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Abstract. In recent years, the performance of machine learning algo-
rithms has been rapidly improved because of the progress of deep learning.
To approximate any non-linear function, almost all models of deep learn-
ing use the non-linear activation function. Rectified linear units (ReLU)
function is most commonly used. The continuous version of the ReLU func-
tion is the softplus function and it is derived by the integration of the sig-
moid function. Since a sigmoid function is based on Gaussian distribution,
the softplus activation function is also based on Gaussian distribution. In
machine learning and statistics, most techniques assume the Gaussian dis-
tribution because Gaussian distribution is easy to handle in mathematical
theory. For example, the exponential family is often assumed in informa-
tion geometry which connects various branches of mathematical science
in dealing with uncertainty and information based on unifying geometric
concepts. The q-space is defined to extend this limitation of information
geometry. On the q-space, q-multiplication, q-division, q-exponential, and
q-logarithm are defined with hyperparameter q as a natural extension of
multiplication and division, etc. in general space. In this paper, we propose
to extend the activation function and the loss function by using q-space. By
this extension, we can introduce hyperparameter q to control the shape of
the function and the standard softplus function can be recovered by setting
the hyperparameter q = 1. The effectiveness of the proposed q-softplus
function, we have performed experiments in which the q-softplus function
is used for the activation function of a convolutional neural network instead
of the ReLU function and the loss function of metric learning Siamese and
Triplet instead of max function.
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1 Introduction

In recent years, the performance of the machine learning algorithms has been
rapidly improved. Many techniques of machine learning are proposed such as
support vector machine [24], neural network [4], convolutional neural network
[6], and so on. Since these models can approximate any non-linear function,
they are effective for classification [11,13,20,21], person recognition [7,10], object
detection [25], and so on.
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To approximate any non-linear function, almost all models of deep learning
use the non-linear activation function. Rectified linear units (ReLU) function is
most commonly used as non-linear activation function of the hidden layers in
the deep learning models. Sigmoid function or softmax function is often used as
a non-linear activation function in the output layer of the deep learning models.

The continuous version of the ReLU function is softplus function and it is
derived by the integration of the sigmoid function. The sigmoid function and
softmax function are defined by using exponential function and have a close
relation with Gaussian distribution. It means that the input of the sigmoid or
softmax function is assumed to be a Gaussian distribution. Exponential linear
units (ELU) [19], Sigmoid-weighted linear unit (SiLU) [9], swish [18], and mish
[16] have been proposed as extension of ReLU function. The such activation
functions are derived from ReLU function or sigmoid function.

In machine learning and statistics, most techniques assume the Gaussian
distribution for prior distribution or conditional distribution because Gaussian
distribution is easy to handle in mathematical theory. For example, the expo-
nential family is often assumed in information geometry which connects various
branches of mathematical science in dealing with uncertainty and information
based on unifying geometric concepts. In information geometry, it is famous that
the exponential family is flat under the e-connection. The Gaussian distribution
is a kind of the exponential family.

However, some famous probability distributions, such t-distribution, is not
exponential family. As an extension of information geometry, q-space is defined
[22]. On the q-space, q-multiplication, q-division, q-exponential, and q-logarithm
are defined with hyperparameter q as a natural extension of multiplication and
division, etc. in general space. In the q-space, the q-Gaussian distribution is
derived by the maximization of the Tsallis entropy under appropriate constraints.
The q-Gaussian distribution includes Gaussian distribution and t-distribution
that can be represented by setting the hyperparameter q to q = 1 for Gaussian
distribution and q = 2.0 for t-distribution. Since the q-Gaussian distribution can
be written by scalar parameter, we can handle some probability distributions as
flat in q-space.

The authors proposed to used q-Gaussian distribution for dimensionality
reduction technique. The t-Distributed Stochastic Neighbor Embedding (t-SNE)
[15] and the parametric t-SNE [14] are extended by using the q-Gaussian distribu-
tion instead of t-distribution as the probability distribution on low-dimensional
space. They are named q-SNE [1] and the parametric q-SNE [17].

