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Abstract. With the recent advances of modular robots and low-cost
manipulators, the evolution of robots, including morphologies and con-
trollers, has become possible to perform in a physical setup without
using any simulators. In this scenario, the evolution cannot be paral-
lelized and the wall time becomes a scarce resource that should be used
wisely. This paper analyses different algorithms by using the wall time
as a stopping criterion for evolution, and it takes into account that wall
time depends on the evaluation time plus the time to assemble and disas-
semble robots before and after an evaluation. The experiments have been
performed in simulation, but the evaluation and assembly time have been
carefully modelled from previous hardware experiments. Results suggest
that (i) genetic algorithms are severely penalized, (ii) genetic algorithms
can be improved by performing several evaluations of controllers for each
morphology, and that (iii) evolutionary strategies that can chain several
evaluations of robots with close morphologies can outperform other evo-
lutionary algorithms. This finding is not surprising, but to the best of
our knowledge previous attempts to evolve modular robots in hardware
have not employed evolutionary strategies.

Keywords: Modular robots · Evolutionary robotics · Morphological
evolution · Evolution in hardware

1 Introduction

Autonomous robots help automate a lot of different tasks, but they must be
designed in a suitable way to be successful. In order to obtain robot designs
adapted to a specific task, several authors have proposed to evolve the morphol-
ogy and controller of a robot at the same time [16,27]. These works perform the
evolutionary process mostly in simulation as several morphological variations
are evaluated in a short time. However, this advantage comes with an important
drawback: the reality gap.

Due to simplified physics and bad modelled features, simulators are not capa-
ble of accurately simulating the real world. Therefore, evolution exploits these
artifacts and produces robot designs that do not perform well in the real world.
There are several approaches to reduce the effect of the reality gap. Some of
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them apply different strategies during the evolution [13] or generate a popu-
lation of diverse solutions with the hope that some will work as expected in
reality [6]. However, it is also possible to avoid simulation and perform evolu-
tion directly in hardware. This last approach avoids the reality gap, but faces
important challenges.

Varying the morphology of real robots requires a considerable amount of time
which could make evolution in hardware unfeasible, specially if each morphology
is built from scratch. Current solutions to solving this problem include (1) using
specific robotic platforms that can change the length of their limbs and other
parts [25], (2) using modular robot platforms [2,19] and (3) combining mod-
ular robot systems with 3D printed parts [1,9]. While 3D printing can create
robots with almost any shape, it increases the building time and produces non-
reusable parts. On the other end, robots that can only change the size of their
limbs, although highly reusable, severely restrict the morphological space they
can reach. Thus, there is a trade-off on the morphological search space and the
reusability of the hardware employed that needs to be balanced when evolving
morphologies in hardware [18].

The aforementioned systems make evolution of morphologies in hardware
feasible. However, most hardware evolution works ignore the fact that real robot
evaluation cannot be parallelized. Evolutionary algorithms are population-based
algorithms, and therefore can be parallelized in software easily. However, evo-
lution of morphologies in hardware requires custom and specialized setups that
makes having more than one evaluation setup very costly. To the best of our
knowledge, all attempts to evolve robotic morphologies in hardware have used
only one platform to perform the robot evaluation. Furthermore, the space in
these setups is usually reduced and different robots are built with the same basic
components, thus it is also not feasible to build and store a population of assem-
bled robots to evaluate them in a future time. This means that each robot needs
to be built, evaluated with a controller, and disassembled.

Taking into account the time to build and subsequently disassemble a robot
is many times larger than the time required to evaluate it, we propose to use the
wall time of the evolution, i.e. the time measured by a wall clock as the evalua-
tions are performed in the real world, as the stop criterion for an evolutionary
algorithm rather than the number of evaluations or generations. In this paper,
we explore how this strict stop condition affects different strategies that use time
more effectively than a traditional strategy for evolving control and morphology
of a robot. Specifically, we compare a basic genetic algorithm (GA), used as a
baseline, the same GA but testing each morphology with 5 different controllers,
and the Edhmor system [7]. The effect of changing the building speed per module
on the algorithm results is also analyzed. The experiments have been done in a
simulator, but all parameters were chosen to be as close to a physical evaluation
as possible.

