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Preface

The global food demand will be doubled by 2050 due to the world’s growing popu-
lation; however, labor shortages continue to negatively affect agri-food productions. 
To address these challenges, the emerging science and technology should play an 
important role in improving agricultural food production and reducing labor 
dependences.

Agricultural automation is the emerging technology which heavily relies on 
computer-integrated management and advanced control systems. The tedious farm-
ing tasks had been taken over by agricultural machines in last century; in the new 
millennium, computer-aided systems, automation, and robotics have been applied 
to precisely manage agricultural production system. With agricultural automation 
technologies, sustainable agriculture is being developed based on efficient use of 
land, increased conservation of water, fertilizer, and energy resources. The agricul-
tural automation technologies refers to related areas in sensing and perception, rea-
soning and learning, data communication, and task planning and execution. Since 
the literature on this diverse subject is widely scattered, it is necessary to review the 
current status and capture the future challenges through a comprehensive monograph.

Tremendous progress has been made in the past decades toward successful appli-
cation of automation technologies in field crops such as corn, wheat, soybean, etc. 
For example, tractor guidance and steering control technologies have been success-
fully commercialized to increase steering accuracy and reduce driver fatigue with 
minimum interaction. In future, driverless tractors will change the role of driver to 
a fleet manager who oversees robot fleet working in the field 24/7. However, serious 
technical challenges in automating operations have simultaneously emerged espe-
cially in specialty crops such as tree fruit crops. For instance, it is difficult to achieve 
automated harvesting of fresh fruits and vegetables due to the high bruising rate. In 
future, agricultural robots need to undergo significant changes to be suited to har-
vest delicate produce.
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In this book, we have limited the scope to agricultural automation and invited a 
number of internationally recognized experts to provide critical reviews of advanced 
control technologies, their merits and limitations, application areas, and research 
opportunities for further development. Such a monograph will serve as an authorita-
tive treatise that can help researchers, engineers, educators, and students in the field 
of sensing, control, and automation technologies for agriculture.

Beijing, China Shaochun Ma  

Preface
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Chapter 1
Overview of Sensing, Data Management, 
and Control Technologies for Agricultural 
Systems

Peng Huo, Kuan-Chong Ting, and Shaochun Ma

1.1  Introduction

Agriculture is a complex industry, which includes not only production activities, but 
also processing, storage, transportation, and marketing of agricultural products. The 
development of agricultural production is affected by the natural environment and 
social conditions. In the past, to solve the problem of insufficient food supply, the 
development of agricultural technologies has been focusing on increasing produc-
tion. However, for the modern society, the provision of basic food and clothing has 
been mostly achieved. Since entering the twenty-first century, agricultural labor 
force is increasingly in short supply; therefore, “Who will farm and how to farm” 
has become an important social problem.

In the human history, there was much evidence that agriculture was critical to the 
well-being of a country. Shang Yang in the Qin Dynasty of China once said: “A 
country with 100 farmers out of every 100 people will be a dominating kingdom; 
with 10 farmers out of every 11 people will be a strong nation, and with only 50% 
of the population being farmers will be insecure. Therefore, the ruler of a country 
encourages all his/her people to work in agriculture.” In other words, if agricultural 
production is well performed, a country’s food and clothing supply can be ade-
quately provided. With the development of the current agricultural process contin-
ues to accelerate, the rural labor force and farmers’ concept of labor have also 
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undergone certain changes. The recent agricultural development trend shows that 
farmers welcome new ways of enhancing labor productivity in agricultural produc-
tion. Therefore, their demand for agricultural mechanization has been gradually 
increasing, and they also have a great dependence on the application of mechanized 
equipment in agricultural production. It is clear that agricultural mechanization has 
had a great impact on agricultural development. The productivity of every farmer 
has become more important than the proportion of population engaged in farming.

Building on the success of mechanization that has dramatically reduced the 
strong dependence of agricultural production on labor force, new development, 
such as integrated Electronic Information, Internet of Things, Cloud Computing, 
and other technologies, will facilitate the realization of automation, intelligence, 
and roboticization in agricultural production processes. The development of agri-
cultural science, engineering, and technology has advanced rapidly. The field of 
agricultural engineering is no exception. It has made very impressive impact to 
agricultural production by adding to mechanization with the use of information 
technology. The research and application of human-like machine capabilities, 
namely automation to agricultural production has been one of the most active 
research and development efforts in the agricultural engineering discipline.

As an emerging and fast growing subject area, agricultural automation relies on 
computer-assisted management and advanced control systems, involving perception 
(i.e., sensors and sensing), reasoning and learning, communication, task planning 
and execution, and systems integration. Agricultural automation is also expected to 
enable sustainably intensified agriculture by improving the use of land, water, fertil-
izer, and energy, as well as increasing productivity.

Literature on the subject of agricultural automation is abundant but widely scat-
tered; therefore, it is necessary and beneficial to capture the past development, cur-
rent activities, and future challenges in a comprehensive monograph. This 
monograph introduces the sensing technology (part A), data processing (Part B), 
and control technology (Part C) as related to agricultural automation. Specifically, 
the content of this monograph include: application of agricultural sensor technol-
ogy in the agricultural Internet of Things (Minzan Li); application of machine 
vision technology in the production of special crops (Manoj Karkee); imaging tech-
nology of plant phenotypes (Jianfeng Zhou); analysis of agricultural production 
using the automation-culture-environment oriented system approach (ACESYS) 
(Tao Lin; Kuan-Chong (KC) Ting); application of deep learning algorithms in agri-
cultural image recognition (Luis F Rodriguez; Tao Lin); application of big data in 
complex agricultural systems (Shih-Fang Chen); research direction of intelligent 
agricultural management (Du Chen); introduction to the opportunities and chal-
lenges of control technology in agricultural automation technology through emerg-
ing tractor automation technology (Enrong Mao); application of agricultural 
machinery time–frequency control (Xiuheng Wu; Zhenghe Song; Steve Suh); 
application of agricultural drone technology (Yongjun Zheng); and fruit harvesting 
robot (Long He).

P. Huo et al.



3

1.2  Part A: Sensing and Perception

The world’s agriculture is currently in the transition period from traditional agricul-
ture to modern agriculture. The rapid acquisition of agricultural information is the 
prerequisite and basis for automated agricultural production (Earl et al., 1996). New 
technologies, such as agricultural Internet of Things and smart sensors, will play 
unique and important roles and also provide unprecedented opportunities for the 
development of modern agriculture. Generally, a wireless sensor node consists of a 
processing module (usually a low-power microcontroller unit, MCU), one or more 
sensor modules (embedded, external analog, or digital sensor equipment), and an 
RF communication module. The RF communication module is usually supported 
by a low-power wireless communication technology (Tzounis et al., 2017; Fig. 1.1). 
A sensor in the agricultural Internet of Things system integrates agricultural infor-
mation perception, data transmission, and intelligent information processing tech-
nologies. The specific performance is based on the need of agricultural information 
to be detected and gathered, such as soil fertility (Mouazen & Ramon, 2009), mois-
ture (Tian et al., 2016), diseases, pests and weeds (Zhao et al., 2015), cultivated 
layer status information (Andrade-Sanchez et  al., 2008), nutrients information 
(Hashimoto et al., 2007), crop growth and seedling information (Hoshi et al., 2007), 
farmland ecological environment information (Liu et  al., 2014), and crop yield 
(Zhao et al., 2011) and quality information (Wang et al., 2012). These varieties of 
agricultural information can be measured using different types of sensing technolo-
gies, such as field-based electronic sensors (Ruiz-Garcia et al., 2009), spectrometers 
(Mouazen et al., 2005), machine vision (Aquino et al., 2015), airborne multispectral 
and hyperspectral remote sensing (Yang et al., 2008), satellite imagery (Metternicht 

Fig. 1.1 The architecture of a typical wireless sensor node

1 Overview of Sensing, Data Management, and Control Technologies for Agricultural…
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& Zinck, 2003), thermal imaging (Ondimu & Murase, 2008), radiofrequency iden-
tification (Vellidis et al., 2008), machine olfactory system (Benedetti et al., 2008), 
and so on. The sensing technologies for crop biomass detection, weed detection, 
soil characteristics, and nutrients are the most advanced and can provide the data 
required for management in specific locations. On the other hand, sensing technolo-
gies for disease detection and characterization and crop moisture status are based on 
more complex interactions between plants and sensors, making them more difficult 
to implement on a large scale in the field and more complex to handle (Lee 
et al., 2010).

In the modern agricultural technology development, the application of agricul-
tural sensor technology in the agricultural Internet of Things, machine vision tech-
nology in the production of specialty crops, and imaging technology in plant 
phenotyping are widely studied.

As the “eyes and ears” of agricultural information perception, the development 
of new agricultural sensors will be an indispensable and important enabler for the 
agricultural Internet of Things industry. At the same time, the wide deployment of 
sensor networks in agriculture and field monitoring requires the following features: 
low cost, easy operation, durability, remote communication, and scalability of a 
large number of sensor nodes. At present, these goals have been basically achieved 
in addition to “low cost.” Although mass production can realize low-cost sensor 
networks, mass production is still difficult in the initial stage of introducing sensor 
networks into agriculture. To accurately obtain large-scale crop and growth environ-
ment information, it is necessary to increase the deployment of sensors, which will 
greatly increase the cost. Thus, low-cost informatization has become a development 
direction of sensor technology in the agricultural Internet of Things (Wang et al., 
2016; Lee et al., 2010).

With the continuous development of image processing, pattern recognition, arti-
ficial intelligence, and other technologies, the application of machine vision tech-
nology in agricultural systems has gradually deepened, has been extended to the 
field of agricultural automation, and has achieved many important results (He et al., 
2002). At present, machine vision technology still has the following challenges in 
agricultural applications: (1) The equipment for collecting and processing crop 
growth information based on machine vision is bulky and inconvenient to supply 
power; (2) the portability of field operations is poor; (3) the equipment is not cost- 
effective, which is not conducive to wide application by farmers; and (4) the operat-
ing environment is complex. In addition, the acquired images have problems such 
as complex and varying backgrounds, and it is difficult to quickly identify the target 
object, which limits the practical application of vision technology in agriculture. 
High-definition image acquisition, image processing algorithm computing speed, 
and object recognition capability pose challenges; hence, the development of soft-
ware and hardware needs to be improved. The illumination in agricultural fields is 
affected by time and environment, and the image quality fluctuates greatly. Most 
existing researches are based on specific light source environments. Varying light, 
mechanical vibrations, and varying backgrounds make machine vision technology 

P. Huo et al.
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moving from the laboratory to the field more challenging. At present, the speed of 
image processing by embedded machine vision technology is relatively slow. For 
occasions with high real-time requirements, image processing algorithms and sys-
tem hardware need to be further optimized (Zhang, 2016).

High-throughput, automated, high-resolution plant phenotypic information col-
lection platform and analysis technology are essential for accelerating plant 
improvement and breeding to increase yield and resistance to diseases and insect 
pests. The platform is used to analyze genomic information and quantitatively study 
complex traits related to growth, yield, and adaptation to biotic or abiotic stresses. 
Phenotypic plasticity is an important way to build plant growth models and collect 
crop data, rich phenotypic data sets that can fill the gap between genomic informa-
tion and plant phenotypic plasticity (Zhang et al., 2020). It cannot be ignored that 
the above-mentioned techniques have advantages in analyzing the above-ground 
parts of plants under natural conditions; however, they have limitations on under-
ground root systems. The cost of high-precision imaging sensors (such as hyper-
spectral, chlorophyll fluorescence, etc.) limits its broad field deployment. How to 
convert the phenotypic data generated by spectral imaging into an effective refer-
ence for planting and breeding is also a major challenge that imaging spectroscopy 
technology faces in the analysis of plant abiotic stress phenotypes. Therefore, the 
fusion of imaging spectroscopy technology can be the directions for future research 
such as nuclear magnetic resonance, terahertz imaging, comprehensive analysis of 
plant phenotypes, and efficient algorithms for tabular big data mining and high- 
throughput analysis framework (Cao et al., 2020).

At present, some major crop yield estimates have adopted commercial yield 
monitoring systems. Although the yield cannot be predicted accurately during the 
growing season, the yield patterns and field management areas identified from the 
airborne multi-spectral and hyper-spectral images are important for intra-season 
and seasonal production. Post management is very useful. Due to the complexity 
and nonstructural nature of the agricultural environment, computer vision still needs 
to improve efficiency in future research. The hyperspectral imaging image process-
ing method needs more research in the field of image automatic registration, and the 
properties of the monitored objects should be considered when building the model 
to solve the problem of image fusion skillfully. The development of thermal infrared 
imaging not only has the high-precision advantages of thermal imaging but also 
compensate for the relatively low spatial resolution of the camera. Future research 
needs to develop better acquisition and processing technologies. RFID technology 
is used to track pesticide and irrigation sensor node information and is expected to 
gain wide applications. Electronic noses have also shown application potential in 
specialty crops, and further development is needed in terms of selectivity, sensitiv-
ity, and repeatability. Infinite sensor networks have been developed, and the applica-
tions of sensor technology are too numerous to enumerate. There are many advanced 
sensing technologies in various sectors, which can be applied in the agricultural 
sector in the future, including but not limited to yield estimation, soil detection, 
water regime monitoring, pest detection, etc. The future of agricultural sensor 

1 Overview of Sensing, Data Management, and Control Technologies for Agricultural…
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technology is full of opportunities and challenges, and it is hopeful to improve agri-
cultural operating conditions. In the near future, the development and application of 
sensor technology will strongly facilitate the development of agricultural automation.

1.3  Part B: Data Utilization and Decision-Making 
for Automation

Smart agriculture emphasizes the application of information and communication 
technology in the information–physical farm management cycle. With the emer-
gence of smart farming machines and sensors and the increasing number and scope 
of farm data, sowing, farming, and harvesting processes will increasingly rely on 
data and management. The rapid development of the Internet of Things and cloud 
computing has promoted the so-called smart agriculture (Sundmaeker et al., 2016). 
Although precision agriculture only considers the variability of the field, smart agri-
culture goes beyond this emphasis. It is not only based on geographic location but 
also based on data. It enhances management tasks through real-time event-triggered 
operations and situational awareness. The real-time auxiliary reconstruction func-
tion is necessary to perform agile operations, especially in the case of sudden 
changes in operating or other conditions (such as weather or disease warnings), 
including implementation, maintenance, and technology utilizations. Figure  1.2 
summarizes the concept of smart agriculture in the management cycle as a cyber–
physical system, which involves engineered computing and communicating sys-
tems interfacing the farming system (Wolfert et al., 2014).

Fig. 1.2 The cyber–physical management cycle of smart farming enhanced by cloud-based event 
and data management

P. Huo et al.
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With the rapid development of network information technology, the agricultural 
Internet of Things has become an important tool in boosting productivity and pre-
serving energy. The traditional extensive agricultural production model is gradually 
shifting towards intensification, intelligence, and data. The role of big data in agri-
cultural applications is of great practical significance to the integration of agricul-
tural informatization and modernization (Han & Ma, 2021). New technologies such 
as the Internet of Things and cloud computing are expected to take advantage of this 
development, which incorporate the application of big data for decision-making. 
The scope of application of big data in smart agriculture is not limited to primary 
production, but also affecting the entire food supply chain, playing a vital role in the 
development of the agricultural Internet of Things: the machines are equipped with 
a variety of sensors to capture data in the machines’ operating environment. This 
ranges from relatively simple feedback mechanisms (Nandurkar et al., 2014) (such 
as thermostats to adjust the temperature) to deep learning algorithms (Chen et al., 
2020) (such as implementing correct crop protection strategies). This is achieved by 
combining with other external big data sources (Elgendy & Elragal, 2014), such as 
weather or market data, or with benchmark data from other farms. Due to the rapid 
development of this area, it is difficult to give a unified definition of big data, which 
usually refers to such a large or complex data set that traditional data processing 
applications cannot meet the requirements (Wikipedia, 2016).

In the data management of agricultural systems, field agricultural production 
system analysis for automation-culture-environment oriented system (ACESys), 
application of deep learning algorithms in agricultural image recognition, applica-
tion of big data in complex agricultural systems, and smart agricultural management 
become more cutting-edge and popular; meanwhile, there exists many problems 
and challenges.

Plant-based engineering systems have evolved from simple structure for plant 
protection to sophisticated forms for optimizing the productivity of plants and 
human labor. In developing decision support to aid in the analysis of such complex 
systems, an automation-culture-environment oriented systems (ACESys) analysis 
concept has been perceived. The ACESys concept has been used in guiding the 
process of object-oriented analysis, design, and programming in the development of 
computerized systems analysis tools. The implementation of these system analysis 
tools accompanied by information gathering interfaces on the internet which enables 
the decision supports functions available in a real-time fashion. This concurrent sci-
ence, engineering, and technology (ConSEnT) platform is expected to encourage 
broad user participation and effective information integration within the scientific 
and engineering communities (Ting et al., 2003, 2016; Ting, 1997).

In agricultural systems, big data can be captured, analyzed, and used for decision- 
making. There are multiple linked stages in the supply chains of agriculture from 
production to sales. The relevant data is collected, analyzed, and processed through 
the agricultural big data analysis platform, and then applied to agricultural produc-
tion. It can provide more accurate data analysis reports for agricultural production 
throughout the supply chains (Li & Zhang, 2020). The current big data in agricul-
tural economic management (Zilberman, 2019), agricultural e-commerce (Yin & 

1 Overview of Sensing, Data Management, and Control Technologies for Agricultural…



8

Liu, 2019), agricultural water conservancy (Sun et  al., 2017; Kamienski et  al., 
2019), mountain agriculture (Kyere et al., 2020), agricultural machinery operations 
(Li et al., 2019), and agricultural Internet of Things (Wolfert et al., 2017), as well as 
other fields of applied research are cutting-edge. However, there are some problems 
and challenges in the research of agricultural system big data. The first is how to 
ensure privacy and security (Sonka, 2014). Since the data on the farm is usually in 
the hands of individual entities, it is necessary to invest in public infrastructure to 
transfer and integrate data, and finally develop applications from the collected data 
(Schönfeld et al., 2018). Another problem is that the availability and quality of the 
data may be poor, it needs to be validated before use, and the data needs to be inte-
grated (Yang, 2014). The prospects of big data in agriculture are broad, but to 
improve the utilization rate of big data applications, the above-mentioned chal-
lenges must be dealt with.

Deep learning is an emerging image processing and data analysis technology 
with broad application prospects and development potential (Kamilaris & Prenafeta- 
Boldú, 2018). Detecting the main organs (flowers, fruits, stems, leaves, etc.) of 
plants from plant images is a typical target object recognition capability, which can 
be used for pest monitoring (Wang et al., 2021) and targeted pesticide application 
(Tufail et al., 2021), solar greenhouse scene understanding (Jung et al., 2020), and 
the development of intelligent agricultural machinery (Zhang et al., 2019). The deep 
convolutional neural network developed in recent years is a new object classifica-
tion and recognition method, which can realize automatic image feature extraction, 
integrate with the classification and recognition process, and realize self-learning 
through data (Zhou et al., 2017). It is different from the shallow architecture of the 
traditional neural network method. When extracting features of the target, the origi-
nal image does not need to have a fixed size, so there is no need to trim or compress 
the original image, and the extracted feature information is more complete and 
accurate (Yan et al., 2019). Deep learning provides better performance and is supe-
rior to other popular image processing techniques. In future work, it will be further 
used for smarter, more sustainable agriculture, and safer food production.

The future of agriculture is data-centric, more accurate, and smarter than ever 
before. We call it smart agriculture. It uses advanced modern information technol-
ogy to intelligently manage agricultural production and operations, thereby promot-
ing precise, visualized, and intelligent agricultural production management models 
(Ayaz et al., 2019). Enhancing the capabilities of smart agriculture is one of the 
most important tasks in agricultural modernization. In recent years, the continuous 
development of information technology has also driven the improvement of cloud 
computing, big data, and Internet of Things technologies (Channe et al., 2015). The 
beneficial use of big data in the implementation of smart agriculture can provide a 
variety of development paths, which will positively promote the transformation and 
upgrading of agricultural production and management (Kshetri, 2014). Intelligent 
field control (Popescu et al., 2020), intelligent cloud decision-making (Symeonaki 
et al., 2020), and mobile terminal monitoring and dispatching are the future direc-
tion of intelligent agriculture (Liu et al., 2020a).

P. Huo et al.
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The demand for crops continues to increase in quantity and quality, raising the 
demand for intensification and industrialization of agricultural production. 
“Agricultural Internet of Things” is a very effective technology that can provide 
many solutions for agricultural modernization. Scientific teams and research institu-
tions, as well as the industry, are working hard to provide more and more IoT prod-
ucts to the stakeholders of agricultural enterprises, and ultimately lay the foundation 
for the Internet of Things to play a clear role as a mainstream technology. At the 
same time, the cloud computing and deep learning provide sufficient resources and 
solutions to maintain, store, and analyze the massive amounts of data generated by 
IoT devices. The management and analysis of IoT data (“big data”) can be used to 
automate processes, predict conditions, and improve agricultural activities, and 
more importantly, the data can be updated in real time. These technologies and 
foundations have promoted the development of intelligent agriculture, gradually 
eased the pressure on the rural labor force, and solved the problem of low technol-
ogy in agricultural development more effectively. In the future, data management 
technology will be more advanced and smarter, and agriculture can be truly 
unmanned, precise, visualized, and intelligent.

1.4  Part C: Task Planning and Execution

To reduce the dependence of agricultural production on labor force, the fundamen-
tal way is to realize the automation, intelligence, and roboticization of agricultural 
production processes. Intelligent agricultural equipment integrates electronic infor-
mation, Internet of things, cloud computing, and other technologies, and the intel-
ligence and automation level has become an important indicator to the development 
level of modern agriculture (Li et al., 2018). Intelligent agricultural equipment is a 
complex system integrating machinery, intelligent perception/decision/control, big 
data/cloud platform/Internet of things, and other technologies, which can indepen-
dently, efficiently, safely, and reliably complete agricultural tasks (Liu et al., 2020a). 
These technologies are widely used in various applications of agricultural produc-
tion, such as common parameter perception of agricultural machinery (Wu et al., 
2018), obstacle avoidance of agricultural machinery (Cai et al., 2019), detection of 
tillage parameters (Yin & Liu, 2019), precision fertilization and sowing (Chen et al., 
2018), precision plant protection (Pertot et  al., 2017), agricultural UAV (Wang 
et al., 2019), harvesting robot (Mu et al., 2020), etc. Figure 1.3 shows the integration 
of small and large sensor networks, UAVs, autonomous vehicles, robots, and agri-
cultural machinery supported by a cloud infrastructure. At present, intelligent agri-
cultural machinery and equipment is a hot research area, which involves positioning 
system, wireless communication, vehicle communication, data structure, automatic 
navigation system, automatic turning, and harvest automation. In future, we need to 
pay attention to problems in these research areas as follows: the responsibility of 
field machinery, single robot control architecture, multi-robot control architecture, 
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and intelligent cooperative operation of new-generation agricultural equipment 
(Shearer et al., 2010).

In the control technology of agricultural system, tractor automation technology 
is emerging, including application of time frequency control of agricultural machin-
ery, application of agricultural UAV technology, and fruit harvesting robot. Research 
is cutting-edge, but there are many emerging opportunities and challenges.

The development of agricultural system industrialization puts forward higher 
requirements for the quantity and performance of agricultural machinery and equip-
ment. As the core of agricultural equipment, tractor technology development reflects 
the level of national agricultural mechanization and modernization. In recent years, 
while new technologies are widely used in tractors, new structures and products are 
constantly emerging, with the continuous improvement of technology content and 
product performance (Xie et al., 2018). Intelligent tractors for agricultural automa-
tion, intelligent perception and decision-making, efficient/autonomous driving, and 
remote control will play an important role (Baillie et  al., 2018). Throughout the 
development of agricultural tractor technology, it has experienced large-scale break-
throughs in power, transmission, hydraulic, electronic control, and mechatronics. 
Focusing on the four aspects of “efficiency, intelligence, environmental protection, 
and information integration,” agricultural tractors have made breakthrough pro-
gresses in power (Rymaniak et al., 2020), transmission (Ahn et al., 2021), walking 
(Raheman & Snigdharani, 2020), hydraulic (Roeber et al., 2016), suspension (Yang 
et al., 2009), driving comfort (Liu et al., 2020b), Internet of Things (Lyle, 2013), 
and integrated service/management platform (Colezea et al., 2018), as well as many 
other aspects. As an important node of intelligent agricultural machinery equipment 
and agricultural production information network, tractors will become new bright 

Fig. 1.3 The fusion of small- and large-scale sensor networks, drones, autonomous vehicles, 
robots, and agrimachinery supported by a cloud infrastructure in open-field cultivation
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spots and new directions in efficient operation, energy saving, environmental pro-
tection, informatization, and intelligence.

The application of automated and intellectualized technology in agricultural 
machine can enhance its working performance, operational safety, economic perfor-
mance, and environmental friendliness to a great extent. The vital technique to 
achieve these objectives is the control of actuators, especially under the rough con-
dition which agricultural machine often encounters. A time–frequency control tech-
nique which emphasizes that the control algorithm must be implemented in the time 
domain and frequency domain at the same time. The control error is small in the 
time domain, and the broadband oscillation spectrum can be suppressed in the fre-
quency domain. This is a broad control concept which has many specific operations 
on agricultural machines. For example, by applying wavelet analysis technology to 
improve the performance of traditional controller, the dynamic performance of the 
controlled system in the whole working frequency domain can be improved (Wu 
et al., 2017).

With the development of information technology, the Internet of things technol-
ogy and low-altitude remote sensing technology provided by UAV are widely used 
in the fields of production practice and environmental monitoring. Agricultural 
UAV has shown obvious characteristics and advantages in practice and application 
because it is widely used in agricultural areas where the ground machinery is diffi-
cult to cultivate (Lan et al., 2018). In modern agricultural pest monitoring, Internet 
of things and low altitude remote sensing technology can respectively monitor crop 
pests and diseases from the ground micro and air macro perspective and analyze 
their pathogenic environmental factors (Tsouros et  al., 2019). Compared with 
manned aircraft, agricultural UAV has the advantages of not requiring a special 
runway, better efficiency than manual operation, high quality, low cost, and strong 
adaptability to the working environment, which is widely recognized by enterprises 
and the public. However, at present, UAVs are mainly controlled by remote control 
and pre-programming, which is easy to cause problems, such as poor perception of 
autonomous environment, slow information processing speed, slow convergence of 
path planning algorithm, and low crop recognition rate (Radoglou-Grammatikis 
et al., 2020).

In fruit production, harvesting accounts for about 40% of the total operation. The 
quality of picking directly affects the storage, processing, and sales of fruits and 
vegetables, and ultimately affects the market price and economic benefits. Due to 
the complexity of picking operation, the degree of picking automation is still very 
low (Song et al., 2006). In the past few decades, many researchers around the world 
have conducted extensive research on fruit harvesting. However, few robot proto-
types have been successfully commercialized (Zhang et al., 2016). The main rea-
sons are that the detection/recognition rate and picking rate of fruits are not high, the 
average picking cycle is long, and the manufacturing cost of picking robot is high 
(Jia et al., 2020). Under the current development pattern of environment industrial-
ization, structure standardization, multi-machine co-melting and man–machine co- 
melting, the robot picking technology has developed from the former picking 
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auxiliary equipment to the automatic picking equipment, and will be intelligent and 
in the future. (Zhao et al., 2016).

Through the above analysis, we can see that the agricultural IoT is a very promis-
ing technology that can provide a variety of solutions for agricultural automation. In 
addition, the concept of interoperability between heterogeneous devices has inspired 
the innovation of smart agricultural equipment. With these tools, new applications 
and services can be created with added values to the data flow generated at the edge 
of the network.

1.5  Summary

In the past two decades, people have had high expectations for the application of 
automation technology in agriculture, but they have also seen many challenges. To 
achieve agricultural automation, it is necessary to learn and apply modern technol-
ogy in agriculture and integrate intelligent network technologies. Now it is a good 
time to move toward modern sustainable agriculture. Agriculture can demonstrate 
the full power of data-driven management to meet the challenges faced by food 
production in the twenty-first century. In the next 10 years, intelligent agricultural 
equipment will enable the rapid development of agricultural automation, which can 
effectively improve agricultural production efficiency, reduce agricultural produc-
tion costs, improve product quality and safety, and improve agricultural develop-
ment. Therefore, it is imperative to implement intelligent agricultural automation. 
In this book, we will introduce the key technologies in agricultural automation, 
show the main research results, and analyze the opportunities and challenges faced.
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Chapter 2
Agricultural Internet of Things

Yao Zhang, Man Zhang, and Minzan Li

2.1  Agricultural Internet of Things Concept

2.1.1  Basic Concepts and Common Technologies 
of the Internet of Things

The concept of Internet of Things (IoT) was first proposed by the Massachusetts 
Institute of Technology in 1999. The early IoT, based on radiofrequency identifica-
tion (RFID) technology and equipment, refers to the network according to the 
agreed communication protocol, which enable intelligent identification and man-
agement of item information to achieve interconnection, exchangeability, and shar-
ing of item information. With the development of technology and application, the 
connotation of the IoT has been expanded and redefined as follows. IoT is the 
expanded application and network extension of communication network and 
Internet, which uses perception technology and intelligent devices to perceive and 
identify the physical world. Through network transmission interconnection, IoT 
performs calculation, processing, and knowledge mining to achieve human–object 
and object–object information interaction and seamless linkage. The goal is to 
achieve real-time control, precise management, and scientific decision-making over 
the physical world (ITU Internet Reports, 2005); Internet of Things in 2020, 2008).

The IoT network architecture consists of perception layer, network layer, and 
application layer, as shown in Fig. 2.1. The perception layer includes perception and 
control sub-layer and communication extension sub-layer. The perception and con-
trol sub-layer can realize the intelligent perception and recognition, information 
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collection and processing, and automatic control of real world. The communication 
extension sub-layer connects physical entities to the network layer and application 
layer through communication terminal modules directly or after forming an exten-
sion network. The network layer includes the access network and the core network, 
which can realize the transmission, routing, and control of information. The net-
work layer relies on the public telecommunication network and the Internet, as well 
as the industry-specific communication network. Application layer includes appli-
cation infrastructure/middleware and various IoT applications. Application infra-
structure/middleware provides basic service facilities and resource invocation 
interfaces for IoT applications, so IOT can be applied in many fields.

The extension of the network to the physical world is a prerequisite for the exis-
tence of the IoT.

Therefore, for any extended IoT application, it must rely on the technology of 
perception level. The common key technologies of IoT mainly include the follow-
ing areas: perception, control, network communication, microelectronics, computer, 
software, embedded system, micro-electromechanical, and other technologies. 
Among them, sensor and RFID technology belong to the first step for the IoT to 
receive information from physical world. In order to systematically analyze the IoT 
technology system, the key technologies of IoT can be categorized into the follow-
ing aspects: perception, network communication, application, network common 
technologies, and supporting technologies, as shown in Fig. 2.2.

Fig. 2.1 IoT network architecture
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2.1.2  Agricultural Internet of Things Concept

The European Smart Systems Integration Technology Platform submitted Internet 
of Things–Strategic Research Roadmap in 2009, which divided the IoT into 18 
major categories. Among them, “Internet of Things in Agriculture and Farming” is 
one of the most important development directions (Commission of the European 
Communities, 2009; Internet of Things, 2009). According to the report, agricultural 
IoT is divided into three layers: information perception, information transmission, 
and information application. The information perception layer consists of various 
sensor nodes. Through advanced sensor technology, a variety of parameters to 
enhance agricultural refinement management can be obtained, such as soil fertility, 
crop seedling growth, individual animal productivity, health, behavior, and other 
information. In the information transmission layer, various types of data obtained 
by sensors are released to the local area network and wide area network through 
wired or wireless communication protocols. The information application layer fuses 
and processes the data for making scientific management decisions and controlling 
the agricultural production process.

The IoT in agricultural application will face a series of scientific and technological 
problems such as the acquisition of information distributed in a wide area, efficient 

Fig. 2.2 IoT key technologies
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and reliable information transmission and interconnection, and the integration of 
intelligent decision systems for different application requirements and environ-
ments. The breakthrough of key generic technology in electronic, information, 
communication technology and industry and the support from low cost, convenient, 
and easy-to-use hardware and software products and services are strongly needed. 
Besides, technology integration and operation service mode innovation about agri-
cultural application with agriculture biology, information and equipment engineer-
ing scientists’ efforts are also required. Information technology will be integrated 
into various agricultural application fields and become the link between biological, 
agronomic, and engineering. The innovation of IOT agricultural application will 
break the boundaries of disciplines and departments, promote intersection and 
integration of different disciplines, generate new cross-disciplines, and vigorously 
promote the demand and application oriented collaborative research model, creat-
ing new opportunities for the development of new industries and the transformation 
of agricultural development.

Faced with the dual constraints of resource scarcity and ecological environment 
deterioration, the contradiction of high resource input and sloppy operation, and the 
serious challenge of quality and safety of agricultural products, the development of 
modern agriculture urgently needs to strengthen the application of agricultural 
information technology represented by agricultural IoT to realize real-time moni-
toring of agricultural production factors from macroscopic to microscopic in the 
process of agricultural production, improve the level of fine management of agricul-
tural production and operation, and achieve the purpose of rational use of agricul-
tural resources, reduce production costs, improve the ecological environment, and 
improve the yield and quality of agricultural products. Based on the principle that 
information can be perceived at any time, any place, and anything, IoT can support 
refined process management according to the information and knowledge in all 
links of agricultural production. In pre-production, IoT can be used to monitor and 
evaluate agricultural resources such as farmland, climate, water resources, and agri-
cultural materials in real time, providing a basis for scientific utilization and super-
vision of agricultural resources. In production, IoT can be used to monitor the 
production process, input use, environmental conditions and implement fine regula-
tion of agricultural production action. In post-production, IoT can be used to con-
nect agricultural products with consumers, so that consumers can transparently 
understand the production and supply process from the farm to the table. IoT pro-
mote the development of e-commerce of agricultural products.

2.2  Basic Technologies for Agricultural IoT

2.2.1  Agricultural Information Sensing Technology

Agricultural information sensing technology refers to the use of agricultural sen-
sors, radiofrequency identification (RFID), bar codes, global navigation satellite 
systems (GNSS), remote sensing (RS) technology, etc. to collect and acquire 
information on objects in the agricultural field at any time and any place.
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 Agricultural Sensors

Agricultural information sensing technology is the core of agricultural 
IoT. Agricultural sensors are mainly used to collect information in various agricul-
tural applications, including parameters such as light, temperature, water, fertilizer 
and gas in planting industry; harmful gas content of carbon dioxide, ammonia, and 
sulfur dioxide, concentration of dust, droplets and aerosols in air, environmental 
indicators such as temperature and humidity in livestock and poultry breeding 
industry; dissolved oxygen, pH, ammonia nitrogen, conductivity, and turbidity in 
aquaculture industry. The first section of this chapter describes several typical 
agricultural sensors in detail.

 Radiofrequency Identification Technology

Radiofrequency identification (RFID), known as electronic tags, refers to the use of 
radiofrequency signal through space coupling (alternating magnetic field or electro-
magnetic field) to achieve contactless information transmission and through the 
information transmitted to achieve the purpose of automatic identification 
(Finkenzcller, 2003; van Kranenburg, 2008). RFID, emerging from the 1990s, can 
automatically identify the target through radiofrequency signals and obtain relevant 
data. The identification process without manual intervention can work in a variety 
of harsh environments. RFID is mainly used in agriculture in animal tracking and 
identification, digital breeding, fine crop production, agricultural circulation, etc. 
(Jeffery et al., 2006; Weizhu et al., 2010).

RFID system is composed of reader, electronic tags, and application software 
(van Kranenburg, 2008). RFID system working principle diagram as shown in 
Fig. 2.3. After the electronic tag into the magnetic field, reader transmits a specific 
frequency of radio wave energy to the electronic tag to drive the electronic tag. By 
the energy obtained from the induction current, electronic tags send internal data 
stored in the chip (passive tag or passive tag). Or the tag actively sends a signal at a 
certain frequency (active tag or active tag). The reader reads and decodes the infor-
mation and sends it to the central information system for data processing. In terms 
of communication and energy sensing between RFID reader and electronic tag, it 
can be roughly divided into two categories including inductive coupling (Inductive 
Coupling) and backward scattering coupling (Backscatter Coupling). The general 
low-frequency RFID mostly uses the first type, while the higher frequency mostly 
uses the second way.

 Barcode Technology

Barcode technology is an automatic identification technology integrating barcode 
theory, photoelectric technology, computer technology, communication technology, 
and barcode printing technology. Barcode, made up of strips (black, white, and 
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empty color) with different width and reflectivity according to certain coding rules, 
is used to express a group of numbers or letters. Barcode technology has been 
widely used in the quality traceability of agricultural products.

The barcode is divided into one-dimensional (1D) code and two-dimensional 
(2D) code. Among them, the 1D code is composed of vertical black and white 
stripes with different thickness. Usually there will be English letters or Arabic 
numerals under the stripes. 2D code is usually a square structure, not only consists 
of horizontal and vertical bar codes, and there are also polygonal patterns within the 
code area. And the texture of the 2D code is also black and white with different 
thickness. The 2D code is in the form of dot matrix. As shown in Fig. 2.4, the 1D 
code only contains information in the horizontal direction, the storage capacity is 
limited, and only numbers could be stored, which could be only used to identify the 
basic information of goods, such as product name, price, etc. To invoke more infor-
mation, it is needed to cooperate with the computer database. 2D code, containing 
information in both horizontal and vertical directions, provides large storage capac-
ity. 2D code can be composed of Chinese characters, letters, numbers, and other 
information, so it not only has a special identification function but also can display 
more detailed product content.

Fig. 2.3 RFID system working principle diagram. (a) RFID system components; (b) RFID tags; 
(c) RFID card readers

Fig. 2.4 Schematic 
diagram of 1D barcode and 
2D barcode
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2.2.2  Agricultural Information Transmission Technology

Agricultural information transmission technology refers to the access of agricul-
tural objects to the transmission network through sensing devices providing the 
highly reliable information interaction and sharing anytime and anywhere with the 
help of wired or wireless communication networks. Agricultural information trans-
mission technology can be divided into wireless sensor network technology and 
mobile communication technology.

 Wireless Sensor Network Technology

Wireless sensor network (WSN) is a self-organizing multi hop network system 
formed by wireless communication. It is composed of a large numbers of sensor 
nodes deployed in the monitoring area, which are responsible for sensing, collect-
ing, and processing the information of the perceived object in the network coverage 
area and sending it to the observer (Suman Kumar et al., 2009; Wang et al., 2006).

The typical WSN structure is shown in Fig. 2.5, including sensor node, gateway 
node, and monitoring software. A large numbers of sensor nodes are distributed 
in the monitoring area and form a wireless network through self-organization. The 
data monitored by the sensor node is transmitted hop by hop along other sensor 
nodes. In the transmission process, the monitoring data may be processed by mul-
tiple nodes, routed to the gateway node after multiple hops, and finally transmitted 
to the monitoring software through Internet, satellite, and other communication 
methods. Users can configure and manage WSN through monitoring software, pub-
lish monitoring tasks, and collect data.

Sensor node is usually a micro embedded system with relatively weak process-
ing, storage, and communication capacity, which is usually powered by battery with 
limited energy. From the perspective of network function, each sensor node has the 
dual functions of terminal and router of traditional network nodes. In addition to 

Sensor nodes

Gateway nodes

Fig. 2.5 Schematic diagram of wireless sensor network structure
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local information collection and data processing, it also needs to store, manage, and 
integrate the data forwarded by other nodes, and cooperate with other nodes to com-
plete some specific tasks. The gateway node has relatively strong processing, stor-
age, and communication capacity. It is the link connecting WSN, the Internet and 
other external networks, who realizes the communication protocol conversion 
between the two protocol stacks, releases the monitoring tasks of the management 
node, and forwards the collected data to the external network. The gateway node 
can be either a sensor node with extra functions, with sufficient energy supply, more 
memory and computing resources, or a gateway device only acting as a wireless 
communication interface without monitoring capacity. The monitoring software is 
used to monitor the changes of WSN data information in real time for further analy-
sis and processing according to the collected data information, so as to dig out more 
valuable information for guiding production practice.

ZigBee technology, based on the IEEE802.15.4 standard, is a technology stan-
dard on wireless networking, security, and other applications. ZigBee is widely used 
in the formation of wireless sensor networks, such as field irrigation, agricultural 
resource monitoring, aquaculture, agricultural product quality traceability.

 Mobile Communication Technology

With the improvement of agricultural informatization level, mobile communication 
has gradually become an important and key technology for long-distance transmis-
sion of agricultural information. Mobile communication has gone through five gen-
erations of development. The first-generation mobile communication system (1G) 
was proposed in the early 1980s, mainly based on cellular structure network, directly 
using analog voice modulation technology, transmission rate of about 2.4 kbit/s. 
The second-generation mobile communication system (2G) originated in the early 
1990s, using more intensive frequency multiplexing, multiplexing, multiple reuse 
structure technology, the introduction of smart antenna technology, dual-band, and 
other technologies. The introduction of GPRs/EDGE technology enabled the 
organic combination of GSM and computer communication/Internet with data 
transmission rates up to 115/384 kbps, thus enabling GSM functions to be continu-
ously enhanced and initially equipped with the ability to support multimedia ser-
vices. The third-generation mobile communication system (3G), also known as 
IMT 2000, the most basic feature is intelligent signal processing technology, intel-
ligent signal processing unit will become the basic functional module to support 
voice and multimedia data communications, it can provide a variety of broadband 
information services that cannot be provided by the first two generations of prod-
ucts, such as high-speed data, slow images and television images. The fourth- 
generation mobile communication system (4G), which integrates 3G and WLAN 
and is capable of downloading at 100 Mbps, 2000 times faster than dial-up, and 
uploading at 20  Mbps. The fifth-generation mobile communication system (5G) 
adopts a new service-oriented architecture to support flexible deployment and 
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differentiated service scenarios. 5G is capable of downloading at 10  Gbps. The 
latency of air interface is as low as 1 ms, which can meet real-time applications such 
as automatic driving and tele-diagnosis.

2.2.3  Agricultural Information Processing Technology

Agricultural information processing, as one of the key technologies of the IoT, is 
based on agricultural information knowledge and adopts various intelligent comput-
ing methods to make objects possess certain intelligence and be able to communi-
cate with users actively or passively. Agricultural information processing technology 
includes agricultural prediction and early warning, agricultural optimal control, 
agricultural intelligent decision-making, agricultural diagnostic reasoning, agricul-
tural visual information processing, etc.

 Forecasting and Early Warning Technology for Agriculture

Agricultural forecasting is based on actual agricultural information such as soil, 
environment, meteorological data, crop or animal growth, agricultural production 
conditions, fertilizers, pesticides, feeds, aerial or satellite images, economic theory 
and mathematical models, to speculate and estimate the possibility of future devel-
opment of the research object. Agricultural early warning is to measure the future 
state of agriculture, forecast the time and space range and harm degree of unusual 
state, and put forward preventive strategies (Handcock et al., 2009).

 Intelligent Control Technology for Agriculture

Agricultural intelligent control is to synthesize and integrate various disciplines 
such as artificial intelligence, cybernetics, system theory, operational research, and 
information theory under given constraints in the agricultural field, so that the given 
performance index of the controlled system can be controlled intelligently.

 Intelligent Decision-Making Technology in Agriculture

Intelligent decision-making in agriculture is a specific application of intelligent 
decision support systems in agriculture, which integrates the knowledge, data, and 
operations in artificial intelligence (AI), business intelligence (BI), decision support 
systems (DSS), agricultural knowledge management systems (AKMS), agricultural 
expert systems (AES), and agricultural management information systems (AMIS).
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 Agricultural Diagnostic Reasoning Techniques

Agricultural diagnosis refers to the process in which agricultural experts identify 
the objects based on their characteristic information and use certain diagnostic 
methods to determine whether the objects are in a healthy state, identify the corre-
sponding causes, and propose ways to change the state or prevent its occurrence, so 
as to make an objective and realistic conclusion about the object state. Agricultural 
diagnostic reasoning refers to the construction of a causal network diagnostic rea-
soning model based on “symptom-disease-cause” by using the knowledge represen-
tation method of digital representation and functional description.

 Agricultural Visual Processing Technology

Agricultural visual processing refers to the use of image processing technology to 
process the collected agricultural scene image to realize the recognition and under-
standing of the target in the agricultural scene. The basic visual information includes 
brightness, shape, color, texture, etc.

2.3  Agricultural IoT Applications

2.3.1  Application of IoT in Agricultural 
Information Monitoring

Scientific decision-making and management of the crop growth environment infor-
mation obtained in real time is an important element of agricultural informatization. 
Take the “Smart Agricultural Information Platform” supported by China agricul-
tural university as an example, the platform is based on B/S model, consisting of 
infrastructure layer, data service layer, basic application service layer, service bus 
layer, business processing layer, and user access layer. It realizes the functions of 
collecting and storing greenhouse temperature, humidity, light, CO2, and video 
information, maintaining basic information, analyzing data and outputting alarms. 
The application results show that the platform has good stability, perfect functions, 
and a friendly and convenient human–machine interface, which can realize the 
effective organization and management of data.

 General System Design

The “Smart agriculture information platform” mainly includes “one platform and 
four systems,” namely smart agriculture information platform and precision farm-
ing management system for field crop production, fine facility agriculture 
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management system, fine health breeding management system, and traceability 
management system for agricultural products. The platform is based on B/S mode, 
and the system consists of an infrastructure layer, data service layer, basic applica-
tion service layer, service bus layer, business processing layer, and user access layer. 
Among them, the infrastructure layer mainly includes the hardware and software 
foundation for information storage and transmission. The data service layer mainly 
realizes the integration of different types of data originally distributed in the system. 
The basic application service layer provides many decomposed application services 
performing a single function, such as permission management, membership man-
agement services, etc. The service bus layer uniformly registers the relatively inde-
pendent basic service objects on the ESB service bus and manages the service life 
cycle and service interface invocation rules through the ESB. The business process-
ing layer provides a set of business services with related functions established 
according to the system user roles. The user access layer displays the single applica-
tion services, composite business services, and integrated data services provided by 
the bottom layer of SOA architecture to end users through a unified access portal.

 1. System Structure Design
Taking greenhouse as an example, the data collection and remote transmis-

sion subsystem are composed of sensor nodes, gateway nodes, and relay routing 
nodes. The sensor nodes are connected with temperature, humidity, carbon diox-
ide, and light sensors and deployed in the center of each greenhouse. The nodes 
transmit the sensed data to the gateway node in a multi-hop manner through 
ZigBee wireless communication technology, and the gateway node is connected 
to a local PC through a serial line, on which the stand-alone monitoring software 
runs, receives, and stores the monitoring data through serial scanning, then pro-
cesses and analyzes them. The greenhouse administrator can view the monitor-
ing reality.

The PC is connected to the server depending on the field situation: the PC is 
connected to the server via the Internet in areas with network; otherwise, it is 
connected to the server via GPRS. The stand-alone monitoring software uses 
TCP/IP protocol to transmit greenhouse environmental monitoring data to the 
information platform in real time. The server consists of a data receiving and 
storage program, MS SQL Server database, and the information platform. The 
data receiving and storage program is responsible for listening to the designated 
port, judging and recognizing the TCP socket connection request from the 
 terminal of stand-alone monitoring software, and storing the received content 
into MS SQL Server database if it is legal data. MS SQL Server database is 
responsible for storing the received data and the required basic information for 
the information platform to access and call. The information platform processes 
the data in the SQL database and sends the data to the information platform in 
the form of graphics and charts. The Web-based information platform is a set of 
web applications, which adopts ASP.NET dynamic web technology and is devel-
oped by Visual Studio.net 2008 development tool and C# language.
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The video camera is connected to the server platform and PC via Internet 
network to monitor the growth of greenhouse crops and pests and diseases.

The server platform system is designed in B/S mode. Users can access this 
Web application simply through a browser to perform management operations 
such as querying monitoring data, and authorized users can watch the video 
monitoring images of each greenhouse in real time. The overall structure of the 
system is shown in Fig. 2.6.

 2. System Function Design
Taking the greenhouse as an example, the software functions of the informa-

tion platform are divided into five parts: data acquisition, data storage, basic 
information maintenance, data analysis, and data output. Among them, the data 
acquisition module adopts TCP socket technology to listen to and receive the 
data uploaded by the stand-alone monitoring software, and judge whether it is 
qualified data, and discard it if “no” and store it if “yes.” The data storage module 
can store the received sensor data, historical data of greenhouse, spatial distribu-
tion map data, basic information, and user information, etc., which provides the 
basis for the detailed display and management maintenance of the platform. In 
the basic information maintenance module, to ensure that users see the latest 
information, the administrator should update and maintain the basic information 
at any time, such as setting the standard value with the change of seasons and 
crops, assigning user rights, updating greenhouse information, etc. The data 
analysis module can perform statistical analysis on the uploaded data and logi-
cally judge whether it exceeds the upper and lower monitoring limits and make 
a conditional query of data, etc. The data output module can display the uploaded 
data in real time and output alarm records according to logical judgment.

Fig. 2.6 Overall system structure diagram
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 System Flowchart and Database Design

The smart agriculture information platform mainly includes the design of operation 
flows, data flows, and database tables.

 1. Operation Flow Design
After authorized users log in, they can view release information, monitoring 

information, data query, reports, etc. according to different permissions. The 
general users only have the permission to browse the shared information. The 
administrator is responsible for assigning user permissions, releasing informa-
tion, and updating the data.

 2. Data Flow Design
Taking the greenhouse management system as an example, the first data flow 

divides the functional of system and the data connection between each function. 
The second layer 2 refine the data flow of each module function.

 3. Database Design
Considering that the data volume will become huge as the collection fre-

quency increases and time lengthens, the medium-sized database—SQL, which 
has advantages in security, concurrency control capability, data mining, and 
online operation—is selected for storing data.
Since the information platform function includes four systems with complicated 

functions, the database tables have complex relationships. Therefore, database 
tables that conform to the third normal form are selected to eliminate data redun-
dancy, update exceptions, insert exceptions, and delete exceptions.

 System Realization

 1. Data Storage and Management
TCP socket technology was used to receive data uploaded by stand-alone 

monitoring software via Ethernet or GPRS. The database stored the uploaded 
data and greenhouse environment monitoring standard values, alarm informa-
tion, basic greenhouse information, user registration information, news informa-
tion, etc. The system compares the uploaded greenhouse environment monitoring 
data with the latest monitoring standard values. And if the upper and lower limits 
are exceeded, alarm information is generated and written in the alarm informa-
tion table.

 2. Data Display and Inquiry
Curved graphs and tables are used to display real-time monitoring data of 

each greenhouse node; pie charts and bar charts show greenhouse planting infor-
mation and greenhouse yield data over the years; tables show greenhouse files, 
standard values of each greenhouse in different periods, greenhouse planting 
records, soil information, etc.
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2.3.2  Application of IoT in Farmland Moisture Monitoring

In Northern China, droughts occur frequently. It is necessary to monitor soil mois-
ture and implement drought-resistant irrigation in order to prevent the harm of 
meteorological drought to the growth of winter wheat. Water resources in China are 
seriously insufficient, but there still exist some problems such as low utilization and 
serious waste of water resources. Under such circumstances, how to improve the 
efficiency of water resource utilization is of special practical significance for the 
development of modern agriculture. By adopting advanced and applicable informa-
tion communication and sensor technologies, an agricultural water resources infor-
mation monitoring system for large field agricultural production is established to 
realize dynamic and accurate monitoring of agricultural resources, thus promoting 
scientific management and rational utilization of water resources. Therefore, it is 
necessary to establish a wireless sensor network-based moisture monitoring system 
for large fields.

Take the example of the precision agriculture demonstration base in Huantai 
County, Shandong Province, China. The large field moisture monitoring system 
adopts a combination of fixed monitoring and mobile monitoring schemes. Two 
farmlands (0.04–0.067 km2 each) were selected to establish a large field moisture 
monitoring system. In these two fields, fixed monitoring mode was selected. About 
6–10 monitoring nodes were set up to build a field moisture monitoring system 
through the wireless sensor network. The monitoring nodes converge the collected 
moisture information to the gateway nodes. Then the gateway nodes use GPRS 
network or Internet (depending on the site-specific conditions) to send the environ-
mental monitoring information reported by each node to the moisture information 
management platform to realize the remote collection and monitoring of moisture 
data. Subsequently, webcams were installed in each of the two farms for monitoring 
the field sites. The schematic diagram of the system is shown in Fig. 2.7.

 Sensor Nodes and Gateway Nodes

The sensor node is shown in Fig. 2.8. This node is solar-powered and is responsible 
for environmental information collection and short-distance data transmission. This 
node can input up to four analog or digital signals. In this system, only the FDS soil 
moisture sensor is connected, with an operating voltage of 5–12 V and an operating 
current of 35  mA.  By calibration, the voltage signal output from the sensor is 
converted to the volumetric soil moisture content.

In the experimental demonstration base, in addition to the node that can monitor 
soil water content in real time, a weather station node is also installed to measure the 
weather information of the monitoring area in real time, and the measurement 
parameters include air temperature and humidity, rainfall, wind speed, wind direc-
tion, light intensity, etc. The weather station node and the soil water content node 
transmit the real-time measured data to the gateway node using near-range wireless 
communication respectively. And the gateway node completes the remote transmis-
sion of the data (Fig. 2.9).
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The gateway node has the same appearance as the sensor node. While compared 
with the sensor node, the gateway node has extra GPRS DTU (data transfer unit) 
modules. The gateway node is responsible for converting the collected sensor node 
data into serial data and sending it to the GPRS DTU, which then sends serial data 
to the server.

Fig. 2.7 Schematic diagram of the soil moisture monitoring system based on wireless sensor network

Fig. 2.8 Sensor node
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 Video Information Acquisition and Transmission

In the soil moisture monitoring system, a webcam is installed in each farm for real- 
time monitoring of the field environment. The video information collected by the 
camera is forwarded to the server through a pair of wireless bridges. As there are 
many problems in laying high-speed broadband in the field, wireless bridges can 
effectively replace wired broadband to achieve high-speed transmission of video 
information from the field to the server.

In this project, the camera was a D-LINK high-speed dome network camera with 
high resolution and advanced backlight compensation. This camera could capture 
clear images even under changing illumination conditions and is equipped with a 
double-layer protective cover and a built-in integrated cloud platform. The cloud 
platform control program allows remote control for 360° rotation and flexible focal 
length adjustment. Waveking wireless outdoor bridge, operating in 5 GHz band, 
built-in 18 dBi patch directional antenna and plastic shell, supports IEEE 802.11A 
features and IEEE 802.11A/N standard. The wireless bridge integrates the multi- 
function of wireless AP (Access Point), point-to-point, and point-to-multipoint 
wireless bridge, with the highest power of 23 dbm (200 mw), which can realize the 
working modes of single access point connection, multiple access point connection, 
etc. The installation diagram of the network camera and the wireless bridge is shown 
in Fig.  2.10. The camera and the bridge of the sending end are installed on the 
bracket in the farmland. This bridge is responsible for the acquisition and sending 
of video information. The bridge of the receiving end is installed on the outer wall 
of the experiment station and is connected to the server by wired method.

Fig. 2.9 Weather 
station node
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 Real-Time Data Monitoring

The information management platform of “Huantai Precision Agriculture 
Demonstration Project” includes the several parts of field basic information man-
agement, soil moisture data collection and management, video monitoring, infor-
mation announcement, etc. Among them, the basic information management 
module is responsible for the storage and maintenance of basic information such as 
soil nutrient distribution map, soil formula fertilization information, area, and facili-
ties. The soil moisture data collection and management module is responsible for 
managing and analyzing the data collected by the wireless sensor network nodes in 
real time. And the platform displays the real-time information includes node num-
ber, data collection time, and soil moisture content. The user can choose to display 
all node information or only certain node information. The video monitoring mod-
ule is responsible for monitoring the field environment, and the user can remotely 
adjust the focal length and gimbal of the webcam.

2.3.3  Application of IoT in Aquaculture 
Environmental Monitoring

Aquaculture IoT is an important application area of agricultural IoT. To address the 
existed problems such as the lack of effective information monitoring technology 
and methods and the low level of online monitoring and control of water quality, the 
aquaculture environmental monitoring system (see Fig. 2.11) adopts IoT technol-
ogy to achieve real-time online monitoring of water quality and environmental 
information, abnormal alarms, and water quality warnings. Through information 
transmission channels such as wireless sensor networks, mobile communication 
networks, and the internet, the abnormal alarms and water quality warnings were 
notified to the aquaculture managers. Based on water quality monitoring results, 
aquaculture managers adjust control measures in real time to maintain stable water 
quality and create a healthy water environment for aquatic products.

Fig. 2.10 Network camera and wireless bridge
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 Intelligent Water Quality Sensors

The hardware structure block diagram of the intelligent water quality sensor con-
sists of signal detections and conditioning module, microcontroller, TEDS spread-
sheet, bus interface module, power supply, and management module. The 
microcontroller uses the MSP430F149 from TI, which is a 16-bit RISC structured 
FLASH-type microcontroller equipped with 12-bit A/D, hardware multipliers, 
PWM, USART, and other modules. It makes the hardware circuit of the system 
more integrated and miniaturized. It has a variety of low power consumption modes 
designed to consume between 0.1 and 400 μA at 1.8–3.6 V and 1 MHz clock condi-
tions, making it ideal for low power consumption product development. The signal 
conditioning circuit and the bus interface module both use low-voltage, low-power 
technology, which, together with efficient energy management, enables the entire 
intelligent sensing system to operate reliably for long periods under battery- powered 
conditions.

 Wireless Oxygen Controller

The wireless dissolved oxygen controller is a key part of the oxygenation control 
and can drive a variety of oxygenation equipment such as impeller, waterwheel, or 
micro-hole aeration air compressors. The wireless measurement and control termi-
nal can be configured as a wireless data acquisition node and a wireless control node 
as required. The wireless control node is the hub that connects the wireless data 
acquisition node to the site monitoring center. The wireless control node sends the 
sensed dissolved oxygen information collected by the wireless collection node to 
the site monitoring center through the wireless network.

The wireless control node can also receive the command requirements sent from 
the site monitoring center to control electric control box. The output of the electric 
control box can control all kinds of oxygenators below 10  kw to achieve the 

Fig. 2.11 Aquaculture environmental monitoring system
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automatic control of dissolved oxygen. Figure 2.12 shows the physical diagram of 
the wireless oxygenation control system.

 Wireless Monitoring Network for Aquaculture

The wireless sensor network enables 2.4  GHz short-range communication and 
GPRS communication, with a 3 km wireless coverage on-site. Intelligent informa-
tion collection and control technology is used with automatic network routing, self- 
diagnosis, and intelligent energy management functions. Figure  2.13 shows a 
diagram of a wireless sensor network.

 Intelligent Water Quality Control System

For the intelligent regulation of water quality, the real-time dissolved oxygen vol-
ume (RV) and real-time dissolved oxygen variation (RD) are selected as the input to 
the controller, and the output variable is the oxygenation time (T). Then the corre-
sponding fuzzy control rules are selected to obtain better dynamic characteristics 
and static quality. It is not difficult to achieve and could meet the requirements of the 
system. The structure principle of the fuzzy controller is shown in Fig. 2.14.

Fig. 2.12 Physical diagram of the wireless oxygenation control system. (a) Water quality moni-
toring point 1, (b) Water quality monitoring point 2, (c) Water quality control point 1, (d) Water 
quality control point 2, (e) Site monitoring center, (f) Relay node, (g) Video monitoring equipment
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2.3.4  Application of IoT in Agricultural Product 
Quality Traceability

Aiming at providing traceability basis and means for the whole process supply 
chain of agricultural products circulation, taking the whole process circulation chain 
of agricultural products circulation as the foothold, the system comprehensively 
analyzes the characteristics of various circulating agricultural products and estab-
lishes a product quality and safety traceability system from procurement to retail 
terminal. It realizes the accurate tracking and query of product quality information 
of the smallest circulation unit. The functional process of agricultural product 
supervision and traceability system is shown in Fig. 2.15.

Fig. 2.13 Wireless sensor network

Fig. 2.14 Schematic diagram of the structure of the fuzzy controller
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 Production Management Systems

The production management system includes the planting and breeding quality 
management system and agricultural product processing quality management sys-
tem developed for planting and breeding managers and processing enterprise users 
respectively.

Facing the internal management needs of planting and breeding enterprises and 
aiming at improving the management level of planting and breeding process infor-
mation and the traceability of planting and breeding process, the planting and breed-
ing quality management system analyzes the production processes of planting and 
breeding enterprises, such as seedling raising, stocking, feeding, disease prevention, 
harvesting, transportation, and packaging. The system designs functional modules 
such as agricultural product planting, breeding production environment, production 
activities, quality and safety management and sales status to meet the needs of daily 
management of enterprises. Based on the construction of aquatic product archives 
information database including basic information, production information, inven-
tory information and sales information, the production management module, inven-
tory management module, and sales module for different users are developed, and 
each module is integrated to form a safe production management system for agricul-
tural product planting and breeding.

 Transaction Management System

Facing the needs of wholesale market management, aiming at realizing product 
access management and market transaction management, a practical market trans-
action management system is developed for different modes of wholesale markets, 
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mainly including market access management, market stall management, and trans-
action management.

Market access management. According to whether the certificate of origin has 
bar code, the relevant breeder information and product information on the certificate 
are stored in the central database of the wholesale market in the form of reading or 
entering, so as to manage the source of products.

Market stall management carries out daily management for each stall in the 
market, mainly managing basic information, sampling inspection information, etc.

For the wholesale market with a high degree of informatization, according to the 
principle of market access, the certification of origin with bar code was required 
from the breeding enterprises (or wholesalers). Then the managers of the wholesale 
market read the bar code on the certificate of origin and store it in the central data-
base of the wholesale market. The wholesaler downloads the relevant data on that 
day from the electronic scale through the wireless network, and the wholesalers 
print one-dimensional bar code product sales orders with manufacturer, wholesale 
market, wholesaler and product information when trading with customers. Once a 
product problem occurs, it can be traced back to the wholesaler through the relevant 
information of the product sales list in the wholesale market.

 Regulatory Traceability System

The regulatory traceability platform includes three functional modules: enterprise 
management, website management, and user management. Enterprise management 
includes enterprise information upload, enterprise uploading product statistics, 
SMS platform data statistics, and other functions. Website management includes 
news system, sampling announcement, enterprise profile, grand view of agricultural 
products, industry standards, consumer guide, database management, and other 
functions. At the same time, it meets the different traceability needs of government 
regulatory departments, enterprise users, and consumers, so as to achieve consum-
er’s satisfaction, improve enterprise management level, and improve the quality and 
safety of agricultural products. Through modular design and authority division, the 
regulatory traceability platform can meet the regulatory and traceability needs of 
regulatory entities at different levels at the ministerial, provincial, municipal, and 
county levels. It can provide regulatory entities at all levels with detailed responsi-
bility entities of each supply chain of agricultural products, product flow process 
and agricultural product quality and safety control measures of subordinate regula-
tory entities. In addition, the number of agricultural product traceability codes and 
SMS traceability numbers are statistically analyzed through the basic information 
platform to provide necessary technical support for competent departments at all 
levels to strengthen management and start risk early warning and emergency 
responses.

Y. Zhang et al.
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 Traceability Information Search System

Through the research of data access general interface, the access protocol of com-
puter network, wireless communication network, and telephone network to the 
same database was studied. The general API supporting SMS gateway, PSTN gate-
way, and IP gateway are developed. And the multi-mode query based on the central 
traceability information database is realized. The traceability information query 
system on the basis of the traceability information of each link system module takes 
the product label bar code and product traceability code as the query means and car-
ries out traceability information query through a variety of traceability information 
query methods such as website, POS machine, SMS, and voice phone.

2.4  Summary

Agricultural IoT technology brings good opportunities for the development of smart 
agriculture. The application of IoT in smart agriculture can expand the development 
potential of agriculture, which is conducive to promoting the sustainable develop-
ment of agriculture. IOT, together with other emerging technologies, provides reli-
able application technologies for the development of smart agriculture, which not 
only improve agricultural operation mode, but also ensure the safety and efficiency 
of agricultural production.
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Chapter 3
Applied Machine Vision Technologies 
in Specialty Crop Production

Manoj Karkee and Uddhav Bhattarai

3.1  Introduction

Vision is one of the most important sensory inputs, animals use to make sense of the 
environment and be able to traverse around and manipulate objects of interest (e.g., 
finding and collecting food). A wide range of electromagnetic spectrums is used by 
the animal vision to perform these tasks. Human vision, as an example, operates 
using a section of the electromagnetic spectrum called visible light (wavelength 
range ~380 nm to ~750 nm). The light coming from the environment and objects is 
allowed to enter our eyes through cornea and lens, which hits the back of the eyes 
called retina exciting photo-receptor cells called rods and cones. The signals thus 
generated are transmitted to the brain by our optic nerves and processed by a dedi-
cated section of the brain to characterize the environment and objects of interest and 
estimate their locations using stereo-vision techniques that relies on the disparity 
between object locations recorded by two eyes.

Similar to human vision, machine vision is one of the most widely used sensor 
systems for collecting and processing data that can be used to develop automated 
systems in a wide range of industries such as manufacturing, defense, medicine and 
healthcare, construction, and agriculture. When it comes to agriculture, machine 
vision systems have and will continue to be one of the most impactful technologies 
in monitoring plant growth and health, detecting pest stresses, and detecting and 
localizing various types of objects in plants (also called plant canopies) and crop 
fields for automated/robotic operations such as precision chemical application, 
plant training, pruning and thinning, and crop harvesting. A wide range of vision 
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sensors, sensing systems, and data/image processing techniques have been investi-
gated and used in the past several decades, covering various applications in produc-
tion agriculture, including specialty crops such as fruit and vegetables (more 
discussion in Gongal et al. (2015)). Specifically, color cameras, hyper- and multi- 
spectral cameras, thermal sensors, ultrasonic sensors, and various types of 3D mea-
surement techniques have been used in the past to collect noncontact information 
that can be used to characterize (e.g., color, shape, size, texture) and locate plants 
using various types of data and image processing techniques including machine 
learning such as Deep Neural Networks.

A machine vision system includes sensors that collect/guide different spectrums 
of light using lenses, record the intensity of light at certain wavelength using analog 
(historically) or digital media (current systems), and analyze and interpret the data/
images to convert into specific information (Fig. 3.1). Machine vision systems pro-
vide the most fundamental information on the target objects and environment that 
could be used for monitoring crops over space and time, analyzing the impact of 
crop and pest management practices, and providing capabilities for robotic systems 
to operate in the field to achieve specific tasks such as following corn rows and herd-
ing animals (navigational robotics), and picking apples (manipulative robotics).

