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Abstract. Graph neural networks (GNNs) have proven to be powerful
tools for graph analysis. The key idea is to recursively propagate and
gather information along the edges of a given graph. Although they have
been successful, they are still limited by over-smoothing and noise in
the graph. Over-smoothing means that the representation of each node
will converge to the similar value as the number of layers increases.
“Noise” edges refer to edges with no positive effect on graph representa-
tion in this study. To solve the above problems, we propose DropNEdge
(Drop “Noise” Edge), which filters useless edges based on two indicators,
namely, feature gain and signal-to-noise ratio. DropNEdge can alleviate
over-smoothing and remove “noise” edges in the graph effectively. It
does not require any changes to the network’s structure, and it is widely
adapted to various GNNs. We also show that the use of DropNEdge in
GNNs can be interpreted as an approximation of the Bayesian GNNs.
Thus, the models’ uncertainty can be obtained.
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1 Introduction

Graph neural networks (GNNs) and their many variants have achieved success
in graph representation learning by extracting high-level features of nodes from
their topological neighborhoods. However, several studies have shown that the
performances of GNNs decrease significantly with the increase in the number of
neural network layers [15,16]. The reason is that the nodes’ characteristics will
converge to similar values with the continuous aggregation of information. Some
existing methods (DropEdge [2], Dropout [3]) solve over-smoothing by dropping
some information in the graph randomly. Although these methods are efficient,
they cannot guarantee that the dropped information is harmful or beneficial.
Hence, they can only bring sub-optimal effect.

In addition, the effect of GNNs is affected by noise edges [1,17]. Many graphs
in real world have noise edges which requires GNNs to have the ability to identify
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and remove noise edges. The recursive aggregation mode of GNNs makes it
susceptible to the influence of surrounding nodes. Therefore, finding a principled
way to decide what information not to aggregate will have a positive effect on
GNNs’ performance. Topological denoising [1] is an effective solution to solve this
problem by removing noise edges. We can trim off the edges with no positive
impact on the task to avoid GNNs from aggregating unnecessary information.

In this paper, we propose DropNEdge (Drop “Noise” Edge), which takes the
structure and content information of a graph as input and deletes edges with
no or little positive effect on the final task based on the node’s signal-to-noise
ratio and feature gain. The differences between our method and DropEdge are
detailed as follows. First, DropNEdge treats the edges unequally and deletes
edges based on the graph’s information, which is a more reasonable and effective
method to solve the limitations of GNNs. Second, deleting edges from the above
two aspects can ensure that the dropped edges have no or little positive effect
on the final task. Therefore, it can not only alleviate over-smoothing, but also
remove “noise” edges. DropNEdge is widely adapted to most GNNs and does
not need to change the networks’ structure. Because DropNEdge changes the
topology of the graph, it can be used as a graphical data enhancement method.

Considering that Dropout can be used as a Bayesian approximation for gen-
eral neural networks, we prove that DropNEdge can be used as a Bayesian
approximation for GNNs. If we use DropNEdge during the training and test
phase, then the models’ uncertainty can be obtained.

The main contributions of our work are presented as follows:

– We propose DropNEdge, which is a plug-and-play layer that is widely adapted
to various GNNs. It can effectively alleviate the over-smoothing phenomenon
and remove “noise” edges in the graph.

– We show that the use of DropNEdge in GNNs is an approximation of the
Bayesian GNNs. In this way, the uncertainty of GNNs can be obtained.

2 Related Work

Deep stacking of layers usually results in a significant decrease in the performance
of GNNs, such as GCN [13] and GAT [14]. Chen et al. [5] measured and alleviated
the over-smoothing problem of GNNs from a topological perspective. Hou et al. [6]
proposed two over-smoothing indicators to measure the quantity and quality of
information obtained from graphic data and designed a new GNN model called
CS-GNN. To prevent node embeddings from being too similar, PairNorm [7] was
proposed which is a normalization layer based on the analysis of graph convolution
operations. DropEdge [2] also effectively relieves the over-smoothing phenomenon
by randomly removing a given percentage of edges in the graph.

