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Abstract. Extensive research efforts have been dedicated to deep learn-
ing based odometry. Nonetheless, few efforts are made on the unsuper-
vised deep lidar odometry. In this paper, we design a novel framework for
unsupervised lidar odometry with the IMU, which is never used in other
deep methods. First, a pair of siamese LSTMs are used to obtain the ini-
tial pose from the linear acceleration and angular velocity of IMU. With
the initial pose, we perform the rigid transform on the current frame and
align it to the last frame. Then we extract vertex and normal features
from the transformed point clouds and its normals. Next a two-branch
attention module is proposed to estimate residual rotation and transla-
tion from the extracted vertex and normal features, respectively. Finally,
our model outputs the sum of initial and residual poses as the final pose.
For unsupervised training, we introduce an unsupervised loss function
which is employed on the voxelized point clouds. The proposed approach
is evaluated on the KITTI odometry estimation benchmark and achieves
comparable performances against other state-of-the-art methods.

Keywords: Unsupervised · Deep learning · Lidar-inertial odometry

1 Introduction

The task of odometry is to estimate 3D translation and orientation of
autonomous vehicles which is one of key steps in SLAM. Autonomous vehicles
usually collect information by perceiving the surrounding environment in real
time and use on-board sensors such as lidar, Inertial Measurement Units (IMU),
or camera to estimate their 3D translation and orientation. Lidar can provide
high-precision 3D measurements but also has no requirement for light. The point
clouds generated by the lidar can provide high-precision 3D measurements, but if
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it has large translation or orientation in a short time, the continuously generated
point clouds will only get few matching points, which will affect the accuracy of
odometry. IMU has advantages of high output frequency and directly outputting
the 6DOF information to predict the initial translation and orientation that the
localization failure phenomenon can be reduced when lidar has large translation
or orientation.

The traditional methods [1,18,19,23] are mainly based on the point regis-
tration and work well in ideal environments. However, due to the sparseness
and irregularity of the point clouds, these methods are difficult to obtain enough
matching points. Typically, ICP [1] and its variants [14,18] iteratively find match-
ing points which depend on nearest-neighbor searching and optimize the transla-
tion and orientation by matching points. This optimization procedure is sensitive
to noise and dynamic objects and prone to getting stuck into the local minima.

Thanks to the recent advances in deep learning, many approaches adopt
deep neural networks for lidar odometry, which can achieve more promising
performance compared to traditional methods. But most of them are supervised
methods [10,12,13,20,21]. However, supervised methods require ground truth
pose, which consumes a lot of manpower and material resources. Due to the
scarcity of the ground truth, recent unsupervised methods are proposed [5,15,
22], but some of them obtain unsatisfactory performance, and some need to
consume a lot of video memory and time to train the network.

Two issues exist in these methods. First, these methods ignore IMU, which
often bring fruitful clues for accurate lidar odometry. Second, those methods
do not make full use of the normals, which only take the point clouds as the
inputs. Normals of point clouds can indicate the relationship between a point
and its surrounding points. And even if those approaches [12] who use normals
as network input, they simply concatenate points and normals together and put
them into network, but only orientation between two point clouds relates to
normals, so normals should not be used to estimate translation.

To circumvent the dependence on expensive ground truth, we propose a novel
framework termed as UnDeepLIO, which makes full use of the IMU and normals
for more accurate odometry. We compare against various baselines using point
clouds from the KITTI Vision Benchmark Suite [7] which collects point clouds
using a 360◦ Velodyne laser scanner.

Our main contributions are as follows:

• We present a self-supervised learning-based approach for robot pose estima-
tion. our method can outperform [5,15].

• We use IMU to assist odometry. Our IMU feature extraction module can be
embedded in most network structures [5,12,15,21].

• Both points and its normals are used as network inputs. We use feature
of points to estimate translation and feature of both of them to estimate
orientation.
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2 Related Work

2.1 Model-Based Odometry Estimation

Gauss-Newton iteration methods have a long-standing history in odometry task.
Model-based methods solve odometry problems generally by using Newton’s
iteration method to adjust the transformation between frames so that the “gap”
between frames keeps getting smaller. They can be categorized into two-frame
methods [1,14,18] and multi-frame methods [19,23].

