
is focused on classification.

In contrast to supervised learning where the training examples are of the form
(input, correct output), in reinforcement learning they are of the form (input, some
output, grade for this output), where the grade is a measure of how good that output
is. Reinforcement learning is typically the training of machine learning models to
make a sequence of decisions subject to rewards or penalties for the actions an agent
performs in the environment.

In an unsupervised learning task, we are just given input examples {x1, ..., xN },
which represent ‘unlabelled data’. Unsupervised learning can be viewed as the task
of spontaneously finding patterns and structure in input data:

– The task of grouping data without prior information on the groups is called clus-
tering; a clustering algorithm works by assessing the similarity between instances
(e.g., documents belonging to similar subjects) and putting similar instances in the
same cluster (representing the same subject) and ‘dissimilar’ instances in different
clusters;

– Association rules are a kind of pattern that are popular in marketing applications,
and are found by data mining algorithms that search for items that frequently occur
together.

A parallel distinction to that between supervised and unsupervised learning is the
distinction between whether the model output involves the target variable or not: we
call it a predictive model if it does, and a descriptive model if it does not. This leads
to the four main different machine learning settings [1]:

1. Supervised learning of predictive models;
2. Supervised learning of a descriptive model (called subgroup discovery: the model

identifies subsets of the data that behave differently with respect to the target
variable);

3. Unsupervised learning of a descriptivemodel (clustering, association rules,matrix
decomposition);

4. Unsupervised learning of a predictive model (we cluster data with the intention
of using the clusters to assign class labels to new data).

3.1 Supervised Learning of Predictive Models

Classification and regression tasks fall into the category of supervised learning of
predictive models.

A classifier is a mapping g : X → C, where C = {C1,C1, ...,Ck} is a finite and
usually small set of class labels. Examples for a classifier take the form (x, y), where
y is the true class of the instance. In the simplest case we have only two classes
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which are usually referred to as positive and negative, 1 and 0, or +1 and -1. Two-
class classification is often called binary classification. Spam e-mail filtering is a
good example of binary classification, in which spam is conventionally taken as the
positive class, and ham as the negative class. If we have more than two classes we
are dealing with multi-class classification.

The task of the classifier is to assign an unseen input x to one of the classes: this
assignment represents the prediction. There is a considerable range ofmachine learn-
ing classifiers to choose from: linear classifiers, Support Vector Machines (SVM),
Naive Bayes, Decision trees (DT) and Random forests (RF), k-Nearest Neighbors
(KNN), Neural Networks. DT and RF will be discussed in Sect. 4, SVM in Sect. 5.

The output space Y may not be a discrete set of classes. A regressor is a mapping
g : X → R, i.e. the target variable y is real-valued. Let us say we want to have a
system that can predict the price of an used car. Inputs are the car attributes - brand,
year, engine capacity, mileage, and other information - that we believe affect a car’s
worth. The output is the price of the car. The machine learning algorithm, again
surveying the past transactions x, will fit an ‘estimator function’ to this data to learn
y (the price) as a function of the car attributes. Linear regression is a linear model,
meaning that g is a linear combination of input features, with weights applied to each
feature:

y = g(x | w1, w0) = w1x + w0

in the case of a single feature (univariate regression), or more generally:

y = g(x | wk, ..., w2, w1, w0) = wk x
k + ... + w2x

2 + w1x + w0 = wTx = w · x

The problem is to come up with good values for the weights - ones that make the
model’s output match the desired output. Here, the output and the inputs - attribute
values - are all numeric. Linear models are the easiest to visualize in two dimensions,
where they correspond to drawing a straight line through a set of data points, which
represents the prediction equation.

Note that a linear regressor can be reduced to a linear classifier if y is thresholded
at zero to produce a ±1 output, appropriate for binary decisions, i.e. y = sign(wTx)
and the line in two dimensions graphically divides the examples of the two classes.

The least-squares method can be used to learn the weights of a linear regressor
by considering the differences between the actual and estimated function values on
the training examples, called residuals εi = g(xi ) − ĝ(xi ). The method consists in
finding ĝ such that

∑n
i=1 ε2i over all examples is minimized.

Logistic regression is a linear model that outputs a probability, a value between 0
and 1. It has similarities to both previousmodels, as the output is real (like regression)
but bounded (like classification). Suppose we want to predict the occurrence of heart
attacks based on a person’s cholesterol level, blood pressure, age, weight, and other
factors. Obviously, we cannot predict a heart attack with any certainty, but we may
be able to predict how likely it is to occur given these factors. The closer y is to 1,
the more likely that the person will have a heart attack. The target variable is defined
as
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y = g(x) = σ(wTx)

where σ is the so-called logistic function σ(s) = es

1+es whose output is between 0
and 1. It is also called a sigmoid because its shape looks like a flattened out ‘s’. The
output can be interpreted as a probability for a binary event (heart attack or no heart
attack, etc.).

4 Tree Models

Tree models are among the most popular models in machine learning. Trees are
expressive and easy to understand by humans, are more explainable than mathemat-
ical models and of particular appeal to computer scientists due to their recursive
‘divide-and-conquer’ nature. Tree models can be employed to solve many machine
learning tasks, including classification, regression and clustering. The tree structure
that is common to all those models can be defined as follows [1].

Definition 1 (Literal) Literals are logical expressions representing equalities of the
formFeature = Value and, for numerical features, inequalities of the formFeature >

Value.

Definition 2 (Feature tree) A feature tree is a tree such that each internal node (the
nodes that are not leaves) is labelled with a feature, and each edge emanating from
an internal node is labelled with a literal. The set of literals at a node is called a
split. Each leaf of the tree represents a logical expression, which is the conjunction
of literals encountered on the path from the root of the tree to the leaf.

Algorithm 1 [1] gives the generic learning procedure common to most tree learn-
ers, called ‘tree induction’. It is a divide-and-conquer algorithm: it divides the data
into subsets, builds a tree for each of those and then combines those subtrees into a
single tree.

Homogeneous(D) returns true if the instances in data D are homogeneous
enough to be labelled with a single label, and false otherwise; Label(D) returns
the most appropriate label for a set of instances D; Best Spli t (D, F) returns the best
set of literals to be put at the root of the tree.

Note that the tree structure is not fixed a priori but the tree grows, branches and
leaves are added during learning depending on the complexity of the problem inherent
in the data. For a given training set, there exist many trees that code it with no error,
and, for simplicity, we are interested in finding the smallest among them, where
tree size is measured as the number of nodes in the tree and the complexity of the
decision nodes. Finding the smallest tree is NP-complete1, and we are forced to use

1 In computational complexity theory,NP is the class of problems that can solved inPolynomial time
by aNondeterministic Turingmachine. NP-complete problems are themaximally difficult problems
in NP and no efficient solution algorithm has been found for them. For efficient algorithms wemean
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Algorithm 1 GrowTree(D, F) - grow a feature tree from training data.

Require: data D; set of features F
Ensure: feature tree T with labelled leaves
1: if Homogeneous(D) then
2: return Label(D);
3: end if
4: S ← Best Spli t (D, F);
5: split D into subsets Di according to the literals in S;
6: for each i do
7: if Di �= ∅ then
8: Ti ← GrowTree(Di , F)

9: else
10: Ti is a leaf labelled with Label(D);
11: end if
12: end for
13: return a tree whose root is labelled with S and whose children are Ti

local search procedures based on heuristics that give reasonable trees in reasonable
time. Such algorithms are greedy: whenever there is a choice (such as choosing
the best split), the best alternative is selected on the basis of the information then
available, and this choice is never reconsidered [4].

In the remainder of this section we will instantiate the generic Algorithm 1 to
classification, regression and clustering tasks.

4.1 Decision Trees

A decision tree is composed of internal decision nodes and terminal leaves.
For a classification task we can simply define a set of instances D to be homoge-

nous if they are all from the sameclass, and the function Label(D)will thenobviously
return that class. Now we have to define function Best Spli t (D, F).

In a univariate tree, Best Spli t (D, F) uses only one of the input features F in each
internal node. If the used input feature x j is discrete, taking one of n possible values,
the node checks the value of x j and takes the corresponding branch, implementing
an n-way split. For example, if an attribute is color ∈ {red, blue, green}, then a
node on that attribute has three children, each one corresponding to one of the three
possible literals color = red, color = blue, color = green. As an internal node has
discrete branches, a numeric input should be discretized. If x j is numeric (ordered),
Best Spli t (D, F)makes a comparison corresponding to the literal x j > wm for node
m, wherewm is a suitably chosen threshold value. The nodem divides the input space
into two: Lm = {x | x j ≤ wm} and Rm = {x | x j > wm}.

algorithms that run in polynomial time, because exponential-time algorithms have execution times
that grow too rapidly as the problem size increases.
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The goodness of a split is quantified by an ‘impurity measure’. A split is ‘pure’
if after the split, for all branches, all the instances choosing a branch belong to the
same class. If the split is pure, we do not need to split any further and the children are
leaf nodes labelled with the class Ci of its examples. Possible functions to measure
impurity are entropy [4],Gini index [5] ormisclassification error. Research has shown
that there is not a significant difference between these threemeasures. This is the basis
of the ‘Classification andRegressionTrees’ (CART) algorithm [5], ID3 algorithm [4],
and its extension C4.5 [6]. When there is noise, i.e. mislabelled instances, growing
the tree until it is purest could lead to a very large tree and it may overfit (it fits too
much the specific training data fromwhich it is built): so tree construction ends when
nodes become pure enough, namely, a subset of data is not split further if impurity
is lesser than a threshold.

Figure2a shows a dataset of labor negotiations for 40 contracts: each instance
concerns one contract, and the outcome is whether the contract is deemed acceptable
(class = good) or unacceptable (class = bad). Figure2b shows a learnt decision
tree for classification of new contracts.

For a regression task each leaf node is labelled with a numeric value instead of a
class. A leaf node defines a localized region in the input space where instances falling
in this region have very similar numeric outputs. A regression tree is constructed in
almost the same manner as a classification tree, except that the impurity measure,
which is appropriate for classification, is replaced by a measure appropriate for
regression: the goodness of a split is measured by the mean square error from the
estimated value gm in node m, calculated as the mean of the outputs of instances
reaching the node. If at a node the error is acceptable, then a leaf node is created and
it stores the gm value. An example of regression tree is shown in Fig. 3.

The simple kind of regression tree considered here also suggests a way to learn
clustering trees [1], even if regression is a supervised learning problem while clus-
tering is unsupervised. We can introduce an abstract function Dis : X × X → R

that measures the distance or dissimilarity of any two instances x, x′ ∈ X , such that
the higher Dis(x, x′) is, the less similar x and x′ are. The cluster dissimilarity of a
set of instances D is then calculated as

Dis(D) = 1

|D|2
∑

x∈D

∑

x′∈D
Dis(x, x′)

The weighted average cluster dissimilarity over all children of a split gives the split
dissimilarity, which can be used to inform Best Spli t (D, F). The label of a cluster
may be its most representative instance, for example the onewhose total dissimilarity
to all other instances is lowest.

Pruning Frequently, a node is not split further if the number of training instances
reaching a node is smaller than a certain percentage of the training set - for example,
5% - regardless of the impurity or error, as any decision based on too few instances
causes variance. Stopping tree construction early on is called prepruning the tree.
Another possibility is postpruning: we grow the tree until all leaves are pure, we then
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Fig. 2 A dataset (top) with 40 instances and 2 classes (good, bad) and a decision tree (bottom)
learnt from it
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Fig. 3 A regression tree

find subtrees that cause overfitting and prune them. From the initial labelled set, we
set aside a pruning set, unused during training. For each subtree, we replace it with
a leaf node labelled with the majority class of the training instances covered by the
subtree. If the leaf node does not perform worse than the subtree on the pruning set,
we prune the subtree and keep the leaf node because the additional complexity of
the subtree is not justified; otherwise, we keep the subtree. Prepruning is faster but
postpruning generally leads to more accurate trees.

Rule Extraction Another main advantage of decision trees is interpretability:
decision nodes carry conditions that are simple to understand. Each path from the
root to a leaf corresponds to one conjunction of literals that can be written down as
a set of IF-THEN rules, called a ‘rule base’. One such method is “C4.5Rules” [6].
For example, the decision tree of Fig. 2b can be written down as the following set of
rules:

R1: IF (Wage increase 1st year ≤ 2.5%) AND (Working hours per week > 36) THEN Contract=Bad

R2: IF (Wage increase 1st year ≤ 2.5%) AND (Working hours per week > 36)
AND (Health plan contribution=None) THEN Contract=Bad

R3: IF (Wage increase 1st year ≤ 2.5%) AND (Working hours per week > 36)
AND (Health plan contribution=Half) THEN Contract=Good

R4: IF (Wage increase 1st year ≤ 2.5%) AND (Working hours per week > 36)
AND (Health plan contribution=Full) THEN Contract=Bad

R5: IF (Wage increase 1st year > 2.5%) AND (Statutory holidays > 10) THEN Contract=Good

R6: IF (Wage increase 1st year > 2.5%) AND (Statutory holidays > 10)
AND (Wage increase 1st year ≤ 4) THEN Contract=Bad

R7: IF (Wage increase 1st year > 2.5%) AND (Statutory holidays > 10)
AND (Wage increase 1st year > 4) THEN Contract=Good

Feature UseA univariate tree only uses the necessary variables, and after the tree
is built, certain features may not be used at all. We can also say that features closer to
the root are more important globally. It is possible to use a decision tree for feature
extraction: we build a tree and then take only those features used by the tree as inputs
to another learning method.

In a multivariate tree, at a decision node, all input dimensions can be used and
thus it is more general. When all inputs are numeric, a binary linear multivariate
node m is defined as wT

mx + wm0 > 0, i.e. a weighted linear sum. Discrete attributes
should be represented by 0/1 dummy numeric variables. It is possible to make it even
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more flexible by using a nonlinear multivariate node. For example, for a quadratic
node, we have xTWmx + wT

mx + wm0 > 0.
The earliest algorithm proposed for learning multivariate decision trees for clas-
sification is the multivariate version of the CART algorithm [5], which fine-tunes
the weights wmj . CART also has a preprocessing stage to decrease dimensionality
through subset selection and to reduce the complexity of the node. An evolution
of CART is the OC1 algorithm [7]. Linear multivariate nodes are more difficult to
interpret.

The omnivariate decision tree [8] is a hybrid tree architecture where the tree may
have univariate, linear multivariate, or nonlinear multivariate nodes. Results show
that more complex nodes are used early in the tree, closer to the root, and as we go
down the tree, simple univariate nodes suffice. As we get closer to the leaves, we
have simpler problems and, at the same time, we have less data.

Decision trees are used more frequently for classification than for regression. It is
even the case that a decision tree is preferred over more accurate methods, because
it is interpretable. When written down as a set of IF-THEN rules, the tree can be
understood and the rules can be validated by human experts who have knowledge of
the application domain.

Another big advantage of the univariate tree is that it can use numeric and discrete
features together, without needing to convert one type into the other.

A decision tree, once it is constructed, does not store all the training set but only
the structure of the tree, the parameters of the decision nodes, and the output values
in leaves; this implies that the space complexity is very low.

4.2 Random Forests

Combinations of models are generally known as model ensembles. They are among
the most powerful techniques in machine learning, often outperforming other meth-
ods. Random forests are an ensemble learning method for classification that grows
many classification trees.

A random forest is a classifier consisting of a collection of tree-structured classi-
fiers gk(x), k = 1, .... where each tree casts a unit vote for the most popular class at
input x [9]. Each tree is grown as follows (see Fig. 4a):

1. If the number of examples in the training set is N , sample N examples at random
but with replacement, from the original data (procedure called ‘bagging’). This
sample is known as ‘bootstrap sample’ and will be the training set for growing the
tree. The bootstrap sample will in general contain duplicates, and hence some of
the original data points will be missing even if the bootstrap sample is of the same
size as the original data set. This is exactly what we want, as differences between
the bootstrap samples will create diversity among the models in the ensemble.
When the training set for the current tree is drawn, about 1/3 of the examples are
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left out of the sample. This out-of-bag (oob) data is used to get a running unbiased
estimate of the classification error as trees are added to the forest.
The use of bagging seems to enhance accuracy of the final model; also, bagging
can be used to give ongoing estimates of the generalization error (the error on
new examples) of the ensemble of trees;

2. If there are F input features, a number f 	 F is specified such that at each node,
f features are selected at random out of the F (‘random feature selection’) and
the best split on these f is used to split the node. The value of f is maintained
fixed during the forest growing. This is the only adjustable parameter to which
random forests are sensitive;

3. Each tree is grown to the largest extent possible and there is no pruning. Random
forests do not overfit as more trees are added.

In random forests, there is no need for cross-validation or a separate test set to get
an unbiased estimate of the test set error. It is estimated internally, during the run, as
follows:

– Each tree is constructed using a different bootstrap sample from the original data.
About one-third of the examples are left out of the bootstrap sample and not used
in the construction of the k-th tree.

– Each example left out in the construction of the k-th tree is passed down through
the k-th tree to get a classification (‘vote’). In this way, a test set classification is
obtained for each example in about one-third of the trees.

– At the end of the run, these votes are aggregated to obtain the majority class j : the
proportion of times that j is not equal to the true class of each example averaged
over all examples is the oob error estimate.

To classify a new input vector x, it is enough to pass the vector down each of the
trees in the forest. Each tree gives a classification, and we say the tree ‘votes’ for that
class. The forest chooses the classification having the most votes over all the trees in
the forest (Fig. 4b).

In unsupervised learning the data consist of a set ofx vectors of the samedimension
with no class labels. The approach in random forests is to consider the original data
as class 1 and to create a synthetic second class of the same size that will be labelled
as class 2, created by randomly sampling from the univariate distributions of the
original data. Here is how a single member of class two is created: the first coordinate
is sampled from the N values taken by the first coordinate of the N examples in the
data set; the second coordinate is sampled independently from the N values taken
by the second coordinate of the N examples, and so forth. This artificial two-class
problem can be run through random forests. This allows all of the random forests
options to be applied to the original unlabelled data set.

In some data sets, the prediction error between classes is highly unbalanced. Some
classes have a low prediction error, others a high one. This occurs usually when one
class is much larger than another. Random forests will keep the error rate low on the
large class while letting the smaller classes have a larger error rate to try to minimize
the overall error rate.
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Fig. 4 Representation of training and classification for RF

Other advantages in using this method are:

– It runs efficiently on large databases;
– It can handle thousands of input features;
– It gives estimates of what features are important in the classification;
– It has an effective method for estimating missing data and maintains accuracy
when a large proportion of the data are missing.
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5 Linear Models

Linear models are a different approach for classification, probability estimation and
regression: they are defined in terms of the geometry of instance space. We can then
use geometric concepts such as lines and planes to impose structure on this space.

Linear models are ‘parametric’, meaning that they have a fixed form with a small
number of numeric parameters that need to be learned from data. This is different
from tree models, where the structure of the model (e.g., which features to use in
the tree, and where) is not fixed in advance. Linear models are stable, meaning that
small variations in the training data have only limited impact on the learned model.
Tree models tend to vary more with the training data, as the choice of a different
split at the root of the tree typically means that the rest of the tree is different as well.
Linear models are less likely to overfit the training data than some other models,
largely because they have relatively few parameters. The flip side of this is that
they sometimes lead to underfitting, i.e., the machine learning model is not complex
enough to accurately capture relationships between dataset’s features and a target
variable.

If all features are numerical, then we can use each feature as a coordinate in a
Cartesian coordinate system, as they are easy to visualize, as long as we keep to
two or three dimensions. It is important to keep in mind, though, that a Cartesian
instance space has as many coordinates as there are features, which can be tens,
hundreds, thousands, or even more. Such high-dimensional spaces are nevertheless
very common in machine learning. Geometric concepts that potentially apply to
high-dimensional spaces are usually prefixed with ‘hyper-’.

We dedicate this section to looking in detail at the support vector machine
(SVM), also called ‘maximummargin classifier’, which became popular some years
ago for solving problems in classification, regression, and novelty detection.

Let’s recall the classifier for spam e-mail. If we denote the result of the i-th test for
a given e-mail as xi , where xi = 1 if the test succeeds and 0 otherwise, and we denote
the weight of the i-th test as wi , then the total score of an e-mail can be expressed
as

∑M
i=1 wi xi , making use of the fact that wi contributes to the sum only if xi = 1,

i.e., if the test succeeds for the e-mail [1]. Using t for the threshold above which
an e-mail is classified as spam, the classifier had been written as

∑M
i=1 wi xi > t .

Notice that the left-hand side of this inequality is linear in the xi variables. Changing
the inequality to an equality

∑M
i=1 wi xi = t or w · x = t , we obtain the decision

boundary, separating spam from ham. The vector w is perpendicular to this plane.
Figure5 visualizes this for two variables. If there exists a linear decision boundary
separating the two classes, we say that the data is linearly separable.

However, because linearly separable data does not uniquely define a decision
boundary, we are now faced with a problem: which of the infinitely many decision
boundaries should we choose? One natural option is to prefer large margin clas-
sifiers, where the margin of a linear classifier is the distance between the decision
boundary and the closest instance. Support vector machines, developed at AT&T
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Fig. 5 An example of linear
classification in two
dimensions. The straight line
separates the positives from
the negatives and w points in
the direction of the positives

Fig. 6 The decision
boundary learned by a
support vector machine from
the linearly separable data
from Fig. 5. The decision
boundary maximizes the
margin, which is indicated
by the dotted lines

Bell Laboratories by Vladimir Vapnik and colleagues [10], are a powerful kind of
linear classifier that find a decision boundary whose margin is as large as possible.

For a given training set and decision boundary, let m+ be the smallest margin of
any positive, and m− the smallest margin of any negative, then we want the sum of
these to be as large as possible. This sum is independent of the decision threshold
t , as long as we keep the nearest positives and negatives at the right sides of the
decision boundary. Figures6 and 7 [1] depict this graphically in a two-dimensional
instance space.

The training examples nearest to the decision boundary are called support vec-
tors: the decision boundary of a support vector machine is defined as a linear com-
bination of the support vectors. The margin is thus defined as m

||w|| , where m is the
distance between the decision boundary and the nearest training instances (at least
one of each class) as measured along w. Since we are free to rescale t , ||w|| and m,
it is customary to choose m = 1. Maximizing the margin then corresponds to mini-
mizing ||w|| or, more conveniently, 1

2 ||w||2, provided that none of the training points
fall inside the margin. This leads to a quadratic, constrained optimization problem:
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Fig. 7 The circled data
points are the support
vectors, which are the
training examples nearest to
the decision boundary

w∗, t∗ = argmin
w,t

1

2
||w||2 subject to yi (w · xi − t) ≥ 1, 1 ≤ i ≤ n

with yi taking value +1 or −1. By using the method of Lagrange multipliers αi for
each training example i = 1..n, we obtain that

w =
n∑

i=1

αi yixi (1)

The αi are non-negative reals: if αi = 0 for a particular example xi , that example
could be removed from the training set without affecting the learned decision bound-
ary, meaning that αi > 0 only for the support vectors: the training examples nearest
to the decision boundary. The dual optimization problem, it is entirely formulated in
terms of the Lagrange multipliers:

α∗
1 , ..., α

∗
n = argmax

α1,...,αn

− 1

2

n∑

i=1

n∑

j=1

αiα j yi y jxix j +
n∑

i=1

αi (2)

subject to αi ≥ 0, 1 ≤ i ≤ n and
n∑

i=1

αi yi = 0

Formula (2) shows that searching for the maximum-margin decision boundary
is equivalent to searching for the support vectors: they are the training examples
with non-zero Lagrange multipliers, and through (1), they completely determine the
decision boundary. The majority of the αi are 0, and correspond to the xi that lie
more than sufficiently away from the decision boundary and they have no effect on
the plane. The instances that are not support vectors carry no information; even if any
subset of them is removed, we would still get the same solution. The remaining data
points are the support vectors, and they correspond to points that lie on the maximum
margin (hyper-)planes in instance space. This property is central to the practical
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applicability of support vector machines: once the model is trained, a significant
proportion of the data points can be discarded and only the support vectors retained.

An important property of support vector machines is that the determination of the
model parameters corresponds to a convex optimization problem, and so any local
solution is also a global optimum.

Soft Margin SVM If the data is not linearly separable, then the constraints
w · xi ≥ t posed by the examples are not jointly satisfiable [1]. However, if we
introduce slack variables ξi , one for each example, which allow some of them to be
inside the margin (Fig. 8) or even at the wrong side of the decision boundary - we
will call these margin errors - we can change the constraints to w · xi − t ≥ 1 − ξi
and we result in the following soft margin optimization problem:

w∗, t∗, ξ ∗
i = argmin

w,t,ξi

1

2
||w||2 + C

n∑

i=1

ξi

subject to yi (w · xi − t) ≥ 1 − ξi and ξi ≥ 0, 1 ≤ i ≤ n

C is a user-defined parameter: a high value of C means that margin errors incur
a high penalty, while a low value permits more margin errors (possibly including
misclassifications) in order to achieve a large margin.

5.1 Training SVMs

Although predictions for new inputs are made using only the support vectors, the
training phase (i.e., the determination of the parameters αi and t) makes use of the
whole data set, and so it is important to have efficient algorithms for solving large
quadratic optimization problems [11]. Direct solution using traditional techniques is

Fig. 8 A soft margin
classifier: the negative
training example no 1 is
inside the margin
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often infeasible due to the demanding computation and memory requirements, and
so more practical approaches need to be found. The techniques of chunking [12],
implemented using protected conjugate gradients [13], or Decomposition methods
[14] try to solve a series of smaller quadratic programming problems. One of themost
popular approaches to training support vector machines is called sequential minimal
optimization, or SMO [15]. It takes the concept of chunking to the extreme limit and
considers just two Lagrange multipliers at a time. In this case, the subproblem can be
solved analytically, thereby avoiding numerical quadratic programming altogether.
Heuristics are given for choosing the pair of Lagrange multipliers to be considered
at each step. In practice, SMO is found to have a scaling with the number of data
points that is somewhere between linear and quadratic depending on the particular
application.

5.2 Classification

The support vector machine is fundamentally a two-class classifier.
For a two-class classification problem, in order to classify new data points using

the trained model, we evaluate the sign of y = w · x − t , where t represents a bias
parameter. This can be expressed in terms of the parameters αi and x by substituting
for w using (1) to give y(x) = ∑n

i=1 αi yixxi − t . Having solved the quadratic pro-
gramming problem and found a value for αi , we can then determine the value of the
threshold parameter t as a function of αi , yi , xi considering only the number NS of
support vectors instead of the number of instances n.