As depicted by a simplified representation of the vision system pipeline in 
Fig. 3.1, a machine vision system (to be referred to as a “vision system” in the text 

Fig. 3.1 A simplified representation of a machine vision pipeline used to acquire images of a 
scene and make sense of the perceived environment. A simplified apple tree with fruit was used to 
describe the process with an example of detecting and counting apples using a machine 
vision system
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to follow) works by first acquiring images using different types of sensors or cam-
eras (top left corner in Fig. 3.1). Raw images then go through a range of image 
processing techniques, which can roughly be categorized into pre-processing or 
low-level processing, mid-level processing, and high-level processing steps 
(Fig. 3.1). However, it is challenging to define a distinct line separating those cate-
gories, and the lines have been further blurred by the introduction of end-to-end 
deep-learning networks. The first set of processing steps includes image enhance-
ment and filtering techniques to reduce the noises and improve sharpness as neces-
sary. These steps, collectively, are generally referred to be the low-level processing 
or pre-processing.

The next level of processing, also referred to as mid-level processing, includes 
segmentation and feature extraction techniques. In this stage, we estimate various 
characteristics/features of the objects of interest including color, shape, size, and 
texture. The object attributes or parameters estimated at the mid-level processing 
can then be used as inputs to what is called high-level processing steps where the 
focus will be in making sense of (or recognizing) the environment and objects. 
Some of the processing techniques used in this stage include pattern recognition, 
template matching, and classification. Location/3D information could be used in 
different ways to help improve the outcome of each of these processing steps and 
can be combined with the information from high-level processing to assist with the 
downstream applications of the vision system, such as robotic operation in the agri-
cultural fields (e.g., picking apples and weeding corn). However, there are other 
kinds of applications of machine vision systems where 3D information may not be 
as critical, such as detecting and counting the number of flowers in a given tree and 
tracking birds as they enter and leave an agricultural field.

The objective of this chapter is to enable readers to understand the basics of 
imaging and image processing techniques and to be able to use such techniques to 
solve research and engineering challenges. We will specifically discuss basic tech-
niques of binary and color (RGB) image processing including morphological opera-
tions, image enhancement techniques, and unsupervised and supervised classification 
techniques. The chapter will also introduce specific examples of how these concepts 
and techniques have been used in the latest research and development efforts around 
the world, specifically in specialty crops such as tree fruits, crops, and vegetables. 
Spectral sensing and 3D measurement techniques are outside of the scope of this 
chapter. Readers interested in those concepts and their applications in agriculture 
can refer to Chap. 4 of this book as well as Karkee and Zhang (2021).

3.2  Image Acquisition

Image acquisition is a process of projecting a real-word scene onto an image space 
where two types of information is used to describe the scene: (1) geometric infor-
mation or location of all the object points in the environment and (2) radiometric 
information of all the object points represented by the light intensity in the image 
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space. Sensors or cameras used in acquiring images/data operate using the electro-
magnetic spectrum of varying wavelengths. The sensors generally have a mecha-
nism, as mentioned before, to provide a small opening from which electromagnetic 
waves enter into the camera housing. The wave then travels through a mechanism 
(e.g., a simple lens) that bends the rays such that they hit and excite an analog or 
digital photo-receptive surface (sometimes also called a sensor), which can then be 
recorded to represent the intensity of the light received. Some sensors record elec-
tromagnetic wave originating from only one point in the space/scene at a time over 
a range of wavelengths, which are called spectroscopic sensors. Point sensors can 
then be used to scan lines and space using mechanical systems to swing the sensor 
in two directions. These types of sensors are called scanners. Some examples of 
scanning sensors including Laser or LiDAR, RADAR, and CT Scanners. Often, the 
light intensities are recorded in spatial grids (Fig. 3.2), and multiple layers of such 
grids are used to record light intensity at a specific wavelength of the spectrum. 
These sensors are called imagers or imaging sensors. For example, in a color (RGB) 
camera, light intensities in red, green, and blue regions are recorded in individual 
layers creating a three-channel image. Other imaging sensors include X-ray 
machines, infrared cameras, thermal cameras, and multi/hyperspectral imaging 
systems.

In general, vision sensors can be categorized into two encompassing groups: 
active and passive sensors. Active sensors are those that have their own light source 
and can operate irrespective of the availability of external light sources. These sen-
sors emit the light and receive and record the intensity of the same once it gets 
reflected from the target surfaces. Examples of such sensors include Laser/LiDAR, 

Fig. 3.2 Working 
principle of an imaging 
sensor. Field of view 
represents the space in the 
environment being imaged 
by the sensing system (or 
camera), and “depth of 
field” represents the range 
of distances from the 
camera that will be in 
focus. Gap between 
individual pixels is just for 
demonstrating the discrete 
nature of the sensing 
system; no such gaps exist 
in the actual images 
acquired. (Image from 
http://www.
evaluationengineering.
com/)
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RADAR, and 3D cameras with structured lights. Contrary to the active sensors, pas-
sive sensors do not have a light source and are designed to record the intensity of the 
light reflected by the objects based on external light sources such as the sun or other 
artificial lights. Various color/RGB cameras and spectral sensors such as thermal 
cameras fall in this category. These vision sensors or cameras can be installed in 
various platforms for acquiring images including satellites, manned and unmanned 
aerial systems, balloons, ground vehicles, fixed elevated platforms, and tripods. 
Quite commonly, particularly when mobile device-based imaging is used, human 
hands are also used as the sensor platform.

3.2.1  Pinhole and Lens Camera Models

The basic principle of an imaging sensor or camera can be described by a pinhole 
camera (Fig.  3.3a), a concept used by the earliest cameras developed. In such a 
camera, a tiny hole (called pinhole) is created on one face of a completed bounded 
cube. All six surfaces of the cube are opaque so that no light can enter into the box 
other than from the pinhole. The inside surface of the opposite side of the pinhole 
would be painted with a photo-receptive material. When the pinhole is opened for a 
brief duration, light rays from the environment in front of the pinhole enter into the 
camera housing through the pinhole and excite the film coated with the photo- 
receptive media. As the hole is really tiny, in principle, only one ray of light from a 
given location in the environment can enter the housing as shown in Fig. 3.3, thus 
creating a reasonably crisp image of the environment. However, in practice, lights 
from multiple sources close to each other can enter and be projected onto the same 
location. In addition, diffraction of the light as it passes through the sharp hole leads 
to image blurring. To address this challenge, an improved camera model has been 
developed using one or more lenses. A simple camera model using one convex lens 
is depicted in Fig. 3.3b in which light originated from a given point in the space hits 
the sensor surface at the same location irrespective of the path it takes from the 

Fig. 3.3 (a) A pinhole camera model. (Image from TMMY PHTOG, “How Pinhole Camera 
Works..” licensed under CC BY 2.0); and (b) a lens camera model
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environment to the sensor through different locations in the lens surface. This tech-
nique, therefore, minimizes the impact of multi-source projection and diffraction 
issues faced with the pinhole model. The object distance, imaging sensor distance, 
and focal length of the lens are related, in this model, by Eq.  3.1. This camera 
design, however, faces the challenge of chromatic aberration (a phenomenon that 
describes a varying level of bending of light as it passes through prisms depending 
on the wavelength), leading to image blurring. This issue can be minimized using a 
long focal length (narrow) lens, designing more complex lens systems using both 
convex and concave lenses, and using image processing techniques.
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3.2.2  Image Representation

An image, often also called an intensity or gray level image, can be defined as I(x,y), 
where x and y are the spatial coordinates, and I is the intensity of the light recorded 
at the specific locations, representing the projection of the real world. This represen-
tation of the images is in the continuous domain, assuming x and y are the continu-
ous variables (Fig. 3.4). As discussed before, such analog images in the continuous 
domain could be created and developed by allowing light waves to hit the traditional 
photo-receptive films. Images can be represented in the discrete domain by digitiz-
ing them from the continuous domain or acquiring directly in the discrete form 
using digital sensors. Digital sensors used to acquire images often consist of charge- 
coupled devices (CCDs), which are integrated circuits with arrays (discrete cells) of 
photoreceptive surfaces (Fig.  3.5). As the photons in the incident light hit those 
surfaces, they free a proportional number of electrons. The free electrons are inte-
grated together over the shutter opening duration, and amplified and quantized to 
represent the intensity level at each cell. In the digital form, images are represented 
by I(r,c), where I is the quantized intensity level, and r and c represent the dis-
cretized location in the space at rth row and cth column.

Discretization and quantization, as mentioned before, are two critical steps to 
create digital images used in all modern vision systems (Fig. 3.6). Discretization is 
the process of representing a continuous world (within the field of view) by a two- 
dimensional array of discrete spatial units called pixels. If a continuous image exists 
and needs to be digitized, a digitizing system is designed to record the light intensity 
at regularly spaced discrete locations (e.g., 300 dots per inch). On the other hand, if 
a digital imaging system or camera is used, image formation starts with a physically 
discretized photo-receptive surface as discussed before. A lot of modern digital 
imaging systems such as color cameras have more than 5000 × 4000 discrete sam-
pling locations (or pixels) covering the space being imaged. Following the discreti-
zation of the spatial or geometric information represented by an image into 
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individual pixels, radiometric information, or the intensity value at each pixel needs 
to be stored in a digital register of a certain size (a specific length of bits), leading to 
a finite number of discrete intensity levels to be preserved. This process is called 
quantization (Fig. 3.6, right). For example, if the pixel intensity is represented by a 
4-bit register, only 16 discrete intensity levels (0–15) would be possible. In modern 
computers with powerful processing units and large storage capacities, quantization 
is no more a limiting issue as millions of intensity levels can be represented without 
much impact on the practical implementation. However, the fineness of the discreti-
zation process (pixel resolution) remains to be an important parameter optimized 

Fig. 3.4 Schematic representation of the real world with continuous and discrete images

Fig. 3.5 A grided 
representation of sensors 
used by various imaging 
systems such as color 
cameras
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for specific applications to balance between the accuracy and computational perfor-
mance of the vision system as computational time is often exponentially dependent 
on image size (number of pixels).

3.3  Color Image Representation

In the earliest development phase of the imaging sensors (e.g., pinhole cameras), the 
information would generally be recorded as the presence or absence of light in the 
visible range of the electromagnetic spectrum as it hit a photo-receptive film sur-
face. This technique provided the most fundamental representation of an image, 
called a black-and-white or binary image. Such a binary representation of images is 
used widely in modern machine vision systems as well (discussed in Sect. 3.4). The 
binary images used these days are generally created using color or multi-spectral 
images using specific thresholding, filtering, segmentation, and/or classification 
techniques. As the sensing technology improved, the intensity of the light received 
by the photo-receptive film or the sensor was represented in continuous scale from 
black to white, thus creating grayscale images. When the entire range of electro-
magnetic spectrum received is allowed to hit a given location of the sensor, it creates 
a single channel grayscale image. In modern imaging systems (e.g., color cameras), 
only a selected range of the electromagnetic spectrum is allowed to excite the sensor 
at a time, thus creating a number of image channels, each representing light 

Fig. 3.6 Discretization and quantization in analog (top) and digital (bottom) imaging system. 
Analog imaging requires a separate discretization pipeline. Since imaging sensors are placed in 
discrete array, digital imaging enables embedded discretization within the imaging sensor
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intensity levels at a certain frequency (or wavelength) called a monochromatic 
image. One of the most common imaging systems used in modern machine vision 
systems is RGB or color cameras, which include three specific image channels 
recorded in red, green, and blue frequencies of the visible light. These color images 
are represented in various ways facilitating different types of image processing 
techniques as discussed below.

3.3.1  Red Green Blue (RGB) and CMYK Color Models

In the RGB color model/space, images are represented as the combination of three 
monochromatic images, each for one primary color: red, green, and blue (see 
Fig. 3.7a). The intensity values of primary colors can be varied to represent arbitrary 
colors in the visible spectrum. The RGB model is the most common way of repre-
senting color images. In a digital form, RGB color representation generally contains 
24 bits/pixel information, 8 bits for each red, green, and blue channel. The RGB 
model is spatially represented in a Cartesian coordinate system in the form of a 
unity cube where each corner along the axis is defined as one of the primary color 
components, as shown in Fig.  3.8a. The RGB model is an additive color model 
where red, green, and blue lights are added at a certain proportion to produce the 
visible spectrum of color starting from black going all the way to white. This model 
is widely used in image representation on electronic devices such as cameras and 
computers.

Complementary to the RGB model, CMYK is a subtractive color model/space 
used primarily for printing purposes (see Fig.  3.7b). For example, cyan is the 
absence of red color in white light. Similarly, magenta and yellow are the absence 
of green and blue colors from white light. In other words, the RGB model interprets 
color in terms of the reflected light spectrum while CMYK interprets color in terms 
of the absorbed light spectrum. Hence, painting cyan, magenta, and yellow color 
results in black color that absorbs the visible color spectrum of red, green, and blue. 

Fig. 3.7 (a) RGB and 
(b) CMYK color space 
representation. Notice that 
RGB color space starts 
from the dark background 
while CMYK starts from 
the white background. The 
combination of R, G, B 
results in white color while 
the same with C, M, Y 
results in black color
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While the RGB model adds red, green, and blue colors, the CMYK model masks the 
red, green, and blue colors (adds cyan, magenta, yellow, and black) to form the 
desired image.

3.3.2  HSI Color Model/Space

The HSI color space represents colors in terms of Hue (H), Saturation (S), and 
Intensity (I) in the cylindrical coordinate system. Hue represents the color defined 
by the prominent frequency of the spectrum, whereas saturation describes the purity 
of the color, accounting for the amount by which a given color is diluted by the 
white light. The intensity value defines the extent of brightness or darkness of the 
image. As shown in Fig. 3.8b, let us consider the projection of the RGB color cube 
in a plane perpendicular to the diagonal from (0,0,0) to (1,1,1). The projection 
results in a hexagon (generally represented as a color wheel), and the periphery of 
the hexagon provides the hue (color) information that ranges from 0 to 2π (0 for red, 
2π/3 for green, and 4π/3 for blue) (Shapiro & Stockman, 2000). The line running 
from the center to the boundary represents the saturation of the color that ranges 
from 0 to 1. The center axis (the line connecting from (0,0,0) to (1,1,1) in RGB 
cube) represents the intensity, and it ranges from 0 to 1. RGB images are often con-
verted into HSI color space as it simplifies the extraction of individual colors based 
on hue. As intensity is decoupled from color information, sometimes HSI space is 

Fig. 3.8 (a) RGB color space representation using a unity cube. (b) Double hexagonal pyramid 
representation of HSI color space. HSI color space is generated by projecting RGB cube into a 
plane perpendicular to the line connecting black (0,0,0) and white (1,1,1) color coordinates
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preferred to RGB images as it is robust against varying lighting and illumination 
conditions. Furthermore, color representation is relatable to human interpretation 
since hue and saturation are similar to how the human eye interacts with colors.

Different color models have been used by vision systems investigated for agri-
cultural applications. Zhou et al. (2012) used RGB images to detect green apples 
while they leveraged HSI color space to deal with varying illumination to detect red 
apples. The intermediate image channels were computed as the ratio of the differ-
ence between red and green, and green and blue channels, and later converted to 
HSI color space followed by thresholding in saturation channel (S > 0.4) to segment 
red apples from the background.

HSV (hue-saturation-value) and HSL (hue-saturation-lightness) are other color 
spaces used in agricultural vision systems whose color space representations are 
similar but not completely identical to HSI color space. Wang et al. (2013) used 
HSV color space to detect red and green apples in images acquired from commer-
cial orchards. The red apple pixels were segmented by thresholding hue channel 
(0 °  ≤ hue ≤ 349 ° or 349 °  ≤ hue ≤ 360°) followed by thresholding in saturation 
or value channel (saturation ≤ 0.1 or value ≤ 0.1) to remove background pixels, and 
a post-processing step was used to segment red apples. Furthermore, to detect green 
apples, the hue channel was first thresholded (49 °  ≤ hue ≤ 75°) to remove dark 
background followed by thresholding in the saturation channel (saturation ≥ 0.8) to 
segment green apple pixels.

3.3.3  CIELAB Color Model/Space

The CIELAB is one of the most popular color spaces defined by Commission 
Internationale de l’éclairage (CIE) in 1976 to create a standard for color communi-
cation regardless of the devices being used. The letter/variables L∗, a∗, and b∗ are 
used to define the CIELAB color space, where L∗ represents the intensity from black 
to white, and a∗ and b∗ represent the color directions or chromaticity coordinates 
(see Fig. 3.9). The a∗ axis ranges from +a∗ representing red to −a∗ representing 
green colors. Similarly, b∗ axis ranges from +b∗ representing yellow and −b∗ repre-
senting blue colors (Distante et al., 2020). Variable L∗ ranges from zero to 100 while 
a∗ and b∗ are unbounded with no limits but usually range from −60 to +60 for practi-
cal purposes. CIELAB space parameters (L∗, a∗, and b∗) are defined based on the 
nonlinear transformation of the RGB model to achieve uniformity in color represen-
tation. Wachs et al. (2010) converted RGB image to CIELAB color space and used 
K-means clustering in a∗ and b∗ channels to detect green apples in commercial 
orchards. CIELAB color space can also be used to derive another color space known 
as CIE LCh color space, where L∗ is the lightness component same as that of 
CIELAB, and C∗ and h are chroma and hue angle derived from a∗ and b∗ (Distante 
et al., 2020).
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3.4  Binary Image Processing

As discussed before, with the advent of digital imaging technologies, images are 
captured by exciting semiconductor-based photosensors (e.g., CCDs), and a range 
of intensity values (often represented by 8 bits, 256 levels of intensity) are repre-
sented for each pixel of an image. Monochromatic (single channel) or multi-spectral 
(e.g., RGB, three channels) images recorded that way can then be converted to 
binary images using specific techniques such as classification discussed later (Sects. 
3.6 and 3.7), where foreground (objects of interest) is generally represented by 1s 
and the background by 0s resulting in 1 bit/pixel information. In this section, vari-
ous techniques used in analyzing binary images for delineating, improving, and 
characterizing objects of interest will be described.

3.4.1  Morphological Operations

Morphological operations are a collection of nonlinear image processing techniques 
often used to analyze binary images in which images are manipulated based on 
object shape and size. These operations are performed over a certain neighborhood 
of a target pixel location and is repeated over the entire image moving from top-left 
corner to bottom-right corner. More specifically, when performing morphological 
operations, a binary image is operated (certain binary operation such as AND or 
OR) by another small-sized binary image known as a structuring element. The pixel 
in the binary image corresponding to the center pixel of the structuring element is 
manipulated in each iteration, which is repeated to cover the entire image. A 

Fig. 3.9 A graphical representation of CIELAB and CIE LCh color space. (Image from Green 
Mamba :)--<, “cielab” licensed under CC BY-ND 2.0)
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structuring element can be of arbitrary size and structure. Commonly used structur-
ing elements include a rectangular box or circular disk. Morphological operations 
are widely used in machine vision systems for removing noisy areas, filling small 
holes, and bridging unwanted gaps. In addition, morphological algorithms/opera-
tions can be used for shape matching or pattern recognition, boundary extraction, 
region filling, connected component extraction, convex hull, thinning, thickening, 
skeletonization, and pruning of objects or regions. Major morphological operations 
include dilation, erosion, closing, opening, and Hit or Miss transform, which will be 
discussed below. In MATLAB (Mathworks Inc., Natick, MA), bwmorph() can be 
used to perform various morphological operations.

Dilation Dilation extends the boundary of objects in selected parts by one or more 
pixels depending on the shape and size of the structuring element used, which helps 
fill small holes and broken areas in binary images while also increasing the object 
size slightly (Fig. 3.10a, b). While moving structuring element from one place to the 
next, if any of the pixels in the image overlapping with the structuring element has 
a binary value 1, the center pixel (or the pixel over the origin of the structuring ele-
ment) is converted to binary 1. Mathematically, dilation is represented by a logical 
OR operation between the binary image and structuring element as given by Eq. 3.2.

 
A B A
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b

i

i
⊕ =

∈
∪

 
(3.2)

Erosion As the name suggests, erosion removes some of the object pixels from the 
edges of those objects, which can be used to remove small anomalies or noisy areas 
in the binary images (Fig. 3.10a, c). The operation, however, reduces the object size 
slightly. In this operation, the image pixel at the center of the structuring element 
remains 1 only when all the image pixels overlapping with the structuring element 

Fig. 3.10 Effect of morphological operations on a sample binary image; (a) Original image and a 
structuring element (dark cell in the structuring element indicates the origin); (b) Dilated image; 
and (c) Eroded image
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are 1s; otherwise the pixel is turned to 0. Mathematically, this operation is repre-
sented by Eq. 3.3.

 
A B p B Ap = ⊆{ }|

 
(3.3)

Closing and Opening Closing and opening are the derived operations using dila-
tion and erosion. Morphological closing is a combination of a dilation followed by 
erosion, while the opening is erosion followed by dilation. Opening removes the 
gap connected by thin bridges, small anomalies, or islands while keeping the 
remaining parts in their initial size. Closing, on the other hand, is often used to fill 
small unwanted holes in the images while keeping the overall object shape and 
size intact.

Hit or Miss Transform Morphological hit or miss transform is used for detecting 
objects with specific shapes or to find specific patterns in images. While operations 
like erosion or dilation do not consider the image background, the hit or miss trans-
form uses foreground and background information to detect object shape. It is per-
formed by performing erosion using nonoverlapping structuring elements for 
foreground and background. Let us consider I(x, y) is the input image and Sf(m, n) 
and Sb(m, n) are two non-overlapping structuring elements for the foreground and 
the background. Mathematically, Hit or Miss Transform is represented by Eq. 3.4 
(Fig. 3.11).
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(3.4)

where I x y
˜

,( )  is the complement of input binary image.

3.4.2  Object Counting and Geometric Feature Extraction

Once foreground objects are segmented out and their shape and size are refined 
using various processing techniques including morphological operations described 
above, various binary image processing techniques can be used to count and locate 
objects and extract their geometric features.

In a situation when only a total count of objects in a binary image is necessary, a 
counting algorithm like “corner detection” or “driving around the block” could be 
used. The corner detection algorithm works by assessing 4-pixel regions in an image 
using a row scanning technique and counting the number of convex and concave 
corners present in the entire image. A convex or external corner is defined by a clus-
ter of four neighboring pixels with one object pixel (binary 1s) and three back-
ground pixels (0s), whereas a concave or internal corner is defined by three object 
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pixels (1s) and one background pixel. The number of objects would then be given 
by Eq. 3.5.

 
Number of objects

total external corners total internal corners
=

−
4  

(3.5)

Similar to corner detection and counting, “driving around the block” algorithm 
works by first detecting the top-left corner of a given object and following the object 
boundary in the clockwise direction. Right and left turns made along the way until 
the starting point is reached are counted. The total number of objects would then be 
counted the same way as defined by Eq. 3.5.

A wider goal of object detection, localization in the image, and counting can be 
achieved using a technique called connected component labeling. The concept can 
be described using the following pseudo-code.

When B is a Binary Image; B(r,c) = B(r′,c′) = v; and v = 0 or 1
B(r,c) is connected to B(r′,c′) with respect to v if
B(r,c) = B(r0,c0) = B(r1,c1) = B(r2,c2) … = B(rn,cn) = B(r',c') = v
B(ri-1,ci-1) neighbors to B(ri-1, ci-1) for all i=1 

A labeled image would have integer values uniquely defining each object (or 
connected component) in a binary image. Both four and eight connectivity can be 
used to define connected components or delineate individual objects. One example 
binary image and the result of a labeling technique is depicted in Fig. 3.12. A few 
different algorithms can be used to label the connected components in binary 
images. One of those algorithms is called recursive labeling, which is presented in 
Box 3.1. Alternatively, a more commonly used Row-by-Row Labeling algorithm can 
be used, which relies on two passes over the specific images. The first pass is used 

Sf

Sb

Scombined

a) c) b) 

Fig. 3.11 Hit or Miss transform to detect top right corner in a binary image. (a) Input binary 
image. (b) Sf and Sb represent 3 × 3 kernel for foreground and background image. Sf and Sb were 
merged resulting in combined kernel (Scombined). Zeros in Scombined represent don’t care pixels. (c) 
Resulting binary image with top right corners
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to record equivalences and assign temporary labels, and the second pass is used to 
replace each temporary label with the label of its equivalence class. More details on 
these algorithms can be found in Shapiro and Stockman (2000). In MATLAB, 
binary image labeling and geometric feature extraction can be achieved using a 
library function bwlabel().

 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
2 2 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 3 3 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 3 3 3 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 3 3 3 3 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 3 3 3 3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 3 3 3 3 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.12 Example of binary images showing the input (left) and the output (right) of a connected 
component labeling technique

Box 3.1 Recursive Labeling of Connected Objects

 1. Negate the binary image
 2. Start from top-left
 3. If a foreground pixel

 (a) Put label on the pixel
 (b) Find foreground neighbor(s) in a row scanning pattern
 (c) If there is a neighbor, label it and find its neighbors
 (d) Continue this recursive search until all the connected pixels are found 

(similar to depth first search technique)

 4. Repeat for all pixels

Once the objects are labeled, various geometric features of each object can be 
extracted to describe those objects, help identify specific kinds of objects, and/or 
classify objects into different groups. Some of the major geometric features include 
area, perimeter, length, width, aspect ratio, elongation, roundness, and eccentricity. 
Features such as area (A), perimeter (P), length (L), and width (W) can be calculated 
using the number of pixels occupied by the objects and the distance between spe-
cific points along the object boundary. Compactness is another important geometric 
feature used to define object shape, which is given by Eq. 3.6.
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Compactness C

P

A
( ) =

2

 
(3.6)

3.5  Image Enhancement and Spatial Filtering

Image enhancement is a pixel-level processing technique (considering one pixel at 
a time) that can alter how the overall intensities are distributed and can enhance 
various features or regions of the objects for better viewing as well as improved 
performance of down-stream image processing techniques. Spatial filtering tech-
niques, on the other hand, often operate using intensities of a number of neighboring 
pixels to manipulate the intensity of a particular pixel (often the center pixel in the 
neighborhood used). The neighborhood used in such filtering techniques is defined 
by a square matrix of varying size (e.g., 3 × 3 pixels, 5 × 5 pixels, or 7 × 7 pixels), 
also known as a filter, mask, or kernel. The intensity of the pixels corresponding to 
the filter’s center is manipulated by sliding the filter iteratively throughout the image 
in a row scanning fashion, also called masking. Spatial filtering can be linear where 
the computed pixel intensity is the sum of products (convolution) of filter coefficient 
and image intensity or nonlinear operation such as finding the median of the pixel 
intensities in the target neighborhood. Based on the type of information/signals, 
these filters allow signals to pass through. Spatial filters can be categorized as 
smoothing or low-pass filters, sharpening or high-pass filters, and band-pass filters. 
In the following several subsections, some of the most widely used image enhance-
ment and spatial filtering techniques are described.

3.5.1  Gamma Correction

Gamma correction controls the brightness and contrast of an image by manipulating 
the pixels independently. Let Iout and Iin be the input and output intensity values, 
respectively. Gamma correction is performed as Iout = (Iin)γ. When the gamma, γ is 
smaller than 1, darker regions in an image become lighter, thus better exposing the 
objects in those regions (Fig. 3.13a, b). When an appropriate γ is selected in the 
range of 0–1 for a specific image, specific details in the background can be better 
visualized. However, the picture starts to wash out if the gamma value is decreased 
further. When γ is greater than 1, the shadows become darker, increasing the con-
trast of the image (Fig. 3.13a, c), whereas no impact on the image would be noticed 
when γ is equal to 1.
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3.5.2  Histogram Equalization

Histogram equalization is one of the most widely used image enhancement tech-
niques used to improve the global contrast of an image (Fig.  3.14). Histogram 
equalization is accomplished by evenly spreading out the most frequent pixel inten-
sities across the entire dynamic range of an image (all possible intensity levels of the 
given image). This operation improves the contrast and dynamic range of the image 
by both spreading the pixel intensities and introducing intensity levels that were not 
present in the original image.

3.5.3  Smoothing Filters

As discussed before, smoothing filters remove high-frequency signals/information 
(or abrupt changes in the intensities) in an image which would be essential to sup-
press noisy pixel intensities and improve the smoothness of an image. However, 
smoothing filters blur the images and over-application of the filter may suppress 
desired image features such as sharp edges. The three most widely used smoothing 
filters in machine vision systems include a mean filter, a median filter, and a 
Gaussian filter.

Averaging/Mean Filter Output of an average filter is the average intensity over the 
intensities of pixels within the neighborhood defined by the kernel. A standard aver-
aging or a weighted average could be used in manipulating target pixel intensities 
with these filters (Fig. 3.15). Filters with weighted averaging perform more natural 
smoothing by providing larger weight to the pixels that are closer (spatially) to the 
center pixel while decreasing the weight as the distance from the center pixel 
increases.

Fig. 3.13 Image enhancement with gamma correction; (a) original image; (b) improved object 
exposure in darker area with γ = 0.5; and (c) contrast improvement with γ = 1.5
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Median Filter The output of the median filter is the median intensity of the pixels 
in the neighborhood defined by the filter (Fig.  3.16). Median filters are easy to 
implement and are effective in removing impulse noise (e.g., salt and pepper noise).

Gaussian Filter Gaussian filter is a bell-shaped filter that provides the highest 
weight to the pixels near the center of the kernel while transitioning to the reduced 
weights to the pixels farther from the center pixel using a Gaussian function charac-
teristics. Since the kernel is bell-shaped, the Gaussian filter provides a smooth blur-

Fig. 3.14 Top—Original image and its histogram showing a narrow dynamic range; Bottom—
Equalized histogram and enhanced image with improved contrast

Fig. 3.15 (a) Original image. (b) Mean filtered image with kernel size 7 × 7 using standard 
averaging

3 Applied Machine Vision Technologies in Specialty Crop Production



60

ring result. For the given Gaussian kernel, the extent of blurring can be controlled 
by varying the standard deviation (σ) of the Gaussian function used. A larger value 
of σ represents smaller peak weight with gentler changes to weights always from the 
center/peak leading to greater blurring and vice versa (Fig. 3.17).

3.5.4  Sharpening Filters

Sharpening filters allow only the high-frequency signals/information to pass and 
therefore highlight the edges and fine details in an image while suppressing regions 
with minimal changes in the intensities. Mathematically, image sharpening corre-
sponds to a differentiation operation. Some of the simplest sharpening filters are Sobel 
Operator, Prewitt operator, and Robert’s operator. Sobel and Prewitt operators use 
3 × 3 kernels to detect horizontal and vertical edges by calculating the vertical or hori-
zontal derivative over 2D images (Fig. 3.18). However, unlike the Sobel operator, the 
Prewitt operator does not emphasize the pixel closer to the kernel center. Furthermore, 
Robert’s operators are designed to respond maximally to the edges running at 45°.

Fig. 3.16 (a) Original image suffering from salt and pepper noise; (b) median filtered image with 
kernel size 7 × 7 

Fig. 3.17 (a) Original image; (b) Gaussian filtered images with kernel size 7 x 7 and σ = 2; and 
(c) corresponding image with kernel size 7 x 7 and σ = 4
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Another commonly used sharpening filter is the Laplacian filter, which uses the 
second derivative operation in the discrete domain. Let us consider a simple 1D 
array defined as f(x), the first- and second-order derivatives are given as
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For a 2D image, the Laplacian filter is defined by the second-order partial 
derivative
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(3.7)

In the discrete form with a 3 × 3 kernel, the partial second-order derivative can 
be represented by Eq. 3.7 and graphically by Fig. 3.19. As can be seen from the 
figure, the sum of coefficients is zero, and therefore when there exist very low 
changes in gray/intensity levels in the input image, the intensity value in the output 
image corresponding to the filter’s center will be close to zero, thus suppressing 
smooth or low-frequency regions in the image. In addition to the above kernel, there 
are variants of the Laplacian filters with varying weights in the center and neighbor-
ing pixels. See Shapiro and Stockman (2000) for more details on all types of spatial 
filtering techniques.

Fig. 3.18 Edge detection operators; (a) Sobel operator; (b) Prewitt operator; and (c) Roberts oper-
ator. Both Sobel and Prewitt operators detect vertical edges. Horizontal edges can be detected by 
rotating the kernel by 900
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3.5.5  Edge Detection

Edges are the regions in an image with abrupt variation in intensities (high- frequency 
components). Edges can represent the boundary between two objects or an object of 
interest and the background. Different techniques are used for highlighting sharp 
variation in pixel intensities and detecting object edges in 2D images. These tech-
niques include different operators such as Sobel operator, Prewitt operator, Robert 
operator, and Laplacian of Gaussian. Laplacian of Gaussian (LoG) uses a Gaussian 
filter to smooth images and remove unwanted noise before applying a second 
derivative- based Laplacian filter that strongly emphasizes high-frequency changes 
in pixel intensities.

In addition to the above operators, another popular and robust edge detection 
algorithm known as the Canny edge detector is widely being used in different appli-
cations. Developed in 1986 by John F. Canny, the Canny edge detector uses multi-
stage algorithms to detect and highlight edges in image. Because of its efficient edge 
detection capability, Canny detectors are still used in machine vision systems with a 
broad spectrum of applications. The algorithm’s multi-stage detection process is 
listed in Box 3.2. The canny edge detector is a powerful tool for edge detection and 
is used widely as a processing algorithm for different vision applications in agricul-
ture, such as object detection, segmentation, manipulation. Septiarini et al. (2020) 
used a Canny edge detector along with different pre- and post-processing operations 
to detect oil palm fruit. In another approach, Luo et al. (2016) applied a Canny edge 
detector in grape cluster images to extract highly probable berries objects followed 
by berry detection (by fitting circles) and refinement to delineate individual berries 
(Fig. 3.20).

Fig. 3.19 Kernel representation of a Laplacian high pass filter. Notice that the sum of coefficients 
is zero. If there exist very low changes in gray/intensity levels in the input image, the intensity 
value in the output image corresponding to the filter’s center will be close to zero, thus suppressing 
smooth or low frequency regions in the image
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3.6  Unsupervised Learning or Clustering

Various approaches have been developed to further process information/images to 
identify/recognize pixels or objects and group those with similar characteristics 
together. These approaches constitute a part of machine learning and are being used 
in vision systems applied to various fields, including agriculture. Based on the 
requirement of input data and the way data are analyzed, these approaches can be 
broadly categorized into two branches: unsupervised learning and supervised 
learning.

Unsupervised learning approaches make inferences from the input data without 
using information from the labels or output. These algorithms do not take feedback 

Fig. 3.20 Detecting grapes using a Canny edge detector; (a) A grape cluster image; (b) Edge 
detection using a Canny edge detector; and (c) Approximate berry detection using a post- processing 
technique. (Images from Luo et al. (2016))

Box 3.2 Steps Used in Canny Edge Detector Algorithm

 1. Apply image smoothing and noise removal with Gaussian Filter
 2. Sharpen the image to enhance most substantial intensity gradients (high 

strength edges) (can use Sobel, Prewitt, or Roberts operator)
 3. Compute magnitude and direction of gradients
 4. Suppress non-maxima to thin the edges and remove unwanted artifacts
 5. Perform hysteresis thresholding to remove and accept lower and higher 

intensity gradients and perform edge linking to find and locate the 
final edges
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on whether the estimations are accurate. The main goal of unsupervised learning is 
to estimate the structure or the patterns of the input dataset. On the other hand, 
supervised learning requires examples with labeled input and output so that the 
learning method can make necessary changes to model parameters/features to look 
into in the input dataset to come up with correct predictions. The main goal of 
supervised learning is to train the model based on ground truth or example data such 
that the same model can be used to predict output in the situation when a new data-
set without known output is introduced. Since supervised learning algorithms/mod-
els are trained based on correct outputs to given inputs, they often result in more 
reliable predictions/classification outcomes compared to the same with unsuper-
vised methods. However, the supervised algorithms require a longer training time 
and run the risk of overfitting to the training dataset leading to unexpected or errone-
ous results when applied to datasets outside the training samples. On the other hand, 
the unsupervised learning approaches do not require prior knowledge about the 
dataset and are generally simpler and faster to apply. However, these approaches 
often lack the level of reliability since they do not have a feedback system to test the 
accuracy/usefulness of the obtained results. Unsupervised approaches are com-
monly used in dataset clustering, dimensionality reduction, similarity detection, and 
anomaly detection. In this section, we discuss different unsupervised (e.g., K-means 
Clustering, Iterative Self-Organizing Data Analysis Technique (ISODATA)) and 
supervised learning (Support Vector Machine (SVM), Bayesian Classifier, Artificial 
Neural Network).

3.6.1  K-Means Clustering

K-means clustering is a simple unsupervised learning approach to cluster data 
points with similar characteristics into a number of groups, K (MacQueen, 1967). 
K-means clustering works iteratively to assign each data point to one of the K 
groups based on the feature similarity of the candidate data point with the mean 
characteristics of the points already belonging to specific groups. As there are K 
clusters, there will be K number of centroids of the data points, each representing 
one data cluster. The clustering algorithm attempts to minimize the within-cluster 
variance of the participating data points. Initially, K random data clusters (if not 
specified by the user) and corresponding centroids are specified in the feature space. 
Each data point is assigned to a cluster based on the Euclidean distance between the 
data point and individual cluster centroids. Once all the data points are explicitly 
assigned to individual clusters, a new centroid for each cluster is computed, and the 
process is repeated until there are no/minimum cluster re-assignments or no/mini-
mum change of centroids. Alternatively, the process is stopped when a minimum 
decrease in the sum of squared error between the cluster centroids and the corre-
sponding data points is achieved (Ullman & Rajaraman, 2012). K-means clustering 
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is simple to implement, flexible to adapt to the changes in dataset/new dataset, suit-
able for large datasets, and guarantees to provide convergence. K-means clustering 
has commonly been used in machine vision systems proposed for agricultural appli-
cations. For example, Wachs et al. (2010) used K-means clustering in a and b chan-
nels of LAB color space in thermal and color images to detect green apples. Bulanon 
et al. (2004) also implemented K-means clustering to detect apples in color images 
transformed to chromaticity space. There also are some limitations of using K-means 
clustering. The algorithm is sensitive to outliers and applies only to the datasets 
where the mean can be defined. Furthermore, the clustering result could vary based 
on the initial seed, which might/might not reflect the real-world clustering.

3.6.2  Iterative Self-Organizing Data Analysis 
Technique (ISODATA)

ISODATA clustering is another unsupervised learning algorithm that works in a 
similar way to K-means clustering. However, ISODATA clustering allows dynamic 
change in the number of clusters, while in K-means clustering the number of clus-
ters is defined beforehand and remains constant. Furthermore, the ISODATA clus-
tering allows cluster modification by splitting and merging the clusters (Ball & Hall, 
1967). Clusters are split if the within-cluster variance is greater than a given thresh-
old, whereas the clusters are merged if the distance between the centroids of clusters 
is less than a given threshold.

3.6.3  Supervised Learning or Classification Approaches

As discussed before, supervised learning approaches require labeled pairs of input 
and output data to train learning models such that the models can be later used for 
accurately predicting the output when an unseen input is presented. To implement 
supervised learning approaches, the available input-output dataset is generally 
divided into three categories: training, validation, and test datasets. The training 
dataset is used for training the models to learn relevant features, whereas the valida-
tion dataset is used to make sure the model is not overfitted to the training samples. 
Model performance can further be assessed using the test dataset that would include 
samples not previously presented to the model during the training process. 
Supervised approaches have been widely used in agriculture applications such as 
object (flower, fruit, weed, branches) detection, segmentation and classification, 
yield estimation, soil and water management, crop quality assessment, livestock 
management, and disease detection, among others.
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3.6.4  Support Vector Machine (SVM)

Support vector machine is a supervised statistical learning algorithm used for clas-
sification, regression, and outlier detection tasks among other. SVMs are commonly 
used to solve classification problems by computing decision boundaries, also known 
as a hyperplane. A hyperplane is an n − 1 dimensional subspace for n-dimensional 
feature space representing the objects of interest. For example, for a set of points in 
2D space, a hyperplane is a 1D line with a particular slope and intercept that sepa-
rates the data points most optimally (see Fig. 3.21). Support vectors, which are the 
data points nearest to the hyperplane, are the most critical components of an 
SVM. Support vectors are located in the feature space such that they are the most 
difficult data points to classify into one group or another and therefore provide the 
basis for defining the optimum location of the hyperplane. The distance between the 
hyperplane and support vectors is known as margin.

Let us consider a set of data points that belong to classes C1 and C2 as shown in 
Fig. 3.21. As discussed earlier, for the given data points in 2D space, the objective 
is to determine a 1D hyperplane (straight line for this case) to classify these points. 
The equation of the straight line is given as X2 = mX1 + c, where m and c are slope 
and intercept of the line. The equation of 1D line (hyperplane) can be represented in 
a more generalized form as w1X1 + w2X2 + b = 0 (Gonzalez & Woods, 2018). Any 
point in X1X2 plane with w1X1 + w2X2 + b > 0 belongs to class C1, and any point with 
w1X1 + w2X2 + b < 0 belong to class C2. In terms of the SVM, the coefficients of X1 i. 
e. (w1) and X2 i. e. (w2) are considered weights. The weights define the coordinate 
of the vector perpendicular to the hyperplane. The intercept value b is considered a 
bias value. Similar to the intercept value b , the bias value displaces the strict require-
ment that the hyperplane should be passing through the origin. Similar to the exam-
ple of 2D space, the decision boundary for an n-dimensional space can be determined 
by n − 1 dimensional hyperplane which can be represented as

Fig. 3.21 Implementation 
of SVM in 2D space. 
Hyperplane in 2D space is 
specified by a line
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The objective of training an SVM is to determine a hyperplane such that the 
distance between the support vectors and the hyperplane is maximized. In simple 
cases, it is easy to have a linear hyperplane between the classes. However, datasets 
might be nonlinearly separable with some features corresponding to the wrong class 
in the real world. To address the nonlinearly separable cases, SVM uses a technique 
called “kernel trick”. Kernel trick transforms the data points in low dimensional 
space to higher-dimensional space such that the data points are separable in a more 
simplified manner. Some of the commonly used kernel tricks involve the use of 
polynomial and Radial-basis function (RBF).

SVM techniques, in general, are robust and generalizable, and are one of the 
most popular classification approaches used in agriculture. Qiang et al. (2014) used 
multiclass SVM to segment fruit, branch, and leaves in citrus field images and 
achieved 92.4% accuracy in counting citrus. The proposed SVM approach lever-
aged the RBF kernel to handle nonlinearity followed by morphological operation 
for refining the segmented results. Ji et al. (2012), Kong et al. (2010), and Wang 
et al. (2009) used different types of SVMs to detect and classify apple fruit. Color 
and shape features were extracted by segmenting apples using median filter and 
seeded region growing. An SVM model was then trained using three types of object 
features: color, shape, or combination of color and shape in conjunction with three 
different kernel functions (Poly, RBF, Sigmoid). Combining color and shape fea-
tures with RBF kernel function achieved the highest accuracy (Ji et al., 2012; Kong 
et  al., 2010; Wang et  al., 2009). Rakun et  al. (2011) also proposed a three-stage 
apple detection using segmentation in HSI color space for possible fruit regions, 
followed by refining segmentation results using SVM for texture feature analysis 
and 3D reconstruction for shape analysis.

3.6.5  Nearest Neighbor Classifier

The nearest neighbor is a supervised classification approach in which every data 
point in the training set are compared against each other in the feature space to find 
the closest (nearest) neighbors. Commonly used techniques to estimate the distance 
or closeness in the feature space include Euclidean distance, Manhattan distance, 
Hamming distance, and Cosine similarity. Since the nearest neighbor classifier uses 
distance as the parameter to classify objects, it is also known as a minimum-distance 
classifier. The simplest form of the nearest neighbor classifier uses 1-Nearest 
Neighbor (NN), where the closest neighbor is used as a reference to classify 
unknown data. A generalized form of this algorithm is called K-NN in which 
K-nearest neighbors are found based on one of the similarity measures mentioned 
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before and the majority voting rule is used to classify new observations to a class. 
When a K-NN technique is used to classify individual pixels in image (semantic 
segmentation), the training and test images are compared pixel-by-pixel. Although 
K-NN does not require training like SVM, for a large number of datasets, it takes a 
significant amount of time to find the neighbor/s. This algorithm has also been used 
commonly in developing machine vision applications for agriculture. For example, 
Linker et al. (2012) leveraged a K-NN classifier to classify pixels based on color and 
texture features to find green apple seed regions followed by post-processing to seg-
ment green apples. The algorithm was able to correctly detect 85% of visible apples 
on images acquired in varying lighting conditions. Seng and Mirisaee (2009) used 
K-NN to classify apple, banana, strawberry, lemon, durian, and watermelon with 
classification accuracy up to 90%. Various color and geometric features such as 
area, shape, and perimeter were used to define objects of interest (fruit) and classify 
them to specific classes.

3.6.6  Decision Trees

As the name suggests, decision trees are tree-like structures commonly used for 
classification and regression tasks. A decision tree starts from a root node and itera-
tively tests object attributes in the internal node/decision node to create branches 
until leaf nodes are attained. Each leaf node is assigned a class label for classifica-
tion tasks, while root node and decision nodes handle attribute tests to separate 
objects based on different characteristics (Tan et al., 2006). In simple terms, a series 
of questions are asked about specific attributes of objects, and a decision is made to 
move to a specific branch based on the feature value. The process is repeated with 
follow-up questions until the conclusion about the object class is reached. Because 
of the simplicity, decision trees are one of the widely used supervised learning algo-
rithms. However, the technique is prone to overfitting since it has a low bias but high 
variance leading to a change in output for a small change in the input variable. 
Furthermore, when the tree starts to grow deep, it focuses on minor details to make 
decisions instead of looking into overall generalized patterns/features.

3.6.7  Random Forest (RF)

Random forest is a supervised statistical learning algorithm that creates an uncor-
related forest of decision trees. RF is an ensemble learning technique that combines 
a set of models (e.g., decision trees) and aggregates the output to find the result. The 
technique leverages bagging, also known as the Bootstrap Aggregation ensemble 
technique where the random sample in the training dataset is selected with replace-
ment. Individual data points can be chosen more than once and act as input to mul-
tiple decision tree models. Each decision tree is trained separately, and the final 
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result of RF is obtained using the majority voting method, also known as aggrega-
tion. RF overcomes the overfitting problem in decision trees by combining the 
results based on majority voting. Furthermore, each decision tree can be trained 
independently, allowing parallelization during computation. However, random for-
est is considered complex and takes longer compared to decision trees. Some exam-
ple studies using this technique in agriculture include Zawbaa et al. (2014) which 
implemented a RF model to classify three kinds of fruit: apples, strawberries, and 
oranges. Geometric and color features were extracted, and Scale Invariant Feature 
Transform (SIFT) was used to improve the decision-making. It was found that RF 
performed better compared to K-NN and SVM learning algorithms. In another 
work, Ishikawa et al. (2018) implemented RF to classify strawberry shapes to nine 
different classes. It was found that the geometric features (length of strawberry con-
tour line, fruit area, fruit length, fruit width, fruit width/length ratio), Elliptic Fourier 
descriptor, and Chain code subtraction descriptor were instrumental in fruit shape 
classification.

3.6.8  Bayesian Classifier

The Bayesian classifier uses probability distribution to classify objects to the class 
it is most likely to belong. To explain this concept, let us take the Iris dataset as an 
example. The Iris dataset consists of three flower varieties (Setosa, Versicolor, 
Virginica) which provides ground truth (actual) measurements of flower sepal 
length, petal length, and width. The objective of the Bayesian classifier is to predict 
the flower class for specific flowers with given petal length, septal length, and width 
using the highest conditional probability that the flower belongs to a specific class. 
Mathematically, let us consider X = (X1, X2, X3…Xn) represent n features, and Y is 
the class label. The objective of the classifier is to determine P(Y = yi| X); the prob-
ability that the object with a specific feature belongs to class Y = yi. The Bayes theo-
rem is used to compute the conditional probability, which is given as:
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Here,

P(Y = yi| X): Probability that the feature X belongs to the class yi.
P(X| Y = yi): Probability that class yi will exhibit feature X. Provides information on 

the distribution of feature X in class yi; also known as class conditional probability.
P(Y = yi): Probability of occurrence of class yi out of all classes. Provides informa-

tion on the frequency of occurrence of class; also known as a priori probability.
P(X): Probability of occurrence of feature X = (X1, X2, X3…Xn). Since we are look-

ing into a particular feature, the probability of occurrence of the particular  feature 
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is the same for all classes. This value just acts as a scaling factor and can be 
ignored.

It is generally assumed that the class conditional probability can be safely repre-
sented by the Gaussian probability density function (Gonzalez & Woods, 2018). For 
the n-dimensional feature vector, the n-dimensional multivariate class conditional 
probability can be given by Eq. 3.10.
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where μ = E(X) = {μ1, μ2, …μn} is the mean vector, and C is the covariance matrix.
The Bayesian classifier above is known as Naive Bayes because it assumes that 

the input features are independent. However, this assumption is quite unrealistic 
because it is virtually impossible to find such independence in real-life data.

A large number of machine vision studies based on Bayesian Classifiers can be 
found with applications in agriculture. Amatya et al. (2016) used a Bayesian classi-
fier in RGB images to segment cherry tree branches. Image pixels were classified 
into four classes: branch, cherry, leaf, and background. The feature vector created 
based on red, green, and blue intensity values of each object class in a manually 
selected sample region was used to compute the class conditional probability den-
sity function. Class priori probability was calculated as a percentage of feature vec-
tors corresponding to a specific class with respect to the total number of feature 
vectors. Morphological operations and a curve-fitting method were used to refine 
and connect the segmented branches, which achieved a branch detection accuracy 
of 89.2%.

3.6.9  Artificial Neural Network (ANN) and Deep Learning

The performance of the traditional machine learning algorithms was primarily 
based on feature engineering, where the best features representing the objects must 
be carefully selected and passed to the learning algorithms. Classical machine learn-
ing achieved some success by training the models based on hand-crafted features. 
However, since the features are hand-coded, the generalizability would be challeng-
ing if the objects are presented from varying environments or viewpoints. Especially 
in agriculture, the problem becomes challenging because of the variability due to 
canopy architectures (e.g., canopy density, canopy size, varietal differences), occlu-
sions (due to branches, leaves, trellis wires, other fruit/flowers), and environmental 
factors (varying lighting conditions, wind). Unlike traditional machine learning 
approaches, deep learning approaches can extract useful feature information from 
raw data. Deep learning, which is an extended and improved version of ANN, lever-
ages hierarchical feature learning where higher-level complex features can be 
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formed by combining simple lower-level features (Bengio, 2009). Learning the fea-
tures from raw data and developing complex features from simple features make 
deep learning approaches powerful and has shown improved performance in com-
puter vision tasks. In recent years, ANN and Deep Learning have been some of the 
most widely used supervised learning techniques in a wide variety of agricultural 
applications as well because of the increased accuracy and the robustness to deal 
with variation in environmental conditions. However, ANN-based techniques are 
often criticized for unexplainability and uncertainty as these are considered as back-
box models that do not  clearly explain how the models achieved what they achieved. 
More discussion on ANN and deep learning are included in Chap. 7.

3.7  Major Challenges and Opportunities

Accurate, reliable, and robust machine vision system is a key for the success of all 
types of automated or robotic operations in agriculture including crop monitoring, 
phenotyping, crop management, and harvesting. However, unstable, uncertain, and 
variable outdoor environment present challenges for machine vision systems to 
achieve the desired level of accuracy, robustness, and reliability. Unstructured and 
uncertain plant canopy structures and variable shape, size, color, and location of the 
objects of interest such as fruit and branches are other limiting factors in field condi-
tions. To address these challenges, machine vision systems developed for agricul-
tural applications need to use novel approaches to optimize sensing and lighting 
conditions including the use of cameras that have improved performance in unstable 
lighting, minimizing lighting variability by introducing mechanical structures to 
block outside lighting, and use of artificial lighting. Other aspects to consider for 
improving vision system performance in field conditions include calibration of out-
puts with sun incident angle and experimentation with time-of-the-day. In addition, 
novel algorithmic approaches such as dynamic exposure adjustment and exposure 
fusion could be helpful. Newer, low-cost consumer cameras capable of collecting 
both color and 3D information (RGB-D cameras; e.g., Zed 2, Stereolabs Inc.) have 
shown, in recent years, to be practically adopted in orchards environment. These 
low-cost sensors and AI techniques such as deep learning show huge potential for 
continual development and widespread application of machine vision technologies 
in farming.

Furthermore, the application of machine vision systems in the agricultural envi-
ronment is limited by the fact that a large proportion of the objects of interest are 
partially or fully occluded by the same and other types of objects such as fruit, 
branches, and foliage, which then makes it challenging for detecting and locating 
those objects. One way to address such challenges could be to use spectral sensors 
such as hyperspectral or thermal sensing systems that may be able to penetrate 
slightly past the surface to detect hidden objects behind foliage. But more research 
and development would be essential to validate this concept. Another important way 
the agricultural environment could be improved for machine vision application is to 
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design planting and canopy structures that can present most of the objects of interest 
on the outer, visible, and accessible canopy surfaces. For example, there have been 
continuous improvement and adoption of tree fruit canopies in recent years to create 
structured, narrow canopies where all the canopy parts (e.g. fruit and branches) are 
visible. Continuous work in genetics, breeding, and horticultural studies, in close 
collaboration with engineering studies, is crucial to further improve crop varieties, 
cropping systems, and canopy architectures that can facilitate the wider application 
of machine vision systems in farming.

It is also noted that ubiquitous and widespread use of cell phone and other mobile 
devices has created a huge potential for developing machine vision applications that 
could be accessible and affordable to farmers with all scales, types, geographic 
locations, and weather conditions from around the world. Mobile devices these days 
come with high-resolution cameras, 3D measurement capabilities, and powerful 
computational units allowing developers to offer highly impactful applications for 
farming such as crop-load estimation, crop stress monitoring, disease and insect 
identification, and irrigation control.

Successful development and adoption of machine vision tools have a great 
potential for improved accuracy and efficiency in all aspects of farming including 
crop condition and cropping environment monitoring, making timely farming deci-
sions, automating various farming operations, and improving worker productivity 
and health and safety, thus leading to reduced use of scarce farming resources such 
as water, nutrients and labor, increased yield and quality, and better environmental 
stewardship. Consequently, farmers would realize higher net returns and farming 
industries would realize more sustainable (economically, socially, and environmen-
tally) production systems to feed the growing global population.
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Chapter 4
Imaging Technology for High-Throughput 
Plant Phenotyping

Jing Zhou, Chin Nee Vong, and Jianfeng Zhou

4.1  Introduction

The development of new crop varieties with improved traits through crop breeding 
is one of the most important solutions to produce sufficient food, feed, and fiber for 
the estimated population of more than nine  billion in 2050. It is expected that 
agricultural production needs to double its current growth rate to meet the world’s 
demand (Hincks, 2018). Plant phenotyping is essential to plant breeding programs 
aiming to select elite cultivars from candidate cultivars (Fasoula et al., 2020). As a 
counterpart to genotype, the term phenotype is the functional plant body formed 
during plant growth and development from the dynamic interactions between plant 
genotype (G) and their growing environments (E), i.e., G × E. The term phenotyping 
is referred to as the set of methodologies and protocols used to measure physiological 
and morphological characteristics of plants, such as chlorophyll content, three- 
dimensional architecture, and composition at different scales (Fiorani & 
Schurr, 2013).

Plant breeding aims to develop new crop varieties with improved traits, including 
high yield potential, high food quality, and resilience to biotic and abiotic stresses 
due to adverse environments (Staton, 2017). Breeding strategies require accurate 
quantification of plant phenotypes to evaluate plant performance, characterize 
germplasm and experimental populations to identify valuable genes/QTLs (Mir 
et al., 2019), or train prediction models in both conventional or molecular breeding 
(Jarquin et al., 2020). Conventional plant phenotyping methods measure crop traits 

J. Zhou 
Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA 

C. N. Vong · J. Zhou (*) 
Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
e-mail: zhoujianf@missouri.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-03834-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-03834-1_4
mailto:zhoujianf@missouri.edu


76

based on visual observations and manual tools, which are time-consuming, labor- 
intensive, and sometimes destructive. Conventional breeding programs need 
immense human resources to sample a large population of crop plants, which has 
become one of the major bottlenecks hindering crop breeding and functional 
genomics studies (Fasoula et al., 2020). Thanks to the advances and reduced costs 
in sensors, computer vision, and machine learning technologies, plant phenotyping 
methods have been elevated to a high-throughput manner during the last decade. 
Over the years, a diversified range of imaging sensors/systems, data processing and 
analyzing methods, and their successful applications are continuously emerging and 
developing. This chapter will briefly introduce the high-throughput plant phenotyp-
ing (HTPP)-related technologies and their applications. We will also discuss the 
opportunities and challenges of using imaging technology in high-throughput plant 
phenotyping to transform conventional crop breeding to next-generation breeding 
programs.

4.2  High-Throughput Plant Phenotyping Technology

In the field of plant breeding and genetics, plant phenomics refers to the multidisci-
plinary approaches of high-throughput acquisition and analysis of multidimensional 
phenotypes of plants on an organism-wide scale in their development (Yang et al., 
2020). Phenomics has been advanced for studying plant response to biotic and 
abiotic stresses (Ganthaler et al., 2018; Hasan et al., 2020; Zhou et al., 2020), dis-
secting dynamic changes in plant structure and functions (Jahnke et al., 2009), 
and developing cultivars with better adaptation to stress-prone environments for 
plant breeding (Dwivedi et al., 2013). Phenomics aims to bridge the gap between 
high- density genomic data acquired by emerging sequencing technology and the 
low- density of phenomic data from the traditional phenotypic approaches.

A high-throughput plant phenotyping (HTPP) system is an essential tool to plant 
phenomics and is generally considered as an integrated system that can collect mas-
sive amounts of phenotypic data from hundreds of thousands of plants regularly 
(days to months) with a high degree of automation (Li et  al., 2021; Yang et  al., 
2017b). With this broad definition, a wide range of HTPP systems has been devel-
oped under various scenarios, including controlled environments and field condi-
tions (Fig. 4.1) to characterize plant features at different scales (roots, leaves, and 
canopies, Fig. 4.2). The general architecture of a HTPP system includes supportive 
hardware (platforms), sensing systems (cameras and controllers), data acquisition 
and management systems, and computational software (data processing and 
analysis).

High-throughput plant phenotyping systems under controlled environments are 
often accompanied by precise control of environmental factors (such as tempera-
ture, humidity, wind speed, light intensity, and nutrient content) and experimental 
treatments. Some examples of such systems include growth chamber systems 
(Jansen et  al., 2009) and robotic mobile systems in a greenhouse (Pereyra-Irujo 
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et al., 2012; Zhou et al., 2018). The HTPP systems in controlled environments can 
be used to capture plant responses to specific variables in a non-destructive, highly 
repeatable, and high-resolution manner, including structural, physiological, and 
biochemical traits of plant roots and shoots. On the other hand, the field conditions 

Fig. 4.1 Examples of high-throughput plant phenotyping (HTPP) systems used in controlled envi-
ronments and field conditions

Fig. 4.2 Plant traits derived from image features acquired at different scales. (a) Soybean roots in 
a rhizobox system (Martins et al., 2020). (b) Top and side views of a 3D point cloud model of a 
soybean plant under a greenhouse environment (Zhou et al., 2019). (c) An aerial image of three 
two-row soybean plots taken at 15 m in a breeding field (Zhou et al., 2020). (d) An orthomosaic 
image of a 4-ha soybean field taken at 30 m in a breeding field
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are an intricate mix of different environmental and managemental factors, such as 
variations in climate, weather, and soil properties, resulting in a large variety of 
HTPP systems for various purposes. The field HTPP systems include ground- and 
aerial-based platforms equipped with various imaging sensors. Ground-based HTPP 
systems include pole or tower-based imaging stations (Shafiekhani et  al., 2017), 
gantry platforms (Vadez et al., 2015), unmanned ground vehicles or UGVs (Jiang 
et al., 2018), or cable-suspended robotic systems (Bai et al., 2019). The aerial-based 
platforms include unmanned aerial vehicles or UAVs (Moghimi et  al., 2020), 
manned aerial vehicles (Yang & Hoffmann, 2015), satellites, and other aerial sys-
tems. The ground HTPP generally provides data with higher spatial resolutions than 
the aerial HTPP but has limitations in field coverage and data collection efficiency.

4.3  Imaging Sensors and Systems

When incident radiation (light source or natural light) hits the surface of an object, 
the radiation will either be absorbed, transmitted, or reflected (Lillesand et  al., 
2004). The reflected radiation can be expressed as the electromagnetic spectrum 
(EMS) with a range of wavelengths (Fig.  4.3). Different ranges of wavelength 
(waveband) are denoted to different names such as visible region (400–700 nm), 
near-infrared (NIR, 700–1000 nm), short-wave infrared (SWIR, 900–2500 nm), and 
long-wave infrared (LWIR, 7.5–14 μm) (Silván-Cárdenas et  al., 2015). Imaging 
sensors in HTPP systems are the devices that can capture electromagnetic spectrum 
and convert them into image pixels of different values, i.e., large pixel values in an 
image indicate strong EMS.

Plant leaves and canopy can generally reflect less visible light (about 400–700 nm 
in wavelength) but reflect more light in the near-infrared (NIR, about 800–1400 nm) 
range. As shown in Fig. 4.4a, leaves of healthy plants usually absorb more blue and 
red light to conduct photosynthesis, create chlorophyll, and reflect more green light, 
making them look greener than those of unhealthy plants. On the other hand, healthy 
plants reflect more NIR light than unhealthy plants. The different reflective energy 
to light at different wavelengths (Fig. 4.4b) makes spectral reflectance an effective, 

Fig. 4.3 Electromagnetic spectrum (EMS) scheme (nm)
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non-contact and non-destructive tool to detect different chemical and physical char-
acteristics in plants. Spectral images have been used widely to quantify plant physi-
cal, chemical, and biological characteristics (Jin et  al., 2020). The widely used 
imaging sensors used in HTPP systems include visible cameras, multispectral 
cameras, hyperspectral cameras, infrared thermal imagers, fluorescence imaging 
sensors, depth cameras (RGB-D), and tomography imaging sensors. The imaging 
sensors vary in cost, working principles, processing methods, and functionalities, 
leading to various applications in HTPP system (Table 4.1).

4.3.1  Visible Cameras

Visible cameras (also called red-green-blue, or RGB cameras) consist of three sen-
sor arrays to detect EMS energy in red (typical 550–650  nm), green (typical 
470–600  nm), and blue (typical 420–530  nm) spectral bands to produce digital 
images (Kolláth et  al., 2020). Visible cameras use either charge-coupled devices 
(CCD) or complementary metal-oxide-semiconductor (CMOS) sensors to capture 
the reflectance or transmittance of light. Image sensors turn spectral energies into 
electrical signals proportional to their energy level, which can be further converted 
to digital numbers, i.e., pixels (e.g., 0–255 for an 8-bit camera). Therefore, image 
pixels can capture plant responses and quantify plant geometric information (e.g., 
leaf length and area) and color information (naturally due to their physiological and 
biochemical characteristics). The visible cameras are the most widely used imaging 
sensors in HTPP systems due to the features of low cost, high resolution, user- 
friendly operation, lightweight, and adaptability to various working conditions 
(Yang et al., 2017b).

High-resolution images from visible cameras can be used to build three- 
dimensional (3D) point cloud data of plants. Sequential and highly overlapping 
images collected from UAVs or robotic systems can be processed to develop digital 
elevation models (DEMs). Commonly used image processing methods for DEMs 

Fig. 4.4 Spectrum reflectance of plant leaves. Image courtesy to NASA Science. (a) Healthy 
vegetation absorbs blue- and red-light energy for conducting photosynthesis and creating chloro-
phyll. (b) An example of spectral signatures of vegetation in reflectance
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include feature registration (e.g., Scale-Invariant Feature Transform, or SIFT) and 
stereovision (e.g., Structure from Motion, or SfM). The DEMs include a 2D matrix 
of depth information in each pixel used to build a 4D matrix containing both color 
and position information (Zhou et al., 2018). Three-dimensional geometric traits, 
such as plant height and leaf angles, can be acquired from the 3D models of plants 
(Cao et al., 2019).

Nevertheless, visible cameras have some limitations. First, image pixels are 
dependent on passive light radiations in conjunction with cameras parameters (e.g., 
sensor size, bit depth, shooting speed, aperture, and focal length). Inconsistent or 
ununiform light conditions during data collection will cause challenges in quantify-
ing variations of plant traits using imaging features. Another limitation is geometric 

Table 4.1 Imaging sensors in HTPP systems and their applications

Sensors

Visible 
RGB 
camera

Spectral 
camera

Thermal 
camera

Fluorescence 
camera

Depth 
camera 
(RGB-D)

Tomographic 
imaging

EMS region
(nm) 400–700

400–
2500 7.5–13 × 103 400–700 400–700 < 400

Plant traits

Plant height Hassan 
et al. 
(2019)

Borges 
et al. 
(2021)

– – Wang 
et al. 
(2020)

–

Leaf area/LAI Raj et al. 
(2021)

Zhang 
et al. 
(2021)

– – Martinez- 
Guanter 
et al. 
(2019)

–

Plant lodging Wang 
et al. 
(2021)

Chauhan 
et al. 
(2019)

Cao et al. 
(2021)

– – Wu et al. 
(2021)

Photosynthesis 
pigment, 
biochemical 
contents

Brambilla 
et al. 
(2021)

Suarez 
et al. 
(2021)

Maimaitijiang 
et al. (2017)

Zhao et al. 
(2021)

– –

Water content – Mwinuka 
et al. 
(2021)

Jin et al. 
(2021)

– – –

Biotic stress Naik 
et al. 
(2017)

Bebronne 
et al. 
(2020)

Mastrodimos 
et al. (2019)

Konanz et al. 
(2014)

– –

Abiotic stress Zhou 
et al. 
(2021b)

Zhou 
et al. 
(2020)

Zhou et al. 
(2021a)

Gomes et al. 
(2012)

– –

Root 
architecture 
system

Eberle 
et al. 
(2020)

Bodner 
et al. 
(2021)

– – – Phalempin 
et al. (2021)

Seed quality, 
composition 
and size

– Choi 
et al. 
(2021)

Rojas-Lima 
et al. (2021)

Li et al. 
(2019)

– Hughes et al. 
(2017)
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distortions (e.g., vignetting and perspective distortions) by the camera lens, which 
can cause inaccurate measurements of plant dimensions (Kim, 2008). Therefore, 
specific procedures are required before and after image collection, such as setting 
ground control points (Han et  al., 2019), using color standard boards (Del Pozo 
et al., 2014), performing distortion calibration (Feng et al., 2020), and using calibra-
tion models (Deng et al., 2018). Moreover, the visible cameras only sense the spec-
tral reflectance wavelength in the range of 400–700  nm, limiting the ability to 
discover the more complex biochemical and physiological plant traits.

4.3.2  Spectral Cameras

Spectral features of plant vegetation can be quantified using spectral cameras that 
consist of sensor arrays sensitive to light in the spectral bands beyond the visible 
range. Currently, spectral cameras can sense light of reflectance or transmittance in 
the spectra range of 400–2500 nm, usually called visible-NIR or VNIR. It can be 
seen from Fig. 4.4b that spectral reflectance to vegetation at the edge of the NIR 
range (700–750 nm, i.e., red-edge) has the steepest responses in the VNIR spectra, 
and the differences among plants have been signified in this range. Multiple spectral 
bands are combined to develop different vegetation indices to signify the differ-
ences in spectral reflectance features (Humplík et  al., 2015). For example, the 
widely used vegetation index normalized difference vegetation index (NDVI) uses 
spectral bands in red and NIR spectral range. Vegetation indices are also used to 
build predictive models using machine learning techniques to predict complex crop 
traits, such as yield (Zhou et al., 2018). Spectral cameras are categorized to multi-
spectral cameras and hyperspectral cameras according to the number of discrete 
wavebands or channels.

