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Abstract. In this paper, a feature point matching method that inte-
grates both spatial structure and multiple descriptors is proposed. To be
specific, given a set of detected keypoints on both images, multiple fea-
ture descriptors are extracted at each keypoint. Then, a subspace that
simultaneously encodes both spatial structure and multi-feature simi-
larity is computed. In this subspace, two points from different images
will be close if their similarity measured by multiple features are high,
and two points from the same image will be close if their distance in
the original spatial domain is small. The above task is formulated as a
Laplacian Embedding problem, which can be solved by eigen decompo-
sition. Finally, vectors in the subspace are treated as new descriptors of
the keypoints, and correspondences are established by searching mutual
nearest neighbors. Extensive experiments show remarkable improvement
in matching accuracy and downstream tasks such as homography and
relative pose estimation by combining both structure information and
multiple descriptors.

Keywords: Image matching · Multi-feature fusion · Spatial structure
preserving · Subspace embedding

1 Introduction

Establishing sparse feature correspondences between images is a fundamental
problem in many computer vision tasks, such as 3D information inferring [1,13,
14,24], Structure-from-Motion [22,36,40], robot sensing [25] and image retrieval
[3,15]. Given two groups of keypoints, the main steps of image matching are:
i) computing a high dimensional feature descriptor for each keypoint and ii)
establishing correspondences between them by for example, finding the nearest
neighbor in the feature space. In the above pipeline, feature descriptor is a key
factor to improve the final matching result.

In the past two decades, researchers in the community have proposed many
excellent handcrafted descriptors [2,5,7,26], as well as modern learned descrip-
tors [10,16,29,32,43,44]. Despite their great success, these methods have their
own limitations. Firstly, they still suffer from mismatches in challenging situa-
tions such as wide baseline and small scene overlap. Secondly, as observed by
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previous studies [18,19], the performance of different descriptors may vary a lot
for the same image. A keypoint might be correctly matched by one descriptor
but mismatched by another. This difference implies that using a single descriptor
hardly applies to all the scenarios, but different descriptors are complementary
and they can cooperate. At last, while feature similarity is given much atten-
tion, the useful spatial structure information [20,42,45] is overlooked in these
methods. This makes the matching result sensitive to local ambiguity. How to
integrate multiple features as well as spatial structure constraint still remains
an open problem.

In this paper, an image matching method based on multi-feature embed-
ding is proposed. Different form existing methods that use a single feature, it
first extracts multiple feature descriptors at each keypoint. Then, a new repre-
sentation that encodes both multi-feature similarity and keypoint structure is
computed via subspace embedding, which is a widely used methodology [23].
There are two properties of this subspace. On the one hand, if the inter-image
similarity between two points measured by multiple descriptors is high, they
will be close to each other in the embedded subspace. On the other hand, if
two points on the same image are spatially close to each other, the distance
between them in the new subspace will also be small. As a result, the structure
of each point set is preserved and similar points from different point sets are
pulled closer. This task is formulated as a Laplacian Embedding problem, which
can be solved via eigen decomposition. Vectors in the computed subspace are
treated as the new descriptors for the keypoints. In this way, both multi-feature
and spatial structure information are utilized by the proposed method.

To summarize, the proposed method distinguishes itself from existing meth-
ods in the following aspects. (1) It generates a novel descriptor for each keypoint
by computing a subspace, which is equivalent to the Laplacian Embedding prob-
lem. (2) The method is a general framework which fuses multiple off-the-shelf
descriptors instead of using only one of them. In this way, the embedded descrip-
tor can adapt to more challenging scenarios. (3) The subspace also preserves the
spatial structure of the kepoints, which makes the algorithm robust to local
appearance ambiguity.

2 Related Work

2.1 Feature Description Methods

As the most fundamental part of image matching, the performance of feature
descriptor is very important. The most famous manual descriptor is SIFT [26],
which is obtained by statistical histogram of local image gradient direction of
keypoints, and it has been widely used until today. After that, many different
kinds of manual feature descriptors have been designed to adapt to different sit-
uations, such as faster speed [5,33], smaller memory [7,34], and more robustness
[2].

