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Abstract. This paper proposes a novel distance measurement using
multi-Hilbert scans for matching point patterns on images. A modified
Hausdorff distance has been widely used for point pattern matching,
recognition tasks, and evaluation of medical image segmentation. How-
ever, the computation cost increases sharply with the number of fea-
ture points or the increase of data sets. Multi-Hilbert Scanning Distance
(MHSD) based on sets of one-dimensional points using Hilbert scans is
introduced to overcome this problem. MHSD consists of a combination
of four directional Hilbert scans and diagonally shifted Hilbert scans.
The proposed method was tested on vehicle images and compared with
Hausdorff distance, partial Hausdorff distance, and modified Hausdorff
distance. Experimental results show that the proposed method outper-
forms the compared methods.

Keywords: Hausdorff distance (HD) · Modified Hausdorff distance
(MHD) · Hilbert scan · Multi-Hilbert Scanning Distance (MHSD) ·
Point Pattern Matching (PPM)

1 Introduction

Point Pattern Matching (PPM) is a fundamental approach for the task of finding
correspondences within two arbitrary sets of points [1–4]. The Hausdorff Distance
(HD) has often been used for PPM or the similarity between two sets of points in
various fields of application, such as object matching, recognition tasks, trajectory
matching, and evaluation of medical image segmentation. Furthermore enhanced
methods, such as Partial Hausdorff Distance (PHD) and Modified Hausdorff Dis-
tance (MHD) have also exhibited good performances [5–12]. Efficient computa-
tional algorithms for an accurate and fast HD have been proposed [13–15]. How-
ever, MHD still has the weakness that the computation cost increases dramatically
as the number of feature points or the increase of data sets.
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(a) (b)

Fig. 1. Hilbert scans with Hilbert orders and scanning directions. (a) Hilbert scans
according to the change of a Hilbert order. (b) Hilbert scans according to the scanning
directions(α-scan, β-scan, γ-scan, and δ-scan).

In this paper, we propose the Multi-Hilbert Scanning Distance (MHSD), which
is a novel distance measure based on Hilbert scans. The novel approach of dis-
tance measurement for a pattern point matching is introduced by using features
of Hilbert scans. The Hilbert scan has some important features that can be utilized
for point pattern matching [16,17]; for example, the Hilbert scan is capable of pre-
serving the coherence between pixels and a one-to-one mapping function between
2-Dimensional (2-D) space and 1-Dimensional (1-D) space. This enables the algo-
rithm to be simplified, speeding up the computation. MHSD is made up of a com-
bination of four directional Hilbert scans and diagonally shifted scans. It computes
the minimum value among distances for the nearest point which are obtained by
each Hilbert scan. To retain the fast computation time, MHSD utilizes two types
of look-up tables which are generated in advance: coordinate loop-up tables and
address loop-up tables. As a result, MHSD can have a much lower computation
cost than that of the modified Hausdorff distance and shows good performance
for matching tasks. In the study, we do not discuss alignment strategies between
point sets. Thus, the proposed method is focused on a distance measurement for
the point pattern matching between coarsely aligned point sets.

2 Multi-Hilbert Scanning Distance

2.1 Hilbert Scan

The order r of a Hilbert scan is an important parameter for determining the
scanning resolution or the size of the Hilbert curve. When the Hilbert order is
r, the scanning resolution is 2r × 2r in 2-D space R2. Figure 1(a) shows Hilbert
scans according to a change in the Hilbert order r: 1st, 2nd, and 3rd. It also
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Fig. 2. Distance measurements by Hausdorff distance and Hilbert scan on an image
with two point sets P (•) and Q(�).

shows the change in the image resolution: 2 × 2, 4 × 4, and 8 × 8. There are four
types of Hilbert scans according to the scanning directions. Figure 1(b) shows the
four directional Hilbert scans when the Hilbert order is 2. In this study, α-scan,
β-scan, γ-scan, and δ-scan are named according to the scanning directions.

Figure 2 shows distance measurements by the modified Hausdorff distance
and a single Hilbert scan on an image including point sets P (•) and Q(�).
The modified Hausdorff distance measures distances between all q and p2 for
searching the nearest point of p2. However, the single Hilbert scan only needs
to measure distances of front and back two neighborhood points for searching
the nearest point of p2 in the 1-D sequence. But, the single Hilbert scan can not
always guarantee a good performance of a PPM task, because it often misses
the nearest point in 2-D space. In the next Section, details on how to measure
distance using Hilbert scans will be stated.

