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Chapter 12
Robotic Tree Fruit Harvesting: Status, 
Challenges, and Prosperities

Long He, Azlan Zahid, and Md Sultan Mahmud

12.1  Introduction

Up to today, majority of tree fruit crop production operations highly depend on 
seasonal human labor. Many critical activities are not only labor-intensive, but also 
highly time-sensitive. With the increasing concerns on the labor shortage and asso-
ciated high labor cost, harvesting as the most labor-intensive operation in tree fruit 
production has been attracting more and more attention. Improving harvesting effi-
ciency and reducing the dependence on human workers have been the major motiva-
tion for developing new harvesting technologies. In recent decades, automation 
technologies, especially the auto-guidance for field tractors have been investigated 
widely. However, for specialty crops including tree fruit crops, the application of 
automatic technologies has lagged due to the complexity of field operations and 
inconsistency of crop systems. Three different harvesting technologies have been 
investigated in tree fruit harvesting, including harvest assist platform, massive 
mechanical harvesting, and robotic harvesting. Harvest assist platforms have sig-
nificant improvement in harvesting efficiency (Schupp et al., 2011; Zhang et al., 
2016), while large amount of human labor is still needed. Mechanical harvesting 
based on the shake-and-catch concept to conduct massive but non-selective harvest-
ing led to higher harvesting efficiency but may cause more bruise to the fruits (He 
et al., 2017; Ma et al., 2018). Robotic harvesting as a selective harvesting method is 
showing potential of replacing human hand picking (Silwal et al., 2016; Hohimer 
et al., 2019). Two major components with robotic harvesting are fruit detection with 
machine vision system and fruit picking with robotic maneuvering mechanisms and 
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arms. Tree architecture is another core factor relating to the canopy–robot interac-
tion. With the adoption of narrow tree canopy system especially two-dimensional 
trellis trained tree systems, robotic harvesting technologies showed more promising 
compared to the traditional trees. The interaction between harvester and tree canopy 
requires optimal path planning to avoid obstacles to reach the targeted fruits.

12.2  Tree Fruit Industry and Current Challenges

12.2.1  Overview of Tree Fruit Industry in USA

The tree fruit industry is an important component of the nation’s agricultural sector 
that contributes about 25% of the market share ($18 billion) among all specialty 
crops produced in USA (USDA-ERS, 2018). Production of major tree fruits in USA 
is shown in Fig. 12.1. Citrus fruits are the top fruit crops in world trade in terms of 
highest worth (FAOSTAT, 2016), are one of the most famous fruit commodities 
widely accepted for their flavor and nutritional facts. Fresh and processed (e.g., 
mainly juice) are the two major markets of the US citrus fruits. The fruits mainly 
used for fresh consumption are grown in California, Arizona, and Texas, where 
Florida covers almost the entire processed citrus fruit market for orange juice. 
California produced about 51% of total citrus fruits in the USA in 2018–2019 sea-
son where Florida accounted for 44% of the total production and remaining 5% 
shared by Texas and Arizona (USDA-NASS, 2019a). A total of 7.94 million tons of 
citrus fruits (valued $3.35 billion) produced in 2018–2019 was 31% higher than 
2017–2018 season (USDA-NASS, 2019a). Apples are the second most produced 
fruits after orange and most valuable fruit crops in the USA. Apples are commer-
cially grown in 32 states, but Washington is by far the largest producer accounting 
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for 70% of the total apple production. New  York, Michigan, Pennsylvania, and 
California are the next four top producers producing a significant amount of apples 
every year (U.S. Apple Association, 2018). Nearly 7500 growers produced around 
4.95 million tons of apple (valued $3.01 billion) on an approximated 130.3 hectare 
of land in 2018–2019 (USDA-NASS, 2019b). Conversely, pears are mainly grown 
in six states of USA including California, Michigan, New  York, Oregon, 
Pennsylvania, and Washington. Of these states, California, Oregon, and Washington 
are producing majority of the pear production every year. Pears contributed $429 
million to the economy by producing a total production of 0.8 million tons in 
2018–2019 season (USDA-NASS, 2019b). Peaches are the fourth most produced 
tree fruits in the USA, producing 0.64 million tons in 2018–2019 which is valued 
$511 million. Peaches are commercially grown in 20 states where California is the 
largest producer and supplied about 56% of the US fresh peach fruit and nearly 96% 
of processed peaches (USDA-NASS, 2018). Other top producing states are South 
Carolina, Georgia, and new Jersey. Contrarily, almost 90% of sweet cherry mainly 
produced in three states (i.e., Washington, California, and Oregon) and 74% of tart 
cherry produced by Michigan alone (USDA-NASS, 2018). The US cherry growers 
produced a total of 0.34 million tons of sweet cherry (valued $638 million) and 0.15 
million tons of tart cherry ($57 million) in 2018–2019 (USDA-NASS, 2019b). 
Despite the significant increasing of production for tree fruits in the past decade 
because of the proper orchard managements, the fruit industry in USA is facing 
tremendous challenges due to high dependency on farm labors resulting increasing 
costs of production (Fennimore & Doohan, 2008; Calvin & Martin, 2010).

Among the costs associated with production of tree fruits, the harvesting opera-
tion (e.g., only picking and hauling) itself is accounting for 11–26% of the total 
production costs. Cost of harvesting is varying from one fruit to another and also 
depends on the size of the fruit orchards. Citrus fruits such as orange are costing for 
$926 per acre for only fruit picking and hauling which is about 11% of the total 
production cost (University of California Cooperative Extension, 2015). Conversely, 
the picking and hauling cost for apple is much higher than citrus fruits accounting 
for 26% of the total production cost where the harvesting cost is $1320 per acre 
(University of California Cooperative Extension, 2014). Similar to apple harvesting 
cost, peach requires $1339 for picking and hand sorting of one acre orchard 
(University of California Agriculture and Natural Resources Cooperative Extension, 
2017a, b). Conversely, pear fruit accounts for $1780–$1969 per acre which is about 
20–25% of total production cost (University of California Agriculture and Natural 
Resources Cooperative Extension, 2018). Aside from citrus, apple, peach, and pear, 
cherry fruit accounts for $720–$960 per acre for picking by using hand (University 
of California Agriculture and Natural Resources Cooperative Extension, 2017a, b).
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12.2.2  Challenges and Opportunities for Fruit Harvesting

Harvesting of tree fruits (i.e., apples, citrus, cherries, peaches, and pears) is the pro-
cess of gathering a ripe fruit from the orchards which highly depends on labor work-
force and is becoming less feasible due to the decreasing trend of farm labor in 
agriculture with increasing cost of production. Although a rapid development in 
agricultural automation has been progressed in the twentieth century, tree fruit har-
vesting is still largely dependent on manual labor due to lack of efficient and effec-
tive harvesting methods. Most of the developments reported in the last few years are 
in prototype phase and not fully feasible to the large scale orchard condition due to 
lower efficacy and efficiency, unreliable performance, and high cost (Zhao et al., 
2016). Among the tree fruits, the apple industry alone is accounting for $1150–
$1700 per acre for manual harvesting (e.g., handpicked) by seasonal labors (Gallardo 
et al., 2010). Therefore, a large number of seasonal workers is required every year 
for only tree fruit harvesting considered as the top labor-intensive task in orchard 
management. Fruit growers of Washington State utilized about 36,425 seasonal 
labors in the peak harvesting month (i.e., September) for only apple harvesting 
(Washington State Employment Security Department, 2013), accounting for one- 
third of the annual variable costs combining tree pruning and thinning (Gallardo 
et al., 2010). Conversely, increasing demand for seasonal workforce in fruit indus-
tries is pretending the high uncertainty of the farm labor availability in the near 
future (Calvin & Martin, 2010). Tree fruit industries in the USA are hiring a major 
portion of seasonal labors from migrant Latino populations which is also following 
decreasing trend in the past few years (Gonzalez-Barrera, 2015) gaining serious 
concern of fruit growers for harvesting in the upcoming years. Contrarily, most of 
the tree fruits are picked by hand of farm labors using a ladder and bag that pose a 
high risk of back strain and musculoskeletal injuries because of hand lifting, repeti-
tive hand actions, and awkward postures while picking fruits (Fathallah, 2010). The 
main reason for the musculoskeletal injury is ascending and descending of ladders 
with heavy loads. Ladder-caused injuries accounted for about $21 million compen-
sation in the year between 1996 and 2001, which was 50% of all compensations 
claimed in the fruit industry of Washington State over the time frame (Hofmann 
et al., 2006). Considering labor injury issues during fruit picking at high locations, 
labor assist systems (i.e., mechanical platforms) were commercialized that help the 
pickers by raising up and by raising the bins close to them; however, adoption of 
these technologies is not widespread among tree fruits growers in the USA 
(Robinson et  al., 2013). A total of nearly 11% fruit growers utilized mechanical 
labor support systems for harvesting operation in Washington State (Gallardo & 
Brady, 2015). Contrariness between the mechanical labor assisted systems and the 
previous orchard design and tree architecture was referred to as the most noteworthy 
obstacle to their utilization and brought a significant compatibility problem in the 
tree fruits harvesting (Duraj et al., 2010). To address the challenges associated with 
labor shortage, risk of labor injuries, limitation of labor assisted systems, and also 
to reduce the harvesting cost and saving time, the development and application of 
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automatic or robotic harvesting is utmost importance and essential considering 
innovations in developing advanced sensors, horticultural advancement, and evalu-
ation of mechanical technologies in the past decades. Figure  12.2 illustrates the 
evaluation of tree fruit harvesting methods from manual picking to robotic 
harvesting.

