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Abstract. Although activity recognition in the video has been widely
studied with recent significant advances in deep learning approaches, it
is still a challenging task on real-world datasets. Skeleton-based action
recognition has gained popularity because of its ability to exploit sophis-
ticated information about human behavior, but the most cost-effective
depth sensor still has the limitation that it only captures indoor scenes.
In this paper, we propose a framework for human activity recognition
based on spatio-temporal weight of active regions by utilizing human
a pose estimation algorithm on RGB video. In the proposed frame-
work, the human pose-based joint motion features with body parts are
extracted by adopting a publicly available pose estimation algorithm.
Semantically important body parts that interact with other objects gain
higher weights based on spatio-temporal activation. The local patches
from actively interacting joints with weights and full body part image
features are also combined in a single framework. Finally, the tempo-
ral dynamics are modeled by LSTM features over time. We validate the
proposed method on two public datasets: the BIT-Interaction and UT-
Interaction datasets, which are widely used for human interaction recog-
nition performance evaluation. Our method showed the effectiveness by
outperforming competing methods in quantitative comparisons.

Keywords: Human activity recognition · Human-human interaction ·
Spatio-temporal weight

1 Introduction

Recognition of human activity is still developing in computer vision, a field
with many applications such as video surveillance, human computer inter-
face and automated driving. In previous studies, the bag-of-words approach or
preset motion attributes were commonly used in human activity recognition
[10,11,24,36]. Recent deep learning-based representation methods such as 3D
convolutional neural networks(CNN) [8], two-stream CNN [27], and multi-stream
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CNN [31] have shown promising results for the human activity recognition prob-
lem. However, recognizing human activity accurately remains a challenging task,
compared to other aspects of computer vision and machine learning. The use of
RGB information imposes limitations on extensibility and versatility because it
is often influenced by recording conditions, such as illumination, size, resolution,
and occlusion.

With the advent of depth sensors such as Microsoft Kinect, Asus Xtion,
and Intel RealSense, instead of using RGB camera, action recognition using
3D skeleton sequences has attracted substantial research attention, and many
advanced approaches have been proposed [4,9,18,20,32,35]. Human actions can
be represented by a combination of movements of skeletal joints in 3D space. In
addition, there has also been major advances in skeleton-based human activity
recognition researches [2,3,25,29,34]. They models what happens between two or
more people based on their joint information. Although the human skeleton can
provide sophisticated information about human behavior, most depth sensors
are currently limited to indoor applications with close distance; these conditions
are necessary to estimate articulated poses accurately. However, Human activity
recognition using articulated poses outdoors could have many more practical
applications. Therefore, we address such settings: namely, activity recognition
problems where articulated poses are estimated from RGB videos.

In recent studies, deep learning-based approaches have achieved excellent
results in estimating the human body joints from RGB videos through pose eval-
uation [6,7,26]. It has become possible to extract accurate multiple human poses
with joint information from RGB video in real time. Because pose estimation
and action recognition are closely related problems, some studies simultaneously
address these two tasks. A multi-task deep learning approach performed joint
2D and 3D pose estimation from still images and human action recognition from
video in a single framework [19]. An AND-OR graph-based action recognition
approach utilizes hierarchical part composition analysis [33]. Even though the
end-to-end approach has advantages for optimization of the task, it has lim-
ited extensibility to videos in varying real-world environments. Furthermore, an
approach to research involving interactions, rather than single human actions,
methodologically distinct; another problem is that requires the large amount of
training data.

In this paper, we propose a novel framework for human activity recognition
from RGB video based on spatio-temporal weight of active joints. The proposed
framework extracts individual human body joints using publicly available pose
estimation method, and recognizes human interaction based on joint motion,
local path image, and full-body images with spatio-temporal weight of active
region. Therefore, the proposed framework selectively focuses on the informative
joints in each frame in an unconditioned RGB video. Figure 1 shows that the
interaction regions differ in human activity. In the case of a handshake, hand
interaction occurs, but a punch can be understood as head and hand interaction,
and a hug as interaction between torso and hand.
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Fig. 1. An example of human body joints with spatio-temporal active region analysis:
stretched right hand is interacting three different body part of other person in each
activity.

