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Abstract. Heart Rate (HR) is one of the most important indicators
reflecting the physiological state of the human body, and more researches
have begun to focus on remote HR measurement in order to meet the
challenging but practical non-contact requirements. Existing remote HR
estimation methods rely on the high-resolution input signals constructed
from low-resolution Spatial-Temporal Map (STMap) of facial sequences,
but most of them use simple linear projection, which are difficult to cap-
ture the complex temporal and spatial relationships in between weak raw
signals. To address this problem, we propose a Hierarchical Attentive
Upsampling Module (HAUM) to obtain rich and discriminating input
signals from STMap for accurate HR estimation. Our approach includes
two parts: (1) a Hierarchical Upsampling Strategy (HUS) for progres-
sively enriching the spatial-temporal information, and (2) an Attentive
Space Module (ASM) to focus the model on more discriminating HR sig-
nal regions with clearer periodicity. The experiments performed on two
public datasets VIPL-HR and MAHNOB-HCI show that the proposed
approach achieves the state-of-the-art performance.

Keywords: Remote heart rate estimation · Spatial-Temporal map ·
Hierarchical attentive upsampling module

1 Introduction

Heart rate (HR) reflects the physiological information directly and is closely
related to cardiovascular diseases [1,9]. The traditional HR measurement tech-
niques are based on the Electrocardiography (ECG) and Photoplethysmography
(PPG), which are generally applied to professional medical diagnosis, such as
wearable devices. However, these contact measurements are poorly performed
for daily monitoring, especially under long-term human-computer interaction
(HCI) situations.
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Due to these realistic demands, one of the measurement techniques based on
remote Photoplethysmography (rPPG) has been developed rapidly [2,16,24,34].
It has been proved that the measurement of HR can be realised by extracting
subtle color variations of facial skin from a distance of several meters using
cameras [30]. These researches aspire to get more accurate HR predicted results,
in order to monitor the HR information at home and office by using abundant
computing resources.
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Fig. 1. Existing works ((a), (b), (c)) vs. our method (d) for obtaining discriminating
high-resolution input signals. The construction of STMap is also illustrated in the
dotted frame. (Color figure online)

Under the popular framework of Convolution Neural Network (CNN) [4,27],
most existing works based on rPPG focus on how to construct high-quality
or high-resolution input signals with more discriminating spatial and tempo-
ral information, as shown in the Fig. 1. Similarly with the traditional methods
[16,24,30], [6] (Fig. 1(a)) records the pixel intensity averages of the Red, Green
and Blue (RGB) channels over the face region as the input signals, which, how-
ever, is too simple to capture the critical information. More other works [2,29,34]
(Fig. 1(b)) normalize the face sequences into smaller size, where the excessively
dense sampling of the face image will bring more noises into the signal represen-
tation. Figure 1(c) [19] illustrates a more reasonable approach named Spatial-
Temporal Map (STMap) to represent input signals. With the appropriate face
region allocation, the STMap preserves color statistical information while sup-
pressing irrelevant noises, which effectively avoid the drawbacks of the afore-
mentioned approaches. As depicted in the bottom of the Fig. 1, the face video
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is compressed into STMap via space region division and time sequence concate-
nation. In addition, by means of linear color space transformation and average
pooling of the face region, it also constructs color features with higher correlation
between heart rhythm and pixel intensity.

Fig. 2. Illustration of rPPG signal estimated from different face regions. Due to the
uneven distribution of capillaries in skin regions, the contribution of each region to the
rPPG estimation is not consistent. BVPGT : the Ground-truth Blood Volume Pulse.
rPPGEST : the Estimated rPPG signal generated by [3].

However, the STMap-based method simply uses linear upsampling to con-
struct the high-resolution input signal from the low-resolution STMap, making
it difficult to extract the informative and complex spatial-temporal relation-
ship. Moreover, as illustrated in Fig. 2, the rPPG signals estimated from various
regions usually lack consistency due to the uneven distribution of micro-vessel
density, leading to many ineffective areas with considerable noises. Therefore,
the suppression of these noisy regions is very important for HR estimation con-
sidering the inconsistent contribution of each skin region.

To address these problems, we propose a Hierarchical Attentive Upsampling
Module (HAUM) (see Fig. 1(d)), which consists of a Hierarchical Upsampling
Strategy (HUS) and an Attentive Space Module (ASM), to obtain informative
and discriminating high-resolution input signals. The Hierarchical Upsampling
Strategy uses a multi-level approach to generate high-resolution input signal
and extract complicated spatial-temporal information from the low-resolution
STMap. The Attentive Space Module selects the regions with higher correlation
with the target HR signals, aiming at reducing the influence of the noisy areas
on the HR estimation.