The next section describes related work that give a higher chance for the
controller of a robot to be optimized when optimizing morphology and control
with evolutionary algorithms.
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2 Related Work

Motivated by the fact that morphological changes are destructive [15], several
works have suggested to adapt the controller for each morphology in evolution-
ary robotics. Chocron proposed a nested genetic algorithm for evolving modular
manipulators, where the outer algorithm was in charge of the morphological
evolution and the inner one obtained a suitable controller for each manipula-
tor [5]. To reduce the number of evaluations needed in the controller adapta-
tion, other authors have investigated a Lamarckian type inheritance, where each
robot adapts its controller, based on the controllers inherited from its parents,
and passes the optimized controller to its offspring [11]. Similarly, a recent arti-
cle by Goff et al. proposes keeping an archive of controllers as an inheritance
mechanism [8]. Different learning methods for optimizing controllers for different
morphologies of modular robots are evaluated in [14], but there is no evolution
of morphologies.

All these works try to adapt or learn a controller for each morphology rather
than use a joint evolution of morphology and control. Furthermore, all use the
number of generations or evaluations to stop the evolution and do not consider
the building time of the robots. In addition, most works use an enormous budget
of evaluations which is not available when evolving in hardware. In this paper,
rather than focusing on optimizing controllers as morphologies change per se, we
look at evolution from the perspective of the wall time and how to balance the
time spent evaluating new controllers for changing morphologies and the time
spent assembling and disassembling morphologies with this strict stop condition.

3 Materials and Methods

This section describes the three main aspects that we use for our experiments:
The Emerge modules that are used for building the robots, the three different
methods used to evolve the morphologies and controllers, and the calculation of
the wall clock time.

3.1 Emerge Modules

In this paper, we use the Emerge (Easy Modular Embodied Robot Generator)
modular robot1, which is an open source robotic module designed to be easy to
build, maintain, and modify [19]. The mating magnetic connectors of the modules
allow easy assembly and disassembly of robotic morphologies in seconds either
by a human operator or by a robotic manipulator [17]. In addition, magnetic
connectors make assembled robots robust against collisions as they can break
apart without damaging the modules in case of a collision or if an excessive
torque is applied to a connector.

1 More information about the Emerge robot can be found at https://sites.google.com/
view/emergemodular.

https://sites.google.com/view/emergemodular
https://sites.google.com/view/emergemodular
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Fig. 1. Emerge Modular Robot: the magnetic connections allows a quick assembly of
the modules to build a robot, which is useful to evolve morphologies and controllers in
reality. An evolved morphology with the base module in the center and several basic
modules connected is shown: (right) simulation and (left) reality.

Each module has one servo motor and four connection faces, one of them is
connected to the bottom end of the motor and the other three are connected
to a bracket, forming a U shape, which is actuated by the shaft of the motor.
Connectors in all faces are built with a 3D printed layer and a printed circuit
board (PCB) layer. Spring pins are soldered to the PCB layers, which allow
module faces to share power and communications. Additionally, a base module
with eight connection faces is used as a starting module to build the robots.
The base provides a battery and a centralized controller that sends commands
to the motors through the motor communication bus while also being able to
communicate with an external computer. Both modules are shown in Fig. 1. The
basic features of the Emerge modules are described in Table 1. A more detailed
description of the Emerge modules can be found in [19].

While the evolution can be performed in a physical setup, we have chosen
to carry out the experiments of this paper in simulation to speed up the pro-
cess and fine tune the algorithms for future hardware runs. Thus, we employ the
CoppeliaSim simulator [26] in which the Emerge modules have been already mod-
elled. All parameters of the simulation are set to replicate the physical modules
and connections between modules break when facing high torques and forces.

3.2 Algorithms

The following three algorithms are tested in this paper with the wall time stop-
ping condition: A genetic algorithm, a genetic algorithm with additional con-
troller evaluations, and the Edhmor algorithm. All of them were implemented
using the Java Evolutionary Algorithm Framework (JEAF) [3].