Instead, the application of SVMs to problems involving K > 2 classes remains
an open issue, as the approaches presented so far have limitations. In practice the
‘one-versus-the-rest’ approach [16] is the most widely used: we construct K separate
SVMs, in which the k-th model yk(x) is trained using the data from class Ck as the
positive examples and the data from the remaining K − 1 classes as the negative
examples. If an input is assigned to multiple classes simultaneously, the prediction
for new inputs x is done with y(x) = max

k
yk(x).

5.3 Regression

Support vectors can also be applied to regression scenarios, where we estimate a
continuous-valued multivariate function. In this case we talk about support vector
regression (SVR). SVR is a generalization of SVM by means of the introduction
of an ε-insensitive region around the function, called the ε-tube [10]. This tube
reformulates the optimization problem to find the tube that best approximates the
continuous-valued function, that is, finding a function ĝ that has at most ε deviation
from the actually obtained targets yi for all the training data, and at the same time
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Fig. 9 A linear SVR

is as flat as possible. In other words, we do not care about errors as long as they
are less than ε, but will not accept any deviation larger than this (Fig. 9, left) [17].
‘Flatness’ in the case ofw · xmeans that one seeks a smallw. One way to ensure this
is to minimize the norm ||w||2. We can write this problem as a convex optimization
problem:

minimize 1
2 ||w||2

subject to yi − w · xi + t ≤ ε

w · xi − t − yi ≤ ε

More specifically, SVR is formulated as an optimization problem by first defining
a convex ε-insensitive loss function to be minimized and finding the flattest tube that
contains most of the training instances. Only the points outside the shaded region
contribute to the cost, as the deviations are penalized in a linear fashion [18] (Fig. 9,
right). Then, the convex optimization, which has a unique solution, is solved using
appropriate numerical optimization algorithms. As in SVM, the support vectors in
SVR are the most influential instances that affect the shape of the tube, and are points
that lie on the boundary of the ε-tube or outside the tube.
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6 Conclusions

This Chapter has been dedicated to introduce the main concepts of machine learning:
we have seen how ML can build models from features for solving tasks involving
data.We have seen howmodels can be predictive or descriptive, while learning can be
supervised or unsupervised. We analyzed a few kinds of models, tree-structured and
linear (specifically support vector machines), used for classification and regression.
There are many successful applications of machine learning in a myriad of domains:
there are commercially available systems for recognizing speech and handwriting.
Retail companies analyze their past sales data to learn their customers’ behavior
to improve customer relationship management. Financial institutions analyze past
transactions to predict customers’ credit risks. Robots learn to optimize their behavior
to complete a task using minimum resources. In bioinformatics, the huge amount of
data can be analyzed and knowledge extracted using computers.

The entire next chapter will be dedicated to deep learning, a subfield of machine
learning. Deep learning distinguishes itself from classical machine learning by the
type of data that it works with and the methods with which it learns. Machine learn-
ing algorithms leverage structured, labeled data to make predictions, meaning that
specific features are defined from the input data for the model and organized into
tables. This does not necessarily mean that it does not use unstructured data; it just
means that if it does, it generally goes through some pre-processing to organize it
into a structured format.

Deep learning algorithms can ingest and process unstructured data, like text and
images, and automate feature extraction, removing someof the dependencyonhuman
experts. For example, let’s say that we have a set of photos of different pets, and we
want to categorize them by “cat”, “dog”, etc. Deep learning algorithms can determine
which features (e.g. ears) aremost important to distinguish each animal from another.
In machine learning, this hierarchy of features would be established manually by a
human expert.
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Neural Networks and Deep Learning
Fundamentals

Riccardo Zese , Elena Bellodi , Michele Fraccaroli , Fabrizio Riguzzi ,
and Evelina Lamma

Abstract In the last decade, Neural Networks (NNs) have come to the fore as one
of the most powerful and versatile approaches to many machine learning tasks. Deep
Learning (DL), the latest incarnation of NNs, is nowadays applied in every scenario
that needsmodels able to predict or classify data. From computer vision to speech-to-
text, DL techniques are able to achieve super-human performance inmany cases. This
chapter is devoted to give a (not comprehensive) introduction to the field, describing
the main branches and model architectures, in order to try to give a roadmap of this
area to the reader.

1 A Brief History

In the last decades, the use of Neural Networks (NNs) has become one of the most
effective approaches for solving classification and regression tasks. This is principally
due to their capability of identifying and modeling complex correlations. They have
been proposed for the first time in the 40s in order to try to achieve two main
objectives: to study the functioning of the human brain by defining models able
to simulate its neuro-physiological phenomena, and to use such models to extract
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the principles guiding human reasoning in terms of mathematical calculations, to
develop artificial systems able to reason as a human but possibly faster and more
efficiently.

The concept of NN, as the name explicitly says, was originally used to define
networks simulating the neurons and their interactions in the human brain. The first
theory was developed by McCulloch and Walter Pitts [31] and was very simple and
effective. They defined the neuron as a computational unit that applies a function
to the inputs implementing a binary classification. The inputs were multiplied by
weights fixed apriori and static. In 1958, this first definition was at the basis of
the implementation of the first model of neural network, called Perceptron [39],
allowing the training of a single neuron. From the work of those years, besides the
Perceptron, a second learning algorithm also emerged, which was a special case of
the Stochastic Gradient Descent (SGD) technique, which is at the basis of most
learning algorithms now. This learning algorithm was used to train the weights of
the ADAptive LINear Element (ADALINE) model [48], used for linear regression.
Basically, SGD needs an error function that returns, for a given output of the model,
how far the output is from the label of the input. SGD takes the error function and
computes the gradient of this error on the weights. In this way, it is possible to update
the weights moving along the gradient in order to reduce the error. Performing these
operations iteratively allows minimizing the error. Nowadays, this idea has been
declined in many ways, considering for example also the second derivative or the
derivative of the previous iterations to better guide the tuning of theweights.However,
a single neuron is not effective for even the simplest classification and regression task
because it implements a too simple function. For this reason, this idea was abandoned
at that time.

In the second half of the eighties, Rumelhart et al. [40] used the back-propagation
mechanism to train larger networks, giving new life to the study of the topic. The
idea was simple but effective: using more neurons means combining more functions,
defining a model able to represent more complex scenarios. Unfortunately, at that
time, developing and experimenting with these ideas was difficult due to hardware
limitations thatmade the training unfeasiblewith the increase of the complexity of the
model. However, the idea of deep networks dates back to these years. Deep networks
are networks with many layers of neurons, the internal layers are called hidden and
the depth of the network is the number of layers. Moreover, the eighties saw the first
theorization of Convolutional Neural Networks (CNN) by Yan LeCun [27], whose
work resulted in the definition of the well-known LeNet5 model [26]. This model
was one of the first effective CNN as it was able to achieve super-human results in
the task of handwritten digit recognition.

Nowadays, the idea of NNs is that of extremely complex networks with many
neurons organized in many layers. The concept of depth is stressed even further,
partly thanks to the advances in hardware. Other important aspects that helped to
increase the importance of thesemodels are the increase of the size of the data and the
availability of powerful (and in many cases user-friendly) systems and frameworks
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for the design, the implementation and the use of these models. Frameworks such as
Tensorflow,1 PyTorch2 and Caffe3 allow a better user friendliness and consequently
a easier prototyping of models.

The classical definition of a NN, a set of neurons grouped in different layers
where a neuron in a layer communicates with all the neurons of the next layer, is now
usually called Fully Connected (Deep) Neural Network, Artificial Neural Network,
Multilayer Perceptron, or Deep Feedforward Network [1, 13], and has been later
extended in order to define more complex models.

Alongside this definition, new models have gained increasing importance in the
field. On one hand, the already mentioned convolutional networks, mainly used in
the field of computer vision, and on the other hand Recurrent Neural Networks [40],
defined for input data in the form of sequences, such as written text. Their great
innovation is that they allow the network to maintain a memory of previous data,
enabling the management of such sequences.

The rest of this chapter is organized as follow. Section2 discusses Multilayer Per-
ceptrons, Sect. 3 introduces Convolutional Neural Networks, and Sect. 4 Recurrent
Neural Networks. Section5 discusses the problem of tuning the hyper-parameters to
guide the training. Finally, Sect. 6 concludes the chapter.

2 Multilayer Perceptrons

The objective of a Multilayer Perceptron (MLP) is that of approximating a func-
tion f̂ : RN×M → R

K by means of other functions such that f̂ (X) = fn( fn−1(. . .

( f1( f0(X))))), where X is a tensor4 of size N × M representing the input. The corre-
sponding model is a network of n layers, each representing the function fi with i the
number of the layer. Figure1 shows an example of MLP with 4 layers. Layer 0 is the
input layer, the leftmost one, then layers 1 and 2 are internal layers, also called hidden
layers. Finally, the last layer is the output one, returning the results of the computa-
tion of the network. The output function is Ŷ = f̂ (X) = f3( f2( f1( f0(X))))), with
f̂ : R3×1 → R

3. This network is developed to solve a multiclass classification where
each input x can be labelled with three different classes, associated with different
neurons of the output layer. Before describing the overall flow, let us concentrate on a
single neuron, e.g., neuron h1 in Fig. 1. Figure2 shows the computation performed in
each single neuron. Basically, each neuron takes as input the output of each neurons
of the previous layer, for the case of h1, it takes X = [x1, x2, x3]� as input. More-
over, each neuron has another input value, the bias, a constant term set to 1 which
represents background noise. Thus, toghether with the weight matrixW1, containing
one weight w1

i for each xi , another weight b11 is considered, associated to the bias.

1 https://www.tensorflow.org/.
2 https://pytorch.org/.
3 https://caffe.berkeleyvision.org/.
4 Generally, a tensor is a n-dimensional array with n ∈ N.

https://www.tensorflow.org/
https://pytorch.org/
https://caffe.berkeleyvision.org/
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Fig. 1 Example of a MLP
with four layers: the input,
two hidden and the output
layers. The input
X = [x1, x2, x3]� represents
a tensor of size 3× 1. The
output Y = [y1, y2, y3]�
represents the 3 possible
classes to be assigned to the
input, one class for each
value in Y

Fig. 2 Computation of
neuron h1 in Fig. 1

This weight is usually automatically added to the neuron by the frameworks used to
model the MLP, thus it is not necessary to explicitly add it to the model, as shown
in Fig. 1, where the bias terms are not represented.

In detail, first of all, the neuron computes the network input, i.e., the input it takes
by the network. So, z11 = b11 + ∑n

i=1 xiw
1
i or, in matrix notation z11 = b11 + X�W1,

with n = 3 the size of X , i.e., the number of input from the previous layer. Then, z11
is given to the activation function fact that computes the output of the neuron, which
is given as input to the neurons of the next layer. Thus, f 11 (X) = fact (b11 + X�W1).

There are many possible activation functions, varying from hyperbolic tangent
tanh to the sigmoid or to Rectified Linear Unit (ReLU) [24]. In particular, the last
two functions are the most used. Given Z the input of a neuron, the sigmoid function
σ(Z) = 1

1+e−Z , shown in Fig. 3a, is used as the activation function of the output layers
in case of binary classification. It returns a value between 0 and 1, thus the output
layer is designed to have one neuron returning the probability of the input to belong
to the positive class (one of the two classes). On the other hand, the ReLU activation
function, shown in Fig. 3b, is the most used for the neurons of the hidden layers. It
was introduced to improve the performance in terms of training time and defined as
ReLU (H) = max(0, Z).

Therefore, the overall flow is as follow. The input data is multiplied by weights
matrix W1 and given to the neurons of the first layer. Here, every neuron takes the
result of this multiplication and applies the activation function, returning the output
of the neuron. This value is intended as an indicator of the level of activation of the
neuron, the higher the value, the most active that neuron.
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Fig. 3 Sigmoid a and ReLU b activation functions

This process is then repeated sequentially for the next layers until the output layer
is reached. Thus, for example, the output of the neuron h2 in Fig. 1 is f 21 (X) =
fact (b21 + Z�

1 W2) where b21 is the bias weight of neuron h2, and Z1 is the tensor
containing the output of the neurons of the previous layer.

The last layer will output a probability distribution among the classes considered
in the data in the case of classification, or a real value predicting the output label of
the example in the case of regression.

During learning, this output distribution is used to compute a loss measure rep-
resenting how far the predicted output of the network is from the actual label of the
input examples. The gradient of this loss measure is calculated w.r.t. the weights.
These are then updated by taking a step in the opposite of the direction given by the
gradient by means of the gradient descent algorithm or one of its evolutions. This
approach is called back-propagation and it is at the basis of the training of each
neural network, with some variants due to the different architectures adopted.

The need of calculating the gradient guided the search for good activation func-
tions for all the layers. What one would like to have is a function easy to derivate,
able to maintain the output values of each neuron in a range that is functional for the
training and, at the same time, that does not reduce the information passing through
the neuron. Values in the range [0, 1] are the easiest to manage because they avoid
an explosion of the weights’ values. The counterpart is that multiplying many values
lesser than 1 makes the output close to 0, making its gradient close to 0 as well. This
problem is called vanishing gradient. To try to avoid this problem, the choice of the
value of the update step for the weights must be wisely chosen and, in many cases,
it must be changed during the training as well.

3 Convolutional Neural Networks

When the input data presents some spatial structure, i.e., each value of the input
is connected in some way with other values, MLP may have problems to represent
these spatial relations, that usually connect smaller portions of the input example and
may appear in different positions and numbers. MLPs need a neuron for each value
of the input example, which is a tensor, thus they may require too many neurons
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to effectively handle the problem. Input data with spatial structure are, e.g. images,
where each pixel is connected with the pixels surrounding it, or time series, where
each value is connected with the previous and the following value in the series. If we
consider a picture of a person, the set of pixels representing an eye are related and
the same relation appears in two different places inside the picture. Moreover, the
eye is related to the face of the subject but not, for example, to a car passing behind
the person in the background. In these cases, if a MLP is considered, the input layer
should have a neuron for each value of the input, i.e., one neuron for each pixel in case
of a greyscale image or three neurons for each pixel in case of an RGB picture (one
for each channel). This may force the network to have an extremely large number
of weights to tune. Consider, for example, a greyscale image with a resolution of
256 × 256 pixels. The input layer has 65,536 neurons. If the first hidden layer has
100 neurons, which is usually a number too small to be effective given the input size,
the network needs 65,536·100=6,553,600 weights to connect the two layers. This
number will increase even further adding more layers, resulting in a hard to train
network.

Convolutional Neural Networks (CNNs) [27] have come to the fore to solve
problems where data presents spatial and/or topological structure as in the previous
example. CNNs are built using convolutional layers, performing convolutions on the
data they receive and extracting features from it, typically followed by some fully
connected layers to carry out the classification by considering only the extracted
features instead of the entire input data. Thus, considering the previous example, the
convolutional part checks which features are present in the picture, e.g., if eyes or
a mouth or wheels are present. Then, the fully connected part considers the set of
features identified in the image and decides which label to assign.

The convolution operation is the integration of two functions x and w, and it is
denoted as x ∗ w. Function x is called input while functionw is the kernel. The result
is called feature map, or simply feature. Convolution is defined as

(x ∗ w)(t) =
∫ ∞

−∞
x(τ )w(t − τ)dτ

or, in the discrete case

(x ∗ w)(t) =
∞∑

τ=−∞
x(τ )w(t − τ)

In practical scenarios, the input and the kernel functions are tensors, i.e., multidi-
mensional arrays, such as a 2D grid of pixels for an image or a 1D vector for a time
series. The kernel scrolls all the input, moving in the directions given by the size
of the input itself (in one direction in the case of 1D input, in two directions in the
case of 2D input, etc.). Good surveys on the application of CNNs to images and time
series are respectively [20, 36].
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The result of a convolution operation represents the features extracted from the
input. The advantage of using CNNs is that the kernel is used on the entire input. The
only weights to train are the values of the kernel, therefore, if we consider a single
kernel of size 5 × 5, the convolutional layer has only 25 weights to train irrespective
of the size of the input of the layer. Even if the input has size 256 × 256, the number
of weights to train will be always 25.

In practice, every convolutional layer applies many kernels at a time, extracting
many features from the same image, one for each kernel. For example, one of the
first CNN, LeNet5 [26], was defined to train 10 kernels of size 28 × 28 in the first
convolutional layer. Later, Simonyan and Zisserman [42] showed that it is possible
to further reduce the number of weights by maintaining the same receptive field by
reducing the size of the kernel and adding more convolutional layers, as shown in
Fig. 4.

The receptive field is the number of values of the input affecting a single value
of the output of a convolution operation. Considering a single convolutional layer
having 5 × 5 kernels, the receptive field of the output of this layer is 25 (Fig. 4a).
Consider now replacing this single layer with two convolutional layers having 3
kernels each, as depicted in Fig. 4b. After the second convolutional layer, every
value of the output depends on 25 values of the input given to the first convolutional
layer, i.e., the receptive field of each value of the output of the second layer is a
square 3 × 3, so 9 values, of the output of the first layer. In the output of the first
layer, each value has a receptive field of 3 × 3 values of the input. By considering
these two layers as a single black-box, the receptive field of the output combines
those of the two layers, becoming, as said before, a square of 5 × 5 values of the
input. This is true if we consider a stride equal to 1. The stride indicates by how
many pixels the kernel moves in a certain direction to calculate the feature map. The
advantage of using more layers is that, while with a single 5 × 5 convolutional layer
there are 25 weights to train, with two 3 × 3 convolutional layers there are 2 · 9 = 18
weights to train. If we consider a single layer having a 7 × 7 kernel and replace it
with three layers having 3 × 3 kernel and using stride 1, the same receptive field is
achieved with 3 · 9 = 27 weights instead of 7 · 7 = 49. Since every convolutional
layer contains several different kernels, the gain in terms of number of weights to
train increases fast. By exploiting this approach, it is possible to extract hundreds of
features by maintaining the number of weights to train feasible.

However, with the increase of layers, the problem of vanishing gradient will pop
up. For this reason, He et al. [16] introduced ResNet where the configuration of layers
combines the output of sets of convolutional layers with the input of the first layer in
the sets creating a short-circuit between the input and the output of the set of layers,
as shown in Fig. 5. This configuration of layers is called Residual Block and presents
an output function that is H(X) = F(X) + X , where F(X) is the output of the set
of convolutional layers. Moreover, the increase of complexity of a layer in terms of
operations performed also implies an increase of the number of weights. To reduce
their number, a possibility is to resort to 1 × 1 kernels, as in GoogLeNet [46]. Basi-
cally, 1 × 1 convolution is used to reduce the number of features computed by the
previous convolutional layer by combining them in a meaningful way. This combi-
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Fig. 4 Comparison between
1 convolution operation with
kernel 5 × 5 (a) and 2
convolution operations with
kernel 3 × 3 (b)

Fig. 5 The architecture of a
Residual Block as defined in
ResNet

nation is learned automatically during the training phase to maintain the information
of the features taken as input by the 1 × 1 convolutional layer while reducing their
number. GoogLeNet also introduced the concept of inception, i.e., the design of a
good local convolutional network architecture, usually with parallel branches, and
its use as a new layer.
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In the last years, many other different architectures have been presented. Most
of them combine and extend the ideas presented for GoogLeNet and ResNet by
including MLP networks inside layers. An example is the well-known Network-
in-Network model [28], combining the idea of residual blocks and inception [49],
creating fractal architectures [25], where the model is no more defined by means
of layers but by means of a fractal function which is defined recursively, or heavily
using 1 × 1 convolution [19] or short-circuits [18].

Another important operation used byCNNs to reduce featuremaps is pooling, also
called sub-sampling, which usually follows convolution operations. This is used to
reduce the size of a feature map by summarizing its information. This summarization
can be performed by, e.g., averaging neighbour values or extracting from them the
maximum value. The use of convolution and pooling operations allows the extraction
of the important features contained in the input data X , representing them by smaller
tensors. These features can be used to help classification, or the recognition of certain
patterns contained in the data, irrespectively of their position or scale.

Indeed, CNNs’ final layers are usually classical fully connected layers that per-
form classification on the features extracted by previous layers. Therefore, roughly
speaking, a CNN can be divided into two subnetworks, where the first subnetwork
processes the input data by means of convolution operations. The output of these
operations is then passed to the second subnetwork, which is a fully connected
network used to classify the input data. Figure6 shows the architecture of LeNet5
(Fig. 6a) [26] and of ResNet (Fig. 6b) [16]. From this figure it is possible to see that
while the overall architecture has remained the same, i.e., a convolutional part that
feeds a set of features to a fully connected part, the depth has increased significantly,
going from 6 layers of LeNet5 to 152 layers of ResNet.

Considering images as input, besides the classification task, CNNs are also used
to solve more specialized tasks, for example, semantic and instance segmentation, or
object detection. The first task consists of identifying which part of the image each
pixel belongs to. For example, consider a picture having two dogs in the foreground
and a grassland with sky as background, semantic segmentation’s objective is that
of “classifying” each pixel as sky, grass and dog, while instance segmentation adds
the capability of discriminating among the two dogs. Thus, the difference is that
semantic segmentation does not discriminate between different subjects, the pixels
representing the two dogs are all classified as “dog”, while in instance segmentation
the pixels representing the first dog are kept separated from those representing the
second dog. This task is performed by superimposing a mask on the initial image that
colours each pixel depending on how it is classified. This task is usually performed
by applying convolution and deconvolution to the image so that the fully connected
part of the network is replaced by a sequence of deconvolutional layers [30, 32,
41]. In particular, deconvolution is the dual of convolution, i.e., instead of extracting
features from an image, reducing its size, it is aimed at recreating an image starting
from a set of features, also possibly increasing its size.

Object detection allows to locate and surround with a box the objects represented
in the image. Therefore, given an image, the objective is to identify which objects
the image contains, classify them and spatially locate them in the image. This task
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Fig. 6 The architecture of LeNet5 (a) and ResNet (b)

is performed by defining and training the fully connected layers at the end of the
model so that they also output the coordinates of the box highlighting each object.
This approach can be used also to estimate the pose of the subject of the image [47],
for example to identify if a person is sitting or walking. Object detection and pose
estimation can be done by iteratively selecting portions of the image randomly sam-
pled and using this portion as input of the CNN. In this way, the model can extract
the information contained in each portion and thus in the entire image [12].

4 Recurrent Neural Networks

If we must process sequential data, the architectures seen before are not the best
choice. Sequential data may have different length and be very long, however the
model needs to be able to analyse the sequence as a whole. MLPs and CNNs take
as input data of fixed size and are designed to handle different characteristics in the
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data, such as grid-like topology for the CNNs. When sequential data needs models
having a memory of what they have seen previously in the sequence, Recurrent
Neural Networks (RNNs) [40] may come in handy. An example of an application of
the RNNs can be text translation, where given a sentence, the system has to produce
a different sentence, which is the translation of the input in a different language. The
vanilla RNN is composed of a single neuron that takes as input a single value of the
sequence at a time and a value representing its previous state, i.e., the state, usually
the output or a function of the output, obtained considering the previous values of the
sequence. In a sequence, every individual value represents the value of the sequence
at a certain time step t , therefore, the output of a RNN is ht (xt ) = f (ht−1, xt ) for
t ≥ 0, ht is the output of the recurrent layer at time t , f the function computed by
the layer, and xt the input at time t . The function f can vary a lot and different types
of functions have been defined to manage the process memory in different ways, by
replacing the single neuron of the vanilla version with sub-networks containing more
neurons. Each version of f uses weights that are learned during the training phase.
An important thing to note is that the network is composed by a single neuron/sub-
network applying function f , therefore, the weights are tuned by considering the
whole sequences, while the network needs less memory than the other types of
network discussed in this chapter.

This simple architecture can be used for different purposes, given an input
sequence the model could return as output a different sequence or a single value,
or else, the model could take a single value as input instead of a sequence and use
only its previous state to create a sequence from scratch. This can be easily done by
deciding when to return an output, either at each time step, at the end of the input
sequence, or every intermediate solution.

The training method used for this type of network is called back-propagation
through time and in its basic definition is computed for each time step. The difference
is that in this case, at each time step, the number of times the weights of the network
are considered increases. In fact, at time 1 the output considers the weights of the
neuron only once, at time 2 the output is the output of time 1 multiplied by the
weights, so they are considered twice, and this holds for every time step until the end
of the sequence.

Wecan alsodefineBidirectional-RNN,where for each time step theoutput depends
also on the future values of the sequence, thus the whole sequence must be read for-
ward and backward in order to return the output. It is worth noting that the possibility
of reading the sequence bidirectionally opens to the possibility of taking as input not
only sequences but also input that have more dimensions, such as images. This can
be done by considering different directions for each dimension, e.g., in the case of
an image the network should consider 4 directions.

With the combination of RNNs and CNNs it is also possible to solve the image
captioning problem, i.e., given an image, generate a caption describing the content
of the image [22]. This can be done by exploiting a CNN trained for solving object
recognition task. This network returns a set of labels telling what the image contains.
A RNN is then fed with these labels to generate a caption, i.e., a sequence of words,
for the image.
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Fig. 7 Long Short Term
Memory architecture

The main problem of vanilla RNNs is that the network tends to forget the most
distant parts of the sequence. Thus, as seen before, more complex architectures have
been proposed to improve the memory of the network. One of the most important
architecture is called Long Short Term Memory RNN (LSTM) [17]. LSTMs replace
the single neuron of the vanilla RNNwith four gates (basically four neurons) that, for
each time step, take as input the current value of the input sequence, and the previous
output and state, as shown in Fig. 7. One gate decides which parts of the previous
stateCt−1 to remember by checking the previous output ht−1, another gate computes
which parts of the current input xt to remember, a third gate decides how these two
parts are combined together to compute the current state Ct and so to manage what
to keep in memory, and the fourth gate computes the current output ht .

As can be seen in Fig. 7, an LSTM is a network containing several MLP neurons,
called gates. To compute the output and the state of the LSTM, it is necessary to
compute the output of each gate.

The output of gate f at time t , called forget gate, telling what to forget from the
previous state is

ft = σ(W f · [ht−1, xt ] + b f )

where σ(·) is the sigmoid function, W f and b f are the weights matrix and the bias
weight of gate f ,and [ht−1, xt ] is the concatenation of the two tensors ht−1 and xt .

