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Abstract. Automatic evaluation of a student’s STEM learning profile
to understand her persistence is of national interest. In this paper, we
propose an early “dropout” and behavior prediction model that can
identify the potentially ‘marginalized’ student learning patterns to facil-
itate early instructional intervention in Massive Open Online Courses
(MOOC) learning platform. Note that in the MOOC setting, building a
comprehensive learning profile of the students is particularly more chal-
lenging due to the lack of available information and constrained commu-
nication modes. Unlike most existing works, which ignore these environ-
mental constraints of missing information to formulate an over-simplified
problem of ‘one-time’ prediction task in a supervised setting, the pro-
posed model introduces a continual automated monitoring and proac-
tive estimation process, which transforms its decision making capacity
over time with evolving data patterns. In a semi-supervised scenario,
the Multi-Domain Adversarial Feature Representation (mDAFR) strat-
egy promotes the emergence of features, which are discriminative for
the main learning task, while remaining largely invariant to the data
sources (course from which the data was captured) in consideration. This
ensures an enhanced distributed learning capacity over different course
environments. Compared to transfer learning, mDAFR reports 11–15%
improved classification accuracy in KDDCup dataset, and demonstrates
a competitive performance against several state-of-the-art methods in
both KDDCup and MOOCDropout datasets.

Keywords: Multi-feature learning · Adversarial learning · Domain
adaptation · Classification · MOOC

1 Introduction

As we march into this new era of Fourth Industrial Revolutions as World Eco-
nomic Forum calls it [29], it reflects on how education is evolving at a faster
pace than ever before, to suit the increasing demand for the right skills. Massive
Open Online Courses (MOOCs), such as Coursera, Edx are turning increas-
ingly popular for their online course offerings. However, despite ensuring more
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Fig. 1. Workflow Diagram for the proposed method that takes into consideration of
both students’ course related activity details & learning behavior patterns to design a
multi-domain adversarial learning, which is discriminative of the underlying category
information yc for an input sample xc, however invariant to the underlying course (or
domain) specification (c), from which the sample was originated. During test time, Fy

is used to make the persistence behavior prediction for the student u.

flexible, personalized, and collaborative learning environment compared to tra-
ditional classroom-based course offerings, attrition remains to be a challenge for
the MOOC courses [13]. Recent surge of success in artificial intelligence (AI)
that aims to automate several complex tasks in manufacturing, transportation,
e-commerce, health care, and financial markets, triggers a fundamental research
question on its applicability to support an evolving education system. Although
efficient data processing tools and sophisticated multimodal data analytic algo-
rithms have been instrumental to demonstrate impressive performances in the
domains of anomaly detection, signal processing, and multimodal data analytic
research [1], it is still not evident, how to utilize the power of AI most effectively
to assist each actor in the STEM life cycle (student, instructors, councilors, col-
lege professionals) to augment their respective capacities toward mitigating the
attrition in the educational environment.

In fact, depending on the course requirement details and the student’s indi-
vidual learning style, learning patterns may slightly vary across courses (like
comparing activities in two courses ‘Introduction to Physics’ Vs ‘Introduction
to CS1’) [10]. However, the course completion objectives may remain same for
all the courses the student is presently enrolled in. Therefore, to ensure gener-
alized performance across multiple course environments, we introduce a multi-
domain adversarial feature representation learning module that cannot discrim-
inate across the single training (Source) and multiple testing (Target) domains,
and yet makes an accurate early prediction on students’ persistence behavior.
While most existing methods addressing this problem formulate it as a one-time
prediction task and perform some post-hoc analysis [15], in a practical scenario
it is important to note that the behavioral processes like self-determination and
self-efficacy may evolve over a relatively short time-period. Often the change
is triggered by certain surrounding environmental conditions (like the subtle
presence of microaggression in a TA’s response), which may frequently create
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some differentiated impacts on a young mind. The identification of a potentially
‘marginalized’ student profile is useful only if such a prediction is accurate and
early enough. This would help to design appropriate intervention by the course
instructors or other concerned authorities to reduce the overall attrition rate.
While prediction at a fixed time-stamp may not be of much help, the proposed
method employs a continual automated monitoring process, which learns the
sequential activity patterns over time to ensure an early and timely risk iden-
tification more accurately. Figure 1 gives a workflow overview of the proposed
Multi-Domain Adversarial Feature Representation (mDAFR) learning method.
The primary contributions of the work may be summarized as:

1. Sequential Learning Activity Analysis for Early Detection that may
proactively identify the ‘marginalized’ profiles at every pre-defined interval to
facilitate a timely instructional intervention for personalized assistance.