Point registration is the most common skill for two-frame methods, where
ICP [1] and its variants [14,18] are typical examples. The ICP iteratively search
key points and its correspondences to estimate the transformation between two
point clouds until convergence. Moreover, most of these methods need multiple
iterations with a large amount of calculation, which is difficult to meet the real-
time requirements of the system.

Multi-frame algorithms [2,19,23] often relies on the two-frame based estima-
tion. They improve the steps of selecting key points and finding matching points,
and use additional mapping step to further optimize the pose estimation. Their
calculation process is generally more complicated and runs at a lower frequency.

2.2 Learning-Based Odometry Estimation

In the last few years, the development of deep learning has greatly affected the most
advanced odometry estimation. Learning-based model can provide a solution only
needs uniformly down sampling the point clouds without manually selecting key
points. They can be classified into supervised methods and unsupervised methods.

Supervised methods appear relatively early, Lo-net [12] maps the point clouds
to 2D “image” by spherical projection. Wang et al. [21] adopt a dual-branch
architecture to infer 3-D translation and orientation separately instead of a single
network. Velas et al. [20] use point clouds to assist 3D motion estimation and
regarded it as a classification problem. Differently, Li et al. [13] do not simply
estimate 3D motion with fully connected layer but Singular Value Decomposition
(SVD).

Unsupervised methods appear later. Cho et al. [5] first apply unsupervised
approach on deep-learning-based LiDAR odometry which is an extension of their
previous approach [4]. The inspiration of its loss function comes from point-to-
plane ICP [14]. Then, Nubert et al. [15] report methods with similarly models
and loss function, but they use different way to calculate normals of each point
in point clouds and find matching points between two continuous point clouds.

3 Methods

3.1 Data Preprocess

Data Input. At every timestamp k ∈ R
+, we can obtain one point clouds Pk

of N ∗ 3 dimensions and between every two timestamps we can get S frames
IMU Ik,k+1 of S ∗ 6 dimensions including 3D angular velocity and 3D linear
acceleration. We take above data as the inputs.
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Vertex Map. In order to circumvent the disordered nature of point clouds, we
project the point clouds into the 2D image coordinate system according to the
horizontal and vertical angle. We employ projection function Π : R3 �→ R

2. Each
3D point p = (px, py, pz) in a point clouds Pk is mapped into the 2D image plane
(w, h) represented as

(
w
h

)
=

(
(fw − arctan( py

px
))/ηw

(fh − arcsin(pz

d ))/ηh

)
,

H > h ≥ 0,W > w ≥ 0,

(1)

where depth is d =
√

px2 + py2 + pz2. fw and fh are the maximum horizontal
and vertical angle. H and W are shape of vertex map. fh depends on the type
of the lidar. ηw and ηh control the horizontal and vertical sampling density. If
several 3D points correspond the same pixel values, we choose the point with
minimum depth as the final result. If one pixel coordinate has no matching 3D
points, the pixel value is set to (0, 0, 0). We define the 2D image plane as vertex
map V .

Normal Map. The normal vector of one point includes its relevance about the
surrounding points, so we compute a normal map N which consists of normals
n and has the same shape as corresponding vertex map V . We adopt similar
operations with Cho et al. [5] and Li et al. [12] to calculate the normal vectors.
Each normal vector n corresponds to a vertex v with the same image coordinate.
Due to sparse and discontinuous characteristics of point clouds, we pay more
attention on the vertex with small Euclidean distance from the surrounding pixel
via a pre-defined weight, which can be expressed as wa,b = e{−0.5|d(va)−d(vb)|}.
Each normal vector n is represented as

np =
∑

i∈[0,3]

wpi,p(vpi
− vp) × wpi+1,p(vpi+1 − vp), (2)

where pi represents points in 4 directions of the central vertex p (0-up, 1-right,
2-down, 3-left).

