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Abstract. As machine learning systems become ever more prevalent in
everyday life, the need to secure such systems is becoming a critically
important area in cybersecurity research. In this work, we address the
“feature misuse” attack vector, where the features output by a model
are abused to perform a function that they were not originally designed
for, such as determining a person’s gender in a facial verification system.
To mitigate this, we take the security concept of “least privilege”, where
a system can only access resources it explicitly needs to complete its
task, and apply it to training deep neural networks. This “least privi-
lege learning” ensures features do not contain information regarding pro-
tected attributes that are superfluous to the primary task, reducing the
potential attack surface for feature misuse and reducing undesired infor-
mation leakage. In this paper, we present two main contributions. Firstly,
a novel training paradigm that enables least privilege learning by obfus-
cating protected attributes in verification and re-identification scenarios.
Secondly, a comprehensive evaluation framework for models trained with
least privilege learning, encompassing multiple datasets and three appli-
cation settings: verification, re-identification, and attribute prediction.

Keywords: Least privilege learning · Attribute obfuscation · Machine
learning feature misuse · Adversarial learning · Protecting deep
learning models

1 Introduction

Security of machine learning is emerging as a new frontier for cybersecurity. Since
Goodmann et al.’s seminal paper [15], adversarial learning has been an area of
much research activity. When considering the security of machine learning, one
needs to consider the confidentiality, integrity and availability challenges posed
by each phase of the machine learning cycle. Of particular interest is the training
phase, which is one of the most critical steps, since it establishes the baseline
behaviour of the application. This is the area that is most likely to present unique
security challenges, as learning is at the core of the machine learning process.

The training stage consists of running the model iteratively with a base-
line data set for which the desired output is known. With each iteration, the
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model parameters are adjusted to achieve more accurate performance, and this
is repeated until an optimal or acceptable level of accuracy is achieved. It is
critical that the training data set is of high quality, as any inaccuracies or incon-
sistencies can lead to the model behaving incorrectly. A typical example of a
biometric access control system which utilises facial analysis involves a user
with an identifying card. The card stores (or can be used to retrieve) a previ-
ously generated feature vector which encodes the properties of the user’s face.
On presentation of the card to the system, a camera takes a new image and
encodes it as a new feature vector. If the distance between the new and stored
feature vectors is below a pre-determined threshold, they are deemed to match
and access is granted. Otherwise, access is denied.

However the performance of the training task should not be the only goal,
since features generated by a model can be used, without further training, for
inference purposes other than that which they were intended. For example, a
biometric face recognition system developed for access control, may contain a
model whose features can be used to recognise a person’s gender, age or ethnic
group. Facial biometric systems are becoming ever more prevalent, so potential
avenues of abuse against such systems need to be investigated.

Feature misuse is the attack which we address in this paper. To do so we intro-
duce the concept here of least privileged learning. Along with Need to Know, Least
Privilege is one of the underlying principles of security which states that an entity
should only be given access to a specific resource that is needed to perform a task.
In the context of learning, we can apply least privilege to ensure that a model, or
its features, can only be used for that purpose for which it was designed and noth-
ing else. Hence, in the biometric access control example we want to ensure that
the features learnt for verifying an identity cannot be used to determine a person’s
gender for example. To achieve this we propose the use of a second unlearning task
in which the system is trained to become ignorant of the attribute of interest, in
this case gender. To accomplish this, we construct a novel training paradigm that
can obfuscate attributes in facial biometric systems, as well as a comprehensive
framework for evaluating systems that utilise least privilege learning.

2 Related Work

Different training paradigms have been proposed to mitigate the encoding of
unwanted attributes into models. One approach is to alter the input data.
Authors in [12] use a style transfer system to remove features from the images
which are correlated with demographic attributes, producing “neutral” faces.
Authors in [6] also use a style transfer technique, but instead use a data aug-
mentation procedure to increase the demographic diversity of the training data
by transforming images into other demographics.