2. Understanding Learning Behavior within Student Contexts is facil-
itated by clustering them into groups using the explainable k-means algo-
rithm ExKMC [9], which not only reflects different types of learning patterns
observed in the student population, but also helps understand the student-
specific unique activity details, which may have impacted the clustering con-
figurations. ExKMC enhances interpretability of the model’s prediction by
visualizing each cluster configuration using a small decision tree, wherein the
cluster assignment of each sample is interpreted by a short sequence of single-
feature thresholds.

3. Multi-Domain Adversarial Feature Representation Learning that in
a semi-supervised setting, utilizes annotated samples from a Source course
and promotes the emergence of features, which are discriminative for the
main learning task and invariant to the domain shifts over multiple smaller
Target courses.

4. Evaluating Generalization Performance across Diverse Course
Environments using two large scale MOOC datasets in Instructor-led course
settings.

The rest of the paper is organized as follows: Sect. 2 briefly describes some
related works; The proposed method is described in Sect. 3; Sect. 4 and Sect. 5
respectively presents the experimental results and the follow-up discussions; and
the conclusion is in Sect. 5.

2 Related Works

Although MOOC has shown tremendous potential for ensuring an enhanced
accessibility to distance and lifelong learners, from the research perspective,
digital activity details of participants offer a tremendous amount of data to
describe students’ individual learning patterns including watching video lectures,
participation in discussion forums, timely submission of assignments, etc. Evi-
dences show that these may be investigated to predict student completion [13]
or engagement [4]. In this section, we briefly describe the related methods to
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predict dropout using students’ learning activities and patterns. Since the pro-
posed method develops a multi-domain adversarial feature representation learn-
ing model, we will also discuss related works based on adversarial learning.

Modelling MOOC Dropouts based on Learning Activity Details: A
significant amount of research have explored the problem in K-12 settings [6,
28]. With the recent development in educational technologies and resources,
MOOC is rapidly becoming more popular to the global learner community as a
steady alternative that offers a more flexible as well as a personalized learning
environment. However, the success rate of MOOC learners is often lower than
that achieved by students in a physical classroom setting [16]. In fact, high
dropout rate in MOOC appears to be a prominent issue, requiring immediate
attention [27]. A set of recent works use deep neural network models to address
the dropout prediction task in MOOC environment for predicting whether a user
is likely to dropout in the next weeks [18,26]. To enable a more accurate time-
stamped analysis, some works [7,24] model the sequential feature information
to build variants of Recurrent Neural Network (RNN) models. Jeon et al. [15]
present a multi-layer representation module based on Branch and Bound (BB)
algorithm from the raw clickstream data. However, to ensure interpretability,
useful sequence information is lost. A comprehensive literature review covering
the recent progress in addressing the task of MOOC-based dropout prediction
problem can be found in [2].

Adversarial Domain Invariant Learning: The proposed work is also related
to Generative Adversarial Network (GAN) [12]. Existing methods develop gener-
ative models for domain adaptation or domain generalization. Both these models
propose to learn an effective classifier useful for the target domain by leveraging a
large collection of source domain labeled data. However, several domain adapta-
tion techniques [3,25] utilize its limited access to the labeled data and unlabeled
data generated from the target domain to learn the target data pattern. While
the evolving data characteristic and the availability of large annotated sample
collection in Target domain pose additional challenges for our problem setting,
the category sets in both Source and Target domains are identical in our sce-
nario. Given this, we develop a novel variant of multi-domain adversarial feature
representation learning model that promotes emergence of a learned descriptor,
while demonstrating significant invariance to the underlying course context. This
is critical as often a student’s individual learning behaviour and sense of per-
sistence have a uniformly dominant influence in all the courses, the student has
recently been enrolled, wherein other course-specific details may not be equally
discriminative.