12.3  Overview of Robotic Harvesting Technologies

Beside robotic harvesting, using harvest assist platforms for harvesting tree fruits 
can be back to the 1990s. Peterson and Miller (1996) developed a harvest aid by 
placing two pickers strategically under a tree canopy, whose primary task was to 
pick and drop apples onto a padded catching surface. The machine was modified for 
narrow inclined trellises that allowed pickers’ free movement to optimize their pick-
ing time, field tests demonstrated the potential to improve worker productivity up to 
22% and effectively remove culls in the orchard (Peterson & Bennedsen, 2005). 
However, apple damage incidence was unacceptably high, requiring refinements on 
the handling components.

Vibratory or shaking is the most widely used mechanical harvesting method to 
transmit kinetic energy to fruiting branches, thus to generate a detaching force on 
the fruit–stem interface and removes fruit from the tree (Erdoğan et  al., 2003). 
During shaking, a tree will respond differently to different excitation frequencies 
and amplitudes and fruit removal occurs when the induced detachment force 
exceeds the pedicel fruit tensile strength (Markwardt et al., 1964). Upadhyaya et al. 
(1981) studied a single degree of freedom model to describe the response of a tree 
to impact input and found that 50–60% of the mechanical energy was converted to 
kinetic energy when impact excitation was used. Savary et al. (2010) developed a 
simulation tool for predicting the interaction between a tree and the shaker using 
finite element analysis. Experimental results revealed that the resultant acceleration 
of the tree would increase with the increase of shaking frequency. Du et al. (2012) 
conducted a series of dynamic tests to find the energy responses of a sweet cherry 

Fig. 12.2 Illustration of the evaluation of tree fruit harvesting methods, from left to right are: 
manual picking, harvest assist platform, mechanical shake-and-catch, and robotic harvesting
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tree to vibratory excitations in both laboratory and orchard environments. They 
found that the energy delivery efficiency and its distribution pattern were heavily 
related to tree structure. Recently, a localized multi-layer shake-and-catch harvest-
ing system was developed and tested in the apple orchards, which found the possi-
blility of reducing mechanical-induced damage to the fruits (He et al., 2019). While 
mechanical harvesting is non-selective harvesting and more precise harvesting 
should be applied, such as robotic harvesting.

12.3.1  Concept of Robotic Harvesting

The use of robots in tree fruit production is primarily associated with decreasing 
labor availability and increasing associated costs. An agricultural robot can be 
defined as an integration of sensing, computing, and manipulation systems to exe-
cute pre-defined tasks including thinning, pruning, and harvesting (Kondo & Ting, 
1998). In the production cycle of the tree fruits, harvesting is the most labor- 
intensive operation. As fruit harvesting is time sensitive operation, a large seasonal 
workforce of skilled labor is required, which is a concern for the fruit growers due 
to decrease in the labor availability. In addition, the harvesting labor accounts for 
the significant portion of the variable production cost. Thus, robotic harvesting is an 
alternate solution to address the issue of labor availability and associated costs and 
timeliness. The robotic harvester can be classified into two categories: bulk (mass) 
harvesting and selective (ripe/ready) harvesting. The selective harvesting in which 
only harvesting the ripened fruits received more attention from the researchers. As 
a result, several robotic tree fruit harvesting systems have been developed for har-
vesting various types of fruits including apples (Silwal et al., 2016), citrus (Mehta 
& Burks, 2014), and cherries (Tanigaki et al., 2008), but no commercial success has 
been achieved yet. With the recent advances in sensing, controlling, and computing 
capabilities, the robotic tree fruit harvesting is becoming a possible long-term tech-
nology to ensure the sustainability of the tree fruit industry. In this section, a general 
overview of the different components along with some recent efforts for developing 
an integrated robotic system for tree fruit harvesting is presented, followed by 
detailed discussion on the core technologies in the next section (Fig. 12.3).

12.3.2  Robotic Harvesting Review

In recent years, many researchers have worked on development of integrated robotic 
harvesting system for different tree fruits including apples, citrus, litchi, and cherry. 
However, these robotic systems are still in the development phase. A universal 
robotic system may not be feasible for different tree fruits as the harvesting princi-
ples vary for different fruits due to the challenging features, e.g., canopy character-
istics, and fruit attributes such as size, shape, and weight. Different robotic systems 
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were developed implementing various combinations of integrating different types 
of sensing systems with different types of manipulators and end-effectors to facili-
tate the robotic harvesting for tree fruits. Among the high valued tree fruits, the 
robotic harvesting of apple has gained more attention. Figure 12.4 shows three dif-
ferent types of apple robotic harvesting systems. The modern tree canopy architec-
ture for apple orchards such as trellis fruiting wall, v-trellis, and tall spindle makes 
most of the fruit visible and accessible from outside, has encouraged researchers for 
automated apple harvesting. The features of apple fruit including shape, size, color 
(esp. red varieties) are easier to detect and the other attributes such as hard nature of 
apple fruits help robotic harvesting as the end-effector could pick it without damag-
ing/bruising. An apple harvesting robot was developed by Silwal et al. (2016) using 
a seven DoF robotic system integrated with a three tandem fingers gripper end- 
effector and over-the-row time of flight-based color camera. For establishing the 
controls, the developed system used the global view system to take the images at the 
start of each harvesting cycle. The developed system was able to detect 90–100% of 
the fruits; however, the harvesting/picking success was 84% with an average speed 

Fig. 12.3 Illustration of 
the Integrated Robotic Tree 
Fruit Harvester (Apple). 
Components: (1) 
manipulator, (2) camera 
vision system, and (3) 
end-effector tool (gripper)

Fig. 12.4 Example of three robotic apple picking systems. From left to right: FFRobotics (multi- 
layer linear motion with three-finger gripper), Abundant Robotics (parallel robotic arm with vac-
uum gripper), and Washington State university (serial robotic arm with three finger gripper)
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of 6.1 s per fruit. Onishi et al. (2019) developed a robotic apple harvester using deep 
learning for fruit detection. The system comprised of a six DoF robotic arm inte-
grated with a stereo camera and gripper end-effector. The system was able to detect 
90% of the fruits with average harvesting cycle time of 16 s per fruit. However, the 
gripper made four turns to twist break the peduncle, resulting in higher harvesting 
time. Another apple harvesting robot developed by Baeten et al. (2008) consists of 
a six DoF manipulator integrated with soft gripper end-effector (vacuum operated) 
having the camera attached in the center (hand-in-eye configuration). The fruit 
detection accuracy was 80% (diameter range 6–11  cm) and average harvesting 
speed was 9 s per fruit. However, a better sensing of the environment is essential to 
avoid the contact of the soft gripper with the sharp limbs. Also, the communication 
between the vision and control unit could be improved to reduce the harvesting 
time. Bulanon and Kataoka (2010) developed a prototype for robotic apple harvest-
ing by integrating an RGB camera with a laser sensor. The single fruit detection 
accuracy was 100% and the picking success was as high as 90%, with an average 
detachment time of 7.1 s per fruit. However, the study was conducted in laboratory 
environment, and further investigations are still required to confirm the performance 
in the field conditions. FFRobotics (2020) developed a commercial robotic apple 
harvester and claimed to have the fruit detection 95% in high-density orchards with 
a bruise free fruit picking accuracy as 90%. However, the collision with limbs and 
trellis wire still needs to be addressed.