3.2 Network Structure

Network Input. Our pipeline is shown in the Fig. 1. Each point clouds asso-
ciates with a vertex/normal map of (3,H,W ) dimensions, so we concatenate
the vertex/normal map of k and k + 1 timestamp to get vertex/normal pair of
(2, 3,H,W ) dimensions. We take a pair of vertex/normal maps and IMU between
k and k+1 timestamp as the inputs of our model, where the IMU consists of the
linear acceleration and angular velocity both of (S, 3) dimensions, and S is the
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Fig. 1. The proposed network and our unsupervised training scheme. FC represents
fully connected layer. t means translation and q means Euler angle of orientation.
LSTM takes continuous frames of IMU as inputs and output initial relative pose T̂ .
T̂ are used to transform two maps of current frame to last frame. Then we send the
remapped maps into ResNet Encoder, which outputs feature maps, including vertex
and normal features. From the features, we propose an attention layer to estimate
residual pose δT . The final output is their sum T = δT T̂ .

length of IMU sequence. Our model outputs relative pose Tk,k+1, where Rk,k+1

is orientation and tk,k+1 is translation.

T 4×4
k,k+1 =

[
R3×3

k,k+1 t3×1
k,k+1

0 1

]
, (3)

Estimating Initial Relative Pose from IMU. Linear acceleration is used
to estimate translation and angular velocity is used to estimate orientation. We
employ LSTM on IMU to extract the features of IMU. Then the features are
forwarded into the FC layer to estimate initial relative translation or orientation.

Mapping the Point Clouds of Current Frame to the Last Frame. Each
vertex/normal pair consists of last and current frames. They are not in the same
coordinate due to the transformation. The initial relative pose can map current
frame in current coordinate to last coordinate, then we can obtain the remapped
current map with the same size as the old one. The relationship between two
maps are shown as formula (4). Take the vk

k+1,p for example, it is the mapped
vertex at timestamp k from timestamp k + 1 via the initial pose.

vk
k+1,p = Rk,k+1v

k+1
k+1,p + tk,k+1, (4)

nk
k+1,p = Rk,k+1n

k+1
k+1,p. (5)
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Fig. 2. The detail structure of ResNet Encoder + Avgpool + FC part.

Estimating Residual Relative Pose from the Remapped Maps. We
use ResNet Encoder (see Fig. 2) as our map feature extractor. ResNet [8] is
used in image recognition. Its input is the 2D images similar to us. Therefore,
this structure can extract feature in our task as well. We send the remapping
vertex/normal map pair into siamese ResNet Encoder, which outputs feature
maps, including vertex and normal features. From the features, we propose an
attention layer (by formula (6), x is input) which is inspired by LSTM [9] to
estimate residual pose δT between last frame and the remapped current frame.
Among them, vertex and normal features are combined to estimate orientation,
but only vertex is used to estimate translation because the change of translation
does not cause the change of normal vectors. Together with initial relative pose,
we can get final relative pose T .

i = σ(Wix + bi),
g = tanh(Wgx + bg),
o = σ(Wox + bo),
out = o ∗ tanh(i ∗ g).

(6)

3.3 Loss Function

For unsupervised training, we use a combination of geometric losses in our deep
learning framework. Unlike Cho et al. [5] who use pixel locations as correspon-
dence between two point clouds, we search correspondence on the whole point
clouds. For speeding up calculation, we first calculate the normals NPi of whole
point clouds Pk by plane fitting Φ [17], and then remove its ground points by
RANSAC [6], at last perform voxel grid filtering ⇓ (the arithmetic average of all
points in voxel as its representation. The normal vectors of voxel are processed in
the same way and standardized after downsample.) to downsample to about K
points (The precess is shown in Fig. 3). Given the predicted relative pose Tk,k+1,
we apply it on preprocessed current point clouds DPk+1 and its normals NPk+1.
For the correspondence search, we use KD-Tree [3] to find the nearest point in



UnDeepLIO: Unsupervised Deep Lidar-Inertial Odometry 195

Fig. 3. Point downsample process, including point (up) and normal (down).

the last point clouds DPk of each point in the transformed current point clouds
DP k+1.

DPk =⇓ (RANSAC(Pk)),
NPk =⇓ (RANSAC(Φ(Pk)),

(7)

NP k+1 = Rk,k+1NPk+1,

DP k+1 = Rk,k+1DPk+1 + tk,k+1.
(8)

Point-to-Plane ICP Loss. We use every point dpk+1 in current point clouds
DP k+1, corresponding point of dpk and normal vector of npk in last point clouds
DP k to compute the distance between point and its matching plane. The loss
function Lpo2pl is represented as

Lpo2pl =
∑

dpk+1∈DPk+1

|(dpk+1 − dpk) � npk|1, (9)

where � denotes inner product.

