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Abstract. Combinatorial designs provide an interesting source of opti-
mization problems. Among them, permutation codes are particularly
interesting given their applications in powerline communications, flash
memories, and block ciphers. This paper addresses the design of permu-
tation codes by evolutionary algorithms (EA) by developing an iterative
approach. Starting from a single random permutation, new permutations
satisfying the minimum distance constraint are incrementally added to
the code by using a permutation-based EA. We investigate our approach
against four different fitness functions targeting the minimum distance
requirement at different levels of detail and with two different policies
concerning code expansion and pruning. We compare the results achieved
by our EA approach to those of a simple random search, remarking that
neither method scales well with the problem size.

Keywords: Permutation codes · Evolutionary algorithms ·
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1 Introduction

Permutation codes (also called permutation arrays) are a particular kind of error-
correcting codes where the codewords are permutations. In particular, a permu-
tation code PA(n, d) is a set of permutations of length n such that any two
permutations in it disagree in at least d positions.

These combinatorial objects have several applications, for example, as error-
correcting codes in powerline communications [2]. The basic approach for pow-
erline transmission is to encode the data by small voltage variations, with the
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J. L. Jiménez Laredo et al. (Eds.): EvoApplications 2022, LNCS 13224, pp. 141–156, 2022.
https://doi.org/10.1007/978-3-031-02462-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02462-7_10&domain=pdf
https://doi.org/10.1007/978-3-031-02462-7_10


142 L. Mariot et al.

requirement of keeping the power output as constant as possible. Further, trans-
mission over powerlines is affected not only by white Gaussian noise but also
by impulse and narrow-band noise due to electrical interference and magnetic
fields. Using permutation codes in a modulation scheme, as suggested by Han
Vinck [10], provides a good trade-off between power variation and correcting
errors introduced by these kinds of noise. A second domain where permutation
codes have been extensively applied is flash memories, particularly in the so-
called rank-modulation scheme [11]. In traditional designs, the cells in a flash
memory encode the information using different charge levels, allowing them to
store a set of discrete values. On the other hand, rank-modulation encodes the
data in the cells with a permutation that specifies the relative ranks of the
charges instead of directly using their absolute values. Using a permutation code
in this scheme improves the writing speed and the correction of errors introduced
by charge leakage, which becomes progressively frequent in aging memories.

Finally, permutation codes have also been applied to a smaller extent in cryp-
tography, specifically for the design of block ciphers [24]. In the Substitution-
Permutation Network (SPN) paradigm for block ciphers, the plaintext is
encrypted by iteratively applying several times a round function. The round func-
tion, in turn, consists of a confusion layer, which aims at making the relationship
between the ciphertext and the symmetric key as complicated as possible, and a
diffusion layer, whose goal is to spread the statistical structure of the plaintext
over the ciphertext. The resulting block is mixed with a round key to get the
corresponding ciphertext, which is then given as input to the next application of
the round function. The diffusion layer is usually implemented through a Maxi-
mum Distance Separable (MDS) matrix as it happens, for example, in AES [6].
An alternative approach is to use a set of different permutations coming from
a permutation code PA(n, d). By dynamically choosing a different permutation
from the code at each round, two different input blocks are guaranteed to result
in output blocks at Hamming distance of at least d, thereby implementing a
multi-permutation as defined by Vaudenay [25].

Despite their simple definition, the construction of permutation codes is
far from being a trivial problem. Indeed, finding the largest permutation code
is a particular instance of the sphere-packing problem studied in coding the-
ory [5], and of the Max-Clique problem in graph theory, which is known to be
NP−complete [12]. In particular, one of the main open questions in this research
field is to determine the largest permutation code for a given length n and min-
imum distance d, i.e., the maximum number of permutations that can partake
in a PA(n, d). Such a number is usually denoted as M(n, d), and its exact value
is known only for a few specific cases. Generally, one resorts to coding-theoretic
results to provide lower and upper bounds on M(n, d). Apart from algebraic
constructions, for which the reader may find a survey in [3], a few heuristic algo-
rithms have also been developed to construct large permutation codes [18,21],
mostly based on branch and bound and iterative clique search approaches. As far
as we know, up to now, there have been no attempts in the literature to employ
Evolutionary Algorithms (EA) to address this problem, although some authors
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used EA in the past to evolve other kinds of combinatorial designs, such as
orthogonal Latin squares [16], orthogonal arrays [17] and disjunct matrices [14].