The three algorithms use a tree encoding representation for their individuals
that represents the morphology and the controller of a robot. The nodes of the
graph represent the modules, and the edges represent the connection between
modules. Each node contains the module type, which is fixed in this study (the
root node is always a base module and the rest are individual basic Emerge
modules) and the parameters of the module controller. An edge contains the
face of the parent node where the child is attached and the orientation of the
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child (rotation of 0 or 90◦). While the modules can be rotated around the center
of a connector in multiples of 90◦, we only take into account two rotations as the
same behaviour can be achieved by adding π to the phase offset of the controller.

Genetic Algorithm (GA). A genetic algorithm is used to evolve robot mor-
phologies and controllers from the Emerge modules and its results are used as
a base to compare the results obtained with the other algorithms. Similar to
the methods employed in [23], the genetic algorithm selects parents for crossover
using a simple random tournament (with a tournament size of 2) and has two
different mutation probability parameters: one for the morphology of an individ-
ual and another for each parameter of the controller. The crossover is performed
by selecting a random node of both parents (without considering the root node)
and swapping their downstream branches. The morphological mutation opera-
tor selects one of these operations, each with a 1/3 probability: add a node to
any random module with a free face in the robot, change the orientation of a
module and the face where it connects to its parent, and delete a random node
and its children. All robots go through a mutation of their controller, where
each parameter can be mutated with the probability specified. If a mutation
occurs, the new value is obtained by adding a Gaussian noise N (0, 0.2), which is
scaled by the range of the parameter, to the old value. If the mutated parameter
falls outside a prespecified range, a bounce-back function is used to restore the
parameter to its bounds (a circular bounce-back function in case of the phase
offset parameter) [22].

A genetic algorithm is expected to take longer to cycle through generations
and make a less efficient use of wall clock time when evolving real robot mor-
phologies and controllers as each evaluation encompasses an assembly and disas-
sembly step. All individuals are assembled, tested, and disassembled, even if they
have similar or the same morphology. Figure 2 shows the evaluation sequence
when evolving robot morphologies and controllers in a genetic algorithm.

Genetic Algorithmwith Additional Controller Evaluations (GA-ACE).
As the basic GA spends most of the evolution time in assembling and disassembling
robots, we have also introduced a modified version of the GA that uses the evolu-
tion time more effectively. For each robot built, the modified genetic algorithm
executes 5 additional evaluations in which only the controller is changed and thus
it can also take advantage of already assembled robots to evaluate and optimize
their controllers. This kind of evolutionary algorithm is expected to obtain better
individuals than a standard genetic algorithm as it can perform more evaluations
on the same wall clock time at the expense of slightly reducing the number of dif-
ferent morphologies tested. The 5 additional controller evaluations are obtained
by mutating the controller with the same parameters used for the standard GA.

Edhmor. We have selected as a third algorithm the Evolutionary Designer of
Heterogeneous Modular Robots (Edhmor) [7], which is a custom evolutionary
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Fig. 2. Evaluation sequence of individual robots when evolving robot morphologies
and controllers using a genetic algorithm (top) and the Edhmor algorithm (bottom).

strategy to evolve modular robots. Similar to other works [4], the Edhmor system
has a simple mechanism to force and protect innovations: It forces morphological
innovations by adding modules to the robots in a growing phase, which is fol-
lowed by other phases where the morphology and controller adapt to the newly
introduced modules.
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Table 1. Simulation experiments parameters

Parameter Edhmor GA GA-ACE

Max wall clock time (s) 172800 (48 h)

Population 20

Repetitions 40

Module assembly time (s/module) 20,40

Morphology mutation probability N/A 0.1

Controller mutation probability 0.2 0.1

Selection tournament size N/A 2

Settling time (s) 6

Evaluation time (s) 38

Module motor torque (Nm) 1.8

Module actuator range (radians) [−π
2
, π
2
]