In summary, our contributions include: (1) To the best of our knowledge,
our work is the first to explore the discriminating features from the perspec-
tive of the original high-resolution input signal in an end-to-end fashion, greatly
enhancing the low-resolution STMap. (2) We propose a novel Hierarchical Atten-
tive Upsampling Module (HAUM), which can produce richer and discriminating
input signal, especially highlight the regions with stronger heart rhythm signal.
(3) Our method achieves state-of-the-art performance in most of the signifi-
cant metrics on the public VIPL-HR dataset [19]. E.g., the mean absolute error
between the estimated result and the ground-truth improves from 5.02 bpm to
4.67 bpm, which is 0.35 bpm superior than previous best record.
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2 Related Work

rPPG-Based Remote HR Estimation. The rPPG-based remote HR estima-
tion is founded on the fact that blood circulation causes periodic blood volume
fluctuations in the micro-vascular tissue bed beneath the skin, which is induced
by heartbeat, and then leads to the miniature variations in skin color. Although
these subtle variations are not visible to the human eyes intuitively, they can be
captured by the camera.

An early study proposed by Verkruysse [30] only used the green channel as
the HR feature and analyzed its implicit physiological information. However,
limited by its less-information, the methods after that usually used the average
intensity of all facial skin pixels as the original features, such as Chrominance-
based rPPG (CHROM) [3], Independent Component Analysis (ICA) [23], Plane-
orthogonal-to-skin (POS) [31]. However, due to the difference in the density of
facial capillaries, the signals in different facial regions may be distorted. There
are also works [25,33] that only select a single face region, which may ignore the
correlation between the regions. In recent years, a great deal of methods that
use deep learning techniques to estimate HR are proposed, including [2]. These
works use 2D CNN to extract spatial features from each frame of video, but
do not take the relevance of temporal dimension into consideration. Another
type of methods use 3D CNN to directly process the video sequences end-to-
end [29,34]. They pay well attention to the features in temporal dimension, but
these dense sampling approaches may easily introduce irrelevant noises caused
by illumination and motion-induced artifacts.

Representation of Input Signal. How to represent HR signal is the most
important component of the HR estimation. The earlier methods use the facial
pixel intensity averages of the RGB channels as the input signals [23,24,30], and
the green channel is widely used because of it featuring the strongest pulsatile
signal [16,30]. However, the signal generated in this way is less informative and
does not take the physiological differences of face regions into consideration.
Later, [29,34] estimate rPPG signals from the video sequences, which are not
robust enough since this intensive sampling method for direct processing of the
face images is susceptible to complex scenarios, even if normalizing images to
smaller size. [20] introduces a novel representation called STMap, which repre-
sents its physiological features by regional division with pixel intensity averaging
and temporal concatenation with continuous video sequences. The methods men-
tioned above mainly focus on how to characterize the input signals, while our
method pays more attention to make the input signals more discriminating.

Selection of Space Region. Theoretically, all skin areas exposed to light are
employable to estimate HR. While, in practice, only the part of the face regions
has a high correlation with physiological features such as HR. In the past few
years, several works have discussed the influence of different face regions on the
quality of rPPG signals [11,12,14]. Moreover, there are also works [2,17,22,34]
proposed from the perspective of spatial dimension to improve the accuracy of
HR estimation. [17] focuses on the super resolution of the original face image for
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recovering physiological information. While, [2,34] rely on the skin segmentation
implemented by attention mechanism to select region of interest (ROI). Similarly,
[22] advocates a spatial attention mechanism to the feature extraction network
of ResNet [4], where the attention weights concentrate on both temporal and
spatial dimensions of high-level convolutional features. Different from the above
approaches, in our method, the selection of the skin area is performed on the
initial STMap, which greatly reduces the risks of introducing more spatial noises
into the subsequent network.

Upsampling

A�en�ve Space Module

Hierarchical A�en�ve Upsampling Module

Fig. 3. The overview of our approach about rPPG-based remote heart rate estimation
with Hierarchical Attentive Upsampling Module (HAUM).