3 Proposed Method

In particular we have xc
def
= {x(t)

c }T
t=1 ∈ R

m×T , where the learning activity at a
given time-stamp t ∈ {1, ..., T} and c ∈ C, is represented in terms of a compact
m dimensional descriptor x(t)

c that may capture student data from two different
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Fig. 2. For each c ∈ C and student u ∈ U , a sample xc ∈ Dc ⊂ R
m×T represents the

learning activity in terms of a T -length sequence. At a given time-stamp t ∈ {1, ..., T}
for course c ∈ C, it captures both Course Activity (a

(t)
c ), and Student Context (u

(t)
c ) as

its components. In our experiments, we have a new time-stamp on every third day in
the entire span of the course duration, wherein the last day of the course is denoted by
T . The figure illustrates an overview of the proposed Multi-Domain Adversarial Feature
Representation (mDAFR) learning method to ensure a domain invariant descriptor zc
with minimized domain shift across several course settings in C. During testing phase,
Fy(Fs(x

q
c ; θFs); θFy ) is used to predict the labels for the query xq

c , for any c ∈ C.

perspectives: (1) An overall Student Context that reports a holistic understand-
ing of student’s overall working style in the course and its comparative pattern
against the overall course population at the time-stamp t. This component is
denoted by u(t)

c and the details of its derivation are described in Sect. 3.1; and
(2) Course Activity Descriptor that reports the student’s course-specific learn-
ing activity details (like ‘access’, ‘navigate’, ‘video views’ etc.) for c ∈ C at the
time instant t and denoted by a(t)c . The details of the specific types of features
that we use to build a(t)c is discussed in Sect. 4.2. We concatenate these two com-
ponents to describe a student’s comprehensive learning pattern x(t)

c at a given
time instant t. The label yc = 0 (or yc = 1) represents the fact that the stu-
dent described by the multivariate sequence vector xc successfully completed all
course requirements (or dropped out) of the course c ∈ C within the course life-
span [1, T ]. In addition to making a summative evaluation of an input query xc,
by designing an effective multi-domain adversarial sequence modelling scheme,
the proposed method also enables proactive evaluation, wherein for a predefined
η > 0 and a subsequence xt0

c
def
= [x(t0−η)

c , ...,x(t0)
c ] of xc describing the student’s

course-specific learning history at time t0 (t0 > η), the system can also make
an early prediction on their ‘marginalization’ score highlighting their dropout
risk. The entire dataset D = ∪c∈CDc is comprised of multiple course-specific
collections of students’ activity details.

Note that for each course-specific collection Dc, the sample population rep-
resenting each of the two classes, may be highly unbalanced, like in a practical
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scenario, students dropping out of a course in the middle, would be comparably
a rare phenomenon. Therefore, a dataset with nearly uniform distribution for
samples representing both the categories (‘successful completion’ and ‘dropping
out’) may not be always possible. To address such data scarcity, Transfer Learn-
ing (TL) (or more specifically termed as semi-supervised Domain Adaptation)
is often found as a solution, where a ML model learned using the data collection
from a Source domain (e.g. a course with plenty of labeled data), is transferred
to a Target domain (e.g. a course for which the dataset is more unbalanced, or
the dataset size is not reasonably large enough to build a sophisticated ML/DL
model from scratch) to be finetuned in the context of the Target domain [20].
However, this risks the transferred neural network model prone to catastrophic
forgetting [17,30].

While some existing works propose to directly combine the data gathered
from multiple courses to compensate for such data imbalance, subtle yet criti-
cal course-specific fine-grained context details preserved within a learned feature
descriptor may not be reasonable generalizable and thus may negatively impact
on the prediction performance. Therefore, our model relies on the theory of
domain adaptation [10], which suggests that the predictions must be made on
the feature descriptors that cannot discriminate among multiple domains. To
this effect, given a collection of annotated samples D, we design an effective and
efficient domain adversarial feature representation learning model that promotes
emergence of a learned descriptor, which is discriminative to the main task (i.e.
identifying profiles potentially at the risk for dropping out) and also optimized
to demonstrate invariance to the underlying data distribution variance observed
across Source and multiple potential Target domains. An overview of the pro-
posed algorithm is illustrated in Fig. 2.

