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Abstract. Proximal policy optimization (PPO) is one of the most promising
deep reinforcement learning methods and has achieved remarkable success in
a variety of challenging control tasks. However, its overall updating gradient
of a batch of samples may mislead the optimization of some sub-samples. It
potentially reduces the sample efficiency and degrades the final decision perfor-
mance. Although the minimum operation of PPO can relieve it, its slow escape
speed makes it difficult to escape the wrong optimization range within the lim-
ited epochs of the minibatch update. In this paper, we propose a novel fast version
of PPO named fast-PPO that replaces the original minimum operation with two
accelerating operations called linear-pulling and quadratic-pulling, respectively.
Both of them can increase the updating weight of the gradient for the misled sam-
ples so that the gradient of the overall object follows their expected optimization
direction. Extensive experiments on classic discrete control tasks and MuJoCo
based continuous control tasks verify the effectiveness of our proposed fast PPO.

Keywords: Proximal Policy Optimization · Escape speed · Accelerating
operations

1 Introduction

In recent years, deep reinforcement learning (DRL) has achieved great development and
obtained impressive successes in different fields, such as competitive games (Doom
[13], Atari 2600 [17,18], game Go [21], etc.), robot navigation [6,14,15] and con-
trol tasks [2,4,5,8,10,16]. Given a control problem formulated as a Markov Decision
Problem (MDP), it is dedicated to learning an optimal policy that can obtain the high-
est cumulative rewards through extensive trial and error. In general, model-free DRL
mainly contains the value function based method [11] and the policy gradient method
[9], where the former indirectly learns the policy via learning an optimal action-value
function while the latter directly optimizes the expected return by searching in the
parameterized policy space. Compared to the value function based method, the pol-
icy gradient method presents a significant advantage on the complex continuous control
problems and thus obtains more and more attention.

The trust region policy optimization (TRPO) method [19] is one of the widely stud-
ied policy gradient methods. It aims to safely perform policy updating with guaranteed
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monotonic performance improvement by optimizing a surrogate object function (low
bound of the original object) constrained by the divergence between the old policy
distribution and the updated one. Although TRPO has a complete theoretical guaran-
tee about monotonicity, its complicated second-order approximation for the constraint
largely reduces its computation efficiency and hinders its applications in large-scale
tasks. To relieve it, the Proximal Policy Optimization (PPO) [20] proposes a likelihood
ratio based constraint for parameter updating, which is able to retain the stable opti-
mization and sample efficiency of TRPO while only requires computationally efficient
first-order optimization. In detail, the probability ratio between the old and new policy
distributions is clipped within manually defined constant bounds (clipping range) so
that it can remove the updating incentive for moving the likelihood ratio outside of the
defined clipping bounds.

However, as demonstrated in [25], with the improper initialization, PPO may not
perform sufficient exploration in its environment and thus suffers from the local optima.
To handle it, Wang et al. proposes a trust-region guided PPO algorithm (TRGPPO),
which can improve the exploration ability and achieve higher performance compared to
the original PPO method through adaptively tuning its clipping range within the trust
region. Furthermore, Wang et al. [24] finds that PPO could neither restrict the likeli-
hood ratio within the clipping range strictly nor enforce the KL divergence lower than
the specified bound. Therefore, PPO-RB [24] is proposed to replace the original flat
clipping function with a rollback function (straight-reversed slope) which can weaken
the incentive, driven by the overall function, of exceeding the clipping bounds. In addi-
tion, Zhu et al. [27] proposes a smoothed PPO variant that combines original PPO with
PPO-RB to further improve the stability and sample efficiency of PPO-RB. Moreover,
trust region-based PPO (TR-PPO) [24] substitutes the probability ratio based clipping
function with the trust region based one, which is justified that such variant can suffi-
ciently bound the KL divergence.