We presents our contributions as follows: first, the proposed framework is
based on the RGB video, so it has the benefit that activity recognition can be
performed using in the wild without constraints. Second, the spatio-temporal
weight of the active region is given to activity relevant motion or poses, that
makes the model can focus on important cue of human activity. Third, the
experimental result shows the effectiveness of proposed method for the human
behavior understanding. This framework allows us to develop a highly extensi-
ble application. Furthermore, by not performing separate learning for estimation,
detection, and tracking tasks, the proposed framework can be extended to vary-
ing datasets in an unconditioned environment.

2 Proposed Method

2.1 Preprocessing

In the most recent studies, video representation through a CNN-based approach
has shown good results. We first normalize the RGB pixel data and extract
feature vector from images to process input images through CNN. We perform
human object detection using Faster-RCNN [22] with the Inception-resnet-v2
network [30]. The detection result provides (x, y) coordinates with height and
width. We also perform joint estimation using Part Affinity Fields (PAF) [7] on
the same images.

The composition of the estimated joints using PAF is shown in Fig. 2. The
PAF provides 18 joints for each human object. In addition, the average of joints
8 coordinate and joint 11 coordinate is designated as point 18 for utilization of
the torso information; this is referred to as the hip. For each human subject, we
denote each joint as ji = {j0, ..., j18}. The pose estimation in an RGB frame often
causes a missing joint. Thus, if the previous n frames have failed to estimate a
joint, the value in current frame is used for interpolation and restoration. We
use the bounding box to filter out bad results using constraints. First, both the
head and torso of each object must be included in the bounding box. If a failure
occurs in estimating the head (index 0), the average coordinate of j14, ..., j17 is
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Fig. 2. An illustration of joint indexes from estimated human pose to corresponding
five body parts (torso, left hand, right hand, left leg, and right leg).

used as the head position. In this way, noisy objects and poorly estimated joints
for interaction can be removed.

In order to consider the local image associated with the body parts in active
region, we extract the (n×n)-size image feature from each joint location of index
0 (head position) and 3 (right elbow), 4 (right hand), 9 (right knee), 10 (right
foot), 6 (left elbow), 7 (left hand), 12 (left knee), and 13 (left foot). The last
fully connected layer of the Inception-resnet-v2 network is used to extract its
feature vector, pf tj . The input image patches are extracted where the ([x−n/2 :
x + n/2], [y − n/2 : y + n/2]), center is in position (x, y).

2.2 Body Joint Exploitation

We extract four type of joint-based body part features to express the behavior
of an individual human. At each time step, for each subject, the 2D coordinates
of the 19 body joints are obtained. To consider the characteristics of different
behaviors, the motion features were extracted according to the status of the
joints. First, we create five body parts using joints from 0 to 18 defined in each
frame: right arm p1 (2, 3, 4), left arm p2 (5, 6, 7), right leg p3 (8, 9, 10), left
leg p4 (11, 12, 13), and torso p5(0, 1, 18). Each number denotes the joint index,
and their 2D coordinates are defined as jin,(x,y). We then calculate the spatio-
temporal weight of five body parts that are created by combining joints and
extract the motion feature by using each body part. After defining the five body
parts, we calculate the inner angle of each part, θin as follows:
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a = (ji1,x − ji2,x, ji1,y − ji2,y),
b = (ji1,x − ji3,x, ji1,y − ji3,y),

θ = arccos

(
a · b
|a||b|

) (1)

We also calculate the angle between each part using (1). The outer angle
θout denotes the value for connected part, which is calculated using following
joint indexes as input in each frame: (1, 2, 3), (1, 5, 6), (1, 8, 9) and (1, 11,
12). The inner angle represents the relative position of the joint inside the body
part, and the outer angle represents the shape of the body part. θin and θout
can express scale-invariant human posture information for the five body parts.
This is also an important cue to express the movement of the body parts by
changing the position of each joint. For all points in the body parts, the average
value of the difference between each previous point and each current point of
the sequence, normalized by n length, is used to calculate the motion velocity,
vt
p and acceleration v̂t

j .

2.3 Full-Body Image Representation

We also conduct full-body image-based activity descriptor to capture overall
appearance change. The method used here exploits the SCM descriptor used for
human interaction recognition [15,16]. Extracting a feature vector from a full-
body image has proved useful. Since joint estimation from RGB images includes
a failure case, a full-body image can compensate for the missing parts.