In recent years, feature descriptors based on neural network have developed
rapidly, and generally get better matching results than handcrafted descriptors.
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Some methods [27,37,43,52] take image patches as input, and can directly cal-
culate the feature vector representations of these patches. HardNet [29] is based
on L2-Net [43] network structure, it proposed a triple-network, by introducing
a margin and encouraging negative pair feature distance to be greater than the
sum of positive pair distance and margin, forcing the network focuses on those
negative samples which are most difficult to distinguish. SOSNet [44] achieves
better results by using the first-order similarity loss(similar to triplet-loss) and
introducing a second-order regularization term between positive matching pairs.
Interestingly, one method [53] proposes a soft margin relative to hard margin in
HardNet, it discusses that the traditional hard margin is not flexible enough, so
this paper proposes a dynamic soft margin to overcome this problem.

Another kind of end-to-end methods use image as input to obtain more reli-
able matching results by calculating dense features. Aiming at a large num-
ber of multi-views geometry problems in computer vision, SuperPoint [10] pro-
poses a self supervised training framework of keypoint detection and description,
which outputs highly abstract features of the input image. Subsequent end-to-
end methods will also compute dense feature representation. D2-Net [11] pro-
poses a “detect-and-describe” method, which uses a single CNN for joint feature
detection and description, so an image can only get a 3D tensor. The goal of
R2D2 [32] is to learn repeatable and reliable keypoints and powerful descriptors,
and its outputs are dense descriptors, reliability map and repeatability map.

The existing deep learning methods all need ground truth correspondences to
train, and the acquisition of correspondences is costly in some cases. Therefore,
CAPS [47] proposes a method that directly uses the relative camera pose between
image pairs as the supervision, thus greatly reducing the training costs. However,
dense features tend to occupy more memory and computation is time-consuming.

2.2 Feature Matching Methods

Some researchers try to improve the results of image matching from another
perspective. The most basic feature matching relationship is usually obtained by
finding the mutual nearest neighbor features in feature space. SIFT [26] proposes
ratio test based on mutual nearest neighbor searching and greatly improves the
matching accuracy. Some methods [12,28,38,39,41,42] use Gaussian mixture
model for image matching, where each keypoint in the first image is treated as a
Gaussian component, and the probability of each keypoint in the second image
being assigned to each Gaussian component is modeled. Other methods [48] to
treat the matching problem as a classification problem, in this case, the keypoints
in one image can be regarded as cluster centers, while the keypoints in another
image are the keypoints to be assigned. Some multi-image matching methods
[17,56] can promote the matching accuracy of image pairs to some extent by
establishing the cycle-consistency constraint between multiple images.

The feature matching correspondence can also be restored from the feature
similarity matrix, which is very common in graph matching [50,55] and multi-
graph matching [8,31,46,49]. A spectral method [21] proposes to find the cor-
respondences from the feature similarity matrix, this spectral method is also



578 J. Yu and K. Sun

used in many subsequent graph matching methods. Besides feature similarity,
some methods [20,35,42,45] also considers the spatial structure of keypoints in
the same image, and the better matching results are obtained by combining fea-
ture and spacial information, but this approach only takes into account a single
feature. Recently, a novel method, SuperGlue [35], uses neural network to find
correspondences, which fully considers the relationship of cross-image keypoints
and self-image keypoints, this is also reflected in this paper.

The above image matching methods can not solve the inherent problem of
features, that is, a good correspondence basically depends on a good feature
descriptor. As we can not guarantee that a certain feature can be widely used
in all scenes, from another perspective, the method of fusing multiple different
existing features in this paper is a good choice.

2.3 Feature Fusion Methods

There are also some matching methods from the perspective of multiple features
fusion. Hu et al. proposed in [19] that the best feature can be selected for each
keypoint in the homography space for matching, but each keypoint essentially
uses a single descriptor information. Yu et al. proposed a multi-feature fusion
matching method [51], but their fusion features are geometric, gray, color and
texture features. LISRD [30] proposes a method to separate invariants from local
descriptors. In its framework, it includes the structure of learning multiple local
descriptors, which makes people think it is a multi-feature fusion method. In
fact, LISRD does not fuse features.

The goal of this paper is to design a multi-feature fusion method, in which
each feature has its own contribution. And for different keypoints, different fea-
tures have different contributions. In this way, different features complement
effectively, and image matching accuracy can also be improved.