Another approach alters the training paradigm. [18] demonstrated an Adver-
sarial Debiasingmodel on word embeddings using an adversarial training scenario
[7], combining a predictor which learns the primary task, and an adversary which
attempts to predict the protected attribute. The loss across the full model is for-
mulated in such a way that updates made to the predictor are prevented from
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decreasing the adversary’s loss, thereby removing bias encoded in the predictor’s
output. Similarly, Authors in [13] use a gradient reversal layer in a multitask-
training model based on [5] which updates the weights of the model in opposition
to the secondary task, namely protected attribute prediction. Research in [1] intro-
duced a Joint Learning and Unlearning (JLU) framework utilising a confusion loss
(inspired by [17]) where they successfully trained a gender-blind age classifier. The
confusion loss computes the cross-entropy between the model output and a uni-
form distribution, moving the model towards a state of randomness with respect
to protected attribute prediction. While our work is related, we apply the general
method in conjunction with metric learning and a different training paradigm to
facial verification and/or re-identification tasks across several standard “in-the-
wild” datasets, as opposed to the attribute discrimination tasks in the original
paper.

3 Method

The basis of our least privilege learning framework takes inspiration from both
Domain-Adversarial Neural Networks (DANN) [5] and Generative Adversarial
Networks (GAN) [7], while using a confusion loss as in [1]. We start with a
Multi-Task Learning model with the two tasks being verification and attribute
discrimination (Sect. 3.1). Then, we utilise a penalising loss function, also known
as a confusion loss (Sect. 3.3), and a two-stage training step (Sect. 3.2) to cor-
rectly back-propagate the penalised gradients, while still allowing effective learn-
ing. With this process, the model can learn a suitable representation of the
latent space with which Verification/Re-identification is possible while not leak-
ing information about the protected attribute in the resulting embedding vectors.

3.1 Multi-task Learning

The basic model architecture consists of a central CNN Backbone F which func-
tions as a deep feature extractor, and a separate Multilayer Perceptron P called
the Attribute Prediction Branch (APB) which takes the generated features x′

as inputs and discriminates the value of the protected attribute. This results in
the model having two outputs: the generated features x′ that are used for verifi-
cation and the predicted attribute values â. Different loss values are derived
from the separate outputs, corresponding to a particular task. The loss LF

derives from the extracted features x′ when trained using Metric Learning for the
verification/re-identification task. Whereas LA is the penalisation loss, derived
from the predicted attribute values â and the ground-truth values a. The precise
definitions of LF and LA can be found in Sect. 3.3.

Given LF and LA likely have different numerical properties such as scale,
stability, etc., it’s necessary to weight LF and LA when summing them together
to produce the overall loss L. To do this, like in [5], we use the regularisation
hyper-parameter λ as shown in Eq. 1. Naturally, when λ = 0 the training is no
longer multi-task as L = LF . We use this as a baseline for both verification/re-
identification and attribute discrimination performance.
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L = (1 − λ)LF + λLA (1)

3.2 Two-Stage Adversarial Training

As stated above (Sect. 3.1) we use a multi-task learning model with a penalised
loss LA on the attribute prediction branch. However, this by itself is insuffi-
cient for the model to learn an effective embedding space while encoding no
information about the protected attribute: preliminary experiments trained in a
straightforward multi-task scenario failed with regards to obfuscation. The rea-
son is that during back-propagation, the weights of the APB P will simply be
updated to produce near-random output regardless of input due to the effect of
LA. Therefore the gradients penalising the encoding of the protected attribute,
back-propagated into the CNN Backbone F , will be relatively insignificant and
attribute obfuscation will not take place.

To ensure the penalised gradients from LA are adequately back-propagated
throughout the entire model, we employ a two-stage training step as shown in
Fig. 1, with the full algorithm in Algorithm1. This is somewhat analogous to the
training of the discriminator and generator in GAN [7] based architectures.

(a) Stage 1 Back-prop: APB is trained
using predicted and ground-truth at-
tribute values with H(â, a). The CNN
Backbone is not optimized.

(b) Stage 2 Back-prop: The CNN Back-
bone is trained with LA and LF (Sec.
3.3), weighted according to Eq. 1. The
APB is not optimised.

Fig. 1. Two-stage training step

Stage 1. The Attribute Prediction Branch (APB) P of the Multitask model
is trained using the cross-entropy between predicted and ground-truth attribute
values (H(â, a), see Eq. 2) to correctly discriminate the attribute. During back-
prop only the APB’s parameters are updated while keeping the CNN Backbone’s
weights frozen. See Fig. 1a.

H(â, a) = −
∑

x∈X
â(x) log a(x) (2)
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Stage 2. The CNN Backbone is trained with respect to LF and LA in a multi-
task scenario. Importantly, the gradients are derived with respect to the param-
eters in the CNN backbone F only: the APB P is not updated during this stage.
See Fig. 1b.