Plane-to-Plane ICP Loss. Similarly to point-to-plane ICP, we use normal
npk+1 of every point in NP k+1, corresponding normal vector of npk in NP k to
compute the angle between a pair of matching plane. The loss function Lpl2pl is
represented as

Lpl2pl =
∑

npk+1∈NPk+1

|npk+1 − npk|22. (10)

Overall Loss. Finally, the overall unsupervised loss is obtained as

L = αLpo2pl + λLpo2pl, (11)

where α and λ are balancing factors.
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4 Experiments

In this section, we first introduce implementation details of our model and bench-
mark dataset used in our experiments and the implementation details of the
proposed model. Then, comparing to the existing lidar odometry methods, our
model can obtain competitive results. Finally, we conduct ablation studies to
verify the effectiveness of the innovative part of our model.

4.1 Implementation Details

The proposed network is implemented in PyTorch [16] and trained with a single
NVIDIA Titan RTX GPU. We optimize the parameters with the Adam optimizer
[11] whose hyperparameter values are β1 = 0.9, β2 = 0.99 and wdecay = 10−5.
We adopt step scheduler with a step size of 20 and γ = 0.5 to control the training
procedure, the initial learning rate is 10−4 and the batch size is 20. The length S
of IMU sequence is 15. The maximum horizontal and vertical angle of vertex map
are fw = 180◦ and fh = 23◦, and density of them are ηw = ηh = 0.5. The shapes
of input maps are H = 52 and W = 720. The loss weight of formula (11) is set
to be α = 1.0 and λ = 0.1. The initial side length of voxel downsample is set to
0.3m, it is adjusted according to the number of points after downsample, if points
are too many, we increase the side length, otherwise reduce. The adjustment size
is 0.01m per time. The number of points after downsample is controlled within
K ± 100 and K = 10240.

4.2 Datasets

The KITTI odometry dataset [7] has 22 different sequences with images, 3D lidar
point clouds, IMU and other data. Only sequences 00-10 have an official public
ground truth. Among them, only sequence 03 does not provide IMU. Therefore,
we do not use sequence 03 when there exists the IMU assist in our method.

4.3 Evaluation on the KITTI Dataset

We compare our method with the following methods which can be divided
into two types. Model-based methods are: LOAM [23] and LeGO-LOAM [19].
Learning-based methods are: Nubert et al. [15], Cho et al. [5] and SelfVoxeLO
[22].

In model-based methods, we show the lidar odometry results of them with
mapping and without mapping.

In learning-based methods, we use two ways to divide the train and test set.
First, we use sequences 00-08 for training and 09-10 for testing, as Cho et al. [5]
and Nubert et al. [15] use Sequences 00-08 as their training set. We name it as
“Ours-easy”. Then, we use sequences 00-06 for training and 07-10 for testing, to
compare with SelfVoxeLO which uses Sequences 00-06 as training set. We name
it as “Ours-hard”.
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Fig. 4. 2D estimated trajectories of our method on sequence 09 and 10.

Table 1 contains the details of the results: trel means average translational
RMSE (%) on length of 100 m–800 m and rrel means average rotational RMSE
(◦/100 m) on length of 100 m–800 m. LeGO-LOAM is not always more precise
by adding imu, traditional method is more sensitive to the accuracy of imu (In
sequence 00, there exists some lack of IMU), which is most likely the reason for
its accuracy drop. Even if the accuracy of the estimation is improved by the
IMU, the effect is not obvious, especially after the mapping step. Our method
gains a significant improvement by using IMU in test set, and has a certain
advantage over traditional method without mapping, and is not much lower than
with mapping. In the easy task (For trajectories results, see Fig. 4), our method
without imu assist is also competitive compared to Cho et al. [5] and Nubert
et al. [15] which also project the point clouds into the 2D image coordinate
system. Our method can acquire a lot of improvements with imu. In the hard
task, comparing to the most advanced method SelfVoxeLO [22] which uses 3D
convolutions on voxels and consumes much video memory and training time, our
method also can get comparable results with IMU. Since they did not publish
the code, we are unable to conduct experiments on their method with imu.

4.4 Ablation Study

In order to prove the effectiveness of each proposed module, we conduct ablation
experiments on KITTI, use sequences 00-08 as trainset and sequences 09-10 as
testset.