Some other tree fruits gained attention for robotic harvesting including citrus, 
cherry, peach, and litchi. Mehta et al. (2014) developed an integrated citrus harvest-
ing robot with a position controller. The system consists of a seven DoF manipulator 
equipped with a gripper and RGB cameras. The system was able to harvest 95% of 
the fruits on the tree with harvest cycle as 8 s per fruit. The error in the end-effector 
positioning was observed less than the fruit diameter, however, with average posi-
tion accuracy of about ±15 mm, could only be suitable for medium to large size 
citrus varieties. Harrell et al. (1990) reported the harvesting success rate as 50% 
with harvest cycle time of 36 s per fruit for citrus harvester. Energid (2020) has 
developed a prototype for citrus harvesting. The system comprised of two DoF (for 
aiming and extension) and a camera system (for detection), while no picking end- 
effector was attached for grasping. The developed prototype was able to pick 50% 
of the citrus fruit and the average harvesting cycle time was 3 s per fruit. Robotic 
cherry harvesting has also gained attention of the researchers. Tanigaki et al. (2008) 
developed a cherry harvesting robot, comprising a four DoF manipulator integrated 
with a vacuum end-effector and 3D vision sensor having red and infrared laser 
diodes. For all detected cherries on the tree, the average harvesting cycle time was 
14  s per fruit and the harvesting success with and without peduncle attached to 
cherry was 83% and 66%, respectively. The robot prototype was tested on a model 
cherry tree in the laboratory, however considering the delicacy of cherry fruit, a 
more sophisticated end-effector is essential to test the system performance in the 
field conditions on real trees. Some efforts for the integrated robotic systems for 
peach and litchi harvested are also reported. Yu et al. (2018) developed a prototype 
of an autonomous peach harvester. The system consists of a six DoF manipulator 
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integrated with a gripper end-effector and three RGB cameras and a laser sensor for 
peach detection, measuring distance, and obstacle avoidance. The fruit detection 
success was 90% with a tracking speed of 40 fps. However, the system was greatly 
affected by the illumination conditions, which resulted in lower detection accuracy. 
Similarly, Xu et al. (2011) reported a virtual prototype for litchi harvesting robot 
consisting of a five DoF manipulator but further research is required for the inte-
grated system development. A summary of the recently developed robotic tree fruit 
harvester is presented in Table 12.1. The reviewed integrated robotic harvesters for 
various fruits are still in the development phase. An interdisciplinary approach is 
needed to address the engineering, horticultural, and economical issues, to make a 
substantial progress toward the adoption of robotic tree fruit harvesting in the 
orchard environment.

Different metrics could be used to determine the performance of the integrated 
robotic systems. Bac et al. (2014) present eight different performance measuring 
indicators including fruit localization success, false-positive fruit detection, detach-
ment success, harvest success, harvest cycle time, damage rate, number of fruits 
evaluated in a test, and detachment attempt ratio. However, in general the perfor-
mance of the harvesting robots as reported by researchers could be determined 
using two metrics including: harvesting success, which refers to percentage of the 
successfully picked from the available total fruits on the tree, and harvesting speed, 
which refers to the amount of time required to complete the harvesting cycle (sens-
ing, reaching, and detaching) for a single fruit. The integrated harvesting robots 
developed for different tree fruits greatly differ from each other as the design 
requirements vary for different fruits, depending on the fruit and canopy 

Table 12.1 Recent developments for tree fruit harvesting robots

Crops Robotic system
Harvesting 
speed

Harvesting 
success (%) References

Apple 6 DoF arm, stereo camera 16 s per fruit 90 Onishi et al. (2019)
Apple 7 DoF arm, color camera, time 

of flight-based 3D camera
6.1 s per fruit 84 Silwal et al. (2016)

Apple Color CCD camera, laser range 
sensor

7.1 s per fruit 90 Bulanon and 
Kataoka (2010)

Apple 5 DoF arm, stereovision imaging 
sensor

7.3 s per fruit 67 Hohimer et al. 
(2019)

Apple 5 DoF arm, color CCD camera, 
pressure sensor

15 s per fruit 77 Zhao et al. (2011)

Apple 6 DoF arm, high-frequency light 
camera

9 s per fruit 80 Baeten et al. 
(2008)

Citrus 7 DoF arm, color CCD (charge 
coupled device) camera

8 s per fruit 95 Mehta et al. (2014)

Citrus 2 DoF platform, color camera 3 s per fruit 50 Energid (2020)
Cherry 4 DoF arm, 3D vision sensor 14 s per fruit 83 Tanigaki et al. 

(2008)
Peach 6 DoF arm, color camera Not reported 90 Yu et al. (2018)
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characteristics and thus could not be compared directly. However, the metrics used 
to determine the performance are similar. The figure is presented to better under-
stand the status of harvesting robots for different tree fruits and also provide the 
understanding on how the fruit and canopy characteristics could affect the harvest-
ing success and harvesting speed.

12.4  Core Technologies in Robotic Harvesting

As shown in Fig. 12.1, the core components of the robot include a camera based 
sensing system to detect the environment including fruits, leaves, and branches, an 
efficient computing and processing algorithm to extract the useful information from 
the environment, a mechanical manipulation system for reaching the target fruit 
location, an end-effector tool to harvest/pick the target fruit, and a conveyer system 
to place the harvested fruit into a container/bin. The process of robotic tree fruit 
harvesting begins from detecting the fruit using a camera vision system and finding 
the location of the fruit so that the mechanical manipulation system could reach 
target fruit and an effector tool could detach it from the tree. With advancement in 
the imaging and sensing and technologies, numerous studies have reported different 
vision-based techniques for getting useful information for fruit feature extraction 
including color, size, shape, and texture, etc., localization, and tracking (Silwal 
et al., 2016; Tabb et al., 2006). Environmental sensing or fruit detection could be 
done using a single viewpoint or multiple viewpoints, however, the vision system 
has certain challenges due to various factors including heavy occlusion by the 
leaves, fruit clustering, unpredicted tasks, unstructured environment, and variable 
lighting conditions (Zhang et al., 2019). The second step in the robotic fruit harvest-
ing is to approach the fruit using a mechanical manipulation system. This step pri-
marily involves the optimal trajectory planning to position the end-effector at 
required location and orientation, and sequencing or prioritization of fruit harvest-
ing to minimize the path length, time, energy or parameters that affect the perfor-
mance of a robot (Silwal et al., 2017). The manipulator degrees of freedom (DoF) is 
critical for precise positioning and orientation of the end-effector. In general, most 
widely adopted manipulators for agriculture usually have five or more DoFs. The 
target could be approached in two different ways. The first way refers as visual sur-
veying, which involves detecting the fruit coordinates in the 2D image and continu-
ously changing the manipulator joint positions to keep the fruit at the same image 
coordinates at all time (Ringdahl et al., 2019). The second approach is using a global 
camera system, which involves mounting a camera at a fixed position to take images 
at the beginning of a harvesting cycle to estimate the position of all fruit in the cam-
era view. The approaching path could be established using the inverse kinematics 
for each initial and final position of the end-effector; however, an accurate calibra-
tion between vision system and manipulator is essential for reaching the target pre-
cisely (Zhang et al., 2019).
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12.4.1  Machine Vision for Fruit Harvesting

Robotic tree fruit harvesting requires two major tasks to be done; one is to accu-
rately recognize the fruit in the tree and second is to be detaching the fruit without 
having any damage on it or any particular part of the tree. An illustration of machine 
vision based automatic tree fruit detection is presented in Fig. 12.5. Machine vision 
uses advanced sensors (i.e., cameras) that captures the images, processing hardware 
and software algorithms to automate visual inspection or detection and localization 
tasks and accurately/precisely guide the end-effectors to successfully harvest the 
fruits from the tree branches. For robotic fruit harvesting, the fruit automatic detec-
tion and localization have been conducted mainly by using machine vision tech-
niques. Camera sensors are used to capture the images from the trees, which is 
considered as the first step toward fruit detection as well as fruit harvesting.

 Camera Sensors for Fruit Harvesting

Camera is an optical instrument used to record visual important features in the form 
of image or video signals to distinguish fruits from leaves, trunks, branches, and 
other neighboring objects in the real-time orchard condition. A camera lens takes all 
the light beams skipping around and utilizes glass to divert them to a single point, 
making a sharp picture of the objects. Four types of cameras are used in fruit recog-
nizing so far including black and white, color, spectral, and thermal cameras, and 
three types of cameras are used for fruit localizing including color, stereovision, and 
time-of-flight cameras. A color camera uses filtering to look at the light in its tree 
primary colors including red, green, and blue. After recording all three primary 
colors, the camera combines them to create the full spectrum. Color camera cap-
tures light across three wavelength bands in the visible spectrum (400–700 nm). 
Spectral camera uses multiple electromagnetic spectrum bands (e.g., near-infrared: 
750–900 nm; hyperspectral: 400–1100 nm in steps of 20 nm, and so on) and usually 

Fig. 12.5 An illustration of machine vision based automatic tree fruit detection
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go beyond color camera to collect objects information. Conversely, thermal camera 
detects temperature by capturing different levels of infrared light using wavelength 
of 1–14 μm to distinguish between objects. Apart from single camera lens, stereovi-
sion camera is consisted of two or more lenses with separate image sensors to see 
the same object that can provide 3D structure of the object. Conversely, time-of- 
flight camera measures the distance between the camera sensor and the object for 
each point of the image by calculating the time difference between emission and 
return of an artificial light signal, after being reflected by the object. Favorable cir-
cumstances and drawbacks of various camera sensors are discussed in Table 12.2.