Although the variants of PPO discussed above can obtain great performance gain,
all of them just focus on safe constraints on the likelihood ratio between the old and
new policies, while neglecting the issue that the overall optimization gradient of a
batch of samples may mislead the optimization for some sub-sample, named negative
optimization. Intuitively, negative optimization means that the updated policy network
may reduce the decision probability of the action that has the positive advantage value.
Although the minimum operation of PPO can relieve it, it’s still difficult to escape the
wrong optimization within the finite epochs. To improve the escape speed, the weight
of such samples in the overall object’s gradient should be increased. To this end, we
propose an improved PPO called Fast Proximal Policy Optimization algorithm (FPPO)
to decrease the number of samples suffering from negative optimization after the finite
updating epochs. Specifically, we first replace the minimum operation with an accel-
erating operation called linear-pulling which multiplies the objective function by an
accelerating factor so that the weight of the misled examples can be increased in the
linear sense. To adjust the accelerating factor adaptively, we propose another accel-
erating operation named quadratic-pulling, where the acceleration grows when the
ratio goes away from the boundary. We theoretically prove that both of the proposed
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accelerating variants can improve the escape speed of PPO. Also, extensive experiment
results further demonstrate their effectiveness.

2 Related Work

Policy gradient algorithm [12,22] is one of the popular studying directions in reinforce-
ment learning. By parameterizing the policy network, it aims to update its network
parameters following the gradient-direction of performance improvement. However,
during the optimization process, selecting a proper updating step size is an important
but challenging problem. Kakade et al. firstly proposed that it is better to update the
policy within a region in the policy space. Inspired by the theory about the restricted
region, the trust region policy optimization (TRPO) [19] proposed to enforce a hard
constraint of KL divergence onto the surrogate objective function. Also, Wu et al. [26]
proposed to use Kronecker-Factored trust regions to optimize the policy. To optimize
the computational complexity of TRPO, the Proximal Policy Optimization algorithm
(PPO) [20], a first-order algorithm, was proposed. It adopts a clipping mechanism to
restrict the likelihood ratio between the old policy and the new one.

Despite the huge success that PPO had achieved in a range of challenging tasks,
the original method still has some flaws that affect its performance. Wang et al. [25]
proved that the clipping mechanism with a constant clipping range might fail in the
case that the policy is initialized from a bad one. Thus, they proposed to adaptively
adjust the clipping range of PPO to get sufficient exploration. Furthermore, Wang et
al. [24] found that PPO can neither restrict the ratio within the clipping range strictly
nor restrict strictly the policy within the trust region. To address it, they proposed two
improvements: replace the flat constraint with a rollback operation, use the KL diver-
gence bound as the clipping range. Moreover, [3,7] also empirically analyzed the imple-
mentation details and the code-level optimization of PPO. They argued that the practical
success of PPO might be owed to the tricks adopted in the code.

All of the improved methods above neglect the negative optimization caused by
improper gradient-direction of the overall object. Instead, our method is devoted to
handling such issues and the proposed variant is proved to be able to effectively escape
the negative optimization, which can potentially improve its sample efficiency as well as
the final performance. We proposed two accelerating operations to improve the escape
speed and justify them theoretically.

3 Preliminaries

We consider a finite Markov Decision Process (MDP) described by the tuple
(S,A,R, T , γ), where S and A denote the state and action spaces; T : S ×A×S → R

is the transition probability distribution; R : S → R is the reward function; γ ∈ (0, 1)
is the discount factor. In a finite MDP, the agent takes an action at ∈ A in a state st ∈ S
and then gets a reward rt = R (st+1) and the next state st+1 ∈ S. The policy π maps
each state s ∈ S to a distribution over A and our goal is to find an optimal policy that
can achieve the maximum accumulated rewards.
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In policy gradient methods [19,22], the policy π is usually represented by a policy
network πθ where θ denotes the network parameters. Then, the policy gradient algo-
rithm aims to find the optimal parameter θ∗ with the gradient ascent so that the object
function J (θ) defined as below can be maximized:

J (θ) = Eπθ
[Qπθ (s,a)] , (1)

where the state-action value function Qπ (s,a) denotes the expected value of accu-
mulated rewards that an agent can obtain after performing an action a in the state s
following a policy πθ:

Qπθ (s,a) = Eπθ

[ ∞∑
t=0

γtrt | s0 = s,a0 = a

]
. (2)

The parameter θ is updated along the gradient of the objective function as below:

∇θJ (θ) = Eπθ
[∇θ log πθ (Qπθ (s,a) − b (s))] , (3)

where b (s) : S → R is a baseline which can reduce variance without chang-
ing the expected value of the gradient. The baseline is usually set to a state func-
tion V πθ (s) = Eπθ

[
∑∞

t=0 γtrt | s0 = s]. Next, we denote a advantage function
Aπθ (s,a) = Qπθ (s,a) − V πθ (s) and the policy gradient can be rewritten as:

∇θJ (θ) = Eπθ
[∇θ log πθ (Qπθ (s,a) − V πθ (s))]

= Eπθ
[∇θ log πθ (Aπθ (s,a))] .

(4)

3.1 Trust Region Policy Optimization

Trust region policy optimization (TRPO) exploits the lower bound of the original opti-
mization target as its objective function (i.e., surrogate objective), which is subjected
to a constraint on the KL-divergence between the current policy distribution πθ (· | st)
and the old one πθold

(· | st). For simplicity, we denote At as the advantage value at
sample (st,at), i.e., At � Aπθ (st,at) and denote rt (θ) as the likelihood ratio of sam-
ple (st,at) between the current and the old policies, i.e., rt (θ) � πθ(at|st)

πθold (at|st)
. Then, the

optimization object of TRPO can be written as below:

max
θ

Eπθ
[rt (θ)At] (5)

subject to Eπθ
[KL [πθold (· | st), πθ(· | st)]] � σ (6)

where the hyper-parameter σ constrains the KL-divergence between the current and old
policies. Although the constraint on updating step above can effectively improve the
optimization stability of TRPO, its second-order optimization usually has high compu-
tational complexity which is inefficient for large-scale applications, such as the tasks
with the high-dimensional sensory input.
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3.2 Proximal Policy Optimization

In order to handle the inefficient second-order optimization issue in TRPO, the Prox-
imal Policy Optimization (PPO) algorithm [20] is proposed to directly clip the likeli-
hood ratio rt (θ) between the current and the old policies for robust policy optimiza-
tion. Notably, such clipping operation retains the monotonicity of TRPO as well as
just requires the first-order computation. Specifically, the objective function of PPO is
defined as:

LCLIP (θ) = Eπθ

[
min(rt (θ)At,FCLIP(rt(θ), ε)At

]
, (7)

where the clipping function FCLIP (rt (θ) , ε) = clip (rt (θ) , 1 − ε, 1 + ε), which
remove the incentive that the ratio moves out of the clipping range [1 − ε, 1 + ε], and
the hyper-parameter ε ∈ (0, 1). The minimum operation is to guarantee that the final
objective is a lower bound on the unclipped objective [20].

As demonstrated in Sect. 4.1, although the minimum operation in PPO can relieve
the negative optimization problem to some extent, there are still some samples that
suffer from the negative optimization after finite epochs of minibatch updates. Please
refer to Sect. 4.1 for more details.

,

,( )

( )

Fig. 1. Plots show how the slope of the surrogate function LCLIP varies with different rt (θ), for
positive advantages (left) and negative advantages (right). We can see that it loses gradient when
At > 0, rt (θ) > 1 + ε or At < 0, rt (θ) < 1 − ε. However it does not suffer from this issue
when At > 0, rt (θ) < 1− ε or At < 0, rt (θ) > 1 + ε because of the minimum operation.

4 Method

4.1 Sample Efficiency of PPO

As we can see in Fig. 1, rt (θ) may be lower than 1− ε when At > 0. That is to say, the
probability of an action a whose advantage value is positive decreases, called negative
optimization. The diversity between the overall gradient of a batch of samples and that
of a single sample lead to this case in practice. Without the minimum operation, the
gradient of such examples will be zero so that their gradient can never be updated. The
minimum operation in PPO can help those examples to regain their original gradients.