2.2 Definition of Multi-Hilbert Scanning Distance

A basic concept of distance measurements by α-scan and diagonally 1-shifted
β-scan is presented in Fig. 3. In α-scan, if the nearest point q ∈ Q of point p4 is
measured, it selects point q6 that is closest to p4 on the 1-D sequence obtained by
α-scan. The distance between p4 and q6 is 21 on the 1-D sequence. However, the
nearest point q of p4 in 2-D space is actually point q3. In the diagonally 1-shifted
β-scan, if the nearest point search of point p4 is performed, the nearest point
will be q3, which is the closest point to p4 on the 1-D sequence obtained by the
diagonally 1-shifted β-scan. The distance between p4 and q3 by the diagonally
1-shifted β-scan is 1 on the 1-D sequence.

Here, we introduce Multi-Hilbert Scans (MHS) to overcome the drawbacks of
a single Hilbert scan, which consists of a combination of four directional Hilbert
scans and diagonally shifted Hilbert scans. MHS is defined as follows:
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Fig. 3. Distance measurements by single Hilbert scan (k = 0) and diagonally 1-sifted
Hilbert scan (k = 1).

MHSK = {hsα,0, hsβ,1, hsγ,2, hsδ,3, · · · , hss,k, · · · , hss,K−1}, (1)

s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α, if (k mod 4) = 0
β, if (k mod 4) = 1
γ, if (k mod 4) = 2
δ, if (k mod 4) = 3

where K is the number of Hilbert scans, k denotes the shift length of the
Hilbert scan, and 0 ≤ k ≤ K − 1. For example, hsα,0, hsβ,1, hsγ,2, and hsδ,3

denote α-scan, diagonally 1-shifted β-scan, diagonally 2-shifted γ-scan, diag-
onally 3-shifted δ-scan, respectively. To measure distances by using Hilbert
scan, two point sets P and Q are converted into the new point sets U (U =
{u0, u1, · · · , uM−1}, ∀u ∈ Z) and V (V = {v0, v1, · · · , vN−1}, ∀v ∈ Z), where u
and v denote the addresses of points on Hilbert curve. Thus, the new point sets
Us,k and V s,k generated from hss,k are defined as follows:

Us,k = {us,k
0 , us,k

1 , · · · , us,k
M−1}, (2)

V s,k = {vs,k
0 , vs,k

1 , · · · , vs,k
N−1}, (3)

where us,k and vs,k denote the addresses of points on hss,k. According to
our statistical analysis, this paper recommends that K has 4: MHS4 =
{hsα,0, hsβ,1, hsγ,2, hsδ,3}. The analysis for the combinations of Hilbert scans
will be discussed in Sect. 4.1.

To measure distance by using MHS4, we will introduce Multi-Hilbert Scan-
ning Distance. Two point sets P and Q are converted into two new sets
U = {Uα,0, Uβ,1, Uγ,2, U δ,3} and V = {V α,0, V β,1, V γ,2, V δ,3} by the MHS4,
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(a)

(b)

Fig. 4. Distance measurement using MHS4 on an image with two point sets P and Q.

respectively. The distance measurement for all u between Us,k and V s,k is defined
as follows:

d(Us,k, V s,k) = min(‖ us,k
i − vs,k

t ‖, ‖ us,k
i − vs,k

t+1 ‖), (4)

where ‖ · ‖ is the Euclidean norm distance in 1-D space and 0 ≤ i ≤ M − 1. vt

and vt+1 are front and back neighbor points of ui on hss,k. The directed MHSD
from P to Q is defined as following:

mhsd(P,Q) =
1
M

∑

u∈U

min
v∈V

(d(Us,k, V s,k)), (5)

where M is the size of the point set P and 0 ≤ k ≤ 3 for MHS4. The directed
MHSD from Q to P can be computed similarly. MHSD is defined as following:

MHSD(P,Q) = max(mhsd(P,Q),mhsd(Q,P )). (6)
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Figure 4 illustrates distance measurement for p1 using MHS4 on an 32×32
image. First, two point sets P and Q are converted into the 1-D sequences by
MHS4. Then, d(ps,k

1 , Qs,k) on the each 1-D sequence is calculated by Eq. 4.
Lastly, the distance between p1 and Q is determined by minimum value of
distances calculated by d(ps,k

1 , Qs,k). The distances of the other points can be
obtained using the same computation.