IMU. As mentioned earlier, IMU can greatly improve the accuracy of odometry,
but the role played by different IMU utilization methods is also different. If only
use IMU to extract features through the network, and directly merge with the
feature of the point clouds, the effect is limited (see Fig. 5). Our method uses IMU
and LSTM network to estimate a relative initial pose, project vertex image and
normal vector image of the original current frame, and then send the projection
images into the point clouds feature extraction network, so that the IMU can
not only have a direct connection with the final odometry estimate network, but
also make the coordinate of two consecutive frames closer. The comparison is
shown in Table 2.
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Table 1. KITTI odometry evaluation.

trel(%) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

LeGO-LOAM (w/ map)[19] 1.44 21.12 2.69 1.73 1.70 0.98 0.87 0.77 1.35 1.46 1.84 3.27

LeGO-LOAM (w/ map)+imu 7.24 20.07 2.56 x 1.68 0.82 0.86 0.67 1.29 1.49 1.75 3.84

LeGO-LOAM (w/o map) 6.98 26.52 6.92 6.16 3.64 4.57 5.16 4.05 6.01 5.22 7.73 7.54

LeGO-LOAM (w/o map)+imu 10.46 22.38 6.05 x 2.04 1.98 2.98 2.99 3.23 3.29 2.74 5.81

LOAM (w/ map)[23] 1.10 2.79 1.54 1.13 1.45 0.75 0.72 0.69 1.18 1.20 1.51 1.28

LOAM (w/o map) 15.99 3.43 9.40 18.18 9.59 9.16 8.91 10.87 12.72 8.10 12.67 10.82

Nubert et al.[15] NA NA NA NA NA NA NA NA NA 6.05 6.44 3.00 6.25

Cho et al.[5] NA NA NA NA NA NA NA NA NA 4.87 5.02 3.68 4.95

Ours-easy 1.33 3.40 1.53 1.43 1.26 1.22 1.19 0.97 1.92 3.87 2.69 1.58 3.28

Ours-easy+imu 1.50 3.44 1.33 x 0.94 0.98 0.90 1.00 1.63 2.24 1.83 1.46 2.03

SelfVoxelLO[22] NA NA NA NA NA NA NA 3.09 3.16 3.01 3.48 2.50 3.19

Ours-hard 1.58 3.42 2.27 2.53 0.96 1.36 0.99 6.58 6.89 5.77 4.04 1.87 5.82

Ours-hard+imu 1.15 3.58 1.40 x 0.89 1.12 1.03 4.58 3.18 2.66 2.84 1.53 3.32

rrel(
◦/100 m) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

LeGO-LOAM (w/ map) 0.65 2.17 0.99 0.99 0.69 0.47 0.45 0.51 0.58 0.64 0.74 0.81

LeGO-LOAM (w/ map)+imu 2.44 0.61 0.91 x 0.59 0.38 0.43 0.38 0.53 0.58 0.63 0.75

LeGO-LOAM (w/o map) 3.27 4.61 3.10 3.42 2.98 2.38 2.24 2.41 2.85 2.61 4.03 3.08

LeGO-LOAM (w/o map)+imu 3.72 1.79 2.12 x 0.88 0.88 1.24 1.64 1.23 1.75 1.57 1.68

LOAM (w/ map) 0.53 0.55 0.55 0.65 0.50 0.38 0.39 0.50 0.44 0.48 0.57 0.50

LOAM (w/o map) 6.25 0.93 3.68 9.91 4.57 4.10 4.63 6.76 5.77 4.30 8.79 5.43

Nubert et al. NA NA NA NA NA NA NA NA NA 2.15 3.00 1.38 2.58

Cho et al. NA NA NA NA NA NA NA NA NA 1.95 1.83 0.87 1.89

Ours-easy 0.69 0.97 0.68 1.04 0.73 0.66 0.64 0.58 0.78 1.67 1.97 0.75 1.82

Ours-easy+imu 0.70 0.99 0.59 x 0.78 0.56 0.45 0.54 0.78 1.13 1.14 0.67 1.14

SelfVoxelLO NA NA NA NA NA NA NA 1.81 1.14 1.14 1.11 1.11 1.30

Ours-hard 0.91 1.09 1.19 1.42 0.61 0.78 0.64 4.56 2.86 2.34 2.89 0.95 3.16

Ours-hard+imu 0.57 0.98 0.62 x 0.74 0.64 0.52 2.34 1.35 1.12 1.42 0.68 1.56

NA: The result of other papers do not provide.
x: Do not use this sequence in method.
Trainavg and testavg of traditional methods are the average results of all 00-10
sequences.