3.1 Feature Extraction

The entire set of students in our data collection is represented as U . In order
to gain a better understanding of a student’s overall learning behavior at a
given time-stamp t compared to the whole class population, the Course Activity
Descriptor reports the student’s course-specific learning activity details (like
‘access’, ‘navigate’, ‘video views’ etc.) for c ∈ C at the time instant t. For each
u ∈ U , the Course Activity Descriptor is denoted by a(t)c , the details of which is
discussed in Sect. 4.2. Given a(t)c , the overall Student Context descriptor u(t)

c , is
designed to capture a holistic understanding of student’s overall working style in
the course c and its comparative pattern against the overall course population
at the time-stamp t.

Toward facilitating the derivation of a comprehensive student-specific learn-
ing pattern, a clustering analysis is performed to capture an aggregated under-
standing of the student’s learning pattern from all the courses the student is
currently enrolled in. For a given u ∈ U , an aggregated learning activity in
course c is represented as: a(t)agg,c =

∑t
n=1 a

(n)
c . We use the explainable k-means

algorithm ExKMC [9] that takes inputs k as an estimated cluster number and
the entire data collection U represented using the set {a(t)agg,c}, to partition into
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k clusters {Uk}5k=1. Following Silhouette Analysis [23], the number of clusters is
set to be k = 5. The primary objective of ExKMC is to generate an explainable
k-means clustering using a threshold tree with a specified number of leaves. In
fact, the clustering algorithm is initiated by building a threshold tree with k
leaves using the Iterative Mistake Minimization (IMM) algorithm [5]. IMM first
runs a standard k-means algorithm, producing a set of k centers that are given
as an additional input. Then, given a budget of k

′
leaves, it greedily expands the

tree to reduce the clustering cost. At each step, the clusters form a refinement
of the previous clustering by adding more thresholds to allow for more flexibil-
ity in the data partition and employ a surrogate cost to enable multiple leaves
to correspond to the same cluster. The main idea is that by fixing the centers
between steps, we can more efficiently determine the next feature-threshold pair
to add. The surrogate cost is non-increasing throughout the execution as the
number of leaves k

′
grows. When k

′
= n, then the k-means cost matches that

of the reference clustering. In our experiments, we have used k
′

= 2k. In fact,
extending the tree to use k

′
leaves with ExKMC leads to a lower-cost result

that better approximates the reference clustering and helps find an explainable
clustering with high accuracy, while using only O(k) leaves for k-means clus-
tering. Note that in this specific application scenario, just tagging a student as
‘marginalized’ based on their cluster assignment may be risky and may also prove
biased. Thus, an additional interpretation supporting the system prediction on
a student’s cluster assignment may be significant.

Student Context Descriptor: The overall Student Context vector is defined as

u(t)
c

def
=

[

u
(t)
c,1, ..., u

(t)
c,5, d

]

∈ R
6, where u

(t)
c,k represents the probability that the

student u belongs to cluster Uk. The term d
def
= 1 − Eu

Ef+Eu
computes the stu-

dent’s overall Persistence Score, by computing the ratio between the number
of dropped out courses Eu and the total number of courses that the student
has enrolled, including the ones that the student has completed. The term Ef

represents the number of courses the student has completed by now. Note that
the Persistence Score is 1 until a student drops out of a course. When demo-
graphic data (e.g. age group, gender, education level) gu is available for each
student u ∈ U , we further cluster samples (represented using an augmented vec-
tor [a(t)agg,c,gu]) within each Uk into 5 different groups {Ud

k,l}5l=1. The resulting

Demography Context vector for u is defined as d(t)
c

def
=

[

d
(t)
c,1, ..., d

(t)
c,5

]

, where d
(t)
c,k

represents the Gower distance between u and the cluster center of Ud
k,l. Then,

the overall Demography Aware Student Context uses a combined representation

as u(t)
c

def
=

[

u
(t)
c,1, ..., u

(t)
c,5, d

(t)
c,1, ..., d

(t)
c,5, d

]

∈ R
11.

