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Preface

This volume is intended for use by students, engineers and researchers interested
in complex systems and their applications. The reader is assumed to have a basic
knowledge of complex systems and dynamical nonlinear systems. EDIESCA is
the Spanish acronym of Dissemination and Research in the Study of Complex
Systems and their Applications. The first edition was held at Instituto Potosino
de Investigación Científica y Tecnológica (IPICyT, México) in September 25–
27, 2019, and the book of abstracts is available at https://sites.google.com/view/
mesdia/sociedad-mexicana-de-sistemas-din%C3%A1micos-y-sus-aplicaciones/
eventos/en-ediesca2021. The second edition of EDIESCA was held virtually
during November 17–19, 2021, having as headquarters the facilities of the Los
Lagos University Center in the city of Lagos de Moreno, Jalisco. The meeting
encouraged the participation of researchers and students whose interests range
from mathematical modeling to application of results in the area of complex
systems, with an emphasis on chaos and dynamic systems. This book is the
result of the presentations at EDIESCA 2021, integrating the work of students,
research groups, and academic groups from related complex systems, as well
as technological developments at national and international level. It is divided
into five parts, covering the following topics: Part I, Synchronization, includes
three chapters: ”Synchronization of Two Fiber Lasers with Optical Logarithmic
Coupler: Experimental Implementation”; ”Anti-synchronization in a Pair of
Coupled Multistable Systems”; and ”Analysis of Synchronizability in Small-World
Complex Networks.” Part II, Cryptosystems, includes two chapters: ”Generation
of Dynamical S-Boxes via Lag Time Chaotic Series for Cryptosystems” and
”Modification of the Quantum Logistic Map with Application in Pseudo-Random
Bit Generation and Image Encryption.” Part III, Fractional Calculus, includes two
chapters: ”On the Relationship Between Integer and Fractional PWL Systems
with Multistable Behavior” and ”Approximation of Fractional-Order Controllers
for Mechatronic Applications.” Part IV, Chaotic Systems, includes three chapters:
”Comparative Analysis of Chaotic Features of Maps Without Fixed Points”; ”A
New 4-D Hyperchaotic System with No Balance Point, its Bifurcation Analysis,
Multi-Stability, Circuit Simulation, and FPGA Realization”; and ”Displacement of
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vi Preface

Equilibria and n-Double Wing Attractor Generation in the Piecewise Linearized
Lorenz System.” Part V, Applications, includes three Chapters: ”Analysis of
a Three-Dimensional Non-Autonomous Chaotic Circuit with a Thermistor as
a Physical Memristor; ”Inverse Filtering the Growth of Urban Sprawl with
Cellular Automata Model”; and ”A Metapopulation Network Model with Seasonal
Succession to Analyze Dengue Disease in México. You are cordially invited to
attend the following editions of EDIESCA. The third one will be held in 2022 at
Universidad Autónoma de Baja California (UABC), Ensenada campus. Enjoy the
book collection of Chapters of EDIESCA2021.

Lagos de Moreno, Mexico Guillermo Huerta Cuellar
San Luis Potosí, Mexico Eric Campos Cantón
Tonantzintla, Mexico Esteban Tlelo Cuautle
November 2021
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Part I
Synchronization



Chapter 1
Synchronization of Two Fiber Lasers
with Optical Logarithmic Coupler:
Experimental Implementation

J. O. Esqueda-de-la-Torre, J. H. García-López, G. Huerta-Cuellar,
and R. Jaimes-Reategui

Abstract In this chapter, we present the study of the dynamical behavior of two
periodic multistable erbium-doped fiber lasers (EDFL) unidirectionally coupled in
“driver-driven configuration.” The driver laser modulates the driven laser through
the variation of a nonlinear optical logarithmic coupler. In order to determine the
type of synchronization between both lasers, there are two predominant factors: the
optical coupling between the driver and driven lasers; and the periodic behavior
that each laser was previously set. Our results are presented through bifurcation
diagrams, frequency locking, and synchronization error of time series of laser
intensity signals between driver and driven EDFLs.

Keywords Multistability · Synchronization · Optical logarithmic coupler ·
Modulation · Bifurcation

1.1 Introduction

Erbium-doped fiber lasers (EDFL) have become an attractive optical device that
generates chaos [1], periodic attractors [2], giant periodic pulses [3], and period
doubling [4]. For this reason, many researchers have studied the dynamics of
different experimental EDFL arrays, such as erbium-doped fiber dual-ring laser
system [5], a chain of 980 nm-pumped erbium-doped fiber amplifiers (EDFA)
[6], and tunable Q-switched EDFL [7]. In the last decades, the phenomenon
of synchronization between coupled nonlinear systems and especially the ones
with chaotic behavior has attracted the interest of the research community. The
synchronization of nonlinear systems is an interesting phenomenon with a broad
range of applications, such as in various complex physical, chemical, and biological

J. O. Esqueda-de-la-Torre (�) · J. H. García-López · G. Huerta-Cuellar · R. Jaimes-Reategui
Optics and Complex Systems Laboratory, CULagos, Universidad de Guadalajara, Lagos de
Moreno, Jalisco, Mexico
e-mail: jose.edelatorre@alumnos.udg.mx
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systems [8–10] and secure and broadband communication system [11–13]. The
concept of synchronization of two or more systems with chaotic behavior is the
phenomenon in which the coupled systems can adjust their dynamics to a common
behavior (equal trajectories or phase locking), due to forcing or coupling [14].
Synchronization theory has been studied since the 1980s and early 1990s [15, 16].
Since then, a great number of research works based on synchronization of nonlinear
systems have risen, and many different synchronization schemes depending on the
nature of the coupling schemes and of the interacting systems have been presented.
Complete or full chaotic synchronization [17], phase synchronization [18], lag
synchronization [19], generalized synchronization [20], anti-phase synchronization
[21], and anticipating synchronization [22] are the most interesting types of
synchronization. Motivated by the last concepts mentioned previously, this chapter
presents a “driver-driven system configuration,” to study the dynamics behavior, as
the phase and amplitude synchronization, of two unidirectionally coupled EDFLs.
Considering the obtained results, we found that there are some predominant factors:
the first, the optical coupling strength (optical attenuator) of the driver laser signal
applied to the driven laser and second, the specific dynamics of each laser is
previously set. The rest of the work is distributed as follows: In Sect. 1.2, the
dynamical behavior of an erbium-doped fiber laser (EDFL) is presented by means
of time series and bifurcation diagrams. The experimental implementation of the
“driver-driven configuration” is described throughout Sect. 1.3. The implemented
methodology for the system characterization, as well as the obtained results, is given
in Sect. 1.4. The main conclusions of our work are stated in the last section of the
chapter.

1.2 Dynamics of an Erbium-Doped Fiber Laser (EDFL)

In order to obtain the uncoupled EDFL behavior obtained by numerical simulations,
the equations used are shown in Eqs. 1.1, 1.2, and 1.3, where x is the laser intensity,
y is the population inversion, t is the time, and parameters a, b, c, and d are the
constant values that are given in Table 1.1. Ppump is the pump harmonic modulation,
Fm is the frequency modulation, and Am is the amplitude modulation [23].

dx

dt
= axy − bx + c(y + 0.3075) (1.1)

dy

dt
= (dxy − (y + 0.3075) + Ppump(1 − e−18(

1−(y+0.3075)
0.6150 )) (1.2)

Ppump = 506[1 + Am sin(2πFmt)]. (1.3)
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Table 1.1 Constant values of
Eqs. 1.1, 1.2, and 1.3 [24]

Parameters Values

a 6.6207 × 107

b 7.4151 × 106

c 0.0163

d 4.0763 × 103

Am 1

Fig. 1.1 (Left panel) EDFL bifurcation diagram of Eqs. 1.1 and 1.2, where Am = 1 and 0 < Fm <

100 kHz and (right panel) (a) modulation frequency and periodic attractors of (b) P1, (c) P3, (d)
P4, and (e) P5 in the EDFL for Am = 1 and Fm = 80 kHz [24]

1.2.1 Bifurcation Diagram and Periodic Attractors

Based on the EDFL equations model (Eqs. 1.1, 1.2, and 1.3), Fig. 1.1 shows the
bifurcation diagram of local maxima of the laser intensity (x) as a function of
modulation frequency (Fm) for fixed modulation amplitude (Am = 1).

We can observe in Fig. 1.1(left panel) the coexistence of 4 different periodic
attractors of P1, P3, P4, and P5 when the frequency modulation and the amplitude
modulation are set up to Fm = 80 kHz, and Am = 1, respectively. While the
different periodic behaviors in this system are shown in Fig. 1.1b–e (right panel),
there are clearly differences between each periodic attractor, the amplitude, and the
frequency, but they are all proportional to the modulation frequency Fm. It should
be noted that in Fig. 1.1a, b the frequency response of the P1 attractor is the same as
the modulation frequency Fm. In Fig. 1.1c, the frequency response of P3 attractor is
1
3 of modulation frequency Fm. In Fig. 1.1d, the frequency response of P4 attractor
is 1

4 of modulation frequency Fm. Finally, in Fig. 1.1e, the frequency response of the
P5 attractor is 1

5 of modulation frequency Fm [24].
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Fig. 1.2 Basin of attraction of EDFL when Am = 1 and Fm = 80 kHz [24]

1.2.2 Basin of Attraction

The periodic attractors exhibited by this EDFL depend on the change of the initial
conditions (IC). The basin of attraction is constructed by changing the IC. Figure 1.2
shows the basin of attraction of equation system (Eqs. 1.1 and 1.2), where the yellow
color corresponds to period 1 (P1), black color corresponds to period 3 (P3), blue
color corresponds to period 4 (P4), and green color corresponds to period 5 (P5).

1.3 Experimental Setup and Bifurcation Diagrams

1.3.1 Experimental Setup

The experimental setup is illustrated in Fig. 1.3. It consists of two coupled EDFL
lasers, a driver, and a driven EDFL. The driver EDFL consists of a 6.5 m laser
cavity formed by an active 1.5 m heavily erbium-doped single-mode fiber (EDF1)
with a 2.7µm core diameter, a wavelength-divider multiplexing coupler (WDM1-
WD9850FD), and two fiber Bragg gratings (FBG1 and FBG2) with 0.288 and
0.544 nm HMFW with reflectiveness of 100 and 95.88%, respectively, at a 1550 nm
wavelength. All optical components are connected by a single-mode fiber SMF−28
with a 200µm cladding diameter. The EDFL driver is pumped with a 977 nm
laser diode (LD1-BL976PAG500) and pumps a wavelength division multiplexer
(WDM1).
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Fig. 1.3 Experimental setup of two coupled EDFLs where FG1 is the wave function generator,
control1 and control2 are the driver currents, LD1 and LD2 are the pump laser diodes, PCO
is a polarize controller, WDM1 and WDM2 are the wavelength divisor multiplexors, FBG1,
FBG2, FBG3, and FBG4 are the Bragg gratings, EDF1 and EDF2 are the erbium-doped fibers,
Isolator1 and Isolator2 are the optical isolators, OA is the optical attenuator, PhotoDetector1 and
PhoteDetector2 are the photodiodes, VD is a voltage divider, SUM is an electrical signal combiner,
DAQ is a data acquisition card, and PC is a personal computer

The parameters of the driven EDFL differ from the driver EDFL. The driven
EDFL has a 5.8 m laser cavity formed by a 1.5 m active heavily erbium-doped fiber
(EDF2) with a 2.7µm core diameter, a wavelength-divider multiplexing coupler
(WDM2-WD9 850FD), and two fiber Bragg gratings (FBG3 and FBG4) with
0.288 and 0.544 nm HMWF with reflectiveness of 100 and 96.4%, respectively,
at a 1550 nm wavelength. All optical components are connected by a single-
mode fiber SMF − 28 with a 200µm cladding diameter. The driven EDFL is
pumped by a 977 nm laser diode (LD2-BL976PAG500) and pumps a wavelength
division multiplexer (WDM2). The driver EDFL is pumped by a 977 nm laser diode
(LD1-BL976PAG500) through a polarize controller (PCO) and pumps the driven
EDFL via a wavelength-divider multiplexer (WDM1). The diode-pumped laser is
controlled by a laser diode controller (Control1-LDC-ITC510). In our experiments,
the diode current is fixed at 118.4 mA that corresponds to a 20 mW pump power,
while the lasing threshold of the driver EDLF is 110 mA. To modulate the driver
EDFL, a harmonic signal Am sin(2πFmt) is applied to the diode-pumped current
from a function generator (FG1-AFG3102). The experimental data are obtained by
a data acquisition card (DAQ) and stored in the computer (PC).
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The optical output signal from the fiber Bragg gratings (FBG2) passes through
an isolator (Isolator1) and then enters to an optical attenuator (OA-PW410), which
attenuates the signal by a factor k, where k = 0% means zero optical transmittance
and k = 100% means full optical transmittance. After passing through the optical
attenuator, the optical signal enters a photodetector (PhotoDetector1) connected to
a voltage divider (VD) that has two outputs; the first yields 84% of the electrical
signal, while the second provides 16% of the electrical signal. The 84% output of
the driver EDFL is connected to the laser diode current controller (Control2-LD-
ITC510) (which produces a harmonic modulation Am sin(2πFmt) of driven EDFL
in order to couple both EDFLs through a summing electrical device. (SUM). Finally,
the 16 and 100% output electrical signals from PhotoDetector1 and PhotoDetector2,
respectively, are connected to a data acquisition card (DAQ) and stored in a personal
computer (PC) to analyze the dynamics of both lasers.

The objective of this chapter is to study which kind of synchronization occurs in
the driver-driven experimental setup by changing the signal optical coupling from
the driver EDFL intensity to the driven EDFL for different periodic attractors.

1.3.2 Optical Attenuator (OA)

The coupling between driver and driven EDFLs is done through an optical loga-
rithmic attenuator (OA). We have used a passive single-mode EigenLight power
monitor 410 as the optical attenuator (OA). This is a 40 dB variable attenuator with
a power range of −50 to +16 dBm. It has a screw to control the output power.
The number of turns on the screw gives an exponential output (see Fig. 1.4). To
measure the optical output power of the optical attenuator (OA), we have used a
0.84 V signal. The optical attenuator screw has been divided into 7 and a half turns,
and each turn is divided into 12 parts having 90 steps in total (exponential behavior
in Fig. 1.4, blue points). The percentage rate of the number of turns on the screw is
shown in Table 1.2 that corresponds to the red straight line in Fig. 1.4.

The 32 attenuation values for each corresponding optical transmittance percent-
age k are shown in the next table.

For the experimental realization, the optical attenuation of the optical driver
signal entering into the driven EDFL is controlled by the number of turns on the
screw, for which we defined 32 values. Table 1.2 shows the 32 values defined to
control the optical attenuation; the value 32 corresponds to the 100% of driver EDFL
signal, and it begins to diminish for every twelfth of a turn on the screw, until it has
the 1% equivalent to 7 6

12 turn.
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Fig. 1.4 Linearized optical attenuator (OA) for 32 different attenuation values

Table 1.2 The 32 linear values of logarithmic attenuator

Value k Turns Value k Turns Value k Turns Value k Turns

1 1% 7 6
12 9 9% 2 1

12 17 20% 1 9
12 25 39% 7

12

2 2% 5 10 10% 1 2
12 18 21% 1 10

12 26 42% 6
12

3 3% 3 10
12 11 11% 1 3

12 19 23% 1 11
12 27 46% 5

12

4 4% 3 3
12 12 12% 1 4

12 20 25% 1 28 53% 4
12

5 5% 2 11
12 13 13% 1 5

12 21 28% 11
12 29 60% 3

12

6 6% 2 7
12 14 14% 1 6

12 22 32% 10
12 30 74% 2

12

7 7% 2 5
12 15 16% 1 7

12 23 34% 9
12 31 84% 1

12

8 8% 2 3
12 16 17% 1 8

12 24 36% 8
12 32 100% 0

Based on the previous characterization mentioned, the driven EDFL pump power
is given by the following equation:

PPumpDriven = 506[1 + Am sin(2πFmt + kx], (1.4)

where k is the optical transmittance and x is the laser intensity from driver EDFL.

1.3.3 Experimental Bifurcation Diagram of the Driver EDFL

Figure 1.5 illustrates the bifurcation diagram of the isolated driver EDFL peak
intensity as a function of the driving frequency Fm for Am = 1 V. The bifurcation
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Fig. 1.5 (I) Experimental bifurcation diagram of peak intensity (in V) of driver EDFL as a
function of modulation frequency Fm for fixed Am = 1 V. For fixed Fm = 105 kHz and Am = 1 V,
the driver EDFL exhibits the coexistence of three periodic attractors (II): (b) P1, (c) P3, and (d) P4
and finally, (a) harmonic modulation Am sin(2πFmt) for Fm = 105 kHz and Am = 1 V

diagram has been obtained by switching on and off the function generator (FG1)
15 times each 100 Hz in a range of 1 kHz< Fm < 150 kHz, so that the initial
conditions are randomly changed. One can distinguish branches corresponding to
different periodic regimes that are born in saddle-node bifurcations as the control
parameter Fm increases. For certain ranges of the modulation frequency, several
attractors coexist. For example, in the range of 104 kHz< Fm < 113 kHz, P1,
P3, and P4 coexist, and in the range of 126 kHz< Fm < 131 kHz, P1, P4, and
P5 coexist. In this chapter, we are interested in studying the lasers synchronization
for coexistent attractors of P1, P3, and P4 that were obtained for Am = 1 V and
Fm = 105 kHz.

The bifurcation diagram was obtained by measuring the local maximum of the
time series registered by the data acquisition card (DAQ) from the photodetector
(PhotoDetector1).

1.3.4 Experimental Bifurcation Diagram of the Driven EDFL

Figure 1.6 illustrates the bifurcation diagram of the isolated driven EDFL peak
intensity from the time series obtained by PhotoDetector2 as a function of the
modulation frequency Fm for Am = 1 V. Using the same procedure as in Fig. 1.5, the
wave function generator (FG2) was switched on and off 15 times for each 100 kHz
of Fm in a range of 0 Hz< Fm < 115 kHz, to change the initial conditions. Just
as in Fig. 1.5, in Fig. 1.6, we can distinguish branches corresponding to different
periodic regimes that are born in saddle-node bifurcations as the control parameter
Fm increases. For certain ranges of the modulation frequency, several attractors
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Fig. 1.6 (I) Experimental bifurcation diagram of V of the driven EDFL as a function of the
modulation frequency Fm for fixed Am = 1 V. For fixed Fm = 105 kHz and Am = 1 V, the
driven EDFL exhibits the coexistence of two periodic attractors (II): (b) P1 and (c) P3, and finally,
(a) harmonic modulation Am sin(2πFmt)

coexist. For example, in the range of 50 kHz< Fm < 80 kHz, P1 and P2 coexist,
and in the range of 80 kHz< Fm < 110 kHz, P1 and P3 coexist.

1.4 Results

1.4.1 Bifurcation Diagrams of Laser Intensity of Driver
and Driven EDFLs

Figures 1.7, 1.8, and 1.9 show the bifurcation diagrams of peak intensity in volts (V )
of the driver and driven EDFLs coupled as a function of the optical transmittance
(k) (see the experimental setup in Fig. 1.3). The modulation frequency and the
amplitude of the driver EDFL have been fixed Fm = 105 kHz and Am = 1 V,
respectively, in order to have the driver EDFL exhibited in a multistable behavior
of period P1 Fig. 1.7a, c, period P3 Fig. 1.8a, c, and period P4 Fig. 1.9a, c. While
the driven EDFL has been set up in the two coexistent periodic attractors: period P1
Figs. 1.7b, 1.8b, and 1.9b; and period P3 Figs. 1.7d, 1.8d, and 1.9d.

Driver EDFL in P1 Figure 1.7a, b shows the results of the coupling between the
driver EDFL in P1 that modulates the driven EDFL in P1 and P3, respectively. In
this figure, we can see resistance from the driven EDFL to follow the behavior of
the driver EDFL, i.e., the coupling between driver and driven EDFL only produces
destabilization in the last laser, which is observed in all ranges of the optical
transmittance k. While in Fig. 1.7c, d, when the driver EDFL is in P1 and the driven
EDFL is in P3, respectively, the result of this coupling between both lasers results
in that the driven EDFL keeps its periodic behavior of P3 with a short increase in
amplitude of its time series.
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Fig. 1.7 Bifurcation diagrams of V as a function of optical transmittance k for (a) driver EDFL in
P1 and (b) driven EDFL in P1, (c) driver EDFL in P1, and (d) driven EDFL in P3

Driver EDFL in P3 In a similar way to that in Figs. 1.7 and 1.8a, b, the driver
EDFL is fixed in P3 and the driven EDFL is fixed in P1, respectively. In Fig. 1.8b,
we can see a threshold value of the optical transmittance k = 60%. For k < 60%,
the driven EDFL keeps its P1 behavior, and for k > 60%, the driven EDFL switches
to P3 behavior, i.e., the driven EDFL follows the driver EDFL behavior producing
synchronization between the coupled lasers. Likewise, in Fig. 1.8d, we can identify
two threshold values of the optical transmittance: k = 11% and k = 74%. For k <

11%, the driven EDFL keeps its periodic behavior. While in the interval of optical
transmittance 11% < k < 60%, the driven EDFL switches into a P1 and further
k > 60%, and the driven EDFL switches into P3 with an increase of the amplitude
of its time series. The last result demonstrates that the driven EDFL follows the
driver EDFL behavior.

Driver EDFL in P4 In the same way as in Fig. 1.8a, b, in Fig. 1.9a, b, when k >

46%, the driven EDFL switches from P1 into P4 (the same behavior as the driver
EDFL) producing synchronization between the coupled lasers. While in Fig. 1.9c,
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Fig. 1.8 Bifurcation diagrams of peak intensity (in V ) as a function of optical transmittance k for
(a) driver EDFL in P3, (b) driven EDFL in P1, (c) driver EDFL in P3, and (d) driven EDFL in P3

d, again we can observe two threshold values of the optical transmittance k: k = 3%
and k = 53%. The driven EDFL keeps the P3 behavior for k ≤ 3%, and for an
increase of optical transmittance in the interval 3% < k < 53%, the driven EDFL
switches into P1. Furthermore, for k ≥ 53%, the synchronization between the two
coupled lasers is produced, i.e., driven and driver EDFL are in P4.

1.4.2 Frequency Difference Between Driver and Driven
EDFLs of Principal Component Domain of Fourier
Transform

The frequency responses of these experimental lasers depend crucially on the initial
conditions they have been previously set up (as seen in Sect. 1.2.1). The modulation
frequency and amplitude have been chosen to be the same (Fm = 105 kHz and
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Fig. 1.9 Bifurcation diagrams of peak intensity (in V ) as a function of the optical transmittance k

for (a) driver EDFL in P4, (b) driven EDFL in P1, (c) driver EDFL in P4, and (d) driven EDFL in
P3

Am = 1 V) for both driver and driven EDFLs, though the driver EDFL shows a
multistable regime (coexistence of 3 or more periodic attractors) and the driven
EDFL shows a bistable regime (coexistence of 2 periodic attractors). Having
Fm = 105 kHz, the frequency responses of these lasers depend on their attractor;
for instance, the frequency response of periodic attractor P1 is the same as the
modulation frequency Fm (Fm

1 = 105) kHz, the frequency response of periodic

attractor of P3 is a third of the modulation frequency Fm (Fm

3 = 35 kHz), and
the frequency response of periodic attractor of P4 is a fourth of the modulation
frequency Fm (Fm

4 = 26250 Hz). These lasers have been coupled for different
configurations even though they have different frequency responses. The following
results show the difference of the principal frequency of Fourier transform of
driver and driven EDFLs. In most cases when they are frequency-synchronized, this
difference tends to zero.

Phase Synchronization In order to determine the phase synchronization between
the driver and driven EDFLs, in Fig. 1.10, we have measured the frequency
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Fig. 1.10 Frequency difference of principal component frequency of the Fourier transform
between the driver and driven EDFLs when (a) driver and driven EDFLs are in P1, (b) driver
EDFL in P1 and driven EDFL in P3, (c) driver EDFL in P3 and driven EDFL in P1, (d) driver and
driven EDFLs in P3, (e) driver EDFL in P4 and driven EDFL in P1, and (f) driver EDFL in P4 and
driven EDFL in P3
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difference �F = F1−F2, where F1 and F2 are the dominant spectral frequencies of
the driver and driven EDFLs’ time series, respectively, as a function of k. Before the
increase of optical transmittance k, the dynamics of the driver and driven EDFLs
were fixed: Fig. 1.10a, driver in P1 and driven in P1, Fig. 1.10b, driver in P1 and
driven in P3, Fig. 1.10c, driver in P3 and driven in P1, Fig. 1.10d, driver in P3 and
driven in P3, Fig. 1.10e, driver in P4 and driven in P1, and Fig. 1.10f, driver in P4
and driven in P3.

In Fig. 1.10e, we can distinguish several intervals of k values where the �F

evolution can be observed. In the interval 0% < k ≤ 3%, due to the small
value of k between the driver and driven EDFLs, the �F cannot be distinguished,
see time series and power spectrum in Fig. 1.11a, b, respectively. For the interval
4% < k ≤ 6%, we have that �F = 80 kHz, and the details of the time series and
power spectrums are shown in Fig. 1.11c, d. For 7% < k ≤ 16%, �F = 26.2 kHz,
and the time series and power spectrums are shown in Fig. 1.11e, f. Furthermore,
in the interval 17% < k ≤ 100%, �F = 0, and the time series and power
spectrums are shown in Fig. 1.11g, h. The first three k intervals represent frequency
locking, and the last interval represents phase synchronization between the driver
and driven systems. A similar procedure was developed in Fig. 1.10a–d and f. The
phase synchronization relies on the periods where the driver and driven EDFLs were
fixed. For instance, phase synchronization appears when: k = 60% for Fig. 1.10a,
k = 1% for Fig. 1.10b, k = 60% for Fig. 1.10c, k = 74% for Fig. 1.10d, k = 17%
for Fig. 1.10e, and k = 17% for Fig. 1.10f. Likewise, when the driver and driven
EDFLs are maintained in the same period, for small values of k, phase locking is
achieved or �F = 0.

1.4.3 Synchronization Error Estimation

The following results show the analysis of the synchronization error estimation in
order to identify how similar or different are the signals of the driver and driven
EDFLs. The following equation is used to obtain the synchronization error, where
driverEDFL and drivenEDFL represent the peak intensity V of time series from
driver and driven EDFLs as a function of k, respectively [15–17].

< e >=
√

(driverEDFL − drivenEDFL)2. (1.5)

Figure 1.12a–f shows the average synchronization error < e > between the
driver and driven EDFLs as a function of optical transmittance k when the behavior
of the driver and driven EDFLs was fixed. In Fig. 1.12a, both EDFLs were fixed to
P1, the < e > has small values for k < 7%, while for k > 7%, the < e > increases.
In Fig. 1.12b, the driver EDFL is in P1 and the driven EDFL is in P3, and the < e >

decreases as k increases with some leaps; in Fig. 1.12c, the driver EDFL is in P3 and
the driven EDFL is in P1, and the < e > maintains a constant value close to 0.07V
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Fig. 1.11 Time series and power spectrums of driver and driven EDFLs in P4 and P1, respectively;
(a) time series and (b) power spectrum for k = 3%, (c) time series and (d) power spectrums for
k = 5%, (e) time series and (f) power spectrums for k = 12%, and (g) time series and (h) power
spectrums for k = 88%



18 J. O. Esqueda-de-la-Torre et al.

Fig. 1.12 Synchronization error estimation when (a) driver and driven EDFLs are in P1, (b) driver
EDFL is in P1 and driven EDFL is in P3, (c) driver EDFL is in P3 and driven EDFL is set in P1,
(d) driver and driven EDFL are in P3, (e) driver EDFL is in P4 and driven EDFL is in P1, and (f)
driver EDFL is in P4 and driven EDFL is in P3. In figures (a)–(f), the orange curve represents the
best fit curve and gives us the synchronization error tendency as a function of k
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for k < 9%, and for k > 9%, we have different leaps. In Fig. 1.12d, both EDFLs are
in P3, similar to Fig. 1.12b, and the < e > decreases with some leaps as k increases.
In Fig. 1.12e, the driver EDFL is in P4 and the driven EDFL is in P1, and < e >

increases for 1% < k < 34% with some leaps, and for k > 34%, < e > decreases
considerably. Finally, in Fig. 1.12f, the driver EDFL is in P4 and the driven EDFL
is in P3, and the < e > maintains a constant value close to 0.1V for k < 14%,
and for k > 14%, we have some leaps until < e > tends to zero for k > 84%.
From these figures, we can see that the driven EDFL does not necessarily follow
the signal of the driver EDFL, and the mean synchronization error shows irregular
patterns. In Fig. 1.12a–f, the orange curve represents the best fit curve and gives us
the synchronization error tendency as a function of k.

1.5 Conclusions

In this chapter, an experimental study of the dynamics behavior of two periodic
multistable EDFLs unidirectionally coupled in driver-driven configuration was
realized. The driver EDFL modulates the pump current of the driven EDFL through
the variation of a nonlinear optical coupler (optical logarithmic attenuator). First,
the system dynamics has been analyzed by constructing the bifurcation diagrams
of local maximum of time series of the driver and driven laser intensity without
coupling to identify multistable and bistable regimes by switching the initial
conditions of the modulation frequency applied to the pump current control of each
laser. The modulation frequency and amplitude were fixed at Fm = 105 kHz and
Am = 1 V for each laser, where driver and driven EDFLs show the coexistence of
periodic attractors: P1, P3, and P4 for the driver EDFL; and P1 and P3 for the driven
EDFL. Second, the coupling between the driver and driven system in their different
coexistence states shows interesting dynamical behaviors, one of them is referred to
the incapacity of the driver EDFL to control the driven EDFL (Fig. 1.7), i.e., driver
and driven are in P1, and a non-periodic behavior is showed by the driven EDFL. In
addition, the driven EDFL does not change its behavior of P3 when it is modulated
by the driver EDFL in P1. Likewise, when the driver EDFL is fixed in either P3 or
P4, we can distinguish a k threshold for which both lasers get synchronized. Phase
synchronization phenomena were also achieved for different locking frequencies.
Some exceptions were found. The average synchronization error < e > reaches
small values for high k in most of the studied cases. In general, we experimentally
demonstrated that it is possible to synchronize different real multistable EDFL
systems since defined configurations.
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Chapter 2
Anti-synchronization in a Pair
of Coupled Multistable Systems

A. Ruiz-Silva, B. B. Cassal-Quiroga, and H. E. Gilardi-Velázquez

Abstract The main objective of this chapter is to investigate the anti-
synchronization phenomenon in a pair of coupled multistable systems, generated
with a piecewise-linear (PWL) system based on the Jerk equation. Anti-
synchronization is an important type of synchronization for a pair of systems
coupled in a master–slave scheme; systems’ anti-synchronization is said to occur
when coupled systems have the same absolute values but opposite signs. Using
Lyapunov’s stability theory, the emergence of a stable collective behavior is
investigated considering different internal couplings (in one, two, or three state
variables), in addition to a negative coupling. The results show that the variations
in internal coupling were the result of the type of anti-synchronization: complete
or partial. Finally, the effectiveness of the results obtained with some numerical
simulations is verified.

Keywords Multistable systems · Anti-synchronization · Master–slave
configuration

2.1 Introduction

The emergence of ordered patterns is a fundamental aspect for the proper function-
ing of physical, chemical, biological, and social systems, where it is important to
note that without adequate coordination of the states and interconnections of each of
the components, the functioning of a whole as one collective entity is impossible [1].
Various collective behaviors have been identified, such as identical synchronization,
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phase synchronization, generalized synchronization, cluster synchronization, anti-
synchronization, and so forth (see [1–5] and the references therein).

Recently, the mentioned collective behaviors have been extensively studied in
monostable systems [3, 4]. However, there are few research works focused on the
problems of emergence of synchronous behaviors for a pair of multistable systems.
In this sense, the most familiar collective behavior is the identical synchronization of
multistable systems, where the synchronization phenomenon can be defined as the
process where two or more dynamical systems adjust their movement to common
behavior as time tends to infinity [6–10].

On the other hand, for a pair of coupled multistable systems, it is also possible
to study other types of collective behaviors such as anti-synchronization [7, 11, 12].
In the master–slave scheme, this behavior is characterized by the fact that the slave
system has the same amplitude but opposite signs as those of the master system.
Therefore, the sum of the state variables decays to zero asymptotically when the
anti-synchronization appears [12, 13]. Studies of this collective behavior have been
important in the sense that they constitute a relevant basis for secure communica-
tions, where the security and secrecy of the messages that are communicated can be
strengthened, through the alternation of different collective behaviors. For example,
alternating between an identical synchronization and an anti-synchronization in the
process of digital signal transmission [13–15].

Motivated by the above discussion, we have decided to take a pair of identical
multistable systems, and we study the anti-synchronization of these systems coupled
in a master–slave configuration. Then, the goal of anti-synchronization problem is
to use the output of the master system to control the slave system. In order that the
errors decay to zero asymptotically, that is to say, the sum of the state variables is
equal to zero.

In our work, we first gave necessary and sufficient conditions for the existence
of the anti-synchronization solution for a pair of one class of multistable systems,
which is generated with a piecewise-linear (PWL) system based on the Jerk equation
and proposed by Gilardi et al. [16]. Next, we study the different effects on the anti-
synchronization solution under changes in the nature of the inner coupling scheme,
and variations in the coupling strength. To achieve our objectives, it is considered
that the master–slave system is coupled through one, two, or three variables.
Hence, two sets of internal coupling matrices are derived to achieve different
anti-synchronized behaviors, such as complete or partial anti-synchronization.
Furthermore, all criteria are constructed using Lyapunov functions. Finally, the
results are validated using numerical simulations.

2.2 System Model

In this section, we first give some definitions and results. Consider the following
multistable system, which is described by a set of three coupled differential
equations that make use of the round(x) function for switching among different
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phase-space regions, such that the system displays infinite attractors along one
dimension [16]. Therefore, the state equations of multistable systems are given by

ẋ1 = x2

ẋ2 = x3 (2.1)

ẋ3 = −a31x1 − a32x2 − a33x3 + b3(x),

where x1, x2, x3 are the three state variables, a31, a32, and a33 are the set of
parameters that define the behavior of the dynamic, and nonlinear function b3(x)

is defined by

b3(x) = c ∗ round
(x1

α

)
. (2.2)

The above equation is considered as the commutation law of (2.1), where c ∈ IR
corresponds to the amplitude, and α ∈ IR corresponds to the length of the step
given by the round function centered in the origin. It is important to mention that
if α corresponds to the distance between two continuous equilibrium points given
a value of c, then each equilibrium point is located exactly at the middle of two
consecutive commutation surfaces [9, 16].

For simplicity, we can write (2.1) in compact form as

ẋ = Ax + B(x), (2.3)

where A ∈ IR3×3 is a constant matrix, and B = (0, 0, b3(x))� ∈ IR3 is the affine
vector.

It should be noted that the behavior of the system (2.3) is determined by the
eigenvalues of the matrix A, which can generate a wide variety of combinations
and, therefore, various dynamic behaviors. In particular, Gilardi et al. [16] proposed
a parameter set: a31 = 14.91, a32 = 9.94, a33 = 0.994, c = 6.3, and α = 0.6 to
generate a multistable system along the x1 axis.

In order to investigate the anti-synchronization phenomenon in two coupled
multistable systems of the form (2.3), a master–slave configuration with various
types of couplings is investigated.

2.2.1 Types of Coupling and Some Definition

There are a variety of ways in which the system mentioned can be coupled. In
this sense, we consider a pair of identical multistable systems defined by Eq. (2.3)
coupled in a master–slave configuration as follows:

ẋ = Ax + B(x) (2.4)

ẏ = Ay + B(y) − g�(y − qx), (2.5)
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where x = [x1, x2, x3]� and y = [y1, y2, y3]� are the state vectors of the
master and slave system, respectively. A ∈ IR3×3, B ∈ IR3 are as described
before. The constant g > 0 is the coupling strength between the systems, and
� = Diag(γ1, γ2, γ3) ∈ IR3×3 is a zero-one diagonal matrix that describes the
internal coupling between the multistable systems, which is constructed as follows:
if γi = 1 indicates the master and slave systems are coupled through their i-th state
variable, and γi = 0 otherwise. Additionally, the parameter q ∈ {−1, 1} defines the
type of coupling, that is, q = 1 is an attractive coupling, while q = −1 is a repulsive
coupling.

There are several definitions for a collective behavior between two coupled
systems, such as identical synchronization, generalized synchronization, cluster
synchronization, anti-synchronization, among others [3, 4]. In particular, the anti-
synchronization constitutes an important type of collective behavior, which is
a classic characteristic of nonlinear dynamical systems that collaborate through
repulsive coupling [11–13]. In a nutshell, anti-synchronization is a phenomenon
in which the state vectors of slave systems have the same absolute amplitude but
opposites signs as those of the master–slave. Consequently, we adopt the following
definition:

Definition 1 A pair of dynamical systems (2.4)–(2.5) is said to achieve complete
anti-synchronization (CAS), if

lim
t→∞ ‖xi + yi‖ = 0, for i = 1, 2, 3, (2.6)

where the symbol ‖ · ‖ denotes the Euclidean norm of a vector [5, 17].

However, when the condition (Eq. (2.6)) is not satisfied for all states, that is, at
least one pair of variables maintains a constant distance that emerges as a conserved
quantity of which is sensitive to changes in the initial states. In these cases, the
collective behavior is known as partial anti-synchronization, and mathematically, it
is defined as:

Definition 2 A pair of dynamical systems (2.4)–(2.5) is said to achieve partial anti-
synchronization (PAS), if at least one of the states

lim
t→∞ ‖xk + yk‖ = ck, for some k ∈ {1, 2, 3}, (2.7)

where ck is a constant, and the rest of the states satisfies Eq. (2.6) [7, 13].

In order to establish necessary and sufficient conditions to guarantee the anti-
synchronization of the master–slave system, the error system and its stability must
be analyzed around its zero solution.
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2.3 Theoretical Analysis

We define the anti-synchronization error vector between the master–slave system
as the sum of the state variables, i.e., E = [x + y]T = [e1, e2, e3]T ∈ IR3, where
ei = xi + yi ∈ IR for i = 1, 2, 3, is each variable’s state error. So that the error
dynamics is given as follows:

Ė = A(x + y) + B(x) + B(y) − g�(y + qx). (2.8)

Next, let q is a control parameter that influences the dynamics of the coupling
between the master and the slave. Substituting q = −1 in Eq. (2.8), the error
dynamics simplifies to

Ė = (A − g�)E + B(x) + B(y). (2.9)

In an explicit form, we have

⎡

⎣
ė1

ė2

ė3

⎤

⎦ =
⎡

⎣
−gγ1e1 + e2

−gγ2e2 + e3

−a31e1 − a32e2 − (a33 + gγ3)e3 + (b3(x) + b3(y)),

⎤

⎦ (2.10)

where b3(·) is the third entry of the affine vector, B, defined in (2.2).
Note that the internal coupling matrix and the coupling strength play a crucial

role in determining whether the origin is an equilibrium point of the error system
(2.10), and consequently, whether complete or partial anti-synchronization is
achieved between the master–slave systems.

To demonstrate the anti-synchronization arises between the master–slave system
is to show that the error dynamics has an equilibrium point and has a fixed point,
and by constructing a Lyapunov function, it can be shown that the error system is
globally stable. Our results are presented in the following proposition:

Proposition 1 Consider a master–slave system described by (2.4)–(2.5) with � ∈
{Diag(1, 1, 1), Diag(1, 0, 1), Diag(1, 1, 0), Diag(1, 0, 0)}. If there are sym-
metric positive definite matrix Q ∈ IR3×3, and a sufficient large positive constant
d∗ > 0, such that

(A − d∗�) + (A − d∗�)T ≤ −Q, (2.11)

with g ≥ d∗. Consequently, the master–slave system (2.4)–(2.5) presents complete
anti-synchronization.

Proof Suppose that matrix � = Diag(γ1, γ2, γ3) ∈ IR3×3 can be take different
configurations as {Diag(1, 1, 1), Diag(1, 0, 1), Diag(1, 1, 0), Diag(1, 0, 0)}.
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So, solving for the equilibrium point, we find

e∗
1 = b3(x) + b3(y)

a31 + a32gγ1 + (a33 + gγ3)g2γ1γ2
e∗

2 = gγ1e
∗
1, e∗

3 = g2γ1γ2e
∗
1 .

(2.12)

As b3(x) + b3(y) is bounded, e∗
1 tends to zero when g tends to infinity. Also, if

e∗
1 tends to zero, then e∗

2 and e∗
3 also tend to zero. Therefore, the error system has

(0, 0, 0)T as its sole equilibrium point.
Second, we consider the candidate Lyapunov function V = ET E, and using a

similar procedure as in [18, 19]. So, the time derivative of V along the trajectories
of the error dynamics (2.9) is given by

V̇ = ET
[
(A − g�) + (A − g�)T

]
E + ET

[
B(x) + B(y)

]
. (2.13)

Let g = d∗, and using (2.11), we obtain

V̇ = −ET QT E + ET
[
B(x) + B(y)

]
. (2.14)

Assuming that around the zero solution, the term B(x)+B(y) can be seen as fading
perturbation that satisfies ‖B(x)+B(y)‖ ≤ β‖x +y‖ with β ≤ 0.5λmin(Q), where
λmin denotes the minimum eigenvalue of the matrix Q. Therefore,

V̇ = ET (−Q + βI3)E < 0, (2.15)

where I3 is an identity matrix of size 3 × 3.
Finally, according to the previous arguments, this establishes that the origin

is stable. As a consequence, the master–slave system achieves the complete anti-
synchronization. 
�

The previous proposition reduces the anti-synchronization problem to find a
coupling strength value, g, such that the matrix A − g� only has eigenvalues with
a negative real part. Moreover, due to the linear operator A satisfies the definition
of unstable dissipative systems type I [20, 21], the coupling strength between the
master–slave system must be greater than the positive real part of the complex
eigenvalues that guarantees that A − g� is Hurwitz. However, changes in the initial
conditions or even a larger coupling strength can change the resulting coupling
solution.

