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Abstract. This article presents a multiobjective variation of the prob-
lem of locating electric vehicle charging stations (EVCS) in a city known
as the Multiobjective Electric Vehicle Charging Stations Locations (MO-
EVCS-L) problem. MO-EVCS-L considers two conflicting objectives:
maximizing the quality of service of the charging station network and
minimizing the deployment cost when installing different types of charg-
ing stations. Two multiobjective metaheuristics are proposed to address
MO-EVCS-L: the Non-dominated Sorting Genetic Algorithm, version II
(NSGA-II) and the Strength Pareto Evolutionary Algorithm, version 2
(SPEA2). The experimental analysis is performed on a real-world case
study defined in Malaga, Spain, and it compares the proposed approaches
with a baseline algorithm. Results show that the SPEA2 computes the
most competitive solutions, even though both metaheuristics found an
accurate set of solutions that provide different trade-offs between the
quality of service and the installation costs.

Keywords: Electric vehicles · Infrastructure location · Sustainable
mobility · Multiobjective optimization · NSGA-II · SPEA2

1 Introduction

In recent years, sustainability has become a major goal for industry, academia,
and society as a whole. Society has steadily moved towards ecological awareness,
adapting their lifestyles to promote environmental initiatives, cleaner means of
production, and environmentally friendly energy sources. One of the most critical
changes in current activities concerns urban mobility, where an effective tran-
sition towards inclusive, efficient, and low-carbon means of transport is being
experienced [6]. Electric mobility provides citizens with a cleaner and safer way
of getting around without gas emissions.

Electric vehicles (i.e., electric cars, scooters, and motorbikes) are powered by
an electric motor charged using energy from the electricity grid. They have shown
rapid and sudden growth and expansion, as they are preferred mobility options
for the younger generation. Consequently, electric vehicles have a relevant socio-
economic impact [14]. In addition, electric vehicles have a higher overall efficiency
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than combustion engines vehicles. They save (on average) 40% of energy while
contributing to reducing gas emissions, when the electricity used to charge the
vehicles is obtained from green sources [12].

When considering the deployment of electric vehicles in large cities, a relevant
logistical problem arises, similar to other location problems related to public
services in the context of smart cities [9,17,22]. One of the most relevant sub-
problems is the effective and efficient location of charging points for electric
vehicles [10]. The main objective of this problem is to provide a good quality of
service to citizens while keeping costs reasonable for the city administration.

Different authors have tried to address this siting problem from different
perspectives. One of the common ways in the literature is to address the loca-
tion of charging stations as ILP or MILP problems. The researchers usually
used these methods to maximize the economic profits of installing new charg-
ing stations [1,2,15], minimizing the total walking distance according to parking
patterns estimated using realistic urban data [3], or maximizing coverage to
improve demand [11,25]. Some authors have relied on open data to improve the
quality of service offered to citizens by taking into consideration the energetic
constraints of the area [4,21]. The cited articles work with a mono-objective view
of the problem. However, in the real world, the location of charging stations have
different objectives.

This article presents a new multiobjective variation of the problem of locat-
ing electric vehicle charging stations (EVCS) in a city known as the Multiobjec-
tive Electric Vehicle Charging Stations Locations (MO-EVCS-L) problem. Two
objectives are considered: maximizing the quality of service of the charging sta-
tion network to the citizens, and minimizing the deployment and installation
cost of the new stations. Both objectives need data about different aspects of
a city: locations of neighborhoods, streets, etc., energy data such as types of
charging stations or energetic capability of electrical substations, and economic
data such as installation costs. To obtain this data, different open data sources
were used. This research uses a realistic case study defined in the city of Malaga,
Spain.

The main contributions of this article are: a) defining and formulating a new
realistic multiobjective problem for locating electric vehicle charging station on
a city scale, taking into account the quality of service, power restrictions, and
deployment costs; b) proposing two multiobjective metaheuristics to address the
proposed problem; c) devising specific evolutionary operators; and d) addressing
the problem on a realistic instance defined using real-world data.