3 The Proposed Method

Given two images I1 and I2, we detect two groups of keypoints X1 ∈ Rm×2

and Y2 ∈ Rn×2 on each image. For each keypoint, K kinds of descriptors are
extracted, which are denoted as P k

1 ∈ Rm×dk and Qk
2 ∈ Rn×dk . k = 1, ..,K is

the k -th feature and dk is the dimension of it.
Different from existing methods which use a single descriptor, we want to

fuse multiple features and impose structural constraint at the same time. To
this end, we compute a new representation E1 =

{
e11, e

1
2, ..., e

1
m

}T ∈ Rm×c and

E2 =
{
e21, e

2
2, ..., e

2
n

}T ∈ Rn×c of the original keypoints by projecting all these
keypoints information into a subspace. The superscript 1 or 2 indicates the first
or the second image, and c is the dimension of the subspace feature. E1 and E2

can be computed by minimizing the following objective function [45]:

min
∑

l=1,2

∑

i,j

∥
∥eli − elj

∥
∥2

Sl,ij +
∑

i,j

∥
∥e1i − e2j

∥
∥2

Uij . (1)
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The first term in Eq. (1) encodes intra-image spatial information, where Sl,ij

represents the spatial similarity between keypoints i and j in image l. S1,ij and
S2,ij can be computed by the following kernel function Ks (·, ·):

S1,ij = Ks (xi, xj) = e− (xi−xj)
2

2σ2 , xi, xj ∈ X1, (2a)

S2,ij = Ks (yi, yj) = e− (yi−yj)
2

2σ2 , yi, yj ∈ Y2. (2b)

According to Eq. (2), if two points on the same image are spatially close to each
other, the corresponding similarity in S1,ij would be large. To minimize Eq. (1),
their distance in the subspace should be small.

The second term in Eq. (1) encodes inter-image feature information, in which
Uij is the feature similarity defined by multiple descriptors between xi and yj .
Uij can be computed from the following equation:

Uij =
1
K

K∑

k=1

Uk
ij , (3)

where

Uk
ij = Ku

(
pki , q

k
j

)
= e

− (pk
i −qk

j )2
2β2 , pki ∈ P k

1 and qkj ∈ Qk
2 (4)

is a kernel function representing the feature similarity between xi and yj with the
k -th descriptor. As we can see from Eq. (3) and Eq. (4), the feature information
in Eq. (1) is jointly defined by multiple descriptors. If two points from different
images are similar to each other, the correponding similarity in Uij would be
large. To minimize Eq. (1), their distance in the subspace should be small as
well. As a result, the subspace defined by Eq. (1) has the following properties:
similar points from different images measured by multiple descriptors are pulled
closer and the relative structure of points from the same image is preserved.

The feature information and spatial information can be expressed in a com-
pact matrix form, which is shown in Eq. (5).

A =
[

S1 U
UT S2

]
. (5)

Here A is a 2×2 block matrix. Its diagonal blocks S1 ∈ Rm×m and S2 ∈ Rn×n are
the spatial information matrices computed from Eq. (2). Its off-diagonal block
U ∈ Rm×n is the feature information matrix computed from Eq. (3). Denoting
E =

[
ET

1 , ET
2

]
and applying some simple derivation, Eq. (1) can be rewritten in

the following form:
min tr(ETAE), (6)

which can be seen as the Laplacian Embedding problem [6]. The optimal embed-
ding features E in Eq. (6) can be obtained by solving the following problem,

min
ET DE=I

tr(ETLE), (7)
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where L = D−A is the Laplacian matrix of A, and D is a diagonal matrix whose
non-zero elements are computed from Dii =

∑
j Aij . Equation (7) is a gener-

alized eigenvector problem, whose solution is the eigenvectors corresponding to
the c smallest non-zero eigenvalues.

After computing E from Eq. (7), we have a new c-dimensional representation
for each keypoint in X1 and Y2. This new descriptor not only fuses multi-feature
information, but also encodes spatial structure constraint. We then match the
keypoints by searching for mutual nearest neighbors in the subspace.

4 Experiments

4.1 Evaluation Metrics

The experiments are performed on a machine equipped with Xeon E5-2620
2.1GHz, 64GB RAM and one GTX 1080Ti. Following SuperPoint [10], D2-Net
[11], UCN [9] and CAPS [47], the proposed method is evaluated in terms of Mean
Matching Accuracy (MMA) and several downstream tasks such as homography
estimation accuracy and relative pose estimation accuracy.

