
Chapter 11
Analysis of a Three-Dimensional
Non-autonomous Chaotic Circuit with a
Thermistor as a Physical Memristor

Laskaridis Lazaros, Volos Christos, and Stouboulos Ioannis

Abstract In 1976, Prof. Leon Chua proposed that a physical thermistor can be
modeled as a memristive device, which can be used as a nonlinear element in
chaotic circuits. In this direction, an autonomous circuit with two passive elements
(inductor and capacitor), a nonlinear resistor, and a thermistor, which plays the
role of a nonlinear locally active memristor, has been proposed by Ginoux et al.
This work presents the study of a non-autonomous circuit, which is based on
the aforementioned autonomous circuit, by adding an external voltage AC source.
Moreover, the effect of the capacitor’s and inductor’s value and the effect of the
initial conditions in system’s dynamical behavior have been studied. To investigate
further system’s dynamical behavior, various tools from nonlinear theory have been
used, such as bifurcation and maximal Lyapunov exponent diagrams, Poincaré
maps, and Kaplan–Yorke dimension. Interesting phenomena related to chaos have
been investigated. In more detail, chaotic and regular orbits, such as periodic or
semi-periodic, have been observed. Furthermore, the route to chaos through the
mechanism of period doubling, coexisting attractors, and crisis phenomena have
been observed.

Keywords Non-autonomous circuit · Thermistor · Memristor · Chaos ·
Coexisting attractors

11.1 Introduction

Leon Chua in 1971 [1] depicted and named the fourth crucial electrical element by
finishing a hypothetical group of the other three (resistor, capacitor, and inductor).
The name of this element was memristor. A memristor is a non-direct two-terminal
electrical element relating electric charge and magnetic flux linkage [2]. In a
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memristor, its resistance decreases when the current flows in a single way and the
opposite [3]. At the point when the current stream is halted, memristor holds its last
state.

The idea of memristive framework was subsequently summed up by Chua and
Kang [4]. Such a framework contains a circuit, of various ordinary elements, which
mirrors key properties of the ideal memristor element. The distinguishing proof of
memristive properties in electronic elements has drawn in discussion. Tentatively,
the ideal memristor is yet to be illustrated [5, 6]. Notwithstanding, a couple of
executions interesting circuits have as of late utilized ReRAM memristive models
[7–9]. Thus, a physical model of memristor is essential, to understand in depth this
fourth circuit element.

Furthermore, while studying the semiconductor conduct of silver sulfide in 1833,
Michael Faraday [10] discovered the concept of thermistors. As the temperature
rose, he saw that the silver sulfides’ opposition decreased. Following it, in 1930,
Samuel Ruben invented the basic commercial thermistor [11]. Also, Steinhart and
Stanley Hart [12] discovered a capability that thermistor’s characteristics have, i.e.,
the resistance as a function of temperature, which turned out to be appropriate for a
wide range of thermistors for ranges of a couple of degrees to two or three hundred
degrees. Furthermore, Sah et al. [13] investigated a second-order memristor that
depicts the model of a physical device known as a Positive Temperature Coefficient
and Negative Temperature Coefficient thermistor coupled in series.

Thermistors are commonly employed as a linear resistor whose resistance fluctu-
ates with temperature. A negative-temperature coefficient thermistor, in particular,
is distinguished by Chua and Kang [4]

vT = R0(T0)exp

[
β

(
1

T
− 1

T0

)]
i � R(T )i, (11.1)

where β is the material constant, T is the thermistor temperature, and T0 is the room
temperature both in kelvin. The characteristic curve of the thermistor is modeled
with the classical equation of Steinhart–Hart as shown in [14]. The constant R0(T0)

denotes the cold temperature resistance at T = T0. The instantaneous temperature
T is a function of the power dissipated in the thermistor. Moreover, thermistor is
governed by the heat transfer equation

p(T ) = vT (t)i(t) = δ(T − T0) + c
dT

dt
, (11.2)

where c is the heat capacitance and δ is the dissipation constant of the thermistor.
By combining Eqs. (11.1) and (11.2), it is obtained

dT
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= −δ

c
(T − T0) + R0(T0)

c
exp
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)]
i2. (11.3)
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As a result of Eq. (11.3), the thermistor is a first-order time-invariant current-
controlled memristive. In this study, an autonomous three-dimensional system [14]
with a thermistor was converted to a non-autonomous system by introducing an
external alternating current source and a linear resistor into the model.