The rest of the article is organized as follows: Sect. 2 presents the problem
addressed in this study. Section 3 describes the algorithms used in the exper-
imentation as well the operators designed for the problem. The experimental
setup and evaluation are reported in Sects. 4 and 5 Finally, Sect. 6 presents the
conclusions and formulates the main lines for future work.
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2 The Multiobjective Electric Vehicle Charging Stations
Location Problem

The problem considered in this paper aims to select the best locations of EVCSs
to maximize the quality of service provided to users and simultaneously take
into account the infrastructure deployment costs. Different types of EVCS are
considered. The kind of EVCSs determines the number of users that can be
served per unit of time, the charging time, and the installation costs.

The quality of service is evaluated according to the users that can be served
(each EVCS may attend the users that live within a defined service distance), the
charging time, and the citizens that any charging station does not serve. The
deployment cost has two main components: i) the infrastructure installation
expenses for the required charging equipment and the construction of a new
station and ii) the cost of connecting the installed station to the power grid.

The two discussed objectives (quality of service and deployment costs) are in
conflict, because installing charging stations close to the residences of all tenta-
tive clients would require a significant investment, which in turn may not produce
in adequate expected revenues for the institutions in charge of the management of
the electric vehicle charging system. Thus, in order to assist the decision-makers,
the main research outcome of the addressed problem is to provide solutions (i.e.,
EVCS locations) that properly samples the different trade-offs between these
problem objectives.

2.1 Mathematical Formulation

The mathematical formulation of the addressed optimization problem is defined
considering the following elements:

– A set S = {s1, . . . , sM} of candidate road segments for installing EVCSs.
Each road segment si can be the location of only one charging station.

– A set C = {c1, . . . , cN} of the locations of the tentative users. Nearby loca-
tions are grouped in clusters, as usual in the related literature. The number of
clients to serve at each cluster c is uc. The distance from the cluster c to the
charging station s ∈ S is dcc,s. A cluster of clients c is served by the charging
station located in s if the dcc,s distance is lower or equal to the Dss service
distance, i.e., dcc,s ≤ Dss. Cs ⊆ C represents the set of clusters of clients
served by station installed in s, and NC ⊆ C defines the set of clusters not
served by any charging station.

– A set E = {e1, . . . , eT } of electrical substations that supply the power to
the charging stations. Due to the power distribution restrictions, each elec-
trical substation e can serve electricity only to a given subset of of candidate
road segments enclosed in a given city area Ae, named electrical substation
influence area. In turn, the maximum power allocated for EVCSs, i.e., the
electricity distributed by substation e that can be used to feed the electric
vehicle charging stations limited by MPe.
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– A set J = {j1, . . . , jH} of EVCS types. Each type has its own charging time
ctj , equipment and building cost ccj , connection to the grid cost cgj , and
required electric power from the electrical substations epj . By convention,
the model assumes cc0 = cg0 = 0 and ct0 = ∞ to characterize segments
where no charging station is located.

Equations 3–7 describe the proposed optimization model, using the following
variables: xs is and integer variable, xs = ji when a charging station of type
ji ∈ J is installed in segment s, and xs = 0 otherwise; and ye,s is a binary
variable, ye,s = 1 if the electrical substation e is feeding the charging station
located in s and 0 otherwise.

The quality of service provided by the deployed infrastructure is defined in
Eq. (3) as the sum of the service provided by each charging station installed in
s ∈ S to the subset Cs of clusters within its service distance minus the number of
clients in clusters not served by any charging station NC. NC, defined in Eq. (5),
is the complementary set of the set of all clusters served by all charging stations,
see Eq. (1). The service provided by the EVCS deployed in s is proportional to
the number of citizens in the cluster uc and inversely proportional to the time
required to charge an electric vehicle ctxs

. The quality of service is proposed to
be maximized.

SC =
⋃

s∈S
Cs ∀ s ∈ S : xs �= 0 (1) NC = C \ SC (2)

The installation cost of a EVCS considers the sum of the infrastructure cost
ccxs

and the cost of connecting the station to its electrical substation, defined
in Eq. (4). The budget required to connect the charging station to the electrical
substation is proportional to the distance between them de,s and the cost of
wiring cgxs

. The cost is proposed to be minimized.

max
∑

s∈S

(
∑

c∈Cs

uc

ctxs

)
−

∑

nc∈NC

unc (3)

min
∑

c∈C

∑

s∈S

(de,s · cgxs
+ ccxs

) (4)

subject to
NC = C \ SC (5)
dc,s · ye,s ≤ De ∀ e ∈ E, s ∈ S (6)
∑

s∈S

ye,s · epxs
≤ MPe ∀ e ∈ E (7)