 Multispectral Cameras

Multispectral cameras consist of sensors that are sensitive to a relatively small num-
ber (less than 10) of discrete wavebands in the VNIR range (Humplík et al., 2015). 
The spectral wavebands are usually selected based on research results that indicate 
their effectiveness in representing important crop traits. Some widely used wave-
bands include blue (450–520 nm), green (520–600 nm), red (630–690 nm), red edge 
(700–730 nm), and NIR (760–900 nm) (Hunt Jr et al., 2013; Thenkabail & Lyon, 
2016). Depending on the waveband width (number of wavelengths) of every single 
channel, spectral cameras can also be divided into narrow waveband (e.g., <50 nm) 
or broad waveband (>50 nm) cameras (Hunt et al., 2005). For example, the multi-
spectral camera Micasense RedEdge-M+ (Micasense, Seattle, WA, USA) consists 
of five narrow spectral bands of blue (475  ±  20  nm), green (560  ±  20  nm), red 
(668 ± 10 nm), red edge (717 ± 10 nm bandwidth), and NIR (842 ± 40 nm band-
width). The narrow-band spectral cameras are usually more accurate to pick up the 
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differences of spectral signatures for different plants; however, they are more expen-
sive than broad-band spectral cameras.

Multispectral cameras have disadvantages of relatively higher costs and lower 
image resolution than visible cameras to acquire high-resolution information of 
plants (Li et al., 2014; Xie & Yang, 2020). Moreover, multispectral cameras have 
fewer wavebands than hyperspectral cameras, restricting their potential to discover 
novel plant traits that are important to breeders. Similar to the visible cameras, data 
acquired from multispectral cameras can be affected by illumination conditions and 
should be calibrated using reference standards, such as a calibration board, in field 
studies under changing lighting conditions due to cloud and shadows (Jin 
et al., 2020).

 Hyperspectral Camera

Hyperspectral cameras can be considered as more powerful “multispectral cam-
eras” that include as many as more than 300 narrow wavebands in the range of 
400–2500 nm (Li et al., 2014). There are two different types of hyperspectral cam-
eras based on their data collection modes, i.e., pushbroom (or line scanning) and 
snapshot (snapshotting) hyperspectral cameras. Pushbroom hyperspectral cameras 
consist of a line of spectroscopic sensors that acquire images using a line-by-line 
scanning method when the cameras are moving above a scene. On the other hand, a 
snapshot hyperspectral camera consists of a matrix of spectroscopic sensors that are 
able to acquire images of a scene without moving the camera. Pushbroom hyper-
spectral cameras usually have more narrow spectral wavebands or higher spectral 
resolution comparing to snapshot cameras. However, pushbroom cameras require 
stabilized mounts and smooth movements to “reconstruct” the image, which 
becomes a limitation for some scenarios. For example, the pushbroom cameras are 
unsuitable for ground-based mobile platforms with large vibration in field condi-
tions. In addition, a consistent artificial light source is always needed to provide 
extra lights for hyperspectral cameras if used in indoor environments or other low- 
light conditions.

Hyperspectral cameras can capture a large number of narrow-band spectral 
information of crops, which are closely associated with the chemical and physiolog-
ical information of crops. Hyperspectral imagery data can be processed using big 
data processing and analytic technologies, such as machine learning and deep learn-
ing, to quantify and predict plant photochemical and physiological features (Pandey 
et  al., 2017; Yang et  al., 2017a), health status (Knauer et  al., 2017; López- 
Maestresalas et  al., 2016), and biomass/yield (Liang et  al., 2018). Current UAV- 
based hyperspectral imagers are primarily using 50–270 narrow spectral bands of 
VNIR (400–1100 nm) due to the weight and cost. Adding a short-wave infrared 
spectral imager (SWIR, 900–2500  nm) may greatly improve spectral range and 
capacity to detect additional responses of crops to environments. However, SWIR 
imaging sensors are made of indium gallium arsenide (inGaAs) and usually are 
heavy and expensive. The SWIR bands have a minimum amount of atmospheric 
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disturbance or noise and the ability to separate different ground materials, thereby 
helping in feature extraction accurately (Swathandran & Aslam, 2019). Studies 
have shown great potential in quantifying plant response to different stresses using 
VNIR cameras (Rascher et al., 2011; Thomas et al., 2017; Yuan et al., 2014). The 
SWIR channel shows specific reflectance for vegetation water content (Hunt et al., 
2011) and soil moisture (Olsen et al., 2013). The most important applications of the 
SWIR include agricultural management by assessing the crop stress by the reflec-
tance of different pigments in the leaves along with crop moisture estimation and 
mapping as well as quantifying the crop residue and predicting the quality of the 
soil (Galloza et al., 2013; Hively et al., 2018; Serbin et al., 2009). With regard to the 
spectral reflectance differences of moisture absorption properties, various drought 
indices using the backscatter energy from near-infrared (NIR) and shortwave- 
infrared (SWIR) channels have been formulated to estimate vegetation water con-
tent using satellite remote sensing (Ji et al., 2011; Vescovo et al., 2012; Wang & Qu, 
2007), which may serve as reliable indicators for crop drought stresses, and poten-
tially to be used in selecting drought-resistant varieties.

There are some challenges in using hyperspectral imaging systems in plant 
breeding. Compared to visible and multispectral cameras, hyperspectral imaging 
systems are expensive, heavy to integrate with UAVs, and complicated to operate 
(to acquire high-quality data). In addition, hyperspectral imagery data are usually in 
a large volume, complicated to process and need more computing resources (Jin 
et al., 2020; Li et al., 2014; Thenkabail & Lyon, 2016). Some widely used data pro-
cessing methods include principal component analysis, derivative analysis, partial 
least squares, etc. (Thenkabail & Lyon, 2016). Similarly, when collecting data using 
hyperspectral cameras, frequent light calibration using a reference board is needed 
for outdoor field-scale studies (Jin et al., 2020). Thus, hyperspectral imaging is chal-
lenging to scale up for usage in large-scale field phenotyping.

4.3.3  Infrared Thermal Imager

Thermal imaging allows visualization of the energy of infrared (IR) radiation of any 
objects with a temperature above absolute zero (−273 °C). The principle of thermal 
infrared cameras is to capture long-wave IR radiation (7.5–14 μm) emitted by crops 
and convert such radiation to electrical signals (Jones, 2004). Plant temperature 
measurement has been primarily used to study plant water relations, and specifically 
stomatal conductance, because a major determinant of leaf temperature is the rate of 
evaporation or transpiration from the leaf (Jones, 2004). During evaporation, a sub-
stantial amount of energy is required to convert liquid water in leaves to water vapor, 
and this energy is then taken away from the leaves resulting in reduced temperature. 
When a plant experiences abiotic or biotic stresses, the transpiration rate may 
reduce, leading to higher temperature than those without stresses. Therefore, ther-
mal cameras are useful in detecting water-related stresses (Balota & Oakes, 2017). 
For example, canopy temperature depression, defined as the temperature difference 

4 Imaging Technology for High-Throughput Plant Phenotyping



84

between crop canopy and air, is highly correlated with the canopy water mass and 
can be used to quantify crop response to abiotic and biotic stresses (Ludovisi 
et al., 2017).

Thermal images can provide spatiotemporal temperature information of plants 
and help understand the interaction between plant, water, soil, and environments. 
Thermal cameras have become a widely used tool in research programs and com-
mercial applications of plant breeding and precision agriculture. For example, Jin 
et al. (2021) found that UAV-based thermal imagery is a useful tool to assess the 
variations in rice growth due to soil water availability and water use efficiency. Zhou 
et  al. (2020, 2021a) used thermal cameras to evaluate soybean responses under 
water stresses (i.e., flooding and drought) to identify stress-tolerant genotypes by 
comparing canopy temperature among all varieties. In practice, thermal images can 
be used simultaneously with visible and spectral images that help segment crops 
from images with complex backgrounds (e.g., weeds, crop residues) (Leinonen & 
Jones, 2004; Möller et al., 2007).

The limitations of thermal cameras include that thermal measurement is heavily 
affected by ambient conditions, such as air temperature, humidity, and wind speed 
(Jin et al., 2020; Li et al., 2014). It is required to conduct pre-calibrations and post- 
corrections based on solar position and environmental factors, including transient 
wind and cloud cover for temporal data (i.e., data collected at different days) (Li 
et  al., 2014; Zhang & Zhang, 2018). In addition, the orientation of plant leaves 
towards the incident radiation and camera angle needs to consider during data pro-
cessing and analysis (Jones et  al., 2009). Furthermore, additional procedures are 
required to ensure measurement accuracy, for example, preheating cameras for 
about 20 min before using them to reduce temperature drift (Jin et al., 2020).

4.3.4  Fluorescence Imaging

Chlorophyll fluorescence of plants is the light re-emitted by the chlorophyll 
molecules during the returning from excited to nonexcited states (Maxwell & 
Johnson, 2000). The yield of chlorophyll fluorescence depends on the efficiency of 
converting absorbed light to fluorescence. For healthy plants, the majority of 
absorbed light by chlorophyll molecules is used for photosynthetic quantum conver-
sion, and only a small portion is de-excited via emission as heat or as red and far-red 
chlorophyll fluorescence. The ability of photosynthetic quantum conversion declines 
for plants under stress, with a concomitant increase in red and far-red chlorophyll 
fluorescence (Lichtenthaler & Miehé, 1997). Therefore, the analysis of chlorophyll 
fluorescence re-emitted from plant leaves can obtain information about plant health 
status and has been used as an important tool in the research of plant breeding and 
physiology (Halbritter et al., 2020).

Fluorescence imaging sensors (cameras) are used to capture the re-emitted 
proportion of irradiation in a short wavelength such as ultraviolet (UV) light 
(340–360  nm) by plants (Li et  al., 2014). Recently, a high-resolution ultraviolet 
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(UV) laser-induced fluorescence (LIF) imaging system was developed to image all 
four fluorescence bands: blue, green, red, and far-red (Ortiz-Bustos et al., 2016). 
The inverse relationship between photosynthetic performance and chlorophyll fluo-
rescence analysis has made a large contribution to the understanding of photosyn-
thesis and electron transport reactions.

A fluorescence sensing system usually consists of one or more CCD cameras 
with filters to capture fluorescence signals (Wang et al., 2018). Active light sources, 
such as pulsed lasers, pulsed flashlight lamps, or light-emitting diodes (LEDs), are 
used to provide irradiation (excitation) in specific wavelengths (Baker, 2008). The 
Pulse Amplitude Modulated (PAM) fluorometry method by Schreiber et al. (1986) 
has been widely adopted in practical applications. The PAM uses a short (e.g., 1 μs) 
pulse of light (also called a dark adaptation) to excite a target object and measure the 
minimum fluorescence value (Fo) of the object, which is then exposed to a saturat-
ing pulse of light to measure the maximum amount of fluorescence (Fm). The dif-
ference between Fo and Fm is defined as variable fluorescence (Fv), and the ratio of 
Fv/Fm provides a measure of photochemical efficiency (Schreiber et al., 1986). The 
Fv/Fm ratio depends on the metabolic capacity of plants and is highly sensitive for 
plant photosynthetic activity yielding parameters closely related to photosynthetic 
functions (Serôdio et al., 2018). Therefore, fluorescence imaging is commonly used 
to detect stress symptoms induced by pathogen attack (Chaerle et al., 2007), moni-
tor stress responses (Baker, 2008), measure physiological phenomena relating to 
photosynthesis, metabolism, and growth-related traits (Baker & Rosenqvist, 2004; 
Lenk et al., 2006).

The applications of fluorescence imaging systems are used primarily in indoor 
environments and for single leaves or seedling levels of crops due to the require-
ment on active light sources (Li et al., 2014). In addition, the fluorescence imagery 
data are sensitive to ambient conditions and generally not available for ground and 
aerial phenotyping platforms for field-scale studies and applications (Jin et al., 2020).

4.3.5  Depth Imaging Camera

Depth cameras are used to measure the distance of the object from the camera, or 
“depth,” using the principle of “Time-of-Flight (ToF).” Depth cameras consist of 
signal emitters, receivers, and control modules. The distance is calculated based on 
the travel time of emitted signals from the emitters and returned signed captured by 
the receiver (Vázquez-Arellano et  al., 2016). The widely used types of signals 
include laser light and ultrasonic waves, corresponding to two major types of ToF 
sensors, i.e., Light Detection and Ranging (LiDAR) and ultrasonic sensors. Some 
depth cameras have both visible imaging sensors and depth sensors (i.e., RGB-D 
camera or LiDAR camera) to simultaneously acquire both types of information 
(color and depth).

Depth cameras are widely used to build 3D models of plants to quantify different 
traits, such as the structure of plant organs (Paulus et al., 2014; Wang et al., 2017), 
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leaf area index (LAI) (Kjaer & Ottosen, 2015), and plant height (Holman et  al., 
2016; Hu et al., 2018; Jimenez-Berni et al., 2018). For example, plant structures, 
such as leaf area and stem length, extracted from 3D models were used to detect 
water stress in barley. The LAI of different rapeseed genotypes was calculated based 
on their leaf area extracted from a LiDAR sensor to study the interaction of geno-
types and environments (Kjaer & Ottosen, 2015). Furthermore, plant height, ground 
cover, and above-ground biomass of wheat in fields were obtained using LiDAR 
sensors mounted on UAV to study their growth rate temporally (Holman et  al., 
2016; Jimenez-Berni et al., 2018). In addition, plant height from UAV-based LiDAR 
sensors was used to estimate yield in a sorghum breeding program (Hu et al., 2018). 
Some limitations of depth cameras are their sensitivity to vibration and outdoor 
illumination, low resolution, and complex data processing (Jin et  al., 2020; Li 
et al., 2014).

4.3.6  Tomographic Imaging

Tomography is imaging objects by sections or sectioning through the use of pene-
trating waves (e.g., X-ray). For instance, nuclear magnetic resonance imaging 
(MRI) detects nuclear magnetic resonance signals to form images (Li et al., 2014). 
The usage of MRI includes obtaining non-destructive 3D structures of plant organs, 
seeds (Melkus et al., 2011), root system architecture in or near natural soil (Moradi 
et al., 2010), and entire plants (Van As & Van Duynhoven, 2013). Furthermore, they 
are utilized to depict 3D representations of water distribution to noninvasively quan-
tify the water content, water diffusion, and water transport of plants or plant organs 
(Windt et  al., 2006). Another type of tomographic imaging is positron emission 
tomography (PET), which is a nuclear imaging technique producing 3D images of 
a functional process by detecting pairs of gamma rays emitted indirectly from a 
positron-emitting radionuclide. For instance, the transport of 11C-labeled photo- 
assimilates during the CO2 consumption in photosynthesis can be imaged regularly 
in 3D by PET. This imaging mode can dissect transport domains in plant organs to 
deliver quantitative parameters, including transport velocities and lateral loss rate 
along transport paths (Bühler et al., 2011). PET can be used in conjunction with 
MRI to obtain structural and functional traits and analyze the transport of water and 
labeled compounds independently (Crosson et al., 2010).

X-ray computed tomography (X-ray CT) utilizes computer-processed X-rays to 
generate tomographic images of particular parts of the scanned object. It can also 
produce a 3D image of the inner part of an object from a series of 2D radiographic 
images captured around a single axis of rotation. X-ray CT enables such measure-
ments in a scalable fashion due to its non-direct contact, relatively quick implemen-
tation, and inherently non-destructive. It has been widely used to detect and quantify 
the inner structures of shoots, organs, and roots from the cellular to the whole-organ 
scale of plants. The examples comprise assessing the structure of xylem vessels and 
the frequency of embolism in maize leaves rapidly (Ryu et al., 2016) and providing 
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detailed internal three-dimensional (3D) phenotypic information of flowers 
(Tracy et al., 2017), grains (Hughes et al., 2017), spikes (Strange et al., 2014; Zhang 
et al., 2018), and stalks (Zhang et al., 2018). Moreover, it is used in root lodging 
studies to determine the structure of roots in soil (Flavel et al., 2012), quantify com-
paction (Tracy et  al., 2015), and investigate the effect of the rhizosphere on soil 
hydraulic properties (Daly et al., 2015), which are important to develop better crops. 
However, the tomographic imaging technologies are usually expensive and time-
consuming (e.g., ≥60 min for PET and 40–60 min for MRI), which highly restrict 
their usage for large-scale studies and adoption in field applications (Yang 
et al., 2020).

4.4  Image Processing and Analytics

Processing and analyzing image data acquired by HTPP systems is essential to 
translate sensor data (imagery) to crop traits that breeders can use directly in their 
breeding programs. Many different methods have been developed using advanced 
machine learning methods for image processing and analytics.

4.4.1  Image Processing

Although the processing methods are different for individual studies, some essential 
steps are in common, including geometric and radiometric corrections, segmenta-
tion of individual plants, and removal of unnecessary information (image back-
ground). The image processing pipelines that are commonly used in existing studies 
include two categories: (1) image processing based on orthomosaic images (includ-
ing 3D models) of a whole field and (2) processing individual image frames. 
Figure 4.5 provides an example of image processing pipelines for field phenotyping 
studies in our research group (Feng et al., 2020; Zhou et al., 2020).

Fig. 4.5 Pipelines for processing images collected using HTTP systems in field conditions
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 1. Image processing based on 2D orthomosaic images
Sequential images collected by UAV systems or robotic systems usually cover 

a portion of a field or testbed. One of the widely used methods to process the 
image is building 2D orthomosaic images of the test field using commercial 
software packages, such as Pix4Dmapper (Pix4D, Lausanne, Switzerland) and 
Agisoft MetaShape Professional (Agisoft, St. Petersburg, Russia). These pack-
ages are able to retrieve image points with depth information from sequential 
images with sufficient overlaps (over 70%) and reconstruct the image points into 
a point cloud by matching the points with similarities. The point cloud data can 
be further processed to build digital elevation models (DEMs) containing depth 
and (3D) structural information. Meanwhile, geometric deformation and radio-
metric variations are also corrected during image processing.

Image background removal is an essential step of differentiating the pixels 
into two classes: plant and background (soil and residues). The common meth-
ods of background removal include threshold-based and machine learning-based 
methods. The threshold-based method divides image pixels into different catego-
ries (plants and non-plant materials) using proper thresholds developed in origi-
nal (i.e., RGB) or converted (e.g., HSV or any vegetation index) color spaces. 
Thresholds determine the accuracy of background removal. Generally, a large 
threshold causes the losses of pixels of plants, while a small threshold causes the 
inclusion of background information in the image. Various techniques have been 
applied to optimize the values of threshold, including dynamic thresholding 
(Reid & Searcy, 1987), hysteresis thresholding (Marchant et al., 1998), Otsu’s 
thresholding (Otsu, 1979), and entropy of a histogram (Tellaeche et al., 2008). 
Although the threshold-based methods are effective when there is a clear differ-
ence between plants and background, they cannot perform well in the conditions 
where plants and background are similar or images have severe light variations 
at data collection. The machine learning-based methods have been investigated 
to improve the binary classification under various illumination conditions, such 
as fuzzy clustering (Meyer et al., 2004), support vector machines (Zhou et al., 
2019), and decision trees (Guo et  al., 2013), to improve the accuracy of 
background removal.

The orthomosaic images of a whole need to be segmented to separate each 
row or plot of different genotypes. Various methods and tools have been used 
towards plot separation at different automation levels, i.e., manually, semi- 
automation, or fully automation (Chen & Zhang, 2020). For example, QGIS is a 
free and open-source software for processing images with geographic informa-
tion. QGIS allows users to specify an area of interest (AOI) by manually drawing 
polygons or assigning pixels as a reference, which is used to identify pixels that 
share a similar spectral pattern. However, manual segmentation is time- 
consuming and laborious. Other commercial or open-source software, for 
instance, Progeny (https://www.plotphenix.com/) and EasyMPE (Tresch et al., 
2019) can grid the scene images with the knowledge of essential field parameters 
(e.g., size of the plot, number of rows and columns). However, they still require 
manual operations to identify field boundaries and adjust for misalignment. 
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Machine learning-based methods have emerged to achieve fully automated seg-
mentation. One example is the Trainable Weka Segmentation (TWS) (Arganda- 
Carreras et al., 2017), a segmentation tool that consists of supervised learning 
algorithms and can learn pixel-based features from a provided training dataset. 
However, the training process requires manual labeling of a large number of 
images, which is labor-intensive.

 2. Processing individual images
Another pipeline of image processing is to process individual image frames 

directly without building orthomosaic images. The direct processing pipeline may 
provide a timely and cost-effective alternative for extracting plant features. In this 
pipeline, pre-processing has to be performed on each original image frame, 
including radiometric calibration, geometric correction, and image enhancement. 
Geometric deformation of images includes optical distortion due to the camera 
lens and perspective distortion due to the orientation of camera lenses relative to 
the scene. Both distortions will affect the ground sampling distance (GSD) in 
each image frame and, consequently, their geometric measurement precision. The 
optical distortion is often corrected through the calibration procedure by charac-
terizing the intrinsic (e.g., the shape of the camera lens) and extrinsic (i.e., pose) 
parameters using a standard checkerboard. The perspective distortion can be cor-
rected using inverse perspective transformation methods using detectable stan-
dard objects (e.g., the plot row spacing or plot row length) in an image (An et al., 
2016; Feng et al., 2020). Corrected images are enhanced using image enhance-
ment technologies, such as contrast adjustment and image filtering, to reduce the 
influence of luminance, such as sunlight and shadow (Jeon, 2014). Background 
removal and plot separation are conducted after correction. All segmented images 
are geo-referenced based on either GPS or relative coordinates. The internal coor-
dinate system of an image (pixel positions) can be associated with locations in 
physical space by knowing the center position of the image and its GSD.

4.4.2  Imagery Data Analytics and Modeling

Imagery data acquired by HTPP systems can provide multidimensional information 
of plants or plant organs and characterize crop phenotypic traits in a high spatiotem-
poral resolution. Data for different research purposes require reliable methods to 
remove irrelevant or redundant information and tune model arguments to reach 
acceptable results eventually. Traditional regression-based models analyze image 
features to correlate and predict crop traits, which have the advantage of good inter-
pretability. However, simple models are difficult to explain the multivariate relation-
ships between predictors and responses (Parmley et al., 2019). In recent years, with 
the advance in high-performing computers and Application Programming Interfaces 
(APIs, e.g., Keras in Python), machine learning (ML), and deep learning (DL), 
models have been extensively implemented for processing imagery data from HTTP 
systems in plant breeding applications.
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Classic machine learning models, such as support vector machine (SVM), tree- 
based models, and Linear/Quadratic Discriminant Analysis (L/QDA), have been 
used to estimate crop traits (e.g., yield and plant height) and classify categorical 
traits (e.g., stress injury scores and maturity groups). The performance of classic 
ML models depends on the quality of input features (Chandrashekar & Sahin, 
2014), which are usually manually selected. Therefore, an unsupervised ML 
method, principal component analysis (PCA), is often used to reduce feature dimen-
sions by creating principal components (linear combinations of relevant features) 
that explain the most variations in the dataset. Other supervised ML models, such as 
Lasso (least absolute shrinkage and selection operator) and ridge regression, can 
also reduce the dimension of datasets by assigning extremely small coefficients 
(even 0) to the variables that had minor contributions to the model performance 
(James et al., 2013).

The advance in high-performance computing has resulted in the fast develop-
ment and implementation of DL models to analyze imagery data. Deep learning is 
the most important branch of ML allowing hierarchical data learning. One of the 
advantages of DL is that it does not require manual feature selection, but the algo-
rithms will determine the important features during the training process by adjust-
ing a set of parameters associated with the input features. There are a few classic DL 
models widely applied in HTPP, including artificial neural networks (ANNs) for 
tabulated input similar to ML models, convolutional neural networks (CNNs) for 
image analysis, recurrent neural networks (RNNs) for sequence or time data pro-
cessing, and auto-encoder networks (AENs) (Goodfellow et al., 2016). However, 
DL models require a large dataset for training, testing, and validation. They are also 
computationally expensive and have poor interpretability.

4.5  Opportunities and Challenges of Imaging Technology 
for Plant Breeding

The development and innovation of HTPP technology need collaborative efforts 
from the multidisciplinary cooperation of experts in plant breeding, genetics, engi-
neering, and computer science (Li et al., 2021). The emerging technologies in big 
data analytics and artificial intelligence (AI) provide great opportunities for imple-
menting imaging technology in plant breeding using next-generation HTPP sys-
tems. Imaging technology will be more successful in plant breeding with the 
advances in UAV, robotics, high-performance computing, deep learning, and artifi-
cial intelligence. The importance and feasibility of imaging systems in the quantifi-
cation of crop traits have been demonstrated in numerous studies, as summarized in 
the review papers (Lu et al., 2020; Yang et al., 2020; Zhao et al., 2019). In modern 
plant breeding programs, image-based HTPP systems have become standard 
tools to quantify crop traits and assist decision-making on selecting elite genotypes. 
It is believed that imaging technologies, especially hyperspectral imaging, have 
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great potential to discover the insides of plant response to environments. By inte-
grating with plant genomic information acquired by high-throughput plant genotyp-
ing technology, image-based high-density plant traits, or plant phenomics, will 
greatly enhance the capacity of developing precision breeding programs. Imaging 
technology will be a great tool for transferring conventional plant breeding to next- 
generation plant breeding programs.

Although image-based HTPP can efficiently acquire big data set of plants, the 
large amount of data start overwhelming researchers and breeders. Therefore, there 
is a critical need to develop efficient and effective data management, processing, 
and analytic systems (pipelines) for HTPP systems, which can translate imagery 
data to useful crop traits important to breeders. Different breeding programs or 
research teams have been developing various software, tools, and online database; 
however, it is still challenging for breeders to apply and customize these tools for 
their specific research purposes. Thus, more user-friendly or “breeders preferred” 
platforms are still needed to bridge the gap between breeders and the research com-
munity of “phenotypers.” Our vision in addressing the challenges includes develop-
ing AI-based edge computing to process data during collection, as well as automated 
and cloud-based data processing and analytic pipelines for real-time data processing 
and analyzing. We do believe imaging technology will be one of the most important 
tools in the next-generation plant breeding.

4.6  Summary

In this chapter, we briefly introduced imaging technology in high-throughput plant 
phenotyping. Various phenotyping hardware platforms have been developed and 
applied for plant breeding in controlled environments and field conditions. 
Commonly used imaging sensors, such as visible, spectral, infrared thermal, fluo-
rescence, depth camera (RGB-D), and tomographic imaging, and their applications 
in plant breeding were discussed. We summarized the image processing and ana-
lytic methods that have been developed and applied in current studies and their pros 
and cons. At last, we discussed the opportunities and challenges in using imaging 
technology for high-throughput plant phenotyping.
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Chapter 5
Data-Driven Modeling for Crop Growth 
in Plant Factories

Zhixian Lin, Shanye Wang, Rongmei Fu, Kuan-Chong Ting, and Tao Lin

5.1  Introduction

World crop production is becoming increasingly threatened by abnormal climates, 
land shortages, and insufficient labor. According to the United Nations, the world 
population will increase to nearly 10 billion people by 2050, and 68% of this popu-
lation will live in cities (United Nations, 2019). There is a high demand for fresh and 
healthy foods, especially in the urban population. An efficient form of agricultural 
cultivation is required to address this challenge.

Plant factories, also known as vertical farms, are fast evolving agricultural sys-
tems that integrate a variety of modern technologies; they can cultivate crops on 
multiple layers and achieve high-efficiency and -quality production (Graamans 
et al., 2018; Kozai, 2013; Kozai et al., 2019). Besides, plant factories are almost 
completely insulated from the external climate and allow internal environmental 
factors such as light, temperature, humidity, CO2 concentration, and nutrient solu-
tion to be controlled precisely and automatically; thus, they are rarely constrained 
by climatic conditions and geographical location. Recently, plant factories have 
achieved rapid development and created many opportunities for commercial and 
scientific research. In 2021, the global plant factory market was estimated to be 
worth USD 121.8 billion, and it is expected to reach USD 172.5 billion by 2026, 
with a compound annual growth rate of 7.2% (Markets & Markets, 2021). According 
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to data from the last three years, the number of plant factories in commercial pro-
duction is roughly estimated at over 200 in Japan, about 200 in China, and over 500 
around the world (Kozai, 2018; Yang, 2019).

The current problems of plant factory development are the high initial and pro-
duction costs. According to Kozai et  al. (2019), the cost of electricity and labor 
accounts for more than 50% of a plant factory’s production costs. Although the 
yield of crops grown in plant factories has been greatly improved compared with 
traditional agricultural methods, the unit production costs are still high. Moreover, 
the quality of crops often cannot satisfy requirements. The yield and quality of crops 
are affected by genetic, physical, chemical, and biological environmental factors 
during crop growth, as well as cultivation methods (Kozai et al., 2019). Theoretically, 
it is relatively easier to control and improve the yield and quality of crops in plant 
factories. However, incomplete understanding of the causal relationship between 
the environment and yield/quality leads to the necessity for improved environmental 
control and growth prediction in current plant factories.

Data science has played an increasingly important role in plant factories, follow-
ing the rapid development and application of information technology, intelligent 
control, sensors, artificial intelligence, and other advanced technologies. Massive 
crop-related data have surged from equipped sensors and monitoring hardware in 
plant factories. Digitization and automation by data-driven modeling are becoming 
increasingly important in reducing production costs and improving the efficiency of 
plant factories. This chapter describes the applications and prospects of data-driven 
modeling in plant factories from three perspectives: environmental factor sensing, 
crop growth monitoring, and crop growth models.

5.2  Environmental Factor Acquisition and Sensing

The environment significantly affects crop quality and yield in plant factories. 
Therefore, it is necessary to understand the effects of important environmental fac-
tors and their measurement methods. The major environmental factors that affect 
plant growth in plant factories are light, temperature, relative air humidity, carbon 
dioxide concentration, and air current speed (Ahmed et al., 2020). The effects of 
environmental factors are shown in Fig. 5.1. The effects of environmental factors on 
crop growth primarily operate via the stomatal conductance, photosynthetic rate, 
and transpiration rate. This chapter presents the properties and effects of these envi-
ronmental factors. In addition, a measurement system for data accumulation for 
subsequent data-driven modeling is described.

Z. Lin et al.



103

5.2.1  Environmental Factors that Affect Plant Growth

 Light

Light is one of the most critical environmental factors involved in plant growth. The 
most important characteristics of light are light intensity, light quality, and photope-
riod. The cost of lighting comprises a large portion of plant factories’ expenses, with 
artificial lighting accounting for ~60% of the total energy cost of a plant factory 
(Yang, 2019). Understanding and choosing an appropriate light formula can signifi-
cantly improve the economic benefits.

Current methods of expressing light intensity include illumination (unit: lx), 
photosynthetically active radiation (PAR: W ∙ m−2), and photosynthetic photon flux 
density (PPFD: μmol m−2s−1). PAR describes the wavelengths of light that sit within 
the visible range of 400–700 nm (i.e., the light that plants can utilize in photosyn-
thesis). The term PPFD expresses the measurement of PAR. Its value determines the 
quantity of PAR produced by any one lighting system over a time interval. PPFD 
describes the number of photons of PAR that reach or pass within a unit time and 
unit area; it is the most common measure in plant factories. The daily light integral 
(DLI: mol m−2d−1) is a better predictor for plant growth (Kozai, 2022); it expresses 
the light quantum flux of photosynthesis intercepted over a day per unit area. The 
conversion equations for PPFD and DLI are as follows:

 DLI PPFD mol s Photoperiod h� � � � �� �� � �� m 2 1 63600 10·  (5.1)

Light intensity affects the leaf nitrate content, phytochemical accumulation, transpi-
ration rate, and stomatal resistance (Kozai, 2022; Zhang et al., 2018a). Optimum 
light intensity can promote photosynthesis and further promote plant growth (Bian 

Fig. 5.1 Effects of environmental factors on plants
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et al., 2015); thus, choosing a suitable light intensity to increase plant production 
while reducing costs is of great importance (Kozai, 2022).

Light quality is the most complex light factor. Ultraviolet (UV), blue (B), green 
(G), red (R), and far-red (FR) are important components of light quality that affect 
plant growth. Generally, light quality affects both the photosynthesis and morphol-
ogy of plants (Kozai et al., 2016). Different light qualities have various effects on 
crop growth (Table 5.1). For example, blue light (420–470 nm) can increase stoma-
tal conductance (Wang et al., 2009), whereas supplemental far-red light (700–800 
nm) influences the stem elongation and leaf expansion of the leaves (Kozai et al., 
2016). Applying far-red light near the end of the day is a popular energy-saving 
method used to alter the development of indoor crop production (Kozai, 2022). 
Green light can regulate photosynthesis and growth in the lower leaves of plants. Li 
and Kubota (2009) found that supplemental blue light or UV-A could enhance 
anthocyanin accumulation. Compared with blue light and green light, red light can 
increase photosynthetic efficiency (Kozai et al., 2016). A combination of red light 
and blue light can increase the photosynthetic rate and plant biomass (Wang et al., 
2009). At present, different ratios of red light and blue light have been used as the 
core spectrum of light formulas in plant factories.

The photoperiod defines the relative lengths of daytime and nighttime within a 
24 h period. According to their photoperiod response types forming flowers, plants 
can be classified into three types: long-day plants, short-day plants, and day-neutral 
plants. Zhang et al. (2018a) found that extending the photoperiod could increase 
carbohydrate production, increase growth, and improve quality. Considering both 
energy efficiency and plant growth rate, a photoperiod between 16 and 18 h day−1 
was found to be optimal for lettuce in plant factories (Ahmed et al., 2020).

Table 5.1 Effects of light quality on crop growth

Light Crop Effect Reference

Red Lettuce Promote photosynthesis and growth rate Shimizu et al. (2011)
Lettuce, kale, 
and pepper

Stimulate plant height Naznin et al. (2019)

Blue Lettuce Increase anthocyanin content, stomatal 
conductance, leaf net photosynthetic rate

Bukhov et al. (1995), Goto 
(2012), Hogewoning et al. 
(2010)

Red and 
blue

Lettuce Improve lettuce growth characteristics 
and the accumulation of antioxidant 
phenolic compounds

Son et al. (2016)

Green Stimulate photosynthesis deep in the 
canopy providing to carbon gain

Smith et al. (2017)

Far-red Lettuce Enhance leaf area Li and Kubota (2009)
Stem elongation, leaf expansion Kozai et al. (2016)

UV Lettuce Increases phenolics; accumulates 
phytochemicals

Bian et al. (2015), Lee et al. 
(2014)

Z. Lin et al.



105

 Temperature

Every plant has three critical temperature levels: lowest, highest, and optimum. 
When the ambient temperature is below the lowest temperature or higher than the 
highest temperature, the plant cannot grow normally. Plants grow fastest at their 
optimum temperature. Temperature has significant effects on photosynthesis, respi-
ration, and transportation, as well as the accumulation of photosynthetic products 
and the development and growth of various organs. Within a suitable temperature 
range, all biological processes of a plant increase when the temperature rises 
(Chowdhury et  al., 2021). In addition, temperature is another important factor 
(besides lighting) that affects energy costs. Therefore, the optimal, crop-specific 
management of temperature is essential (Yang, 2019).

 Relative Air Humidity

Relative air humidity is based upon the maximum amount of water that air can 
retain at a given temperature and pressure; it represents the degree to which moist 
air approaches saturation. It is usually expressed as a percentage or ratio of a given 
water vapor content to the maximum value at a given temperature. Relative air 
humidity primarily affects the leaf transpiration rate and nutrient uptake (Ahmed 
et al., 2020; Kozai et al., 2016). It affects the vapor pressure deficit between plant 
leaves and the surrounding air, which influences plant transpiration and photosyn-
thesis. At a low relative air humidity, the leaves evaporate more water, which results 
in closed stomata (Ahmed et  al., 2020). Therefore, a relatively low relative air 
humidity will inhibit photosynthesis and plant growth rates (Ryu et al., 2014). In 
contrast, at a high relative air humidity, the evaporation from leaves is small, and the 
roots’ nutrient solution absorption rate is reduced, which in turn affects the plant’s 
photosynthesis.

 Carbon Dioxide Concentration

Carbon dioxide represents the carbon source for plant photosynthesis. Plants absorb 
CO2 during photosynthesis and release it during respiration. CO2 affects several 
physiological processes involved in plant growth. An excessively high carbon diox-
ide concentration (or one maintained at a high level for a long time) will cause the 
stomata to close and the photosynthetic rate to decrease. High carbon dioxide con-
centrations also reduce the transpiration rate by increasing stomatal resistance. 
Within an appropriate range, increasing carbon dioxide concentration can increase 
the photosynthetic rate. Different crops have varied sensitivities to carbon dioxide 
(Park & Lee, 2001). For example, the maturity and yield of lettuce are sensi-
tive to CO2.
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 Air Current Speed

The air current speed is defined as the distance that air travels over a certain period 
of time (Kozai et al., 2016). It is an important factor in the production design of 
plant factories. The air current speed primarily affects transpiration rate, photosyn-
thesis, microenvironment, and quality (Kitaya et al., 2000; Yang, 2019). An appro-
priate air current speed in plant factories can increase the frequency of material 
exchange between plants and the environment, thereby accelerating the plant tran-
spiration rate. Similarly, carbon dioxide near the plant canopy is constantly renewed, 
increasing the rate of photosynthesis.

5.2.2  Environmental Data Collection

 Sensors

Environmental factor measurement is the basis for digital management and control. 
Selecting suitable and reliable sensors is highly important for obtaining continuous 
and reliable data. Light-measurement methods include photometric, quantum, and 
radiometric methods. Light quality is often measured using a spectroradiometer, 
which is designed to measure the spectral power distribution of a light source. When 
selecting a temperature sensor, the operating temperature range, reliability, sensitiv-
ity, and stability should be comprehensively considered. Thermistors and thermo-
couples are commonly used as air temperature measuring devices, and they are ideal 
for monitoring air temperature at several locations along the growing shelves, both 
vertically and horizontally. The relative humidity is measured using a hygrometer. 
Most humidity sensors require regular calibration to ensure accuracy. Nondispersive 
infrared CO2 sensors are the most popular CO2 sensors. The air current speed is 
typically measured using an anemometer. High sensitivity and small size should be 
prioritized (Kozai et al., 2016).

The effects of environmental factors are shown in Table 5.2, along with the sen-
sors commonly used to detect them. A better understanding of environmental fac-
tors and the suitable selection of sensors can help provide a data basis for the 
subsequent application of data-driven methods in plant factories, and this can 
reduce costs.

 IoT System

The “Internet of Things (IoT)” refers to the networked interconnection of everyday 
objects and things to make them individually machine-readable and traceable on the 
Internet (Group & Lake, 2015; Xia et al., 2012).

The plant factory IoT system has three layers, the application layer, network 
layer, and perception layer, as shown in Fig. 5.2. The perception layer uses different 
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types of sensors to sense the environmental and physiological information of crops 
in plant factories. The network layer realizes remote control and management. 
Wireless sensor networks are an essential component of the network layer. Wireless 
sensor nodes construct networks by interacting with physical objects and/or their 
environment and communicating with their neighboring nodes or a gateway. The 
application layer conducts intelligent management based on the data obtained from 
the perception layer (Tzounis et al., 2017).

Fig. 5.2 IoT system architecture of plant factories

Table 5.2 Effects of commonly used sensors for specific environmental factors

Environmental 
factors Effect Sensors

Light intensity Leaf nitrate content, phytochemical accumulation, 
transpiration rate, stomatal resistance

Quantum sensor

Light quality Photosynthesis and morphology Spectroradiometer
Photoperiod Carbohydrate
Temperature Photosynthesis, respiration, transportation, 

accumulation of photosynthetic products
Thermistors and 
thermocouples

Relative air 
humidity

Leaf transpiration rate and nutrient uptake Hygrometer

CO2 
concentration

Several physiological processes NDIR CO2 sensor

Air current speed Transpiration rate, photosynthesis, plant 
microenvironment, and quality

Anemometer
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Through the use of the IoT system, the growth environment and physiological 
information of crops can be sensed, and data can be accumulated for subsequent 
crop models, in turn reducing unnecessary cost through precise control.

5.3  Crop Growth Monitoring in Plant Factories

Accurate and timely crop growth information can reflect the current growth status 
and future growth potential of crops, providing important information for crop man-
agement decision-making. However, crop growth monitoring in horticulture ini-
tially relied upon manual observations and empirical judgment, which was 
time-consuming, laborious, and destructive. Most commercial plant factories have 
a large production capacity of over 10,000 individual plants at a time. Operation on 
such scale is a challenging work for traditional crop monitoring methods (Kozai 
et al., 2019). Recently, data-driven automatic approaches showed their potential for 
crop growth monitoring and have become a popular research topic in plant factories.

Images are the most widely used data source in crop growth monitoring. Images 
can provide non-destructive, convenient, and high-throughput access to crop growth 
information. Many image processing and analysis algorithms have been developed 
to extract features from images and establish relationships between the extracted 
features and growth status. Historical environmental data can reflect crop growth 
status indirectly. Combining multi-source data and building feature extraction mod-
els is a viable option for accurate monitoring of crop growth status.

Image datasets are essential for image-based crop disease detection, especially 
for deep learning methods. Several commonly used public datasets are listed in 
Table 5.3, covering disease detection, species identification, and leaf segmentation. 
PlantVillage and Digipathos are the two most widely used public datasets. 
PlantVillage is currently the largest dataset with 54,305 images, which has sup-
ported many studies (Abbas et al., 2021; Wang et al., 2021b). However, PlantVillage 
contains images of single diseased leaves and with a constrained acquisition envi-
ronment, which is quite different from a realistic scenario. Digipathos solves this 
problem, but the number of pictures is relatively small (2326 images). Therefore, 
researchers still need to spend a lot of time and effort to create their own datasets in 
many cases.

Plant factories are equipped with various sensors and cameras that can monitor 
images and environmental factors (e.g., temperature, humidity, and CO2), thereby 
automatically gather data for crop growth monitoring. Data-driven crop growth 
monitoring methods are widely applied in plant factories (Jiang et al., 2018; Zhang 
et al., 2020). Based on the purposes of crop growth monitoring, these applications 
can be divided into growth monitoring measurement and abnormal growth detec-
tion. The former can obtain the status of crop growth, which is conducive to envi-
ronmental management and the construction of crop growth models and the latter 
can provide early warning of diseases, so that decision makers can implement 
appropriate management operations timely.
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5.3.1  Growth Monitoring Measurement

Crop growth can be defined as an increment of biomass or morphological size 
(Bakker et al., 1995). Monitoring crop growth by measuring morphological changes 
is an effective and straightforward method. Crop morphological changes can be 
described by many quantitative parameters, such as leaf area, height, width, plant 
weight, leaf shape changes, internode distance, and fruit counts. Generally, tradi-
tional measurement methods are mainly based on observations and manual mea-
surement. For example, researchers use the grid method, gravimetric method (Ross 
et al., 2000), and leaf area meter (Igathinathane et al., 2008) to measure the leaf 
area, manually use a ruler to measure the height, and directly weigh the product to 
obtain the weight. These ways are simple but time-consuming and laborious, as well 
as destructive to crops.

Non-contact and automated methods can better meet the needs of real-time mon-
itoring of plant factory production. Images are typical non-contact data widely used 
in crop monitoring. Invisible spectral bands such as near-infrared, red-edge, and 
ultraviolet can be used for camera imaging benefiting from the development of 
spectroscopic techniques. The fluorescent signature of chlorophyll can be used in 
imaging to detect nutrients. Depth cameras can also obtain distance information 
between the camera and imaged surface. Data collection methods such as laser 
scanning, structured light, time of flight, structure from motion, and stereo vision 

Table 5.3 Plant-related public datasets

Application Dataset Crop
Number of 
images Reference

Disease detection and 
identification

PlantVillage 38 categories 54,305 Hughes and 
Salathe (2015)

Digipathos 21 plant 
species

2326 Barbedo et al. 
(2018)

PlantDoc 13 plant 
species

2598 Singh et al. (2020)

CMTL 311 host 
species

12,290 Lee et al. (2021)

Species identification Swedish leaf 
dataset

15 species 1125 Soderkvist (2001)

Flavia 32 species 1907 Wu et al. (2007)
ImageCLEF11/12 71 tree species 6436/11,572 Müller et al. 

(2010)
Leafsnap 185 tree 

species
23,147 Kumar et al. 

(2012)
Oxford flower 17 17 flower 

species
1360 Nilsback and 

Zisserman (2006)
Oxford flower 102 102 flower 

species
8189 Nilsback and 

Zisserman (2008)
Leaf segmentation CVPPP Tobacco, 

arabidopsis
810 Minervini et al. 

(2016)
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can be used for 3D reconstruction of crops. Image-based methods can reduce hard-
ware costs, achieve real-time monitoring, and better meet the requirements of plant 
factories. Many image-based studies have been carried out in crop growth monitor-
ing (Table 5.4).

There are two common pipelines for image-based crop morphological parameter 
measurement: the first is to perform image processing, feature extraction, and 
parameter regression analysis on data; the other is an end-to-end approach, using 
deep learning for pattern recognition (Fig. 5.3). Image processing includes prepro-
cessing and automatic segmentation of crop organs, involving traditional image pro-
cessing methods and deep learning methods. Feature extraction means obtaining 
relevant parameters for regression, such as height and width relative to leaf area. 
Finally, mathematical algorithms such as support vector machines, random forests, 
multiple linear regression, and various deep learning frameworks are used for 
regression analysis to get target parameters. The end-to-end method based on deep 
learning omits the above steps, does not need to manually design rules, and can 
automatically mine the potential features of the data. However, the disadvantage is 
that deep learning requires higher quality and quantity of the dataset for model 
training. Compared with the two-dimensional method, the three-dimensional 
method makes up for the lack of depth information, can obtain accurate distance 
and intuitive shape, and has certain advantages in estimating plant growth and bio-
mass (Vandenberghe et al., 2018). Generally, researchers do not apply these meth-
ods individually but apply similar methods to the extraction of target parameters 
according to requirements or combine different strategies to improve the accuracy 
and robustness of the algorithm.

Table 5.4 Summary of image-based crop growth monitoring

Parameter Data Analytical method Reference

Leaf area RGB images Traditional image processing Lü et al. (2010)
Leaf area, height, 
volume, diameter

Stereo vision Image processing, geometric feature 
calculation

Yeh et al. (2014)

Leaf area, height RGB-depth 
images

Learning- and model-free 3D point 
clouds

Yang et al. (2020)

Leaf area RGB images Deep learning framework (ANN) Wijaya et al. 
(2020)

Height Stereo vision Depth perception, time series 
estimation

Nugroho et al. 
(2020)

Weight and growth rate RGB images Image segmentation framework in 
deep learning (R-CNN)

Reyes-Yanes et al. 
(2020)

Weight RGB images Colored 3D point clouds Mortensen et al. 
(2018)

Weight RGB images Deep learning framework (CNN) Zhang et al. 
(2020)
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 Leaf Area

Leaf area measurements can be divided into three dimensions: single leaf area, sin-
gle plant leaf area, and population leaf area measurements (Leroy et  al., 2007). 
Techniques used for the non-contact method include coefficient regression 
(Cristofori et al., 2008) and image processing (Hajjdiab & Obaid, 2010). The coef-
ficient regression method uses easily measurable parameters (such as leaf length 
and leaf width) to construct mathematical equations for the leaf area. Combining 
various strategies under the image processing framework for segmentation and cal-
culation can well improve the accuracy of pixel statistics and achieve algorithms 
with better accuracy and robustness (Lü et  al., 2010). Using three-dimensional 
methods such as stereo vision or 3D point cloud can represent leaves with complex 
shapes to obtain more morphological parameters, including leaf area, height, vol-
ume, and diameter (Yeh et al., 2014). The obtained crop morphological data com-
bined with time series can also be used to construct the crop growth curve.

 Plant Height

Previous studies have implemented non-contact automatic measurement for plant 
height, using laser scanning or LiDAR (Hoffmeister et al., 2016), ultrasonic sensors 
(Chang et al., 2017), stereo vision (Nugroho et al., 2020), or high-resolution RGB 
image methods that combine motion algorithms. For crops with prominent stalks 
such as rice and corn, plant height is an easy-to-judge key parameter. Researchers 
have developed algorithms and automatic height measurement systems based on 
depth perception methods such as stereo vision (Constantino et al., 2015; Shrestha 
et al., 2021). For other crops with shorter stems, plant height can be extracted as a 
secondary parameter along with other parameters (Yang et al., 2020; Yeh et al., 2014).

 Weight

As an important approach for tracking crop growth, the non-contact measurement 
of fresh weight is to establish the relationship between morphological features and 
fresh weight. It generally covers three steps, including image processing, feature 

Fig. 5.3 Two pipelines of image-based crop morphological parameter measurement
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extraction, and regression analysis. Common image segmentation networks such as 
Mask R-CNN can be used to extract low-level regression parameters, such as leaf 
length and leaf width (Reyes-Yanes et al., 2020). Three-dimensional means such as 
analyzing 3D colored point clouds can also extract regression parameters such as 
volume, surface area, leaf coverage, and height (Mortensen et  al., 2018). Deep 
learning provides researchers with an end-to-end way to obtain plant fresh weight. 
In the study of Zhang et al. (2020), CNN showed its convenience and high accuracy 
for estimating leaf area, leaf dry weight, and leaf fresh weight. The model also had 
great generalization in dealing with images from different seasons and growth stages.

5.3.2  Abnormal Growth Detection

Crops in plant factories have a lower probability of being infected by soil diseases 
and pests than greenhouses or fields. However, the relatively high humidity and 
temperature of plant factories provide a suitable living environment for crop dis-
eases. Bacteria and viruses in the air can infect hydroponic crops through the nutri-
ent solution. Most crop diseases generate apparent symptoms such as yellow leaves, 
rusty brown spots, peeling, dehydration, and scorching. Using computer vision can 
offer high feasibility and accuracy for plant disease observation and diagnosis, sig-
nificantly reducing labor costs and improving automation and intelligent manage-
ment. Abnormal growth detection in plant factories can be divided into disease and 
pest detection and nutritional stress detection. The former is caused by exogenous 
pathogens, and the latter is caused by inappropriate nutrients or environmental 
factors.

 Disease and Pest Detection

Hydroponic crops are susceptible to diseases caused by bacteria and viruses. The 
temperature and humidity environments in plant factories are also very suitable for 
the breeding of pests such as aphids, mealworms, scale insects, and leaf rolls. 
Accurate identification and classification of crop diseases with numerous symptoms 
and complex causes require considerable expertise. For operators and staff who lack 
professional knowledge, a rapid and convenient method is needed to provide early 
disease warnings. Deep learning has shown its remarkable effects on image recogni-
tion and classification, and it has been verified in numerous fields of research 
(Table 5.5).

The deep learning network for plant disease detection can be roughly divided 
into three categories: classification network, target detection network, and segmen-
tation network. According to the specific tasks, the classification network method 
can be subdivided into three sub-categories: using the network as a feature extractor, 
directly using the network for classification, and using the network for lesion loca-
tion (Liu & Wang, 2021). Most existing crop diseases and insect pests classification 
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procedures use CNNs with hybrid structures, such as AlexNet, VGGNet, ResNet, 
GoogLeNet, EfficientNet, HRNet, and DenseNet. Researchers can also design spe-
cific network structures based on actual problems. In the face of intra- and inter- 
class differences in complex scenes, the three main object detection networks, 
Faster R-CNN, SSD, and R-FCN can effectively identify nine types of tomato leaf 
diseases (Fuentes et al., 2017). The detection network can be divided into two- and 
one-stage networks. The two-stage network is represented by faster R-CNN (Ren 
et al., 2015), which first generates a proposed region that may contain lesions and 
then further performs target screening. The first-level network is represented by 
SSD (Wang et  al., 2021b) and You Only Look Once (YOLO) (Mohandas et  al., 
2021), and it directly uses the features extracted from the network to predict the 
location and category of the lesion. Region-level or pixel-level segmentation of dis-
eased parts is usually more conducive to disease identification. The general network 
can be roughly divided into FCNs (Long et al., 2015) and Mask R-CNNs (Afzaal 
et  al., 2021). As new semantic segmentation networks, DeepLabV3+ and U-Net 
have also achieved good results in the severity classification of cucumber petioles 
(Wang et al., 2021a).

Crop pests and diseases detection based on images and deep learning has devel-
oped rapidly, with broad development prospects and great potential. However, in the 
process of moving towards agricultural application, the application in real situations 
is still facing many challenges. There are still some problems that need to be solved, 

Table 5.5 Summary of disease and pest detection models

Approach Model Crop Dataset Functionality Reference

Classification 
network

AlexNet, 
GoogLeNet, 
ResNet

Tomato 5550 
images

Classify leaf 
diseases

Zhang et al. 
(2018b)

VGG-16, 
VGG-19, ResNet, 
InceptionV3

Tomato 2681 
images

Classify leaf 
diseases

Ahmad 
et al. (2020)

DenseNet Tomato PlantVillage Classify leaf 
diseases

Abbas et al. 
(2021)

Detection 
network

Faster R-CNN, 
YOLO

Lettuce 873 images Identify diseases Pratama 
et al. (2020)

DBA_SDD 14 
varieties

PlantVillage Identify diseases, 
classify disease 
degree

Wang et al. 
(2021b)

YOLOv4-tiny 5 varieties 1500 
images

Identify diseases 
in real time

Mohandas 
et al. (2021)

Segmentation 
network

Mask R-CNN Strawberry 2500 
images

Segment diseases 
instance

Afzaal et al. 
(2021)

DeepLabV3+ Lettuce 500 images Segment 
abnormal leaves

Wu et al. 
(2021)

DeepLabV3+, 
U-Net

Cucumber 1000 
images

Segment leaves 
and disease spots

Wang et al. 
(2021a)
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such as the dataset being limited to the current laboratory environment, the disease 
data (negative samples) being insufficient, and prior knowledge may be required to 
guide network learning and other difficulties.

 Nutrient Stress Detection

Crops are supplied with nutrients via hydroponic technology in plant factories. 
When the nutrient supply is insufficient or excessive, it inhibits crop growth and 
causes a phenomenon known as nutrient stress (Tian et al., 2021). Crops often show 
several typical symptoms under stress conditions for certain nutrients, such as nitro-
gen, phosphorus, and potassium. For example, an increase in light intensity and a 
rapid growth rate will lead to the loss of calcium ions in lettuce leaves, thereby 
significantly increasing the ratio of lettuce edge burning (Sago, 2016). The increased 
irradiation time of red and blue LED light can cause photo-oxidation damage to let-
tuce (Shao et al., 2020).

There are several diagnostic methods for assessing crop nutritional status, includ-
ing crop sap analysis (Farneselli et al., 2014), chlorophyll fluorescence diagnostics 
(Simko et al., 2015), and spectral analysis (Eshkabilov et al., 2021). Researchers 
also combined machine learning with image analysis, chlorophyll fluorescence, and 
hyperspectral technology to develop powerful methods for the early detection of 
biotic stress (Behmann et al., 2015).

Combining computer vision technologies to identify crop nutritional stress and 
automatically diagnose nutritional status opens up a new approach for the non- 
destructive detection and rapid diagnosis of crop nutritional stress. However, such 
approach still needs further improvements owing to the similarities between dis-
eases and nutritional stress symptoms. Zhang et al. (2012) performed ground mea-
surements on the hyperspectral reflectance of inoculated yellow rust and nutrient 
stress treatments to detect and distinguish wheat yellow rust and nutrient stress. 
Shimamura et al. (2019) perform binary discrimination of tipburn occurrence on 
lettuce using convolutional neural networks and identify early symptoms of tipburn. 
Gozzovelli et  al. (2021) proposed a lettuce tip burn detection method using a 
Wasserstein generative adversarial network to overcome the problems of sample 
data imbalance, and they combined this with YOLOv2 and U-net to perform region 
screening at healthy and burned edge regions, respectively. The result showed that 
their model could accurately locate and detect the tipburn stress of the crop canopy. 
The above studies show that image-based nutrient stress recognition has both meth-
odological convenience and achievability, but the specific application still needs to 
be promoted.
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5.4  Development and Application of Crop Growth Model

The concept of system analysis is widely used in agriculture research and produc-
tion, which generates a large number of conceptual models to help understand agri-
cultural production, and promotes the quantitative research of agricultural systems 
(Ting et  al., 2016). Among these models, the crop growth model has developed 
rapidly and is gradually being applied to agricultural research and production.

Crop growth can be defined as an increase in biomass or morphological size 
(Bakker et al., 1995). Quantitative research on the growth, physiology, and ecologi-
cal processes of crops can better understand the dynamic responses of crops to the 
environment. The crop growth model performs dynamic quantitative analysis and 
growth simulation research on the crop and its ecological environment factors to 
achieve precise environmental control and thereby improve crop yield and quality.

Based on the different dynamics and timescales, the crop growth simulation in 
agriculture can be divided into instantaneous and long-term state simulations 
(Fig. 5.4). The instantaneous state includes fast crop dynamics (i.e., photosynthesis, 
respiration, and transpiration) and the associated microenvironment dynamics. 
Simulation of such states is essential for real-time crop regulation. The output of 
long-term state simulation arises from the long-term accumulation of crop growth, 
which is reflected in yield as fresh weight, dry weight, and fruit weight, and in 

Fig. 5.4 The main research contents in crop growth simulation
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quality as the accumulation of protein, nitrates, vitamins, and so on. Long-term state 
simulations are generally used to predict yield and quality, as well as to assess the 
influencing factors thereof.

Plant factories, as modern agricultural production systems equipped with various 
sensors and actuators, are suitable for the research and application of crop growth 
models. The crop growth model also plays a vital role in the cultivation manage-
ment optimization of plant factories. Recently, a number of crop growth models 
have been developed, which can be divided into two categories (according to meth-
odology): mechanistic models and data-driven models.

5.4.1  Mechanistic Models

The mechanistic model, also known as the knowledge-driven or explanatory model, 
primarily relies upon existing domain knowledge (both theoretical and empirical). 
A mechanistic model describes a system that uses mathematical language, as well 
as its theorems and symbols. To study basic crop growth principles, it is necessary 
to understand the fundamental physiological processes underlying it. The basic 
physiological processes of crops that closely determine their growth are photosyn-
thesis, respiration, and transpiration (Table 5.6). These physiological processes are 
affected by various environmental factors and are characterized by numerous inter-
actions (Rodríguez et al., 2015). The mechanistic model is an important support tool 
for obtaining detailed knowledge of these effects and interactions.

Over the past few decades, researchers have conducted numerous studies on 
mechanistic models (Table 5.7). Some European countries and the United States 
began the initial crop growth model research, basing these upon greenhouse envi-
ronments and then further expanding them to apply to plant factories. Compared 
with plant factories, greenhouses involve more energy exchanges with the outside 
environment, and their microclimates have been extensively researched to model 

Table 5.6 Fundamental physiological processes are closely associated with crop growth

Physiological 
processes Definition Impact on crops

Photosynthesis A series of reactions that use light energy to 
assimilate CO2 to synthesize carbohydrates

Directly affect growth 
and yield

Respiration (dark 
respiration)

A form of respiration in which carbon 
dioxide is released without the presence of 
light

Provide chemical energy 
and reduce power

Respiration 
(Photorespiration)

Takes place where carbon dioxide is given 
out, which is the opposite process of 
photosynthesis

Waste energy, maintain 
the normal physiology

Transpiration Drives xylem transpiration stream to drive 
root uptake of water and nutrients

Maintain favorable 
water and nutritional 
status
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greenhouse crop growth and development. The dynamic behavior of a microclimate 
represents a combination of physical processes involving energy transfer (radiation 
and heat) and mass balance (water vapor flux and CO2 concentration). Below are 
several representative models and studies.

TOMGRO (Jones et al., 1991) is a physiological model of tomato crop develop-
ment and yield. It uses the source-sink theory, which focuses on the relationship 
between tomato growth and greenhouse environmental factors such as solar radia-
tion, temperature, and CO2. TOMGRO describes the tomato plant via seven basic 
physiological crop factors: the number of leaves, number of main stem segments, 
number of fruits, dry weights of leaves plus petioles, dry weights of main stem seg-
ments, dry weights of fruits, and areas of leaves. TOMGRO is one of the most 
remarkable models of tomato growth and yield in greenhouses, and it has had an 
extensive influence on crop growth and simulation research (Bacci et  al., 2012; 
Jones et al., 1999; Wang et al., 2013). HORTISIM (Gijzen et al., 1997) is a popular 
growth model that provides effective strategies for greenhouse environmental con-
trol and management. It can simulate the growth of several crops, including tomato, 
cucumber, and sweet pepper. HORTISIM is combined with seven sub-models 
(weather, greenhouse climate, soil, crop, greenhouse manager, soil manager, and 
crop manager) as well as a simulation process manager. This structure allows it to 
adapt to different crops by setting different model configurations, and it is widely 
used in growth simulation, yield prediction, and environmental control strategy 
optimization (Heuvelink et al., 2000; Marcelis et al., 2000). NiCoLet (Seginer et al., 
1997) is a two-state-variable model that describes the nitrate concentration in let-
tuce when the nitrate supply is unlimited. The NiCoLet model predicts growth and 
the dynamic fluctuations of soluble carbon and nitrate based on the mechanisms of 
photosynthesis and maintenance of turgor pressure. Researchers have conducted 
extensive research using this model. Ioslovich et al. (2002) modified the original 

Table 5.7 Summary of mechanistic models

Model Crop Application Reference

TOMGRO Tomato Simulate the development and yield of tomatoes Jones et al. 
(1991)

LETSGROW Lettuce Simulate hydroponic lettuce production under a 
range of environmental conditions

Both (1995)

HORTISIM Tomato and 
sweet pepper

Simulate the growth of crop in response to 
climate in greenhouses for greenhouse 
environmental control and management

Gijzen et al. 
(1997)

TOMSIM Tomato Simulate dry matter production of tomato Heuvelink 
(1997)

NiCoLet Lettuce Determine optimal climatic control strategies to 
prevent high nitrate concentration

Seginer et al. 
(1997)

TOMPOUSSE Tomato Simulate weekly prediction of greenhouse 
tomato

Abreu et al. 
(1998)

Vanthoor Tomato Guide the design of greenhouses for a broad 
range of climatic and economic conditions by 
climate-yield models

Vanthoor 
et al. (2011b)
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model to predict lettuce’s growth rate and nitrate content in a sparse canopy. Mathieu 
et al. (2006) modified a NiCoLet model and evaluated both short- and long-term 
changes in lettuce growth and nitrate accumulation. The Vanthoor model (Vanthoor 
et al., 2011a, b) is a well-designed model that features two components: a green-
house climate model and a crop yield model. The greenhouse climate model 
describes the greenhouse microclimate for a wide range of designs and climates. It 
consists of a set of first-order differential equations to ensure that it can be combined 
with a crop yield model. Its crop yield model employs the buffer theory and pro-
duces two crop growth status results (leaf area index and dry matter) (Vanthoor 
et al., 2011c). Although this structure makes its variables relatively easy to obtain, it 
struggles to reflect the physiological characteristics of the crop intuitively, and many 
of its variables are more affected by microclimate parameters than crop status ones.

The mechanistic model can provide highly reliable predictions when crop growth 
is normal (compared with situations used for model calibration). However, owing to 
the complex interactions between crop growth physiological processes, it remains 
difficult to establish suitable growth models for a broader range of applications 
(Chang et al., 2021; Medina-Ruíz, 2011). For example, TOMGRO is more suitable 
for crop management optimization, whereas Vanthoor can be better applied to 
greenhouse regulation. Certain researchers have focused on optimizing or modify-
ing the model parameters to improve the model response (Boote et  al., 2012; 
Ioslovich et al., 2002). Following the improvement of computing abilities, resources, 
and experience sharing between plant scientists, mathematicians, and computer sci-
entists, numerous recent studies have incorporated multiple mechanistic models to 
exploit the advantages of different models and improve performance or applicabil-
ity (Lin et al., 2019; Mathieu et al., 2006; Zhao et al., 2019).

Another weakness of the mechanistic model is that it requires many state vari-
ables, input variables, and parameters, making it difficult for users to implement 
these models in practical applications due to the complicated calibration process 
(Boote et al., 2012). The environmental controllability and enclosed characteristics 
of plant factories considerably simplify the application of the mechanistic model 
(e.g., solar radiation and external climate can be neglected). However, the applica-
tion of mechanistic models in plant factories is relatively rare compared to green-
houses, and most of these play the role of sub-models in environmental optimization 
(Xu et al., 2018, 2021). With the rapid development of plant factories and mathe-
matical modeling techniques, crop growth mechanistic models are expected to play 
a more important role in the future.

5.4.2  Data-Driven Models

The data-driven model, also called the statistical or empirical model, can extract 
mathematical relationships between crop status (yield or growth states) and man-
agement variables (environmental factors or control strategies) from the gathered 
data (Fan et al., 2015). Therefore, the quality and quantity of data directly affect the 
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model’s performance. Data collection has been a significant challenge of data- 
driven model research in the past. Researchers have to record data manually, which 
is time-consuming and laborious, and the data quality is unreliable. Nowadays, with 
the development of sensors and IoT technology in agriculture, data have become 
more available, yielding more studies on data-driven crop models (Table 5.8).

Typically, the data-driven model workflow involves three processes, data collec-
tion, model building, and model application. Data collection forms the basis for 
building a data-driven model, and it significantly affects model performance. After 
organization and preprocessing, the data are used as inputs and outputs for the 

Table 5.8 Summary of data-driven crop models in horticulture

Approach Model Crop Data Functionality Reference

Regression 
analysis

Linear 
regression

Strawberry Plant variables 
(manual measured) 
and environmental 
parameters

Prediction of the 
strawberry growth 
and fruit yield

Dong et al. 
(2018)

Partial least 
squares 
regression

Snap bean Plant variables 
(manual measured) 
and hyperspectral 
images

Yield modeling of 
snap bean

Hassanzadeh 
et al. (2020)

Machine 
learning

ANN Lettuce Lettuce height and 
environmental 
parameters

Prediction of 
lettuce growth in 
plant factory

Rizkiana 
et al. (2021)

Neural 
fuzzy

Lettuce Environmental 
parameters and 
image of lettuce

Prediction of 
lettuce growth, 
harvest day, and 
quality in 
greenhouse

Chang et al. 
(2021)

Deep 
learning

EFuNN Tomato Yield and 
environmental 
parameters

Prediction of 
tomato yield in 
greenhouse

Qaddoum 
et al. (2013)

Due 
Attention- 
LSTM

Tomato Plant variables 
(manual measured) 
and environment 
parameters

Prediction of 
tomato yield in 
plant house and 
interpretation on 
how factor effect 
yield

De Alwis 
et al. (2019)

LSTM Tomato Stem diameter 
values and 
environment 
parameters

Prediction of 
tomato yield in 
greenhouse

Alhnaity et al. 
(2020)

TCN and 
RNN

Tomato Yield and daily 
recorded 
environmental 
parameters

Prediction of 
tomato yield in 
greenhouse

Gong et al. 
(2021)

LSTM- 
based 
encoder- 
decoder

Tomato Plant stem 
diameter and 
environment 
parameters

Prediction of 
tomato stem 
diameter in 
greenhouse

Alhnaity et al. 
(2021)
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model training process. The input data are fed through a data-driven algorithm to 
correlate with the output data and the results of this correlation are used to adjust the 
model. In general, the model’s performance can be measured by the accuracy of the 
training or validation datasets. After model building, the trained model can be used 
to classify, predict, or cluster new samples (testing data), using the experience 
obtained during the model-building process. Regression analysis is one of the most 
widely used methods of crop model construction, which can quantitatively describe 
the relationships between independent and dependent variables. Data-driven regres-
sion does not impose domain-based knowledge but only considers datasets in the 
form (Xi, yi)1 ≤ i ≤ N, where Xi represents the multidimensional input variables and yi 
represents the response variable (Domijan et al., 2006). Classical statistical regres-
sion methods include linear regression, logistic regression, polynomial regression, 
and stepwise regression. Linear and polynomial regression models are straightfor-
ward, and their coefficients can directly reflect each variable’s interpretation, which 
performs well in simple situations (Sim et al., 2020). However, the assumption of 
linear or polynomial relationships between crop growth and environmental factors 
is not always valid, owing to the nonlinear dynamic processes involved in the physi-
cal and biological systems of plant factories.