In this paper, we propose to define the activation function and the loss func-
tion by using the q-exponential and q-logarithm of q-space. Especially we define
q-softplus function as an extension of the softplus function. By this extension, we
can introduce hyperparameter q to control the shape of the function. For exam-
ple, we can recover the standard softplus function or the shifted ReLU function
by changing the hyperparameter q of the q-softplus function. To make the origin
of the proposed q-softplus function the same as the one of the ReLU function,
we also defined the shifted q-softplus function.
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To show the effectiveness of the proposed shifted q-softplus function, we have
performed experiments in which the shifted q-softplus function is used as the
activation function in a convolutional neural network instead of the standard
ReLU function. Also, we have performed experiments in which the q-softplus
function is used for loss function of metric learning Siamese [5,8,10] and Triplet
[12,23] instead of the max function. Through the experiments, the proposed
q-softplus function shows better results on CIFAR10, CIFAR100, STL10, and
TinyImageNet datasets.

2 Related Work

2.1 q-Space

Information geometry is an interdisciplinary field that applies the techniques of
differential geometry to study probability theory and statistics [3]. It studies sta-
tistical manifolds, which are Riemannian manifolds whose points correspond to
probability distributions. Tanaka [22] extended the information geometry devel-
oped on the exponential family to q-Gaussian distribution.

To do so, it is necessary to extend the standard multiplication, division,
exponential, and logarithm to q-multiplication, q-division, q-exponential, and
q-logarithm in [22]. Then we can consider a space in which these q-arithmetic
operations are defined. In this paper, we call this space q-space.

In q-space, the q-multiplication and q-division of two functions f and g are
respectively defined as

f ⊗q g =
(
f1−q + g1−q − 1

) 1
1−q , (1)

and

f �q g =
(
f1−q − g1−q + 1

) 1
1−q , (2)

where q is a hyperparameter.
Similarly the q-exponential and q-logarithm are defined as

expq(x) = (1 + (1 − q) x)
1

1−q , (3)

and

logq(x) =
1

1 − q

(
x1−q − 1

)
. (4)

These q-arithmetic operations converge to the standard multiplication and
division when q → 1. In the q-space, the q-Gaussian distribution is derived by
the maximization of the Tsallis entropy under appropriate constraints. The q-
Gaussian distribution includes Gaussian distribution and t-distribution. Since
the q-Gaussian distribution can be written with a scalar parameter q, we can
handle a set of probability distributions as flat in q-space.
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2.2 Activation Function

In a neural network, we use an activation function to approximate non-linear
function. The ReLU function is famous and is mostly used in deep neural net-
works. The ReLU function is defined as

ReLU(x) = max(0, x). (5)

The main reason why the ReLU function is used in deep neural network is
that the ReLU function can prevent the vanishing gradient problem. The ReLU
function is very simple and works well in deep neural networks. This function is
also called the plus function.

The softplus function is a continuous version of the ReLU function and is
defined as

Softplus(x) = log (1 + expx). (6)

The first derivative of this function is continuous around at 0.0 while one of
the ReLU function is not. The softplus function is also derivation as integral of
a sigmoid function.

Recently many activation functions have been proposed for deep neural net-
works [9,16,18,19]. Almost all of such activation functions are defined based on
the ReLU function or sigmoid function or a combination of the ReLU function
and sigmoid function.

These functions are also used to define loss function. For example, the max
(ReLU) function or softplus function is used as contrastive loss or triplet loss
uses in metric learning.

2.3 Metric Learning

The Siamese network and Triplet network have been proposed and often used
for metric learning.

The Siamese network consists of two networks which have the shared weights
and can learn metrics between two outputs. In the training, the two samples are
fed to each network and the shared weights of the network are modified so that
the two outputs of the network are closer together when the two samples belong
to the same class, and so that the two outputs are farther apart when they
belong to different classes.