Regarding the problem constraints, Eq. (6) imposes that the distance between
an electrical substation and any charging station it feds is lower that De, i.e.,
the charging station in s is in the Ae of the electrical substation e. In turn, the
constraint in Eq. (7) guarantees that the total power consumption of all charging
stations that are fed by a given electrical substation is lower or equal than MPe.
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3 Algorithms

Two state-of-the-art MOEAs are applied in this study to address MO-EVCS-
L Non-dominated Sorting Genetic Algorithm, version II (NSGA-II) [8] and
Strength Pareto Evolutionary Algorithm, version 2 (SPEA2) [26]. NSGA-II and
SPEA-2 have been successfully applied in many problems in different application
areas in smart cities [17,18,20,22,23]. This section presents their main features
and describes the specific operators applied in this research.

3.1 NSGA-2

The evolutionary search applied by NSGA-II uses a non-dominated elitist order-
ing to mitigate the complexity of the dominance check, a crowding technique
to keep solutions diversity, and a fitness assignment method that takes into
account dominance ranks and crowding distance values. Algorithm1 presents
the pseudo-code of NSGA-II evolving a population P (size N).

Algorithm 1. Pseudo-code of the NSGA-II algorithm
1: t ← 0 � generation counter
2: offspring ← ∅
3: initialize(P (0)) � population initialization
4: while not stopping criterion do
5: evaluate(P (t)) � population evaluation
6: R ← P (t) ∪ offspring
7: fronts ← non-dominated sorting(R))
8: P (t+1) ← ∅; i ← 1
9: while |P (t + 1)| + |fronts(i)| ≤ N do

10: crowding distance(fronts(i))
11: P (t+1) ← P (t+1) ∪ fronts(i)
12: i ← i+1
13: end while
14: sorting by distance (fronts(i))
15: P (t+1) ← P (t+1) ∪ fronts(i)[1:(N - |P (t+1)|)]
16: selected ← selection(P (t+1))
17: offspring ← evolutionary operators(selected)
18: t ← t + 1
19: end while
20: return computed Pareto front

3.2 SPEA-2

SPEA2 was an evolution of the SPEA algorithm. SPEA2 is distinct from other
MOEAs because it applies the strength concept on the fitness computation,
which is based on both Pareto dominance and diversity. Thus, the strength mea-
sures how many solutions dominate (and are dominated by) each candidate
solution. In turn, a density estimation is also considered for fitness assignment.
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Furthermore, an elite population is defined to store the non-dominated individ-
uals found during the search to apply elitism.

SPEA2 working on a population P (size N) is shown in Algorithm2. The
elitePop parameter represents the elite population, which has eliteSize size. The
most similar individuals are removed by a pruning method to assure that the
size of the elite population is always eliteSize when the elite population is full.

Algorithm 2. Schema of the SPEA2 algorithm.
1: t ← 0;
2: elitePop ← ∅
3: initialize(P (0))
4: while not stopcriterion do
5: evaluate(P (t))
6: R ← P (t) ∪ elitePop
7: for si ∈ R do
8: siraw ← computeRawFitness(si,R)
9: sidensity ← computeDensity(si,R)

10: sifitness ← siraw + sidensity

11: end for
12: elitePop ← nonDominated(R)
13: if size(elitePoP) > eliteSize then
14: elitePop ← removeMostSimilar(elitePop)
15: end if
16: selected ← selection(R)
17: offspring ← variation operators(selected)
18: t ← t + 1
19: end while
20: return computed Pareto front

3.3 Main Operators

The proposed NSGA-II and SPEA2 for the locating the electric vehicle charging
stations include the main following features:

Solution Encoding. Solutions are encoded as a vector of integers in the range
[0,|J | ]. Each position in the vector represent a possible location for the charging
station (i.e., indexed by s1,...,sM ), and the corresponding integer value on index
sk represents one of the possible electric vehicle charging type, i.e., ji ∈ J . The
special value ‘0’ is used to represent the situation where no charging station is
installed in the segment sk. Figure 1 presents an example of solution encoding
for a sample scenario with eight tentative locations {1, ..., 8} and two types of
charging stations {1, 2}.