3 Method

3.1 The Framework of HR Estimation

As depicted in Fig. 3, our approach is composed of three steps. The first step is
the preprocessing of the video sequences. As described in [11,14], the only useful
information for HR estimation is heart-induced variation of skin color. Given the
likely weakness of such signal compared with noises and artifacts, it is essential
to select maximal pulsatile ROI. Consequently, we remove irrelevant pixels such
as background, etc. based on facial landmarks.

Secondly, we generate initial low-resolution STMap, and then, apply the Hier-
archical Attentive Upsampling Module (HAUM) to STMap on the purpose of
constructing richer and discriminating input signals. The HAUM is made up of
Hierarchical Upsampling Strategy (HUS) and Attentive Space Module (ASM)
as illustrated in the top of Fig. 3. The details of HAUM will be explained in the
following subsections.
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In the third step, the popular framework of CNN is employed to estimate
HR of each video sequence with the corresponding input signal, as commonly
practiced in [6,20].

3.2 Hierarchical Upsampling Strategy

With regards to the estimation HR from face video sequence, constructing effec-
tive representation of input signals is the majority component of the task. As
mentioned in Sect. 2, previous HR measurement methods use too simple or exces-
sively noisy statistics, which are not beneficial for HR estimation task since these
input signals can not reflect the discriminating physiological information. More-
over, the situation becomes even worse with respect to the cases of varying
illuminations and motions.
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Fig. 4. (a)The Upsampling Layer. (b)The Attentive Space Module.

Compared with the previous work, the STMap proposed by Niu et al. [20]
reasonably divides the skin region into an appropriate number of sub-regions,
which can extract better statistical features of spatial-temporal signal. However,
it applies the linear projection to the STMap for upsampling, which ignores the
limitations of linear mapping in complex and varied scenarios.

Non-linear Spatial-Temporal Upsampling. For the sake of characterizing
the more complex spatial-temporal data relationship of HR, and projecting the
original color signal into a color space with stronger HR correlation, we use
a non-linear spatial-temporal upsampling layer to construct the input feature.
The upsampling layer is shown in Fig. 4(a). Specifically, for the input feature
X ∈ R

S×T×C , where S, T , C represent space, time and channel dimensions
respectively, we expand its spatial and temporal dimensions via Fup(·) and map
it to the output feature U ∈ R

αS×βT×C′
:

U = Fup(X) = B
(
δ
(
DeConv(X)

))
, (1)

where B indicates the Batch Normalization [8], δ denotes the ReLU function [18],
and DeConv(·) is a deconvolution layer with the ×α and ×β expansion of space
and time dimensions respectively. In addition, the channel dimension is changed
from C to C ′ for the sake of diverse features. Although the non-linear spatial-
temporal upsampling layer improves the discriminability of the input signal,
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the hierarchical upsampling representation can model complex spatial-temporal
relationships more accurately.

Hierarchical Upsampling. Previous works [3,12,24] assume that the rPPG
signal extracted from face can be treated as a linear combination of the RGB
channel signals. However, its performance significantly degrades when in chal-
lenging conditions [5]. On the contrary, [21] proposes the physiological encoder
to get physiological feature implemented by several convolution layers, which
confirms the spatial-temporal complexity of physiological signal from the side.
Considering the limitation to one single layer of non-linear upsampling, we adopt
the Hierarchical Upsampling Strategy to enable the non-linear upsampling layer
model higher correlated representation with remote HR signal. Specifically, we
propose to construct the high-resolution input signals by progressively expand-
ing the spatial and temporal dimensions of the low-resolution STMap, aiming
at modelling the underlying complex spatial-temporal relationship.

As illustrated in Fig. 3, with respect to the low-resolution STMap, a hier-
archical upsampling block (e.g., with two levels) is applied for obtaining the
high-resolution input signals. Following the sequential upsampling modules, the
dimension of the channel is restored back to 3 through a convolution layer.

3.3 Attentive Space Module

Due to physiological factors such as uneven distribution of micro-vessel density
in facial skin tissues, as well as external environmental elements such as facial
rigid motion and external light changes, the HR information reflected by different
facial regions is not equally important.

As shown in Fig. 2, The rPPG signal generated from the left part (a) of the
face is noisy and the periodicity is not significant. The skin in this area does
not face the camera and the skin illumination changes may not be obvious. In
contrast, the periodicity of the rPPG signal shows a more regular shape on the
right region (b), thus it can potentially provide more accurate HR estimations.

Based on the above observations and inspired by recent attention modules
[7,15], we propose an Attentive Space Module (ASM, see Fig. 4(b)) that aims to
explicitly suppress the ineffective areas and leverage more information from the
discriminating ones. Specifically, it consists of two parts: the Spatial Information
Aggregation and Selection.