Another limitation is the noise in the graph. A large number of papers show
that GNNs are not robust to noise. Recently, graph sampling has been inves-
tigated in GNNs for the rapid calculation and to improve the generalization
ability of GNNs, including neighbor-level [8], node-level [9] and edge-level sam-
pling methods [10]. Unlike these methods that randomly sample edges during
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the training phase, PTDNet [4] uses a parametric network to actively remove
“noise” edges for specific tasks. Moreover, it has been proved that the graph
data enhancement strategy can effectively improve the robustness of GNNs [17].

Bayesian network is a hot topic which is critical for many machine learn-
ing systems. Since exact Bayesian inference is intractable, many approxima-
tion methods have been proposed such as Laplace approximation [20], Markov
chain Monte Carlo (MCMC) [21], stochastic gradient MCMC [22], and varia-
tional inference methods [23]. Bernoulli Dropout and its extensions are com-
monly used in practice because they are fast in calculation and easy to be imple-
mented. Bayesian neural networks also have some applications in GNNs. Zhang
et al. [19] proposed a Bayesian graph convolutional neural networks for semi-
supervised classification. Hasanzadeh et al. [25] proposed a unified framework
for adaptive connection sampling in GNNs. And GNNs training with adaptive
connection sampling is shown to be equivalent to an efficient approximation of
training Bayesian GNNs.

3 Notations

Let G = (V, E) represent the input graph of size N with nodes vi ∈ V and edges
(vi, vj) ∈ E . The node features are denoted as X = {x1, x2, · · · , xN} ∈ RN×C

and the adjacent matrix is defined as A ∈ RN×N which associates each edge
(vi, vj) with its element Aij . The node degrees are given by d = {d1, d2, · · · , dN}
where di computes the sum of edge weights connected to node i. Nvi

= {vj :
(vi, vj) ∈ E} denotes the set of neighbors of node vi.

4 Methodology

4.1 Drop “Noise” Edge

The GNNs are superior to the existing Euclidean-based methods because they
obtain a wealth of information from the nodes’ neighbors. Therefore, the perfor-
mance improvement brought by graphic data is highly related to the quantity
and quality of domain information [11]. DropEdge [2] randomly drops edges in
the graph. Although it is efficient, it does not consider the influence of adja-
cent nodes’ information on the current node. Therefore, it can not determine
whether the deleted information is beneficial or harmful to the task. Compared
with DropEdge, DropNEdge treats the edges as unequal based on the influence
of adjacent nodes’ information on the current node and deletes edges with no or
little positive impact on the final task. We use signal-to-noise ratio and feature
gain indexes to measure the influence of adjacent nodes on the current node.

Feature Gain. Feature gain is used to measure the information gain of adja-
cent nodes’ information relative to the current node. Considering that Kullback-
Leibler (KL) divergence can measure the amount of information lost when an
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approximate distribution is adopted, it is used to calculate the information gain
of the current node from its adjacent nodes [6]. The definition of KL divergence
is stated as follows.

Definition 1. C (K) refers to the probability density function (PDF) of c̃kvi
,

which is the ground truth and can be estimated by non-parametric methods with
a set of samples. Each sample point is sampled with probability |Nvi

|/2|E|. S(k)
is the PDF of

∑
vj∈Nvi

a
(k)
i,j · c̃kvj

, which can be estimated with a set of samples

{∑
vj∈Nvi

a
(k)
i,j · c̃kvj

}. Each point is also sampled with probability |Nvi
|/2|E| [6].

The information gain can be computed by KL divergence [12] as:

DKL

(
S(k)||C(k)

)
=

∫

xk

S(k) (x) · log
S(k) (x)
C(k) (x)

dx. (1)

In the actual calculation, the true and simulated distributions of the data are
unknown. Thus, we use the feature gain to approximate KL divergence which
measures the feature difference between the current node and its adjacent nodes.
The definition of feature gain of node v is

FGv =
1

|Nv|
∑

v′∈Nv

||xv − xv′ ||2, (2)

where |Nv| is the number of adjacent nodes of node v, and xv is the representation
of node v. Moreover, the feature gain has the following relationship with KL
divergence.