Machine learning has attracted increasing attention in recent years. Approaches 
such as support vector machines, decision trees, and artificial neural networks 
(ANNs) have been applied to tackle complex problems in agricultural systems 
(Liakos et  al., 2018). These approaches can extract functional patterns for crop 
growth and development simulations from the high-dimensional environmental and 
management data. Many studies have been conducted using machine learning mod-
els, and these have shown that the error in the regression problem can be reduced 
with sufficient data (Chen & Cournéde, 2018; Rizkiana et  al., 2021; Zaidi 
et al., 1999).

Deep learning has emerged alongside high-performance computing and big data 
technologies to create new techniques for crop modeling in the field of multidisci-
plinary agricultural technology. As an end-to-end network approach, deep learning 
models can extract and automatically organize intricate relationships from high- 
dimensional data, using multiple levels of representation (LeCun et  al., 2015). 
Neural networks have been widely applied in agricultural fields for a long time 
(Kocian et al., 2020; Seginer, 1997; Zaidi et al., 1999); they use a simple structure 
to combine input and output variables to indicate correlation, and they can describe 
complex systems using limited parameters. With strong feature extraction and 
learning abilities, deep learning models can achieve relatively high performances 
even for complex problems (Deng & Yu, 2014). Another advantage of deep learning 
models is that they can be easily integrated with other algorithms based on their 
hierarchical structure. Qaddoum et al. (2013) proposed a deep learning model that 
integrated fuzzy and neural networks. The model achieved a high prediction accu-
racy for weekly tomato production. A combination of ANNs and image processing 
methods was proposed by Zaborowicz et  al. (2017) to analyze the quality of 
tomatoes.
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The temporal-sequential deep learning model has shown its potential in crop 
growth modeling. Its temporal architecture renders it inherently suitable for crop 
growth process simulations. Recurrent neural networks (RNNs), as the most popu-
lar temporal-sequential model, are specifically designed to learn sequential relation-
ships by explicitly linking adjacent observations (Werbos, 1990). As a variant of an 
RNN, long short-term memory (LSTM) has been successfully applied in crop yield 
prediction. Alhnaity et  al. (2020) employed an LSTM model to predict tomato 
growth and yield in greenhouse environments. They fed former yield, growth, stem 
diameter values, and microclimate conditions into the model. The results showed 
that LSTM provided a superior performance to SVR and random forest regression. 
Gong et al. (2021) developed a greenhouse crop yield prediction model by combin-
ing two state-of-the-art networks for temporal sequence processing: a temporal con-
volutional network and an RNN.  The proposed model achieved a higher yield 
prediction performance than traditional machine learning methods and other classi-
cal deep neural networks.

Compared with mechanistic models, data-driven models can solve complex 
problems particularly well, especially when there is sufficient data. Generally, data- 
driven models have more complex structures and more parameters, which are 
learned from data through their own method of computing—no human help is 
required. All data-driven models are to some extent black boxes. For data-driven 
models like linear regression, the models are relatively well understood and inter-
pretable. The interpretation becomes more difficult for support vector machines or 
random forest models. For deep neural networks with millions of parameters, the 
interpretation becomes extremely difficult. Despite the increased utilization of data- 
driven models, there is still a lack of sufficient techniques to explain and interpret 
the behavior and decisions of these models. Recently, domain knowledge (such as 
physiological principles and cultivation experience) has been used to improve the 
performance and interpretability of data-driven crop models (Worrall et al., 2021; 
Yin et al., 2021). Crop growth models integrating data-driven and mechanistic will 
have more significant potential in the future and will perform better in real applica-
tion scenarios.

5.5  Summary

In this chapter, we have introduced the applications and prospects of data science in 
plant factories. The data-driven modeling approach can describe the dynamic pro-
cess of crop growth and its interaction with the environment and then provide sup-
port for plant factories’ decision-making. Massive data have been available with the 
application of sensor and IoT technologies. The automated measurement proce-
dures of environmental factors in plant factories are summarized. Monitoring the 
crop growth status can provide information regarding the variables that affect crop 
growth and development, thereby providing information for cultivation manage-
ment. Based on environmental factors and crop growth data, crop growth models 
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can quantitatively simulate the growth processes of crops and their responses to the 
environment. We have summarized the characteristics and contributions of data- 
driven modeling to the main production processes in plant factories. Plant factories 
are emerging and promising crop production systems. High costs constrain the 
development and business viability of plant factories. We believe that further appli-
cations of data-driven modeling can effectively reduce the production costs of plant 
factories and lead to successful commercial production.
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Chapter 6
Data-Driven Modeling for Crop Mapping 
and Yield Estimation

Xingguo Xiong, Qiyu Tian, Luis F. Rodriguez, and Tao Lin

6.1  Introduction

Increasing food production requires the sustainable management of agricultural 
activities, and there is a clear demand for the monitoring of crop growth statuses 
across different locations and environmental contexts (Dong et  al., 2016; Weiss 
et al., 2020). Satellite-based crop mapping represents an essential tool for agricul-
tural resource monitoring, and it can provide important information for acreage 
surveys, yield estimation, and water management (Löw et al., 2013). Reliable yield 
estimation is used to understand how crop yields respond to various environmental 
factors (Lobell, 2013). It offers critical information for decision-making in agricul-
tural insurance and agriculture-related policies (Lobell et al., 2015).

Satellite remote sensing offers the unique advantage of mapping crop types and 
monitoring crop yields across different spatiotemporal scales because of its wide 
spatial coverage and high temporal resolution (Hu et al., 2019; Song et al., 2017). 
Most moderate spatial resolution (10–1000 m) earth observation data (e.g., Sentinel, 
Landsat, MODIS) are free of charge to the public and are produced daily on average 
(Rußwurm & Körner, 2019). The reflectance spectra of crops vary with crop growth, 
directly describing the phenological transitions of vegetation. These vegetation- 
characteristic phenological transitions have been applied to improve crop mapping 
and yield estimation (Cao et  al., 2021; Dong et  al., 2016; Rußwurm & Körner, 
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2018a). Several useful vegetation indices have been designed to reduce the dimen-
sionality of multiple spectral bands and to characterize the biophysical properties of 
crops. For example, the normalized difference vegetation index (NDVI) and 
enhanced vegetation index (EVI) exhibit an obvious temporal pattern in summer 
crops, with an increasing trend before the heading phase followed by a rapid 
decrease (Dong et al., 2016). In addition, decades’ worth of meteorological datasets 
has been constructed around the world (Abatzoglou et al., 2018). Multiple agro- 
meteorological indices have been calculated to better capture the impacts of extreme 
meteorological stress on crop yields (Zhang et al., 2014).

Crop mapping and yield estimation have achieved comparable successes by 
combining training data and advanced computer vision techniques (Burke et  al., 
2021). Numerous efforts have been made in agricultural surveys to collect reference 
data. Crop yield is updated annually in many regions, and crop-type maps are gener-
ated regionally. For example, the Cropland Data Layer and the Crop Inventory data-
set were created by the United States Department of Agriculture and Agriculture 
and Agri-Food Canada, respectively (Song et al., 2017). For these reference data, a 
variety of data-driven methods have been applied to classify crops and estimate crop 
yields. Linear regression is employed for estimating yields based on a set of predic-
tor variables, such as vegetation indexes or meteorological factors. Non-parametric 
machine learning better captured the nonlinear relationships between input predic-
tor and output response; it also exhibited a robust performance for high-dimensional 
data. Deep learning has been introduced to learn features and generate predictions 
from labeled data in an end-to-end fashion.

This chapter reviews a variety of data-driven approaches that have been applied 
for crop mapping and yield estimation, with a focus on machine learning and deep 
learning approaches. The workflow for data analysis is summarized as follows: data 
collection, data preprocessing, model development, model evaluation, and model 
improvement. The application of these approaches in crop mapping and yield esti-
mation is described. The following section pays particular attention to data-driven 
approaches that use algorithms from machine learning and deep learning for crop 
mapping and yield estimation. Key constraints on future progress are explored, and 
possible future research directions are highlighted.

6.2  Workflow of Data-Driven Modeling Analysis

Data-driven modeling analysis was implemented by a standardized workflow 
(Fig. 6.1); this includes the processes of data collection, data preprocessing, model 
development, model evaluation, and model improvement. These processes are 
broadly applied for crop mapping and yield estimation.

X. Xiong et al.



133

6.2.1  Data Collection

Satellite remote sensing observations and meteorological records are used as pri-
mary data sources because of their ability to represent crop growth characteristics 
from various perspectives. The main methods of collecting the desired data include 
experimental collection, random sampling, historical data retrieval, and online pub-
lic datasets. Other measurement values can be supplemented by expert opinions and 
domain information.

 Satellite Remote Sensing Data

Satellite remote sensing has been used as a nondestructive tool to identify crop 
growth statuses. It offers systematic and periodic crop information at a large spatial 
scale, which facilitates the representation of spatiotemporal heterogeneity within an 
area of interest. Crop monitoring using satellite remote sensing has been widely 
addressed in multiple specific applications, including crop mapping and yield esti-
mation (Weiss et al., 2020). Moderate spatial resolution (10–1000 m) data are being 
captured by an increasing number of satellite missions (Table 6.1), and these data 
are broadly used for crop cultivar retrieval (Ma et al., 2017). These satellite data are 
publicly available, mainly from the Moderate-resolution Imaging Spectroradiometer 
(MODIS), Landsat, and Sentinel.

 Meteorological Data

Crop yields are affected by many variables, including seed quality, meteorological 
factors, and water usage (Guo & Xue, 2012). Meteorological effects often interact 
in nonlinear ways; this can both positively and negatively influence gross primary 
production and crop yields (Lischeid et al., 2022). Meteorological data are retrieved 

Fig. 6.1 Workflow of data-driven modeling analysis
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from meteorological observation stations or remote sensing-derived products. 
Several frequently used variables include precipitation, air temperature, relative 
humidity, and wind speed (Table 6.2).

6.2.2  Data Preprocessing

Data preprocessing is necessary to remove noise and redundant information before 
model development in crop mapping and yield estimation; this includes cloud 
removal in optical images and pixel-level speckle filtering in synthetic aperture 
radar (SAR) images. In addition, basic statistical metrics (e.g., variance, standard 
deviation, and quantile) are often used to detect outliers. The outliers are removed 
based on predefined thresholds that are set based upon these metrics. Filtering 

Table 6.1 Summary of available satellite remote sensing data source

Name Sensor type Resolution (m) Repeat cycle (days) Time span Organization

Sentinel-2A Optical 10-60 5 2015–present ESA
Sentinel-2B Optical 10–60 5 2017–present ESA
SPOT 4 Optical 20 26 1998–2013 CNES
SPOT 5 Optical 20 26 2002–2015 CNES
MODIS Optical 500/1000 8/16 2000–present NASA
Landsat 5 Optical 30 16 1984–present NASA
Landsat 7 Optical 30 16 1999–present NASA
Landsat 8 Optical 30 16 2013–present NASA
Sentinel-1A SAR 10 5 2014–present ESA
Sentinel-1B SAR 10 5 2016–present ESA

SPOT systeme probatoire d'observation de la terre; MODIS moderate-resolution imaging spectro-
radiometer, SAR synthetic aperture radar, ESA European Space Agency, CNES Centre National 
d'Etudes Spatiales, NASA National Aeronautics and Space Administration

Table 6.2 Summary of meteorological factors

Meteorological factors Variables Meaning Type

Temperature Tmin Daily minimum temperature Raw
Tmax Daily maximum temperature Raw

Water supply Pre Daily total precipitation Raw
Pdsi Palmer drought severity index Calculated

Water demand Pet Evapotranspiration Calculated
Vap Vapor pressure Calculated
Vpd Vapor pressure deficit Calculated

Land surface temperature NGDD Normal growing degree days Calculated
HKDD Hot killing degree days Calculated
CKDD Cold killing degree days Calculated

Note: “Raw” means raw data, “Calculated” means data values obtained from the predefined 
equation

X. Xiong et al.



135

algorithms, such as the Lee filter, are also utilized to eliminate speckle noise in SAR 
imagery.

Remote sensing data are preprocessed in two major steps. First, standard image 
preprocessing is carried out, comprising radiometric calibration, atmospheric cor-
rection, and geometric correction. For SAR images, additional steps are necessary, 
including thermal noise removal and terrain correction. Fortunately, available 
remote sensing products such as Sentinel-2 L2A are ready-to-use products that have 
been preprocessed by these standard operations. After the first step, specific prepro-
cessing is used for crop mapping and yield estimation. Satellite image data are gen-
erally processed using the following steps to construct a continuous time series. 
Resampling and coordinate system transformations are applied to ensure alignment 
with a geo-referenced raster; pixels of interest are extracted using existing land 
cover and land use products; image noise is removed in images. For SAR images, 
speckles in the image are filtered using suitable filters, such as the averaged struc-
ture Lee filter (Wei et al., 2021). For optical images, because of cloud coverage, 
images are screened by the cloud coverage percentage or by visual inspection 
(Vuolo et al., 2018). A cloud removal algorithm is applied to eliminate small clouds 
and obtain cloud-free reflectance values; the missing values (attributable to cloud 
contamination) are reconstructed by generating median or mean composites within 
a predefined time span. Interpolation and filtering algorithms represent another pos-
sible approach (Gumma et al., 2014). The combination of linear interpolation and 
Savitzky–Golay filter has been used in many multi-temporal studies (Chen et al., 
2021; Liu et al., 2020). Vegetation indices sensitive to various biophysical proper-
ties are calculated from the row reflectance band for further analysis (Table 6.3). 
Meteorological data are often obtained from an already processed dataset, in which 
outliers have been removed and missing data have been filled. Agro-meteorological 
indices can be calculated to better capture the impacts of extreme stress (Cao et al., 
2021). Both remote sensing data and meteorological data are aggregated into a spe-
cific spatial and temporal scale to assist data analysis at various levels.

Table 6.3 Indexes derived from remote sensing and meteorological data

Names Index type Characteristics References

NDVI Vegetation index Vegetation status Rouse et al. (1974)
EVI Vegetation index Vegetation status, canopy structure Huete et al. (2002)
LSWI Vegetation index Water content, residue cover Xiao et al. (2002)
NDTI Vegetation index Nonphotosynthetic components, 

residue cover
Van Deventer et al. 
(1997)

NDWI Vegetation index Water content Gao (1996)
GDD Meteorological 

index
Crop growth McMaster and Wilhelm 

(1997)
KDD Meteorological 

index
Crop growth Yan and Hunt (1999)

LSWI land surface water index, NDTI normalized difference tillage index, NDWI normalized dif-
ference water index, GDD growing degree days, KDD killing degree days

6 Data-Driven Modeling for Crop Mapping and Yield Estimation
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Google Earth Engine (GEE) and Python are the two most commonly used tools 
for remote sensing and agro-meteorological data preprocessing.

 Google Earth Engine (GEE)

GEE is a cloud-based platform for global-scale geospatial analysis; it is designed to 
help not only traditional remote sensing scientists but also users who lack the tech-
nical ability to use supercomputing resources (Gorelick et al., 2017). The GEE con-
sists of a data catalog and a high-performance parallel computation service. The 
data catalog houses a large publicly available geospatial dataset repository with a 
capacity of several petabytes. Optical sensors such as Landsat and MODIS are the 
most frequently used data sources, followed by Sentinel-2 and Sentinel-1 (Tamiminia 
et al., 2020).

Users can access and analyze data using an Internet-accessible application pro-
gramming interface (API) and an associated online interactive development envi-
ronment (IDE) (Gorelick et al., 2017). The online IDE (also called the Earth Engine 
Code Editor) is often used to send interactive or batch queries. Queries are con-
structed by combining operations from a client library with more than 800 func-
tions. These functions range from simple mathematical operations to complex 
geostatistical computations, machine learning, and image processing (Table 6.4).

In the past few years, the GEE has been applied to many high-impact societal 
issues, including deforestation, food security, and climate monitoring (Gorelick 
et al., 2017). The 349 papers that have employed GEE in a wide variety of remote 
sensing applications are comprehensively summarized (Tamiminia et  al., 2020). 
These applications can be classified into 11 groups. Crop mapping is the most 

Table 6.4 Built-in functions in the GEE platform

Package Capabilities Package Capabilities

Image Band composites, 
registration

Reducer Image composition, image 
aggregation

Masking, mosaicking, 
clipping

Statistics of images and 
features

Edge and texture 
extraction

Rasterizing and vectorization

Spatial operation Resampling and reducing 
resolution

Image collection Filtering, reducing, 
mapping

Charts Time-series visualization

Composing and 
mosaicking

Histograms

Iteration Machine 
learning

Random forest
Feature, feature 
collection

Filtering, reducing K-means clustering
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common object of study (including vegetation and rice paddies), followed by agri-
cultural monitoring.

 Python

Python is a useful tool for big data analysis, owing to its easy readability and statis-
tical analysis capacities. It offers many well-tested analytical libraries. A Python 
API package called “ee” has been developed based on GEE. All functions in the 
client library are accessible through this package, and queries can be constructed in 
the local IDE to analyze large-scale geospatial data. In addition, a large number of 
libraries include packages such as numerical computing, data analysis, statistical 
analysis, visualization, and machine learning (Table 6.5). For example, NumPy is 
used for scientific computing and basic and advanced array operations, and 
Matplotlib can generate data visualizations such as two- or three-dimensional dia-
grams and graphs. Big datasets can be easily processed and analyzed using the 
Python library, with the help of powerful local computing resources.

6.2.3  Model Development

Models are built to fit the relationships between predictor variables (e.g., vegetation 
index, meteorological index) and response variables (e.g., crop type and crop yield). 
The trained model can predict the response variable from the predictor variables. 
For feature importance analysis, the model helps to elucidate whether the predictor 
variables are important in explaining the response variable, as well as how each 
component of the predictor variable affects the response variable. No one method 
dominates over all other methods and all possible datasets, and a suitable algorithm 
should be selected prior to model construction (James et al., 2013).

Table 6.5 Commonly used Python libraries

Category Package Functionality References

Data processing NumPy Scientific computing and array operation Harris et al. (2020)
SciPy Linear algebra, integration, optimization, 

and statistics
Virtanen et al. 
(2020)

Pandas Data analysis and manipulation McKinney (2010)
Modeling SciKit- 

Learn
Machine learning and data mining Pedregosa et al. 

(2011)
PyTorch Deep learning Paszke et al. (2019)
TensorFlow Machine learning and deep learning Abadi et al. (2016)

Data 
visualization

Matplotlib Data visualization Hunter (2007)
Seaborn Visualizing statistical models Waskom (2021)
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Three data-driven methods are widely used in crop mapping and yield estima-
tion: linear regression, non-parametric machine learning, and deep learning. Linear 
regression is a straightforward method for predicting quantitative responses regard-
ing a set of predictor variables. The coefficients of the model are estimated by mini-
mizing the least-squares criterion (James et al., 2013). Variants of linear regression 
[e.g., ridge regression and least absolute shrinkage and selection operator (LASSO)] 
are fitted to address the problem of collinearity between variables, thereby facilitat-
ing robust prediction performance. A penalty term is added to the loss function to 
regularize or shrink the coefficients. Non-parametric machine learning methods 
such as random forest (RF) or support vector machines (SVMs) are not constrained 
by assumptions such as the normal distribution of input data (Löw et al., 2013). The 
RF classifier is composed of many decision-tree classifiers. Each tree is trained 
using a bootstrap or bagging strategy (Breiman, 1996). Input features are randomly 
selected from the total feature set to build each tree in the forest. A majority vote 
strategy is employed for the results of all trees, and the model output is calculated 
accordingly (Breiman, 2001). Meanwhile, the variable importance can be calcu-
lated using RF. SVM can separate different class distributions in high-dimensional 
feature spaces, which are mapped using nonlinear kernel functions (Vapnik, 1999). 
An optimal hyper-plane is fitted to maximize the interval between the plane and the 
closest training data. The deep learning model architecture comprises a series of 
connected units that facilitate hierarchical feature representation exclusively from 
data (Zhong et al., 2019a, b). These units learn features and perform classification 
in an end-to-end fashion without the need for manual feature engineering. Developed 
from multilayer perceptron (MLP), the deep learning model contains an input layer, 
hidden layers, and an output layer. An activation function is applied to the output of 
the hidden layer to increase the nonlinearity; this output is then used as the input of 
the next layer. The models are trained iteratively using forward and backward prop-
agation. Weight decay and dropout are used to tackle the problems of over-fitting 
(Zhang et al., 2021). Under increasing numbers of layers, the parameters must be 
updated using more labeled data.

6.2.4  Model Evaluation and Improvement

Qualitative and quantitative indicators are used to evaluate model output. For yield 
estimation analysis, the performance of the model is typically assessed using two 
indicators: the root mean squared error (RMSE) and the R2 statistic. The RMSE is 
small if the predicted value is close to the observed one; it is large if the predicted 
and observed values differ significantly. R2 takes a value between 0 and 1. It mea-
sures the proportion of variability in the response variable, which can be explained 
using predictor variables (James et al., 2013). The error matrix plays an important 
role in the accuracy assessment in crop-type mapping studies. The quantitative 
accuracy metrics computed from the error matrix include the overall accuracy, 
F1-score, producer’s accuracy, and user’s accuracy. The overall accuracy and 
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F1-score are comprehensive measures that characterize the accuracy of a given class 
using a single value. The user’s accuracy represents the proportion of correctly pre-
dicted samples in all predicted samples of the target class. The producer’s accuracy 
quantifies the accuracy of the correctly identified samples in the reference samples.

The model is improved and updated according to the aforementioned evaluation 
indicators. At this stage, if the expected accuracy is not achieved, the model is rede-
veloped by parameter tuning or selecting a more suitable one, and another model 
evaluation is performed to obtain the best results for the given target.

6.3  Application in Crop Mapping and Yield Estimation

6.3.1  Crop Mapping

Timely and reliable crop mapping is important for monitoring crop growth and 
achieving sustainable food security (Wang et al., 2019; Xu et al., 2020). Crop type 
information has traditionally been obtained from field surveys and censuses (Wang 
et al., 2019). Satellite observations can provide crop growth information on a large 
spatial scale, which helps to reduce the burden of field data collection (Song et al., 
2017). Crop-type maps are created using features derived from remote sensing 
observations and advanced data analysis technologies (Wang et al., 2019). These 
technologies include threshold-based methods and emerging data-driven methods. 
The former has been developed using domain expert knowledge and applied at vari-
ous temporal and spatial scales; the latter allows for automated analysis of satellite 
imagery with ground truth data, and these latter methods can be categorized into 
two groups: machine learning-based and deep learning-based.

 Threshold-Based Method

The vegetation index time-series curves are closely related to crop phenology 
(Sakamoto et al., 2010). Individual crop phenologies allow multi-temporal remote 
sensing data to effectively characterize and extract target crops (Pan et al., 2012).

Phenological indexes are manually developed from time-series profiles or spe-
cific periods in which phenological characteristics are inherently exhibited, and a 
set of thresholds at which these indexes realize robust crop discrimination are man-
ually determined (Table 6.6). Temporal matching techniques calculate the global 
temporal similarity index to quantify the similarity between the target crop and 
other land covers. Distance metrics (which measure the time-series profile similar-
ity) are calculated, and a suitable threshold is set for these distance metrics, using 
ground truth data or agricultural statistical data (Dong et al., 2020; Gumma et al., 
2015; Sun et al., 2012). However, time-series profiles of vegetation indices (VIs) 
typically exhibit intra-class variability due to variations in crop growth, climate con-
ditions, and plant structures (Qiu et al., 2015; Wardlow et al., 2007).
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Phenological metrics derived from specific growth stages have been developed 
and widely applied for crop mapping (Dong et al., 2016; Xiao et al., 2005, 2006; 
Zhang et  al., 2015). Flooding and rice transplanting signals are key features for 
identifying rice paddy fields (Dong et al., 2016). The relationship between LSWI 
and NDVI (EVI) has been effectively explored and captured to identify flooding/
transplanting signals. In cross-year corn and soybean mapping, phenological indi-
ces have been obtained by fitting a predefined curve to the EVI time series (Zhong 
et al., 2016). The EVI amplitude, changing rate, and transition dates pertaining to 
the start, rapid growth, and end of the entire growing season were calculated. A set 
of universal decision rules was built using substantial expert input and intensive 
image interpretation (Zhong et al., 2016). Winter crops (e.g., winter wheat) have 
distinctive phenological features due to their long over-winter periods. Seeding 
date, first peak date, second peak date, and harvest date represent the four key phe-
nological stages used for winter wheat identification. The NDVI (EVI) in the four 
stages is calculated to establish a specific index for cross-region and cross-year 
winter wheat mapping (Pan et al., 2012; Qiu et al., 2017; Qu et al., 2021).

Phenological index-based methods depend on expert experience and local agri-
cultural knowledge. These distinctive indexes help realize crop mapping across 
years and at a large spatial scale (Dong et al., 2016; Xiao et al., 2006). However, 
these algorithms have been applied using limited vegetation indices, primarily 
NDVI and EVI derived from optical images. It is difficult for humans to use multi- 
temporal, multi-spectral, and multimodal data in combination. The process of phe-
nological index construction (to account for complex factors such as inter-class 
similarity and intra-class variability) is overwhelming to human capabilities in the 
big data era. This is often the case for multi-temporal classification and multi-source 
data fusion (Zhong et al., 2019a, b).

Table 6.6 Vegetation indices developed for crop classification

Spectral response Phenological stage Band Sensors Crops References

LSWI + a > EVI/NDVI, 
0< a < 0.2

Flooding/transplanting 
stage

VI MODIS Rice Xiao et al. 
(2006)

LSWI + a > EVI/NDVI, 
0< a < 0.2

Flooding/transplanting 
stage

VI MODIS Rice Dong et al. 
(2016)

The minima and maxima 
of the EVI

Flooding/transplanting, 
heading stage

VI MODIS Rice Boschetti et al. 
(2017)

The adjusted kappa of 
NDVI in key growth 
stage

Jointing, heading, 
milking stages

VI MODIS Multiple 
crops

Massey et al. 
(2017)

EVI in transition date of 
phenological stages

Jointing, heading, 
milking stages

VI MODIS Corn, 
soybean

Zhong et al. 
(2016)

Peaks and troughs in 
EVI

Seeding, tillering, 
heading and harvest 
stage

VI MODIS Winter 
wheat

Qiu et al. 
(2017)

VI vegetation index
Note: “Multiple crops” means more than three types of crops
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 Emerging Data-Driven Methods

Data-driven models using big labeled datasets have been developed to achieve bet-
ter results without manual intervention (Xu et al., 2020; Zhong et al., 2019a, b). 
Efforts have been made in data-driven crop mapping using different data sources 
from optical and microwave remote sensing (Table 6.7).

The spectral reflectivity of optical images is useful for describing growth cycles 
and phenological characteristics, which is helpful for training robust data-driven 
models in large-scale crop mapping. Images of key phenological stages are utilized, 
though they are limited by the low temporal resolution of remote sensing data or the 
cloud contamination. The spectral response in the key phenological stage has been 
used to generate descriptive statistics for specific crops (Mathur & Foody, 2008). 
For example, smoothed NDVIs of weeks 21 and 35 were generated for training a 
decision tree (DT) model (Howard & Wylie, 2014). Depending on the spectral fea-
tures of the target crop in certain phases, a variety of regional-scale crop cover 
products can be provided using machine learning methods (Ozdogan & Gutman, 
2008). Information for the multi-temporal crop has been explicitly explored to 
improve crop mapping at larger spatiotemporal scales. Traditionally, each time step 
in the VI series is treated as an independent dimension, and classical machine learn-
ing methods such as DT, RF, and SVM are employed (Wardlow & Egbert, 2008; 
Zheng et  al., 2015). Temporal features derived from seasonal statistics and pre-
defined equations improve classification accuracies compared to the original VI val-
ues (Song et al., 2017; Wardlow et al., 2007; Zhong et al., 2014). These features 
directly represent crop progress and growing conditions, which include dates of 
phenological transition stages and the rate of vegetative development (Zhong et al., 
2016). Spectral features, such as the NDVI and EVI for vegetation depiction, NDWI 
for water detection, and the LSWI which is sensitive to soil moisture, have been 
calculated at every time step (Pelletier et al., 2016). In the same way, large numbers 
of spatial features (e.g., geometric and texture) have been utilized (Pelletier et al., 
2016). Variants of convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs) have also been developed to identify crop growth patterns and clas-
sify crops from raw spectral reflectance (Ndikumana et  al., 2018; Rußwurm & 
Körner, 2018b; Zhong et al., 2019a, b).

Microwave remote sensing data (e.g., SAR imagery) are useful for crop map-
ping, because they offer all-weather acquisition capabilities (Zhao et  al., 2020). 
SAR data contain contextual information regarding crop growth, which can be 
extracted from the phase and intensity of single, dual, and polarimetric modes. 
Handcrafted features derived from SAR data have been fed into machine learning 
models to achieve crop classification (McNairn et al., 2009). Deep learning models 
have been employed to process the row backscatter coefficient time series and 
achieve high classification accuracies (Du et al., 2019; Wei et al., 2021). However, 
SAR signals can easily become saturated by soil roughness and vegetation growth, 
which can limit the application of SAR data (Adrian et al., 2021; Huang et al., 2018).

Optical and SAR images are often fused to remove noise generated by clouds 
and speckles, as well as to provide complementary information regarding the same 
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crop, for better crop classification. The temporal resolution and spatial coverage of 
optical sensors are strongly affected by cloud cover, resulting in significant missing 
information (Garioud et al., 2021). Although SAR data are unaffected by clouds, 
speckles in SAR are generally serious, causing difficulties in image interpretation. 
In addition, both the geometric imaging pattern and physical radiation mechanism 

Table 6.7 Data sources utilized in data-driven crop mapping

Sensor 
type Sensors Input information Classifier Objectives Reference

Optical MODIS NDVI at every time step TML Corn and 
soybean

Wardlow and 
Egbert (2008)

Landsat NDVI at every time step TML Multiple 
crops

Zheng et al. 
(2015)

MODIS Parameters of the 
predefined equation of 
EVI

TML Corn and 
soybean

Zhong et al. 
(2016)

Landsat Every 10 percentile of row 
band and VI value

TML Soybean Song et al. 
(2017)

Landsat Time series of EVI DL Multiple 
crops

Zhong et al. 
(2019a, b)

Sentinel-2 Time series of row band DL Multiple 
crops

Rußwurm and 
Korner (2017)

SAR ALOS 
PALSAR

Polarimetric feature 
derived from VV, etc. at 
key stages

TML Multiple 
crops

McNairn et al. 
(2009)

Sentinel-1 Time series of row VV 
and VH

DL Rice Wei et al. (2021)

ZY-3, 
sentinel-1

Time series of row VV 
and VH

DL Rice, rape, 
cotton

Zhou et al. 
(2019)

Sentinel-1 Time series of row VV 
and VH

DL Multiple 
crops

Ndikumana et al. 
(2018)

Optical 
+ SAR

Sentinel-1, 
sentinel-2

Harmonic regression 
parameters of optical 
time-series data, the 
monthly composition of 
SAR data

TML Multiple 
crops

Pott et al. (2021)

Sentinel-1, 
sentinel-2, 
landsat 8

Row band, VI, VV, and 
VH of each time step

TML Multiple 
crops

Blickensdörfer 
et al. (2022)

Sentinel-1, 
sentinel-2

Time series of row band, 
VI and VV, VH

DL Multiple 
crops

Ienco et al. 
(2019)

Sentinel-1, 
sentinel-2

Time series of VV, VH, 
and VI

DL Multiple 
crops

Zhao et al. 
(2020)

Sentinel-1, 
sentinel-2

Mean, median, and 
standard deviation of VV 
of objects

DL Multiple 
crops

Garioud et al. 
(2021)

VV vertical transmit and vertical receive, VI vegetation index, ALOS PALSAR advanced land 
observing satellite phased array type L-band synthetic aperture radar, ZY-3 Chinese resources sat-
ellite three, TML typical machine learning, DL deep learning
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of these two sensors differ (Li et al., 2020). The complementarity of SAR and opti-
cal images facilitates the reconstruction of missing information (Garioud et  al., 
2021). A direct SAR-optical fusion strategy was developed by stacking features 
extracted from SAR and optical imagery in a high-dimensional feature space. All 
features are fed into a typical machine learning algorithm such as RF, which has 
been demonstrated as suitable for large-scale crop mapping tasks (Blickensdörfer 
et  al., 2022; Pott et  al., 2021). Studies have also been devoted to achieving data 
fusion through deep learning methods to reconstruct NDVI time series that can be 
used for crop monitoring and crop classification. An integrated deep learning net-
work has also been used to construct a relationship between the backscatter coeffi-
cient time series from Sentinel-1 and the NDVI time series calculated from 
Sentinel-2. This network comprised a one-dimensional convolutional neural net-
work and long short-term memory (LSTM) layers (Ienco et  al., 2019; Zhao 
et al., 2020).

Various classification algorithms have also been developed for data-driven crop 
mapping; machine learning and deep learning play an important role in processing 
multi-temporal remote sensing data and facilitating crop classification across 
regions and years (Table 6.8).

Temporal, spectral, and spatial crop features extracted from multi-temporal data 
have been fed into typical machine-learning classifiers to utilize data efficiently. In 
these studies, temporal features from the VI time series were extracted by a function 
or a set of functions. Multi-spectral and high-spatial information embedded in 
multi-temporal satellite images is also explored. Thus, dozens or even hundreds of 
features have been applied to depict crop properties from many perspectives. All the 
features were fed into machine learning models, including RF and SVM.  These 
classifiers were originally designed to process high-dimensional data and were 
employed to support crop mapping in large-scale and multi-class scenarios. 
However, large feature sizes produce a heavy computational burden in big data 
analysis. With limited training data, classification accuracy can degrade when the 
number of features increases (Hughes, 1968; Löw et al., 2013). As a result, various 
dimension reduction strategies have been introduced to achieve equivalent or better 
accuracies and reduce the computational cost without discarding the main informa-
tion in the full feature space. Existing dimension reduction methods in crop map-
ping are divided into two categories: feature subset selection and feature contribution 
quantification. The former typically divides the full feature into several homoge-
neous feature subsets, and a few labeled data are used to evaluate the impact of these 
subsets on classification (Hu et al., 2019; Löw et al., 2013); subsets with higher 
classification accuracies are typically selected. The latter method computes each 
feature’s importance score using RF. Features with scores above a certain threshold 
are selected and combined to accomplish the subsequent classification task (Pelletier 
et  al., 2016; Zhong et  al., 2014). In practical scenarios, it is difficult to produce 
effective feature representations that rely on human experience and expertise. 
Feature extraction manually is also labor-intensive and time-consuming. An ideal 
feature extractor should be trained to automatically capture the crop growth patterns 
and act as a human to recognize crop types (Zhong et al., 2019a, b).
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Deep learning models show significant potential in crop feature representation 
for remotely sensed time series; they are marked by complete data-driven feature 
extraction and crop classification processes, without requiring extra feature selec-
tion. In multi-temporal corn and soybean classification, a one-dimensional convolu-
tional neural network (Conv1D) was applied to capture the temporal pattern or 
shape of the VI series. Conv1D layers can be stacked such that the lower layers 
focus on local features, and the upper layers summarize more general patterns to a 
larger extent. The optimal Conv1D model was demonstrated to be superior to popu-
lar classifiers such as XGBoost, RF, and SVM (Zhong et al., 2019a, b). In addition 

Table 6.8 Data-driven algorithms for crop mapping

Approaches Classifier Band
Feature 
extraction

Feature 
selection Objectives Reference

Machine 
learning

SVM VI Handcrafted 
2D features

Feature subset 
selection

Corn Hu et al. 
(2019)

RF OB, 
VI, 
PV

Handcrafted 
2D features

Feature 
contribution 
quantification

Corn and 
soybean

Zhong et al. 
(2014)

RF OB, 
VI

Handcrafted 
2D features

Feature 
contribution 
quantification

Multiple 
crops

Pelletier 
et al. (2016)

SVM OB, 
VI

Handcrafted 
3D features

Feature subset 
selection

Multiple 
crops

Löw et al. 
(2013)

RF OB, 
VI, 
PM

Handcrafted 
3D features

Feature 
contribution 
quantification

Multiple 
crops

You et al. 
(2017)

Deep 
learning

ConvLSTM OB Automatic 
feature 
learning

N/A Multiple 
crops

Rußwurm 
and Körner 
(2018a)

AtLSTM OB Automatic 
feature 
learning

N/A Winter 
wheat

Hu et al. 
(2019)

ConvLSTM OB, 
VI

Automatic 
feature 
learning

N/A Multiple 
crops

Rußwurm 
and Körner 
(2019)

AtLSTM OB Automatic 
feature 
learning

N/A Corn and 
soybean

Xu et al. 
(2020)

ConvLSTM OB Automatic 
feature 
learning

N/A Multiple 
crops

de Macedo 
et al. (2020)

Self- 
attention

OB Automatic 
feature 
learning l

N/A Multiple 
crops

Rußwurm 
and Körner 
(2019)

AtLSTM attention-based long short-term memory, ConvLSTM convolutional long short-term mem-
ory, OB optical bands, PM polarization modes, PV phenological variables
Notes: 2D features mean features extracted from temporal and spectral dimensions; 3D features 
spatial, spectral, and temporal dimensions; “N/A” means not exist
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to CNNs, RNNs are specialized for sequential data analysis. The original backscat-
ter coefficient time series was used as the input to train an RNN to perform multi- 
class crop classification in southeastern France, and it outperformed the classical 
approaches (Ndikumana et al., 2018). Variants of RNNs, such as LSTM, have been 
successfully applied in crop mapping. LSTM is employed to extract temporal char-
acteristics from a dense time series of optical or SAR remote sensing observations 
(Rußwurm & Korner, 2017; Zhou et al., 2019). With the exception of widely used 
temporal properties, the considerable information exhibited by multi-spectral and 
high spatial resolution data has not been adequately explored. The integration of this 
information is expected to resist the intra-class variability and inter-class similarity. 
Three-dimensional convolutional layers were used for the winter wheat mapping. 
Features were learned simultaneously along spatial and temporal dimensions 
(Zhong et al., 2019a, b). In addition, multiple optical band time series were stacked 
to train one LSTM, which learned temporal relationships from multi-temporal- 
spectral optical data (Rußwurm & Korner, 2017). The newly developed self- 
attention mechanism has also shown a strong crop mapping performance (Rußwurm 
& Körner, 2019). In practice, a CNN or LSTM alone may not be adequate for multi- 
dimensional feature representation. Some studies have incorporated attention mech-
anisms into LSTM layers; here, multi-temporal and multi-spectral patterns were 
automatically learned to help cross-region corn and soybean mapping (Xu & Cheng, 
2021). Moreover, a CNN and LSTM were integrated to represent spatial-temporal- 
spectral features. This model first extracted temporal features and then learned the 
spatial context of the extracted temporal features for crop mapping (Yang et  al., 
2021). It was demonstrated that the coupled network could outperform an individ-
ual CNN or LSTM.

6.3.2  Yield Estimation

 Process-Driven Mechanism Methods

Process-driven mechanism methods (crop models) predict crop yield using mecha-
nistic crop growth equations. These equations originated from the canopy photosyn-
thesis theory, and they represent crop phenology, organ growth, dry matter 
accumulation, water balance, nutrient dynamics, conventional management, and 
environmental stress (Loomis & Williams, 1963; Monsi, 1953). The crop models 
were normally developed in the following steps: theoretical development, single- 
crop model development, and crop model system development. Many theoretical 
studies were conducted to build single-crop models (Childs et al., 1977; De Vries & 
Van Laar, 1982). However, it is difficult for these models to apply in practical scenes 
due to inconsistent input data. Therefore, crop model systems were established by 
unifying various input data.

Crop model systems can be classified into two categories, depending on the driv-
ing factors of crop growth (Table 6.9). One category [e.g., CERES (Basso et al., 
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2016), WOFOST (Du et al., 2019), and APRSIM (Holzworth et al., 2014)] is driven 
by light utilization. The other category [e.g., AquaCrop (Steduto et al., 2009)] is 
driven by water and often applied in drought regions. AquaCrop model simulates 
the crop growth process using water productivity and estimates crop yield through 
the transpiration and the harvest index.

The process-driven mechanism methods are fully interpretable and designed for 
simulating crop growth and yield response, but they are not efficient in capturing 
several effects (e.g., management, crop varieties, irrigation, and agronomic tech-
nologies) because of limited temporal and spatial relevant information. In addition, 
several parameters in crop models are often set empirically, which constrain the 
model performance.

 Data-Driven Statistical Methods

Data-driven statistical methods quantify the linear or nonlinear relationship between 
various predictor variables and crop yields, and have become the dominant tech-
nique for estimating crop yields. These variables are often retrieved from climatic 
data, soil maps, crop progress reports, and satellite observations. Climatic data are 
publicly available from site scales to global scales. Soil maps provide the soil prop-
erties of crop growing environments. Crop progress reports are released by the rel-
evant national department and contain the growth states of planted crops. Satellites 
observe the crops growth from a remote perspective based on optical reflection. 
Various vegetation indices (VIs) are derived from satellite observations and are 
widely used in crop yield estimation because of their spatiotemporal coverage. 
According to the data source used for yield estimation, data-driven statistical meth-
ods can be divided into single-source and multi-source yield estimation.

Table 6.9 Process-driven crop simulation models

Driving
Crop 
model Crop Simulated process Reference

Light CERES Cereal Common processes Basso et al. 
(2016)

WOFOST Cereal Common processes, stress of 
diseases, pests and weeds

Du et al. (2019)

APSIM Cereal, beans, cash 
crop

Common processes, soil 
salinization, residue 
decomposition

Holzworth et al. 
(2014)

Water AquaCrop Cereal, tubers 
vegetables, fruits

Common processes, canopy 
coverage

Steduto et al. 
(2009)

Notes: Common processes include phenology, organ growth, dry matter accumulation, water bal-
ance, nutrient dynamics, conventional management (sow, harvest, irrigation, fertilization), and 
environmental stress (temperature, water, nutrient)
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Single-Source Yield Estimation

The vegetation indices (VIs) are typically used as the primary predictor variable for 
remote-sensing-based yield estimation, and they can explain crop yield variation to 
some extent (Table 6.10). It is assumed that there is a direct relationship between 
VIs and canopy biomass, and an indirect relationship between biomass and the final 
yield (Sakamoto, 2020). The VIs are calculated from raw spectral bands. Several 
widely used VIs include NDVI, EVI, and NDWI (Xue & Su, 2017). NDVI is sensi-
tive to chlorophyll, while EVI is more responsive to canopy structure changes (e.g., 
leaf area index, canopy type, plant orientation, and canopy structure). Moreover, 
EVI is less sensitive to different soil backgrounds (Bidoglio et al., 2002). Based on 
these VIs, linear regression models are employed. New indicators derived from dif-
ferent VIs have been designed to combine their respective advantages on capturing 
biological crop growth status. For example, combined with growth stages, NDVI- 
and EVI-based growth metrics have been designed and applied to estimate soybean 
yields in the Mississippi Delta of the United States (Shammi & Meng, 2021). 
Compared with traditional linear regression models, the emergence of powerful 
nonlinear fitting methods (e.g., random forest) make it possible to build models 
using raw spectral data. CNN and LSTM were adopted to automatically learn high- 
order nonlinear properties from the raw optical bands. A Gaussian process was 
added to clarify the spatiotemporal structure of the model that eliminated the spatial 
correlation error and improved the model accuracy (You et al., 2017).

Compared to traditional yield estimation patterns based on crop models or on the 
compilation of the survey information, VIs-based yield estimation is a unique means 
to provide crop status information over large areas with regular revisits, and allows 
deriving spatially explicit and temporally resolved maps of production and yield 

Table 6.10 Remote sensing indices for yield estimation

Approaches Input Sensors Method Objectives Ref

Traditional 
regression

NDVI MODIS Linear 
regression

Spring wheat 
etc.

Mkhabela 
(2011)

EVI MODIS Linear 
regression

Rice Song et al. 
(2017)

EVI2, NDWI MODIS Linear 
regression

Maize, 
soybean

Bolton and 
Friedl (2013)

NDVI- and  
-EVI-based 
metrics

MODIS Linear 
regression

Soybean Shammi and 
Meng (2021)

Deep learning Raw spectral 
bands

MODIS CNN, LSTM, 
GP

Soybean You et al. (2017)

NDVI MODIS Ridge 
regression, 
LSTM

Soybean Wang et al. 
(2019)

NDVI normalized difference vegetation index, EVI enhanced vegetation index, EVI2 enhanced 
vegetation index-2, NDWI normalized difference water index, CNN convolutional neural networks, 
LSTM long short-term memory, GP Gaussian process
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(Mateo-Sanchis et  al., 2019). However, previous studies have demonstrated that 
VI-based yield estimation methods tended to underestimate yield (Bolton & Friedl, 
2013). The variability of VIs could not always represent the yield loss caused by 
environmental stress (Sakamoto, 2020).

The meteorological factors are applied in data-driven yield estimation to improve 
estimation accuracy (Table 6.11). Temperature and precipitation are the two key 
meteorological factors that affect crop yields. When the temperature exceeds the 
range denoted by the highest and lowest temperatures, crops begin to suffer damage 
and even death. Raw temperature variables include daily average temperature 
(T-average), daily minimum temperature (T-min), and daily maximum temperature 
(T-max) (Lobell & Burke, 2010). Daily precipitation is used as another variable to 
represent rainfall. Moderate precipitation improves the physiological activities of 
plants. In addition, solar radiation and air humidity are also used as predictors 
(Landau et al., 2000; Lischeid et al., 2022). GDD and KDD derived from raw tem-
perature data represent the accumulated effect of temperature on the specific crop 
(Lin et al., 2020). The supply and demand between precipitation and the required 
water of crops are often expressed by the vapor pressure deficit (VPD) and potential 
evapotranspiration (ETP) (Gornott & Wechsung, 2016; Jiang et al., 2020).

Crop yields can be estimated from climatic variables over the entire growing 
season or for a specific phenological period, as crop growth stages differ in their 
sensitivity to climate (Gornott & Wechsung, 2016). Various statistical learning and 
recently developed deep learning models help to quantify the relationship between 
meteorological factors and crop yields. Multiple linear regression (MLR) is a com-
mon method for yield estimations based on multiple meteorological variables 
(Lobell & Burke, 2010). Collinearity problems among various meteorological vari-
ables may exist, which adversely affects the yield estimation accuracy. To select the 

Table 6.11 Meteorological variables used for yield estimation

Input type Climate variable Model References

Raw data T-average, Pre Multiple linear regression Lobell and Burke 
(2010)

Raw data T-min, T-max, pre, 
radiation

Multiple linear regression Landau et al. 
(2000)

Raw data T-min, T-max, pre-, 
radiation, wind speed, air 
humidity

Random forest, support vector 
machine models

Lischeid et al. 
(2022)

Processed 
index

GDD, KDD, VPD Long short-term memory 
networks

Jiang et al. (2020)

Processed 
index

GDD, KDD, pre Attention-based long short-term 
memory networks

Lin et al. (2020)

Processed 
index

ETP, SRT, pre Separate time series model, panel 
data model, random coefficient 
model

Gornott and 
Wechsung (2016)

T-average daily average temperature, T-min daily minimum temperature, T-max daily maximum 
temperature, Pre daily precipitation, GDD growing degree days, KDD killing degree days, VPD 
vapor pressure deficit, ETP potential evapotranspiration
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optimal variables, stepwise linear regression is introduced and often combined with 
MLR (Qian et al., 2009). LASSO is another model to address the problem of col-
linearity and to identify important features. LSTM has become popular in recent 
years as it has the advantages of capturing temporal features and enabling a power-
ful nonlinear fitting capacity (Lin et al., 2020).

Multi-Source Yield Estimations

The VIs are directly related to the amount of vegetation, and yield variation induced 
by environmental stress is correlated with environmental and meteorological vari-
ables from air temperature, precipitation, solar radiation, and soil moisture. Thus, 
multi-source data need to be considered in yield estimation models. Commonly 
used data sources include meteorological data, soil data, remote sensing observa-
tions, and management data. Combining satellite observations and meteorology is 
the primary method of multi-source yield estimation (Li et al., 2019; Peng et al., 
2018). On this basis, soil and management data are integrated in certain cases (Kern 
et al., 2018; Ma et al., 2021).

Machine learning and emerging deep learning models facilitate the accuracy of 
multi-source yield estimation. Because the yield distribution varies to a large extent, 
it is difficult to establish a general model for crop yield estimation using multi- 
source data. Traditional regression methods [e.g., MLR, stepwise regression, and 
LASSO regression (Mueller et al., 2012)] are often adopted to establish a linear or 
nonlinear relationship based on remote sensing, soil, and management measure-
ments. The newly developed nonlinear fitting models (e.g., machine learning and 
deep learning) can effectively capture the complex relationship between yields and 
multimodal characteristics. SVR was used to extract features that significantly 
affect crop growth and could not be quantified ever (Kuwata & Shibasaki, 2015). RF 
is used to identify the most important meteorological and soil properties drivers of 
temporal and spatial variability of yield (Brinkhoff & Robson, 2021; Luciano et al., 
2021). Certain research also performed feature selection based on the trained DNN 
model, which successfully decreased the dimension of the input space without sig-
nificant drop in the prediction accuracy (Khaki & Wang, 2019). Long short-term 
memory (LSTM) neural network with an attention mechanism (ALSTM) was pro-
posed to assign attention to the key parts of the input sequence that affect the target 
vectors so that the crop yield features can be accurately extracted (Tian et al., 2021). 
In addition, certain hybrid models were designed. The CNN-RNN model was 
designed to capture the time dependencies of environmental factors and the genetic 
improvement of seeds over time without having their genotype information (Khaki 
et al., 2020).
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6.4  Opportunities and Challenges

Challenges still remain when using data-driven methods to generate crop-type maps 
and estimate crop yields. First, data-driven methods are heavily dependent on 
labeled data. These models have achieved only limited accuracy in regions where 
abundant labeled data are unavailable (Defourny et al., 2019). Second, data-driven 
models are often considered “black boxes,” offering limited interpretability (Xu 
et al., 2021).

6.4.1  Absent Label Data

While satellite imagery and environmental data are now abundant, the scarcity of 
labeled data makes the training of data-driven models difficult. The extrapolation of 
data-driven methods outside of the training region can be compromised by varia-
tions in crop growth. Two methods have been very successful in other domains (i.e., 
land cover and land use mapping), and they may be able to address the problem to 
some extent:

 One-Class Classification

One-class reference data are used to reduce the redundant effort required for non- 
crop type collection, and one-class classifiers that only require the reference data of 
the target class are effective methods in this respect. These classifiers can be divided 
into positive classifiers (using only one-class labels) and positive and unlabeled 
classifiers (which require additional randomly selected unlabeled data).

 Few-Shot Learning

The cross-regional and cross-year transfer of deep models trained with a small 
amount of labeled data remains a hot topic in land cover and land use mapping. 
Three strategies have been developed for few-shot learning. The first is self- 
supervised learning that uses unlabeled data to learn representations valuable to the 
downstream tasks via a predefined pre-text task. Active learning has been used to 
actively label a smaller sample set that represents the overall data distribution; this 
reduces the total annotation effort required to produce a desirable mapping accu-
racy. Croplands across regions differ, though they still share seasonal and spectral 
characteristics. Meta-learning can capture these similarities and variations in data, 
using a unique mechanism that teaches deep models to learn how to learn from data.
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6.4.2  “Black Box” Problem of Machine Learning Methods

The lack of interpretability is regarded as another drawback of these high- 
performance approaches. Interpreting deep learning approaches is crucial for veri-
fying their reliability in both multi-temporal crop mapping and yield estimation.

Most existing data-driven models have not been well integrated with agricultural 
knowledge or experience. When dealing with sparse data distributions, this raises 
doubts regarding the reliability of the model. One way to solve these problems is to 
integrate agricultural knowledge and experience into a machine learning model to 
constrain and optimize the model.

6.5  Summary

In this chapter, we introduced various data-driven models applied to crop mapping 
and yield estimation. We summarized the data analysis workflow, with a focus on 
commonly used data sources, data preprocessing methods, model development pro-
cesses, model evaluation metrics, and model improvements. Then, we reviewed 
conventional methods and data-driven models in crop mapping and yield estima-
tion, focusing on the newly developed machine learning and deep learning models. 
Opportunities and challenges in the application of data-driven models for crop map-
ping and yield estimation were discussed.
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Chapter 7
Artificial Intelligence for Image Processing 
in Agriculture

Shih-Fang Chen and Yan-Fu Kuo

7.1  Introduction

Humans create tools and solve problems based on accumulated experience, hence 
the term human intelligence. Machines learn through algorithms created by humans 
and then find the best solutions using accumulated training. This is the intelligence 
of machines, also known as artificial intelligence (AI). AI mimics human intelli-
gence to solve problems.

The development of AI can be traced back to the 1950s. Since then, it had been 
through several AI winters, i.e., low interest, low funding, and low research volume 
in the field. The recent rise of AI can be attributed to the breakthrough of its sub- 
domain, machine learning, in weak AI. Weak AI, also known as narrow AI, can 
make judgments close to humans and even compete with domain experts in target- 
specific tasks, such as computer Go and autonomous driving.

Data-driven machine learning has accelerated the application of AI in various 
fields due to the success of deep learning. Take the aforementioned computer Go as 
an example, AlphaGo (Silver et al., 2016) used deep convolutional neural network 
(CNN) to defeat world Go champion, Ke Jie. Similar frameworks also produce 
amazing predictive accuracy in other applications, such as ImageNet (Krizhevsky 
et  al., 2012) in image recognition, AlphaFold (Senior et  al., 2020) in three- 
dimensional structure prediction of protein, and AtomNet (Wallach et al., 2015) in 
drug design. In addition to CNNs, other deep learning algorithms, such as recurrent 
neural network (RNN), have also revolutionized the processing of serial data, 
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including speech recognition and machine translation. The success of integrating 
various AI applications into our daily lives is beyond imagination.

As the algorithms mature and computing hardware efficiency grows, deep learn-
ing spreads in various applications, such as smart or intelligent cities, manufactur-
ing, finance, medicine, and agriculture. For a long time, agriculture has faced the 
challenges of manpower shortage, extreme climate, and insufficient food. AI is 
expected to reverse those challenges. Some crucial projects include the develop-
ment of field robots to gradually replace human labor, drones for field monitoring 
and early detection, and the use of machine learning and big data to build models for 
crop yield prediction or disease and insect disaster impact assessment.

This chapter introduces the evolution of AI in computer vision and cognition and 
explains the basic concept of neural networks. It also presents the various changes 
and impacts of the deep convolutional networks in computer vision and its applica-
tion in agriculture, forestry, fisheries, and animal husbandry. The impact of this 
wave of AI on human life and economic development is promising. As big data, 
high-efficiency algorithms, and hardware acceleration become more available and 
integrate more seamlessly, users can easily enjoy the convenience and wonder of AI 
by using appropriate devices.

7.2  From AI to Image Recognition

To understand how humans solve problems, one should first comprehend the most 
common ways people perceive environmental information in their daily lives. 
Junichi Nomura, the author of “The Secrets of Colors,” mentioned that vision 
accounts for 87% of the functional proportion of the five human senses. Animals 
detect natural enemies by vision to avoid all kinds of dangers. Humans use vision to 
drive a car, cross a road, and perform other daily life activities. Vision is a key part 
in connecting people with their surroundings. Therefore, an important subject of AI 
research is the application of machine vision. Machine vision is used in a wide vari-
ety of applications, for example, license plate recognition in parking lots, Apple’s 
Face ID, and Tesla’s self-driving. But for a machine, a colored image is not more 
than a three-dimensional matrix of pixels containing red, green, and blue values 
(Fig. 7.1), how does it perform image identification?

Fig. 7.1 The difference between human vision and machine vision
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By visually observing an object, human can identify it by recognizing features 
such as its outline, color, and size. That is how the traditional methods of image 
processing, also known as algorithms or rules, were born. These methods design 
rules for a machine to follow passively and identify features in an image matrix 
through computation. However, the rules are fixed and inflexible. When the back-
ground of an image is more complex, or there is illumination variation, the identifi-
cation accuracies of the traditional algorithms are greatly reduced. Recognizing 
such limitations, one of the most famous algorithms since 2010, CNN, was devel-
oped. Unlike its predecessors, CNN learns image characteristics by training. In 
machine vision, CNNs can learn critical information from training images to iden-
tify objects, such as lines, outlines, colors, and sizes. CNN, which is formed by a 
neural network of millions of neurons, mimics the human brain. Each of these neu-
rons stores a small portion of data. Through this characteristic of small data storage, 
CNN can recognize similar patterns in images, even when the images are trans-
formed. This characteristic enables CNN to achieve high recognition accuracy. The 
following sections describe CNNs in more detail.

7.3  Neural Network

7.3.1  Neurons, Single-Layer Neural Network, and Multi-Layer 
Neural Network

Neurons are the most basic components of the human brain and they connect each 
other through synapses. A human brain has about tens of billions of neurons, with 
an average of more than a thousand links between each neuron and other neurons, 
creating a more robust network than the world’s most advanced supercomputers. 
Therefore, scientists used the complex and powerful structure of the brain to develop 
an AI model, called neural networks, which mimic the human brain’s ability to 
solve complex problems.

Neurons receive signals from other neurons, process them, and then pass them on 
to other neurons. After processing signals of multi-layered neurons, they form 
meaningful information or instructions in the brain. The working mechanisms of 
these brain neurons can be converted into mathematical models. McCulloch and 
Pitts (1943) developed the most fundamental computational model of a neuron 
based on logical operators. The method receives multiple inputs, produces a single 
output, and then evaluates the output against a set threshold, which is built based on 
“AND,” “OR,” and “NOT” logics. As shown in Fig. 7.2, an artificial neuron receives 
input signals x1, x2, …, xn from different neurons, each input is multiplied by a spe-
cific weight w1, w2, …, wn. These weighted signals are added together, sometimes 
with a constant deviation value called bias b, to calculate the total signal value. The 
weights and bias are all parameters trained through learning. When the neuron 
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Fig. 7.2 Working principle of an artificial neuron

Fig. 7.3 Single-layer neural network

transmits a signal value, it passes through an activation function f, to produce the 
final result y, which is transmitted to the next neuron.

After knowing how an artificial neuron works, the next step is to learn about the 
most basic neural network model: a single-layer neural network. As mentioned in 
the previous paragraph, the signals of multiple neurons are sent to a neuron. If mul-
tiple signals are sent to multiple neurons at the same time, then a single-layer neural 
network is formed, as shown in Fig. 7.3. Neurons in a single-layer neural network 
can be divided into two layers: the input layer and the output layer. Assuming that 
the input layer is composed of n ∈ N neurons, the neuron signals sent to the next 
layer can be considered as a vector x = [x1, …, xn] ∈ Rn. The output layer is made up 
of m ∈ N neurons; the output signals can also be thought of as a vector y = [y1, …, 
ym] ∈ Rm. As every output neuron receives signals from every input neuron, these 
two layers produce n × m connections, each with a separate weight. The weights 
between the input and output layers can be represented as a matrix:

S.-F. Chen and Y.-F. Kuo



163

Fig. 7.4 Multi-layer neural network
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(7.1)

As a bias is added to each layer, a vector b = [b1, …, bm] ∈ Rm is formed. Thus, 
the output of a single-layer neural network can be represented as y = f(WTx + b). 
This mathematical formula is the most important basic concept of a single-layer 
neural network.

However, a single-layer neural network is not enough to solve complex cognitive 
problems. A normal human brain consists of six layers of cerebral cortex, each with 
its own function. Signals received from the five human senses are transmitted among 
these six layers, converting simple sensory input into the meaningful interpretation. 
Therefore, more layers of neurons, called hidden layers, are added between the 
input and output layers to deal with more complex problems. The mathematical 
model between two layers is the same as a single-layer neural network. Such a 
multi-layer neural network architecture forms a simple artificial neural network, as 
shown in Fig. 7.4. The number of layers is represented as l ∈N, the output vector of 
the first layer of neurons is h = [h1, …, hm] ∈ Rm, and the output vector of the penul-
timate layer is t = [t1, …, tk] ∈ Rk.

7.3.2  Activation Function

In order to avoid the model having only a linear relationship when passing values 
between layers, an activation function is added to interpret complex data. There are 
many types of activation functions, the most commonly used ones are sigmoid, 
hyperbolic tangent (tanh), and linear rectifier (rectified linear unit, ReLU) functions 
(Fig. 7.5). ReLU is the most commonly used activation function in recent years. It 
can improve the prediction accuracy of a neural network model and find the best 
solutions faster during model training (Glorot et al., 2011).
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Fig. 7.5 Types of activation functions

Fig. 7.6 A convolutional neural network

7.3.3  Convolutional Neural Network (CNN)

A CNN uses convolutional layers to learn complex characteristics from input data. 
Therefore, it is suitable for solving image recognition problems such as faces and 
objects, as well as analyzing text and sound. Its prediction accuracy is higher than 
pre-existing methods, which is one of the main reasons AI is popular again. As 
shown in Fig.  7.6, a basic CNN can be broadly divided into two stages: feature 
extraction and identification. Feature extraction refers to the extraction of features 
of an input image through the convolutional layers and preserving those important 
features through the pooling layers. The features are then identified by a fully con-
nected layer and an output layer to obtain the result.

7.3.4  Convolutional Layer

The convolutional layer mimics human vision by scanning an input image through 
a sliding window called the kernel. Different characteristics, such as the edges or 
noises of objects in an image, can be extracted by changing the weights of a kernel. 
The feature information extracted is called a feature map. For example, in Fig. 7.7, 
the input data is an image of a plant, a 3 × 3 kernel (green square) is used to scan the 
entire image and obtain a feature map (the edge of the plant). In this example, the 
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Fig. 7.7 A convolution operation to extract the edges of objects in an image. The 3 × 3 green 
square is a kernel

Fig. 7.8 Through max 
pooling, important features 
of an input feature map are 
preserved while reducing 
data size

kernel is a Laplacian filter that detects the edges of objects in images. Convolutional 
operations can not only extract features effectively from input images but also use 
less parameters than fully connected layers. However, in CNNs, the kernel weights 
can only be obtained through training.

7.3.5  Pooling Layer

A pooling layer is often used between convolutional layers to reduce data size while 
preserving important features. For example, in Fig.  7.8, a 4  ×  4 feature map is 
scanned by a sliding window of 2 × 2 pooling kernel with a stride of 2. Max pooling 
takes the maximum value in the area of scan. Therefore, the original 4 × 4 feature 
map becomes a 2 × 2 feature map after the pooling.

7.3.6  Fully Connected Layer

Fully connected layer receives information from all neurons of the previous layer. It 
is generally located before the output layer of a CNN model. If there are m catego-
ries of training data (e.g., apple and watermelon categories, then m = 2), the output 
layer will have m neurons. The fully connected layer will connect each pixel of all 
feature maps in the previous layer to these m neurons.
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7.3.7  Output Layer

The output layer calculates the probability of an input image belonging to a particu-
lar category. The softmax function is commonly used as the classifier. Let x = [x1, …, 
xm] be the output of a fully connected layer and the Softmax function formula is 
defined as follows:
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exponential functions. This Softmax function converts the output values of a fully 
connected layer into the probabilities of an image belonging to various categories, 
such that the sum of the outputs of all m categories is equal to 1. For example, in a 
model that identifies leaf species, the output result of the Softmax function is as fol-
lows: the probability of an input leaf image belonging to Species A is 0.91, Species 
B is 0.05, and Species C is 0.04. Therefore, the leaf in the image is predicted to be 
Species A (the highest probability).

7.4  Training a CNN

7.4.1  Loss Function

After defining the structure of a CNN, the next step is to train the kernel weights and 
biases. A neural network is trained through a loss function, which quantifies the dif-
ference between the predicted result ŷij  and the actual result yij, i.e., the loss. The 
purpose of the training is to minimize the loss. Optimal weights and biases produce 
the lowest loss and the best neural network models. There are many kinds of loss 
functions. Examples of common loss functions are mean squared error, mean abso-
lute error, and cross-entropy loss, as defined in Table 7.1. A loss function is selected 
according to the type of problem a user wants to solve.

7.4.2  Optimizer

The training process of adjusting weights and biases to improve model accuracy is 
known as parameter optimization. At the start of training, random numbers are used 
to initialize the weights and biases. After using a loss function to compare the pre-
dicted value ŷij  with the actual result yij, an optimizer iteratively updates the weights 
and biases to improve the prediction accuracy and minimize the loss. Stochastic 
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Table 7.1 Commonly used loss functions

Name Problem type Formula

Mean squared error Regression
1 11 1 2

N M
y y

N

i

M

j

ij ij� � �� �
� �

ˆ

Mean absolute error Regression
1 11 1

N M
y y

N

i

M

j

ij ij� � �
� �

ˆ

Cross-entropy loss Classification
1 11 1

N M
y p

N

i

M

j

ij ij� �� � �
� �

log

gradient descent (Bottou, 2010), momentum (Qian, 1999), AdaGrad (Duchi et al., 
2011), and Adam (Kingma & Ba, 2014) are some of the commonly used optimizers.

7.4.3  Hyperparameters

Hyperparameters refer to parameters and settings that can be determined by users to 
train a model. The hyperparameters need to be set before training a model. If the 
model outcome is not satisfactory, a user can adjust the hyperparameters and train 
the model again. Common hyperparameters include layer size, learning rate, batch 
size, epoch, and regularization. All these hyperparameters are described in the fol-
lowing sub-sections.

7.4.4  Layer Size

Layer size refers to the number of neurons in a single layer. The sizes of the input 
and output layers must match the input and output data sizes, respectively. For the 
sizes of the hidden layers, they can be determined by the user. Layer size can affect 
the performance of a neural network model. If the layer size is too large, it will 
increase computational time; if the layer size is too small, the neural network model 
may not have learned sufficiently to identify data features.