The output of gate i at time t , called input gate and telling which values to update,
is

it = σ(Wi · [ht−1, xt ] + bi )

where Wi and bi are the weights matrix and the bias weight of gate i .
The output of gate g at time t , called gate gate and creating a vector of new

candidate values, is
gt = tanh(Wg · [ht−1, xt ] + bg)

where tanh(·) is the hyperbolic tangent, Wg and bg are the weights matrix and the
bias weight of gate g.
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Now, it is possible to compute Ct as

Ct = ft × Ct−1 + it × gt

where × is the element-wise multiplication.
To find the output ht , the output of the gate o, called output gate,must be computed

as:
ot = σ(Wo · [ht−1, xt ] + bo)

where Wo and bo are the weights matrix and the bias weight of gate o. Finally, the
output of the LSTM at time t can be computed as

ht = ot × tanh(Ct )

Starting from LSTM, a plethora of new models have been proposed. Some of
them combine or replace gates to simplify the training, such as the well-known
Gated Recurrent Unit (GRU) [7], or introduce spyholes [11] giving also the previous
state as input to (some) of the four gates of a standard LSTM.

The idea of adding sub-networks has also been applied in the case of RNNs
[14, 33]. For example, the current state may be passed as input to an MLP whose
output is considered as the previous state from the recurrent part [14].

A generalization of RNNs are the Recursive Neural Networks [5, 35]. In this case,
themodel presents a tree-like structure, as shown in Fig. 8. Themain advantage is that
the number of operations necessary to compute the output given an input sequence
is reduced to be logarithmic in the length of the sequence. The drawback is that to
achieve the best results the structure of the tree should be tailored to the input. This
structure is usually computed by analysing the task. For example, for natural language
processing, one can exploit some parsers to get a parse tree to be transformed into
the recursive network [44, 45], or define a learner able to automatically create the
structure of the tree [5]. However, given the difficulties to correctly identify the best
architecture, recursive neural networks are rarely used.

Fig. 8 Recursive neural
network
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5 Hyper-parameter Optimization

An important aspect to consider for each machine learning approach is the choice
of good hyper-parameters. These can be the number of neurons in each layer, the
number of layers, the size of the kernels or the number of iterations to perform
during training. As seen in the previous sections, with the increasing sophistication
of Deep Learning systems, the hyper-parameters and the possible configurations of
the network architectures become more and more complex. Furthermore, due to the
pervasiveness of Deep Learning systems, the tuning process of the hyper-parameters
and the choice of the best neural architecture needs to be addressed even by non-
experts.

In the automationofDeepLearning,we candistinguish two families of algorithms:
Hyper-Parameters Optimization (HPO) and Neural Architecture Search (NAS) algo-
rithms [9].With HPO algorithmswemodify only the hyper-parameters of themodels
while with NAS we act only on the architecture of the neural networks.

The four main HPO approaches are Grid Search, Random Search, Bayesian Opti-
mization and with Genetic algorithm. Grid search [51] performs exhaustive search
on the specified hyper-parameters space. This algorithm performs a new indipen-
dent training session for each combination of the hyper-parameters. This algorithm
ensures that the optimal configuration is found as long as sufficient resources are
provided. This method is guided by a performance metric that decides which of the
tested configurations is the best, measuring the performance of the neural model
in the training or validation phase. However, due to the fact that the computational
resources increase exponentially with the number of hyper-parameters to set, Grid
Search suffers from the curse of dimensionality [51].

Random Search [3] searches randomly in the user-defined hyper-parameters
space. Random search leads to better results than Grid Search, especially when
only a small number of hyper-parameters affect the final performance of the learning
algorithm [3]. Unlike Grid Search, this algorithm is not guaranteed to achieve the
optimum, but may require less computation time while finding a reasonably good
model inmost cases [3] because themaximum computation time is set before starting
the search. With Random Search, it is also possible to include prior knowledge by
specifying the distribution from which to sample the hyper-parameter values.

BayesianOptimization aims tofind the global optimumwith theminimumnumber
of trials. It is a probabilisticmodel-based approach for optimizing objective functions
which are very expensive or slow to evaluate [8]. Bayesian Optimization builds a
probabilistic model (called surrogate model) of the objective function and quantifies
the uncertainty in this surrogate using a regressionmodel. Then, it uses an acquisition
function to decide where to sample the next set of hyper-parameters values [10]. Its
effectiveness in optimizing the hyper-parameters of NNs derives from the fact that it
limits the number of training sessions by spending more time choosing the next set
of hyper-parameters to try. In the literature, there are many examples of application
of this kind of HPO to NNs [4, 23, 43].
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A genetic algorithm (GA) is a metaheuristic based on Charles Darwin’s evolu-
tion theory [50] frequently used to generate high-quality solutions to optimization
problems. This algorithm tries to imitate the process of natural selection where the
fittest individuals are selected for reproduction to produce the population of the next
generation. Evolution starts with a randomly generated population of individuals
(each individual is a solution to the optimization problem). One of the key points of
GA is the fitness function. The fitness function determines the fitness score of each
individual. Fitness score represents the probability that an individual will be selected
for reproduction. At each iteration of the algorithm, with the selection phase, the
fittest individuals are selected so that they pass on their genes to the next generation.
Individuals with high fitness score have more chance to be selected for reproduc-
tion. Through the crossover phase (also called recombination), for each new solution
to be produces, a pair of parent solution of the actual generation are selected and
their genetic information are combined to create new child solution. In addition to the
crossover, tomaintain the genetic diversity, there is also themutation. Mutation alters
one or more gene values in an individual from its initial state and occurs during the
creation of the new population, according to a user-definable mutation probability.
The algorithm terminates where the population has converged (GA does not produce
new population that are significantly different from the previous generation).

Then, in the case of DL hyper-parameters optimization, the Genetic algorithm
starts with an initial population of N DL models with some predefined hyper-
parameters. Then, we can calculate the accuracy (or loss) of the models and uses
that as a fitness score. Finally, we can generate a new offspring of DL models. This
method is slow (at each iteration, new neural networks are generated which need to
be trained) and not guaranteed to find the optimal solution.

NAS is a technique for automating the design of NNs architectures strictly corre-
lated to HPO. NAS methods have already been shown to be capable of overcoming
manually designed architectures [37, 52]. The three main elements on which NAS
are based are: Search Space, Search Strategy and Performance Estimation Strategy
as can be seen in Fig. 9. Search Space refers to all possible architectures that can
be generated during the optimization process. Search Strategy refers to the methods
for exploring all possible architectures that can be generated by NAS. Performance
Estimation Strategy are the methods for measuring the quality of the generated NN
[9]. There are different search strategies that can be used to explore the search space
of neural architectures. These strategies include: random search, Bayesian Optimiza-

Fig. 9 Components of NAS with their interactions
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tion [21], reinforcement learning [34], gradient-basedmethods [29] and evolutionary
algorithms [9, 38]. NAS approaches can be categorized in two groups: classical NAS
and one-shot NAS [2]. The first group follows the traditional search approach also
used by Grid Search, where each generated NN is trained independently. One-shot
NAS algorithms use weight sharing among models in the search space to train a
super-net and use this to select better models. This type of algorithms reduces com-
putation resources compared to the classical NAS algorithm. Therefore, a super-net
is a single large network that contains every possible operation in the search space.
All possible network architecture in the super-net can be considered as a sub-net
with shared weights between common edges. Then, rather than training thousands
of separate models from scratch like in the classical NAS, one can train a single large
network (super-net) capable of emulating any architecture in the search space. Once
the super-net is trained, it is used for evaluating the performance of many different
architectures sampled at random by zeroing out or removing some operations.

The state-of-the-art of one-shot NAS are: Efficient Neural Architecture Search
(ENAS) [34], Differentiable Architecture Search (DARTS) [29], Single Path One-
Shot (SPOS) [15] and ProxylessNAS [6]. Nowadays, different software libraries
implement this kind of algorithms. We can cite Autokeras5 [21] and Neural Network
Intelligence (NNI).6 Autokeras implements one-shot NAS with Bayesian Optimiza-
tion-like search strategy and NNI implements both HPO algorithms and classical
and one-shot NAS algorithms.

6 Conclusions

This chapter illustrates the main concepts of the Deep Learning field. In particular,
it discusses the most important architectures, i.e., Multilayer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
While MLPs are a necessary component for performing classification or regression,
the other two types are more tailored to specific input types.

CNNs are extremely useful when dealing with input that shows a grid-like topol-
ogy, such as images and, to some extent, time series. These types of input data are
multi-dimensional tensors where each value is connected with the neighbouring val-
ues. CNNs owe their success to their capability of extracting features from the input
data.

RNNs are well suited for sequential data, such as sentences. Indeed, this kind of
architecture is often used for natural language processing, both for reading sentences
as input, and generating sentences as output. The main feature of RNNs, absent in
CNNs and MLPs, is that they are designed to keep memory of the (most important
parts of the) whole input sequence. Therefore, unlike CNNs, RNNs can consider the
sequence as a whole instead of considering only a bunch of neighbouring values.

5 https://autokeras.com/.
6 https://www.microsoft.com/en-us/research/project/neural-network-intelligence/.

https://autokeras.com/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
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All these architectures can be combined to create powerful tools. For example,
to classify images given their content, a CNN needs to send its output to a MLP,
whichwill use the extracted features to perform the classification.Another interesting
combination is between CNNs and RNNs to label images. In this case, the extracted
features are given as input to a RNN to compose a sentence describing the content
of the image.

The architecture of the networks and the algorithms used to train the networks
depend on many hyper-parameters, that must be optimized to obtain good results.
Since the number of these hyper-parameters can be high, we need mechanisms to
automatically tune their values. For this reason, in this chapter we have surveyed the
relevant literature about hyper-parameters’ optimization.
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Accelerating Deep Neural Networks
with Phase-Change Memory Devices

Katie Spoon , Stefano Ambrogio , Pritish Narayanan , Hsinyu Tsai,
Charles Mackin , An Chen , Andrea Fasoli , Alexander Friz,
and Geoffrey W. Burr

Abstract In this chapter, we discuss recent advances in the hardware acceleration of
deep neural networks with analogmemory devices. Analogmemory offers enormous
potential to speed up computation in deep learning. We study the use of Phase-
Change Memory (PCM) as the resistive element in a crossbar array that allows the
multiply-accumulate operation in deep neural networks to be performed in-memory.
With this promise comes several challenges, including the impact of conductance
drift on deep neural network accuracy. Here we introduce popular neural network
architectures and explain how to accelerate inference using PCM arrays. We present
a technique to compensate for conductance drift (“slope correction”) to allow in-
memory computing with PCM during inference to reach software-equivalent deep
learning baselines for a broad variety of important neural network workloads.

1 Introduction

Today’s world has a high demand for an ability to quickly make sense of a rapidly
expanding flow of data [1]. In this context, machine learning techniques have become
widely popular to help extract meaningful information from a variety of data such as
images, text and speech [2]. In the last decade, the confluence of large amounts
of labelled datasets, reliable algorithms such as stochastic gradient descent and
increased computational power from CPUs (Central Processing Units) and GPUs
(Graphics Processing Units) has enabled deep learning, a branch of machine learn-
ing, to revolutionize many fields, from image classification to speech recognition to
language translation [3–6].

Neural networks typically have input and output layers, with many hidden layers
in between. Each layer contains many neurons, where the output of each neuron
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Fig. 1 A simple task is to classify images of handwritten digits from theMNIST dataset, where the
network’s goal is to output the number the image contains. The input layer has 784 input neurons,
the number of pixels in a 28× 28 image. In the network shown, there are two hidden layers with
250 and 125 neurons, and a final layer with 10 output neurons, one for each possible classification
(digits 0 through 9). There are connections between every pair of neurons in one layer to the next:
w1,1 is the weight from x1 to y1, w1,2 is the weight from from x1 to y2, and so on. During forward
inference, given an image, e.g. an image of a “one”, the example proceeds through the trained
network, which should select the output “1” out of the 10 choices. Adapted with permission from
[7]. Copyright 2017 IEEE

is determined by the weights feeding into that neuron, passed through a non-linear
activation function [1]. The simplest neural network is a fully connected network,
where every neuron in one layer is connected to every neuron in the next layer, as
shown in Fig. 1. This is also referred to as a Multi-Layer Perceptron (MLP). In this
particular example, a very simple dataset is used: the MNIST (Modified National
Institute of Standards and Technology) database of handwritten digits [6]. Here, the
goal is to train the network to recognize input digits using what is called a training
dataset, followed by testing the network’s ability to classify previously unseen images
from the test dataset [2].

While MNIST classification provides limited challenges, more complicated net-
work architectures and datasets have recently been used in computer vision to solve
more interesting and challenging tasks. One of the best-known is the ImageNet prob-
lem, where the goal is to classify real-world images into one thousand categories
(cat, dog, etc.) based on their content [8]. By 2015, the best deep neural network was
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making so few classification errors that it had effectively surpassed human ability,
as shown in Fig. 2. This was largely due to the accelerated training of a large con-
volutional neural network using high performance GPUs [9]. The main advantage
of GPUs resides in the highly parallel and efficient vector-matrix multiplication,
which constitutes the core of neural network computations. This improvement has
recently enabled the training of increasingly larger networks with millions or even
billions of adjustable weights, providing increasingly higher accuracy classification
and recognition performances [3, 10].

1.1 The Promise of Analog AI

Deep neural networks are attractive to hardware designers due to the nature of the
core operation in a neural network: the vector-matrix product. Today this operation
is typically performed by digital accelerators (i.e. GPUs), which are set up as shown
in Fig. 3a, with the processor on one side and memory on the other, connected by a
bus. This is known as the Von Neumann Architecture [11]. The bus can become a
bottleneck since the data is sent back and forth from memory to processor, therefore
a limited amount of data can be moved at any time in the communication bus [3,
10, 12]. Analog accelerators, on the other hand, perform computations directly in
memory (Fig. 3b), which also behaves as a processor [13–19]. In the context of neural
networks, analog accelerators offer amore natural implementation of fully connected
layers. Since non-volatile memory (NVM) devices are organized in crossbar arrays,
which provide a full connection between every input and every output, themapping of
fully connected layers into memory arrays becomes straightforward, thus increasing
the density of programmable weights, the computation efficiency and the processing
speed [13, 20].

How is the network mapped into memory? There are many different choices
for the resistive element of the crossbar array, and in this work we use Phase Change
Memory (PCM) [21, 22]. The fully connected neural network in Fig. 1 can bemapped
onto crossbars arrays with the neurons stored in peripheral circuitry and the weights
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Fig. 3 Suppose we need to multiply two numbers, a and b. a In a typical setup, a and b start sitting
in memory. They are both sent to the processor, and the answer c is computed and sent back to
the memory. This consumes a lot of energy in data movement. Additionally, the bus can become a
bottleneck. b Analog accelerators perform the computation in memory by storing a in the memory
(crossbar array) and sending b in as a voltage, producing the answer c in-place

Fig. 4 The simple MLP from Fig. 1 has an input layer, two hidden layers, and an output layer.
These can be mapped onto crossbar arrays of size 512× 512, for example. Since the input layer is
784× 250, two arrays are needed for the first layer, with 784 input neurons representing the rows
and 250 hidden neurons representing the columns. There is an additional crossbar array for the
250× 125 hidden layer, and a final array for the 125× 10 output layer. The arrows represent the
signal propagation through the network during forward inference
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Fig. 5 a To compute the output of a neuron, for example, y1, the inputs x times the weights w are
summed, then an activation function f is applied. This function could be the sigmoid mentioned in
the discussion of the LSTM network in Sect. 1.2, or any other number of functions. b Ohm’s law is
used to multiply x ∗ w, where x is represented as a voltage V (t), and (c) Kirchoff’s law is used to
accumulate (sum) the results along the columns

of the neural network stored in the crossbar array (Fig. 4). During forward inference,
the signal propagates through the crossbar arrays all the way to the output [16].

Figure5 shows how a single crossbar array (for example, the first layer) is imple-
mented in analog hardware. The essential calculation is the multiply-accumulate
operation as shown in Fig. 5a. To perform this operation in hardware, the weights of
the network are encoded as the difference between a pair of conductances G+ and G-
[13], which are analog tuned using proper programming schemes [20, 23]. Values
of the input neuron x are encoded as voltages V (t) and applied to the elements in a
row. The multiplication operation between the x and w terms is performed through
Ohm’s law (Fig. 5b). There are two possible ways to implement the input x , either by
keeping the pulse-width constant and tuning the voltage amplitude, or by encoding
the x value in the pulse duration and keeping the voltage amplitude constant. While
the first scheme allows better time control since all pulses show identical duration,
the second scheme helps counteract the read voltage non-linearity that all NVM
devices experience, and prevents unwanted device programming for excessive read
amplitudes. By Kirchoff’s current law, all of the product terms generated on a single
column by all devices are accumulated in terms of aggregate current (Fig. 5c) to pro-
duce the final result at the bottom of the array in the form of an accumulated charge
on a peripheral capacitor. Through this process, the multiply-accumulate operation,
which is the most computationally expensive operation performed in a neural net-
work, can be done in constant time, without any dependence on neural network layer
size [13].

If these multiply-accumulate operations needed to be done with 32-bit or even
16-bit floating-point precision, this approach would probably not be feasible due to
intrinsic noisy operations such as PCM read or write, exact weight programming or
peripheral circuit conversion precision. But research on deep neural networks has
shown that we can reduce the precision of weights and activations down to 8-bit
integers, or even lower, without significant consequence to network accuracy [24].
For this reason, analog AI is a promising approach for these multiply-accumulate
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Fig. 6 The goal is to train a neural network in software, then encode those trained weights of the
network onto a chip, then implement the chip for low-power applications, such as in a self driving
car

computations in the context of deep neural networks, due to the intrinsic resilience
that such networks provide to noisy operations [14].

There are two main stages of any deep learning pipeline: training and inference.
During training, the network’s weights are updated, via back-propagation [2, 6], to
better distinguish between different labeled data examples. Once themodel is trained,
it can be used to predict the labels of new examples during forward inference. There
are hardware opportunities for both training and inference, but in this chapter we
focus on the design of forward inference chips that can run quickly at low power
(Fig. 6).

1.2 Two Common Neural Network Architectures

There are many applications of deep learning and, among those, computer vision and
natural language processing are two of the most notable. It is helpful to use different
types of neural networks depending on the structure of the input data, and, as an
example, images and text have very different structures. Additionally, the MNIST
handwritten digit task in Fig. 1 is very simple, and the most interesting problems
today are difficult, requiring larger and more sophisticated networks. In this section
we briefly review two of the most popular neural networks used in each of these two
areas [25].

Computer Vision: Convolutional Neural Networks (CNNs) A slightly more chal-
lenging task than classifyinghandwritten digits is image classification into categories,
like birds and dogs. A convolutional neural network (CNN) differs from the fully
connected network in Fig. 1 by using convolutions to better process the image data.
The network utilizes a set of filters that scan across the image, taking in a small
amount of information at a time. The CNN shown in Fig. 7 has one convolutional
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Fig. 7 In this example, the goal is to classify an image of a dog correctly out of the ten classes
of images in the CIFAR10 dataset [26]. The input to the network is a tensor of 3 dimensions:
[image-width, image-height, color-depth]. For instance, a single color image can be considered as
three closely-related 2D images, one each for the red, green, and blue channels. The output from
the network is a 1D vector, with one element for each class (dog, cat, horse, and so on)

layer followed by a max-pooling layer that reduces the dimensionality and deter-
mines the most important information from the previous layer, followed by another
convolutional layer and a fully connected layer at the end to classify the image.

Each filter can be thought of as a feature identifier. For example, the earlier features
might be the lines and colors of the dog, whereas later filters may represent very
specific features, like noses or ears. It is important to note that these filters are not
designed by humans; in a deep neural network, these filters are learned, as the
filter weights are slowly updated during repeated exposure to the very large training
dataset. These filters allow CNNs to successfully capture the spatial and temporal
dependencies in the image, loosely mimicking the human vision system.

In reality, much deeper CNNs are used for challenging tasks. For example, ResNet
[27] still has filter sizes of 3× 3, however instead of only 4 filters in the first layer,
there are 64 filters for the first layer, 64 for the next, and so on (see Fig. 8).

Natural Language Processing: Recurrent Neural Networks (RNNs) To recognize
text, different strategies are adopted, given the sequential nature of the input data.
For example, assume we want to build a chatbot, that, given a query, will route
the user to the correct category of answers. If a user asks “How do I request an
account?”, the chatbot should classify the question as a “new account” question.
This is a very different application from image classification. CNNs could be used
for this problem, but it makes more sense to use a network that took advantage of
the sequential nature of text as the input.

First, the sentence is split into words (tokens) to be sent through the network one
by one (Fig. 9a). The first word is the first input to the hidden layer (Fig. 9b). This
produces an output, similar to the fully connected network in Fig. 1. The second
word is where the recurrence comes in. When “do” is sent into the network, the
output is calculated using both the current hidden state as well as the output of the
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Fig. 8 ResNet is a much deeper network than the standard CNN in Fig. 7, so information can
sometimes be lost in deeper layers. The arrows show residual connections, designed to help the
information stay relevant deeper in the network (hence the “Res” in “ResNet”). One of the 64 early
filters could be a “yellow” identifier, and one of the later filters could be a “ear” identifier, for
example

Fig. 9 An unrolled recurrent neural network (RNN) processing a single input sequence query is
shown. a The sequence is split into words or tokens and they are sent into the network sequentially,
starting by b sending the first word “How” through the hidden state and producing an output o1.
On the next word, “do”, the previous hidden state and the current input produce the next output.
This continues until the entire sequence has been processed, then c the final output though the fully
connected layer produces the output class. The network has determined that this query, “How do I
request an account?” is a “new account” question. d Currently the network is unrolled, but it can
be represented rolled up, with an arrow representing the hidden state feeding back into itself before
finishing the sequence. e Recurrent neural networks are useful for processing sequential data, but
they can lose information over time. For example, in the last hidden state, information from the first
hidden state is only represented by a small sliver

previous hidden state. This continues throughout inference of the sequence, until the
final hidden state output is fed to a fully connected layer that classifies the query as
a “new account” question (Fig. 9c).

Unfortunately, RNNs lose information in long sequences - they have “short-term
memory”. The last hidden state illustrates this: it contains only a small sliver of the
earlier words of the sentence, largely depending instead on the last word or symbol,
in this case the question mark (Fig. 9e).
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Fig. 10 An LSTM network is still a recurrent neural network (RNN), with the only difference
being the structure of the hidden state. Here a closeup of the cell shows the various gates the input
goes through before exiting the hidden state. For example, the first input x is “How”, for time step
t = 0. The next word, “do” is xt=1. There are three gates: a the forget gate, determining which
information from the previous hidden state should be forgotten based on the current input, b the
input gate, deciding which values to update in the cell state (maintained along the top), and finally
c the output gate, producing the final hidden state value

To solve this problem, a modified RNN called a Long Short-Term Memory
Network (LSTM) is often used. The hidden state is replaced by amore sophisticated
cell that still unrolls for each new word, however, it also contains a sequence of gates
that determine which information from the new input token and the old cell state
are relevant and which should be thrown out. This adjustment has allowed for major
advancements in natural language processing applications.

In a closeup of this cell in Fig. 10, instead of weighting both the current input and
the old hidden state equally, three gates determine how much to keep or throw away.

Information is maintained along the top, in what is called the cell state, or ct . The
different gates determine how to update the cell state. The first gate is the forget gate
(Fig. 10a), which uses a sigmoid function to process the input and previous hidden
state and determinewhich information in the cell state should stay andwhat should be
forgotten. For example, it could be that during training, the network has determined
that the word “account” is really important for prediction, in which case the forget
gate would output a 1, indicating to fully keep that information.

In general, the sigmoid function outputs numbers between zero and one, identi-
fying which elements should be let through. A value of zero means “keep nothing”,
whereas one means “keep everything”. A tanh function outputs numbers between
−1 and 1 and is used to help regulate the values flowing through the network.

The input gate (Fig. 10b) determines which values to add to the cell state, and a
tanh function applied to the same input generates the new candidate values that could
be added based on the current input. To update the cell state, first the previous cell
state ct−1 is multiplied by the forget gate output. Then the result is added to the input
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gate times the candidate values provided by the tanh function. Last, the output gate
(Fig. 10c) determines the output of the cell.

Unlike the multi-dimensional tensors in the image application, the cell-state,
hidden-state, inputs and outputs are all one-dimensional vectors, and the multiplies
and adds within the LSTM are performed in an element-wise fashion. As a result, a
natural language processing system will often include an encoder—to turn words in
English or another language into a vector of floating-point numbers—and a decoder,
to convert each output vector into a set of predicted probabilities identifying what
the most probable next word in the sentence is. By choosing the right encoder and
decoder with careful training, an LSTM can be used for machine translation from
one language to another.

2 Software-Equivalent Accuracy in Analog AI

While the implementation of CNNs and LSTMs using crossbar arrays of PCM
devices can potentially provide fast and energy efficient operations, Phase Change
Memory also presents many non-idealities that need to be corrected in order to reach
software-equivalent accuracy with analog hardware.

2.1 Programming Strategies

To accurately perform neural network inference, weights must be precisely pro-
grammed by tuning the conductance of the devices. Write and read noise affect
all NVM types, while PCM also experiences an additional non-ideality, conduc-
tance drift, namely a reduction of conductance over longer times, which degrades
the computation precision, eventually decreasing the classification accuracy [28,
29]. Even small changes from the trained weights to the weights programmed on
the chip can have a crucial impact on accuracy. Ideally, the relationship between
programming pulse and achieved conductance state should be predictable, where a
certain number and shape of pulses will always program a certain conductance value
G. However, actual programming traces show a large variability, as can be seen
from simulated traces in Fig. 11, with each device behaving slightly differently from
the others (inter-device variability). Even a single device experiences different con-
ductance traces under the same programming conditions (intra-device variability),
potentially causing a drop in neural network accuracy [30].

In order to make the programming process more precise, a closed-loop tuning
(CLT) procedure can be adopted, and a more complex unit cell is often used that
contains not only one most significant pair (MSP) of conductances G+ and G-, but
also includes a least significant pair g+ and g- (see Fig. 12) [14, 23, 30]. This CLT
operation consists of tuning the weights in four phases, one for each of the four
conductances G+, G-, g+ and g-. To accelerate the write speed, programming can be
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Fig. 11 Each simulated curve represents a different device programming behavior. Ideally we
want to be able to predict and better control these trajectories. Adapted with permission from [23].
Copyright 2019 John Wiley and Sons

Fig. 12 The unit cell contains four conductance values, two for the most significant pair (MSP): G+
and G-, and two for the least significant pair (LSP): g+ and g-. The programming strategy focuses on
each one of these values in turn, iteratively updating the weight value depending on how close it is
to the target weight (the goal weight). Each column additionally contains two pieces of information:
whether or not the current weight is above or below the target weight, along with whether or not
this column will participate in the current programming phase. Adapted with permission from [23].
Copyright 2019 John Wiley and Sons

performed in a row-wise parallel fashion, tuning all weights in one row at the same
time. To enable this, each weight is checked against the target after each read step.
If a weight reaches, or overcomes, the target weight, further programming needs to
be prevented. Each column contains a sign bit and a participation bit. The sign bit
represents whether or not the full weight W is above or below the target weight in
the current stage, and the participation bit represents whether that column should
participate in the current phase or stop [23].