Theorem 1. For a node v with feature xv in space [0, 1]d, the information gain
of the node from the surrounding DKL (S||C) is positively related to its feature
gain FGv; (i.e., DKL (S||C) ∼ FGv). In particular, DKL (S||C) = 0, when
FGv = 0.

Thus, we know that the information gain is positively correlated to the feature
gain. That is, the greater the feature gain means that the node can obtain more
information from adjacent nodes. Therefore, we should first deal with nodes with
less information gain. If the feature similarity of the nodes on both sides of a edge
exceeds a given threshold, the edge should be dropped. In this way, edges with
a significant impact on the task can be retained. The proof process of Theorem
1 is shown as follows.

Proof. For DKL(S||C), since the PDFs of C and S are unknown, a non-
parametric way is used to estimate the PDFs of C and S. Specifically, the feature
space X = [0, 1]d is divided uniformly into rd bins {H1,H2, · · · ,Hrd}, whose
length is 1/r and dimension is d. To simplify the use of notations, |Hi|C and
|Hi|S are used to denote the number of samples that are in bin Hi. Thus, we
yield
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DKL(S‖C) ≈ DKL(Ŝ||Ĉ)

=
rd∑

i=1

|Hi|S
2|E| · log

|Hi|S
2|E|

|Hi|C
2|E|

=
1

2|E| ·
rd∑

i=1

|Hi|S · log
|Hi|S
|Hi|C

=
1

2|E| ·
⎛

⎝
rd∑

i=1

|Hi|S · log |Hi|S −
rd∑

i=1

|Hi|S · log |Hi|C

⎞

⎠

=
1

2|E| ·
⎛

⎝
rd∑

i=1

|Hi|S · log |Hi|S −
rd∑

i=1

|Hi|S · log (|Hi|S + Δi)

⎞

⎠ , (3)

where Δi = |Hi|C − |Hi|S . Regard Δi as an independent variable, we consider

the term
∑rd

i=1 |Hi|S · log (|Hi|S + Δi) with second-order Taylor approximation
at point 0 as

rd∑

i=1

|Hi|S · log (|Hi|S + Δi

) ≈
rd∑

i=1

|Hi|S ·
(
log |Hi|S +

ln 2

|Hi|S
· Δi − ln 2

2
(|Hi|S

)2 · Δ2
i

)
. (4)

Note that the number of samples for the context and the surrounding are the
same, where we have

rd∑

i=1

|Hi|C =
rd∑

i=1

|Hi|S = 2 · |E|. (5)

Thus, we obtain
∑rd

i=1 Δi = 0. Therefore, DKL(Ŝ||Ĉ) can be written as

DKL (S||C) ≈ DKL

(
Ŝ||Ĉ

)

=
1

2|E| ·
⎛

⎝
rd∑

i=1

|Hi|S · log |Hi|S −
rd∑

i=1

|Hi|S · log (|Hi|S + Δi)

⎞

⎠

≈ 1
2|E| ·

⎛

⎝
rd∑

i=1

|Hi|S ·
(

− ln 2
|Hi|S · Δi +

ln 2
2 (|Hi|S)2

· Δ2
i

)⎞

⎠

=
1

2|E| ·
rd∑

i=1

(
ln 2

2|Hi|S · Δ2
i − ln 2 · Δi

)

=
ln 2
4|E| ·

rd∑

i=1

Δ2
i

|Hi|S . (6)



64 X. Zhou and O. Wu

If we regard |Hi|S as constant, we have: if Δ2
i is large, then the information

gain DKL(S||C) tends to be large. The above proof process is borrowed from
Reference [6].