7.4.5  Learning Rate

Learning rate sets the pace of weight adjustment. It determines the extent of change 
an optimizer can apply to the weights based on the loss function result. It needs to 
be used with an optimizer. As an example, a gradient descent optimizer is formu-
lated as follows:
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Fig. 7.9 Training problems caused by extreme learning rates. The numbers indicate the 
weight updates

 W W Lt t� � � �1 �  (7.3)

A new weight Wt + 1 is obtained by using the original weight Wt minus the product 
of learning rate η and gradient ∇L. The gradient is the partial derivative of the loss 
function. A model should converge after some time of training. Convergence means 
the loss function reaches a minimum value. As seen in Formula 7.3, the higher the 
learning rate, the greater the difference between Wt  +  1 and Wt. Although a high 
learning rate may seem desirable to minimize the loss faster and make a model 
converge sooner, it may prevent the model from achieving optimal solutions. For 
example, in Fig. 7.9a, the curve represents the loss, i.e., the difference between the 
predicted result and the actual result, with respect to the weights. The lowest point 
of the curve is the best solution for the model. The arrows refer to the directions the 
weights and corresponding losses move after each update. Due to the high learning 
rate, the change from Wt to Wt + 1 in each update is too great that the model misses 
the best solution. In contrast, a low learning rate can update a weight slower and 
take a longer training time. As shown in Fig. 7.9b, while a low learning rate can 
steadily reduce the loss during training, an overly low learning rate may cause the 
model to remain in a local optimal solution and prevent it from achieving the global 
optimal solution.

7.4.6  Batch Size

Batch size refers to the amount of data used for each training session. When training 
a neural network model, the amount of data that can be used at a time depends on 
the computer memory size. If the memory size is small, the training needs to be 
conducted in batches. This situation is prevalent in image recognition model train-
ing because image data size is relatively large. Batch size affects not only the 
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training time but also model outcome. If the batch size is too small, it can result in 
an overly long training time, and the model may not converge. Therefore, hardware 
capacity should be considered when setting suitable batch sizes.

7.4.7  Epoch

An epoch of training means a model is trained with all training data once. Another 
term associated with epoch is iteration, the number of batches in a complete training 
data set. For example, if there are 10,000 training data and the batch size is 500, a 
model will take 20 iterations to complete an epoch. Often neural network models 
require multiple epochs of training to find the best solutions. The number of epochs 
is determined by the model and data complexity.

7.4.8  Regularization

Regularization limits the weights of a model during training, thereby reducing the 
complexity of the model and avoiding overfitting (Christian & Griffiths, 2016). 
Overfitting happens when a model has more parameters than the problem complex-
ity requires. As a result, although the model can accurately predict the training data, 
it cannot accurately predict non-training data, or data it has not seen before. The 
higher the complexity of a neural network, the stronger its ability to handle complex 
tasks, but the model may become too rigid, resulting in overfitting. Common regu-
larization techniques are dropout, L1, and L2 penalty functions. Dropout randomly 
drops out a specific proportion of neurons at each iteration, updating only the 
weights of the remaining neurons, so that the model avoids overdependence between 
neurons, becomes less complex and more robust. L1 and L2 penalties are weight 
decays; a penalty is added to the original loss function L to get a new loss 
function(LREG). The purpose of the penalty is to punish the weights, such that larger 
weights generate a greater loss. Consequently, the model tends to use smaller weight 
values to reduce the complexity of the model (Table 7.2).

7.4.9  Learning Framework

There are many neural network learning frameworks available to build a model. The 
two most common deep learning frameworks are PyTorch and TensorFlow. PyTorch 
is an open source Python deep learning framework developed by Facebook’s AI 
Research team. It grew rapidly since its launch in early 2017 and became a leading 
framework in 2019, due to its ease of use and fewer design packages. TensorFlow is 
an open source deep learning framework developed by the Google Brain team, 
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Table 7.2 Common regularization types and their formulas

Regularization type Formula

L1 penalty LREG = L + α ∑ |wi|
L2 penalty LREG = L + α ∑ (wi)2

which is a part of Google’s AI. TensorFlow supports many programming languages. 
Due to Google’s influence in the field of deep learning, TensorFlow has quickly 
become one of the most popular deep learning frameworks since its launch. As 
TensorFlow provides the most ubiquitous AI platform and comprehensive support 
for integration, it is the primary framework used by many companies.

7.4.10  Common CNN Models

CNN applications in machine vision can be divided into three categories: image 
classification, object detection, and object segmentation. The rest of this section 
describes each category in detail.

7.4.11  Image Classification

Image classification is the most basic machine vision application (Table 7.3). Its 
main purpose is to automatically identify and classify images, such as a leaf image 
classifier (Fig. 7.10) can classify leaf species from leaf photos. LeNet (LeCun et al., 
1998) was the most famous CNN model in the early days of CNN. LeNet has three 
convolutional layers, two pooling layers, and two fully connected layers. There are 
about 0.06 million parameters, which is considered a relatively simple model for a 
CNN. AlexNet (Krizhevsky et al., 2012) model uses ReLU activation function to 
solve the vanishing gradient problem and improve training efficiency. It also uses 
dropout regularization to reduce the overfitting problem, thereby improving model 
performance. It has approximately 60 million parameters. ZF-Net model, which 
also has about 60 million parameters, won the ImageNet Large Scale Visual 
Recognition Challenge in 2013 (Russakovsky et al., 2013; Zeiler & Fergus, 2014). 
VGG-16 (Simonyan & Zisserman, 2014) model is improved from AlexNet and it 
has 13 convolutional layers and three fully connected layers. The convolutional lay-
ers can be divided into five sections and each section ends with a pooling layer to 
reduce the size of the feature maps. Compared with the previous models, VGG-16 
is a deep CNN model with 138 million parameters. Since 2014, the structure of 
CNNs has changed; scholars applied techniques to reduce the number of parameters 
while improving accuracy. For example, ResNet-50 (He et al., 2016) model uses 
residual blocks to reduce parameter size and it can effectively preserve image 
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Table 7.3 Common image classifiers

Model Year Parameters Description References

LeNet 1998 0.06 M The early well-known CNN has seven 
layers

LeCun et al. (1998)

AlexNet 2012 60 M Applies ReLU activation function and 
dropout regularization

Krizhevsky et al. 
(2012)

ZF-Net 2013 60 M ImageNet Large Scale Visual Recognition 
Challenge champion in 2013

Zeiler and Fergus 
(2014)

VGG-16 2014 138 M A 16-layer network model improved from 
AlexNet

Simonyan and 
Zisserman (2014)

ResNet-50 2016 8.6 M Applies residual blocks to prevent 
information loss

He et al. (2016)

MobileNet 2017 4.2 M Uses depthwise separable convolution to 
effectively reduce the number of 
parameters

Howard et al. 
(2017)

Fig. 7.10 A leaf image classifier

features even after many convolutions. ResNet-50 has about 8.6 million parameters. 
In another example, MobileNet (Howard et al., 2017) model uses depthwise sepa-
rable convolution to significantly reduce the number of parameters to approximately 
4.2 million while maintaining high accuracy.

7.4.12  Object Detection

Detecting objects in an image is a common machine vision application. Object 
detection includes both locating an object (localization) and determining its cate-
gory (classification). For example, in Fig. 7.11b, an object detection model auto-
matically locates six individuals in the image and marks them in boxes. Generally, 
object localization is conducted by generating candidate boxes and then determin-
ing whether there are objects in the candidate boxes using a CNN classifier described 
in the previous paragraph as the backbone. Common object detection models can be 
broadly divided into two-stage and one-stage network structures. Candidate boxes 
that do not contain objects are removed to identify candidate boxes that actually 
contain objects efficiently. A two-stage network structure uses a separate region 
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Fig. 7.11 Illustrations of object detection and segmentation: (a) input image, (b) object detection 
result, (c) semantic segmentation result, and (d) instance segmentation result. Semantic segmenta-
tion separates objects from the background; instance segmentation separates each object and 
labels them

proposal network to filter out candidate boxes that do not contain objects. This 
method often results in higher accuracy than a one-stage network structure. However, 
a one-stage network structure, which does not have a separate region proposal net-
work, can locate and classify objects simultaneously. Therefore, its computational 
speed is usually faster than a two-stage network structure and it can achieve real- 
time detection.

In developing a two-stage network structure, region-based CNN (R-CNN) 
(Girshick et  al., 2014) is the first object detection model. R-CNN uses VGG-16 
model as its backbone and performs a selective search to generate candidate boxes, 
thus increasing the average precision of object detection by more than 50% com-
pared with its predecessors. Fast R-CNN (Girshick, 2015) places region of interest 
pooling between a convolutional layer and a fully connected layer, so that the size 
of the candidate boxes agrees with the fully connected layer. This method elimi-
nates a lengthy process in R-CNN, which is cropping and scaling candidate boxes 
one by one, thus making the detection faster. Faster R-CNN (Ren et al., 2015) intro-
duces region proposal network and anchor. Anchors are pixel positions of a feature 
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Table 7.4 Common two-stage network models

Model Year Description References

R-CNN 2013 Lays the structural foundation of two-stage network 
models

Girshick et al. 
(2014)

Fast 
R-CNN

2015 Uses region of interest pooling to address inconsistent 
candidate box size problem

Girshick (2015)

Faster 
R-CNN

2015 Applies region proposal network to generate anchor boxes 
and increase computational speed

Ren et al. (2015)

map. Region proposal network produces anchor boxes on a feature map. Each box 
has a different shape but shares the same anchor point as its center. This method can 
effectively detect multiple overlapping objects. Anchor boxes replace candidate 
boxes generated by R-CNN and Fast R-CNN. As anchor boxes are generated on 
feature maps, the model does not have to go through convolutional layers, signifi-
cantly improving its computational speed (Table 7.4).

One-stage network structures emerge after 2016. The first model is You Only 
Look Once v1 (YOLO v1; Redmon et al., 2016). Frame refers to the number of 
images in a video, a smooth video is shot at a minimum of 24 frames per second. 
Using VGG-16 model as its backbone, YOLO v1 can process up to 45 frames per 
second. By contrast, the Faster R-CNN, a two-stage network structure, can detect 
only five frames per second. Therefore, the processing speed of a one-stage network 
structure is much faster than that of a two-stage network structure. Single Shot 
MultiBox Detector (SSD; Liu et al., 2016) is another well-known one-stage network 
structure. Unlike YOLO v1, which uses only the last convolutional layer to train 
object localization and classification, SSD simultaneously captures and applies 
multi-dimensional convolutional layers. As these layers are arranged like a pyramid, 
SSD is also known as featurized image pyramid. SSD uses the concept of anchors 
in Faster R-CNN to generate candidate boxes and then applies non-maximum sup-
pression algorithm to eliminate redundant candidate boxes. This method combines 
the results of object localization and classification while taking into account speed 
and accuracy. YOLO v2 (Redmon et al., 2016) is built based on YOLO v1. It com-
bines the strengths of SSDs and uses a passthrough layer to rearrange feature maps 
and improve the detection of small objects. YOLO v3 (Redmon & Farhadi, 2018) is 
developed based on DarkNet-53 model. It uses a feature pyramid network (Lin 
et al., 2017) to extract features and applies binary cross-entropy loss function to 
replace the mean squared error loss function used in softmax activation function, 
resulting in a significant increase in the average accuracy of the model. YOLO v4 
(Bochkovskiy et al., 2020) was proposed in 2020. Its average accuracy exceeds all 
two-stage network structures and it is faster than the other one-stage network struc-
tures. YOLO v4 is built based on YOLO v3. It combines the structures of a variety 
of CNNs, such as path aggregation network (Liu et al., 2018) improved from feature 
pyramid network and spatial pyramid pooling (He et al., 2014). Based on a large 
number of experiments, it is currently the best one-stage object detection model, 
both in terms of average accuracy and detection speed (Table 7.5).
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Table 7.5 Common one-stage network models

Model Year Description References

YOLO 
v1

2016 Lays the structural foundation of one-stage network 
models

Redmon et al. (2016)

SSD 2016 Exceeds the accuracy of R-CNN and computational 
speed of YOLO v1

Liu et al. (2016)

YOLO 
v2

2016 Applies a passthrough layer to improve detection of 
small objects

Redmon et al. (2016)

YOLO 
v3

2018 Uses feature pyramid network and binary cross- 
entropy to improve performance

Redmon and Farhadi 
(2018)

YOLO 
v4

2020 Combines strengths of several CNNs and outperforms 
predecessors

Bochkovskiy et al. 
(2020)

7.4.13  Object Segmentation

Object segmentation is another common machine vision application. It can identify 
object pixels in an image, such as the human pixels identified in Fig. 7.11c, d. Object 
segmentation models can be divided into two categories: semantic segmentation 
and instance segmentation. Semantic segmentation separates objects from the back-
ground of an image by categories, as shown in Fig. 7.11c. Most of the models in 
semantic segmentation use a fully convolutional network (FCN; Long et al., 2015) 
as the backbone. FCN is the first model that applies deep learning to semantic seg-
mentation tasks. It can learn image features and predict object pixels by overlaying 
multiple convolutional layers to produce an output semantic segmentation map. 
DeepLab-CRF (Chen et al., 2014) is a semantic segmentation model that combines 
CNN with a fully connected conditional random field. The fully connected condi-
tional random field is a probability model that can efficiently generate output 
semantic segmentation maps from feature maps. SegNet (Badrinarayanan et  al., 
2017) is a model that uses an encoder–decoder structure. The encoder captures the 
features of an input image. As a CNN contains a large number of neurons, most 
CNN models reduce feature map sizes through pooling layers to complete calcula-
tions in a reasonable time. Therefore, a decoder is applied to enlarge the feature 
maps (or upsampling), so that the size of the output semantic segmentation map is 
the same as the input image size. U-Net (Ronneberger et al., 2015) uses the encoder–
decoder structure and merges feature maps of the same size in upsampling and 
downsampling to preserve more feature information and improve prediction accu-
racy. PSPNet (Zhao et  al., 2017) utilizes a pyramid pooling module, which uses 
pooling operations and different kernel sizes to extract features of multiple feature 
map sizes for more information. DeepLabv3+ (Chen et al. 2018a, b) replaces the 
standard convolution in neural networks with dilated convolution. Dilated convolu-
tion adds holes in a kernel so that a more extensive range of feature information can 
be extracted without increasing the number of parameters (Table 7.6).

Instance segmentation differs from semantic segmentation in that the former 
identifies the boundary between overlapping objects, in addition to the output 
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Table 7.6 Common semantic segmentation models

Model Year Description References

FCN 2015 The first deep learning semantic segmentation 
model

Long et al. (2015)

DeepLab- 
CRF

2016 Applies fully connected conditional random field 
to predict semantic segmentation

Chen et al. (2021)

SegNet 2017 Uses encoder–decoder architecture Badrinarayanan et al. 
(2017)

U-Net 2015 Applies encoder–decoder architecture and 
combines feature maps in upsampling and 
downsampling

Ronneberger et al. 
(2015)

PSPNet 2017 Uses pyramid pooling module Zhao et al. (2017)
DeepLabv3+ 2018 Replaces standard convolution with dilated 

convolution
Chen et al. (2018a, 
b)

Table 7.7 Common instance segmentation models

Model Year Description References

Mask 
R-CNN

2017 Combines Faster R-CNN and FCN He et al. (2017)

MaskLab 2018 Combines Faster R-CNN, FCN, and instance center 
direction structure

Chen et al. 
(2018a, b)

YOLACT 2019 Applies ResNet-101, FCN, and mask coefficients to 
achieve real-time instance segmentation

Bolya et al. 
(2019)

segmentation map, as shown in Fig. 7.11d. Mask R-CNN (He et al., 2017) model 
combines object boundary detection in Faster R-CNN with a FCN to generate object 
boundaries and semantic segmentation map simultaneously to achieve instance seg-
mentation. MaskLab (Chen et al. 2018a, b) combines object boundary detection in 
Faster R-CNN, FCN, and instance center direction structure to improve the predic-
tion accuracy of instance segmentation. Instance center direction finds the center 
pixel of each object and predicts object boundaries. YOLACT (Bolya et al., 2019) is 
a real-time instance segmentation model that generates a prototype mask through 
ResNet-101 and a feature pyramid network and predicts instance segmentation 
using a combination of mask coefficients. ResNet-101 is a model based on 
ResNet-50 that adds and stacks multiple residual learning modules. A feature pyra-
mid network is composed of kernels of multiple sizes, which are used to extract 
feature maps of multiple sizes. Prototype mask is a segmentation map formed by 
stacked output feature maps of feature pyramid networks. The prototype mask is 
weighted with mask coefficients to produce an instance segmentation map 
(Table 7.7).

7 Artificial Intelligence for Image Processing in Agriculture



176

7.5  Applications of AI and Machine Vision in Agriculture

Before the Industrial Revolution, commercial agriculture was a time-consuming, 
inefficient, and labor-intensive industry. Since the revolution, powered machinery 
has saved a tremendous workforce and the sector has also officially entered the era 
of agricultural mechanization. Although machines can replace a massive workforce, 
many agricultural activities still depend on labor, such as crop health monitoring, 
crop disease identification, and livestock health management. Leveraging AI and 
image recognition technologies, which have been booming in recent years, can sig-
nificantly reduce the labor burden of farmers and increase industry competitiveness. 
This section introduces the application of deep learning machine vision technolo-
gies in recent years of farming, forestry, fishery, and animal husbandry.

7.5.1  Open Field Crops

Tea (Camellia sinensis) is the second most consumed beverage. The global tea mar-
ket value was approximately $52.1 billion in 2018 and is projected to reach $81.6 
billion in 2026 (Kumar & Deshmukh, 2020). Tea diseases and harming insects are 
significant factors that cause lesions to tea foliages and result in tremendous eco-
nomic losses. Therefore, quick identification of infection type is essential to stop the 
disease promptly. In the past, tea diseases were identified by plant pathologists or 
experienced farmers, who were heavily burdened when diseases broke out. Lee 
et al. (2020) proposed a CNN detector to help farmers identify tea foliar diseases 
under practical field conditions. Chen et al. (2021) improved the previously devel-
oped detector by replacing the model architecture from Faster R-CNN to cascade 
R-CNN. Cascade R-CNN extended the two-stage architecture of Faster R-CNN, 
using multiple Fast R-CNN detectors to acquire bounding box locations more pre-
cisely (Cai & Vasconcelos, 2019). A tea disease and harming insect identification 
system was developed to identify three diseases and six harming insects. Moreover, 
an instant messaging software or smartphone application was deployed to provide 
farmers with a real-time and easy-to-use tool. Users can submit a diseased leaf 
image to the model to instantly diagnose the plant disease type and receive recom-
mended treatments to obtain a suggested treatment and potentially reduce the dam-
age, as shown in Fig. 7.12.

7.5.2  Greenhouse Cultivation

Asparagus (Asparagus officinalis L.) is a plant of high economic value and is origi-
nated from the temperate zone. The net value of fresh asparagus is over 1.5 billion 
dollars for only nine million tons per year (Tridge, 2020). In order to introduce 
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Fig. 7.12 Plant disease identification system. An instant messaging software and disease identifi-
cation model are connected to provide real-time disease identification results through an applica-
tion programming interface

asparagus to subtropical countries, the mother stalk method has been adopted for 
greenhouse asparagus since the 1960s in Taiwan. This method relieves the problems 
of nutrient deficit and production shortage but escalates the extra labor need for 
maintenance. Therefore, developing an intelligent monitoring system is beneficial 
for the ease of field management. Hsiung et al. (2021) established a robot vehicle 
for field data collection and a Mask R-CNN model to identify the asparagus stalks 
and spears in the field (Fig. 7.13). For further improving the identification perfor-
mance, the model was strengthened with Copy-Paste augmentation and semi- 
supervised learning processes. By copying the existing annotations and learning 
from the unlabeled images, the improved model had better resilience to field 
changes. To provide a remote monitoring service, a web application developed with 
the Django framework was designed to receive the collected images from the robot 
vehicle, demonstrate the identification results, and present the statistics and histori-
cal data.

7.5.3  Forestry

Due to its special geographical environment and climatic factors, Taiwan is rich in 
forests and possesses forest resources of high economic value. Attracted by the high 
economic value, illegal logging of precious wood is common and it poses a major 
threat to forest conservation. Although the government has imposed a ban on log-
ging since the 1990s to protect the forests, there are still many unscrupulous indi-
viduals who rely on the inability of the general public and adjudication agencies 
such as customs to identify wood species, bring economically valuable timber into 
the black market to make profits. The conventional method of identifying wood spe-
cies is to cut a wood slice sample, stain it with safranin reagent, and then observe it 
with an electron microscope. This method is accurate but time-consuming, ineffi-
cient, and requires professional training. Wu et  al. (2020) proposed applying 
MobileNetv2 (Sandler et  al., 2018) to develop an identification model for wood 
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Fig. 7.13 Asparagus monitoring system. The web application collects field image data from a 
robot vehicle and demonstrated the identification results through a web service

Fig. 7.14 Wood species identification system. The edge computing system built using MobileNetv2 
can move part of the computing work from the server to the user’s device, such as a mobile phone, 
and return the processed image of log end sample data to the cloud database for storage and 
analysis

species. Unlike the standard structure of a convolutional layer, MobileNetv2 uses a 
special convolutional operation, known as depthwise separable convolution, to 
reduce the number of parameters and speed up computation. Using a graphical pro-
cessing unit (GPU) server, it can identify wood species from an image of the log end 
in less than a second (Fig. 7.14). In addition, MoblieNetv2 can be used on devices 
with poor computing power, such as mobile phones and single-chip computers, to 
identify wood species.

7.5.4  Fishery

Fish is an essential resource in the sea, but its population is declining due to over-
fishing. In order to sustain fishery resources, all countries strictly regulate fish catch. 
Fish species and fish length are two of the crucial data monitored in fishery 
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Fig. 7.15 Electronic observer system. Mask R-CNN model can detect target object (i.e., fish) and 
its position in video frames, then automatically identify the fish species and calculate the fish length

management. The old-fashioned method to gather this data is to have observers 
identify the species caught and measure the fish length manually. This method does 
not only cause inconvenience to fishing and port operations; it is also time-consum-
ing, laborious, inaccurate, and subjective. In recent years, many countries have 
adopted an “electronic observer” system to record fish caught by photographs or 
videos on fishing vessels, then have the species and fish length manually interpreted. 
However, this process is still time-consuming. Therefore, Tseng and Kuo (2020) 
proposed a Mask R-CNN model to interpret fish catch videos automatically. The 
model detects fish in a video, then segments the fish from its background to measure 
its length and identify its species, as shown in Fig. 7.15.

7.5.5  Animal Husbandry

Chicken is an important food source. Based on the statistics reported by the Council 
of Agriculture, Executive Yuan, the annual output value of chicken products in 
Taiwan was 43.8 billion Taiwan dollars in 2018, accounting for nearly 26% of the 
total output value of animal husbandry. Chicken farmers in Taiwan monitor chick-
ens by manual inspection. In the case of commercial chicken houses with large 
numbers of chickens, this approach is labor-intensive, time-consuming, and relies 
on the owners’ experience. Chickens are prone to be inactive due to illness or injury; 
therefore, chicken activity is an important indicator of health. Missing the best time 
to administer medicine due to misjudgment of chicken activity results in loss of 
profits for the farmers. Therefore, Nian and Kuo (2019) proposed installing a cam-
era on the ceiling of a chicken house and using the Faster R-CNN model to detect 
chicken activity (Fig. 7.16). The model automatically detects chickens in a video 
frame and then compares the positions of the chickens in the subsequent video 
frames one by one to obtain the movement path and activity level of individual 
chickens. This analysis of chicken activity can assist farmers in monitoring the 
health of chickens and detect unwell chickens.
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Fig. 7.16 The chicken activity monitoring system uses Faster R-CNN model deployed on a fog 
server to identify and locate chickens and use this data to determine chicken activity. A fog server 
can receive and process a variety of sensor data and transfer data between sensors with less latency 
than cloud servers

7.6  Conclusion

This chapter uses AI in image recognition as an example to explain neural network 
and CNNs, their principles, training, and frameworks. It also introduces CNN mod-
els used in three image recognition applications: image classification, object detec-
tion, and object segmentation. Finally, the current applications of image recognition 
in agriculture are presented: tea disease identification, asparagus growth monitor-
ing, wood and fish species identification, and activity level of individual chickens.

As shown by these successful applications, AI in the past few years has helped 
outdoor and indoor farming, forestry, fishery and animal husbandry industries 
reduce the demand for and dependence on various experts and labor-intensive tasks. 
With the increasing global population, advanced technologies, including narrow AI, 
are urgently needed to increase food production and reduce agricultural losses 
caused by natural disasters, diseases, and pests. AI is envisioned to play a pivotal 
role in assisting the agriculture industry to use existing resources more effectively 
and efficiently. In addition to solving the acute food shortage, AI can help reduce the 
damage of the Earth’s environmental resources and achieve a sustainable coexis-
tence with other living things on Earth.
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Chapter 8
Smart Farming Management

Du Chen and Xindong Ni

8.1  Introduction of Smart Farming

Lack of resources per capita, labor shortage, severe environmental situation are 
always scientific problems in the development of agricultural modernization. Smart 
farming is the inevitable trend of agricultural modernization, together with a higher 
level of intensity, precision, and coordination to achieve precise and intelligent 
agricultural production, which aims to solve the difficult problems on agricultural 
modernization construction fundamentally. Smart farming is a modern agricultural 
form supported by Internet of Things, big data, artificial intelligence, agricultural 
robot, and other technologies, which is a higher stage of agricultural development 
following traditional agricultural, mechanized and automatic agriculture.

8.1.1  From Traditional Agriculture to Intelligent Agriculture

The development of human society is a process in which laborers exert their intel-
ligence and talents and constantly create new labor tools to understand nature, 
adapt to nature, and transform nature. Also, the evolution of labor tools reflects the 
evolution from traditional agriculture to intelligent agriculture.

Traditional agriculture is the product of the initial agricultural society, which is 
dominated by human and animal power. The main tools of human labor are used to 
exploit land resources and various primary one-handed tools and livestock forces, 
which can alleviate human physical labor to a certain extent, but do not 
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fundamentally liberate human production activities from heavy physical labor and 
focus on human labor. Although agricultural production has been formed, the 
production scale is small, and the production technology and management level 
are relatively backward, the ability to resist natural disasters is weak as well. 
Additionally, The immature agricultural system restricted the development of agri-
cultural productivity but laid the foundation for agricultural industrialization. In the 
era of traditional agriculture, the most obvious label is the summary of farming 
technology.

In the first Industrial Revolution, the invention and use of steam engine marked 
the revolutionary development of production tools in human society, in which new 
tools gained power through energy conversion, and machines replaced manual labor 
and tools, opening the curtain of industrial society. During the course of more than 
300  years of industrial society, tools characterized by energy conversion have 
achieved two historic leaps of mechanization and electrification, which have had a 
profound impact on the production and life of human society. With the development 
of the industrial revolution, agricultural machinery tools have begun to emerge and 
are widely used in agricultural production. Mechanized agriculture, which is based 
on mechanized production, replaced the traditional production tools of human and 
animal power and changed the farming mode of facing loess back to the sky. The 
backward and inefficient traditional agriculture has been transformed into advanced 
and efficient mechanized operation, which has greatly improved the productivity 
and productivity level.

With the fusion application of computer technology, electronic information and 
communication, and other modern information technology and automation equip-
ment in the agricultural field, mechanized agriculture will transform information 
agriculture, with the application of modern information technology and local agri-
cultural operation automation and intelligence as the main characteristics. On the 
basis of strengthening sensor network, computer network, data communication net-
work and other basic information infrastructure construction, set up information 
internet sharing platform to realize information exchange and knowledge sharing, 
making modern information technology and intelligent agricultural equipment 
widely used in each link of agriculture tillage implementation, such as plowing, 
planting, managing, harvesting. Improving resource utilization, automation, land 
yield, and labor productivity. At present, we are in the stage of mechanization agri-
culture to information agriculture transformation. With the help of technologies 
such as Internet of Things, big data, cloud computing, and artificial intelligence, we 
will complete the transformation in the near future.

8.1.2  The Inevitable Trend of Intelligent Agriculture

As the highest stage of modern agriculture, smart farming is formed on the basis of 
the integration of network information resources, sensor technology, Internet of 
Things, big data, cloud computing, artificial intelligence, and robot technology, 
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realizing unified management of agricultural production under the agricultural 
standardization system. At the same time, information technology is applied 
comprehensively and systematically to each link of agricultural production and 
finally realizes unmanned agriculture. In the face of the development trend of mod-
ern agriculture and the increasingly huge food demand, improving the agricultural 
productivity, resource utilization rate, and land yield rate is still the ultimate goal of 
agricultural development. In addition, on the basis of the integration of soft and hard 
technologies, breakthrough in basic theory, key technological innovations, accurate 
perception, intelligent decision-making, and accurate control can be realized, and 
finally computers can replace human brains, and machines replace manpower, 
which truly liberates mankind from complex agricultural labor.

8.2  Smart Farming Solutions Based on Internet of Things

With the progress of science and technology and the industrial upgrading, Internet 
of Things comes into being at the historic moment. The combination of information 
technology such as the Internet of Things with agriculture has resulted in smart 
farms. Smart farm based on Internet of Things is an important development direc-
tion of agricultural modernization, which will redefine the farm management, inte-
gration of information technology, and scientific and technological means to solve 
the problems of the different levels of the agricultural production to reduce the 
waste of resources and improve productivity.

8.2.1  The Rise and Application of the Internet of Things

Internet of things is a network of interconnected devices, in which devices can com-
municate with each other and generate relevant data in the operating environment. 
The key and core of the Internet of Things is the information exchange and data 
transmission among the elements of the Internet of Things, in which the equipment 
network of data sharing is jointly constructed between the network and equipment 
through wireless transmission, cloud computing, big data, and artificial intelligence.

The concept of the Internet of Things was formally established at the World 
Summit on the Information Society in Tunis in 2005. The theme of the conference 
is “ITU Internet Reports 2005: The Internet of Things,” which pointed out that we 
are standing on the edge of a new era of information, and the goal of information 
and communication technology (ICT) has evolved from facilitating communication 
between people to connecting people and things to things. Thus, the era of ubiqui-
tous Internet of Things communications is upon us. What is more, the Internet of 
Things gives us a new dimension in the world of information and communication 
technology, connecting anyone, even extending to connecting anything at any time, 
any place. Eventually the Internet of Things came into being.
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The Internet of Things has been widely used in various fields of production and life, 
whose application is constantly promoting the change of production and lifestyle. 
Flexible manufacturing, intelligent management, remote monitoring, and other 
fields are iteratively updated based on the Internet of Things technology. The 
American Grid applies the Internet of Things in power generation, transmission, 
transformation, distribution, and electricity consumption, using strong bidirectional 
communication, sensor networks, and distributed computers to improve power 
exchange and work efficiency and improve system operation stability [research on 
the architecture and key technology of Internet of Things (IoT) applied on smart 
grid]. In urban construction and management, applications with the Internet of 
Things as the core, such as traffic control, traffic flow dredging, and intelligent park-
ing enable people, vehicles, and roads to cooperate closely and improve the trans-
portation environment and increase the utilization rate of road resources. The 
application of the Internet of Things in environmental monitoring mainly monitors 
the urban environment and ecological environment intelligently and carries out 
comprehensive perception through biology, optics, chemistry, infrared, telemetry, 
and other sensor technologies. Based on monitoring data and data processing tech-
nologies such as environmental analysis, decision support and cloud computing and 
so on, the best solution can be obtained to achieve effective control.

The Internet of Things is a promising technology, which can provide efficient 
and reliable solutions for informatization and modernization transformation in 
many fields. At present, many intelligent agricultural solutions have been developed 
based on the application of Internet of Things technology in the agricultural field. 
Due to the complexity and challenges of agriculture itself, the combination of agri-
culture and Internet of Things is bound to bring a huge revolution to agriculture.

8.2.2  Key Technologies of Agricultural Internet of Things

Agricultural Internet of things refers to equipment through agricultural information 
awareness, in accordance with the contract agreement, the agricultural system pro-
duction tools, such as plants, animals, environment elements, and production tools 
in the physical components and all kinds of virtual objects connected to the Internet 
in order to exchange information and communicate, realizing intelligent identifica-
tion, positioning, tracking and monitoring and management of agricultural objects 
and processes. The human–machine–thing integration and interconnection of the 
agricultural Internet of Things can help humans cognize, manage, and control vari-
ous elements and processes in agriculture in a more refined and dynamic way and 
greatly improve human cognitive ability of agricultural plants and animals, the 
regulatory capacity of agricultural complex systems, and the processing ability of 
agricultural emergencies.
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 Intelligent Agriculture System Based on Internet of Things

The agricultural Internet of Things is mainly composed of four parts: the perception 
layer, the transmission layer, the processing layer, and the application layer. The 
perception layer realizes the acquisition and collection of information about agricul-
tural objects and object behaviors, such as environment, crops, plants, and animals, 
through the sensor network composed of various detection and monitoring devices 
and sensor nodes; The multi-source data obtained from the perception layer enters 
the transmission layer and is transmitted to the processing layer through wired or 
wireless. The functions of the processing layer include data storage, data process-
ing, data visualization, etc. When data enters the processing layer, which is classi-
fied, stored, and processed in parallel with the support of cloud computing and big 
data technologies, so that information can be extracted in a short time; In the appli-
cation layer, decision support, modeling, and prediction can be made according to 
the data results obtained from the processing layer to achieve the management and 
control of agricultural production process.

 Wireless Sensor Networks

In the agricultural Internet of Things system, the wireless sensor network deploy-
ment based on sensor technology is the source and basis of data, and the intercon-
nection of things in the Internet of Things system is also realized through 
interconnected data. As a key technology of the sensing layer, wireless sensor net-
work is composed of a large number of sensor nodes deployed in the monitoring 
areas. It is a multi-hop ad hoc network system established by wireless communica-
tion, which can cooperate with the sensing acquisition through a large number of 
integrated sensors deployed in key locations, together with perception, acquisition, 
monitoring, and transmission of the sensing object information within the coverage 
of the sensor network, transmitted through wireless communication and sent to the 
user in the form of self-organizing multi-hop network to achieve data acquisition, 
target tracking, monitoring, and early warning.

 Big Data

Technological progress enables each sensor node at the perception layer to have a 
certain storage and computing capacity and to acquire perception data at a near real- 
time speed and to generate large-scale data at the same time. If heterogeneous multi- 
source data cannot be effectively integrated, the operating efficiency of the Internet 
of Things system will be greatly reduced. The emergence of big data greatly relieves 
the pressure of data processing of the Internet of Things and plays an important role 
in the Internet of Things system. Big data is the fuel of the Internet of Things and 
artificial intelligence driven by big data becomes the brain. The processing layer 
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represented by big data promotes the efficient operation of the Internet of Things. 
With the support of big data, data is not only the number it represents but also the 
relationship and derivative interaction between a large number of data, which makes 
data become information.

 Cloud Computing

Cloud computing provides a powerful boost to the development of big data. Big 
data relies on computing power storage and other services of cloud computing to 
mine data value and cloud computing supports big data as computing resources. As 
the technical basis of the application layer, cloud computing provides decision sup-
port for the operation of the agricultural Internet of Things in various scenarios. 
Cloud computing is a new computing mode that connects various computing stor-
age and software resources through different network protocols to provide services 
to users according to specific requirements.

8.2.3  Internet of Things Intelligent Agriculture Platform

In the process of the widespread application of Internet of Things technology, sys-
tem planning and framework design are prone to produce different results due to 
different starting points. Meanwhile, with the continuous development of applica-
tion scenarios and user requirements, all kinds of new technology and new ideas 
will gradually merge into the field of Internet of things system and the architecture 
of the Internet of Things will also determine the technical requirements, operating 
mechanism, and development direction of the Internet of Things.

 System Structure

The perception layer of agricultural Internet of Things has strong heterogeneity. In 
order to realize interconnection and interaction between multi-source heteroge-
neous information, the open, multi-level, and scalable network system of the four- 
level Internet of Things platform can support huge data flow.

 1. Perception layer
Agricultural platforms are developed to solve specific agricultural problems. 

Because of the complexity of agricultural problems, the basic sensor network 
construction needs to cover enough comprehensive monitoring data, using RFID 
remote sensing technology and all kinds of sensor nodes to obtain information in 
monitoring area, including environmental data, soil information, weather condi-
tions, crop characterization, pests, and diseases that may affect agricultural pro-
duction processes. Due to the complex and changeable use environment, the 
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sensor developed for agricultural field needs high performance requirements: 
First of all, it should have stability to ensure that it can work normally in high 
temperature and high humidity environment and be able to cope with environ-
mental changes; The second is applicability. The sensor needs to open protocols 
and interfaces that match the agricultural platform and the performance needs to 
adapt to the system; Finally, economy. The implementation of agricultural 
 Internet of Things requires the use of a large number of sensor nodes. If the cost 
is high, it will not be conducive to the promotion and application of agricultural 
Internet of Things technology.

 2. Transport layer
As the link between the perception layer and the processing layer, the trans-

mission layer is mainly responsible for transmitting the monitoring data obtained 
by the perception layer to the processing layer quickly, accurately, and safely 
without barriers. It solves the problem of long-distance signal transmission 
within the monitoring range covered by the sensing layer, responding to different 
information processing needs. The transmission layer CAN be wired through 
CAN bus or RS485 bus protocol and monitoring signals are obtained through 
Bluetooth, Wi-Fi, ZigBee, and other wireless sensor networks and then transmit-
ted to the remote server through Ethernet, Wi-Fi, GPRS, and other forms so as to 
realize the series connection between the perception layer and the process-
ing layer.

 3. Processing layer
The sensor network built in the monitoring area will transmit a large number 

of heterogeneous multi-source data, which leads to extremely complex data 
types. In order to process big data, it is necessary to preprocess the data obtained 
in the acquisition stage first, extract the characteristic information and relation-
ship association of multi-source data, and store the data in a unified data struc-
ture after data integration and collection. At the same time, for big data, not all 
information is valuable information, and interference items and error items need 
to be removed and filtered.

Most of the previous modeling analysis serves a single target and the work 
efficiency is low. In order to provide data support for intelligent decision-mak-
ing at the application layer, cloud computing technology integrated analysis 
resources to increase computing capacity and expand storage space, providing 
efficient and fast computing power for the Internet of Things. Cloud computing 
technology uses virtual means to achieve unified scheduling and management of 
all kinds of resources, greatly improving the efficiency of resource use; In the 
calculation process can be joined or quit at any time, and computational pro-
cessing power is flexible. In addition, cloud computing changes the previous 
local storage or local server storage mode, and data information stored in the 
cloud can obtain more storage space, and data security will be greatly improved 
as well.
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 4. Application layer
The data is processed through a cloud-based processing layer to produce 

solutions and processing results for different agricultural problems, and it can 
predict the future state based on current and past monitoring data, providing 
users with enough time to respond.

 Network Topology and Protocols

Due to commercial technology maturity and other reasons, perceptive devices 
deployed in the monitoring area have significant differences in function, interfaces, 
and data transmission protocols. Wireless sensor network, bus technology, internet, 
and other communication networks have different data structures and transmission 
modes. How to effectively realize the interconnection between different networks 
and different devices has become the core problem of the implementation of 
agricultural Internet of Things.

As the data transmission link of the Internet of Things, the transport layer needs 
a variety of data interfaces to connect multiple heterogeneous data sources when 
receiving data. The hardware of the transport layer mainly includes gateway inter-
face driver and embedded node. Besides, input interface includes RS232, RS485, 
Wi-Fi, etc.; output interface includes Wi-Fi, RJ45, GPRS, and other modes, which 
can support users to select the transmission mode according to the actual conditions 
of application scenarios. In the process of data transmission, the perception layer 
data is not simply sent to the processing layer, according to different communica-
tion protocols, the original signal is converted into data in a unified standard format 
for data fusion, data encapsulation, and other processing and then sent to the cloud 
or server. In this way, data redundancy caused by the underlying multi-source 
heterogeneous perception network can be avoided.

8.3  Smart Farming Management Applications

With the mature development of Internet of Things technology, information com-
munication technology and automatic control technology are introduced into farm 
management, and farm intellectualization is an inevitable trend. By accurately mon-
itoring the farm environment and the growth process of farm animals and plants, 
high-yield, high-quality, and efficient farms can be achieved. In a smart farm envi-
ronment, edge computing manages big data generated by Internet of Things devices 
at the edge of the network, enabling shorter response time, quality of service, and 
more secure services. The Internet of Things and distributed ledger technology 
enable resource monitoring and traceability of agricultural products, allowing farm-
ers to source their products and assure consumers of their quality. This section will 
analyze intelligent farm management from three aspects, including the application 
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of intelligent farm crop management, animal husbandry management, and agricul-
tural product supply traceability.

8.3.1  Application in Crop Management

Smart farms use technical resources to help at all stages of production, and their 
applications in crop management are mainly reflected in vehicles and machinery 
control, crop monitoring, disease prevention, soil management, irrigation control, 
and so on.

In agricultural technology, most automated machinery is operated in a fixed 
manner and requires manual operation or regular supervision to avoid mechanical 
failures or errors. Horng et al. (2019) developed a remote crop harvesting system. 
The system determines crop maturity through target detection by training neural 
network model and then uses robot arm to harvest mature crops and uses deep learn-
ing to perform intelligent image recognition on collected image, proposing the tar-
get detection model of MobileNet SSD (Single Shot multibox Detector), with an 
average accuracy of 84%. A prediction model of arm motion using a four-layer 
hidden layer sensor model is designed, and its average picking accuracy reaches 89%.

Environmental factors such as light, CO2, temperature, humidity, water, and 
nutrients are key factors in producing high-quality crops. Harun et al. (2019) pro-
posed an improved Internet of Things monitoring system for the growth optimiza-
tion of Chinese cabbage and developed an intelligent embedded system to realize 
the real-time acquisition of plant experimental environmental parameters and auto-
matic control and operation of LED. Meanwhile, the Internet of Things technology 
was used as a remote monitoring system through the spectrum of light-emitting 
diode (LED), photoperiod and light intensity are used to control indoor climatic 
conditions to improve plant yield and shorten turnaround time.

Plant disease and nutrient deficiency are one of the sources of economic losses in 
the field of agriculture. In some cases, the color and characteristics of some plant 
diseases and nutrient deficiency are similar, such as early downy mildew and nitro-
gen deficiency. Apk and Sps (2019) proposed an intelligent agricultural decision 
support system based on the Internet of Things for identifying plant disease hazards 
and nutrient imbalance. In this system, a multi-stage parameter optimization ELM 
classifier featuring selection algorithm (IGA-ELM) based on an improved genetic 
algorithm is adopted, which is applied to benchmark high dimensional biomedical 
data set and real-time application (plant disease data set). By reducing the features 
by 58.50% and 72.73%, respectively, the classification accuracy was improved by 
9.52% and 5.71%.

Soil suitability analysis is a necessary prerequisite for crop planting to help 
achieve maximum yield, and soil testing is widely used by agricultural experts and 
farmers to determine soil characteristics required for agricultural production. 
Vincent et al. (2019) proposed an expert system combining sensor network with 
artificial intelligence systems such as neural network multi-layer Perceptron for 
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agricultural land suitability evaluation. The system helps farmers assess the agricul-
tural lands, with four suitability-decision levels being “more-suitable,” “suitable,” 
“sub-suitable,” and “non-suitable.” The results show this multi-category classifica-
tion system with four-hidden layers is valid for evaluating the farmlands. Besides, 
such well-trained model will be used for evaluating future assessment and classify-
ing the land after every cultivation.

Internet of Things solutions for irrigation control have also been developed for 
use in a variety of agricultural environments. Angelopoulos et al. (2020) proposed a 
decentralized intelligent irrigation method for strawberry greenhouse and realized a 
comprehensive intelligent Irrigation system in a real strawberry greenhouse envi-
ronment in Greece. They designed and implemented and verified the intelligent 
Irrigation solution for greenhouse strawberry and developed Smart Irrigation 
Network system to maintain soil moisture between 50% and 55% and the system is 
significantly superior to traditional strawberry irrigation methods in terms of soil 
moisture change and water consumption.

Considering the problem of water utilization in water-scarce areas and vision- 
free monitoring for people far from farmland, Nawandar and Satpute (2019) pro-
posed a crop monitoring and automatic irrigation system that uses Unified Sensor 
Poles to obtain crops, planting date, and soil data, using these data calculation of 
evapotranspiration and irrigation schemes by using neural network to make deci-
sions, and MQTT and HTTP are systematically used for data transfer. A sample 
crop test-bed was selected to demonstrate the results, and the system achieved an 
overall water saving effect of about 30% and 67%, respectively, compared with 
conventional drip irrigation and conventional irrigation.

Castaeda-Miranda and Castao-Meneses (2020) proposed an intelligent anti- 
freezing irrigation management system. Considering the relative humidity, air tem-
perature, solar radiation, wind speed and other environmental factors, artificial 
neural network is used to optimize the prediction of greenhouse internal tempera-
ture and predict the internal temperature of greenhouse by artificial neural network, 
and the start of water pump is controlled by fuzzy expert system. Besides, real-time 
information interconnection is realized by mobile phone system (GSM/GPRS) and 
Internet (TCP/IP) service to acquire and monitor, and the temperature of green-
house and farmland can be predicted through fuzzy control and neural network. The 
existence of frost is confirmed by fuzzy reasoning and defuzzy method and used to 
start the anti-freeze water distribution system.

Goap et al. (2018) came up with a kind of intelligent irrigation architecture based 
on Internet of Things, which provides a closed loop control of water supply in order 
to realize the fully autonomous irrigation Schemes. A hybrid machining learning 
method was developed to predict the soil moisture content, with using in-field sen-
sor nodes and weather forecast data. The method also estimated the difference and 
changes of soil moisture that is caused by different weather conditions. Overall, this 
method realized the data collection, transmission, and processing of the weather 
forecast information and farmland physical parameters, such as soil moisture, air 
temperature, air relative humidity, soil temperature and radiation, etc. The system 
was developed and deployed on a pilot scale, in which sensor node data is collected 
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wirelessly through the cloud and network services, and the Web-based information 
visualization and decision support system provides real-time information observa-
tion based on sensor data and weather forecast data analysis. Additionally, the 
hybrid machine learning algorithm based on Support Vector Regression 
(SVR)  +  K-means has high accuracy and minimum Mean Squared Error(MSE), 
which has been applied to irrigation planning module.

Munir et al. (2019) have come up with a Smart Watering System for small and 
medium-sized gardens and fields aided by an Android app system, which uses an 
accessible and affordable set of sensors to capture real-time data. By using block-
chain and fuzzy logic to determine Watering schedules, and using the Android 
Smart Watering System (prototype) application, multiple users and devices can par-
ticipate in plant monitoring and remote interaction. The experimental results show 
that the accuracy of the intelligent water system reaches 95.83%, and the system can 
effectively and safely handle the watering process of plants as well.

Keswani et al. (2018) developed a low-cost and high-precision distributed wire-
less sensor network environment for the Internet of Things, which is used to accu-
rately monitor soil and environmental parameters. The study in-depth compared 
different optimization methods, i.e. stochastic gradient descent that support adap-
tive learning rates, feed-forward neural network with gradient descent algorithm for 
pattern classification, and the best practice was performed to predict the soil mois-
ture per hour together with interpolation method for producing the soil moisture 
content distribution map. Combined with the interpolation method, the soil water 
content distribution map was generated, and the valve control command was pro-
cessed by the weather condition modeling system based on fuzzy logic. The control 
command was operated according to different weather conditions, which met the 
unified irrigation requirements under almost all weather conditions.

8.3.2  Application in Animal Management

The Internet of Things is about connecting people, processes, data, and things and 
is changing the way we monitor and interact with things. The positive combination 
of information and communication technologies with sophisticated data analysis 
methods will also transform traditional livestock farming. Improving farming prac-
tices by gaining actionable insights in order to increase efficiency, yield, and pro-
ductivity, and help farmers manage their farms well. The intelligent perception and 
analysis of animal individual information and behavior is the core of animal 
husbandry.

Pigs are particularly vulnerable to heat stress, which triggers behavioral and 
physiological responses that can negatively impact productivity in the summer. The 
remote monitoring system can monitor the movement behavior of pigs and the envi-
ronment of piggery. Zeng et al. (2021) proposed a ZigBee-based three-layer wire-
less sensor network system, which is used for real-time monitoring of four 
environmental parameters, including temperature, relative humidity, carbon dioxide 

8 Smart Farming Management



196

concentration, and ammonia concentration in pregnant female pigpen. The indoor 
environmental monitoring system is composed of three layers: livestock environ-
mental sensing, wireless transmission service, and multi-client application. The 
transmission performance of data packets collected by sensor nodes through the 
system is evaluated and the null records and abnormal observation data are prepro-
cessed. The results showed that the average outlier rate of CO2 was 6.5%, and the 
other sensors all worked well. And the real-time monitoring and timely intervention 
of the microclimate of pregnant female piggery were realized through the system, 
thus providing intelligent decision for automatic and accurate management of 
livestock.

Some Internet of Things applications have been used for intelligent wastewater 
monitoring and control system. Chung (2020) established a farm-scale demonstra-
tion base with self-designed intelligent piggery sewage treatment facilities and 
remote monitoring function through the application of the Internet of things, 
improving the efficiency of pig farm wastewater treatment. The intelligent pig farm 
wastewater treatment system was applied to a pig farm with 1000 pigs located in 
I-Lan County, Taiwan. The experimental results showed that the overall removal 
rates of biochemical oxygen demand, chemical oxygen demand, and suspended sol-
ids were 94%, 86–87%, and 96%, respectively.

Livestock monitoring is an important aspect of livestock management, and 
advanced technology has made it possible to automatically track and monitor cattle. 
Ilyas and Ahmad (2020) have proposed a smart solution for livestock tracking and 
geo-fencing using the most advanced Internet of Things technology. This study cre-
ated a geo-safe zone for cattle based on Internet of Things and GPRS, remotely 
monitoring and controlling the cattle with dedicated Internet of Things sensors. 
Intelligent systems collect data about the location, health and physical and emo-
tional states of livestock, and the proposed livestock management system reduces 
the time and energy complexity of systems and integrated modules, reducing the 
cost of farming, and realizing remote monitoring.

Behavior may be the most critical of the different parameters monitored for the 
animals themselves, providing important information about the health or reproduc-
tive status of the animals and helping farmers understand how the animals are per-
forming in the environment. Debauche et  al. (2019) proposed a Lambda cloud 
architecture, which provides help in storage, real-time processing and large-scale 
data storage and analysis, and innovatively coupled to a scientific sharing platform 
for archiving and processing high-frequency data, allowing scientists to collect, 
store, process, and share information to integrate Internet of Things applications for 
livestock monitoring. An iphone with IMU (Inertial Measurement Unit) was worn 
on the livestock to measure the cattle’s behavior. Obtained signals were transmitted 
to the gateway through UDP protocol. Data redundancy was eliminated through the 
combination of various related variables for edge computing, processing, modeling 
and decision-making.

Data-driven approaches are transforming many industries, including dairy farm-
ing, and offering an opportunity for predictive control and prevention of certain 
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undesirable events. Data-driven decision-making methods and measures help 
improve the productivity of dairy farms. Taneja et al. (2019) offered an end-to-end 
Internet of Things application that uses fog and cloud analysis to make data-driven 
decisions for intelligent dairy farming. The system uses behavioral analysis to gen-
erate early alerts about animal health to help farmers monitor their livestock. 
Moreover, the system uses fog assist and cloud support to analyze data generated by 
wearable devices on cows’ feet to detect abnormalities in animal behavior related to 
diseases such as lameness, improving productivity, and milk production by detect-
ing potential diseases early. The system was tested on a real-world intelligent dairy 
farm of 150 dairy cows in Ireland and the results showed that the system could send 
out lameness detection alerts 3 days before manual observation.

Dairy production faces many challenges, including improving resource effi-
ciency, being more environmentally friendly, being able to provide detailed infor-
mation to consumers, and ensuring the safety and quality of the final product. 
Through the new global edge computing architecture, Alonso et al. (2020) proposed 
an application platform of artificial intelligence and blockchain technology for edge 
computing of the Internet of Things in the intelligent farm environment, which is 
used to monitor the status of cows and feed grains in real time. Edge computing 
reduces the use of cloud computing, storage and network resources, reduces the 
response time of services, and improves the quality of service and the security of 
applications. Distributed Ledger Technology provides security, data integrity and 
traceability. The platform was deployed and tested in a real scenario on a dairy farm, 
verifying the effectiveness of edge computing in reducing data traffic and improving 
the reliability of communication between the edge layer of the Internet of Things 
and the cloud.

8.3.3  Application in Agricultural Product Supply Traceability

Blockchain technology will provide real-time tracking, certification, protection, and 
monitoring functions for the food supply chain process, and the agricultural supply 
chain traceability system based on the Internet of Things can ensure the food safety 
and quality of every production link. Most of the blockchain conversation revolves 
around commodity transactions and the tracking of agricultural inputs and produc-
tion outputs, particularly with regard to traceability of food safety. Through block-
chain, agricultural data from sources such as soil sensors, weather satellites, drones, 
and distributed storage of agricultural equipment enables us to build trust and ensure 
sustainable agricultural development. Besides, by pooling and analyzing this data, 
it improves decision-making and automation at both the individual farm level and 
the community level.

Agricultural data from joint yield monitoring is mixed, considering the validity 
of the data, especially as other people may have influenced data quality at various 

8 Smart Farming Management



198

steps along the data path. Lei et al. (2020) proposed an agricultural data storage 
method based on distributed ledger technology DLT to ensure the integrity of agri-
cultural data. The distributed ledger keeps a complete record of all activities that 
take place on a fish farm and is linked to data recorded by farm sensors so that the 
data is indivisible. In addition, smart contracts are being used to automate agricul-
tural data processing, including filtering outliers before generating records to the 
ledger, the data stored in the blockchain, and the intelligent contract can trigger and 
perform a particular operation, define access control rules, for specific participants 
to provide access to network resources or execute permissions within the business 
network, using authorized blockchain network as the foundation facility, which 
enhances transaction security while maintaining data transparency. A proof of con-
cept was built on top of the designed architecture to test all system functionality by 
using Hyperledger Fabric and the fish farm system.

The safety of agricultural products has always been a concern for people. 
Considering the uncertainty of the environment and the multi-factor nature of the 
agricultural product Traceability System (BAPTS) based on blockchain, Yang et al. 
(2020) proposed a multi-criteria decision-making (MCDM) framework based on 
Q-RoFWPMM operator for evaluating and selecting a blockchain based agricultural 
product traceability system (BAPTS) design. This method combines muir-head mean 
(MM) and power average (PA) operators into Q-ROFS to generate two aggregation 
operators (Q-ROFPMM and Q-ROFWPMM), which provides an effective method 
for information aggregation evaluation. The selection of agricultural products trace-
ability system based on blockchain (BAPTS) is verified by an example. Finally, the 
sensitivity and comparative analysis results are given to verify the validity and accu-
racy of the proposed method.

In the supply chain of agricultural products, traceability system is an effective 
means to ensure the quality and safety of agricultural products. Li et al. (2021) built 
a simplified agricultural products traceability system (STSAP) based on Android 
platform. Agricultural Products Traceability System (STSAP) consists of six func-
tional modules: account management, site management, planting material manage-
ment, agricultural activity management, processing management, and traceability 
document management. STSAP is used to document the supply chain of agricul-
tural production, including planting, harvesting, transportation, and sales. When the 
customer uses WeChat to scan the QR code, STSAP automatically invokes API to 
read traceability files, helping consumers track production process and transaction 
records.

Liao and Xu (2019) proposed a blockchain traceability system based on intelli-
gent agriculture that integrates wireless sensor network. The system realizes the 
agricultural products traceability system based on Ethereum, collecting front-end 
data and storing it in the blockchain system, and utilizes the blockchain itself which 
has the characteristics of decentralization, tamper-proof, security and encryption, 
combined with back-end database management and traceable QR code, to provide 
consumers with safe and reliable QR code, reliable and true agricultural product 
traceability information.
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8.4  Prospects and Challenges of Agricultural Internet 
of Things Technology

The agricultural Internet of Things covers agricultural information acquisition, sen-
sor instrument technology, data transmission, network communication technology, 
data fusion, intelligent decision, expert system and automation control technology, 
etc., which is an interactive platform of things to things and people, as well as an 
open platform. With the continuous development of science and technology, more 
and more advanced science and technology will be integrated into the agricultural 
Internet of Things to promote the development of agricultural Internet of Things, 
and the development of agricultural Internet of Things will become the basis and 
power to promote the development of modern and sustainable agriculture.

8.4.1  Development Prospects of Agricultural Internet 
of Things

Agricultural Internet of Things technology can cover the entire agricultural produc-
tion process and play an important role in agricultural production management, 
becoming a powerful boost for intelligent agriculture. It will also get better develop-
ment opportunities in the following aspects.

 1. As the technical support of agricultural information perception, agricultural sen-
sor technology plays a crucial role in agricultural Internet of Things. The devel-
opment of sensing equipment for agricultural production will be an essential link 
in agricultural Internet of Things industry. With the development of detection 
methods and the increase of coverage, more and more attention will be paid to 
the research and development of micro-sensor nodes for agricultural animals and 
plants, soil and environment with low-cost, stable performance, low power con-
sumption, small size and high detection accuracy, to provide intelligent agricul-
tural management more perfect, more accurate monitoring data for the internet 
to provide more comprehensive data to support agriculture.

 2. At present, agricultural machinery equipment is developing toward large-scale, 
accurate, and intelligent direction while meeting the needs of different agricul-
tural operations. As an important tool in the process of agricultural operations, 
agricultural machinery and equipment will gradually be integrated into the agri-
cultural Internet of Things, becoming the intelligent execution terminal of agri-
cultural Internet of things, and play a crucial role in agricultural production 
operations. At the same time, agricultural equipment in the process of operation 
is increasingly dependent on crop information and environmental perception, 
agricultural data transmission, operation planning and intelligent decision- 
making, and agricultural Internet of Things technology can play an important 
role in these aspects. Therefore, the combination of agricultural machinery 
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equipment and Internet of Things technology is bound to become an important 
development direction of Internet of Things technology.

 3. As a technology that can be monitored from agricultural production, agricultural 
processing, circulation to consumption, agricultural Internet of Things will 
increasingly play an important role in the field of food safety. Agricultural 
Internet of Things sensing information can be used as important information for 
the full traceability of agricultural production process, and sales of agricultural 
products in circulation link through QR code, electronic tags, and other technol-
ogy to obtain the accurate origin so that consumers can not only trace all the 
information of the origin and circulation of the agricultural product through the 
whole process, but also query the information of fertilizer and pesticide dosage 
in production through the combination of the traceability system and the Internet 
of Things system to record and track the whole process information of agricul-
tural products logistics. Through the combination of food safety traceability sys-
tem and agricultural Internet of Things system, consumers’ rights and interests 
will be more effectively protected and food safety will be guaranteed.

8.4.2  The Challenge of Intelligent Agricultural Management 
Application Development

 1. The research and development of agricultural sensors is slow and the current 
products are not practical and not easy to use and manage; Conversely, in farm-
land environment, problems such as power supply damage and maintenance of 
sensing equipment have seriously hindered the implementation of agricultural 
Internet of Things. With the promotion of agricultural Internet of Things, agri-
cultural sensors are bound to develop toward the direction of small size, low 
power consumption, high detection accuracy, stable, and reliable work. 
According to different agricultural Internet of Things application scenarios, it is 
urgent to accelerate the development of sensing technologies and products for 
the detection of animal, crop, soil, environment, and other parameters.

 2. Nowadays, the data transmission reliability of sensor network of agricultural 
Internet of Things is poor and data collection is unstable. The characteristics of 
farmland environment and the demand of sensor technology put forward higher 
requirements for the data transmission of agricultural Internet of Things. In addi-
tion, low power sensor network transmission anti-interference, self-organizing 
network, and other technology development will provide technical basis for data 
transmission reliability. As 5G technology matures, difficulties in back-end data 
processing caused by slow network transmission and unstable communication 
will be alleviated, and there is no time to accelerate the iterative optimization of 
transmission layer technology.

 3. The goal of the application and promotion of agricultural Internet of Things 
technology is to realize the on-demand control and fine management of 
 agricultural production, which must rely on agricultural knowledge model to 
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support the processing layer to make correct decisions. At present, a large 
amount of agricultural data can be obtained through sensor network, but due to 
the immature algorithm model, most of which has not been fully mined and 
utilized. For the moment, decision processing is mainly based on timing control 
and single variable control. However, due to the lack of agricultural intelligent 
decision algorithm and model, it is difficult to realize on-demand control and 
multi- variable control, resulting in low intelligence degree of Internet of Things 
platform.

 4. At present, a relatively complete agricultural Internet of Things technical stan-
dard system has not been established. Due to the lack of application standards and 
specifications, the standardized use of The Internet of Things technology in the 
agricultural field is restricted, and the standardization degree of agricultural sen-
sors is not enough, and the reliability is difficult to guarantee, so it cannot achieve 
extensive integrated application; In the deployment process of sensor networks, 
there is no unified guidance and specifications, most of which are adjusted 
according to actual requirements and use custom transport protocols, which are 
quite arbitrary; The fusion mining and application layer development of percep-
tion data have no standards to follow and cannot be shared, which is not condu-
cive to the promotion and implementation of agricultural Internet of Things.

Agricultural Internet of Things technology is an important support of intelligent 
agriculture. To promote its application, it is necessary to further improve its univer-
sality, reliability, and intelligence level. The agricultural Internet of Things platform 
should also gradually form a unified platform in accordance with the standardiza-
tion, personalized, cloud computing requirements to realize system integration of 
agricultural Internet of Things, big data, artificial intelligence, and new information 
technology.
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Chapter 9
Emerging Automated Technologies 
on Tractors

Jianzhu Zhao and Enrong Mao

9.1  CANBUS Technology of Agricultural Machinery

9.1.1  Overview of Agricultural Machinery CAN

With the rapid development of electronic technology, there are more and more elec-
tronic control equipment for agricultural vehicles and machines. The traditional 
point-to-point connection between electronic control units has the disadvantages of 
many harnesses and complex wiring, resulting in low network reliability and diffi-
cult sharing of data resources, which makes the coordinated control between 
machines and tools difficult to be realized. The serial BUS connecting the electronic 
control unit greatly simplifies the vehicle wiring system and has low cost. At the 
same time, it realizes the high data sharing between the electronic control units and 
improves the system reliability and fault diagnosis level. The application of serial 
BUS has become the inevitable trend of the development of electronic control net-
work technology for agricultural vehicles and machines.

CAN (controller area network), namely controller area network, is a serial com-
munication network designed by Bosch Company of Germany in 1983, which can 
effectively support distributed control and real-time control. It is used to solve the 
data exchange between many control and test instruments in modern vehicles. Due 
to the advantages of CAN and its special design, CAN specification was formulated 
as an international standard by International standard Organization (ISO) in 1993.
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German LAV (German Association of Agricultural Machinery and Tractors) 
established a committee in 1988 to formulate a new agricultural machinery BUS 
standard LBS (DIN9684 standard) based on CAN BUS (CAN1. 0). In 1991, ISO 
started the standardization of agricultural machinery BUS, and TC23/SC19 (the 
19th Sub Technical Committee of the 23rd Technical Committee, which works on 
the electronization of agricultural machinery) formulated a new international stan-
dard based on the standards of five parts in DIN9684. SC19 working group 1 (WG1) 
is especially responsible for the formulation of International Standards for 
Agricultural Machinery BUS.  By 1992, TC23/SC19/WG1 decided to adopt 
CAN2.0B as the basis of the standard and named the standard ISO 11783.

9.1.2  Content and Structure of ISO 11783 Standard

As shown in Table 9.1, ISO 11783 standard is divided into 14 parts.
ISO 11783 can be divided into application layer, network layer, data link layer, 

and physical layer. The physical layer and data link layer of CAN2.0B are used as 
the underlying protocol, then the communication and addressing mechanism is 
established on the data link layer of CAN2.0B. The concept of “address” is used in 
ISO 11783 to prevent multiple controllers from using the same CAN flag. The rela-
tionship between ISO 11783 and CAN is shown in Fig. 9.1. The physical layer and 
data link layer of CAN are encapsulated through ISO 11783.

Table 9.1 Content of ISO 11783 standard

Parts Name

Part 1 General standard for mobile data communication
Part 2 Physical layer
Part 3 Data layer
Part 4 Network layer
Part 5 Network management
Part 6 Virtual terminal
Part 7 Implement messages application layer
Part 8 Power train messages
Part 9 Tractor ECU
Part 10 Task controller and management information system data 

interchange
Part 11 Mobile data element dictionary
Part 12 Diagnostics services
Part 13 File server
Part 14 Sequence control
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9.1.3  ISOBUS (Deng, 2004)

The technical development of ISOBUS began in 1991 and ISO11783 was intro-
duced as the tractor standard in 2001. ISOBUS defines the communication protocol, 
interface, and operation guide between tractors, machines and tools, and mobile 
equipment, solves the problems of universality and compatibility of communication 
data between tractors and machines and tools, as well as the information interaction 
between mobile equipment and on-board system. It has become a general standard 
followed by all agricultural machinery manufacturers, which greatly promotes the 
development of precision agriculture. Enterprises adopting ISOBUS need to be cer-
tified by AEF (Agricultural Electronics) committee. The certified products can auto-
matically identify each other and stick special ISOBUS marks (as shown in Fig. 9.2). 
By 2019, more than 190 enterprises have passed the certification. The high-power 
tractors of John, New Holland, Case IH, CLAAS, and other companies have been 
equipped with ISOBUS interface as standard, which can match with various 
machines and tools using ISOBUS and realize interactive control. ISOBUS is used 
as the schematic diagram of electronic communication between machines and tools, 
tractors and computers, as shown in Fig. 9.3.

application layer of ISO 11783 

network layer of ISO 11783 

data link layer of ISO 11783 

CAN DLL 

physical layer of ISO 11783 

CAN PHL 

Fig. 9.1 Structure of ISO 
11783 standard

Fig. 9.2 ISOBUS 
certification mark
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9.1.4  Application of CANBUS Technology 
in Agricultural Vehicles

CANBUS technology has been applied to some tractors manufactured by John 
Deere, kessnew Netherlands, Klass, and other companies. On related tractors, the 
electronic combination instrument, control console unit, chassis control unit, and 
traction control unit are integrated through CAN network, which realizes the inte-
gration of monitoring and control of subsystems such as engine, transmission sys-
tem, and hydraulic system and greatly improves the convenience and reliability of 
use and maintenance. For example, the information of the central display screen 
comes from each subsystem and is shared with each controller. Because there are 
few can transmission lines, the control console can be moved, and most control 
devices such as shift lever, front-wheel drive switch, differential lock, power take- 
off shaft, and three-point suspension can be concentrated on it. The power shift 
transmission realizes the separation of the cab control system and the transmission 
component control of the transmission due to CAN, effectively improves the reli-
ability, and can share the necessary information collected by other sensors. The 
control of front-wheel drive, differential lock and power take-off shaft is based on 
the information collected by relevant sensors throughout the vehicle. For example, 
the control of front-wheel drive can determine the control state according to the sen-
sor signals such as brake pedal, parking brake, and driver output speed or the front- 
wheel drive switch signal on the console.

Tractor BUS network structure is shown in Fig. 9.4 based on ISO 11783 proto-
col. There was no master controller for the network and it consists of two 

Fig. 9.3 Schematic diagram when ISOBUS is used for electronic communication between imple-
ments, tractors, and computers (Chen et al., 2017)
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communication BUS, namely the tractor BUS and tools of BUS. There were the 
tools of network BUS from tools in figure. The BUS is through the tractor ECU and 
implements ECU linked to bridge the ECU.