Let {(xi, yi)|i = 1 . . . N} be a set of training samples, where xi is an image
and yi is a class label of i-th sample. The loss function of the Siamese network
is defined as

Lsiamese =
1
2
tijd

2
ij +

1
2
(1 − tij)max(m − dij , 0)2, (7)

dij = ‖f(xi; θ) − f(xj ; θ)‖2 (8)

where tij is the binary indicator which shows whether the i-th and j-th samples
are the same class or not, f is a function corresponding to the network, θ is
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a set of shared weights of the network. This θ is learned by minimizing this
loss Lsiamese. The Siamese loss is called the contrastive loss. It is noticed that
the max (ReLU) function is used in this loss. It is possible to use the softplus
function instead of the max function.

The Triplet network consists of three networks with the shared weights and
learns metrics between three outputs. In the training, the three samples are fed
to each network. One sample is called an anchor. The sample that is the same
class with the anchor is called a positive sample and the sample that is a different
class from the anchor is called a negative sample. For the positive sample, the
networks is trained such that the two outputs of anchor and positive are closer
together. For the negative sample, the networks is trained such that the two
outputs of anchor and negative become away from each other.

Let xa, xp, and xn be the anchor, the positive, and the negative sample
respectively. The loss function of the Triplet network is defined as

Ltriplet = max(dap − dan + m, 0), (9)

where m is a margin, dij is a distance same as the contrastive loss. It is noticed
that the max (ReLU) function is also used in this loss. We can use the softplus
function instead of the max function. Since the max or softplus function is linear
when x >> 0, they are effect to move the sample farther away. This is very
important for metric learning.

3 q-Softplus Function and Shifted q-Softplus Function

The q-Space is defined to extend information geometry developed for exponential
family. By using q-space, we can consider the natural extended world. In this
paper, we proposed an extension of the standard activation functions or the
loss functions by using q-space. Since q-exponential and q-logarithm express the
various shape of a graph by setting a hyperparameter q, we can control the shape
of the activation function or the loss function by selecting the better parameter
q in the q-space. In particular, in this paper, we proposed the q-softplus function
as an extension of the softplus function.

3.1 q-Softplus Function

The q-softplus function is defined as

qsoftplus(x) = logq(1 + expqx)

=
1

1 − q

((
1 + max (1 + (1 − q) x, 0)

1
1−q

)1−q

− 1
)

. (10)

When q → 1, q-softplus function close to the original softplus function. Figure 1
(A) shows the shape of the q-softplus function compared with the max (ReLU)
function and the softplus function. When q = 0.999 (q close to 1), q-softplus
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(A) q-Softplus function (B) shifted q-Softplus function

Fig. 1. This figure shows the graph of the activation functions. In (A), it shows the
max (ReLU) function, softplus function and q-softplus function with difference hyper-
paramete q. When q = 0.999, q close to 1, the q-softplus function overlaps the softplus
function. In (B), it shows the max (ReLU) function and shifted q-softplus function
with difference hyperparamete q. When q = 0.0, the q-softplus function overlaps the
max function.

function overlapped with the softplus function. Moreover, when q = 0.0, q-
softplus function becomes the shifted max function. From Fig. 1 (A), it is noticed
that the q-softplus function can represent the various shapes including the max
(ReLU) function and the softplus function. When 1 + (1 − q) x > 0 the first
derivative of x is as follows,

dqsoftplus(x)
dx

=
(
1 + (1 + (1 − q)x)

1
1−q

)−q

(1 + (1 − q)x)
q

1−q

= (1 + expqx)−q (expqx)q , (11)

other wise is 0. When q → 1, Eq. 11 closes to first derivation of softplus function.