Mean Matching Accuracy (MMA). For a certain keypoint, if the distance
between its estimated matching position and the ground truth matching position
is smaller than a threshold, this match would be deemed as correct. The Mean
Matching Accuracy (MMA) is the ratio of correct correspondences in the whole
dataset. Higher MMA is preferable.

Homography Estimation Accuracy: Homography is a 3 × 3 matrix which
plays an important role in a variety of areas such as panorama generation and
planar surface detection. It can be estimated from correspondences between two
views. To be specific, we use the OpenCV function to estimate the homogra-
phy matrix and compare it with the ground truth. Following SuperPoint [10],
the four-corner accuracy is used to check whether the estimated homography is
correct. That is, the four corners of an image are warped by the estimated homog-
raphy and the ground truth homography, respectively. If the average distance
error between them is less than a threshold ε, then the estimated homography
is admitted to be correct.

Relative Pose Estimation Accuracy: Another application of image feature
point matching is 3D reconstruction, which requires to estimate the relative pose
between two cameras. The pose parameters, i.e. the rotation matrix R ∈ R3×3

and the translation vector t ∈ R3×1 can also be computed from correspon-
dences. For rotation, we compute the angle error between the estimation and
the ground truth. As for translation, we simply compute the directional error
with the ground truth because its magnitude is determined up to an unknown
scale factor. The estimation is deemed as correct if the error is below a threshold.

4.2 Datasets

Similar to CAPS [47], the experiments are carried out on two datasets: HPatches
[4] and COLMAP [54].
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Table 1. The MMA on the HPatches dataset. The pixel threshold is from 1 to 10.
Best results are in bold.

Method 1 2 3 4 5 6 7 8 9 10

2-Hand .177 .353 .410 .441 .464 .484 .501 .517 .531 .542

2-Depth .212 .413 .478 .511 .535 .554 .569 .581 .592 .600

4-Descs .197 .388 .452 .486 .511 .535 .554 .573 .589 .602

4-Depth .212 .416 .483 .518 .541 .561 .576 .588 .598 .607

F-Only .167 .329 .384 .411 .428 .440 .449 .456 .460 .465

Table 2. Average homography estimation accuracy on HPatches under different
thresholds ε. Best results are in bold.

Method ε = 1 ε = 3 ε = 5

2-Hand 0.303 0.497 0.595

2-Depth 0.322 0.541 0.654

4-Descs 0.311 0.534 0.663

4-Depth 0.325 0.560 0.690

F-Only 0.324 0.525 0.642

HPatches is used to evaluate MMA and homography estimation accuracy.
It consists of 116 scenes, among which 57 scenes are for illumination change
and the other 59 scenes are for viewpoint change. Each scene contains 6 images
and 5 pairs by matching the first image to the others, leading to a total of 580
image pairs. For every image pair, a homography is provided as the ground truth.
SuperPoint [10] is applied to detect at most 1000 keypoints on each image except
for the i dc scene, because SuperPoint is not able to handle its resolution.

COLMAP is used for the evaluation of relative pose estimation accuracy. It
contains four scenes: gerrard, graham, person and south, with 100, 560, 330 and
128 images respectively. These images, which are captured by different users and
collected from the Internet, present great challenges such as viewpoint changes,
scaling and occlusion. The camera parameters estimated in a standard SfM
pipeline are provided as ground truth. Similar to [47], we divide all the image
pairs in this dataset into three groups according to the viewing angle difference:
easy [0, 15◦], moderate [15◦, 30◦] and hard [30◦, 60◦]. In each group, we randomly
select 200 image pairs, resulting a total of 600 image pairs for testing. SuperPoint
[10] is also applied to detect at most 1000 keypoints on each image.

The proposed method is compared with several state-of-the-art descriptors
including SIFT [26], RootSIFT [2], HardNet [29], SOSNet [44], SoftMargin [53]
and SuperPoint [10]. The first two are famous handcrafted descriptors while the
last three are outstanding deep learned descriptors. Our method is also compared
with the OS [45] matching algorithm, which is closely related to our method,
but it considers only a single descriptor. To evaluate the performance of each
descriptor itself, we do not apply ratio test and all the matches are established
by simply finding mutual nearest neighbors.
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Table 3. Average relative pose (rotation/translation) estimation accuracy on the
COLMAP dataset. The angle threshold is strictly set to 5◦. Best results are in bold.