3.2 Feature Representation

The feature representation module in Fig. 2 uses a specific Source ∈ C, for
which the course-specific subcollection Dsr ⊂ D is used to learn the feature



576 S. Das Bhattacharjee and J. Yuan

representation module Fs that can effectively identify the potentially ‘marginal-
ized’ students in the course c. Typically a larger subcollection of course-specific
samples with a balanced distribution across various classes is considered as a
Source subcollection Dsr. In Sect. 4.3, we report results using different choices
of Source domains from C. Long Short-Term Memory (LSTM) network model,
a variant of Recurrent Network Model (RNN), is used as the feature extractor
module [14]. Given a sample xc = {x(t)

c }t ∈ Dsr, passed as an input to Fs,
each of its recurrent layers is designed to propagate historical information via a
chain-like neural network architecture that integrates the current input and the
hidden state h(t−1) at (t − 1)th time stamp [19] along with the gating functions
into its state dynamics [14].

As shown in Fig. 2, Fs has a stack of (k − 2) LSTM layers, followed by
the (k − 1)th layer as a fully connected dense layer and kth layer as a softmax
layer. For each sample xc, the intermediate (k − 2)th layer output {h(t)

c,(k−2)}Nc
t=1

is fed as an input to the (k − 1)th dense layer of Fs and produces zc ∈ R
n

as a compact derived sample descriptor (the dimension n of zc depends on the
(k − 1)th layer size of Fs), which is learned to be discriminative of its underlying
category information yi

c. However, having been an effective representative of
several course-specific learning activity patterns, which may not generalize well
across multiple courses. Each LSTM layer coupled with dropout layer has 64
hidden units. With Rectified Linear unit (ReLU), the FC layer has 16 units.

3.3 Multi-domain Adversarial Feature Representation (mDAFR)
Learning

Note that the entire dataset D is essentially a collection of samples collected from
different courses, where the samples representing a student’s learning pattern in
course c ∈ C belongs to its sub-collection Dc. In a practice setting, not all these
course-specific subcollections may have sufficiently large annotated collection to
build a indigenous course-specific model from scratch. Therefore, in practical
settings, the samples of D are typically originated from two types of courses (or
domains): the data collection from Source domain denoted by Dsr, which has
comparably larger collection of samples representing each label; and (|C| − 1)
smaller subcollections representing samples from Target domains {Dtar,j}(|C|−1)

j=1 .

Therefore, D can be decomposed as D = {Dsr} ∪ {Dtar,j}(|C|−1)
j=1 . The proposed

mDAFR model aims to leverage the larger collection of Source data (student
activity details from the source sr) and smaller unlabelled sample collections
of multiple Target domains (student activity details from multiple target tar
courses) to build a robust classifier. Note that while there may exist multiple
distributions representing the data patterns of the Source and various Target
domains, which are all unknown, they all represent the identical set of semantic
categories. Hence, given a test sample xc our ultimate goal is to design a model
that can accurately predict its label yc irrespective of its originating domain in C.

The mDAFR module employs a deep feed-forward architecture that for each
input xc, predicts its label yc ∈ {0, 1} and its underling domain c ∈ C [10]. As
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shown in Fig. 2, the input vector xc is passed through the initial feature rep-
resentation module Fs to generate a n-dimensional derived descriptor zc ∈ R

n,
which is then transformed by a mapping Fy to the label yc. The proposed domain
invariant feature representation module uses Fs (trained using Dsr ⊂ D) as the
initial feature representation module. In order to achieve domain invariance, we
also introduce a multiclass domain classifier module Fd that can predict the
originating domain of the input sample. The weight parameters of all the (k−1)
layers (except the last Softmax layer) of Fs represented by θFs

along with the
network parameters θFy

(and θFd
) of Fy (and Fd) are further updated jointly

using a combined loss term defined as below [10]:

E(θFs , θFy , θFd) =
1

|Dsr|
|Dsr|∑

i=1

Li
y(θFs , θFy ) − λ

(
1

|Dsr|
|Dsr|∑

i=1

Li
d(θFs , θFd)+

1

(|C| − 1)|D \ Dsr|
(|C|−1)∑

j

|D−tar,j|∑

i=1

Li
d(θFs , θFd)

)
(1)

where, the empirical classification loss on a labeled example xi
c from course c

is denoted as Li
y and the domain discrimination loss is denoted as Li

d. They
are defined as Li

y(θFs
, θFy

) = Ly(Fy(Fs(xi
c; θFs

); θFy
), yi) and Li

d(θFs
, θFd

) =
Ld(Fd(R(Fs(xi

c; θFs
)); θFd

), c), where c (and yi) represents the course (and
ground truth persistence category details) information for xi

c. The term Ly (e.g.
multinomial) and Ld (e.g. multi-class cross-entropy loss) are the corresponding
loss functions. In all experiments, we use λ = 1. A ‘pseudo function’ R(x) is
introduced by defining two (incompatible) equations describing its forward and
backpropagation behavior [10] as R(x) = x and dR

dx = −I. The joint learn-
ing using the combined loss term defined in Eq. (1) can be implemented using
Stochastic Gradient Descent by optimizing the saddle points θ0Fs

, θ0Fy
, θ0Fd

as,
(θ0Fs

, θ0Fy
) = arg min

θFs ,θFy

E(θFs
, θFy

, θ0Fd
) and θ0Fd

= arg max
θFd

E(θ0Fs
, θ0Fy

, θFd
). This

enables the system attain an equilibrium between the classification performance,
the mitigating system’s ability for domain discrimination. This results in obtain-
ing a domain invariant feature representation that may influence a more accurate
label prediction task.

Early Prediction: For any c ∈ C and a given query xq
c of length t0 such that

η < t0 < T , during the testing phase, we decompose it into (t0−η+1) equal sized
subsequences {xq

c,i}(T−η+1)
i=1 . Each xq

c,i as a query, depicts the learning activity
pattern for η consecutive time stamps, extracted from the original sequence
xq

c. Then an average ‘marginalization’ score of {Fy(Fs(x
q
c,i; θFs

); θFy
)}(t0−η+1)

i=1

is used to classify xq
c . In our experiments, we use η = 5 to obtain 4 different

partial subsequences from each xc (or xq
c), each of which is treated as a separate

training sample, labeled same as xc.
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4 Experiments

4.1 Dataset

We use KDDCup1 and the recent MoocDropout2 dataset for our experi-
ments. The information contained in both the datasets is of three types: 1)
Object/module data; 2) log data; and 3) label data to specify course comple-
tion or dropout. Object/module data comprises of course/module-specific details
(e.g. chapter, course info, peer-grading, course, video, dictation, problem, start
and end of each module etc.).

KDDCup dataset is a collection of event and relation-based activity details
of 39 Instructor-paced mode courses, which include the information of a total
of 200, 904 enrollments and 112, 448 unique students. The MoocDropout dataset
contains 698 Instructor-paced courses. This data collection has the log details for
1, 319, 032 video activities, 10, 763, 225 forum participation activities, 2, 089, 933
assignment activities, 738, 0344 web page access related activities. Among the
total 200, 904 student population, 159, 223 students dropped out before complet-
ing the course and 41, 681 completed all the requirements of their enrolled course
within a given timeframe.