Algorithm 1: Two-Stage Adversarial Training
Data: F : CNN Backbone Model, P : Attribute Prediction Branch, λ,
x: images, y: identity labels, a: attribute labels,
θF : F ’s weights, θA: A’s weights
Result: Updated θF , θA

1 for epochs do
2 for xb, yb, ab ∈ (x, y, a) do

// Stage 1

3 âb ←− P (F (xb))
4 min H(âb, ab), updating θA only;

// Stage 2
5 x′

b ←− F (xb)
6 âb ←− P (x′

b)
7 L ←− (1 − λ)LF (x′

b, yb) + λLA(âb, ab)
8 min L, updating θF only
9 end for

10 end for

3.3 Losses

Semi-Hard Online Mined Triplet Loss. For LF we use the Semi-Hard
Online Mined Triplet Loss described in [14]. Equation 3 shows the formulation of
the triplet loss where a, p, and n are the anchor, positive and negative exemplars
of the triplet respectively. d(xi, yi) = ||xi − yi||2 and α is the margin (we set it
to 1.0).

LT (a, p, n) = max{d(ai, pi) − d(ai, ni) + α, 0} (3)

If all possible valid triplets are generated, there will be many that are triv-
ial: where LT (a, p, n) = 0. Therefore the selection of valid triplets is a critical
component for efficient training. At run-time, hard triplets where LT (a, p, n) > 0
are “mined” from the minibatch. In this particular variation, priority is given
to mining hard triplets which satisfy the condition d(ai, pi) < d(ai, ni). These
are known as the semi-hard triplets, as the negative sits within the margin α,
as opposed to being closer to the anchor that the positive. It’s reported in [14]
that simply selecting the hardest triplets can lead to bad local minima early in
training, whereas selecting these less hard triplets helps avoid that issue.

KL-Divergence with Discrete Uniform Target Distribution. The pur-
pose of the loss LA is to obfuscate the attribute so that no information about
the attribute may be extracted from the embeddings produced by the feature
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extractor part of the multi-task model. More concretely, when we train the CNN
Backbone F we desire the output of the APB P to be random (where each pre-
dicted value is equally likely regardless of input), indicating that a discriminatory
representation cannot be found.

For this reason the loss we use is a variation of the KL-Divergence shown in
Eq. 4 which is a measure of relative entropy between a probability distribution Q
to another probability distribution P (with both P and Q defined on the same
probability space X ).

We set P to be the discrete uniform distribution U{0, C} where C is the
number of discrete classes the attribute may take, with the probability of each
value simply being C−1. Q is set to the predicted attribute probabilities â (see
Eq. 5). Given that all values in U{0, C} have an equal probability, we can further
simplify this using the scalar value C−1 as shown in Eq. 6. Optimising this loss
means the attribute predictions â move closer to a random distribution.

Using this penalising loss, in conjunction with an accurate APB P in the
multi-task model (Sect. 3.1) and the two-stage training step (Sect. 3.2), we try to
force the CNN Backbone F to produce embeddings which an otherwise effective
attribute discriminating model cannot discriminate. This indicates no informa-
tion regarding the protected attribute is encoded the in feature vectors.

DKL(P ||Q) =
∑

x∈X
P (x) log

P (x)
Q(x)

(4)

LA = DKL(U{0, C}||â) (5)

=
∑

âi∈â

C−1(log C−1 − log âi) (6)

4 Experimental Design

4.1 Models

In these experiments the CNN backbone Fλ, as in [14], is based on Resnet50
[8]. The Attribute Prediction Branch Pλ of the Multi-Task model, as well as the
Attribute Extraction Models (AEMs) AD

λ , used to simulate a malicious attribute
extraction and in testing attribute obfuscation performance (Sect. 4.3), are Mul-
tilayer Perceptrons with 3 Fully Connected Layers of lengths 128, 32, and C,
where C is the number of classes the protected attribute may take on. Since
gender is used in this work as a binary attribute, C = 2. The output feature
vectors from Fλ are of length 512.