Initialization. The population is initialized by applying a random procedure
that creates feasible solutions. The initialization process iterates over the areas
of influence of each electrical power station Ae. For each Ae, it randomly selects
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Fig. 1. Example of solution encoding of an scenario with eight possible locations for
EVCS and two types of stations, and the evolutionary operators.

a tentative location si and adds a randomly chosen EVCS jk to it. If the power
consumption restriction in Eq. 7 is met, it selects another location in Ae to install
a new EVCS. This process is repeated while power consumption restriction is
fulfilled.

Selection, Replacement, and Fitness Assignment. NSGA-II applies the (μ + λ)
evolution model. Tournament selection is applied, with tournament size of two
individuals. The tournament criteria is based on dominance, and if the two com-
pared individuals are non-dominated, the selection is made based on crowding
distance. Fitness assignment is performed considering Pareto dominance rank
and crowding distance values.

Evolutionary Operators. The recombination operator applied is a variation of
the standard n-point crossover applied over two selected individuals specifically
devised to address MO-EVCS-L named k electrical substation influence area
crossover (k-AeX). That randomly exchange the deployment configuration of the
electrical areas of influence of k power stations (Ae defined in Sect. 2). This oper-
ator works as follows: given two parents (individuals), k-AeX randomly selects k
Ae and exchanges between parents the information of the selected Ae to create
two offspring (see Fig. 1). The mutation operator is based on randomly modifying
specific attribute of a randomly selected segment in the Ae of a given individual
(i.e., xs). There are three different potential changes shown in Fig. 1: i) if there
is a charging station (i.e., xs �= 0), the charging station can either removed ; ii)
if there is no any charging station (i.e., xs = 0), a randomly chosen charging
station is selected to add it in the represented segment(i.e., xs is replaced by an
integer value uniformly selected in the range [0, Z−1]); and iii) the values of two
different attributes xs and xs′ are changed with each other regardless of their
values. Te recombination and mutation operators are applied with probability
pC and pM , respectively. Figure 1 represents both evolutionary operators.

Solution Feasibility. The restriction defined in Eq. 7 may not be met after the
application of evolutionary operators, i.e., the total power consumption of all
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charging stations in Ae could be higher than MPe. Thus an operator is applied
to randomly remove charging stations installed in Ae until the restriction is
fulfilled.

4 Experimental Setup

This section summarizes the methodology applied for the experimental analysis
of the proposed MOEAs to address MO-EVCS-L.

4.1 Problem Instance

The experimentation is performed over a realistic scenario defined on the city
of Malaga, Spain. Around 567,953 citizens spread over 363 neighborhoods live
in this city. The road map is composed by 33,550 road segments. Each road
can be selected for the placement of a EVCS (see Fig. 2). The city’s electric
power is supplied by 14 electrical substations. These electrical substations limits
the number of stations that we can install in a specific area. When we install a
EVCS we can choose between different types of stations according to the different
charging speed. In this article, we consider two different types of charging stations
to be installed: fast charging stations (type 1) and super-fast charging stations
(type 2). Each one have different energy consumption requirements, installation
(equipment/building and connection) costs, and also times for fully charging a
standard electric vehicle. Table 1 summarizes the main characteristics of both
electric vehicle charging station types.

Table 1. Main features of the considered charging stations.

Type (j) ctj epj ccj cgj

Fast (1) 120 min 7.4 kW 13,915e 1.15e

Super-fast (2) 15 min 50.0 kW 39,930e 1.35e

All the information about the city is obtained by open data sources as Open
Street Maps [19] or the electrical company itself. With this scenario we test our
algorithms in a real urban area.

4.2 Evaluated Metrics

Three relevant multiobjective optimization metrics were considered for results
evaluation: generational distance (GD), inverted generational distance (IGD),
and relative hypervolume.

GD measures the average distance from the solutions computed by the
MOEA to their closest solution in the Pareto-front [24]. Let us assume the
points found by the MOEA are the objective vector set Sol = {s1, s2, ..., s|Sol|}



592 C. Cintrano and J. Toutouh

Fig. 2. Citizen’ clusters, electrical substations, and road map of Malaga, Spain. Each
edge represent a street segment associated with a substation.

and the reference points set (Pareto-front) is P = {p1, p2, ..., p|P |}. Then, the
GD is computed according to Eq. (8), where di represents the distance from si
to its nearest reference point in P (when n = 2 the Euclidian distance is used). In
turn, we evaluated the generational distance plus (GD+) proposed by Ishibushi
et al. [13]. GD+ is evaluated according to Eq. (9), where for minimization prob-
lems the modified distance between si and the nearest point in P is computed
as d+i = max{si − pi, 0}.