MoocDropout also provides students’ demographic information (age, gender,
education level), which, as described in Sect. 3.1, is used to describe the Demo-
graphic Context of students. In the instructor paced environment (IPE) of 698
courses, it has the log details for 50, 678, 849 video activities, 443, 554 forum par-
ticipation activities, 7, 773, 245 assignment activities, 9, 231, 061 web page access
related activities. Among the total 467, 113 student population, 372, 088 stu-
dents dropped out before completing the course and 95, 025 completed all the

Table 1. Performance comparison of the proposed mDAFR model against the Transfer
Learning [31] in KDDCup dataset: In each experimental iteration a specific Source
collection (indexed as sr) and each of the other 38 courses is treated as a Target domain.
Columns 2–7 report the performance of the proposed method for each iteration that
uses a specific sr as a source collection. Column 8 reports the average performance,
that computes the mean of Columns 2–7. Similarly, Columns 2–7 in Row 2 report the
performance of another set of experimental iterations, where transfer learning method
is adopted for each iteration using a specific sr as a source collection to learn the base
model which is then transferred to each of the other 38 Target locations and the base
model learned at sr is finetuned by the entire non-source subcollection D\Dsr and
finetuned model is used to classify the samples from the entire test collection across all
the courses in C.

sr = 6 sr = 11 sr = 13 sr = 16 sr = 18 sr = 22 Average

Proposed method 0.864 0.895 0.853 0.884 0.875 0.872 0.874

Transfer learning [31] 0.689 0.782 0.793 0.748 0.766 0.801 0.763

1 https://www.biendata.xyz/competition/kddcup2015/.
2 http://moocdata.cn/data/user-activity.

https://www.biendata.xyz/competition/kddcup2015/
http://moocdata.cn/data/user-activity
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requirements of their enrolled course within a given timeframe. The other subset
of the dataset reports the details of 515 courses in the self-paced environment
(SPE). This has the log details for 38, 225, 417 video activities, 90, 815 forum par-
ticipation activities, 3, 139, 558 assignment activities, 5, 496, 287 web page access
related activities. Among the total 218, 274 student population, 205, 988 students
dropped out before completing the course and 12, 286 completed all the require-
ments of their enrolled course within a given timeframe. IPE courses follow a
similar offering pattern as the conventional classrooms, however in SPE indi-
vidual students follow their individual learning schedules, which can be more
than 16 weeks, typically fixed for any IPE course. The learning activities in
SPE courses also include video watching (watch, stop, and jump), forum discus-
sion (ask questions and replies), assignment completion (with correct/incorrect
answers, and reset), and web page clicking (click and close a course page). The
label data contains information on whether the student has completed the course
or not, where label 1 indicates that the student dropped out, and 0 indicates
that the student completed the course.

4.2 Implementation Details

Given the activity information of all unique enrolments in the entire course col-
lection in the dataset, 14 features are derived to represent the action of a student
at any time instance t: access; discussion; navigate; page close; problem, video;
wiki; server; browser; chapter; sequential; total time; and session. The time span
of each course was divided in 7 nearly equal-sized segment, in which each seg-
ment was of 4 consecutive days except the last one, which was either 2 or 3
days depending on the month length. The Course-Specific Feature Representa-
tion Module described in Sect. 3.2 consists of (k − 2) = 3 LSTM layers, each of
which was paired with a dropout layer with a dropout ratio as 0.1. For compact-
ness, each LSTM layer coupled with its corresponding dropout layer is treated as
1 layer. The number of hidden units in each layer was set to be 64. The (k−1)th

Fully Connected (FC) layer is designed with 16 units and defined with Recti-
fied Linear unit (ReLU) activation. The learning of this course-specific feature
representation module occurs with 60 epochs with 20% of the training samples
are used for validation at every learning epoch. To deal with data imbalance,
the samples from the two classes were assigned weights derived using Sklearn
[21] util function class weight() so that the training data collection appears as a
balanced representation of both the classes.

4.3 Results and Comparative Study

We use accuracy as an evaluation metric that computes the ratio of the cor-
rect predictions over all the predictions made by a classifier, for reporting the
performance [11]. To compare the performance against that of several methods
reported by [8], we use F1 score that is the harmonic mean of the precision and
recall with its best value reached at 1 for perfect precision and recall [11].
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Table 2. Average Performance of the proposed method (mDAFR) with F1 score (in %)
as the evaluation metric, in KDDCup and MoocDropout dataset. To perform an equiv-
alent comparison with other methods, mDAFR model is finetuned in an active learning
setting with a small fraction of the annotated Target samples and Column mDAFR(A)
reports the result. The result is compared against the average performance obtained
by using several off-the-shelf classifiers that includes Support Vector Machine (SVM),
Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Context-aware Fea-
ture Interaction Network (CFIN) [8], Deep sequential (a combination of Convolution
Neural Network and LSTM, denoted as ConRec), Deep Feed Forward Neural Network
(DNN-3), and Simple-LSTM [22].