On the other hand, it is possible to achieve partial anti-synchronization con-
sidering that the internal coupling matrix � belongs to the set {Diag(0, 1, 0),

Diag(0, 0, 1), Diag(0, 1, 1)}. Since in these cases, the equilibrium point of the
error system has the form (e∗

1, 0, 0)T , where e∗
1 = c1 is a constant depending on the

initial conditions of the states of the master–slave systems. However, it is possible
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to choose a Lyapunov function corresponding to the dynamics of the error and show
that the equilibrium point is stable. Therefore, we present the following proposition:

Proposition 2 Consider a master–slave system described by (2.4)–(2.5), with �

belongs to the set {Diag(0, 1, 0), Diag(0, 0, 1), Diag(0, 1, 1)}. There the error
system (2.9) is stable about (e∗

1, 0, 0)T , if the coupling strength satisfies

g ≥ d∗ (2.16)

with c1 is a constant depending on the initial conditions of the states, and d∗ is a
critical value that holds (2.11). As a consequence, the master–slave system achieves
the partial anti-synchronization in the sense of Definition 2.

Proof Considering the Eq. (2.10), it is easy to see that the equilibrium point is given
by e∗

1 = (b3(x) + b3(y))/a31, e∗
2 = 0, and e∗

3 = 0. Using the argument similar to
(b3(y) + b3(x)) is bounded, and thus e∗

1 =constant= c1 is a constant that depends
on the initial conditions of the states. Consequently, the anti-synchronization error
system has E∗ = (e∗

1, 0, 0)T as its equilibrium point.
Let us choose a Lyapunov function V = (E−E∗)T (E−E∗), and using a similar

procedure to the previous proposition. The time derivative of the Lyapunov function
along the trajectory of the equilibrium point is given by

V̇ = 2
3∑

i=1

(ei − e∗
i )ėi . (2.17)

Thus, if (A − d∗�) + (A − d∗�)T ≤ 0, which satisfies when g ≥ d∗, we
obtain that V̇ ≤ 0. Consequently, the master–slave system achieves the partial anti-
synchronization. 
�

In this section, sufficient conditions were determined to achieve anti-synchroni-
zation of a pair of systems coupling in a master–slave configuration. In order to
illustrate these dynamic behaviors in the next section, we present some numerical
examples.

2.4 Numerical Results

The effectiveness of the proposed scheme is shown in this section. Numerical
simulations are done by using MATLAB.
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Fig. 2.1 Numerical simulation for master–slave system (2.4)–(2.5) with � = Diag(1, 1, 1), and
the coupling strength g = 1 applied at 100 time units. The time is given by arbitrary units (a.u.).
Color code: Blue line corresponds to master system, and the orange line to slave system

2.4.1 Complete Anti-synchronization

Example 1 Let the master–slave system (2.4)–(2.5), with the common linear oper-
ator A, and the vector B defined in Sect. 2.2. Additionally, we consider that the
internal coupling matrix is � = Diag(1, 1, 1), and the initial conditions are given
by x0 = [0, 0.1, 1]T and y0 = [−1.2, 0.5, − 1.5]T .

According to the theory discussed in the previous section, using the Proposi-
tion 1, we obtain that if g > 0.42, thus the matrix A−g� will have only eigenvalues
with negative real part, which should lead the master–slave system to achieve the
complete anti-synchronization, and the results of the numerical simulations are
shown in Figs. 2.1 and 2.2.

Figure 2.1 shows the time series of coupled systems; the blue line corresponds
to master system, while the orange line represents the solution of slave system. It is
considered that for t < 100 the systems are uncoupled, so each solution evolves
in its own attractor. After 100 time units, the master–slave system is connected
with a coupling strength of g = 1, and it is observed how the slave system
solution converges to the attractor located at the origin but oscillates in anti-phase in
relation to the master system. Additionally, Fig. 2.2 shows the numerical verification
where the complete anti-synchronization is achieved between the three states of
the coupled systems. In this figure, it is possible to appreciate how all the errors
converge to zero.

Example 2 Now, we consider the same master–slave system, but the internal
coupling matrix is � = Diag(1, 0, 1), and the initial conditions are given by
x0 = [0.6, 0.1, 1.5]T and y0 = [−4.2, 0.5, − 1]T . In this case, using the
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Fig. 2.2 Error evolution for master–slave system (2.4)–(2.5) with � = Diag(1, 1, 1), and the
coupling strength g = 1 applied at 100 time units. The time is given by arbitrary units (a.u.). Color
code: The red line represents the error e1, blue line the error e2, and the gray line the error e3
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Fig. 2.3 Numerical simulation for the master–slave system (2.4)–(2.5) using the internal coupling
matrix � = Diag(1, 0, 1), and the coupling strength g = 1 applied at 100 time units. The time is
given by arbitrary units (a.u.). Color code: Blue line corresponds to master system, and the orange
line to slave system

Proposition 1, we obtain the critical value of the coupling strength under which anti-
synchronization is achieved. Particularly for this example, the minimum coupling
strength is g ≥ 0.8. Therefore, for the numerical simulation, it is considered that the
coupling strength g = 1, and the results are presented in Figs. 2.3 and 2.4.
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Fig. 2.4 Error evolution for master–slave system (2.4)–(2.5) with � = Diag(1, 0, 1), and the
coupling strength g = 1 applied at 100 time units. The time is given by arbitrary units (a.u.). Color
code: The red line represents the error e1, blue line the error e2, and the gray line the error e3

In Fig. 2.3, it is considered that the blue solution belongs to the master system,
and the orange line corresponds to the slave system. Similar to the previous example,
initially the systems are uncoupled, and we can observe that systems oscillate in its
corresponding attractor. After 100 time units, the master–slave systems are coupled,
and it is possible to observe that the slave system solutions converge to the attractor
generated for the initial condition −x0. Moreover, it can be seen that the trajectories
of the coupled systems evolve in anti-phase, but in different attractors. Furthermore,
if the sum between the state variables is calculated, then there is the numerical
verification that the error converges to zero in the three states, which is presented in
Fig. 2.4.

It is important to mention that these examples can be interesting because it
illustrates a difference between a collective anti-phase behavior and the anti-
synchronization phenomenon. In the first example, since the initial condition of the
master system is around the origin, it is not possible to appreciate the movement of
the slave solution, and the resulting behavior can be confused with an anti-phase
synchronization. Instead, in Example 2, it is possible to observe how the slave
system solution changes the resulting attractor, since it converges to the attractor
generated by the initial conditions, −x0, and not to those of the master system. But
the oscillation between the systems remains in anti-phase, and the three states to the
error system converge to zero.
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Fig. 2.5 Projections of trajectory solutions onto (a) the (z1, z2) plane and (b) (z1, z3) plane with
z = x, y, for the master–slave systems (2.4)–(2.5) with � = Diag(0, 1, 0) and coupling strength
g = 1. The black asterisks indicate the initial conditions

2.4.2 Partial Anti-synchronization

Next, we consider the same master–slave configuration, but now using the internal
coupling matrix belongs to {Diag(0, 1, 0), Diag(0, 0, 1), Diag(0, 1, 1)}. Thus,
with this configuration, it is possible to achieve the partial anti-synchronization.

Example 3 Consider master–slave system (2.4)–(2.5) with � = Diag(0, 1, 0), and
the initial conditions x0 = [0.6, .1, 1]T and y0 = [−1.8, 0.5,−1.5]T . Using the
Proposition 2 can be determined to achieve the partial anti-synchronization in the
structure presented. In this case, the minimum coupling strength is gmin = 0.88; for
simplicity, we consider that g = 1.

Figure 2.5 shows the projections of solutions onto the planes (a) (z1, z2) and (b)
(z1, z3) for each of the systems coupled where z = x, y. The blue line corresponds
to the master systems, orange line represents the slave system, and the set of initial
conditions is marked with an asterisk. For this case, when analyzing the projections
of both systems, apparently, the coupling does not affect the slave system.
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Fig. 2.6 Numerical simulation for the master–slave system (2.4)–(2.5) using the internal coupling
matrix � = Diag(0, 1, 0), and the coupling strength g = 1 applied at 100 time units. So, the blue
line corresponds to the master system, and the orange line corresponds to the slave system. The
time is given by arbitrary units (a.u.)

On the other hand, Fig. 2.6 shows the evolution of the solutions in the three states,
where after 100 time units the coupling between both systems is applied, and it
is possible to observe that there is an evolution in anti-phase for the three states.
However, in this example, the slave system does not tend to the attractor located in
the mirror of the master; rather, it remains in its original attractor. Therefore, when
the errors are analyzed, it is possible to observe how for the first state the error tends
to c1 = −1.2 (see Fig. 2.7), whereas the other states of the errors tend to zero. In
this sense, the master–slave system achieves partial anti-synchronization.
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Fig. 2.7 Error evolution for master–slave system (2.4)–(2.5) with � = Diag(0, 1, 0), and the
coupling strength g = 1 applied at 100 time units. The red line represents the error e1, blue line
the error e2, and the gray line the error e3. The time is given by arbitrary units (a.u.)

2.5 Conclusion

In this chapter, we focused on studying and observing the anti-synchronization for a
pair of identical multistable systems coupled in a master–slave configuration, using
the Lyapunov stability analysis. In general, the anti-synchronization of the master–
slave system was observed, where the nature of the internal coupling matrix � has
a great influence in determining the type of anti-synchronization, such as: complete
and partial anti-synchronization, and the coupling strength is important to achieve
stable collective behavior.

For first instance, our study was focused on the complete anti-synchronization,
and our numerical results show that for sufficiently large coupling strength the
solution of the slave system tends to the attractor generated in the basin around
−x0, but it presents anti-phase oscillations for all states. In general, the solutions
satisfy the conditions of being oscillations of the same amplitude, but of opposite
signs.

For second instance, we consider a master–slave system, but the internal coupling
matrix does not consider x coupling, and it was observed that the resulting collective
behavior is a partial anti-synchronization, where the error for the first states is a
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constant that depends on the initial conditions of the states of the coupled systems.
It should be mentioned that in this scenario, the slave system does not change the
basin of attraction once it has been connected with the master system, and the only
observable difference is the phase shift of the oscillations of the slave system. In this
sense, this type of synchronous behavior could also be considered as an anti-phase
synchronization [3].

Finally, we strongly believe that the methodology discussed here can be applied
to a wide class of PWL systems with chaotic behavior, such as those presented in
[20, 22]. On the other hand, the results can be directly extended for a network of N

identical multistable systems with linear coupling functions and directed topology of
the network. Here we explore two scenarios: the anti-synchronization for all nodes
in the network, or mixed synchronization between the nodes of the networks.
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Chapter 3
Analysis of Synchronizability in
Small-World Complex Networks

E. Zambrano-Serrano, C. Posadas-Castillo, M. A. Platas-Garza,
and J. R. Rodríguez-Cruz

Abstract The research related to complex networks is an active field mainly
inspired by its broad ability to model a wide variety of systems. For instance, we
observe biological networks at the microscopic level, genetic regulation networks,
protein networks, and neural networks. On the other hand, we find computer
networks and social networks at a higher level of organization. For this reason, the
study of complex networks is attractive, specifically those that present small-world
characteristics and nonlinear dynamic systems at their nodes. This chapter presents
a comparison of three algorithms for generating small-world complex networks,
Watts–Strogatz, Newman–Watts, and Sanchez–Posadas, intending to show which
algorithm enhances the synchrony of complex networks that consider chaotic
oscillators in their nodes, from the perspective of synchronizability—the capacity
of networks in synchronizing the activity of their dynamical parts. The comparison
of these algorithms has been made from the eigenratio of the Laplacian matrix
from the connection graph. It relates the largest eigenvalue divided by the second
smallest one. The results that show the proposed by Sanchez–Posadas algorithm
exhibit certain advantages over the other two studied.

Keywords Synchronizability · Small-world networks · Eigenratio ·
Synchronization

3.1 Introduction

Due to the fascinating applications in modeling natural and artificial systems,
complex networks have been converted into a relevant research area [1]. For
example, the brain is a network of neurons connected through synapses; a com-
pany is a network of people with various types of connections between them;

E. Zambrano-Serrano (�) · C. Posadas-Castillo · M. A. Platas-Garza · J. R. Rodríguez-Cruz
Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás
de los Garza, Mexico
e-mail: ernesto.zambranos@uanl.edu.mx; cornelio.posadascs@uanl.edu.mx

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Huerta Cuellar et al. (eds.), Complex Systems and Their Applications,
https://doi.org/10.1007/978-3-031-02472-6_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02472-6_3&domain=pdf
mailto:ernesto.zambranos@uanl.edu.mx
mailto:cornelio.posadascs@uanl.edu.mx
https://doi.org/10.1007/978-3-031-02472-6_3


40 E. Zambrano-Serrano et al.

transportation networks, ecological networks of animals and plants, to name a few
[2]. Furthermore, the collective behavior of dynamic systems over the networks has
been an active research topic being the synchronization the most interesting result
of collective behavior. Therefore, it has been widely investigated in different areas
ranging from the flashing of fireflies, swimming of coupled pendulums, coupled
chaotic systems, so on [3–5]. Moreover, these behaviors have implied different
types of synchronizations such as complete, lag, phase, bubbling, and generalized
synchronization, to mention a few [6].

The synchronization in complex networks is mainly related to (1) the structure
network, (2) the dynamic inherent of individual systems or nodes, (3) the type
of strength of the interaction among individual dynamical systems [7]. Driving
two fundamental concerns: obtaining the synchronous solution and determining
its stability [8]. In this scenario, an interesting question has emerged: when is
such synchronous manifold stable, particularly with the coupling configuration and
strength? Regarding the stability of the synchronization manifold, some necessary
or sufficient conditions have been proposed [9, 10]. Based on transverse Lyapunov
exponents, the master-stability-function formalism proposed by Pecora and Carroll
in [9] allows the local synchronization analysis. Its significance is on the separation
of the effects of network structure and individual nodes’ dynamics. As a result,
synchronizability, a measure to quantify the degree of synchronization, could
be assessed by some topological criteria without referring to the specific node
dynamics. This measure depends entirely on the structure of the connection graph.
It shows that the eigenratio of the Laplacian matrix of the connection graph, i.e.,
the largest eigenvalue divided by the second smallest one, in which a smaller
eigenratio is favored for high synchronizability [9]. In other words, the smaller
is the eigenratio of a network, the better its synchronizability [7]. Some works
on this subject are those described by [11–13]. In [11], the synchronizability is
studied due to the time-varying coupling strength on neuronal networks formulated
by the Hindmarsh–Rose model. In [12], the relationships between synchronizability
and the parameters of multi-layer-coupled star-composed networks were presented.
In [14], the authors show the relationship of the eigenratio parameter with the
synchronization of complex networks that simulate brain connections in patients
with early Alzheimer’s disease. Also in [15] is presented a study that compares
eigenvalue with synchronization in small-world networks.

After the pioneering work of Watts and Strogatz in small-world networks
[16] pointing out the importance of network topology, much research has been
devoted to proposing new algorithms that introduce the small-world properties
in complex networks considering the emergence of the following characteristics:
high connectivity and a short average distance between nodes [17–19]. In [19], an
algorithm is introduced to generate small-world networks from regular networks by
creating shortcuts to reduce the average distance between pairs of nodes. Then, the
resulting network exhibits the average shortest path length and high connectivity.
Furthermore, it shows that the clustering coefficient, a measure of connectivity
between nodes, would be slightly affected for small changes in the topology.
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It is desired to have high synchronizability for many design applications and
modeling in a small-world topology. Then a question arises: given the methodolo-
gies to generate a small network (Watts–Strogatz, Newman–Watts, and Sanchez–
Posadas), which present the best synchronizability value? Since the synchroniz-
ability can be improved, modifying the network structure by adding or removing
edges/nodes and rewriting edges.

In this chapter, from the perspective of synchronizability, we study the syn-
chronization phenomenon of three different algorithms’ generators of small-world
networks with identical systems in their nodes, where each system is a chaotic
oscillator. By comparing these algorithms, it is intended to show that the algorithm
proposed by Sanchez–Posadas is more efficient in generating small-world complex
networks that can contribute to a better synchronization in an emergent way. The
structure of this chapter is as follows: Sect. 3.2 describes the basic concepts of
complex networks. In Sect. 3.3, the main characteristics of the chaotic oscillator
are presented. Small-world network synchronization is presented in Sect. 3.4.
Section 3.5 focuses on analyzing the results of the experiments carried out. Finally,
we close the paper with the conclusions.

3.2 Complex Networks

The study of networks is a mathematics branch called graph theory. The birth of
graph theory dates back to 1736 when the Swiss mathematician Leonhard Euler
publicized the solution of the Königsberg bridge problem. Since then, this theory
has been used in many fields of science such as biology, neurology, sociology, and
economy [1]. More formally, we can define complex networks as a graph as follows:

Definition 1 A graph G = (N,L) can be defined as a set of elements or nodes
(N = n1, n2, . . . , nN , ), which have connections or links (L = l1, l2, . . . , lk) that
allow us to establish binary relationships between the elements of the set. Each link
L is a subset of N of two elements denoting a connection among the two vertices
i.e., L ⊂ {{i, j} : i, j ∈ N} [2]. If two links in a node are the same, this edge
is called auto-loop. The graphs can be grouped into two categories, the directed,
Fig. 3.1a, and the undirected, Fig. 3.1b; a directed graph is one where the direction
of interaction between nodes is limited to the direction indicated by the arrows, and
in an undirected graph, the interactions between nodes are considered bidirectional
[20].

The term complex refers to the characteristics of the nodes and the structure or
network topology. Nodes can be modeled by differential equations or any other
mathematical model. However, it can be in two main configurations: master–slave,
Fig. 3.2a, and bidirectional, Fig. 3.2b. In the first model, the master imposes its
dynamics on the rest of the network’s nodes. Meanwhile, in the second model, due
to the absence of a master, the configuration shows an emergent dynamic, which
is different from that of any of the network nodes. We consider that the complex
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Fig. 3.1 (a) Direct graph; (b) Undirected graph

Fig. 3.2 (a) Master–slave configuration; (b) Bidirectional configuration

network has achieved a synchronization state in this scenario. This kind of behavior
is what we are going to focus on.

We can organize these complex networks in different groups, structural complex
networks, weighted, random, free scale, and small world:

– Structural complex networks: These include regular and irregular topologies;
regulars shows a very well-defined behavior (ring, star, and global), but irregular
complex networks do not show a well-defined behavior.

– Weighted complex networks: They are characterized by having weights in the
links, which introduce hierarchy.

– Random complex networks: They are characterized by having all their connec-
tions randomly performed between pairs of nodes.

– Free-scale complex network: This type of network has many nodes, some with
many links and others with few connections. The nodes with many links have
been called hubs.

– Small-world complex network: This type of network is characterized by a high
degree of connectivity and a small average distance between nodes due to the
presence of long-range connections between distant nodes.
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3.2.1 Small-World Networks

The small-world property refers to the existence of long links reach or shortcuts
connecting pairs of distant nodes in the network, requiring a small number of steps to
reach any node on the network. The characteristics of the complex networks affected
by this property are as follows [19, 21]: the clustering coefficient, which refers to the
average fraction of pairs of neighbors of a node, which are neighbors to each other.
Ci is the clustering coefficient of node i and is defined as the quotient between the
number Ei , which is the real existing links, and ki , the neighbors of node i. So, we
define the clustering coefficient C of the network as the average of the Ci over all
nodes i as follows [22]:

Ci = 2Ei

ki(ki − 1)
, 1 ≤ i ≤ N, (3.1)

where N is the network size. Other important characteristic of this kind of complex
network is the shortest average path L. It is defined as the shortest distance between
any pairs of nodes.

L = 1

N(N − 1)

N∑

∀i,j ,i �=j

li,j , i ≤ i, j ≤ N, (3.2)

and lij refers to the shortest path between node i and node j . This characteristic is
one of the most studied in this kind of network, due to its application in situations
of real interest, such as the study of memory, capacity in neural networks, spread of
epidemics, etc.

Another relevant concept is the Laplacian matrix or coupling matrix A =
(ai,j ) ∈ Rn×n; this concept refers to how many links exist among the network
nodes. If there is a connection between nodes i and j , then the element ai,j = 1;
otherwise ai,j = 0, with (i �= j). The diagonal elements ai,i of A are defined as

ai,i = −
N∑

j=1,j �=i

ai,j = −
N∑

j=1,j �=i

aj,i; with i = 1, 2, . . . , N. (3.3)

Thus, for graph shown in Fig. 3.3, the corresponding Laplacian matrix is

A =

⎡

⎢⎢⎢⎢⎢
⎣

−3 1 1 1 0
1 −3 0 1 1
1 0 −3 1 1
1 1 1 −4 1
0 1 1 1 −3

⎤

⎥⎥⎥⎥⎥
⎦

, (3.4)

and its eigenvalues denoted as λi(A) = {0,−3,−3,−5,−5}, with i = 1, . . . , 5.
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Fig. 3.3 Irregular complex
network

3.2.2 Main Algorithms to Generate Small-World Complex
Networks

Watts–Strogatz algorithm: In 1998, D. J. Watts and S. H. Strogatz proposed an
algorithm to introduce the small-world property in a regular network. The topology
of this complex network is known as the closest neighbor, which consists of a ring
arrangement with periodic connection conditions. The Watts–Strogatz small-world
model is created by rewiring one end of several existing links to new locations
chosen randomly [16].

Newman–Watts algorithm: After Watts and Strogatz published their algorithm
for generating complex small-world networks, a new version emerged the year after
this pioneering work appeared. In 1999, M. E. J. Newman and D. J. Watts proposed
their modified version of the original small-world algorithm. Like the previous
algorithm, the Newman–Watts algorithm starts from the nearest neighbor topology.
The small-world property is introduced by adding new links to randomly chosen
pairs of nodes. The restrictions of this algorithm thus remain unchanged, except for
the second, which is eliminated since the number of links varies as a function of
probability [17].

Sanchez–Posadas algorithm: In this case, the algorithm proposed by Sanchez–
Posadas is based on the addition of new connections starting from a network in
a ring topology, where these new connections are created between pairs of nodes
chosen randomly; in this, are they propose a method to reconnect and also create
new connections [19]?
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3.2.3 Sanchez–Posadas Algorithm

As we said previously, the algorithm starts from a network in ring topology of known
size N and the periodic connection condition k as is shown in Fig. 3.4.

If probability p = 0.1, then Nkp = 3. That means we have to reconnect one of
the ends of 3(Nkp) existing links to new positions chosen randomly and the result
is displayed in Fig. 3.5.

Then, we have to create two more connections for any reconnection made before:

– A connection is created between the node that received the connection and one of
the k neighbors of the node that sent the initial connection, chosen randomly. If

Fig. 3.4 Complex network with N = 16 and a connection condition k = 2

Fig. 3.5 Complex network with three links reconnected. (Reconnections in solid colors, and the
original positions in dashed)
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Fig. 3.6 Complex network with three links reconnected, and two more created for any reconnected
link

all neighbors of the node that sent the connection are also neighbors of the node
that received the connection, the adding should be omitted.

– A connection is created between the node that sent the connection and one of the
k neighbors of the node that received the initial connection, chosen randomly. If
all the neighbors of the node that receive the connection are also neighbors of the
node that sent the connection, the adding should be omitted.

Figure 3.6 presents the complex network in a small-world topology, considering
N = 16, K = 2, and Nkp = 3 long-range connections. For more detailed
information, refer to [19].

3.3 Chaotic Oscillators

In the scientific literature, there is a wide variety of oscillators reported. However,
there is particular interest in those of strange attractors. In this chapter, the Chua
oscillator [23], which has been extensively studied, is considered in the nodes of
complex networks to be analyzed [24].

3.3.1 Chua Chaotic Oscillator

The Chua oscillator is a nonlinear model capable of generating chaotic behavior
that has become a paradigm for studying chaos. The Chua oscillator has been
studied extensively because of its appearance, and different generalizations have
been proposed. Of the two slopes followed to obtain a generalization of the Chua
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Fig. 3.7 Example of a two-scroll Chua chaotic oscillator. Obtained for the following parameters
α = 9, β = 14.2857, q = 1, m = [−1

7 , 2
7 ]

oscillator, one of the most studied is the introduction of additional breakpoints in
nonlinearity. The mathematical model, which describes the oscillator generalized
chaotic Chua, is given by the following set of differential equations:

ẋ = α [y − h(x)] ,

ẏ = x − y + z, (3.5)

ż = −zβy,

h(x) = m2q−1x + 1

2

2q11∑

i=1

(mi−1 − mi)(|x + ci | − |x − ci |), (3.6)

m = [m0, ,m1 ,m2 , . . . , m2q−1
]
, (3.7)

c = [c0, , c1 , c2 , . . . , c2q−1
]
. (3.8)

This is the kind of oscillator we will be using in this chapter. We will assume that
every network node has one Chua’s system, all of them with the same parameters
and different initial conditions. Figure 3.7 shows the phase portraits of the Chua
system given in (3.5). With the following parameters α = 9, β = 14.2857, q = 1,
m = [−1

7 , 2
7 ].

3.4 Synchronization

Synchronization refers to the process where two or more systems adjust their
movement to a common behavior due to coupling or forcing.
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3.4.1 Preliminaries of Small-World Network Synchronization

Consider a dynamic network composed of N identical oscillators, which are linearly
coupled, and each one is a dynamic system of dimensions n. The equations of state
of the network are given by

ẋi = f (xi) + c

N∑

j=1

aij�(xj ), i = 1, 2, . . . , N, (3.9)

where xi = [x1
i , x2

i , . . . , xn
i ]T ∈ R

n is the vector, and f (·) is generally a nonlinear
function satisfying a local or global Lipschitz condition. The constant c > 0
represents the coupling strength, and � : R

n → R
n is the inner coupling matrix

connection relating the coupled state variables, and [ai,j ] ∈ R
N×N is the matrix

defined as in (3.3) as well called Laplacian matrix.
Mathematically, network synchronization is defined as follows [25].

Network (3.9) is said to achieve complete (asymptotic) synchronization, if

lim
t→∞ ||xi(t) − xj (t)|| = 0. for all 1, 2, . . . , N, (3.10)

where || · || is the Euclidian norm.
Furthermore, the set {x1 = x2 = · · · = xN } is referred to as the synchronization

manifold in the state space Rn×N [1]. Complete synchronization consists of a perfect
coupling of the trajectories of the systems. To achieve the complete synchronization
of the network given in (3.9) is enough to guarantee that its synchronization
manifold be stable invariant synchronization manifold in that for all network orbits
in Rn×N . Then we can infer that the trajectories are moving to be close enough to
synchronization manifold; as a consequence, they will attracted to the manifold and
then stay inside forever.

Approximate synchronization results from an asymptotic bound of the difference
of a set of variables from one system and the corresponding set from another system.

lim
t→∞

∣∣|x(t) − x̂(t)
∣∣ | < ρ, ρ > 0. (3.11)

3.4.2 Eigenratio as a Synchronizability Measure

Synchronizability of a dynamical network can be defined as the facility with
which the network synchronizes its activity. There is no single interpretation of
synchronizability, and several criteria are used to determine it. This concept of
synchronizability is related to λN/λ2 and is known as eigenratio, where λN and λ2
are the smallest and largest eigenvalues of the coupling matrix, respectively. In other
words, the lower the ratio λN/λ2, the better the synchronizability of the network.
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This definition of synchronizability has been extensively used in the literature,
being the most frequent expression applied for analyzing the synchronizability of
dynamical networks [7, 12].

3.5 Results

Synchronization phenomena have immense applications in science and engineering.
In some scenarios, it is desirable to have networks with high levels of synchro-
nization to have better functionality or get better insights into the system. In
order to show the effectiveness of the Sanchez–Posadas approach. We measure
the synchronizability in small-world complex networks generated by the Watts–
Strogatz, Newman–Watts, and Sanchez–Posadas algorithms.

Figures 3.8, 3.9, and 3.10 show the first study case to be analyzed. Here
we consider the eigenratio against probability; we maintain the same periodic

Fig. 3.8 Evolution of eigenratio parameter versus probability for a network of 16 and 25 nodes
and connection constant k = 2

Fig. 3.9 Evolution of eigenratio parameter versus probability for a network of 50 and 100 nodes
and connection constant k = 2
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Fig. 3.10 Evolution of eigenratio parameter versus probability for a network of 200 and 400 nodes
and connection constant k = 2

connectivity and vary the number of nodes in the network as follows k = 2 and
N = 16, 25, 50, 100, 200 and 400, respectively.

It can be seen from Figs. 3.8, 3.9, and 3.10 that as we increase the probability of
generating connections in the network for the same number of nodes, the value of
the eigenratio decreases, this being an indicator of better synchronizability in said
network. In the case of the networks generated with the Sanchez–Posadas algorithm,
it can be seen how the value of the eigenratio remains lower even for a relatively
small number of nodes, showing a better behavior with respect to the other two
studied.

In a second study case, the experiment was performed considering the behavior
of the eigenratio. It is compared with the number of nodes in the network by setting
the same probability value. The resulting values are shown in Figs. 3.11, 3.12, 3.13,
and 3.14. Similar behavior is observed. The Sanchez–Posadas algorithm presents
better relation of synchronizability than the other algorithms (Watts–Strogatz and
Newman–Watts).

Finally, we proceed to check if the networks generated by these algorithms could
achieve synchronization in an emergent way; and with which of the algorithms, the
best results would be obtained. To obtain the coupling force value c, the relationship
λ2 = −T

c
proposed in [20] was used, where T is the instant of time where the states

of the chaotic oscillator achieve the stability, using the feedback from state x. As we
can see in Fig. 3.15, the system stabilizes at T = 11s approximately.

Figure 3.16 considers a small-world network with 50 nodes and generated with
Watts–Strogatz algorithm, it reaches the synchronization of all states considering
the Chua’s chaotic oscillator in their nodes and a coupling force c = 17.
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Fig. 3.11 Evolution of eigenratio parameter versus the number of nodes, for a network with
probability of reconnection p = 0.2

Fig. 3.12 Evolution of eigenratio parameter versus the number of nodes, for a network with
probability of reconnection p = 0.4
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Fig. 3.13 Evolution of eigenratio parameter versus the number of nodes, for a network with
probability of reconnection p = 0.6

Fig. 3.14 Evolution of eigenratio parameter versus the number of nodes, for a network with
probability of reconnection p = 0.9
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Fig. 3.15 Stabilization of the states Chua’s chaotic oscillator

Fig. 3.16 Synchronization with Watts–Strogatz algorithm and synchronization error, for 50 nodes

Figure 3.17 shows the results obtained from a network generated by the
Newman–Watts algorithm. It reaches synchronization but presents a small error.
This is because synchronization is reached in an emergent way and no control is
being applied that forces it to the states to synchronize. It can be said that in this
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Fig. 3.17 Synchronization with Newman–Watts algorithm and synchronization error, for 50 nodes

case synchronization is achieved but in an approximate type. The coupling force
required to achieve this was c = 6.

Finally, for the small-world network of Fig. 3.18, which was generated through
the Sanchez–Posadas algorithm, it can be observed that it achieves the identical
synchronization with the advantage of having achieved it with a lower coupling
force than the previous ones. In this case, a coupling force c = 4 was required.

Figures 3.19, 3.20, and 3.21 show the synchronized states of each chaotic
oscillator, which corresponds to each node of the small-world network generated
by Sanchez–Posadas algorithm considering 50 nodes and c = 4.

3.6 Conclusions

This chapter presented a comparative study between three algorithms generating
complex small-world networks, Watts–Strogatz, Newman–Watts, and Sanchez–
Posadas. This comparison was made by generating different small-world networks
with each algorithm and observing how the eigenratio parameter varied since this
parameter is closely related to the synchronization capacity of complex networks.
As a result of this comparison, it was obtained that the small-world complex
networks generated by the Sanchez–Posadas algorithm present lower eigenratio
values compared to those obtained using the other two algorithms. This means
that the Sanchez–Posadas algorithm provides complex small-world networks that
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Fig. 3.18 Synchronization with Sanchez–Posadas algorithm and synchronization error, for 50
nodes

Fig. 3.19 Synchronized x states of each chaotic oscillator
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Fig. 3.20 Synchronized y states of each chaotic oscillator

Fig. 3.21 Synchronized z states of each chaotic oscillator
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are more prone to synchronization in an emergent manner. This is because a
more significant number of connections are introduced for lower probabilities of
reconnection with this algorithm. This algorithm is interesting since the networks it
generates naturally present good behavior when synchronizing nonlinear dynamic
systems.
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Part II
Cryptosystems



Chapter 4
Generation of Dynamical S-Boxes via Lag
Time Chaotic Series for Cryptosystems

B. B. Cassal-Quiroga, A. Ruiz-Silva, and E. Campos-Cantón

Abstract Advances in computing and electronic transactions have led to the
need to develop new techniques to ensure information security. In this sense,
cryptographic algorithms protect information against any attack. Substitution boxes
for block ciphers play an important role as they ensure the security of the algorithms.
The aim of this work is to present an algorithm for generating substitution boxes
based on series with delay of logistic mapping. By analyzing the dynamics of the
logistic mapping, the amount of delays to eliminate the trace of the logistic mapping
and the characteristic probability distribution of this system are determined. The
performance of the proposed substitution boxes is evaluated using the criteria
of a good substitution box, mainly defined by Webster and Tavares. Finally, the
proposed substitution boxes are implemented in the image coding to obtain a
uniform distribution of pixels.

Keywords S-box · Block cipher · Dynamical S-box · Chaos · Lag time chaotic
series

4.1 Introduction

We now live in a technological age that is highly dependent on data and information
shared by public channels. This information is indispensable and must be adequately
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protected from attackers who can make malicious use it maliciously. To prevent
malicious use, the information must be protected in several ways: Confidentiality,
Integrity, and Authentication. Cryptography is the science that responds to all
these needs in today’s communication systems. The two main types of encryption:
asymmetric ciphers are based on the use of two keys (public and private) and
symmetric ciphers use the same key for encryption and decryption. Symmetric
ciphers are again divided into two classes, namely stream ciphers and block ciphers.
In stream cipher, one bit of the pseudo-random number generator is combined with
one bit of the plaintext, resulting in a bit sequence. In block cipher, blocks of
plaintext are encrypted using an S-box and a cyclic shift. The substitution box (S-
box) is the core component of the block cipher. The S-boxes give the cryptosystems
the confusion property described by Shannon [1], which is used in conventional
block ciphers such as the Data Encryption Standard (DES) and the Advanced
Encryption Standard (AES). In these cryptosystems, security mainly depends on
the properties of the S-box. The criteria that a strong S-box must meet, also
known as ”good S-boxes," are: Bijection, Nonlinearity, Strict Avalanche Criterion
(SAC), and the Output Bit Independence Criterion (BIC) [2]. Other desirable
properties include resistance to linear and differential cryptanalysis attacks. The
construction of cryptographically secure S-boxes is an interesting area in the field
of cryptography.

In recent years, many papers have been published to study cryptosystems based
on chaos [3–12] because there is a relationship between the properties of chaotic
systems and the properties of cryptosystems. In [13], the relationship between these
properties is given, e.g., the confusion is related to the ergodicity, the diffusion
property is related to the sensitivity to the initial conditions, and the deterministic
dynamics is related to the deterministic pseudo-randomness. Exploiting the proper-
ties of chaotic systems, a strong S-box is proposed that satisfies the criteria for good
S-boxes.

As for the generation of S-boxes based on chaos, some algorithms have been
developed using discrete dynamical systems. For example, in [3–7], the generation
of substitution boxes by a single time series of a map or by combining two
time series of different maps was presented. However, these algorithms do not
guarantee that the series used have a uniform distribution, unlike the approach used
in this work. Similarly, there are algorithms based on continuous chaotic dynamical
systems [8–10]. There are also algorithms based on mixing time series of continuous
and discrete dynamical systems [11, 12] and in [14] the algorithm is built over time-
delay series.

The advantage of using discrete chaotic dynamical systems is that the elements of
the time series are decorrelated from one iteration to the next. However, when using
a continuous chaotic dynamical system, this is not the case because the elements
of the time series are highly correlated. Therefore, many iterations are required and
the computation of the mutual information between the elements of the time series
is necessary to be able to tell when they are decorrelated, which implies higher
computational costs.
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In chaos-based encryption systems, pseudo-random sequences based on chaotic
maps are usually used as a one-time pad for encrypting messages. Since encryption
systems based on low dimensional chaotic map have low computational complexity,
they can be analyzed with low computational cost using iteration and correlation
functions [15]. Time-delay chaotic series have complex behavior and erase the trace
of the map that generates them. Using these time series, S-boxes can be developed
that provide a better criterion for nonlinearity and ensure good statistical properties
of the generators.

In this chapter, the advantage of a cryptographically secure pseudo-random
number generator based on the generation of two delayed time series from the
logistic map (proposed in [16]) is used to develop a method to obtain dynamically
good S-boxes. This type of delayed time series makes possible to generate S-
boxes capable of hiding the map used to generate them. Using this approach,
pseudo-random series with good statistical properties are generated based on these
delayed time series. This novel algorithm for generating S-boxes is based on a
cryptographically secure pseudo-random number generator. The rest of the chapter
is organized as follows: Sect. 4.2 describes the criteria for a ”good” n × n bit S-
box. In Sect. 4.3, a dynamic analysis of the logistic map is presented. In Sect. 4.4,
the proposed scheme for generating a dynamic S-box based on a pseudo-random
bit generator is presented. In Sect. 4.5, the performance analysis of a obtained S-
box and its comparison with other S-boxes described in the literature is presented.
An application of the obtained S-boxes to hide an image is presented in Sect. 4.6.
Finally, conclusions are drawn in Sect. 4.7.

4.2 Criteria for a Good n×n Bit S-Box

A collection of six criteria reported in the literature for generate cryptographically
good S-boxes has been made. These criteria are: bijective, nonlinearity, strict
avalanche criterion, output bits independence criterion, equiprobable input/output
XOR distribution, and maximum expected linear probability. Before addressing
these properties it is necessary to give some preliminaries about Boolean functions.

Let B = {0, 1} be a binary set which is endowed with two binary operations,
called addition (denoted by ⊕ XOR operation) and multiplication (denoted by ·
AND operation). Let (B,⊕, ·) be a field which will be denoted by F, where the
binary operations are given by Table 4.1. An n × n S-box is a vectorial Boolean

Table 4.1 Addition and
multiplication binary
operations

Input Output

A B A⊕B A·B
0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
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function S : Fn → B
n, where F

n is a vectorial space and is defined as:

S(x) = (f1(x), f2(x), · · · , fn(x)), (4.1)

where x = (x1, x2, · · · , xn)
� ∈ F

n and each of f ′
i s for 1 ≤ i ≤ n is a Boolean

function. A Boolean function is a mapping f : Fn → B by considering all inputs
in f , fi can be seen as a column vector of 2n elements. The functions f ′

i s are
component functions of S. Some basic definitions can be found in [17].

Definition 1 A Boolean function with algebraic expression, where the degree is
at most one is called an affine Boolean function. The general form for n-variable
affine function is:

faff ine(x1, x2, x3, . . . , xn) = wn · xn ⊕ wn−1 · xn−1 ⊕ . . . ⊕ w2 · x2 ⊕ w1 · x1 ⊕ w0,

where wi ∈ B are coefficients, and xi ∈ B are variables, with i = 0, 1, . . . , n.

Definition 2 A linear Boolean function is defined as follows

Lw(x) = wn · xn ⊕ wn−1 · xn−1 ⊕ . . . ⊕ w1 · x1,

where xi, wi ∈ B, with i = 1, . . . , n.

The set of affine Boolean functions is comprised by the set of linear Boolean
functions and their complements, i.e., all functions of the form

Aw,c(x) = Lw(x) ⊕ c, c ∈ B.

A useful representation of a Boolean function fi , with i = 1, . . . , n, is given by
the polarity truth table defined as follows.

Definition 3 A polarity truth table is defined as follows

f̂ (x) = (−1)f (x),

where x ∈ F
n, f̂ maps the output values of the Boolean function from the set {0, 1}

to the set {−1, 1}, i.e.,

f̂ : {0, 1} → {−1, 1}.

A linear Boolean function in polarity form is denoted as L̂w(x).

Definition 4 The Walsh Hadamard transform (WHT) of a Boolean function f

is defined as

F̂f (w) =
∑

x∈Bn

f̂ (x)L̂w(x).
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The WHT measures the correlation between the Boolean function f and the
linear Boolean function L̂w with x ∈ B

n.

4.2.1 Bijective Criterion

Let S(x) be an S-box, which is bijective if and only if their Boolean functions fi

satisfy the following condition:

wt(a1 · f1 ⊕ a2 · f2 ⊕ · · · ⊕ an · fn) = 2n−1, (4.2)

where ai ∈ F, (a1, a2, · · · , an) �= (0, 0, · · · , 0) and wt(·) is the Hamming
weight [2, 18], the corresponding S-box is guaranteed to be bijective.

4.2.2 Nonlinearity Criterion

Definition 5 ([19]) The nonlinearity of a Boolean function f : Bn → F is denoted
by

Nf = min
l∈Aw,c(x)

dH (f, l), (4.3)

where Aw,c(x) is an affine function set, dH (f, l) is the Hamming distance between
f and l.

The minimum distance between two Boolean functions can be described by
means of the Walsh spectrum [20]:

min
l∈Aw,c(x)

dH (f, l) = 2n−1(1 − 2−n max
ω∈Fn

|Ŝ(f )(ω)|), (4.4)

where the Walsh spectrum of f (x) is defined as follows:

Ŝ(f )(ω) = |F̂f (w)|w∈Bn =
∑

x∈Fn

(−1)f (x)⊕x•ω, (4.5)

with ω ∈ F
n and x • ω is the dot product between x and ω as:

x • ω = x1 · ω1 ⊕ · · · ⊕ xn · ωn. (4.6)
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4.2.3 Strict Avalanche Criterion (SAC)

Webster and Tavares gave this criterion, which guarantees that a bit change in the
input must change the bits of the output with probability 50% [21]. More formally,
a Boolean function f satisfies the condition SAC if and only if

∑

x∈Fn

f (x) ⊕ f (x ⊕ ei) = 2n−1, ∀i : 1 ≤ i ≤ n, (4.7)

where ei ∈ F
n such that wt(ei) = 1.