Earliest studies dated back in the late 1980s initiated the application of black and 
white cameras for fruit detections aiming to ensure first step respecting to the devel-
opment of automatic fruit harvesting system (Whittaker et al., 1987), however, suc-
cesses were not sufficient to move forward because of the sensor’s limitations and 
inability to acquire useful color information/features. Color is most prominent fea-
tures for tree fruit detection, especially for ripe fruit detection (e.g., red apple, 

Table 12.2 Advantages and disadvantages of different camera sensors used for tree fruit detection 
and localization

Camera types Advantages Disadvantages

Black and 
white

• Less affected by lighting condition
• Relatively cheaper in price

• Only provide black and white color; 
are not suitable for distinguishing 
multiple objects

Color • Provide color information about 
fruits, leaves, trunks, branches, and 
background
• Easily to find features
• Less expensive

• Highly sensitive to the illumination 
variations
• Only provide 2D information of the 
objects

Spectral • Acquired both color and spectral 
information
• Able to distinguish differences 
between similarly colored objects

• Time consuming
• Large data storage capacities are 
required
• Costly and complex in operation

Thermal • Not affected by the color of the 
fruits
• Does not require an illumination 
source and possible to use under 
low-light condition

• Limited operation time (narrow range) 
during day
• Size of the fruits greatly affected the 
performance

Stereovision • Ability to capture three-dimensional 
images
• Robust enough for real-time field 
applications

• Susceptible to lighting condition
• Computationally expensive
• Depth range is highly dependent on the 
baseline distance

Time-of- 
flight

• Data can be acquired at night or 
even in low-light conditions
• Provide 3D image of the objects that 
help to localize fruits
• Able to extract the distance 
information of the object
• High precision at long range 
measurement

• Low pixel resolution
• Most of the sensors are affected by 
direct sunlight
• High cost
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yellow orange, dark yellow peach), which is not possible to extract from black and 
white camera specifying the need to use color cameras. Color cameras introduced 
in the early 1990s provides the first time opportunity to detect fruit based on color 
features along with geometric and texture information. Success of the color cameras 
is adequate when the ripe fruits color is different than leaves, branches, and back-
ground (e.g., red apples, yellow citrus, and yellow pear fruits in green background). 
The sensor performs poorly when the fruit color is same as the leaves or background 
considering only color information. Another problem noticed that the color camera 
is highly susceptible to the illumination variations and make the sensor unsuitable 
in the orchard condition. Spectral camera sensors came up in addressing the color 
similarity problem between fruit and background by providing spectral information 
along with special information about fruits, leaves, branches, or other objects 
(Kondo et  al., 1996). Potential of spectral camera has been delineated for fruit 
detection using different wavelengths considering the appearance of different fruits. 
However, major limitation is reported for the longer data acquisition and processing 
time, especially using hyperspectral camera (Kim & Reid, 2004) that forged the 
spectral sensor difficult and challenging for real-time detection. Thermal cameras 
also utilized for fruit detection aiming to solve the color similarity problem between 
fruits, other objects and background, but performance of this types of sensors is 
greatly affected by fruit size and direct sunlight exposure. The accuracy of the ther-
mal camera is lower in shaded and high canopy density area because there is not any 
significant temperature difference existing between fruits and other objects includ-
ing leaves, branches, and background in those regions. Aside from the fruit recogni-
tion sensors, the stereovision and time-of-flight cameras are mainly used for fruit 
localization. Stereovision camera measures the position of the target objects from 
the camera sensor by performing the stereo matching of multiple images acquired 
using various cameras installed in various arms. However, performance of this 
vision system is affected by illumination variation, wind speed and direction, and 
efficient of the hardware component (Plebe & Grasso, 2001). Another major limita-
tion is long computational time and complexity. Time-of-flight camera introduced 
for the fruit localization due to its faster data acquisition and processing speed. In 
the last few years, time-of-flight cameras showed promising potential for fruit local-
izing which is also suitable for outdoor orchard environment especially using an 
RGB-D (Red, Green, Blue-Depth) camera (Fu et  al., 2020), which provides the 
RGB information along with depth and infrared information; however, direct sun-
light exposure can affect the accuracy of the sensor.

 Fruit Detection and Classification for Harvesting

The first step of camera vision system for fruit harvesting is the image acquisition 
stage where images are captured from the tree fruit orchards. After the image has 
been captured, different processing methods have included feature extraction and 
classification can be applied to the pre-processed image to detect fruits from the 
leaves, branches, and other objects background. Color is one of the most valuable 
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features used in image processing based detection to differentiate fruits from other 
neighboring objects (i.e., fruits, foliage, or branches) presence in orchard environ-
ment. Distinguishing oranges from the natural background was the first attempt 
toward developing robotic harvester using color features and detected 75% of the 
fruit pixels successfully showed the potential of applying color features for fruit 
detection (Slaughter & Harrell, 1989). The accuracy of the fruit detection was 
improved in the later years up to 88.0% using only color features (Bulanon et al., 
2002; Qiang et al., 2014), however, fruit detection accuracy based on color features 
is greatly affected by illumination variation, fruit variety, fruit maturity level, and 
uncontrollable orchard environment. Illumination variation during image capturing 
can provide different light intensities; therefore, it would be very difficult and chal-
lenging to detect fruits under uncontrollable lighting environment using color fea-
tures. Geometric features mainly considering the size and shape of the fruits are 
being used to address the color feature problems especially when the green fruits 
need to be detected from green leafy background. These types of features are also 
less susceptible to illumination variations which make it suitable for real-time 
orchard condition unless the blurred image caused during data acquisition due to 
high wind velocity. Lu et al. (2018) detected green immature citrus fruit using geo-
metric features and achieved 82.3% of precision rate. Performance of geometric 
features (i.e., searching circles) is boosted up to 85% of accuracy for detecting the 
green apples from green background when they were visible in the captured images, 
but the occluded apples caused the false-positive detection (i.e., considered leaves, 
stems, and branches as fruits) (Linker et al., 2012). Conversely, iterative Circular 
Hough Transform (CHT) and blob analysis based geometric features provided over 
90% of accuracy for “Jazz” and “Fuji” apples detection in clearly visible and par-
tially occluded apples on tall spindle architecture canopy trees (Silwal et al., 2014). 
However, the major problem using the geometric features is the occlusion of fruits, 
which results in the poor performance due to alter in size, shape, and other geomet-
ric characteristics of the tree fruits. Textures are another important feature which is 
not affected by the surface color so it can also be used to detect fruits from the simi-
lar color background (i.e., leaves and stems). Tree fruits generally have smoother 
surfaces compared to the leaves, branches, stems, and other objects. Detection of 
fruits using texture features isolates the surfaces with the homogeneous texture and 
afterward distinguishes the edges of the isolated surface (Zhao et  al., 2005). 
Performance of these types of features for fruit detection is not so high when only 
the texture features are used. Considering a novel Eigen Fruit approach and blob 
analysis, a Gabor wavelet based texture analysis was utilized to detect green citrus 
and achieved an accuracy of 75.3% with 27.3% false detection (Kurtulmus et al., 
2011). Variable illumination condition, complexity of the fruit background, and 
varying fruit size have tremendous effect on the texture properties of fruits reducing 
the accuracy of the detection (Zhao et al., 2005; Kurtulmus et al., 2011). Combining 
texture features and other features (i.e., color and geometric) can enhance the accu-
racy up to 89% while detecting “Golden Delicious” and “Jonagold” apples (Stajnko 
et al., 2009). Besides color, geometric, and texture features, a 3D shape of the fruit 
was reconstructed (Fig.  12.6) for improving the detection accuracy, but the 
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methodology was only justified hypothetically, and therefore ample tests were 
required to show its reliability in real-time orchard applications (Rakun et al., 2011).