4.2 Datasets

We train and evaluate on VGGFace2 [4] and CelebA [10]. VGGFace2 comprises
3.31 million facial images of 9131 subjects, split into two designated partitions:
train (8631 identities, 3138924 images) and test (500 identities, 169177 images).
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VGGFace2 only comes with annotations for pose and age. Additional attributes
were obtained from [16]. VGGFace2’s gender split is 59% Male to 41% Female.
Whenever VGGFace2’s train set is used for training a model, 5% of identities are
randomly selected and held out as a validation set. CelebA consists of 202599
facial images of 10177 identities, split into three designated partitions: train
(8192 identities, 162770 images), validation (985 identities, 19967 images), and
test (1000 identities, 19962 images). The images in CelebA are also annotated
with 45 attributes. The gender split in CelebA is 42% Male, 58% Female. Both
datasets were pre-processed using MTCNN [19] for facial alignment.

4.3 Testing Methodology

Verification Performance. We assess this by running a verification scenario
using the embeddings produced by the feature extractor portion Fλ of the multi-
task model, where λ is the value of λ during the original multi-task training
(see Sect. 3.1). Evaluation takes place on a dataset’s designated test partition.
Positive pairs of images (where images belong to the same identity) are selected
from the dataset, along with an equal number of non-matching images pairs
(where the pair of images belong to different identities). As many unique, positive
pair combinations are selected as possible, up to a limit of 1000000. This results
in a balanced verification dataset of up to 2000000 matching and non-matching
pairs. These image pairs are then processed by the feature extractor to obtain
embedding pairs.

10-fold Cross-validation is used to evaluate verification performance on the
embedding pairs from the testing split as described above, with 90% of pairs per
fold used to calculate a optimum threshold distance using Receiver Operating
Characteristic (ROC) Curves. The final 10% of embedding pairs per fold are
thresholded accordingly to produce matching/non-matching label predictions
for those pairs. The predicted and ground-truth labels are then used to calculate
relevant metrics for that fold. The final results are the metrics averaged over
all 10 folds. In addition to ROC-AUC (ROC-Area Under Curve) and accuracy,
we also report False Acceptance Rate (FAR) and False Rejection Rate (FRR)
as given in Eq. 7, where TP , FN , TN , FP are true-positives, false-negatives,
true-negatives, and false-positives respectively.

FAR =
FR

FP + TN

FRR =
FN

FN + TP
(7)

Re-identification Performance. Using a particular dataset’s designated test
partition, we construct a gallery by randomly sampling a single image per iden-
tity in the dataset. All other images from all identities are added the probe
set. Images are passed through the feature extractor Fλ to obtain embeddings
x′

λ, and distances between each probe embedding and all gallery embeddings
are calculated and ranked. The results are averaged over all probe samples and
cumulative accuracy per rank is reported.
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Attribute Obfuscation Performance. For a protected attribute to be obfus-
cated, it means there is no information in the output embedding vectors that
can be used to discriminate the attribute. To determine obfuscation perfor-
mance, we run multiple attack scenarios with varying prior-information con-
ditions. The metric we are primarily concerned with is “Balanced Accuracy” [3],
where the accuracy is weighted per sample according to the inverse support of
the attribute’s label. Therefore, for any binary attribute a balanced accuracy
value of 0.5 equates with randomised output, even on unbalanced data.

Full Technical Knowledge: The attacker has full knowledge of the models (but not
the trained models themselves) and datasets used, including the corresponding
attribute label for each stolen embedding. In this scenario, the attacker trains
a separate model called an Attribute Extraction Model (AEM) using the stolen
embeddings x′

λ originating from a feature model Fλ. This kind of attack would
produce a feature-abusing model that can be used when further embeddings are
exfiltrated without the corresponding attribute labels. One real-world situation
that could enable such an attack would be the case of unsecured cloud-based
storage that supports a facial verification system, containing both input (images)
and output (embedding) files.

A successful attack is when the trained AEM has sufficient discriminating
power to accurately predict the attribute label from the embeddings. Therefore,
a successful defence would be where an AEM fails to learn such a mapping,
indicating that there’s insufficient latent information regarding the attribute
encoded in the embeddings. Training involves predicting the attribute â, and
updating the AEM’s weights to minimise the cross-entropy loss H(â, a) (Eq. 2).