3 Efficient Computation of MHSD

In this study, two kinds of look-up tables are prepared and are called a coordinate
look-up table and an address look-up table. The coordinate look-up tables are
generated in advance according to the types of Hilbert scans in MHS and are
defined as follows:

crd LUT s,k[i] = (x, y), (7)

where (s, k) denotes types of Hilbert scans in MHS, i is an address on 1-D
point sequence of hs,k, and (x, y) is a Cartesian coordinate on an image. If the
coordinate look-up table of hsα,0 is generated by constructing Hilbert curve [16],
the coordinate look-up tables of the other hss,k can be easily obtained by using

Algorithm 1: d(Uα,0, V α,0).
Input: Uα,0[m] and V α,0[n] (0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1).

1 k = 0, Dα,0[] = 0 (Dα,0 is minimum distances of Uα,0);
2 for (i = 0; i < M ; i + +) do
3 addr = Uα,0[i];
4 while k < N do
5 if (Uα,0[i] < V α,0[k]) then
6 if (k == 0) then
7 Dα,0[addr] = V α,0[k] − Uα,0[i];
8 break;

9 else
10 temp1 = Uα,0[i] − V α,0[k − 1];

11 temp2 = V α,0[k] − Uα,0[i];

12 Dα,0[addr] = min(temp1, temp2);
13 break;

14 else if (Uα,0[i] == V α,0[k]) then
15 k++;
16 break;

17 else
18 if (i == M − 1) && (k == N − 1) then
19 Dα,0[addr] = Uα,0[i] − V α,0[k];
20 break;

21 else
22 k++;
23 break;

24 if (k == N) then
25 Dα,0[addr] = Uα,0[i] − V α,0[N − 1];

26 return Dα,0;
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transformation rules. If the coordinate look-up table of hsα,0 is crd LUTα,0[i]
(crd LUTα,0[i] = (xα

i , yα
i )), the other coordinate look-up tables are formulated

as follows:

crd LUTα,k[i] = (xα
i + k, yα

i + k), (8)
crd LUT β,k[i] = (yα

i + k, xα
i + k), (9)

crd LUT γ,k[i] = (N − xα
i + k,N − yα

i + k) (10)
crd LUT δ,k[i] = (N − yα

i + k,N − xα
i + k) (11)

where N = 2r and r is the Hilbert order for scanning an image. The address
look-up tables are generated in advance by using the coordinate look-up tables
and are defined as follows:

addr LUT s,k[x, y] = i. (12)

Thus, for MHS4, addr LUTα,0, addr LUT β,1, addr LUT γ,2, and addr LUT δ,3

are generated in advance by using crd LUTα,0, crd LUT β,1, crd LUT γ,2, and
crd LUT δ,3, respectively.

Algorithm 2: min(d(Us,k, V s,k)) by MHS4.
Input: Uα,0, Dα,0, Dβ,1, Dγ,2, and Dδ,3.

1 MD[] = 0 (MD is the minimum among minimum distances);
2 for (i = 0; i < M ; i + +) do
3 addr0 = Uα,0[i] ;

4 (x, y) ← crd LUT α,0[addr0] ;

5 d0 = Dα,0[addr0] ;

6 addr1 = addr LUT β,1[x, y] ;

7 d1 = Dβ,1[addr1] ;

8 addr2 = addr LUT γ,2[x, y] ;

9 d2 = Dγ,2[addr2] ;

10 addr3 = addr LUT δ,3[x, y] ;

11 d3 = Dδ,3[addr3] ;
12 MD[i] = min(d0, d1, d2, d3) ;

13 return MD ;

The computation of mhsd(P, Q) using MHS4 is summarized as the following
steps:

Step 1. Convert the point set P to 1-D sequences U(U = {Uα,0, Uβ,1,
Uγ,2, U δ,3}) by using Eq. 12, and do the same process for 1-D sequences
V (V = {V α,0, V β,1, V γ,2, V δ,3}) with the point set Q.