This paper investigates the suitability of EA to optimize permutation codes.
We do so by from the previous permutations. The process is repeated until
either a given fitness budget expires or an upper bound on M(n, d) is reached
(since this means that the code cannot be expanded further). We evaluate our
incremental EA approach under four fitness functions and two update policies.
The first update policy expands the code as soon as a suitable permutation is
found by the EA. The second policy also removes some rows at random from the
current code after a certain amount of fitness evaluations with no improvement
has elapsed. The number of removed rows is decreased over time, similarly to
the cooling schedule used in simulated annealing. For the sake of comparison,
we also adopt a baseline random search (RS) method and perform experiments
over 15 problem instances. The results show that both EA and RS cannot scale
well on this optimization problem, with the largest codes found that lie far from
the best-known lower bounds [20].

2 Preliminaries

We denote by [n] the set {1, · · · , n} of the first n ∈ N positive integers. Next,
Sn denotes the symmetric group of order n, i.e., the set of all permutations over
[n]. Given a permutation π ∈ Sn, we encode it as a vector π = (p1, · · · , pn) of
length n, where each coordinate π[i] specifies the value of the permutation when
evaluated on i ∈ [n]. Further, given two permutations π, σ ∈ Sn, the Hamming
distance dH(π, σ) is the number of coordinates where π and σ differ.

Definition 1. Let n ∈ N and d ≤ n. A permutation code (also permutation
array, PA) of length n and minimum distance d, denoted by PA(n, d), is a subset
P of the symmetric group Sn such that dH(π, σ) ≥ d for every pair of distinct
permutations π, σ ∈ P .

Using the error-correcting codes terminology, the permutations in a PA(n, d)
are also called codewords. If P is composed of m codewords, one can represent it
through a m × n matrix where each row corresponds to one of the permutations
in P . The ordering of the rows in such a matrix is irrelevant since it does not
change the pairwise Hamming distances of the permutations. In the following,
we will mostly use this matrix-based notation to represent PA, although the
set-theoretic notation will also be useful to describe the operations performed
by our evolutionary algorithms to search for such arrays.

One of the main problems is determining the largest number of codewords
that can partake in a permutation code. Following the notation from [3], given
n and d we denote by M(n, d) the maximum number of rows in a PA(n, d). The
values of M(n, d) are generally unknown, but several theoretical bounds exist.
Two well-known results in this direction, originating from coding-theoretical
considerations, are the Gilbert-Varshamov lower bound and the sphere-packing
upper bound, which we summarize below for permutation codes.
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Theorem 1. Let n, d ∈ N with d ≤ n. Then, the following inequalities hold for
the maximum number of codewords in a permutation code:

n!
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where Dk is the number of derangements of k elements (i.e., the number of
permutations of length k without fixed points), which for all k ∈ N equals:

Dk = k!
k∑

i=0

(−1)i

i!
. (2)

The Gilbert-Varshamov and sphere-packing bounds are rather crude, but
in practice, they are helpful to decide whether a specific instance of n and d
is suitable to construct a permutation code large enough for a specific appli-
cation. Of course, tighter bounds have been proved in the related literature of
permutation codes, either by combinatorial arguments or by providing concrete
constructions. The latter case usually occurs for specific values of the minimum
distance. For instance, if d = n, then it is rather easy to constructively prove
that M(n, n) = n, by considering any Latin square of order n as an example
of permutation code reaching this bound. Indeed, a Latin square of order n is
a n × n array such that each number in [n] appears exactly once in each row
and each column. Thus, each row of the square is a permutation, and any two
rows differ in all coordinates since there cannot be any repeated number in any
column. A simple construction for a Latin square of order n is to take all cyclic
shifts of the identity permutation (1, 2, · · · , n), which proves the existence of a
PA(n, n) for every n ∈ N.