In this chapter, a detailed investigation of the dynamical behavior of the proposed
non-autonomous circuit for different values of the capacitance of the capacitor, as
well as the inductance of the inductor and the initial conditions, is presented. The
capacitance is studied in the region of 0 and 2 F. Also, the inductance belongs
between 0 and 15 H. This work is based on the simulation results, which are
produced by using well-known numerical tools, such as Lyapunov exponents
[15, 16], bifurcation diagrams [17], and Poincaré section. The calculation of the
bifurcation diagrams is performed by computing the Poincaré map of the system.
The sampling of the Poincaré map is done with the time being an integer multiple of
the external period of the system, excluding the transient points. Also, the Lyapunov
exponents are computed based on the algorithm from Sandri’s [18] package in
Mathematica.

The work is organized as follows. In Sect. 11.2, the proposed circuit and its
properties are introduced. In Sect. 11.3, the numerical investigation of the circuit’s
dynamics is presented. Finally, the conclusions of this work are discussed in
Sect. 11.4.

11.2 The Proposed Nonlinear Circuit

The proposed framework depends on the independent Muthuswamy–Chua–Ginoux
circuit [14], which is changed over to a non-independent circuit by utilizing an
external voltage source. The framework comprises a resistor R, a capacitor of
capacitance C, an inductor of inductance L, a nonlinear resistor NR , a thermistor
that is a nonlinear locally active memristor M , and an external AC voltage source.
The previously mentioned circuit is displayed in Fig. 11.1.

Fig. 11.1 Non-autonomous converted Muthuswamy–Chua–Ginoux circuit
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The nonlinear resistor is modeled [14] as a cubic function of the current and it
is given by f (i) = αi + bi3. Also as shown in [14] by using Kirchhoff’s law for
voltages in the left and right loop of the system, the following equations for the
voltages are produced:

VS = VR + VC (11.4)

VC + VL + VNR
+ VM = 0, (11.5)

where VL is the voltage of the inductor and it is given by VL = LdiL
dt

.
In Eq. (11.4), VS = V0 cos(2πf t) is the external ac voltage, VR is the voltage of

the linear resistance, and VC is the voltage of the capacitor.
The voltage of the nonlinear resistor is modeled as a cubic function, and it is

given by

VNR
= f (iL) = αi + bi3, (11.6)

where α and b are constants. The voltage of the thermistor is given by Ohm’s law
and its equation is VM = R(T )iL. By taking Eq. (11.4) into account and since the
current from the capacitor is given by iC = C

dVC

dt
and also from the equation of the

currents which is Kirchhoff’s first law iR = iL + iC , the equations of the system are
obtained.

dVc

dt
= VS

RC
− iL

C
− Vc

RC

diL

dt
= − 1

L
(Vc + f (iL) + R(T )iL) (11.7)

dT

dt
= R(T )

c
i2
L − δ

c
(T − T0).

By using the following approximation [14], R(T ) is given:

R(T ) = R0

[
1 − β

T 2
0

(T − T0) + β(β + 2T0)

2T 4
0

(T − T0)
2 + O((T − T0)

3)

]
.

(11.8)
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To work on the investigation of system (11.7), a change to system’s variable is made
as

x = VC, y = iL, z = T − T0.

Also, the following changes to equation’s (11.8) parameters have been used.

θ = R0

c
, γ = −R0

c

β

T 2
0

, μ = R0

c

β(β + 2T0)

2T 4
0

, ε = δ

c
.

Finally, the set of Eqs. (11.7) of system has been transformed to the following set
of equations:

dx

dt
= Vs

RC
− x

RC
− y

C

dy

dt
= − 1

L
(x + f (y) + R(z)y) (11.9)

dz

dt
= R(z)y2 − εz,

where f (y) = αy + by3 and R(z) = μz2 + γ z + θ . The basic difference of this
system, from the system of equation (4) in [14], is the dependence of the time and
the existence of more elements in the circuit. Also the units of the variables are in
S.I. and especially the capacitance in F, the resistance in 	, the voltage in V, the
frequency in Hz, and the inductance in H.