4.2.4 Output Bits Independence Criterion (BIC)

Output Bit Independence Criterion is another desirable criterion for an S-box to
satisfy, introduced by Webster and Tavares [21]. This means that all avalanche
variables should be pairwise independent for a given set of avalanche vectors
generated by changing a single plaintext bit. Adam and Tavares introduced another
method for measuring BIC, for the Boolean functions fi and fj (i �= j) of two
output bits in an S-box, when fi ⊕ fj is highly nonlinear and as close as possible to
satisfying SAC [2]. Moreover, fi ⊕ fj can be tested with a dynamic distance (DD).
Here, the DD of a function f can be defined as:

DD(f ) = max
d∈Fn

wt(d)=1

1

2

∣∣∣∣∣∣
2n−1 −

2n−1∑

x=0

f (x) ⊕ f (x ⊕ d)

∣∣∣∣∣∣
. (4.8)

If the value of DD is a small integer and close to zero, the function f satisfies the
SAC.

4.2.5 Criterion of Equiprobable Input/Output XOR
Distribution

Differential cryptanalysis, which attacks S-boxes faster than a brute force attack,
was introduced by Biham and Shamir [22]. It is desirable for an S-box to have
differential uniformity, this can be measured by the maximum expected differential
probability (MEDP). The differential probability for a given map S can be calculated
by measuring the differential resistance and is defined as follows:

DPf = max
�x �=0,�y

(
#{x ∈ F

n|S(x) ⊕ S(x ⊕ �x) = �y}
2m

)
, (4.9)
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where 2n is the cardinality of all possible input values (x), �x and �y are called
input and output differences for the S, respectively. The smaller value of DPf , the
better cryptographic properties, i.e., the resistance to differential cryptanalysis.

4.2.6 Maximum Expected Linear Probability (MELP)

The maximum value of the disequilibrium of an event is the maximum expected
linear probability. Given two randomly selected masks a and b, a is used to compute
the mask of all possible input values x, and b is used to compute the mask of the
corresponding S-box output values. The parity of the input bit mask a is equal to the
parity of the output bits of mask b. The MELP of a given S-box can be calculated
using the following equation:

LPf = max
a,b∈Fn\{0}

(

2−n
∑

x∈Fn

(−1)a·x+b·f (x)

)2

. (4.10)

The closer MELP is to zero, the higher the resistance to linear cryptanalysis attacks.

4.3 Analysis of the Logistic Map

The logistic map is a discrete-time demographic model analogous to the logistic
equation first created by Pierre François Verhulst, which is described by the
following differential equation

dx

dt
= rx

(
1 − x

K

)
, (4.11)

where x is the state variable of the system, r is a parameter related with the rate
of maximum population growth and K is the so-called carrying capacity (i.e., the
maximum sustainable population). So x ≤ K , when x = K the population stops
growing. Robert May [23] popularized this differential equation to one of the most
famous discrete dynamical systems, the logistic map, which is defined as follows:

fα(xi) = αxi(1 − xi), (4.12)

where x is the state variable of the logistic map, and α is the only parameter of
the system instead of two as its analogous continuous model. The use of a single
parameter was possible because the logistic map was normalized, i.e., fα : [0, 1] →
[0, 1], for the bifurcation parameter α ∈ [0, 4] and x0 ∈ [0, 1]. Nevertheless, in
the context of mathematics, the values of the parameter α are not restricted to the
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α
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Fig. 4.1 Fixed points stability where an cross and a circle denote repulsive and attracting fixed
points, respectively

interval [0, 4], so mathematically, it is possible to consider negative values [24].
As mentioned above, the logistic map is now studied in the interval [−2, 0) for
cryptographic purposes. Now, the mapping behavior in the two intervals is analyzed,
and with α ∈ [−2, 4] is assured that the orbits do not scape to infinity for some initial
conditions. The dynamical system (4.12) presents one or two fixed points located at
x∗

1 = 0 and at x∗
2 = α−1

α
, for α �= 0. Figure 4.1 depicts the stability of the fixed

points where an asterisk and a circle denote repulsive and attracting fixed points,
respectively.

These fixed points change their stability according to the parameter α, i.e.,
when |f ′(x∗

1 )| < 1 and |f ′(x∗
2 )| < 1 then the fixed points x∗

1 and x∗
2 are stable,

respectively, and they are unstable when |f ′(x∗
1 )| > 1 and |f ′(x∗

2 )| > 1. The case
of interest is the last, because the system presents complex behavior; this is, both
fixed points are repulsive, |f ′(x∗

1 )| = |α| > 1 and |f ′(x∗
2 )| = | − α + 2| > 1.The

x∗
1 fixed point is repulsive for α < −1 and α > 1. On the other hand, the x∗

2 fixed
point is repulsive for α < 1 but α �= 0, and α > 3. So the interested values are
α ∈ [−2,−1] ∪ [3, 4], this is the condition to have both repulsive fixed points.
The dynamical system (4.12) bifurcates when |f ′(x∗

1 )| = 1 and |f ′(x∗
2 )| = 1, this

happens for x∗
1 when α = −1 or 1, and for x∗

2 the bifurcations values are given
by α = 1 and 3. It is possible to analyze the behavior of the system by means
of a bifurcation diagram, which is shown in Fig. 4.2. This diagram shows orbits as
a function of α parameter and the route to chaos are period-doubling bifurcations
at α = 3 and period-halving bifurcations at α = −1. There are intervals for the
parameter α near to −2 and 4 where the logistic map fα(x) behaves chaotically.
There are several approaches to demonstrate that a system is chaotic, one of them
is prove that the dynamical systems fulfills the definition given by Devaney [25],
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Fig. 4.2 Bifurcation diagram for the logistic map given by Eq. (4.12)
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Fig. 4.3 Lyapunov exponent as a function of parameter α

other approach is based on the Lyapunov exponent [26, 27]. The Lyapunov exponent
Eq. (4.12) is shown in Fig. 4.3 and it can be seen that the exponents are symmetric
with respect to α = 1, for values of α near −2 and 4 the chaotic behavior of the
logistic map appears. The local stability of the fixed points is consistent with the
values of the Lyapunov exponent. For example, when α ∈ (−1, 3), the orbits of the
system converge to a fixed point and when a bifurcation occurs, the orbits converge
in periodic orbits until chaos occurs. The goal is to use logistic mapping to produce
a uniformly distributed time series without revealing the mapping used.
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Fig. 4.4 Logistic map for α = −2 in blue triangles and for α = 4 in black crosses

To achieve this, an approach based on two chaotic time series of the logistic
mapping is proposed. Based on Lyapunov exponents analysis, the α values are
arbitrarily selected within the chaos region, so it is consider α = −2 and 4.

In Fig. 4.4 the shape of the logistic map for the two parameter values α = −2 and
α = 4 is shown in blue triangles and black crosses, respectively. The logistic map
for these parameter values is invariant for different intervals as indicated below.

f−2 : [−0.5, 1.5] → [−0.5, 1.5];
f4 : [0, 1] → [0, 1]. (4.13)

It is worth noting that the time series generated with both parameter values have
a U-shaped distribution.

4.4 Proposed Algorithm to Generate Dynamical S-Boxes

The main idea of the proposed algorithm to generate dynamical S-boxes is based
on a Cryptographically Secure Pseudo-Random Number Generator (CSPRNG) via
a discrete dynamical system fα : I → I . García Martínez and Campos Cantón
[16] proposed a CSPRNG using two lag time series generated with the logistic map
(4.12). An orbit x0, x1, x2, . . . of the logistic map (4.12) is defined by specifying
an initial condition x0 ∈ I . The parameter α ∈ {−2, 4} determines the interval
I , fα : I → I . the M1 and M2 are time series generated by the logistic map
using the following considerations: (1) given any two initial conditions x01, x02
such that x01 �= x02; (2) two different bifurcation parameters α1 and α2; and
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Fig. 4.5 (m(n−1)2,mn2) from the time series M2(x(i−k1)2, xi2) considering two memory units

(3) l memory units for each time series x(i−kl−1)1, . . ., x(i−k2)1, x(i−k1)1, xi1 and
x(i−kl−1)1, . . ., x(i−k′

2)2
, x(i−k′

1)2
, xi2. Thus, the orbits have a uniform distribution,

independent of the U-shaped distribution of the logistic map. To illustrate the
algorithm, the bifurcation parameter values α1 = −2 and α2 = 4 are chosen for
the time series M1 and M2, respectively. These parameter values ensure that the
system (4.12) exhibits chaotic behavior in both cases. To ensure that the generator
has good statistical properties, it is necessary to generate time series with uniform
distribution and also it is desirable to eliminate the logistic map shape in these
new time series. This is achieved by the number of lags involved. There are many
combinations of delays capable of decorrelating the logistic map shape and the time
series, but each delay unit requires memory and processing time. If the time series
M2 = m02,m12,m22, . . . are analyzed with two memory units, for α = 4 the
elements mi2 of the time series M2(x(i−k1)2, xi2) are obtained in the following way:

mi2 = M2(x(i−k1)2, xi2) = x(i−k1)2 + xi2, mod 1, (4.14)

where k1 = 5. In the plot of m(n−1)2 against mn2, it is possible to distinguish that the
time series M2 are generated with the logistic map. Figure 4.5 shows (m(n−1)2,mn2)

using two memory units. Because the length of the delay does not matter, the shape
of the logistic map always remains, so it is necessary to consider more memory
units. By considering three memory units to obtain the elements of the time series
M2(x(i−k2)2, x(i−k1)2, xi2) given as follows where k1 = 10 and k2 = 5. For
this case of three memory units, which are the minimum amount to obtain cloud
of points in (m(n−1)2,mn2), see Fig. 4.6. The shape of the logistic map almost
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Fig. 4.6 (m(n−1)2,mn2) from the time series M2(x(i−k2)2, x(i−k1)2, xi2) considering three mem-
ory units

disappears, so three memory units are enough:

mi2 = M2(x(i−k2)2, x(i−k1)2, xi2) = x(i−k2)2 + x(i−k1)2 + xi2, mod 1. (4.15)

Also the lags must not be contiguous in order to avoid regular patterns which
directly affect the test results. It is considered different delays, i.e., k2 = k′

2 = 10,
k1 = 6, and k′

1 = 5 for both time series M1 and M2. Thus, these series are
conformed by the sum of two delay states x(i−10)1 and x(i−5)1 with the actual
state xi1 of the orbit x01, x11, x21, . . ., for M1. In the same way for M2, x(i−10)2,
x(i−6)2 and xi2 of the orbit x02, x12, x22, . . .. The values of the time series are
limited by the operation mod 1, this guarantees that M1,M2 ∈ [0, 1) ⊂ �.
Explicitly M1(x(i−10)1, x(i−5)1, xi1) and M2(x(i−10)2, x(i−6)2, xi2) are expressed in
the following way:

mi1 = M1(x(i−10)1, x(i−5)1, xi1) = x(i−10)1 + x(i−5)1 + xi1, mod 1, (4.16)

mi2 = M2(x(i−10)2, x(i−6)2, xi2) = x(i−10)2 + x(i−6)2 + xi2, mod 1. (4.17)

Finally, these time series M1 = m01,m11,m21, . . . and M2 = m02,m12,m22, . . .

given by (4.16) and (4.17), respectively, are mixed and the operation mod 1 is
applied again, this process generates a new time series Zi given as follows:

Zi = mi1 + mi2, mod 1. (4.18)
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Fig. 4.7 (a) Logistic map given by xn against xn−1; (b) “U-shaped” probability distribution of the
logistic map; (c) Delayed map given by zn against zn−1; (d) Uniform probability distribution of
the delayed map

From now on Eq. (4.18) is referred as the delayed map. Note that Zi ∈ [0, 1) ⊂ �.
The aim to use this approach is that with the combination of two time series with
delays represented by Zi , it is possible to dismiss the structure of the chaotic map
used. For instance, the time series xn can reveal the map whether xn against xn−1 is
plotted as is shown in Fig. 4.7a, the logistic map appears. In contrast, the time series
zn cannot reveal the map whether zn against zn−1 is plotted as is shown in Fig. 4.7c,
the delays used are not reveled neither does the logistic map appear. As well as,
this allows us to change the characteristic “U-shaped” probability distribution [28]
by a uniform probability distribution in the obtained time series xn and zn, see
Fig. 4.7b, d, respectively. This is an important characteristic that, in comparison with
the chaos-based schemes approach, makes easier the construction of S-box since all
values has the same probability of occurrence in contrast with a single chaotic based
schemes.
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To obtain a binary time series s useful for cryptosystems, it is constructed the
symbolic dynamics of Zi . So the elements of s are binary numbers, i.e., si(Zi) ∈
{0, 1}. One necessary requirement for the symbolic dynamic is to obtain zeros or
ones with the same probability, thus the process for getting the binary series is as
follows:

si =
{

0, for 0 < Zi ≤ 0.5,

1, for 0.5 < Zi < 1.
(4.19)

A CSPRNG based on a discrete dynamical system is given from Eqs. (4.12)–(4.19).

4.4.1 The Algorithm for S-Box Design via CSPRNG

In this subsection, we propose a new algorithm for creating n × n S-boxes based on
CSPRNG. The algorithm is simple and is described step by step as follows:

Step 1 Choose the initial conditions x01 and x02 for CSPRNG to generate the
stream of bits s0, s1, s2, . . ..

Step 2 Generate the block sequence of n-bits each, C0 = (s0, s1, . . . , sn−1), C1 =
(sn, sn+1, . . . , s2n−1), C2 = (s2n, s2n+1, . . . , s3n−1), . . ..

Step 3 Convert the blocks C0, C1, C2, . . . of n-bits to integer D0, D1, D2,. . ..
Step 4 Discard the repeated elements D’s to select 2n distinct values. The rule to

discard an element is as follows: if Di = Dj with i < j then discard Dj .
Step 5 Create the S-Box with the 2n distinct elements of D’s.

Upon completion of the procedure, the proposed algorithm returns a n × n S-
box with unique 2n values. Note that D0 is the first element of the S-box, but the
second element cannot be D1 if D0 = D1. However, enough 2n elements have been
generated to form the S-box. Each block C consists of n bits, sj , sj+1, . . . , sj+n−1,
associated with functions fi , with i = 1, . . . , n. For example, if n = 8, x01 =
0.8147, x02 = 0.9058, α1 = 4 and α2 = −2, then the 8 × 8 S-box in Table 4.2 is
obtained.

This proposed substitution box is the only component in a cryptosystem (block
ciphers) that results in a nonlinear mapping between inputs and outputs, leading to
confusion in the data. In the next section, the performance of the proposed algorithm
for generating S-boxes is investigated to confirm their immunity to differential and
linear cryptanalysis.
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Table 4.2 The S-box generated by proposed algorithm

64 46 150 174 220 26 233 224 148 170 143 247 225 212 90 124

44 204 59 61 43 121 129 2 109 164 103 249 16 237 27 35

216 184 81 213 161 169 89 199 140 38 239 48 163 193 21 147

222 217 70 196 195 192 234 41 47 15 14 42 98 190 186 36

242 51 60 87 24 104 189 55 118 111 231 120 8 226 7 141

85 9 73 101 3 197 12 66 82 110 65 25 165 176 80 181

125 31 218 74 68 52 149 95 182 19 112 5 136 79 214 34

158 50 188 137 28 191 155 84 105 126 92 179 162 152 200 0

171 142 240 203 88 160 32 202 99 18 100 97 145 53 194 93

245 119 185 20 235 123 134 139 128 116 173 76 17 132 209 135

83 168 57 56 223 30 91 4 22 122 102 221 208 131 71 86

39 114 252 10 172 201 177 77 94 246 54 175 183 108 156 45

219 210 40 130 113 153 13 166 58 23 253 215 238 33 198 248

229 227 96 206 107 144 67 254 115 167 244 106 180 157 255 241

207 243 228 187 49 78 251 37 62 1 205 117 29 178 75 236

11 250 146 6 151 69 138 133 72 232 211 127 159 63 154 230

4.5 Performance Test of S-Box

In this section, six important and well-known cryptographic criteria of the 8 × 8
S-boxes are computed. Lastly, the obtained results are contrasted with some results
presented in different published papers using other approaches.

4.5.1 Bijectivity Criterion

The computed value of proposed S-box is the desired value of 2n−1 = 128, with
n = 8, according to the formula (4.2). So the bijectivity criterion is satisfied and
the S-box proposed is a one-to-one, surjective, and balance, which is a primary
cryptographic criterion.

4.5.2 Nonlinearity Criterion

If the function has a high minimum Hamming distance, it is said to have high
nonlinearity by reducing the Walsh spectrum in (4.4).

Nonlinearity is the most important requirement for the design of an S-box,
since it ensures that an S-box is not a linear function between input vectors and
output vectors. The nonlinearity symbolizes the degree of dissimilarity between the
Boolean function f and the linear n-bit function l. The nonlinearity test used affine
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Table 4.3 SAC values of proposed S-box

0.5781 0.4844 0.5000 0.4219 0.4844 0.5156 0.4063 0.5469

0.5156 0.5000 0.4688 0.5156 0.5469 0.3906 0.5469 0.4375

0.5469 0.5000 0.5000 0.5469 0.4063 0.5156 0.4531 0.5313

0.4531 0.5156 0.5000 0.4531 0.5313 0.5313 0.4844 0.4688

0.5156 0.5469 0.4844 0.5313 0.5313 0.5625 0.5625 0.5469

0.4063 0.4844 0.5000 0.4063 0.5625 0.5625 0.4844 0.5313

0.4219 0.4063 0.5313 0.5313 0.4219 0.5625 0.4844 0.4844

0.5469 0.5156 0.5469 0.5625 0.4531 0.5625 0.5781 0.4531

functions, which are cryptographically weak. If the Hamming distance between
the Boolean function of the s-box and the affine function is smaller, then the s-
box is cryptographically weak. An S-box contains n Boolean functions and the
nonlinearity of each Boolean function must be computed. The nonlinearities of the
proposed S-box are 104, 104, 102, 104, 96, 102, 100, and 102, respectively. The
optimal value of nonlinearity is 120. The high nonlinearity ensures the strongest
ability to resist strong modern attacks such as linear cryptanalysis.

4.5.3 Strict Avalanche Criterion (SAC)

The avalanche effect is used to indicate the randomness of an S-box when an input
undergoes a change. Accordingly, an S-box whose SAC value is approximately
equal to 0.5 is considered strong. The dependency matrix of the SAC values of
our S-box can be found in Table 4.3.

For the S-box proposed, it is obtained a maximum SAC equal to 0.5781, the
minimum is 0.3906, and its average value 0.5012 is close to the desired value 0.5.
Based on these results, it can be concluded that the S-box generated by the proposed
method fulfills the property of SAC.

4.5.4 Output Bits Independence Criterion (BIC)

The BIC criterion guarantees that there are no statistical patterns or dependencies
between the output vectors. The BIC of the S-box generated by the proposed
method is tested as described in Sect. 4.5.4. The obtained results are presented in
Tables 4.4, 4.5, and 4.6.

From Table 4.4 the average value comes out to be 103.8571, for Table 4.5 the
average value is 0.5066, and the maximum value of Table 4.6 is 8. These values
indicate that the projected S-box satisfies the BIC requirement well.
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Table 4.4 BIC-nonlinearity of Boolean function fi ⊕ fj (i �= j)

0 104 104 106 104 106 106 102

104 0 106 98 102 104 102 104

104 106 0 104 102 96 104 104

106 98 104 0 106 100 106 104

104 102 102 106 0 102 100 102

106 104 96 100 102 0 104 108

106 102 104 106 100 104 0 106

102 104 104 104 102 108 106 0

Table 4.5 BIC-SAC of Boolean function fi ⊕ fj (i �= j)

0 0.5020 0.5176 0.5137 0.5293 0.5098 0.4727 0.5059

0.5020 0 0.4980 0.4844 0.5039 0.5313 0.5156 0.5000

0.5176 0.4980 0 0.5039 0.4941 0.5313 0.5000 0.5020

0.5137 0.4844 0.5039 0 0.5117 0.4980 0.5020 0.5020

0.5293 0.5039 0.4941 0.5117 0 0.5234 0.5000 0.5137

0.5098 0.5313 0.5313 0.4980 0.5234 0 0.5039 0.5000

0.4727 0.5156 0.5000 0.5020 0.5000 0.5039 0 0.5156

0.5059 0.5000 0.5020 0.5020 0.5137 0.5000 0.5156 0

Table 4.6 The DD of the
generated S-box (BIC–SAC
criterion)

0 2 6 2 4 6 4 6

2 0 2 2 2 2 4 2

6 2 0 6 8 2 6 4

2 2 6 0 4 2 8 4

4 2 8 4 0 2 0 2

6 2 2 2 2 0 2 8

4 4 6 8 0 2 0 0

6 2 4 4 2 8 0 0

4.5.5 Criterion of Equiprobable Input/Output XOR
Distribution

The equiprobable Input/Output XOR Distribution is a criterion which analyzes the
effect, in particular, differences in input pairs of the resultant output pairs to discover
the key bits. The idea is to find the high probability difference pairs for an S-Box
under attack. The equiprobable input/output XOR distribution of generated S-box
calculated by (4.9) is presented in Table 4.7. Maximal value of S-box generated by
the proposed method is 5, which indicates that the S-box satisfies bound for the
equiprobable Input/Output XOR Distribution criterion.
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Table 4.7 Equiprobable
input/output XOR
Distribution approach table
for the generated S-box

4 3 3 4 3 3 3 3 4 3 3 3 3 3 4 4

3 3 4 3 3 4 3 3 4 3 3 4 4 4 4 3

4 3 4 3 4 4 3 3 3 3 3 3 3 4 3 3

4 3 3 3 4 4 4 4 3 4 5 4 3 2 3 3

5 4 4 3 3 3 4 4 4 3 5 3 3 3 3 3

3 3 3 4 4 3 5 4 3 3 3 5 5 3 3 3

3 3 3 3 3 4 4 3 3 3 4 3 3 2 3 3

3 2 3 3 3 4 3 3 3 3 3 4 3 3 3 3

3 3 3 5 5 3 3 4 3 4 3 2 5 3 3 3

3 3 3 4 3 4 3 3 3 4 3 3 4 3 4 3

4 3 4 3 2 3 3 4 3 3 3 3 3 4 3 3

3 4 3 3 3 3 3 3 3 4 3 3 3 3 4 4

3 3 3 3 3 4 3 3 2 4 3 3 4 4 3 3

4 3 4 3 4 4 3 4 4 3 4 4 3 3 3 3

3 4 3 3 3 3 3 3 3 4 4 3 3 3 3 3

3 3 3 5 4 5 4 3 3 5 3 3 4 3 5 -

4.5.6 MELP Criterion of the Generated S-Box

The MELP value are calculated using linear approximations to model nonlinear
steps. The final goal is to recover the key bits or part of the key bits. MELP examines
the statistical correlation between the input and the output. This criterion of the
proposed S-boxes are calculated according to the Eq. (4.9) and the average value is
0.0716.

4.5.7 Comparative Results

In this section, we present a performance comparison of the S-boxes created using
the algorithm described in Sect. 4.4.1. In Table 4.8, we list the criterion values for
the proposed S-boxes and a set of widely known boxes (standard and chaos-based
S-boxes).

From this Table 4.8, it can be seen that the generated S-boxes satisfy the most
important condition, bijectivity, and have a good similarity with the other expected
test values [3, 7, 10, 29–36]. It mainly shows better performance on the tests related
to attacks (MELP and equiprobable Input/Output XOR Distribution ). Moreover, it
is a method based on a system with simple operations that generates sequences with
complex behavior.
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Fig. 4.8 Plain image of Lena, encrypted image and their histograms

4.6 Dynamical Generation of S-Boxes and Its Application

The Alberti cipher was one of the first polyalphabetic ciphers, where the principle
is based on substitution, using multiple substitution alphabets so that the output has
a uniform distribution. Based on this idea of polyalphabetic ciphers, an application
of dynamic generation of S-boxes is presented, i.e., a certain intensity of a pixel
can be substituted by other intensities in the same round. Usually, an S-box is
used to replace all pixels of an image of size p × q in the same way. The idea
of polyalphabetic ciphers is to use a dynamic S-box to achieve this goal by finding
a uniform distribution. Thus, the proposed dynamic S-boxes belong to a class of
S-boxes given by p elements (S-boxes) generated by the algorithm presented in the
Sect. 4.4.1. The approach to obtain a uniform distribution is to apply a dynamic S-
box that changes with each row of pixels. That is, the dynamic S-box is modified
by a different S-box for each row. Figure 4.8 shows the original Lena image and the
codified Lena image with their gray scale pixel distribution.
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In cryptography a uniform distribution is always desired, since this property was
achieved by simple substitution with the S-boxes, a good result can be expected for
a full cryptographic algorithm based on these S-boxes. It is important to point out
that this is not an encryption algorithm, but a simple and useful approach intended
to show possible applications for the dynamic S-boxes presented in this work.

4.7 Concluding Remarks

In this work, a simple algorithm has been proposed to generate n × n S-boxes using
a pseudo-random bit generator (PRBG) based on two delayed time series of the
logistic map. The mixture of these two time series favors a uniform distribution
in addition to the obfuscation of the used chaotic map. In order to evaluate the
performance of the proposed S-box, several statistical tests were performed. The
results of the numerical analysis of this cryptographically strong S-box generated by
the algorithm have also shown that all the criteria for a good S-box have been met
and there is a high immunity to differential cryptanalysis and linear cryptanalysis.
The performance test result was compared with other S-boxes reported in the
literature. Finally, an application based on a simple and useful approach to achieve
a uniform distribution was presented.
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Chapter 5
Modification of the Quantum Logistic
Map with Application in Pseudo-Random
Bit Generation and Image Encryption

Ioannis Kafetzis and Christos Volos

Abstract This work introduces a novel chaotic map defined by composition of
the quantum logistic map and the sine map. The dynamic behavior of this map is
thoroughly investigated and is shown to be more complex than that of the original
quantum logistic map. Sequentially, a PRBG is defined using the values of the
introduced map, the validity of which is determined via the NIST statistical suite.
Finally, both the chaotic map and the PRBG are utilized in the definition of an
encryption scheme for grayscale images. Results in cryptography are validated by
testing.

Keywords Quantum chaos · Quantum logistic map · Image encryption · Secure
communications

5.1 Introduction

The digitization of communications and modern technological advancements, such
as IoT applications, has led to an enormous increase of the amount of data
being transferred online. A big part of these data are images, ranging from
photographs to medical images. A natural consequence is an ever-increasing need
for securing digital communications against unauthorized third parties that may try
to intercept or tamper the signal being transmitted. The scientific field that focuses
on determining schemes that guarantee secure communications is cryptography, a
branch of mathematics, physics, and computer science. The goal of cryptography
is to transform given data into a form that does not allow information about the
original data to be extracted. Furthermore, it is important that the original data
can be retrieved from the cipher by the authorized receiver [1]. One problem is
that in classical encryption schemes [2], for example the DES, tDES, etc., their
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performance both runtime and randomness of result when applied in image file
encryption is limited [3, 4].

This has led to the development of chaos-based encryption techniques for images,
which perform well on both time efficiency and randomness of the resulting cipher
image [5, 6]. Chaos theory is a well-established area of mathematics, which finds
numerous applications in physics [7, 8]. Its main focus lies on chaotic systems,
which are nonlinear dynamical systems, either in continuous or discrete time,
which demonstrate extreme sensitivity to initial conditions [9, 10]. In other words,
trajectories of a chaotic system that start from almost identical initial conditions
diverge. Some of the most famous examples of such systems in continuous time
include the Lorenz system [11, 12]. Examples of discrete time chaotic systems that
also find applications in cryptography include the logistic map [13], sine map [14],
and Henon map [15].

The phenomenal results of chaos-based encryption schemes have led researchers
in defining novel chaotic systems that demonstrate more complex chaotic behavior,
since this potentially leads to more secure encryption schemes [16–18]. Chaotic
systems also constitute an excellent source of randomness, as they are widely used
for defining Pseudo-Random Bit Generators (PRBGs for short) that are methods for
generating random bits. A plethora of methodologies that allow the values of chaotic
systems to be used for PRBGs is being proposed in recent years [19, 20] and still is
a subject that gathers research interest. The randomness of such PRBGs is verified
using a Statistical Test Suite proposed by the National Institute of Standards and
Technology (NIST) [21]. This suite contains a total of fifteen (15) statistical tests,
used to determine if a given bitstream is random or not, based on the computation of
p-values. A bit generator can be considered to be random, if it successfully passes
all of the tests included in the suite.

Most chaos-based image encryption schemes constitute two pieces, confusion
and diffusion. Confusion is the process of altering the bits such that the cipher text
does not reveal any correlation that might exist between the bits of the original
image. This is usually achieved by using the exclusive OR (XOR for short) operation
between the bits of the original image and random bits generated through a PRBG
[22, 23]. Diffusion on the other hand is the process of making the cipher image
sensitive to even small alterations of the original image. Two of the most common
ways to achieve diffusion is the shuffling of pixels which leads to diminishing of
any local correlation of pixel values and the definition of image encryption schemes
where the keys are plaintext depended [24]. The latter is of vast significance, since
even a slight alteration of the plaintext image leads to different initial conditions for
the chaotic system that is used in the encryption scheme. This in turn results into
the chaotic system having a completely different trajectory and hence the resulting
cipher image differs significantly.

Quantum chaos is a new research field combining quantum mechanics, quantum
computation, and chaos theory [25–27]. Examples of quantum chaotic maps are the
quantum Baker map [28] and quantum cat maps [29]. Another well known discrete
quantum chaotic map is the quantum logistic map (QLM for short), introduced in
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[30], which has been utilized in the definition of numerous encryption and secure
communication schemes [31–36]. This map, for real valued initial conditions, is
described by the following system of difference equations:

xn+1 = r(xn − |xn|2) − ryn

yn+1 = −yne
−2b + e−br [(2 − 2xn) yn − 2xnzn]

zn+1 = −zne
2b + e−br [2(1 − xn)zn − 2xnyn − xn]

(5.1)

The name is given due to the logistic map that appears in the equation of the first
state. Although this map has been used for cryptography applications, it has two
major weaknesses. The first one is that the system becomes unstable for values for
the parameter r that are greater than 4, which is inherited by the classical logistic
map. The second is that the system is chaotic for a limited amount of values of r .

In this work, a modification of the QLM is proposed, which overcomes these
weaknesses while also enhancing the complexity of the behavior of the map. This is
achieved by utilizing a logic similar to that of sine chaotification [37, 38], according
to which, composing any discrete chaotic map with the sine map leads to a new
chaotic map with larger Lyapunov exponent. Hence, the proposed system is defined
by composing the logistic part of the QLM with the absolute value of the sine
map. This map is stable for all values of parameter r . So, it is chaotic for a vast
amount of values of its parameters and demonstrates more complex behavior than
that of the original QLM. The proposed map is then utilized in the definition of a
PRBG, the validity of which is verified using the NIST statistical suite. Finally, the
proposed map and the PRBG are utilized in the definition of an encryption scheme
for grayscale images. The design of the method is based on the idea of splitting
the plaintext image into subimages, each of which is utilized for the encryption
of the others [39–41]. This essentially guarantees that even a slight alteration of
the plaintext image leads to a different cipher image. Examples where this method
is applied are presented and the security of the method against some of the most
common attacks is verified via statistical measures such as the histogram and
correlation analysis, information entropy, and resistance to differential attacks.

The rest of the work is organized as follows. In Sect. 5.2 the quantum logistic map
is analyzed and Sect. 5.3 presents the idea of sine chaotification, which is the basis
for the proposed map. Subsequently, the proposed map is given in Sect. 5.4, together
with its dynamic analysis, which is compared with that of the QLM. After that,
Sect. 5.5 contains the definition of the PRBG and the results of the NIST test and in
Sect. 5.6 the proposed image encryption scheme, examples of its applications, and
the result of the test for its security against different types of attacks are presented.
Finally, Sect. 5.7 concludes the work.
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5.2 The Quantum Logistic Map

A quantum chaotic map that has been utilized in numerous applications is the
quantum logistic map (or QLM), which is a three-dimensional quantum chaotic
system introduced in [30], and whose states are in general complex numbers. Thus,
in the general case the QLM is described by the following set of state equations:

xn+1 = r(xn − |xn|2) − ryn

yn+1 = −yne
−2b + e−br [(2 − xn − xn) yn − xnzn − xnzn]

zn+1 = −zne
2b + e−br [2(1 − xn)zn − 2xnyn − xn]

(5.2)

where c denotes the conjugate of the complex number c. For its description, the
system has three states, namely x, y, and z and two parameters, b and r .

If the initial conditions (x0, y0, z0) and the parameters b and r are all chosen to
be real numbers, then (xk, yk, zk) ∈ R

3 for every point k of the trajectory. This case
allows (5.2) to take a simpler form, by replacing the conjugate. Thus, for the case of
real valued initial conditions and parameters, the system is described as seen next.

xn+1 = r(xn − |xn|2) − ryn

yn+1 = −yne
−2b + e−br [(2 − 2xn) yn − 2xnzn]

zn+1 = −zne
2b + e−br [2(1 − xn)zn − 2xnyn − xn]

(5.3)

One weakness that the QLM has is that it is not chaotic for small values of r , and
becomes unstable for values of r greater than 4. This is inherent from the classical
logistic map.

Thus, in some occasions, when considering the map for cryptographic applica-
tions, the parameter r is considered to have a value close to 3.99 and b takes values
larger than 6 [42–44].

Hence, our goal is to determine a new system that overcomes these weaknesses
of the QLM. More explicitly, the introduced system shall have a larger Lyapunov
exponent, overcoming the problem of instability for r ≥ 4. Furthermore, the goal
is to determine a map for which there are intervals (rmin, rmax) and (bmin, bmax)

such that the system is chaotic for almost any selection of parameters (r, b) ∈
(rmin, rmax) × (bmin, bmax).

5.3 Method for Achieving More Complex Chaotic Behavior

Chaotic systems are a constant point of interest in Pseudo-Random Bit Generation
and in the definition of encryption schemes. The complexity of the system usually
has great effect on designing a successful PRBG, something that has led to
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the development of methods that lead to systems with more complex chaotic
behavior. One of the most prominent methods that yield such results is that of sine
chaotification, introduced in [37]. Put plainly, composing the iterative step of any
chaotic system with the sine map, described as

xk+1 = m sin(πxk) (5.4)

where m is a parameter, leads to a system with a more complex chaotic behavior.
It shall be noted that this composition also removes any instability problems the

original map may have, since the sine map guarantees that the system values lie
inside the closed interval [−1, 1]. This idea shall form the basis for the modified
version of the QLM that is proposed in this work.

5.4 The Sine-Quantum Logistic Map

The discussion of the previous section clarifies the idea behind the derivation of the
proposed map, namely the sine-quantum logistic map. For the proposed map, the
QLM is considered to have real valued initial conditions, and is thus described as
in (5.3). For this system, its “logistic part,” which is the r · (xk − |xk|2) is composed
of the absolute value of sine map sin(πxk) for m = 1. The difference equations
describing the resulting matrix are shown next.

xn+1 = | sin
(
πr(xn − |xn|2)

) | − ryn

yn+1 = −yne
−2b + e−br [(2 − 2xn) yn − 2xnzn]

zn+1 = −zne
2b + e−br [2(1 − xn)zn − 2xnyn − xn]

(5.5)

The investigation of the behavior of the proposed map begins by considering the
bifurcation diagram with respect to parameter b. The bifurcation diagrams for all
three states xk , yk , and zk of (5.5) are shown in Fig. 5.1.

Fig. 5.1 Bifurcation diagram of the states (a) x (b) y and (c) z of the system (5.5), with respect to
the parameter b for initial conditions (x0, y0, z0) = (0.6, 0.05, 0.1) and r = 3.99
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Fig. 5.2 (a) Bifurcation diagram of the x state of the system (5.5), (b) bifurcation diagram of the
x state of the QLM, (c) Common Lyapunov exponent for the x state of both system (5.5) and
the QLM with respect to the parameter b for initial conditions (x0, y0, z0) = (0.6, 0.05, 0.1) and
r = 3.99

There are two important conclusions that can be drawn from Fig. 5.1. The
first one is that the bifurcation diagram for the x state is dense, with values
covering the [0, 1] interval, which is desirable when considering cryptography
related applications. On the other hand, it can be seen in subfigures (b) and (c) of
Fig. 5.1 that the value range of the y and z states is limited and constantly decreases
as the values of b increase. For this reason, for the rest of this work, only the x state
is considered.

Moving on, the behavior of the x state for the proposed map (5.5) and the QLM
are compared. In many works, the QLM is utilized by taking r = 3.99 and using
b as a varying parameter. Thus, the first comparison for the systems takes this case
into consideration. Indeed, the bifurcation diagram of the proposed system (a), the
bifurcation diagram of the QLM (b), and the Lyapunov exponents for both systems
(c) is presented in Fig. 5.2. At this point it should be mentioned that the computation
of the Lyapunov exponent is performed using the QR factorization method from
[45].
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Fig. 5.3 (a) Bifurcation diagrams of the x state for the system (5.5) and the QLM (b) Lyapunov
exponents of the x state of the system (5.5) and the QLM with respect to the parameter r for initial
conditions (x0, y0, z0) = (0.6, 0.05, 0.1) and b = 7

It is seen in Fig. 5.2 that the proposed map has a much more complex behavior
in contrast with the QLM. This can be verified by the difference in their Lyapunov
exponents, which indicates that two trajectories starting from almost identical initial
conditions diverge faster when considering the system (5.5).

Moving on, focus is turned to the behavior of the proposed system (5.5). This
is performed in two steps. Initially, the behavior for 0 < r < 4 is examined. This
allows comparing the behavior of the proposed system with that of the QLM, since
the QLM becomes unstable for r > 4. In Fig. 5.3, the bifurcation diagrams and
Lyapunov exponents for the x states of both systems with respect to the parameter r

are depicted. It can be easily verified that the proposed map has much more complex
behavior than that of the original map.

The next step is to examine the behavior of the proposed map for the case where
r > 4. The bifurcation diagram and the diagram of Lyapunov exponent for the x

state of the system are shown in Fig. 5.4. An important observation is that intervals
for the parameter r can be found, for example for r ∈ (6, 7) such that the system is
chaotic for almost every value of r inside such intervals.

As is to be expected, the system is stable and is in chaotic state for several values
of r .

Closing the section of the dynamical analysis the return map and cobweb
diagrams of the proposed map (5.5) and the QLM are studied. The return diagram
of the proposed map and the QLM is depicted in Fig. 5.5. Although both return
diagrams have a distinguishable structure, the return map of the proposed map is
more complex. The significance of this complexity difference of the return maps
can be seen through the Cobweb diagrams of the two systems, which are shown in
Fig. 5.6

The dynamical analysis of the proposed map along with the extensive comparison
with the QLM yield that the proposed system has a complex chaotic behavior. This
fact renders the system a noteworthy option to use in the definition of PRBGs and
encryption schemes.
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Fig. 5.4 (a) Bifurcation diagram of the x state of the system (5.5), (b) Lyapunov exponent
diagram of the x state of (5.5) with respect to the parameter r for initial conditions (x0, y0, z0) =
(0.6, 0.05, 0.1) and b = 7

Fig. 5.5 Common diagram of the return maps of the proposed system and the QLM

5.5 Pseudo-Random Bit Generation

Considering that the x state of the proposed map (5.5) is chaotic with complex
behavior makes it likely that it can be used for the definition of a PRBG. Indeed,
this section is dedicated into providing a method for generating random bits based
on (5.5) and verifying the validity of the PRBG via the results of the NIST test suite.
The steps for determining a random bit are as follows. For any point of the trajectory
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Fig. 5.6 Cobweb diagrams for (a) the x state of the system (5.5) and (b) the x state of the QLM
for initial conditions (x0, y0, z0) = (0.6, 0.05, 0.1) and parameter values r = 6 and b = 7

(xk, yk, zk) of the trajectory, the value 1010xk is calculated and then the modulo
2 operator is applied to it. This results in a value that lies in the interval [0, 2).
Finally, the bit value is obtained by comparing the latter with 1. The mathematical
formulation for the PRBG is given next.

{0, 1} � β =
{

0, if mod (1010 · xk, 2) > 1

1, if mod (1010 · xk, 2) ≤ 1
(5.6)

The validity of the PRBG is verified using the statistical suite provided by
NIST, using a set of 100 bitstreams, each consisting of 106 bits. The statistical
suite constitutes 15 randomness tests, each of which returns a p-value. A test is
considered successful, if the returned p-value is greater than a threshold, which in
our case has the default value of 0.01 and a generator is considered random if it
successfully passes all of the tests. The results for the proposed generator, for initial
conditions (xk, yk, zk) = (0.6, 0.05, 0.01) and parameters (β, r) = (7, 6) are
shown in Table 5.1. It should be noted that in the cases where multiple results were
returned for the same test, for example the Nonoverlapping Template, the generator
was successful in all iterations and the value presented in Table 5.1 is that of the last
yielded result.

This PRBG is utilized in the next section to define a symmetric encryption
scheme for monochromatic image.