Considering the case of a node and its adjacent nodes, the samples of C
are equal to xv and the samples of S are sampled from {xv′ : v′ ∈ Nv}. For
the distribution of the difference between the surrounding and the context, we
consider xv′ as noises on the “expected” signal and xv is the “observed” signal.
Then the difference between C and S is 1

|Nv|
∑

v′∈Nv
||xv − xv′ ||2, which is also

the definition of FGv. Thus, we obtain

rd∑

i=1

Δ2
i ∼ FGv. (7)

Therefore,

DKL(S‖C) =
ln 2
4|E|

rd∑

i=1

Δ2
i

|Hi|S
∼ FGv. (8)

And if FGv = 0, the feature vectors of the current node and its adjacent
nodes are the same. Thus, DKL(S||C) = 0. ��

Signal-to-Noise Ratio. The reason for over-smoothing of GNNs is the low
signal-to-noise ratio of received information. When aggregations among samples
in different categories are excessive, the node representations in different classes
will be similar. Thus, we assume that the aggregation of nodes among different
categories is harmful, thereby bringing noise of information, and the aggregation
of nodes in the same category brings useful signal. Here the signal-to-noise ratio
is defined as

Inv =
dsv
dhv

, (9)

where dsv and dhv represent the sum of edge weights connected to homogeneous
and heterogeneous nodes of node v, respectively. Therefore, for a node with a
small signal-to-noise ratio, we will drop the edges connected to heterogeneous
nodes until the signal-to-noise ratio of the node is bigger than the given threshold.

Algorithm of DropNEdge. The specific approach of DropNEdge is shown in
Algorithm 1. In this algorithm, if the ratio of deleted “noise” edges r1 is set to
0, DropNEdge can be reduced to DropEdge.

4.2 Connection with Bayesian GNNs

Considering that Dropout can be an approximation of the Bayesian neural net-
works [18]; hence, we show that DropNEdge can be an approximation of Bayesian
GNNs. We target the inference of the joint posterior of the random graph param-
eters, the weights in the GNN and the nodes’ labels. Given that we are usually
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not directly interested in inferring the graph parameters, posterior estimates
of the labels are obtained by marginalization [13]. The goal is to compute the
posterior probability of labels, which is

p (Z | Y ,X , Gobs) =

∫
p(Z | W, G,X )p(W | Y ,X , G)p(G | λ)p (λ | Gobs) dWdGdλ (10)

where W is a random variable that represents the weights of the Bayesian
GNN over graph G, and λ characterizes a family of random graphs. This inte-
gral is intractable, we can adopt a number of strategies, including variational

Algorithm 1: Drop “Noise” Edge.
Input: The adjacency matrix A, the number of edges |E|, the ratio of deleted

“noise” edges r1, the ratio of randomly deleted edges r2, the
signal-to-noise ratio threshold δ1, the feature similarity threshold δ2, the
ratio q which controls the proportion of edges deleted according to the
two indexes.

Output: The adjacency matrix A′.
1 Initialization: N1 = 0 , N2 = 0, A′ = A ;
2 Randomly set |E| × r2 elements with value 1 in A′ to 0;
3 Calculate Inv and FGv of each node;
4 Re-sort the nodes according to the two indexes’ values from small to large to

form nodes 1 and nodes 2 lists;
5 while N1<|E| × r1q do
6 for node in nodes 1 do
7 for node in Nnode do
8 while Innode <δ1 do
9 if node and node in different class then

10 A′[node, node] = 0;
11 N1+ = 1 ;
12 Update Innode;

13 end

14 end

15 end

16 end

17 end
18 while N2<|E| × r1 (1 − q) do
19 for node in nodes 2 do
20 for node in Nnode do
21 if feature similarity [node, node] >δ2 then
22 A′[node, node] = 0;
23 N2+ = 1 ;

24 end

25 end

26 end

27 end
28 Return: The adjacency matrix A′
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Fig. 1. The average absolute improvement by DropNEdge.

methods [24] and Markov Chain Monte Carlo (MCMC) [21], to approximate it.
A Monte Carlo approximation of it is [13]

p (Z|Y ,X,Gobs) ≈ 1
V

V∑

v

1
NGS

NG∑

i=1

S∑

s=1

p (Z|Ws,i,v,Gi,v,X) . (11)

In the approximation, V samples λv are drawn from p (λ|Gobs), NG graphs
Gi,v are sampled from p (G|λv), S weight matrices Ws,i,v are sampled from
p (W |Y ,X,Gi,v) in the Bayesian GNNs that correspond to the graph Gi,v [19].
The sampled ws,i,v and Gi,v can be obtained from GNNs with DropNEdge.
Thus, if we turn on DropNEdge during the training and test phase, the model’s
uncertainty can be obtained.