The error is defined as the difference between the actual programmed weight and
the target weight. The error should go to 0 throughout the four phases. For positive
(negative) targetweights, Phase 1 starts by applying pulses toG+ (G-) until theweight
exceeds the threshold. Then the process is repeated for G- (G+), this time applying
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Fig. 13 a Iterative programming strategy that successively tunes the four conductance in a weight,
b leading to c a strong correlation between the desired programmed weights and the actual pro-
grammed weights. Adapted with permission from[23]. Copyright 2019 John Wiley and Sons

Fig. 14 Experimental comparison between single PCM (a) and full weight (b) closed-loop tun-
ing. Top figures show the target conductances and weights, together with the achieved programmed
results. Bottomfigures show the corresponding cumulative distribution functions (CDF) for variable
targets. While single-device CDFs (a) reveal increasingly broadened distributions due to program-
ming error and device saturation for increasingly larger targets, weight CDFs (b) reveal steeper
curves, which is a consequence of the improved programming precision, and reduced saturation
due to increased weight dynamic range. Adapted with permission from [29]. Copyright 2019 IEEE

pulses until it drops below the threshold. This successive approximation technique
continues for the LSP (Fig. 13a). In this case, since the contribution from g+ and g-
is reduced by a constant factor F around 2–4, the program precision increases. By
simulating this process, Fig. 13b shows that ∼98% of weights can be programmed
effectively using this strategy, with only∼2% of weights out of target, thus providing
a very strong correlation between the programmed and target weights (Fig. 13c).

To verify the impact of MSP and LSP pairs on write precision, actual experiments
are shown in Fig. 14. The lower conductance values are easier to reach, but as the
target value gets higher, the PCMs less reliably program the desired value (Fig. 14a)
due to variability in the maximum achievable conductance for each device [29]. This
can also be seen by studying the cumulative distribution functions (CDF), which
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show that the percentage of PCM devices that reach a certain conductance target
decreases for increasing target values. In addition, CDF curves are not very steep
due to programming errors that limit the precision we can achieve in tuning a single
PCM device.

When the weights are split into four conductances with a simplified version of the
programming strategy described, more of the PCMs reach the desired conductance
values (Fig. 14b) due to an increased dynamic range. In addition, CDF distributions
are steeper, revealing a better control of the weight programming, leveraging both
MSP and LSP conductance pairs [29]. Using this programming strategy, software-
equivalent accuracy was demonstrated, with a mixed software-hardware experiment,
on LSTM networks similar to the one introduced in Sect. 1.2 [29].

2.2 Counteracting Conductance Drift Using Slope Correction

Additionally, even after programming the desired values, phase change memory
exhibits another non-ideality called conductance drift, where the device conductance
decays with increasing time due to the structural relaxation of the amorphous phase
[28]. Since weights are encoded in the conductance state of PCM devices, drift
degrades the precision of the encoded weight, and needs to be counteracted [31, 32].

Drift typically affects reset and partial reset states, with an empirical power law
describing the time dependence:

G(t) = G0 ∗
(
t

t0

)−ν

,

where G0 is the very first conductance measurement obtained at time t0 after the
programming time. For increasing times t , conductance decays with a power law
defined by a negative drift coefficient ν, indicating the drift rate.

Drift is a very rapid process right after programming but slows down considerably
as time continues. While all PCM devices experience drift, each device drifts at a
slightly different rate. To properly evaluate the drift coefficient distribution across
multiple PCMs, ν coefficients for 20,000 devices were extracted by measuring the
conductances at multiple times over 32h [31]. Figure15a shows the ν distribution
for all 20,000 devices as a function of the initial conductance measurement G(t1).
The corresponding median ν̄ and standard deviation σν are then extracted and shown
in Fig. 15b. As a first approximation, we can consider ν̄ equal to 0.031, and σν equal
to 0.007. These parameters have been implemented in our model to study the impact
of drift on neural network inference [31].

In order to understand how to correct conductance drift, it can be helpful to
look more carefully at the activation function used during the multiply-accumulate
operation discussed earlier. This activation function f (also known as a squashing
function) transforms the data. Different functions will result in different transforms.
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Fig. 15 Experimental drift characterization on 20,000 PCM devices. After PCM programming,
conductances have been measured up to 32h, and corresponding ν have been extracted and plotted
as a function of the initial conductance (a). The extracted median ν̄ and standard deviation σν are
plotted in (b). Adapted with permission from [31]. Copyright 2019 IEEE

Fig. 16 A wide variety of activation functions are used in practice, four examples of which are
shown in (a). The sigmoid function is expanded to better compare to the tanh function. b We can
apply activation amplification factors (“slope correction” factors) to these functions to counteract
drift over time. Adapted with permission from [31]. Copyright 2019 IEEE

Here four main functions are introduced: ReLU (Rectified Linear Unit), clamped
ReLU, rescaled sigmoid, and tanh, as shown in Fig. 16a. Except for ReLU, which
is unbounded, all the other squashing functions are studied here at the same ampli-
tude. As the standard deviation of the drift coefficients approaches 0, the effects
of drift can be factored out of the multiply-accumulate operation as a single time-
varying constant. This allows for the compensation of conductance drift by applying
a time-dependent activation amplification equal to (t/t0)+νcorrection , where the previ-
ously extracted ν̄ is chosen as νcorrection . This factor is applied to the slope of the
activation function (Fig. 16b) [31].

This technique has been evaluated on several networks. Initially, without any
correction, the fully connected network experiences a marked accuracy degradation,
over time, on theMNIST dataset of handwritten digits (Fig. 17a), due to conductance
drift. With slope correction, however, results for all the activation functions studied
improve significantly (Fig. 17b). The technique has also been evaluated on a ResNet-
18 CNN trained on the CIFAR-10 image classification dataset (Fig. 18a) and an
LSTM, trained on the text from the book Alice in Wonderland (Fig. 18b). With these
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Fig. 17 aWith no slope correction, even a small MLP suffers a strong accuracy loss from conduc-
tance drift. b However, with slope correction, accuracy barely degrades over time. The remaining
decay is due to the σν spread. Adapted with permission from [31]. Copyright 2019 IEEE

Fig. 18 Ondeeper,more sophisticated networks, the results still hold and slope correction is vital for
maintaining accuracy over time for both ResNet and LSTM. LSTM results are measured according
to the loss, where a lower loss is better, as a higher accuracy for ResNet is better. Adapted with
permission from [31]. Copyright 2019 IEEE

more complicated networks, without any slope correction, accuracy was found to
dramatically drop. However, slope correction is still highly effective in reducing the
impact of conductance drift, as shown in Fig. 18. It is important to note that slope
correction will not remove the entire impact of drift since the σν is non-zero, meaning
not all PCM devices drift at the same rate. However, even so, slope correction still
shows a large impact, while remaining accuracy degradation can be compensated by
using slightly larger networks [31].

3 Conclusion

In summary, analog hardware accelerators with phase change memory are a promis-
ing alternative to GPUs for neural network inference. Themultiply-accumulate oper-
ation, which is the most computationally expensive operation in a neural network,
can be performed at the location of the data, saving power and time. However,



58 K. Spoon et al.

with this promise comes some non-idealities. Recent software-equivalent inference
results [23, 29, 30] include strategies to program the weights more precisely using
4 PCM devices, and a slope correction technique can be used to reduce the impact
of resistance drift [31].
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Analogue In-Memory Computing
with Resistive Switching Memories

Giacomo Pedretti and Daniele Ielmini

Abstract In the era of pervasive artificial intelligence (AI) and internet of things
(IoT), achieving a high energy efficiency is at the top of priority for computing
systems. In this scenario, in-memory computing is gaining momentum as a new
methodology to overcome the von Neumann architecture and the related memory
bottleneck. One of the most promising device for in-memory computation is the
resistive switching memory (RRAM), also known as memristor, thanks to control-
lable conductance, good scaling and relatively low energy consumption. However,
to achieve the promised benefits of in-memory computing with RRAM in terms of
performance and power consumption, it is necessary to address a number of open
challenges at the device, architecture and algorithm levels. This chapter presents
the status of in-memory computing with RRAM, including the device concept and
characteristics, the computing architectures and the applications. The perspective
of analogue computing is analyzed with reference to both matrix vector multipli-
cation (MVM) and inverse MVM to accelerate linear algebra problems that are
generally executed with iteration schemes, highlighting the advantages in terms of
performance, energy consumption and computational complexity.

1 Introduction

The computing industry has been always driven by an urge for an exponential growth.
The microprocessor performance has increased substantially in the last 50 years
thanks to aggressive scaling in the transistor channel size which led to a doubling of
the number of transistors per square mm every 18month, as predicted by theMoore’s
Law [1]. However, this scaling trend has been slowing down due to technological,
physical and process related issues [2]. On the other hand, a similar exponential law
is emerging in the recent years, namely the performance (measured in FLOPS, or
Floating Point Operations per Second), required by artificial intelligence (AI) and
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scientific computing which have been observed to double every 3.4 months [3]. It
is then clear that, on the one hand, new devices are needed for continuing with the
Moore’s Law trend, while from the other one an architectural design effort is desired
to keep the pace of the required performance of modern AI algorithms.

From the architectural standpoint, the von Neumann architecture [4], which
constitutes the mainstream architecture of most digital computers, suffers from the
memory bottleneck. In fact, the memory and the central processing unit (CPU) are
physically separated, thus most of the time is spent for data movement between
memory and processing chips [5–7]. On the opposite, in-memory computing aims at
executing all operationswithin thememory chipwithout any need for datamovement
[6, 7]. A promising memory technology for in-memory computing is the class of the
resistive memory devices [8], often dubbed memristors [9, 10], featuring low energy
operation, high speed, high density and compatibilitywith the complementary-metal-
oxide-semiconductor (CMOS) technology [8, 11]. In-memory computing concepts
based on resistive memories have been demonstrated with several memory technolo-
gies, including the resistive switching random access memory (RRAM), the phase
changememory (PCM), the ferroelectric random access memory (FERAM) [12] and
the magnetic random access memory (MRAM) [8, 13]. Different computing concept
can be executed inside the memory such as logic computing [7, 14], neuromorphic
computing [15–19], stochastic operations [20] and analog computing [21]. In partic-
ular, analogue computing allows to accelerate several computing operations thanks to
physical computation, where multiplication and summation are executed by physical
laws in the analogue domain. Also, the unique architecture of the crosspoint memory
array allows to parallelize computing, thus enabling a reduction of computational
complexity with respect to the conventional digital computing. At the same time,
in-memory computing is prone to errors and inaccuracies due to noise and device
variations, which should be carefully taken into account for a fair comparison with
the floating-point precision in digital circuits.

This chapter aims at reviewing the recent advances of analog in-memory
computing with RRAM devices. First, we present the device properties and char-
acteristics, in particular discussing the device requirements for analogue memory.
Then we present the main analogue computing architectures with RRAM, focusing
on matrix-vector-multiplication (MVM) for neural networks and optimization algo-
rithms. Finally, we present the inverse-matrix-vector-multiplication (IMVM) archi-
tecture and illustrate the main applications and their advantages and drawbacks in
terms of energy efficiency, time complexity and precision.

2 Resistive Switching Memories

Various types of nanoelectronic devices have been proposed in the latest years to
replace or complement the conventional CMOS memory technologies at various
levels of the hierarchy. Most of these memories rely on the concept of changing
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Fig. 1 RRAM devices. a RRAM are made by a dielectric material inserted between two metallic
top electrode (TE) and bottom electrode (BE). In the pristine state they show a high resistance state
(HRS). bBy applying a positive forming voltage at the TE a filament grows from TE to BE resulting
in low resistance state (LRS). c To retrieve the HRS it is possible to apply a reset voltage. d Typical
I-V curve of a RRAM device in 1T1R configuration showing the ability of analog programming
through different compliance current (or gate voltage VG) and different reset voltages. Reprinted
from [31] under Creative Commons License

the active material properties by the application of voltage or current program-
ming pulses, thus storing the memory states as a specific material configuration.
Several technologies for two terminal devices, such as resistive switching memory
(RRAM) [11, 22], PCM [23, 24], FERAM [12, 25, 26] and MRAM [27], have been
proposed. Among them, RRAMhave attractedwidespread research interest thanks to
its low energy [28], high speed [29] and high density, combined with the ability of 3-
dimensional integration [30]. Figure 1 shows the RRAM device structure, operation
and switching characteristics. Typically, the device consists of a metal–insulator-
metal (MIM) structure in its pristine state (Fig. 1a), which is a high resistance due
the dielectric insulating layer. The device is generally initialized by the forming
operation, consisting of the application of a relatively high voltage between the top
electrode (TE) and bottom electrode (BE). During the forming process, the device
undergoes a soft breakdown event with a local variation of the material composition,
consisting of a low-resistivity filament which is responsible for the low resistance
state (LRS, Fig. 1b). Then, it is possible to recover a high resistance state (HRS) by
the application of a reset negative voltage between TE andBEwhich forms a depleted
gap in the filament (Fig. 1c) that can be controlled by the maximum applied negative
voltage. A set positive voltage pulse causes the device to switch back to the LRS
with a continuous filament connecting the TE to the BE. The filament size is gener-
ally controlled by the maximum current flowing during the set operation, known as
compliance current IC and usually regulated by a series transistor. Figure 1d shows
a typical current–voltage (I–V) curve of a RRAM device in a one-transistor-one-
resistor (1T1R) structure with HfO2 switching layer [31], highlighting the various
states obtained by the modulation of the compliance current, which depends on the
gate voltageVG of the series transistor. Note that different resistive states are achieved
at increasing IC, thus demonstrating that RRAM can be used not only as a digital
memory storing a ‘1’ in the LRS and a ‘0’ in the HRS, but also as a continuous
analog memory with multiple states corresponding to different resistive values. The
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first advantage is that multiple levels, hence multiple bits, can be stored in a single
memory element, thus increasing the bit density in a memory array. Secondly, novel
computing applications harnessing the analogue tuning of RRAM device can be
unleashed to perform analogue in-memory computing [7, 21].

2.1 Memory Array Structures

RRAM devices can be arranged in various memory array structures for both as
memory and computational unit, as shown in Fig. 2. Themost straightforward config-
uration is passive crosspoint array where the RRAM device displays a simple one-
resistor (1R) structure (Fig. 2a). In the crosspoint array each RRAMdevice is located
at the intersection between a row line and a column line connecting the BE and TE
of the device, respectively [32] By programming a conductance Gi j in the RRAM
device connected between row i and column j of the crosspoint array and applying
an input voltage vector V = (V1, V2, . . . , VN ) at the column terminals by keeping
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Fig. 2 Memory structures. a 1R crosspoint array where every device with conductance Gij is
connected between each row and column. b V /2 programming scheme in 1R crosspoint array,
where only the selected cell (blue) receive the whole V voltage necessary for programming while
the undesired selected cells (red) receive only V /2. c 1S1R crosspoint array, where a two terminal
select device is inserted in series with every RRAM to mitigate the sneakpaths problem. d 1T1R
array, where a transitory is used as select device and to regulate the compliance current during the
set operation enabling analog programming. Reprinted with permission from [21] under Creative
Commons License
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the rows at ground, the resulting current is given by the matrix vector multiplication
(MVM) formula:

Ii =
N∑

j=1

Gi j Vj (1)

where N is the size of the crosspoint array. Note that the MVM operation naturally
arises in the crosspoint array thanks to physical laws, namely the Ohm’s law for the
multiplication I = GV and the Kirchhoff’s law for the summation of individual
currents incurring at the same row. Since MVM is a basic algebra operation, the
crosspoint array structure is widely using in most analogue in-memory computing
applications [7, 21, 33, 34]. The crosspoint array structure also takes advantage of
a high memory density due to a memory cell area occupation of only 4F2, where
F is the lithographical feature. Array organization in 3D arrays usually results in
even smaller cell effective area, which is highly favorable for computing with large
amounts of data [35].However, the crosspoint array structure has the strong drawback
of the difficult programmability and read disturb induced by sneak-path effect [36].
In fact, while selecting cell Gi j for set, reset or read operation, the cell row i and
column j are biased, which results in unwanted current flows even if the unselected
terminals are left floating, resulting in read disturb or possible set or reset operations
at the unselected devices. Disturbs and sneak paths can be mitigated by suitable bias
schemes, such as the V/2 biasing scheme in Fig. 2b [37, 38], where a voltage V/2
is applied to column j and −V/2 is applied to row i with all other rows/columns
grounded. As a result, the voltage across all unselected cells is zero, except for the
half-selected cells along row i and column j, where the voltage is reduced by a factor
2 thus minimizing the probability of undesired set or reset events. During the read
operation, a voltage VR is applied to the selected column while all the other columns
and rows are connected to ground, which allows for reading all cells of the selected
column in parallel [38].

However, due to the strong variation of set and reset voltages and to the limited
set/reset resistance window, the passive crosspoint array with 1R structure can only
be used with small array size, while becoming unpractical for the most typical array
size for memory and computation.

2.1.1 1S1R Structure

To enable large crosspoint array size, a two terminal select device should be add,
resulting in a one-selector/one-resistor structure (1S1R) [39–41] as shown in Fig. 2c.
Selector devices should display a strong non-linear characteristic to prevent any
current flowing in half selected devices with V/2 < Vt , where Vt is the selector
device threshold voltage. Also, the select device should display large current at rela-
tively large voltages to enable set and reset processes within the selected device.
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The nonlinear characteristic should also be bidirectional, i.e., operable at both posi-
tive and negative voltages for set and reset processes, respectively. 1S1R crosspoint
arrays are extremely promising for memory application, in particular for storage
class memories to fill the performance/cost gap between DRAM and Flash memory.
On the other hand, in-memory computing applications of 1S1R structures are yet to
be unveiled, the main challenge being the contribution of the non-linear selector to
the MVM operation.

2.1.2 1T1R Structure

The RRAM device can be connected in series with a transistor selector resulting in a
one-transistor/one-resistor (1T1R) structure, as shown in Fig. 2d. To select a memory
cell within an array for a set operation, the corresponding transistor gate line should
be biased to turn on the transistor enough such that the applied TE voltage developed
across the selected RRAM exceeds the set voltage. The transistor can be used for
controlling IC during the set operation, thus tuning the filament size hence the RRAM
conductance, which makes the 1T1R structure ideal for analogue programming [42,
43].During the reset or read operation, the selected gate line should be biased at a high
voltage, such that all the TE voltage applied across the selected RRAM drops across
the device, since the transistor resistance is negligible. Due to the excellent control
of analogue state and lack of sneak paths, the 1T1R structure is by far the preferred
configuration to demonstrate analogue-type in-memory computing functions [34,
44]. For the same reasons, we will restrict our focus on 1T1R structures in the
following.

2.2 Requirements for Analogue Memory

The 1T1R structure allows to gradually control the conductance both during the set
operation (via IC ) and the reset operation (via Vstop). In fact, the multilevel capa-
bility is a key requirement for analogue computing, making the memory able of
representing multiple states in a single cell. In principle, if the available memory
have only a few (or even two) possible resistance states, it is possible to memorize
different slices of the analogue information in multiple devices [45], but the area
occupation increases significantly. Another important requirement is the linearity of
the I–V curve, so that by applying increasing input voltages, the cell current response
increases linearly, thus satisfying Ohm’s law for analogue multiplication. Note that,
in most applications, this requirement can be circumvented by applying the input
as a train of digital pulses with a simple unary or a more compact shift and add
[45] encoding, and then reconstruct the analogue output by properly integrating the
current in the time domain.

In general, partial HRS configurations obtained by the reset operation tend to
show a non-linear characteristic, due the non-ohmic conduction in the depleted gap
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Fig. 3 Analog RRAM programming non-idealities. a Measured RRAM conductance as function
of the gate voltage VG, showing an average linear dependence (blue), while single traces show large
variations (grey). b Distribution of 7 levels of LRS obtained by modulating VG and 1 level of HRS
(inset) showing a conductance independent standard deviation. c Five analog levels programmed in
a 4 kB RRAM array showing the both cell-to-cell and cycle-to-cycle variability. d Fluctuations of a
programmed state on a RRAM device in HRS, showing different phenomena such as random walk
and random telegraph noise. Reprinted with permission from [31, 43] under Creative Commons
License. Reprinted with permission from [47]. Copyright 2015 IEEE

along the filament [11]. For this reason, it is most common to adopt IC -controlled
LRS configurations by set operation for preparing analogue states with variable
conductance. Figure 3a shows the conductance as function of gate voltage in a 1T1R
structure for 100 cycles and the median value [31]. At every cycle, the device was
first prepared in the HRS, then a train of set pulses with fixed TE voltage VTE = 3 V
above the threshold for set voltage and increasing gate voltage VG was applied. As
expected, the median value increases linearly withVG −VT , where VT = 0.7V is the
transistor threshold voltage. However, one cannot solely rely on VG (or equivalently
IC ) for precisely controlling the device in a desired conductance, due to the cycle-to-
cycle variations of the traces in Fig. 3a. These variations are generally attributed to the
stochastic ionic migration during the set operation, which leads to variations in the
shape and volume of the conductive filament [46, 47]. Figure 3b shows the resulting
Gaussian distributions of conductance for 7 programmed LRS levels, indicating a
standard deviation σG=3.8µS. In addition to the cycle-to-cycle variability, a device-
to-device variability arises as different devices in an array usually present different
characteristics due to variation in the fabrication process causing specific geometry
and material composition within the RRAM cell. Figure 3c shows distributions of
currents for a read voltage Vread = 0.5V of 4 analogue levels programmed on a
4 kB RRAM array [43]. The observed variation includes contribution due both to
cycle-to-cycle and device-to-device variability. To mitigate both cycle-to-cycle and
device-to-device variability, it is possible to adopt program and verify algorithm. For
instance, given a certain conductance G target that should be approximately reached in
the RRAM device, one can gradually increase the gate voltage as shown in Fig. 3b
until the conductance G reaches a value between G target − G tol and G target + G tol,
where G tol is the acceptable tolerance. If G exceeds G target +G tol, then a reset pulse
can be applied to reduce Gwithin the acceptable range. IfG goes belowG target−G tol

then another set pulse can be applied, until convergence into the [48, 49]. In principle,
program-verify techniques allow to reach any desired conductance states within an
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arbitrary tolerance range at the cost of increasing circuit complexity, programming
energy and time. Also program-verify techniques tend to result in accelerated wear
out of the memory device. In fact, after multiple set-reset operations the RRAM can
be found in a non-ideal state, such as a stuck-off or stuck-on state [50]. One should
carefully tune themaximumnumber of iterations during a program and verify routine
to balance precision and device degradation.

After the RRAM device is programmed, the conductance state is also prone to
time-dependent variations which may lead to conductance G to drift out of the toler-
ance range. In fact, RRAM suffers from resistance fluctuations over time, as shown
in Fig. 3d for a HfOx RRAM device [51]. The RRAM initially programmed at
a given resistance might either increase or decrease its value, due to intermittent
random telegraph noise (RTN) and random walk, which makes deterministic analog
programming extremely challenging.

3 In-Memory Computing Architecture for Matrix-Vector
Multiplication

The RRAM crosspoint array allows to execute the MVM operation simultaneously,
in one step and in the analogue domain, thanks to physical Ohm’s law multiplication
and Kirchhoff’s law summation of currents in (1) [33]. Figure 4a illustrates the basic
MVM operation while Fig. 4b shows the correlation plot of the measured output
currents as a function of the ideal MVM results obtained for a crosspoint array [48].
Motivated by the ubiquitous importance of MVM operations in data analytics and
computing workloads, RRAM crosspoint for analogueMVM acceleration have been
demonstrated formultiple applications [21, 32], such as neural networks acceleration
[34, 52–55], image processing [44, 56], optimization algorithms [57–60], hardware
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Fig. 4 MVM in crosspoint arrays. a A crosspoint array can be used for accelerating MVM. By
programming a matrix A into the crosspoint conductance and applying a voltage vector V on the
columns, the resulting current flowing into the rows tied to ground is I = AV. b MVM output
current as function of α given an input voltage V = αV0. Reprinted with permission from [48],
under Creative Commons License
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security [38, 61, 62] and accelerated solution of differential equations [63]. Integrated
circuit comprising CMOS mixed-signal circuits and RRAM arrays fabricated in the
back end of the line have already been realized for several applications [64–67]. The
most promising applications of MVM are probably neural network and optimization
acceleration.

3.1 In-Memory Neural Network Accelerators

Analogue in-memory MVM has been widely used for feed-forward operation in
neural network acceleration [21]. Figure 5a shows a conceptual illustration of a three-
layer perceptron neural network [68]. Input data are applied on the left side, evaluated
by the network layers from left to right, until reaching the output layer. At each layer
in this forward transition, every neuron ni emits a signal xi which is multiplied by
the synaptic weight wi j before reaching the output neuron m j . The evaluation of
the output state y j corresponding to neuron m j consists of the summation of all the
contributions from the previous layer, according to the formula y j = ∑

i xiwi j , which
is analogous to (1) where y j is replaced by a physical output current, xi is an input
voltage andwi j is the RRAMconductance. The forward operation of neural networks
can thus be evaluated by an analogueMVM operation within a crosspoint array, with
a throughput improvement up to 104 compared with multiply-accumulate (MAC)
operations executed on a traditional digital computer [69]. Note that a RRAM device
can only store positive weights whereas wi j generally comprise both positive and
negative values. Figure 5b–c show twopossible techniques to enablemapping relative
numbers as weights in a crosspoint neural network. In general, two RRAM devices
can be used in parallel, each being biased with opposite polarity voltages to represent
both negative and positive weights. For instance, a reference fixed conductance Gref
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Fig. 5 Neural networks weights implementation. a Multilayer perceptron with an input layer, 2
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with applied negative bias can be used in parallel to a programmable RRAM with
conductance G+ with applied positive bias such that the equivalent conductance is
given by G = G+ − Gref, thus the modulation of G+ allows to obtain both positive
and negative weights, as shown in Fig. 5(b). A more flexible and granular approach
is to use two programmable RRAM devices biased with opposite polarities with
conductanceG+ andG− to represent the overall weights asG = G+−G−, as shown
in Fig. 5(c). In this way, it is possible to program independently both conductance
thus increasing the number of programmable weights in the 2-RRAM structure [70,
71].