Latin squares also provide a construction for a better lower bound on M(n, d)
when d = n − 1. In particular, two Latin squares are called orthogonal if their
superposition yields all ordered pairs in the Cartesian product [n] × [n], and
a set of k mutually orthogonal Latin squares (k-MOLS) is a family of k Latin
squares of order n that are pairwise orthogonal. Colbourn et al. [4] showed
how to construct a PA(kn, n − 1) by using a set of k-MOLS of order n, thereby
proving that kn ≤ M(n, n − 1). We emphasize that determining the maximum
size of a MOLS family for a given n is also a long-standing open problem in
design theory, but several results are known for specific cases [22].

It is also easy to determine the maximum number of rows in a permutation
array for low minimum distances. Indeed, two permutations cannot differ in
only one position since this would imply that both vectors have a repeated value
(thus, not making it a permutation). Therefore, the minimum distance is always
at least 2, i.e., when two permutations differ by a single transposition, or swap.
This means that the largest PA(n, 2) corresponds to the symmetric group Sn

itself, hence M(n, 2) = n!. Additionally, any two distinct permutations in the
alternating group An (i.e., the set of even permutations of length n) are always
at a minimum distance of 3. Since the alternating group is exactly half of the
size of the symmetric group, it follows that M(n, 3) = n!/2. We conclude this
section by summarizing the above results as follows:
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Theorem 2. Let n, d ∈ N with d ≤ n. Then:

– M(n, 1) = 1 ; M(n, 2) = n!; M(n, 3) = n!/2;
– M(n, n) = n; kn ≤ M(n, n − 1), if there exists a set of k-MOLS of order n.

Tables reporting more refined lower and upper bounds for various values of n
and d may be found in [20].

3 Incremental Construction with EA

From an intuitive point of view, it seems natural to cast the search of a permu-
tation code as a combinatorial optimization problem. Given the length n of the
permutations, the (minimum) distance d and the number m of desired permu-
tations in the array, one needs to find a set of m elements from Sn such that the
Hamming distance between any two permutations in it is at least d. Therefore,
disregarding the bounds on m induced by the distance parameter, the size of the
resulting search space Sm,n is |Sm,n| =

(
n!
m

)
since we need to pick m elements

from a set of size n!. Exhaustively searching for a solution would be already pro-
hibitive for very small values of n and m: for example, there are only |S5| = 120
permutations of length n = 5. However, visiting all subsets of S5 of size m = 12
would imply a search space of

(
120
12

) ≈ 1.05 · 1017 elements, which clearly cannot
be explored in a reasonable amount of time. Consequently, it seems interesting
to address this optimization problem with evolutionary algorithms.

3.1 Evolving Subsets of Permutations

Given n,m and d, a straightforward option is to set up an EA that searches
for permutations codes by directly evolving a set of m permutations. A can-
didate solution in the population is represented as a matrix A of size m × n,
where each row is a permutation of the set [n]. Then, this candidate solution
would be evaluated through a fitness function that measures how close is A from
being a PA(n, d). This could be accomplished, e.g., by counting the number of
pairs of rows in A that are at Hamming distance at least d and maximizing
such fitness. In this approach, one could use common operators for permutation-
based chromosomes. For crossover, these include among others partially mapped
crossover [9] and cycle crossover [19]. For mutation, the most natural solution
is to apply a simple swap operator that randomly exchanges two values in a per-
mutation [1], but other methods have been proposed such as, e.g., the inversion
operator [8] and the scramble operator [23]. Still, when evolving permutation
codes, one deals with sets of permutations. Thus, a possible solution for this
problem would be to apply the variation operators in a row-wise manner. For
example, given two m × n arrays A and B, define an offspring array C by first
applying a permutation-based crossover to the first row of A and B, then to
the second one, and so on until C is completed. Although straightforward, this
optimization approach suffers from several drawbacks:
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– As the aim is constructing a permutation array in an “all-at-once” fashion,
an EA would directly explore m-subsets of the symmetric group Sn, which
results in a very large search space already for small values of m and n.

– The fitness function would need to consider the Hamming distance of each
pair of rows in the arrays. Hence, the computational complexity required to
evaluate a single candidate solution would be quadratic in the number of
permutations of the array, as there are

(
m
2

)
= m(m−1)

2 = O(m2) pairwise
Hamming distances to compute in an m × n array.