We evaluate the AEM’s performance on same and cross-dataset scenarios to
help rule out results caused by overfitting to the training dataset. Concretely,
each feature extractor Fλ is trained on VGGFace2’s train set (162770 samples,
8631 identities) as part of a multi-task training scenario (see Sect. 3.1). For each
Fλ, we train an AEM using embeddings generated from the same VGGFace2
train set AV

λ . Training lasts for 10 epochs. For each AV
λ (where V indicates the

AEM was trained on embeddings from VGGFace2), we evaluate attribute dis-
crimination performance using both VGGFace2’s test set (169177 samples, 500
identities), and CelebA’s test set (19,967 samples, 1000 identities). This results
in 2 sets of results per Fλ

Partial Technical Knowledge: In this scenario, the attacker has access to the
trained model F as well as stolen embeddings x′ generated by F . They do not
however know the attribute labels for each embedding, nor have access to the
original dataset. This makes the attack in the Full Knowledge scenario impossi-
ble as supervised learning utilising the stolen embeddings x′ and attribute labels
a cannot be done. To get around this, the attacker uses their own annotated
dataset D and the model F to generate new embeddings x′D. Now, as in the
Full Knowledge scenario, they can train an AEM AD using x′D and aD in a super-
vised manner, which can then be used to discriminate the gender of the original
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stolen embeddings x′. With the rise of publicly available, pre-trained models
this scenario may become commonplace as facial embedding models get reused
across many systems. This scenario also applies to cloud computing providers
which provide such models as-a-service.

To reiterate, each model Fλ is trained on VGGFace2’s train set. For this
scenario, we use CelebA (denoted with C) as our “external” dataset. Using Fλ

we generate embeddings x′C
λ from CelebA’s train partition, which along with aC

we use to train an AEM AC
λ . As above, we then evaluate AC

λ ’s discriminative
performance on both VGGFace2 and CelebA’s respective test partitions, giving
two sets of results per Fλ.

Zero Technical Knowledge: In this scenario, the attacker has no prior technical
knowledge: the only asset they have are the stolen embeddings x′. In the specific
case of a binary gender attribute, given the intrinsic role gender plays in facial
recognition [2] an attacker could reasonably assume that gender-based clusters
exists in the embedding space. Therefore, they perform unsupervised clustering
on the embeddings to assign each embedding to 1 of 2 clusters. Afterwards,
using publicly available information (such as the rough demographic makeup of
employees) or a reasonable guess (certain industries such as construction or the
military are gender imbalanced in general), they can assign an attribute label to
each cluster.

To evaluate this scenario, we generate embeddings x′
λ from each trained CNN

Backbone Fλ. We reduce x′
λ to 2 Dimensions x′′

λ using t-SNE [11] (with perplexity
= 50) and finally cluster x′′

λ with a Gaussian Mixture Model (GMM). As the
goal of this attack is to simply cluster and assign attribute labels to the stolen
embeddings x′, and there is no danger of overfitting to the attribute labels during
training as they are never used in this scenario, we train the GMM and evaluate
on the same data: embeddings generated by Fλ from VGGFace2 and CelebA’s
test sets, producing two sets of results for each Fλ model. Note that due to
the computational complexity of t-SNE, the number of images taken from each
dataset are limited to a randomly sampled 10000.

4.4 Hyper-parameters

As the results in this work will primarily be judged relative to our own base-
line (λ = 0, see Eq. 1), for computational efficiency we are limiting any hyper-
parameter searching to λ itself. We initially test 12 values of λ: 0, 0.0001, 0.001,
0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999 and 0.9999. This choice reflects a good
range of values with more precision nearer the equilibrium point while still check-
ing many orders of magnitude. Additional values of λ were tested (0.75, 0.8, 0.85)
after the initial 12 values, with the aim to find a balance between verification and
attribute obfuscation performance. The optimizers used are all Adam [9] with
learning rate 0.01, β1 = 0.9, and β2 = 0.999. The Multi-Task Models (consisting
of Fλ and Pλ) and the AEMs AD

λ are trained for 30 and 10 epochs respectively.
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(a) VGGFace2 (b) CelebA

Fig. 2. Verification scenario results - receiver operating characteristics (ROC) curves
per λ value. ROC-AUC in parentheses.

5 Results

Verification Performance: we can clearly see in Fig. 2 and Table 1 that as λ
increases, it becomes increasingly difficult to use the embeddings produced by the
corresponding CNN Backbone Fλ for verification. λ < 0.1 has a near-negligible

Table 1. Verification Scenario Results. Embeddings generated from dataset D’s test
partition by appropriate Fλ.

