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Abstract. Flow-based model receives more and more attention and has
been recently applied to image style transfer. While these methods can
achieve splendid performance, there remains a problem that the stacked
convolutions are inefficient and cannot focus on valuable features. Start-
ing with training an adversarial robust model, we find that no matter
in the perceptual loss network or the transfer model, robust features are
beneficial for performing better universal style transfer (UST) results.
Based on this initial conclusion, we improve the current Glow model by
applying self-attention mechanism with three different blocks using ViT,
non-local and involution, respectively. Designed feature extraction blocks
can capture more valuable deep features with fewer parameters, making
Glow more effective and efficient in UST. Our improved Glow can gen-
erate artistic images that look nicer and more stable. Both visual results
and quantitative metrics are compared to prove that our improvement
makes Glow more suitable for UST.

Keywords: Image style transfer · Flow-based model · Adversarial
robust feature

1 Introduction

Image style transfer task aims to synthesize two images, a content image and a
style image, into a single one with the former’s global content and the latter’s
artistic effects. Recent years have witnessed the substantial development of neu-
ral style transfer. Several excellent methods have been published after the initial
successful attempt of Gatys [1]. Similar approaches appeared a lot that used
feed-forward networks and iterative optimization [2–4]. Universal style transfer
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(UST) can handle the generalization ability and perform good results for arbi-
trary style and content. The most representative methods include AdaIN [5],
WCT [6], Avatar-Net [7] and Linear Transformation [8]. These methods explore
the second-order statistical transformation from style image features onto con-
tent image features via different transformations.

A recent work named ArtFlow [9] proposed an unbiased style transfer frame-
work based on Glow [10]. With perfect mathematical support, flow-based models
can generate confidential image results in many image generation tasks. ArtFlow
contains a chain of revertible operators proposed by Glow, including activation
normalization layers, invertible 1 × 1 convolutions, and affine coupling layers.
A simple reverse operation can be performed to reconstruct the image since the
flow-based model is reversible.

Despite DNNs superior performance, there exists tailored examples to dis-
turb DNNs called adversarial examples [12,16,30]. These examples are inputs
to machine learning models that deliberately add some subtle interference by
attackers imperceptible in human vision. The discussion of adversarial exam-
ples [31] has shown us non-robust features dominates in the style transfer mis-
sion. Specifically, VGG-based networks perform poorly in adversarial training
tasks yet outperform other networks like ResNet and Inception regarding style
transfer.

Although there is no doubt that we can obtain beautiful transfer results with
the powerful flow-based model, there is still some weakness of the framework.
Researchers do not attend flow-based models for many years due to their weak
feature representation ability. To improve the feature extraction ability, we start
by exploring the relationship between robust features and the style transfer
model based on Glow. Experiments show adversarial robust features are not
only useful in iterative optimization methods but also can work well in UST.
Based on the finding, we try to improve the expression of the flow-based model
to make it capture more valuable features in transfer image style. We have an
attempt with vision transformer first because [22] finds that ViTs has a better
performance than convolution layers in the adversarial training mission. Then
we further design two blocks with non-local [24] and involution [25], respectively.
Both visual results and quantitative comparisons show our improved Glow can
generate more excellent images. There are two main contributions of this work:

1. We confirm the effectiveness of adversarial robust features in UST by per-
forming experiments. Robust features are helpful both as loss calculating and
transfer features. The conclusion will broaden the road of future study of
relative areas.

2. We improve the performance of flow-based model by replacing the current
convolution layers. The original feature extraction block contains a simple
stack of convolutions, which needs extra parameters and will not neces-
sarily capture useful information. We design feature extraction blocks with
self-attention, which use fewer parameters and focus on significant features.
Experiments are conducted to prove our redesigned Glow is capable of cap-
turing more valuable features for image style transfer.
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2 Related Works

Image Style Transfer. Traditional methods can paint high-quality images yet
may take much time, which means they have to trade-off between quality and
costs. This problem has been a hindrance until Gatys [1] first introduce the neu-
ral network to extract deep features and represent image styles by Gram matrix.
The iterative optimization process has a high computational cost. Numerous
neural style transfer methods emerge then, which can be roughly divided into
three categories. One style per model method [2,13,14] trains feed-forward neu-
ral networks to minimize the same feature reconstruction loss and style loss.
Multiple-style per model methods [3,15,32] represent several styles with a single
model, which can perform multiple image style transfer. Universal style transfer
methods [3,5,6,8,17,18] aim to improve the generalization ability of neural style
transfer by matching statistical variables like mean and variance, generating
excellent results for arbitrary style and content images.