Dataset mDAFR(A) mDAFR CFIN SVM RF GBDT ConRec DNN-3 Simple-LSTM

KDDCup 93.45 88.68 92.27 91/65 91.73 91.88 0.86 0.85 0.84

MoocDropout 92.27 87.53 90.48 82.86% 83.11 85.18 0.76 0.75 0.73

Table 1 reports the accuracy scores [11] to compare the performance of the
proposed method against transfer learning [31] using 6 different courses as the
Source domain, for which there are at least 800 samples representing the minor-
ity category (i.e. usually the dropped out category in this scenario). This specific
problem scenario being prone to a severe data imbalance issue, not all Dc for
c ∈ C may be an appropriate representative of the problem spectrum with a
reasonable number of samples from each category in consideration. In a typical
transfer learning setting, the base model is learned using the Source course data
and transferred to each of the Target course environment for later finetuning
and the resulting finetuned model is used classify the samples from the entire
test collection across all the courses in C. As observed, the proposed method
demonstrates a significantly robust performance compared to transfer learning
using a variety of choices for the source collections sr = 6, 11, etc. In fact, a com-
parison of the average performances reported in Column 8, clearly demonstrates
the effectiveness of the proposed method over the traditional transfer learning
method that frequently suffers from catastrophic forgetting and thereby fails to
remain equally effective for the Source domain sr, on which the model was orig-
inally learned. However, the proposed mDAFR model remains to be invariant
of the underlying domain information, from which the query sample was origi-
nated. The proposed method attains around 11% improved accuracy score over
the transfer learning method.

Table 2 uses F1 score to report the performance of the proposed method
against the state-of-the-art results described by [8], which in a supervised set-
ting, use the combined training collection of D (comprising of 10–30 times more
‘annotated’ training samples representing students’ learning activity across all
the courses in two datasets) to train a Context-aware Feature Interaction Net-
work (CFIN) in a strictly supervised setting. Note that in KDDCup dataset,
CFIN obtains F1 Score of 92.27%. However, the proposed mDAFR model uses
significantly smaller course-specific annotated collection Dsr(⊂ D) to present a
competitive average F1 score 88.68% over all choices of sr ∈ {6, 11, 13, 16, 18, 22}.
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To compare the performances improvement of the proposed method in an equiv-
alent experiment setting as in CFIN, the mDAFR model is then finetuned in
an active learning environment[1] with the Target course data, wherein mDAFR
required only 1–3% of the total Target annotated samples, we achieve a signifi-
cant performance gain. In KDDCup dataset, the finetuned model obtains 93.45%
F1 score. A similar average performance is also observed for the MoocDropout,
where Instructor-paced courses with more than 1000 samples were chosen as the
Source classes to report 92.27% average F1 Score.

5 Conclusion

The proposed method designs a continual monitoring system that employs a
multi-domain adversarial feature representation (mDAFR) strategy to early
identify the potentially ‘marginalized’ students, who may need personalized
instructional support. While domain-adaptation offers a promise to assist edu-
cators in their effort for personalize pedagogical approach by highlighting some
determining feature attributes, the proposed student-centric model benefits all
participants involved in the course life-cycle. In addition to encouraging the
emergence of features that are more exclusive and discriminative to the main
learning task and invariant to the domain shifts, across a variety of courses,
the proposed mDAFR model is also suitable for interactive learning in a dis-
tributed data environment, wherein the model can be learned in a large Source
course and can be easily customized with a smaller data collection of Tar-
get courses. This shows a greater promise to be adopted in a real-life setting,
where an extensive data sharing (specifically the annotated data) across depart-
ments/schools/universities may be an issue due to its confidentiality concerns.
By facilitating a more personalized interaction with a small set of identified
‘marginalized’ student profiles, the proposed model offers practical assistance to
help improve student retention.
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