Step 2. Compute minimum distances of all p(p ∈ P ) on hsα,0 with Uα,0 and
V α,0 by Eq. 4. The pseudo code for this step is presented in Algorithm 1.

Step 3. Repeat Step 2 with (Uβ,1 and V β,1), (Uγ,2 and V γ,2), and (U δ,3 and
V δ,3).

Step 4. Compute the minimum among minimum distances obtained from
MHS4 for a point p(p ∈ P ). The minimum distance is computed by using
address loop-tables and coordinate loop-tables.
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Step 5. Repeat Step 4 until all p have been processed. The pseudo code for Step
4 and 5 is presented in Algorithm 2.

Step 6. Obtain mhsd(P,Q) by calculating the mean value of minimum distances
of all p.

The process of computing mhsd(Q,P ) is the same as the above steps. Finally,
MHSD is obtained by choosing the larger one of mhsd(P,Q) and mhsd(Q,P ).

4 Experimental Results

4.1 Statistical Analysis for MHSD

In this Section, we present a statistical analysis of the proposed method and some
combined Hilbert scans by using a statistical method [18]. The statistical method
analyzes the proportional property of a square Euclidean distance d = (bx −
ax)2+(by −ay)2 and a scanning length l(l ∈ [0, Rx ×Ry]) between the two points
a(ax, ay) and b(bx, by), where Rx × Ry is the size of an image. Other scanning
methods are combined for the statistical analysis, which are a single Hilbert scan,
two Hilbert scans, four Hilbert scans, a single Hilbert scan and four diagonally
shifted Hilbert scans, and four Hilbert scans and four diagonally shifted Hilbert
scans. Figure 5 shows the relation between the average scanning length and the

(a) (b) (c)

(d) (e) (f)

Fig. 5. Statistical analysis of scanning length for some combined Hilbert scans and the
proposed MHSD. (a) A− scan (hsα,0), (b) B − scann (hsα,0 and hsβ,0), (c) C − scan
(hsα,0, hsβ,0, hsγ,0, and hsδ,0), (d) D− scan (hsα,0, hsα,1, hsβ,1, hsγ,1, and hsδ,1), (e)
E−scan (hsα,0, hsβ,0, hsγ,0, hsδ,0, hsα,1, hsβ,1, hsγ,1, and hsδ,1), and (f) the proposed
Hilbert scans.
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(a) (b) (c)

(d) (e)

(f) (g)

(h)

Fig. 6. Vehicles image and edge images with different noise levels. All noisy images
were made by imnoise function in Matlab. (a) Real model of a single vehicle. (b) Edge
image of (a). (c) Real image of some similar vehicles. (d) Edge image of (c). (e) Edge
image of (c) with Gaussian noise (σ = 0.02, σ means the variance). (f) Edge image of
(c) with Poisson noise. (g) Edge image of (c) with salt&pepper noise (d=0.2, d is the
noise density). (h) Edge image of (c) with Multiplicative noise (v=0.2, v means the
variance).

square Euclidean distance corresponding to two points. In Fig. 5(a), (b), and (c),
the scanning length l fluctuates over a wide range when d > 25. Figure 5(a) and
(b) have the scanning length greater than 1 when d = 1. However, Fig. 5(f) has
a small fluctuation and the square Euclidean distance is proportional to l.

4.2 Evaluation of MHSD on Vehicle Images

The proposed approach was tested with vehicle model images. Firstly, we tested
the ability of MHSD to find a vehicle model in an image including many vehicles.
Generally, a vehicle model image is smaller than an image including many vehi-
cles. Thus, the directed distance measure from a model to an image is performed
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Samples of vehicle model images in a data-set and edge images of the vehicle
models.

by translating the model on the fixed image. The minimum value of any distance
measure under translation can be computed as follows [19].