Flow-Based Model. The flow-based model was first proposed by the work of
NICE [11], which extracts high dimension features with a stack of affine cou-
pling layers. It has not been pay much attention to because of its weak feature
expression capability, which is the consequence of ensuring reversibility. Subse-
quent work of Glow [10] improves flow with flexible reversible 1 × 1 convolu-
tion, increasing the performance of the flow-based model in an extensive range.
Recent proposed flow-based models [19] are capable of synthesizing high-quality
images and realistic speech data. ArtFlow has just been made public using the
architecture of Glow, which can handle content leak problems and is capable of
performing unbiased image style transfer.

Adversarial Examples. Existing models achieve good results except for a par-
ticular case which is named adversarial examples. These examples may cause the
model to give an erroneous output with high confidence. Andrew et al. [20] does
some experiments and proposes that adversarial examples are due to non-robust
features that are highly predictive but imperceptible to humans. This conclu-
sion arises many works in various fields. Wang et al. [21] rethink the difference
of architectural between VGG and ResNet and their performance in the style
transfer task, further proposing a simple solution to improve the robustness of
ResNet.

3 Method

3.1 Robust Features and Style Transfer

We first state the initial conclusion about the relationship between robust fea-
tures and image style transfer. The discussion [31] about robust features [20]
gives us hints that VGG is more suitable in image style transfer tasks, but other
networks like the most popular ResNet cannot work very well without tricks.
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Fig. 1. Glow-based Style transfer results with non-robust and robust ResNet-50.
Robust one generate more reasonable results.

VGG is far behind compared to other models like ResNet, Inception-v3 and
DenseNet when it comes to the adversarial training tasks. This phenomenon
can easily conclude that it is just because VGG is unable to capture non-robust
features as efficient as other architectures that make it capable of performing
confidential style transfer outputs. [31] does some quick experiments and shows
the first four layers of VGG are almost as robust as the layers of robust ResNet.

[21] conducts more experiments and finds the residual connection is unsuit-
able in style transfer and adds a simple trick on loss function to create a more
uniform distribution of activations, which is beneficial to produce good style
transfer with ResNet. Although this is useful, we find the trick can only be used
for iterative optimization methods, which can only transfer one pair of style and
content once, similar to Gatys [1], and cannot work well when it comes to uni-
versal style transfer. We attempt to apply the solution to ArtFlow and only get
noisy results, with the loss and gradient values being strange.

To expand the current conclusion to a universal case, we first train Art-
Flow with a robust perceptual loss network [2] to verify that robust feature
is still working for UST. Figure 1 shows the results of ArtFlow using standard
and robust ResNet-50 as the perceptual loss network. The transferring is not
really working well with standard ResNet-50. Nevertheless, the outputs become
far better with robust cases, which indicates that a robust network can indeed
capture features that are useful to style transfer.

We further consider that since robust features are more critical in evaluating
the distance of features from loss networks, it is more reasonable to perform the
transfer with robust features than non-robust ones. Table 1 shows quantitative
metrics of robust and non-robust ArtFlow.
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Algorithm 1. Affine coupling with reverse.
Input: input feature tensor xin Output: output feature tensor yout

1: xa, xb = split(xin)
2: (logs, t) = NN(xb)
3: s = exp(logs)
4: ya = s � xa + t
5: yb = xb

6: yout = concat(yb, ya)
7: return yout

3.2 Glow Architecture

ArtFlow [9] introduces the flow-based model to solve the content leak problem
of style transfer mission, whose overall architecture is the same with Glow [10],
including a chain of three reversible transformations, i.e., affine coupling, invert-
ible 1 × 1 convolution, and Actnorm [10]. Different from the widely used auto-
encoder methods, the flow-based model can perform as both encoder and
decoder. The following are detailed descriptions of the main reversible trans-
formations of the network.

Actnorm. Early used batch normalization (BN) is subject to the batch size,
which may add noise and cause performance to degrade. Actnorm is then pro-
posed for activation normalization, which performs an affine transformation of
the activations using a scale and bias per channel. Parameters are initialized to
make the activations have zero mean and unit variance, which will output the
initial minibatch of data. Actnorm performs per channel as:

yi,j = ω � xi,j + b (1)

where i, j denote the position on the feature tensor. ω and b are the scale and
bias and are learnable in training, which is similar to BN.

Invertible 1 × 1 Convolution. Since affine coupling layers only process half
of the features, it is necessary to permute the channels of the feature maps.
Instead of fixed permutation in flow-based models before, Glow uses a learnable
invertible 1 × 1 convolution. This convolution part is the main reason for the
performance increase of the flow-based model. The operation can be represented
by:

yi,j = Wxi,j (2)

where W ∈ Rc×c is the weight matrix with c being the channel dimension of the
feature tensor.