5.6 Image Encryption Scheme

In this section, both the proposed map (5.5) and the PRBG introduced in Sect. 5.5
are utilized to define an image encryption scheme for grayscale images. Any such
image is represented as a two-dimensional matrix whose entries, known as pixels,
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Table 5.1 Results of the NIST suite tests for initial conditions (x0, y0, z0) = (0.6, 0.05, 0.01)

and parameter values (b, r) = (7, 6)

No. Test Chi-square p-value Score

1 Frequency 0.554420 98/100

2 Block frequency 0.048716 99/100

3 Cumulative sums 0.779188 99/100

4 Runs 0.779188 98/100

5 Longest run 0.085587 98/100

6 Rank 0.366918 100/100

7 FFT 0.275709 99/100

8 Nonoverlapping template 0.996335 100/100

9 Overlapping template 0.181557 97/100

10 Universal 0.514124 100/100

11 Approximate entropy 0.383827 98/100

12 Random excursions 0.452799 65/65

13 Random excursions variant 0.517442 65/65

14 Serial 0.401199 100/100

15 Linear complexity 0.554420 98/100

are integers with values ranging from 0 to 255. For the rest of the work, an image
and its matrix representation are considered the same thing. In this context, phrases
like “the rows/columns of an image” make sense, since it actually refers to the
rows/columns of its matrix representation.

5.6.1 Outline of the Proposed Method

Next, the outline of the encryption method is presented in Algorithm 1. Following
this, the technicalities of each step are presented separately, for the sake of clarity.
Finally, the step to revert each step of the encryption method, that is, the decryption
steps are presented in Algorithm 2.

What is worth noting is the dependencies between the encrypted blocks. The
encryption (as well as the decryption) keys for block number k, for k > 1 the
encrypted blocks 1, . . . , k − 1 are required. On the other hand, determining the
encryption (and decryption) key for the first block requires blocks number 2 to 9
having the same values after performing the original shift. Hence, in the decryption
process, correctly decrypting the first block can only be achieved if all of the
previous blocks have been decrypted correctly.

As for the decryption process, the images are just taken in reverse order.
Considering that the outline for the encryption and decryption steps has been

clarified, the specific methods utilized in the different steps shall now be investi-
gated.
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Algorithm 1 Outline of the image encryption process
Require: Original Image
1: Initialize an empty list �

2: Get a key value for the original image
3: Get the row and column shuffle indices for the original image
4: Shuffle the rows and then the columns
5: Break the image into 9 block sub images
6: Use blocks 2 − 9 to obtain a key
7: Use the key from the previous step to encrypt block 1
8: Add the result of the encryption to the list �

9: for k = 2 : 9 do
10: Use the encrypted blocks in list � to determine a key
11: Use the key to encrypt the k−th block
12: Add the encrypted block to the list �

13: end for
14: Put the blocks in place to form the encrypted image

Algorithm 2 Outline of the image decryption process
Require: Encrypted image
1: Initialize an empty list d

2: Split the encrypted image into 9 parts
3: for k = 9 : 2 do
4: Use blocks 1 to k to obtain a key
5: Decrypt the k−th block using the previous key
6: Add the decrypted block to the list d

7: end for
8: Use the block images contained in list d to decrypt block 1
9: Place the blocks in order to create the shuffled image

10: Use the image from the previous step to obtain a key
11: Use the key to produce the row and column shuffle indices
12: Revert the shuffling of the columns and then the rows to obtain the decrypted image

5.6.2 Determination of Shuffling/Encryption Key

Consider a non-empty list of images Im1, . . . , Imk . The pixel values and locations
of each image are utilized in determining the key, that is, the initial condition
(x0, y0, z0) and parameter values b and r for the system. The steps and mathemat-
ical formulas utilized to determine the keys are presented in Algorithm 3. It should
be observed that in this process, the pixel values are taken into consideration, thus
granting keys that are plaintext dependent. What is not taken into consideration is
the exact position in which values appear. This implies that if we consider an image
Im1 and let Im2 be the result of shuffling the rows and columns of Im1, then the key
determined using Im1 and Im2 coincides.

Clearly, this process can also be performed when the input is a single image.
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Algorithm 3 Determination of encryption/decryption key via block images
Require: List of block images [Im1, . . . , Imk], parameter q

1: Initialize x̂, ŷ, ẑ, b̂, r̂ = 0, 0, 0, 0, 0
2: for i = 1 : k do
3: Get the dimensions of Imk , namely ak , bk

4: mk = mean(Imk), svk = sum(Imk), sdk = ak + bk , pdk = ak · bk

5: x̂ = x̂ + svk+sdk/pdk · q

6: ŷ = ŷ + pdk · mk + qk · sdk

7: ẑ = ẑ + mk · qk + sdk · pdk

8: b̂ = b̂ + qk ·
{

(i+j)/sdk, if i + j > mk

(i+j)/pdk, otherwise

9: r̂ = r̂ + q ·
{√

i+j/sdk, if i + j > mk

(i−j)2/pdk, otherwise
10: end for
11: // Calculate the values for the key
12: x0 = mod (̂x, 1) ∈ (0, 1)

13: y0 = mod (ŷ, 9) + 1

100
∈ (0.01, 0.1)

14: z0 = mod (̂z, 9) + 1

100
∈ (0.01, 0.1)

15: b = 6 + mod (̂b, 2) ∈ (6, 8)

16: r = 7 − mod (̂r, 1) ∈ (6, 7)

5.6.3 Row/Column Shuffling Process

It is assumed that a key for the system (5.5) has been determined and that the image
to be shuffled has m rows and n columns. Then the shuffle indices for the rows are
obtained as shown in Algorithm 4.

For the encryption process, the rows are shuffled first followed by the columns.
For the shuffling process, the list of integers Ir and Ic obtained via Algorithm 4
define permutations for the row and column indices, respectively.

A very important observation is that the computation of the shuffle indices is
independent of the pixel values of the image and only depend on the dimensions
of the image being shuffled. Hence, using the same key leads to the same shuffle
images for all images that have the same dimensions.

For the un-shuffling process the sets Ir and Ic are determined according to
Algorithm 4, and the inverse permutation matrices are computed. Thus, the un-
shuffling of the columns is performed first, followed by that of the rows.

5.6.4 Image Splitting

Splitting an image into parts is achieved by considering specific “cut” locations
based on the dimensions of the image. For this, let m be a positive integer and
define m1, m2, and m3 as
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Algorithm 4 Determination of the shuffle indices
Require: Number of rows m, number of columns n, system key
1: Initialize empty lists Ir = [] and Ic = []
2: while length(Ir ) < m do
3: Take the point xk

4: Calculate w = mod (1010 · xk),m)

5: if w �∈ Ir then
6: Add w as the last element of Ir

7: else
8: Scrap w

9: end if
10: k = k + 1
11: end while
12: // At this point, the list for the shuffle indices for the rows have been determined and the

determination of the column shuffle indices begins
13: while length(Ic) < n) do
14: Take the point xk

15: Calculate w = mod (1010 · xk), n)

16: if w �∈ Ic then
17: Add w as the last element of Ic

18: else
19: Scrap w

20: end if
21: k = k + 1
22: end while

m1 = floor (m/3) , m2 = m1 + floor ((m−m1)/3) , m3 = m

One can observe that the relation m1 < m2 < m. Applying the above when m is the
number of rows or columns of an image yields the sizes of the blocks.

5.6.5 Block Encryption/Decryption

In this subsection, the encryption and decryption of an image block are described,
using the sub-processes discussed so far. Let I be an image block to be encrypted
and let � = [Im1, . . . , Imk] be the non-empty list of image blocks that are to be
used in the encryption of I . Initially the key that is to be used for the encryption
of I is determined via the blocks contained in the list � according to Algorithm 3.
Having determined the key, the map is iterated so that the row and column shuffle
indices Ir and Ic are computed as shown in Algorithm 4. Using these, the rows
and subsequently the columns of the block are shuffled. Following this, the chaotic
map is now used for the PRBG, so that 8 random bits, that is, a random byte, are
produced for each pixel of the block image. Each pixel is first converted to its binary
form and subsequently XORed with the corresponding random byte. The resulting
binary representation is converted to integer and is used as the encrypted pixel value.
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Performing this process for all pixels of the block, results into the encrypted block.
The description of the algorithm is also given in Algorithm 5. For the decryption
process, similar steps are followed, with key difference being the order in which
the row and column shuffling is reversed. Initially, the key for the encryption of the
block is determined via the designated block subimages. Observe that the subimages
that take part in the calculation of the decryption key are exactly the same as the
images used for obtaining the encryption key. Hence, the encryption and decryption
keys coincide. The fact that both keys being identical combined with the fact that
the dimensions of the original and encrypted blocks are the same, result into the
exact same row and column shuffle indices that are actually obtained after the same
number of system iterations. This implies that the shuffle indices for the encrypted
block shall be determined first, but not used immediately. After computing the
shuffle indices, the random bytes for each pixel can be determined, since they are
to be used for decrypting the pixel as well. The process is based on a fundamental
property of the XOR gate, here denoted by ⊗, which is (a ⊗ b) ⊗ b = a. Thus, the
XOR operation between the binary form of the encrypted pixel and the random byte
used in the encryption process results into the original value of each pixel. After
performing this process for each pixel, the shuffling process is reverted. For this,
the inverse permutation for the row and column indices can be determined. Finally,
the columns are put into their original positions first, followed by the rows of the
matrix. The steps for the decryption method are also summarized in Algorithm 6.

Algorithm 5 Encryption of each block
Require: Image block I , list of image blocks � = [Im1, . . . , Imk]
1: Calculate the key for the chaotic system via �

2: Get the dimensions of I m, n = size(I ).
3: Get the row and column shuffle indices Im and In

4: Shuffle the rows of I

5: Shuffle the columns
6: for i = 1 : m do
7: for j = 1 : m do
8: Determine 8 random bits using the PRBG proposed in Sect. 5.5
9: Form a random byte bi,j

10: Convert the pixel in position i, j to its binary form, namely pi,j

11: Set I [i, j ] = XOR(pi,j , bi,j )

12: end for
13: end for
14: return Encrypted block

5.6.6 Security Analysis of the Proposed Method

The remaining of this section is dedicated to studying the security of the proposed
method. The results of the method are presented via examples where the method
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Algorithm 6 Decryption of each block
Require: Encrypted image block I , list of image blocks � = [Im1, . . . , Imk]
1: Calculate the key for the chaotic system via �

2: �Get the dimensions of I m, n = size(I ).
3: Get the row and column shuffle indices Im and In

4: for i = 1 : m do
5: for j = 1 : m do
6: Determine 8 random bits using the PRBG proposed in Sect. 5.5
7: Form a random byte bi,j

8: Convert the pixel in position i, j to its binary form, namely pi,j

9: Set I [i, j ] = XOR(pi,j , bi,j )

10: end for
11: end for
12: Find the inverse permutation for the rows I−1

m and for the columns I−1
n

13: Rearrange the columns of the block using I−1
n

14: Rearrange the columns of the block using I−1
m

15: return Decrypted block

is applied. The results of the encryption process on different images, taken from
USC-SIPI Image Database (http://sipi.usc.edu/database/) are shown in Figs. 5.7 and
5.8. The security of the method is studied via statistical tests that demonstrate its
resistance against common types of attacks.

Histogram One of the most fundamental security tests for image encryption
method stems from the histogram of an image, which represents the distribution
of different pixel values. An image containing some sort of information not all color
intensities appear with the same frequency, which implies that the histogram of such
images is usually not uniformly distributed. As a result the histogram can be utilized
to derive information on whether an image contains information or not, without
actually allowing any deductions for the content of the image. Hence, the goal of
an image encryption scheme is to yield a histogram with distribution that is close to
uniform, thus masking the fact that the encrypted image contains information. The
histograms for both plaintext and encrypted image for the examples in study are
shown in Figs. 5.9 and 5.10.

Correlation Analysis When considering an image, the value of a pixel is highly
correlated with the values of adjacent pixels [46, 47]. This is to be expected, since
such pixels tend to have similar color intensity, that is, similar values. The horizontal
and vertical correlation, in other words the correlation between consecutive rows
and columns of an image is a common statistical tool utilized in the literature for
testing image encryption methods. The process for such test constitutes creating two
images, one containing the rows (respectively columns) from first to pre-last and one
containing the rows (resp. columns), converting those matrices into one dimensional
vectors and computing their correlation.

In this work, a slight modification of this method is proposed. The correlation
between consecutive rows and columns is given in the form of a diagram, where the

http://sipi.usc.edu/database/
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Fig. 5.7 Plaintext images and encrypted images after using the proposed method
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Fig. 5.8 Plaintext images and encrypted images after using the proposed method
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Fig. 5.9 (Left) Histogram of the original image (Right) Histogram of the encrypted image. The
corresponding image name is shown above the diagrams

x represents the line number, ranging from the first until the pre-last column, and the
y axis represents the correlation of the row or column with the succeeding one. It can
be seen in Figs. 5.11 and 5.12 that this diagram has a structure for the original image.
On the other hand, after the proposed encryption method is applied, the respective
diagram for the original image has no structure and is closed to randomly scattered
points.
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Fig. 5.10 (Left) Histogram of the original image (Right) Histogram of the encrypted image. The
corresponding image name is shown above the diagrams

Information Entropy Information entropy is used as a measure of randomness
for a signal [48–50]. When it comes to grayscale images, information entropy is
computed as

H(S) = −
28−1∑

i=0

p(si) log2(p(si)) (5.7)
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Fig. 5.11 Correlation of subsequent columns of the original and encrypted images
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Fig. 5.12 Correlation of subsequent columns of the original and encrypted images
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Table 5.2 Information
Entropy of the original and
encrypted images

Plaintext image Original image Encrypted image

Airplane 6.7024 7.9992

Peppers 7.5936 7.9993

Bamboon 7.3583 7.9994

Lena 6.9698 7.9993

All white 0 7.9880

All black 0 7.9882

where si is a possible value, in our case an integer from 0 to 255 that appears in
the image and p(si) is the probability with which si appears. For a grayscale image,
a value close to 8 indicates that the pixel values of the image are random, thus
characterizing the encryption method as resistant against entropy attacks. The values
of the entropy for the original and encrypted images are shown in Table 5.2, from
which it can be verified that the desired results are achieved.

Differential Analysis Attack An attack that is commonly utilized in order to
extract information about the structure of the proposed method is constantly feeding
the encryption algorithm with almost identical images, which is images that differ
by one pixel. To ensure that an encryption scheme is secure against such attacks,
the method has to guarantee that when applied to two plaintext images that differ by
only one pixel, the resulting cipher images differ significantly.

There are two main measures used to quantify how two encrypted images
obtained in such a context differ, namely the Number of Pixels Change Rate, or
NPCR for short, and the Unified Average Changing Intensity (UACI) [51, 52]. These
measures, when considering two such encrypted images I and Ĩ of dimensions
m × n, as computed as follows:

NPCR =

m∑

i=0

n∑

j=0
dij

m · n
100% (5.8)

UACI =

m∑

i=0

n∑

j=0
|Iij − Ĩij |

255 · m · n
100% (5.9)

where Iij denotes the value of the pixel of image I in row i and column j , and dij

is defined as

dij =
{

0, if Iij = Ĩij

1, otherwise
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Table 5.3 Results of the
NPCR and UACI tests for
different example images

Plaintext image NPCR UACI

Airplane 88.6528% 44.5541%

Peppers 88.6497% 44.4327%

Bamboon 88.6505% 44.5265%

Lena 88.6325% 44.4081%

All white 99.6704% 50.0920%

All black 99.6459% 49.709%

The fact that the encryption keys for each block depend on the values of the pixels
guarantees that a change in the value of one pixel leads to a completely different
encrypted image. The measures for the examples in study are presented in Table 5.3.

Key Space An image encryption scheme has to be secure against brute force
attacks. This can be achieved by guaranteeing that the key space is greater than
2100, as discussed in [53]. The key for the proposed map constitutes five values, the
initial conditions (x0, y0, z0) and the parameters b and r . Hence assuming 16 bit
accuracy, a lower bound for such key is computed as follows:

105·16 > 104·20 = (104)20 >> (210)20 = 2200 > 2100

Hence the proposed encryption scheme is secure against attacks. It is further worth
mentioning that different keys are computed throughout the encryption process,
leading to an even greater key space.

5.7 Conclusions

In this work, a modification of the quantum logistic map has been proposed. The
modified map has several advantages when compared to the QLM since it is
stable for all values of the parameter r , is chaotic for a great amount of values
of the parameter r and demonstrates much more complex behavior. This map has
been utilized in the definition of a PRBG that was verified via the test of the
NIST statistical suite. Finally, the proposed map and the PRBG are utilized in the
definition of an encryption scheme for grayscale images. Several examples where
the method is applied are given, and its security against attacks is verified through
statistical measures.

This work can be a stepping stone for further research in several ways. Similar
ideas for the development of chaotic maps with more complex behavior can be
implemented. Furthermore, the proposed system can be utilized for the design of
more PRBGs, which could potentially include the states y and z as well. Finally, the
proposed encryption method could be altered so that it can be utilized for encryption
of other signal types, such as images with color and video.
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Chapter 6
On the Relationship Between Integer
and Fractional PWL Systems
with Multistable Behavior

H. E. Gilardi-Velázquez, J. L. Echenausia-Monroy, R. J. Escalante-González,
B. B. Cassal-Quiroga, and G. Huerta-Cuellar

Abstract In this paper we present a study of the mechanisms that produce mul-
tistable behavior in integer and fractional Piece-Wise Linear (PWL) systems. The
oscillator behavior is characterized using the Nearest Integer or Round(x) function
to control the switching processes and find the corresponding equilibria among
the individual commutation surfaces. The integer system’s path to multistability
is controlled by a bifurcation parameter in the linear operator to modify the
local stability, since for the fractional system the integration order is used as the
bifurcation parameter, which gives rise to the same multistable phenomenon as
in the integer order case. Both dynamical systems are studied using numerical
simulations, bifurcation analysis, and Poincaré planes.
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6.1 Introduction

The phenomenon of multistability has attracted considerable interest in a variety of
fields. This phenomenon has been found in integer-order multiscroll systems and
has been studied in several papers using different mechanisms, i.e., by eigenspectra
variation in a Piece-Wise Linear (PWL) system [1], by applying control techniques
that produce the coexistence of multiple attractors [2, 3], or by changing the location
of the equilibrium point by a bifurcation parameter that induces bistable behavior
[4]. In fractional-order systems, the phenomenon of multistability has also been
described [5–8], with these studies ranging from systems with no equilibrium points,
to systems based on memristors, to systems that can have a family of bistable
attractors.

Since the development of fractional calculus theory, the scientific community has
been devoted to understanding the physical and geometrical relationships between
fractional and integer systems. In recent decades, the study of chaotic systems
using fractional-order derivatives has been intensively pursued [9–11], due to the
characteristic properties of this type of systems, such as memory and inheritance,
which represent several natural phenomena [12, 13]. Just as with integer order
systems, there are many works in the literature dealing with the use of fractional
order in chaotic systems, such as: The Duffing oscillator [14], the Chua system [15],
the Rössler system [16], the Chen generator [17], the Lü model [18], among others,
where it is proved that the non-integer systems exhibit the chaotic behavior [19–
21]. However, there are few comparative analyzes in the literature that quantitatively
show the relationships that exist between the behavior induced by the dynamics of
a system when a fractional order is considered and the dynamics of the model when
it is analyzed with an integration order equal to one [22].

In addition to recent studies, the possibilities of finding new behaviors and better
descriptions of natural phenomena in fractional systems are a recurring theme in the
literature [23–30]. In this sense, it was recently published that the use of fractional-
order derivatives in PWL systems induces the occurrence of coexisting states that
partition the basin of attraction of a monostable system into n possible basins,
where n is the number of scrolls associated with the integer-order system [24], when
the linear system is close to becoming stable by using fractional-order derivatives.
In this work, the phenomenon presented is similar to that in integer systems [1],
where the multistable behavior is achieved by a bifurcation parameter, this variation
reaches critical eigenvalues for which the system becomes nearly stable, and a
region where several single-scroll attractors coexist is generated. The occurrence
of this phenomenon is correlated with the direction and location of the stable and
unstable manifolds.

Motivated by the points described above, this paper presents a comparison of the
effects that arise in the dynamics of a jerk system when the derivative order is used as
a parameter versus a bifurcation parameter in an integer order system. The inherent
properties of the systems, both integer and fractional, are analyzed using bifurcation
diagrams such as the local maximum and the number of domains visited, Poincaré
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planes in the switching surfaces. The results show a great similarity between the
generated dynamics. This type of results enriches the analysis and understanding of
the impact of using fractional derivatives.

6.2 Theory

6.2.1 Fractional Calculus

Fractional-order derivatives and integrals are generalizations of integer-order ones.
Several different definitions for fractional-order derivatives can be found in the
literature, the Riemann–Liouville and Caputo operators being the most important
[31, 32]. The Caputo operator for fractional derivatives is defined by

D
q

0 f (x) = 1

Γ (n − q)

∫ x

a

f (n)(t)

(x − t)q−n+1
dt, (6.1)

with n = �q�, and Γ is the Gamma function defined as

Γ (z) =
∫ ∞

0
tz−1e−t dt. (6.2)

A general commensurate fractional-order time-invariant system is described as
follows:

D
nk

0 x(t) = f (t, x(t), D
n1
0 x(t),D

n2
0 x(t), . . . , D

nk−1
0 x(t)), (6.3)

subject to initial conditions

x(j)(0) = x
(j)

0 , with j = 0, 1, . . . , �nk� − 1,

where n1, n2, . . . , nk are rational numbers, such that nk > nk−1 > · · · > n1 > 0,
nj − nj−1 ≤ 1 for all j = 2, 3, . . . , k and 0 < n1 ≤ 1. Let M be the least common
multiple of the denominator of n1, n2, . . . , nk and set q = 1/M and N = Mnk .
Then Eq. (6.3) can be expressed in the following system of equations[31]:

D
q

0 x0(t) = x1(t),

D
q

0 x1(t) = x2(t),
...

D
q

0 xN−2(t) = xN−1(t),

D
q

0 xN−1(t) = f (t, x0(t), xn1/q(t), . . . , xnk−1/q(t)),
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with initial conditions

xj (0) =
{

x
(j/M)

0 , if j/M ∈ N ∪ {0},
0, otherwise.

Furthermore, this linear time-invariant system can be expressed in a matrix form
as follows:

dqx(t)
dtq

= Ax, (6.4)

where x ∈ R
n represent the state vector, A ∈ R

n×n a linear operator, and q is the
fractional derivative order 0 < q < 1.

One of the main features of fractional systems, as opposed to integer order
systems, is that the stability of an equilibrium point depends on the derivative
order (q) and creates a stability region, as shown in Fig. 6.1 [33]. As a result,
the stability of an equilibrium point can be modified by the fractional derivative
order. Considering a general N -dimensional fractional-order system, as described

Fig. 6.1 Stability region of a fractional-order linear time-invariant system with order 0 < q < 1
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in Eq. (6.4), with λj eigenvalues, the equilibrium point stability of the system is
defined by its eigenvalue analysis and described as follows [31]:

• The system is stable, if and only if |argλj | ≥ qπ
2 .

• The system is asymptotically stable, if and only if |argλj | >
qπ
2 .

The interest in this work is to obtain unstable equilibrium points, which implies
that the equilibrium point given in Eq. (6.4) must have at least one eigenvalue
located in the unstable region, style that the system does not fully satisfy the stability
condition.

min|arg(λi)| >
qπ

2
, for i = 1, 2, . . . , j. (6.5)

6.2.2 Multiscroll Chaotic System

The study and evolution of chaotic systems capable of producing behaviors with
greater dynamical richness by generating attractors with multiple scrolls has
attracted much interest in recent decades. In the specific case, the jerk equation
[34] is commonly used in multiscroll generators, since it can be expressed in the
canonical controllable form [23]. There are several methods for generating chaotic
attractors with multiple scrolls and the same number of equilibrium points [35–38].
This work focuses on chaotic attractors based on UDS theory and on the use of
Piece-Wise Linear (PWL) functions [39–41].

In particular, it is considered the following family of affine linear systems:

Ẋ = AX + B(X), (6.6)

where X = (x1, x2, x3)
� ∈ R

3 is the state vector, the real matrix A ∈ R
3×3

is nonsingular; and B : R
3 → R

3 is a constant vector Bi in each domain
Di is determined by a switching function. We include the step function in the
definition of these constant vectors Bi , i = 1, . . . , m. Here, the matrix A is
based on the linear ordinary differential equation (ODE) given by the jerk form:
...
x +a33ẍ + ẋa32 + a31x + β = 0.

Definition 6.1 ([3]) Let Λ = {λ1, λ2, λ3} be the eigenspectrum of a linear operator
A inR3 t imes3, such that

∑3
i=1 λi < 0, where λ1 is a real number and λ2, λ3 are two

complex conjugate numbers. A system given by the linear part of the system (6.6)
is called UDS Type I if λ1 < 0 and Re{λ2,3} > 0; and it is Type II if λ1 > 0 and
Re{λ2,3} < 0.
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The position of the attractor depends on the following: the coefficient matrix
A from the jerk equation [42] and the affine vector B as described by Gilardi-
Velázquez et al. [1]:

A =
⎛

⎝
0 1 0
0 0 1

−a1 −a2 −a3

⎞

⎠ , B(x) =
⎛

⎝
0
0

σ(X)

⎞

⎠ ; (6.7)

where a1, a2, a3 ∈ R and σ(X) : R3 → R is the following step function, which
generates a switching law to control the equilibria of the system:

σ(x) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1, if x ∈ D1 = {X ∈ R
3 : v�X < S1};

b2, if x ∈ D2 = {X ∈ R
3 : S1 ≤ v�X < S2};

...
...

bm, if x ∈ Dm = {X ∈ R
3 : Sm−1 ≤ v�X};

(6.8)

with bi ∈ R (for i = 1, . . . , m;) are the switching domains, v ∈ R
3 ( v �= 0)

a constant vector, and δ1 ≤ δ2 ≤ · · · ≤ δm−1 determine the switching surfaces
location.

Consider a multiscroll generator system based on the jerk equation [1, 43–45],
which satisfies all conditions to be considered as UDS I for parameters ai [1] as
follows:

Dqx = y,

Dqy = z,

Dqz = α[−a1x − a2y − a3z − f (x)],
(6.9)

where Dq is the Caputo operator of fractional order. The parameters ai are constant
values defining the eigenvalues of the system, where ai ∈ R

+. It is possible to
generate an attractor with multiple scrolls by using a commutation law f (x), in our
case the Nearest Integer Function Round(x), as shown in [1, 46], whose purpose is
to partition the state space into Di subdomains of equal size and add i equilibrium
points to the system, which is achieved by coexisting many one-spiral unstable
trajectories.

Since the systems described in Eq. (6.9) can be represented in terms of Eq. (6.6),
the local stability for each equilibrium point is defined by the eigenvalues of the
linear operator A, whose characteristic polynomial is λ3 + a3λ

2 + a2λ + a1.
According to Proposition III.3. in [47], for 0 < a1, 0 < a2 < a1/a2, 0 < a3
the system is UDS type I for all the equilibrium points.

On the other hand, the local stability region of the fractional-order system
depends mainly on two things, namely, the spectra of the system eigenvalues
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related to the operating UDS region, i.e., the ai parameters of Eq. (6.9), and on
the integration order used to change the stability of the equilibrium point, since the
multiscroll behavior is analyzed under a fractional order of 0.93 ≤ q ≤ 1, which
includes the critical integration order (qc) with which it is possible to analyze the
multiscroll generator for fixed parameters defined later without becoming stable
when all state variables are considered with an equal integration order.

By considering a system based on the jerk equation (6.9), being f (x) the Round
function defined as

f (x) = C1 ∗ Round(x/C2), (6.10)

and for the following parameter values: α = 1, a1 = 10.5; a2 = 7; a3 =
0.7; C1 = 0.9; and C2 = 0.6. It is worth noting that these parameter values
are the same ones used in [1]. With which it is possible to generate an attractor
with multiple scrolls using Eq. (6.10) as commutation law, this induces an infinity
of commutation surfaces and thus guarantees the generation of the same number of
scrolls. In Fig. 6.2, the trajectory of the system Eq. (6.9) for the above parameters is
shown in phase space (a), on the x − y, x − z and y − z planes (b), (c), and (d).

Consider Di as each domain defined by the function Round and a Poincaré
plane implemented exactly on the commutation surface around the origin. The
Poincaré sections S1, S2 are implemented at x = 0.3 and x = −0.3, respec-
tively, corresponding to the defined commutation values. A trajectory in Di , with
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Fig. 6.2 Trajectory of the system (6.9) given by Eq. (6.10) (a) onto the phase space, in (b, c, d)
projections onto the (x, y); (x, z); (y, z) respectively for a1 = 10.5; a2 = 7; a3 = 0.7; C1 =
0.9; C2 = 0.6 q = 1 and α = 1
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Fig. 6.3 Intersections of the trajectory of the system (6.9) with (6.10) with the commutation
surface S1 and S2 (b) for a1 = 10.5; a2 = 7; a3 = 0.7; C1 = 0.9; C2 = 0.6, α = 1
and q = 1. The green marked points represent the crossing points from left to right and the blue
marked points represent the crossing points from right to left for each plane

equilibrium point X∗
i ∈ Di . As the trajectory oscillates around X∗

i , the distance
to the equilibrium point increases leaving the current domain Di to Di+1 Fig. 6.3a
(or Di to Di−1 Fig. 6.3b) by the commutation surface near the intersection of the
unstable manifold with the Poincaré plane, as can be seen from the intersections
of the trajectory φtj in Fig. 6.3. The green crossed points represent the intersection
from left to right and the blue crossed points represent the intersection from right to
left for each plane considered. Note that most trajectories are equally distributed in
both directions.

6.3 Multistability in the PWL System Through Bifurcation
Parameter

In this work, we consider an oscillator that has already been reported to exhibit
multistability behavior: [1]. Considering the system defined in Eq. (6.9) for integer
order and the parameters ai defined before, we now use the parameter α as a
bifurcation parameter that allows to change the local stability and the directions
of the stable and unstable manifolds. Figure 6.4a shows the bifurcation diagram
of the local maximum along x for each scroll at Di for the range of parameter
0 ≤ α ≤ 1.5. In addition, Fig. 6.4b shows the number of domains Di visited by the
system for equal values of α. Note that the number of domains D visited remains at
the constant value of 3 when the range of α ≥ 1.25, since the system has only one
attractor located in the inside domain, as shown in Fig. 6.5 [1]. Both diagrams were
calculated with the same initial condition X0 = (0.1, 0.1, 0)T .

Considering the values used in the previous section and α = 1.42, the system
leads to a multistable state phenomenon due to the round function and the location of
its eigenvectors [1], as shown in Fig. 6.4 for the initial condition X0 = (0.1, 0.1, 0)T .
The attractor is located near the equilibria at the origin due to the given initial
condition. However, there is no oscillation near the neighboring equilibrium points.
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Fig. 6.4 (a) Bifurcation diagram of the system given by the Eqs. (6.9) with (6.10) for a1 =
10.5; a2 = 7; a3 = 0.7; C1 = 0.9; C2 = 0.6, q = 1.0, for the value of 1 ≤ α ≤ 1.5.
Figure (b) shows the number of domains Di visited by the trajectory of the system for the same
values of the above bifurcation parameters. The initial condition considered for both diagrams is
X0 = (0.1, 0.1, 0)

The reason for this lies in the eigenvectors, as they are not located in the same way as
in the previous section for α = 1, i.e., the stable manifold of the domain in which the
trajectory oscillates does not coincide with the stable manifolds of the neighboring
domains [1].

This can be easily observed in Fig. 6.5, which is now described. Figure 6.5b
and d show the projection of a trajectory onto the plane (x, y), both initialized
with the same initial condition near the origin X0 = (0.1, 0.1, 0)T . Note in
the projections that as time increases, the oscillating clockwise system trajectory
becomes larger until eventually the trajectories on the scrolls cross the commutation
surface. Obviously, the trajectories of both systems cross the commutation surfaces
S1, S2 near the intersection of the unstable and stable manifolds. Considering the
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Fig. 6.5 Trajectory of the system (6.9) given by Eq. (6.10) (a) on the phase space, (b, c, d)
projections on the (x, y); (x, z); (y, z)-plane, for a1 = 10.5; a2 = 7; a3 = 0.7; C1 =
0.9; C2 = 0.6 q = 1 and α = 1.42

different projections of the attractors, for example the projection onto the planes
(x, z) in Fig. 6.5c and d, it can be seen that the trajectory returns in the direction
of the equilibrium point associated with the domain x = ±0.3 in Fig. 6.5b, c and
y = ±0.5, z = ±3.0. Which was slightly changed by varying the parameter from
α = 1 to α = 1.42.

Now, to understand the behavior of the trajectory, a Poincaré plane was imple-
mented exactly on the commutation surface, as described in the previous section.
The crossing events of interest are the identification of the crossing points, or in
other words, the escape points and the return points to the origin domain Di to
Di+1 or Di to Di−1. Figure 6.6 shows the intersection points of the trajectories for
the system Eq. (6.9) with α = 1.42 for the right and left planes, respectively, in red
asterisk the intersections from right to left and in black asterisk the intersection from
left to right, in green and blue crosses the intersection points for α = 1 described in
the previous section.

Note that for the right plane Fig. 6.5a, the exit points of this domain are shown
in red and many crossing points have been lost compared to the multiscroll attractor
(α = 1), just as many crossing points have been lost for the return points shown
in black. The same characteristic can be observed in a symmetrical way for the
left plane Fig. 6.5b, where the exit points are shown in black color and the return
points in red. Since this work is not concerned with explaining the emergence of
multistable dynamics, a more detailed explanation of this phenomenon can be found
in reference [1].
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Fig. 6.6 Intersections of the trajectory of the system (6.9) with (6.10) with the commutation
surface S1 and S2, for a1 = 10.5; a2 = 7; a3 = 0.7; C1 = 0.9; C2 = 0.6, and q = 1
(a), (b), respectively. In green cross are marked the points representing the intersections from left
to right and in blue cross those from right to left for each plane for α = 1. In red asterisk the
crossings events from right to left and in black asterisk those from left to right for α = 1.42

6.4 Multistability in the PWL System Through Derivative
Order

According to the reference [24], it is possible to generate multistable behavior
in PWL systems by fractional derivatives. Following the mechanism described in
[24], the system described by Eq. (6.9) is now analyzed numerically by using the
Adams–Bashforth–Moulton (ABM) method [48] for changes in integration order q.
The algorithm was constructed as a generalization of the classical ABM integrator,
which is well known in solving problems with first-order switching systems [33, 49].
Considering the stability constraints for fractional-order systems, the algorithm
designed for Eq. (6.9) a critical integration order at qc = 0.927 to preserve local
instability. According to the stability theory for fractional systems [33], if the system
is analyzed with orders of integration q < qc, the dynamics of the system will be
stable, turning each equilibrium point into a focus attractor.

The system of fractional order, which is described in Eq. (6.9), is analyzed
for a fixed bifurcation parameter α = 1.0, considering the switching function
described by Round(x), an integration step size of h = 0.01, and considering the
same integration order in the three state variables. As in the previous examples,
a bifurcation diagram of fractional order vs. local maximum in the state variable
x is shown in Fig. 6.7. The qualitative changes in the system dynamics when the
derivative order is reduced are depicted in Fig. 6.7. This behavior is similar to that
computed for the integer order system. In addition, Fig. 6.7b depicts the number of
domains Di visited by the system for equal values of the derivative order q. Note
that the number of domains D visited remains at the constant value of 3 when the
range of q ≤ 0.945 approximately because the system has only one scroll in the
domain around the origin, as shown in Fig. 6.8.

As in the case of the integer order system with changes in α, in Fig. 6.8b and
(d) a projection of a trajectory onto the plane (x, y) and (y, z), both initialized with
the same initial condition near the origin X0 = (0.1, 0.1, 0)T , is shown. Note that
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Fig. 6.7 (a) Bifurcation diagram of the system given by Eqs. (6.9) with (6.10) for a1 =
10.5; a2 = 7; a3 = 0.7; C1 = 0.9; C2 = 0.6, α = 1.0, for the value of 0.93 ≤ q ≤ 1.0.
Figure (b) shows the number of domains Di visited by the trajectory of the system for the same
values of the bifurcation parameters above. The initial condition considered for both diagrams is
X0 = (0.1, 0.1, 0)T

in the projections, the clockwise trajectory of the oscillating system increases with
time until eventually the trajectories on the scroll cross the commutation surface.
Obviously, the trajectories of both systems cross the commutation surface S1 and S2
near the intersection of the unstable and stable manifolds. Considering the different
projections of the attractor, for example the projection onto the planes (x, z), in
Fig. 6.8c and d it can be seen that the trajectory returns to the equilibrium point
associated with the domain at x = ±0.3 in Fig. 6.8b, c and y = ±0.5, z = ∓3.0.
This was slightly modified by changing the parameter from q = 1 to q = 0.945.

Poincaré planes are used to graphically represent the intersection points between
domains where the scroll is generated by the switching surfaces[1]. A Poincaré
plane was implemented exactly at the commutation surface, as described in the
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Fig. 6.8 Trajectory of the system (6.9) given by Eq. (6.10) (a) onto the phase space, in (b, c, d)
projections onto the (x, y); (x, z); (y, z) respectively for a1 = 10.5; a2 = 7; a3 = 0.7; C1 =
0.9; C2 = 0.6 q = 0.945, and α = 1

previous section. The interest is the identification of the crossing point, or in other
words, the escape points and return points to the origin domain Di to Di+1 or Di

to Di−1. Figure 6.9 shows the trajectory intersection points for the system (6.9)
with q = 0.945 for the right and left planes, respectively; red asterisks show the
intersections from right to left and the black asterisks show the crossing points from
left to right; green and blue crosses show the intersection points for q = 1 and
α = 1, respectively, described in Sect. 6.2.2.

As in the previous section, in the right plane Fig. 6.9a the exit points of this
domain are depicted in red, and compared with the multiscroll attractor (q = 1.0),
many crossing points were lost, as well as for the return points depicted in black
many crossing points were lost. This same characteristic can be observed in a
symmetric way for the left plane Fig. 6.9b, where the exit points are represented
by the black color and the return points in red.

Since the goal of analyzing the multistable behavior with Poincaré planes is to
identify the relationship between the integer and fractional systems and to analyze
the behavior of each attractor at the switching surfaces, the crossing points in
each plane for the multistable attractors were determined. The results are shown in
Figs. 6.4, 6.7, 6.6, and 6.9. The bifurcation analysis shows a great similarity in the
evolution of the dynamics under the parametric changes considered in each case.
Although many crossing points were lost in both cases, it is important to note in the
Poincaré plane analysis that for the fractional case the return points remain aligned



126 H. E. Gilardi-Velázquez et al.

-1 -0.5 0 0.5 1

y

-3

-2

-1

0

1

2

3
z

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

-3

-2

-1

0

1

2

3

z

(b)

Fig. 6.9 Intersections of the trajectory of the system (6.9) with (6.10) with the commutation
surface S1 and S2, for a1 = 10.5; a2 = 7; a3 = 0.7; C1 = 0.9; C2 = 0.6, and α = 1
(a), (b). In green cross the points representing the intersections from left to right and in blue cross
those from right to left for each plane for q = 1. In red asterisk the intersections from right to left
and in black asterisk the intersection from left to right for q = 0.945

with the return points of the multiscroll attractor, i.e., the multiscroll attractor and
the fractional multistable attractor share common crossing points.

6.5 Conclusions

In this work it has been presented the study of generating multistable behavior in
a multiscroll system using the derivative order as a parameter versus a bifurcation
parameter in an integer system. Using the Nearest Integer or round(x) function
for the PWL systems considered in the UDS of Type I theory, in the case of the
integer system the phenomenon of multistability was driven by the changes in the
bifurcation parameter α, while for the fractional system the generation of multistable
behavior was achieved by using the integration order as the system parameter. Both
dynamics were analyzed by bifurcation diagrams and Poincaré planes, showing that
the mechanism generating the multistable phenomenon is similar. However, it is
shown that the dynamics obtained by the two mechanisms are not equivalent, since
the main difference between the two systems lies in the Poincaré analysis. For the
integer system, the return points are shifted and for the fractional case they remain
aligned with the return points of the multiscroll attractor.
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Chapter 7
Approximation of Fractional-Order
Controllers for Mechatronic Applications

Stavroula Kapoulea, Costas Psychalinos, and Ahmed S. Elwakil

Abstract Two different approximation tools for deriving integer-order rational
transfer functions, which fulfill the loop-shaping requirements in fractional-order
(FO) controllers used in mechatronic applications, are presented and compared
in this work. The first one is based on the employment of a curve fitting-based
tool offered by the MATLAB symbolic toolbox, while the second one is based on
the utilization of the FLOreS toolbox, also available in MATLAB. Both methods
approximate the magnitude and phase frequency responses derived from the original
fractional-order transfer function. These tools are compared with regards to the
offered accuracy and, also, from the implementation point of view. This is performed
through a design example, where a planar precision positioning mechatronic system
is used as plant and the behavior of the system is evaluated through simulation
results, using OrCAD PSpice simulator.
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7.1 Introduction

Loop shaping is a method for designing controllers in the frequency domain, through
the adjustment of the open-loop frequency response of the system controller plant,
in order to compromise the conflict between the following requirements: (a) the
high open-loop gain at low frequencies to ensure good tracking and disturbance
rejection and low gain at high frequencies to ensure noise suppression and (b) the
phase margin at crossover frequency to guarantee stability of the system. In other
words, a trade-off between precision and bandwidth versus stability and robustness
must be performed through the design framework of the controller [1–5]. Fractional-
order controllers are attractive schemes for performing loop shaping, and this is
originated from the fact that the order of both the integration and differentiation
stages non-integer, in contrast to their inter-order counterparts where the order is
fixed and equal to one. This opens the door for independent adjustment of the
slopes of the open-loop gain and frequency responses allowing the fine-tuning of
the desired characteristics of the system [6–12]. This is performed at the expense of
the increased circuit complexity, because the crucial parts of the implementation of
fractional-order differentiators and integrators are fractional-order capacitors which
are not available in the market. This requires the development of networks that
approximate their behavior, and a quick solution is the utilization of the Cauer
and Foster networks for substituting the fractional-order capacitors [13]. Another
solution is based on the approximation of the transfer function of the fractional-order
integrator/differentiator using approximation tools for deriving rational integer-
order transfer functions [14].