In-memory computing can not only accelerate the feed-forward processing, also
known as the inference phase, but also the training phase of neural networks [52,
53, 64]. In this case, after the forward evaluation of a single or multiple elements
of a dataset, the weights are updated based on a learning rule [68]. A typical super-
vised training algorithm is backpropagation, where the output state of a neuron y j is
compared with its ideal result o j and an error ε j = y j −o j is computed. This error is
then back-propagated to the weights that are updated by an amount �wi j = ηxiε j ,
where η is the learning rate that controls the speed on which weights are updated
and can be an important parameter for controlling convergence and overfitting. In
the training operation, to compete with conventional digital hardware, the weight
update should be both fast and precise [72], thus the requirements for computational
memory are more aggressive. To enable both fast and precise training, an important
feature is the linearity of the weight update [73].

The device characterization procedure to demonstrate the feasibility of online
network training usually consists of the application of a train of programming pulses
with a constant amplitude and shape for the increase and decrease of conductance.
The ideal expected result is shown in Fig. 6a, where the weight value as a function of
the number of programming pulse increases linearly under applied positive voltage
pulses until reaching a maximum value (i.e., 1 on the relative axis of the figure), then
returns to 0 under applied negative voltage pulses. The weight update �G should be
independent of the starting conductance value, thus allowing the weight update even
without reading the initial conductance thus speeding up the training process. As
shown in Fig. 6b, RRAM devices generally show non-linear potentiation (increase
of G) and depression (decrease of G), where the set/reset pulses have an abrupt
effect of the conductance change followed by a saturation after a few pulses [71].
RRAM may also have an asymmetrical weight update, as shown in Fig. 6(c), due
to different update rates in the potentiation and depression processes. Asymmetric
update translates in a larger number of pulses needed for a positive update �G than
a negative update −�G, or vice versa. Usually, there is a characteristic conductance
valueGsym where the positive and negative increments have the same amplitude [74].
In this case, it is possible to use the scheme of Fig. 5(b) with Gref = Gsym, so that a
symmetric potentiation/depression response is obtained [74, 75].

RRAMdevices also usually display a limited conductance window spanning from
Gmin > 0 to Gmax < 1 where the device can be programmed. This result is an offset
from the ideal case as shown in Fig. 6d. In such a case, the weight configuration of
Fig. 5b can help reaching the desired conductance by carefully tuning G+ and G−.
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Fig. 6 Weight update characteristics. a Ideal weight update characteristics, with the conductanceG
linearly increasing and decreasing with positive and negative voltages pulses, respectively. b Non-
linearweight update characteristicwithG that after a steep increase saturates. cAsymmetricalweight
update, with a different response to positive and negative pulses. dweight update characteristic with
a limited conductance window. e Variability in weight update due to cycle-to-cycle variability. f
Weight update with binary device. Reprinted with permission from [21] under Creative Commons
License

In particular, programming the same conductance in G+ and G− devices allows to
reproduce the case wi j = 0, which is among the most probable values within the
distribution of synapses in typical neural networks. As already discussed, RRAM
also shows stochastic variations in the set and reset processes, which can lead to an
unpredictableweight change during training as shown inFig. 6e, thus affecting signif-
icantly the convergence operation. Stuck-on and -off states, where the conductance
cannot be updated, further complicates the scenario.

In an extreme case RRAM devices could show only two conductance states (HRS
and LRS) [76, 77] resulting in a binary weight update scheme as shown in Fig. 6f.
Thismakes the weight encoding inherent digital which is suitable for the acceleration
of a binary neural network (BNN). Training a BNN can be challenging due to the
abrupt change of conductance. Figure 7a illustrates a stochastic approach for training
BNNs using binary RRAM devices with an internal parameter controllable with the
application of multiple programming pulses [76]. Two different weights value can
be associated with the RRAM device, namelyWint andWext corresponding to a non-
observable internal variable and the externally measured weight, respectively. Wint

may correspond to the defect density and filament configuration within the device
whileWext corresponds to themeasured conductance, as shown in Fig. 7a. The binary
weight Wext can only assume two values, 0 if the defects do not connect TE and BE,
and 1 otherwise. By the application of multiple set and reset pulses it is possible
to change the filament configuration, hence the continuous update of Wint, while
Wext only changes after a certain threshold is reached. This hybrid binary/analogue
update can be adopted within a conventional backpropagation algorithm for training
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Fig. 7 Using binary devices for training neural networks. a Stochastic weight updated, where the
state variable is represented by an internal weights which is updated by positive/negative pulses
(top) and it is not measurable, and an external binary weight which is updated after multiple
positive/negative pulses (center). The internal weight update represents a modification in the defect
configuration while the external weight changes if a connection is created or broken from TE to BE
(bottom). bMultiple binary devices used as synapse to represent an analog weight. Reprinted with
permission from [76, 78]. Copyright 2017, 2015 IEEE

a BNN as if it was an analogue neural network. Similarly,Wext can be calculated after
measuring a Wint value, making it possible to use an analogue memory for training
a BNN which usually shows high precision [77]. Another approach is illustrated
in Fig. 7b, where multiple binary RRAM devices are used for training a conven-
tional neural network [78]. In this procedure, multiple devices are connected in
parallel to represent multiple weights. Every time an individual binary RRAMdevice
increases/decreases its conductance, the overall weight experiences a corresponding
incremental step. As the number of devices increases, the synaptic weight becomes
increasingly analogue, thus making the characteristic similar to the ideal one. This
comes at the cost of an increased area occupation. However, multiple devices in
parallel can also be used to mitigate the effect of non-idealities and stochastic weight
update [79] thus serving as a regularization of individual variations to achieve a more
gradual weight update response in the presence of particularly unprecise devices.

RRAM devices have also been shown to be able of brain-inspired spike-based
neural network implementation [18, 19, 80, 81]. In this case, information is usually
encoded in spikes similarly to our brain,where learning takes place according to unsu-
pervised weight update rules depending on the spike timing, such as the spike timing
dependent plasticity (STDP) [18], the spike-rate dependent plasticity (SRDP) [80, 81]
or semi-supervised training approaches implementing a teacher signal [19]. In most
practical implementations, RRAM devices are used as artificial synapses, although
fully-memristive architecture with RRAM-based synapses and neurons have also
been presented [82].
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3.2 In-Memory Optimization Accelerators

MVM is also at the core of many optimization algorithms, such as linear or quadratic
programming techniques [83]. Specifically-designed neural networks can be imple-
mented for searching the minimum of an energy landscape, usually relying on
Hopfield neural networks (HNN) [84], namely recurrent neural networks where each
neuron is connected to all the others with symmetric links (wi j = w j i ) and no self-
connection (wi i = 0). This brain-inspired recurrent connectivity offers interesting
cognitive functions, such as attractor learning/recall and associative memory [85],
that have also been demonstrated with in-memory computing hardware [86–88].

HNNs also have shown the ability of solving constraint satisfaction problems
(CSP) [89],which are ubiquitous inmanydifferent applicationfields [90]. In this case,
every neuron has a highly nonlinear activation function and represents a state of the
network, while connectivity between neurons define the constraints. By initializing
a random input state, the network can gradually update its states and converge to an
optimized final state by minimizing the energy landscape cost function given by:

E = −1

2

N∑

i, j

wi jviv j (2)

where N is the total number of neurons and νi represents the state of neuron i . The
binary neuron state is updated depending on the evaluation of the input function
ui = ∑

i �= jwi jv j compared with a given threshold θ i. Figure 8a shows an example
of a convex energy cost function, which can be explored by the HNN to find the
minimum, i.e. the optimization problem solution. Convex problems can be computed
straightforwardly by conventional gradient descent techniques. However, when the
the problem size and difficultymay quickly increase in typical CSP, which are known
to become aggressively difficult as in the case of non-deterministic polynomial (NP)
or NP-hard problems. This is due to the increase of the number of local minima in
the energy landscape, where the the HNN state can be stuck as illustrated in Fig. 8b.

(a) (b)

E = 0 E = 0

Fig. 8 Energy landscapes of optimization problems. a Search of the minimum of a convex energy
landscape with a Hopfield neural network. The solution (blue) can reach it efficiently. b Search
of the global minimum of a non-convex energy landscape with the deterministic solution (blue)
being stuck in a local minimum. By adding noise (red) the solution can efficiently reach the global
minimum
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Non-convex CSPs can be solved by the simulated annealing technique [91].
By stimulating the HNN with random noise, it is possible to ‘heat’ the system,
thus helping the state in escaping from the local minima and eventually reaching
the correct solution in the global minimum of the energy function. Simulated
annealing accelerators have been demonstrated by conventional CMOS circuits [92–
95], quantum computing technologies [96, 97], optical computing technologies [98]
and analogue in-memory computing [57–60, 99–102]. In the latter, memory devices
can act both as MVM accelerators for the inference of the HNN and annealers by
the generation of intrinsic random noise.

Figure 9a shows a conceptual circuit schematic of aHNNfor accelerated annealing
[59],which is based on anMVMcurrentwhich is then fed back into the input neurons.
The feedback is obtained by sampling the columns currents with an analogue-to-
digital converter (ADC), post-processing it to obtain the neuron states and applying it
to the crosspoint rows in either digital or analoguemode. The constraints are encoded
in the weight matrix of the crosspoint conductance, while the intrinsic noise to stim-
ulate the annealing can be generated by various techniques. For instance, one can
leverage RRAM inherent stochasticity such as RTN [103] and 1/f noise [104], which
can automatically stimulate the simulated annealing [102]. An additional crosspoint
column can be used to program RRAM devices appropriately and then harvest noise

Fig. 9 In-memory simulated annealing techniques. a an extra column of a crosspoint array can be
used to generate noise which is summed to the MVM response to perform simulated annealing.
b Hopfield energy as function of iteration cycles for different noise levels. c stochastic switching
of a RRAM device to generate random flip of a neuron state. The probability of switching can be
finely tuned by regulating the set pulse width. d Hopfield network working in the chaotic regime
by inserting diagonal connection that are gradually reduced in weight cooling the overall annealing
procedure. Reprinted with permission from [58, 60, 66]. Copyright 2019, 2020 IEEE
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with the desired figure to speed up optimization [59]. In fact, noise should be modu-
lated based on the annealing scheme and should also change its characteristic during
the annealing procedure, ideally reducing its magnitude while reaching the global
minimum. Figure 9b shows the Hopfield energy to solve a 60-nodeMax-Cut problem
as a function of iteration cycles for different noise levels [59]. A noise-free calcu-
lation results in a higher energy compared to noisy calculations, thus supporting
the fundamental contribution of noise for the annealing. Also note that noise with
large amplitude might be inefficient for reaching the energy minimum, since the
state might also escape from the energy global minimum in this case. The tradeoff
between exploratory and greedy strategies should be therefore carefully considered.
A second approach is to use the RRAM stochasticity in its switching to generate a
flip of one or more neurons with a given probability as shown in Fig. 9c [58]. In fact,
the probability of setting a RRAM device can be controlled with the set pulse itself
either by the voltage pulse amplitude [20] or the pulse width [58]. In this way, after
a careful characterization of the set statistics of the RRAM device, it is possible to
create naturally a stochastic, e.g., Gaussian, distribution from the device physics. A
third approach is to operate the HNN in its chaotic behavior [105], by violating one of
its definitions, namelywi i = 0 by connecting each neuron in a self-feedback to itself
as shown in Fig. 9d [57, 60]. By gradually resetting the self-feedback RRAM device
the chaos can be reduced to let the system effectively reach the global minimum.

Optimizer circuits based on hardware HNN accelerated by RRAM crosspoint
arrays have been shown to have better performance than traditional, optical and
quantum computing [59], thanks to the low energy MVM operation and intrinsic,
compact noise generators.

4 In-Memory Computing Architecture for Inverse MVM

MVM can be used to accelerate algebraic problems, such as the solution of linear
systems and partial differential equations [63, 106]. However, this is usually done
by iteratively performing the MVM operation, digitalize the currents with an ADC,
post-process them and apply the correct output vector as input for the following
MVM.WhileMVM can indeed accelerate the algebraic problem, solution compared
with digital approaches, the number of iterations for reaching the convergence can
be extremely large. To further accelerate the problem solution, the feedback opera-
tion can be obtained within the analog domain, by operational amplifiers connected
between rows and columns of crosspoint arrays [31, 48, 107] as shown in Fig. 10a.
Given a crosspoint array programmed with a conductance matrix G, by injecting a
current vector I to its rows connected to the negative input of an operational amplifier
(OA) with the positive input connected to ground, the columns connected to the OA
outputs will adjust to a voltage V such that the overall current flowing within the
OA is zero due to its high input impedance and negative feedback effect, namely
I + GV = 0 [48]. This leads to:
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Fig. 10 In-memory solution of linear systems with IMVM. a IMVM circuit where a current is
injected in a crosspoint programmed with conductance G rows which are connected to the virtual
ground of operational amplifiers whose output is connected to the crosspoint columns. The result
givesV =G−1 I. An example ofmeasured 3× 3 programmedmatrix (inset).bCircuit output voltage
as function of β with an input current I = βI0. c representation of a 1-dimensional Fourier heat
equation problem. d Fourier equation encoded in a crosspoint array. e Circuit simulation (circles)
results comparedwith analytical solution showing good agreement. Reprintedwith permission from
[48] under Creative Commons License

V = −G−1 I (3)

which corresponds to the solution of a linear system. In fact, by encoding in G a
problem A and injecting a current−I corresponding to a known term b, the resulting
output voltage will be equal to x = A−1b as shown in Fig. 10a. This operation
can also be referred as inverse MVM (IMVM), as the solution is the vector which
must be multiplied to the given matrix to yield a certain output vector. Figure 10b
shows an experimental demonstration of this circuit, where a 3 × 3 crosspoint array
of RRAM devices was connected in feedback with OAs on a printed circuit board
(PCB) [48]. By applying an input current vector with amplitude I = βI0, where I0 is
a normalized vector and β represents the magnitude of the input vector, the measured
voltage at the OA output displays a linear dependence on β as expected from the
linearity of the system of equation, thus demonstrating the feasibility of the circuit
in the solution of the linear system. Interestingly, the solution of a linear system is
obtained in just one step by the circuit, without any iteration. Moreover, the time
to solution does not depend on the matrix size, thus making the time complexity of
the circuit constant, i.e., O(1) complexity [108, 109]. This is extremely attractive in
comparison with traditional algorithms such as conjugate gradient [110] or quantum
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computing algorithms such as the Harrow-Hassidim-Lloyd (HHL) algorithm [111],
which show a time complexity of O(N ) and O(log(N )), respectively. Figure 10c
shows a real word problem, the solution of a 1-dimensional steady-state Fourier
equation for heat diffusion encoded in a crosspoint array and solved by the IMVM
circuit.MatrixG in Fig. 10d represents the systemof linear equationswhich describes
the differential Fourier equation in the discrete domain by the finite differencemethod
(FDM). Note that G displays both positive and negative coefficients, which can be
encoded with a method similar to Fig. 5c, where the output voltage of the OAs are
inverted and applied to a second crossbar representing the negative entries [48]. The
known term encoded in the input currents correspond to the dissipated power in the
one-dimensional structure and the output voltage represents the temperature profile
along the 1-dimensional structure. Figure 11e shows the results obtained by a SPICE
simulation of the IMVM circuit compared with the analytical solution for different
voltage applied to the 1-dimensional structure, highlighting a accuratematch between
the ideal analytical solution of the equation and the circuit simulations.

Fig. 11 In-memory eigenvectors calculation with IMVM. a IMVM circuit for eigenvector calcu-
lation, where no input is given and a conductance corresponding to the maximum eigenvalue Gλ

is programmed in the TIA conductance. Inset shows a programmed measured matrix. b measured
eigenvectors as function of the analytical calculation showing good agreement. cGraph ofwebpages
used for Pagerank problem, where every circle is a webpage and the arrows represent citations. d
Corresponding stochastic link matrix. e Simulated circuit result as function of the ideal scores
showing good agreement. Reprinted with permission from [48] under Creative Commons License
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4.1 In-Memory Eigenvector Calculation

By slightly modifying the topology of the analogue circuit in Fig. 10a, it is possible
to calculate the principal eigenvector of the matrix programmed in the crosspoint
[31, 48]. This is shown in Fig. 12a, where the matrix G is mapped in one crosspoint
array and the principal eigenvalue λ of matrix G is mapped in the feedback resistor
of the trans-impendence amplifier (TIA)s. A set of inverting OAs is then added
in the feedback loop to compensate for the minus sign arising from the current–
voltage conversion V = −I/Gλ of the TIAs in Fig. 11a. The circuit is described by
(3) with zero input current, thus leading to (G − Gλ I )V = 0, which corresponds
to the non-trivial solution of the eigenvector problem for G. Figure 11b shows an
experimental demonstration of the eigenvector circuit, showing the correlation plot
of experimental components as a function of the ideal analytical values, for the
eigenvectors corresponding to themaximum (principal) and theminimumeigenvalue
[48].

The calculation of the principal eigenvector can be applied to relevant scientific
computing tasks, such as the solution of the Schrödinger equation [48]. However,

Fig. 12 In-memory regression calculation with IMVM. a IMVM circuit for Moore-Penrose pseu-
doinverse with a current I injected in a crosspoint array programmed with conductance G rows
connected to a TIA whose output drives the rows of a second crosspoint array programmed with
GT . The column of the second crosspoint are connected to operational amplifiers whose outputs
close the loop and are connected to the first crosspoint columns. The output voltage gives V = −
(GTG)−1GTI which is the Moore Penrose pseudoinverse result. Inset shows a programmed linear
regression problem. b measured fitting and analytical fitting of a programmed dataset showing
good agreement. c ELM schematic for recognition of MNIST dataset with a random input layer
and an output layer trained with logistic regression. d Circuit simulated weights as function of the
analytical weights for the output layer showing a good agreement. Reprinted with permission from
[107] under Creative Commons License
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scientific computing requires high precision which is relatively difficult for in-
memory computing due to imprecise RRAM programming. This problem can be
circumvented by using IMVM for calculating a seed that is then refined with tradi-
tional computing technologies [106]. On the other hand, machine learning problems
usually are less subject to noise and less sensitive to variations. For example, Pagerank
[112], which is the algorithm that calculates webpage ranking on a search engine,
requires the computation of the principal eigenvector of a link matrix corresponding
to the adjacency between webpages as shown by the graph in Fig. 11c. Interestingly,
the encoded matrix can be pre-processed to obtain a stochastic matrix (Fig. 11d)
where the summation over all the columns is 1 and the principal eigenvalue is 1, thus
making the IMVM circuit ideal for Pagerank calculation. Figure 11e shows a SPICE
simulation of the Pagerank algorithmwith IMVMcompared with the analytical solu-
tion, highlighting the good agreement between the page scores [48]. The Pagerank
problem particularly fits IMVM circuits also because the exact ranking is less impor-
tant than the overall one, in fact users are usually interested in the first 10 webpages
being displayed correctly in the Pagerank response, even if they are not listed in
the correct order. For a more detailed assessment, the problem has been studied for
a relatively large scale implementation with real conductance values programmed
on HfOx RRAM devices, showing a relatively low mismatch once a fine tuning of
the conductance is performed [31]. The eigenvector calculation by IMVM has been
shown to display a O(1) time complexity, with an unprecedented speedup compared
with other technologies [113].

4.2 Pseudoinverse and Regression Accelerators

Manymachine learning problems can bewritten as the over-determined linear system
Xw = y, where X is a rectangular N × M matrix with N > M which encodes the
explanatory variables, y is a N×1 known vector representing the dependent variables
and w it the M × 1 weight vector. Since this equation generally does not have a
solution, its best approximation can be found by the linear regression, namely the
least square error (LSE) algorithm that minimizes the Euclidean norm of the error,
namelymin‖Xw − y‖2. This minimization can be carried out by the pseudo-inverse,
or Moore–Penrose inverse, namely matrix X+ given by X+ = (XT X)

−1
XT , while

the weights are given by w = X+y [114]. Figure 12a shows an analogue IMVM
circuit that can calculate the Moore–Penrose inverse matrix [107]. Two identical
crosspoint arrays are used to map the matrix X in their conductanceG. A vector
of currents I representing the known term y is applied to the first crosspoint rows
which are connected to the negative input of the TIAs with a feedback conductance
GT I . The first crosspoint columns are connected to the output terminals of a second
stage of OAs with output voltageV . The first crosspoint execute the summation of
input currents I and the MVM output GV, thus yielding an overall current I + GV
flowing into the TIAs. The latter develop a voltage across the second crosspoint array
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given by −(I + VG)G−1
T I . The columns of the second crosspoint are connected to

the positive inputs of the second stage of OAs thus must be equal to zero, which
translates in the equation (I + VG)G−1

T I G
T = 0 or equivalently:

V = −(
GTG

)−1
GT I (4)

where the Moore–Penrose inverse matrix G+ is clearly identified [107]. The inset of
Fig. 12a shows the 2 × 6 matrix G which was mapped in a HfOx RRAM crosspoint
array representing the explanatory variables of a linear regression problem with the
experimental solution that gives the best linear fit plotted in Fig. 12b and compared
with the analytical calculation showing a good agreement [107].

This concept can be extended to the logistic regression which is a powerful clas-
sification algorithm. In fact, by properly writing in different columns of matrix G
the coordinates of the data and injecting a relative current 1 or 0 corresponding to
the class, it is possible to obtain the straight line that best separates the input data.
This is a powerful tool in machine learning as it can be used for training the classi-
fication layer of a neural network. Figure 12c shows the conceptual schematic of a
fully-connected, 2-layer neural network according to the Extreme LearningMachine
(ELM) model [107], where all synaptic weights in the first layer are assumed to be
randomweights, while the synaptic weights in the output layer are trained by logistic
regression. SPICE simulations of the IMVM circuit for training the output layer of
the ELM model for classifying handwritten digits of the MNIST dataset [68] are
shown in Fig. 12d and compared with the analytical solution. The results indicate
a good agreement with the ideal solution, thus supporting the feasibility of IMVM
circuits for training neural networks [107].

5 Conclusions

This chapter presents an overview of analogue in-memory computing concepts with
RRAM devices. RRAM displays ideal properties for computing, including high
density, analogue storage and the ability for 3D integration. MVM in the analogue
domain is perhaps the most promising type of in-memory computing function which
is made possible by a RRAM array, typically with 1T1R structure of the individual
memory cell. Experiments and simulations showan unprecedented speed up ofMVM
for neural networks acceleration and CSP optimization, while IMVMdisplays strong
advantages in terms of computational complexity and energy efficiency for algebraic
and machine learning problems. At the same time, the RRAM technology and its
operations should be optimized to fulfil all requirements of multibit operation, fast
switching, controllable noise and long retention time necessary for enabling this
technology in a relevant environment in the edge or cloud. In particular, the RRAM
technology development and computing architecture research should proceed with
strong synergy to fully take advantage of the energy and performance benefits of
in-memory computing.
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Introduction to 3D NAND Flash
Memories

Rino Micheloni , Luca Crippa, and Cristian Zambelli

Abstract Nowadays, NAND Flash memories are in everybody’s hands, as they are
the storagemedia used inside smartphones and tablets. At the same timeNANDFlash
memories, in the form of Solid State Drives (SSDs), have enabled a new generation
of computers without Hard Disk Drives (HDDs), and they are also one of the key
components of the modern cloud infrastructures. To win all these new applications,
NAND Flash had to continuously decrease its cost per bit. Shrinking lithography
has been the solution for many generations of planar NANDs, but this approach ran
out of steam in the sub-20nm range due to a plethora of parasitic effects within the
memory array. As such, both the industry and the academia have worked towards a
different approach for many years, resulting in a tri-dimensional (3D) architecture,
whose first product reached the market in 2016. In this Chapter we present the basics
of 3D NAND Flash memories and the related integration challenges. There are two
main variants of Flash technologies used inside 3D arrays, namely, Floating Gate
(FG) and Charge Trap (CT), which are both described in this Chapter with the aid
of several bird’s-eye views. Finally, 3D scaling trends are discussed.

Nowadays, Solid State Drives consume an enormous amount of NANDFlashmemo-
ries [1] causing a restless pressure on increasing the number of stored bits per mm2.
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Fig. 1 NAND string

Planar memory cells (Fig. 1) have been scaled for decades by improving process
technology, circuit design, programming algorithms [2], and lithography.

Unfortunately, when approaching a minimum feature size of 1x-nm, more chal-
lenges pop up: doping concentration in the channel region becomes difficult to control
[3], RTN [4] and electron injection statistics [5] widen threshold distributions, thus
causing a significant hit to both endurance and retention. Furthermore, by reducing
the distance between memory cells, the intra-wordline electric field becomes higher,
pushing the bit error rate to an even higher level.

3D arrays can definitely be considered as a breakthrough for fueling a further
increase of the bit density. Identifying the right way for going 3D was not so easy
though.

Historically, Flash memory manufacturers have leveraged lithography to shrink
the 2-dimensional (2D) memory cell [6].

However, with 3D architectures, the “simple” reduction of the minimum feature
size is running out of steam [7]: a higher number of stacked cells is the only hope
for dramatically reducing the real estate of a stored bit.

3D arrays can leverage either Floating Gate (FG) or Charge Trapping (CT) tech-
nologies [8]. As a matter of fact, the vast majority of 3D architectures published
to date are built with CT cells, mainly because of the simpler fabrication process.
Nevertheless, Floating Gate is still around and there are commercial products who
managed to integrate FG into a 3D array.
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1 3D Charge Trap NAND Flash Memories

3D arrays can be efficiently built by vertically rotating the planar NAND Flash string
as displayed in Fig. 2. The solution of choice is a conduction channel completely
surrounded by the gate [9]: indeed, the curvature effect helps increasing the electric
field Et across the tunnel oxide, and reduces the electric field Eb across the blocking
oxide [10, 11], and this has a positive impact on oxide reliability and overall power
consumption.

Vertical channel arrays have been historically driven by architectures known as
BiCS, which stands for Bit Cost Scalable [12, 13] and P-BiCS, acronym for Pipe-
Shaped BiCS [14–16], which are both leveraging CT cells [17]. Let’s get started with
BiCS,which is sketched in Figs. 3 and 4 [13]. There is a stack ofControlGates (CGs),
the lowest being the one of the Source Line Selector (SLS). The whole vertical stack
is punched through and the resulting holes are filled with poly-silicon; each filled
hole (a.k.a. pillar) forms a series of memory cells vertically connected in a NAND
fashion. Bit Line Selectors (BLS’s) and Bitlines (BLs) are formed at the top of the
structure [18].