3.2 Shifted q-Softplus Function

The q-softplus function becomes shifted max function when q = 0.0. To make q-
softplus with q = 0.0 the same as the max function, we propose to shift q-softplus
function by introducing sift term. We call this function the shifted q-softplus
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Fig. 2. This figure shows network architecture where q-softplus or shifted q-softplus
function is used. As an activation function, the shifted q-softplus is replaced from ReLU
function. As a loss function of triplet loss, the q-softplus function is replaced from max
function.

function Then the shifted q-softplus function is defined as

sqsoftplus(x) = logq(1 + expq(x − 1
1 − q

))

=
1

1 − q

⎛

⎝

(

1 + max

(
1 + (1 − q) (x − 1

1 − q
), 0

) 1
1−q

)1−q

− 1

⎞

⎠ .

(12)

When q = 0.0, the shifted q-softplus function becomes the same as the max
function. Figure 1 (B) shows the shapes of the shifted q-softplus function. It
is noticed that the shifted q-softplus function can represent the various shapes
including the max function from this figure.

3.3 Loss Function for Metric Learning

The loss function of the Siamese network or the Triplet network, the max or
softplus function is important to move the sample farther away because the max
or softplus function is linear when x >> 0. We also propose a new loss function
called q-contrastive loss and q-triplet loss by using q-softplus. The q-contrastive
loss is defined as

Lqsiamese =
1
2
tijd

2
ij +

1
2
(1 − tij)qsoftplus(m − dij , 0)2. (13)
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Table 1. This table shows classification accuracy on CIFAR10, CIFAR100, STL10 and
Tiny ImageNet. The hyperparameters q of all activation function on VGG11 are same.
The accuracy shows percentage for train and test sample respectively.

CIFAR10 CIFAR100

VGG without BN VGG with BN VGG without BN VGG with BN

Train Test Train Test Train Test Train Test

ReLU 100 87.74 100 89.00 99.98 62.65 99.98 64.91

q = −0.5 10 10 100 88.39 1 1 99.97 61.52

q = −0.25 100 86.56 100 88.85 99.98 57.98 99.98 63.99

q = −0.1 100 87.56 100 88.80 99.98 61.33 99.98 65.31

q = 0.0 100 87.74 100 89.00 99.98 62.65 99.98 64.91

q = 0.1 100 88.20 100 88.98 99.98 62.93 99.98 65.48

q = 0.2 100 87.62 100 89.09 99.98 63.18 99.98 65.07

q = 0.25 100 87.75 100 88.95 99.98 62.45 99.98 64.63

q = 0.5 10 10 100 84.98 1 1 99.98 53.62

STL10 TinyImageNet

VGG without BN VGG with BN VGG without BN VGG with BN

Train Test Train Test Train Test Train Test

ReLU 100 91.76 100 92.68 85.18 52.50 92.03 56.10

q = −0.5 10 10 100 87.55 0.5 0.5 72.46 50.98

q = −0.25 100 89.75 100 91.11 62.04 47.69 86.29 54.36

q = −0.1 100 91.45 100 92.08 78.62 51.50 90.40 56.09

q = 0.0 100 91.76 100 92.68 85.18 52.50 92.03 56.10

q = 0.1 100 91.34 100 92.59 88.86 53.24 92.39 56.60

q = 0.2 100 90.60 100 92.34 89.97 52.94 92.19 56.33

q = 0.25 100 89.85 100 91.90 90.20 52.73 92.14 56.87

q = 0.5 10 10 25.32 18.23 0.5 0.5 62.35 49.13

Similarly, the q-triplet loss is defined as

Ltriplet = qsoftplus(dap − dan + m, 0). (14)

By using the q-softplus function, we can control the effect of moving the
sample farther away. Since the first derivative of the q-softplus function is con-
tinuous at 0, it can move the sample more farther away than the given margin.
We can also use the shifted q-softplus function in loss function. Since the shifted
q-softplus function has distorted linear shapes, we can control the effect of loss.

Figure 2 shows the example of the network architecture where the q-softplus
function or the shifted q-softplus function is used. In this figure, the example of
the triplet loss is shown.
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Table 2. This table shows test classification accuracy on CIFAR10, CIFAR100, STL10
and Tiny ImageNet by using optuna. The hyperparameters q of shifted q-softplus func-
tion found by optuna are shown in Table 3. The accuracy shows percentage.