Virtual terminal (VT) is connected to the tools on the BUS. Task controller is an 
ECU, it is usually located in the instructions of the tractor, which is used to provide 
some tools work, such as providing fine agricultural operation of prescription 
instructions. Gateway management computer contains an interface, compatible with 
management computer and data exchanged was allowed between the controller and 
management computer. In the task and task controller, interface between controller 
and tools and management is standardized communication between application 
software in the computer; however, computer and task management interface 
between controller not standardized.

The network information can be communicated and shared between compo-
nents. For example, for the task controller and communication between GPS ECU, 
when the navigation information was defined, mission controllers can receive loca-
tion information. Similarly, when engine torque information was defined, the engine 
torque of engine ECU can provide current torque curve for transmission. A lot of 
information in different repetition rates is transmitted, individual information 100 
times per second the repetition rate of transmission in the network, and this kind of 
information of BUS capacity by about 5%. Planning and management information 
are needed to avoid excessive use of BUS capacity. In addition, the CAN BUS sig-
nal can be filtered by tractor ECU to avoid BUS overloading which affects entire 
BUS congestion.

Figure 9.5 shows the variable seeding system based on ISO 11783 CAN BUS 
technology for Valtra company. The system contains five ECU, which is used for the 
control of variable rate fertilization and management, data collection, and ISO 
11783 communication between devices in a network. Four ECUs are installed on 
the tractor, GPS ECU, mission controllers (TC), virtual terminal (VT), and tractor 
ECU (TECU) respectively. ECU of differential GPS vehicle GPS signal processing. 

Fig. 9.4 Tractor BUS network structure based on ISO 11783 protocol
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VT for homework monitors. TC to manage. Homework prescription diagram, data 
storage and send through the ISO 11783 network expected input to control the 
amount of fertilizer application. TECU vehicle speed information for processing 
radar sensor. In order to analyze network communication program, add a Vector in 
a network company of PCMCIA CAN BUS network sniffer, through the ISO 11783 
net data information exchange to monitor and analyze its application effect. Fifth 
ECU located fertilization machine, to a microcontroller, through the ISO 11783 
network receive instruction from a TECU, according to the prescription chart con-
trol components to realize variable assignments.

9.2  Telematics

9.2.1  Telematics Overview

Telematics is a compound word of telecommunications (Telecommunications) and 
information science (Informatics) for long-distance communication. The system is 
based on wireless network communication technology, with cars as the main body, 
using wireless communication technology to connect with external networks to 
realize an interactive system of one-way or two-way transmission between people 
and external information resources. Through this system, the interaction with the 
vehicle can be realized at a long distance. The on-board Telematics module (T-BOX) 
is the core component of the system. It will be loaded on the vehicle to realize the 
connection between the vehicle and the network (also known as the cloud).

Fig. 9.5 Variable seeding system based on ISO 11783 CAN BUS technology
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9.2.2  Accurate Management of Agricultural Machinery 
Operations Based on the On-Board Telematics System

Many types of agricultural machinery are operated at the same time and it is diffi-
cult to achieve efficient and accurate management by only relying on manual labor. 
All agricultural machinery on the farm is managed by the on-board Telematics sys-
tem, as shown in Fig. 9.6 The Telematics system provides services through the com-
puter system built into the agricultural machinery, wireless communication 
technology, satellite navigation system, and the Internet. It is to connect agricultural 
machinery equipped with computers, satellite navigation, wireless communication, 
and other equipment to the Internet through wireless networks to provide informa-
tion and management services.

The on-board Telematics system is used to record the status of agricultural 
machinery in real time through the on-board computer, such as location, speed, 
working status, energy consumption, fuel tank oil volume, harvester storage bin 
status, etc., and farm maps, road locations, driving routes, and other agricultural 
machinery locations are viewed through wireless connection to the Internet. It can 
understand the location and status of each agricultural machinery in real time, make 
reasonable planning and arrangements for agricultural machinery operations, and 

Fig. 9.6 Schematic diagram of Telematics system
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realize dynamic, collaborative, efficient, and accurate management of agricultural 
machinery operations.

9.3  Hitch Electro-Hydraulic Control

9.3.1  Overview of Electro-Hydraulic Control Suspension

The hydraulic lifting system is an important working device of the tractor. The agri-
cultural tractor is used as a farmland power machine and its power is ultimately 
transmitted to the farm machinery through the tractor’s working device. The hydrau-
lic lifter is used as the implementation part of the machine control and its function 
directly affects farmland operations. Therefore, the performance of the hydraulic 
lifting part of the tractor is an important index to judge the quality of the tractor.

Hydraulic suspension device uses hydraulic pressure as power to suspend, 
manipulate, and control the work of agricultural machinery. There are many types 
of hydraulic suspension devices and their functions and performances are different, 
but their main functions are: using hydraulic as the power to lift agricultural tools, 
manipulating the lifting of agricultural tools, controlling the depth of farming of 
agricultural tools, or maintaining the height of agricultural tools from the ground 
and hydraulic output.

In recent years, electro-hydraulic control suspension technology has been widely 
used in tractors and its system is shown in Fig. 9.7, mainly includes controller, con-
trol panel, solenoid valve, hydraulic cylinder, hydraulic pump, CAN BUS, speed 

Fig. 9.7 Schematic diagram of tractor electronic hydraulic suspension system
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sensor, displacement/angle sensor, tension sensor, radar, and so on. The application 
of CAN BUS makes it possible to share data among the electronic control units of 
tractor, which is helpful to realize the cooperative work among the control systems. 
The tilling depth setting knob and the working mode selection switch are arranged 
on the control panel. The driver only needs to select the corresponding working 
mode and set the target tilling depth according to the working demand and the work-
ing condition of the tractor, the utility model can realize the automatic control of the 
tillage depth of farm tools, and the operation is simple and fast.

9.3.2  Control of Tillage Depth with Suspended Farm Tools

When the hanging unit is working in the field, it should ensure the uniform tillage 
depth, stable engine load, and good tractor traction adhesion.

However, in the actural tillage operations, corresponding measures must be 
taken according to various of field conditions such as soil specific resistance, 
topography, dry land and paddy field, etc. Otherwise, the excessive change of till-
age depth will not only affect the quality of tillage but also make the engine load 
fluctuate too much, which will affect the productivity and economy of the unit.

Similarly, the loading condition of the driving wheel affects the tractor’s traction 
and attachment performance, as well as the productivity and economy of the unit. 
Therefore, different tillage depth control methods must be adopted to meet the oper-
ational requirements. The basic control methods are floating control (that is, height 
regulation), force control (that is, force regulation), position control (that is, posi-
tion regulation), and force-position comprehensive control (that is, force-position 
comprehensive regulation).

In the electro-hydraulic suspension system, the driver selects the adjusting mode 
on the control panel according to the work demand, sets up the control signal, the 
controller (ECU) receives the input command of the control panel, reads out the 
driver’s operation information. At the same time, the information of the suspension 
system is collected by the force sensor and the angle sensor, and the working posi-
tion and state of the suspension system are determined, comparing the actual tillage 
depth with the target set by the driver, the system control quantity can be obtained, 
and the electromagnetic valve can be output in the way of control signal until the 
tillage depth reaches the designated position, thus achieving the control of the target 
tillage depth, the working position and the opening size of the solenoid valve deter-
mine the expansion and movement speed of the hydraulic cylinder.

Electrically controlled hydraulic suspension adopts electronic control technol-
ogy. On the control panel, there are control switches and adjusting knobs. The driver 
inputs control information through the control panel. After the controller receives 
the driver’s operation information, compared with the sensor’s feedback signal, 
when the error exceeds the set value, the single-chip microcomputer sends out com-
mands to control the electromagnetic valve according to the control strategy and 
pushes the hanging mechanism through the hydraulic cylinder to complete the 
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control of the farm implements. Using sensors to measure the feedback signal of the 
suspension system is simple, convenient, and highly accurate. Compared with 
mechanical hydraulic suspension, electronically controlled hydraulic system has 
unparalleled advantages of mechanical hydraulic suspension system, as follows:

 1. Use electrical signals to transmit information, so that the control panel and sens-
ing elements are not affected by the layout of the tractor cab and other parts and 
can be flexibly arranged according to needs.

 2. The electronic control system is convenient to process the feedback signals of 
different control parameters and it is easier to realize the integrated control of the 
suspension system.

 3. Using microcomputer control, high-end control algorithms such as fuzzy control 
and sliding film control can be applied to the control of the suspension system, 
which is beneficial to improve the overall control level and performance of the 
suspension system.

 4. Using advanced electronic information and communication technology, real- 
time monitoring of various working conditions of the tractor can be carried out, 
which is convenient to realize the energy management and fault diagnosis of the 
whole tractor.

 5. The electronically controlled hydraulic suspension system has high control 
accuracy, which promotes the development of precision agriculture and is con-
ducive to the research of unmanned driving.

With the advancement of agricultural modernization, the traditional mechanical 
hydraulic suspension system no longer meets the needs of the development of the 
times and is gradually being replaced by electronically controlled hydraulic suspen-
sions. Electronically controlled hydraulic suspensions can complete more complex 
control of agricultural tools and have higher control accuracy and it is a necessary 
system for the development of agricultural machinery automation and intelligence.

9.4  Smart Tractor Visual Navigation

9.4.1  Visual Navigation Overview

Visual navigation uses the camera to collect, filter, and calculate images of the sur-
rounding environment, complete its position determination and target-oriented path 
planning, and make navigation decisions. In recent years, visual navigation extracts 
environmental information such as images and radio signals for analysis, combines 
image data and digital terrain data to complete positioning and path planning, and is 
often used to assist inertial navigation. In recent years, the focus of visual navigation 
research is mainly reflected in algorithm optimization. Algorithm optimization can 
improve the accuracy of visual navigation, increase the success rate of navigation in 
invisible environments, and enhance the autonomy of visual navigation (Yang 
et al., 2021).

J. Zhao and E. Mao



213

Vision is the use of computers to realize human visual functions—the percep-
tion, recognition, and understanding of the three-dimensional scene of the objective 
world. With the deepening of visual research and the development of semiconductor 
and computer technology, visual information is increasingly being applied to the 
practice of navigation. Among them, visual navigation is a navigation method that 
uses visible light and invisible light imaging technology. It has the advantages of 
good concealment, strong autonomy, fast and accurate measurement, and cheap and 
reliable. In the past 30 years, with the continuous emergence of new concepts, new 
methods, and new theories, visual navigation has been widely used in unmanned 
aerial vehicles, agricultural mobile machinery, and indoor and outdoor robots.

The basic composition of the visual navigation system: the visual navigation 
system is generally computer-centric, mainly composed of modules such as visual 
sensors, high-speed image acquisition systems, and dedicated image processing 
systems, as shown in Fig. 9.8.

The visual sensor acquires the feature image of the surface of the measured 
object and converts it into a digital signal by the high-speed visual image acquisition 
system. The rapid digital image processing and can be conducted by high-speed 
machine vision software, which can also be used to extract the coordinates of image 
feature information. It is realized by the computer Fast calculation of parameters, 
such as space geometric parameters and position and posture of the measured object.

9.4.2  Status of Visual Navigation System

For visual navigation systems, visual sensors provide original and direct visual 
information, generally called visual images. The processing of visual images and 
the extraction of feature information are the prerequisites and foundations for the 
application of visual navigation systems.

Fig. 9.8 Basic building blocks of visual navigation system
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 1. Visual image preprocessing: Visual images are often polluted by strong noise 
and smooth filtering is needed to reduce or eliminate the influence of such strong 
noise. At present, the commonly used image smoothing filtering includes mean 
filtering, median filtering, Gaussian transform, and wavelet transform. Mean fil-
tering is easy to design and performs well when the signal spectrum and noise 
spectrum have significantly different characteristics, but it will make the edge of 
the image blurred. Median filtering can overcome the above problems and keep 
the edge undisturbed while removing impulse noise. However, in the face of 
large area noise pollution, median filtering is not as good as mean filtering in 
smoothing noise. Wavelet transform, which is called “digital microscope,” can 
perform local analysis in time-frequency domain at the same time, which has 
become an important development direction of denoising.

 2. Visual image feature extraction: Visual image feature extraction is an important 
method for image recognition and classification and also the basis for under-
standing, processing, and decision-making of image information. In a visual 
image, information with distinctive features, such as edge, corner, circle or 
ellipse center, and image shape features are usually extracted as visual image 
feature information. In visual image, image edge is the main feature information 
of visual image.

 3. Visual positioning methods: At present, there are mainly two visual navigation 
and positioning methods, which are visual odometer and ground-based punctua-
tion matching.

 (a) Visual odometer: it is a navigation and positioning method that uses mon-
ocular or binocular camera to obtain image sequence and then estimates 
carrier motion information by feature extraction, matching and tracking.

 (b) Ground punctuation matching navigation: Ground punctuation matching 
navigation takes some special scenes in the environment as landmarks in 
advance. On the premise of knowing the coordinates and shapes of these 
ground punctuation marks, the robot determines its position by detecting 
ground punctuation marks. According to the difference of local punctuation, 
it can be divided into artificial punctuation matching navigation and natural 
punctuation matching navigation (Guan & Wang, 2014).

9.4.3  Application of Visual Navigation 
in Agricultural Machinery

Machine vision has the characteristics of low cost and rich information and is suit-
able for irregular plots or signal blocking environments. When using visual naviga-
tion, a visual sensor is usually installed above the agricultural machinery cab to 
collect image information in front of the agricultural machinery and finally extract 
the navigation baseline through preprocessing and crop line detection.
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 1. Image preprocessing: Factors such as weather, weeds, shadows, and non-target 
areas in a farmland environment can interfere with crop detection and it is diffi-
cult to obtain ideal results in direct detection. The color distinction between the 
target area and the non-target area can be increased through special band vision 
sensors or grayscale feature factors; part of the shadow interference can be elimi-
nated by converting the RGB color model to HSV, HSI, YCbCr and other color 
models; by setting the image in a reasonable manner the region of interest to be 
processed can reduce the interference of non-target crop rows and at the same 
time reduce the amount of calculation.

 2. Crop line inspection: At present, a large number of researches on crop row 
extraction methods have been carried out at home and abroad, mainly including 
vertical projection, Hough transform, linear regression, stereo vision, etc. The 
characteristics are shown in Table 9.2.

At present, visual navigation technology has been applied to automatic pesticide 
application, automatic weeding, and automatic harvesting. However, due to the 
influence of the farmland environment on the stability of image collection, there are 
still problems such as blurred images and missing information. The robustness of 
visual navigation technology needs to be further improved (Zhang et al., 2020).

9.5  Continuously Variable Transmission

9.5.1  Overview of Continuously Variable Transmission

Continuously variable transmission (CVT) is an ideal transmission form for vehi-
cles. It can continuously change the transmission ratio according to the road condi-
tions and the working state of the engine, so that the engine always works near the 
best working point or best working line, which means it is improving the fuel econ-
omy of the whole machine and reducing noise. At the same time, there is no shifting 
step, which reduces the impact of shifting and improves the driving comfort of the 

Table 9.2 Characteristics of crop line inspection methods

Detection 
method Advantage Shortcoming

Vertical 
projection

Simple calculation and good 
anti-noise effect

More affected by weeds

Hough 
transform

Strong anti-interference ability High complexity and time-consuming

Linear 
regression

Simple calculation Affected by noise

Stereo vision Depth information is less affected 
by light

Large amount of calculation, only suitable 
for higher crops
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whole machine. Nowadays the CVT is divided into 3 types: mechanical CVT 
(M-CVT), electric CVT (E-CVT), and fluid CVT (F-CVT).

9.5.2  The Form of Continuously Variable Transmission

The metal belt type continuously variable transmission is a representative form of 
M-CVT. Due to its structure limitation, the power that can be transmitted and the 
speed range are limited. At present, it is still difficult to obtain application in high- 
power tractors.

The electric continuously variable transmission system consists of an electric 
generator, a control system, and a traction motor. The electric drive adopts electric 
wheel drive technology, and the power source and the drive motor are connected by 
a flexible cable, which not only frees up the constraints of the transmission system 
in the design space, makes the layout of the whole vehicle very flexible, but more 
conducive to the reasonable distribution of axial load. It has the advantages of large 
transmission power range, easy control, high transmission efficiency, but because of 
its own high quality and high cost and usually integrates motors, brakes, and other 
parts into electric wheels, it is comparable to ordinary wheels of the same specifica-
tion. The specific mass increases more, the unsprung mass of the vehicle increases, 
and the ride comfort and ride comfort decrease. Therefore, this type of transmission 
system is only used on mining dump trucks, large scrapers, and wheel loaders.

Fluid continuously variable transmission also can be divided into three types: 
hydraulic mechanical, hydrostatic, and hydromechanical. Due to low transmission 
efficiency and power limitation of hydraulic components, hydraulic machinery and 
hydrostatic transmission are not widely used in tractors. But a few small and medium 
power models sometimes use hydrostatic transmission such as Versatile200 Series 
of New Holland company, L Series of Kubota company of Japan (power between 
8.6 and 14.9 kW), 20 Series and 77 Series tractors of Fiat company of Italy, etc.

The hydraulic-mechanical continuously variable transmission (HM-CVT) takes 
into account the high efficiency of mechanical transmission and the smooth and low 
impact characteristics of hydrostatic transmission. Conversely, it only needs to use 
common mechanical transmission mechanisms and ordinary hydraulic components 
to achieve high efficiency and high-power output. As shown in Fig. 9.9, HM-CVT 
is usually composed of mechanical transmission mechanism, pump-motor hydrau-
lic stepless transmission system, power split and confluence planetary gear mecha-
nism, electronic control device and drive system. The power output from the engine 
is divided into mechanical and hydraulic two-way transmission to the drive axle. 
The mechanical transmission is usually transmitted by planetary gears and multi- 
stage gears (John Deere’s, Auto Power) or by multi-stage planetary gears (ZF’s 
S-Matic, Eccom), while the hydraulic transmission adopts variable pump and vari-
able motor speed control. At the output end of the hydraulic transmission, the 
hydraulic energy and mechanical energy are recombined and input into the 
drive axle.
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9.6  Driverless Tractor

9.6.1  Overview of Driverless Tractor

The development of precision agriculture has promoted the continuous change of 
agricultural equipment and technology and the emergence of driverless tractor and 
driverless agricultural machinery has brought new content to the development of 
precision agriculture. Especially with the increasing shortage of agricultural labor 
force and the higher requirements for the operation efficiency of agricultural 
machinery, the emergence of driverless tractors and driverless agricultural machin-
ery marks an exciting great technological progress.

At present, driverless agricultural equipment is still in the concept machine stage. 
The main development units are agricultural equipment manufacturing enterprises. 
Typical driverless tractors without cab include Magnum of Case corp of the United 
States and “super tractor 1” of China Yituo Group Co., Ltd. (No.1 Tractor 
Manufacturing Factory). The Case corp of the USA has launched the driverless 
concept tractor magnum (Fig. 9.10a), which combines the latest breakthroughs in 
positioning, remote control, data sharing, and agronomic management. The opera-
tion process of the tractor starts from the input of the field boundary and the control-
ler will automatically plan the driving path according to the boundary and the width 
of the machines and tools. The most efficient coordination route is planned when 
using multiple interconnected machines. The operator can use desktop computers, 
tablet computers, and other terminals to monitor the operation of the tractor. The 
camera installed on the tractor body shows the operation status and working envi-
ronment of the tractor to the operator for reference in real time. The operator can 
browse the engine speed, fuel level, implement settings, and other tractor parame-
ters and modify them manually. To ensure the safety of unmanned driving, sensors 
such as radar, laser ranging sensor, and camera are installed on the tractor to detect 
obstacles. The tractor can use big data information such as real-time meteorological 
information for independent decision-making. When the weather conditions become 
so bad that it cannot continue to operate, the tractor will automatically stop opera-
tion and automatically resume operation when the conditions improve. China Yituo 
Group Co., Ltd. exhibited Chinese first truly driverless tractor “super tractor 1” 

Fig. 9.9 Schematic diagram of hydromechanical continuously variable transmission
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(Fig. 9.10b) at the 2016 China International Agricultural Machinery Exhibition. The 
“super tractor 1” was provided by Beijing Sylincom Technology Co., Ltd. with the 
whole machine system scheme, satellite communication, and other core technolo-
gies, and the driverless technology was provided by the Institute of microelectronics 
of the Chinese Academy of Sciences, sensor provided by Hefei Institute of materi-
als, Chinese Academy of Sciences, and China Yituo Group Co., Ltd. provides tech-
nology and application scenario data such as tractor frame and transmission system. 
“Super tractor 1” was composed of five core systems: driverless system, power bat-
tery system, intelligent control system, central motor and drive system, and intelli-
gent network system. It has the functions of vehicle status monitoring, fault 
diagnosis and treatment, machine control, and energy management and realizes the 
intelligent identification and control functions such as constant tillage depth and 
constant traction. “Super tractor 1” can realize the functions of obstacle detection 
and obstacle avoidance, path tracking and agricultural tool operation through path 
planning technology and driverless technology (Liu et al., 2020).

Unmanned tractors will promote the intensive cultivation of agriculture to a 
new level:

 1. Greatly improve agricultural production efficiency. This is because the applica-
tion of automatic control technology will greatly increase the operating speed of 
unmanned tractors and agricultural machinery. Conversely, the control system of 
unmanned tractors will not feel the same as human fatigue and can achieve con-
tinuous operation 24 h a day.

 2. Greatly improve the accuracy of agricultural operations. Unmanned tractors 
using global positioning system technology can control the accuracy of agricul-
tural operations within 2-3 cm, while the best accuracy of manual driving can 
only reach an error of 10  cm. The routes traveled during farming, pesticide 
spraying, and harvesting will not overlap, saving fuel, reducing the use of pesti-
cides and fertilizers, not only reducing agricultural production costs, but also 
reducing environmental pollution.

 3. Further increase crop yields. The heavier the tractor is, the tighter the soil will be 
and it will be difficult for the roots of crops to grow. Therefore, people tend to 

(a) (b)

Fig. 9.10 Driverless tractor. (a) Case corp magnum unmanned tractor. (b) Super tractor 1 of China 
Yituo Group Co., Ltd.
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use more powerful tractors to make the pear deeper and the weight of the high- 
power tractor will form a deeper compacted soil layer. Lighter driverless tractors 
break this vicious circle and can increase crop yields by 10%.

In addition, because an unmanned tractor does not have a driver, there is no need 
to install a cab and related operating mechanisms, but many sensors need to be 
installed, which will change the structure, layout, and design ideas of traditional 
tractors.

9.6.2  System Structure and Work of Unmanned Tractor

Unmanned tractors are also called robotic tractors. In order to realize unmanned 
driving, the tractor needs to have an automatic driving function, have the ability to 
recognize itself and the surrounding environment, and be able to judge the recogni-
tion results to drive and operate correctly. Figure 9.11 shows the structure block 
diagram of a remotely controlled unmanned tractor system, which mainly includes 
two parts: the farm monitoring center and the unmanned tractor. Remote informa-
tion communication is carried out between the monitoring center and the tractor via 
the wireless local area network and corresponding communication equipment.

The unmanned tractor adopts global positioning system technology and installs 
a GPS receiver on the tractor to determine the tractor’s ground position. Through the 
real-time GPS signal and the field digital map stored by the tractor’s on-board con-
troller, the automatic navigation of the tractor can be realized, that is, the on-board 
controller controls the steering of the tractor’s electro-hydraulic steering mecha-
nism and the turning angle of the steering wheel is fed back by the turning angle 
sensor. The image returned by the machine vision sensor (camera) on the tractor is 
displayed on the monitor of the farm monitoring center and the operator can navi-
gate and correct the tractor from a distance by watching the screen. Inertial naviga-
tion device is a supplement and correction to GPS navigation to achieve 
high- precision combined navigation.

The monitor in the farm monitoring center continuously receives and displays 
vehicle location, vehicle speed, images, and other information. Based on this infor-
mation, the operator can remotely monitor the vehicle.

9.6.3  Key Technologies of Unmanned Tractors

 1. Autonomous navigation: Autonomous navigation is an important function of 
driverless tractor. The tractor should be able to determine its own walking direc-
tion based on environmental knowledge and the target position or sequence of 
positions, so as to reach the target position as efficiently and reliably as possible. 
There are many ways to solve navigation problems, such as map navigation, 

9 Emerging Automated Technologies on Tractors



220

beacon navigation, satellite navigation, visual navigation, and other sensor navi-
gation. At present, unmanned tractors mainly rely on GPS navigation, combined 
with machine vision and inertial navigation. Although there are multiple naviga-
tion methods, these methods have a high degree of similarity, and they are all 
based on the basic navigation architecture shown in Fig. 9.12.

 2. Control technology: Control technology is the core of unmanned tractors, mainly 
including direction control and speed control. Unmanned driving is actually the 
use of electronic technology to control tractors for human-like driving. As the 
tractor model changes with time, its system parameters will change, the model 
parameters are extremely complex, and the model equations are nonlinear. 
Research on vehicle control focuses on improving the adaptability and anti- 
interference of the control algorithm. At present, the control algorithm of 
unmanned tractors is being researched from traditional PID control to adaptive 
control and intelligent control.

 3. Information fusion technology: The positioning and navigation of unmanned 
tractors should have higher intelligence. It is necessary to fuse various sensor 
information or some prior knowledge to realize a full understanding of environ-
mental information and facilitate unmanned tractors to make correct decisions. 
Information fusion can improve the reliability and resolution of the system, 
increase the measurement space dimension, and broaden the range of activities, 
thereby improving the adaptability and robustness of the system under complex 
conditions. In order to improve the performance of the system, it is necessary to 
continuously improve and perfect the information fusion algorithm in combina-
tion with new theories and it is also necessary to strengthen the research on the 
evaluation of the effect of information fusion.

 4. Human–machine collaboration and multi-machine collaboration: Human–
machine collaboration is an effective way to solve the contradiction between the 

 

(a)

(b)

Fig. 9.11 System block diagram of unmanned tractor. (a) Farm monitoring. (b) Tractor
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intelligent development level of unmanned tractors and complex tasks. Human 
participation can give full play to human experience, initiative, and ability to 
respond to unexpected events, enhance the tractor’s ability to deal with emergen-
cies and imprecise events, and enhance the robustness of the system.

  With the further development of unmanned tractor technology, multiple unmanned 
tractors or agricultural machinery will be required to coordinate workbenches in 
the field, thereby significantly improving the intelligence and work efficiency of 
tractor operations, but there are problems with formation travel, collision preven-
tion, path planning, etc. In addition, although the research on unmanned tractors 
for multi-machine cooperative operation is challenging, it should be emphasized.

 5. Safety: The safety of unmanned tractors mainly refers to the safety of people, the 
environment, and the safety of the machine itself. The unmanned tractor itself 
should have safety judgment and processing capabilities, and when this capabil-
ity fails, the operator can perform emergency processing outside. Of course, 
obstacle detection and obstacle avoidance capabilities of unmanned tractors 
have always been one of the researches focuses and difficulties. Most research is 
based on obstacle detection based on machine vision and lidar. In addition, other 
sensors such as proximity switches are installed on the tractor to carry out 
research on the tractor’s collision protection function.

9.7  Summary

As the core power equipment of agricultural machinery, tractor plays a more and 
more important role in agricultural production. Intelligent technology will be neces-
sary for realizing the modernization, automation, intelligent perception and 
decision- making of agricultural production, efficient operation, automatic driving 
and remote control of intelligent tractors. The topics of CANBUS/ISOBUS, 
Telematics, hitch electro-hydraulic control, visual guidance, continuously variable 
speed driving and automatic driving were discussed in this chapter.

Fig. 9.12 Basic navigation architecture
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The serial BUS connecting the electronic control unit greatly simplifies the vehi-
cle wiring system and has low cost. At the same time, it realizes the high data shar-
ing between the electronic control units and improves the system reliability and 
fault diagnosis level. The on-board Telematics system is used to record the status 
and understand the location and status of each agricultural machinery in real time 
through the on-board computer, then make reasonable planning and arrangements 
for agricultural machinery operations, and realize dynamic, collaborative, efficient, 
and accurate management of agricultural machinery operations. Electronically con-
trolled hydraulic suspensions can complete more complex control of agricultural 
tools and have higher control accuracy and is a necessary system for the develop-
ment of agricultural machinery automation and intelligence. At present, visual navi-
gation technology has been applied to automatic pesticide application, automatic 
weeding, and automatic harvesting. However, due to the influence of the farmland 
environment on the stability of image collection, there are still problems such as 
blurred images and missing information. The robustness of visual navigation tech-
nology needs to be further improved. CVT could continuously change the transmis-
sion ratio according to the road conditions and the working state of the engine, so 
that the engine always works near the best working point or best working line, 
which means it improves the fuel economy of the whole machine and reducing 
noise. At the same time, there is no shifting step, which reduces the impact of shift-
ing and improves the driving comfort of the whole machine. Driverless tractor could 
improve agricultural production efficiency and the accuracy of agricultural opera-
tions greatly and further increase crop yields. In addition, because an unmanned 
tractor does not have a driver, there is no need to install a cab and related operating 
mechanisms, but many sensors need to be installed, which will change the structure, 
layout and design ideas of traditional tractors.

References

Chen, Z. Q., Wu, Y., Chen, S. X., & Bian, Q. L. (2017). The practice and enlightenment of preci-
sion agriculture in German——Taking gut Derenburg farm for example. Chinese Journal of 
Agricultural Resources and Regional Planning, 38(05), 222–229.

Deng, S. (2004). Looking forward to connected car 2.0. Retrieved from http://www.elecfans.com/
qichedianzi/20161116449110.html

Guan, X. J., & Wang, X. L. (2014). Review of vision-based navigation technique. Aero Weaponry, 
05, 3–14.

Liu, C. L., Lin, H. Z., Li, Y. M., Gong, L., & Miao, Z. H. (2020). Analysis on status and develop-
ment trend of intelligent control technology for agricultural equipment. Transactions of the 
CSAM, 51(01), 1–18.

Yang, W. Y., Li, D. B., Sui, Y., & Shen, Y. P. (2021). Overview of the development of satellite 
independent navigation technology abroad in 2020. Aerodynamic Missile Journal, 1, 25–30.

Zhang, M., Ji, Y. H., Li, S. C., Cao, R. Y., Xu, H. Z., & Zhang, Z. Q. (2020). Research progress of 
agricultural machinery navigation technology. Transactions of the CSAM, 51(04), 1–18.

J. Zhao and E. Mao

http://www.elecfans.com/qichedianzi/20161116449110.html
http://www.elecfans.com/qichedianzi/20161116449110.html


223© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
S. Ma et al. (eds.), Sensing, Data Managing, and Control Technologies for 
Agricultural Systems, Agriculture Automation and Control, 
https://doi.org/10.1007/978-3-031-03834-1_10

Chapter 10
Applied Time-Frequency Control 
in Agricultural Machines

Zhenghe Song, C. Steve Suh, and Xiuheng Wu

10.1  Features of Automated Agricultural Machines

Application of automation and technology of intelligence is seeing better perfor-
mance, improved safety, operation economy, and environmental friendliness in 
agricultural machines, attracting attentions from both academia and industry alike 
as a result. Detailed analysis for farming machines from the perspective of auto-
mated control is necessary for designing a suitable controller to enhance their 
performance.

The working environment farming equipment is subjected to both open and com-
plex, meaning that the automatic actuator often suffers from an uncertain large load 
and significant noise jamming. To handle fluctuant heavy load, a large stiffness 
system such as an electric-hydraulic system or electric motor with a large-ratio gear 
reducer is usually employed in these machines, often running in a low frequency 
range. Due to the application of a hydraulic system or large-ratio gear reducer, non-
linear characteristics inherent of kinetic compressed oil or backlash between gears 
are often introduced into the actuator system, resulting in containing high frequency 
information in the feedback signal of the system. This information can mingle with 
noise jamming. It is therefore a challenge to recognize the nonlinear feedback infor-
mation and make full use of it to stabilize the system and improve dynamic 
performance.
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Additionally, to be energy efficient, some actuators in farming machines such as 
an active hydro-pneumatic suspension need to work only in a narrow-frequency 
range for the reason that if working in the frequency domain the actuator will con-
sume massive amount of energy, thus a condition not acceptable to the user. It would 
require that controllers designed for these systems are expected to enhance the 
dynamic response in their working frequency range. However, “waterbed” effect 
exists in the controller design process pervasively, which would lead to the decreas-
ing of the system dynamic performance in other frequency range under the same 
controller. Properly balancing these requirements is a critical issue while also a dif-
ficult task to achieve for conventional controller designs.

While the majority automatic systems in agricultural machines respond in finite 
frequency range, it is required that they display different dynamic performances in 
different frequency ranges. In addressing this need, a novel time-frequency control 
approach is developed, one that features real-time analysis for feedback signals both 
in the time and frequency domain to determine the system’s running status.

10.2  State-of-Affair of Time-Frequency Control

From the viewpoint of simultaneous time-frequency control, traditional varying-
parameter controller implies the thought of time- frequency control. Before the 
application of computers and advanced computing software, it is hard to depict the 
system response under different inputs immediately. Analysis performed to the fre-
quency domain not only can characterize system response, it can also measure sta-
bility margin. However, nearly all controllers operate in the time domain. An optimal 
controller with invariable parameters based on analysis in the frequency domain 
cannot perform well in many working conditions. So, a feasible thought is to change 
the controller’s parameters in response to the variation of the working condition. 
Because the response of a controlled system has different frequency performance 
under different working conditions, the controller’s parameters can change with the 
feedback signal in which frequency information is contained. In this way, these 
types of controllers realize the function preliminarily that proper schemes are 
switched in time under the time-frequency analysis of system output.

Development of control theory makes many new controllers with varying param-
eters been invented. With the development of fuzzy mathematic strategy and system 
identification, fuzzy control and adaptive control are researched and applied. Taking 
fuzzy PID controller as an example, the error and derivative of error are chosen as 
the input to the controller, based on the prior knowledge, different coefficients are 
selected under different inputs, and that the derivative of error includes the current 
frequency information of the running system. In adaptive control system, coeffi-
cients of the controller are often adjusted based on the derivative of output-to-input, 
and it also includes the frequency information. Overall, through the quantified fre-
quency index concluded by the input and output of the system, the varying rules of 
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controller parameter are designed, this process accords with the connotation of 
time-frequency control approach. Thus, the main purpose of the time-frequency 
control is to improve the system performance.

The widespread use of microchips for digital computation accelerates the appli-
cation of time-frequency analysis tools. It is convenient for discrete signal process-
ing, which supplies a straightforward method for real-time time-frequency analysis, 
enabling time-frequency control to be physically realized with efficiency. Several 
studies (Tan, 2016; Lin et al., 2005, 2006) developed a series of adaptive wavelet 
neural network controllers, which combined wavelet analysis with neural networks. 
These controllers take full advantage of the two tools, with discrete wavelet analysis 
being used to extract information in the frequency domain in real-time and neural 
network to tackle nonlinearity. It was shown that neural network can identify 
unknown systems faster and get more precise results when it is incorporated with 
discrete wavelet transform to better guide the controller design. For the same pur-
poses, other studies (Lin & Li, 2012; Zekri et al., 2008; Hung et al., 2015) have 
developed a kind of controller which combines discrete wavelet transform with 
fuzzy control and neural network for nonlinear system control. Essential informa-
tion in the feedback signal can be resolved by discrete wavelet transform, which are 
then used to guide the varying rules of controller parameters, resulting in control 
performance being improved without significantly increasing the computing load. 
Therefore, with the development of discrete wavelet-based approach, exploring dis-
crete wavelet analysis with established control methods has received extensive 
interest in recent years.

Compared with the varying-parameter controllers, the output of the controller 
based on discrete wavelet analysis is continuous, which avoids the impact generated 
by switching the controller when parameters are changed. Because discrete wavelet 
analysis is equivalent to real-time decoupling in the frequency domain for a signal, 
in theory, it is more effective with synthesizing different frequency components for 
quantifying characters than addressing them based on prior knowledge. Based on 
this, Parvez and Gao (2002, 2005) applied the discrete wavelet transform (DWT) to 
traditional PID control and named it as multiresolution PID because of the multi-
resolution feature in the time and frequency domain. In their studies, DWT was used 
to decompose an error signal. Several signal components were obtained whose fre-
quencies are from low to high which together transpire the system dynamics and 
external disturbance with clarity. Then different sub-controllers were designed for 
each signal component based on its physical contents. At last, these sub-controllers 
were synthesized into one output. This scheme was later employed by Tsotoulidis 
et al. (2013) and Khan and Rahman (2008) to control brushless direct current motors 
and obtain good performance. At the same time, Sun et al. (2000) proposed an adap-
tive wavelet PID controller. In combination with the previous research, a book on 
wavelet PID was published (Tolentino et al., 2012). All these works promoted the 
use of discrete wavelet analysis in controller design.

Although algorithms that imply the idea of time-frequency control have been 
developed much earlier, the concept of time- frequency control was proposed for-
mally by Suh and his colleagues (Suh et al., 2002; Dassanayake & Suh, 2007a, b; 
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Liu & Suh, 2012, 2013; Wang & Suh, 2017; Zhang & Suh, 2022; Yang & Suh, 
2021). It is common knowledge that variation in parameters in a nonlinear system 
can lead to the deterioration of its dynamic response from stability to bifurcation or 
even chaos. It was found that the response of a nonlinear system is characterized by 
varying spectrum that is also broad in bandwidth. Suh et al. showed that high-speed 
cutting operation, albeit being excited by a single harmonic, demonstrated specific 
characteristics in the simultaneous time-frequency domain that are commonly 
shared by all nonlinear systems. To be specific, in the frequency domain, there are 
many frequency components in the response of a nonlinear system at any given 
moment. In other words, the system response is broadband. The stronger the nonlin-
earity of the system, the more frequency components, or the wider of the response 
bandwidth. The frequency components of the nonlinear system response also vary 
in time. The stronger the nonlinearity is, the more drastic the temporal variation will 
be. Therefore, nonlinear system responses must be characterized in the simultane-
ous time-frequency domain to determine system nonlinearity effectively. With the 
insight and knowledge, Suh et al. (2002) formulated a wavelet- based time-frequency 
control theory that exerts proper control as soon as the spectral components of the 
system response are identified. The philosophy of the control theory puts emphases 
on designing control laws that are carried out simultaneously in the time and fre-
quency domain.

The main purpose of the time-frequency controller is to analyze the current state 
of the system to determine the nonlinear characteristics of the system to control it. 
Considering that wavelet time-frequency analysis is widely used for real-time appli-
cations, Suh et al., presented a time-frequency control architecture features filter-x 
least mean square (FXLMS) algorithm and discrete wavelet transform (DWT) in 
leteratures mentioned before. The design was shown to work particularly well with 
systems of high nonlinearity. In addition, the controller demonstrated a better com-
putational efficiency because FXLMS and DWT are implemented together as a fil-
ter. As an adaptive controller demonstrating good performance in the time domain, 
the FXLMS component in the controller design plays the critical role of manipulat-
ing the wavelet coefficients, which carry both time and frequency information. The 
time-frequency control technique emphasizes that the control algorithm must be 
implemented in the time domain and frequency domain at the same time. Control 
errors are small in the time domain and the oscillation broadband spectrum can be 
suppressed in the frequency domain—the two indicators showing the stability of the 
system is under control. Lately, a time- frequency PID control approach was devel-
oped by our team, which fuses the new idea with the traditional controller (to be 
elaborated in the following sections). It can not only improve the dynamic perfor-
mance but also suppress disturbance through designing different parameters in dif-
ferent sub-frequency domains as decomposed by using the discrete wavelet 
transform (Wu et al., 2017).

In summary, time-frequency control is a broad control concept feasible for the 
control design of farming equipment subject to a wide range of farming operation 
needs. Due to the different frequency domain characteristics of different types of 
systems, the designed time-frequency controllers are quite different. Therefore, in 
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the design of a time-frequency control algorithm, it is often necessary to have a 
more comprehensive analysis of the time-frequency characteristics of the controlled 
system, and it is necessary to make a clear design purpose of the controller, whether 
it is to stabilize the system or to improve control performance. Exploring these 
properties, time-frequency controller with excellent performance can be designed to 
mitigate any operation condition.

10.3  Applications of Time-Frequency Controller 
for Automated Farming Equipment

This section introduces the principle of two time-frequency control configurations 
and the corresponding applications of the two controller designs are described 
in detail.

10.3.1  Time-Frequency FxLMS Control of Electric Motors 
for Support-Cutting of Sugar Cane

 Background

Sugarcane cutters play an important role in cane harvest. Their performance has a 
strong impact on stubble cutting quality that in turn affects the yield of the crop in 
the following year. Base cutting is critical to the performance of the harvester as 
well as the application of the equipment in the cane-planting area. Harvesters with 
high efficiency, a low rate of broken and low uprooting incidents are sought in 
recent years. Factors influencing the sugarcane harvest effect from different aspects 
are studied and analyzed by many researchers. Two kinds of main reasons affecting 
base cutting performance are concluded. One reason is the sugarcane growing pat-
tern or stalk pattern, which means different situations of sugarcane growing, likes 
cane stool density, the angle between cane stalk and vertical direction, or between 
adjacent two cane stalks. The other is the cutting type, which means a different 
shape of the blade and a different mounting angle of the blade. Although analytical 
and physical studies focusing on optimizing the structural and kinetic parameters of 
base cutters are abundant, problems remain including high rates of broken stubble, 
heavy losses, and uprooting. Till now, most research aimed at the traditional disc-
type base cutters which are dominant in cane harvesters around the world.

Traditional disc-type base cutters are designed in a free-cutting mode, so that the 
cutting blades chops sugarcane with high angular inertia. A blade has good cutting 
performance when the chopping angle is perpendicular to the cane stalk. As the 
angle between the chopping blade and the cane stalk decreases, the risk of the blade 
splitting the stalk becomes greater. In daily cutting operation, due to the large vari-
ety of stalk patterns, it is practically impossible to always maintain a perfect 

10 Applied Time-Frequency Control in Agricultural Machines



228

chopping angle that is normal to the cane stalk. During cutting, blade impact 
increases stalk deflection to render the angle less than 90°; as a result, the stubble 
could be split, broken, and even uprooted. It is intuitive to replace free-cutting 
(chopping) with support-cutting (shearing) because two-sided support prevents the 
cane stalk from moving freely during cutting, thus effectively reducing cane deflec-
tion and cane damage. In addition, support-cutting can achieve higher cutting effi-
ciency at a lower cutting speed. Cutting quality improves because support-cutting is 
relatively insensitive to cane growth patterns. Support-cutting for other crops just as 
wheat or rice is studied extensively as it has advantages of lower energy consump-
tion, but fewer researchers focus on support-cutting of sugarcane harvest at present. 
A kind of support-cutting device for sugarcane comprised of a set of stationary 
blades and a set of kinetic blades is researched, the cutting dynamic process is simu-
lated using finite element software named ANSYS/LS-DYNA to determine that 
how is cutting performance likes cutting force and broken rate influenced by differ-
ent blade edge angle.

Furthermore, because of the unpredicted sugarcane growing pattern, the station-
ary blade of the supporting cutting device just mentioned before does not align fully 
with each row of sugarcane in field, so it is restricted in practice for these devices. 
The base cutter with two sets of moving blades in opposite directions can overcome 
the shortage of stationary blades because it provides the supporting action in 
dynamic process. In order to study the cutting performance of this kind of cutter, a 
test platform for sugarcane support-cutting is developed, in which, a time-frequency 
FXLMS controller is developed for electric driving motor to obtain satisfied cutting 
performance (Wu et al., 2019).

 System Description of the Support-Cutting Device

Shearing a cane by support-cutting is similar to clipping a stick using a pair of scis-
sors where two sets of discs with cutting blades spin in opposite directions to shear 
a cane stalk. In this study, two cutting discs were driven separately by a variable-
frequency electric motor to achieve coaxial contra-rotation. A stable system being 
controlled is required to keep the speeds of the two motors in a proper range. These 
considerations led to the test platform design shown in Figs. 10.1 and 10.2, which 
features a mechanical sub-system and a control unit. The mechanical sub-system 
has a cutting device and a feeding device as its components. The control unit 
includes a master computer, a controller, two frequency three-phase inverters, and 
two torque/rotating speed transducers (Fig. 10.1). Table 10.1 lists the specifications 
of the test platform.

The cutting device consists of two variable-frequency electric motors and two 
cutting discs. The two cutting discs are driven by the two motors and rotating in 
opposite directions. Two neighboring upper and lower blades provide support for 
one another to enable support-cutting. Theoretically, the vertical clearance between 
the neighboring upper and lower blades should be no more than 0.5 mm to ensure 
the cutting quality. However, in practice, the clearance is set at 2 mm to prevent 

Z. Song et al.



229

Fig. 10.1 Schematic diagram of the mechanical system. 1-Upper cutting electric motor. 2-Upper 
torque/rotating speed transducer. 3-Upper cutting disc. 4-Sugarcane clamp. 5-Feeding electric 
motor. 6-Conveying chain. 7-Lower cutting disc. 8-Lower torque/rotating speed transducer. 
9-Lower cutting electric motor

Fig. 10.2 The photo of the cutting test platform
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crashing of the upper and lower blades in testing. The clearance of the test platform 
is adjustable by changing the thickness of the cushion block between the blade and 
the disc. The specifications of the cutter discs are found in Table 10.2.

An integrated transducer (TQ-660, Shitongkechuang Technology, Beijing, 
China) was used to acquire feedback signals of the torque and speed. An NI 
myRIO-1900 digital controller was used to implement the control algorithm. Real-
time dynamic data were viewed in LabVIEW. The controller and the variable-fre-
quency electric motors were linked using a SANCH S1100 series frequency 
three-phase inverter (Sanch Electric Corporation) for motor speed control. The 
feeding motor was driven by a frequency converter to allow for different feed-
ing speeds.

 Design of Time-Frequency FXLMS Controller

As a utility tool for time-frequency analysis, DWT is widely used for its superior 
ability in feature extraction of short data sequence. There is a fast pyramid algo-
rithm, developed by Mallat, that can simplify the complex process of decomposition 
and reconstruction into inner product of vectors or matrix multiplication, allowing 
the processing of a succession of discrete value of the signal to be implemented in 
real-time.

Figure 10.3 illustrates a two-level DWT processing of a signal x(k) using the 
subband coding scheme, which includes wavelet decomposition and reconstruction 
where ĝ  (k) and ĥ  (k) are high-pass and low-pass decomposition filters, respec-
tively, whereas g(k) and h(k) are high-pass and low-pass reconstruction filters, 

Table 10.1 The cutting test platform specifications

Parameters/unit Value

Power of the cutting motor P/kW 7.5
Power of the feeding motor P/kW 0.75
Rotating speed of the cutters n/(r/min) 0~900
Feeding speed v/(m/s) 0~1.5
Cutting clearance x/mm 2
Tilt angle of the cutting d/° 0~20
Length of the root stubble L/mm 30

Table 10.2 Main parameters of the cutter disc

Parameters/unit Value

Diameter of the cutter disc/mm 455
Length of the blade/mm 120
Width of the blade/mm 50
Thickness of the blade/mm 5
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respectively. The latter pair forms a quadrature conjugate mirror filter pair with the 
decomposition filters. Once the convolution between x(k) and decomposition filters 
is done, and the down- sampling are finished, the first-level detail coefficients Cg1 
and trend coefficients Ch1 are obtained. They contain the high frequency and low 
frequency information of the original signal x(k). In the same token the second-level 
detail coefficients Cg2 and trend coefficients Ch2 can be acquired using Ch1. Many 
groups of coefficients representing the frequency information from low to high can 
be generated by repeating the procedures. By engaging the groups of coefficients 
with the filters g(k) and h(k) in the reconstruction process, we can obtain the signal 
components x1(k), x2(k) and x3(k) as shown.

Assuming the wavelet filter has four coefficients, the first-level decomposition 
process convolutes the input x(k) with a high- pass filter ĝ  (k) and a low-pass filter 
ĥ  (k) can be carried out by multiplying the signal with a linear transformation 
matrix Td, as

 
X T X1 N N Nd� � � � � � �  

(10.1)

where the X1[N], Td[N], X[N] are defined below
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Fig. 10.3 DWT process of a signal
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The second-level decomposition process can be expressed as
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Correspondingly, the reconstruction process has
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where the reconstruction matrix Tr has the relationship as below
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Thus, each component of the signal can be computed as
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where Tr
A

r r c c
N� �� �1 2 1 2: :,  represents the new matrix created by taking the data from row 

r1 to row r2 and column c1 to column c2 of the reconstruction matrix Tr.
According to the Shannon Sampling Theorem, if the sampling frequency is set to 

be 2fn, then the highest frequency of the actual signal one can resolve is fn. By 
assuming that the highest frequency of the signal x(k) is fn, the DWT process can 
decompose the signal into several frequency subsets from f0 to fn, where f0 represents 
the lowest frequency of the signal whose general value is zero. Figure 10.4 illus-
trates the vivid process of how the complex nonlinear signal x(k) is expressed 
(decomposed) as simple sub- signals for easier handling. Following the two-level 
decomposition in Fig. 10.3, the value n in Fig. 10.4 is 3. Although aliasing would 
emerge in adjacent frequency subsets, it would not affect the result of dividing the 
frequency domain and designing the controller set later.

Fig. 10.4 Diagram of the decomposing process of a signal

Fig. 10.5 Block diagram of the time-frequency FXLMS controller
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The configuration of the time-frequency controller shown in Fig. 10.5 featured 
FXLMS and DWT as 2 components. The identification filter W1 was used to iden-
tify the dynamics of the system and the filter W2 controlled the system adaptively by 
updating its own parameters.

The block T in Fig. 10.5 represents an N × N wavelet transform matrix which 
embodies a filter bank. According to the Mallat pyramidal algorithm, the square 
matrix is composed of high and low filter coefficients. The configuration has two 
error sequences as follows:

 
e n d n y n� � � � � � � �  

(10.10)
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(10.11)

where e(n) is the output error between the desire output and system actual output, 
which is used to update the control filter W2, while f(n) is the identification error for 
adjusting the weight of W1. d(n) is the desired stable response or reference output 
rotating speed at time n, y(n) is the actual output of the system at time n, and ȳ(n) is 
the estimated response.

The reference input vector at time n, defined as X(n) in Eq. (10.12), includes the 
reference input x(n) that can be set to a nonzero constant if there is not a specific 
reference input sequence. Similarly, Eq. (10.13) gives the controller output vector, 
defined as U(n) at time n, and includes the controller output u(n) that can be com-
puted using Eq. (10.14)

 
X n x n x n x n N

T� � � � � �� � � � �� ��� ��, , ,1 1
 

(10.12)

 
U n u n u n u n N
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(10.13)

 
u n n nT� � � � � � �W TX2  

(10.14)

where W2 is an adaptive FIR filter of length N

 
W2 2 0 2 1 2 1n w n w n w nN

T� � � � � � � � � ��� ���, , ,, , ,
 

(10.15)

It is evident that u(n) can be changed by adjusting W2. The least mean square 
(LMS) algorithm of the error e(n) and the steepest descent method were employed 
to update the weights of W2

 
W n W n n e n2 2 21�� � � � � � � � � �� TÛ

 
(10.16)

in which Ȗ(n) is
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û n n nT� � � � � � �W TX1  

(10.18)

and W1 is the FIR identification filter of length N used to calculate the estimated 
response ȳ(n)

 
W1 1 0 1 1 1 1n w n w n w nN
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(10.19)

 
y n n nT� � � � � � �W TU1  

(10.20)

Similarly, the LMS algorithm of the identification error f(n) and the steepest 
descent method were employed to update W1

 
W W TU1 1 11n n n f n�� � � � � � � � � ��

 
(10.21)

Parameters μ1 and μ2 are the step sizes that control the incremental estimation of 
W1 and W2 at each iteration step. They influence the performance of the controller 
to a large extent. Overall, the time-frequency controller uses a control method where 
the feedback signal is not directly used in the calculation of the controller output. 
Instead, it is sent to update the coefficients of the controller to change the output. As 
a result, the control error was kept within a range by minimizing the mean square 
root of the error.

Considerations were given to the selection of a wavelet function that provided 
the best control performance. Following along with the numerical experiments, a 
db3 mother wavelet was used to create the wavelet matrix using six high-pass and 
six low-pass filter coefficients. In theory, the larger the N of the control filter or the 
identification filters is, the more parameters can be involved to control the system, 
thus a better controller. However, computational capacity is the limiting factor dur-
ing a microprocessor selection. Once the request of real-time control and the high 
response frequency of the motor are synthesized, the length of the filter N is set to 
64 and the sampling frequency and the computing frequency are set at 500 Hz. As 
described above, step sizes μ1 and μ2 are the key parameters for controller design. A 
set of step-size rules is given in the equations below.

 �1
71 10� � �

 (10.22)
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Equation (10.23) shows that a variable step size is used to update the control 
filter W2. When the error is larger than a threshold value of 600, a larger step size is 
required to minimize the error. In the first 20 s a larger step size is required to update 
W2 quickly because its initial value is zero. In other situations, a small step size is 
used for the system to meet the control objective with high precision when the error 
is throbbing near zero.
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 Results and Discussions

Experiments including a series of idle tests and sugarcane cutting tests were per-
formed with the experiment equipment shown in Fig. 10.2. Idle tests were to verify 
the feasibility of the controller and the cutting tests to prove the effectiveness of 
support-cutting.

Figure 10.6 is the response of sinusoidal tracking of the disc rotating speed. 
Allowing for the phase lag between the actual output and the target, the system 
response is a perfect sine wave, indicating that cutter speed is controlled smoothly 
by the time- frequency controller. The lock-step responses of the upper and lower 
discs were considered next. Figure 10.7a shows step responses of the speeds of the 
upper and lower discs. Figure 10.7b plots the absolute speed difference of the 2 
discs. The zoom-in figure in Fig. 10.7b provides the detail of the speed differences 
starting at t = 25 s. The peaks in Fig. 10.7b correspond to the moment each step 
begins, which shows the two discs speeds are different in spite of the fact that they 
are under the same reference input. This is due to the inherent difference of the 2 
frequency three-phase inverters. However, when the responses reach steady-state, 
the difference decreased rapidly to be less than 2.5 rpm. In the entire process, the 
overshoot of the step response was within 1%.

Cutting tests were conducted to study the load impact on the speeds of the two 
electric motors with and without control. The corresponding test results are shown 
in Fig. 10.8 in which Fig. 10.8a, b are the control-free and controlled speed varia-
tions, respectively. Figure 10.8c illustrates the absolute speed difference of the two 
motors with control and without control. When a cutting blade touches a cane stalk, 
the speed of the cutter disc drops sharply, thus the dips in Fig. 10.8a, b. The speed 
drops 5 rpm without control in Fig. 10.8a and 2 rpm with control in Fig. 10.8. It is 
evident that speed control was improved with the online time- frequency controller.

When the two motors were properly controlled, the speed difference between the 
upper and lower discs was reduced more than under the condition without control 
subject to cutting resistance. The speed difference between the two motors is plotted 
in red in Fig. 10.8c where the maximum value was registered at 5 rpm. The black 
solid line in Fig. 10.8c represents the speed difference with control where the maxi-
mum value is less than 2.5 rpm. It is evident that saltation of speed was significantly 
reduced.

Fig. 10.6 Results of 
sinusoidal tracking of the 
disc rotating speed
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Instantaneous frequency (IF) is another indicator for evaluating the performance 
of the time-frequency controller. Intrinsic mode functions (IMFs) can be acquired 
by employing empirical mode decomposition (IMFs) to decompose the upper disc 
speed signal to obtain the corresponding instantaneous frequency of the IMFs. The 
algorithm is also called the Hilbert–Huang Transform (HHT). Generally, a narrow-
frequency bandwidth and low-IF oscillation amplitude are indications of stable cut-
ting. Figure 10.9a, b below give the IF of rotational speed without and with control. 
Figure 10.9c, d compare the IFs of the second and third IMFs without control and 
under control.

It can be seen from Fig. 10.9a, b that the IF of the speed signal without control 
oscillates more violently than its controlled counterpart where the first IF (in black) 
in Fig. 10.9a switched more frequently between 0 Hz and 30 Hz. Similar observa-
tions can be made in Fig. 10.9c, d where the maximum amplitude of the second IF 
with control is approximately 15 Hz, while the one without control is 25 Hz. The 
time-frequency responses of the controlled speed were consistently better than 
those without control.

The essential characteristics of the cutting process can be understood from the 
frequency-domain perspective. The cutter disc was not running as stably as expected. 
The speed varied constantly even in the non-cutting state. Minor amplitude varia-
tion was not a reliable indication of cutting stability. Variations with high frequency 
are harmful to sugarcane stalks in the cutting process because changing each time 
causes a tiny impact to the microscopic tissue of the stalk and is the initial fracture 

Fig. 10.7 Results of 
synchronization step 
response. (a) Step 
responses of upper and 
lower cutting discs. (b) 
Absolute value of the 
difference of rotating 
speeds between upper and 
lower discs
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that ultimately becomes zig-zag splitting. Thus, ensuring stable rotating speed of 
the cutter disc under time-frequency control is meaningful to the sugarcane base 
cutter if decreased broken rate is desired.

A series of indoor cutting tests were performed to compare the cutting qualities 
of free-cutting (on 30 stalks) and support- cutting (on 30 stalks). For support-cutting, 
the speeds of the upper and lower discs were both set at 200 rpm. For free-cutting, 
the upper disc was powered off and the speed of the lower disc set at 200 rpm. Cane 
stalk cutting quality corresponding to support- cutting and free-cutting is shown in 
Figs. 10.10 and 10.11. Figures 10.10a and 10.11a show cutting damages highlighted 
in red. Figure 10.10b and 10.11b give the details of stalk splits seen in Fig. 10.10a 
and 10.11a.

Fig. 10.8 Comparison of 
the difference rotating 
speed without and with 
control. (a) Rotating 
speeds without control. (b) 
Rotating speeds with 
control. (c) Absolute value 
of the rotating speed 
difference between two 
motors with and without 
control
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The damage rate, which is calculated by dividing the number of total stalks (30) 
by the number of damaged stalks, is used to appraise cutting quality. Comparing 
Fig.  10.10 with Fig.  10.11, support-cutting reduced the stalk damage rate from 
26.67% to 6.67%.

Fig. 10.9 Comparison of instantaneous frequency for rotating speed without and with control. (a) 
Instantaneous frequency of rotating speeds without control. (b) Instantaneous frequency of rotat-
ing speeds with control. (c) IF comparison of the second IMFs of rotating speeds. (d) IF compari-
son of the third IMFs of rotating speeds
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10.3.2  Time-Frequency PID Controller 
for the Electro-Hydraulic System

 Background

Nonlinear control methods including sliding mode (or variable structure) control, 
back-stepping control, adaptive control, and fuzzy control have seen increasing 
applications in electro-hydraulic systems whose dynamic behaviors are highly non-
linear due to complex structures of many components, time-varying parameters, and 
uncertainties. Electro-hydraulic systems found in farming equipment and machin-
ery with characteristically large power are often employed to handle system 
responses that are of low frequency. Given the low operation speed and thus weak 
nonlinearity, PID controllers are in general effective in mitigating the impact of 
nonlinearity on stability and performance. PIDs are commonly employed to work 
with other control concepts and implemented as digital signal processors for the 
real-time control of many an industrial application including electro-hydraulic 
systems.

Fig. 10.9 (continued)
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Theoretically, PID parameters can be optimally tuned to improve dynamic per-
formance, reduce steady-state error, and overcome system oscillation. However, 
doing so will inevitably lead to chatter in daily applications due to the nonlinearities 
of omnipresent high frequency, external load disturbance, and noise jamming. That 
is, adjusting parameters however slightly can induce high frequency responses that 

Fig. 10.10 Performance of 
the support-cutting. (a) 
Results of all cutting tests. 
(b) Detail of split roots
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Fig. 10.11 Performance of 
traditional free-cutting. (a) 
Results of all cutting tests. 
(b) Detail of split roots
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are nonlinear and inadvertently magnify the external load fluctuation and noise dis-
turbance, rendering low energy efficiency and risking system breakdown. 
Conversely, conservative controller design aiming to weaken the control action in 
exchange for system stability sacrifices system performance at the expense of pre-
cious resources. This is a dilemma demanding a solution to an improved controller 
design that is effective in mitigating disturbance, negating high frequency nonlinear 
oscillation, and in the meantime enhancing system performance.

The sensitivities of the proportional, differential, and integral control actions of 
the PID method are different from each other in different frequencies. Strengthening 
the differential action in low frequency part of the error signal is effective in reduc-
ing overshoots, suppressing oscillations, stabilizing the system stable, and improv-
ing system response and dynamic performance. However, it can also negatively 
amplify the high frequency part of the error signal that is indicative of nonlinear 
high frequency chattering and noise interference. Similarly, the integral control can 
eliminate the steady-state error and improve the precision of the control system. But 
enhancing the integral action to the low frequency can cause the phenomenon called 
wind-up or integral saturation. Because the oscillation of the low frequency error 
signal can last a long period of time, integral saturation can force the solenoid valve 
spool that is already reaching the end of the valve to jerk and impact. Conversely, 
the high frequency error is insensitive to larger integral coefficient because of the 
rapid fluctuation involved. Therefore, it is essential that a PID controller is designed 
by exploring the parameters for targeting different ranges of frequency response.

An improved electro-hydraulic system controller design is reported herein with 
exploring all the prominent TF features. A nonlinear dynamic system model of a 
hydraulic cylinder is developed, which is controlled by a solenoid proportional 
valve. The model is used for identifying the optimal control parameters and per-
forming numerical experiments that consider various nonlinearities including fric-
tion, dead zone, leakage, and the variable effective bulk modulus. The working 
principle of the wavelet-based TFC and the design of a TFPID controller incorporat-
ing PID control are presented. At last, the hardware-in-the-loop experiments 
employed based on the mathematical model. Comparisons are also made with the 
traditional PID controller to validate the controller design.

 System Description of Electro-Hydraulic System

Consider the hydraulic cylinder controlled by a solenoid proportion valve of a uni-
versal configuration such as the one shown in Fig. 10.12. Comprised of a double-
ended hydraulic cylinder, a 4/3-way solenoid proportion valve, and an unknown 
load, the system is commonly applicable to either force or position control. A com-
prehensive nonlinear model of the system is formulated.

According to Newton’s second Law, the dynamic equation of the hydraulic actu-
ator can be described as

 
M x B x K x p p A F Fe e L F

¨

� � � �� � � � 1 2  
(10.24)
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where x is the displacement of the piston, m is the total mass of the piston along with 
all the linked objects, Be and Ke are equivalent damping and the spring stiffness 
coefficient, respectively, p1 and p2 are pressure of the left and right chamber, respec-
tively, A is active area of the piston, and FL is the unknown force of nonlinearity due 
to the external disturbance. FF is the friction force on the piston, which is one of the 
primary nonlinear factors affecting the dynamics of the actuator piston. The particu-
lar friction is influenced by many factors. In general, it is considered to be a function 
of the position and velocity of the piston. Many empirical models have been estab-
lished and applied to specific hydraulic actuators.

A particular friction equation of motion of the actuator piston following from the 
Lund–Grenoble model is adopted. It is formulated based on sound hypotheses and 
is rigorously derived on the basis of many kinds of friction can be considered. Most 
importantly, it agrees well with empirical data in most situation with adjusting 
parameters in the formulation properly. The friction model which is a set of coupled 
equations is concisely given below in Eq. (10.25).
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where z is an intermediate variable, g x� �  a function describing the steady-state 
friction characteristics at a constant velocity, vsk the Stribeck velocity defined as the 
most unstable velocity on the Stribeck curve, α0 the Coulomb friction, α1 the 
Stribeck friction, α2 the viscous friction parameter, σ0 the spring constant, and σ1 the 
damping coefficient.

e1q

e2q LF
x

1V 1p A

A 2p 2Viq

1q 2q

u vx

rp sp rp

Fig. 10.12 Schematic of 
the hydraulic cylinder 
controlled by a solenoid 
proportion valve
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For a double-ended hydraulic cylinder experiencing leakage, the following pres-
sure continuity equations featuring the effective bulk modulus βe for the cylinder 
chambers can be derived:
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where V1 and V2 are the original control volumes of the left chamber and right cham-
ber, respectively, including the volume of the servo valve, pipeline, and cylinder 
chambers. q1 is the supplied flow rate to the left chamber, while q2 is the return flow 
rate of the right chamber. The relationship between the spool valve displacement 
and the load flow dictates that
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where the s(xv) is a function defined as follows:
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and
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where ps is the supplied pressure, pr is the return line pressure, xv is the spool dis-
placement of the solenoid proportion valve, Cd is the discharge coefficient, w1 and 
w2 are the spool valve area gradients, and ρ is the fluid density. It should be noted 
that the parameter qi found in Eqs. (10.26) represents the internal leakage, while qe1 
and qe2 seen in Eqs. (10.26) denote the external leakages of the left chamber and 
right chamber, respectively. They are determined through Eqs. (10.30).
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where ci is the internal leakage coefficient and ce1 and ce2 are the external leakages 
of the left chamber and right chamber, respectively. Note also that the effective bulk 
modulus βe is primarily affected by the chamber pressures involved as Eq. (10.31).
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where βe1 and βe2 are the input chamber and output chamber effective bulk moduli 
of the cylinder, respectively. c1 and c2 are constants.

The displacement of the shaft of the solenoid valve xv is related to the valve’s 
voltage input u, via a second-order system:

 x x x K uv v v v v v

¨

� � �2 2 2�� � �  (10.32)

where ζ, ωv, and Kv are the damping ratio, natural frequency, and gain of the valve 
dynamics, respectively.

The dynamic equations of the electro-hydraulic system depicted in Fig. 10.12 
can now be formulated by using a set of differential functions through recasting 
Eqs. (10.24)–(10.32) and the following state variables: x1 = x, x2 =  x , x3 = p1, x4 = p2, 
x5 = xv, and x6 =  xv ,
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In real electro-hydraulic system, there are limits on the displacement of the pis-
ton and a dead zone in the valve spool. Such physical constraints are modeled using 
the state variables as follows:
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The initial position of the piston is set at the middle of the cylinder and according 
to its effective length, the parameter can be determined as: xmax = −xmin = 0.2 m. 
Similarly, assuming that the valve is symmetrical and the initial position of the 
spool is also at the middle of the valve sleeve, so the value is obtained as: 
xv
max  = − xv

min  = 3 mm, xv
dmax  = − xv

dmin  = 0.5 mm. In addition, other parameters 
involved that are determined by structure of system or working environment are 
listed in Table 10.3.

When a specific piston motion trajectory xo(t) or a force Fo(t) is desired, the 
objective of designing the controller is therefore to generate a series of output uo(t) 
to the solenoid valve through adjusting the original input signal ui(t) to achieve the 
tracking of x1 and the control of (x3–x4) subjected to the exertions of the unknown 
external disturbance FL and the nonlinear friction force FF and to maintain the dis-
placement of the piston with limited fluctuation.