Affine Coupling Layers. The essential part of the flow-based model is the
expressive reversible transformation named affine coupling proposed by Dinh
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Fig. 2. (a) The overall framework of ArtFlow used to perform Style Transfer, adding
the reverse operation. (b) NN with ViT uses average pooling to downsample the feature
to reduce the calculation. Linear and Reshape layers transform the tokens back into
features tensors. (c) NN with Non-local is similar to the previous one and doesn’t
need Linear since the shape will not change through the non-local block. (d) NN with
Involution performs better with a convolution layer to increase the number of channels
first and remains the same count of channels inside. A BatchNorm layer helps handle
outliers.

et al. [11]. Roughly speaking, an affine coupling layer splits the input tensor into
two parts along the channel dimension. The first part unchanged to be the first
half of the output tensor, and the second part does affine transformation using
the transformed result of the first part.

Reverse Operation. Inspired by the conclusion of [21] that residual connec-
tions may interfere style transfer task, we make a slight change of the affine
coupling layer. Although the sophisticated 1 × 1 convolution is indeed able to
learn an appropriate permutation of the input, it is well known that a good ini-
tialization can speed up the model convergence and get better results. To reduce
the tendency of delivering the same half of the tensor multiple times directly, we
add a simple reverse operation to exchange the two parts of the output of the
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Algorithm 2. Pseudo PyTorch code of involution.
Input: x ∈ RB×C×H×W Output: y ∈ RB×C×H×W

# K: kernal size, s: stride, r: reduction ratio
# initialization

1: o = AvgPool2d(s, s) if s > 1 else Identity()
2: reduce = Conv2d(C, C//r, 1)
3: span = Conv2d(C//r, K*K, 1)
4: unfold = Unfold(K, padding=K//2, s)
5: weight1 = Parameter((1,1,H,W))
6: weight2 = Parameter((1,1,H,W))

# forward

1: weighted sum = ReLU(BN(mul(weight1, x))).sum(dim=(2,3)) # B, C
2: weighted sum = weighted sum.unsqueeze().unsqueeze()# B, C, 1, 1
3: weighted sum = mul(weighted sum, weight2) # B, C, H, W
4: x unfolded = unfold(x).view(B, C, K*K, H, W)
5: kernel = reduce(o(x+weighted sum)) # B, C//r, H, W
6: kernel = span(ReLU(BN(kernel))).view(B, 1, K*K, H, W)
7: y = mul(kernel, x unfolded).sum(dim=2) # B, C, 1, H, W
8: return y.squeeze()

affine coupling layer. The affine coupling with reverse is summarized in Algo-
rithm1. An additive coupling layer is a simplified case with s = 1, which is the
one exactly used in ArtFlow.

3.3 Improve Feature Extraction

There is no doubt that robust features are beneficial to performing more wonder-
ful image style transfer results, but adversarial training is very time-consuming.
To increase the performance while holding the efficiency, it is a better idea to
improve the architecture of the network. As we can see from the modules, affine
coupling layer consists of the only feature extraction Neural Network (NN) in
Glow since the 1 × 1 convolution is for feature shuffling. Aiming to capture
robust features, we need to use a more suitable structure. Shao et al. [22] has
recently published a work about the adversarial robustness of ViTs [23]. It can
be inferred from their experiments that ViTs possess better adversarial robust-
ness compared with convolutional neural networks, which raises an assumption
that self-attention is playing an essential role in this question.

As shown in Fig. 2, we design three different neural network blocks for the
affine coupling block to increase the feature extraction ability, using vision trans-
former, non-local [24] and involution [25], respectively. To be clear, non-local is a
widely used attention mechanism in the computer vision area, which is a lighter
weight module than ViT. Involution is a neural network operator whose ker-
nel parameters are shared along the channel dimension, which is different from
convolution, whose kernel remains the same along pixels. The kernels are trans-
form results of the vectors along the channel dimension with a kernel generation
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function. The involution operator can be a general form of self-attention by
replacing the generation function. To let each channel receive the global infor-
mation, which is important in style expression, we add a global weighted sum
along the channel dimension to the channels. Furthermore, we use one more
weight matrix to learn the importance of the global information to the current
channel. The global information we add only need 2 × H × W more parameters
and can obtain much promotion. We accept the group number, reduction ratio
and dilation to be all 1. Algorithm2 is the pseudo-PyTorch code of involution we
apply. Experiments show that involution is actually capable of capturing helpful
features.