78 W. Zhao et al.

However, such examples can hardly escape from negative optimization in finite epochs
by minimum operation. This will significantly hinder the sample efficiency of PPO.
To address this issue, we propose to increase the weight of such examples to correct
the fused gradient so that the examples could escape from negative optimization in the
remaining epochs. For example, the angle between g1 and g (the left one of Fig. 2)
is greater than 90◦ in the beginning while the corresponding example enjoys positive
optimization again after increasing its gradient.

In original PPO, the ratio could be driven to go farther away from the bound in the
case that negative optimization has already occurred. Formally, we give a theorem as
follows.

Theorem 1. Suppose there is a parameter θ0 that rt (θ0) satisfies the condition of nega-
tive optimization. Let θPPO1 = θ0+δ∇L̂PPO(θ0), where δ is the step size and ∇L̂PPO(θ0)
is the gradient of L̂PPO (θ) at θ0. On the condition that

〈∇L̂PPO(θ0),∇rt (θ0)〉At < 0, (8)

there exists such δ∗ > 0 that we have following property for any δ ∈ (0, δ∗)∣∣∣rt (θ1) − 1
∣∣∣ <

∣∣∣rt (θ0) − 1
∣∣∣ < ε. (9)

Following [24], we give an formal proof as follows:

Proof. Let ψ (δ) = rt(θ0 + δ∇L̂PPO(θ0)), then we can get the gradient:

ψ
′
(0) = 〈∇L̂PPO(θ0),∇rt (θ0)〉 (10)

We have ψ
′
(0) < 0 when rt(θ0) < 1 − ε and At > 0. Thus there is δ∗ > 0 such

that for any δ ∈ (0, δ∗), we have:

ψ (δ) < ψ (0) (11)

Then
rt (θ1) < rt (θ0) ≤ 1 − ε (12)

That is ∣∣∣rt (θ1) − 1
∣∣∣ <

∣∣∣rt (θ0) − 1
∣∣∣ (13)

�

The condition (8) will be triggered when the gradient-direction of the overall objec-
tive L̂PPO(θ0) and that of rt (θ0)At is significantly different. This condition is possibly
caused by the highly differentiated gradient-directions of a minibatch of samples.
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Fig. 2. g is the fused gradient, and g1 is the gradient of a sample that owns a positive advan-
tage but suffers from negative optimization in the left figure. We can correct the fused gradient
by increasing the gradient of the negatively optimized samples. If the correction mechanism is
effective enough, all examples will enjoy proper optimization gradients just as depicted in the
right figure.

4.2 Fast Proximal Policy Optimization with Linear-Pulling

To better explain our method, we rewrite the Eq. 7 as the following:

L(θ) = Eπθ
[min (rt(θ)At,F(rt(θ), ε)At)] (14)

where F is a clipping function to restrict the update step size of the policy. In PPO,
F = clip (rt (θ) , 1 − ε, 1 + ε). To enforce the gradient of the overall object across a
batch of samples to correct, we can increase the weight of the examples suffering from
negative optimization. Specifically, F multiplies by a factor greater than one in the case
that At > 0, rt (θ) < 1−ε or At < 0, rt (θ) > 1+ε. Our mechanism is to pull the ratio
into the clipping range with a linear function, we called this operation linear-pulling.
Then we get a new clipping function which is defined as

FFPPO-LP =

⎧⎪⎨
⎪⎩

αrt(θ) + (1 − α)(1 − ε), At > 0 and rt(θ) < 1 − ε

αrt(θ) + (1 − α)(1 + ε), At < 0 and rt(θ) > 1 + ε

CLIP(rt(θ)), otherwise

(15)

where the hyper-parameter α ∈ [1,+∞) is to decide the force of acceleration. Figure 3
plots LFPPO-LP(θ) as function of the ratio rt(θ). As the figure depicted, when rt(θ) is
out of the clipping range, the slope of the side that suffers from negative optimization
becomes larger. By correcting the overall object’s gradient, linear-pulling could more
forcefully keep the ratio rt(θ) within the clipping range compared to the minimum
operation in PPO. Formally, we have the following theorem.