Simulation time step (ms) 50

Physics engine time step (ms) 5

Force sensor torque threshold (Nm) 1

We summarize the Edhmor algorithm and specify the tuned parameters that
are used in this paper to reduce the number of evaluations and make evolution
in hardware feasible. For a more detailed explanation of Edhmor, we refer the
reader to [7]. After generating a random population, the following algorithm
phases are applied in a loop until the stop criterion is met:

1. Growing phase (2 iterations): Adds one child module to a random module of
the robot. The orientation and the connection faces between the new module
and its parent are generated randomly. The new module is also tested in two
additional positions by changing the orientation of the module and where
it is connected to its parent. The best of the three robots with the newly
introduced module replaces the original robot, even if it is fitness is lower
than the fitness of its parent.

2. Morphological adaptation phase (2 iterations): A module which is not the root
node is selected randomly from the robot. Three new robots are created by
mutating the module connection (the parent attaching face and the module
orientation). The best of the three robots only replaces the parent if its fitness
is better compared to its parent fitness.

3. Control adaptation phase (1 iteration): The controller of the robot is mutated
six times to generate six new different controllers. The best of the six robots
only replaces the parent if the fitness is better compared to that of its parent.
The controller mutation operator is the same as in the GA algorithm, but
the probability of mutation has been increased, see Table 1.
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4. Pruning phase (1 iteration): Generates several morphological mutations by
iterating over all the modules of the robot (except the root node) and remov-
ing them from the robot with their children. If a robot has M modules, this
produces M − 1 morphological mutations. The best of the pruned robots
replaces the parent if its fitness is better compared to that of its parent.

5. Replacement phase (1 iteration, immediately run after the pruning phase):
Removes the worst 4 individuals and replaces them with 4 individuals
produced after applying a symmetry mutation (randomly selecting a limb
attached to the root base node and making its reflection through the XZ or
YZ planes). Half of the individuals used to produce the mutation are the
2 best robots in the population and the others are chosen randomly. If a
symmetry mutation is not possible, a random robot is created instead.

In contrast to previous algorithms, Edhmor keeps the robots assembled
between morphological mutations of the same robot across different generations
or phases, making only small changes each time (Fig. 2). As Edhmor only needs
the fitness of the other robots of the population at the replacement phase, it
can apply 6 generations (2 module additions, 2 morphological adaptations, 1
controller adaptation, and 1 prune phase) to the same robot and then change
to the next robot of the population (see Fig. 2). Edhmor is thus expected to be
able to perform more robot evaluations in the same amount of wall clock time as
it does not use as much time assembling and disassembling robots as a genetic
algorithm would take.

3.3 Wall Time Calculation

We have used a simplified model to calculate the assembly time for each robot
based on the time that it takes to assemble one module (MAT), and the robot
evaluation time (EVALT). When a population is created and evaluated, the wall
time is increased for each robot as shown in Eq. (1).

wallT ime =
r=20∑

r=1

(Modulesr ∗ MAT + EVALT) (1)

Where Modules means the number of modules of a specific robot in the pop-
ulation. In the GA and GA-ACE algorithms, wallT ime is increased at each
generation by Eq. (2).

wallT ime =
r=20∑

r=1

(Modulesr ∗ MAT ∗ 2 + EVALT ∗ (ACE + 1)) (2)

Where ACE is the number of additional controller evaluations (0 for the GA).
Notice that this equation takes into account the assembly and disassembly time
of the robots.
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In Edhmor, the time of each generation depends on the phase that is being
performed and is calculated based on Eqs. (3) to (6).

wallT imegrow/morph =
r=20∑

r=1

(MAT ∗ (VARr + 1) + EVALT ∗ VARr) (3)

wallT imecontroller =
r=20∑

r=1

(EVALT ∗ VARr) (4)

wallT imeprune =
r=20∑

r=1

((Modulesr − min N) ∗ MAT) + EVALT ∗ VARr) (5)

wallT imereplace =
r=20∑

r=1

(Modulesr ∗ MAT)) (6)

Where VAR represents the number of robot variations produced in each phase,
and N is the number of modules, thus minN is the minimum number of modules
allowed.