The poly-silicon body of memory cells is not doped or lightly doped [10, 11];
indeed, considering the bad aspect ratio of the vertical polysilicon plug, p-n junctions
cannot be easily realized by either diffusion or implantation in a trench structure.
As usual, a select transistor (BLS) is used to connect each NAND string to a bitline;

Fig. 2 The NAND flash string goes vertical
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Fig. 3 BiCS architecture. Adapted with permission from [19]. ©2017 IEEE

Fig. 4 Equivalent circuit of
a BiCS array

there is also another select transistor (SLS), which connects the other side of the
string to the common source diffusion.

It is important to highlight that the number of critical and expensive lithography
steps does not depend on the number of control gate plates because the whole 3D
stack is drilled at one [20, 21].

As sketched in Fig. 5, vertical transistor have polysilicon body and this fact turned
out to be one of the critical cornerstone of the 3D foundation. From a manufacturing
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Fig. 5 BiCS memory cells

perspective, the density of the traps at the grain boundary is very difficult to control,
with such a vertical shape: the bad thing is that this poor control induces significant
fluctuations of the characteristics of vertical transistors.

The recipe for fixing the trap density fluctuation problem is to manufacture a
polysilicon bodymuch thinner than the depletion width. In other words, by shrinking
the polysilicon volume, the total number of traps goes down (Fig. 6). This particular
structure is usually referred to asMacaroni Body [13]. A filler layer (i.e. a dielectric
film) is used in the central part of the macaroni structure, essentially because it makes
the manufacturing process easier.

The fabrication sequence of the BiCS array [22] starts from building the layers
for control gates and selectors. Then, BLS stripes are defined. After forming pillars,
bitlines are laid out by using a metal layer.

Control gate edges are extended to form a ladder to connect to the fan-out region,
as sketched in Fig. 7 [12, 13, 22, 23]. Actually, there are 2 ladders: one of the 2 can’t
be used because it is masked by the metals biasing the bitline selectors.

Over time BiCS became P-BiCS, mainly to improve the Source Line resistance
[14, 15]. In a nutshell, two vertical NAND strings are shorted together at the bottom
of the 3D structure: in this way, they form a single NAND string and the 2 edges are
connected to the bitline and to the Source Line, respectively (Fig. 8). Thanks to its
U-shape, P-BiCS has few advantages over BiCS:

• retention is better becausemanufacturing creates less damages in the tunnel oxide;
• being at the top, the Source Line can be connected to a metal mesh, thus lowering

its parasitic resistance;
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Fig. 6 A vertical transistor (right) modified with Macaroni body (left)

Fig. 7 Fan-out of the BiCS array. Adapted with permission from [19]. ©2017 IEEE

• Source Line and bitline selectors are at the same height of the stack and, there-
fore, they can be equally optimized and controlled, thus obtaining a better string
functionality.

One of the biggest drawbacks of P-BiCS is the fact that at the same height of the
stack there are two different control gates which, of course, can’t be biased together;
therefore, the two layers can’t be simply shorted together. As a result, compared to
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Fig. 8 P-BICS NAND strings

BiCS, a totally different and more complex fan-out is required [16], as displayed in
Fig. 9: basically, a fork-shaped gate is adopted, such that each branch acts on two
NAND pages.

A major advantage is the easier connection of the source line [14] through the
“Top Level Source Line” of Fig. 10. This additional metal mesh guarantees a much
better noise immunity for circuits.

Besides BiCS and P-BiCS, many other approaches were tried, including VRAT
(Vertical Recess Array Transistor) [24], Z-VRAT (Zigzag VRAT) [24], and VSAT
(Vertical Stacked Array Transistor) [25], and 3D-VG (Vertical Gate) NAND [26]
which is a unique architecture where the channel runs along the horizontal direction.

TCAT (Terabit Cell Array Transistor) was disclosed in 2009 [27] and it was the
foundation for V-NAND (Fig. 11), which is the first 3Dmemory device who reached
the market. Except for SL+ regions which are n+ diffusions, the equivalent circuit
of TCAT is the same of BiCS (Fig. 4). All SL + lines are connected together to
form the common Source Line. There are 2 metal layers for decoding wordlines and
NAND strings, respectively.

TCAT is based on gate-replacement [27], whereas BiCS is gate-first. Gate-
replacement begins with the deposition of multiple oxide/nitride layers. After the
stack formation, nitride is removed through an etching process. Afterwards, tungsten
metal gates are deposited and, finally, gates are separated by using another etching
step. Metal gates translate into a lower wordline parasitic resistance, resulting in
faster programming and reading operations.

The bulk erase operation is another significant difference compared to BiCS.
BecauseNAND strings are close to n+ areas, during erasing, holes can come straight
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Fig. 9 Fork-shaped fan-out. Adapted with permission from [19]. ©2017 IEEE

Fig. 10 P-BiCS: Source line metal mesh. Adapted with permission from [19]. ©2017 IEEE
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Fig. 11 TCAT NAND flash array

from the substrate, thus avoiding the GIDL (Gate Induced Drain leakage) on the
source side, which is a well-known problem for BiCS.

BiCS and TCAT are compared in Fig. 12 [28]. Being TCAT based on a gate-last
process, the charge trap layer is biconcave, and thanks to this particular shape it is
much harder for charges to spread out. On the contrary, BiCS is characterized by a

Fig. 12 BiCS versus TCAT
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charge trapping layer going through all gate plates, thus acting as a charge spreading
path: of course, themain consequence of this layout is a degradation of data retention.

TCAT evolved into another architecture called V-NAND [29]. The first genera-
tion had 24 wordline layers, plus additional dummy wordline layers (dummy CG)
[30–32].

Why dummy layers?Mainly because of the floating body of thememory cells with
vertical channel. In fact, during the programming operations, hot carriers are gener-
ated by the high lateral electric field located at the edge of the NAND string. There-
fore, these hot carriers keep the voltage on the channel low during the programming
operation of the first wordline (i.e. Program Disturb) [33, 34]. Dummy wordlines
before the first WL are an effective and simple solution to this problem [35, 36].

A 128 Gb TLC (3 bit/cell) device manufactured by using V-NAND Gen2 was
published in 2015 [37, 38]. Gen2 had 32memory layers instead of the previous 24 and
introduced the concept of Single-Sequence Programming. Conventional (mainly 2D)
TLCprogramming techniques go through the programming sequencemultiple times.
To be more specific, each wordline is programmed 3 times, such that VTH distribu-
tions can be progressively tightened. Because of the smaller cell-to-cell interference
(compared to FG), CT cells exhibit an intrinsic narrower native VTH distribution. As
a result, V-NAND Gen2 could write 3 pages of logic data in a single programming
sequence. There are 2 benefits to this approach: reduced power consumption and
faster programming.

V-NANDGen3 appeared in 2016 [39], in the form of a 48 layer TLC device. With
such a high number of gate layers, the very high aspect ratio of the pillar becomes
a serious challenge for the etching technology. To mitigate this problem, the easiest
solution is to shrink the thickness of gate layers. The downside of this approach is that
the parasitic RC of the wordline gets higher, thus slowing access operations to the
memory array. Moreover, channel’s size fluctuations become critical. Indeed, pillars
are holes drilled in the gate layer and they represent a barrier for charges flowing along
the wordline: in essence, a distribution of the holes diameters generates a distribution
of the parasitic resistances of gate layers. In addition, pillars, oncemanufactured, have
the conic shape sketched in Fig. 13. The overall result is that the same voltage applied
to different gate layers translates into a waveform per layer. An adaptive program
pulse scheme can fix the problem. In a nutshell, the program pulse duration has
to be tailored to the characteristics of the wordline layer. As the number of layers
increases, the pillar becomes longer with a negative impact on the aspect ratio of the
pillar. To compensate for that, V-NAND Gen4 [40], which is built on a stack of 64
layers, had to shrink both the layer thickness and the intra-layer distance (spacing).
The downside is an increased wordline parasitic capacitance which adversely affects
cell’s reliability and timings. Improved circuits and programming algorithms can be
used to tackle this problem [40].

As discussed, both BiCS [41] and V-NAND use CT cells, but Floating Gate still
exists, as explained in the next Section.
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Fig. 13 Ideal versus actual shape of pillars

2 3D Floating Gate NAND Flash Memories

2D NAND Flash memories use FG cells which have been improved and optimized
for decades. Of course, there have been many attempts to reuse this know-how in
3D.

The first 3D attempt is known as 3DConventional FG (C-FG) or S-SGT (Stacked-
Surrounding Gate Transistor) [42–44], and it is sketched in Fig. 14.

Fig. 14 3D C-FG cell. Adapted with permission from [19]. ©2017 IEEE
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A C-FGNAND string is shown in Fig. 15, including select transistors. Please note
that both string selectors are manufactured as standard transistors, i.e. they haven’t
any floating gate. Figure 16 shows a C-FG array, including the fan-out region. While
all wordlines at the same height of the stack are connected, BLS lines can’t, because
they need to be page selective per each CG layer. On the contrary, SLS transistors
can be shorted together, thus saving both power and silicon area.

Because we are talking about FG cells, FG coupling between neighboring cells
is the main hurdle for vertical scaling. With enhancement-mode operations, the high
resistance of source/drain (S/D) regions should also be carefully considered. In fact,
these regions need high-doping and this is not very easy to accomplish when the
conduction channel is made of polysilicon. The solution to this problem is to electri-
cally invert the S/D layer by using higher voltages during read. This simple solution
is hardly manageable by C-FG cells because of the thin FG.

The Extended Sidewall Control Gate (ESCG) structure, Fig. 17 [45], is another
FG option and it was developed to contain the interference effect. Moreover, by
applying a positive voltage to the ESCG structure, density of electrons on the surface
of the pillar can be much higher than C-FG (even one order of magnitude): a highly
inverted electrical source/drain can significantly lower the S/D resistance.

In addition, the ESCG shielding structure reduces the FG–FG coupling capaci-
tance: the ESCG region is biased as CG, and the CG coupling capacitance (CCG) is
significantly increased because of the increased overlap area between CG and FG. A
higher CG coupling ratio is one of the key ingredients for achieving effective NAND
Flash operations [46].

Fig. 15 C-FG NAND flash string. Adapted with permission from [19]. ©2017 IEEE
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Fig. 16 C-FG NAND flash
array with fan-out

Fig. 17 ESCG NAND flash
cell

Another FG cell is DC-SF (Dual Control-Gate with Surrounding Floating Gate,
Fig. 18) [47]. This time FG is controlled by two CGs. The impact on the FG/CG
coupling ratio is remarkable, thanks to the enlargement of the FG/CG overlap area.
Another positive aspect is the reduction of the voltages required for programming
and erasing. DC-SF eliminates the FG-FG interference because the CG between two
adjacent FGs plays the role of an electrostatic shield [48].

FG is fully isolated by IPD (Inter Poly Dielectric) and capacitive coupled to upper
and lower control gates, CGU and CGL, respectively. The tunnel oxide is located
between the channel CH and FG, while IPD is on the sidewall of the CG. In this way,
free charges cannot tunnel to the control gates.

BiCS and DC-SF NAND strings are sketched in Fig. 19. In BiCS the nitride
layer, going across all gates, makes the cell prone to data retention issues [49]. On
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Fig. 18 DC-SF NAND flash cell. Adapted with permission from [19]. ©2017 IEEE

Fig. 19 BiCS versus DC-SF

the contrary, the surrounding FG is totally isolated: it is much easier for DC-SF to
retain electrons [50, 51]. Of course, the downside of DC-SF is the fact there are two
gate layers instead of one, coupled with much more complex biasing schemes [52,
53].

The Separated Sidewall Control Gate (S-SCG) Flash cell [54] displayed in Fig. 20
is another 3D FG option developed around the sidewall concept.
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Fig. 20 S-SCG NAND flash cell. Adapted with permission from [19]. ©2017 IEEE

One of major drawbacks of this cell is the “direct” disturb to the neighboring
passing cells, caused by the high SCG/FG coupling capacitance. We define it as
“direct” because the sidewall CG is shared between adjacent cells: as a matter of
fact, biasing SCG means biasing both FGs.

To minimize the decoding complexity, all SCGs belonging to one block adopt a
common SCG scheme; besides their electrostatic shield functionality, sidewall gates
can help all memory operations [55]. For instance, the common SCG is biased at
1 V during read operations, thus electrically inverting the channel (same as ESCG).
Compared to ESCG, the electrical inversion happens simultaneously on source and
drain, exactly because of the sidewall gates. Same thing happens during program-
ming: the common SCG is biased at a medium voltage to improve the channel
boosting efficiency.

Besides the direct disturb, another problem of Sidewall Gates is the limitation of
vertical scaling to around 30 nm; indeed, the thicknesses of SCG and IPD can’t be
scaled too much, otherwise they would breakdown when voltages are applied.

Let’s now take a look at examples of 3D FG NAND memory arrays of hundreds
of Gb. The first 3D FG device was published in 2015 [56], in the form of a 384 Gb
TLC NAND based on C-FG. This memory device was built with a stack of 32 (+
dummy) memory layers.

A 768Gb 3D FGNANDbecame public in the following year [57].What is unique
in this case is the fact that the area underneath the array was used for circuitry. More
details about this approach are provided in Sect. 3.
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3 Key Challenges for 3D Flash Development

In this Section we cover some of the key challenges that technologists and designers
are facing to push 3D memories even further.

3.1 Number of Layers

To reduce the bit size, the number of stacked cells needs to go up, but this causes a
bunch of problems hard to solve [6].

Pillar’s Aspect Ratio (AR) is definitely the first challenge to overcome; in a stack
of 32 cells AR can already be as high as 30. In this context, hole etching and gate
patterning are extremely difficult, but of paramount importance.

A possible solution to this problem is to divide the stacking process in more steps
to reduce the corresponding AR. For example, a NAND string made of 128 cells can
be divided in 2 groups of 64 cells each, as shown in Fig. 21. The downside of this
solution is the cost of the stacking process (in this example, 4 times higher than the
cost of the plain solution).

Second problem is the small cell current [58]. With 2D sensing schemes, a 200
nA/cell saturation current is considered the right value because it gives a reasonable
sensingmargin.Unfortunately, alreadywith a stack of 24 layers, the cell current is just

Fig. 21 Multi-stacked or
multi-deck process [6]
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~20%of FGcell. And it becomes lower and lower as the number of cells in the vertical
stack increases. There are a couple of possible paths to solve this problem: sensing
schemes with higher sensitivity, and the introduction of new materials enabling a
higher cell mobility in the poly-Si channel (i.e. a higher current) [59–62].

All the above-mentioned problems can be fixed if entire NAND strings could
be stacked one on top of each other. In this case, either bitlines or source lines
are fabricated between NAND strings. This special architecture can simultaneously
reduce the aspect ratio and increase the sensing current at same time.

3.2 Peripheral Circuits Under Memory Arrays

In the first 3D generations [63, 64], peripheral circuits (charge pumps, logic, etc.) and
core circuits (like Page Buffers and Row decoders) are located outside the memory
matrix, like in a conventional 2D chip floorplan, as sketched in Fig. 22. However,
3D memory cells are vertically stacked: in other words, memory transistors are not
formed on the Si substrate; on the contrary, they are built around a deposited poly-Si
(vertical pillar). Therefore, 3D architectures allow placing some circuits directly on
the Si substrate under the memory array. Of course, this solution offers a significant
reduction of the chip size.

Figure 23 shows a layout of a Flash memory withCircuits Under the Array (CuA)
[65, 66].

This big area saving doesn’t come for free. Themost important challenge is manu-
facturing low resistance metal layers under the array: this is absolutely critical for a
reliable circuit functionality. Usually, metal layers used in 2DNANDflashmemories
are made of Cu. However, when circuits are under the array, the high temperature

Fig. 22 Conventional 3D NAND flash memory layout
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Fig. 23 3D NAND flash memory layout with Circuits Under Array

processes (i.e. >800 °C) that 3D requires can seriously degrade the resistance ofmetal
layers. Therefore, circuits under the array require 3D “low” temperature fabrication
processes.

4 Future Trend for 3D NAND Flash

Figure 24 shows cell’s size scaling trend, based on published die photographs. 2D
became flat below 20 nm, while 3D cell showed a significant reduction going from
24 to 64 layers. This 3D scaling speed will continue by increasing the height of
the memory stack, and exploiting technological innovations like Multi-stacked and
Stacked NAND string [67].

3D NAND arrays based on CT vertical channel were selected for volume produc-
tion because the fabrication process is simpler than other 3D architectures. Volume
production of 3D NAND Flash started in late 2013 with a 24 layer MLC (2 bit/cell)
V-NAND [63, 68]. Year after year, the number of stacked cells grew up, as shown
in [7, 64, 69], thus reducing the cost per bit and fueling an even more pronounced
diffusion of Solid State Drives.

In this chapter we have presented many architectural options for building a 3D
NAND array, including some of the latest and greatest layout options, but the 3D
evolution is just at the beginning. In fact, two fundamentally different technologies,
Floating and Charge Trap, are fighting each other, trying to prove that they can win
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Fig. 24 Effective cell size trend. Reproduced with permission from [19]. ©2017 IEEE

in the long run, i.e. when scaling will be pushed to the limit. Flash manufactures
are already shooting for 200 vertical layers with multi-level capabilities, including 4
bit/cell and 5 bit/cell. No doubt that we’ll see a lot of innovations in the near future:
engineers and scientists are called to give their best effort to make this vertical
evolution happen.
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Deep Neural Network Engines Based
on Flash Technology

Rino Micheloni , Luca Crippa, and Cristian Zambelli

Abstract Artificial Neural Networks based on non-volatile memories can easily
beat the equivalent full-CMOS implementation (through logic gates) in terms of
both speed and energy consumption. After 30 years of development (Mead in Analog
VLSI and neural systems. Addison-Wesley, Reading, MA, USA, 1989), few recent
works (Indiveri in Front Neurosci 5:1–23, 2011; Likharev in Sci Adv Mater 3:322–
331, 2011; Hasler and Marr in Front Neurosci 7, 2013; Ceze et al. in Proceedings of
DRC, Newark, DE, USA, pp. 1–2, 2016) has proven that the analog implementation,
by adopting nanoscale devices, can even approach the power efficiency of the human
brain. The enabling device of the analog approach is a non-volatile memory cell;
in this chapter we show how Flash memories (of both NOR and NAND type) can
be used to implement the Vector-by-Matrix (VbM) multiplication, which is the core
of the hardware implementation of a Neural Network. Indeed, Flash memory cells,
thanks to their tunable threshold voltage, can replicate the behavior of a synapse
inside the human brain.

1 Introduction

Artificial Neural Networks based on non-volatile memories can easily beat the equiv-
alent full-CMOS implementation (through logic gates) in terms of both speed and
energy consumption. After 30 years of development [1], few recent works [2–5]
has proven that the analog implementation, by adopting nanoscale devices, can even
approach the power efficiency of the human brain. How is that even possible? From
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Fig. 1 Analog vector-by-matrix (VbM) multiplication based on floating-gate memory cells

the power consumption point of view, the key operation of the neuromorphic archi-
tecture is the Vector-by-Matrix (VbM) multiplication; while in the digital domain
it can only be implemented by means of logic gates, in the analog domain it can
be compacted in a single structure as shown in Fig. 1. The enabling device of the
latter implementation is a non-volatile memory cell (a floating gate transistor in the
drawing)which, thanks to its tunable threshold voltage, can replicate the behaviour of
a synapse inside the human brain. A bird’s-eye view of a floating gate type transistor
is reported in Fig. 2, together with its schematic symbol.

Essentially, the VbM implementation based on floating-gate cells can be seen as
the evolution of the memristive arrays sketched in Fig. 3.

Researchers sought a replacement of floating gate cells with a plethora of alterna-
tive nonvolatile memory devices, from phase change to ferroelectric, from magnetic
memories to memristors [6–10]. It is worth highlighting that, so far, their on-chip
implementations targeted only small sized deep neural networks or simple neuromor-
phic tasks [11–15], which means that those technologies need further development,
as today’s neural networks require a large set of VbM multiplications.

2 Deep Neural Networks Based on NOR Flash Memories

Let’s now take a closer look at an implementation of the VbM multiplication based
on embedded Flash memories of floating-gate type arranged in a NOR architecture
[15–17].

The dependency of the memory cell drain current with respect to the applied gate
voltage is depicted in Fig. 4 [1, 4]. In the subthreshold conduction region, we can
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Fig. 2 Floating gate memory cell and its schematic symbol

Fig. 3 Analog VbM multiplication circuit with memristive elements

write

Ii j = I0exp

(
β
Vgsi j − V thi j

VT

)
(1)

where
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Fig. 4 Drain current as a function of the gate voltage, for several Vth memory states

• I ij is the drain current of the ij memory cell;
• V thi j is the threshold voltage of the memory cell (which is a function of its state);
• VT ~ kBT /e ~ 26 mV at room temperature;
• β is the subthreshold slope, which is a function of the gate-to-channel coupling

and is usually lower than one.

As described in Chap. 2, at the core of a neural network we have the synaptic
weights, whose values are calculated during the training process of the network itself.
The most common approach for computing these weights is based on a backpropa-
gation algorithm driven by the target cost function; in essence, goal is to minimize
the difference between the correct value and the second largest output of the trained
neural network (please refer to Chap. 2). Once the weights are available, their values
are used to program the threshold voltage of the memory cells depicted in Fig. 3.

The hardware implementation here described refers to a neural network used as
a classifier to be tested with the very well-known MNIST dataset [26]. Binary input
is the pixel intensity (i.e., black is logical ‘0’, and white is logical ‘1’).

The architecture of the implemented neural network is sketched in Fig. 5: it is a
3-layer perceptron with a single hidden layer featuring i neurons in the input layer, j
neurons in the hidden layer, and k neurons in the output layer. The activation function
is the pretty common “sigmoid” function (please refer to Chap. 2 of this book for its
mathematical description).

Weights wthij e wthjk are used to fully-connect adjacent layers according to
the standard perceptron architecture. Weights are dialed-in by tuning the threshold
voltage of the floating gate memory cells drawn in Fig. 1.

Figure 6 shows the connection between a hidden neuron and the first layer of the
network in more details; Fig. 7 depicts the circuit implementation of the same hidden
neuron.

The mixed-signal VbM multiplication inside the crossbar memory array makes
use of the following voltages:
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Fig. 5 NOR-based neural network architecture used for hardware implementation

Fig. 6 A generic neuron in the hidden layer Nj with its connections to the preceeding input layer

• Input voltage Vgi = 4.2 V for black pixels
• Input voltage Vgi = 0 V for white pixels
• Source line voltage SLj = 1.65 V
• Bitlines voltage BLi = 2.7 V.

Since bitline and source line voltages are kept fixed, cell’s current is dictated by
its threshold voltage (i.e., weight) and Vgi only. In other words, the current of the
memory cell sitting at the crosspoint of row j and column i does not depend on the
conduction state of the surrounding memory cells.
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Fig. 7 Circuit implementation of the hidden neuron Nj of Fig. 6. The concept of the figure is based
on the description provided in [15, 16]

The source line SL is used to connect the source terminal of all the memory
cells sitting on the same row and it is biased at a fixed voltage. Thanks to this
architecture, the output current Ij is exactly the sum of Vgsi * wthij over all columns
i, thus achieving the goal of implementing the VbM multiplication according to the
following equation (“bias” is not shown in the circuit):

I j =
i∑

n=1

Vgn ∗ wthnj + bias (2)

Another specific aspect of the implementation described in Fig. 7 is the usage of a
differential scheme. In fact, each weight is stored in two cells per column instead of
one. If theweight is positive, then it is stored inwth1j+, otherwise inwth1j−. Please note
that this is a trick to work around the fact that the threshold voltage of a memory cell
in the programmed state can only be positive (while the output of the training process
of a neural network can be positive or negative). The overall goal here is twofold:
to compensate for random drifts on one side and to use zero-centered signals on the
other side. Let’s now get into the details of how the differential approach works. As
described above, there are two memory cells for each synaptic weight: depending
on the sign (positive or negative), one of the two cell is programmed to the absolute
value of the weight itself, while the other cell’s threshold voltage is programmed
to the highest possible value, thus being, as a matter of fact, OFF in all working
conditions. In this way, only one cell per couple can be ON. Indeed, this is a way to
reduce the power consumption (half of the cells are in idle mode) while simplifying
the design. Of course, the cost associated with this architecture is the doubling of the
overall number of memory cells. With reference to Fig. 7, output currents are then
subtracted by using an operational amplifier and the result goes through the circuit
that implements the activation function (sigmoid in this case).

Figure 8 describes the connection among the neuron in the output layerOk and its
connections to the hidden layer; Fig. 9 is the corresponding circuit implementation
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Fig. 8 Generic neuron Ok in the output layer and its connections to the preceding hidden layer

Fig. 9 Circuit implementation of the neuron Ok depicted in Fig. 8. The concept of the figure is
based on the description provided in [15, 16]

[18]. At a first sight, the circuit of Fig. 9 is very similar to the circuit of Fig. 7 but there
is one key difference: the diode-connected peripheral transistors, which are used to
convert the currents coming from the hidden layers into the voltages to be applied
to the wordlines. It is worth highlighting that, for matching reasons, the peripheral
transistors are identical to memory cells (except for the floating gate).

Output currents Ijk can then be summed as in the circuit described in Fig. 7
(with the same differential scheme); therefore, by feeding the circuit of Fig. 9 with
the currents I jdif output by the activation function, the full VbM can be realized as
described by the following equation (“bias” not shown in the circuit):
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Fig. 10 a Differential current amplifier b sigmoid function c transistor-level schematics of (b)

Ik =
j∑

n=1

Vg j ∗ wth′
nk + bias (3)

Figure 10a sketches the circuit used to subtract I+ and I− by using two operational
amplifiers (in the following simply “op-amp”). Outside the op-amp saturation region,
the output voltage VX can simply be computed as follows:

VX = RF (I+ − I−) + VBIAS (4)

As already mentioned, the activation function selected for the hardware imple-
mentation described in this section is the sigmoid function, whose I/V curve is drawn
in Fig. 10b; its description at transistor level can be found in Fig. 10c.