– This optimization approach relies on the number of rows m composing the
desired permutation to define the problem instance. This implies that one
would need to check in advance if m rows are attainable by a permutation
code of length n and distance d.

3.2 Iterative Approach

Given the problems featured by the “all-at-once” method, we chose to follow
an iterative optimization approach, greatly reducing the search space handled
at each step by the evolutionary algorithm. Given n, d ∈ N, the idea is to start
from an empty set and add a random permutation p1 ∈ Sn of length n: trivially,
P forms a PA(n, d) with m = 1 rows. Then, an EA evolves a single permuta-
tion p2 ∈ Sn, until it finds one whose Hamming distance from p1 is at least d.
When it is found, p2 is added to P , thereby expanding the permutation code
to m = 2 rows. The process is repeated by evolving a new permutation until a
general termination criterion is met, such as reaching a theoretical upper bound
for M(n, d) or a specified number of fitness evaluations. By construction, the
obtained array will be a permutation code PA(n, d) with a certain number of
rows m. At each stage, the EA only explores the set Sn of all permutations of
length n instead of the whole set of m-subsets of permutations.

More formally, given a PA(n, d) P = {p1, · · · , pm} with m rows, the decoding
of a candidate chromosome pm+1 ∈ Sn results in the following phenotype: P ′ =
P ∪ {pm+1}. Clearly, since P already satisfies the properties of a permutation
code of minimum distance d, the fitness of the candidate solution P ′ encoded
by pm+1 is evaluated only by taking into account the m Hamming distances
dH(p, pm+1), with p ranging over P . This is a much more efficient fitness function
since its computational complexity scales linearly with the number of rows in
P . Further, suppose that χ : Sn × Sn → Sn is a crossover operator for single
permutations. Then, given two parent permutations p1, p2 ∈ Sn, the phenotype
C for the offspring child candidate solution is defined as C = P ∪ {χ(c1, c2)},
that is, crossover is limited only on the new row. Accordingly, the same approach
is adopted for mutation by applying the corresponding operator μ : Sn → Sn

only on the new permutation optimized by the EA.
Algorithm 1 reports the pseudocode for the incremental EA informally intro-

duced above. The input parameters are the length of the permutations n, the
required minimum distance d, the fitness budget fb, the target number of rows
M (which specifies, for example, a known upper bound for M(n, d)), the size
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Algorithm 1. Incremental-EA-PA(n, d, fb,M, popsize, θ)
P ← {}
π ← Gen-Rand-Permutation(n)
P ← P ∪ {π}
eval ← 0
while |P | < M AND eval < fb do

pop ← Init-Population(n, popsize)
Evaluate-Fitness(pop, P, n, d, ev)
best ← Update-Best-Ind(pop)
while eval < fb AND (NOT Is-PA(n, d, P, best.π)) do

pop ← Update-Pop-EA(n, d, P, pop, θ, eval)
best ← Update-Best-Ind(pop)

if Is-PA(n, d, P, best.π) then
P ← P ∪ {best.π}

return P

of the EA population popsize, and a vector θ specifying the parameters for the
underlying evolutionary algorithm.

The subroutines Gen-Rand-Permutation and Init-Population respec-
tively generate at random a single permutation and a population of popsize
candidate permutations. An individual ind in the population is assumed to be a
record composed of two items, namely ind.π (the vector specifying the permu-
tation) and ind.fit (the fitness value of the permutation). Evaluate-Fitness
computes the underlying fitness function for each individual in the population,
while Update-Best-Ind returns a pointer to the best individual in the cur-
rent population. The specific structures for these two subroutines depend on
the details of the fitness function, which we will address in the next section.
Is-PA is a predicate returning true if and only if the union of a PA(n, d) and
a new permutation is still a PA(n, d), and it is used to determine when to exit
from the inner while loop of the EA. When an optimal solution is found, Is-
PA(n, d, P, best.π)) returns true, and the permutation code P is extended by
adjoining to it the permutation of the best individual in the population.