5 Experiments

5.1 Performance Comparison

We compare the performances of the four GNN models with DropNEdge (DNE)
and DropEdge (DE). The results are shown in Table 1. The performances of the

Fig. 2. (a) and (b) show the validation loss of different backbones with DropNEdge or
DropEdge on Cora and Citeseer data sets.
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Table 1. Accuracies of models with DropNEdge or DropEdge.

Dataset Backbone 2 layers 8 layers 32 layers

DropEdge DNE DropEdge DNE DropEdge DNE

Cora GCN 0.865 0.867 0.858 0.873 0.746 0.796

JKNet – – 0.878 0.886 0.876 0.878

IncepGCN – – 0.882 0.887 0.877 0.886

ResGCN – – 0.869 0.877 0.868 0.876

Citeseer GCN 0.787 0.793 0.772 0.802 0.614 0.799

JKNet – – 0.802 0.810 0.800 0.803

IncepGCN – – 0.805 0.801 0.803 0.815

ResGCN – – 0.788 0.790 0.779 0.781

Pubmed GCN 0.912 0.913 0.909 0.909 0.862 0.901

JKNet – – 0.912 0.912 0.913 0.914

IncepGCN – – 0.915 0.915 0.905 0.905

ResGCN – – 0.905 0.905 0.911 0.911

Coauthor CS GCN 0.926 0.934 0.907 0.930 0.904 0.926

JKNet – – 0.918 0.926 0.904 0.904

IncepGCN – – 0.904 0.936 0.920 0.932

ResGCN – – 0.898 0.900 0.896 0.926

Coauthor physics GCN 0.954 0.965 0.940 0.950 0.932 0.946

JKNet – – 0.941 0.955 0.936 0.950

IncepGCN – – 0.936 0.956 0.936 0.953

ResGCN – – 0.930 0.933 0.894 0.920

four models have been improved in most cases by DropNEdge. The improvement
is more clearly depicted in Fig. 1, which counts the average improvement of
different number of layers brought by DropNEdge. For example, on Cora data
set, DropNEdge brings 6.9% average improvement to the models with 32 layers.

The results of models with and without DropNEdge are shown in Table 2.
The effects of all models with DropNEdge have been consistently improved com-
pared with models without DropNEdge. Thus the effect of DropNEdge is demon-
strated. Figure 2 (a) and (b) show the comparison of the verification loss of mod-
els with DropNEdge or DropEdge which indicate that models with DropNEdge
converge faster, and their losses are smaller.
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Fig. 3. The effect of removing noise edges.

Table 2. Accuracies of models with and without DropNEdge. “OOM” represents out
of memory.

Dataset Backbone 2 layers 8 layers 32 layers

Original DNE Original DNE Original DNE

Cora GCN 0.861 0.867 0.787 0.873 0.716 0.796

JKNet – – 0.867 0.886 0.871 0.878

IncepGCN – – 0.867 0.887 0.874 0.886

ResGCN – – 0.854 0.877 0.851 0.876

Citeseer GCN 0.759 0.793 0.746 0.802 0.592 0.799

JKNet – – 0.792 0.810 0.717 0.803

IncepGCN – – 0.796 0.801 0.726 0.815

ResGCN – – 0.778 0.790 0.744 0.781

Pubmed GCN 0.912 0.913 0.901 0.909 0.846 0.901

JKNet – – 0.906 0.912 0.892 0.914

IncepGCN – – 0.902 0.915 OOM 0.905

ResGCN – – 0.896 0.905 0.902 0.911

Coauthor CS GCN 0.885 0.934 0.885 0.930 0.846 0.926

JKNet – – 0.901 0.926 0.863 0.904

IncepGCN – – 0.930 0.936 0.897 0.932

ResGCN – – 0.857 0.900 0.863 0.926

Coauthor physics GCN 0.918 0.965 0.875 0.950 0.791 0.946

JKNet – – 0.902 0.955 0.921 0.950

IncepGCN – – 0.844 0.956 OOM 0.953

ResGCN – – 0.847 0.933 0.910 0.920

The superiority of DropNEdge lies in the following reasons: (1) DropNEdge
avoids excessive aggregation of node information by dropping “noise” edges,
which alleviates the over-smoothing phenomenon effectively. (2) It can remove
“noise” edges and retain meaningful edges which prevents the transmission of
harmful information. (3) DropNEdge can be used as a graphical data enhance-
ment method.
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5.2 Remove “Noise” Edges