To perform successful fruit detection from the other neighboring objects, the 
image classification is required after extracting valuable features from the images. 
Supervised classifiers have included Bayesian and K-nearest neighbor; unsuper-
vised classifiers included K-means clustering; and soft computing methods included 
artificial neural network (ANN) and support vector machine (SVM) were used so 
far for fruit detection. Bayesian is one of the multivariate statistical classification 
techniques used widely for object detection/classification based on prior knowledge 
and probability distributions also called posterior probability theory. Bayesian dis-
criminant was used to classify oranges considering the color information and clas-
sified 75% of fruits successfully (Slaughter & Harrell, 1989). Considering the 
similar method, Juste and Sevila (1992) applied a pattern classification method of 
Bayes’s rules for citrus fruit detection and reported up to 90% of accuracy. Although 
the higher detection accuracy showing the potential of Bayesian classifier for fruit 
detection, the major drawback is that the prior probabilities information require in 
detection that can be affected due to the changes of color value of fruits caused by 
the illumination variations (Chinchuluun et al., 2007). Contrarily, K-nearest neigh-
bor (KNN) based supervised classifier, also susceptible to illumination variable is 
used to classify unknown feature vector to the class by measuring the closeness 
measure between the obscure and each training samples. To detect the green apples 
in captured RGB image, a KNN classifier was used in two dataset recorded in direct 
illumination and diffusive light conditions and reported 85% and 95% of accuracies 
for correct detection (Linker et al., 2012). Another significant impediment of KNN 
based algorithm is huge processing time to group an obscure feature vector which 

Fig. 12.6 Original 
acquired image (upper left 
image), color segmented 
version (right top image), 
cleaned version by 
applying morphological 
operators (bottom left 
image), and finally, 3D 
shape analysis (bottom 
right image). (Adopted 
from Rakun et al., 2011)
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makes it inadmissible for real-time field applications (Mitchell, 1997). Besides 
supervised classifiers, K-means clustering based unsupervised machine learning 
classifier is also used for fruit detection, which allocates every data point into the 
nearest cluster dependent on their intrinsic distance between one another. However, 
the performance of K-means clustering in fruit detection is not so high using differ-
ent images including color and thermal especially for green apples (Wachs et al., 
2010). The soft computing methods including ANN and SVM are also supervised 
machine learning algorithms become so popular and widely accepted for fruit detec-
tion in the orchards (Wachs et al., 2010; Qiang et al., 2014). An SVM based classi-
fier isolates the two classes with a greatest edge between them by a hyper-straight 
plane to classify objects. Tao and Zhou (2017) detected apples, branches, and leaves 
using a multi-class SVM classification method and achieved an accuracy of 94.64%, 
47.05%, and 75%, respectively, while acquired images by a Kinect V2 camera sen-
sor. Using the same camera, Lin et al. (2019) detected citrus fruits based on SVM 
algorithm and reported a F1-score of 91.97% using color, gradient, and geometry 
features. Qiang et al. (2014) used RBF kernel function for applying a multi-class 
SVM classifier to detect citrus fruits from the leaves and branches by using color 
features and reported a detection accuracy of 92.4%. The authors identified that 
illumination variations, fruit occlusion, and immature fruit were the major factors 
reducing the classifier as well as system performance. Apart from SVM based soft 
computing method, an ANN based machine learning algorithm detects the fruits by 
learning specific patterns/model defined by the training data through the iterative 
training process. To develop orange picking robot, a neural network (i.e., back prop-
agation) based machine learning algorithm along with color features was used to 
detect oranges from the images captured at different lighting conditions and 
achieved an accuracy of 87% with 15% false positive and 5% false negative (Plebe 
& Grasso, 2001). Additionally, Kurtulmus et al. (2014) compared three classifiers 
including a statistical classifier (i.e., discriminant analysis), an ANN, and an SVM 
performance for immature peaches detection under various illumination conditions 
and reported the ANN classifier performed better (82%) than discriminant analysis 
(80%) and SVM (62%). Despite both supervised and unsupervised machine learn-
ing classifiers showed good performances, but most recently, significant advance-
ment and effort have been accomplished through the application of deep learning 
algorithms on fruit detection due to its larger learning capabilities resulting in higher 
performance and precision, which is based on multiple layer ANNs (Koirala 
et al., 2019).

Deep learning is one of the machine learning techniques that can learn the fea-
tures themself from raw data and provides a hierarchical representation of the data 
through deeper neural networks and various convolutions. Object detection using 
deep learning algorithms becomes more popular due to their higher detection rate 
and fast detection speed in the past years which is applied in various fields of 
research (Gao et al., 2020). Deep learning networks including convolution neural 
network (CNN), region-based CNN (R-CNN), Fast R-CNN, Faster R-CNN, You 
Only Look Once (YOLO) network are increasingly applied in recent years for 
orchard management and provide an excellent framework for fruit detection (Bargoti 
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& Underwood, 2017; Fu et al., 2020; Gao et al., 2020). Considering rapid progress 
and improvement in deep learning algorithm, a Faster R-CNN model was tested and 
achieved an accuracy of 95% for Fuji apple detection (Gené-Mola et al., 2019). To 
reduce detection time and improve detection accuracy, the convolution and pooling 
layers of Faster R-CNN were modified by Wan and Goudos (2020), the developed 
model was tested for green apple and orange detection and achieved 92.51% and 
90.73% of accuracies, respectively. Numerous deep learning algorithms (i.e., 
Yolov3, R-CNN, and VGG-16) application for apple fruit detection was reviewed 
and reported the detection accuracies ranged between 84% and 95% (Koirala et al., 
2019). By combining Gaussian Mixture Models based semi-supervised method and 
deep learning method, Häni et al. (2020) developed a novel semantic segmentation- 
based approach for fruit detection and counting and reported the performance can 
be better than a single deep learning model with detection accuracies ranged from 
95.56% to 97.83%. Compared to the conventional machine learning models, emerg-
ing deep learning algorithms are showing promising potential and benefit with the 
higher detection accuracy and the faster detection speed that are necessary for 
robotic fruit harvesting in real-time orchard condition.

 Fruit Localization for Harvesting

Next step of detection is fruit localization, another very essential part of computer 
vision system for guiding robotic end-effectors to grab and detach fruit from the 
tree. Inaccurate fruit localization information causes failure of the end-effectors in 
successful fruit harvesting. Despite there are different types of challenges exist due 
to uncontrollable orchard condition (i.e., wind velocity, fruit occlusion, etc.), stud-
ies have conducted toward the accurate fruit localization (Bac et al., 2014). Fruit 
localization began with using a single black and white camera to identify fruit cen-
troids aimed to extract 3D coordinate for grasping fruit from the branches by devel-
oping a mathematical transformation model (Parrish & Goksel, 1977). After about 
a decade, the color camera had been applied to identify fruit centroids by stick out 
the telescopic end-effector. This was made conceivable when the camera mounted 
at the center of the end-effector, at that point the fruit centroid in the captured image 
lined up with the pivot of the prismatic joint (Slaughter & Harrell, 1989). Apart 
from the fruit centroids, studies also conducted to localize fruit peduncle by using 
the color camera for the ease of fruit harvesting especially for detachment (Bulanon 
et al., 2001). For obtaining more precise fruit location, the laser systems were also 
utilized in some extend along with camera sensors where 2D location of fruit 
accessed via camera vision and a laser sensor used to measure the distance from the 
end-effector and fruit (Bulanon et al., 2004). Besides single camera applications for 
fruit localization, several attempts were reported using more than one camera by 
applying stereovision where fruits were located by triangulation. However, the main 
problem using a stereovision system was the correspondence problem where obtain-
ing reference points in the practical view is difficult (Wang et al., 2013). Researchers 
attempted to solve the correspondence problem while using stereovision system, but 
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they ended up with the error less than 20 mm due to densely distributed tree cano-
pies (Si et al., 2015). Aside from stereovision, the red-green-blue-depth (RGB-D) 
cameras by Kinect V2 offer a new approach to extract 3D space for detecting and 
localizing fruits simultaneously (Fu et al., 2020). Studies reported that RGB-D cam-
era along with advanced machine learning algorithm including Bayes classifier and 
Faster R-CNN can be appropriate for real-time orchard conditions with detection/
recognition accuracies went from 92% to 95% and localization errors of 
7.0 ± 2.5 mm, −4.0 ± 3.0 mm, and 13.0 ± 3.0 mm in x, y, and z axis direction, 
respectively (Zheng et al., 2018; Lin et al., 2019). On the other hand, several studies 
reported RealSense RGB-D camera performed better than Kinect V2 with an image 
resolution of 1280 × 720 pixel and sample frequency of 90 frames per second com-
pared to 512 × 424 and 30 (Mejia-Trujillo et al., 2019). Considering the promises of 
RealSense RGB-D cameras shown in fruit detection and localization, we can assume 
that it could be an effective tool for real-time orchard applications in the future with 
high accurate manner.