MΨ (A,B) = min
ψ

h(A,B ⊕ ψ) (13)

where h is any distance measure such as HD, PHD, MHD, single Hilbert scan
(SHS) or MHSD, and ⊕ is the standard Minkowski sum notation(i.e., B ⊕ ψ =
b + ψ|b ∈ B). The test sets in Fig. 6 are a vehicle model (128 × 128 size) and an
image (512×256 size) including some similar vehicles. The proposed method was
compared with HD, PHD (80%th ranked value), Single Hilbert Scan (SHS), and
MHD on edge images. Figures 6(a)-(d) show the original images and the binary
edge images obtained by Meer [21], and (e)-(h) are the edge images of noisy
images adding Gaussian, Poisson, salt&pepper, and Multiplicative noise [20] to
Fig. 6(c), respectively. The best matching position of the vehicle model is (20,
111) here. In practice, the best matching position was obtained using graphics
tool. Table 1 shows the matching results. The matching position can be evaluated
using the Euclidean distance between the best matching positions. The smaller
this distance is, the better the distance measure is. From Table 1, the Euclidean
distances between the best matching and the HD results are 0, 312, 11, 185, and
200 for (d)-(h), respectively. This shows that HD matching suffers with noisy
images. MHD showed good matching results. However, MHSD presented the
best matching results for all images.

Secondly, the proposed method was tested by using the real vehicle model
images (in Fig. 7). In this study, 40 real vehicles were involved and 200 images
were acquired for the experiment. In Fig. 7(f)-(j), the edge images were obtained
by applying the edge detection algorithm of Meer [21] and the image size is
512 × 512 pixels. The proposed method was compared with HD, PHD (80%th

ranked value), SHS, and MHD on edge images of vehicle models. To evaluate
the performance of the proposed method, top-rank order and Bulls-eye statistics
were used. Bulls-eye test counts how many of the 5 possible correct matches are
presented in the top 10 nearest objects.
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Table 1. Position results of experiment shown in Fig. 6

Methods Matched position (x, y)

(d) (e) (f) (g) (h)

HD (20,111) (326,46) (31,109) (205,121) (217,72)

PHD (19,111) (22,111) (19,111) (18,111) (20,111)

SHS (20,111) (23,112) (20,112) (22,112) (20,111)

MHD (20,111) (205,120) (20,111) (23,110) (20,111)

MHSD (20,111) (21,111) (20,111) (20,111) (20,111)

Table 2. Comparison of recognition rate (%)

Methods Matching rate (%)

Top-Ranking Bulls-eye

Hausdorff distance 92.0 90.2

Partial Hausdorff distance 94.1 92.5

Single Hilbert scan 93.7 92.1

Modified Hausdorff distance 96.5 94.4

Multi-Hilbert scanning distance 97.8 95.3

Table 3. Comparison of running time (sec)

Methods Pairs

(f,g) (f,h) (f,i)

Modified Hausdorff distance (NAVIE) 0.150 0.141 0.163

Modified Hausdorff distance (KD-Tree) 0.033 0.031 0.037

Multi-Hilbert scanning distance 0.025 0.024 0.028

Table 2 shows the recognition results by the proposed method and the com-
pared methods. MHD exhibit better performances than HD, PHD, and sin-
gle Hilbert scan. Nevertheless, the proposed method outperforms the compared
methods. For evaluating the computation cost, the proposed method was com-
pared with the NAIVE MHD and the MHD using KD-Tree with samples of vehi-
cle edge images. Table 3 shows that the running time of the proposed method
is less than that of the MHD using KD-Tree. The running time of the MHSD
algorithm in Table 3 includes the times of converting into 1-D sequences U and
V . If the 1-D sequences U and V of point sets are registered in advance and
distance measurement is performed with those, MHSD can have a much lower
computational cost. These experiments demonstrate that the proposed algorithm
outperforms the compared algorithms.
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5 Conclusion

In this study, we propose a multi-Hilbert scanning distance which is a distance
measurement for fast and accurate point pattern matching and object recogni-
tion. MHSD measures distance using five 1-D point sequences from multi-Hilbert
scanning and has two types of look-up tables to lower the computation cost. Eval-
uation of MHSD was performed using vehicle images. MHSD was compared with
other distance measures, such as HD, PHD, SHS, MHD. MHSD showed good
performance in terms of matching accuracy and computation cost. Experimen-
tal results demonstrate the possibility of the distance measurement for fast and
accurate point pattern matching. The future works will aim at applying efficient
alignment strategies and extending the application fields.
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