We randomly add a given proportion of edges to the graph of Cora data set
which is set to 0.3 in this experiment. The added edges are considered to be
“noise” edges. We change the ratio of deleted “noise” edges r1. Subsequently,
the proportions of deleted added edges to total added edges (rN ) and deleted
non-added edges to the real edges (rT ) in the graph are counted. The model used
is GCN-8 and the results are shown in Fig. 3 (a) and (b). From Fig. 3 (a), we can
see that DropNEdge can remove “noise” edges because rN is always greater than
rT no matter what the ratio r1 is. Figure 3 (b) shows that the model’s accuracy
also increases as r1 increases. However, when too many edges are deleted, the
meaningful aggregation of information will also decrease. Thus, the accuracy of
the model decreases.

5.3 Suppress Over-Smoothing

Fig. 4. The effect comparison between
DropEdge and DropNEdge of suppress-
ing over-smoothing.

When the top-level output of GNNs con-
verges to a subspace and becomes irrele-
vant to the input as the depth increases,
over-smoothing phenomenon occurs. Con-
sidering that the convergent subspace can-
not be derived explicitly, we measure the
degree of smoothing by calculating the dif-
ference between the output of the current
layer and the previous layer. Euclidean
distance is used to calculate the differ-
ence. The smaller the distance, the more
severe the over-smoothing. This experi-
ment is carried out on GCN-8 with Cora
data set whose results are shown in Fig. 4.

DropNEdge is better than DropEdge in suppressing over-smoothing. As the
number of layers increases, the distances between layers in models with DropE-
dge and DropNEdge both increase. Furthermore, the distance’s increasing speed
of the model with DropNEdge is faster than that of the model with DropEdge.

5.4 Layer Independent DropNEdge

The DropNEdge mentioned above is that all layers share the same perturbation
adjacency matrix. In fact, we can perform it for each individual layer. Different
layers can have different adjacent matrices. This layer-independent (LI) version
brings more randomness and distortion of the original data. We experimentally
compare its performance with the shared DropNEdge’s performance on Cora
data set. The model used is GCN-8 and the comparisons of the verification loss
and training loss between shared and independent DropNEdge are shown in
Fig. 5 (a). Although hierarchical DropNEdge may achieve better results, we still
prefer to use shared DropNEdge which can not only reduce the risk of over-
fitting, but also reduce the computational complexity.
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Fig. 5. (a) shows the comparison of the training and verification loss between Drop-
NEdge and LI DropNEdge. (b) shows the uncertainty of model with DropNEdge.

5.5 Model Uncertainty

To obtain the model’s uncertainty, we turn on DropNEdge during the training
and test phase and set the ratio of deleted “noise” edges to 0.3. The experiment
is carried out on GCN-8 with Cora data set. After the model predicts multiple
times, different predictions may be produced for a sample. Figure 5 (b) shows the
ratio of different labels obtained in 10 predictions for 10 samples. For example,
for sample one, 40% of the ten predictions are class 0 and 60% of the predictions
are class 3. Thus, the confidence of the predictions can be obtained by using
DropNEdge. For high-confidence samples, that is, samples with consistent results
after multiple predictions, the model’s predictions can be used directly. If the
model’s predictions of some samples change greatly, other models should be
further used or they should be artificially determined to get more reasonable
predictions.

6 Conclusion

This paper proposes DropNEdge, a novel and effective method to alleviate the
over-smoothing phenomenon and remove “noise” edges in graphs. It mainly con-
siders two indicators based on the graph’s information, namely, feature gain and
signal-to-noise ratio. By using DropNEdge, the over-smoothing of GNNs is alle-
viated and the “noise” edges with no positive impact on the final task can be
removed, thereby improving the performance of GNNs. DropNEdge does not
need to change the network’s structure and is widely adapted to various GNNs.
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