Fig. 5. Use IMU only as feature.
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Table 2. Comparison among different ways to preprocess imu and whether using imu.

trel(%) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w preprocess) 1.50 3.44 1.33 x 0.94 0.98 0.90 1.00 1.63 2.24 1.83 1.58 2.03

imu (w/o preprocess) 1.35 3.56 1.57 x 1.07 1.21 1.03 0.90 1.59 2.46 1.87 1.66 2.17

noimu 1.33 3.40 1.53 1.43 1.26 1.22 1.19 0.97 1.92 3.87 2.69 1.89 3.28

rrel(
◦/100 m) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w preprocess) 0.70 0.99 0.59 x 0.78 0.56 0.45 0.54 0.78 1.13 1.14 0.76 1.14

imu (w/o preprocess) 0.67 1.01 0.69 x 0.63 0.68 0.56 0.60 0.71 1.13 1.28 0.80 1.20

noimu 0.69 0.97 0.68 1.04 0.73 0.66 0.64 0.58 0.78 1.67 1.97 0.95 1.82

Fig. 6. The network structure of learning translation and rotation features from con-
catenated vetex and normal features simultaneously (left) and the network structure
without the normal feature (right).

Different Operations to Obtain the Rotation and Translation Features.
The normal vector contains the relationship between a point and its surrounding
points, and can be used as feature of pose estimation just like the point itself.
Through the calculation formula of the normal vector, we can know that the
change of the normal vector is only related to the orientation, and the translation
will not bring about the change of the normal vector. Therefore, we only use the
feature of the point to estimate the translation. We compare the original method
with the two strategies of not using normal vectors as the network input and not
distinguishing feature of the normals and points (see Fig. 6). The comparison is
shown in Table 3.

Attention. After extracting the features of the vertex map and the normal
map, we add an additional self-attention module to improve the accuracy of
pose estimation. The attention module can self-learn the importance of features,
and give higher weight to more important features. We verify its effectiveness by
comparing the result of the model which replaces the self-attention module with
a single FC layer with activation function (as formula (12)). The comparison is
show in Table 4.

out = tanh(W2(tanh(W1x + b1)) + b2). (12)

Loss Function. Cho et al. [5] adopt the strategy of using the points with the
same pixel in last and current vertex map as the matching points. Although the
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Table 3. Comparison among whether distinguishing features (dist) and whether using
normal.

trel(%) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w normal, w dist) 1.50 3.44 1.33 x 0.94 0.98 0.90 1.00 1.63 2.24 1.83 1.58 2.03

imu (w normal, w/o dist) 1.45 3.68 2.03 x 0.72 1.11 1.15 0.68 1.67 3.44 1.86 1.78 2.65

imu (w/o normal, w/o dist) 2.54 3.81 4.13 x 0.95 1.77 0.99 1.25 1.93 2.72 2.21 2.23 2.47

noimu (w normal, w dist) 1.33 3.40 1.53 1.43 1.26 1.22 1.19 0.97 1.92 3.87 2.69 1.89 3.28

noimu (w normal, w/o dist) 1.49 3.95 2.49 2.27 0.88 1.19 0.90 1.47 2.02 4.93 4.34 2.36 4.64

noimu (w/o normal, w/o dist) 1.63 4.96 2.99 2.36 2.15 1.31 1.31 1.51 1.89 5.75 6.11 2.91 5.93

rrel(
◦/100 m) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w normal, w dist) 0.70 0.99 0.59 x 0.78 0.56 0.45 0.54 0.78 1.13 1.14 0.76 1.14

imu (w normal, w/o dist) 0.65 1.04 0.96 x 0.53 0.56 0.58 0.46 0.64 1.45 1.15 0.80 1.30

imu (w/o normal, w/o dist) 1.31 1.05 1.60 x 0.52 0.88 0.48 0.87 0.93 1.15 1.21 1.00 1.18

noimu (w normal, w dist) 0.69 0.97 0.68 1.04 0.73 0.66 0.64 0.58 0.78 1.67 1.97 0.95 1.82

noimu (w normal, w/o dist) 0.88 1.24 1.20 1.38 0.66 0.70 0.58 1.03 0.95 1.92 2.06 1.15 1.99

noimu (w/o normal, w/o dist) 0.90 1.48 1.37 1.49 1.38 0.79 0.73 1.08 0.93 2.31 2.73 1.38 2.52