Spatial Information Aggregation. As stated above, the purpose of our
method is to select discriminating regions for HR estimation according to the
distribution of physiological information in face. The basic idea is to integrate all
the features of different spatial regions. Therefore, we first aggregate the global
information of all features along different spatial regions by using the global
average pooling Fgp(·) over both time and channel dimensions. Specifically, the
s-th element of z ∈ R

S×1×1 is calculated by shrinking U ∈ R
S×T×C through

dimensions T × C:
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zs = Fgp(us) =
1

T × C

T∑
i=1

C∑
j=1

us(i, j). (2)

Spatial Information Selection. By using the spatial information aggregated
from different time-channel dimensions, we create a vector v ∈ R

S×1 to selec-
tively extract more remarkable features, which is achieved through two fully
connected layers Ffc(·). Thus, it can be written as:

vs = Ffc(z,W) = σ
(
W2δ(W1z)

)
. (3)

Here, σ denotes sigmoid activation, δ refers to ReLU function [18] and W1 ∈
R

s
γ ×s, W2 ∈ R

s× s
γ . We also use a reduction ratio γ to limit the complexity

of the model and facilitate information interaction between features. Then, the
vector v is dimensionally expanded and calculated with U via Fscale(·), which
denotes space-wise multiplication:

Y = Fscale(vs, us) = vs · us, (4)

finally, we get the output feature Y ∈ R
S×T×C with the suppression of the noisy

region and the prominent of the effective region.

Discussion. Although related, our ASM differs from the popular SE block [7]
in both the attentive targets and aggregated information. While SE utilizes pure
global spatial information to calibrate features in a channel-wise manner, our
ASM makes use of both temporal and channel feature maps to selectively sup-
press or enhance signals from various regions, as illustrated in Fig. 6.

3.4 Implementation Details

Our HR estimation framework is based on the method of RhythmNet [20], but
because the source code of RhythmNet is not publicly available, some details may
be biased. Therefore, in this section, we mainly introduce some implementation
details of STMap generation and subsequent deep convolutional networks.

Facial Skin Segmentation. First, we use SeetaFace1 to detect the face region
and get the facial landmarks of each frame, then perform median filtering on the
sequence of each landmark to obtain stable and accurate face landmarks. After
that, the face is aligned according to the eye center position of the landmarks,
and the original image is cropped with the bounding box of w×1.2 h, where w is
the horizontal distance between the left and right borders of the face contour, and
h is the vertical distance from the lower border to the mean value of the eyebrow
landmarks. Finally, the skin area is segmented. For simplicity, we directly use
landmarks to remove the pixels of irrelevant areas, such as background, eyes and
mouth. Consequently, the rest area is highly correlated with HR information.

1 https://github.com/seetaface/SeetaFaceEngine.

https://github.com/seetaface/SeetaFaceEngine
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Spatial-Temporal Map Generation. After getting the the image with
aligned face and segmented skin, we first convert the RGB color space of each
frame to YUV color space, and then divide it into S sub-regions. Next, we cal-
culate the average value of the C channel pixels of each sub-region, where only
the pixels of skin are considered. By concatenating the features of the T -frame
images, we can get an initial time series signal. After that, the min-max nor-
malization is applied to the S-dimensional time series of the C channels with
scaling the value into [0, 255], which can reduce the influence of inconsistent
environmental illumination and amplify the weak signal to some extent. Finally,
the STMap is constructed with a size of S × T × C.

CNN-Based HR Estimation Network. The backbone network we used is
ResNet-18 [4]. Following [22], the CBAM [32] module is integrated into build-
ing blocks of ResNet-18. The final HR estimation is obtained by the last fully
connected layer. For each long face video, we use a sliding window with a fixed
number T of frames to prepare a series of samples. During the training phase,
each sample corresponds to a ground-truth HR. Whilst in the test phase, we
average the estimated HR of all the samples from the same long video as the
final predicted HR of the video. L1 loss is used for measuring the gap between
the estimated HR and the ground-truth one.