λ VGGFace2 CelebA

AUC Accuracy FAR FRR AUC Accuracy FAR FRR

0 0.982 0.936 0.064 0.064 0.990 0.955 0.045 0.045

0.0001 0.964 0.906 0.094 0.094 0.978 0.927 0.073 0.073

0.001 0.986 0.945 0.055 0.055 0.992 0.961 0.039 0.039

0.01 0.981 0.932 0.068 0.068 0.988 0.951 0.049 0.049

0.1 0.894 0.846 0.154 0.154 0.937 0.884 0.116 0.116

0.3 0.847 0.797 0.203 0.203 0.912 0.838 0.162 0.162

0.5 0.818 0.776 0.224 0.224 0.830 0.792 0.208 0.208

0.7 0.730 0.675 0.325 0.325 0.781 0.715 0.285 0.285

0.75 0.612 0.579 0.421 0.421 0.645 0.603 0.397 0.397

0.8 0.675 0.628 0.372 0.372 0.702 0.649 0.351 0.351

0.85 0.668 0.628 0.372 0.372 0.714 0.658 0.342 0.342

0.9 0.612 0.589 0.411 0.411 0.651 0.616 0.384 0.384

0.99 0.584 0.558 0.442 0.442 0.611 0.582 0.418 0.418

0.999 0.520 0.514 0.486 0.486 0.531 0.523 0.477 0.477

0.9999 0.516 0.510 0.490 0.490 0.534 0.526 0.474 0.474



152 G. Brown et al.

effect whereas λ > 0.9 approaches near-random outputs. This matches our intu-
ition given the adversarial nature of the multi-task learning (Sect. 3.1), and indi-
cates that selecting an appropriate λ depends on the characteristics of the task
at hand. For example, if accurate verification is the top priority then λ must be
constrained appropriately, whereas if avoiding feature-abuse is paramount then a
sacrifice in verification performance may be acceptable. Performance when eval-
uating on CelebA is slightly better ( 1–5% higher accuracy) across all values of
λ. Considering CelebA is “wider” with many identities and fewer images each
(19867 samples for 1000 identities in the test set) while VGGFace2 is“deeper”
with fewer identities and more images per identity (169177 samples for 500 iden-
tities), this makes sense as we expect the intra-identity variation in VGGFace2
to be higher than in CelebA, making verification more difficult.

Table 2. 10-Identity Re-Identification Scenario. Gallery and Probe constructed from
dataset D’s test partition, with embeddings generated by appropriate Fλ.

λ VGGFace2 CelebA

Rank 1 Rank 3 Rank 5 Rank 1 Rank 3 Rank 5

0 0.937 0.997 0.999 0.846 0.979 1.000

0.0001 0.870 0.993 0.997 0.709 0.850 0.949

0.001 0.951 0.997 1.000 0.816 0.970 0.987

0.01 0.929 0.997 0.999 0.774 0.868 0.949

0.1 0.751 0.962 0.984 0.547 0.825 0.953

0.3 0.676 0.938 0.962 0.534 0.765 0.808

0.5 0.614 0.868 0.922 0.551 0.752 0.897

0.7 0.279 0.600 0.799 0.346 0.581 0.722

0.75 0.196 0.442 0.606 0.205 0.457 0.658

0.8 0.192 0.515 0.765 0.278 0.607 0.692

0.85 0.233 0.569 0.746 0.278 0.526 0.714

0.9 0.156 0.439 0.648 0.209 0.491 0.701

0.99 0.126 0.349 0.588 0.269 0.509 0.654

0.999 0.119 0.342 0.534 0.150 0.342 0.551

0.9999 0.127 0.323 0.514 0.167 0.376 0.577

Re-identification Performance: The 10-identity scenario in Table 2 shows that
performance degrades quickly after λ exceeds the equilibrium point of 0.5 and
becomes almost random beyond 0.99, indicating that re-identification is more
sensitive to our method than verification. That this is the case implies the least
privilege learning is operating strongly on the local scale, as “neighbouring”
identities in the embedding space begin to overlap significantly with sufficient
values of λ.
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Table 3. Attribute Extraction Attack Results. Full and Zero Knowledge Scenarios.
Values are “Balanced Accuracy”. 0.5 corresponds to perfect obfuscation. 2nd row indi-
cates the evaluation dataset.