11.3 Numerical Results

In this section, the dynamical behavior of the proposed, non-autonomous, system
(11.9) with V0 �= 0, C �= 0, and R �= 0 for different values of the capacitance
of the capacitor C, the inductance L of the inductor, and the initial conditions is
investigated. Generally, the system has rich dynamics that include regular (periodic
and semi-periodic) and chaotic oscillations. Also, small changes in the inductance L

and in the initial conditions produce a shift between chaotic and regular oscillations
and the existence of coexisting attractors, respectively.
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Fig. 11.2 (a) Bifurcation diagram of x versus the capacitance C and (b) zoom in specific region

11.3.1 The Dynamics Related to the Capacitance C

Figure 11.2 presents the bifurcation diagram of the x variable, which is the voltage
of the capacitor, in regard to the capacitance of the capacitor C. Moreover, the values
of parameters of the system are V0 = 1.0 V, R = 5 	, f = 0.5 Hz, α = −6 	, b =
3 	

A2 , L = 12.2 H, μ = 3	kg
J K , γ = −2	kg

J , θ = 3	kg K
J , and ε = 0.6 kg K

J .
The parameters have been set to these values for two reasons. The first reason is
because of the exponential behavior of R(T ). More specifically, the resistance of
the thermistor R(T ) is supposed to be positive, and as a consequence, the right hand
of Eq. (11.8) must be positive. The second reason is to find chaotic behavior. Also,
the initial conditions are x0 = 0.01, y0 = 0, and z = 0. From this bifurcation
diagram, a rich dynamical behavior of the system is investigated in regard to the
capacitance C. There are regions where the system oscillates chaotically and regions
where the system oscillates regularly. In more detail, system’s dynamic behavior is
chaotic for C < 0.06 F. Then, the system goes to regular behavior (periodic) and
finally to semi-periodic behavior. The maximal Lyapunov exponent diagram verifies
this rich dynamical behavior and indicates that after the value of the capacitance
(C = 0.38 F) the system goes to semi-periodic behavior for all the range of the
bifurcation parameter. Figure 11.3 presents the maximal Lyapunov exponent, where
when the exponent is positive, that means the existence of chaotic behavior (chaotic
oscillations) and when it is not positive, that means the system has a regular behavior
(periodic and semi-periodic oscillations).

By taking a value of the capacitance (C = 1.0 F), the system is solved, and the
time series of signals x, y and z and the respective phase portrait are presented in
Fig. 11.4. Thus, from time series and from the phase, the portrait is observed that
the orbit fills densely. So the conclusion is that the orbit is semi-periodic, which
is also confirmed from the Poincaré section and maximal Lyapunov exponent of
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Fig. 11.3 (a) Maximal Lyapunov exponent diagram and (b) zoom in specific region

Fig. 11.5 where the maximal Lyapunov exponent is equal to mLCE = 0.000002.
Also, the whole Lyapunov spectrum is (0.000002, 0,−0.0539074). Moreover, the
Kaplan–Yorke conjecture [18–20] calculated from equation

D = j +
∑j

i=1 λi

|λj+1| , (11.10)

where λi are the Lyapunov exponents, is equal to D = 2.0. This means that it is a
torus of dimension 2.

11.3.2 The Dynamics Related to the Inductance L

In this section, the numerical results from the simulations regarding the value of
inductance L are presented. The bifurcation diagram in regard to the parameter L for
specific values of the capacitance of the capacitor C and the amplitude V0 of the AC
voltage source has been produced. In Fig. 11.6, the bifurcation diagram is presented
in regard to the inductance L for C = 0.01 F and V0 = 1.0 V, and in Fig. 11.7, the
diagram of maximal Lyapunov exponent is depicted. From the bifurcation diagram
of Fig. 11.6, it is observed that the dynamical behavior is changing between chaotic
and regular as the inductance L increases, through period-doubling routes. This
behavior is also confirmed from the maximal Lyapunov diagram of Fig. 11.7, where
the maximal Lyapunov exponent is positive in chaotic regions and no positive in
non-chaotic regions. Also, in Fig. 11.8, it is presented the time response of signal x,
the phase portraits, and the Poincaré section of the system for L = 5 H and L = 4 H.
It is observed that for L = 5 H the system has chaotic behavior, and for L = 4 H,
the system’s behavior is regular and especially periodic with period 2.
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Fig. 11.4 (a), (b), (c) Time response for x,y and z variables and (d) phase portrait of system in x–y
plane for V0 = 1.0 V and C = 1.0 F