4 Experiment

4.1 Experiment Setup

Databases. Two popular public databases are adopted to verify the effective-
ness of our method. Among them, VIPL-HR [19] is a large database for remote
HR estimation. The database contains 9 scenarios of face videos for 107 sub-
jects recorded by 3 different devices. The other database is MAHNOB-HCI [28],
which contains 527 facial videos from 27 subjects. Following [20], we downsample
the videos from 61 fps to 30.5 fps for efficiency. Moreover, the heart rate signal
is measured by an ECG sensor. Following [16,34], we use the EXG2 channel2

signal to generate the corresponding HR value. Specifically, we use qrs detector
function from the MNE package3 to clean-up and calculate the HR based on the
ECG sensor information provided. By referring to the previous work [2,34], we
use only a 30-second (frames 306 to 2135) clip of each video in our experiments.

Training Details. For VIPL-HR and MAHNOB-HCI database, we use a sliding
window of T = 300 frames, the interval of the sliding window being 0.5s, the
number of face region division being S = 25. The estimated HR is obtained
according to its frame rate. The data augmentation method uses the strategy
proposed in [22] as well as the random mask strategy to simulate the situation of
missing face detection. Random horizontal flip and random crop are also applied
to the input signals before fed into the network. Our method is implemented

2 The position of ECG sensor is upper left corner of chest and under clavicle bone.
3 https://github.com/mne-tools/mne-python.

https://github.com/mne-tools/mne-python
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using the PyTorch4 framework, where the training uses the Adam [10] optimizer
with the initial learning rate of 0.001, the batch size of 64, the maximum epoch
number of VIPL-HR database being 50, and MAHNOB-HCI being 100.

Performance Metrics. There are a variety of different data evaluation metrics
used to validate the performance of HR estimation approaches [16,20]. Among
them, we use six widely used metrics: the mean (Mean) and standard devia-
tion (Std) of the error, the mean absolute error (MAE), the root mean squared
HR error (RMSE), the mean of error rate percentage (MER), and Pearson’s
correlation coefficients r.

4.2 Ablation Study

In this section, we conduct several ablation experiments to get a better under-
standing of the proposed HAUM. All experiments are performed on the VIPL-
HR database.

Effectiveness of Attentive Space Module. We examine the significance of
using Attentive Space Module (ASM) under two-hierarchical-level setting. As
illustrated in the Table 1, the usage of ASM leads to a clear performance improve-
ment in every evaluation metric.

Table 1. The effect of ASM for HR estimation. “H-Level” denotes the total Hierarchical
Levels applied in HAUM block.

ASM H-Level MAE (bpm) RMSE (bpm) MER r

� 1 4.81 7.41 5.98% 0.81

1 4.73 7.25 5.88% 0.82

� 2 4.77 7.33 5.90% 0.81

2 4.67 7.10 5.84% 0.82

Table 2. The HR estimation results by different reduction ratio γ of ASM on the
VIPL-HR database.

Ratio γ MAE (bpm) RMSE (bpm) MER r

2 5.03 7.89 6.28% 0.78

4 4.89 7.62 6.12% 0.79

8 4.88 7.43 6.04% 0.81

16 4.67 7.10 5.84% 0.82

32 4.85 7.51 6.06% 0.80

4 https://pytorch.org/.

https://pytorch.org/
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Settings for Attentive Space Module. From Eq. (3), the reduction ratio γ
can potentially adjust the complexity of the module as it controls the hidden
dimension of ASM. It would be reasonable to see how it affects the overall
performance. Till this end, we conduct experiments with various reduction ratios,
as shown in Table 2. It is observed that γ = 16 achieves best performance,
therefore, due to its effectiveness, we apply the ASM in subsequent experiments.

Settings for Hierarchical Upsampling Strategy. In order to verify the
effectiveness of the Hierarchical Upsampling Strategy (HUS), we study the effect
of hierarchical levels by fixing the size of the output signal as 300 × 600 × 3. It
can be seen from Table 3 that the two-level is the best for HR estimation task.

4.3 Comparison with State-of-the-Arts

In this section, we compare our method with a variety of state-of-the-art
approaches on two public datasets VIPL-HR [19] and MAHNOB-HCI [28]. For
the sake of fairness, we use a five-fold subject-exclusive evaluation protocol to
train the VIPL-HR database, and use the same train/test split as mentioned in
[19]. The results of other methods are directly borrowed from [20]. All exper-
imental results of the VIPL-HR database are shown in Table 4. Similarly, for
the MAHNOB-HCI database, following [20,34], we use a three-fold subject-
independent cross-validation protocol. The experimental results of this database
are shown in Table 5. It can be seen from Table 4 that our method achieves supe-
rior results over most of the significant metrics. It reflects that the enhancement
of input signals is very crucial for HR estimation task, whilst most existing works
fail to pay much attention on it. By introducing the proposed HAUM for boosted
input signals, we obtain the new state-of-the-art performance on the VIPL-HR
database, reaching a lower MAE of 4.67 and increasing the correlation r from
0.79 to 0.82. Table 5 shows that our method can generalize to other database,
with a consistent improvement over most evaluation metrics, compared with the
previous state-of-the-art methods.