3.4 Loss Function

Gatys [1] propose the Gram matrix to represent the style of an image and soon
becomes the general criterion of style transfer. The perceptual loss [2] further
extends the usage with a loss network, which brings up the development of
Universal Style Transfer. Loss networks, usually VGG-19, maps an image into
a set of feature maps {F l(x0)}Ll=1 where F l is the mapping from the image to
the activations of the lth layer. Suppose the activation to be RCl×Wl×Hl and
can also be reshaped into a matrix F l(x0) ∈ RCl×Ml , where Ml = Wl × Hl.
The Gram matrix Gl ∈ RCl×Cl is computed by the inner product between the
feature maps in layer l:

Gl
ij =

∑

k

F l
ikF

l
jk (3)

then with xs representing the style image and x the output image, the style loss
can be measured by Lstyle, as:

Lstyle(xs, x) =
L∑

l=1

ωl

4C2
l M2

l

||Gl(F l(x)) − Gl(F l(xs))||22 (4)

where ωl ∈ {0, 1} are factors using to choose which layers will contribute to the
style loss. Content loss Lcontent is a simple mean square error as:

Lcontent(xc, x) =
1
2
||F l(x) − F l(xc)||22 (5)

where xc is the content image and x the output. l here represents the feature
used to measure the content distance, usually the deepest layer. The total loss
function Ltotal is a weighted sum of style loss and content loss as:

Ltotal(x, xc, xs) = λcontentLcontent(x, xc) + λstyleLstyle(x, xs) (6)

It is necessary to clarify that VGG-19 is used as the perceptual loss network.
There is no fixed statement about which layers to use. According to experiments
of [8], we adopt the combination of four outputs of the first ReLU layer of the
first four VGG blocks as relu1 1, relu2 1, relu3 1, relu4 1, respectively. As for
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Fig. 3. Training Loss of Glow with and without the reverse operation. Applying reverse
can accelerate the training procedure and makes it more stable.

ResNet used in the comparison experiment of Sect. 4.2, we refer to the approach
of [31] and choose layers of relu2 3, relu3 4, relu4 6, relu5 3 considering the fair
comparison with VGG.

4 Experiments

In this section, we explain the experiment details of three main terms. We first
prove the adversarial training has a positive influence on universal style trans-
fer. Then we conduct a fast experiment of the effect of the Reverse Operation.
Moreover, extensive experiments are performed to show the enhancement of the
improved Glow.

4.1 Experiment Settings

Datasets. Following the existing image style transfer methods, we use the MS-
COCO dataset [26] as our content images and the WikiArt dataset [27] as style
images. The input images are resized to 512×512 and then randomly cropped to
256× 256. In the experiment of adversarial training, we follow the current study
to train the Glow on cifar-10 [28], then use the pretrained model to transfer the
style of our test set.

Network Structure. We adopt the structure of ArtFlow [9] using two Glow
blocks, with each block containing eight combinations of the three reversible
transformations. The author has discussed that additive coupling is sufficient
for style transfer and is more stable, which is the same with our attempts, no
matter which NN we use.
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Fig. 4. Visual results compared to original ArtFlow. Our ViT block requires the content
feature to be in certain sizes, so we randomly crop the input content image. Our
improved ArtFLow generates more beautiful and stable images, especially the details
and textures. Please zoom in to confirm.

Training. We implement all experiments on the PyTorch framework. Standard
training on cifar-10 takes about 15 h for 250 epochs on an RTX 2080Ti GPU.
Adversarial training needs 4 h for one epoch, and the loss is usually becoming
stable after 40 epochs. We adopt the widely used TRADES [29] to perform
adversarial training with step size, epsilon, number of perturbation iterations to
be 0.003, 0.031, 7, respectively. For the training of Glow, the loss weights are set
to 0.1 for λcontent and 1 for λstyle based on previous work experience. Adain is
used as the style transfer module because of its simplicity and effectiveness. We
perform 100000 iterations using Adam with the initial learning rate of 1e−4 and
decay of 5e−5. The original architecture takes about 22 h with a batch size of 4
on an RTX 2080Ti GPU or 21 h with a batch size of 2 on a GTX 1080Ti GPU.

Metrics. Visual results are first compared to show the superiority of our meth-
ods. We choose different kinds of style and content images as the test set. A good
style transfer result should remain more overall content and generate vivid hues
and detailed textures. In addition, we also make quantitative comparisons. The
perceptual loss value of the test set is a common metric among image synthesis
tasks. We use the content loss to measure the content preservation and the Gram
matrix loss to measure the style transfer ability. The efficiency is important as
well, so we compare the transfer speed and the model size.
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Table 1. Quantitative evaluation comparisons. The first two rows are the result of
Sect. 4.2 training on cifar-10. The rest are the results of Sect. 4.3. Transfer time is
evaluated on 256 × 256 images using an TITAN RTX GPU.