The actual EA is implemented by the Update-Pop-EA subroutine. In par-
ticular, depending on the underlying EA, the population might be updated com-
pletely, as in a generational approach (possibly coupled with elitism) or only
partially, with only a few new offspring individuals entering into the population
at each step. In our experiments, we adopted a steady-state genetic algorithm
(GA) with tournament selection. This means that each time Update-Pop-EA
is invoked, t individuals are drawn at random from the population, and the two
with the best fitness values are selected for crossover. The resulting offspring
then undergoes mutation with probability pμ, that replaces the worst individ-
ual in the tournament. Algorithm 2 gives the pseudocode for our steady-state
GA implementing the Update-Pop-EA subroutine. The parameters vector θ is
replaced by the pair (t, pμ), whose components respectively specify the tourna-
ment size and the mutation probability. Notice also that eval, which is a counter
used to keep track of the number of fitness evaluations performed by the algo-
rithm, is assumed to be a global variable: in fact, it is used in the invariants for
the while loops in Algorithm 1.
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Algorithm 2. Update-Pop-EA(n, d, P, pop, (t, pμ), eval)
tourn ← Random-Select(t, pop)
(p1, p2) ←Select-Best(tourn)
c ← Crossover(p1, p2)
c ←Mutation(c, pµ)
c.fit ← Fitness(n, d, P, c)
eval ← eval + 1
worst ← Select-Worst(tourn)
Replace(worst, c)
return pop

The subroutines Random-Select, Select-Best, and Select-Worst
respectively return a random subset of t individuals from the population, the two
best individuals and the worst one in the tournament concerning their fitness
values. The offspring chromosome is created from p1 and p2 by first applying
Crossover and then Mutation. After evaluating the fitness function – and
increasing the counter of fitness evaluations – the subroutine Replace changes
the worst individual in the tournament to the newly created offspring.

3.3 Fitness Functions

We defined four fitness functions to be optimized by the iterative EA described
in the previous section, which we describe below. In what follows, we assume
that the goal is to compute the fitness of a permutation p ∈ Sn when adjoined
to a PA(n, d) of m rows, P = {p1, · · · , pm}.

The first fitness function directly sums the Hamming distances of each pair
(p, pi) of permutations, but only if they are at least equal to the required mini-
mum distance d:

fit1(p) =
∑

pi∈P

δi · dH(p, pi), where δi =

{
1, if dH(p, pi) ≥ d,

0, otherwise
. (3)

Note that this fitness function completely neglects the permutation pairs’ infor-
mation at Hamming distance lower than d. For this reason, the second fitness
function has the same form of fit1, but also takes into account the invalid pairs
by discounting them through an exponential factor:

fit2(p) =
∑

pi∈P

δ′
i · dH(p, pi), where δ′

i =

{
1, if dH(p, pi) ≥ d,

2dH(p,pi)−d, otherwise
. (4)

Indeed, when dH(p, pi) < d the factor δ′
i is a number between 0 and 1, which

decreases as the difference dH(p, pi) − d gets smaller. In this way, the more a
pair (p, pi) is closer to the required minimum distance d, the more it contributes
to the fitness function.

The third fitness function considered in our experiments corresponds to the
minimum Hamming distance between p and each permutation in P , that is,

fit3(p) = min
pi∈P

{dH(p, pi)} . (5)
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Hence, the permutation p is an optimal solution as soon as fit1(p) ≥ d, since this
is precisely the characterizing property of a PA(n, d). Although straightforward,
this fitness function suffers from a limited range of possible values (especially
for small values of d), making many candidate solutions very similar. This may
hamper, in turn, the EA’s ability to exploit specific regions of the search space.