Table 3. The HR estimation results w.r.t. different number of the Hierarchical Levels
(H-Level) on the VIPL-HR database.

H-Level MAE (bpm) RMSE (bpm) MER r

0 4.84 7.41 6.02% 0.81

1 4.73 7.25 5.88% 0.82

2 4.67 7.10 5.84% 0.82

3 4.82 7.52 6.00% 0.80
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Fig. 5. The scatter plots and the Bland-Altman plot on the VIPL-HR (a) and
MAHNOB-HCI (b) database. HRGT : the Ground-truth HR. HREST : the Estimated
HR by our method. The green dashed line in (a) is borrowed from the original paper
[20]. The solid lines in the right plot represent the mean, and the dotted lines represent
the 95% limits of agreement. (Color figure online)

4.4 Analysis

HUS and ASM Improve Accuracy. For the purpose of clearly illustrating
the improvement of the data relevance of our method in HR estimation task, we
draw scatter plots and the Bland-Altman plot on the VIPL-HR and MAHNOB-
HCI database. The diagram is illustrated in Fig. 5. It can be observed that most
of the estimated HRs are highly correlated with the ground-truth ones. Moreover,
compared with RhythmNet, our method demonstrates a better linear correlation
of data on the VIPL-HR database.

Table 4. Comparisons between state-of-the-art methods on VIPL-HR database. Best:
bold; Second best: blue.

Method Mean (bpm) Std (bpm) MAE (bpm) RMSE (bpm) MER r

POS [31] 7.87 15.3 11.5 17.2 18.5% 0.30

CHROM [3] 7.63 15.1 11.4 16.9 17.8% 0.28

DeepPhy [2] -2.60 13.6 11.0 13.8 13.6% 0.11

Niu2019 [22] −0.16 7.99 5.40 7.99 6.70% 0.66

RhythmNet [20] 0.73 8.11 5.30 8.14 6.71% 0.76

CVD [21] - 7.92 5.02 7.97 – 0.79

ours 0.35 7.08 4.67 7.10 5.84% 0.82
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Table 5. Comparisons between state-of-the-art methods on MAHNOB-HCI database.
Best: bold; Second best: blue.

Method Mean (bpm) Std (bpm) MAE (bpm) RMSE (bpm) MER r

Poh2011 [23] 2.04 13.5 – 13.6 13.2% 0.36

CHROM [3] −2.89 13.67 – 10.7 12.9% 0.82

Li2014 [16] −3.30 6.88 – 7.62 6.87% 0.81

rPPGNet [34] – 5.57 4.03 5.93 – 0.88

RhythmNet [20] 0.41 3.98 – 4.00 4.18% 0.87

Meta-rPPG [13] – 4.90 3.01 – – 0.85

Deep-HR [26] 2.08 3.47 – 3.41 2.73% 0.92

ours −0.14 3.96 2.68 3.98 3.70% 0.94

Visualization of ASM. In order to prove the effectiveness of ASM, we visualize
several face images. From the highlighted regions in the Fig. 6(a), we observe that
the network tends to prefer larger skin areas when selecting effective face areas,
regardless of the angle of the face. Furthermore, Fig. 6(b) also clearly shows
the detailed rPPG signal estimated from different regions. We observe that the
quality of rPPG signal is relatively consistent with the focus by ASM: the more
periodic the signal area, the more attention the network tends to pay. Please
note that in those regions containing background pixels (e.g., ②), only facial
part is considered in our data-processing as mentioned in Sect. 3.4.

Fig. 6. (a)Visualization of the discriminating face regions that the network focused on.
(b)Illustration of rPPG estimated from different face regions.

5 Conclusion

In this paper, we propose a Hierarchical Attentive Upsampling Module (HAUM)
for acquiring rich and discriminating input signals based on the Spatial-Temporal
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Map for heart rate estimation. The Hierarchical Upsampling Strategy is used to
progressively enrich the Spatial-Temporal information, and the Attentive Space
Module is cascaded to select effective regions with clearer periodicity. The per-
formances on two public datasets demonstrate the superiority of our approach.
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