The NOR-based VbM multiplication can also be performed by implementing a
bitline sensing [19, 20], as sketched in Fig. 11. This time the input signal is the
source line (SL) voltage (it was the wordline voltage in Fig. 9); bitlines are kept at a
fixed voltage, while sense amplifiers are tied to bitlines. Again, sense amplifiers are
differential to handle both positive and negative weights. As such, a single synaptic
cell is made of two memory cells with 2 drain nodes (BLj+, BLj−) and a single source
line (SLi) in common.
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Fig. 11 NOR architecture with bitline sensing. The concept of the figure is based on the description
provided in [19, 20]

Currents I j+ e I j− can be written as follows

I j+ =
i∑

n=1

VSLn ∗ wthnj+ (5)

I j− =
i∑

n=1

VSLn ∗ wthnj− (6)

The output of the sense amplifier is then proportional to the difference (I j+ − I j−).
Conceptually, this NOR architecture can also be modified to scale in the third

dimension, as drawn in Fig. 12, where four 3D layers are shown. Because each layer
needs to be independently addressed, an additional (compared to a conventionalNOR
architecture) decoding stage is required: the Layer Decoder. The role of the layer
decoder (essentially, a bunch of transistors used as pass-transistors) is to transfer the
voltage coming from the global wordline decoder to the wordlines of the selected
layer only. To avoid floating wordlines, the GND Decoder takes care of all the
wordlines sitting on unselected 3D layers.
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Fig. 12 Implementation of a multi-layer structure using the 3D NOR concept based on the
description provided in [19, 20]

While forNORFlashmemories 3D integration is still on paper,most of theNAND
memories sold in the market today are 3D. Therefore, it is key to understand how
3D NAND can be used to implement the VbM multiplication.

3 Deep Neural Networks Based on NAND Flash Memories

In Chap. 2 we have seen what Neural Networks (NNs) are, how they work, and
a few examples of their practical applications. In essence, they mimic the human
brain by adopting a neuron/synapse architecture, which translates into being able
of performing parallel data processing. The first neuron implementation was the
Perceptron model in 1958 which is sketched in Fig. 13. This section describes a
hardware implementation of a perceptron-based neural network by using a NAND
Flash memory [21], of a Floating Gate (FG) type.

Each input xn represents a synapse and wnj is called the “synaptic weight”; to
continue with the analogy of the human brain, the synaptic weight is what our brain
remembers (i.e., we are talking about the “data” stored in the human brain because
of the learning process of everyone). After multiplying xn by wnj, all results are
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Fig. 13 Perceptron (artificial neuron) model. Adapted with permission from [21]. ©2020 IEEE

combined through the transfer function
∑

(which is essentially a simple sum, some-
times corrected by a number called “bias”). The result of these operations is then
filtered by the “activation function” F which produces the output oj.

At this point the challenge is how to map each component of a neural network to
the NAND architecture of a Flash memory and this is the subject of the following
section.

3.1 Conventional 3D NAND

The translation of Fig. 13 in the NAND domain is depicted in Fig. 14. Before making
a 1:1 comparison between Figs. 13 and 14 it is necessary to introduce another element
to the discussion. To bemore specific, input voltages Vgi are translated into “synaptic
currents” I ij by using the analog multiplier depicted in Fig. 15, which is made of two

Fig. 14 NAND-based Perceptron model. Adapted with permission from [21]. ©2020 IEEE
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Fig. 15 Circuit schematic of Synaptic Cell (SC) with biases and currents indicated. The concept
of the figure is based on the description provided in [21]

floating gate cells connected in a NAND fashion. For sake of simplicity, in the
following we’ll refer to the structure of Fig. 15 as a Synaptic Cell or SC.

BL and SL stand for BitLine and Source Line, respectively. FG transistors M2j

are intentionally biased in the triode region such that they can act as a resistor.
If we assume that the voltage applied to SL is ground, then we can write the

following:

V ′
gs1 j = Vgs1 − I1 j · Rds2 j (7)

For FG transistors of width W, length L, oxide capacitance Cox, and threshold
voltage Vth, the following equation holds true:

I1 j = μn · Cox

2
· W
L

· (
V ′
gs1 j − Vth1 j

)2
(8)

Therefore, by combining (7) and (8), it follows that

I1 j = μn · Cox

2
· W
L

· (
Vgs1 − I1 j ·Rds2 j − Vth1 j

)2
(9)

AsFG transistorM2j is kept in the triode region by design (Vbias2 andVth1j properly
set), its equivalent resistance value Rds2j can be written as

Rds2 j = Vds2 j

I1 j
≈ 1

k2 · (
Vbias2 − Vth2 j

) (10)

By substituting (10) in (9) and applying a simple math we can write that
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Fig. 16 Synaptic current Iij as a function of Vgi and Vthij . Adapted with permission from [21].
©2020 IEEE

I1 j ≈ k1 · k2
4k1

· (
Vgs1 − Vth1 j

) · (
Vbias2 − Vth2 j

)
(11)

which, in essence, is the transconductanceGm of the synaptic cell and can be written
as

I1 j ≈ Gm
(
Vgs1, Vth2 j

)|Vbias2,Vth1 j (12)

The relationship between I ij and Vgi as a function of the threshold voltage Vthij is
shown in Fig. 16.

Multiple NAND strings sharing the same bitline can be used to form a single
perceptron (Fig. 17); a 3D view of the corresponding schematic is given in Fig. 18.

Fig. 17 Transistor-level description of one perceptron
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Fig. 18 3D schematic of one perceptron implemented with NAND Flash. The concept of the figure
is based on the description provided in [21]

In a nutshell, all the currents flowing through the NAND strings are summed on the
bitline thanks to Kirchoff’s law and then converted into an output voltage by the
Sense Amplifier SA. Please note that in a conventional NAND architecture, only one
string is sensed per bitline (in other words, in a standard NAND, currents are not
summed).

As we speak, NAND chips, given the number of available NAND strings, can
implement more than 100 k perceptrons per chip, which is a remarkable result if
compared to a standard implementation by means of logic gates.

3.1.1 Conventional-NAND-Based Single Layer Perceptron

Let’s now get into the details of the implementation of the connections of multiple
neurons by referring to, for the sake of simplicity of the drawings, a single layer
neural network, as sketched in Fig. 19.

There are i neurons in the input layer and j neurons in the output layer. Input
voltages Vgi are applied to multiple synapses, each one with different weights as
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Fig. 19 Representation of a NAND-based neural network with multiple neurons (top) and the
corresponding weight matrix (bottom)

specified in the weight matrix. As usual, weights are computed offline during the
training phase [22].

Figure 19 can be translated into a NAND architecture by using bitlines and word-
lines as represented in Fig. 20. To be more specific, the input voltage Vg is applied
to a single wordline such that it is applied in parallel to multiple NAND strings. As a
result, each wordline implements a fully connected layer to a neuron of the previous
layer of the neural network.

We can go even further and map the implementation of Fig. 20 to a 3D NAND,
as shown in Fig. 21, where Blocki corresponds to a physical 3D NAND block.

A bird’s eye view of Fig. 21 is shown in Fig. 22, where all the basic elements, like
bitlines, wordlines, NAND blocks, and sense amplifiers are shown.
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Fig. 20 Transistor level representation of Fig. 19. Adaptedwith permission from [21]. ©2020 IEEE

Fig. 21 3DNAND implementation of Fig. 20. The concept of the figure is based on the description
provided in [21]

3.1.2 Conventional-NAND-Based Multi-Layer Perceptron

For real applications, a single layer perceptron is not good enough; neural networks
with multiple layers are required to meet the target accuracy and precision [23].
To implement a feed-forward architecture, each layer, between input and output, is
connected to another layer, as shown in Fig. 23. Layers sitting between input and
output layers are called “hidden”. To port Fig. 23 into the NAND domain, a multiple
iteration approach is required. Indeed, it is worth recalling the fact that the output
of each sense amplifier of a NAND device is digital in nature; therefore, it must be
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Fig. 22 3D NAND used to implement a single layer artificial neural network

Fig. 23 Artificial neural network with three hidden layers

translated back into the analog domain before being applied to the wordlines of the
following layer.

From a NAND perspective, Fig. 23 translates into Fig. 24. Multi-level NAND
devices (i.e., NAND storing more than one digital bit into the same physical cell)
contain digital-to-analog converters with fine granularity to reduce the width of the
threshold voltage distributions as much as possible. These circuits can be considered
as the enabling factor of the NAND-based multi-layer ANN. In Fig. 24 each gray
box represents a hidden layer. To make the ANN work, in the first iteration layer 1
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Fig. 24 NAND architecture to implement a multi-layer ANN

is red and then the corresponding (digital) output sitting inside the sense amplifier is
sent to the block performing the activation function.

At this point we are almost ready to start the second phase but, before going
there, it is necessary to translate back into the analog domain the output of the
activation function. As already mentioned, this can happen thanks to the digital-to-
analog converter normally used during both the reading and the programming phases
of a standard multi-level NAND. Once the analog voltage is available, phase 2 can
start, essentially repeating all the steps described for the first phase, but this time on
layer 2.

Assuming a 4 bit/cell NAND (QLC), currents can be converted with a 4-bit preci-
sion as sketched in Fig. 25. The activation function is applied in the digital domain,
by using a look-up-table (LUT); thanks to this approach, precision can be increased
up to 10 bits (this oversampling is necessary to have a good implementation of the
activation function). Of course, the output of the activation function has then to be
translated back into the analog domain to be applied to the wordlines of the next
ANN layer inside the Flash memory array.

3.2 3D NAND with Source-Line Read

The VbM multiplication can also be implemented by using a 3D NAND memory
where the read voltage VREAD is applied to the Source Line; a schematic representa-
tion of this 3D array is given in Fig. 26 [24].
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Fig. 25 Sigmoid activation functionwith QLCNAND.Adaptedwith permission from [21]. ©2020
IEEE

Fig. 26 3D NANDmemory array with Source-Line read. The concept of the figure is based on the
description provided in [24]

Let’s now review the biasing scheme when the VbM multiplication needs to take
place (Fig. 27). First, bitlines (BLs) are set at GND (ground), while the read voltage
VREAD is applied to source lines (SLs).VoltageVPASS is then used for all thewordlines
belonging to unselected layers. Like in a conventional NAND architecture, VPASS
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Fig. 27 Biasing scheme of Fig. 26 when the VbM multiplication takes place. The concept of the
figure is based on the description provided in [24]

needs to be high enough to make unselected cells ON independently from their
threshold voltage. Within the selected 3D layer, GND and VSEL are used; which one
to apply depends upon the input pattern.

As in the previous architecture, currents are summed on the bitline node, thus
implementing a weighted sum per column, as required by the VbM multiplication.
Analog-to-digital conversion is performed by the ADC converters placed at the end
of the bitlines.

It is worth highlighting the importance of choosing the right biasing conditions
as they directly influence the accuracy of the neural network. As already mentioned,
VPASS needs to make every cell conductive; in [24], VPASS is set to 8 V, while VSEL

is a value between 1 and 2.5 V.
Another aspect to be considered when designing the VbM multiplication is the

read latency, i.e., the time it takes to perform the analog operations within the NAND
array. Figure 28 sketches themain parasitic elements that need to be considered when
looking at electrical performances. Indeed, parasitics, resistors and capacitors, end
up slowing down the propagation of the signals. Therefore, the overall performance
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Fig. 28 Parasitics of a 3D NAND array. The concept of the figure is based on the description
provided in [24]

Fig. 29 Building block of a 3DNANDnvCIM. The concept of the figure is based on the description
provided in [25]

of a NAND chip is dictated by both the VbM parallelism and the speed of a single
VbMmultiplication, which is directly coupled to the physical implementation of the
3D memory array itself.

3.3 3D NAND with Independent Source Lines

Another architecture for performing the VbM multiplication has been proposed in
[25], namely the nvCIM architecture, which stands for non-volatile Computing-In-
Memory; this is again a 3DNAND based architecture, but this time with independent
Source Lines.
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Fig. 30 3D NAND nvCIM. The concept of the figure is based on the description provided in [25]

The schematic of nvCIM is sketched in Fig. 29. Bitline voltages VBLi are the
inputs to the VbM multiplication. Only a single 3D layer at a time is selected by
applying the same voltage Vg to every Vgi. The current flowing through the NAND
string is, as a matter of fact, the product of the input voltage by the conductance of
the selected memory cell. Currents are then summed at the source terminal of the
block and converted to a digital value by the sense amplifier SA. Please note that
the sense amplifier sitting at the end of the source line is the only additional element
compared to a conventional NAND architecture. As sketched in Fig. 30, one SA per
NAND block is required, which means that each block has its own source line.

Of course, because multiple blocks are available within a NAND die, multiple
VbM multiplications can be computed in parallel.

As we have seen in this section, there are multiple ways for leveraging a NAND
array when dealing with the VbMmultiplication. This is especially true if the NAND
architecture is coupled with a multi-level approach, i.e., the ability of storing more
bits inside the same physical cell; this aspect is key to enable the implementa-
tion of low power and, at the same time, precise artificial neural networks. All the
works mentioned above testify the effort of the scientific community to make neural
networks the next killing application for NAND Flash memories.
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Machine Learning for 3D NAND Flash
and Solid State Drives
Reliability/Performance Optimization

Cristian Zambelli , Rino Micheloni , and P. Olivo

Abstract Solid State Drives (SSDs) are the storage backbone of many applications
ranging from consumer electronics up to exa-scaled data centers (Zuolo in Proc IEEE
105:1589–1608, 2017). As such, the performances and reliability of SSDs should
be improved to reduce the Total Cost of Ownership of the system hosting the drive.
This activity requires a careful evaluation of those figures exposed by the integrated
storage medium, namely the 3D NAND Flash memory (Micheloni in Proc IEEE
105:1634–1649, 2017). However, as this non-volatile memory technology scales
and evolves, there is an ever-growing number of tuning knobs to leverage for such
assessments and optimizations. Machine learning has emerged as a viable solution in
many stages of this process. After introducing the reliability issues of the 3D NAND
Flash memories, this chapter shows both supervised and un-supervised machine
learning techniques used to identify homogeneous areas inside the Flash array, thus
enabling an optimization of the storage systemperformance throughErrorCorrection
Code (ECC) fine-tuning.Moreover, this chapter dealswith algorithms and techniques
for a pro-active reliabilitymanagement of SSDs utilized in a smartmonitoring system
being storage media agnostic. The last section of the chapter discusses the next
challenge for machine learning in the context of SSDs for enterprise applications,
namely the Computational Storage (CS) paradigm based on the co-integration of
Field Programable Gate Arrays (FPGAs) and storage devices.
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1 Introduction

Solid State Drives (SSDs) are the storage backbone of many applications ranging
from consumer electronics up to exa-scaled data centers [1]. The performance and
the reliability figures of an SSD should be improved to reduce the Total Cost of
Ownership of the system hosting the drive. This requires a careful evaluation of
those figures exposed by the integrated storage medium, namely the 3D NAND
Flash memory [2]. However, as this non-volatile memory technology scales and
evolves under many viewpoints, there is an ever-growing number of tuning knobs
to leverage for such assessments and optimizations. Machine learning emerged as a
viable solution in many stages of this process.

This chapter describes how some of the machine learning techniques discussed in
this book can be exploited either for the reliability characterization of the 3D NAND
Flash technology as a support for the development of system-level approaches to be
embodied in SSD controllers or as monitoring tools agnostic of the storage medium.
The Sect. 2 briefly introduces the reliability issues of the 3D NAND Flash memories
evidencing how the manufacturing process poses challenges in their assessment due
to the large intrinsic variability of the technology. The Sect. 3 shows different super-
vised and un-supervisedmachine learning techniques that are exploited to find homo-
geneous reliability spots in the memory to enhance the storage system performance
through Error Correction Codes (ECC) fine-tuning. In addition, we will discuss deep
learning methods to be coupled with the ECC engine embedded inside the SSD
and methods for variability-aware storage. In Sect. 4, there will be a presentation
of algorithms and techniques for pro-active reliability predictions of SSDs imple-
mented in a smart monitoring system being storage media agnostic, therefore not
directly addressing 3D NAND Flash. Finally, Sect. 5 discusses the foundation of the
machine learning frontiers for SSDs in enterprise applications, namely the Computa-
tional Storage (CS) paradigm based on the co-integration of Field Programable Gate
Arrays (FPGAs) and storage devices.

2 Reliability and Variability Issues of 3D NAND Flash

In the last decade, different 3D NAND Flash architectures [3–6] have been proposed
as the storage medium for multi terabits SSD applications. Despite the peculiarities
of each of them in terms of materials, cells’ array topological organization, and
peripheral circuitry placement strategies, there is always an important feature to
assess above all, namely their reliability. It is worth to say that the 3D NAND Flash
technology inherits all the issues that have been investigated in the past for its planar
counterpart, so the struggle to achieve a significantly high endurance, data retention,
and read disturb immunity to be qualified as a valid mass storage technology is still
there [7, 8]. In addition, since 3D devices (i.e., transistors) behavior must account for
some specific physical principles, there is to report either an exacerbation of issues
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which were partially solved in the past (like the cross-temperature phenomenon [9])
or radically new reliability threats (i.e., like the Temporary Read Errors) investigated
at product-level as in [10].

The paradigm changes in the manufacturing process (stepping from the litho-
intensive process, typical of planar Flash devices, to an etch-intensive one) produces
significant deviations from a perfect cylindrical structure that should represent the 3D
NAND Flash memory string. Diameter variations (unavoidable in all architectures
due to the high aspect ratio required for creating hundreds of stacked layers) coupled
with mechanical stress issues that can cause bows or twists (see Fig. 1), may easily
alter the memory characteristics. In [11], there is a report of how those variations in a
3DNAND Flash block change the reaction time to the voltage stimuli applied during
thememory operation due to the different resistance and capacitance exhibited by the
different layers. It is not difficult to speculate how this would affect reliability. Since
each layer will behave as an independent entity, there is an intrinsic complexity in
controlling the outcome or read, program, and erase operations, resulting in long term
degradation of the reliability metrics like endurance or retention. This phenomenon
is generally referred as layer-to-layer variability [12]. Storage systems like SSDs
would perceive this by experiencing a large difference in the number of corrupted
bits (i.e., fail bits) after a specific operation performed in different topological areas
of a 3D NAND Flash chip. As an example, let us assume that the memory in the SSD
has undergone endurance stress (i.e., repeated program and block erase operations):
besides the huge fail-bit count difference expected between different page types if the
memory adopts a multi-bit per cell paradigm (Triple Level Cell—TLC or Quadruple
Level Cell—QLC), there are topological regions more prone to errors than others.
The reliability in that region of the 3D NAND Flash block may even exceed the
correction capabilities of Error Correction Codes (ECC) engines integrated in the
SSD controller, thus resulting in potential data corruption [12]. This generic behavior
holds true for other issues of the 3D NAND Flash technology that were not deeply
investigated in planar technology, such as the cross-temperature [9].

Fig. 1 Example of process issues in the 3D NAND Flash fabrication that will affect layer-to-layer
variability and reliability. Reproduced with permission from [12]. © 2019 IEEE
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Fig. 2 Layers sensitivity to cross-temperature issues shown by the normalized fail bits count (FBC)
to the device worst-case in 3D NAND Flash memories. Reproduced with permission from [12]. ©
2019 IEEE

Figure 2 shows that a large layer-to-layer variation makes almost impossible
to identify a specific trend as a function of the layer position and, therefore, it is
very hard to tackle the reliability loss due to the cross-temperature effect by simple
algorithms. As a result, 3D NAND Flash vendors started to progressively introduce
a set of tweaking knobs directly in the memory chip that storage system designers
may leverage to countermeasure the variability and reliability issues induced by
manufacturing process criticalities [13, 14]. Among them, we report the possibility
to change the read voltages to track the shift of threshold voltage distributions induced
by endurance, retention or read disturb (known as the Moving Read Reference [15]),
modify the program, and erase strategies, and so on. All these aids can be exploited
by the Flash Signal Processing algorithms executed by the SSD controller, through its
custom hardware accelerators and associated firmware. However, the development
of the abovementioned algorithms requires a time-consuming characterization of
3D NAND silicon that generates a huge amount of data to analyze; the problem is
that, especially with hundreds of layers, sometimes it is very difficult to come up
with easy-to-implement algorithms because of the multitude of options to consider.
Machine learning has then emerged as a possible relief in this context.
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3 Machine Learning Techniques for 3D NAND Flash

The point in time where storage designers started to look at machine learning tech-
niques applied to 3DNANDFlashmemories was when the “judge-by-eye” approach
started to fail in the reliability management algorithms development process. The
many available ECC strategies [16] implemented in the SSD controller as well as
advanced read oversampling correction schemes [17] could not find a perfect fit
for every corner of the memory. As an example, solutions that are a best fit for
endurance stress would turn sub-optimal for retention stress. Even in the last nodes
of planar NAND Flash technology (i.e., mid-1X) the designers had to face, although
with a reduced effort, a similar challenge. Machine learning was then reported in
this context in seminal literature works like those in [18–20]. With the advent of 3D
NANDFlash technology andwith themomentum gained by the artificial intelligence
also in the storage community, there is a surge of interest in exploiting techniques
from unsupervised clustering up to neural networks for characterization data analysis
and prediction. In this section, we report few of them at work in some specific 3D
NAND Flash test conditions and with slightly different implementation goals (i.e.,
real-time predictions or off-line models’ development).

3.1 Unsupervised Learning (Clustering) for ECC
Optimization

The data clustering algorithm is a must-have in the unsupervised machine learning
toolbox to find homogeneous spots (i.e., clusters) in an ensemble of data representing
anobservable phenomenology.Thework in [21] applied this concept to the evaluation
of the endurance stress reliability in a TLC 3D NAND Flash off-the-shelf product.
The goal of the workwas to identifymemory regions in the chip that behave similarly
when tested with the same stress to develop a proper ECC strategy for each of those
regions. Indeed, balancing the implementation cost with the reliability/performance
trade-off exercised by the memory is an important task for advanced codes like the
Low-Density Parity-Check (LDPC) [22]. In Flash-based SSDs there is a demand
for very high code rates (i.e., the ratio between the user data and the codeword
data including parity bits), meaning a small overhead in parity bits but offering
less correction capability. On the other hand, while a low code rate could achieve a
significantly good correction capacity it imposes a severe user capacity waste that
increases the storage costs in turn [23].

The dataset used in the development of a clustering strategy according to [21]
consisted in readouts of all the topological memory locations. The data are the fail
bit counts retrieved on 4KB chunks, which is both theminimumunit read during tests
and the data size on which the ECC is expected to work in all the fail bits correction
activities. The characterization was performed on more than 800 different memory
blocks spread on different TLC 3D NAND Flash chips and manufacturing lots to
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account for the process-induced variability [12]. Analyzing such a large statistical
population obtained after the endurance stress allowed some speculations on the Bit
Error Rate (BER) sustainable by the ECC in one of the worst reliability corners for
the memory. The dataset was then used as input to a k-means clustering algorithm
[24], whose goal is to partition the dataset in k clusters of homogeneity. The algorithm
applied to endurance stress evidenced that unsupervised learning could find specific
regions of the memory with a similar BER, although not readily usable by an SSD
controller. It was found that the clustering procedure needs to be enhanced through a
semi-supervised approach in which some additional rules are considered, namely the
separation of different TLCpages and the grouping of all the data chunks composing a
TLCpage into a single cluster. This approach is also defined as constrained clustering,
whose result is shown in Fig. 3. Six different regions have been identified. A system
designer can then decide to allocate a proper ECC code (e.g., an LDPC) per region.
Without clustering, SSD controller vendors should develop correction algorithms
by considering the worst BER of the whole 3D NAND Flash chip, but such an
assumption would be extremely conservative and sacrifices a lot of user space in the
SSD. When data clustering is used instead, it is found that the ECC code rate can be
tailored per TLC page type and per cluster, materializing in 24% gain on the SSD
addressable space.

Fig. 3 Constrained clustering results on 3D-NANDflash. Six different clusters have been identified
in the 3D NAND Flash endurance characterization dataset. Reproduced with permission from [21].
© 2017 IEEE
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3.2 Supervised Learning for Pre-emptive Endurance
Prediction

The previous section discussed an off-line technique for LDPC optimization in the
context of the endurance failures. However, we must remind that the outcome of that
study was possible thanks to the access to a huge test population, which sometimes is
not feasible for SSD controller designers. In this context, the study in [25] proposes
to create a machine learning algorithm deployable in the firmware of SSDs that pre-
emptively predicts the endurance failures of the Flash memory by tracking the BER
worst-case regions during the lifetime of the drive, therefore achieving an on-line reli-
ability management methodology. This approach is based on a supervised learning
technique (chapter “Introduction to Machine Learning”), namely the Support Vector
Machine (SVM) [26]. The claim of [25] is to reduce the uncorrectable error rate
due to endurance failures by spreading the cycling across all memory blocks in a
better way than a simple wear-leveling algorithm [27]. A similar claim has been
proposed in [28], although other supervised learning techniques like Random Forest
(RF) and Logistic Regression (LR) have been implemented alongwith the SVM. The
ease of implementation of these machine learning techniques in any of the statisti-
cally capable data elaboration software and the consequent hardware porting on any
computing unit such as an embedded processor can envision the endurance prediction
for each block as a background task for the SSD, introducing thus minimal latency
overhead. All the research in the context of supervised learningmainly focuses on the
features of the dataset. Working with 3D NAND Flash characterization data usually
leads to a strongly unbalanced dataset. Indeed, testing a million of codewords in
which only ten are failing due to some criteria will provide altered accuracy metrics
of any statistical model. The models could have a 99.9% prediction accuracy since it
predicts only the passing codewords in an endurance test. As pointed out in [25], it is
important that models like SVM, Random Forest, etc., performs well also in sensi-
tivity and specificity metrics rather than only accuracy. The sensitivity is indicated
as a true positive rate (TPR) metric, whereas the specificity is the true negative rate
(TNR) metric. Those values can be calculated starting either from the proportion of
the codewords predicted to pass that effectively pass a test (TPR) or from the ratio
between failing codewords effectively predicted to fail. If we take the average of
the TPR and TNR metrics we can achieve a fair definition of the model accuracy.
To balance the sensitivity and the specificity there are several statistical techniques
mostly based on resampling [29] that makes possible to work on a balanced dataset.

An example of supervised learning application flow is reported in Fig. 4 from the
study in [28] related to planar NAND Flash technology. Here, machine learning
is applied to model memory cells suffering from Program Disturb (PD) due
to endurance stress. The idea is to predict those cells at a specific number of
Program/Erase cycles by using the knowledge base fromcells screened during former
endurance stress (i.e., prior Program/Erase cycles). Following a well-established
procedure, 70% of cells are used for training, and 30% is kept for model evaluation.
Three algorithms (LR, RF, and SVM) were evaluated reaching an initial accuracy
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Fig. 4 a Predict future PD-weak cells after further W/E cycling by machine learning. b Random
forest algorithm, c support vector machine algorithm. Reproduced with permission from [28]. ©
2016 IEEE

of 40%. Despite this result may seem discouraging, the study in [25] performed
on a similar technology shown that by applying both balanced sampling techniques
and including additional characterization metrics (e.g., program time, erase time,
etc.) it was possible to reach a prediction accuracy greater than 99% and a speci-
ficity/sensitivity between 98 and 99%. We can speculate that the modeling flow and
the results obtained with the planar technology can be reproduced with 3D NAND
Flash technology, although the higher intrinsic variability of the latter is a threat.