GD(Sol) =
1

|Sol| ·
⎛
⎝

|Sol|∑
i=1

dn
i

⎞
⎠

1
n

(8)
GD+(Sol) =

1

|Sol| ·
⎛
⎝

|Sol|∑
i=1

d+2

i

⎞
⎠

1
2

(9)

IGD performance indicator inverts the GD and measures the distance from
any point in P to the closest point in Sol [5]. Equation (10) presents the IGD
computation, where d̂i represents the distance from pi to the closest reference
solution in Sol. Besides, the inverted generational distance plus (IGD+) [13] was
considered in the experimental analysis. The IGD+ performance metric is weakly
Pareto compliant wheres the original IGD is not. The IGD+ metric es computed
as it is shown in Eq. (11), where for minimization problems the modified distance
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between pi and the nearest reference point in Sol is computed as d+i = max{si−
pi, 0}.

IGD(Sol) =
1

|P | ·
⎛
⎝

|P |∑
i=1

d̂i
n

⎞
⎠

1
n

(10)
IGD+(Sol) =

1

|P | ·
⎛
⎝

|P |∑
i=1

d̂i
+2

⎞
⎠

1
2

(11)

Hypervolume (HV) is the most popular quality indicators to evaluate
MOEAs. The HV value of Sol is the volume of the area that is dominated
by objective vectors in Sol and bounded by the reference point q as it is shown
in Eq. (12), where the function volume is the Lebesgue measure [27]. A large
HV value indicates that Sol approximates the Pareto front well in terms of both
convergence and diversity. The RHV metric is computed as the relative value of
HV to the maximal hypervolume of the Pareto front.

HV (Sol) = volume

(
⋃

s∈Sol

[s1, q1] × ... × [sn, qn]

)
(12)

In turn, the solutions provided are evaluated in terms of split ted quality
of service. Thus, two metrics are defined: a) sum of service provided by each
station, defined in Eq. 13, and b) sum disconnected users, defined in Eq. 14,
which represents the number of inhabitants not served by any charging station.

QoS =
∑

s∈S

(
∑

c∈Cs

uc

ctxs

)
(13)

du =
∑

nc∈NC

unc (14)

4.3 Parameter Settings and Execution Platform

A set of parametric setting experiments were performed to determine the best
parameter values for the proposed MOEAs. The parameter setting analysis were
made over the proposed scenario. Both MOEAs apply the same initialization,
crossover, and mutation operators. The population size (#p) and the maximum
number of generations (#g) were calibrated in preliminary experiments. The
analysis confirmed that using #p = 20 and #g = 500 provided a good exploration
pattern for both MOEAs. In SPEA-2, the size of the elite population was set to
5 individuals, following rules-of-thumb from the related literature [26].

For pC and pM , candidate values were pC ∈ {0.5, 0.7, 0.9} and pM ∈
{1/14, 4/14, 7/14} (we have 14 zones in or scenario). Each configuration was
evaluated over 30 independent executions performed for the proposed MOEAs.
The distribution of the relative hypervolume results obtained using each config-
uration were analyzed by applying the non-parametric Kruskal-Wallis statistical
test to determine the configuration that allowed computing the best results.
Thus, for NSGA-II, the most competitive results were achieved with pC = 0.5
and pM = 1/14, and for SPEA2, with pC = 0.5 and pM = 4/14.
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We perform 30 independent executions of each algorithm. Each one was run
on a machine with a Intel Xeon Gold 6240R with two processors, 48 cores at
2.40 GHz and 220 GB. The cluster was managed by HTCondor 8.2.7, which
allowed us to perform parallel independent executions to reduce the overall
experimentation time. The algorithms are written in python 3.8 using the library
DEAP [7] and the source code is available at https://github.com/cintrano/EV-
CSL/releases/tag/EvoApps2022.

Fig. 3. All computed solutions. (Color
figure online)

Fig. 4. Pareto fronts.