Models Style loss Content loss NLL loss Time (s) Model size (MB)

Standard Glow 11.1 1.924 3.39 0.144 74.38

Robust Glow 8.5 1.997 3.49 0.144 74.38

ArtFlow [9] 3.905 3.199 3.39 0.144 74.38

Glow+ViT (ours) 4.631 2.902 3.42 0.221 239.36

Glow+nonlocal (ours) 3.55 3.003 3.44 0.185 51.62

Glow+Involution (ours) 3.110 2.939 3.52 0.157 34.46

4.2 Comparing Adversarial and Standard Networks

We first show that robust features are still working when it comes to universal
style transfer. Since adversarial training is very time-consuming, we directly use
the pretrained robust ResNet. The Glow used in this part remains the same with
ArtFlow. As shown in Fig. 1, the first row are the results of standard ResNet-50,
and the second row is from robust ResNet-50. Obviously, standard ResNet-50
is not really performing style transfer, yet the robust one makes better perfor-
mance.

Then we compare the robust Glow and the standard Glow. With the training
setting stated before, we use the pretrained Glow models to transfer the style of
images. The pretrained model is not able to perform reasonable image results.
However, from the loss comparison, we can see the robust model extracts more
useful features for style transfer, leading to a lower Gram matrix loss.

4.3 Improved Glow

Ablation Experiment. Firstly, we prove that training will be accelerated with
the simple reverse operation. We use the original Glow to perform this part of
experiments. Figure 3 shows training procedures of the two cases, one of which
uses the reverse operation. It is clear that with the reverse operation, training
loss descends faster, which confirms our assumption that the parameters of the
1 × 1 convolution in the network are trained to have similar behaviour.

Secondly, we demonstrate that with a more suitable design for NN, Glow
can obtain more excellent style transfer results. Visual comparisons are shown
in Fig. 4. The attention mechanism can enrich details of the image results, and
the textures are described better. The designed block with involution achieves
relatively better performance than others, with generated images being rich in
details and seems stable in the meantime. Quantitative comparisons are made
with the testing loss aforementioned. We also compare the negative-log-likelihood
loss when training Glow models with cifar-10. NLL is the most common loss
function to train flow-based models and can show their classification ability. As
we can see in Table 1, our blocks make the classification a little bit worth but
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Fig. 5. Detail comparisons. (c) Our involution block with 128 dimensions of hidden
layers and is the one used in the previous section. (d) The same structure of (c) with
64-dimension hidden layers. (e) Pure involution without the convolutions in Fig. 2.
Model sizes (MB) are 34.46, 10.86, 4.20, respectively.

facilitate style transfer, which also confirms our point of view that style-transfer-
useful features may have some degrees of difference with those in recognition
tasks. ViT gets a similar score with original convolutions. Our blocks with non-
local and involution obtain lower style and content loss, indicating the model
transfers more artistic effects while preserving the global content. The model
size is smaller since our blocks can capture more valuable features. Using the
involution block reduces the scale more than twice. The time cost rises a little,
owing to the time-consuming calculations of self-attention.

Detail Comparison. We compare the details of our involution block of different
sizes. As shown in Fig. 5, our involution block can generate more textures of the
corresponding artistic effect, which benefits both content and style loss. After
further comparisons, we can find that as the parameters decrease (from c to e),
the performance of colour begins to degrade first, and then the textures (notice
the purple part of the ear). This phenomenon indicates that our involution block
has a more powerful ability to capture the global stroke of the style image,
which is more complex than capturing colours. The promotion is due to the self-
attention mechanism and the weighted sum we add, both of which are able to
increase the overall awareness.

5 Conclusions

In this paper, we first explore the relationship between adversarial robust fea-
tures and universal image style transfer. Although standard ResNet-50 is not
suitable to be the perceptual loss network in UST, using an adversarial robust
ResNet-50 makes things different and generates confidential results. Experiments
prove robust features are helpful not only during loss calculating but also in the
transfer procedure. Based on the conclusion, we improve the existing Glow model
by enhancing the original feature extraction block with self-attention mechanism,
making it perform more pleasing and more stable style transfer results. Three
different blocks are used with ViT, non-local and involution, respectively. Our
block with involution gets the best results while significantly reducing the model
size.
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