CIFAR10 CIFAR100

VGG without BN VGG with BN VGG without BN VGG with BN

ReLU 87.74 89.00 62.65 64.91

q-softplus 88.34 89.23 63.58 65.57

STL10 TinyImageNet

VGG without BN VGG with BN VGG without BN VGG with BN

ReLU 91.76 92.68 52.50 56.10

q-softplus 91.81 92.80 53.33 56.97

Table 3. This table shows the found hyperparameter q of each shifted q-softplus func-
tion on VGG11 by using optuna. VGG11 has 10 q-softplus activation functions. The
qk denotes the k-th shifted q-softplus function from first layer.

CIFAR10 CIFAR100

VGG without BN VGG with BN VGG without BN VGG with BN

q0 0.015 0.118 0.105 0.012

q1 0.198 0.039 0.107 0.162

q2 0.075 0.086 0.007 0.249

q3 0.184 0.246 0.048 0.158

q4 0.241 0.067 0.106 0.023

q5 0.227 0.067 0.143 0.042

q6 0.201 0.145 0.204 0.113

q7 0.155 0.162 0.073 0.166

q8 0.034 0.057 0.058 0.249

q9 0.151 0.035 0.003 0.064

STL10 TinyImageNet

VGG without BN VGG with BN VGG without BN VGG with BN

q0 0.073 0.086 0.096 0.030

q1 0.057 0.040 0.004 0.003

q2 0.147 0.074 0.088 0.093

q3 0.062 0.078 0.000 0.008

q4 0.052 0.159 0.005 0.109

q5 0.001 0.130 0.159 0.001

q6 0.057 0.111 0.004 0.001

q7 0.004 0.144 0.010 0.205

q8 0.071 0.174 0.094 0.005

q9 0.035 0.034 0.001 0.001

4 Experiments

4.1 Experimental Dataset

To confirm the effectiveness of the proposed q-softplus based activation function
and loss function, we have performed experiments using MNIST, FashionMNIST,
CIFAR10, CIFAR100, STL10, and Tiny ImageNet datasets.
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Table 4. This table shows classification accuracy of test sample by Siamese network
on MNIST, FashionMNIST and CIFAR10. The accuracy shows percentage for train
and test sample respectively by k-nn.

MNIST FashionMNIST

q-softplus
q-softplus

sq-softplus q-softplus
q-softplus

sq-softplus
with m-1 with m-1

Train Test Train Test Train Test Train Test Train Test Train Test

max 99.99 99.37 99.99 98.37 99.99 99.37 99.83 91.29 99.37 91.26 99.83 91.29

q = −0.5 99.99 99.41 99.99 99.42 99.99 99.43 99.84 91.08 99.82 91.33 99.83 91.53

q = −0.25 99.99 99.39 99.99 99.41 99.99 99.41 99.86 90.95 99.83 91.27 99.81 91.29