Table 10.3 The parameters used in the model

Parameters Value Parameters Value

M 9.0 kg ci 1097 mm3/(s•MPa)
Be 2000 N/(m/s) ce1 120 mm3/(s•MPa)
Ke 10 N/m ce2 120 mm3/(s•MPa)
A 645 mm2 Kv 0.5
c1 99.993 MPa ωv 534 rad/s
c2 0.0733 ζ 0.48
V1 1.29 × 105 mm3 σ0 5.77 × 106 N/m
V2 1.29 × 105 mm3 σ1 2.28 × 104 N/m/s
kq1 2.38 × 10−5 m5/2/kg1/2 α0 370 N
kq2 2.38 × 10−5 m5/2/kg1/2 α1 217 N
Ps 21 MPa α2 2318 N/m/s
Pr 0.1 MPa vsk 10 N/m
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 Design of Time-Frequency PID Controller

A TFC controller concept is proposed with incorporating PID control to realize the 
TFPID approach taking full advantages of both the PID and TF method. Figure 10.13 
shows the schematic of the TFC approach. In the figure, r represents the desire or 
reference output, and y is the actual output of the system, which represents the sys-
tem performance. The output y also implies the internal information and reflects the 
essence of the system. Traditional controllers, be them feedback or feedforward, 
always operate r and y directly to export a series signal to the system. In contrast, 
the results of the synthesis operation of r and y must be analyzed and processed by 
the time-frequency method, thus producing several sub-signals to be computed by 
their corresponding controller. In other words, the TFC scheme includes several 
controllers at the same time, all working concurrently and constituting a con-
troller set.

The TFC is expected to design an exclusive controller for each signal component 
xi(k), i = 1, 2, …, n, so that the parameter of each controller can meet the perfor-
mance requirement of the system in regard to the particular frequency response. 
Hence, the performance of system would be optimal in all frequency domain using 
the controller subsets. Most important, definitive physical interpretation can be 
made in the TFC design process.

The TFPID controller concept incorporates the characteristics of P, I, and D 
control with the TF framework. The TFPID design concept is found in Fig. 10.14. 
Traditional PID controller often operates on the error e, while TFPID applies the 
DWT to sequences e(k) first to resolve the high frequency error eH and the low fre-
quency error eL. The high frequency information indicative of nonlinearity, mea-
surement noise, and external disturbances are carried by eH, whereas the main 
working frequency information like phase lag is contained in eL. The electro-
hydraulic system is typically working in the low frequency 0-to-2 Hz range, so the 
error signal needs be multi-level wavelet decomposed, and the component belong-
ing to the lowest frequency range can be taken as the low frequency error eL, while 
the rest be synthesized to be the high frequency error eH.

The parameters of each single controller need to be designed based on the prin-
ciple of PID method with each PID controller considering a specific frequency 
band. Considering the digital control signal u(k) at time k
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where KPL, KIL, and KDL represent the coefficients of P, I, and D for the low fre-
quency error eL, KPH, KIH, and KDH represent the controller coefficients for eH, and T 
is the sampling period.
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To improve the precision in controlling step response and suppressing overshoot, 
a simple algorithm of separated integral method is introduced to the two PID con-
trollers, rendering the following controller output:
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The corresponding TFPID controller output is therefore
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and the constraint conditions of the errors are as follows:
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Fig. 10.13 Schematic of 
the time-frequency control 
approach

Fig. 10.14 Schematic of the TFPID control approach
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As the TFPID controller works with two concurrent PID controllers, the number 
of parameters involved is therefore twice than the traditional PID controller, thus 
making TFPID controller more powerful and flexible. In theory, more parameters 
the controller has, more difficult the design task is. But with each parameter of the 
PID corresponding to specific response of the system, it is not demanding to design 
the specific TFPID to meet the control goal. Although parameters are fixed once the 
controller is designed, but because the constituent of different frequency in the sig-
nal is always varying in time, so the output signal u(k) is dynamical with different 
and changing frequency components. Hence, the TFPID is adaptive to the variation 
in the frequency domain.

 Results and Discussions

In order to validate the control method, MATLAB Simulink is employed to design 
the optimal parameters and a hardware-in-the- loop test bench is used to evaluate the 
TFPID design against the PID controller.

Extensive research has been conducted to identify the mother wavelet to be used 
in the study. The Daubechies wavelet is chosen for its properties of orthogonality 
and compact support. In addition, based on the rule that a wavelet with a large num-
ber of filter coefficients can match the characteristic features in a time series with 
greater efficiency, db3 wavelet of six filter coefficients is applied to decompose the 
error. Considering the working frequency of the system and the computational 
capacity of the microcomputer, the size of the error signal buffer (the number of 
observations in the time series) Nf is set to 512 and to be six-level decomposed.

The simulation model is built based on the model in Eq. (10.33) and the control 
algorithm is compiled using the S-Function. To get the minimum step response time 
with the condition of restraining overshoot to be less than 1%, a set of coefficients 
of traditional PID controller are obtained in Table 10.4. They are afterward commis-
sioned as the references for designing the TFPID controller. The top and bottom 
limits of the error are chosen to be emax = −emin = 0.0005 m.

Per the account on PID given before, the control system will be more stable and 
responding faster by increasing the proportional and derivative coefficients for the 
low frequency error signal and decreasing the integral coefficient for the high fre-
quency at the same time. Moreover, the wind-up phenomenon can also be elimi-
nated. Enhancing the integral action by removing the derivative action to the high 
frequency component of the error signal can restrain the oscillation of high fre-
quency. Table 10.5 summaries the parameters of the TFPID controller design.

The system model is compiled by VeriStand software and running in real-time on 
mainframe PXIe-8135. The control algorithm is edited in LabVIEW and down-
loaded to an embedded hardware device named NI myRIO-1900 as the controller 
prototype. Signal transmission between the virtual electro-hydraulic system and the 
controller is via a signal cable and the information can be uploaded to the computer 
at the same time. Figure 10.15 shows the test bench.

Z. Song et al.



251

Fig. 10.15 Hardware-in-the-loop test bench for simulation of the electro-hydraulic system control

Table 10.4 Coefficients of the PID controller

Coefficient Value

KP 3000
KI 60,000
KD 14

10 Applied Time-Frequency Control in Agricultural Machines



252

Three different groups of comparison tests are performed to demonstrate the valid-
ity of the new controller design. The step responses of the two controllers are seen in 
Fig. 10.16, where Fig. 10.16a is the simulation result using Simulink and Fig. 10.16b 
is the experimental result using the test bench. A reference step signal from 0 to 0.03 m 
is given to the controller at the beginning and an impulse load of 10,000 N is applied 
at t = 0.5 s for 0.02 s. The step response times of the two control methods are similar, 
thus similar dynamic performances. However, there is a steady-state error seen in the 
simulation result after stepping due to the presence of the dead zone in the valve. In 
addition, when the high frequency oscillation occurs triggered by the impact, the sys-
tem under the traditional PID control starts to oscillate and regains stability after a 
while. By contrast, the system restores dynamic stability immediately under the con-
trol of TFPID, thus demonstrating the robustness of the design.

Table 10.5 Coefficients of the TFPID controller

Coefficient Value

KPL 3000
KIL 60,000
KDL 14
KPH 1500
KIH 100,000
KDH 0
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The results of sinusoidal tracking are also presented as simulation and experi-
ment in Figs. 10.17 and 10.18, respectively. Figure 10.17a gives the actual displace-
ments of the piston in the hydraulic cylinder under the two control methods, 
Figure 10.17b shows the error between the actual displacement and the reference 
and Fig.  10.17c presents the high frequency components decomposed from the 
error signal.
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As shown in Fig.  10.17a, the system can track the sinusoid faster under the 
TFPID control without the high frequency oscillations displayed in the one con-
trolled by the PID.  Such oscillations are manifested as system chatter as so 
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prominently observed in Fig. 10.17b. The feasibility of the TFPID controller design 
is further demonstrated in Fig. 10.17c where chatter in the high frequency compo-
nent is resolved. Similar observations can also be made with the corresponding 
experimental results found in Fig. 10.18 The controller out in Fig. 10.18d attests in 
unambiguous terms to the same conclusion that the TFPID controller is signifi-
cantly better than the PID in giving less violent output.

A random interference signal is added to simulate disturbance. The signal is 
50 Hz in frequency with an amplitude of 2% of the step applied to y. The corre-
sponding results are given in Fig. 10.19. It is evident that the TFPID control method 
is able to maintain the piston close to the reference position with unremarkable 
transitions. This further implies that TFPID works well at anti- interference. It is 
more robust than the PID control to the interference of high frequency disturbance.

In overall, the P, I, and D control methods were examined to explore the feasibil-
ity of considering the frequency response of an error signal as a low and a high 
subband. The principle of the TFC theory was also discussed. A TFPID controller 
was then developed and applied to control a specific nonlinear system that is a 
hydraulic cylinder controlled by a solenoid proportional valve. Optimal control 
parameters were found using the system dynamic model derived by considering 
various nonlinearities including friction, dead zone, leakage, and the variable effec-
tive bulk modulus. A hardware-in-the-loop test was subsequently implemented to 
evaluate the performance and quality of the novel TFPID controller design. It was 
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shown that the TFPID control demonstrates excellent performance in anti-interfer-
ence, stability, and dynamic response better than that of the traditional PID control-
ler design.

10.4  Summary

In this chapter, we briefly introduced the principle of the time-frequency control 
approach put forward in recent and its applications in agricultural machines. Firstly, 
the feature of automated agricultural machines was discussed to make clear the 
problem to be addressed in these actuators. It concludes that real-time analysis for 
feedback signals both in time and frequency domain is necessary to decide the sys-
tem running status, then the controller can be specially designed to meet high con-
trol requirements of agricultural machines.

The current state of affairs of time-frequency control was reviewed and the prin-
ciple and detail algorithm of the control method was described. It was argued that 
the discrete wavelet transform (DWT) developed in recent decades for analyzing 
feedback signal is feasible for conducting time-frequency control.

At last, we developed two time-frequency controller designs, namely TF-FxLMS 
controller and TFPID controller. The TF-FxLMS controller was used to stabilize the 
rotating speed of the cutting disc for sugarcane harvester, while the TFPID control-
ler was employed to improve the dynamic performance of the electric-hydraulic 
system. Their control results were discussed, which demonstrated excellent perfor-
mance in the respective agricultural machines considered.
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Chapter 11
Applied Unmanned Aerial Vehicle 
Technologies: Opportunities 
and Constraints

Yongjun Zheng, Shenghui Yang, and Shijie Jiang

11.1  Introduction

Unmanned Aerial Vehicles (UAVs) are a kind of unmanned aircraft operated by 
radio remote control equipment and self-contained program control devices or by 
on-board computer completely or intermittently. With the increased demand and the 
advancement of technology, agricultural UAV, which is specifically configured for 
agricultural operation, has been developed and used extensively. Now agricultural 
UAVs have been gradually employed in modern farms to increase production 
efficiency.

This chapter will firstly demonstrate the classification of agricultural UAVs. 
Then, the main application field of these UAVs will be illustrated with current study 
examples in detail. Next, the benefits and limitations of agricultural UAVs will be 
analyzed and finally the development trend of the technology applied for such UAVs 
will be discussed with some study instances.

11.2  Classification of the UAV Configured 
for Agricultural Operation

As shown in Fig.  11.1, agricultural UAVs can be classified based on different 
considerations.

On the basis of fuselage features, agricultural UAV can be divided into fixed- 
wing UAV, rotor UAV, parafoil UAV, flapping-wing UAV, etc. Fixed-wing UAV and 
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rotor UAV are the most widely used types in agriculture. Moreover, according to the 
number of rotors, rotor UAV includes single-rotor UAV (or unmanned helicopter) 
and multi-rotor UAV. For instance, if a UAV has six rotors, it belongs to multi-rotor 
UAV and is called a six-rotor UAV.

In terms of task categories, agricultural UAV contains plant-protection UAV, 
remote-sensing UAV, meteorological monitoring UAV, forest monitoring UAV, pol-
lination UAV, grazing UAV, etc. Plant-protection UAV, specifically for chemical 
spray and fertilization, and remote-sensing UAV, specifically for photographing and 
spectra acquisition, are commonly utilized in agriculture.

In the light of energy source, agricultural UAV consists of electric-powered UAV, 
oil-powered UAV, and oil-electric hybrid UAV. For electric-powered UAV, batteries, 
such as lithium batteries, are used as the unique energy source. This kind of UAV is 
eco-friendly and has low costs. Meanwhile, it has a relatively low-level request for 
an operation. However, small load and short endurance are its significant limita-
tions. For oil-powered UAV, load and wind resistance are increased, but control 
robustness is lower with higher operation level request needed. Oil-electric hybrid 
UAV is a new type of UAV, integrating the advantages of the other two types, having 
good expectations and corresponding techniques are developing.

Agricultural UAV 

Classification

Fuselage feature

Task category

Fixed-wing UAV

Rotor UAV

Parafoil UAV

Flapping UAV

...

Single-rotor UAV

Multi-rotor UAV
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Meteorological monitoring 

UAV

Forest monitoring UAV

Pollination UAV

Grazing UAV

...

Electric-powered UAV
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...
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Fig. 11.1 Classification of agricultural UAV
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In consideration of load level, agricultural UAV comprises 5, 10, and 20  kg 
UAV, etc.

11.3  Main Applications of Agricultural UAV

11.3.1  Low Altitude Remote Sensing

Low-altitude remote sensing is a comprehensive technology of remote detection 
and recognition of objects and land based on the principle of electromagnetic radia-
tion. By carrying different devices such as cameras and spectrometers, agricultural 
UAV can collect the images and spectra of a certain area, which are then further 
analyzed to obtain different parameters, such as Red-Green-Blue (RGB) bands, 
Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), and char-
acteristic wavebands. Lastly, proper modeling approaches are selected and exploited 
to establish the relationship between the parameters and target output.

At present, low-altitude remote sensing in agriculture mainly focuses on crops, 
correspondingly containing two aspects, one, agricultural investigation and estima-
tion, the other, the monitoring of plant diseases, pests, and natural disasters.

 Agricultural Investigation and Estimation

Yield Estimation

Yield is directly related to the agricultural economy and farmer income. Distinct 
measures can be taken based on the result of yield estimation during crop growth. 
Therefore, it is greatly necessary to accurately estimate yields. Traditional estima-
tion approaches are labor intensive, which rely on manual operation, and require 
people to randomly collect samples in fields.

Agricultural UAV is now employed to quantify phenotypic variances in crops by 
one or combinations of image or spectra features (Zhou et al., 2021). Many crops 
such as sugarcane, soybean, apple, and wheat have been studied and analyzed to 
obtain yields with common analysis methods as followed:

 1. Conventional image processing: Conventional image processing involves in 
point-based operation and group-based operation. As listed in Table 11.1, besides 
Binarization and Histogram Analysis, point-based operation includes Brightness 
Mapping, Addictive Operation, Flip Operation, Scale Operation, Logarithm 
Operation, Index Operation, etc. For group-based operation, Template 
Convolution Operation, Filtering, Morphological Operation (expansion and cor-
rosion), Force Field Transformation, etc. are the related spots.

 2. Conventional spectral processing: Spectral technology contains Near Infrared 
Spectroscopy (NIR) technology and Hyperspectral Imaging Technology (HIT).
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NIR is an electromagnetic wave between visible light and mid-infrared light. The 
wavelength range is from 780 nm to 2526 nm. The main source of NIR is the absorp-
tion of frequency doubling and frequency combining of the vibration of hydrogen- 
containing groups (C-H, N-H, H-O). The reflection information has the composition 
and molecular structure of the majority of the organic compounds.

HIT is a combination of imaging technology and spectral detection. It forms 
dozens or even hundreds of narrow bands for each spatial pixel through dispersion 
to achieve continuous spectral coverage. At the same time, the spatial characteristics 
of targets are imaged. Thus, spectral information can reflect the internal structure of 
samples (e.g. molecular composition and quality components), while image infor-
mation can reflect the external quality characteristics of samples (e.g. size, shape, 
and defects).

The spectral processing method is the same for both spectroscopy and hyper-
spectral imaging technologies. . The process flows in general are: pre-processing for 
noise reduction, dimension reduction, and sample set partition followed by model 
development and evaluation indicator establishment. For each step, the widely used 
algorithms are shown in Table 11.2.

 3. Artificial intelligence (AI) algorithms: With the improvement of AI algorithms, 
neural networks and machine learning are becoming more popular due to their 
better accuracies, such as deep learning (DP), PLSR, SVM, Decision Tree (DT), 
Random Forest (RF), and Gradient Boosting Regression Tree (GBRT).

Table 11.1 Commonly used algorithms for conventional image processing

Step name Processing algorithm

Pre-processing Grayscale Float algorithm, integer algorithm, shift algorithm, 
average value algorithm, green only

Binarization Bimodal algorithm, P-parameter algorithm, iterative 
method, Otsu method

Histogram analysis
Point-based 
operation

Brightness mapping
Addictive operation
Flip operation
Scale operation
Logarithm operation
Index operation
Hough transform

Group-based 
operation

Template convolution 
operation

Mx operator, my operator

Filtering Average value filter, maximum value filter, 
minimum value filter

Morphological 
operation

Expansion, corrosion, filling

Force field transformation
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Generally, regardless of which methods, the core of yield estimation is to find an 
appropriate relationship between image/spectrum features and target yields. The 
following is an example of apple yield estimation based on image processing by 
neural networks (Li et al., 2021).

Example 11.1: Yield Estimation Method of Apple Tree Based on Improved 
Lightweight YOLOv5

 1. Hardware and experiments: As shown in Fig.  11.2, the experiment was con-
ducted in Yantai, Shandong Province, China (N 37°16′, E 120°64′). A quad-rotor 
UAV was used to carry (1) a camera and a Raspberry Pi Camera V2 for image 
acquisition and (2) a Raspberry Pi for image storage. The flight altitude of the 
UAV was 1.5 m and the distance from the UAV to apple trees was 1.2 m. Images 
of the apples in the first day, eighth day, and fifteenth day after coloration were 
collected in different light conditions. White background was used to reduce 
noise. Meanwhile, the apples from the sampled trees were weighed when 
harvested.

 2. Software and data processing: Fig. 11.3 shows the procedure of image process-
ing. First, data cleaning was conducted to reduce the influence from repeated and 
fruitless images. Then, the dataset containing all kinds of apple tree images was 
divided into six subsets: front-lighting, side-lighting, and back-lighting condi-

Table 11.2 The widely used algorithms for spectral processing

Step Processing algorithm

Pre-processing S-G smoothing, standard normal variate (SNV), multiplicative scatter 
correction (MSC), first derivative, second derivative, wavelet transform 
(WT), min-max normalization, z-score normalization

Dimension 
reduction

Principal component analysis (PCA), uninformative variable elimination 
(UVE), minimum noise fraction (MNF), successive projections algorithm 
(SPA), competitive adaptive reweighted sampling (CARS)

Sample set 
partition

Random sampling (RS), Kennard-stone (KS), sample set partitioning based 
on joint x-y distance (SPXY)

Model 
development

Classification Partial least squares discrimination 
analysis (PLSDA), support vector 
machine (SVM), linear discriminant 
analysis (LDA), artificial neural network 
(ANN), K-nearest neighbor (KNN)

Regression Partial least squares regression (PLSR), 
multiple linear regression (MLR), 
principal component regression (PCR), 
support vector regression (SVR)

Evaluation 
indicator 
establishment

Classification Correct classification rate (CCR), kappa 
coefficient

Regression Determination coefficient (R2), root 
mean square error (RMSE), reactive 
plasma deposition (RPD)
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tion with and without white background, respectively. Each subset had 100 
images and the target apples were labeled by rectangles in LabelImg software 
manually to obtain coordinates and species. Next, the labeled datasets were used 
as the input of the yield estimation model to estimate the final yield.
As shown in Fig. 11.4a, the yield estimation model included two modules, Fruit 

Recognition Module and Yield Fitting Module. For the former, YOLOv5 network 
was utilized and optimized. Fig. 11.4b shows the optimization, which was marked 
by the  red squares. Pooling Block Attention Module (PBAM) was specifically 
developed and added into the network with the Depthwise-Pointwise- Batch_
normalisation- Leaky_relu (DPBL) unit to deal with both large network parameters 
and lacking attention preference. Then, the number of fruits and the area of each 
rectangle tab were obtained as the input of Yield Fitting Module. Deep neural net-
work (DNN), shown in Fig. 11.4c, was exploited as Yield Fitting Module due to the 
nonlinearity between the input layer parameters and actual yield. Three fully con-
nected layers, a ReLU layer and a Sigmoid layer were added to train the model 
between the input and the actual yield.

 3. Results: Fig.  11.5 shows the recognition of apples, indicating that the Fruit 
Recognition Module had a performance of more than 0.85 accuracy. Different 
light conditions with and without background could be adapted. Furthermore, 
Table 11.3 demonstrates that without the white background, the errors were less 
than 13% and with the white background, errors could be further reduced to less 
than 7%. This proposed approach showed a UAV application for in-site apple 
yield estimation, which is able to reduce manual labor and increase work 
efficiency.

1 2

3

(a)

Fig. 11.2 The UAV and the experiment setup for apple yield estimation. 1. Raspberry Pi Camera 
V2. 2. Raspberry Pi. 3. Quad-rotor UAV. 4. White background 5. Apple trees. (a) The UAV config-
ured for apple yield estimation. (b) The test field. (c) The test scheme
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and tagging
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model 

Results

 

Fig. 11.3 The procedure of image processing
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Fig. 11.4 The structure of the apple yield estimation model. (a) The entire structure of the yield 
estimation model. (b) The optimized YOLOv5 network. (c) The structure of Yield Fitting Module
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Nutrient Estimation

Nutrient content, which can be represented by nitrogen and water, is an important 
indicator for crop growth. Different quantities of nutrient determine different mea-
sures needed. Agricultural UAVs can be utilized to collect images or spectra of 
crops to estimate the nutrient content. Global Navigation Satellite System (GNSS) 
is generally employed to record the position of the crops in their corresponding 
areas. For ground data collection, the nutrient content from the crops was measured 
manually such as by using plant nutrient sensors. Then, images or spectra data from 
UAV are processed to find out certain significant features. At last, a proper model 
between the features and nutrient content can be established for future analysis. 
This method is non-destructive and will not require chemical analysis to save labors 
and time. Example below shows a research of nutrient estimation in corn (Wu 
et al., 2020).

Example 11.2: Recognition Method for Corn Nutrient Based on Multispectral 
Image and Convolutional Neural Network

 1. Hardware and experiment: As shown in Fig. 11.6, the experiment was conducted 
in Tongzhou Test Station, China Agricultural University, Beijing, China, and the 
area was divided into 18 small sections (from N1-1 to N5-3 and from CK-1 to 
CK-3). In addition, a quad-rotor UAV, DJI Phantom, was used. A Global 
Positioning System (GPS) module and a Downwelling Light Sensor (DLS) were 
mounted to record position, flight altitude and flight speed during image data 
collection. Moreover, RedEdge-M was used as the multispectral camera (8 cm/
pixel if the height is 120 m), while a YLS-D plant nutrition tester was utilized for 
ground data collection of nitrogen and leaf moisture. During the experiment, 
UAV was flown over all the small sections to collect image data with a flight 
altitude of about 20 m.
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Fig. 11.4 (continued)

Y. Zheng et al.



267

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11.5 The recognition of apples by the Fruit Recognition Module. (a) First day after color-
ation in the front-lighting condition. (b) First day after coloration in the side-lighting condition. (c) 
First day after coloration in the back-lighting condition. (d) Eighth day after coloration in the 
front-lighting condition. (e) Eighth day after coloration in the side-lighting condition. (f) Eighth 
day after coloration in the back-lighting condition. (g) Fifteenth day after coloration in the front- 
lighting condition. (h) Fifteenth day after coloration in the side-lighting condition. (i) Fifteenth day 
after coloration in the back-lighting condition

The configuration of the used computational station was: an Intel (R) Xeon CPU 
E5-2620 v4 @2.10GHz, a 256GB memory, a NVIDIA Tesla K40C graphic card 
with the operation system Ubuntu16.04.

 2. Software and data processing: Based on the measurement from the nutrition 
tester and actual growth, the experiment area was classified into three grades 
(Table  11.4). Each grade had 800 five-channel multispectral images (4000 
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single- channel images in total). A total of 530 images were randomly selected 
from these 800 images, including 480 images as the training set and 50 images 
as the validation set. Furthermore, the images of Red, Green, and Blue (RGB) 
channels were composited to be color pictures, so that a color picture library was 
established.
ResNet18 network was used to estimate the corn nutrients. As shown in Fig. 11.7, 

it had four kinds of different ResNet modules and their output channels were 64, 
128, 256, and 512, respectively. The output size of the images from the input layer 
was 224 × 224 × 5 (for five-channel multispectral images) or 224 × 224 × 3 (for 
RGB color pictures). A pooling layer, “pool” in Fig. 11.7, was for maximum pool-
ing with the step length of 2, while the other pooling layer, “spatial_avg” in the 
figure, was for global average pooling. Finally, a full-connection layer, “fc 3” in 
Fig.  11.7, was used to match the network output and labels. Before training the 
network, each pixel of the images was normalized from [0,255] to [−1,1] by Eq. 
(11.1). TensorFlow1.3.0 was exploited as the training environment.

 
x

x
new =

÷
−

255 2
1

 
(11.1)

where x = pixel of image

Fig. 11.6 The experiment site, UAV, and sensors used in the corn nutrient estimation experiment. 
(a) The test area. (b) The partition of the test area. (c) The UAV, DJI Phantom, and the sensors used 
in the tests. 1. Multispectral camera 2. GPS module and DLS
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 3. Results: In terms of color pictures, when the initial learning rate was 0.03, batch 
size was 6, and epoch number was 4, the learning rate and loss of the network 
performed better (Fig.  11.8a, b). The loss tended to be stable. For 5-channel 
multispectral images, these values were 0.05, 4, and 4, respectively, for stable 
loss (Fig. 11.8c, d).
Table 11.5 shows the validation results of the network, illustrating that the net-

work performed well on the identification of Grade 1 and Grade 2 with ≥94% accu-
racy. The error of identification of Grade 0 was the highest because the growth of 
the corn in the area of CK and N3 was diverse with various nitrogen distributions. 
In general, the average accuracy of the proposed approach was more than 80%, 
indicating its potential for further application.

Figure 11.9 shows the performance of the proposed approach in testing data 
comprised of 208 5-channel images. All the information (i.e. image number, classi-
fied results with its corresponded nutrient content, and position) could be stored in 
a text file (.txt file). According to the classification result, the accuracy was about 
80.3% (167/208 correctly classified). This study indicated that agricultural UAVs 
can be used to analyze the nutrient content of crops and the results are promising. 
This application would reduce both costs and labor as well as improve operation 
efficiency.

Surveying and Mapping

Surveying and mapping are important applications in agriculture. Agricultural 
UAVs can monitor and survey terrain, crop height, and affiliated facilities in fields. 
Sensors such as millimeter wave radar (MWR) and Lidar (light detection and rang-
ing) are commonly used for long distance measurement. These sensor data usually 
is in the form of point clouds with huge amount and hence extracting the exact 
effective information using different processing is required. Several methods 
employed to process point cloud data are as followed:

 1. Filtering: This step is required as the first step to remove the noises (outliers) in 
point clouds. Typical filtering methods include Bilateral Filtering, Gaussian 
Filtering, Conditional Filtering, Direct Filtering, Random Sampling Consensus 
Filtering, Voxelgrid Filtering, Kalman Filtering, etc.

Table 11.4 The classification of the test area based on the information from the YLS-D plant 
nutrition tester

Grade Area Nitrogen (mg/g) Leaf moisture (g/cm2)

0 CK 14.76 1.062
0 N3 14.67 1.091
1 N1 15.09 1.095
1 N2 15.01 1.141
1 N4 15.19 1.109
2 N5 16.19 1.001
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 2. Key point extraction: After filtering, the extraction of key points can greatly 
decrease the amount of data, subsequently reducing the computational costs. 
Common algorithms comprise Intrinsic Shape Signature (ISS), Normal Aligned 
Radial Feature (NARF), Harries, Scale-Invariant Feature Transform (SIFT), 
Kaze, etc.

 3. Feature description: In addition to the position of key points, other features to 
describe the three-dimensional characteristics of point clouds are generally 
demanded too, which include curvature, normal and texture features. The com-
mon approaches consist of Eigenvalue Analysis, Curvature and Normal 
Calculation, Point Feature Histogram (PFH), 3D Shape Context, etc.

 4. Segmentation and classification: Point clouds can be segmented and classified 
based on the key points and features. In terms of segmentation algorithms, it is 
popular to use K-means, Hough Transform, Normalize Cut (Context based), 
Region Growing, Random Sampling Consensus Extraction (RANSAC), Global 
Plane Optimization (GPO), Connectivity Analysis, etc. For classification meth-
ods, point-based, segmentation-based and deep-learning-based algorithms are 
utilized in most cases.

Fig. 11.7 The structure of the ResNet18 network established in the study, where “7 × 7conv,64” 
means 64 7 × 7 × 5 (for multispectral images) or 7 × 7 × 3 (for color pictures) convolutional kernels 
with the step length of 2 and “3 × 3conv, 64,” “3 × 3conv, 128,” “3 × 3conv, 256,” and “3 × 3conv, 
512” have the similar meaning
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Fig. 11.8 The learning rate and loss of ResNet18 during training. (a) The learning rate of color 
pictures during training. (b) The loss of color pictures during training. (c) The learning rate of 
multispectral images during training. (d) The loss of multispectral images during training
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 5. Point cloud registration: Point cloud registration contains coarse registration and 
fine registration. Coarse registration is the registration of point clouds in the 
condition that the relative position and attitude of point clouds are completely 
unknown. It can provide a good initial value for fine registration. The current 
common algorithm of automatic coarse registration includes exhaustive-search 
based (e.g. 4-Point Congruent Set) and feature-matching based (e.g. PFH) algo-
rithms. Conversely, fine registration is to minimize the spatial difference between 
point clouds on the basis of coarse registration. Iterative Closest Point (ICP) and 
its varieties (e.g. robust ICP, point to plane ICP, and point to line ICP) are the 
most widely used algorithms for fine registration.

 6. SLAM optimization: Simultaneous Localization and Mapping (SLAM) is now a 
trending discussion topic. There are many developed SLAM methods, i.e. ICP, 
Likelihood Field, Normal Distribution Transform (NDT), Gaussian Fields, and 
Power Iteration Clustering (PIC). Meanwhile, many libraries such as Ceres 

Table 11.5 The validation results of the network

Grade Quantity
Number of times 
identified as Grade 0

Number of times 
identified as Grade 1

Number of times 
identified as Grade 2

Accuracy 
(%)

0 50 40 4 6 80
1 50 3 47 0 94
2 50 1 0 49 98

Image 

number

Classified 

Grade

Nutrient

content
Longitude and latitude

(a) (b)

Fig. 11.9 Proposed approach tested on testing set and their classification results. (a) The collected 
images. (b) The classification results
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(least square optimization library by Google) and General Graph Optimization 
(g2o) have been developed for subsequent optimization.

 7. Three-dimensional reconstruction: This is an approach to reproduce a scene 
based on point clouds. Several approaches have been developed to perform 
reconstruction such as Poisson Reconstruction and Delaunay triangulation. The 
structure of a scene can be divided into multiple layers to be recognized and 
reconstructed according to the geometric characteristics (point, line, and plane). 
In agriculture, 4D real-time reconstruction of crops or fields (including stereo 
coordinates and time) is frequently implemented.

 8. Point cloud data management: After acquiring point cloud data and for storage, 
they need to be managed efficiently and effectively so that the users can search 
and inquire existing point clouds whenever required. The usual methods adopted 
include point cloud compression, point cloud index (e.g. K-D tree and Octree), 
and point cloud Levels of Details (LOD).

After point cloud processing, specific algorithms will be developed to use these 
extracted point clouds for different purposes. In order to simplify the processing of 
point clouds, Point Cloud Library (PCL) has been established, which is a funda-
mental tool for point cloud processing.

In addition, high-throughput 3D phenotyping of crops is another aspect of sur-
veying by agricultural UAVs. Similar to the yield and nutrient estimation, crop 
images are collected and then different measures below can be taken to process them:

 1. Image mosaic: Image mosaic is an image processing method to stitch multiple 
images into a single large image. Examples of image mosaic comprise Digital 
Surface Model (DSM) for trees and buildings and Digital OrthophotoMap 
(DOM) for farmland. Image features can be further recognized and extracted 
after image mosaic.

 2. Conventional image/spectrum processing: This method is similar as stated in 
Yield Estimation section, which the crop image features are extracted and relate 
with the response variables (e.g. plant responses).

 3. Structure from Motion: Structure from Motion (SFM) is an offline algorithm 
based on unordered images. Static targets, especially crops and trees in agricul-
ture, can be reconstructed in three dimensions if images cover the targets with 
sufficient overlaps.

 4. Artificial intelligence algorithms, as mentioned in Yield Estimation section.

The following example demonstrates the wheat growth reconstruction 
(Wang, 2019).

Example 11.3: Wheat Growth Surveying Based on the Lidar Point Clouds 
Collected by a UAV

 1. Hardware and experiment: Fig. 11.10 shows the devices and the experiment sites 
for the surveying of wheat growth. A quad-rotor UAV carrying an Inertial 
Measurement Unit (IMU) for position data, a RPLidarA2 laser ranger, and a 
GPS module was utilized to collect data at two wheat fields on the west campus, 
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China Agricultural University, Beijing, China. The UAV flew along the central 
line of the fields by manual control with flight altitude 2 m. The data collection 
lasted less than 10 min.

 2. Software and data processing: Firstly, a position-velocity equation based on GPS 
and IMU was developed (Eq. 11.2). Secondly, closed-loop correction of central-
ized Kalman Filter was used to solve the decline of navigation accuracy and 
enhance the robustness of the system for long-time working.
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Furthermore, the Noise Variance Matrix and the Measurement Noise Variance 
Matrix were optimized by Particle Swarm Optimization (PSO) and the Fitness 
Function was developed as shown in Eq. (11.3):

 
S V V V VL L E N= ( ) + ( ) + ( ) + ( )ar X ar X ar X ar Xo a v v  

(11.3)

As demonstrated in Fig. 11.11, in order to calculate in the same coordinate sys-
tem (real world coordinates), the three-dimensional coordinates of point clouds 
were transformed from the Lidar to the IMU followed by the GPS.  Next, 
Morphological Opening Operations (MOO) were performed (corrosion followed by 
expansion) to remove non-surface points and only keep the surface points. Finally, 
Nearest Neighbor Interpolation (NNI) was conducted for reconstruction using 
MATLAB after MOO and due to the requirements of accuracy, re-description, and 
calculation efficiency.

 3. Results: Fig. 11.12 and Table 11.6 present the reconstruction result of the wheat 
fields, indicating that the growth estimated by the UAV had a small error (maxi-
mum 8.2%), which may be caused by the effect from wind speed and manual 
remote control. This result indicated that reconstruction by UAVs in agriculture 
is able to get accurate results in shorter time and less labors are needed.

Breed Estimation

Accurate breed estimation is a hard point in agriculture, while remote sensing by 
agricultural UAVs can deal with it. Different breeds may have different graphic and 
spectral characteristics. Hence, hyperspectral analysis is one of the effective 
approaches, having two steps: spectral processing and image texture extraction.
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(a) (b)

(c) (d)

Fig. 11.10 The equipment and the experiment sites for the wheat growth reconstruction experi-
ment. (a) The devices used in the test. (b) RPLidarA2 used for the test. (c) Test area 1. (d) Test area 
2. 1. The quad-rotor UAV 2. The IMU 3.RPLidarA2 4.GPS module

Fig. 11.11 Coordinate Transform from the Lidar to the IMU then to the GPS
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In terms of spectral processing, as mentioned in Table 11.2, filters can be applied 
to divide original spectra into different subranges. Then, sensitive wavebands can be 
found out by the combination of several algorithms, such as Canonical Correlation 
Analysis (CCA), Principal Component Analysis (PCA), Clustering, Envelope 
Division (ED) and Regression Analysis (RA).

Meanwhile, image texture information can be extracted by using the methods in 
Table 11.7.

Finally, the breed recognition model between the sensitive wavebands with the 
image textures and breeds is able to be established.

 Monitoring of Plant Diseases, Pests, and Natural Disasters

Plant diseases, pests, and the impact of natural disasters must be minimized to 
ensure high yield of produce and for personnel safety. Frequent monitoring is neces-
sary for early warning and prevention. Agricultural UAVs have been employed for 
this monitoring in fields, which is capable of decreasing labor costs and increasing 
work efficiency and accuracy.

Similar to monitoring crop changes, images and spectra data are the main data 
used to recognize the variations within a certain area, due to distinct reflections and 
features of different conditions. Thus, the methods mentioned in Table  11.1 and 
Table  11.2 and artificial intelligence algorithms (neural networks and machine 
learning) are also suitable for this type of application. An example of monitoring 
and classification of Huanglongbing (HLB, a kind of citrus disease) by the hyper-
spectral data from agricultural UAVs is detailed (Lan et al., 2019b).

Example 11.4: Monitoring and Classification of Citrus Huanglongbing Based 
on UAV Hyperspectral Remote Sensing

 1. Hardware and experiment: As shown in Fig.  11.13, the experiment was con-
ducted in Luobo County, Huizhou, Guangzhou Province, China (N23°29′57.81″—

Fig. 11.12 The reconstruction results of the both wheat fields 1 and 2. (a) The reconstruction 
result of test area 1. (b) The reconstruction result of test area 2
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N23°29′59.31″, E114°28′8.39″—E114°28′12.26″). The citrus variety was Citrus 
Shatangju. The row spacing was 4  m and the column interval was 2.5  m. A 
Nano-Hyperspec spectrometer was mounted on a six-rotor UAV, DJI Matrice 
600 Pro to collect UAV hyperspectral data, while an ASD FieldSpec HandHeld 
spectrometer was used for the ground data acquisition. A total of 30 trees were 
selected as healthy tree and the spectral data of three leaves of each tree were 
collected. For HLB-infected trees, all the infected trees were selected with the 
spectral data of three leaves for both apparent and inapparent symptoms were 
acquired, respectively. In addition, the level of HLB infection was determined by 
indoor lab tests. The region of interest (ROI) of both the healthy and infected 
leaves was established.

 2. Software and data processing: First, the relative spectral reflectance of the citrus 
canopies from the UAV collected data was calculated by Eq. (11.4)

 
ρ ρ1

1

2
2=

DN

DN  
(11.4)

where DN1 and DN2 were the radiation brightness of canopies and the calibration 
board, respectively; ρ1 was the relative spectral reflectance of canopies and ρ2 was 
the spectral reflectance of the calibration board.

Table 11.6 The measurement results of reconstruction of wheat growth

Target wheat Value/m

Real max height/min height 0.78/0.61
Reconstructive max height/min height 0.81/0.66
Error 3.8%/8.2%

Table 11.7 Typical texture extraction methods

Method category Typical method name

Statistics Gray level co-occurrence matrix (GLCM)
Geometrical feature Chessboard feature

Structure feature
Model Random field model

Fractal model
Signal processing Wavelet transform (WT)

Autoregressive texture feature
Tamura texture feature

Structural analysis Syntactic texture description
Mathematical morphologic
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There were 479 samples in total and the ratio of the modeling set to the valida-
tion set was 3:1. Then, the raw data was processed following the procedures illus-
trated in Fig. 11.14, including pre-processing, feature extraction, and modeling. For 
modeling, conventional machine learning methods comprising K-Nearest Neighbor 
(KNN) and SVM for classification. For KNN, Euclidean Distance and Cosine 
Similarity were performed as the discriminative basis, while in SVM, linear kernel 
function, radial basis function (RBF) kernel and polynomial kernel function were 
tested for comparison.

 3. Results: KNN had a low accuracy to determine original spectra and inverse- 
logarithm spectra (about 8.40%). For SVM, the accuracy of the function with 
secondary kernel was 94.7%. In terms of overall effect, the accuracy was more 
than 90%, suitable for precise determination of HLB.

11.3.2  Plant Protection

 Representative Enterprises and Types

The number of enterprises in developing agricultural UAVs is increasing worldwide 
and some typical ones are introduced as below:

DJI

DJI is a famous UAV company in China. It starts from consumer UAVs and then 
expands to multi-application fields. It has occupied more than 80% of the global 
UAV market and more than 70% of the Chinese market so far. At present, according 
to DJI official website, it has several products for plant protection such as MG-1p, 
T10, T16, T20, and T30 (latest).

As shown in Fig. 11.15 and Table 11.8, T30 is a kind of electric-powered six- 
rotor UAV. Its intelligent route mode can plan routes independently prior to each 
operation. Meanwhile, T30 uses a novel targeting technology, which can adjust six 

Fig. 11.13 Experiment site and flight route of DJI Matrice 600 Pro
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arm angles and make spray droplets penetrate through thick canopies at an oblique 
angle to ensure the uniform adhesion of liquid spray. Moreover, 16 nozzles are 
installed under the main body for spray application including pesticides, herbicides, 
and fertilization.

XAG

XAG is another well-known UAV company in China founded in the year 2007. 
Since 2013, it began to have agricultural UAV and products have been marketed to 
more than 40 countries and regions around the world with research and develop-
ment centers and experimental bases in many countries. They have two series types 
of products: P-type as the main product (P80 as the latest product) and V-type as the 
new product in the year 2021. P-type is the main product, while V-type is a kind of 
new product in 2021.

As shown in Fig. 11.16 and Table 11.9, P80 is an electric-powered four-rotor 
UAV with the load capability of 40 kg. It is equipped with a new intelligent control 
system (Superx4) and can be used for spraying and surveying. Meanwhile, it can 
follow AI prescription maps to spray.

Raw data

Calibration of radiation and geometry

ROI with 5×5 pixels

Extraction and calculation of average spectra

Outlier elimination by manual operation

Initial spectra

Savitzky-Golay (SG) smoothing

Original spectra

Inverse-logarithm transform

Dimension reduction by PCA

Inverse-logarithm spectra

Modelling

1st derivative transform

1st derivative spectra

HLB discriminative model

Fig. 11.14 The procedure flow of hyperspectral data processing
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YAMAHA

YAMAHA is a company renowned for agricultural UAV products. It has developed 
unmanned helicopters as the main products for a long time since the downwash of 
unmanned helicopters is steadier than that of multi-rotor UAVs. One example of 
their unmanned helicopters is from the Fazer-series, which has been marketed for 
about 30 years. In recent years, YAMAHA has also gradually launched multi-rotor 
UAVs for agricultural purposes with the representative product as YMR-08.

According to YAMAHA official website, FAZER-R as indicated in Fig. 11.17 is 
the latest product with its major specification listed in Table  11.10. It is an oil- 
powered UAV with 32 kg workload and can spray 4 hectares of farmland for each 
flight. Due to its flexible flight control system, FAZER-R can be adjusted to differ-
ent workloads for different missions.

Meta Robotics

Meta Robotics is a robot enterprise located in Yishan, Quanbei, South Korea and has 
introduced Vandi-series, a type of plant-protection UAV for agriculture, including 
Vandi-A1, Vandi-C1, Vandi-A10, Vandi-B10, etc.

According to their official website, Vandi-A1 (Fig. 11.18 and Table 11.11) is the 
representative product, which is an electric-powered sixteen-rotor UAV. It is suit-
able for the spray of liquid and granular chemicals for different field conditions such 
as large-scale rice field.

Fig. 11.15 T30 plant- 
protection UAV

Table 11.8 Major specification of T30

Name Value/unit

Size 2858 mm × 2685 mm × 790 mm
Weight 26.3 kg
Maximum power consumption 13,000 W
Maximum speed 7 m/s
Maximum starting altitude 2000 m
Tank volume 30 L
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 Main Research Topic

In general, the main research focuses on examining the spray effect from plant- 
protection UAVs in pest-disease control as affected by different operation parame-
ters which include the flight altitude, speed, and spray pressure on droplet deposition. 
Relationship between these factors and deposition values is studied. Moreover, 
some research also considered environmental variables such as wind on drift as 
related to spray deposition.

Furthermore, increasing studies have focused on the downwash airflow (or wind- 
field flow) generated by propellers, since it can strongly affect the distribution 
of droplets. These studies involve the development of downwash simulation (e.g. 
Computation Fluid Dynamics, CFD) and verification (e.g. windspeed measurement 
system; Particle Image Velocimetry, PIV) approaches.

Meanwhile, the chemicals efficacy in controlling pest and disease as well as 
optimizing the fertilizer use in fields is another research topic. Different kinds of 
substances have been developed for the chemical use with desired outcome of long- 
lasting substance but less toxic.

The example below indicates a study of droplet detection and the adjustment of 
spray swath to enhance the spray effect of a six-rotor plant-protection UAV (Zheng 
et al., 2017a, b).

Example 11.5: Droplet Detection and the Optimization of Spray Effect of a 
Six-Rotor UAV

 1. Hardware and experiments: As shown in Fig. 11.19a, b, a Lidar, LMS512-20100, 
was utilized for droplet detection and a six-rotor UAV, JF01-10, was utilized for 
spraying. Two nozzles were mounted on the UAV with constant spray pressure. 
The Lidar was connected to a personal computer via Ethernet as a detection 

Fig. 11.16 P80 plant- 
protection UAV

Table 11.9 Major specification of P80

Name Value/unit

Size 2460 mm × 2487 mm × 564 mm
Weight 32 kg
Maximum speed 10 m/s
Maximum starting altitude 4000 m
Tank volume 40 L
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system and specific algorithms were developed to extract and calculate effective 
spray swath. Then, the detection system was employed to adjust the nozzle inter-
val for uniform droplet distribution (Fig. 11.19c).
Then, the UAV with adjusted nozzle interval was operated to spray water onto 

corns at different heights (i.e. 1, 1.5, 2 m) and speeds (2, 4, and 6 m/s). Three differ-
ent growth stages of corns (represented by corn height, 1.20 m, 1.53 m, and 2.08 m) 
were investigated. For each kind of corn height, water-sensitive papers were put on 
the top, middle, and bottom canopy layers (Fig.11.19d) for the analysis of spray 
effect. Ten collection points in the direction of flight were selected and the interval 
between each collection point in the same side was 5 m (Fig. 11.19e), then the spray 
effect was analyzed.

 2. Software and data processing: Fig. 11.20 shows the algorithm developed for the 
Lidar detection system, containing 4 main steps. The details of the algorithm can be 
found in the study by Zheng et al. (2017a). The system could finally calculate the 
value of a two-dimensional spray swath. Based on the actual request from the com-
pany (Viga UAV Co. Ltd.), the spray swath at a hovering height of 1.5 m was tested.

 3. Results: Fig. 11.21 shows the results of the spray swath, indicating that after the 
adjustment, the droplet distribution was more uniform rather than concentrated 
in two pieces with even the smaller spray swath.
Penetration rate can be calculated by using Eq. (11.5), in which dmax is the maxi-

mum deposition value of the three collection layers and dmin is the minimum one, 
while d  is the mean of deposition values of the three collection layers. Figure 11.22 
shows the spray effect of the UAV with adjusted spray swath based on penetration 

Fig. 11.17 FAZER-R UAV

Table 11.10 Major specification of FAZER-R

Name Value/unit

Size 2782 mm × 770 mm × 1078 mm
Real payload 32 kg
Main propeller size 3115 mm
Engine 2 cylinders with 4 stroke
Fuel Conventional unleaded gasoline
Tank volume 16 L × 2
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rates and their regression models (between the operation parameters and penetra-
tion) at three kinds of growth stages were indicated in Eq. (11.6).

 
p

d d

d
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−max min
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(11.6)

where h is UAV flight height, v is UAV flight speed, and b1, b2, and b3 are the 
penetration rate of 1.2 m height stage, 1.53 m height stage, and 2.08 m height stage, 
respectively.

Penetration rate, p, should be as small as possible to indicate the deposition dif-
ference in three layers is little. According to Fig.  11.22, the optimal operation 
parameters were 1 m and 4 m/s for 1.2 m height stage corns, 2 m and 2 m/s for both 
1.53  m height stage and 2.08  m height stage corns. Moreover, the R2 of all the 
regression models (Eq. 11.6) was greater than 0.9, which indicated the high reli-
ability and predictability of the models.

Fig. 11.18 Vandi-A1 UAV

Table 11.11 Major specification of Vandi-A1

Name Value/unit

Size 1350 mm × 1350 mm × 777 mm
Maximum landing load 30 kg
Maximum speed 18 km/h
Spray height 3-4 m
Maximum working time 8 min
Tank volume 10 L
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11.4  Agricultural UAV Advantages and Limitations

11.4.1  Advantages

 1. High Efficiency
Currently, the flight speed of plant-protection UAVs can reach up to 8  m/s and 

accommodate liquid tanks of larger than 10 L or even 30 L. This means that the 
UAVs are able to spray wide areas with less time cost, which is about 0.067 to 
0.134 hectare/min (Lan et  al., 2019a). Furthermore, many agricultural UAVs 
have incorporated several smart functions such as automatic route planning, one- 
click take-off, autonomous flight, RTK differential positioning and breakpoint 
continuous spraying or photographing. Some of the electric-powered UAVs also 
have the functions of terrain following, autonomous obstacle avoidance and 

Fig. 11.19 Devices used and the experiment setup of spray effect tests. (a) The Lidar, 
LMS512-20100. (b) The six-rotor UAV, JF01-10. (c) Adjusting the nozzle distance of JF0-10. (d) 
The layout of the water-sensitive paper in canopies for spray effect tests. (e) The sampling points 
of the water-sensitive paper in fields for spray effect tests

Fig. 11.20 Algorithm developed for the droplet detection system
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night flight. Therefore, compared with manual remote control and manual spray, 
agricultural UAVs are highly efficient with less labor intensive.

 2. Superior Terrain Adaptability
Since agricultural UAVs can be operated at fast speed, they are particularly suitable 

for small-sized fields, scattered fields and densely populated agricultural areas 
(Lan et al., 2019a). In addition, UAVs operation is not affected by terrain, which 
is sometimes a limited factor by ground vehicles. Though tall obstacles such as 
buildings, trees and telegraph poles can bring hazards when operating the agri-
cultural UAVs, the developed terrain following and obstacle avoidance technol-
ogy will help to adapt these surroundings variation. Therefore, agricultural 
UAVs are considered to be high terrain adaptability.

 3. Acceptable Target Adaptability
Plant-protection UAVs can be operated and performed well in almost all crops irre-

spective of high-stalk crops, trees, or small plants. In orchards, plant-protection 
UAVs have been utilized for upper canopies, improving the spray effect from top 
to middle parts of trees based on strong downwash (Zheng et  al., 2020a, b). 

(a) (b)

Fig. 11.21 Detection results of the spray swath before and after adjustment. (a) The UAV spray 
swath before adjustment. (b) The UAV spray swath after adjustment. Note: The blue points are 
effective droplets, the red ones are outliers, and the red lines are the boundary of effective 
distribution

(a) (b) (c)

Fig. 11.22 3D surfaces of operation height, operation speed and penetration for the three growth 
stages. (a) 3D surface for 1.2 m height stage. (b) 3D surfaces for 1.53 m height stage. (c) 3D 
surfaces for 2.08 m height stage
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Meanwhile, for crops with narrow row spacings and canopy closure in later 
growth stage, it is reliable for plant-protection UAVs to spray pesticides using 
strong airflow, which is in accessible by ground vehicles.

 4. Separation of Human from Chemicals
During operation, plant-protection UAVs can be controlled by ground remote con-

trollers or on-board controllers, ensuring the users to keep a safe distance from 
the sprayed area. This can prevent a series of risks caused by human exposure to 
chemical drift and help to maintain spraying safety.

11.4.2  Limitations

 1. Balance Between Operation Parameters
For the same crops, the change of operation parameters may lead to diverse results 

of pest-disease control or resolutions of images. For instance, a high flight alti-
tude and fast speed may give a large spray swath but low droplet penetration, 
while low flight altitude and speed probably result in good penetration but a 
small swath and excessive concentration of droplets. Thus, before spraying, the 
relationship between operation parameters and spray effect should be studied to 
find an optimized setting.

 2. Different spray effects on different crops
The spray effect of plant-protection UAVs correlates exceedingly with target fea-

tures such as shape, area, height and leaf density, whereas the chemicals used for 
crops are distinct. For instance, in terms of the same height, there is a dosage 
variation between apple tree seedlings and corns. Hence, before operation, key 
spray indices (such as spray pressure, nozzle distance) for UAV spray should be 
first investigated.

 3. Comparison with manned aircrafts
Manned aircrafts for agriculture are generally fixed-wing planes and have three 

main advantages over agricultural UAVs. Firstly, they have a greater load, usu-
ally in tons or 100 kg, which is much higher than that of UAVs with about 5 to 
40 kg. Secondly, the endurance of manned aircraft is noticeably longer, regularly 
in hours and kilometers, while agricultural UAVsjust run in minutes and meters. 
Thirdly, due to the smooth surface and unchanging section of wings from 
manned aircrafts, the downward pressure generated is more concentrated and 
uniform than that of plant-protection UAVs, especially rotor UAVs, resulting in 
a more stable spray.

 4. Specific pesticide required
Conventionally, water is added to ordinary pesticides to attain right concentration of 

the liquid mixture, matching with the flight parameters of plant-protection UAVs 
in order to maintain the total amount of pesticides applied per unit area. 
Nonetheless, if the concentrations of some pesticides are not properly attained 
with the flight parameters, severe chemical damage to crops may occur during 
spraying. Meanwhile, it is possible to block the spraying system of UAVs if the 
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pellet of ordinary pesticides is too big and rough. Therefore, specialized pesti-
cide for aviation spray is required.

11.5  Expectation of Agricultural UAV

11.5.1  Existing State-of-the-Art Technology

The current advanced technology associated with agricultural UAVs is mainly con-
centrated on autonomous operation, including the following three aspects:

 Navigation and Obstacle Avoidance

During actual operation, agricultural UAVs will probably encounter some complex 
obstacles. Thus, autonomous planning and navigation for obstacle avoidance based 
on the real-time obstacle positions is an effective need for them to complete subse-
quent tasks without human intervention. To do this, algorithms of surrounding per-
ception are developed such as A* algorithm, Particle Swarm Optimization (PSO), 
Artificial Potential Field (APF), geometric reinforcement learning, evolutionary 
algorithm and Rapidly exploring Random Tree (RRT). The algorithms should be 
first optimized before application based on the exact demand and flight characteris-
tics of an agricultural UAV. The following example demonstrates a brief introduc-
tion of an algorithm in UAV obstacle avoidance during navigation (Zheng 
et al. 2020c).

Example 11.6: Obstacle Avoidance Path Planning Algorithm for Multi- 
Rotor UAVs

 1. System structure and environment: A quad-rotor UAV named Carto F4 with 5 kg 
maximum load mounted with a Lidar scanner, Rplidar S1 were used in the 
experiment. Meanwhile, a PIXHAWK flight controller was installed for the 
detection and flight control of the UAV, and NVIDIA TX2, a high-performance 
computing module, was added for the processing of point clouds and obstacle 
avoidance logic algorithm.
Figure 11.23 illustrates the structure of the UAV system. The software for 

NVIDIA TX2 was based on the Robot Operating System (ROS) and distributed 
software architecture to decouple and simplify the development. Moreover, the soft-
ware of PIXHAWK was provided by Px4, which could exchange data with the API 
interface provided by Px4 through Mavlink protocol. As shown in Fig. 11.24, tall 
trees and street lamps were considered as the obstacles and the UAV was flown 
through this area. The flight altitude was strictly restricted to half of the tree height.

 2. Software and methods: Fig. 11.25 delineates the procedures of the developed 
methods with four steps. Multiple scenarios were established for simulation vali-
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dation. The dimension of the probability map was firstly reduced to 2 dimen-
sions (Fig. 11.26a) and the optimized RRT-Connect algorithm was performed. 
Next, the full path was optimized based on Minimum Snap method, especially 
including the expansion of the 2D probability grid map (Fig. 11.26b) to avoid 
path interference.

 3. Results: Fig. 11.26c shows the result of navigation and obstacle avoidance sys-
tems. Based on the simulation verifications, the optimized RRT-Connect algo-
rithm could reduce the re-planning time of obstacle avoidance paths by 23.69%. 
The effective planning time of obstacle avoidance paths was less than 0.33 s and 
the average tracking speed of obstacle avoidance paths was more than 1.12 m/s. 
The proposed method could achieve the real-time planning of obstacle avoid-
ance paths in different complex scenes, effectively improving the efficiency and 
stability of path planning. It provides a feasible technical solution for UAV 
obstacle avoidance in the actual operation environment such as farms, orchards 
and forests.

 Terrain Following During Flying

Terrain following functions from agricultural UAVs is established based on sensor 
measurement that allows them to follow the outline of the terrain automatically and 
keeps a constant height difference from the ground to them during operation. This 
function enables the UAV to adapt to different terrains to obtain effective and accu-
rate spray or data acquisition. The determining factor of this technology is the pre-
cise measurement of the height between UAVs and ground. Table 11.12 listed the 
popular approaches for this technology followed by an example study (Example 
11.7 by Xu et al., 2021).

Fig. 11.23 Structure of the UAV system for navigation and obstacle avoidance systems. Note: ψ 
is the yaw angle of the UAV, rad, and r is the position vector of the UAV, m
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Example 11.7: Detection of Crop Heights by UAVs Based on the Adaptive 
Kalman Filter

 1. System structure and environment: A quad-rotor UAV, DJI Phantom 3 was used 
in the study. A data acquisition module (Fig. 11.27) known as NRA24 MWR 
(Nanoradar Technology Co, Ltd. Hunan, China) was utilized to measure the rela-
tive altitude. An IMU, JY901 (Junyue Intelligent Control Technology Co, Ltd., 
Guangdong, China) was utilized to measure the flight angles and acceleration. 
Meanwhile, a global positioning unit, ATK-S1216F8-BD (SkyTraq Technology, 
Inc. Taiwan, China) was used to obtain the UAV real-time positions. A digital 
transmission radio, XROCK V3 (Xili innovation Electronic Technology Co, 
Ltd., Zhejiang, China) was selected as the wireless transmission module due to 

Fig. 11.24 Flight 
conditions and obstacles

Fig. 11.25 The procedures of the developed methods for navigation and obstacle avoid-
ance systems
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its long transmission distance. In addition, a microcontroller, STM32F103 
(Xingyi Electronic Technology Co, Ltd., Guangdong, China) was exploited as 
the slave computer for the fusion and processing of sensor data, while the host 
computer was a laptop for data storage and picture display. The height measure-
ment tests were conducted in a cornfield (with 5 m and 10 m flight altitude), 
while the terrain following test was based on stairs.

 2. Software and methods: Fig. 11.28 illustrates the flow of the algorithm. The pro-
posed data fusion algorithm was based on the Adaptive Kalman Filter (AKF). 
The data from the MWR, IMU, and GPS was used to obtain the parameters of 
both the state and measurement equations. Then, the data from the MWR was 
modified by the angle information from the IMU. Meanwhile, the modified data 
and the data from the GPS and IMU were asynchronously fused by the AKF to 
get the final appropriate height results. Based on the real-time height results, the 
UAV could adjust its flight altitude.

 3. Results: The tests demonstrated that: (1) when compared with the direct detec-
tion by the MWR, the error of detection was reduced by 0.035 m, and (2) when 
compared with the real corn heights, the error of detection was 0.02  m. 
Furthermore, as indicated in Fig. 11.29, the terrain was profiled properly, hence, 
the proposed algorithm showed a good ability and accuracy of terrain following.

allowed planning 

path

not allowed 

path

(b)

Obstacle

Check expansion (low expansion)

Planning expansion (high expansion)

Fig. 11.26 Processing steps and planning results. (a) 2D probability grid map. (b) Interference 
avoidance of the path after grid-map expansion. (c) The result of navigation and obstacle avoidance

11 Applied Unmanned Aerial Vehicle Technologies: Opportunities and Constraints



292

 Collaborative Flying and Operation

Agricultural UAVs can significantly enhance work effectiveness and efficiency, 
especially for plant protection when operating in a large scale. The greater the num-
ber of UAVs is, the higher operational efficiency is. However, current commercial 
products are mainly concentrated on single automatic operation. Some of them are 
even manually telecontrolled, which restricts the advantages of agricultural UAVs. 
Hence, multi-agent collaboration is a development trend and it is primary to develop 
appropriate policy of collaboration. Task allocation is the key for collaborative fly-
ing and several typical algorithms are listed in Table  11.13. Most of the studies 
focus on the theoretical solutions of this type of problem. An example of collision 
avoidance of multiple UAVs is as followed (Liu et al. 2021).

Example 11.8: Developed Algorithm, DPIO-SA, and GA, for Task and 
Location Assignment
In this research, tasks were first assigned based on DPIO-SA algorithm. Each task 
would be executed by multiple UAVs. Then, the locations of the UAVs in the forma-
tion were arranged. Since there was no constraint in the location assignment, GA 
was utilized to solve the location assignment that was only simple crossover and 

Table 11.12 Popular approaches for agricultural UAV terrain following technology

Method category Name

Hardware Real-time kinematic GPS (RTK GPS)
Millimeter wave radar (MWR)
Lidar

Off-line height 
acquisition

Known digital elevation models (DEMs) by existing software such as 
ASTER GDEM30m and ALOS12.5 m
Manual measurement

Real-time height 
acquisition

Sensor scanning during flying

Fig. 11.27 Structure of the terrain following system. IIC inter-integrated circuit, UART universal 
asynchronous receiver/transmitter
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mutation operations. Figure  11.30 demonstrates the flow of task and location 
assignment.

11.5.2  Development Trend of Agricultural UAV

The conception of smart agriculture has been proposed and is developing as an 
eco- friendly, effective and high-yield agricultural pattern. This includes not only the 
precision perception, control, decision-making and communication, but also agri-
cultural internet of things, agricultural e-commerce, food traceability, agricultural 
tourism and agricultural information services. Current and future agricultural UAVs 
can undoubtedly play an expert role in smart agriculture due to their increasing 

intelligent technologies. Based on the existing limited techniques, the following 
aspects serve as the development trend that must be advanced.

Start

Obtaining the parameters of state 

equation and measurement equation 

One-step state prediction

Valid observations?

Updating gain matrix, equation of 

state, and noise variance

Optimal value?

end

No

Yes

No

Yes

Fig. 11.28 Flow of the 
proposed algorithm
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 Strategy of Aviation-Ground Collaboration

Stereo operation, which is defined as the simultaneous operation of both agricul-
tural UAVs and unmanned ground systems, is developing (Lan et al., 2019a). It is 
especially suitable for large-scale farms and orchards, which is able to solve the 
problem of low droplets penetration through densed canopies. Current research has 
mainly worked for theoretical development and its validation but less practical 
application. Hence, more studies should be conducted on investigating:

• how a UAV can cooperate with other UAVs, ground vehicles and satellites;
• how a UAV group can cooperate with other groups of UAVs and ground vehicles;
• what specific strategies (e.g. the variation of flight height and speed for different 

places) can be used by an operation agent in real-time based on previous test 
results;

• how to administer these operation agents to achieve safe flight.

Fig. 11.29 Terrain following results
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 Data Link and Multi-agent Communication

At present, intelligent communication among multiple agents has been studied 
more in military and industry but less in agriculture. The data links for agents and 
users should be capable and robust. Therefore, it is required to study the data link 
and communication of agricultural UAVs about:

• the approaches to ensure the capacity and robustness;
• the way to achieve multi-agent communication and agent-user communication;
• the design and optimization of data link structures;
• the methods of data store and tele-transmission.

 Single UAV Control Based on Targeting and Ground Effect

Control strategy is very important for single UAV. According to Sect. 11.3, though 
studies related to spray effect have been conducted, two necessary issues have not 
been considered: autonomous operation by toward-target and the ground effect on 

Table 11.13 Typical algorithms for collaborative flying

Algorithm Task/function

Simulated Annealing (SA) algorithm and 
Particle Swarm Optimization (PSO)

SA-PSO Path planning
Discrete 
DPSO-SA

Task allocation

NPSO Optimal locations
Genetic Algorithm (GA) Location assignment
Pigeon Inspired Optimization (PIO) Parameter optimization and 

collision avoidance
Contract Network Algorithm (CNA) Local task scheduling
Artificial Potential Field (APF) Collision avoidance
Optimal Reciprocal Collision Avoidance (ORCA) Collision avoidance

Start

Getting global optimal 

particles

Genes exchanging

Crossing

Satisfying constraints?

Difference

0

Updating

∆

Keeping the original 

particles

Compass ending?

knn e /T

Keeping the original 

particles

Sort fitting

Y

N

N

Y
Y N

Y

Reducing the population a 

half

Finding the group centre

Satisfying constraints?

Crossing

Updating

Landmark operator ending?

GA optimisation

Y

Y

Replacing the genes that do 

not meet constraints

Fitting better?

Updating

GA Ending?

Output

Return

Updating interactions

N

N

Y

Y

N

N

Fig. 11.30 Flow of task and location assignment. Note: T is the initial temperature, knn is the tem-
perature attenuation factor, and △ is the difference between the new fitting and the old fitting
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the stability of UAVs. Hence, the following three sections may need further 
explorations:

• the mechanism of the ground effect on agricultural UAVs;
• the approaches of stable control to eliminate the ground effect on agricul-

tural UAVs;
• the control methods and strategies of target localization and toward-target 

operation.

 Capability of Endurance and Load

According to Sect. 11.2, oil-powered agricultural UAVs can load more but are not 
eco-friendly and stably controlled, while the opposite is for battery-powered UAVs. 
Oil-electric hybrid agricultural UAVs make the balance between the two, which are 
still in a developing stage. Hence, it is needed to expand the endurance and load of 
agricultural UAVs by studying:

• the materials, structures and capacity of batteries to have superior performance;
• the optimization of fuselage and propeller structures and the motor performance 

to make better aerodynamics;
• energy switching mode, stable control and the comprehensive performance of 

the power system of oil-electric hybrid agricultural UAVs;
• stable control approaches for oil-powered agricultural UAVs.