Theorem 2. Suppose there is a parameter θ0, θPPO1 = θ0 + δ∇L̂PPO(θ0), and
θFPPO-LP1 = θ0 + δ∇L̂FPPO-LP(θ0). The set of indexes of the samples suffering
from negative optimization is denoted as Ω = {t|1 ≤ t ≤ T, |rt(θ0) − 1| ≥ ε
and rt(θ0)At ≤ rt(θold)At}. If t∈ Ω and rt(θ0) satisfies such condition that∑

t′∈Ω〈∇rt(θ0),∇rt′(θ0)〉AtAt′ > 0, then there exists some δ∗ > 0 such that for
any δ ∈ (0, δ∗), we have ∣∣∣rt(θFPPO-LP1 ) − 1

∣∣∣ <
∣∣∣rt(θPPO1 ) − 1

∣∣∣. (16)
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Proof. Let ψ (δ) = rt(θ0 + δ∇L̂FPPO-LP (θ0))− rt(θ0 + δ∇L̂PPO (θ0)). We can get the
gradient:

ψ′(0) = ∇r�
t (θ0)

(
∇L̂FPPO-LP(θ0) − ∇L̂PPO(θ0)

)
= (α − 1)

∑
t′∈Ω

〈∇rt(θ0),∇rt′(θ0)〉At′
(17)

We have ψ′(0) > 0 in the case where rt(θ0) ≤ 1 − ε and At > 0. Thus there exists
δ∗ > 0 such that for any δ ∈ (0, δ∗)

φ(δ) > φ(0) (18)

Then we have
rt(θFPPO-LP1 ) > rt(θPPO1 ) (19)

That is ∣∣∣rt(θFPPO-LP1 ) − 1
∣∣∣ <

∣∣∣rt(θPPO1 ) − 1
∣∣∣ (20)

Similarly, we can also get
∣∣∣rt(θFPPO-LP1 ) − 1

∣∣∣ <
∣∣∣rt(θPPO1 ) − 1

∣∣∣ in the case where

rt(θ0) � 1 + ε and At < 0. �

This theorem proves that linear-pulling can prevent the out-of-the-range ratios from
going farther beyond the clipping range more forcefully. In other words, the escape
speed is increased. Ideally, we can tune α to guarantee the new policy within the clip-
ping range more effectively.

,

,( )

( )

Fig. 3. Plots show the surrogate function Ls,a as a function of rt (θ) (the probability ratio), for
positive advantages (left) and negative advantages (right). We can see that the slope of FPPO
(both FPPO-LP and FPPO-QP) becomes larger than PPO when At > 0, rt (θ) < 1 + ε or
At < 0, rt (θ) > 1 + ε. The red dotted line corresponds to linear-pulling and the blue line
corresponds to quadratic-pulling. (Color figure online)
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4.3 Fast Proximal Policy Optimization with Quadratic-Pulling

In FPPO-LP, the accelerating factor α is a fixed parameter, however, the updating
epochs of batch samples are finite, the examples suffering from negative optimization
cannot escape within a few epochs if the ratio is too far away from the bound. Thus it is
more reasonable that the farther the ratio goes away from the clipping range, the larger
the parameter α in FPPO-LP should be set. Inspired by the motivation above, we have
the following differential equation:

F ′(rt(θ) =

⎧⎪⎨
⎪⎩

k(1 − ε − rt(θ)) + 1, At > 0 and rt(θ) < 1 − ε

k(rt(θ) − 1 − ε) + 1, At < 0 and rt(θ) > 1 + ε

∇CLIP(rt(θ)), otherwise

(21)

where k is a hyper-parameter to control the change of slope. By solving differential
equation Eq. 21, we obtain the quadratic-pulling operation:

FFPPO-QP =

⎧⎪⎨
⎪⎩

k(1 − ε − rt(θ))2 + rt(θ), At > 0 and rt(θ) < 1 − ε

k(rt(θ) − 1 − ε)2 + rt(θ), At < 0 and rt(θ) > 1 + ε

CLIP(rt(θ)), otherwise

(22)

where the value of k is half of that in Eq. 21. Similarly, FPPO-QP has the same property
as Theorem 2. Formally, we give the proof as following:

Proof. Let ψ(δ) = rt(θ0+δ∇L̂FPPO-QP(θ0))−rt(θ0+δ∇L̂PPOθ0). When rt(θ0) < 1−ε
and At > 0, We can get the gradient:

ψ′(0) = ∇r�
t (θ0)

(
∇L̂FPPO-QP(θ0) − ∇L̂PPO(θ0)

)
= 2k (1 − ε − rt(θ0))

∑
t′∈Ω

〈∇rt(θ0),∇rt′(θ0)〉At′
(23)

We have ψ′(0) > 0, thus there exists δ∗ > 0 such that for any δ ∈ (0, δ∗)

ψ(δ) > ψ(0) (24)

Then we have ∣∣∣rt(θ
FPPO-QP
1 ) − 1

∣∣∣ <
∣∣∣rt(θPPO1 ) − 1

∣∣∣ (25)

Similarly, we can also get
∣∣∣rt(θ

FPPO-QP
1 )−1

∣∣∣ <
∣∣∣rt(θPPO1 )−1

∣∣∣ in the case where rt(θ0) >

1 + ε and At < 0. �

Theoretically, quadratic-pulling can guarantee that the slope of the surrogate objec-
tive function be tuned feasibly.
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5 Experiments

In this section, we firstly present the performance of our algorithm in contrast with other
policy gradient methods and then show the results of our ablation study.

The following algorithms are evaluated. (a) PPO: the version with clipping mech-
anism, we use the author recommended hyper-parameter ε = 0.2 [20]. (b) TR-PPO:
the ratio is clipped when the updated policy is out of the trust region [24]. The hyper-
parameter δ = 0.035. (c) PPO-RB: PPO with the rollback operation [24]. The rollback
coefficient α = 0.3 (d) FPPO-LP: fast PPO with linear-pulling. We choose α as rec-
ommended in Table 2. (e) FPPO-QP: fast PPO with quadratic-pulling. We use k as
recommended in Table 2.

Table 1. Max average return over 5 trials of 100 thousand timesteps (classic discrete tasks) or 1
million steps (MuJoCo tasks).

Task FPPO-LP FPPO-QP PPO TR-PPO PPO-RB

Discrete tasks CartPole 200.0± 0.03 200.0± 0.01 200.0 192.7 200.0

Acrobot −84.2± 1.2 −82.0± 0.7 −88.7 −86.8 −89.2

MountainCar −130.6± 0.9 −131.0± 1.4 −143.3 −140.2 −146.2

Continuous tasks Walker2d 4030.4± 122.8 3893.4± 145.8 3368.5 3279.8 2858.4

Ant 2778.8± 183.7 3323.6± 200.5 2024.3 2013.0 2640.1

Reacher −6.1± 0.28 −6.5± 0.29 −7.6 −6.0 −7.8

Hopper 2726.1± 118.4 2908.8± 116.0 2364.2 2341.8 1997.7

HalfCheetah 4107.0± 105.8 4478.3± 175.0 4141.7 3455.8 3420.1

Swimmer 113.6± 1.6 115.5± 1.9 100.2 108.9 99.8

5.1 Classic Discrete Control Tasks

Fig. 4. Learning curves for the classic discrete control tasks.