4.4 Baseline Method

In order to test the effectiveness of our algorithms, an intelligent Random Search
(RS) method to get a baseline of solutions is defined. RS generates feasible solu-
tions using the same constructive method applied to generate the initial popu-
lation in NSGA-II and SPEA2. The method keeps all non-dominated solutions
generated during the process. RS iterates generating new solutions until a stop
criteria is reached. In this case, it stops after ruining the maximum execution
time of the two MOEAs analyzed here.

5 Experimental Evaluation

This section reports the experimental analysis of the proposed MOEAs to
address the real-world case study of MO-EVCS-L.

5.1 Multiobjective Optimization Analysis

Figure 3 shows the non-dominated solutions computed by each independent exe-
cution of the evaluated algorithms. The different marker colors indicate the each
independent executions. In turn, Fig. 4 illustrates the three Pareto fronts com-
puted by NSGA-II, SPEA2, and RS, i.e., all non-dominated solutions computed

https://github.com/cintrano/EV-CSL/releases/tag/EvoApps2022
https://github.com/cintrano/EV-CSL/releases/tag/EvoApps2022
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considering all the 30 independent executions performed by each method. The
arrow indicates the direction of the best solutions.

Figure 3 indicates that RS is the least competitive algorithm. The RS set
of solutions represent charging covering shorter ranges of quality of service and
deployment costs than the MOEAs. All solutions computed by NSGA-II and
SPEA2 dominate the RS solutions, i.e., the RS solutions provide less quality of
service while requiring higher deployment costs. In turn, NSGA-II and SPEA2
show robustness because the average dispersion of solutions for the same value
of each problem objective was below 20% of each one of the independent runs.

Results in Fig. 4 show that the MOEAs are able to compute accurate solu-
tions, properly sample the Pareto front of the problem, and demonstrate the
practical applicability of the proposed approach. For deployment costs lower than
0.5×106, both methods present solutions with close trade-offs between quality of
service and deployment costs. However, for higher installation costs, SPEA2 is
able to improve over the solutions computed by NSGA-II, i.e., SPEA2 solutions
are able to provide a better quality of service at the same installation costs.

Regarding multiobjective optimization metrics, Table 2 reports relevant sta-
tistical values of the evaluated multiobjective metrics (i.e., minimum, maximum,
mean, standard deviation, median and IQR) for the evaluated MOEAs.

Table 2. Statistics of multiobjective metrics for the executions of each algorithm.

Algorithm Metric Minimum Mean ± Std Median iqr Maximum

NSGA-II RHV 0.74 0.82 ± 0.03 0.83 0.05 0.88

GD 6028.16 9777.69 ± 2569.45 9174.03 2487.18 17151.89

GD+ 0.07 1853.90 ± 2396.43 986.55 3165.70 9132.95

IGD 18213.75 29024.71 ± 8099.82 27602.76 7603.97 57134.82

IGD+ 0.17 13727.04 ± 9850.17 12702.03 7333.46 44933.12

SPEA2 RHV 0.83 0.89± 0.03 0.89 0.03 0.95

GD 3738.85 7460.10± 1472.98 7211.45 1496.41 10550.35

GD+ 0.02 66.54± 179.47 0.06 0.02 712.32

IGD 13494.63 21287.26± 5191.87 20642.87 6307.04 37576.88

IGD+ 595.11 8327.67± 6036.19 7301.21 7973.87 26004.91

According to the results in Table 2, SPEA2 is the most competitive method
among the evaluated ones addressing MO-EVCS-L. SPEA2 present lower values
for the distance-based metrics, i.e., GD, GD+, IGD, and IGD+ (see in bold
in Table 2), which represents that SPEA2 computed solutions are closer to the
Pareto front than the NSGA-II ones. The RHV results of SPEA2 are higher
than the NSGA-II ones (see in bold in Table 2), which indicates that SPEA2
converged to more competitive solutions than NSGA-II.

Statistical analysis is performed to evaluate the statistical significance of
these results. As the distribution of results follow a non-normal distribution,
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Kruskal-Wallis statistical test is applied. The results confirmed that SPEA2 out-
performs NSGA-II with a confidence higher than 99%, i.e., p − values � 0.001
for all evaluated metrics. These results imply better convergence towards the
Pareto front of the problem and a better coverage of the Pareto space by solu-
tions computed by SPEA2

Table 3 reports the values of the multiobjective metrics evaluated for the
Pareto front provided by NSGA-II and SPEA2. Results in Table 3 show that the
Pareto front computed by SPEA2 provides the best values for each metric.