q = 0.0 99.99 99.41 99.99 99.37 99.99 99.37 99.86 90.91 99.83 91.29 99.83 91.29

q = 0.25 99.99 99.36 99.99 99.35 99.99 99.33 99.86 91.29 99.79 91.36 99.25 91.28

q = 0.5 99.99 99.38 99.99 99.36 99.99 99.29 99.86 91.26 99.72 91.25 95.83 90.30

q = 0.75 99.99 99.35 99.99 99.30 99.82 98.99 99.85 91.22 99.56 91.30 75.37 65.81

q = 1.5 74.76 64.74 74.76 64.74 – – 76.96 67.54 77.03 67.64 – –

CIFAR10

q-softplus
q-softplus

sq-softplus
with m-1

Train Test Train Test Train Test

max 91.32 78.91 83.35 72.85 99.83 91.29

q = −0.5 92.07 79.27 91.59 79.84 92.06 79.81

q = −0.25 91.67 78.87 91.67 79.29 91.78 79.35

q = 0.0 91.32 78.91 91.32 78.91 91.32 78.91

q = 0.25 91.16 78.33 90.45 78.30 89.56 77.80

q = 0.5 90.72 77.93 89.08 77.43 78.81 66.58

q = 0.75 90.30 78.25 87.19 75.90 10 10

q = 1.5 89.43 77.69 80.76 68.89 – –

The MNIST has grey images of 10 class hand-written digits. The size of each
image is 28 × 28 pixels. The number of training samples is 60,000 and the number
of test samples is 10,000. The FashionMNIST has grey images of 10 classes of
fashion items. The size of each image is 28 × 28 pixels. The number of training
samples is 60,000 and the number of test samples is 10,000. The CIFAR10 has
colored images of 10 class objects. The size of each image is 32 × 32 pixels. The
number of training samples is 50,000 and the number of test samples is 10,000.
The CIFAR100 has colored images of 100 class objects. The size of each image
is 32 × 32 pixels. The number of training samples is 50,000 and the number of
test samples is 10,000. The STL10 has colored images of 10 class objects. The
size of each image is 96 × 96 pixels. The number of training samples is 500 and
the number of test samples is 800. The TinyImageNet has colored images of 200
objects. The size of each image is 64 × 64 pixels. The number of training samples
is 100,000 and the number of test samples is 10,000.
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Table 5. This table shows classification accuracy of test sample by Triplet network on
MNIST, FashionMNIST and CIFAR10. The accuracy shows percentage for train and
test sample respectively by k-nn.

MNIST FashionMNIST

q-softplus
q-softplus

sq-softplus q-softplus
q-softplus

sq-softplus
with m-1 with m-1

Train Test Train Test Train Test Train Test Train Test Train Test

max 99.84 99.42 99.78 98.38 99.84 99.42 98.06 91.69 97.97 91.62 98.06 91.69

q = −0.5 99.87 99.43 99.84 99.42 99.85 99.45 97.57 91.48 97.52 91.55 97.35 91.51

q = −0.25 99.88 99.42 99.84 99.41 99.85 99.41 97.98 91.60 97.88 91.48 98.04 91.65

q = 0.0 99.87 99.41 99.84 99.42 99.84 99.42 98.07 91.53 98.06 91.69 98.06 91.69

q = 0.25 99.88 99.41 99.84 99.42 99.82 99.39 98.33 91.69 98.31 91.75 98.20 91.57

q = 0.5 99.87 99.39 99.84 99.36 99.76 99.35 98.39 91.63 98.37 91.71 98.09 91.57

q = 0.75 99.87 99.42 99.83 99.36 99.31 98.92 98.52 91.65 98.39 91.65 94.52 90.24

q = 1.5 77.00 68.05 45.58 23.53 – – 76.53 67.10 76.53 67.10 – –

CIFAR10

q-softplus
q-softplus

sq-softplus
with m-1

Train Test Train Test Train Test

max 86.47 75.36 86.47 75.36 86.47 75.36

q = −0.5 80.34 69.44 83.35 72.75 81.17 69.99

q = −0.25 81.12 70.06 84.81 74.02 84.11 73.19

q = 0.0 81.79 70.47 86.47 75.36 86.47 75.36

q = 0.25 82.59 71.44 86.97 75.43 89.27 77.69

q = 0.5 83.96 72.88 86.80 75.46 88.24 77.05

q = 0.75 83.83 72.37 86.66 75.15 10 10

q = 1.5 35.00 15.31 82.12 71.10 – –

4.2 Shifted q-Softplus as an Activation Function

To confirm the effectiveness to use the shifted q-softplus function as an activation
function, we have performed experiments in which the shifted q-softplus function
in CNN is used instead of the ReLU function. The classification accuracy is
measured for the datasets CIFAR10, CIFAR100, STL10, and Tiny ImageNet.
VGG11 [20] is used as the CNN model and the effect of Batch Normalization
(BN) is also investigated. Stochastic gradient descent (SGD) with a momentum
of 0.9 is used for optimization. The learning rate is at first set to 0.01 and is
multiplied by 0.1 at 20 and 40 epochs. The parameter of the weight decay is set
to 0.0001. The batch size is set to 100 training samples and the training is done
for 100 epochs.