We first conducted experiments on 3 classic discrete control tasks implemented in Ope-
nAI Gym [1]. Figure 4 plots the performance during 105 training timesteps and Table 1
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shows the maximum average return over 5 trials of 100 thousand timesteps. For Cart-
Pole, all the tested algorithms obtain the highest score in finite timesteps except for
TR-PPO, and notably, FPPO-QP hits the highest score faster than other methods. For
Acrobot and MountainCar, FPPO performs better than its competitors.

However, the improvements of FFPO in comparison with PPO are not so promi-
nent, especially in the first two tasks. The main reason is that the exploration space
is very small compared with continuous tasks so that different policy gradient meth-
ods have similar performance. Actually, value-based methods tend to perform better in
such tasks. In addition, we notice that MountainCar is a sparse reward task, and thus
the methods may be trapped in local optima if the escape speed is too low. Because of
the accelerating operations, Both FPPO-LP and FPPO-QP obtain higher escape speed
so that more prominent performance could be achieved.

5.2 Benchmark Tasks

Fig. 5. Learning curves for the Mujoco continuous control tasks. The lines represent the average
rewards over 5 random seeds and the shaded region represents the mean± half of std. Curves are
smoothed to get visual clarity.

In order to verify the effectiveness of our method, we evaluate PPO and its variants
on continuous control benchmark tasks implemented in OpenAI Gym [1], simulated
by MuJoCo [23]. 6 benchmark tasks are chosen to be tested on: Walker2d-v2, Ant-v2,
Reacher-v2, Hopper-v2, HalfCheetah-v2, and Swimmer-v2. All tasks will run with 106

timesteps over 5 random seeds.
The mean of the reward and the standard deviation are plotted in the figure. As our

results suggest, FPPO performs better than other algorithms in all 6 tasks. It is worth
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noting that FPPO is particularly prominent on Hopper, Ant, and Walker2d. Walker2d
has the largest sizes of action and observation spaces, which needs higher sample effi-
ciency. The prominent performance on such a task proves the significance of high
escape speed.

5.3 Ablation Study

Fig. 6. Max average return over 5 trials of 1 million steps with different α and different k. The
ranges of α and k are [1.1, 1.5] and [0.1, 0.5] respectively. And the intervals of two hyper-
parameters are both 0.1.

Table 2. Used values for 6 different MuJoCo tasks respectively.

CartPole Acrobot MountainCar Hopper Walker2d HalfCheetah Reacher Swimmer Ant

α 1.3 1.3 1.3 1.3 1.3 1.3 1.1 1.1 1.3

k 0.4 0.4 0.4 0.2 0.1 0.4 0.4 0.1 0.4

In this experiment we vary the hyper-parameter α to drop in the range [1.1, 1.5], and
the interval is set to 0.1. The hyper-parameter k varies from 0 to 0.5, and the interval
is 0.1. The benchmarks we tested on are Walker2d and Ant, which own huge action
spaces and observation spaces. From Fig. 6, we can observe that the performance of
the algorithm varies with the change of α and k, which proves that the accelerating
operation is essential. Furthermore, it is not true that the larger α and k are, the better
performance will be achieved. Actually, the ratio may exceed the upper bound after a
few epochs, although it is used to be lower than the lower bound. Thus just as depicted
in Table 2, there exists the best value for α and k respectively.
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6 Conclusion

Although PPO and its various variants have achieved impressive performance, these
methods have failed to make a difference in improving the escape speed. However,
the low escape speed may result in the loss of the sample efficiency as well as the
degradation of the performance. Based on this observation, we proposed two different
acceleration tricks to correct the gradient of the overall object across a batch of samples
in few epochs. Both these two techniques significantly improve speed of escaping neg-
ative optimization and the sample efficiency. Extensive results prove the effectiveness
of our method.

In conclusion, our results highlight the necessity to improve the escape speed, lead-
ing to the improvement in sample efficiency and performance of the policy. To our
knowledge, this is the first work to focus on negative optimization and escape speed.
We found that it is essential to increase the gradient of the samples trapped in negative
optimization. We propose to study more on the negative optimization and exploit more
methods to increase the escape speed.
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