The three fitness functions described up to now are all meant to be maximized
as an optimization objective. On the contrary, the fourth fitness function is
based on counting the number of pairs that do not meet the minimum distance
requirement, clearly with the objective of minimizing them:

fit4(p) = |{(p, pi) : pi ∈ P, dH(p, pi) < d}| . (6)

4 Experimental Evaluation

A problem instance for the permutation array problem is defined by the length
of the permutation n and the (minimum) distance d. To evaluate the suitabil-
ity of the incremental EA on this problem, one possibility is to compare the
maximum number of rows obtained by it for a PA(n, d) and the corresponding
lower/upper bounds known in the literature. As far as we are aware, Smith and
Montemanni [20] report the most up-to-date table that reports such bounds for
6 ≤ n ≤ 18 and 4 ≤ d ≤ 18. Since d must always be less than or equal to n,
the total number of problem instances to be tested for a complete comparison
is

∑15
i=3 i = 117, which might be unfeasible depending on how much time a sin-

gle run of the EA takes. Therefore, it makes sense to perform the experiments
on a subset of instances, limiting the size of the permutations to n = 10 and
minimum distance n − 2 ≤ d ≤ n. In this way, we get a total of 15 problem
instances to test. These instances also have practical relevance in the design of
modulation schemes for powerline communications (see, e.g., [7], where PA of
length at most 8 are considered for this task) and for the design of block ciphers,
where n = 8 is a popular permutation size in the diffusion layers of lightweight
block ciphers [15]. The instances where n = d correspond to the problem of find-
ing a Latin square of order n. Furthermore, although the size of the symmetric
group Sn, for 6 ≤ n ≤ 10, is sufficiently limited to be completely explored, recall
that the unfeasibility of the exhaustive search approach stems from the fact that
we are trying to construct subsets of permutations. This already yields a search
space of size

(
6!
120

) ≈ 3.07 · 10140, for the PA(6, 4) instance, and thus it cannot
be exhaustively explored. For each considered combination of n and d, Table 1
reports the size of the corresponding search space computed as

(
n!

M(n,d)

)
and the

corresponding best value known for M(n, d) taken from [20]. The search space
size decreases as the minimum distance approaches the length, with n = d giving
the smallest sizes – although still not amenable to exhaustive search.

4.1 Experimental Settings

In our experiments, we evaluated our evolutionary approach to construct PA
along three different components: namely, the fitness functions described in
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Table 1. Approximate search space size Sn,d and code size bound M(n, d) for each
considered problem instance. Bold values represent non-tight lower bounds.

d\n 6 7 8 9 10

n− 2 Sn,d 3.07 · 10140 2.31 · 10277 1.81 · 10843 1.20 · 101 658 3.83 · 102 978

M(n, d) 120 77 336 504 720

n− 1 Sn,d 3.41 · 1036 1.91 · 10106 1.10 · 10184 3.26 · 10297 1.61 · 10453

M(n, d) 18 42 56 72 49

n Sn,d 1.89 · 1015 1.63 · 1023 1.73 · 1034 3.01 · 1045 1.10 · 1060

M(n, d) 6 7 8 9 10

Sect. 3.3, the underlying search algorithm, and the adopted update policy. The
search algorithm refers to the particular procedure used to select a suitable per-
mutation to be added in the current code, i.e., the content of the while loop at
lines 11–12 in Algorithm 1. In this case, we adopted a permutation-based genetic
algorithm (which we will refer to as EA in the following) and a simple random
search (RS) as a baseline method for comparison. In particular, the RS works
by drawing at random a new permutation at each iteration of the while loop,
which is subsequently added only if it is at a minimum distance d from all pre-
vious permutations. On the other hand, the EA follows the Update-Pop-EA
steady-state procedure described in Algorithm 2.

The update policy is the strategy by which the algorithm constructs the
permutation code. The iterative approach laid out in Sect. 3 is based on the
Incremental-EA-PA procedure (Algorithm 1), which only expands the code
when a new permutation at minimum distance d from all the current ones is
found. However, this update policy might easily get stuck in local optima. Intu-
itively, the size achievable by a permutation array constructed incrementally
highly depends on the initial permutations chosen. Therefore, if the search algo-
rithm makes a few “wrong choices” initially, it might end up with a relatively
small list of permutations that cannot be further expanded.