4 Experimental Setup

Using the three algorithms, robots are evolved for a locomotion task. In this
paper, the controller is kept very simple and each module generates an oscillatory
movement where the only parameter that the evolution can adjust is the phase
offset. The angle of each joint is controlled by Eq. (7).

angle =
π

2
· sin(2 · t + ϕ) (7)

Where ϕ, the phase offset ([0, 2π)), is encoded in each individual’s chro-
mosome and t is the simulation time. Individual robot solutions are tested by
placing them in the center of a simulated flat surface environment and allowing
them to move for about 38 s. Simulation is carried out in the CoppeliaSim simu-
lator. The fitness is calculated as the final position of the base module measured
in a straight line in the (x, y) plane from the starting position of the robot, as
in Eq. (8). The first six seconds of the simulation are not taken into account to
discard transient movements of the robot (settling time).

Fitness = d((xt=38, yt=38), (xt=6, yt=6)) (8)

Each method of evolution is run repeatedly 40 times. In the case of the
genetic algorithms, a mutation probability of 0.1 is used for both morphological
and controller mutations. In all methods used, robots can have a maximum of
16 modules and a minimum of 3 modules. The population is composed of 20
individuals. Robots start always with the flat base module described in Sect. 3.1
as the root node. The initial population is composed of random robots generated
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Fig. 3. Best individual fitness vs generation in 40 runs of evolving morphology and
control with the Edhmor system, a standard genetic algorithm (GA) and a genetic
algorithm modified to allow additional controller evaluations (GA-ACE), and allowing
(left) 20 s and (right) 40 s of assembly per module. Center line shows the median of
each group and the shaded area shows the interquartile range (IQR).

with a maximum of 8 modules attached and a minimum of 3. The assembly time
per module is established as a constant and used to register the wall clock time
in each algorithm. All algorithms are tested first with a 20 s assembly time per
module in the morphology and then with a 40 s assembly time per module (20 s
per module is approximately the time that takes to assemble a module manually
as reported in [19]). On average, a complete robot has 10 modules and therefore
the full assembly time is 200 s in the 20 s per module case when starting to build
the robot from scratch. Evolution is stopped after 172800 s (48 h) of simulated
wall-clock time have passed.

5 Results

Evolution of the best individual fitness over time is often presented as a graph of
fitness vs the number of generations that the algorithm performs in the allotted
time. Generations represent the cycles of selection, reproduction, and replace-
ment, which in some cases have a direct relation to the wall clock time spent.
This style of graph is shown for all evolutionary algorithms used in Fig. 3 and
shows the median and interquartile range (IQR) in the case of both using 20 s
of assembly time per module and 40s of assembly time per module respectively.

It can be seen that the three evolutionary methods do not achieve the same
number of generations. This is a direct consequence of limiting the wall clock
time and of the way in which all three evaluate their individuals. It can also be
observed that, in the case of using 40 s to assemble each module in a morphology,
all methods achieve a fewer number of generations as more time is spent assem-
bling and disassembling robots. In both figures, the GA-ACE method achieves
better fitness than the standard GA, even when completing fewer generations.

A more interesting graph can be drawn by changing the X-axis variable from
generations to the actual wall clock time spent. This gives us a better picture
of how the fitness would change in a real evolutionary run with assembly and
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Fig. 4. Best individual fitness vs wall clock time (in hours) in 40 runs of evolving
morphology and control with the Edhmor system, a standard genetic algorithm (GA)
and a genetic algorithm modified to allow additional controller evaluations (GA-ACE),
and allowing (left) 20 s and (right) 40 s of assembly per module. Center line shows the
median of each group and the shaded area shows the interquartile range (IQR).

disassembly processes. The wall clock time is measured inside each of the evolu-
tionary algorithms as the simulated robots are evaluated (Sect. 3.3), however the
exact times can be registered at different moments in different runs due to the
different morphologies that appear. As a consequence, and to be able to com-
pare between runs and evolutionary methods, the missing values between runs
are interpolated with a linear interpolation. After this process ends, the missing
tail values are filled by repeating the closest value.