The problem of both aforementioned approaches appears in the cases where
the transfer functions which must be synthesized have not the classical form of
the powers of the Laplacian operator. Two possible solutions for overcoming this
obstacle are the employment of the frd and fitfrd functions [15] or of the FLOreS
toolbox [16], both available in the MATLAB software.

The goal of this work is the systematic comparison of the aforementioned tools
with regard to the approximation accuracy level, as well as to the complexity
of the required implementations. The chapter is organized as follows: the two
approximation tools are presented in Sect. 7.2, considering the case of a control
system suitable for a positioning mechatronic system. The implementation issues
are discussed in Sect. 7.3, while in Sect. 7.4 simulation results, derived using the
AD844 discrete component ICs, are presented.

7.2 Approximation Tools

As a design example, let us consider the control loop of Fig. 7.1, where a three-
degree-of-freedom planar precision positioning mechatronic system is used as plant.
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C(s)
outputinput

Controller

Plant

Fig. 7.1 Control loop of the three-degree-of-freedom planar precision positioning system

The transfer function that describes the plant behavior is given by [17]

P(s) = 1.429 × 108

175.9s2 + 7738s + 1.361 × 106 . (7.1)

The general form of a three-stage controller is given by [17]

C(s) = KP ·
(

1 + ωi

s

)λ ·
(

1 + s
ωd

1 + s
ωt

)μ

·
(

1

1 + s
ωl

)γ

. (7.2)

The term KP · (1 + ωi

s

)λ is the PI/phase lag part, with ωi being the unity gain
frequency of the integration part, while the term

(
1+ s

ωd
/1+ s

ωt

)μ represents the phase
lead part, with ωd and ωi being the zero and pole frequency, respectively. The

remaining term
(

1/1+ s
ωl

)γ

is a lowpass (LP) filter with ωl being its cutoff frequency.

The transfer function in Eq. (7.2) cannot be directly realized by conventional
elements, and therefore, its efficient approximation is a crucial part of the design
procedure. The derived rational integer-order transfer function, which approximates
Eq. (7.2), will have the following form:

Capprox (s) = Bmsm + Bm−1s
m−1 + . . . + B1s + B0

Ansn + An−1sn−1 + . . . + A1s + A0
, (7.3)

with [m/n] being the order of the numerator and denominator, respectively, of the
applied approximation and Ai (i = 0 . . . n), with Bj (j = 0 . . . m), being real and
positive coefficients.

The derivation of the coefficients Ai and Bj can be performed through the
employment of two tools, which are based on MATLAB software: the first one
on the built-in functions frd and fitfrd and the second one on the FLOreS tool.
The frequencies ωi, ωd, ωt , and ωl of the controller transfer function in Eq. (7.2)
are related to a common frequency ωc according to the following equations: ωi =
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0.1ωc, ωd = ωc/a, ωt = aωc, and ωl = 10ωc. In addition, the specifications of the
controller are the following: KP = 0.0645, ωc = 2π · 100 rad/s, a = 5, λ = γ = 1,
and μ = 1.2 [17, 18].

In the case of the employment of the frd and fitfrd functions, which perform
curve fitting approximation, the whole transfer function in Eq. (7.2) is approximated
using a set of numerator and denominator orders equal to order [3/4] within the
frequency range of interest f = [

100, 104
]

Hz. Using the MATLAB code given in
the Appendix, the derived function is given by

Cf itf rd (s) = 1.921 × 104s3 + 1.52 × 107s2 + 2.076 × 109s + 8.041 × 1010

s4 + 1.055 × 104s3 + 3.076 × 107s2 + 1.972 × 1010s + 1.088 × 109
.

(7.4)

The FLOreS tool, on the other hand, approximates the fractional-order parts of
the function separately and their product forms the final approximated function.
This is demonstrated in Fig. 7.2, where only the lead part is fractional with μ = 1.2.
Applying a second-order approximation on this part and then inserting the obtained

Fig. 7.2 Screenshot of the FLOreS toolbox GUI for approximating the fractional term of the
product in Eq. (7.2)
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Fig. 7.3 Gain and phase frequency responses of the controller for the fitfrd (red solid line) and the
FLOreS (blue solid line) approximation methods

function in Eq. (7.2), the derived controller transfer function is given by

CFLOreS (s) = 1.929 × 104s3 + 1.359 × 107s2 + 1.882 × 109s + 6.936 × 1010

s4 + 1.071 × 104s3 + 3.055 × 107s2 + 1.711 × 1010s
.

(7.5)

The open-loop gain and phase responses for the fitfrd (red solid line) and the
FLOreS (blue solid line) approximation methods, along with the ideal responses
represented by black dashed lines, are depicted in Fig. 7.3. The associated error
plots are provided in Fig. 7.4, where the maximum observed errors of both gain and
phase are about 1.7% for the fitfrd method and 3.1% for the FLOreS method. The
most important frequency-response characteristics, including gain margin (Gm),
crossover gain frequency (fcg), phase margin (Pm), and phase crossover frequency
(fcp), are summarized in Table 7.1.

The closed-loop behavior is evaluated through the step responses given in
Fig. 7.5, while the corresponding performance characteristics are provided in
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Fig. 7.4 Error plots of the gain and phase frequency responses of the controller for the fitfrd and
FLOreS approximation methods

Table 7.1 Values of
characteristic parameters of
the open-loop system for the
fitfrd and FLOreS
approximation methods

Parameter Ideal fitfrd FLOreS

Gm (dB) 23.3 23.32 23.7

fcg (Hz) 770.3 771.2 778.5

Pm (◦) 73.75 73.77 72.74

fcp (Hz) 92.8 92.4 92.8

Table 7.2. The obtained comparison results show that both tools under consideration
offer almost the same level of accuracy.

7.3 Implementation Issues

The implementation of the approximated functions in Eqs. (7.4) and (7.5) can be
performed using the partial fraction expansion-based configuration [19] or multi-
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Fig. 7.5 Step response of the closed-loop system controller–plant for the fitfrd (red solid line) and
the FLOreS (blue solid line) approximation methods

Table 7.2 Values of characteristic parameters of the step response of the closed-loop system for
the fitfrd and FLOreS approximation methods

Parameter Ideal fitfrd FLOreS

Rise time (ms) 2.3 2.3 2.3

Settling time (ms) 44.2 44.3 44.4

Overshoot (%) 7.39 7.47 7.79

feedback structures such Follow-the-Leader-Feedback (FLF) and Inverse Follow-
the-Leader-Feedback (IFLF) [20]. The functional block diagrams for the fitfrd case
are shown in Fig. 7.6.

In order to implement the FLOreS function, it is, initially, formed as

CFLOreS (s) = 1

s
· 1.929 × 104s3 + 1.359 × 107s2 + 1.882 × 109s + 6.936 × 1010

s3 + 1.071 × 104s2 + 3.055 × 107s + 1.711 × 1010
,

(7.6)

which means that an extra stage (i.e., an integer-order integrator) is required. Then,
the rest part is a third-order transfer function, which is implemented by the typical
partial fraction expansion-based and multi-feedback structures, as it is shown in
Fig. 7.7.

The obtained coefficients for both implementations applying the fitfrd and
FLOreS approximation methods are given in Tables 7.3 and 7.4, respectively.

Both approximation methods are efficient and lead to a rational integer-order
transfer function. For the exact controller specifications, both methods require
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Fig. 7.6 Functional block diagrams based on (a) FLF, (b) IFLF, and (c) PFE schemes for realizing
the transfer function in Eq. (7.4), derived using the fitfrd approximation method

a fourth-order approximation, with the order of the numerator equal to 3, but
of different form. The implementation of the fitfrd case, following the partial
fraction expansion technique, offers the advantage of absence of the sensitive factor
K0, while in the multi-feedback realization the gain factor and, as a result, a
summation stage are omitted leading to a more compact structure. On the other
hand, the FLOreS case is implemented by the cascade connection of a third-order
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Fig. 7.7 Functional block diagrams based on (a) FLF, (b) IFLF, and (c) PFE schemes for realizing
the transfer function in Eq. (7.5), which is derived through the employment of the FLOreS toolbox

partial fraction expansion-based or multi-feedback structure and an integer-order
integrator. Considering the scaling factors in Table 7.4, it is obvious that their large
values lead to nonpractical specifications for the implementation. In order to avoid
this problematical case, an appropriate scaling of the factors to lower values through
the time constant of the integer-order integrator can be performed.
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Table 7.3 Values of scaling factors and time constants for implementing the controller using the
structures in Fig. 7.6a–c and applying the fitfrd approximation method

Scaling factors Time constants

Variable Fig. 7.6a,b Fig. 7.6c Variable Fig. 7.6a,b Fig. 7.6c

K0/G0 73.9 –

K1/G1 0.105 9.09 τ1 (μs) 947.8 169.2

K2/G2 0.494 –9.28 τ2 (μs) 343 266.7
K3/G3 1.82 0.288 τ3 (ms) 1.6 1.1

K4/G4 – 73.82 τ4 (s) 18.13 18.13

Table 7.4 Values of scaling factors and time constants for implementing the controller using the
structures in Figs. 7.7a–c and applying the FLOreS approximation method

Scaling factors Time constants

Variable Fig. 7.7a,b Fig. 7.7c Variable Fig. 7.7a,b Fig. 7.7c

K0/G0 4.054 19,290

K1/G1 61.6 −47,290 τ1 (µs) 93.37 159.3

K2/G2 1268.9 28,142 τ2 (µs) 350.6 270.7
K3/G3 19,290 −138 τ3 (ms) 1.8 1.4

K4/G4 – − τ4 (s) – –

In order to have a comparison in terms of hardware of the implementations
derived from Figs. 7.6c and 7.7c, and using Current Feedback Operational Ampli-
fiers (CFOAs) as active elements, the resulting structures are demonstrated in
Figs. 7.8a,b. As the number of the required CFOAs, resistors, and capacitors in the
topology of Fig. 7.8a is 5, 13, and 4, respectively, while for the topology in Fig. 7.8b
is 6, 14, and 4, respectively, it is obvious that the topology derived through the
utilization of the fitfrd tool is simpler. It must be also mentioned at this point that
the corresponding operational amplifier (op-amp)-based implementation presented
in [4] is performed using 6 op-amps, 15 resistors, and 4 capacitors, proving the
superiority of the structure presented in this manuscript.

7.4 Simulation Results

Using the values provided in Table 7.3 and the fact that the implemented time
constants are given by the formula τi = RiCi (i=1,2,3,4), and then assuming
that R = Rf = 10 k� and R1 = R2 = R3 = R4 = 20 k�, the values of
capacitors, rounded to the E96 series defined in IEC 60063, were C1 = 1.69 nF,
C2 = 2.67 nF, C3 = 11 nF, and C4 = 182 μF. Employing the AD844 discrete
component ICs as CFOAs in the OrCAD PSpice simulator, with DC power supply
voltages equal to ±15 V, the obtained frequency responses of the controller, along
with the theoretically predicted plots (black dashed lines), are demonstrated in
Fig. 7.9, along with the gain and phase errors.
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Fig. 7.8 CFOA-based
implementations of the
PFE-based block diagrams in
(a) Fig. 7.6c (using the fitfrd
tool) and (b) Fig. 7.7c (using
the FLOreS toolbox)
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Fig. 7.9 Simulated gain and phase frequency responses of the controller

The functionality of the open-loop system controller–plant is verified through
the frequency responses of Fig. 7.10, and the most important frequency-response
characteristics, including gain margin (Gm), crossover gain frequency (fcg), phase
margin (Pm), and phase crossover frequency (fcp), are summarized in Table 7.5.

The closed-loop system behavior is evaluated through the step responses given
in Fig. 7.11, while the corresponding performance characteristics are provided in
Table 7.6.

The sensitivity performance of the system is evaluated, assuming a 2% maximum
tolerance of the values of passive elements. The obtained standard deviation and
mean values of the critical characteristics regarding the open-loop system (i.e., gain
margin, crossover gain frequency, phase margin, and phase crossover frequency) and
the closed-loop system (i.e., rise time, settling time, and overshoot) for N = 500
runs are summarized in Table 7.7, while, indicatively, the statistical histograms for
the gain margin, phase margin, and settling time are presented in Fig. 7.12 These
results confirm the reasonable sensitivity characteristics of the system.
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Fig. 7.10 Simulated open-loop gain and phase frequency responses of the controller–plant system

Table 7.5 Simulated values
of the critical characteristics
of the open-loop
controller–plant system

Parameter Ideal Simulation

Gm (dB) 23.3 24.6

fcg (Hz) 770.3 787.2

Pm (◦) 73.75 70.14

fcp (Hz) 92.8 81.1

7.5 Conclusions

In this work, a comparison between two approximation tools is performed, con-
sidering a fractional-order control system suitable for a three-degree-of-freedom
planar precision positioning mechatronic system. The first step was the evaluation
of the accuracy of each tool, with the obtained results showing that it is on the
same level in both cases. The realization of the resulting integer-order rational
transfer functions leads to topologies with different complexity. The reduced order
of the numerator of the transfer function in the case of the employment of the fitfrd
function is advantageous in terms of active and passive component count, as well as
of the spread of passive elements’ values. On the other hand, FLOreS toolbox offers
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Fig. 7.11 Step response of the closed-loop system controller–plant

Table 7.6 Simulated values
of the characteristic
parameters of the step
response of the closed-loop
system

Parameter Ideal Simulation

Rise time (ms) 2.3 2.5

Settling time (ms) 44.2 46.5

Overshoot (%) 7.39 10.3

Table 7.7 Statistical values
of the critical characteristics
of the open-loop and
closed-loop controller–plant
system

Parameter Mean Std Dev

Gm (dB) 24.7 (theor. 23.3) 0.35

fcg (Hz) 787.6 (theor. 770.3) 6.4

Pm (◦) 69.95 (theor. 73.75) 0.87

fcp (Hz) 80.8 (theor. 92.8) 3.6

Rise time (ms) 2.55 (theor. 2.3) 0.09

Settling time (ms) 46.5 (theor. 44.2) 0.59

Overshoot (%) 10.4 (theor. 7.39) 0.9

a user-friendly interface with several capabilities including tuning, evaluation of
open-loop and closed-loop system behavior, sensitivity, noise performance, etc. The
provided simulation results confirm the aforementioned derivations. Future research
steps include the application of these tools to controller functions with more than
one fractional part, where it is expected that the advantage of the curve fitting-based
approximation (fitfrd) over the FLOreS toolbox will be more evident, owing to the
fact that in this case the transfer function is approximated as a whole and not through
the approximation of each part separately.
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Fig. 7.12 Monte Carlo statistical histograms for the (a) gain margin, (b) phase margin, and (c)
settling time of the system

Appendix

%% Charactersitics of the Controller
Kp=0.0645;
fc = 100;
wc=2*pi*fc;
alpha=5;
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wi=0.1*wc;
wd=wc/alpha;
wt=wc*alpha;
wl=10*wc;
lamda=1;
mu=1.2;
gamma=1;
% Frequency range of interest
fmin = 1E+0; fmax = 1E+4;
freq = logspace(log10(fmin),log10(fmax),201);
wmin = 2*pi*(fmin); wmax = 2*pi*(fmax);
w = logspace(log10(wmin),log10(wmax),201);
% approximation order
m = 3;
n = 4;

%% Controller Transfer Function
% Intermediate transfer functions
s = tf('s');
tf1_inter = (1+wi/s);
tf2_inter = (1+s/wd)/(1+s/wt);
tf3_inter = 1/(1+s/wl);
tf1_resp = (freqresp(tf1_inter,w)).^lamda;
tf2_resp = (freqresp(tf2_inter,w)).^mu;
tf3_resp = (freqresp(tf3_inter,w)).^gamma;
% Total transfer function
C_resp = Kp*tf1_resp.*tf2_resp.*tf3_resp;
C_resp_data = frd(C_resp,w);

%% Approximation of the Controller Transfer Function
% fitfrd MATLAB built-in function
C_fitfrd = fitfrd(C_resp_data,n,n-m);
C_fitfrd = tf(C_fitfrd)

References

1. D. Xue, Y. Chen, Fractional order calculus and its applications in mechatronic system controls
organizers, in 2006 International Conference on Mechatronics and Automation (IEEE, 2006),
pp. nil33–nil33

2. C.I. Muresan, C. Copot, C. Ionescu, R. De Keyser, Robust fractional order control of LPV
dynamic mechatronic systems, in 2019 IEEE 15th International Conference on Control and
Automation (ICCA) (IEEE, 2019), pp. 154–9

3. C. Copot, C.M. Ionescu, C.I. Muresan, Image-Based and Fractional-Order Control for
Mechatronic Systems: Theory and Applications with MATLAB® (Springer Nature, 2020)



7 Approximation of Fractional-Order Controllers for Mechatronic Applications 147

4. S. Kapoulea, C. Psychalinos, A.S. Elwakil, S.H. HosseinNia, Realizations of fractional-order
PID loop-shaping controller for mechatronic applications. Integration 80, 5–12 (2021)

5. L. Bruzzone, M. Baggetta, P. Fanghella, Fractional-order PII1/2DD1/2 control: Theoretical
aspects and application to a mechatronic axis. Appl. Sci. 11(8), 3631 (2021)

6. I. Podlubny, I. Petraš, B.M. Vinagre, P. O’leary, L. Dorčák, Analogue realizations of fractional-
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Part IV
Chaotic Systems



Chapter 8
Comparative Analysis of Chaotic
Features of Maps Without Fixed Points

Claudio García-Grimaldo and Eric Campos-Cantón

Abstract In the second decade of this century, chaotic maps without fixed points,
which contain hidden attractors, have been described. The chaotic properties that
exist between them and with maps with fixed points may differ. In this manuscript,
we will make a comparative analysis of some of these features between discrete
maps with and without fixed points, both one-dimensional and two-dimensional.
The analyses performed on the maps will be by means of bifurcation diagrams,
Lyapunov exponents, entropy calculation, as well as other statistical and numerical
tools. Finally, tables are used to show and compare the values obtained from each
of the exposed maps.

Keywords Dynamical system · Discrete map · Map without fixed points ·
Chaotic map · Lyapunov exponent · Bifurcation diagram

8.1 Introduction

The importance of chaotic dynamical systems in different areas of science, engi-
neering, and technological applications is well known [1, 2]. Both continuous and
discrete time dynamical systems have been widely studied mainly to know their
topological [3, 4], dynamical, and ergodic properties [5, 6], as well as for their use
in concrete applications [1, 7, 8]. Many of the works reported before the twenty-
first century employ dynamical systems in which fixed points exist [9]. These fixed
points help to identify the dynamic behavior around them. For example, Shil’nikov’s
theorem allows us to identify chaotic behavior in the neighborhoods of the parameter
space where certain homoclinic orbits surrounding the saddle-focus equilibrium
point appear. The chaotic behavior generated by the Shil’nikov method is called
as homoclinic chaos or heteroclinic chaos [10].
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In this century, a new classification has emerged from the consideration of the
nonexistence of fixed points. The first reported works focused on continuous chaotic
dynamical systems [11–13]; however, in recent years, systems in discrete time
that exhibit chaos have also been reported [14–18]. In both cases and given the
absence of fixed points, the analysis of their dynamics is carried out through other
methods such as phase portraits, Lyapunov exponents, bifurcation diagrams, period
doubling route to chaos, Poincaré maps, and entropy analysis. Dynamical systems
without equilibrium/fixed points are considered within those systems that have
hidden attractors since they satisfy the definition of hidden attractors [19]. Generally,
hidden attractors in vector fields with equilibria imply multistability where self-
exited attractors and hidden attractors coexist. Hidden attractors are important in
applications because they allow unexpected responses to disturbances in some
structures like a bridge or an airplane wing [20]. The lack of fixed points complicates
the analysis of the dynamics of the systems, then, maps without fixed points could
have a very plausible application in encryption schemes or for the generation of
pseudorandom sequences that are cryptographically secure [21], as well as can also
be used in the amplitude control technique [18], which offers a high versatility in
chaos applications such as chaotic encryption and secure communications[22–25].

As we have already said, discrete systems with chaotic behavior have been
recently reported, and therefore, no comparative analysis has been made between
them and those systems in which there are fixed points, so it is convenient to make
some comparative studies of their chaotic characteristics to have a wider range of
these types of systems, as well as to choose the most appropriate parameters and
maps in future applications such as in the generation of pseudorandom sequences.
In this chapter, we present some of the existing chaotic maps without fixed points,
unidimensional and bidimensional reported in the literature with the intention of
making an analysis of their chaotic aspects, together with a comparison between
these maps and some dynamical systems with fixed points. The first step was to
find existing maps in the literature, both one-dimensional and two-dimensional,
with chaotic behavior and without fixed points. From these, we chose those maps
in which a similar analysis had been made to determine their chaotic properties,
along with those that were defined in equal topological spaces and in which time
was a discrete variable and space a continuous one. For the comparative analysis,
the following issues will be implemented: cobweb plots, phase space diagrams,
bifurcation diagrams, Lyapunov exponents, histograms, time series, and sensibility
analysis. In addition, entropy calculation test will be performed. Finally, we
establish some comparative tables with the intention of contrasting the differences
and similarities between the studied maps.
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8.2 Unidimensional Maps

8.2.1 Logistic Map

The first map for which we will study its dynamics is the logistic map [26]. This
one-dimensional map is defined as

xn+1 = μxn(1 − xn). (8.1)

If we differentiate (8.1), then we have

x′
n+1 = μ(1 − 2xn). (8.2)

If we equate (8.2) to zero, then we have that the maximum value at xn+1 is when
xn = 1

2 , for this value, xn+1 = μ
4 . Therefore, if we take xn ∈ [0, 1], then xn+1 ∈

[0, 1] only if μ ∈ [0, 4], for all n ∈ N. If μ < 0, then xn+1 < 0. If μ > 4, then the
maximum value at xn = 1

2 is greater than one, thus xn+1 /∈ [0, 1] and xn+1 → −∞
when n → ∞. From this, the range of control parameter μ is 0 ≤ μ ≤ 4.

Given the quadratic factor in (8.1), the logistic map is defined by a family of
parabolas in the closed interval [0, 1]. In Fig. 8.1, we can see the graph of the logistic
map when the parameter μ takes distinct values.

Fixed Points The logistic map has two fixed points; for the location of them, the
following must be satisfied:

μx∗
n(1 − x∗

n) = x∗
n, (8.3)

which is true for the values x1 = 0 and x2 = 1 − 1

μ
.
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Fig. 8.1 Logistic map with different μ values
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(a) Cobweb plot for 0 and = 4.
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Fig. 8.2 Chaotic dynamics of logistic map. (a) Cobweb plot for x0 and μ = 4. (b) Time series.
(c) Histogram

According to the literature, the logistic model presents chaotic dynamics for
certain values of the parameter μ, in particular when μ = 4. In Fig. 8.2, we can
observe one of the consequences of the existence of chaos; the non-periodic orbit
generated from the initial condition x0 = 0.45 covers a large part of the interval
[0,1]. This same behavior can be checked with the time series and histogram,
both generated from the given initial condition. In both graphs, it can be observed
again that the trajectory occupies a large part of the interval, and however, it can
be seen that there are regions where it does so more frequently, i.e., there is no
uniform distribution. In the next section, we will show other resources to evaluate
the existence of chaos both for this map and for the rest of the one-dimensional
maps described in this chapter.
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Fig. 8.3 Vertigo-2 map, with parameter μ1 = 40

8.2.2 Vertigo-2 Map

The Vertigo-2 map is a one-dimensional map proposed in [14] and is inspired from
logistic map, and its mathematical model is defined as

xn+1 =
{

0.8 + μ1(xn − 0.1)(0.2 − xn), if 0.1 < xn < 0.2;
0.1 + μ1(xn − 0.8)(0.9 − xn), if 0.8 < xn < 0.9.

(8.4)

In this map, the range of control parameter μ1 is 0 < μ1 < 40. As can be seen in
Fig. 8.3, Vertigo-2 map is a type of scaled logistic map that appears in two distinct
regions.

Fixed Points This kind of map has no fixed points. It can be verified if we
analyze (8.4): for any value of xn+1 in the set domain, if xn ∈ (0.1, 0.2), then
xn+1 ∈ (0.8, 0.9), and if xn ∈ (0.8, 0.9), then xn+1 ∈ (0.1, 0.2). In any case,
xn �= xn+1. When the basin of attraction of any attractor does not intersect with
any neighborhood of the fixed point, then we have a hidden attractor. Since in this
case there are no fixed points, then, the attractors generated will be of this type.
In Fig. 8.3, we can see that for Vertigo-2 map, the range is a subset of its domain,
as a consequence all trajectories are bounded between the intervals (0.1, 0.2) and
(0.8, 0.9), and then, the basin of attraction is a hidden attractor that belongs to these
intervals.

In Fig. 8.4a, we can see the trajectory of the orbit when μ1 = 40 and the
initial condition x0 = 0.45. In a similar way to logistic map, the orbit of Vertigo-
2 map covers most of its domain, and moreover, at each iteration, it alternates
between the first domain and the second domain. In Fig. 8.4b and c, the time series
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Fig. 8.4 Non-periodic dynamics of one orbit for Vertigo-2 map. (a) Cobweb plot. (b) Time series.
(c) Histogram

and the histogram allow us to observe this particularity from another perspective.
Figure 8.4c shows a histogram similar to the one for the logistic map in each of the
sub-domains established for the Vertigo-2 map.

8.2.3 PWL Map

The third kind of unidimensional map presented here is a piecewise linear map
(PWL), which is proposed and analyzed in [18]. This one-dimensional map is
defined as

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

m1xn + b1, if xn ≤ −a < 0;
m2xn + b2, if −a < xn < 0;
m2xn − b2, if 0 ≤ xn < a;
m1xn − b1, if xn ≥ a,

(8.5)
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Fig. 8.5 PWL map given by (8.5). m1 = 0.8, m2 = 5, and b1 = 4

where m1 �= 0 and m2 �= 0. The values a and b2 are adjusted according to equations

a = b1

m1
, (8.6)

b2 = m2 b1

m1
. (8.7)

From this, in [18], the following proposition is stipulated.

Proposition 1 If mi > 0, then bi > 0, and on the other hand, if mi < 0, then
bi < 0, with i = 1, 2.

Fixed Points The PWL map defined in (8.5) under certain values of its parameters
has no fixed points. In [18], the following theorem is established, in which the
conditions for the absence of such points are given.

Theorem 1 Let f be a class of PWL maps defined by (8.5), with m1 ∈ (−∞, 0) ∪
(0, 1), and m2 ∈ (0,∞), then the class of PWL maps does not have fixed points
in R.

An example of this kind of map can be seen in Fig. 8.5. Figure 8.6a shows that in
the graph of the cobweb diagram, the orbit covers a large part of a bounded region,
and the time series and the histogram in Fig. 8.6b and c, respectively, highlight
this phenomenon, i.e., non-periodic fluctuations are visualized over time within an
interval. In this case, the basin of attraction belongs to the interval [−25, 25], and
then the hidden attractor is generated into this region.
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Fig. 8.6 Non-periodic dynamics of PWL map: m1 = 0.8, m2 = 5, b1 = 4, and x0 = 0.45. (a)
Cobweb plot. (b) Time series. (c) Histogram

8.2.4 Bifurcation Diagrams

In this section, we will carry out an analysis of the dynamics for each of the
three maps described in the previous section. One way to check if there are other
values for which there is non-periodic behavior is through the implementation of
bifurcation diagrams.

Figure 8.7a exhibits the bifurcation diagram of logistic map when the parameter
μ is varied in the interval (0, 1), with an initial condition x0 = 0.1. Here we
can see that there are ranges where the orbit is periodic and ranges where it is
not. In addition, we can detect that at μ = 3, logistic map presents a period-
doubling bifurcation. Then, at μ ≈ 3.57, the system enters into a chaotic state and
continues to manifest itself until the value of μ = 4 (in certain regions between
these two values, there are interior crisis bifurcations, where chaotic dynamics
ceases to manifest itself). Figure 8.7b depicts the bifurcation diagram of Vertigo-
2 map when the initial condition is 0.1. As can be seen, and given that this map has
no fixed points, it starts with a double period. Moreover, the geometric structure
of the bifurcation diagram is a scale of the one generated for the logistic map
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Fig. 8.7 Bifurcation diagrams. (a) Logistic map. (b) Vertigo-2 map. (c) PWL map

and therefore inherits certain properties of the diagram of this last map, such as
period-doubling bifurcations, interior crisis bifurcations and non-periodic dynamics.
Figure 8.7c shows the bifurcation diagram for PWL map, with m1 ∈ [0.1, 1],
m2 = 5, b1 = 4, and an initial condition x0 = 0.45. In general, it is possible
to observe two behaviors: periodic and chaotic. The periodic behavior appears in
two windows: the first of period four in the interval (0.1, 0.2) and the second of
period six when 0.25 < m1 < 0.45. Furthermore, there are two windows of chaotic
behavior: 0.2 < m1 < 0.25 and 0.45 < m1 ≤ 1. Note that in contrast to the Vertigo-
2 map, this does not present a doubling periodic bifurcation, but rather unexpectedly
enters into a chaotic state for certain values and again abruptly produces periodic
dynamics to finally emerge again in a chaotic condition.

Table 8.1 shows the characteristics described above for the three aforementioned
maps.
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Table 8.1 Features chaotics and periodics for the maps

Map First period Bifurcation Periodic behavior Chaos

Logistic map 1 Periodic-doubling
interior crisis

(0, 3.7) (3.7, 4]

Vertigo-2 map 2 Periodic-doubling
interior crisis

(0, 37) (37, 40]

PWL map 4 Crisis bifurcation (0, 0.2) ∪
(0.25, 0.45)

(0.2, 0.25) ∪
(0.45, 0, 1]

8.2.5 Lyapunov Exponents

There are several definitions that can be used to determine chaos, for example, the
numerical calculation of Lyapunov exponents allows us to determine the regions
where chaos occurs under the condition that the orbits are bounded and present a
positive Lyapunov exponent [27]. In this section, we show the existence of chaotic
behavior for the three unidimensional maps through Lyapunov exponents. The
calculation of the Lyapunov exponent is carried out as

λ(x0) = lim
n→∞

1

n

n−1∑

k=0

ln | f ′(x(k)) |. (8.8)

First, and as seen above, for logistic map, there are zones with non-periodic
behavior. Thus, by using the Lyapunov exponents, we can verify that for certain
values there is chaotic and periodic behavior.

If we take μ = 1 and the initial condition x0 = 0.1, then for n = 10000,

λ(0.1) ≈ 1

n

n−1∑

k=0

ln |xk(1 − xk)| = −7.1460 × 10−4. (8.9)

In this case, since λ(0.1) < 0, there is not chaotic behavior. In the case where μ = 4
and the same initial condition, then for n = 10000,

λ(0.1) ≈ 0.6931. (8.10)

Due to the fact that λ(0.1) > 0 and that the trajectory is bounded, then at μ = 4,
logistic map has chaotic behavior. In general, for any map, these same calculations
can be performed for more values of some parameter present in its equation. In
particular, in this work, for logistic map, μ was varied from zero to four, taking a
step equal to 0.001. The result of these calculations can be seen in Fig. 8.8a. In this
figure it is possible observe that, when μ > 3.5, the value of the Lyapunov exponent
is greater than zero, leading to the presence of chaotic behavior. It should be noted
that not all values of (3.5, 4) have a positive Lyapunov exponent; this is because,
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(b) Vertigo-2 map.
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Fig. 8.8 Lyapunov exponents. (a) Logistic map. (b) Vertigo-2 map. (c) PWL map

as seen above, there are regions within this range where interior crisis bifurcations
occur. In particular, for μ = 4, there is a positive Lyapunov exponent.

In Fig. 8.8b, we can see the Lyapunov exponent diagram of Vertigo-2 map when
μ1 was varied from ten to forty. It can be appreciated that this is similar to the one
of the logistic map, the difference with this one is that for Vertigo-2 map, and the
Lyapunov exponents are positive when the value of μ belongs to the range (37, 40],
in particular, at μ1 = 40, the value is positive.

Finally, Fig. 8.8c shows the Lyapunov exponents of PWL map when m1 ∈ [0, 1].
In this diagram, we can check that the Lyapunov exponent is negative for the two
windows given by 0 < m1 < 0.2 and 0.25 < m1 < 0.45, and it is positive for the
intervals: 0.20 < m1 < 0.25 and 0.45 < m1 < 1. Taking this into account, in these
last two intervals, the chaotic behavior is verified because all the orbits are bounded.

Table 8.2 shows the largest exponent for each of the three maps within the range
in which the bifurcation parameter was varied. As can be seen, the logistic map
and the Vertigo-2 map have a very similar value and it is larger than the Lyapunov
exponent of the PWL. Thus, for the first maps, the divergence rate between two
close orbits is higher than the one of the PWL map.
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Table 8.2 Values of the
maximum Lyapunov
exponent

Map Max LE Value of parameter

Logistic map 0.6931 μ = 4

Vertigo-2 map 0.6933 μ1 = 40

PWL map 0.5709 m1 = 1

8.2.6 Average Measurement to Sensitivity to Initial Conditions

Chaotic maps have the peculiarity of extreme sensitivity to initial conditions. In the
previous section, this was verified by a positive value in the Lyapunov exponent,
where a larger value indicated a larger divergence. Although the three maps
described have values in the parameters for which chaos is present, the sensitivity to
initial conditions is different in each of them. In this part, we will describe another
method to measure this particularity.

In general, for a map, the method consists first in selecting 1000 different
arbitrary initial conditions x0i

, as well as 1000 closed conditions x′
0i

= x0i
+ ε,

where ε = 1 × 10−14 and i ∈ {1, . . . , 1000}. Next, we calculate the distances:

dn
i = |f n(x0i

) − f n(x′
0i

)|, (8.11)

dn = 1

1000

1000∑

i=1

dn
i , (8.12)

up to some n in which it is satisfied that dn ≥ dα , where the dα is a threshold given
by

dα = 1

1000

1000∑

k=0

|f k(x0) − f k(x′
0)|, x0 = 0.11. (8.13)

When this happen, we say that map presents sensitivity to initial conditions at the n

iteration.
The method described above was applied to each of the three one-dimensional

maps, choosing in every case, the one with the highest value of the Lyapunov
exponent, i.e., we took the three maps described in Table 8.2. Figure 8.9 exhibits
the graph of the necessary number of iterations to reach the dα value for each map.
As can be seen in Table 8.3, logistic map and Vertigo-2 map need less iterations than
PWL map for achieving this target. Then, we can reaffirm that these maps have a
higher divergence and a greater sensitivity to initial conditions than the PWL map.
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Fig. 8.9 Sensitivity to initial conditions. (a) Logistic map. (b) Vertigo-2 map. (c) PWL map

Table 8.3 Number of
iterations necessary to
manifest sensitivity to initial
conditions

Map x0 dα Iterations

Logistic map 0.11 0.47 46

Vertigo-2 map 0.11 0.050 44

PWL map 0.11 7.10 68

8.2.7 Entropy Analysis

Entropy is another way to measure how much disorder and complexity are present
in the maps. One effective way to calculate the entropy for chaotic series is the
approximate entropy, which indicates that the higher the entropy value, the more
chaotic and complex is the dynamical system. In Fig. 8.10, we show the calculation
of the approximate entropy for the three maps and how it changes due to the
variation of its control parameter. From here, we can remark that the entropy value
for PWL map is more regular when varying the parameter m1 than the entropy
values of the remaining pair of maps, mainly the logistic one, which has values
alternating between positive entropy and entropy equal to zero. In Table 8.4, we can
observe that logistic map has the highest approximate entropy of the three maps. Of
the two maps without fixed points, PWL has a higher value, and hence its dynamics
is more complex than that of Vertigo-2 map, but slightly lower than that of the
logistic map.
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Fig. 8.10 Approximate entropy. (a) Logistic map. (b) Vertigo-2 map. (c) PWL map

Table 8.4 Maximum
approximate entropy of each
of maps

Map Max ApEn Value of parameter

Logistic map 0.650 μ = 4.00

Vertigo-2 map 0.460 μ1 = 38.3

PWL map 0.590 m1 = 0.89

8.3 Bidimensional Maps

8.3.1 The Hénon Map

The first map presented here is the Hénon map [28] and is defined by the equation

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn.
(8.14)

If we set the following parameters: a = 1.4, b = 0.3, x0 = 0, and y0 = 0, then the
system shows chaotic behavior. For these values, Hénon proved the generation of
what is known as a strange attractor. The plot of this strange attractor is showed in
Fig. 8.11.

Fixed Points The Hénon map has two fixed points x∗
1,2

x∗
1,2 = −(1 − b) ±√(1 − b)2 + 4a)

2a
. (8.15)

Map Inspirited by Hénon Map (IHMMap)

The second bidimensional map presented here and as mentioned in [16] is a map
inspired in Hénon’s map. In that work, several cases are dealt with, which depend
on the existence or not of fixed points. In general, the equation that describes its
dynamics is
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Fig. 8.11 Attractor of Hénon map

xn+1 = yn,

yn+1 = a1xn + a2yn + a3x
2
n + a4y

2
n + a5xnyn + a6.

(8.16)

Fixed Points In this chapter, we will focus on the case where there are no fixed
points. Equating

xn = yn,

yn = a1xn + a2yn + a3x
2
n + a4y

2
n + a5xnyn + a6.

(8.17)

Then, under the following considerations, (8.17) has no solution, and there-
fore (8.16) has no fixed points:

• If a3 + a4 + a5 = 0, a1 + a2 − 1 = 0, and a6 �= 0.
• If a3 + a4 + a5 �= 0 and

�
< 0.

As previously mentioned, if the basin of attraction of any attractor does not intersect
with any neighborhood of the fixed point, then we have a hidden attractor. Since
for this case there are no fixed points, the attractors generated will be of this type.
Figure 8.12 displays the hidden attractor generated from (8.16), when a1 = 1, a2 =
0, a3 = −0.6, a4 = 0.74, a5 = −0.14, and a6 = −0.33.

xn+1 = yn,

yn+1 = xn − 0.6x2
n + 0.74y2

n − 0.14xnyn − 0.33.
(8.18)
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Fig. 8.12 Hidden attractor of IHM map

Quadratic Map

The third map discussed here is one of the cases presented in [29]. In this chapter,
we will refer to this map as the quadratic map, and its iterated equation is

xn+1 = yn + xn,

yn+1 = yn[a1xn + a2yn + a3] + yn + a4x
2
n + a5xn + a6.

(8.19)

Fixed Points Under the condition a2
5 + 4a4a6 < 0, (8.19) represents a quadratic

map with no fixed points. In Fig. 8.13, we can see the hidden attractor generated
when the parameters for (8.19) are a1 = −1, a2 = 2, a3 = 0, a4 = 0.1, a5 = 0,

and a6 = 0.1.

Map with No Fixed Points (NFP Map)

The last map exposed here is the one proposed in [21]. Its mathematical description
is

xn+1 = yn + xn,

yn+1 = −ynxn + yn − a|yn| + bx2
n − cy2

n + d.
(8.20)

Fixed Points The existence of fixed points could be determined by the solution of

x = y + x,

y = −yx + y − a|y| + bx2 − cy2 + d.
(8.21)
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Fig. 8.13 Hidden attractor of the quadratic map

Fig. 8.14 Hidden attractor of the NFP map

From (8.21), y must be zero, and hence bx2 + d = 0. Therefore, in particular, if the
values b and d are both positive and bx2 + d �= 0, then (8.20) has no fixed points.

Figure 8.14 shows the hidden attractor for (8.20) when a = 0.01, b = 0.1, c = 2,

and d = 0.1.
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Fig. 8.15 Time series of the four maps. (a) Hénon map. (b) IHM map. (c) Quadratic map. (d) NFP
map

8.3.2 Time Series

Similar to the previous one-dimensional maps, where we could observe by means
of the time series a non-periodic behavior, in Fig. 8.15, we can appreciate a non-
periodic trajectory in xn, as well as in yn in the four two-dimensional maps. It is
also important to note that these trajectories are bounded between the regions where
the attractor is present and that they also traverse most of the latter.

8.3.3 Bifurcation Diagrams

In this section, we will perform an analysis of the dynamics for each of the four maps
described above. In the same way as in the one-dimensional maps, one parameter
will be varied, while the rest will remain fixed, so by realization of bifurcation
diagrams, it will be verified for which ones there is chaotic behavior.

In Fig. 8.16a, for the Hénon map, we can observe the bifurcation diagram in
xn when the parameter a varies from 0.1 to 1.4, with an initial condition x0 = 0,
y0 = 0. From this, we can detect a route period-doubling to chaos. This same type
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Fig. 8.16 Bifurcation diagrams. (a) Hénon map. (b) IHM map. (c) Quadratic map. (d) NFP map

of bifurcation is present in the rest of the three maps. For IHM map, Fig. 8.16b
shows the bifurcation diagram, obtained by varying the parameter a6 between −0.33
and −0.05 and an initial condition x0 = −0.78, y0 = 0.45. Figure 8.16c depicts
the bifurcation diagram of quadratic map when the parameter a2 is varied between
1.975 and 2, a range in which there are no fixed points; the initial value is x0 =
1.5, y0 = 0.55. Finally, Fig. 8.18d shows the bifurcation diagram for NFP map,
generated by increasing the parameter c from 1.7 until 2, and the initial condition
was x0 = 1.5, y0 = 0.5.