From the bounding box of the human object region, we extract weights from
the last fully connected layer of the inception-resnet-v2 network. Then we gen-
erate a sub-volume for each object f toi = [p, δx, δy], where p denotes the average
of feature vectors in a sub-volume. A series of frame-level image feature vec-
tors of object oi at time t for l consecutive frames, are averaged into a single
feature vector. Then, K-means clustering is performed on the training set to
generate codewords {wk}Kk=1, where k denotes the number of clusters. Each of
sub-volume feature f toi is assigned to the corresponding cluster wk following the
BoW paradigm. The index of the corresponding cluster kt

oi is codeword index,
which is also the index of the row and column of the descriptor. Here, we should
note that, we use the ojI coordinates from joint estimation to obtain more precise
information.

A descriptor using sub-volume features is constructed from each sub-volume
of an object vt

oi = (f , x, y, k). We measure the Euclidean distance between sub-
volumes oi and oj. The overall spatial distance between sub-volume oi and the
other oj in segment t for #pairs, where oj �= oi, is aggregated as follows:

rt =
1
2

∑
oi

∑
oj �=oi

disttoi,oj . (2)
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The participation ratio of the pair in the segment t is represented using distance
difference between sub-volume oi and oj to the global motion activation. The
feature scoring function based on sub-volume clustering is calculated as follows:

fp = log

( ||wt
oi − f toi|| + ||wt

oj − f toj ||
2

+ ψ

)
. (3)

After computing all required values between all sub-volumes, we finally construct
the SCM descriptor, as follows:

M t(kt
oi, k

t
oj) =

1
N

∑
oi,oi �=oj

∑
1:t

stoi
εt

rt

disttoi,oj
fp(f toi, f

t
oj), (4)

where N is the normalization term. The value between oi, oj is assigned to the
SCM descriptor using the corresponding cluster index, kt

oi and kt
oj , of each sub-

volume. Each of the descriptors is generated for every non-overlapped time step.
Therefore, the descriptor is constructed in a cumulative way.

2.4 Spatio-temporal Weight for Classification

In this section, we present the joint based spatio-temporal weight of active region.
The basic idea of spatio-temporal weight of active region is the assumption
that, when human interaction occurs, the body parts that constitute each action
will be of different importance. Spatio-temporal weights of each body part of
the person who leads the action and other person have different depends on
interactive motions. For example, when person 1 punches person 2, person 1
reaches out to person 2’s head and person 2 would be pushed back without
motion towards person 1. If person 1 performs a push action, person 2’s response
will look similar to a punch, but person 1 will reach out to person 2’s torso, and
two hands will reach out. We try to capture these subtle differences between
similar activities, and reflect the difference in the weights. The weight of body
parts between persons is calculated as follows:

Ap,t = S ×
∑5

p |dp,t − dp,t−1|
|dp,t − dp,t−1|

(5)

where d denotes the relative distance between each pair of body parts among the
interacting persons. The calculated part weight, Ap,t is multiplied by the velocity
wvt

p = Ap,t × vt
p and acceleration wv̂t

j = Ap,t × v̂t
j to determine the weight. The

motion feature mt
p is created by concatenating θin, θout, a weighted wvt

p, and
wv̂t

j . The weight is also multiplied by the image patch feature vector from each
joint. Since an interacting body part with a high weight plays an important role
in the activity, this also gives a high weight to the joint-based image feature
extracted from the position of the body part as wf = pf ⊗ Ap.

The overall framework is illustrated in Fig. 3. From a given video, estimated
joints are processed through three different streams: joint patch feature extrac-
tion, body part motion features with spatio-temporal weight extraction, and
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Fig. 3. Illustration of the overall framework combining spatio-temporal weight, joint
feature and image feature. The first joint estimation from the video denotes human
body joint extraction from RGB input.

full-body image feature extraction. At each step, The generated motion features
mt

p and joint-based weighted image patch features wf tp, and SCM descriptor
after multi layer perception are concatenated and used as LSTM inputs. The
final vector is used as input to LSTM Together, and the activity classification
task is the output of the LSTM after processing t segments.

3 Experiment

In this section, we validate the effectiveness of the proposed method on the BIT-
Interaction dataset [11] and UT-Interaction dataset [23], which are common
and widely used in human interaction recognition research. The performance
of the proposed method is shown by comparing the performance with that of
the competing methods. In this experiment, the joint estimation was done using
PAF [7]. To extract joint patch features and full-body image features, we use the
weight of the Inception-resnet-v2 network [30], implemented in Tensorflow [1].