12.4.2  Fruit Removal Dynamics 
and End-Effector Development

Fruit detachment is one of the major tasks in the robotic fruit harvesting. Prior to 
designing a fruit picking end-effector, it is necessary to investigate the dynamics for 
fruit detachment. The information provided by the dynamics includes picking or 
cutting force/torque, picking angle, and fruit detachment motion. Typically, robotic 
picking requires fruit detachment motions planned and performed with sufficient 
grasping forces applied to the target fruit (Tillett, 1993). For a human picker, an 
apple is detached by gently griping it with fingers and twisting it around the connec-
tion point of its stem and limb. At the same time, pickers put one finger on the con-
nection point to minimize the movement of the connection point or the pivot. 
Reduced movement of the pivot point will increase the torque around this point and 
thus increases effectiveness of fruit detachment. Preliminary tests showed that 
twisting of apples by attaching the pivot could achieve more effective and efficient 
detachment than pulling them (Bulanon & Kataoka, 2010).

To provide baseline information for developing a conceptual robotic end-effector 
for apple picking, a series of fundamental physics studies for apple picking were 
conducted by a Washington State University (WSU) research group with mimic 
human picking operations (Fig. 12.7, He et al., unpublished document). These phys-
ics included the picking orientation, the applied force/torque, and the relations to 
the apple weight and stem length. Three flexible force sensors were mounted on 
three fingers of picker to measure the force applied to the apple surface during pick-
ing operation. A hand-held picking device, consisting of a gripper and a torque sen-
sor, was built to measure the twisting torque for removing apples from the tree. 
Tests showed that picking apple along the peduncle direction obtained much higher 
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picking efficiency. Force applied to the surface of apple varied from different pick-
ers and different fingers, the force applied was from 0.43 ± 0.27 to 1.16 ± 0.33 kgf 
in this study, also the applied force showed positive relation to the fruit weight. The 
results also indicated that the detachment torque increased as the increasing of apple 
weight, and the picking angle increased as the increasing of  apple stem length. 
Furthermore, Davidson et  al. (2016) investigated the hand picking dynamics for 
robotic apple harvester design. The results indicated that each variety has different 
detachment force. And the study also suggested to use a tactile sensor in a robotic 
end-effector to potentially determine the point of fruit separation and minimize the 
path traveled by the end-effector during harvesting. Li et al. (2016) indicated that 
bending motion could improve the fruit detachment performance for apple picking. 
To remove a fruit from the branch, bend-and-pull picking will require less energy 
than straight pulling along stem growth direction. Flood (2006) designed a robotic 
citrus harvesting end-effector and a force control model using physical properties 
and harvesting motion tests.

End-effector is a critical component for a harvesting robot, which is used to 
detach fruits from the tree with appropriate force and motion. Designing an end- 
effector tool for fruit harvest can be a challenging task due to the complex canopy 
environment and unique fruit characteristics. The design should consider the 
mechanical and spatial requirements including size, shape, weight, and maneuver-
ability, and the task object requirements including physical, horticultural, and bio-
logical properties (Kondo & Ting, 1998). Researchers in the past have put a lot of 
efforts on developing end-effectors to harvest different kind of crops including 

Fig. 12.7 Hand picking apple force measurement setup and method. (a) force sensor; (b) sensor 
equiped picking glove; (c) picking apple by twisting; (d) picking apple by pulling
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orange, tomato, eggplant, cucumber, and apples (Muscato et al., 2005; Whittaker 
et al., 1987; Van Henten et al., 2003; Hayashi et al., 2002; Davidson & Mo, 2015). 
Different detachment motions also have been tested in these studies, such as pull-
ing, twisting, cutting, and combination of two. Zhang et al. (2020) did an extensive 
review for different robotic grippers used for agricultural applications along with 
their grasping and control strategies. Many picking end-effectors use either two or 
more fingers to grasp the fruit to detach it (Burks et al., 2005). Some of these end- 
effectors used air to suck the object and grip it, then use scissors to cut the peduncle 
to detach the object, which may cause damage to the fruit peduncle. Conversely, 
suction devices comprised a vacuum cup to hold the fruit and combined with appro-
priate mechanism to detach fruit form the tree such as cutting the peduncle with 
blade mounted on the fingers (Hayashi et  al., 2014), or a twist motion (Yaguchi 
et al., 2016). Bac et al. (2017) developed a four-fingered hand with a pair of scissors 
mounted on top to cut the stem. The designed hand may be more suitable for fruit 
with longer stems, however detecting and locating the stem is a challenging task in 
the complex canopy environment.

12.4.3  Harvesting Robot Manipulation

 Robotic Manipulators

The tree canopy–machine interaction could be interpreted as manipulation of a 
machine (robotic arm/manipulator) within tree canopy to reach the identified fruit 
locations to perform the harvesting using an end-effector. The robotic arm or 
manipulator is the mechanical system like a human arm, usually comprised of links 
connected in a series joints that perform the intended tasks in the one-two-three-
dimensional space. Each joint in the manipulator has one DoF and the kinematic 
dexterity is directly related to the number and type of joints in the manipulator 
(Burks et al., 2018). The currently available industrial manipulators are designed to 
perform repetitive tasks with uniform objects in unconstrained workspace. 
Conversely, the adoption of robotic manipulators for fruit harvesting has many chal-
lenges as agriculture is a constrained dynamic environment where the target objects 
vary in shape, size, position, and orientation (Simonton, 1991). The successful 
adoption of robotic manipulators requires consideration of its working environment 
(Kondo & Ting, 1998; Simonton, 1991). Thus, the robotic manipulators for tree 
fruit harvesting should be designed considering different factors such as canopy 
structures, and branch density, etc., for safe operation in the unstructured agricul-
ture environment.

In an agricultural robot, the first joint of the manipulator is connected to the base 
of a mobile platform, and the last joint of the manipulator  is an integrated end- 
effector unit, which consists of a tool/gripper to perform the required task is attached. 
The manipulator mainly works for the positioning of the end-effector close to the 
target fruit and then move the harvested fruit to the collection bin/container. For tree 
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fruit harvesting, the manipulator could be designed with various configurations, 
based on total DoFs, and different combination of joint types. The selection of joints 
configuration is critical as it affects the kinematic dexterity and spatial requirements 
during manipulation of the robot to attain different positions and orientations of the 
end-effector. Based on total DoF selection, a manipulator can be designed with dif-
ferent number of joints starting from three or higher. However, increasing the num-
ber of joints (DoF) exponentially increase the computation and control complexity 
(Choset et al., 2005). A three DoF (3 DoF) manipulator is the most common choice 
due to its simple design and control architecture. For a known Cartesian position of 
the fruit, the 3 DoF manipulator (Harrell et al., 1990) could easily reach the desired 
position using the inverse kinematics. However, the end-effector (gripper) could not 
alter the orientation due to lack of DoFs. As the fruits on a tree grow at random 
orientations, the manipulator should have the ability to grasp the fruit from different 
orientations. The manipulator performance will be decreased if the fruits are 
occluded behind leaves or branches and the gripper may not be able to harvest the 
fruit. Adding additional DoFs to the manipulator such as a four DoF (Tanigaki et al., 
2008) or five DoF (Zahid et al., 2020a) could be a solution to the problem to some 
extent by giving the capabilities to adjust the orientation of the end-effector, but 
harvesting the fruits present behind the obstacles deep inside the canopy could still 
be problematic. To completely describe the six components of the Cartesian space 
including three positional (x, y, and z) components, and three angular (yaw, pitch, 
and roll) components, the manipulator should have six joints in its assembly. Thus, 
the agricultural manipulator should have at least six DoFs (Onishi et al., 2019) to 
attain all possible orientation and position in the workspace. However, with higher 
DoFs, the kinematics of the manipulator results in two poses (elbow up and elbow 
down) for any desired position and orientation, which can lead to a higher chance of 
manipulator collision with the branches at some poses, causing damage to manipu-
lator, fruit, or tree. Another problem with six DoFs is its limitation of a single pose 
in the workspace, and it may not be able to avoid all the obstacles, which is essential 
for the safe operation of robot (Burks et al., 2018). Considering the unstructured 
canopy environment, the manipulator with at least one excess DoF such as a seven 
DoF (Mehta et al., 2014; Silwal et al., 2016) for the positioning and orientation is a 
better solution to avoid collisions, also known as redundant manipulators. These 
redundant manipulators can attain multiple orientations for any target position to 
avoid collisions by changing the pose to the optimal. Although the redundant 
manipulators improve the kinematic dexterity to grasp the fruit by attaining differ-
ent orientation, it also increases the complexity for manipulation controls (Fig. 12.8).