Figure 4 shows the best fitness in 40 runs of all three evolutionary methods
against wall clock time for 20 s of assembly time per module and 40 s of assembly
time per module, respectively. Again, the median and interquartile range (IQR)
are shown for each group. These figures show that the Edhmor system produces
the best individual fitness in the time allotted and at almost all times. The GA-
ACE best individuals follow the Edhmor ones and the standard genetic algorithm
individuals are the worst performing.

These figures show that going from 20 s to 40 s of assembly time per module
increases the separation between the different algorithm groups. A Kruskall-
Wallis test showed that there is a statistically significant difference between the
fitness of the best individuals of each evolutionary method at the end of all
runs, for a 5% significance level (20 s: p< 0.0001, 40 s: p< 0.0001). A post hoc
Dunn test with Bonferroni correction showed that all groups have a statistically
significant difference with each other (20 s: all p< 0.022, 40 s: all p< 0.005).

The better performance achieved by the Edhmor system can be attributed
to performing a higher number of fitness evaluations than the other two as was
expected. Figure 5 shows the final number of fitness evaluations for each method
in 40 runs using 20 s and 40 s of assembly time per module, respectively. Again,
as more time is used performing assembly and disassembly processes, runs with
40s of assembly time per module perform fewer fitness evaluations.
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Fig. 5. Final number of fitness evaluations performed by each of the evolutionary
methods used when using (left) 20 s of assembly time per module and (right) 40 s of
assembly time per module.

6 Discussion

In this paper, we have investigated the effect of using the wall time as a stop-
ping condition, and taking into account the assembly and disassembly time,
when evolving the morphology and controller of robots built using a modular
robot platform. Under this strict stopping condition, it was shown that the three
algorithms analyzed achieve a different final number of generations and fitness
evaluations (Figs. 3 and 5). This is due mainly to how the robot evaluations are
organized in each of the three algorithms. Additionally, results show that the
time it takes for assembly and disassembly of one module in each morphology
directly affects the number of generations and fitness evaluations achieved, which
is expected as this time cannot be used to evaluate robots and takes a sizable
part of the assigned wall time.

The Edhmor and GA-ACE approaches are shown to produce individuals with
better fitness than the standard GA (Fig. 4). In the case of GA-ACE, the increase
in fitness is because of the extra evaluations used for optimizing the controller,
which coincides with what is observed in other studies that perform controller
optimization between morphological changes in evolutionary algorithms [5,8,11].
In fact, this algorithm is the closest evaluated in this paper to an evolutionary
algorithm with Lamarckian features as the controller is optimized for a morphol-
ogy and then transmitted to the robot offspring in the following generation. The
main difference is that in our approach the controller mutations are randomly
generated and there is no specific algorithm for optimizing the controller apart
from the ongoing outer evolutionary algorithm. We could test the influence of
using an specific algorithm for optimizing the controller in future work, but we
should highlight the minimal budget allowed for controller evaluation (only 6
controller evaluations are tested for each morphology). The emphasis in con-
troller optimization also allows GA-ACE to achieve a higher number of fitness
evaluations than the normal GA (Fig. 5), as it does not disassemble and assem-
ble robots as often, and could point to evolutionary algorithms with Lamarckian
mechanisms being more efficient when time is limited.
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In the case of Edhmor, the increase in fitness can be attributed to two related
reasons: First, the Edhmor evaluation flow, keeping the a similar morphology
assembled for six generations, allows it to perform a higher number of fitness
evaluations in the same time than the other two algorithms (Fig. 2). And second,
this evaluation flow keeps making small changes to the morphology of the robot
and allows the controllers to adapt to these small changes before removing mod-
ules and replacing the worst robots, which intermixes morphology and control
changes in a more granular way.