For this reason, we also experimented with a random reset update policy: if a
new permutation satisfying the minimum distance requirement is not found within
a given number of fitness evaluations in the inner while loop of Algorithm 1, then
some previous permutations – chosen at random – are removed from the current
code. Also, the number of permutations to be removed is chosen randomly, but
the maximum value is modeled after the cooling policy as employed in simulated
annealing [13] Initially, the maximum number of codewords to remove can be as
high as one-third of the current PA size (|P |) but is then decreased at every sub-
sequent random reset, in order to favor the exploration of the search space at the
beginning of the optimization process and its exploitation in the later stages. The
actual number of permutations to be removed is a random value in {1, · · · , r},
where r is set as r = 1

3 × |P | × e−evals/106 . The condition to invoke this reset
is defined as the number of successive evaluations without increasing the PA size,
e.g., the number of unsuccessful attempts to add a new permutation to the current
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PA. In our experiments, this number was defined as max(n!, 105); the reasoning
behind this is that n! evaluations of the exhaustive search would be enough to find
out whether any new permutation can be added to the current PA. Consequently,
we use this number as the stagnation detection threshold. Note that the random
reset policy can be used with any search algorithm (i.e., any type of population
update) and any fitness function.

In what follows, we will denote by EA1 and EA2 the incremental EA equipped
respectively with the plain update policy as in Algorithm 1 (where new permuta-
tions are only added) and with the above random reset update policy. Likewise,
RS1 and RS2 will denote the analogous variants of the RS baseline algorithm
concerning the update policy.

Prior to the experiments on the selected problem instances, a short tuning
phase was performed on problem instance PA(7, 5) to estimate the appropriate
parameter values for the population size and the mutation rate pμ of the GA.
Based on those results, the population size was set to 1 000 individuals, and
the mutation rate was kept at 30%. In all the experiments, the total number
of evaluations (the fitness budget fb) was set to 107, and each experiment was
executed in 30 repetitions. Concerning the variation operators, we employed the
permutation-based crossovers and mutations implemented in the ECF frame-
work1, by choosing them uniformly at random at each evaluation.

4.2 Results

Figures 1 and 2 display the results obtained in our experiments with all search
methods and across all considered problem instances, except those where n = d.
In fact, in all those cases, each search variant managed to construct a PA(n, n),
or equivalently a Latin square of order n. For each problem instance (n, d), the
corresponding boxplot shows the four fitness functions against the largest code
size achieved by the corresponding variant of a search method. The legend for
the four considered combinations of search method and update policy is reported
on top of each figure.

First, one can see from the plots that all considered methods, independently
from the fitness function, the search method, and the update policy, cannot
scale very well concerning the problem size. Indeed, optimal solutions reaching
known values for M(n, d) are consistently found only in the n = 6 case, with
the exception of a single PA(7, 6) of size 42 found by EA2 with fitness function
fit3. Contrarily, for n ≥ 7, all considered variants find PA that are significantly
smaller than the best-known bounds reported in [20]. Our methods are always
able to outperform the Gilbert-Varshamov bound, which is, however, quite loose
as reported in Sect. 2.

As expected, the random reset update policy generally achieves better results
than the plain one. This effect is particularly evident in the n = 6 problem
instances, with the combinations adopting the plain update policy obtaining

1 Framework available at http://ecf.zemris.fer.hr/.

http://ecf.zemris.fer.hr/
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(a) 6, 4 (b) 6, 5

(c) 7, 5 (d) 7, 6

(e) 8, 6 (f) 8, 7

Fig. 1. Largest code size achieved by all methods across the problem instances with
n = 6, 7, 8 and d = n− 2, n− 1.

considerably smaller codes than those using random resets, which instead find
almost always an optimal solution. Surprisingly, by comparing the results con-
cerning the update policies, there is no significant difference between the code
sizes obtained by EA and RS. A second surprising remark concerns the fitness
functions: while we expected fit3 to be the worst-performing one in Sect. 3.3, it
generally achieved larger code sizes than the other three.

As for fitness functions, the most interesting remark is that the best per-
forming one is also the simplest, namely fit3, that measures the minimum dis-
tance of the new candidate solution from all permutations in the current code.
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(a) 9, 7 (b) 9, 8

(c) 10, 8 (d) 10, 9

Fig. 2. Largest code size achieved by all methods across the problem instances with
n = 9, 10 and d = n− 2, n− 1.