Method Easy Moderate Hard

2-Hand 0.550/0.455 0.270/0.170 0.085/0.050

2-Depth 0.695/0.600 0.410/0.325 0.225/0.155

4-Descs 0.605/0.520 0.390/0.245 0.195/0.105

4-Depth 0.690/0.610 0.445/0.335 0.245/0.135

F-Only 0.530/0.445 0.360/0.235 0.160/0.120

Fig. 1. The mean matching accuracy (MMA) for different thresholds on HPatches.
From left to right are: results on the whole dataset, the illumination subset and the
viewpoint subset.

4.3 Ablation Studies

Existing descriptors are either handcrafted or deep learned. Here we test 4 dif-
ferent combinations of them and analyze the results. 2-Hand uses two hand-
crafted descriptors SIFT and RootSIFT. 2-Depth uses two of the outstanding
deep descriptors, HardNet and SOSNet. 4-Descs uses a mixture of both hand-
crafted and deep learned descriptors. Two of them are from 2-Hand and the oth-
ers from 2-Depth. 4-Depth uses four deep learned descriptors, including HardNet,
SOSNet, SoftMargin and SuperPoint.

The results on MMA, homography estimation accuracy and relative pose esti-
mation accuracy are shown in Table 1, Table 2 and Table 3, respectively. As we
can see from the data, when using the same number of descriptors (for example
2-Hand and 2-Depth), deep learned descriptors outperforms traditional hand-
crafted ones. It also reveals that using more descriptors will improve the results
(see 2-Depth and 4-Depth). However, we also find that 4-Descs is lower than
4-Depth and 2-Depth. This indicates that not all the descriptors will contribute
to the results. Some descriptors that are not good enough might even make the
results worse. Based on the above observations, we recommend to use 4-Depth
in the following experiments.
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Fig. 2. Visualization results of the correspondences on three typical image pairs. Green
and red lines indicate correct and incorrect matches, respectively. (Color figure online)

We also test the role of spatial structure information. According to [45],
we replace the diagonal blocks of A in Eq. (5) with identity matrices for the
method 4-Depth. In this case, spatial structure information is removed and only
feature information is considered. The results, denoted as F-Only, is also shown
in Table 1, Table 2 and Table 3. As we can see, F-Only is significantly lower than
4-Depth, showing that integrating spatial structure information is beneficial.

4.4 Mean Matching Accuracy Evaluation

Figure 1 shows the result of MMA under different thresholds (from 1 to 10).
We plot the statistics on the whole dataset (Overall), as well as two subsets
(Illumination and Viewpoint). HardNet (OS) and SOSNet (OS) represent the
matching results of [45] when using HardNet and SOSNet, respectively.

The proposed method achieves the best performance on the whole dataset
and the viewpoint subset. It also returns the best results on the illumination
subset when the threshold is less than 6. HardNet and SOSNet are the top
two compared methods. The two handcrafted descriptors, SIFT and RootSIFT,
fall behind other learned descriptors on the viewpoint subset but receive good
results on the illumination subset. Figure 2 gives some visualization results of
the correspondences on some example image pairs. It shows that our method
returns more correct and fewer incorrect matches.

4.5 Results on Downstream Tasks

Table 4 shows the average homography estimation accuracy on HPatches for
different methods. Three thresholds are used. The proposed 4-Depth method
achieves the best result for ε = 3 and ε = 5, and ranks second for ε = 1.
HardNet(OS) and SOSNet(OS) outperform HardNet and SOSNet, respectively
by involving spatial constraint. There is a remarkable improvement between our
method and [45], showing that using multiple descriptors is beneficial.
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Table 4. Average homography estimation accuracy on HPatches under different
thresholds ε. A.M.P is the number of Average Matching Points and F.L.R is the Fore-
cast Loss Rate. The best and second best results are in bold and blue.

Method ε = 1 ε = 3 ε = 5 F.L.R A.M.P

SIFT [26] 0.296 0.499 0.588 0 475.2

RootSIFT [2] 0.296 0.489 0.584 0 467.9

HardNet [29] 0.315 0.513 0.638 0 534.3

SOSNet [44] 0.322 0.529 0.650 0 525.7

SoftMargin [53] 0.308 0.508 0.637 0 526.7

SuperPoint [10] 0.290 0.470 0.595 0 504.5

HardNet(OS) [45] 0.322 0.523 0.626 0 609.5

SOSNet(OS) [45] 0.329 0.525 0.671 0 614.5

4-Depth 0.325 0.560 0.690 0 625.1

Un. 0.315 0.490 0.635 0 858.6

Vo. 0.325 0.567 0.664 0.016 287.7

In. 0.283 0.464 0.565 0.049 173.4

Table 5 shows the average relative pose estimation accuracy on the COLMAP
dataset for different methods. The angle thresholds error is strictly set to 5◦.
For all these methods, the score drops from easy to hard. Our 4-Depth method
achieves the best results except for translation on the hard subset. HardNet (OS)
and SOSNet (OS) defeat HardNet and SOSNet, and rank the top two among
the remaining compared methods.