Table 8.5 shows the intervals in which each of these behaviors is manifested.
From here, it is possible to differentiate that the Hénon map is the one with the
highest range where chaotic dynamics is developed; in addition, the quadratic map
and NFP map have the same interval of chaotic behavior, and IHM map has the
lowest of the four.
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Table 8.5 Chaotic and periodic behavior for the maps

Map First period Bifurcation Periodic behavior Chaos

Hénon 1 Periodic-doubling
interior crisis

(0, 1.1) (1.1, 1.4]

IHM 2 Periodic-doubling
interior crisis

(−0.326, 0) [−0.33,−0.326)

NFP 2 Periodic-doubling
interior crisis

(0, 1.985) (1.985, 2]

Quadratic map 2 Periodic-doubling
interior crisis

(0, 1.985) (1.985, 2]

8.3.4 Lyapunov Exponents Spectrum

In this section, we are going to show the existence of chaotic behavior through
the calculation of the Lyapunov exponents for the four bidimensional maps. The
method that we used to obtain the spectrum of Lyapunov exponents was the discrete
QR algorithm. The results of these estimates can be seen in Fig. 8.17. Firstly, and as
previously seen, for the Hénon map, there are regions with non-periodic behavior.
In Fig. 8.17a, starting at about 1.05, a positive Lyapunov exponent is observed
with a tendency to increase in value as the parameter a is modified and reaching
a maximum value at a = 4; then, for these values of a, chaotic dynamics is present.
In Fig. 8.17b, we can appreciate the Lyapunov exponent diagram of IHM map. The
existence of chaotic dynamics is evidenced when the value of a2 belongs to interval
[−0.33,−0.326). Figure 8.17c shows the Lyapunov exponents of quadratic map;
one of them is positive in the interval (1.978, 2). Furthermore, since the orbits in
this interval are bounded, then, there is chaotic behavior. For NFP map, and taking
c as the variation parameter, it can be seen in Fig. 8.17d that as in the previous map,
one of the exponents is positive and the other negative for the same values for both
a and c. Thus, chaos also exists.

If we compare the values at which the maps show chaos, we see that these
are consistent with those obtained in the bifurcation diagrams and for whom non-
periodic dynamics are detected. In Table 8.6 is given the largest positive value of
the Lyapunov exponent and its corresponding negative value obtained for each of
the four maps. In such a table, it stands out that the Hénon map is the one with the
largest exponent of the four and that quadratic map and NFP map have very similar
values, just when their parameters a and c, respectively, are two. From this, we can
say that the divergence for the Hénon map is the highest of the four and the IHM
has the lowest.
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Fig. 8.17 Lyapunov exponents spectrum. (a) Hénon map. (b) IHM map. (c) Quadratic map. (d)
NFP map

Table 8.6 Values of the maximum Lyapunov exponent

Map Max LE xn Corresponding LE yn Value of parameter

Hénon map 0.4270 −1.6310 a = 4

IHM 0.08629 −0.2304 a6 = −0.33

Quadratic map 0.1291 −0.2526 a2 = 2

NFP map 0.1150 −0.2760 c = 2

8.3.5 Average Measurement to Sensitivity to Initial Conditions

In this section, we will analyze the sensitivity to initial conditions with the same
method as in Sect. 8.2.4. Since here we deal with two-dimensional maps, the
distance used will be

d =
√

(x2 − x1)2 + (y2 − y1)2. (8.22)

Again, 1000 arbitrary initial conditions x0 and y0 and their respective close initial
conditions x0ε and y0ε were taken, where ε = 1 × 10−14. Figure 8.18 exhibits the
graph of the necessary number of iterations to reach the dα value for each map. As
we can check in Table 8.7, as well as in Fig. 8.18a, the Hénon map is the one that
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Fig. 8.18 Graph of number of iterations vs distance. (a) Hénon map. (b) IHM map. (c) Quadratic
map. (d) NFP map

Table 8.7 Iterations
necessary to manifest
sensitivity to IC

Map dα Iterations

Hénon map 0.6092 53

IHM 0.3023 311

Quadratic map 0.1509 173

NFP map 0.1567 200

achieves in less iterations to overcome its dα value. Quadratic and NFP maps need
more but approximately the same iterations to reach its threshold.

Table 8.7 and Fig. 8.18c and d give evidence of this fact. The worst performance
shown in this table, as well as in Fig. 8.18b, is for IHM map. These results agree with
the previous ones, where the order from the highest to the lowest positive Lyapunov
exponent was the Hénon map, quadratic map and NFP map, and finally IHM map.
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Fig. 8.19 Approximate entropy. (a) Hénon map. (b) IHM. (c) Quadratic map. (d) NFP map

Table 8.8 Maximum
approximate entropy of each
of maps.

Map Max ApEn Value of parameter

Hénon map 1.650 a = 4.00

IHM map 0.2543 a6 = −0.33

Quadratic map 0.4773 a2 = 2.00

NFP map 0.3990 c = 1.994

8.3.6 Entropy of Bidimensional Maps

In this section, the calculation of the approximate entropy will allow us to re-
evaluate the divergence and the level of complexity and disorder for the four
two-dimensional maps. In Fig. 8.19, we show the variation of the approximate
entropy for the four maps. Again, the Hénon map is found to have a higher range in
its parameter with respect to the rest of the maps in which there is positive entropy. In
addition, in Fig. 8.19a–d, it is verified that these ranges coincide with those obtained
in the bifurcation diagrams as well as Lyapunov exponents where there was evidence
of chaotic dynamics. Finally, in Table 8.8, the highest entropy values within the
ranges in which each of the parameters is varied are displayed.
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8.4 Conclusions

In this work, we have performed a comparative analysis of some chaotic features
to unidimensional and bidimensional maps, both with fixed points and without
fixed points. For the case of one-dimensional maps, the following have been used:
cobweb plots, bifurcation diagrams, Lyapunov exponents, histograms, time series,
and entropy calculation. While for the analysis of the two-dimensional maps, the
following have been implemented: phase space diagrams, time series, bifurcation
diagrams, Lyapunov exponents, and entropy calculation. Finally, comparative tables
were established in which the differences and similarities between the studied maps
could be contrasted.

For the one-dimensional maps, the results show that the chaotic properties
between the logistic map and the Vertigo-2 map are very similar; this is mainly due
to the fact that the Vertigo-2 map is a scaling of the logistic map but does not have
fixed points. In contrast, between the logistic map and the PWL map without fixed
points, we have found differences, mainly in the route to chaos, where this last one
does not show period-doubling bifurcation; in addition, between these two maps,
the divergence, the sensitivity to initial conditions, and the degree of complexity
and disorder are slightly higher for the logistic map. However, from the results, we
can see that the PWL map without fixed points has a larger range in its parameter in
which chaotic behavior is presented with respect to the logistic map and the Vertigo-
2 map.

In the case of two-dimensional maps, it could be observed that all four maps
follow a route to chaos through a period-doubling bifurcation. However, there were
noticeable differences between the Hénon map and the three maps without fixed
points. The highest difference was found between the Hénon map and the Hénon-
inspired map. These differences can be appreciated in the divergence and sensitivity
to initial conditions, the transitivity of the orbits, and in the range where chaos
occurs. In other words, the Hénon map has a higher complexity in its dynamics
than the other three maps.

In general, in the case of both one- and two-dimensional maps, the comparative
results may contribute to the choice of the most appropriate parameters and maps
in future applications, such as in the generation of pseudorandom sequences or in
encryption schemes.
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Chapter 9
A New 4-D Hyperchaotic System with No
Balance Point, Its Bifurcation Analysis,
Multi-Stability, Circuit Simulation, and
FPGA Realization

Sundarapandian Vaidyanathan, Esteban Tlelo-Cuautle,
Omar Guillén-Fernández, Khaled Benkouider, and Aceng Sambas

Abstract This work proposes a new 4-D hyperchaotic system with three quadratic
nonlinear terms. We establish that the proposed system has no balance point. We
deduce that the system has hidden attractors. We carry out a dynamic analysis of the
new system with bifurcation diagrams and Lyapunov exponents. We show that the
new system has multi-stability and coexisting attractors. Using MultiSim Version
14, we design an electronic circuit of the new hyperchaotic system. The new 4-D
hyperchaotic system with no balance point is verified under an implementation using
a field-programmable gate array (FPGA). We show the block diagrams’ descriptions
of the system by applying three one-step numerical methods, which consist of
multipliers, adders, and subtractors, and we list the hardware resources required for
each numerical method. Finally, we show the experimental hyperchaotic attractors,
which are in good agreement with simulation results.
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9.1 Introduction

Due to their high complexity and randomness, hyperchaotic dynamical systems find
several applications in engineering, such as: memristors [1–3], lasers [4, 5], robotics
[6], cryptosystems [7, 8], etc. Chaotic and hyperchaotic oscillators have been a hot
topic for research during the last years due to their usefulness in the development
of chaotic secure communication systems and other applications that have been
implemented using either analog or digital electronics, as already shown in [9, 10].

Hyperchaotic attractors can be broadly divided into two categories, viz. self-
excited and hidden hyperchaotic attractors. Hyperchaotic attractors generated by
an unstable balance point belong to the class of self-excited hyperchaotic attractors
[11]. Hyperchaotic attractors with no balance point [12], or with a stable balance
point [13], or possessing infinitely many balance points [14], belong to the class of
hidden hyperchaotic attractors [11].

In this chapter, we propose a new 4-D hyperchaotic system having three quadratic
nonlinear terms. We shall exhibit that the proposed hyperchaotic system does not
have any balance point for all non-zero values of the system parameters. Hence, we
deduce that the proposed system has hidden hyperchaotic attractors.

We carry out an extensive bifurcation analysis of the new hyperchaotic system
with no balance point. Bifurcation analysis is a miscellaneous technique to inves-
tigate the dynamic behavior of nonlinear systems with respect to variation of the
system parameters [15, 16].

Multi-stability is basically the phenomenon of a chaotic or hyperchaotic system
of coexisting attractors for the same values of the parameters but different values
of initial states [17–19]. In this chapter, we demonstrate that the new hyperchaotic
system has the special property of multi-stability with coexisting attractors.

Circuit implementations of hyperchaotic systems enable their real-world imple-
mentation for various engineering applications [20–22]. In Sect. 9.2, we show
that by using MultiSim version 14, one can design an electronic circuit for the
proposed hyperchaotic system with no balance point. Section 9.3 provides details
on generating the bifurcation diagrams and Lyapunov exponents’ spectrums of
the new 4-D system in order to investigate the dynamical behavior. In addition,
this section demonstrates the complex phenomenon of coexistence of attractors.
Section 9.4 provides guidelines to design the electronic circuit using amplifiers.
The implementation of the new 4-D hyperchaotic system with no balance, using a
field-programmable gate array (FPGA), is given in Sect. 9.5, where experimental
observations of the attractors are shown using a Teledyne LeCroy oscilloscope.
Finally, the conclusions are summarized in Sect. 9.6.
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9.2 A New 4-D Hyperchaotic System with No Balance Point

In this section, we introduce the mathematical model of a new 4-D system with the
dynamical equations given as below:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ1 = −a(y1 + y2) + y2y3 + cy4

ẏ2 = −y1 − ay1y3 − cy4

ẏ3 = b + y1y2

ẏ4 = y2

(9.1)

In (9.1), the coefficients a, b, c are system constants and we suppose that b �= 0.
We use Y to denote the states of the dynamical system (9.1), in which four state
variables exist, i.e., Y = (y1, y2, y3, y4).

It shall be established in this section that the proposed 4-D hyperchaotic system
exhibits a hidden hyperchaotic attractor for the parameter values: a = 15, b = 20,
and c = 2.

The solution of the dynamical system by performing numerical simulations is
obtained choosing the initial states of the 4-D system (9.1) as:

y1(0) = 0.3, y2(0) = 0.1, y3(0) = 0.3, y4(0) = 0.1 (9.2)

The Lyapunov characteristic exponents (LCEs) of the new 4-D system (9.1)
for the parameter vector (a, b, c) = (15, 20, 2) and initial state Y (0) =
(0.3, 0.1, 0.3, 0.1) were numerically estimated in MatLab for T = 1E5 seconds as:

μ1 = 3.46788, μ2 = 0.14108, μ3 = 0, μ4 = −18.57677 (9.3)

As one can see, since there are two positive LCE values in (9.3), and the total of
LCE values in (9.1) is negative, then we conclude that the new 4-D system (9.1) has
a hyperchaotic attractor with dissipativity.

As a next step, we calculate the equilibrium or balance points for the new 4-D
hyperchaotic system, by solving the following system of equations:

− a(y1 + y2) + y2y3 + cy4 = 0 (9.4a)

− y1 − ay1y3 − cy4 = 0 (9.4b)

b + y1y2 = 0 (9.4c)

y2 = 0 (9.4d)
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Using (9.4d), we deduce that y2 = 0. Substituting y2 = 0 into (9.4c), we deduce
that b = 0, which contradicts the assumption that b �= 0. Therefore, the new 4-
D hyperchaotic system (9.1) has no balance point for b �= 0. As shown that the
hyperchaotic behavior arises when (a, b, c) = (15, 20, 2).

As the new 4-D hyperchaotic system (9.1) has no balance point, it follows that it
has hidden attractors.

The Matlab plots of the new hyperchaotic system (9.1) for the hyperchaotic case
a = 15, b = 20, c = 2, and Y (0) = (0.3, 0.1, 0.3, 0.1) are shown in Fig. 9.1.

Fig. 9.1 Matlab phase-space portraits of the new 4-D hyperchaotic system (9.1) with no balance
point for a = 15, b = 20, c = 2, and Y (0) = (0.3, 0.1, 0.3, 0.1). (a) (y1, y2)-plane. (b) (y2, y3)-
plane. (c) (y1, y3)-plane. (d) (y1, y4)-plane



9 A New 4-D Hyperchaotic System with No Balance Point 181

9.3 Bifurcation Analysis of the New 4-D Hyperchaotic
System with No Balance Point

In this section, the bifurcation diagrams and Lyapunov exponents’ spectrums are
calculated and plotted in order to investigate the dynamical behavior of the new 4-
D hyperchaotic system (9.1). This helps to observe the switching of its dynamics
between periodic, quasi-periodic, chaos, and hyperchaos when changing the values
of the system parameters. For instance, we show the dynamics when each parameter
a, b, c is swept.

9.3.1 Bifurcation Analysis When a Varies

The new 4-D hyperchaotic system (9.1) has three parameters a, b, and c. By setting
b = 20 and c = 2, and by varying a in the interval [15, 100], one can observe
different dynamical behaviors. Because a takes different values, the Lyapunov
exponent values will also vary.

The corresponding bifurcation diagram and Lyapunov exponents’ spectrum are
obtained numerically by increasing the parameter a from 15 to 100, with Y (0) =
(0.3, 0.1, 0.3, 0.1) and then the results are plotted in Fig. 9.2a and b, respectively.

It is observed from Fig. 9.2 that the new 4-D hyperchaotic system (9.1) can
exhibit hyperchaos for a wide range of values of parameter a. It can also exhibit
chaos, quasi-periodic, and periodic behavior for some parameter intervals.

When a ∈ [15, 50], the new system (9.1) displays hidden hyperchaotic behavior
with a very high value of maximal Lyapunov exponents (MLE greater than 4)
indicating high complexity of the hyperchaotic dynamics.

Let us take parameter a = 40 and keep b = 20 and c = 2. Then, the hyperchaotic
attractor of (9.1) in (y1, y2) plane is plotted in Fig. 9.3a and its corresponding
Lyapunov exponents are obtained as follows:

μ1 = 4.574, μ2 = 0.046, μ3 = 0, μ4 = −44.613 (9.5)

In this case, the Lyapunov dimension of (9.1) is derived as

DL = 3 + μ1 + μ2 + μ3

|μ4| = 3.0136 (9.6)

When a varies in the range [50, 70], and keeping b = 20 and c = 2, the new 4-D
hyperchaotic system (9.1) has only one positive Lyapunov exponent, which means
that it presents hidden chaotic attractor with a high value of maximal Lyapunov
exponent (MLE > 3) indicating high complexity of system behavior.
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Fig. 9.2 Bifurcation analysis of the system (9.1) when b = 20, c = 2, and a varies in [15, 100].
(a) Bifurcation diagram. (b) Lyapunov exponents

By selecting the parameter value as a = 60, the chaotic attractor of the system
(9.1) in (y1, y2) space is plotted in Fig. 9.3b, and its corresponding Lyapunov
exponents are obtained as follows:

μ1 = 3.182, μ2 = 0, μ3 = −0.213, μ4 = −62.936 (9.7)
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Fig. 9.3 Matlab phase-space plots of the new 4-D hyperchaotic system ((9.1) in the (y1, y2) plane,
keeping b = 20 and c = 2, and varying a, with Y (0) = (0.3, 0.1, 0.3, 0.1). (a) a = 40. (b) a = 60.
(c) a = 75. (d) a = 90

In this case, the Lyapunov dimension of (9.1) is derived as

DL = 3 + μ1 + μ2 + μ3

|μ4| = 3.0472 (9.8)

When a ∈ [70, 81], and keeping b = 20 and c = 2, the new 4-D hyperchaotic
system (9.1) losses its complexity and its state variables converge to a quasi-periodic
attractor, as shown in Fig. 9.3c.

The Lyapunov exponents are calculated for a = 75 and obtained as follows:

μ1 = 0 μ2 = 0, μ3 = −3.144, μ4 = −71.779 (9.9)

Finally, the system (9.1) displays periodic behavior with no complexity when a

increases in the interval [81, 100].
By choosing a = 90, and keeping b = 20 and c = 2, the periodic attractor of

the new 4-D hyperchaotic system in (y1, y2) plane is plotted in Fig. 9.3d, and its
corresponding Lyapunov exponents are obtained as follows:

μ1 = 0, μ2 = −0.194, μ3 = −2.334, μ4 = −87.242 (9.10)
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9.3.2 Bifurcation Analysis When b Varies

In the previous subsection, the parameter a was varied while keeping b = 20 and
c = 2. In this subsection, we show the effect of the new 4-D hyperchaotic system
(9.1) fixing a = 15 and c = 2, while varying b in the interval [0.1, 20].

The corresponding bifurcation diagram and Lyapunov exponents’ spectrum are
obtained numerically by increasing the parameter b from 0.1 to 20 with the initial
conditions Y (0) = (0.3, 0.1, 0.3, 0.1). The results are plotted in Fig. 9.4a and b, for
the bifurcation and Lyapunov exponents, respectively.

It is observed from Fig. 9.4 that the new 4-D system (9.1) can exhibit hyperchaos
for a wide range of values of parameter b. It can also exhibit chaos, quasi-periodic,
and periodic behavior for some other intervals. For instance, we will show the
dynamics when defining the intervals: I = [0.1, 0.3] ∪ [0.9, 1.5] ∪ [8, 8.1].

When b ∈ I , and keeping a = 15 and c = 2, the new 4-D system (9.1)
displays periodic behavior with no complexity and its (y1, y3) phase-space portrait
is depicted in Fig. 9.5a.

When b = 1.2, and keeping a = 15 and c = 2, the corresponding Lyapunov
exponents are obtained as follows:

μ1 = 0, μ2 = −0.119, μ3 = −0.318, μ4 = −14.576 (9.11)

When b varies within the range [1.5, 2], and keeping a = 15 and c = 2, the
new 4-D system (9.1) still has no complexity and its state variables converge to a
quasi-periodic attractor, as shown in Fig. 9.5b.

When b = 1.8, and keeping a = 15 and c = 2, the corresponding Lyapunov
exponents are obtained as follows:

μ1 = 0, μ2 = 0, μ3 = −0.017, μ4 = −14.986 (9.12)

When b increases in the interval [0.3, 0.9], and keeping a = 15 and c = 2, the
new 4-D system (9.1) has only one positive Lyapunov exponent, which means that
it generates a hidden chaotic attractor.

By selecting the parameter value as b = 0.6, and keeping a = 15 and c = 2,
the chaotic attractor of the system (9.1) is plotted in Fig. 9.5c. The corresponding
Lyapunov exponents are obtained as follows:

μ1 = 0.122, μ2 = 0, μ3 = −0.199, μ4 = −14.922 (9.13)

In this case, the Lyapunov dimension of the new 4-D system (9.1) is derived as:

DL = 3 + μ1 + μ2 + μ3

|μ4| = 2.9948 (9.14)
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Fig. 9.4 Bifurcation analysis and Lyapunov exponents’ spectrum of the new 4-D hyperchaotic
system (9.1) when a = 15, c = 2, and b varies in [0.1, 20]. (a) Bifurcation diagram. (b) Lyapunov
exponents



186 S. Vaidyanathan et al.

Fig. 9.5 Matlab phase-space plots of the new 4-D system (9.1) in the (y1, y3) plane for a = 15,
c = 2, and considering various values of b, solved with Y (0) = (0.3, 0.1, 0.3, 0.1). (a) b = 1.2.
(b) b = 1.8. (c) b = 0.6. (d) b = 20

Finally, when b ∈ [2, 20], and keeping a = 15 and c = 2, the system (9.1)
displays hidden hyperchaotic behavior with a maximal Lyapunov exponent (MLE)
about 3.5, indicating high complexity of the hyperchaotic dynamics of the system
(9.1).

Choosing b = 20, and keeping a = 15 and c = 2, the hyperchaotic attractor of
the new 4-D system (9.1) is plotted in the (y1, y3) phase-space plane, as shown in
Fig. 9.5d. The corresponding Lyapunov exponents are

μ1 = 3.446, μ2 = 0.149, μ3 = 0, μ4 = −15.589 (9.15)

In this case, the Lyapunov dimension of the new 4-D system (9.1) is derived as:

DL = 3 + μ1 + μ2 + μ3

|μ4| = 3.2306 (9.16)

9.3.3 Bifurcation Analysis When c Varies

The new 4-D system (9.1) has three parameters a, b, and c. In this subsection we
show the dynamics when fixing a = 15 and b = 20, while varying c in the interval
[0, 3].
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The corresponding bifurcation diagram and Lyapunov exponents’ spectrum are
obtained numerically by increasing the parameter c with Y (0) = (0.3, 0.1, 0.3, 0.1),
and the results are plotted in Fig. 9.6a and b, respectively.

When c increases, it is noted from Fig. 9.6 that the new 4-D system (9.1) has
always a complex dynamical behavior. The system (9.1) can display hyperchaos
with two positive Lyapunov exponents in a large interval of parameter c. In addition,
it can evolve into a chaotic attractor with one positive Lyapunov exponent in the first
little interval of parameter c.

When c ∈ [0, 0.15], the new 4-D system (9.1) presents chaotic behavior and
generates a hidden chaotic attractor as depicted in Fig. 9.7a. When c = 0.05, and
keeping a = 15 and b = 20, the Lyapunov exponents are obtained as:

μ1 = 3.619, μ2 = 0, μ3 = 0, μ4 = −18.619 (9.17)

In this case, the Lyapunov dimension of the new 4-D system is obtained as:

DL = 3 + μ1 + μ2 + μ3

|μ4| = 3.1944 (9.18)

When c ∈ [0.15, 3], the new 4-D system (9.1) generates a hidden hyperchaotic
attractor with a maximal Lyapunov exponent (MLE) about 3.428, as depicted in
Fig. 9.7b. When c = 3, and keeping a = 15 and b = 20, the Lyapunov exponents
are obtained as follows:

μ1 = 3.428, μ2 = 0.219, μ3 = 0, μ4 = −18.649 (9.19)

In this case, the Lyapunov dimension of the new 4-D system is obtained as:

DL = 3 + μ1 + μ2 + μ3

|μ4| = 3.1956 (9.20)

9.3.4 Coexistence of Attractors for the New 4-D Hyperchaotic
System

This subsection demonstrates that the complex phenomenon of coexistence of
attractors can be observed in our proposed new 4-D system (9.1). Based on the fact
that our 4-D model given in (9.1) is invariant under the coordinates transformation
F : (y1, y2, y3, y4) �→ (−y1,−y2, y3,−y4), we have made an appropriate choice
of two different initial states that give rise to the appearance of different coexisting
attractors in the same phase space for the same values of system parameters. We
have chosen the following initial states that are related to two different colors:

Y0 = (0.3, 0.1, 0.3, 0.1) (blue color)

Z0 = (−0.3,−0.1, 0.3,−0.1) (red color)
(9.21)
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Fig. 9.6 Bifurcation analysis and Lyapunov exponents’ spectrum of the new 4-D system (9.1)
when a = 15 and b = 20, and c varies in the range [0, 3]. (a) Bifurcation diagram. (b) Lyapunov
exponents
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Fig. 9.7 Matlab phase-space plots of the new 4-D system (9.1) in the (y2, y3) plane for a = 15,
b = 20, and various values of c, simulated with Y (0) = (0.3, 0.1, 0.3, 0.1). (a) c = 0.05. (b) c = 3

In the phase plots shown in Fig. 9.8, the blue phase orbit starts from Y0, while the
red phase orbit starts from Z0.

When the parameters of the proposed new 4-D system (9.1) are selected as a =
15, b = 0.1, and c = 2, two different coexisting periodic attractors of the system
(9.1) can be obtained as depicted in Fig. 9.8a.

When the parameters of the proposed system (9.1) are selected as a = 15, b =
20, and c = 0.05, two different coexisting chaotic attractors of the system (9.1) can
be obtained as depicted in Fig. 9.8b.

When the parameters of the proposed system (9.1) are selected as a = 15, b =
20, and c = 2, two different coexisting hyperchaotic attractors of the system (9.1)
can be obtained as depicted in Fig. 9.8c.

Finally, coexistence of one periodic attractor starting from Y0 and one hidden
chaotic attractor starting from Z0 can be obtained when a = 15, b = 0.25 and
c = 2 as plotted in Fig. 9.8d.

9.4 MultiSim Electronic Circuit Design of the New 4-D
Hyperchaotic System

In this section, an electronic circuit is designed in MultiSim for the new hyper-
chaotic system (9.1) with no balance point. The electronic circuit is designed using
discrete components: resistors, capacitors, operational amplifiers, and multipliers.

In the electronic circuit, the model of the operational amplifier is taken as
TL082CD, and the model of the multiplier is taken as AD633JN, with the
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Fig. 9.8 Various coexisting attractors of the proposed new 4-D system (9.1), in the (y2, y4) phase-
space plane: (a) the coexisting periodic attractors, (b) the coexisting chaotic attractors, (c) the
coexisting hyperchaotic attractors, and (d) the coexistence of one periodic attractor and one chaotic
attractor

multiplication factor of 0.1/V. Applying the Kirchhoff laws, the circuit presented
in Fig. 9.9 is described by the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẏ1 = − 1
R1C1

y1 − 1
R2C1

y2 + 1
R3C1

y2y3 + 1
R4C1

y4

ẏ2 = − 1
R5C2

y1 − 1
R6C2

y1y3 − 1
R7C2

y4

ẏ3 = 1
R9C3

V1 + 1
R8C3

y1y2

ẏ4 = 1
R10C4

y2

(9.22)

The values of the circuit elements are given as follows:

R1 = R2 = 26.67 k�,R3 = R5 = R8 = R10 = 400 k�, (9.23)

R11 = R12 = R13 = R14 = R15 = R16 = 100 k�, (9.24)
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Fig. 9.9 Electronic circuit diagram for the proposed hyperchaotic circuit described by the circuit
equations given in (9.22)

R4 = R7 = 200 k�, R6 = 26.67 k�,R9 = 20 k�, (9.25)

C1 = C2 = C3 = C4 = 1 nF. (9.26)

Figure 9.10 shows the phase portraits of the electronic hyperchaotic circuit
(9.22) simulated by MultiSim 14.0 version, which is consistent with the MATLAB
simulation results depicted in Fig. 9.1.
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Fig. 9.10 MultiSim results of the new 4-D hyperchaotic circuit (9.22) with no balance point. (a)
(y1, y2) plane. (b) (y2, y3) plane. (c) (y1, y3) plane. (d) (y1, y4) plane

9.5 FPGA Design of the New 4-D Hyperchaotic System with
No Balance Point

The new 4D hyperchaotic system with no balance point can be simulated by
applying numerical methods, and even optimized as shown in [23], where the
associated time execution depends on the estimation of the step size of every
numerical method. As already shown in [10], each numerical method provides
different discrete equations that can be implemented into a field-programmable gate
array (FPGA), which is an excellent option for verification, fast prototyping, and for
low development cost applications along with providing good performance.
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Fig. 9.11 Block diagram description of the new hyperchaotic system (9.1) discretized with
Forward-Euler scheme

In this manner, this section shows the FPGA implementation of the new 4-
D hyperchaotic system with no balance point given in (9.1). This hyperchaotic
system is simulated and implemented by applying three numerical methods,
namely: Forward-Euler, Backward-Euler, and fourth-order Runge–Kutta methods.
For instance, the Forward-Euler method provides the discrete equations given in
(9.27), where h is the step size [23].

y1n+1 = y1n + h[−a(y1n + y2n) + y2ny3n + cy4n ]
y2n+1 = y2n + h[y1n − ay1ny3n − cy4n ]
y3n+1 = y3n + h[b + y1ny2n]
y4n+1 = y4n + h[y2n]

(9.27)

In (9.27), one can identify digital blocks that can be implemented in an FPGA,
namely: adders, subtractors, and multipliers of two inputs (A,B) and one output (O).
Figure 9.11 shows the block diagram description of (9.27), in which the block called
single-constant multiplier (SCM) implements the multiplication of a state variable
by a constant, such as ay1n , cy4n , and so on. It is worth mentioning that an SCM
requires fewer resources and it is faster than a two-input multiplier. The SCM is
also designed for all the blocks multiplying h.
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Fig. 9.12 Block diagram description of the new hyperchaotic system (9.1) discretized with
Backward-Euler scheme

In an FPGA the blocks can be designed by adopting fixed-point representation
with the format 13.19 (32 bits), using one bit for the sign, 12 for the integer part,
and 19 for the fractional part. This format in the computer arithmetic to process
in the FPGA implementation depends on the amplitudes of the state variables,
which can be observed by performing numerical simulations. For example, for this
hyperchaotic system, the ranges for y1 are [−20, 20], for y2 are [−35, 35], for y3 are
[−8, 8], and for y4 are [−25, 25]. Therefore, the operation ay1ny3n will be around
±2400, so that this value can be represented by using one bit for the sign, 12 bits
in the integer part, and 19 bits for the fractional part. The discretization of (9.1)
by applying Backward-Euler method can be described by the block diagram shown
in Fig. 9.12. The application of the fourth-order Runge–Kutta method will generate
a larger block description, but it will provide better accuracy than Forward- and
Backward-Euler methods [23].

Table 9.1 shows the hardware resources of the implementation of (9.1) by using
the FPGA Cyclone IV EP4CGX150DF31C7 along the synthesizer “Quartus II
13.0.” The row called “clock cycles by iteration” represents the number of clock
cycles that are required to process a new iteration to compute y1n+1 , y2n+1 , y3n+1 ,
and y4n+1 with a valid data, and the “Latency” row represents the time to compute a
new iteration with a 50 MHz clock signal. In all the cases, we set h = 0.01.
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Table 9.1 Hardware resources for the implementation of (9.1) by using the FPGA Cyclone
IV EP4CGX150DF31C7, and by applying the Forward-Euler, Backward-Euler, and fourth-order
Runge–Kutta methods with h = 0.01

Resources Forward-Euler Backward-Euler Fourth-order Runge–Kutta Available

Logic elements 1145 2156 4894 149,760

Registers 864 1522 3214 149,760

9×9 bit multipliers 24 48 96 720

Max freq. (MHz) 91.52 91.68 98.56 50

Clock cycles by iteration 10 18 36 –

Latency (ns) 200 360 720 –

Fig. 9.13 Experimental setup to implement the new 4-D hyperchaotic system (9.1), using a
FPGA Cyclone IV EP4CGX150DF31C7, a 16-bit digital-analog converter, and a Teledyne LeCroy
oscilloscope to visualize the attractor

Figure 9.13 shows the experimental setup to implement the new hyperchaotic
system with no balance point in the FPGA Cyclone IV EP4CGX150DF31C7, and a
16-bit digital–analog converter is used to visualize the results in a Teledyne LeCroy
oscilloscope. Figure 9.14 shows the experimental time series generated from the
FPGA implementation for the four state variables in (9.1). Figures 9.15, 9.16,
and 9.17 show the experimental chaotic attractors of the FPGA implementation of
(9.1) by applying the Forward-Euler, Backward-Euler, and the fourth-order Runge–
Kutta numerical methods, respectively.
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Fig. 9.14 Experimental time series of the new 4-D hyperchaotic system based on (9.1), observed
in an oscilloscope, and discretized with Forward Euler with h = 1 × 10−4

9.6 Conclusion

A new 4-D hyperchaotic system with no balance point was proposed in this
work and its dynamic properties were analyzed by a bifurcation analysis. We
demonstrated that the new system has multi-stability and coexisting attractors.
Using MultiSim Version 14, we designed an electronic circuit of the new hyper-
chaotic system with no balance point. The FPGA implementation of the new
4-D hyperchaotic system with no balance point was performed by applying three
numerical methods, and the experimental results were in good agreement to MatLab
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Fig. 9.15 Experimental hyperchaotic attractors of (9.1) from the FPGA implementation by
applying the Forward-Euler method with h = 1 × 10−4. (a) y1–y2 view, (b) y2–y3 view, (c)
y1–y3 view, and (d) y1–y4 view

simulations. The computer arithmetic for the FPGA implementation was done using
32 bit (1 bit for the sign, 12 bits for the integer part, and 19 for decimal part).
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Fig. 9.16 Experimental hyperchaotic attractors of (9.1) from the FPGA implementation by
applying the Backward-Euler method with h = 1 × 10−3. (a) y1–y2 view, (b) y2–y3 view, (c)
y1–y3 view, and (d) y1–y4 view
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Fig. 9.17 Experimental hyperchaotic attractors of (9.1) from the FPGA implementation by
applying the fourth-order Runge–Kutta method with h = 1 × 10−3. (a) y1–y2 view, (b) y2–y3
view, (c) y1–y3 view, and (d) y1–y4 view
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Chapter 10
Displacement of Equilibria and n-Double
Wing Attractor Generation in the
Piecewise Linearized Lorenz System

L. J. Ontanon-Garcia, J. Pena-Ramirez , E. S. Kolosovas-Machuca,
R. C. Martínez-Montejano, and C. Soubervielle-Montalvo

Abstract The unstable dissipative systems (UDSs) of type I are described by third-
order piecewise linear systems having a real negative eigenvalue and a pair of
complex conjugated eigenvalues with positive real part. This type of systems can
result in scroll behavior if at least two unstable hyperbolic focus-saddle equilibria
appear. However, if more equilibria with the same characteristics are added to the
system, the scroll or attractors will displace towards the recently added equilibria. In
this chapter the equilibria displacement technique is applied to a linearized version
of the Lorenz system that satisfies the UDS type I characteristic. An exponential
function can fit the location of the equilibrium points that result in this multi-wing
attractor generation, and the position of the commutation surfaces in the z-axis is
determined by using linear regression. Ultimately, a function in which the solution
generates n-double wing at-tractors that increase size on the z-axis is presented.
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The results of the system shown here are studied and calculated through numerical
analyses and simulations.

Keywords Equilibria displacement · Piecewise linear systems · Attractor
generation

10.1 Introduction

The term of unstable dissipative systems (UDSs) of type I and II describe piecewise
linear (PWL) dynamical systems with specific equilibria stability, as stated in [1–
3]. In this case, unstable systems with saddle-focus equilibria are generated by
introducing affine vectors that change values according to the position of the states
of the system, resulting in commutation surfaces that when crossed change the
location of the equilibria of the system and the direction of their resulting trajectories
over time [4]. The idea is that, by the correct positioning of the equilibrium points
regarding their eigenvectors, the resulting trajectories instead of being unstable
stabilize in scroll trajectories.

Moreover, another interesting behavior is the one reported in [2], where the scroll
trajectories can be repeated over space by the proper adjustment of the eigenvalues
of the system and the location of the equilibria. Here, the authors proposed an
unstable system in R4 where, with the correct location of the equilibria displaced
in the x-axis, the resulting trajectory bounds to a stable dissipative double scroll
attractor. And, by continuing the generation of new equilibria, multiscroll attractors
form trajectories that are complex enough to be later used as a pseudo-random
sequence in a cryptographic scheme [5].

Following the same idea, in [6], the system’s trajectory is displaced not only
in the x-axis but also in y, z and in space. To do so, the stability of the system
must be analyzed in advance, in order to determine the intrinsic dynamics of the
eigenvectors and whether the equilibria are pulling or pushing the orbits [4]. An
important characteristic to mention regarding these approaches is that they all use
UDS of type I, which results in an equal number of scrolls that equilibrium points
introduced. On the other hand, some known systems, such as the Chua attractor
[7], present a similar double scroll behavior. Nevertheless, instead of presenting two
equilibrium points, it stabilizes the dynamics with three equilibrium points with the
same eigenvalues. Another example of this can also be seen in [8], and the references
therein, where Yalçin et al. implemented a family of scroll grid attractors. In this
case, the system is based on a PWL function and the coefficient matrix stability
falls under the UDS type I approach since it also presents more equilibria than the
number of scrolls on the projection of the system, to achieve the stability of the
system. Similar to this case, the works in [9–11] describe methods on the generation
of n-scroll attractors. However, regardless of the number of scrolls and equilibria in
the system, their location must be considered in advance. Otherwise, the intrinsic
dynamic of the eigenvectors may not catch the final trajectory of the system [4].
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In this work, and in the same light as [6], we propose a method to generate n-
double wing attractors that increase in number toward the z-axis. To achieve this,
we use a linearized version of the Lorenz system described by Li et al. [12]. The
advantage of this system is that it conserves the three characteristic equilibria of the
original Lorenz systems. Still, the parameter c acts now as an amplitude control in
the size of the attractor and also forms part of the location of the unstable saddle-
focus equilibrium points. In this sense, the displacement equilibria technique is
applied to generate solutions of the attractor along the z-axis.

10.2 Linearized Lorenz System

Consider the dynamical system described by:

Ẋ = F(X,P), (10.1)

where X ∈ R3 corresponds to the state vector, F : R3 → R3 represents the intrinsic
dynamics of the system, and P ∈ R3 stands for the set of parameters, which in
general are assumed to be constant. The solution of the system induces into the
phase space the flow ϕt (X)|(t∈R). For each initial condition X0 of the system and a
specific set of parameters P, the system’s solution will be represented as ϕt (X0).

In this case, we consider the complete linearized Lorenz system proposed in [6],
which is described by:

ẋ = y − x,

ẏ = −z · sign(x) + c · sign(x) − a · y,

ż = x · sign(y) − b · z,

(10.2)

where P = {a, b, c} are the parameters and X = {x, y, z} ∈ R3 correspond to the
state variables, and sign(·) denotes the sign function. A trajectory of the system
ϕt (X0) can be appreciated in Fig. 10.1 for the set of initial conditions X0 = [1, 1, 1]
and a = 0.1, b = 0.2, and c = 2.8. Note that for these parameter values, the
system oscillates in a chaotic regime. As mentioned by the authors in [12], the
system represented in Eq. (10.2) was adapted from the original Lorenz system after
a linearization process with the sign functions and an adjustment in size control and
sensitivity to the initial conditions. An important characteristic to mention is that
the linearized version also presents three equilibrium points X∗

1,2,3 as the original
Lorenz system. These equilibria are located at:

X∗
1,2 = [± bc

1+ab
,± bc

1+ab
,± c

1+ab
],

X∗
3 = [0, 0, 0]. (10.3)
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Fig. 10.1 Projection of the linearized Lorenz system given in Eq. (10.2) with a = 0.1, b = 0.2,
and c = 2.8 onto the (a) (x, z) and (b) (x, y) planes. The red asterisks mark the position of the
equilibria of the system for the specific set of P

Now, in order to determine the stability of the system, the Jacobian matrix will be
represented depending on the values of the sign(·) functions in the following way:

J =
⎡

⎣
−1 1 0
0 −a −1 · sign(x)

1 · sign(y) 0 −b

⎤

⎦ , (10.4)

where J does not depend on the parameter c. If we consider a and b with the
values presented above, there are four possible scenarios for J and its corresponding
eigenvalues, which are represented as:

(a) If sign(x) > 0 and sign(y) > 0, then:
�a = {−1.5276, 0.1138 ± 0.8092i}.

(b) If sign(x) < 0 and sign(y) > 0, then:
�b = {−0.6339,−0.9669 ± 0.7816i}.

(c) If sign(x) < 0 and sign(y) < 0, then:
�c = {−1.5276, 0.1138 ± 0.8092i}.

(d) If sign(x) > 0 and sign(y) < 0, then:
�d = {−0.6339,−0.9669 ± 0.7816i}.

With �a = �c and �b = �d , here are two possible eigenvalue sets �a and
�b satisfying the UDS definitions of type I stated in [5] and a stable focus node.
This means that X1,2 present two equilibrium points with unstable saddle-focus type
due to �a and the oscillations will be driven around them, as shown in Fig. 10.1a,
from which the symmetric behavior due to the identical equilibria (marked in red
asterisks) is observed. This behavior is similar to the one observed in UDS type I
systems, as presented in [1, 2, 4, 5].

At this point, it is important to remark that the system given in Eq. (10.2) presents
three equilibrium points and an attractor with only two scrolls or wings, as it is
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appreciated in Fig. 10.1, in contrast to the systems discussed in [1, 2, 4, 5], where
they present an equal number of equilibrium points and scrolls. Nevertheless, the
displacement technique will only be applied to the saddle-focus equilibria X∗

1,2.

10.3 Displacement of the Equilibria of the Linearized Lorenz
System

The method of displacing the equilibria proposed in [4, 6] consists of previously
studying the stability of the system and then changing the location of the equilibrium
points in a particular axis or in space. Here, considering the equilibria in Eq. (10.3),
after any variation of the parameter c, the system will only displace X∗

1,2 in space,
leaving the same position for X∗

3. So, we will analyze this parameter by a bifurcation
diagram to understand the dynamics of the system; this is depicted in Fig. 10.2a. In
this case, the local maxima points in the z-axis with respect to the x-axis position
for a range of values for the parameter c were captured. To understand each vertical
plotted set of points for each corresponding value in c, a projection of the local
maxima in one particular value is represented in Fig. 10.2b, where the solution for
c = 2.8 along with the black marks indicating the local maxima in z is represented.
The black marks are represented as part of Fig. 10.2a in the black dashed line for
the corresponding value of c. These two black dotted columns depicted indicate the
place of the symmetric scrolls in the positive and negative regions of the space for
the x- and y-axis.