Table 4. Comparison among whether using attention module.

trel(%) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w attention) 1.50 3.44 1.33 x 0.94 0.98 0.90 1.00 1.63 2.24 1.83 1.58 2.03

imu (w fc+activation) 1.19 3.49 1.48 x 0.83 0.95 0.64 0.91 1.49 3.21 1.54 1.57 2.38

noimu (w attention) 1.33 3.40 1.53 1.43 1.26 1.22 1.19 0.97 1.92 3.87 2.69 1.89 3.28

noimu (w fc+activation) 1.65 3.59 1.67 1.88 0.87 1.34 1.10 1.23 1.76 6.64 3.25 2.27 4.95

rrel(
◦/100 m) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w attention) 0.70 0.99 0.59 x 0.78 0.56 0.45 0.54 0.78 1.13 1.14 0.76 1.14

imu (w fc+activation) 0.62 0.97 0.64 x 1.02 0.54 0.42 0.55 0.70 1.20 1.07 0.77 1.13

noimu (w attention) 0.69 0.97 0.68 1.04 0.73 0.66 0.64 0.58 0.78 1.67 1.97 0.95 1.82

noimu (w fc+activation) 0.77 0.99 0.67 1.10 0.70 0.67 0.48 0.80 0.80 2.36 2.07 1.04 2.21

Fig. 7. Matching points search strategy of Cho et al.(pixel-to-pixel), our and Nubert
et al.(point-to-point).

calculation speed is fast, the matching points found in this way are likely to be
incorrect. Therefore, we and Nubert et al. [15] imitate ICP algorithm, using the
nearest neighbor as the matching point(see Fig. 7). Although we use the same
loss functions and the same matching point search strategy (nearest neighbor)
as Nubert et al. [15], we search in the entire point clouds space, and maintain the
number of points in search space not too large by removing most of the ground
points and operating voxel grids downsample on point clouds. The number of
points even is only 1/3 of the points sampled by the 2D projection which used
in [15]. Table 5 shows the necessity of two loss parts and strategy of searching
matching points in the entire point clouds.
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Table 5. Comparison among different loss functions and matching point search strat-
egy.

trel(%) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w point-to-plane))+point-to-point 1.50 3.44 1.33 x 0.94 0.98 0.90 1.00 1.63 2.24 1.83 1.58 2.03

imu (w/o point-to-plane)+point-to-point 2.27 4.33 2.24 x 1.59 1.70 1.26 1.29 1.87 2.04 2.07 2.07 2.06

imu (w point-to-plane)+pixel-to-pixel 2.14 4.36 2.29 x 1.65 1.66 1.17 1.36 1.73 2.95 2.28 2.16 2.61

noimu (w point-to-plane)+point-to-point 1.33 3.40 1.53 1.43 1.26 1.22 1.19 0.97 1.92 3.87 2.69 1.89 3.28

noimu (w/o point-to-plane)+point-to-point 1.46 3.44 1.67 1.91 0.92 1.00 1.11 1.36 1.81 4.72 2.78 2.02 3.75

noimu (w point-to-plane))+pixel-to-pixel 2.76 4.43 2.73 2.07 1.71 1.50 1.32 1.32 1.95 3.68 3.65 2.47 3.67

rrel(
◦/100 m) 00 01 02 03 04 05 06 07 08 09 10 trainavg testavg

imu (w point-to-plane))+point-to-point 0.70 0.99 0.59 x 0.78 0.56 0.45 0.54 0.78 1.13 1.14 0.76 1.14

imu (w/o point-to-plane)+point-to-point 1.01 1.12 0.98 x 0.96 0.82 0.62 0.78 0.86 1.14 1.19 0.95 1.16

imu (w point-to-plane)+pixel-to-pixel 0.96 1.11 0.96 x 0.98 0.83 0.58 0.83 0.87 1.52 1.27 0.99 1.39

noimu (w point-to-plane)+point-to-point 0.69 0.97 0.68 1.04 0.73 0.66 0.64 0.58 0.78 1.67 1.97 0.95 1.82

noimu (w/o point-to-plane)+point-to-point 0.73 0.99 0.70 1.34 0.69 0.58 0.49 0.85 0.76 1.85 1.84 0.98 1.85

noimu (w point-to-plane))+pixel-to-pixel 1.10 1.16 1.11 1.40 1.03 0.76 0.62 0.78 0.89 1.56 2.05 1.13 1.80