Another advantage of the Edhmor algorithm when working under limited
time constrains is that it protects innovations in the morphology of robots simi-
lar to the mechanisms presented in [4], as described in Sect. 3.2. This innovation
protection can be found also in other evolutionary algorithms as is the case of
MAP-Elites [20]. In the MAP-Elites case, innovation protection is achieved by
maintaining a diverse population using a grid of desired features. New morpho-
logical changes can be stored in one space of the grid and will only be replaced if
a better performing robot with similar features is found, which can be the same
robot morphology with a better controller. However, depending on the features
selected for the grid similar robots can imply big morphological changes thus
the performance of MAP-Elites under wall time constrains could vary widely.
Nevertheless, MAP-Elites can be used as a first step in simulation to produce a
diverse set of robot morphologies and controllers that can later be used as the
seed population of a hardware evolution.

Regarding the values selected for assembling one module (20 and 40 s), we
believe that they are conservative. 20 s is approximately the time reported in [19]
for manual assembly. In [2], a robot of three modules was built by a manipulator
in 210 s (70 s per module). In the ARE project, it takes around three minutes to
assemble a 3D printed part with three different modules (45 s per component)
[10], but excluding the time used for 3D printing. Even in the case where only
the length of the limbs is modified without changing the structure of the robot,
the change could last up to 90 s [25].

While the results of the paper are not surprising, it is important to notice
that few attempts of evolution of robots in hardware have focused on improving
the evaluation flow. To the best of our knowledge, none of them have employed
evolutionary strategies as a way to reduce the wall time of the evolution [2,8,11,
24]. Time is a scarce resource in hardware evolution and algorithms that evaluate
similar morphologies consecutively can improve this bottleneck.

Finally, we would like to point out that in this particular case where the
time for evolution is severely limited, a technique that can take advantage of
the robot evaluation time to improve the controller of a robot would be highly
desirable. An example of such a technique is reinforcement learning [12], which
works by updating a controller policy based on a reward obtained each time
the robot performs an action in the environment. Although of episodic nature,
reinforcement learning can be setup to optimize an average reward at each time
step of the robot evaluation and thus would be able to optimize the controller of
a robot on this smaller time scale. Learning and evolution have been combined
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in the past for tackling different tasks and to study the relation between these
two processes in reality [21]. A balance would still be needed between the tight
time budget that would be allowed for learning, and the time needed to change
between morphologies.

7 Conclusions and Future Work

In this work, we have studied the effect of using the wall time as a stop condition
when evolving the morphology and control of robots built with the Emerge
modules. Results showed that the evolutionary algorithms tested were severely
constrained by the wall time stop condition. Thus, for evolutionary algorithms to
be effective in real hardware tasks, the algorithms must take careful consideration
in their use of time. Specifically, they should take into account factors that
affect the amount of time that can effectively be used to evaluate robots such
as damaged robots, resetting robots to their initial position or building time. In
this paper, we have focused on the time necessary for assembly and disassembly
robots, which the results showed to directly affect the number of generations
and evaluations performed by each algorithm. Therefore, algorithms must be
carefully designed to use time efficiently when performing evolutionary robotics
experiments in reality, something that is often not considered.

In particular, evolutionary strategies can be more efficient as they can gener-
ate several offspring per parent and evaluate them consecutively. In the Edhmor
case, small variations in the morphology performed by the morphological muta-
tion phases of the algorithm keep the majority of the robot assembled between
changes and as a consequence do not use as much time for assembly and dis-
assembly as the other two algorithms. This allows the Edhmor algorithm to
perform the highest number of fitness evaluations overall, and combined with
the local search performed by these small variations in morphology and control,
also allows it to find the best individuals in the end. From this, it can be con-
cluded that strategies that keep making morphological changes while keeping
assembly times at a minimum hold a high potential of obtaining high fitness
results when on time constrains.

Future work includes testing the results found in this paper in the real Emerge
platform. Furthermore, we would like to explore how the diversity of solutions is
affected by the wall time constrain more in detail by creating a pool of diverse
solutions in simulation using the MAP-Elites algorithm and using these solutions
to seed the Edhmor algorithm. Finally, we would like to test whether using rein-
forcement learning to optimize controllers when testing different morphologies
is effective under a tight evaluation time budget.
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