Table 1 shows the classification accuracy for different q. The score is calcu-
lated as the average of 5 trials with a different random seed. From this table,
the shifted q-softplus function gives better classification accuracy than the ReLU
function. From this table we can notice that the best hyperparameter q is around
0.2. When the hyperparameter q is positive, namely q > 0.0, the shape of the
shifted q-softplus function becomes lower than the ReLU function. This means
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that better classification accuracy is obtained when the outputs of each layer are
smaller than the outputs of the ReLU function.

We have also performed experiments to find the best hyperparameter q of
the shifted q-softplus function for each dataset by using optuna [2]. The optuna
is developed for python language to find the best hyperparameter of the machine
learning models. The objective function to find the best hyperparameter q is the
validation loss. We used 0.1% of training dataset as the validation samples. The
trials of finding phase is set to 30.

The results of test accuracy for each dataset are shown in Table 2. Again,
the values in the table are the averages of 5 trials with a different random seed.
The best hyperparameters q of the shifted q-softplus function for each dataset
are shown in Table 3. It is noticed that the best hyperparameter q is larger than
0.0 and smaller than 0.2 for almost all cases.

4.3 q-Softplus as an Loss Function of Metric Learning

To confirm the effectiveness of the q-softplus function as loss function, we have
performed experiments in which the q-softplus function is used to define the
loss function of the Siamese network and the Triplet network instead of the
max function. We call these loss functions q-contrastive loss and q-triplet loss.
MNIST, FashionMNIST, and CIFAR10 datasets are used in the experiments.
The simple CNN with 2 convolutional layers and 3 fully connected layers is
used for MNIST and FashionMNIST datasets. The ReLU function is used as
the activation function in the hidden layers of the network. On the other hand,
VGG11 with batch normalize is used for CIFAR10 dataset. The dimension of
the final output is 10 for all datasets. Stochastic gradient descent (SGD) with
a momentum of 0.9 is used for optimization. The learning rate is at first set to
0.01 and is multiplied by 0.1 at 20 and 40 epochs. The parameter of the weight
decay is set to 0.0001. The batch size is to 100 samples and the training is done
for 100 epochs. The margin in the loss function is determined by preliminary
experiments.

The goodness of the feature vectors obtained by the trained network is evalu-
ated by measuring the classification accuracy obtained by using k nearest neigh-
bor (k-nn) in the 10-dimensional feature space. In the following experiment, k
is set to 5 for k-nn. Since the q-softplus function becomes shifted max function
when q = 0.0, we also included experiments with margin - 1.

Table 4 shows the classification accuracy obtained by the Siamese network
and Table 5 shows the classification accuracy obtained by Triplet network. The
score is the average of 5 trials with a different random seed.

It is noticed that the q-softplus function gives better classification accuracy
than the max function. The best hyperparameter q is around −0.5. Since the
shape of the q-softplus function becomes higher than the max function when
q < 0.0, to make the output larger is probably better to move the sample farther
away.
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5 Conclusion

In this paper, we proposed the q-softplus function and the shifted q-softplus
function as an extension of the softplus function. Through the experiments of
the classification task, we confirmed that the network in which the shifted q-
softplus function is used as activation function in the hidden layers gives the
better classification accuracy than the network using the ReLU function. Also,
we found that the best q in the shifted q-softplus function is around 0.2. This
results suggest that better classification accuracy is obtained when the outputs
of each layer are smaller than the outputs of the ReLU function. Through the
experiments of metric learning, we confirmed that the q-softplus function can
improve the contrastive loss of the Siamese network and the triplet loss of the
Triplet network. For the metric learning, the best q is around −0.5. This results
suggest that better features can be obtained when the outputs are larger than
the output of the max function.
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