5 Conclusion

In this paper, we proposed UnDeepLIO, an unsupervised learning-based odom-
etry network. Different from other unsupervised lidar odometry methods, we
additionally used IMU to assist odometry task. There have been already many
IMU and lidar fusion algorithms in the traditional field for odometry, and it has
become a trend to use the information of both at the same time. Moreover, we
conduct extensive experiments on kitti dataset and experiments verify that our
method is competitive with the most advanced methods. In ablation study, we
validated the effectiveness of each component of our model. In the future, we
will study how to incorporate mapping steps into our network framework and
conduct online tests.

References

1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets.
TPAMI 9(5), 698–700 (1987)

2. Behley, J., Stachniss, C.: Efficient surfel-based SLAM using 3D laser range data in
urban environments. In: Robotics: Science and Systems, vol. 2018 (2018)

3. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

4. Cho, Y., Kim, G., Kim, A.: DeepLO: geometry-aware deep lidar odometry. arXiv
preprint arXiv:1902.10562 (2019)

5. Cho, Y., Kim, G., Kim, A.: Unsupervised geometry-aware deep lidar odometry. In:
ICRA, pp. 2145–2152. IEEE (2020)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

http://arxiv.org/abs/1902.10562


202 Y. Tu and J. Xie

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Javanmard-Gh, A., Iwaszczuk, D., Roth, S.: DeepLIO: deep LIDAR inertial sensor
fusion for odometry estimation. ISPRS 1, 47–54 (2021)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
12. Li, Q., et al.: LO-Net: deep real-time lidar odometry. In: CVPR, pp. 8473–8482

(2019)
13. Li, Z., Wang, N.: DMLO: deep matching lidar odometry. In: IROS (2020)
14. Low, K.L.: Linear least-squares optimization for point-to-plane icp surface regis-

tration. University of North Carolina, Chapel Hill, vol. 4, no. 10, pp. 1–3 (2004)
15. Nubert, J., Khattak, S., Hutter, M.: Self-supervised learning of lidar odometry for

robotic applications. In: ICRA (2021)
16. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning

library. In: NIPS (2019)
17. Pauly, M.: Point primitives for interactive modeling and processing of 3D geometry.

Hartung-Gorre (2003)
18. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Sys-

tems, vol. 2, no. 4, p. 435 (2009)
19. Shan, T., Englot, B.: LeGO-LOAM: lightweight and ground-optimized lidar odom-

etry and mapping on variable terrain. In: IROS, pp. 4758–4765. IEEE (2018)
20. Velas, M., Spanel, M., Hradis, M., Herout, A.: CNN for IMU assisted odometry

estimation using velodyne LiDAR. In: ICARSC, pp. 71–77. IEEE (2018)
21. Wang, W., et al.: DeepPCO: end-to-end point cloud odometry through deep par-

allel neural network. In: IROS (2019)
22. Xu, Y., et al.: SelfVoxeLO: self-supervised LiDAR odometry with voxel-based deep

neural networks. In: CoRL (2020)
23. Zhang, J., Singh, S.: LOAM: LiDAR odometry and mapping in real-time. In:

Robotics: Science and Systems, vol. 2, no. 9 (2014)


	UnDeepLIO: Unsupervised Deep Lidar-Inertial Odometry
	1 Introduction
	2 Related Work
	2.1 Model-Based Odometry Estimation
	2.2 Learning-Based Odometry Estimation

	3 Methods
	3.1 Data Preprocess
	3.2 Network Structure
	3.3 Loss Function

	4 Experiments
	4.1 Implementation Details
	4.2 Datasets
	4.3 Evaluation on the KITTI Dataset
	4.4 Ablation Study

	5 Conclusion
	References