λ Full knowledge Partial knowledge Zero knowledge

VGGFace2 CelebA VGGFace2 CelebA VGGFace2 CelebA

0 0.781 0.986 0.779 0.985 0.932 0.878

0.0001 0.786 0.985 0.786 0.984 0.978 0.977

0.001 0.779 0.985 0.783 0.985 0.958 0.969

0.01 0.782 0.983 0.785 0.983 0.920 0.934

0.1 0.785 0.973 0.789 0.972 0.932 0.891

0.3 0.756 0.948 0.725 0.881 0.903 0.729

0.5 0.742 0.931 0.721 0.907 0.889 0.912

0.7 0.695 0.866 0.662 0.809 0.815 0.825

0.75 0.503 0.513 0.445 0.501 0.511 0.554

0.8 0.609 0.701 0.592 0.669 0.539 0.525

0.85 0.613 0.753 0.607 0.738 0.579 0.545

0.9 0.498 0.500 0.444 0.500 0.574 0.546

0.99 0.497 0.500 0.444 0.500 0.516 0.528

0.999 0.497 0.500 0.448 0.504 0.529 0.506

0.9999 0.497 0.500 0.444 0.500 0.522 0.524

Attribute Obfuscation (Full Knowledge): The attribute discrimination perfor-
mance of the AEMs AV

λ have no significant deterioration until λ >= 0.3, after
which performance declines until the attributes are sufficiently obfuscated at
λ = 0.75 and λ >= 0.9. See Table 3. This being the case when evaluating on
both VGGFace2 and CelebA illustrates the cross-dataset viability of our method.

Attribute Obfuscation (Partial Knowledge): The performance of the AEMs AC
λ

in this scenario aligns closely with the performance of the Full Knowledge AEMs
AV

λ , with obfuscation occurring at the same values: λ = 0.75 and λ >= 0.9. That
the two scenarios give similar results indicate that λ is the dominant factor, with
the specific embeddings x′

D the AEMs are trained with playing a lesser role in
discrimination performance.

Attribute Obfuscation (Zero Knowledge): The results in Table 3 show that
extracting a binary gender attribute from embeddings intended for facial verifi-
cation can be quite straightforward, even under unsupervised approaches with
little knowledge held by the attacker. Thus, segmenting an embedding space into
two clusters can result in a balanced accuracy of over 95% when λ is sufficiently
small. The discriminative performance drops significantly when λ > 0.5, with
the attribute being obfuscated at λ >= 0.75 so mitigating against this attack is
slightly easier than the Full and Partial Knowledge scenarios, but is in no way
trivial. Figure 3 visualises the results. We can see that at λ = 0 the embeddings
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are distinctly clustered by gender. At λ = 0.7, the clusters have begun to merge
and the gender attribute has become more diffuse, before the total obfuscation
shown at λ = 0.9.

(a) λ = 0 (b) λ = 0.7 (c) λ = 0.9

Fig. 3. Visualisation of Zero Technical Knowledge attack results. Embeddings gener-
ated from VGGFace2’s test set. Background colours indicate GMM Decision boundary
for each cluster.

6 Conclusion

In this paper we propose a novel training paradigm to obfuscate protected
attributes in verification and re-identification systems, enabling least privilege
learning in the interest of stopping feature abuse. It achieves this by applying the
KL-Divergence with Discrete Uniform Target Distribution loss to the protected
attribute, in conjunction with a Two-Stage Adversarial Training procedure in a
Multi-Task Learning scenario. In terms of obfuscating protected attributes, we
succeed at reducing the amount of extractable latent information regarding the
attribute in the resulting feature vectors to near zero, given sufficiently large
values of λ. While the main learning task performance may suffer, an effective
balance between verification/re-identification and attribute obfuscation is possi-
ble in the range of λ ∈ [0.75, 0.9].

We have also proposed a comprehensive evaluation framework combining 2
different datasets and 3 application settings: verification, re-identification, and
attribute prediction across multiple scenarios with various levels of attacker
knowledge, that allows us to clearly measure the (often competing) performance
requirements of a least privilege learning model. This could be used as a com-
prehensive testbench for future works.

As future work we will focus on maintaining the obfuscation performance of
the proposed method, while minimising the sacrifice in identity discriminating
power. Further, the application of least privilege learning would be most powerful
if successfully applied to multiple attributes simultaneously.
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