The performance of the tree fruit robotic manipulator could also be affected by 
the type of joints such as prismatic, rotational, or combination of both joints, used 
for its assembly. Figure 12.8 shows few examples of different configurations of first 
three joints for a six DoF manipulator integrated with spherical wrist gripper end- 
effector. The first three joints, referred as Cartesian positioning (x, y, and z) links, 
move the end-effector in the proximity of target fruit. The last three joints, referred 
as wrist, alter the orientation of the end-effector for accurate positioning at the tar-
get. Each of the shown manipulator has a different workspace and spatial 

12 Robotic Tree Fruit Harvesting: Status, Challenges, and Prosperities



320

requirements for manipulation. During maneuvering, each joint contributes to alter 
the manipulator pose and end-effector position and orientation in the canopy. When 
the manipulator starts maneuvering inside the canopy, the major change in position 
and pose of the manipulator link is due to the positioning joints and a small contri-
bution is from the wrist joints. With greater degree of pose change, the chances for 
collision with branches increase within the canopy; therefore, the joints for posi-
tioning should be selected which allow the minimum change in pose of the manipu-
lator during maneuvering. Zahid et  al. (2020b) developed apple tree pruning 
manipulator by integrating three prismatic joints (3P DoF) with three revolute (3R 
DoF) joints. The integrated tree pruning manipulator showed promising results as it 
was able to reach all selected branches with lower pose change, which reduced the 
collision potential. In general, the Cartesian/prismatic joints have low pose change 
attributes, as the orientation of the links remains the same irrespective of the joint 
movement. Thus, a manipulator could be developed considering different joint 
types to reduce the spatial requirements. For example, the positioning joints as 
shown in Fig.  12.8a may perform positioning motion outside the canopy with a 
slight pose change and could have less spatial requirements for the maneuvering of 
the spherical wrist end- effector within the tree canopy for reaching target fruits. 
Similarly, when aiming to reach the fruits inside the canopy, the maneuvering within 
the tree canopy for reaching target fruits using different joint combinations as shown 
in the figure could affect the manipulator pose change differently. Thus, the manipu-
lator design should consider the requirements for different tree features such as 
canopy sizes and structures to ensure that the end-effector reaches all positions in 
the canopy with minimum spatial requirements and least chances for collision with 
the branches.

Fig. 12.8 Illustration of manipulator with different joint configurations and wrist end-effector; (a) 
Cartesian (PPP), (b) Cylindrical (PPR), (c) Spherical (RRP), and (d) Articulated (RRR)
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 Robotic System Control

An agriculture robot must solve multitude of problems to perform the operation 
such as fruit harvesting, thinning, and pruning, etc. Unlike industrial robots, where 
a repetitive work is performed for same objects, the target fruits are located at dif-
ferent position and orientation. Thus, during agricultural operation, there is no rep-
etition of the same motion/path, and the robot needs the information about every 
target to perform the target-specific motion. The manipulator movement and control 
could be established using the information from the sensing or vision system, also 
referred as vision-based manipulation control. The vision-based control for the har-
vesting robot is essential as the manipulator could use the visual information for 
path planning and motion. The inefficiency of vision-based control is one of the 
primary factors limiting the performance of the harvesting robot. The vision-based 
control is categorized into two types: visual navigation or visual servo control and 
eye-hand coordination or global camera system (Zhao et al., 2016). The global cam-
era system is an open-loop control system which is operated based on “3D position-
ing.” The camera system scans the complete scene to detect all fruits and then start 
moving to the target fruits. The control efficiency in terms of the end-effector posi-
tioning depends on the accuracy of the vision system, calibration of manipulator 
and camera system (Yau & Wang, 1996). To achieve higher efficiency, the vision 
system may be consisting of stereovision or range sensors to precisely measure the 
distance to the target fruits. However, for open-loop visual control, an accurate kine-
matic model of the manipulator is essential for the path planning to reach target 
fruits. Han et al. (2012) successfully established the open-loop visual control for 
path planning using a color stereoscope camera and a laser sensor. The execution 
time for successful harvest was less than 7 s per fruit. However, one downside of the 
open-loop visual control is low efficiency in the situations where the fruit is under 
the influence of wind or movement from other reasons.

The second category of visual based control is the visual based feedback control 
loop, also referred as visual servo (Corke & Hager, 1998). The visual servo is a 
closed-loop control system which is operated based on “concurrent looking and 
moving” as a dynamic system. The visual servo used the image features extracted 
from the camera-in-hand system to control the position and orientation of the end- 
effector on the fly (Hashimoto, 2003). A major advantage of visual feedback control 
is that the performance does not rely on the accuracy of the kinematic model and the 
calibration of vision and manipulator system. However, one important consider-
ation to achieve high efficiency of visual servo control is that the bandwidth of the 
vision controllers should match the frame rate of the visual information coming 
from the camera system. Zhao et al. (2011) successfully implemented the visual 
servo controls in an apple harvesting robot. Font et al. (2014) combined open-loop 
and visual servo controls. Using the open-loop control, the end-effector moves 
quickly in the proximity of the target fruit, followed by adjusting position and ori-
entation through guidance from visual servo to harvest the fruit. The general com-
parison of these two types of control is given in Table 12.3.
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 Collision-Free Path Planning

The path planning of a harvesting robot is one of the most important components for 
successful operation. The path planning strategies including picking order and 
obstacle avoidance, etc. are essential to achieve higher harvesting efficiency as well 
as safety of the robot during interaction with the canopy. With the advancement in 
the computing theory, the path planning and controls are becoming more reasonable 
and efficient (Jia et al., 2020). Different path planning and harvesting order strate-
gies are discussed by various researchers. The path of the robot can be established 
using the kinematic model of the manipulator, which calculates the displacement 
toward the target fruit position. The manipulator uses the inverse kinematics equa-
tions to establish the path using open-loop control (Yau & Wang, 1996) or visual 
servo control (Hashimoto, 2003). The kinematic model considers the body dimen-
sions of the robotic manipulator and the target position, so the collisions could be 
possible during the operation, which could result in the damage of robot or the tree. 
A separate set of algorithms are required to avoid the collisions during operation. 
The task or harvesting order planning strategies are also studied by many research-
ers. Most common method is to detect and localize the target fruit and the path for 
each harvesting cycle starts from the home position of manipulator (Roldan et al., 
2018). Researchers have also developed harvest sequencing schemes to optimize 
the harvest cycle time. The Traveling Salesman Problem (TSP) is widely reported 
scheme used for harvest sequencing. Yuan et al. (2009) implemented an algorithm 
to covert the apple harvesting task into a three-dimensional traveling salesman 
problem (TSP) to get the finite field information and then used ant colony algorithm 
to optimize the path planning. Some other task planning schemes were also devel-
oped by researchers such as harvesting all detected fruits in the scene (Baeten et al., 
2008) and optimal harvesting sequence by moving fruit-to-fruit for reducing the 
cycle time (Reed et al., 2001). Plebe and Anile (2002) obtained an efficient harvest-
ing sequence plan by converting the harvesting task into twin traveling salesman 
problem (TTSP). All these path planning and task planning strategies could be fea-
sible for reaching target following the optimized path. However, the manipulator 
collision with branches could still be a problem and needs to be addressed as it is 
essential for the safe operation of the fruit harvesting robot.

Table 12.3 The comparison of two types of vision based controls

Visual control Principle Advantages Limitations

Global camera 
control/
open-loop 
control

Control based on 
precise 3D 
positioning

Simple and smooth 
controls; higher stability 
region

Required high accuracy of 
vision system; required 
accurate manipulator and 
camera calibration

Visual servo 
control/
closed-loop 
control

Control based on 
manipulator-vision 
dynamic interaction

Real-time applications; 
vision-manipulator 
calibration not required

Problems related to local 
minima of unpredicted 
camera paths; required high 
bandwidth
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The tree fruit canopies usually have complex structure with branches growing in 
the random direction and orientations, which limits the manipulation capabilities of 
the robotic manipulators. To ensure the safe and successful robotic operation, it is 
essential to establish the collision-free paths for the robot movement. The collision- 
free path refers to the movement of manipulator and end-effector toward the target 
fruit without hitting the branches. In the recent years, the challenges of obstacle 
detection and collision avoidance for tree fruit harvesting robot have gained interest 
from the researchers. The obstacle detection is the task performed by the machine 
vision system such as camera and proximity sensors, etc. The collision detection 
sensors can be integrated with the end-effector such as a position sensor in an apple 
harvesting robot (Zhao et al., 2011), Light Imaging Detection and Ranging (LIDAR) 
sensor in a cherry harvesting robot (Tanigaki et al., 2008), and a camera for litchi 
harvesting robot (Cao et al., 2019). However, the obstacle avoidance task presents 
more challenges. For collision-free path planning, many researchers have proposed 
algorithms including grid-based, neural networks, and random sampling. Grid- 
based algorithms such as A*, or Phi* or ant colony, etc. are suitable for multi- 
objective problems but computationally expensive for complex environment and 
could give satisfactory results with up to two or three DoF manipulators (Nash 
et al., 2009). With the increase in the DoFs of the manipulator, the computational 
complexity and planning time increase exponentially (Choset et al., 2005). As men-
tioned earlier, the tree fruit harvesting robot should have at least six or seven DoFs, 
giving manipulator the flexibility in the poses to avoid the obstacles. Most of these 
grid-based path planning algorithms may not be suitable for agricultural applica-
tion. Conversely, the sampling-based planning approaches such as rapidly exploring 
random tree (RRT), RRT*, or bi-directional RRT are probabilistic-complete algo-
rithms, i.e., if solution exists, they find path, and perform better for high dimen-
sional complex problems and are less influenced by the DoFs of the manipulator.