The BIT-Interaction dataset used in the experimental evaluation con-
sists of eight classes of human interactions: bow, boxing, handshake, high-five,
hug, kick, pat, and push. Each class contains 50 clips. The videos were captured
in a very realistic environment, including partial occlusion, movement, complex
background, variying sizes, view point changes, and lighting changes. The sample
images of this dataset is shown in Fig. 4(1)–4(b). Both images have the environ-
mental difficulties that are occlusion and complex background. For this dataset,
we used a training set with from 1 to 34 index for each class (a total of 272
clips) and the remaining from 35 to 50 index as the test set (128 clips) following
official standard in the literature [5,10,13].
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(a) BIT: Bow (b) BIT: Boxing

(c) UT #1: Push (d) UT #2: Kick

Fig. 4. Sample frames of the BIT-Interaction dataset (a-b), UT-Interaction dataset Set
#1 (c) and Set #2 (d).

Table 1. Comparison of the recognition results on the BIT-Interaction dataset

Method Accuracy (%)

Linear SVM (BoW) 64.06

Dynamic BoW [24] 53.13

MTSSVM [13] 76.56

MSSC [5] 67.97

MMAPM [10] 79.69

Kong et al. [12] 90.63

Liu et al. [17] 84.37

SCM [16] 88.70

Proposed Method 92.67

The experimental results for quantitative comparison on the BIT-Interaction
dataset, compared with the competing methods, are shown in Table 1. The table
lists the average classification accuracy for eight classes. The proposed method
achieved better overall performance over than all the other comparison methods,
with 92.67% recognition accuracy for human interaction activity recognition.
This result is better than the competing methods. In addition, it shows bet-
ter performance than SCM-based technique [15], that only considers full-body
images. This means that it is better to use the joint-based high-level motion
information than to utilize the low-level image features alone.
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The UT-Interaction dataset used in the experimental evaluation consist
of six classes of human interactions: push, kick, hug, point, punch, and hand-
shake. Each class contains 10 clips for each set. The dataset is composed of
two sets of video which were captured in different environments; set #1 and set
#2. The set #1 videos were captured in a parking lot background. However,
the backgrounds in set #2 of the UT-Interaction dataset consisted of grass and
jittering twigs, which could be noise to local patches. We performed leave-one-
out cross validation for the performance in the Table 2 and Table 3 as done in
previous studies [5,10,16,21,24,28].

Table 2. Comparison of the recognition results on the UT-Interaction dataset (set #1).

Method Accuracy (%)

Bag-of-Words (BoW) 81.67

Integral BoW [24] 81.70

Dynamic BoW [24] 85.00

SC [5] 76.67

MSSC [5] 83.33

MMAPM [10] 95.00

SCM et al. [16] 90.22

Mahmood et al. [21] 83.50

Slimani et al. [28] 90.00

Proposed Method 91.70

Table 3. Comparison of the recognition results on the UT-Interaction dataset (set
#2).

Method Accuracy (%)

Bag-of-Words (BoW) 80.00

Dynamic BoW [24] 70.00

Lan et al. [14] 83.33

SC [5] 80.00

MSSC [5] 81.67

MMAPM [10] 86.67

SCM [16] 89.40

Mahmood et al. [21] 72.50

Slimani et al. [28] 83.90

Proposed Method 89.70
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Table 2 compares the classification accuracy measured on the UT-Interaction
#1. In set #1, the proposed method achieved 91.70 % recognition accuracy. The
performance of MMAPM was very high and the proposed method has the sec-
ond highest performance. On the other hand, our method achieved the highest
performance in set #2 as shown in Table 3. This is because set #2 has a noisier
background than the set #1, so the proposed method of using human structural
characteristics through joint estimation works better than competing methods
based on image features only. In real-world scenarios, considering the complexi-
ties of environmental change, the proposed method is highly effective.

4 Conclusion and Future Work

Despite numerous studies, it is still challenging and difficult to recognize the
complex activity of people in video. However, the complex activity of two or
more people interacting with each other requires a higher level of scene under-
standing than robust image representation. In this study, we showed that robust
activity recognition results can be obtained by acquiring joint information of
the human that is estimated from RGB videos are informative to understand
the human activity. The spatio-temporal weight to actively interacting body
parts improve the recognition accuracy than RGB-only methods. This indicates
that the relationship between objects plays a key role in complex activity recog-
nition. In addition, the proposed method has high practicality, in the sense that
it can overcome the limitations of existing sensors that uses depth information to
exploit the skeleton information and increase the possibility of using a common
RGB camera. In future research, we intend to expand this work to show robust
performance even in interactions involving more people or non-human objects.
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