Table 3. MOEAs metrics for the Pareto front computed by NSGA-II and SPEA2.

Algorithm RHV GD GD+ IGD IGD+

NSGA-II 0.947 5790.885 590.648 10131.143 0.031

SPEA2 0.992 1175.294 0.009 2776.893 595.026

5.2 Computational Time Evaluation

This section discusses the execution time of the evaluated methods. Table 4 shows
the relevant statistics of the execution time in minutes of NSGA-II and SPEA2
when addressing the proposed instance of MO-EVCS-L. RS is not included since
its stop condition is set as running for the maximum running time of both
MOEAs, i.e., 1515 s.

Table 4. NSGA-II and SPEA2 execution times (in seconds).

Algorithm Minimum Mean ± sd Median iqr Maximum

NSGA-II 1214.37 1271.17 ± 61.70 1242.04 61.86 1515.38

SPEA2 1214.25 1272.85 ± 49.20 1260.53 47.11 1515.96

Results in Table 4 show that there are no significant differences between the
execution time required by the evaluated MOEAs. The execution time is between
20 and 25 min, which entails a low computational cost.

5.3 Comparative Analysis

A few samples of computed solutions are compared in terms of two metrics of
quality of service: the sum of the service provided by the stations (QoS) and the
disconnected users (du). For a fair comparison, the solutions compared are the
ones that require the same deployment cost. Three were selected according to a
percentage over the maximum deployment cost computed: 50%, 75%, and 90%.
Table 5 reports the results. Besides, it includes the number of stations of each
type installed. Figure 5 illustrates the solution with the 75% of the cost.
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Table 5. Quality of service metrics for the selected run of each algorithm.

Cost Algorithm QoS du # stations type = 1 # stations type = 2

50% NSGA-II 1204666 317563 21 9

SPEA2 1413229 298201 19 10

75% NSGA-II 1072286 280995 39 10

SPEA2 1529501 275702 31 13

90% NSGA-II 1502587 262766 43 13

SPEA2 1619564 274091 40 14

According to the results in Table 5, SPEA2 provides the best QoS values for
the three evaluated solutions. For the costs of 50% and 75%, SPEA2 leaves fewer
users disconnected. However, NSGA-II has fewer citizens that are not served by
any charging station for the cost of 90%. Finally, it can be seen that SPEA2
deployments have more EVCS of type 2 than NSGA-II, and NSGA-II installs
more EVCS of type 1 than SPEA2.

Fig. 5. Geographical locations of the solutions computed by NSGA-II and SPEA2 with
a 75% of cost.
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6 Conclusions and Future Work

This paper presents a multiobjective evolutionary approach to address the prob-
lem of locating electric vehicle charging stations in a city, a relevant challenge of
the current sustainability and clean mobility concerns.

The multiobjective problem of locating electric vehicle charging stations stud-
ied considers two conflicting objectives: quality of service and deployment costs.
The problem formulation is more realistic than previous approaches. On the one
hand, it considers both kinds of users: citizens served by the stations and a long
way to get to the nearest one. On the other hand, it explicitly models real energy
supply constraints and deployment costs.

The proposed problem formulation as MO-EVCS-L is more realistic than
previous approaches. On the one hand, it considers the two types of users: citi-
zens served by the charging stations and those disconnected from the charging
station network (i.e., not attended by any charging station). It is important con-
sidering the unserved users because this may make it difficult for these citizens
to purchase electric vehicles. On the other hand, it explicitly models real energy
supply constraints and deployment costs.

Two variations of MOEAs (NSGA-II and SPEA2) that apply specific evolu-
tionary operators have been proposed to solve MO-EVCS-L. The problem has
been solved over a real city-scale scenario, the city of Malaga (Spain). The results
obtained show that the SPEA2 is the most competitive approach. However, bot
MOEAs provide accurate location plans to assist in making decisions on the
location of EVCSs taking into account the quality of service and the cost of
installation.

The main lines for future work are related evaluating exact approaches such
ILP variations to address this multiobjective optimization problem; devising
other operators; applying a race-based method to configure the algorithms, e.g.,
irace [16]; increasing the realism of the model by considering general citizen’s
mobility behavior, the location of points of interest (i.e., hospitals, industrial
areas, malls, etc.), or the vehicle fleet; and to the definition of real instances over
other cities.
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