To test some other simple feature fusing strategies, we use intersection, union
and voting of four deep features in Table 4 and Table 5. They are denoted as In.,
Un. and Vo., respectively. For Vo., a correspondence is required to be found by
at least three out of four descriptors. As we can see, Un. contains too many false
matches so its results are generally not as good as ours. Vo. shows much higher
score in Table 5, but it’s worth noting that the increase of accuracy is at the cost
of sacrificing many correct matches. To prove this, we give the number of Average
Matching Points(A.M.P) and the Forecast Loss Rate (F.L.R) in both tables. It
shows that Vo. sacrifices nearly 50% and 82% matches in Table 4 and Table 5,
while the statistics for In. is 71% and 93%. Losing too many correspondences
may lead to failure when estimating the geometry models due to insufficient
data. The Forecast Loss Rate of Vo. and In. can range from 1% up to 33%. As
a result, although Vo. and In. can achieve higher accuracy in easy situations,
they are infeasible in harder situations due to high failure rate.

4.6 Parameters and Efficiency

In our method, the dimension c of the subspace is an important parameter. To
investigate its influence, an experiment is carried out on the v grace scene of
HPatches, in which c increase from 5 to 400 with a step size of 5. The average
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Table 5. Average relative pose (rotation/translation) estimation accuracy. The angle
error threshold is strictly set to 5◦. A.M.P is the number of Average Matching Points.
F.e, F.m and F.h are the Forecast Loss Rate for each subset. The best and second best
results are in bold and blue.

Method Easy Moderate Hard F.e F.m F.h A.M.P

SIFT [26] .540/.395 .250/.135 .105/.050 0 0 0 349.4

RootSIFT [2] .555/.410 .260/.155 .105/.050 0 0 0 338.3

HardNet [29] .580/.500 .340/.215 .150/.115 0 0 0 445.1

SOSNet [44] .565/.456 .350/.215 .160/.080 0 0 0 435.9

SoftMargin [53] .580/.450 .350/.240 .150/.090 0 0 0 451.4

SuperPoint [10] .565/.445 .245/.150 .125/.065 0 0 0 384.2

HardNet(OS) [45] .615/.515 .385/.265 .190/.140 0 0 0 536.3

SOSNet(OS) [45] .625/.535 .345/.255 .170/.130 0 0 0 538.6

4-Depth .690/.610 .445/.335 .245/.135 0 0 0 534.2

Un. .110/.020 .075/.000 .040/.010 0 0 0 950.2

Vo. .750/.650 .520/.425 .285/.220 .015 .082 .097 87.9

In. .700/.590 .330/.260 .185/.115 .100 .333 .335 36.2

Fig. 3. The average matching accuracy and running time for different embedded feature
dimension c. As a trade-off, we set the embedding feature dimension to c = 55 in all
the experiments.

matching accuracy and running time are shown in Fig. 3. The results show that
the matching accuracy of our method will increase when the embedded dimension
becomes higher, but it will cost more time as well. In particular, the running
time keeps growing but the average matching accuracy remains stable when the
feature dimension c exceeds 60. As a trade-off, we set the embedding feature
dimension to c = 55 in all the experiments.

5 Conclusions

This paper proposes a novel image matching method based on multi-feature
fusion and subspace embedding. The basic idea is to compute a subspace, in
which intra-image structures of the keypoints are preserved and inter-image
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multi-feature similarities are encoded. This goal is achieved by solving a Lapla-
cian Embedding problem. The proposed method is tested on a variety of scenes.
Both the mean matching accuracy and performance on downstream tasks such
as homography estimation and relative pose estimation are evaluated. Results
show that the proposed method achieves the best performance when combining
four deep descriptors: HardNet, SOSNet, SoftMargin and SuperPoint.
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