Nowadays, the RRT based search algorithms are widely adopted for collision- 
free path planning in the agricultural environment. Nguyen et al. (2013) proposed a 
framework for motion and hierarchical task planning of a nine DoF manipulator for 
harvesting apples. The strategy was first implemented in simulation and then real- 
time communication between sensing and execution was successfully established in 
the orchard environment. The authors used seven different sampling-based planning 
algorithms including RRT, and RRT connect, and concluded that the RRT connect 
as most efficient for path planning in terms of processing time. However, the nine 
DoF manipulator has enough flexibility in the pose to avoid collision with branches. 
Cao et al. (2019) successfully also used RRT for collision-free path planning for six 
DoF litchi harvesting robot. The path calculated using the sampling-based algo-
rithms is not the optimal solutions, as it has less convergence speed and more pro-
cessing time. These deficiencies could be minimized by combining optimization 
algorithms such as genetic algorithm (GA) to reduce the path cost (LaValle, 2006). 
Also, the random sampling-based algorithm have longer path length due to intrinsic 
search properties (generating and connecting random nodes in the search space). 
The path smoothing method which aims to omit the unnecessary nodes (Zahid et al., 
2020c) can be used to reduce the length of collision-free path. For random 
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sampling-based search algorithms, the path planning time depends on the sampling 
resolution, which should be optimized, considering the required path success rate.

12.5  Conclusions and Future Directions

Robotic harvesting systems have been investigated in the past decades, the enhance-
ments in both technologies and horticulture have bring much more promising for 
the adoption of these systems for agricultural applications. For tree fruit crops, tree 
structures in modern orchard are getting much simpler with high-density canopy 
systems. These tree systems are much more robot-friendly for implementing robotic 
harvesting system by comparing to the conventional tree systems. While even with 
these trees, the harvesting task is still relative complex due to the natural of biologi-
cal system. A successful robotic harvesting system would be considered as accurate, 
robust, fast, or even inexpensive system. Therefore, the critical points for success of 
robotic harvesting for fruit trees are the accuracy of fruit detection, the spatial 
requirement of picking end-effector, and the efficiency of picking operation (time 
for fruit identification and the time for maneuvering the end-effector).

The current research on tree fruit harvesting robots mainly focused on develop-
ing vision systems for accurate detection and localization of the target fruits. 
However, the improvements in many other components including the manipulation 
controls, optimized harvest sequencing, and obstacle avoidance are also required. 
The robot path planning is critical for accurately reaching the target points. The path 
planning mainly involves three operations: manipulation controls, task sequencing, 
and collision avoidance. With the recent advancement in computing technologies 
and control algorithms, there are many opportunities of developing efficient con-
trols for tree fruit harvesting robots. As discussed earlier, the vision-based manipu-
lation control (open- and close-loop) is critical for the robotic harvest operation as 
the target location is unknown, the type of control scheme should be selected care-
fully to achieve the desired outcome. The open-loop manipulation controls could be 
a good control scheme, but some natural factors in the field such as wind could alter 
the position of the targeted fruit, making it a dynamic environment to reduce the 
robot performance. Conversely, the visual servo control is computationally expen-
sive and requires highly accurate vision system for successful operation. As both 
types of vision-based control have advantages and limitations, a robotic harvester 
integrated with a combination of both open- and close-loop (global and local) 
manipulation controls could improve the harvesting efficiency. By doing so, the 
global path planning can provide the initial guideline to start the robot motion, and 
once the end-effector reaches the proximity of the target fruit, the manipulation can 
be changed to local control for accurate positioning. Using the global control 
scheme, the harvesting robot can have the information about the complete scene (all 
fruits) before the start of operation and the path can be calculated for multiple fruits 
simultaneously, to reduce the cycle time. Conversely, the local control can guide the 
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end-effector to attain desired orientation to grasp the fruit, employing parallel 
computation.

In addition, the harvest sequencing is also essential to optimize the path length 
and cycle time for each fruit. The TSP-based sequencing algorithms can be a poten-
tial solution to optimize the path lengths and cycle time. Studies have been reported 
using TSP and other TSP variants to optimize the path length and cycle time (Yuan 
et al., 2009). A redundant manipulator can perform well as it has infinite pose con-
figurations for reaching a target point. However, for redundant manipulators, opti-
mizing the task sequencing with TSP may not be enough, require optimization of 
pose configuration as well, which could be solved using TSP-N-based optimal path 
planning (Vicencio et al., 2014). Additionally, the collision avoidance is one of the 
biggest challenges for tree harvesting robots. Researchers have implemented 
collision- free path algorithms for different robotic operations in tree fruits. The ran-
dom sampling-based search algorithms such as RRT, RRT*, and bi-RRT are widely 
adopted to collision-free path planning because of their higher success rate. The 
path solutions from the random sampling algorithms are not always optimal. The 
recent advancement of intelligence-based optimized search algorithms such as ant 
colony optimization (ACO), particle swarm optimization (PSO), and genetic algo-
rithm (GA) can provide the optimal collision-free path solutions in the constraint 
tree canopy environment. Adding a numerous approach poses of the manipulator to 
reach the target could also improve collision avoidance (Zahid et al., 2020c). Also, 
a redundant manipulator could perform well for collision avoidance due to its higher 
pose flexibility; however, additional DoFs will increase the path finding time and 
cost of the manipulator (Bac et al., 2017). Overall, the computation complexity of 
the robotic harvest operation will be increased with the addition of obstacle avoid-
ance in the path planning scheme. Thus, fast and efficient collision-free path algo-
rithms are required to ensure successful and safe operation. An efficient fusion of 
path planning algorithms, including task sequencing and obstacle avoidance is 
essential for successful robotic tree fruit operations.

Being an emerging technology, machine vision combined with machine learning 
algorithms has become a crucial factor in the development of automatic harvesting 
robots. The complexity of harvesting robots has been minimized to a great extent 
due to extensive progress in machine vision technologies, including advanced cam-
era sensors and artificial intelligence (AI) algorithms. Time-of-flight cameras (e.g., 
RGB-D) have been used in recent years showing promise for fruit recognition. The 
potential of using all types of time-of-flight cameras is not identical. Studies reported 
good accuracy with RealSense RGB-D cameras, but these types of cameras have 
high sensitivity to outdoor illumination and could provide low-resolution images. 
The high-resolution cameras including but not limited to Microsoft Kinect and Zed 
stereo cameras might be better options instead. Overcoming image acquisition 
problems caused by different environmental conditions should be the key. Although 
scholars have carried out many studies using traditional machine learning (ML) for 
fruit detections, the current innovations of deep learning algorithms, including 
Faster-RCNN, Mask-RCNN, ResNet, and DenseNet outperformed traditional ML 
algorithms have been proven in different agricultural researches. The deep learning 
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algorithms assembled with graphics processing units (GPUs) have been widely 
applied to increase the computing power while processing high-density data. The 
machine vision technology has been rigorously used in complicated and unknown 
plant environmental conditions for its robustness and high complexity. But at the 
same time, most existing machine vision-based systems are only implemented in 
laboratory, semi-customized, and customized environments for experimentation, 
resulting in a huge inconsistency between the experimental and original field condi-
tions for fruit recognition. Due to this limitation of machine vision technologies, the 
adaptability of the harvesting robots to complex and unstructured environments still 
remains a major bottleneck problem affecting the harvesting robot’s maturity and 
limiting the application in orchard conditions. Therefore, universal machine vision 
technologies need to be developed that could recognize fruits in any environmental 
condition.
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