Notice that for each increased value of the parameter c, the size of the attractor
starts to expand in size and that the equilibria X∗

1,2 (depicted in red dots) are also

Fig. 10.2 (a) Bifurcation diagram of the local maxima of the system given in Eq. (10.2) in the
z-axis projected into the x-axis versus the parameter c. (b) Projection of the trajectories of system
(2) onto the (x, z) plane. The red dots correspond to the location of the corresponding equilibria
according to the values of c. The black dots correspond to the location of the local maxima of the
solution of the system for each particular value of c (in figure (b) only for c = 2.8)
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separating from each other as the value of c is increasing. The increment that the
wings of the attractor are suffering is easy to understand due to the separation of the
equilibria, since X∗

1 is separating from X∗
2, and both are separating at the same time

from the equilibrium X∗
3, resulting in an attractor with more significant size when the

parameter c increases. It is also important to mention that for each assigned value of
c the equilibria will result in the same set of eigenvalues as presented before, which
means that the dynamics of their eigendirection will not change. Now, following the
equilibria location and displacement presented in [6], the idea of this chapter is to
design a piecewise value for the parameter c that results in two sets of equilibria that
generate the corresponding double wing attractors in space regarding their position.
In this case, the following piecewise function for the parameter c will now be defined
as:

cPW =
{

c1 if z ≤ α1,

c2 otherwise.
(10.5)

Notice that a switching surface has been generated at z = α1. And now, for every
pair of values of c introduced to the piecewise function, the number of switching
surfaces will also increase. The values for cPW can be selected arbitrarily for the
study depicted ahead. However, we will consider the former one of c2 = 2.8 as one
of them. The second parameter value will be selected considering that c1 = c2/2 =
1.4. To determine the location of the commutation surface α1, the following analysis
was implemented. First, with each individual value of the parameter and the same
initial conditions as before, the linearized system given in Eq. (10.2) was simulated.
The individual projections of the solutions ϕt (X0)|ci

with i = 1, 2 are represented
in Fig. 10.3a, where the orange attractor stands for the solution with c = c1 = 1.4
and the blue attractor for c = c2 = 2.8, both with their respective equilibria in red
asterisks.

Fig. 10.3 Projections onto the (x, z) plane for the linearized Lorenz system given in Eq. (10.2) for
different values of the parameter c. In both graphs, the attractor resulting from a value of c = 2.8 is
shown in blue, whereas the orange attractor has been generated using (a) c = 1.4 and (b) c = 1.5.
The asterisks denote the corresponding equilibrium points
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Table 10.1 Maximum and minimum values of the solution of the linearized Lorenz system given
in Eq. (10.2) for each corresponding value of the parameter CPW in Eq. (10.3). The units are
dimensionless

minci
maxci

Lengthci
δci

ci x y z x y z x y z % of z

c1 1.4 −0.7325 −0.85 0.968 0.731 0.849 1.998 1.463 1.70 1.029 6.203

c2 1.5 −0.7857 −0.91 1.036 0.784 0.911 2.145 1.570 1.824 1.108 19.04

c3 2.8 −1.4637 −1.70 1.934 1.469 1.707 4.022 2.933 3.408 2.087 −

To understand more about these solutions and the dimensions of their attractors,
the maximum maxci

= max{ϕt (X0)|ci
} and minci

= min{ϕt (X0)|ci
} values that

both solutions present with respect to each axis are represented in Table 10.1. These
values correspond to each simulated solution for 30,000 iterations using the Runge–
Kutta of order 4 (RK4) integration method. Also, in Table 10.1, the column labeled
as Length corresponds to the size of the simulated attractor in each axis and is
defined as Lengthci

= maxci
− minci

.
Now, with these values the ratio of matching locations for the z-axis is calculated

in the following way:

δci
= maxci

− minci

Lengthci

× 100%. (10.6)

This δci
represents the percentage of occupation of the attractor in the solution

of ϕt (X0)|ci+1 with respect to the length of the solution of ϕt (X0)|ci
in the z-axis.

To understand this, Fig. 10.3a depicts this location represented near z ≈ 2 labeled
δ and marked with two black dashed lines. In this case, the maxc1 = 1.9982 and
minc1 = 1.9343, with the length of the small attractor in the z-axis as Lengthc1 =
1.0297 results in δc1 = 6.2035%.

This value indicates that there is only ≈6% of overlapping in the locations in the
z-axis for both attractors generated from the corresponding pair of c1 and c2 values.
Considering that the commutation surface for the parameter cPW in Eq. (10.4) will
be chosen within this narrow overlapping space, there is a very small region from
which values can be taken for a double wing attractor. Therefore, a change in c1 =
1.5 and the same value in c2 = 2.8 was studied. The projection of this new attractor
is depicted in Fig. 10.3b in orange color; the solution of c2 is again depicted in blue.
By analyzing the values of the dimension of the attractors depicted in Table 10.1,
now it can be appreciated that δc1 incremented considerably to 19%, as the region
marked with black dashed lines is represented in Fig. 10.3b.

Figure 10.4a and b shows the projections onto the (x, z) and (x, y) planes for
the linearized Lorenz system given in Eq. (10.2) for the parameter cPW given in
Eq. (10.4) with these values of c1 = 1.5 and c2 = 2.8. The switching surface
was chosen as α1 = 2, although for a two-double wing attractor this value can
vary as long as it is located between the maximum value of the attractor on the z-
axis obtained with c1 and the minimum value of the second attractor with c2. The
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Fig. 10.4 Projection onto the (a) (x, z) and (b) (x, y) planes for the linearized Lorenz system
given in Eq. (10.2) for the parameter cPW given in Eq. (10.4) with c1 = 1.5 and c2 = 2.8 and a
switching surface located at α1 = 2. The graph depicts in red asterisk the corresponding equilibria
for each c1 and c2

graph depicts in blue line the solution of the system ϕt (X0)|cPW
for the same set

of initial conditions as before. Notice that the graph depicts a single solution that
visits each corresponding domain for the particular values of c1 and c2. The system
automatically changes the equilibria with respect to the location of the solution in
the z-axis. These equilibria are represented in red asterisk for the corresponding
values of c1 and c2. It is important to mention that if the values of c1 is adjusted as
c1 = 1.4, the flow of the system as it is represented in Fig. 10.4 does not oscillate in
this double wing attractor solution, it instead depicts the same solution as for the c2
in Fig. 10.3 in the blue line.

What follows is extending the generation of these switching surfaces and the
equilibria’s location for different values of c. For this, we calculated the values of c

that match a similar ratio of 19 < δci
< 22. The idea is to simulate the system given

in Eq. (10.2) for a range of c values and measure the ratio of matching locations δci

as in Eq. (10.5). The simulation was calculated for the following seven consecutive
values c1 = 1.5, c2 = 2.8, c3 = 5.2, c4 = 9.6, c5 = 17.7, c6 = 32.5, and c7 = 59.9.
The maximum and minimum values of the attractor on each axis are presented in
Table 10.2 along with the corresponding values of δci

.
For each pair of equilibria (c1 and c2, c2 and c3, up to c6 to c7), the switching

surfaces must be calculated according to the size of the double wing attractors
generated for the increasing values of c1 represented in Table 10.2. The location of
the equilibria for these values is represented in Table 10.3. Taking these values into
account, the αi were calculated heuristically; the considerations made were to select
values for the position of the switching surface in the z-axis located between the two
corresponding equilibria that result in the dynamic of the double wing attractor for
the pair of values ci and ci+1 as depicted in Fig. 10.4.

The resulting values for the switching surfaces are: α1 = 1.9705, α2 = 3.7450,
α3 = 7.0980, α4 = 12.9117, α5 = 23.3529, and α6 = 42.8627. With these values,
a seven-domain region can be designed with the following piecewise parameter:
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Table 10.2 Maximum and minimum values of the solution of the linearized Lorenz system given
in Eq. (10.2) for each corresponding value of ci . The units are dimensionless

minci
maxci

Lengthci
δci

ci x y z x y z x y z % of z

1.5 −0.79 −0.91 1.04 0.78 0.91 2.15 1.57 1.82 1.11 19.04

2.8 −1.46 −1.70 1.93 1.47 1.71 4.02 2.93 3.41 2.09 20.32

5.2 −2.71 −3.16 3.60 2.72 3.16 7.43 5.43 6.32 3.83 20.33

9.6 −5.00 −5.81 6.65 5.02 5.82 13.70 10.02 11.64 7.05 20.61

17.7 −9.25 −10.7 12.25 9.27 10.77 25.37 18.52 21.52 13.13 21.84

32.5 −16.9 −19.7 22.51 16.95 19.73 46.37 33.91 39.50 23.86 20.36

59.9 −31.3 −36.3 41.51 31.18 36.32 85.39 62.49 72.70 43.88 −

Table 10.3 Equilibria X∗
1,2

in Eq. (10.3) of the system
given in Eq. (10.2) for the
values of the parameter c in
Table 10.2. Also, the location
of commutation surfaces
between each pair of
equilibria

ci ±x∗ ±y∗ ±z∗ αj

1.50 0.2941 0.2941 1.4706 1.9706

2.80 0.5490 0.5490 2.7451 3.7451

5.20 1.0196 1.0196 5.0980 7.0980

9.60 1.8824 1.8824 9.4118 12.9118

17.70 3.4706 3.4706 17.3529 23.3529

32.50 6.3725 6.3725 31.8627 42.8627

59.90 11.7451 11.7451 58.7255 −

Fig. 10.5 Projection of a
seven-double wing attractor
of the system given in
Eq. (10.2) with the PWL
parameter in Eq. (10.5) into
the (x, z) plane. The values
for c are represented in Table
10.2

cPW =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 if z ≤ α1,

c2 if z ≤ α2,

c3 if z ≤ α3,

c4 if z ≤ α4,

c5 if z ≤ α5,

c6 if z ≤ α6,

c7 otherwise.

(10.7)

The projection of the system given in Eq. (10.2) with the parameter from
Eq. (10.6) depicts a seven-double wing attractor, as it is shown in Fig. 10.5. The red
asterisks represent the location of the equilibria of the system for each generated
domain.
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10.4 Curve Fitting for the n-Double Wing Attractor
Generation

In the previous section we have shown how to generate up to 7-double wing
attractors. Here, we elucidate on the growing tendency for the values of ci and the
specific locations for the switching surfaces for the general case of n-double wing
attractors. The idea of generating a fitting function for the equilibria displacement
is similar as the ones presented in [13] and [14]. First, considering the values of ci ,
the increment that they present in Table 10.2 falls on the ≈20% ratio commented in
Sect. 10.3 and it seems to fit an exponential curve of the form:

ĉi = β0e
(β1·i), (10.8)

with β0, β1 ∈ R, and i = 1, 2, . . . , n represents the number of switching surfaces
introduced by the cPW parameter.

This can be appreciated in the graph of Fig. 10.6a for the marks in red asterisks
that correspond to the seven values of ci in Table 10.2. An exponential curve fitting
was implemented with a minimal square linear regression through a logarithmic
transformation. The coefficients calculated are β0 = 0.819106 and β1 = 0.613921
with a coefficient of determination of r2 = 0.99998. The fitted curve is shown
in Fig. 10.6a with the blue line. Here, the blue circle marks correspond to the
approximated values taken from the model in Eq. (10.7), which result in ĉ1 = 1.513,
ĉ2 = 2.796, ĉ3 = 5.166, ĉ4 = 9.546, ĉ5 = 17.639, ĉ6 = 32.589, and ĉ7 = 60.213.

Fig. 10.6 (a) Exponential regression for the values of ci . (b) Linear regression for the location of
the switching surfaces
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Regarding the location of the switching surfaces used in the PWL of Eq. (10.6)
(represented in Table 10.3), the location of αi with respect to the number domains j

seems to increment linearly. Therefore, a linear regression fit of the form:

α̂j = k0 + k1 · ĉi (10.9)

is adjusted with k0, k1 ∈ R and i stands for the number of switching surfaces and the
values of αi presented for Eq. (10.6). After calculating with a minimal square linear
regression, the values result in k0 = 0.0594 and k1 = 1.3155 with a coefficient
determination of r2 = 0.99994. The results of this can be seen in Fig. 10.6b, where
the values of αi are depicted in red asterisks, the linear regression α̂j is represented
in the blue line, and the marks in blue circles correspond to the calculated values for
j = 1, 2, . . . , 6.

With these two regressions, the design of a n-double wing attractor can be
implemented by means of a piecewise function that changes the values of the
parameter c according to the exponential curve ĉi with the switching surfaces
located at α̂j . Therefore, the following function is defined:

cPW =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ĉ1 if z ≤ α̂1,

ĉ2 if z ≤ α̂2,
...

...

ĉn−1 if z ≤ α̂n−1,

ĉn otherwise.

(10.10)

With it, any number of double wing attractors can be designed from the system
given in Eq. (10.2). Notice that the number of values for the parameter ĉi must
be greater than one than the number of values for the switching surfaces in α̂j .
To exemplify this, consider a 2-double, 3-double, 6-double, and 9-double wing
attractors with corresponding parameters and switching surfaces ĉi , α̂j as it is
represented in Fig. 10.7 for the following values: (a) i = 1, 2 and j = 1; (b)
i = 1, 2, 3 and j = 1, 2; (c) i = 1, . . . , 6 and j = 1, . . . , 5; (d) i = 1, . . . , 9 and
j = 1, . . . , 8. The initial condition used was the same as the one represented before.
In the same light, a n-double wing attractor can be implemented considering the
values of i and j for the system of Eq. (10.2) with the piecewise term in Eq. (10.9).

To determine if the solutions projected in Fig. 10.7 are chaotic, the Lyapunov
exponents were calculated using the algorithm proposed by Wolf et al. [15]. The
maximum Lyapunov exponent for the four cases is 0.1137, no matter what value
of c or the number of double scrolls presented. Therefore, the observed dynamic
behavior in all panels of Fig. 10.7 is chaotic.
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Fig. 10.7 Projection onto the (x, z) plane of the system given in Eq. (10.2) with the piecewise
parameter from Eq. (10.9) for different number of double wing attractors: (a) 2-double, (b) 3-
double, (c) 6-double, and (d) 9-double wing attractors

10.5 Conclusions

A method for generating n-double wing attractors for the linearized Lorenz system,
which is based on the displacement equilibria technique for UDS type I, has been
presented. The study has shown that by switching the value of parameter c, the
saddle-focus equilibria of the system can be displaced along the space without
changing the corresponding stability. This change of equilibria displaces as well the
resulting trajectory of the system along with the scrolls that it presents. Furthermore,
it has been shown that the values of the switching parameter c, as well as the location
of the switching surfaces αi can be obtained by using an exponential function and
linear regression, respectively. Making it possible to design a fitting function that can
be adjusted depending on the number of double scrolls needed. With this proposed
function, a 2-, 3,- 6-, and 9-double scroll attractors were generated numerically.

A potential application of the results presented here is in cryptography, as the
system presented a similar behavior as in [5]. The results on this matter may be
reported elsewhere.
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Chapter 11
Analysis of a Three-Dimensional
Non-autonomous Chaotic Circuit with a
Thermistor as a Physical Memristor

Laskaridis Lazaros, Volos Christos, and Stouboulos Ioannis

Abstract In 1976, Prof. Leon Chua proposed that a physical thermistor can be
modeled as a memristive device, which can be used as a nonlinear element in
chaotic circuits. In this direction, an autonomous circuit with two passive elements
(inductor and capacitor), a nonlinear resistor, and a thermistor, which plays the
role of a nonlinear locally active memristor, has been proposed by Ginoux et al.
This work presents the study of a non-autonomous circuit, which is based on
the aforementioned autonomous circuit, by adding an external voltage AC source.
Moreover, the effect of the capacitor’s and inductor’s value and the effect of the
initial conditions in system’s dynamical behavior have been studied. To investigate
further system’s dynamical behavior, various tools from nonlinear theory have been
used, such as bifurcation and maximal Lyapunov exponent diagrams, Poincaré
maps, and Kaplan–Yorke dimension. Interesting phenomena related to chaos have
been investigated. In more detail, chaotic and regular orbits, such as periodic or
semi-periodic, have been observed. Furthermore, the route to chaos through the
mechanism of period doubling, coexisting attractors, and crisis phenomena have
been observed.

Keywords Non-autonomous circuit · Thermistor · Memristor · Chaos ·
Coexisting attractors

11.1 Introduction

Leon Chua in 1971 [1] depicted and named the fourth crucial electrical element by
finishing a hypothetical group of the other three (resistor, capacitor, and inductor).
The name of this element was memristor. A memristor is a non-direct two-terminal
electrical element relating electric charge and magnetic flux linkage [2]. In a
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memristor, its resistance decreases when the current flows in a single way and the
opposite [3]. At the point when the current stream is halted, memristor holds its last
state.

The idea of memristive framework was subsequently summed up by Chua and
Kang [4]. Such a framework contains a circuit, of various ordinary elements, which
mirrors key properties of the ideal memristor element. The distinguishing proof of
memristive properties in electronic elements has drawn in discussion. Tentatively,
the ideal memristor is yet to be illustrated [5, 6]. Notwithstanding, a couple of
executions interesting circuits have as of late utilized ReRAM memristive models
[7–9]. Thus, a physical model of memristor is essential, to understand in depth this
fourth circuit element.

Furthermore, while studying the semiconductor conduct of silver sulfide in 1833,
Michael Faraday [10] discovered the concept of thermistors. As the temperature
rose, he saw that the silver sulfides’ opposition decreased. Following it, in 1930,
Samuel Ruben invented the basic commercial thermistor [11]. Also, Steinhart and
Stanley Hart [12] discovered a capability that thermistor’s characteristics have, i.e.,
the resistance as a function of temperature, which turned out to be appropriate for a
wide range of thermistors for ranges of a couple of degrees to two or three hundred
degrees. Furthermore, Sah et al. [13] investigated a second-order memristor that
depicts the model of a physical device known as a Positive Temperature Coefficient
and Negative Temperature Coefficient thermistor coupled in series.

Thermistors are commonly employed as a linear resistor whose resistance fluctu-
ates with temperature. A negative-temperature coefficient thermistor, in particular,
is distinguished by Chua and Kang [4]

vT = R0(T0)exp

[
β

(
1

T
− 1

T0

)]
i � R(T )i, (11.1)

where β is the material constant, T is the thermistor temperature, and T0 is the room
temperature both in kelvin. The characteristic curve of the thermistor is modeled
with the classical equation of Steinhart–Hart as shown in [14]. The constant R0(T0)

denotes the cold temperature resistance at T = T0. The instantaneous temperature
T is a function of the power dissipated in the thermistor. Moreover, thermistor is
governed by the heat transfer equation

p(T ) = vT (t)i(t) = δ(T − T0) + c
dT

dt
, (11.2)

where c is the heat capacitance and δ is the dissipation constant of the thermistor.
By combining Eqs. (11.1) and (11.2), it is obtained

dT

dt
= −δ

c
(T − T0) + R0(T0)

c
exp

[
β

(
1

T
− 1

T0

)]
i2. (11.3)
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As a result of Eq. (11.3), the thermistor is a first-order time-invariant current-
controlled memristive. In this study, an autonomous three-dimensional system [14]
with a thermistor was converted to a non-autonomous system by introducing an
external alternating current source and a linear resistor into the model.

In this chapter, a detailed investigation of the dynamical behavior of the proposed
non-autonomous circuit for different values of the capacitance of the capacitor, as
well as the inductance of the inductor and the initial conditions, is presented. The
capacitance is studied in the region of 0 and 2 F. Also, the inductance belongs
between 0 and 15 H. This work is based on the simulation results, which are
produced by using well-known numerical tools, such as Lyapunov exponents
[15, 16], bifurcation diagrams [17], and Poincaré section. The calculation of the
bifurcation diagrams is performed by computing the Poincaré map of the system.
The sampling of the Poincaré map is done with the time being an integer multiple of
the external period of the system, excluding the transient points. Also, the Lyapunov
exponents are computed based on the algorithm from Sandri’s [18] package in
Mathematica.

The work is organized as follows. In Sect. 11.2, the proposed circuit and its
properties are introduced. In Sect. 11.3, the numerical investigation of the circuit’s
dynamics is presented. Finally, the conclusions of this work are discussed in
Sect. 11.4.

11.2 The Proposed Nonlinear Circuit

The proposed framework depends on the independent Muthuswamy–Chua–Ginoux
circuit [14], which is changed over to a non-independent circuit by utilizing an
external voltage source. The framework comprises a resistor R, a capacitor of
capacitance C, an inductor of inductance L, a nonlinear resistor NR , a thermistor
that is a nonlinear locally active memristor M , and an external AC voltage source.
The previously mentioned circuit is displayed in Fig. 11.1.

Fig. 11.1 Non-autonomous converted Muthuswamy–Chua–Ginoux circuit
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The nonlinear resistor is modeled [14] as a cubic function of the current and it
is given by f (i) = αi + bi3. Also as shown in [14] by using Kirchhoff’s law for
voltages in the left and right loop of the system, the following equations for the
voltages are produced:

VS = VR + VC (11.4)

VC + VL + VNR
+ VM = 0, (11.5)

where VL is the voltage of the inductor and it is given by VL = LdiL
dt

.
In Eq. (11.4), VS = V0 cos(2πf t) is the external ac voltage, VR is the voltage of

the linear resistance, and VC is the voltage of the capacitor.
The voltage of the nonlinear resistor is modeled as a cubic function, and it is

given by

VNR
= f (iL) = αi + bi3, (11.6)

where α and b are constants. The voltage of the thermistor is given by Ohm’s law
and its equation is VM = R(T )iL. By taking Eq. (11.4) into account and since the
current from the capacitor is given by iC = C

dVC

dt
and also from the equation of the

currents which is Kirchhoff’s first law iR = iL + iC , the equations of the system are
obtained.

dVc

dt
= VS

RC
− iL

C
− Vc

RC

diL

dt
= − 1

L
(Vc + f (iL) + R(T )iL) (11.7)

dT

dt
= R(T )

c
i2
L − δ

c
(T − T0).

By using the following approximation [14], R(T ) is given:

R(T ) = R0

[

1 − β

T 2
0

(T − T0) + β(β + 2T0)

2T 4
0

(T − T0)
2 + O((T − T0)

3)

]

.

(11.8)
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To work on the investigation of system (11.7), a change to system’s variable is made
as

x = VC, y = iL, z = T − T0.

Also, the following changes to equation’s (11.8) parameters have been used.

θ = R0

c
, γ = −R0

c

β

T 2
0

, μ = R0

c

β(β + 2T0)

2T 4
0

, ε = δ

c
.

Finally, the set of Eqs. (11.7) of system has been transformed to the following set
of equations:

dx

dt
= Vs

RC
− x

RC
− y

C

dy

dt
= − 1

L
(x + f (y) + R(z)y) (11.9)

dz

dt
= R(z)y2 − εz,

where f (y) = αy + by3 and R(z) = μz2 + γ z + θ . The basic difference of this
system, from the system of equation (4) in [14], is the dependence of the time and
the existence of more elements in the circuit. Also the units of the variables are in
S.I. and especially the capacitance in F, the resistance in �, the voltage in V, the
frequency in Hz, and the inductance in H.

11.3 Numerical Results

In this section, the dynamical behavior of the proposed, non-autonomous, system
(11.9) with V0 �= 0, C �= 0, and R �= 0 for different values of the capacitance
of the capacitor C, the inductance L of the inductor, and the initial conditions is
investigated. Generally, the system has rich dynamics that include regular (periodic
and semi-periodic) and chaotic oscillations. Also, small changes in the inductance L

and in the initial conditions produce a shift between chaotic and regular oscillations
and the existence of coexisting attractors, respectively.
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Fig. 11.2 (a) Bifurcation diagram of x versus the capacitance C and (b) zoom in specific region

11.3.1 The Dynamics Related to the Capacitance C

Figure 11.2 presents the bifurcation diagram of the x variable, which is the voltage
of the capacitor, in regard to the capacitance of the capacitor C. Moreover, the values
of parameters of the system are V0 = 1.0 V, R = 5 �, f = 0.5 Hz, α = −6 �, b =
3 �

A2 , L = 12.2 H, μ = 3�kg
J K , γ = −2�kg

J , θ = 3�kg K
J , and ε = 0.6 kg K

J .
The parameters have been set to these values for two reasons. The first reason is
because of the exponential behavior of R(T ). More specifically, the resistance of
the thermistor R(T ) is supposed to be positive, and as a consequence, the right hand
of Eq. (11.8) must be positive. The second reason is to find chaotic behavior. Also,
the initial conditions are x0 = 0.01, y0 = 0, and z = 0. From this bifurcation
diagram, a rich dynamical behavior of the system is investigated in regard to the
capacitance C. There are regions where the system oscillates chaotically and regions
where the system oscillates regularly. In more detail, system’s dynamic behavior is
chaotic for C < 0.06 F. Then, the system goes to regular behavior (periodic) and
finally to semi-periodic behavior. The maximal Lyapunov exponent diagram verifies
this rich dynamical behavior and indicates that after the value of the capacitance
(C = 0.38 F) the system goes to semi-periodic behavior for all the range of the
bifurcation parameter. Figure 11.3 presents the maximal Lyapunov exponent, where
when the exponent is positive, that means the existence of chaotic behavior (chaotic
oscillations) and when it is not positive, that means the system has a regular behavior
(periodic and semi-periodic oscillations).

By taking a value of the capacitance (C = 1.0 F), the system is solved, and the
time series of signals x, y and z and the respective phase portrait are presented in
Fig. 11.4. Thus, from time series and from the phase, the portrait is observed that
the orbit fills densely. So the conclusion is that the orbit is semi-periodic, which
is also confirmed from the Poincaré section and maximal Lyapunov exponent of
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Fig. 11.3 (a) Maximal Lyapunov exponent diagram and (b) zoom in specific region

Fig. 11.5 where the maximal Lyapunov exponent is equal to mLCE = 0.000002.
Also, the whole Lyapunov spectrum is (0.000002, 0,−0.0539074). Moreover, the
Kaplan–Yorke conjecture [18–20] calculated from equation

D = j +
∑j

i=1 λi

|λj+1| , (11.10)

where λi are the Lyapunov exponents, is equal to D = 2.0. This means that it is a
torus of dimension 2.

11.3.2 The Dynamics Related to the Inductance L

In this section, the numerical results from the simulations regarding the value of
inductance L are presented. The bifurcation diagram in regard to the parameter L for
specific values of the capacitance of the capacitor C and the amplitude V0 of the AC
voltage source has been produced. In Fig. 11.6, the bifurcation diagram is presented
in regard to the inductance L for C = 0.01 F and V0 = 1.0 V, and in Fig. 11.7, the
diagram of maximal Lyapunov exponent is depicted. From the bifurcation diagram
of Fig. 11.6, it is observed that the dynamical behavior is changing between chaotic
and regular as the inductance L increases, through period-doubling routes. This
behavior is also confirmed from the maximal Lyapunov diagram of Fig. 11.7, where
the maximal Lyapunov exponent is positive in chaotic regions and no positive in
non-chaotic regions. Also, in Fig. 11.8, it is presented the time response of signal x,
the phase portraits, and the Poincaré section of the system for L = 5 H and L = 4 H.
It is observed that for L = 5 H the system has chaotic behavior, and for L = 4 H,
the system’s behavior is regular and especially periodic with period 2.
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Fig. 11.4 (a), (b), (c) Time response for x,y and z variables and (d) phase portrait of system in x–y
plane for V0 = 1.0 V and C = 1.0 F

11.3.3 The Dynamics Related to the Initial Conditions
x0, y0, z0

In this subsection, the dynamical behavior of the system is investigated in regard
to the initial condition x0, y0, z0. More specifically, the parameters of the system
are V0 = 1.0 V, C = 0.01 F, and L = 12.2 H, and now the linear resistance is
changed to a higher value and specially to R = 31 �. So, in Fig. 11.9, a bifurcation-
like diagram and the maximal Lyapunov exponent diagram in regard to the initial
conditions x0, y0, and z0 have been produced.

From the bifurcation-like diagram and the maximal Lyapunov exponent diagram,
it is observed the dynamical behavior of the system changes in regard to the initial
conditions x0, y0, and z0. More specifically, there are regions where the behavior
is only chaotic (2.7 < x0 < 5.5) and regions where the behavior is only regular
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Fig. 11.5 (a) Poincaré section and (b) maximal Lyapunov exponent of system for V0 = 1.0 V and
C = 1.0 F

Fig. 11.6 Bifurcation diagram of system in regard to L for C = 0.01 F

(7.7 < x0 < 8.35). Also, except from these two regions, the behavior of the system
is changing rapidly between chaotic and regular behavior, as it is observed from
the bifurcation-like and maximal Lyapunov diagrams. Therefore, the existence of
coexisting attractors for different initial conditions is observed. In Fig. 11.10, the
phase portraits for x0 = 0.06 (chaotic behavior) and for x0 = 8.0 (regular behavior)
are presented.
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Fig. 11.7 Maximal Lyapunov diagram of system in regard to L for C = 0.01 F

11.4 Conclusion

A three-dimensional non-autonomous chaotic circuit based on a physical memristor
is examined, with a thermistor serving as a “local active” memristor. The thought
was to consider the dynamical behavior of the autonomous system by embedding
an external AC voltage source and a linear resistance R. Plenty of numerical tools
to study the dynamical behavior, such as bifurcation and bifurcation-like diagrams,
diagrams of maximal Lyapunov exponent, and the Poincaré map, were used.

The non-autonomous system (11.9) presented rich dynamical behavior. Chaotic
and regular behavior were observed. More specifically, chaotic, periodic, and semi-
periodic orbits were revealed. Moreover, the system presented route to chaos
through the mechanism of period doubling as well as crisis phenomena. From
bifurcation diagrams in regard to the capacitance C, it is observed that as the
capacitance increases from C = 0.01 F to C = 2.0 F, the dynamical behavior of
the system becomes regular (semi-periodic) in all the range as it is presented.

The second approach to our system was to change the inductance L and study
the dynamical behavior. In this case, it is observed that, as the inductance increases,
the dynamical behavior is changing between regular and chaotic as shown from the
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Fig. 11.8 (a, b) Time responses of x variable, (c, d) phase portraits, and (e, f) Poincaré section for
L = 5 H and L = 4 H, respectively

bifurcation diagram, as well as from the time responses for L = 5 H and L = 4 H.
More specifically, periodic windows inside chaotic regions were observed.

Finally, the last approach was to change the initial conditions x0, y0, and z0.
In this approach, it is observed that as the initial conditions are increasing, the
chaotic behavior is changing to the regular behavior rapidly. Also, the existence
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Fig. 11.9 Bifurcation-like diagram and maximal Lyapunov diagram of system in regard to (a, b)
x0, (c, d) y0, and (e, f) z0 for C = 0.01 F

of coexisting attractors was presented. What is more, regions where the behavior
is only chaotic and regions where the behavior is only regular were observed. As
a recommendation, it would be interesting to investigate the dynamical behavior of
the system, by changing the function that describes the nonlinear resistance, as well
as by replacing the thermistor with a real memristor.
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Fig. 11.10 (a) Chaotic phase portrait of x–y plane for x0 = 0.06 and (b) periodic phase portrait of
x-y plane for x0 = 8.0
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Chapter 12
Inverse Filter in the Growth of Urban
Sprawl with Cellular Automata Model

Eduardo Jiménez-López

Abstract Thanks to the similarity between the population growth dynamics and the
operating way of the models based on Cellular Automata (CA), they can be used to
simulate processes that involve the growth of the urban area. Changes in land use
depend on a set of social and economic factors that combined with CA offer a way
to understand a series of very complex challenges, such is the case to determine
which is the transition rule that best explains the dynamics of growth of each area
of a city, as it is the key to controlling model behavior. A technique called Inverse
Filter is proposed, which finds the best transition rule considering criteria such as
geometry, position, and amount of population in the space. The evaluation with
previous criteria is carried out using the following metrics: Kappa Index, Jaccard
Index, Fractal Dimension, and Shannon Entropy, showing the performance of the
tool. Urban growth in Toluca city for the period 2003–2017 is considered as a case
study using 256 neighborhood rules, generated from a binary count of dimension
one.

Keywords Cellular automata · Reverse filter · City growth

12.1 Introduction

Cities are the product of the social pact and their planning must be supported
by collective consultation processes [1]. Citizens could hardly contribute actively
and informed in the co-design of the city without having automated scientific and
technological developments [2]. It is increasingly necessary to have interactive,
practical urban models, supported by exact sciences and technological tools, capable
of supporting collective consultation and design processes of cities [3, 4].

The traditional models, used to simulate the growth of the urban area, are usually
not spatial [5], so they need techniques such as CA, which determine the position

E. Jiménez-López (�)
El Colegio Mexiquense A.C., Zinacantepec, Estado de México, Mexico

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Huerta Cuellar et al. (eds.), Complex Systems and Their Applications,
https://doi.org/10.1007/978-3-031-02472-6_12

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02472-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-02472-6_12


232 E. Jiménez-López

in the nearby neighborhood. The CA construct supported spatial patterns of local
interactions between cells. This type of model can handle the growth dynamics of
cities through transition rules, which help to explain the influence of neighborhood
effects in the study area [6, 7]. It can be said that the transition rules are the
fundamental component of the CA models in the growth of the urban area.

CA-based urban growth models are used to understand population growth
processes in cities. However, the calibration of these models is a process that
requires mathematical techniques that provide objective results. Therefore, the
calibration of drivers of urban growth such as accessibility or the calibration of the
dynamics of the neighborhood in the models is essential [8].

One reason that CAs are used in various disciplines is because of their effec-
tiveness and precision compared to systems of differential equations, and they also
generate more untouchable and intuitive results [9, 10].

The CA dynamically updates the spatial variables involved iteratively over a
period. Consequently, the results are not determinant. Each spatial variable has a
different impact based on its initial and on neighborhood-level parameters. The CA
functions as a spatial allocator by scanning all cells and determines a transition
weight for the central cell [11, 12]. The higher the potential of the cells, the more
likely it is that the pixels will change to the situation in their interaction with the
neighborhood. This mechanism continues until you assign all cells to built or unbuilt
areas [4].

The concept of urban expansion is usually associated with dispersed cities, so
the literature attempts to identify the factors that influence urban growth toward a
certain area [13, 14]. Thus, through the construction of this model it is possible to
determine future scenarios that help predict current growth trends and in turn know
the consequences of implementing actions to benefit the planning of a city.

Derived from the above, an Inverse Filter is proposed based on the principle of the
Mahalanobis distance. The filter works on the principle of finding the best transition
rule that simulates the growth of the urban area. To demonstrate the effectiveness
of the filter, its advantages are evaluated and presented using the city of Toluca,
México, as a case study.

The Inverse Filter is a technique that allows you to compare images as a result
of the simulation of scenarios. Such a comparison is made considering a set of
variables that measure different characteristics that represent dimensions [15].

When performing the spatialization of the different CA rules, the results are
verified using the following metrics: Kappa index, Jaccard index, fractal dimension,
and Shannon entropy. These metrics measure characteristics of urban expansion and
evaluate changes over time, changes in space, in the geometry, and distribution of
the urban area, respectively.

For the development and analysis of this work, a hybrid model is carried out that
integrates the AC model to the Geographic Information Systems (GIS), placing the
research in the field of Geosimulation [16, 17]. The development allows to simulate
the expansion of the urban area in the period 2003–2017 in the metropolitan area of
the city of Toluca city.
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In addition, the Inverse Filter is primarily intended to facilitate neighborhood
influence calibration using an automatic rule detection procedure. Another objective
is to develop a practical and useful procedure to automate the processes that require
a longer time in the neighborhood calibration process in growth models of the urban
area with CA. To demonstrate the efficiency of this approach, it is shown how
calibration can help to find the best neighborhood rule in the study city through
a procedure that measures different characteristics of the growth of the urban area.

The work is developed under the following structure: Sect. 12.1 highlights some
key ideas for this text related to urban models based on Cellular Automata. In
Sect. 12.2 the proposed technique called Inverse Filter is explained in detail. The
Filter is applied to identify and compare each of the simulations with respect to
the observed urban expansion. In Sect. 12.3, the usefulness of the Inverse Filter to
explore urban planning scenarios is shown. Finally, in Sect. 12.4 the conclusions of
the work are developed, their contributions are highlighted, and the research agenda
is presented that allows us to continue advancing toward the availability of urban
models that practically support collective consultation and co-design processes of
cities from México. Spectral bands are images that capture reflected energy in a
different range of the electromagnetic spectrum.

12.2 Material and Method

The study area is the city of Toluca, capital of the State of Mexico located in the
center of Mexico. From 2003 to 2017, it increased from 834,399 to 1,338,126
inhabitants [18]. For the development of this research, panchromatic satellite images
are used, coming from the Landsat 7 and 8 satellites, composed of a set of spectral
bands. Only bands 4, 6, and 7 are used, which highlight urban features when
generating RGB color images. The result is the entrance images to the CA [19].

The tool that is proposed and that we call the Inverse Filter has its origins in
the local or global comparison stages with the indicators that measure the growth,
dispersion, or accuracy in the pixels of the images (i.e., maps) generated by the
model that compares the real images. All the indices generated by these indicators
are taken, which are grouped and ordered in a matrix; in each row, the indicators of
the simulation generated by each rule are placed. These indices are filtered by letting
the highest values pass and are placed in the first places of the matrix until the most
prominent ones are obtained [20]. We based the study on associating the separation
measures between the metrics, turning this multivariate problem into a univariate
problem by using a linear combination of measures in vector form involved in the
analysis [21].

The filter is coded as a tool and incorporated into the SIG, making use of the
PyQGIS package and the Python programming language [19]. With this tool, the
computational processing time required to find the best transition rule is reduced.
For a CA model, the computational calculation time reached up to three weeks to
finding the best rule. The FI model has a calculation time of 8 hours. Therefore
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it is mentioned that the calculation time is greatly reduced. The work contributes
to the urban planning of the study city, since it normalizes metrics that impact
urban growth, in addition to allowing the creation of future applications on GIS
environments.

The experimental part of this work applies local Transition Rules, following the
logic of a CA, where the neighborhood is defined based on contiguity criteria, that
is, the close neighbors have a greater influence on the analysis cell or pixel [22]. In
the CA model, a random search of a pixel is carried out within a two-dimensional
grid, to which the Transition Rule ∂ is subsequently applied, which is a number in
base 10 that goes from the number 0–255, that is, ∂ ∈ [0, 255]. This number is
translated into its base 2 (binary) equivalent that can be used by the model.

The experimentation of this work uses binary raster images of the city of Toluca
in the years 2003–2017. The satellite images obtained with the Landsat 8 satellite
are open access; there are some images that are private according to the level of
resolution they handle and are delivered by NASA in the reference [23]. The pixels
in the image are classified into two categories: 1 (urban land) and 0 (vacant land).
For more details on the binarization of maps, see [22]. An example of the initial
conditions of the images (maps) in binary format is shown in Fig. 12.1.

The simulation and projection of the urban area in the metropolitan area of Toluca
begins with the random search of a pixel and its neighborhood on the raster map
where the Transition Rule can be applied. Neighbors are identified: x − 1, x, x +
1; see Fig. 12.2. The number of processes is determined by the growth trend, the
increase in pixels by one, from the 2003 image to the 2017 image. The increase is
added to the model and spatialized on the simulation raster map [24].

The adjacency principle and the Transition Rule produce the state of the
spatiotemporal structure in each lapse (τ ), which in our example is the search for
other data in the grid. In a one-dimensional CA, the space consists of a single row
of cells to which a basic adjacency principle of two neighbors per cell is applied and
to which boundary conditions are also applied.

In the CA, change the value of the next row if there is a neighborhood with a
lit cell, as shown in Fig. 12.2. This guarantees that the grid where the binary map

Fig. 12.1 Initial condition of
a filtered map for CA analysis
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Fig. 12.2 New transition in the CA. Scheduled growth if there are close neighbors

is located does not grow outside the dimensions of the base image (i.e., border
problems are overcome).

The Transition Rules used are three bits per binary count. The key is to find the
Rule that best simulates the urban expansion process in the study area. To achieve
this, at least two conditions are required: i. Test all the Transition Rules (the 256);
ii. Use the inverse filter that uses goodness of fit metrics that evaluate the similarity
of the results with respect to the observed reality. This allows you to measure the
precision of each Transition Rule. The results are used to train the CA and the
projection to 14 years can be carried out.

The metrics used in the Reverse Filter are [24]: (1) Cohen’s Kappa Index, which
measures the similarity between two maps; (2) the Jaccard Index, which measures
the equality of the location of the pixels considering their states, in two different
times; (3) fractal dimension, which estimates the growth of the urban area; and (4)
Shannon entropy, which estimates the distribution of pixels in the urban area image.

12.2.1 Cohen’s Kappa Index

Cohen’s Kappa Index (k) is a mapped comparison measure that adjusts for the effect
of chance. In this work, between binary category maps, the result k can take values
between 0 and 1. If the calculated value of the index is close to 1, the degree of
agreement between the maps is greater, while if it is close to 0, the disagreement is
greater. The result of the Cohen’s Kappa index shows the effect of chance and it is
possible to know if its results are statistically significant [24, 25].

k = P0 − Pe

1 − Pe

(12.1)
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where P0 is the observed equality proportion, Pe is the expected equality proportion,
and 1 − Pe represents the maximum equality or agreement. The numerator of
the Cohen’s Kappa Index expresses the proportion of observed equality minus the
expected one, while the denominator is the difference between total equality and the
expected proportion. If this value is equal to 1.0, we would be facing a situation in
which the equality between the maps is perfect (100% equality); when the value is
0.0, the maps do not look alike, and if the value is -1.0 a map would be the inverse
of the other [25, 26].

12.2.2 Jaccard Index

The Jaccard Similarity Index (Ij ) expresses the degree in which two images (e.g.,
maps) are similar. The range of values for the Jaccard index goes from 0, when the
inequality between the maps is total, to 1, when two maps have the same measure
of agreement-position. The index is obtained with Eq. 12.2.

Ij = T11

T21 + T12 + T11
(12.2)

With set theory, the Jaccard Index is easy to analyze. In set A, the objects in
its domain are named T21. In set B, the objects in its domain are labeled T12. The
objects that are in the union of the two sets are classified as T11. Anything outside of
these we label as T22. The Jaccard Index (e.g., Eq. 12.2) calculates two key aspects
for comparing maps: the equality of the raster data and its position on the map [24].