3.3 Artificial Neural Networks Applied to Adaptive-ECC

The 3D NAND Flash technology is not unique; different manufacturers use different
3D memory architectures and different materials (i.e., charge-trap or floating-gate)
in the storage layer [3, 6]. This originates differences in the error characteristics
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related to some peculiar phenomena like retention loss or read disturb. Nowadays,
having to deal with multiple 3D NAND technologies at the same time is common
inside data centers as they host storage platforms from different vendors. Therefore,
a wide variety of reliability challenges need to be addressed inside storage facilities.
For many 2D Flash generations, improving the error correction scheme has been the
solution to reliability problems, but this basic approach ran out of gas in 3D, especially
in high availability and responsivity scenarios. In [30], the authors proposed to solve
this complex issue bydeveloping anArtificialNeuralNetwork (ANN) engine coupled
with the ECC integrated in the storage controller. This solution relies on LDPC codes
and adaptively correct errors according to a trained error model of the memories
used for storage. Using an ANN rather than a supervised learning model like those
described in the previous sections of this chapter has different advantages in terms
of prediction accuracy, speed and area overhead as disclosed in [30]. An important
factor to consider when ANN are to be considered for deployment in storage systems
is the test cost advantage. In the traditionalmemory test flow, the correlations between
different topological parameters (e.g., wordline location, block number, die, etc.) and
error characteristics can be captured by extensive tests whose results are recorded in
huge look-up tables that increase in turn the storage costs [31].With ANN, there is an
initial price to pay for the hardware integration in the storage controller dedicated to
the real-time inference of the neural network and the cost of the external infrastructure
needed to train the network (generally GPUs), but when the network is deployed it
can be used for any 3D NAND Flash technology that populates the storage (chapter
“Introduction to Machine Learning”). Figure 5 shows the structure of the proposed
ANN [30]. During the training phase, the error characteristics of the memory under
test consists of a 4MB sized random sample (i.e., 4MBofmemory cells) taken across
the entire topological population of the memory (a 20 KB batch size is considered in
this proposal). In the first training batch, the ANN is fed through the input neurons
with parameters x1,…, xK , where the k parameters can be any significant information
to learn (e.g.,VTH state of thememory cells, TLCpage type,wordline and layer index,
etc.). A softmax (i.e., a mathematical function based on the logistic curve) is used as
activation function for the output of the network, which is labelled as y1 and y2 for the
“not error” and “error” probability. The synaptic weights of the network are updated
by a backpropagation algorithm that minimizes the average loss function calculated
on separate training batches as indicated in the Fig. 5. A total of 50 training epochs
is exploited in the process. Once the ANN is trained, it is then ready to be deployed
in the storage controller for the inference. The results claimed in [30] shows a 3D
NAND Flash lifetime extension up to 9.1 times in some working conditions like data
retention, proving the importance of neural networks in storage reliability prediction
and management.



142 C. Zambelli et al.

Fig. 5 Training of the proposed ANN (left). The proposed storage controller implements only the
inference of ANN to correct errors (right). Reproduced with permission from [30]. © 2019 IEEE

3.4 Artificial Neural Networks for Variability Modeling

The errors behavior in 3DNANDFlash, as already highlighted in this chapter, is prin-
cipally ascribed to the large technological variability of the manufacturing process.
Several limitations on the 3D structure of the memory devices and on the materials
integration [32] require the use ofmachine learningmethods to accuratelymodel their
reflection at higher abstraction levels. This step relies on the approaches described
in the previous sections. However, the system-level implementation complexity of
those methodologies can be decreased if there is the possibility to apply machine
learning methods to predict the technological variability sources since the produc-
tion phase of the memory chips. From several works in literature [33–35], we know
that those sources can be predicted by a simultaneous analysis of the fluctuations in
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physical process entities like poly-silicon channel defects, non-ideal taper angle of
the channel, poor channel critical dimension control, etc. State-of-the-art modeling
solutions are represented by extensive TCAD simulation campaigns that are both
computationally and resource expensive, therefore becoming prohibitive for mass
storage products analysis. In [36, 37], the authors proposed a new machine learning
approach that can be applied in pre-production steps for 3D NAND Flash devices
that achieves the same accuracy of TCAD simulations with a prediction error rate
lower than 1% and a promised computational cost reduction up to 80%. The approach
is based on a Multiple Input Multiple Output (MIMO) ANN whose input sources
are divided in two kinds: variability sources input data and constant parameter input
data. The variability sources input data correlates the variationmagnitude of a specific
source like defects, taper angle, and so on with the 3D NAND Flash device charac-
teristics, whereas the constant parameter input data are values defining the electrical
structure of the device (e.g., nitride thickness of the storage layer, filler oxide thick-
ness, etc.). An ANN with three hidden layers featuring 100 neurons per layer is
then trained based on this network topology. A ReLU activation function per layer
(chapter “Neural Networks and Deep Learning Fundamentals”) is considered to
prevent issues in the solution search for the model. The output of the neural network
is the predicted threshold voltage variation of the 3D NAND Flash cells (σV th), the
turn-on current variation of the Flash string (σ Ion), the sub-threshold slope variation
of the cells (σSS), and the trans-conductance variation (σgm) which is important to
estimate wear-out effects (this parameter is important to evaluate endurance stress
as an example). Figure 6 shows the outcome of the network in retrieving effect the
impact of the variations as function of the number of layers of 3D NAND flash
memory. The model is tested to show the impact of the taper angle of the channel
(related to the number of layers integrated) on the average value and on the standard
deviation of a distribution of 3D NAND Flash cells evaluated in terms of electrical
characteristic like those defined by the output neurons of the ANN. The results are
compared with state-of-the-art TCAD simulations and are proven to be correct.

3.5 Recurrent Neural Networks for ECC Soft-Decision Speed
Up

The 3D NAND flash memory suffers from a multitude of reliability issues that can
be interpreted, paraphrasing the telecommunication terminology, as non-stationary
noises in a communication channel that are difficult to be predicted. The knowledge of
those noises is important in the ECC development to reduce the errors occurrence and
therefore improve the channel (i.e., the memory) reliability. The data retention noise
is important to be estimated and eventually improved especially for SSDarchitectures
relying on Flashmemories since the data recovery process from a retention-corrupted
memory cell is a time-consuming and power-hungry task. Nowadays, LDPC are
the most popular error correction codes used inside SSDs thanks to their ability of



144 C. Zambelli et al.

Fig. 6 Variation of the mean and standard deviation of the distribution of the key electrical param-
eters as the number of stacked layers of 3-D NAND flash memory devices increases. Reproduced
with permission from [36]. © 2020 IEEE

handling high NAND raw BERs through soft-decision decoding (SD) at the cost
of a longer decoding latency [1]. The decoding performance of the SD operation
depends on the accuracy of the Log-Likelihood Ratio (LLR) of the channel coded
bits, considering the fact that reads performedat different voltages canprovide abetter
estimation of the LLR values. Let us take as an example a TLCNANDFlashmemory
storing three bits per cell. To read the data stored in a cell, its threshold voltage
is measured and compared against predefined reference (fixed) voltages inside the
memory sensing circuit. At least seven read thresholds are needed for a TLCmemory.
This will generate “hard” outputs of the 3D NAND Flash channel, but to generate
the LLR to support SD more read reference voltages should be used. In [38], it is
proposed a deep learning approach to dynamically assign the read reference voltages
for multi-level Flash memories. Although the work is based on planar technology, it
scales very well on the 3D counterpart. With such framework, all the noise source
on the memory channel that are unpredictable can be learned from the training data.
It is proposed a recurrent neural network (RNN)-based engine to effectively detect
the data stored in multi-level cells (fromMLC to QLC) without any prior knowledge
of the communication channel (i.e., the memory). This is important since it enables
the design of powerful ECC engines without a detailed knowledge of the 3D NAND
Flash reliability mechanisms. As describer in chapter “Neural Networks and Deep
Learning Fundamentals” of this book, the RNN is a class of NNs with feedback
connections. It is very suitable to model time series tasks through the memorization
of input sequences. In [38], the authors exploit the Gated Recurrent Unit (GRU)
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Fig. 7 (Left) RNN architecture with different layers exposed and (right) BER of the RNN detector
and RNNA dynamic threshold detector at retention time T = 104 h for different P/E cycles.
Reproduced with permission from [38]. © 2020 IEEE

RNN cell architecture since it employs a lower number of tunable parameters. The
network architecture is composed by two GRU layers and a fully connected output
layer as shown in Fig. 7. The activation function forGRU layers is the ReLU,whereas
for the output layer it is considered a smooth approximation of the ReLU called
softplus whose function is based on ln(1 + exp(x)). The RNN is trained with the
readback threshold voltages sensed by the memory cells that are generated by a
statistical model developed in [39]. In the simulations, the number of neurons in the
input layer is set to 50 and it is found that the optimal training set size considering
Adam optimizer and Xavier uniform initializer should be 3 × 106 3D NAND Flash
memory cells. For a generic LDPC code whose codeword size is 8000 bits, this
translates in 750 recovered codewords for training the RNN. To avoid the longer
read latency of an RNNmodel and the increased power consumption compared with
conventional threshold voltage detector applied to ECC, the authors also developed
an RNN-aided (RNNA) dynamic threshold detector that can be activated during
the idle times of SSDs and that enables the prediction of the SD levels to improve
the overall memory reliability. For a TLC memory, 7 read threshold levels {q1, …,
q7} need to be determined. With those discrimination levels we can obtain the hard
estimate of the channel while the RNN outputs its proper estimation. Therefore, the
adjusted discrimination thresholds {q1*,…, q7*} can be obtained by searching for the
thresholds that can minimize the Hamming distance between the two estimates. This
is a compute intensive procedure completely described in [38]. Figure 7 shows the
simulated BER performance using the RNN-based detector and the RNNA dynamic
threshold at a specific retention time and for different P/E cycles.
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4 Machine Learning for Solid State Drives Prognostics

For cloud providers business success is dependent upon the solution of a tough
constrained problem, which es requires the hardware resources cost minimization
while maximizing their use and reliability in shared or multi-tenant environments.
While the solution of such a problem can be found by setting different Service
Level Agreement (SLA) terms for computing, memory, and networking devices,
it is difficult to achieve the same for storage. The internal architecture of SSDs
and the peculiarity of the storage media integrated within, may cause dramatic SLA
violations due to either a badmanagement of the data input/output pipeline or specific
issues of the workload submitted to SSD that triggers early reliability failures [40].
For a storage designer it is difficult to directly access the internal architecture of
the drive; therefore, going to an higher abstraction level (i.e., algorithms handling
the data from/to the drive) is the only viable solution to improve the reliability and
the performance of the drive. The set of algorithms applied to these extents are also
labeled as prognostics tools.Machine learning emerged as a very promising candidate
in the prognostics context because it offers advanced techniques to improve latency,
throughput, reliability, and many other SSD’s parameters with a minimal system
overhead that does not compromise the defined SLA.

4.1 Machine Learning Assisted SSD Lifetime Enhancement

The SSD lifetime extension is achieved primarily by mitigating the endurance stress
of the drive caused by repeated data writes and erases. The host-based techniques
adopted to reduce the movement of data toward the SSD is known as compression
(i.e., reducing the data size by an algorithm that shrinks the original informative
content) and deduplication (i.e., an algorithm that reduces that probability to have
redundant yet duplicate data) [41]. The effectiveness of those techniques has been
proven in many data storage applications bringing an additional benefit related to
the increased storage capacity without requiring substantial modifications of the
applications and the file system hosted by the SSD. The entire systemmay even opti-
mize the compression or deduplication process being aware of the storage features,
as indicated in [42]. However, using data compress and deduplication still poses
some challenges on SSD performance and reliability. Indeed, both operations are
not immune from errors (there is a probability that algorithms poorly perform or fail
due to hardware or firmware implementation) and require time for calculations and
effective data manipulation. The storage, per se, receives few information from the
host during the I/O: the data to store and the block address range where data should
be saved. In this case, there is no context-related information to avoid the compu-
tation overhead on compressing files that are already compressed or use tailored
algorithms according to the file typology. One may envision a dedicated hardware
accelerator to reduce the computation overhead by offloading the compression or the
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deduplication on specific engines, but this results in additional hardware integration
and increases, in turn, the cost of the SSD. Indeed, we must remind that compression
and deduplication are two distinct operations at the system-level, thus translating
in a two-step writing process within the storage. To this extent, in [41] it has been
presented a machine learning assisted technique for data reduction called Peniseve
that can be implemented as a middleware between storage and host. Pensieve is
intended as a low-overhead algorithm that is executed directly on the idle CPUs
inside the SSD controller. Its architecture is presented in Fig. 8. The interaction with
the CPU of the host occurs through a state-of-the-art I/O interface and the Flash
Translation Layer is executed by the SSD controller. The components of Pensieve
are a classifier that categorizes the incoming data from host into a specific compres-
sion class, a set of dictionary files each one belonging to a proper compression class,
and the compression/decompression engines assisted by the dictionaries. When the
host issues a write command to the SSD through the I/O communication interface,
Pensieve looks over a small portion of the dataset and based on that it decides whether
it requires a compression or not. This saves computation resources from the SSD
controller perspective, relieving the CPUs of this component from such task and
giving more time for other background operations like Garbage Collection, Wear
Leveling, etc. If the dataset to write must be compressed, then Pensieve decides
which compression class and dictionary must adopt and so it starts the operation.

Fig. 8 The system architecture of Pensieve machine learning based compression. Reproduced with
permission from [41]. © 2019 IEEE
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Since the dictionary information is required in the decompression stage, such tip
needs to be included in the metadata associated to the mapping table used to locate
the written data correctly. The classifier of Pensieve has been trained on 800,000
files with different sizes and type. The machine learning algorithms evaluated for
this classification task ranged from Random Forest, Support Vector Machines, and
Boosted Trees. The algorithms were chosen to be easily implementable on general
purpose CPUs in modern SSD controllers, while providing high classification accu-
racy and low computation overhead. The best result was achieved by the Random
Forest implementation with 87.16% accuracy and a computation latency of about
13 µs. This result is obtained by setting the amount of data required for prediction
down to 512 bytes, so that the compression operation can be started in early phase
and the latency of this operation can be hidden through buffering and multitasking,
thus exploiting at full the SSD internal architecture. Overall, Pensieve reduces the
number of writes to the SSD by 19%with aminimal overhead in the drive’s operation
latency. Although deduplication is not touched by the work in [41], it is speculated
that, while standard approaches keep compression and deduplication separate, the
Pensieve’s approach inherently achieves some sort of data deduplication through
compression, even though not with the same results of a dedicated algorithm.

4.2 Echo State Networks for Hot Data Prediction in SSDs

With both 3D and planar NANDFlash technologies it is not possible to do an in-place
update operation; therefore, each timewewant tomodify the stored data, we can only
proceed with a newwrite operation. This comes at a price of a reduced lifespan of the
memorymodule and therefore of the SSD integrating these devices. The Flash Trans-
lation Layer (FTL) running inside SSD controllers is exaclty designed to take care of
the above-mentioned issue, by means of two firmware modules: Garbage Collection
(GC) and Wear Levelling (WL) [43]. The former is responsible for reclaiming the
storage space occupied by invalid or old data to accommodate potentially updated or
newdata; the latter sends frequentlywritten data (a.k.a. hot data) to blocks that experi-
enced a low endurance stress (i.e., less program/erase cycles) while it dispatches least
recently accessed data (a.k.a. the cold data) to blocks that already sustained higher
wear-out (i.e., more program/erase cycles). Both GC and WL must work together to
produce the best outcome at the drive level. With the above considerations in mind,
the identification of the blocks storing hot and cold data is mandatory to extend the
endurance of theNANDFlash and, therefore, of the SSD itself. TheHotData Identifi-
cation (HDI) process uses a large statistical characterization of the workload (i.e., the
application and the characteristics file systemmounted on the drive) submitted to the
SSD [44]. The literature provides examples related to HDI procedures based on the
SSD access behavior characterization and on stochastic models [45–47]. However, it
is found that the identification of the hot blocks in a workload is a time-variant task,
complicating those algorithms profoundly.Motivated by this issue, in [48] it has been
proposed for the first time the use of an innovative machine learning tool based on
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Fig. 9 The structure of an Echo State Network. Reproduced with permission from [48]. © 2020
IEEE

the reservoir computing concept, namely the Echo State Network (ESN). An ESN,
as shown in Fig. 9, is a neural network including an input layer, a hidden layer made
by recurrent connected neurons (this is also called the dynamic reservoir), and a
connected output layer. As highlighted by the figure, the input layer is connected to
the reservoir layer via the weights W in. The dynamic reservoir has internal weights
W and is connected to the output layer through output weights Wout. Then there is
a feedback structure of the output in reservoir through feedback weightsWback. The
property that makes the difference between an ESN and a RNN approach lies exactly
on the reservoir concept. In RNN, the training is achieved by minimizing the mean
square error of the model during the learning of the input and of the output weights.
TheESNneeds to learn only theweights of the neurons in the reservoir.Using a neural
network for the hot block prediction task turns the HDI problem into a HDP (Hot
Data Prediction) one, avoiding then the issues related to a prior characterization of
the workload sustained by the SSD and achieving real-time hot/cold data separation.
It is worth to point out that the method of [48] is orthogonal to state-of-the-art HDI
algorithms already present in most of the Flash Translation Layer firmware, since
those HDI systems can be augmented by the information mined by the HDP based
on the ESN. The methodology developed in [48] has been tested on an SSD proto-
type developed in a lab environment that has been stressed with different workloads.
Among them, we point out an On-Line Transaction Processing (OLTP) either write-
intensive or read-intensive, and a write-intensive workload mimicking an industrial
environment. The advantages shown by the ESN-HDP are many. A reduced energy
consumption by 3.4% is achieved with respect to HDI algorithms since less write
operations are triggered on the NAND Flash memories integrated in the SSD. The
number of block erase operations triggered by the GC is reduced by almost 1,000
times since less data updates operations are to be invoked. The average response time
of the drive, critical parameter in SSD especially for the Quality-of-Service (QoS)
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concept, is reduced by 10 to 30 µs. The disadvantages of this kind of approach are
mainly on the complexity of the training procedure, which requires an appropriate
smart methodology named Swarm Particle Optimization (SPO) to be implemented
by the user to find the best reservoir characteristics (e.g., number of neurons, scaling
coefficient, etc.) just to avoid the uncertainty and the inconvenience of setting those
parameters by hand. Another factor to account for is the RAM occupation when the
ESN is deployed in an SSD controller, although it has been shown by the authors in
[48] that this overhead can be comparable with other HDI approaches presented in
literature.

5 Computational Storage and Machine Learning

The computing and the storage requirements of conventional server architectures that
populate today’s exa-scale computing domain are rapidly hitting the performance
limits of CPUs, GPUs, and SSDs. A major issue that system developers are trying
to solve is related to the drop of that metric due to the perceived incommunicability
of the computing and the storage world. In fact, the storage comes into play only
when the computation already took place or just before the start of some calculations,
so the data needs to bounce frequently from SSDs to CPUs and GPUs with evident
drawbacks onperformance, power consumption andQoS.Tobe said, the computation
does not take place where data actually belong (i.e., the storage). Data-intensive
applications like high performance computing (HPC), machine learning and artificial
intelligence (ML & AI), online databases and many others suffer from this sort of
domain separation between computing and storage. To this extent, the computational
storage (CS) paradigm has been proposed to the research community [49]. The CS
seeks not only an off-load of some computing tasks directly in the storage, but also
an overall performance acceleration, reduced power consumption, and reliability
control at different levels. It is worth tomention that CS can be achievedwithmultiple
architectures and paradigms that could involve the single 3D NAND Flash device or
the entire SSD element [50]. What is required for its implementation is the enabling
element that interconnects through a fabric the computing and the storage elements,
that in enterprise environments is generally represented by the PCIe protocol [51],
as shown in Fig. 10 where a CS architecture is proposed from [52]. With the CS
approach it is possible to bring machine learning directly in the storage element with
benefits that could never be possible with the traditional infrastructures.

5.1 The Computational Approximate Storage Concept

As said in the introduction of this section, in some machine learning (ML) applica-
tions like those for image or speech recognition, it would be beneficial to leverage on
a CS environment. In [53], it is proposed a slight variation of the CS by introducing
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Fig. 10 Schematic of the data transfers between anSSDandaneural network computing accelerator
in a CS environment. Reproduced with permission from [52]. © 2019 IEEE

the Computational Approximate Storage (CAS) concept shown in Fig. 11. The CAS,
similarly, to CS, proposes to offload the computation of the data manipulation tasks
like multiplications and accumulate (i.e., the principal operations performed in the
machine learning applications) from CPUs and GPUs directly to storage, thus mini-
mizing the data bounce. The innovation here is to exploit the resiliency to errors of
theMachine Learning algorithms by introducing the approximate computing concept
[54]. Being tolerant with respect to the memory errors exposed by the 3D NAND
Flash technology, the core of the storage element (i.e., SSD), power consumption
and performance metrics are improved. However, if machine learning recognition
tasks are performed directly on memory, the number of errors can be excessive in
some working conditions and drastically impact the outcome of the process. Neural
networks indeed have a BER limit of the inputs under which it is impossible to make
them work to a reasonable extent. Knowing this, to keep the memory errors under
control and thus enable the CAS paradigm, it is proposed a Neural Network-based
Memory Error Patrol (MEP) directly applied to the 3D-TLC NAND flash memo-
ries in the storage. Through a prediction of the error patterns and of the threshold
voltage shifts in the memory cells due to endurance, retention, or read disturb stress,
it is possible to choose which error reduction operation (e.g., read reference shift,
soft decoding, etc.) is best for reducing the errors amount. The MEP engine in [53]
is implemented in the memory controller which is stacked over the Flash memory
modules to save integration area and increase computational speed. The role of the
MEP is split into two different units: a State Shift Error Prediction (SSEP) unit and
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Fig. 11 Concept of proposed computational approximate storage (CAS). Error patrol is needed to
achieve high performance by acceptable reliability loss. Reproduced with permission from [53]. ©
2020 IEEE

an Error Data Pattern Prediction (EDPP) unit. The former unit is responsible for
the prediction of the error’s location and magnitude. Prediction is achieved through
three distinct neural networks acting on different dimensions (i.e., memory Block,
single page, or Flash string). The training of the SSEP is intended to be performed
during the 3D NAND Flash qualification test flow, which follows the manufacturing
process; it takes about 50 Mbytes of training data related to the threshold voltage
shift of the cells under test, measured under different conditions of endurance stress,
retention, and so on. Remarkably good results are obtained by predicting thememory
BER with 2.6% errors even when affected by inter-chip variations. The EDPP unit
is on the contrary a simpler unit. It is made by a single neural network that guesses
the physical origin of the errors including the information for neighbor pages. By
combining both SSEP and EDPP, the 3D NAND Flash error rate can be successfully
monitored, and the computational approximate storage is realized.

5.2 A Neural Network Engine Example in Computational
Storage

Inside SSD drives, there is a complex system of algorithms devoted to monitor and
manage the reliability of the storage medium; in essence, a very tight collabora-
tion between Flash memories and the brain of the storage device, namely the SSD
controller. Throughout the whole SSD lifetime, especially during idle times, here is a
set of operations that the controller performs to guarantee a high intrinsic reliability
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level by tuning the 3D NAND Flash memories read reference voltages which, in
the end, are required to retrieve the stored information from the SSD. The above-
mentioned voltage tuning is also known as read-retry or VT-shift [1]. Up to now, this
algorithm has been implemented in the SSD controller firmware by a set of dedicated
look-up tables stored in the controller memory that associates the optimal read retry
operation or VT-shift to each read reference voltage of each 3D NAND Flash (or a
portion of thereof) at a peculiar SSD lifetime point. With the increased complexity
of 3D Flash memories this approach is starting to run out of gas. The idea presented
in [52] is to off-load the execution of this voltage tuning from the SSD controller
to a Field-Programmable Gate Array (FPGA)-based neural network accelerator that
embraces the computational storage paradigm. This can be achieved through direct
communication between storage and accelerator computing elements using the PCIe
interconnection fabric, as shown in Fig. 12. The key contribution of [52] is a design
of a combined feed-forward regression artificial neural network (ANN) and of a non-
linear auto-regressive with exogenous input (NARX) ANN that predict the optimal
read reference voltages to maximize the 3D NAND Flash lifetime, and thus the
SSD reliability/performance. The regression ANN is a single hidden layer network
whose size is 8 × 10 × 1. The activation function is a symmetric saturating linear
transfer function for both hidden and output layers. The eight input neurons represent
topological information of the NAND Flash and the read reference voltages at the
beginning of the memory lifetime. The NARXANN has the only function to predict,
through a time-series analysis of the temperature readings of the SSD, what will be
the temperature of the drive in the upcoming data readout and this information is
used as an input to the regression ANN. The prototype of the accelerator has been

Fig. 12 Computational storage architecture based on PCIe interconnection fabric schematic. The
proposed FPGA-based neural network accelerator is highlighted. Reproducedwith permission from
[52]. © 2019 IEEE
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developed on a Xilinx VC707 FPGA demonstrating a very high prediction accu-
racy (up to 99.5%) of the read reference voltages under different working conditions
and a low resource utilization (less than 10% of the FPGA) making room for the
implementation of additional algorithms or accelerators based on the CS paradigm.

6 Conclusions

In this chapter, we provided an overview of themachine learning techniques explored
in improving the reliability and the performance of Solid State Drives based on
the 3D NAND Flash storage medium. State of the art supervised and unsupervised
techniques like clustering are applied for Error Correction Codes optimization to
improve the drive resilience against endurance and retention errors typical of the
Flash technology. Advanced approaches like deep learning methodologies based on
different neural network architectures are exploited in coping with large reliability
and performance variability issues. Finally, the use of these techniques is shown in
the context of the Computational Storage Paradigm to prove the large benefits in
adopting such architectures. All the presented methodologies are based on training
and testing procedures that require large datasets populated with device and system-
level characterizations performed in many usage corners both of the storage media
and of the drive.
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