 Law of Downwash-Droplet-Crop Interaction

In fact, the two key variables crucial for droplet distribution are downwash and 
spray parameters (pressure, nozzle intervals, nozzle types, etc.). In terms of a cer-
tain agricultural UAV, spray parameters have been set by manufacturers and are usu-
ally unchanged, so mainly the downwash determines the droplet distribution. 
High-efficient use of downwash can greatly reduce drift and increase distribution 
uniformity, subsequently decreasing chemical use and environmental pollution. 
Although some research has been involved in downwash, they do not focus on the 
interaction between downwash and droplet penetration in crop canopies. When 
droplets penetrating through crop canopies, downwash results in both crop shaking 
and droplet motion. Therefore, future studies related to spray effect may be 
involved in:

• the principle of downwash transmission in crop canopies;
• the interaction principles of (1) crops with droplets, (2) droplets with downwash 

and (3) downwash with crops;
• the model between these interaction and spray effect for practical use.
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11.6  Summary

This chapter introduced the development of unmanned aerial vehicles configured 
for agricultural-related operation. The classification of such type of UAVs was 
firstly demonstrated. Then, the main fields of application of these UAVs, including 
low altitude remote sensing and plant protection, were illustrated and relevant 
applied techniques were contained. Each sub-field of application was explained 
with a study instance and the prevalent types of plant-protection UAVs were shown. 
Furthermore, both advantages and disadvantages of the UAVs were analyzed. 
Finally, expected development directions were discussed with current study 
examples.
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Chapter 12
Robotic Tree Fruit Harvesting: Status, 
Challenges, and Prosperities

Long He, Azlan Zahid, and Md Sultan Mahmud

12.1  Introduction

Up to today, majority of tree fruit crop production operations highly depend on 
seasonal human labor. Many critical activities are not only labor-intensive, but also 
highly time-sensitive. With the increasing concerns on the labor shortage and asso-
ciated high labor cost, harvesting as the most labor-intensive operation in tree fruit 
production has been attracting more and more attention. Improving harvesting effi-
ciency and reducing the dependence on human workers have been the major motiva-
tion for developing new harvesting technologies. In recent decades, automation 
technologies, especially the auto-guidance for field tractors have been investigated 
widely. However, for specialty crops including tree fruit crops, the application of 
automatic technologies has lagged due to the complexity of field operations and 
inconsistency of crop systems. Three different harvesting technologies have been 
investigated in tree fruit harvesting, including harvest assist platform, massive 
mechanical harvesting, and robotic harvesting. Harvest assist platforms have sig-
nificant improvement in harvesting efficiency (Schupp et al., 2011; Zhang et al., 
2016), while large amount of human labor is still needed. Mechanical harvesting 
based on the shake-and-catch concept to conduct massive but non-selective harvest-
ing led to higher harvesting efficiency but may cause more bruise to the fruits (He 
et al., 2017; Ma et al., 2018). Robotic harvesting as a selective harvesting method is 
showing potential of replacing human hand picking (Silwal et al., 2016; Hohimer 
et al., 2019). Two major components with robotic harvesting are fruit detection with 
machine vision system and fruit picking with robotic maneuvering mechanisms and 
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arms. Tree architecture is another core factor relating to the canopy–robot interac-
tion. With the adoption of narrow tree canopy system especially two-dimensional 
trellis trained tree systems, robotic harvesting technologies showed more promising 
compared to the traditional trees. The interaction between harvester and tree canopy 
requires optimal path planning to avoid obstacles to reach the targeted fruits.

12.2  Tree Fruit Industry and Current Challenges

12.2.1  Overview of Tree Fruit Industry in USA

The tree fruit industry is an important component of the nation’s agricultural sector 
that contributes about 25% of the market share ($18 billion) among all specialty 
crops produced in USA (USDA-ERS, 2018). Production of major tree fruits in USA 
is shown in Fig. 12.1. Citrus fruits are the top fruit crops in world trade in terms of 
highest worth (FAOSTAT, 2016), are one of the most famous fruit commodities 
widely accepted for their flavor and nutritional facts. Fresh and processed (e.g., 
mainly juice) are the two major markets of the US citrus fruits. The fruits mainly 
used for fresh consumption are grown in California, Arizona, and Texas, where 
Florida covers almost the entire processed citrus fruit market for orange juice. 
California produced about 51% of total citrus fruits in the USA in 2018–2019 sea-
son where Florida accounted for 44% of the total production and remaining 5% 
shared by Texas and Arizona (USDA-NASS, 2019a). A total of 7.94 million tons of 
citrus fruits (valued $3.35 billion) produced in 2018–2019 was 31% higher than 
2017–2018 season (USDA-NASS, 2019a). Apples are the second most produced 
fruits after orange and most valuable fruit crops in the USA. Apples are commer-
cially grown in 32 states, but Washington is by far the largest producer accounting 
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for 70% of the total apple production. New  York, Michigan, Pennsylvania, and 
California are the next four top producers producing a significant amount of apples 
every year (U.S. Apple Association, 2018). Nearly 7500 growers produced around 
4.95 million tons of apple (valued $3.01 billion) on an approximated 130.3 hectare 
of land in 2018–2019 (USDA-NASS, 2019b). Conversely, pears are mainly grown 
in six states of USA including California, Michigan, New  York, Oregon, 
Pennsylvania, and Washington. Of these states, California, Oregon, and Washington 
are producing majority of the pear production every year. Pears contributed $429 
million to the economy by producing a total production of 0.8 million tons in 
2018–2019 season (USDA-NASS, 2019b). Peaches are the fourth most produced 
tree fruits in the USA, producing 0.64 million tons in 2018–2019 which is valued 
$511 million. Peaches are commercially grown in 20 states where California is the 
largest producer and supplied about 56% of the US fresh peach fruit and nearly 96% 
of processed peaches (USDA-NASS, 2018). Other top producing states are South 
Carolina, Georgia, and new Jersey. Contrarily, almost 90% of sweet cherry mainly 
produced in three states (i.e., Washington, California, and Oregon) and 74% of tart 
cherry produced by Michigan alone (USDA-NASS, 2018). The US cherry growers 
produced a total of 0.34 million tons of sweet cherry (valued $638 million) and 0.15 
million tons of tart cherry ($57 million) in 2018–2019 (USDA-NASS, 2019b). 
Despite the significant increasing of production for tree fruits in the past decade 
because of the proper orchard managements, the fruit industry in USA is facing 
tremendous challenges due to high dependency on farm labors resulting increasing 
costs of production (Fennimore & Doohan, 2008; Calvin & Martin, 2010).

Among the costs associated with production of tree fruits, the harvesting opera-
tion (e.g., only picking and hauling) itself is accounting for 11–26% of the total 
production costs. Cost of harvesting is varying from one fruit to another and also 
depends on the size of the fruit orchards. Citrus fruits such as orange are costing for 
$926 per acre for only fruit picking and hauling which is about 11% of the total 
production cost (University of California Cooperative Extension, 2015). Conversely, 
the picking and hauling cost for apple is much higher than citrus fruits accounting 
for 26% of the total production cost where the harvesting cost is $1320 per acre 
(University of California Cooperative Extension, 2014). Similar to apple harvesting 
cost, peach requires $1339 for picking and hand sorting of one acre orchard 
(University of California Agriculture and Natural Resources Cooperative Extension, 
2017a, b). Conversely, pear fruit accounts for $1780–$1969 per acre which is about 
20–25% of total production cost (University of California Agriculture and Natural 
Resources Cooperative Extension, 2018). Aside from citrus, apple, peach, and pear, 
cherry fruit accounts for $720–$960 per acre for picking by using hand (University 
of California Agriculture and Natural Resources Cooperative Extension, 2017a, b).

12 Robotic Tree Fruit Harvesting: Status, Challenges, and Prosperities



302

12.2.2  Challenges and Opportunities for Fruit Harvesting

Harvesting of tree fruits (i.e., apples, citrus, cherries, peaches, and pears) is the pro-
cess of gathering a ripe fruit from the orchards which highly depends on labor work-
force and is becoming less feasible due to the decreasing trend of farm labor in 
agriculture with increasing cost of production. Although a rapid development in 
agricultural automation has been progressed in the twentieth century, tree fruit har-
vesting is still largely dependent on manual labor due to lack of efficient and effec-
tive harvesting methods. Most of the developments reported in the last few years are 
in prototype phase and not fully feasible to the large scale orchard condition due to 
lower efficacy and efficiency, unreliable performance, and high cost (Zhao et al., 
2016). Among the tree fruits, the apple industry alone is accounting for $1150–
$1700 per acre for manual harvesting (e.g., handpicked) by seasonal labors (Gallardo 
et al., 2010). Therefore, a large number of seasonal workers is required every year 
for only tree fruit harvesting considered as the top labor-intensive task in orchard 
management. Fruit growers of Washington State utilized about 36,425 seasonal 
labors in the peak harvesting month (i.e., September) for only apple harvesting 
(Washington State Employment Security Department, 2013), accounting for one- 
third of the annual variable costs combining tree pruning and thinning (Gallardo 
et al., 2010). Conversely, increasing demand for seasonal workforce in fruit indus-
tries is pretending the high uncertainty of the farm labor availability in the near 
future (Calvin & Martin, 2010). Tree fruit industries in the USA are hiring a major 
portion of seasonal labors from migrant Latino populations which is also following 
decreasing trend in the past few years (Gonzalez-Barrera, 2015) gaining serious 
concern of fruit growers for harvesting in the upcoming years. Contrarily, most of 
the tree fruits are picked by hand of farm labors using a ladder and bag that pose a 
high risk of back strain and musculoskeletal injuries because of hand lifting, repeti-
tive hand actions, and awkward postures while picking fruits (Fathallah, 2010). The 
main reason for the musculoskeletal injury is ascending and descending of ladders 
with heavy loads. Ladder-caused injuries accounted for about $21 million compen-
sation in the year between 1996 and 2001, which was 50% of all compensations 
claimed in the fruit industry of Washington State over the time frame (Hofmann 
et al., 2006). Considering labor injury issues during fruit picking at high locations, 
labor assist systems (i.e., mechanical platforms) were commercialized that help the 
pickers by raising up and by raising the bins close to them; however, adoption of 
these technologies is not widespread among tree fruits growers in the USA 
(Robinson et  al., 2013). A total of nearly 11% fruit growers utilized mechanical 
labor support systems for harvesting operation in Washington State (Gallardo & 
Brady, 2015). Contrariness between the mechanical labor assisted systems and the 
previous orchard design and tree architecture was referred to as the most noteworthy 
obstacle to their utilization and brought a significant compatibility problem in the 
tree fruits harvesting (Duraj et al., 2010). To address the challenges associated with 
labor shortage, risk of labor injuries, limitation of labor assisted systems, and also 
to reduce the harvesting cost and saving time, the development and application of 
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automatic or robotic harvesting is utmost importance and essential considering 
innovations in developing advanced sensors, horticultural advancement, and evalu-
ation of mechanical technologies in the past decades. Figure  12.2 illustrates the 
evaluation of tree fruit harvesting methods from manual picking to robotic 
harvesting.

12.3  Overview of Robotic Harvesting Technologies

Beside robotic harvesting, using harvest assist platforms for harvesting tree fruits 
can be back to the 1990s. Peterson and Miller (1996) developed a harvest aid by 
placing two pickers strategically under a tree canopy, whose primary task was to 
pick and drop apples onto a padded catching surface. The machine was modified for 
narrow inclined trellises that allowed pickers’ free movement to optimize their pick-
ing time, field tests demonstrated the potential to improve worker productivity up to 
22% and effectively remove culls in the orchard (Peterson & Bennedsen, 2005). 
However, apple damage incidence was unacceptably high, requiring refinements on 
the handling components.

Vibratory or shaking is the most widely used mechanical harvesting method to 
transmit kinetic energy to fruiting branches, thus to generate a detaching force on 
the fruit–stem interface and removes fruit from the tree (Erdoğan et  al., 2003). 
During shaking, a tree will respond differently to different excitation frequencies 
and amplitudes and fruit removal occurs when the induced detachment force 
exceeds the pedicel fruit tensile strength (Markwardt et al., 1964). Upadhyaya et al. 
(1981) studied a single degree of freedom model to describe the response of a tree 
to impact input and found that 50–60% of the mechanical energy was converted to 
kinetic energy when impact excitation was used. Savary et al. (2010) developed a 
simulation tool for predicting the interaction between a tree and the shaker using 
finite element analysis. Experimental results revealed that the resultant acceleration 
of the tree would increase with the increase of shaking frequency. Du et al. (2012) 
conducted a series of dynamic tests to find the energy responses of a sweet cherry 

Fig. 12.2 Illustration of the evaluation of tree fruit harvesting methods, from left to right are: 
manual picking, harvest assist platform, mechanical shake-and-catch, and robotic harvesting
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tree to vibratory excitations in both laboratory and orchard environments. They 
found that the energy delivery efficiency and its distribution pattern were heavily 
related to tree structure. Recently, a localized multi-layer shake-and-catch harvest-
ing system was developed and tested in the apple orchards, which found the possi-
blility of reducing mechanical-induced damage to the fruits (He et al., 2019). While 
mechanical harvesting is non-selective harvesting and more precise harvesting 
should be applied, such as robotic harvesting.

12.3.1  Concept of Robotic Harvesting

The use of robots in tree fruit production is primarily associated with decreasing 
labor availability and increasing associated costs. An agricultural robot can be 
defined as an integration of sensing, computing, and manipulation systems to exe-
cute pre-defined tasks including thinning, pruning, and harvesting (Kondo & Ting, 
1998). In the production cycle of the tree fruits, harvesting is the most labor- 
intensive operation. As fruit harvesting is time sensitive operation, a large seasonal 
workforce of skilled labor is required, which is a concern for the fruit growers due 
to decrease in the labor availability. In addition, the harvesting labor accounts for 
the significant portion of the variable production cost. Thus, robotic harvesting is an 
alternate solution to address the issue of labor availability and associated costs and 
timeliness. The robotic harvester can be classified into two categories: bulk (mass) 
harvesting and selective (ripe/ready) harvesting. The selective harvesting in which 
only harvesting the ripened fruits received more attention from the researchers. As 
a result, several robotic tree fruit harvesting systems have been developed for har-
vesting various types of fruits including apples (Silwal et al., 2016), citrus (Mehta 
& Burks, 2014), and cherries (Tanigaki et al., 2008), but no commercial success has 
been achieved yet. With the recent advances in sensing, controlling, and computing 
capabilities, the robotic tree fruit harvesting is becoming a possible long-term tech-
nology to ensure the sustainability of the tree fruit industry. In this section, a general 
overview of the different components along with some recent efforts for developing 
an integrated robotic system for tree fruit harvesting is presented, followed by 
detailed discussion on the core technologies in the next section (Fig. 12.3).

12.3.2  Robotic Harvesting Review

In recent years, many researchers have worked on development of integrated robotic 
harvesting system for different tree fruits including apples, citrus, litchi, and cherry. 
However, these robotic systems are still in the development phase. A universal 
robotic system may not be feasible for different tree fruits as the harvesting princi-
ples vary for different fruits due to the challenging features, e.g., canopy character-
istics, and fruit attributes such as size, shape, and weight. Different robotic systems 
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were developed implementing various combinations of integrating different types 
of sensing systems with different types of manipulators and end-effectors to facili-
tate the robotic harvesting for tree fruits. Among the high valued tree fruits, the 
robotic harvesting of apple has gained more attention. Figure 12.4 shows three dif-
ferent types of apple robotic harvesting systems. The modern tree canopy architec-
ture for apple orchards such as trellis fruiting wall, v-trellis, and tall spindle makes 
most of the fruit visible and accessible from outside, has encouraged researchers for 
automated apple harvesting. The features of apple fruit including shape, size, color 
(esp. red varieties) are easier to detect and the other attributes such as hard nature of 
apple fruits help robotic harvesting as the end-effector could pick it without damag-
ing/bruising. An apple harvesting robot was developed by Silwal et al. (2016) using 
a seven DoF robotic system integrated with a three tandem fingers gripper end- 
effector and over-the-row time of flight-based color camera. For establishing the 
controls, the developed system used the global view system to take the images at the 
start of each harvesting cycle. The developed system was able to detect 90–100% of 
the fruits; however, the harvesting/picking success was 84% with an average speed 

Fig. 12.3 Illustration of 
the Integrated Robotic Tree 
Fruit Harvester (Apple). 
Components: (1) 
manipulator, (2) camera 
vision system, and (3) 
end-effector tool (gripper)

Fig. 12.4 Example of three robotic apple picking systems. From left to right: FFRobotics (multi- 
layer linear motion with three-finger gripper), Abundant Robotics (parallel robotic arm with vac-
uum gripper), and Washington State university (serial robotic arm with three finger gripper)
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of 6.1 s per fruit. Onishi et al. (2019) developed a robotic apple harvester using deep 
learning for fruit detection. The system comprised of a six DoF robotic arm inte-
grated with a stereo camera and gripper end-effector. The system was able to detect 
90% of the fruits with average harvesting cycle time of 16 s per fruit. However, the 
gripper made four turns to twist break the peduncle, resulting in higher harvesting 
time. Another apple harvesting robot developed by Baeten et al. (2008) consists of 
a six DoF manipulator integrated with soft gripper end-effector (vacuum operated) 
having the camera attached in the center (hand-in-eye configuration). The fruit 
detection accuracy was 80% (diameter range 6–11  cm) and average harvesting 
speed was 9 s per fruit. However, a better sensing of the environment is essential to 
avoid the contact of the soft gripper with the sharp limbs. Also, the communication 
between the vision and control unit could be improved to reduce the harvesting 
time. Bulanon and Kataoka (2010) developed a prototype for robotic apple harvest-
ing by integrating an RGB camera with a laser sensor. The single fruit detection 
accuracy was 100% and the picking success was as high as 90%, with an average 
detachment time of 7.1 s per fruit. However, the study was conducted in laboratory 
environment, and further investigations are still required to confirm the performance 
in the field conditions. FFRobotics (2020) developed a commercial robotic apple 
harvester and claimed to have the fruit detection 95% in high-density orchards with 
a bruise free fruit picking accuracy as 90%. However, the collision with limbs and 
trellis wire still needs to be addressed.

Some other tree fruits gained attention for robotic harvesting including citrus, 
cherry, peach, and litchi. Mehta et al. (2014) developed an integrated citrus harvest-
ing robot with a position controller. The system consists of a seven DoF manipulator 
equipped with a gripper and RGB cameras. The system was able to harvest 95% of 
the fruits on the tree with harvest cycle as 8 s per fruit. The error in the end-effector 
positioning was observed less than the fruit diameter, however, with average posi-
tion accuracy of about ±15 mm, could only be suitable for medium to large size 
citrus varieties. Harrell et al. (1990) reported the harvesting success rate as 50% 
with harvest cycle time of 36 s per fruit for citrus harvester. Energid (2020) has 
developed a prototype for citrus harvesting. The system comprised of two DoF (for 
aiming and extension) and a camera system (for detection), while no picking end- 
effector was attached for grasping. The developed prototype was able to pick 50% 
of the citrus fruit and the average harvesting cycle time was 3 s per fruit. Robotic 
cherry harvesting has also gained attention of the researchers. Tanigaki et al. (2008) 
developed a cherry harvesting robot, comprising a four DoF manipulator integrated 
with a vacuum end-effector and 3D vision sensor having red and infrared laser 
diodes. For all detected cherries on the tree, the average harvesting cycle time was 
14  s per fruit and the harvesting success with and without peduncle attached to 
cherry was 83% and 66%, respectively. The robot prototype was tested on a model 
cherry tree in the laboratory, however considering the delicacy of cherry fruit, a 
more sophisticated end-effector is essential to test the system performance in the 
field conditions on real trees. Some efforts for the integrated robotic systems for 
peach and litchi harvested are also reported. Yu et al. (2018) developed a prototype 
of an autonomous peach harvester. The system consists of a six DoF manipulator 
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integrated with a gripper end-effector and three RGB cameras and a laser sensor for 
peach detection, measuring distance, and obstacle avoidance. The fruit detection 
success was 90% with a tracking speed of 40 fps. However, the system was greatly 
affected by the illumination conditions, which resulted in lower detection accuracy. 
Similarly, Xu et al. (2011) reported a virtual prototype for litchi harvesting robot 
consisting of a five DoF manipulator but further research is required for the inte-
grated system development. A summary of the recently developed robotic tree fruit 
harvester is presented in Table 12.1. The reviewed integrated robotic harvesters for 
various fruits are still in the development phase. An interdisciplinary approach is 
needed to address the engineering, horticultural, and economical issues, to make a 
substantial progress toward the adoption of robotic tree fruit harvesting in the 
orchard environment.

Different metrics could be used to determine the performance of the integrated 
robotic systems. Bac et al. (2014) present eight different performance measuring 
indicators including fruit localization success, false-positive fruit detection, detach-
ment success, harvest success, harvest cycle time, damage rate, number of fruits 
evaluated in a test, and detachment attempt ratio. However, in general the perfor-
mance of the harvesting robots as reported by researchers could be determined 
using two metrics including: harvesting success, which refers to percentage of the 
successfully picked from the available total fruits on the tree, and harvesting speed, 
which refers to the amount of time required to complete the harvesting cycle (sens-
ing, reaching, and detaching) for a single fruit. The integrated harvesting robots 
developed for different tree fruits greatly differ from each other as the design 
requirements vary for different fruits, depending on the fruit and canopy 

Table 12.1 Recent developments for tree fruit harvesting robots

Crops Robotic system
Harvesting 
speed

Harvesting 
success (%) References

Apple 6 DoF arm, stereo camera 16 s per fruit 90 Onishi et al. (2019)
Apple 7 DoF arm, color camera, time 

of flight-based 3D camera
6.1 s per fruit 84 Silwal et al. (2016)

Apple Color CCD camera, laser range 
sensor

7.1 s per fruit 90 Bulanon and 
Kataoka (2010)

Apple 5 DoF arm, stereovision imaging 
sensor

7.3 s per fruit 67 Hohimer et al. 
(2019)

Apple 5 DoF arm, color CCD camera, 
pressure sensor

15 s per fruit 77 Zhao et al. (2011)

Apple 6 DoF arm, high-frequency light 
camera

9 s per fruit 80 Baeten et al. 
(2008)

Citrus 7 DoF arm, color CCD (charge 
coupled device) camera

8 s per fruit 95 Mehta et al. (2014)

Citrus 2 DoF platform, color camera 3 s per fruit 50 Energid (2020)
Cherry 4 DoF arm, 3D vision sensor 14 s per fruit 83 Tanigaki et al. 

(2008)
Peach 6 DoF arm, color camera Not reported 90 Yu et al. (2018)
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characteristics and thus could not be compared directly. However, the metrics used 
to determine the performance are similar. The figure is presented to better under-
stand the status of harvesting robots for different tree fruits and also provide the 
understanding on how the fruit and canopy characteristics could affect the harvest-
ing success and harvesting speed.

12.4  Core Technologies in Robotic Harvesting

As shown in Fig. 12.1, the core components of the robot include a camera based 
sensing system to detect the environment including fruits, leaves, and branches, an 
efficient computing and processing algorithm to extract the useful information from 
the environment, a mechanical manipulation system for reaching the target fruit 
location, an end-effector tool to harvest/pick the target fruit, and a conveyer system 
to place the harvested fruit into a container/bin. The process of robotic tree fruit 
harvesting begins from detecting the fruit using a camera vision system and finding 
the location of the fruit so that the mechanical manipulation system could reach 
target fruit and an effector tool could detach it from the tree. With advancement in 
the imaging and sensing and technologies, numerous studies have reported different 
vision-based techniques for getting useful information for fruit feature extraction 
including color, size, shape, and texture, etc., localization, and tracking (Silwal 
et al., 2016; Tabb et al., 2006). Environmental sensing or fruit detection could be 
done using a single viewpoint or multiple viewpoints, however, the vision system 
has certain challenges due to various factors including heavy occlusion by the 
leaves, fruit clustering, unpredicted tasks, unstructured environment, and variable 
lighting conditions (Zhang et al., 2019). The second step in the robotic fruit harvest-
ing is to approach the fruit using a mechanical manipulation system. This step pri-
marily involves the optimal trajectory planning to position the end-effector at 
required location and orientation, and sequencing or prioritization of fruit harvest-
ing to minimize the path length, time, energy or parameters that affect the perfor-
mance of a robot (Silwal et al., 2017). The manipulator degrees of freedom (DoF) is 
critical for precise positioning and orientation of the end-effector. In general, most 
widely adopted manipulators for agriculture usually have five or more DoFs. The 
target could be approached in two different ways. The first way refers as visual sur-
veying, which involves detecting the fruit coordinates in the 2D image and continu-
ously changing the manipulator joint positions to keep the fruit at the same image 
coordinates at all time (Ringdahl et al., 2019). The second approach is using a global 
camera system, which involves mounting a camera at a fixed position to take images 
at the beginning of a harvesting cycle to estimate the position of all fruit in the cam-
era view. The approaching path could be established using the inverse kinematics 
for each initial and final position of the end-effector; however, an accurate calibra-
tion between vision system and manipulator is essential for reaching the target pre-
cisely (Zhang et al., 2019).
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12.4.1  Machine Vision for Fruit Harvesting

Robotic tree fruit harvesting requires two major tasks to be done; one is to accu-
rately recognize the fruit in the tree and second is to be detaching the fruit without 
having any damage on it or any particular part of the tree. An illustration of machine 
vision based automatic tree fruit detection is presented in Fig. 12.5. Machine vision 
uses advanced sensors (i.e., cameras) that captures the images, processing hardware 
and software algorithms to automate visual inspection or detection and localization 
tasks and accurately/precisely guide the end-effectors to successfully harvest the 
fruits from the tree branches. For robotic fruit harvesting, the fruit automatic detec-
tion and localization have been conducted mainly by using machine vision tech-
niques. Camera sensors are used to capture the images from the trees, which is 
considered as the first step toward fruit detection as well as fruit harvesting.

 Camera Sensors for Fruit Harvesting

Camera is an optical instrument used to record visual important features in the form 
of image or video signals to distinguish fruits from leaves, trunks, branches, and 
other neighboring objects in the real-time orchard condition. A camera lens takes all 
the light beams skipping around and utilizes glass to divert them to a single point, 
making a sharp picture of the objects. Four types of cameras are used in fruit recog-
nizing so far including black and white, color, spectral, and thermal cameras, and 
three types of cameras are used for fruit localizing including color, stereovision, and 
time-of-flight cameras. A color camera uses filtering to look at the light in its tree 
primary colors including red, green, and blue. After recording all three primary 
colors, the camera combines them to create the full spectrum. Color camera cap-
tures light across three wavelength bands in the visible spectrum (400–700 nm). 
Spectral camera uses multiple electromagnetic spectrum bands (e.g., near-infrared: 
750–900 nm; hyperspectral: 400–1100 nm in steps of 20 nm, and so on) and usually 

Fig. 12.5 An illustration of machine vision based automatic tree fruit detection
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go beyond color camera to collect objects information. Conversely, thermal camera 
detects temperature by capturing different levels of infrared light using wavelength 
of 1–14 μm to distinguish between objects. Apart from single camera lens, stereovi-
sion camera is consisted of two or more lenses with separate image sensors to see 
the same object that can provide 3D structure of the object. Conversely, time-of- 
flight camera measures the distance between the camera sensor and the object for 
each point of the image by calculating the time difference between emission and 
return of an artificial light signal, after being reflected by the object. Favorable cir-
cumstances and drawbacks of various camera sensors are discussed in Table 12.2.

Earliest studies dated back in the late 1980s initiated the application of black and 
white cameras for fruit detections aiming to ensure first step respecting to the devel-
opment of automatic fruit harvesting system (Whittaker et al., 1987), however, suc-
cesses were not sufficient to move forward because of the sensor’s limitations and 
inability to acquire useful color information/features. Color is most prominent fea-
tures for tree fruit detection, especially for ripe fruit detection (e.g., red apple, 

Table 12.2 Advantages and disadvantages of different camera sensors used for tree fruit detection 
and localization

Camera types Advantages Disadvantages

Black and 
white

• Less affected by lighting condition
• Relatively cheaper in price

• Only provide black and white color; 
are not suitable for distinguishing 
multiple objects

Color • Provide color information about 
fruits, leaves, trunks, branches, and 
background
• Easily to find features
• Less expensive

• Highly sensitive to the illumination 
variations
• Only provide 2D information of the 
objects

Spectral • Acquired both color and spectral 
information
• Able to distinguish differences 
between similarly colored objects

• Time consuming
• Large data storage capacities are 
required
• Costly and complex in operation

Thermal • Not affected by the color of the 
fruits
• Does not require an illumination 
source and possible to use under 
low-light condition

• Limited operation time (narrow range) 
during day
• Size of the fruits greatly affected the 
performance

Stereovision • Ability to capture three-dimensional 
images
• Robust enough for real-time field 
applications

• Susceptible to lighting condition
• Computationally expensive
• Depth range is highly dependent on the 
baseline distance

Time-of- 
flight

• Data can be acquired at night or 
even in low-light conditions
• Provide 3D image of the objects that 
help to localize fruits
• Able to extract the distance 
information of the object
• High precision at long range 
measurement

• Low pixel resolution
• Most of the sensors are affected by 
direct sunlight
• High cost
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yellow orange, dark yellow peach), which is not possible to extract from black and 
white camera specifying the need to use color cameras. Color cameras introduced 
in the early 1990s provides the first time opportunity to detect fruit based on color 
features along with geometric and texture information. Success of the color cameras 
is adequate when the ripe fruits color is different than leaves, branches, and back-
ground (e.g., red apples, yellow citrus, and yellow pear fruits in green background). 
The sensor performs poorly when the fruit color is same as the leaves or background 
considering only color information. Another problem noticed that the color camera 
is highly susceptible to the illumination variations and make the sensor unsuitable 
in the orchard condition. Spectral camera sensors came up in addressing the color 
similarity problem between fruit and background by providing spectral information 
along with special information about fruits, leaves, branches, or other objects 
(Kondo et  al., 1996). Potential of spectral camera has been delineated for fruit 
detection using different wavelengths considering the appearance of different fruits. 
However, major limitation is reported for the longer data acquisition and processing 
time, especially using hyperspectral camera (Kim & Reid, 2004) that forged the 
spectral sensor difficult and challenging for real-time detection. Thermal cameras 
also utilized for fruit detection aiming to solve the color similarity problem between 
fruits, other objects and background, but performance of this types of sensors is 
greatly affected by fruit size and direct sunlight exposure. The accuracy of the ther-
mal camera is lower in shaded and high canopy density area because there is not any 
significant temperature difference existing between fruits and other objects includ-
ing leaves, branches, and background in those regions. Aside from the fruit recogni-
tion sensors, the stereovision and time-of-flight cameras are mainly used for fruit 
localization. Stereovision camera measures the position of the target objects from 
the camera sensor by performing the stereo matching of multiple images acquired 
using various cameras installed in various arms. However, performance of this 
vision system is affected by illumination variation, wind speed and direction, and 
efficient of the hardware component (Plebe & Grasso, 2001). Another major limita-
tion is long computational time and complexity. Time-of-flight camera introduced 
for the fruit localization due to its faster data acquisition and processing speed. In 
the last few years, time-of-flight cameras showed promising potential for fruit local-
izing which is also suitable for outdoor orchard environment especially using an 
RGB-D (Red, Green, Blue-Depth) camera (Fu et  al., 2020), which provides the 
RGB information along with depth and infrared information; however, direct sun-
light exposure can affect the accuracy of the sensor.

 Fruit Detection and Classification for Harvesting

The first step of camera vision system for fruit harvesting is the image acquisition 
stage where images are captured from the tree fruit orchards. After the image has 
been captured, different processing methods have included feature extraction and 
classification can be applied to the pre-processed image to detect fruits from the 
leaves, branches, and other objects background. Color is one of the most valuable 
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features used in image processing based detection to differentiate fruits from other 
neighboring objects (i.e., fruits, foliage, or branches) presence in orchard environ-
ment. Distinguishing oranges from the natural background was the first attempt 
toward developing robotic harvester using color features and detected 75% of the 
fruit pixels successfully showed the potential of applying color features for fruit 
detection (Slaughter & Harrell, 1989). The accuracy of the fruit detection was 
improved in the later years up to 88.0% using only color features (Bulanon et al., 
2002; Qiang et al., 2014), however, fruit detection accuracy based on color features 
is greatly affected by illumination variation, fruit variety, fruit maturity level, and 
uncontrollable orchard environment. Illumination variation during image capturing 
can provide different light intensities; therefore, it would be very difficult and chal-
lenging to detect fruits under uncontrollable lighting environment using color fea-
tures. Geometric features mainly considering the size and shape of the fruits are 
being used to address the color feature problems especially when the green fruits 
need to be detected from green leafy background. These types of features are also 
less susceptible to illumination variations which make it suitable for real-time 
orchard condition unless the blurred image caused during data acquisition due to 
high wind velocity. Lu et al. (2018) detected green immature citrus fruit using geo-
metric features and achieved 82.3% of precision rate. Performance of geometric 
features (i.e., searching circles) is boosted up to 85% of accuracy for detecting the 
green apples from green background when they were visible in the captured images, 
but the occluded apples caused the false-positive detection (i.e., considered leaves, 
stems, and branches as fruits) (Linker et al., 2012). Conversely, iterative Circular 
Hough Transform (CHT) and blob analysis based geometric features provided over 
90% of accuracy for “Jazz” and “Fuji” apples detection in clearly visible and par-
tially occluded apples on tall spindle architecture canopy trees (Silwal et al., 2014). 
However, the major problem using the geometric features is the occlusion of fruits, 
which results in the poor performance due to alter in size, shape, and other geomet-
ric characteristics of the tree fruits. Textures are another important feature which is 
not affected by the surface color so it can also be used to detect fruits from the simi-
lar color background (i.e., leaves and stems). Tree fruits generally have smoother 
surfaces compared to the leaves, branches, stems, and other objects. Detection of 
fruits using texture features isolates the surfaces with the homogeneous texture and 
afterward distinguishes the edges of the isolated surface (Zhao et  al., 2005). 
Performance of these types of features for fruit detection is not so high when only 
the texture features are used. Considering a novel Eigen Fruit approach and blob 
analysis, a Gabor wavelet based texture analysis was utilized to detect green citrus 
and achieved an accuracy of 75.3% with 27.3% false detection (Kurtulmus et al., 
2011). Variable illumination condition, complexity of the fruit background, and 
varying fruit size have tremendous effect on the texture properties of fruits reducing 
the accuracy of the detection (Zhao et al., 2005; Kurtulmus et al., 2011). Combining 
texture features and other features (i.e., color and geometric) can enhance the accu-
racy up to 89% while detecting “Golden Delicious” and “Jonagold” apples (Stajnko 
et al., 2009). Besides color, geometric, and texture features, a 3D shape of the fruit 
was reconstructed (Fig.  12.6) for improving the detection accuracy, but the 
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methodology was only justified hypothetically, and therefore ample tests were 
required to show its reliability in real-time orchard applications (Rakun et al., 2011).

To perform successful fruit detection from the other neighboring objects, the 
image classification is required after extracting valuable features from the images. 
Supervised classifiers have included Bayesian and K-nearest neighbor; unsuper-
vised classifiers included K-means clustering; and soft computing methods included 
artificial neural network (ANN) and support vector machine (SVM) were used so 
far for fruit detection. Bayesian is one of the multivariate statistical classification 
techniques used widely for object detection/classification based on prior knowledge 
and probability distributions also called posterior probability theory. Bayesian dis-
criminant was used to classify oranges considering the color information and clas-
sified 75% of fruits successfully (Slaughter & Harrell, 1989). Considering the 
similar method, Juste and Sevila (1992) applied a pattern classification method of 
Bayes’s rules for citrus fruit detection and reported up to 90% of accuracy. Although 
the higher detection accuracy showing the potential of Bayesian classifier for fruit 
detection, the major drawback is that the prior probabilities information require in 
detection that can be affected due to the changes of color value of fruits caused by 
the illumination variations (Chinchuluun et al., 2007). Contrarily, K-nearest neigh-
bor (KNN) based supervised classifier, also susceptible to illumination variable is 
used to classify unknown feature vector to the class by measuring the closeness 
measure between the obscure and each training samples. To detect the green apples 
in captured RGB image, a KNN classifier was used in two dataset recorded in direct 
illumination and diffusive light conditions and reported 85% and 95% of accuracies 
for correct detection (Linker et al., 2012). Another significant impediment of KNN 
based algorithm is huge processing time to group an obscure feature vector which 

Fig. 12.6 Original 
acquired image (upper left 
image), color segmented 
version (right top image), 
cleaned version by 
applying morphological 
operators (bottom left 
image), and finally, 3D 
shape analysis (bottom 
right image). (Adopted 
from Rakun et al., 2011)
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makes it inadmissible for real-time field applications (Mitchell, 1997). Besides 
supervised classifiers, K-means clustering based unsupervised machine learning 
classifier is also used for fruit detection, which allocates every data point into the 
nearest cluster dependent on their intrinsic distance between one another. However, 
the performance of K-means clustering in fruit detection is not so high using differ-
ent images including color and thermal especially for green apples (Wachs et al., 
2010). The soft computing methods including ANN and SVM are also supervised 
machine learning algorithms become so popular and widely accepted for fruit detec-
tion in the orchards (Wachs et al., 2010; Qiang et al., 2014). An SVM based classi-
fier isolates the two classes with a greatest edge between them by a hyper-straight 
plane to classify objects. Tao and Zhou (2017) detected apples, branches, and leaves 
using a multi-class SVM classification method and achieved an accuracy of 94.64%, 
47.05%, and 75%, respectively, while acquired images by a Kinect V2 camera sen-
sor. Using the same camera, Lin et al. (2019) detected citrus fruits based on SVM 
algorithm and reported a F1-score of 91.97% using color, gradient, and geometry 
features. Qiang et al. (2014) used RBF kernel function for applying a multi-class 
SVM classifier to detect citrus fruits from the leaves and branches by using color 
features and reported a detection accuracy of 92.4%. The authors identified that 
illumination variations, fruit occlusion, and immature fruit were the major factors 
reducing the classifier as well as system performance. Apart from SVM based soft 
computing method, an ANN based machine learning algorithm detects the fruits by 
learning specific patterns/model defined by the training data through the iterative 
training process. To develop orange picking robot, a neural network (i.e., back prop-
agation) based machine learning algorithm along with color features was used to 
detect oranges from the images captured at different lighting conditions and 
achieved an accuracy of 87% with 15% false positive and 5% false negative (Plebe 
& Grasso, 2001). Additionally, Kurtulmus et al. (2014) compared three classifiers 
including a statistical classifier (i.e., discriminant analysis), an ANN, and an SVM 
performance for immature peaches detection under various illumination conditions 
and reported the ANN classifier performed better (82%) than discriminant analysis 
(80%) and SVM (62%). Despite both supervised and unsupervised machine learn-
ing classifiers showed good performances, but most recently, significant advance-
ment and effort have been accomplished through the application of deep learning 
algorithms on fruit detection due to its larger learning capabilities resulting in higher 
performance and precision, which is based on multiple layer ANNs (Koirala 
et al., 2019).

Deep learning is one of the machine learning techniques that can learn the fea-
tures themself from raw data and provides a hierarchical representation of the data 
through deeper neural networks and various convolutions. Object detection using 
deep learning algorithms becomes more popular due to their higher detection rate 
and fast detection speed in the past years which is applied in various fields of 
research (Gao et al., 2020). Deep learning networks including convolution neural 
network (CNN), region-based CNN (R-CNN), Fast R-CNN, Faster R-CNN, You 
Only Look Once (YOLO) network are increasingly applied in recent years for 
orchard management and provide an excellent framework for fruit detection (Bargoti 
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& Underwood, 2017; Fu et al., 2020; Gao et al., 2020). Considering rapid progress 
and improvement in deep learning algorithm, a Faster R-CNN model was tested and 
achieved an accuracy of 95% for Fuji apple detection (Gené-Mola et al., 2019). To 
reduce detection time and improve detection accuracy, the convolution and pooling 
layers of Faster R-CNN were modified by Wan and Goudos (2020), the developed 
model was tested for green apple and orange detection and achieved 92.51% and 
90.73% of accuracies, respectively. Numerous deep learning algorithms (i.e., 
Yolov3, R-CNN, and VGG-16) application for apple fruit detection was reviewed 
and reported the detection accuracies ranged between 84% and 95% (Koirala et al., 
2019). By combining Gaussian Mixture Models based semi-supervised method and 
deep learning method, Häni et al. (2020) developed a novel semantic segmentation- 
based approach for fruit detection and counting and reported the performance can 
be better than a single deep learning model with detection accuracies ranged from 
95.56% to 97.83%. Compared to the conventional machine learning models, emerg-
ing deep learning algorithms are showing promising potential and benefit with the 
higher detection accuracy and the faster detection speed that are necessary for 
robotic fruit harvesting in real-time orchard condition.

 Fruit Localization for Harvesting

Next step of detection is fruit localization, another very essential part of computer 
vision system for guiding robotic end-effectors to grab and detach fruit from the 
tree. Inaccurate fruit localization information causes failure of the end-effectors in 
successful fruit harvesting. Despite there are different types of challenges exist due 
to uncontrollable orchard condition (i.e., wind velocity, fruit occlusion, etc.), stud-
ies have conducted toward the accurate fruit localization (Bac et al., 2014). Fruit 
localization began with using a single black and white camera to identify fruit cen-
troids aimed to extract 3D coordinate for grasping fruit from the branches by devel-
oping a mathematical transformation model (Parrish & Goksel, 1977). After about 
a decade, the color camera had been applied to identify fruit centroids by stick out 
the telescopic end-effector. This was made conceivable when the camera mounted 
at the center of the end-effector, at that point the fruit centroid in the captured image 
lined up with the pivot of the prismatic joint (Slaughter & Harrell, 1989). Apart 
from the fruit centroids, studies also conducted to localize fruit peduncle by using 
the color camera for the ease of fruit harvesting especially for detachment (Bulanon 
et al., 2001). For obtaining more precise fruit location, the laser systems were also 
utilized in some extend along with camera sensors where 2D location of fruit 
accessed via camera vision and a laser sensor used to measure the distance from the 
end-effector and fruit (Bulanon et al., 2004). Besides single camera applications for 
fruit localization, several attempts were reported using more than one camera by 
applying stereovision where fruits were located by triangulation. However, the main 
problem using a stereovision system was the correspondence problem where obtain-
ing reference points in the practical view is difficult (Wang et al., 2013). Researchers 
attempted to solve the correspondence problem while using stereovision system, but 
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they ended up with the error less than 20 mm due to densely distributed tree cano-
pies (Si et al., 2015). Aside from stereovision, the red-green-blue-depth (RGB-D) 
cameras by Kinect V2 offer a new approach to extract 3D space for detecting and 
localizing fruits simultaneously (Fu et al., 2020). Studies reported that RGB-D cam-
era along with advanced machine learning algorithm including Bayes classifier and 
Faster R-CNN can be appropriate for real-time orchard conditions with detection/
recognition accuracies went from 92% to 95% and localization errors of 
7.0 ± 2.5 mm, −4.0 ± 3.0 mm, and 13.0 ± 3.0 mm in x, y, and z axis direction, 
respectively (Zheng et al., 2018; Lin et al., 2019). On the other hand, several studies 
reported RealSense RGB-D camera performed better than Kinect V2 with an image 
resolution of 1280 × 720 pixel and sample frequency of 90 frames per second com-
pared to 512 × 424 and 30 (Mejia-Trujillo et al., 2019). Considering the promises of 
RealSense RGB-D cameras shown in fruit detection and localization, we can assume 
that it could be an effective tool for real-time orchard applications in the future with 
high accurate manner.

12.4.2  Fruit Removal Dynamics 
and End-Effector Development

Fruit detachment is one of the major tasks in the robotic fruit harvesting. Prior to 
designing a fruit picking end-effector, it is necessary to investigate the dynamics for 
fruit detachment. The information provided by the dynamics includes picking or 
cutting force/torque, picking angle, and fruit detachment motion. Typically, robotic 
picking requires fruit detachment motions planned and performed with sufficient 
grasping forces applied to the target fruit (Tillett, 1993). For a human picker, an 
apple is detached by gently griping it with fingers and twisting it around the connec-
tion point of its stem and limb. At the same time, pickers put one finger on the con-
nection point to minimize the movement of the connection point or the pivot. 
Reduced movement of the pivot point will increase the torque around this point and 
thus increases effectiveness of fruit detachment. Preliminary tests showed that 
twisting of apples by attaching the pivot could achieve more effective and efficient 
detachment than pulling them (Bulanon & Kataoka, 2010).

To provide baseline information for developing a conceptual robotic end-effector 
for apple picking, a series of fundamental physics studies for apple picking were 
conducted by a Washington State University (WSU) research group with mimic 
human picking operations (Fig. 12.7, He et al., unpublished document). These phys-
ics included the picking orientation, the applied force/torque, and the relations to 
the apple weight and stem length. Three flexible force sensors were mounted on 
three fingers of picker to measure the force applied to the apple surface during pick-
ing operation. A hand-held picking device, consisting of a gripper and a torque sen-
sor, was built to measure the twisting torque for removing apples from the tree. 
Tests showed that picking apple along the peduncle direction obtained much higher 
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picking efficiency. Force applied to the surface of apple varied from different pick-
ers and different fingers, the force applied was from 0.43 ± 0.27 to 1.16 ± 0.33 kgf 
in this study, also the applied force showed positive relation to the fruit weight. The 
results also indicated that the detachment torque increased as the increasing of apple 
weight, and the picking angle increased as the increasing of  apple stem length. 
Furthermore, Davidson et  al. (2016) investigated the hand picking dynamics for 
robotic apple harvester design. The results indicated that each variety has different 
detachment force. And the study also suggested to use a tactile sensor in a robotic 
end-effector to potentially determine the point of fruit separation and minimize the 
path traveled by the end-effector during harvesting. Li et al. (2016) indicated that 
bending motion could improve the fruit detachment performance for apple picking. 
To remove a fruit from the branch, bend-and-pull picking will require less energy 
than straight pulling along stem growth direction. Flood (2006) designed a robotic 
citrus harvesting end-effector and a force control model using physical properties 
and harvesting motion tests.

End-effector is a critical component for a harvesting robot, which is used to 
detach fruits from the tree with appropriate force and motion. Designing an end- 
effector tool for fruit harvest can be a challenging task due to the complex canopy 
environment and unique fruit characteristics. The design should consider the 
mechanical and spatial requirements including size, shape, weight, and maneuver-
ability, and the task object requirements including physical, horticultural, and bio-
logical properties (Kondo & Ting, 1998). Researchers in the past have put a lot of 
efforts on developing end-effectors to harvest different kind of crops including 

Fig. 12.7 Hand picking apple force measurement setup and method. (a) force sensor; (b) sensor 
equiped picking glove; (c) picking apple by twisting; (d) picking apple by pulling
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orange, tomato, eggplant, cucumber, and apples (Muscato et al., 2005; Whittaker 
et al., 1987; Van Henten et al., 2003; Hayashi et al., 2002; Davidson & Mo, 2015). 
Different detachment motions also have been tested in these studies, such as pull-
ing, twisting, cutting, and combination of two. Zhang et al. (2020) did an extensive 
review for different robotic grippers used for agricultural applications along with 
their grasping and control strategies. Many picking end-effectors use either two or 
more fingers to grasp the fruit to detach it (Burks et al., 2005). Some of these end- 
effectors used air to suck the object and grip it, then use scissors to cut the peduncle 
to detach the object, which may cause damage to the fruit peduncle. Conversely, 
suction devices comprised a vacuum cup to hold the fruit and combined with appro-
priate mechanism to detach fruit form the tree such as cutting the peduncle with 
blade mounted on the fingers (Hayashi et  al., 2014), or a twist motion (Yaguchi 
et al., 2016). Bac et al. (2017) developed a four-fingered hand with a pair of scissors 
mounted on top to cut the stem. The designed hand may be more suitable for fruit 
with longer stems, however detecting and locating the stem is a challenging task in 
the complex canopy environment.

12.4.3  Harvesting Robot Manipulation

 Robotic Manipulators

The tree canopy–machine interaction could be interpreted as manipulation of a 
machine (robotic arm/manipulator) within tree canopy to reach the identified fruit 
locations to perform the harvesting using an end-effector. The robotic arm or 
manipulator is the mechanical system like a human arm, usually comprised of links 
connected in a series joints that perform the intended tasks in the one-two-three-
dimensional space. Each joint in the manipulator has one DoF and the kinematic 
dexterity is directly related to the number and type of joints in the manipulator 
(Burks et al., 2018). The currently available industrial manipulators are designed to 
perform repetitive tasks with uniform objects in unconstrained workspace. 
Conversely, the adoption of robotic manipulators for fruit harvesting has many chal-
lenges as agriculture is a constrained dynamic environment where the target objects 
vary in shape, size, position, and orientation (Simonton, 1991). The successful 
adoption of robotic manipulators requires consideration of its working environment 
(Kondo & Ting, 1998; Simonton, 1991). Thus, the robotic manipulators for tree 
fruit harvesting should be designed considering different factors such as canopy 
structures, and branch density, etc., for safe operation in the unstructured agricul-
ture environment.

In an agricultural robot, the first joint of the manipulator is connected to the base 
of a mobile platform, and the last joint of the manipulator  is an integrated end- 
effector unit, which consists of a tool/gripper to perform the required task is attached. 
The manipulator mainly works for the positioning of the end-effector close to the 
target fruit and then move the harvested fruit to the collection bin/container. For tree 
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fruit harvesting, the manipulator could be designed with various configurations, 
based on total DoFs, and different combination of joint types. The selection of joints 
configuration is critical as it affects the kinematic dexterity and spatial requirements 
during manipulation of the robot to attain different positions and orientations of the 
end-effector. Based on total DoF selection, a manipulator can be designed with dif-
ferent number of joints starting from three or higher. However, increasing the num-
ber of joints (DoF) exponentially increase the computation and control complexity 
(Choset et al., 2005). A three DoF (3 DoF) manipulator is the most common choice 
due to its simple design and control architecture. For a known Cartesian position of 
the fruit, the 3 DoF manipulator (Harrell et al., 1990) could easily reach the desired 
position using the inverse kinematics. However, the end-effector (gripper) could not 
alter the orientation due to lack of DoFs. As the fruits on a tree grow at random 
orientations, the manipulator should have the ability to grasp the fruit from different 
orientations. The manipulator performance will be decreased if the fruits are 
occluded behind leaves or branches and the gripper may not be able to harvest the 
fruit. Adding additional DoFs to the manipulator such as a four DoF (Tanigaki et al., 
2008) or five DoF (Zahid et al., 2020a) could be a solution to the problem to some 
extent by giving the capabilities to adjust the orientation of the end-effector, but 
harvesting the fruits present behind the obstacles deep inside the canopy could still 
be problematic. To completely describe the six components of the Cartesian space 
including three positional (x, y, and z) components, and three angular (yaw, pitch, 
and roll) components, the manipulator should have six joints in its assembly. Thus, 
the agricultural manipulator should have at least six DoFs (Onishi et al., 2019) to 
attain all possible orientation and position in the workspace. However, with higher 
DoFs, the kinematics of the manipulator results in two poses (elbow up and elbow 
down) for any desired position and orientation, which can lead to a higher chance of 
manipulator collision with the branches at some poses, causing damage to manipu-
lator, fruit, or tree. Another problem with six DoFs is its limitation of a single pose 
in the workspace, and it may not be able to avoid all the obstacles, which is essential 
for the safe operation of robot (Burks et al., 2018). Considering the unstructured 
canopy environment, the manipulator with at least one excess DoF such as a seven 
DoF (Mehta et al., 2014; Silwal et al., 2016) for the positioning and orientation is a 
better solution to avoid collisions, also known as redundant manipulators. These 
redundant manipulators can attain multiple orientations for any target position to 
avoid collisions by changing the pose to the optimal. Although the redundant 
manipulators improve the kinematic dexterity to grasp the fruit by attaining differ-
ent orientation, it also increases the complexity for manipulation controls (Fig. 12.8).

The performance of the tree fruit robotic manipulator could also be affected by 
the type of joints such as prismatic, rotational, or combination of both joints, used 
for its assembly. Figure 12.8 shows few examples of different configurations of first 
three joints for a six DoF manipulator integrated with spherical wrist gripper end- 
effector. The first three joints, referred as Cartesian positioning (x, y, and z) links, 
move the end-effector in the proximity of target fruit. The last three joints, referred 
as wrist, alter the orientation of the end-effector for accurate positioning at the tar-
get. Each of the shown manipulator has a different workspace and spatial 
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requirements for manipulation. During maneuvering, each joint contributes to alter 
the manipulator pose and end-effector position and orientation in the canopy. When 
the manipulator starts maneuvering inside the canopy, the major change in position 
and pose of the manipulator link is due to the positioning joints and a small contri-
bution is from the wrist joints. With greater degree of pose change, the chances for 
collision with branches increase within the canopy; therefore, the joints for posi-
tioning should be selected which allow the minimum change in pose of the manipu-
lator during maneuvering. Zahid et  al. (2020b) developed apple tree pruning 
manipulator by integrating three prismatic joints (3P DoF) with three revolute (3R 
DoF) joints. The integrated tree pruning manipulator showed promising results as it 
was able to reach all selected branches with lower pose change, which reduced the 
collision potential. In general, the Cartesian/prismatic joints have low pose change 
attributes, as the orientation of the links remains the same irrespective of the joint 
movement. Thus, a manipulator could be developed considering different joint 
types to reduce the spatial requirements. For example, the positioning joints as 
shown in Fig.  12.8a may perform positioning motion outside the canopy with a 
slight pose change and could have less spatial requirements for the maneuvering of 
the spherical wrist end- effector within the tree canopy for reaching target fruits. 
Similarly, when aiming to reach the fruits inside the canopy, the maneuvering within 
the tree canopy for reaching target fruits using different joint combinations as shown 
in the figure could affect the manipulator pose change differently. Thus, the manipu-
lator design should consider the requirements for different tree features such as 
canopy sizes and structures to ensure that the end-effector reaches all positions in 
the canopy with minimum spatial requirements and least chances for collision with 
the branches.

Fig. 12.8 Illustration of manipulator with different joint configurations and wrist end-effector; (a) 
Cartesian (PPP), (b) Cylindrical (PPR), (c) Spherical (RRP), and (d) Articulated (RRR)
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 Robotic System Control

An agriculture robot must solve multitude of problems to perform the operation 
such as fruit harvesting, thinning, and pruning, etc. Unlike industrial robots, where 
a repetitive work is performed for same objects, the target fruits are located at dif-
ferent position and orientation. Thus, during agricultural operation, there is no rep-
etition of the same motion/path, and the robot needs the information about every 
target to perform the target-specific motion. The manipulator movement and control 
could be established using the information from the sensing or vision system, also 
referred as vision-based manipulation control. The vision-based control for the har-
vesting robot is essential as the manipulator could use the visual information for 
path planning and motion. The inefficiency of vision-based control is one of the 
primary factors limiting the performance of the harvesting robot. The vision-based 
control is categorized into two types: visual navigation or visual servo control and 
eye-hand coordination or global camera system (Zhao et al., 2016). The global cam-
era system is an open-loop control system which is operated based on “3D position-
ing.” The camera system scans the complete scene to detect all fruits and then start 
moving to the target fruits. The control efficiency in terms of the end-effector posi-
tioning depends on the accuracy of the vision system, calibration of manipulator 
and camera system (Yau & Wang, 1996). To achieve higher efficiency, the vision 
system may be consisting of stereovision or range sensors to precisely measure the 
distance to the target fruits. However, for open-loop visual control, an accurate kine-
matic model of the manipulator is essential for the path planning to reach target 
fruits. Han et al. (2012) successfully established the open-loop visual control for 
path planning using a color stereoscope camera and a laser sensor. The execution 
time for successful harvest was less than 7 s per fruit. However, one downside of the 
open-loop visual control is low efficiency in the situations where the fruit is under 
the influence of wind or movement from other reasons.

The second category of visual based control is the visual based feedback control 
loop, also referred as visual servo (Corke & Hager, 1998). The visual servo is a 
closed-loop control system which is operated based on “concurrent looking and 
moving” as a dynamic system. The visual servo used the image features extracted 
from the camera-in-hand system to control the position and orientation of the end- 
effector on the fly (Hashimoto, 2003). A major advantage of visual feedback control 
is that the performance does not rely on the accuracy of the kinematic model and the 
calibration of vision and manipulator system. However, one important consider-
ation to achieve high efficiency of visual servo control is that the bandwidth of the 
vision controllers should match the frame rate of the visual information coming 
from the camera system. Zhao et al. (2011) successfully implemented the visual 
servo controls in an apple harvesting robot. Font et al. (2014) combined open-loop 
and visual servo controls. Using the open-loop control, the end-effector moves 
quickly in the proximity of the target fruit, followed by adjusting position and ori-
entation through guidance from visual servo to harvest the fruit. The general com-
parison of these two types of control is given in Table 12.3.
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 Collision-Free Path Planning

The path planning of a harvesting robot is one of the most important components for 
successful operation. The path planning strategies including picking order and 
obstacle avoidance, etc. are essential to achieve higher harvesting efficiency as well 
as safety of the robot during interaction with the canopy. With the advancement in 
the computing theory, the path planning and controls are becoming more reasonable 
and efficient (Jia et al., 2020). Different path planning and harvesting order strate-
gies are discussed by various researchers. The path of the robot can be established 
using the kinematic model of the manipulator, which calculates the displacement 
toward the target fruit position. The manipulator uses the inverse kinematics equa-
tions to establish the path using open-loop control (Yau & Wang, 1996) or visual 
servo control (Hashimoto, 2003). The kinematic model considers the body dimen-
sions of the robotic manipulator and the target position, so the collisions could be 
possible during the operation, which could result in the damage of robot or the tree. 
A separate set of algorithms are required to avoid the collisions during operation. 
The task or harvesting order planning strategies are also studied by many research-
ers. Most common method is to detect and localize the target fruit and the path for 
each harvesting cycle starts from the home position of manipulator (Roldan et al., 
2018). Researchers have also developed harvest sequencing schemes to optimize 
the harvest cycle time. The Traveling Salesman Problem (TSP) is widely reported 
scheme used for harvest sequencing. Yuan et al. (2009) implemented an algorithm 
to covert the apple harvesting task into a three-dimensional traveling salesman 
problem (TSP) to get the finite field information and then used ant colony algorithm 
to optimize the path planning. Some other task planning schemes were also devel-
oped by researchers such as harvesting all detected fruits in the scene (Baeten et al., 
2008) and optimal harvesting sequence by moving fruit-to-fruit for reducing the 
cycle time (Reed et al., 2001). Plebe and Anile (2002) obtained an efficient harvest-
ing sequence plan by converting the harvesting task into twin traveling salesman 
problem (TTSP). All these path planning and task planning strategies could be fea-
sible for reaching target following the optimized path. However, the manipulator 
collision with branches could still be a problem and needs to be addressed as it is 
essential for the safe operation of the fruit harvesting robot.

Table 12.3 The comparison of two types of vision based controls

Visual control Principle Advantages Limitations

Global camera 
control/
open-loop 
control

Control based on 
precise 3D 
positioning

Simple and smooth 
controls; higher stability 
region

Required high accuracy of 
vision system; required 
accurate manipulator and 
camera calibration

Visual servo 
control/
closed-loop 
control

Control based on 
manipulator-vision 
dynamic interaction

Real-time applications; 
vision-manipulator 
calibration not required

Problems related to local 
minima of unpredicted 
camera paths; required high 
bandwidth
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The tree fruit canopies usually have complex structure with branches growing in 
the random direction and orientations, which limits the manipulation capabilities of 
the robotic manipulators. To ensure the safe and successful robotic operation, it is 
essential to establish the collision-free paths for the robot movement. The collision- 
free path refers to the movement of manipulator and end-effector toward the target 
fruit without hitting the branches. In the recent years, the challenges of obstacle 
detection and collision avoidance for tree fruit harvesting robot have gained interest 
from the researchers. The obstacle detection is the task performed by the machine 
vision system such as camera and proximity sensors, etc. The collision detection 
sensors can be integrated with the end-effector such as a position sensor in an apple 
harvesting robot (Zhao et al., 2011), Light Imaging Detection and Ranging (LIDAR) 
sensor in a cherry harvesting robot (Tanigaki et al., 2008), and a camera for litchi 
harvesting robot (Cao et al., 2019). However, the obstacle avoidance task presents 
more challenges. For collision-free path planning, many researchers have proposed 
algorithms including grid-based, neural networks, and random sampling. Grid- 
based algorithms such as A*, or Phi* or ant colony, etc. are suitable for multi- 
objective problems but computationally expensive for complex environment and 
could give satisfactory results with up to two or three DoF manipulators (Nash 
et al., 2009). With the increase in the DoFs of the manipulator, the computational 
complexity and planning time increase exponentially (Choset et al., 2005). As men-
tioned earlier, the tree fruit harvesting robot should have at least six or seven DoFs, 
giving manipulator the flexibility in the poses to avoid the obstacles. Most of these 
grid-based path planning algorithms may not be suitable for agricultural applica-
tion. Conversely, the sampling-based planning approaches such as rapidly exploring 
random tree (RRT), RRT*, or bi-directional RRT are probabilistic-complete algo-
rithms, i.e., if solution exists, they find path, and perform better for high dimen-
sional complex problems and are less influenced by the DoFs of the manipulator.

Nowadays, the RRT based search algorithms are widely adopted for collision- 
free path planning in the agricultural environment. Nguyen et al. (2013) proposed a 
framework for motion and hierarchical task planning of a nine DoF manipulator for 
harvesting apples. The strategy was first implemented in simulation and then real- 
time communication between sensing and execution was successfully established in 
the orchard environment. The authors used seven different sampling-based planning 
algorithms including RRT, and RRT connect, and concluded that the RRT connect 
as most efficient for path planning in terms of processing time. However, the nine 
DoF manipulator has enough flexibility in the pose to avoid collision with branches. 
Cao et al. (2019) successfully also used RRT for collision-free path planning for six 
DoF litchi harvesting robot. The path calculated using the sampling-based algo-
rithms is not the optimal solutions, as it has less convergence speed and more pro-
cessing time. These deficiencies could be minimized by combining optimization 
algorithms such as genetic algorithm (GA) to reduce the path cost (LaValle, 2006). 
Also, the random sampling-based algorithm have longer path length due to intrinsic 
search properties (generating and connecting random nodes in the search space). 
The path smoothing method which aims to omit the unnecessary nodes (Zahid et al., 
2020c) can be used to reduce the length of collision-free path. For random 
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sampling-based search algorithms, the path planning time depends on the sampling 
resolution, which should be optimized, considering the required path success rate.

12.5  Conclusions and Future Directions

Robotic harvesting systems have been investigated in the past decades, the enhance-
ments in both technologies and horticulture have bring much more promising for 
the adoption of these systems for agricultural applications. For tree fruit crops, tree 
structures in modern orchard are getting much simpler with high-density canopy 
systems. These tree systems are much more robot-friendly for implementing robotic 
harvesting system by comparing to the conventional tree systems. While even with 
these trees, the harvesting task is still relative complex due to the natural of biologi-
cal system. A successful robotic harvesting system would be considered as accurate, 
robust, fast, or even inexpensive system. Therefore, the critical points for success of 
robotic harvesting for fruit trees are the accuracy of fruit detection, the spatial 
requirement of picking end-effector, and the efficiency of picking operation (time 
for fruit identification and the time for maneuvering the end-effector).

The current research on tree fruit harvesting robots mainly focused on develop-
ing vision systems for accurate detection and localization of the target fruits. 
However, the improvements in many other components including the manipulation 
controls, optimized harvest sequencing, and obstacle avoidance are also required. 
The robot path planning is critical for accurately reaching the target points. The path 
planning mainly involves three operations: manipulation controls, task sequencing, 
and collision avoidance. With the recent advancement in computing technologies 
and control algorithms, there are many opportunities of developing efficient con-
trols for tree fruit harvesting robots. As discussed earlier, the vision-based manipu-
lation control (open- and close-loop) is critical for the robotic harvest operation as 
the target location is unknown, the type of control scheme should be selected care-
fully to achieve the desired outcome. The open-loop manipulation controls could be 
a good control scheme, but some natural factors in the field such as wind could alter 
the position of the targeted fruit, making it a dynamic environment to reduce the 
robot performance. Conversely, the visual servo control is computationally expen-
sive and requires highly accurate vision system for successful operation. As both 
types of vision-based control have advantages and limitations, a robotic harvester 
integrated with a combination of both open- and close-loop (global and local) 
manipulation controls could improve the harvesting efficiency. By doing so, the 
global path planning can provide the initial guideline to start the robot motion, and 
once the end-effector reaches the proximity of the target fruit, the manipulation can 
be changed to local control for accurate positioning. Using the global control 
scheme, the harvesting robot can have the information about the complete scene (all 
fruits) before the start of operation and the path can be calculated for multiple fruits 
simultaneously, to reduce the cycle time. Conversely, the local control can guide the 
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end-effector to attain desired orientation to grasp the fruit, employing parallel 
computation.

In addition, the harvest sequencing is also essential to optimize the path length 
and cycle time for each fruit. The TSP-based sequencing algorithms can be a poten-
tial solution to optimize the path lengths and cycle time. Studies have been reported 
using TSP and other TSP variants to optimize the path length and cycle time (Yuan 
et al., 2009). A redundant manipulator can perform well as it has infinite pose con-
figurations for reaching a target point. However, for redundant manipulators, opti-
mizing the task sequencing with TSP may not be enough, require optimization of 
pose configuration as well, which could be solved using TSP-N-based optimal path 
planning (Vicencio et al., 2014). Additionally, the collision avoidance is one of the 
biggest challenges for tree harvesting robots. Researchers have implemented 
collision- free path algorithms for different robotic operations in tree fruits. The ran-
dom sampling-based search algorithms such as RRT, RRT*, and bi-RRT are widely 
adopted to collision-free path planning because of their higher success rate. The 
path solutions from the random sampling algorithms are not always optimal. The 
recent advancement of intelligence-based optimized search algorithms such as ant 
colony optimization (ACO), particle swarm optimization (PSO), and genetic algo-
rithm (GA) can provide the optimal collision-free path solutions in the constraint 
tree canopy environment. Adding a numerous approach poses of the manipulator to 
reach the target could also improve collision avoidance (Zahid et al., 2020c). Also, 
a redundant manipulator could perform well for collision avoidance due to its higher 
pose flexibility; however, additional DoFs will increase the path finding time and 
cost of the manipulator (Bac et al., 2017). Overall, the computation complexity of 
the robotic harvest operation will be increased with the addition of obstacle avoid-
ance in the path planning scheme. Thus, fast and efficient collision-free path algo-
rithms are required to ensure successful and safe operation. An efficient fusion of 
path planning algorithms, including task sequencing and obstacle avoidance is 
essential for successful robotic tree fruit operations.

Being an emerging technology, machine vision combined with machine learning 
algorithms has become a crucial factor in the development of automatic harvesting 
robots. The complexity of harvesting robots has been minimized to a great extent 
due to extensive progress in machine vision technologies, including advanced cam-
era sensors and artificial intelligence (AI) algorithms. Time-of-flight cameras (e.g., 
RGB-D) have been used in recent years showing promise for fruit recognition. The 
potential of using all types of time-of-flight cameras is not identical. Studies reported 
good accuracy with RealSense RGB-D cameras, but these types of cameras have 
high sensitivity to outdoor illumination and could provide low-resolution images. 
The high-resolution cameras including but not limited to Microsoft Kinect and Zed 
stereo cameras might be better options instead. Overcoming image acquisition 
problems caused by different environmental conditions should be the key. Although 
scholars have carried out many studies using traditional machine learning (ML) for 
fruit detections, the current innovations of deep learning algorithms, including 
Faster-RCNN, Mask-RCNN, ResNet, and DenseNet outperformed traditional ML 
algorithms have been proven in different agricultural researches. The deep learning 
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algorithms assembled with graphics processing units (GPUs) have been widely 
applied to increase the computing power while processing high-density data. The 
machine vision technology has been rigorously used in complicated and unknown 
plant environmental conditions for its robustness and high complexity. But at the 
same time, most existing machine vision-based systems are only implemented in 
laboratory, semi-customized, and customized environments for experimentation, 
resulting in a huge inconsistency between the experimental and original field condi-
tions for fruit recognition. Due to this limitation of machine vision technologies, the 
adaptability of the harvesting robots to complex and unstructured environments still 
remains a major bottleneck problem affecting the harvesting robot’s maturity and 
limiting the application in orchard conditions. Therefore, universal machine vision 
technologies need to be developed that could recognize fruits in any environmental 
condition.
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