12.2.3 Fractal Dimension

Fractals is a study of irregular and fragmented structures that occur at different
scales. The appearance of a structure at different scales is called self-similarity,
since each of the parts, whatever their degree of approach, presents similarity to the
original figure. The degree of irregularity and fragmentation of objects that appear
in nature (e.g., in this work maps) can be measured with the fractal dimension (D).
Values such as D = 0 (point), D = 1 (line), D = 2 (two-dimensional plane), and
D = 3 (volume) are well defined in Euclidean space [24].

With the dimension in which one works, it can be considered that the fractal
dimension is also a growth dimension, since D = 1 is a line and D = 2 is a plane
totally full of points or a solid plane. Therefore, the fractal dimension that is used is
contained between one and two. In another case, if the measure is close to two, we
can say that it has many points, it is almost full (i.e., the model projection grew).
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The Euclidean dimension of an object relates the unit of measurement used with
the geometric value measured N(L) = (1/L)D , where 1/L corresponds to the
scale, which are the divisions in the plane (i.e., take the image at pixel level). The
calculation of D is based on the corresponding measurement of the number of black
pixels that cover a certain set (line, surface, or volume), N(L) as a function of the
scale. The calculation is only valid in the range in which the relationship between
N(L) and 1/L, which is a potential relationship, is well defined by Eq. 12.3.

D = log(N(L))

log(1/L)
(12.3)

The potential relationship is called the box counting method; for our case, it
determines the growth or decrease of the urban area. Fractals are found in many
cases in nature, including social systems and socio-spatial structures [27].

12.2.4 Shannon Entropy

Entropy is a concept that has been used to describe the structure and the behavior
of different systems [28]. The application of the entropy measure in urban sprawl
is proposed to determine the concentration and spatial dispersion of pixels in the
image [12, 29, 30].

Shannon entropy measures the maximum possible dispersion in which the binary
value of the maps is distributed in the spatial zones. If the index has a value of 1, the
value of the variable is evenly distributed among all zones. If it has a value of 0, the
variable is concentrated in specific areas. It is expressed with Eq. 12.4.

En =
∑n

i=1 pilog(1/pi)

log(n)
(12.4)

where En is the relative entropy and pi is the probability that the variable n is in one
of the zones, classes, or categories.

The Shannon entropy calculation is an index that we use remotely with GIS,
to measure expansion of the pixels with value 1 in the city map. The value of
entropy shows us that there are values in which the efficiency of the city could
be compromised [12, 24]. Entropy has values close to 0; the urban area is too
concentrated in specific areas, meaning that the city is vulnerable to disasters. On the
other hand, if the entropy has a value close to 1, the urban system is well distributed
throughout the territory, but it will not be able to adequately allocate the necessary
resources for the system to function [28, 31].
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12.2.5 Inverse Filter

The inverse filter technique is implemented by means of random neighborhood
space sampling, avoiding the over-determinism of the model and producing suc-
cessful projections according to the applied goodness-of-fit metrics. It improves the
calibration of the CA model by identifying the optimal rules that respect criteria
from a set of metrics under the same hierarchy level, unlike other studies presented
in the literature where they prioritize the first metrics that are estimated, thus
eliminating possible potential rules from the first calculations.

Where some of the variables can contain relevant information when related to
another (i.e., correlated data). As the case presented by Mahalanobis [32], where the
example of a fisherman who wants to measure the similarity between two salmon is
shown. With these data, construct a vector (x, y) for each salmon i. The length of
the salmon caught is a random variable that takes values between 50 and 100 cm,
while its width is between 10 and 20 cm.

If the fisherman uses the Euclidean distance, since the difference in width
is less than the length, this measurement would be less important. That is why
the fisherman decides to incorporate the data statistics into the distance measure,
weighting according to its variance by means of the Mahalanobis distance (i.e.,
the values are placed inversely to how the main components are placed). Which
establishes that the variables with less variance are more important than those with
greater variance, trying to equalize the importance of width and length in the final
result.

This criterion that seeks to balance the importance of each variable is used in the
search for the best transition rule. We have a variety of metrics used to determine
which is the best transition rule respect to only one specific criterion (geometry,
spatial distribution, pixel change); however, multiple criteria must be considered
simultaneously that allow growth to be modeled.

The objective is to determine by statistical calculations the best transition rule
that produces the most realistic image of urban sprawl. Thus, it is possible to
determine the best vector from all the evaluated rules (i.e., initial data set), which
models a scenario in a more similar way with respect to the average vector of the
set.

It is established that a rule is optimal when the Filter manages to balance the
distance between the centroid and the elements that make up the initial data set,
producing symmetric shapes. In Fig. 12.3, we show the graphic representation of
how the inverse filter evolves until it finds the optimal rule from four metrics chosen
at the beginning of the execution.

In this work four metrics are used, which allow generating 15 possible unre-
peatable combinations. However, an indeterminate number of measurements can be
incorporated, conditional on using the same type of images and measuring some
important aspect of the binary raster image. Depending on the metrics selected by
the user, the filter automatically calculates a vector of values for each rule to be
evaluated.
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Fig. 12.3 Spatial representation of the search for the best rule from the centroid

Table 12.1 Matrix of fit metrics

Setting value

Kappa Jaccard Shannon entropy Fractal dimension

rule1 k1 J1 E1 D1

rule2 k2 J2 E2 D2

rule3 k3 J3 E3 D3

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

rule256 k256 J256 E256 D256

The values of each metric are calculated based on the comparison image with
respect to the binary rules, in such a way that, at the end of the calculations, a
matrix of metrics is obtained, as shown in Table 12.1.

Once the goodness of fit metric matrix has been obtained, the centroid C must
be calculated (i.e., the value of the metrics that approach equilibrium, or if they fit
into a geometric figure in the center), which is obtained from the average of each
column xi , of matrix A, thus generating a vector of average metrics.

The way to calculate the Mahalanobis distance within the inverse filter for
two random variables with the same probability distribution −→

x and −→
y , with a

covariance matrix � is defined by Eq. 12.5.

dm(
−→
x ,

−→
y ) =

√
(
−→
x − −→

y )T �−1(
−→
x − −→

y ) (12.5)

The process is to calculate the Mahalanobis distance (dM ), between the centroid
C and the vectors that make up the metric matrix A, using Eq. 12.6.

dM =
√

S(�−1 · X) (12.6)

where S is the diagonal of �, which is a matrix of the form � = X

n − 1
and is

calculated from the form X = B · BT , while B is determined from B = A − C.
Once the distance vector has been obtained, the smallest value of the set must be
selected, which corresponds to the rule n of the matrix A closest to the centroid, this
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Fig. 12.4 Graphic representation of the possible combinations that can be generated with the tool,
combinations with four metrics (a)–(d)

being the best vector of the set. If more than one equal minimum value is found, all
matches are considered as optimal rules.

It should be mentioned that the dimension of matrix A depends on the number
of metrics chosen at the beginning of the execution of the tool, corresponding to
the number of columns j of matrix A. In Fig. 12.5, the graphic representation of the
possible combinations that can be generated from the four metrics used in this work
is shown (Fig. 12.4).

12.3 Results

The contribution of a technique that allows to identify the transition rule that best
replicates the observed reality is highlighted. This filtering model incorporates
global and local indicators that identify the coincidence of pixels, which allows
showing the transition rule that reports the best fit between the observed expansion
of the city and that generated by CA.

There are growth restrictions in the city of Toluca that remain constant for
fourteen years, and they are shown in black in Fig. 12.5. Restricted zones are added
to CA that spatialize the expansion. In these restrictions on the land they are not
perceptible in the printed medium, areas in which it cannot be built, so they give
some examples. A restricted zone is near the center of Toluca, which is the Cerro
de la Teresona area and is part of a national park, shown in Fig. 12.5 as a circle
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Fig. 12.5 Maps of the city of Toluca 2003 (a) and 2017 (b)

in yellow color. The slope of this area makes urbanization very complicated, in
addition to being a park in the metropolitan area. Another restricted area is the
Nevado de Toluca volcano, which is in the lower-left part of the image, shown in
Fig. 12.5 as a circle in red color. This area is a national park and construction is not
allowed there. A third zone restricted to urbanization is the one located in the Lerma
area, to the east of the city, since it has land destined for the expansion of the Toluca
International Airport, shown in Fig. 12.5 as a circle in green color.

With the use of the Inverse Filter tool, the comparison, growth, and distribution
indicators are estimated, which validates the growth rule that best adjusts to real
growth, and this shows how effective the methodology is in expanding the urban
patch. Being the best rule for the year 2017, 109. Which has a vector of goodness of
fit metrics at a distance from the centroid with an average value of 0.71, being the
closest of all those that make up the initial data set.

To perform a test bench of the model, it is necessary to make a projection using
the map of Toluca in 2003 as a reference to sketch the map in 2017 and thus make
the comparison with the real map of 2017. The simulation of the growth of the urban
area for 2017 with the best rule is found by the Inverse Filter, which is a contribution
to the model. To perform a diffusion or expansion, the values calculated in a growth
trend in the image pixels are taken, and only the values that change from zero to
one are considered, 596,261 pixels and those that remained in one, 624,371 pixels:
a total of 1,220,632 pixels that will change on the 2003 map.

With the projection of the city of Toluca for 2017, to perform with the best
rule found by the Filter, we can see how efficient the pixel distribution method
is. The best values are the following, the Kappa value is equal to 0.65, Jaccard
0.75, Shannon entropy 0.92, and fractal dimension 1.83, with a standard deviation
of 0.0591 that measures the variation with respect to the average of the indicators
used.
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Fig. 12.6 Toluca projection for 2031

The values of the comparison indicators are good according to the scale shown
in [24], and the rule allows us to distribute the pixels with less uncertainty in the
expansion of the urban area for Toluca in a period of fourteen years. An important
aspect that should be highlighted is the calculation of the fractal dimension to
determine how much the urban area grew, this tool has been widely used to measure
rough geometric figures or with breaks in lines, and in this work it is used to
determine growth that is an important aspect in the branch of science where it works
with the growth of the urban area. The growth measured with the fractal dimension
with the 2003 satellite image is 1.74 and for the 2017 satellite image it is 1.85.

The proposed Inverse Filter model for AC is efficient and has very good results.
We can generate a projection of the city of Toluca for 2031, Fig. 12.6, with the
best rule found, which is 109. This image shows an equilibrium in the values that
changed from one to zero and vice versa; therefore, it can be said that in a period
of 14 years the growth rate of the city of Toluca continues in an upward line and is
verified with the fractal dimension showing in value for the projection of 1901.

In the simulation carried out for 2031 it covers 54,262 hectares. An increase of
24,275 hectares, which means that in 14 years the city is expected to grow almost
81% compared to 2003. The growth of the previous 14 years (from 2003 to 2017)
had a similar growth rate. It must be remembered that the model works with a trend
growth; therefore, it is important to know where the city will grow. The simulation
of the model implies a more accelerated expansion in the city of Toluca in its number
of occupied hectares.
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Fig. 12.7 City of Toluca: visual comparison map in the growth period 2003–2031, use of the
Cellular Automata model

Figure 12.6 shows areas enclosed by colored circles that highlight five peri-urban
areas that are experiencing expansion. One in the northwestern periphery of the
city (in Almoloya de Juárez: space rich in agricultural land), and another in the
west (in Zinacantepec), circles in red. One more in the extreme east (in Lerma),
circle in yellow color and finally two in the southeast of the urban area (Metepec,
Mexicaltzingo, and Calimaya: areas rich in agricultural lands), circles in green color.

In Fig. 12.7 the growth of the urban area can be seen with the naked eye. It
responds well to the basic pattern generated by the best rule found by the filter. The
urban area maps of the city of Toluca in 2003 and 2017 are superimposed giving it
two shades of gray on the map in Fig. 12.7, and it can be said that it is an area built
in 14 years, captured by the satellite photo. The new urban areas generated by AC
and the best rule found can be seen on the map are the pixels in black, the product
of the simulation.
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With a visual inspection, we can realize that there are three areas that maintain
their appearance almost unchanged until 2031: the center of the city of Toluca is an
area that has been maintained in 28 years and is the Cerro de la Teresona; due to its
elevations, it is difficult to build there and there are other restrictions. In the second
area where accelerated growth is not seen, it is the Nevado de Toluca volcano, which
is in the lower-left part of the image, it cannot be built. In the Lerma area, which
has land destined for the Toluca airport, the same where construction is prevented
(Fig. 12.7, seen from the front on the right side almost in the center).

Comparing the images of urban growth maps is very misleading to the observer,
but an effort is made to jump this obstacle in the program that was developed, as
shown in Fig. 12.7. The visual and numerical comparison showed how the CA model
made with the Inverse Filter used in the growth of the urban area responds to the
basic pattern that occurs in reality, but showing a larger and more compact growth.
In addition, with this model, the new growth of the urban area adheres to existing
constructions and new isolated urbanizations disappear due to lack of neighborhood
or due to space restrictions to build.

12.4 Conclusions

In this paper, an innovative technique was adopted to explore the growth of the
urban area in the city of Toluca: Inverse Filter in Cellular Automata. The objective
was to show how this growth-projection technique works, taking as an example
the Metropolitan Area of Toluca, which can be said to have a very high growth
rate because it is a millionaire city in relation to its inhabitants (i.e., more than one
million inhabitants in the city)[25]. The results show that the analysis approach with
Inverse Filter offers valuable information and an alternative vision to the traditional
approach of growth with regions, and it focuses mainly on the growth of the urban
area with pixels in binary maps based on rasters.

In CA with the Inverse Filter, the most remarkable thing is its spatio-temporal
analysis, which is very difficult to find in techniques that project maps or that carry
out city growth. The search for trends in the projections of the occupied pixels leads
us to an analysis over time, and it is what is used to only add the space with the best
rule found by the Inverse Filter. Projections are generated over 14 years, from the
available city maps.

The union of a geographic information system with CA together with the Inverse
Filter leads us by the hand to generate a software tool programmed in Python. This
software automates the analysis processes and generates an interesting tool that can
be used in different areas of knowledge.

The assumption that we compare maps is correct, since all the work its main
ayasgo that mathematical techniques can be applied to determine the growth of
the urban sprawl a branch of geography, where a study of this type is little used.
Furthermore, what is shown in Fig. 12.7, where a visual comparison between maps
is made, shows the dynamics of change of the urban area over 28 years and the
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areas that are restricted in the same period. The comparison of the maps and the
generation of indices show how efficient the model is; however, the real variable
in which you cannot have control is in obtaining the maps for the analysis, and it
all depends on whether you have the same shooting conditions in the shot, but this
cannot be easily achieved.

Map comparison procedures led to the exploration of techniques little used in
cartographic research: the fractal dimension and Shannon entropy, whose use has
been an important contribution to show the growth diffusion of the urban area.

When finding the best rule, which is 109, it is considered the best due to the
comparison values that are generated by the aforementioned indicators. Es decir, los
valores de comparación tanto globales como locales pueden tener la misma distancia
al centroide de la estructura geométrica lograda con los cuatro indicadores. The
rule is a neighborhood characteristic of the city under study, it determines how the
neighborhood is distributed in the city. In later works, the implications of finding
this rule for the city of Toluca will be determined in more detail, determining if the
city is self-similar, fractal, and all fractional measurements obtained.

It can be concluded that the combination of mathematical tools and GIS in the
analysis, supervision, and control of urban phenomena constitutes a tool of great
value, especially if the necessary resources are available. If maps or images of good
resolution, both spatial and temporal, are available, very precise information can be
extracted and processed very reliably through the use of GIS. These data, the greater
their precision, they greatly facilitate the obtaining of indices numbers and show a
correct projection of the cities under study.
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Chapter 13
A Metapopulation Network Model
with Seasonal Succession to Analyze
Dengue Disease in México

Andrés Anzo Hernández

Abstract Most epidemics occur in geospatial structured populations where human
mobility plays a crucial role in the spread of the disease. One methodology to
analyze the dynamics of the spread in these systems is with the use of metapop-
ulation network models, where the geographic territory is partitioned into patches,
each one inhabited by individuals and mosquitoes; next one considers a network
of patches by adding links among them if humans of a given patch move toward
another patch. On the other hand, dengue fever is a mosquito-borne disease that
prevails in tropical and subtropical regions, mainly in urban or rural environments
with social or economic poverty conditions. Furthermore, empirical data indicate a
relation among climate variables and mosquito population growth, making dengue
outbreaks a seasonal succession dynamic system. In this work a metapopulation
network model is proposed where the dengue disease in each patch is represented
with a SIR-SI epidemic model. In order to consider the seasonality feature of a
dengue disease, a piecewise constant signal is introduced in order to switch the
growth dynamics of mosquito population into two intervals called favorable and
unfavorable reproduction periods. A perspective of how, with climate data and other
geographical information that benefit mosquitoes live cycle, could be incorporated
in the model in order to propose controlling strategies against dengue transmission
in México.
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13.1 Introduction

Dengue (DEN), Zika (ZIKV), and Chikungunya (CHIKV) are the main three
arboviruses that are transmitted to humans via the bite of two mosquito species
named Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia
albopicta). Nowadays, DEN is one of the major mosquito-transmitted diseases
with a significant international public health concern; an estimate of 125 tropical
and subtropical countries are affected and 100 million symptomatic infections per
year are reported [1, 2]. In particular, México in 2019 have had 30 thousand 609
confirmed cases of DEN, where Jalisco, Veracruz, and Quintana Roo were the most
affected states [3].

Urbanization, population growth, and human mobility are important factors that
contribute to the increase in DEN outbreaks. In this context, the metapopulation
network models, widely used in Ecology, have been considered in the study of
disease outbreaks [4, 5]. In order to formulate a geospatial metapopulation network
model, firstly the geographic territory is partitioned into patches, each one occupied
by individuals; next one considers a network of patches by adding links among
them if humans of a given patch move toward another patch. One of the most used
mobility models is the Lagrangian approach, where people spend a fraction of their
day at some patch (by work or personal reasons) and then return to its own patch
after that [6, 7]. That is, human mobility is described by the dwell-time parameters
pij that stand for the fraction of the day that residents from patch i spend in patch j .

On the other hand, recent studies indicate that Aedes aegypti life cycle is
remarkably sensitive to climate state, such as rainfall, temperature, humidity,
photoperiod among others [8]. That is, environmental conditions can trigger a
change in the mosquito population growth, and as a consequence, make DEN a
seasonality viral infection. In this sense, winter season represents an unfavorable
period for mosquito reproduction, and, otherwise, summer season switches the
population growth dynamics by increasing the number of mosquitos. It is worth
remarking here that Aedes aegypti has an adaptable mechanism called diapause,
which lets the population to survive those unfavorable climate conditions. This
mechanism is related to the dynamic state of low metabolic activity of mosquito
eggs [9]. In this work a geospatial metapopulation network based on a compartment
SIR model for human and SI for vectors is proposed, where a switching signal is
introduced in the model in order to trigger a change in the dynamics of mosquito
population growth. That is, a hybrid switched system for the SIR-SI model in
a metapopulation network is proposed. The model includes a favorable season
period where the mosquito population grows according to a logistic model, and
an unfavorable season where the population behavior of mosquitos switches to an
exponential decrease dynamics. The model is analyzed for the case of two connected
patches with equal and different values of the carrying capacity parameter.



13 Metapopulation Network 251

This paper is organized as follows: In Sect. 13.2 the proposed model is presented.
In Sect. 13.3 the case of two connected patches is analyzed. Section 13.4 presents
discussions about the role of climate, diapause, and perspectives. In Sect. 13.5 some
concluding remarks are given.

13.2 Model Formulation

Let � be a geospatial region where DEN disease could be transmitted. The region
could be any rural or urban environment, municipality, city, or a country that can
be divided into N disjoint subregions � = ∪N

i=1�i called patches. The connection
between a pair of patches represents the human mobility among such regions, in
such a way that we can construct a network of geospatial regions as the one shown in
Fig. 13.1, where a schematic representation of the human mobility between patches
in the state of Guerrero, México is drawn. In what follows a mathematical model
for Dengue disease in a single patch is described, and next, the network of patches
with human mobility is traced.

Fig. 13.1 A schematic representation of the human mobility between patches in the state of
Guerrero, México
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13.2.1 A Single Population Model

Assume that for a given sub-geographical region �i , with i ∈ {1, 2, . . . , N},
humans and vectors are homogeneously mixed. Furthermore, consider that human
population in patch i can be classified at any time t into susceptible Si(t), infectious
Ii(t), and recovered Ri(t) individuals; while mosquito population is classified into
susceptible Mi(t) and infectious Vi(t). Thus, we have Nhi(t) = Si(t) + Ii(t) +
Ri(t) = cte; and Nvi(t) = Mi(t) + Vi(t) = cte, ∀t .

In this context, the human population dynamics is described by using an SIR
model and mosquito dynamics by using an SI model. Then, the coupling of both
models gives rise to the following system of differential equations:

humans

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = μhi(Nhi − Si) − βiVi

Si

Nhi

,

İi = −γiIi − μhiIi + βiVi

Si

Nhi

,

Ṙi = γiIi − μhiRi ,

(13.1)

vectors

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṁi = �i − μviMi − βiMi

Ii

Nhi

,

V̇i = −μviVi + βiMi

I

Nhi

;
(13.2)

where, βi is the mosquitoes effective vector biting rate in patch i; μh and μv are
the per-capita birth and natural mortality rates in humans and vectors respectively,
γ is the per-capita human recovery rate; and �i is the constant recruitment rate that
represents the natural growth of susceptible vectors. Then, βViSi/Nhi is the total
number of susceptible hosts that become ill by the bite of the infected vectors, and
βMiIi/Nhi is the total number of susceptible vectors that contract the arbovirus due
to their interaction with the fraction Ii/Nhi of infected humans. In Table 13.1 some
numerical values from the above described parameters reported in the literature for
the Dengue case is presented [10] and, in Fig. 13.2, the numerical solution of the
SIR-SI model (13.1)–(13.2), by using the fourth order Runge−Kutta method (RK4)
and the parameters values given in Table 13.1, with βi = 0.67, and initial condition
Si(t = 0) = 100,000, Ii(t = 0) = 1, Ri(t = 0) = 0, Mi(t = 0) = 80,000,
Vi(t = 0) = 0 is shown.
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Table 13.1 Description and parameters values of the SIR-SI model (Eqs. (13.1)–(13.2)) for the
Dengue case [10]

Parameter Description Numerical value

μhi Per-capita birth/mortality rate of humans
(per day, per capita)

4.57 × 10−5 humans/days

μvi Per-capita mortality rate of adult female
mosquitoes (per day, per capita)

1/8 mosquitos/days

γi Humans recovery rate (per day, per capita) 1/7 humans/days

�i The constant recruitment rate of vectors 1000 mosquitoes/days

βi Effective vector biting rate (global number
of bites, per day, per mosquito)

[0.2, 0.67] bites/mosquitoes×days

Fig. 13.2 Numerical solution of the SIR-SI model (13.1)–(13.2) with the fourth order Runge–
Kutta method (RK4) and with the parameters values given in Table 13.1; with β = 0.67, and
initial condition Si(t = 0) = 100,000, Ii (t = 0) = 1, Ri(t = 0) = 0, Mi(t = 0) = 80,000,
Vi(t = 0) = 0. (a) Humans. (b) Mosquitoes

13.2.2 A Metapopulation Network Model

A network composed of N patches is considered, where each patch is inhabited
by a homogeneously mixing population of Nhi humans and Nvi mosquitoes, where
i ∈ {1, 2, . . . , N} is the patch label. As before, Si(t), Ii(t), and Ri(t) are the number
of humans residents in patch i that are susceptible, infected, and recovered and
Mi(t) and Vi(t) the number of susceptible and infected mosquitoes in the i-th patch
at time t , respectively.

It is assumed that there exists a flux of human mobility among patches, while
vectors remain in the same patch all the time. In order to incorporate human
mobility in the SIR-SI model (13.1)–(13.2), the dwell-time matrix P = [pij ]N×N is
introduced, whose entries pij ≥ 0, for i, j = 1, . . . , N , describe the fraction of the
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day that hosts in patch i spend in patch j [4]. The dwell-time matrix should satisfy∑N
j=1 pij = 1 for all i.
The effect of human mobility in the spread of a vector-borne disease is introduced

by substituting the last term at right hand of the Eqs. (13.1) by the function fi ,
which describes the human mobility over the metapopulation network of susceptible
residents from i-th patch, and how they contract the arbovirus due to the bite of the
infected vectors that live on the patches that they visit. Additionally, the last term
at right hand of the Eqs. (13.2) is replaced by the function gi , which describes the
human mobility over the metapopulation network of the infected residents from any
patch, and how they interact with susceptible vectors in patch i. In this context,
the SIR-SI model with human mobility among the N patches is expressed as the
following system of 5N non-linear ordinary differential equations:

Patch k

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡk = μhk(Nhk − Sk) − fk(Sk, Iv) ,

İk = −(γk + μh)Ik + fk(Sk, Iv) ,

Ṙk = γkIk − μhkRk ,

Ṁk = �k − μvkMk − gk(Mk, Ih) ,

V̇k = −μvkVk + gk(Mk, Ih) ;

(13.3)

where k = 1, 2, . . . , N ; and μhk , μvk , and γk are the parameters described in the
Table 13.1 for the k-th patch; and Iv = (V1, V2, . . . , VN) and Ih = (I1, I2, . . . , IN ).

On the other hand, let whi = ∑N
τ=1 pτiNhτ be the effective number of humans

that spend their time in patch i, including both own residents and visitors of the
neighboring patches. That is, whi indicates the amount of humans that daily visit
patch i. Then, the term Skpkj /whj is the proportion of susceptible humans that
travel from patch k to patch j and, Ijpjk/whk is the proportion of infected humans
of patch j that travel to patch k. Then the functions fk and gk for Eqs. (13.3) are
written as

fk(Sk, Iv) =
N∑

j=1

βjVj

Skpkj

whj

, (13.4)

and

gk(Mk, Ih) =
N∑

j=1

βkMk

Ijpjk

whk

. (13.5)
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The main challenge to implement one of those control protocols over a specific
geospatial metapopulation network, as the one shown in Fig. 13.1, is the human
mobility data between municipalities. However, some mathematical models as the
gravity or radiation models [11] could be considered to assess the dwell-time
parameters pij . The gravity model is based on the observation that the mobility
between two patches i and j is proportional to the product of origin population Nhi

and destination population Nhj and inversely proportional to a power law of the
geographical distance rij between them. That is, in general [11]:

pij = A
NhiNhj

rδ
ij

, (13.6)

where A is the normalization factor and δ are the parameters of the human mobility
model to be calculated by multiple regression analysis. On the other hand, the
radiation model is based on a diffusion model, where particles are emitted at a given
location and, with a probability p, are absorbed by neighboring locations.

It is worth remarking that the SIR-SI model (13.3) assumes that the mosquito
demography growth is constant. However, vector-borne disease, and particularly
Dengue disease, is a seasonal disease outbreak mainly due to mosquitos that have
favorable and unfavorable periods of time over a given year. Even more, some other
factors as the climatological ones enhance the reproduction rate of mosquitoes when
the temperature and the rain favor the habitat and the ecosystem of the mosquito
population. The usual form of include such effect over a SIR-SI model, is by
considering demographic parameters (recruitment rate �k or mortality rate μvk)
to be a time depend with a periodic function as the sin(·) or cos(·). For example,
in [12] the authors consider that the mosquitos birth rate μvkNvk is modeled as a
sinusoidal function with a distinct amplitude, which results in the varying vector
population size over time (high in the summer and low in the winter). Based on this
idea, the effect of seasonality over the adult female mosquitoes population in the
SIR-SI model (13.1)–(13.2) (or model (13.3)) is introduced as

μ̂vk(t) = μvk

(
1 − εsin

(2πt

365

))
,

where ε > 0 represents the amplitude of oscillations in vector birth rate.
Another alternative is to consider the mosquito recruitment rate �k a type-

dependent parameter given by Velázquez-Castro et al. [13]:

�k(t) = μvk Nvk

(
1 − Nvk

Ck

)
, (13.7)

that is, mosquito population exhibits logistic growth, with Ck the carrying capacity
of a given patch k, which represent the environment conditions that modulated
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the mosquito growth rate when resources increase or become limited. It is worth
mentioning that the entire biological life cycle of the mosquito, from egg, larva, and
pupa to adulthood, is compressed in the parameter �k(t). Even more, some depen-
dencies of climatological variables as temperature or rainfall could be included in
�k through the parameter μvk and Ck .

An alternative to this seasonality model into a SIR-SI model (13.3) is by means
of seasonal succession. The idea is to define two or more growth dynamics at
different time intervals. Each time interval characterizes a particular season, for
example winter or summer, where mosquito population has different demographic
behavior. That is, a hybrid system for the SIR-SI model (13.3) is proposed with
a time-dependent switching signal. For example, in the context of mathematical
ecology, where P represents the size of a given species population, the authors in
[14] analyze a model that switches between a logistic growth and an exponential
negative growth given by

⎧
⎪⎪⎨

⎪⎪⎩

Ṗ (t) = −λP (t) , mw ≤ t ≤ mw + (1 − φ)w ,

Ṗ (t) = αP (t)
(

1 − P(t)

C

)
,mw + (1 − φ)w ≤ t ≤ (m + 1)w ;

(13.8)

where λ > 0, m ∈ N, α is the intrinsic growth, C the environment carrying capacity,
and φ ∈ (0, 1]. It is worth noting that the system (13.8) alternate between season 1
during [mw,mw + (1−φ)w] and the season 2 during [mw + (1−φ)w, (m+1)w],
and then, when the environment change, the population demographic dynamics turn
back to season 1.

Observations from laboratory on adult Aedes. aegypti, have been assessing that
below 14–15 ◦C, mosquitoes experience reduced mobility and that it cannot survive
lower than 2–3 days without a blood meal [15]. Such factors increase the mosquitoes
mortality rate; however, mosquitoes eggs are able to undergo diapause allowing
the species to persist during cold winter temperature that are unfavorable to adult
survival. In this context, the above change on the dynamical behavior of mosquitoes
population growth could be included in the metapopulation network model (13.3)
by introducing a piecewise constant signal σi(t) taking value from an index set Q =
{1, 2}, and the individual modes set {�qi : q ∈ Q}, with two possible population
dynamics �1i = −λiNvi and �2i = αviNvi(1 − Nvi/Ci), with αvi the mosquito
intrinsic growth.
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With these elements, the metapopulation network model for Dengue disease with
seasonal succession is written as follows:

Patch k

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡk = μhk(Nh − Sk) −∑N
j=1 βjVj

Skpkj

whj

,

İk = −(γk + μhk)Ik +∑N
j=1 βjVj

Skpkj

whj

,

Ṙk = γkIk − μhkRk ,

Ṁk = �
(k)
σ(t) − μvkMk −∑N

j=1 βkMk

Ijpjk

whk

,

V̇k = −μvkVk +∑N
j=1 βkMk

Ijpjk

whk

;

(13.9)

with k = 1, . . . , N and

σ(t) =
⎧
⎨

⎩

1 , if mw ≤ t ≤ mw + (1 − φ)w ,

2 , if mw + (1 − φ)w ≤ t ≤ (m + 1)w ;
(13.10)

In the following section a system of two connected patches is numerically
analyzed as an example.

13.3 Numerical Example for Two Connected Patches

Consider a system of two connected patches as can be seen in Fig. 13.3. In specific,
assume that the first patch corresponds to the municipality of Acapulco and that the
second patch corresponds to the municipality of Coyuca de Benítez; both located
at the state of Guerrero, in southwestern México. According to the 2020 Census of
Population and Housing [16], Acapulco is inhabited by Nh1 = 779,566 residents,
and Coyuca de Benítez by Nh2 = 73,056 residents. The geographical distance per
road between these two cities is r12 = 32.4 km; using the gravity model (13.6), with
δ = 2 and A = 1 × 10−14, the mobility between patch 1 (Acapulco) and patch
2 (Coyuca de Benítez) is p12 = p21 = 0.598 (it is worth remarking that for this
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Fig. 13.3 A schematic representation of two patches connected by human mobility. As an
example, it is assumed that the second patch is also inhabited by infected mosquitos at the
beginning of the summer season. Here, the first patch represents the municipality of Acapulco,
México, with Nh1 = 779,566 residents, and the second patch the municipality of Coyuca de
Benítez, México, with Nh2 = 73,056 residents

example a symmetric mobility is considered.). Then, the fraction of the day that
residents spend in its own patch is p11 = 1 − p12 and p22 = 1 − p21 for patch 1
and 2, respectively.

Then, the SIR-SI model with human mobility between two patches is expressed
as

Patch 1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1 = μh1(Nh1 − S1) − β1V 1
S1p11

wh1
− β2V2

S1p12

wh2
,

İ1 = −(γ1 + μh1)I1 + β1V 1
S1p11

wh1
+ β2V2

S1p12

wh2
,

Ṙ1 = γ1I1 − μh1R1 ,

Ṁ1 = �
(1)
σ (t) − μv1M1 − β1M1

I1p11

wh1
− β1M1

I2p21

wh1
,

V̇1 = −μv1V1 + β1M1
I1p11

wh1
+ β1M1

I2p21

wh1
;

(13.11)
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and

Patch 2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ2 = μh2(Nh2 − S2) − β1V1
S2p21

wh1
− β2V2

S2p22

wh2
,

İ2 = −(γ2 + μh2)I2 + β1V1
S2p21

wh1
+ β2V2

S2p22

wh2
,

Ṙ2 = γ2I2 − μh2R2 ,

Ṁ2 = �
(2)
σ (t) − μv2M2 − β2M2

I1p12

wh2
− β2M2

I2p22

wh2
,

V̇2 = −μv2V2 + β2M2
I1p12

wh2
+ β2M2

I2p22

wh2
;

(13.12)

with wh1 = p11Nh1+p21Nh2 and wh2 = p22Nh2+p12Nh1. In order to simplify the
numerical example, assume that due to the geographic closeness between the two
patches, both, the demographic of human population and mosquito entomological
parameters, are equal, that is: μh1 = μh2 = 0.0000457; γ1 = γ2 = 1/7; β1 = β2 =
0.67; and μv1 = μv2 = 1/8. Furthermore, consider that the climate conditions are
similar in both patches, such that summer and autumn seasons occur at the same
period of time.

To define the switching times in (13.10), select, as an example, m = 0.01, w =
99, and φ = 0.353, such that the switching signal becomes

σ(t) =
⎧
⎨

⎩

1 , if 1 ≤ t ≤ 65 , → summer,

2 , if 65 ≤ t ≤ 100 , → autumn.

(13.13)

In this context, the growth of susceptible mosquito in the patch i ∈ {1, 2} and for
each season is given by

�
(i)
k =

⎧
⎪⎪⎨

⎪⎪⎩

αviNvi(t)
(

1 − Nvi(t)

Ci

)
, if k = 1 , → summer,

−λiNvi(t) , if k = 2 , → autumn;
(13.14)

where the per-capita mortality rate of adult female mosquitoes in autumn is given
by λ1 = λ2 = 100, and a number of eggs laid per day for every female mosquito
in summer as αv1 = αv2 = 5. It is worth remarking that, for mosquito-borne
diseases, carrying capacity Ci is usually associated with the maximum number of
adult mosquitoes that can be produced and sustained in the local ecosystem in a
given season [17]. This parameter could be also correlated with the environmental
pressures generated by human activities as the urbanization and agriculture, or by
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the domestic water storage in large open drums or the accumulation of water-
retaining waste products such as plastic containers and tin cans. In this context,
two scenarios are considered in the numerical simulation: (a) both patches share the
same environment conditions such that C1 = C2 = 10,000, or (b) the environment
conditions in patch 2 favor mosquito productivity C2 = 200,000 compared with
patch 1 (C1 = 10,000). In both scenarios, it is assumed that, at the beginning
of the summer, patch 2 has 100 infected mosquitos (that could have come from
diapaused eggs that hatched when they found the ideal environmental conditions).
That is, the initial condition is (S1(0) = 779,566; I1(0) = 0; R1(0) = 0;
M1(0) = 9750; V1(0) = 0) for patch 1, and (S2(0) = 73,056; I2(0) = 0;
R2(0) = 0; M2(0) = 9650; V2(0) = 100) for patch 2.

In Fig. 13.4 the numerical solution of system (13.11)–(13.12) for the first scenario
with C1 = C2 is shown. Here, a first period of 30 days without human mobility is
considered at the beginning of the summer season, that is, p12 = p21 = 0 for
0 ≤ t < 30. As can be seen, the number of infected humans in patch 1 grows as
soon the mobility between the two patches is considered; and as a consequence, the
abundance of infected mosquitoes in patch 1 begins also to increase until the autumn
season, where the curve starts to decrease.

On the other hand, in Fig. 13.4 the second scenario for the system (13.11)–(13.12)
is illustrated, where the carrying capacity of the second patch is bigger than its
neighboring patch. Before 30 days, where it has been assumed that mobility between
patches is zero, the dengue outbreak in patch 2 occurs almost completely, presenting
the typical curve of the infected residents. When the mobility starts, it is possible to
observe a rapid growth of dengue disease in residents of patch 1, but with a small
number of transmission to mosquitoes as can be seen in Fig. 13.5b.

Fig. 13.4 Scenario 1, where C1 = C2 = 10,000. (a) The number of infected humans in both
patches; and (b) the number of infected mosquitoes in both patches
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Fig. 13.5 Scenario 2, where C1 = 10,000 and C2 = 200,000. (a) The number of infected humans
in both patches; and (b) the number of infected mosquitoes in both patches

13.4 The Role of Climate Variables on Mosquito Egg
Diapause: Open Problems and Perspectives

Climate variables as temperature, rainfall, or humidity affect the mosquito life
cycle and, consequently, generate the seasonality behavior in mosquito population
dynamics [18, 19]. In particular, diapause phenomenon is a usually overlooked topic
in the formulation of a mathematical model. It refers to an adaptive mechanism
that inhibits the development of mosquito eggs in order to survive unfavorable
weather conditions, making unable to hatch it. But, when temperature and lengths of
photoperiod are favorable to the hatching of eggs, the mosquitoes population grows
in such seasonal periods.

One possible methodology to include diapause phenomena in the geospatial
metapopulation network model Eq. (13.3) is throughout the term �vk in Eq. (13.14).
Here diapause could be included by considering the parameter αi (the number
of mosquito eggs that hatch per day) as a piecewise function that separates, in a
year, the favorable and unfavorable period. For example, in [20], by monitoring
the presence and the relative abundance of the species, rate of positive ovitraps,
and mean number of eggs per ovitrap, the authors have shown that in Rome, Italy,
the first overwintering eggs in Rome hatched between the end of February and the
beginning of March 2000, when—as the authors wrote—day length was 11–11.5 h
of light and the mean temperature was 10–11 ◦C. In this sense we could say that for
Rome, the favorable period for mosquitoes hatch is on the previously cited months.

To assess the distribution of Aedes aegypti in México, it is possible to get
data from the network made up of 250,000 ovitraps distributed throughout the
national territory and administrated by the SIMV (Sistema Integral de Monitoreo
de Vectores) in [21]. On the other hand, in [22], the Organismos de Cuenca y
Direcciones Locales de la CONAGUA provide a data set of 5500 weather stations
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Fig. 13.6 Elevation of each México municipality, highlighting geographical regions with an
elevation greater than 2000 m, where Aedes aegypti mosquito lives

(WS) distributed throughout the Mexican territory, with approximately 55 million
daily records of rain in 24 hours and minimum and maximum temperature. In this
direction, a python code to get and organize the WS data is implemented in order
to know its geographical distribution and the period of years where there is a major
abundance of WS with available data over all the municipalities of Mexico. From
a first global statistical analysis, it is observed a downward trend in the number of
stations with available data is clear, with 2019 being the lowest number of stations
(with 354 stations), 2018 (with 1376 stations), and 2017 (with 2048 stations).

The geographical elevation of each México municipality is an important factor
for Dengue analysis since it is well known that Aedes aegypti mosquito lives in
regions with a maximum elevation of 2000 m [23]. Then, using INEGI National
Geostatistical Framework [16], a first zoning risk region is shown in Fig. 13.6 where
Aedes aegypti is predicted to occur within each elevation range per municipality.
The aim, for future research works, is to include to this map the climate data from
the WS, and other socio-economical variables, available in the INEGI population
census 2020, to construct a risk zoning map for Dengue disease in México.

13.5 Conclusion

The methods of switched dynamical systems applied to the analysis and modeling
of Dengue disease outbreaks in Mexico provide a valuable opportunity to address a
relevant social problem. In this work a mathematical model based on a geospatial
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metapopulation network and a compartmental SIR-SI epidemic model for vector-
borne diseases with seasonal succession is proposed to analyze Dengue disease.
Here, each node of the network, also called patch, represents a geographical territory
as a city or an urban/rural locality, and the connection between patches represents
the human mobility. As an example, the case of two patches is numerically analyzed,
where, using the INEGI population census 2020 for the municipality of Acapulco
and Coyuca de Benítez, in Guerrero, México, is studied. The gravity model to
emulate the human mobility between such patches is also used to analyze the
Dengue disease between those two patches. The model includes the succession of
two seasons: a favorable period where the mosquito population grows according
to a logistic model (where the carrying capacity parameter is considered to emulate
the productivity of vector in a given ecosystem); and an unfavorable period in which
the population behavior of mosquitos switches to an exponential decrease dynamics.
Considering that, at the beginning of the summer the second patch is inhabited by
infected mosquitos, it has been observed that the carrying capacity parameter affects
the Dengue outbreak over the first patch, mainly when the carrying capacity of the
second patch is bigger than its neighbor. Such scenario could model a situation
where the economic or social factors in the second patch, as the accumulation of
water-retaining waste, are worst in a given geographical region. Finally, a set of open
problems that could improve the model are proposed, where diapause phenomena
is also highlighted as a relevant phenomena that could be included in the model
and completed with data from ovitraps; and the use of weather stations data to
characterize favorable and unfavorable time periods for hatching of mosquito eggs.
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