This is a fairly straightforward translation of the property characterizing a per-
mutation code into an objective function to be maximized, and we hypothesized
that it could underperform due to its limited range of values. The reason why
fit3 achieves the largest code sizes over all considered instances might reside in
the size of the “local” search space, i.e., in the set of all permutations of size n
that the EA searches at each stage of the incremental construction. Indeed, we
targeted relatively small permutations, where the symmetric group is composed
of at most 10! ≈ 3·106 in the largest considered instance. Using finer-grained fit-
ness functions such as fit1, fit2, and fit4 might have hampered the EA search
process, investing many fitness evaluations in optimizing much more informa-
tion – e.g., the discounted invalid distances in Eq. (4) – than what was needed.
It could be interesting to perform experiments on larger instances where the
symmetric group Sn is not amenable to exhaustive search to see if this trend
continues or if the additional information exploited by the other fitness functions
gives an advantage over fit3.

The relatively small size of the local search space of permutations might also
be related to the substantial equivalence of the EA and RS performances. It
could be the case that the results are quite similar because it does not make
any difference how the local permutation is selected to incrementally expand the
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code, given the size of the underlying symmetric group. Thus, in this setting, the
update policy seems to be the factor that mainly influences the size of the largest
codes found by our incremental approach, independently of the search method.
Again, this explanation should be tested against further experiments on larger
problem instances. One can see already from the plots in Fig. 2 that a difference
does arise for n = 10, with EA2 under fitness function fit3 achieving larger
codes than those obtained by RS2. It is reasonable to assume that with larger
permutation sizes, the evolutionary approach takes over the random search, with
an increasing gap between the two methods.

Besides the comparison with random search, the most interesting observation
arising from our experiments is that this optimization problem seems to be excep-
tionally difficult for evolutionary algorithms. Only for the smallest instances of
PA(6, 4) and PA(6, 5) could we obtain optimal solutions concerning the code
size (neglecting the outlier found for PA(7, 6)). In all other cases, the largest
code found (either with EA or RS) always lies far from the best lower bounds
for M(n, d). This finding could be interpreted in view of the Max-Clique for-
mulation of the problem [18]. Suppose we have a graph where the nodes are the
permutations in Sn, and two nodes are connected by an edge if and only if their
Hamming distance is at least d. Then, constructing the largest permutation code
PA(n, d) is equivalent to searching the largest clique in such a graph. With the
incremental construction, one starts from a single node in the graph and then
tries to expand as much as possible the clique(s) to which this node belongs. Our
evolutionary algorithm, on the other hand, does not take into account the topol-
ogy of this graph, which involves both the region where the initial permutation
is located and its neighborhood, i.e., the set of its adjacent nodes. This problem
might also be worsened because EAs are population-based methods. Hence, by
starting with a set of candidate solutions generated at random, one might waste
many fitness evaluations to “move” the population close to the neighborhood
of the clique constructed up to that point. One strategy to cope with this issue
could be to experiment with smaller population sizes or to integrate the EA with
a local search step that also considers the graph representation.

5 Conclusions and Future Work

This paper addresses the optimization problem of constructing permutation
codes using EA, which, as far as we know, has not been addressed before. The
main question in this domain concerns finding the largest code size for a given
permutation length n and a minimum distance d. We have developed an incre-
mental construction approach, starting from a single random permutation chosen
at random and then using an EA to iteratively expand the code. We evaluated
our method with four fitness functions using two different update policies and in
comparison to a baseline random search algorithm. Most importantly, the results
of our experiments show that this optimization problem is particularly difficult
for evolutionary techniques, with the largest codes found by our EA lying far
from the best-known lower bounds in most of the considered problem instances.
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Further interesting findings include the fact that the simplest fitness function
performed the best and that the update policy seems to be crucial for finding
large codes rather than the underlying search method.

In future work, we plan to improve our incremental EA approach by follow-
ing the directions outlined above: experimenting with larger problem instances
and including a local search optimization step. We also envision investigating a
concept closely related to equidistant permutation codes, where the Hamming
distance between codewords must be exactly equal to d. Equidistant permuta-
tion codes are thus a subset of permutation codes, making our iterative proce-
dure applicable. However, since equidistant permutation codes are more rare, we
believe this problem to be even harder.
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