11.3.3 The Dynamics Related to the Initial Conditions
x0, y0, z0

In this subsection, the dynamical behavior of the system is investigated in regard
to the initial condition x0, y0, z0. More specifically, the parameters of the system
are V0 = 1.0 V, C = 0.01 F, and L = 12.2 H, and now the linear resistance is
changed to a higher value and specially to R = 31 	. So, in Fig. 11.9, a bifurcation-
like diagram and the maximal Lyapunov exponent diagram in regard to the initial
conditions x0, y0, and z0 have been produced.

From the bifurcation-like diagram and the maximal Lyapunov exponent diagram,
it is observed the dynamical behavior of the system changes in regard to the initial
conditions x0, y0, and z0. More specifically, there are regions where the behavior
is only chaotic (2.7 < x0 < 5.5) and regions where the behavior is only regular
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Fig. 11.5 (a) Poincaré section and (b) maximal Lyapunov exponent of system for V0 = 1.0 V and
C = 1.0 F

Fig. 11.6 Bifurcation diagram of system in regard to L for C = 0.01 F

(7.7 < x0 < 8.35). Also, except from these two regions, the behavior of the system
is changing rapidly between chaotic and regular behavior, as it is observed from
the bifurcation-like and maximal Lyapunov diagrams. Therefore, the existence of
coexisting attractors for different initial conditions is observed. In Fig. 11.10, the
phase portraits for x0 = 0.06 (chaotic behavior) and for x0 = 8.0 (regular behavior)
are presented.
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Fig. 11.7 Maximal Lyapunov diagram of system in regard to L for C = 0.01 F

11.4 Conclusion

A three-dimensional non-autonomous chaotic circuit based on a physical memristor
is examined, with a thermistor serving as a “local active” memristor. The thought
was to consider the dynamical behavior of the autonomous system by embedding
an external AC voltage source and a linear resistance R. Plenty of numerical tools
to study the dynamical behavior, such as bifurcation and bifurcation-like diagrams,
diagrams of maximal Lyapunov exponent, and the Poincaré map, were used.

The non-autonomous system (11.9) presented rich dynamical behavior. Chaotic
and regular behavior were observed. More specifically, chaotic, periodic, and semi-
periodic orbits were revealed. Moreover, the system presented route to chaos
through the mechanism of period doubling as well as crisis phenomena. From
bifurcation diagrams in regard to the capacitance C, it is observed that as the
capacitance increases from C = 0.01 F to C = 2.0 F, the dynamical behavior of
the system becomes regular (semi-periodic) in all the range as it is presented.

The second approach to our system was to change the inductance L and study
the dynamical behavior. In this case, it is observed that, as the inductance increases,
the dynamical behavior is changing between regular and chaotic as shown from the
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Fig. 11.8 (a, b) Time responses of x variable, (c, d) phase portraits, and (e, f) Poincaré section for
L = 5 H and L = 4 H, respectively

bifurcation diagram, as well as from the time responses for L = 5 H and L = 4 H.
More specifically, periodic windows inside chaotic regions were observed.

Finally, the last approach was to change the initial conditions x0, y0, and z0.
In this approach, it is observed that as the initial conditions are increasing, the
chaotic behavior is changing to the regular behavior rapidly. Also, the existence
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Fig. 11.9 Bifurcation-like diagram and maximal Lyapunov diagram of system in regard to (a, b)
x0, (c, d) y0, and (e, f) z0 for C = 0.01 F

of coexisting attractors was presented. What is more, regions where the behavior
is only chaotic and regions where the behavior is only regular were observed. As
a recommendation, it would be interesting to investigate the dynamical behavior of
the system, by changing the function that describes the nonlinear resistance, as well
as by replacing the thermistor with a real memristor.
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Fig. 11.10 (a) Chaotic phase portrait of x–y plane for x0 = 0.06 and (b) periodic phase portrait of
x-y plane for x0 = 8.0
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